
The Connectivity of Boolean Satisfiability:
Dichotomies for Formulas and Circuits

Konrad Schwerdtfeger

Institut für Theoretische Informatik, Leibniz Universität Hannover,
Appelstr. 4, 30167 Hannover, Germany

k.w.s@gmx.net

Abstract. For Boolean satisfiability problems, the structure of the so-
lution space is characterized by the solution graph, where the vertices are
the solutions, and two solutions are connected iff they differ in exactly
one variable. Motivated by research on heuristics and the satisfiability
threshold, in 2006, Gopalan et al. studied connectivity properties of the
solution graph and related complexity issues for CSPs [3]. They found
dichotomies for the diameter of connected components and for the com-
plexity of the st-connectivity question, and conjectured a trichotomy for
the connectivity question. Their results were refined by Makino et al. [7].
Recently, we were able to establish the trichotomy [15].

Here, we consider connectivity issues of satisfiability problems defined
by Boolean circuits and propositional formulas that use gates, resp. con-
nectives, from a fixed set of Boolean functions. We obtain dichotomies
for the diameter and the connectivity problems: on one side, the diame-
ter is linear and both problems are in P, while on the other, the diameter
can be exponential and the problems are PSPACE-complete.

1 Introduction

The Boolean satisfiability problem, as well as many related questions like equiv-
alence, counting, enumeration, and numerous versions of optimization, are of
great importance in both theory and applications of computer science.

Common to all these problems is that one asks questions about a Boolean
relation given by some short description, e.g. a propositional formula, Boolean
circuit, binary decision diagram, or Boolean neural network. For the usual for-
mulas with the connectives ∧, ∨ and ¬, several generalizations and restrictions
have been considered. Most widely studied are Boolean constraint satisfactions
problems (CSPs), that can be seen as a generalization of formulas in CNF (con-
junctive normal form), see Definition 2. Another generalization, that we will con-
sider here, are formulas with connectives from an arbitrary fixed set of Boolean
functions B, known as B-formulas. This concept also applies to circuits, where
the allowed gates implement the functions from B, called B-circuits. A further
extension that allows for shorter representations, and in turn makes many prob-
lems harder, are quantifiers, which we will look at in Section 5.

E.A. Hirsch et al. (Eds.): CSR 2014, LNCS 8476, pp. 351–364, 2014.
c© Springer International Publishing Switzerland 2014

352 K. Schwerdtfeger

Here we will investigate the structure of the solution space, which is of obvi-
ous relevance to these satisfiability related problems. Indeed, the solution space
connectivity is strongly correlated to the performance of standard satisfiability
algorithms like WalkSAT and DPLL on random instances: As one approaches
the satisfiability threshold (the ratio of constraints to variables at which ran-
dom k-CNF-formulas become unsatisfiable for k ≥ 3) from below, the solution
space fractures, and the performance of the algorithms breaks down [9,8]. These
insights mainly came from statistical physics, and lead to the development of
the survey propagation algorithm, which has much better performance on ran-
dom instances [8]. This research was a motivation for Gopalan et al. to study
connectivity properties of the solution space of Boolean CSPs [3].

While the most efficient satisfiability solvers take CNF-formulas as input, one
of the most important applications of satisfiability testing is verification and op-
timization in Electronic Design Automation (EDA), where the instances derive
mostly from digital circuit descriptions [18]. Though many such instances can
easily be encoded in CNF, the original structural information, such as signal
ordering, gate orientation and logic paths, is lost, or at least obscured. Since
exactly this information can be very helpful for solving these instances, consid-
erable effort has been made recently to develop satisfiability solvers that work
with the circuit description directly [18], which have far superior performance in
EDA applications, or to restore the circuit structure from CNF [2]. This is one
major motivation for our study.

A direct application of st-connectivity are reconfiguration problems, that arise
when we wish to find a step-by-step transformation between two feasible solutions
of a problem such that all intermediate results are also feasible. Recently, the re-
configuration versions of many problems such as Independent-Set, Vertex-

Cover, Set-Cover, Graph-k-Coloring, Shortest-Path have been studied
[4,5], and many complexity results were obtained, in some cases making use of
Gopalan et al.’s results.

Since many of the satisfiability related problems are hard to solve in gen-
eral (they are NP- or even PSPACE-complete), one has tried to identify easier
fragments and to classify restrictions in terms of their complexity. Possibly the
best known result is Schaefer’s 1978 dichotomy theorem for CSPs, which states
that for certain classes of allowed constraints the satisfiability of a CSP is in P,
while it is NP-complete for all other classes [13]. Analogously, Gopalan et al. in
2006 classified the complexity of connectivity questions for CSPs in Schaefer’s
framework. In this paper, we consider the same connectivity issues as Gopalan
et al., but for problems defined by Boolean circuits and propositional formulas
that use gates, resp. connectives, from a fixed set of Boolean functions.

2 Propositional Formulas and Their Solution Space
Connectivity

Definition 1. An n-ary Boolean relation is a subset of {0, 1}n (n ≥ 1). The set
of solutions of a propositional formula φ with n variables defines in a natural way

The Connectivity of Boolean Satisfiability 353

an n-ary Boolean relation R, where the variables are taken in lexicographic order.
The solution graph G(φ) of φ is the subgraph of the n-dimensional hypercube
graph induced by the vectors in R, i.e., the vertices of G(φ) are the vectors in R,
and there is an edge between two vectors precisely if they differ in exactly one
position.

We use a, b, . . . to denote vectors of Boolean values and x,y, . . . to denote vec-
tors of variables, a = (a1, a2, . . .) and x = (x1, x2, . . .). The Hamming distance
|a − b| of two Boolean vectors a and b is the number of positions in which they
differ. If a and b are solutions of φ and lie in the same connected component
of G(φ), we write dφ(a, b) to denote the shortest-path distance between a and b.
The diameter of a connected component is the maximal shortest-path distance
between any two vectors in that component. The diameter of G(φ) is the maximal
diameter of any of its connected components.

In our proofs for B-formulas and B-circuits, we will use Gopalan et al.’s results
for 3-CNF-formulas, so we also need to introduce some terminology for constraint
satisfaction problems.

Definition 2. A CNF-formula is a Boolean formula of the form C1 ∧ · · · ∧ Cm

(1 ≤ m < ∞), where each Ci is a clause, that is, a finite disjunction of literals
(variables or negated variables). A k-CNF-formula (k ≥ 1) is a CNF-formula
where each Ci has at most k literals.

For a finite set of Boolean relations S, a CNF(S)-formula (with constants)
over a set of variables V is a finite conjunction C1 ∧ · · · ∧ Cm, where each Ci is
a constraint application (constraint for short), i.e., an expression of the form
R(ξ1, . . . , ξk), with a k-ary relation R ∈ S, and each ξj is a variable in V or one
of the constants 0, 1.

A k-clause is a disjunction of k variables or negated variables. For 0 ≤ i ≤ k,
let Di be the set of all satisfying truth assignments of the k-clause whose first i
literals are negated, and let Sk = {D0, . . . , Dk} Thus, CNF(Sk) is the collection
of k-CNF-formulas.

Gopalan et al. studied the following two decision problems for CNF(S)-formulas:

– the connectivity problem Conn(S): given a CNF(S)-formula φ, is G(φ) con-
nected? (if φ is unsatisfiable, then G(φ) is considered connected)

– the st-connectivity problem st-Conn(S): given a CNF(S)-formula φ and
two solutions s and t, is there a path from s to t in G(φ)?

Lemma 1. [3, Lemm 3.6] st-Conn(S3) and Conn(S3) are PSPACE-complete.

Proof. st-Conn(S3) and Conn(S3) are in PSPACE: Given a CNF(S3)-formula
φ and two solutions s and t, we can guess a path of length at most 2n between
them and verify that each vertex along the path is indeed a solution. Hence
st-Conn(S3) is in NPSPACE=PSPACE. For Conn(S3), by reusing space we
can check for all pairs of vectors whether they are satisfying and, if they both
are, whether they are connected in G(φ).

We can not state the full proof for the PSPACE-hardness here. It consists of
a direct reduction from the computation of a space-bounded Turing machine M .

354 K. Schwerdtfeger

The input-string w of M is mapped to a CNF(S3)-formula and two satisfying
assignments s and t, corresponding to the initial and accepting configuration
respectively, s.t. s and t are connected in G(φ) iff M accepts w. �	
Lemma 2. [3, Lemm 3.7] For n ≥ 2 , there is an n-ary Boolean function f

with f(1, . . . , 1) = 1 and a diameter of at least 2
n
2 �.

3 Circuits, Formulas, and Post’s Lattice

An n-ary Boolean function is a function f : {0, 1}n → {0, 1}. Let B be a finite
set of Boolean functions.

A B-circuit C with input variables x1, . . . , xn is a directed acyclic graph,
augmented as follows: Each node (here also called gate) with indegree 0 is labeled
with an xi or a 0-ary function from B, each node with indegree k > 0 is labeled
with a k-ary function from B. The edges (here also called wires) pointing into a
gate are ordered. One node is designated the output gate.

Given values a1, . . . , an ∈ {0, 1} to x1, . . . , xn, C computes an n-ary function
fC as follows: A gate v labeled with a variable xi returns ai, a gate v labeled
with a function f computes the value f(b1, . . . , bk), where b1, . . . , bk are the
values computed by the predecessor gates of v, ordered according to the order
of the wires. For a more formal definition see [17].

A B-formula is defined inductively: A variable x is a B-formula. If φ1, . . . , φm

are B-formulas, and f is an n-ary function from B, then f(φ1, . . . , φn) is a
B-formula; here, we identify the function f and the symbol representing it in a
formula.

It is easy to see that the functions computable by a B-circuit, as well as the
functions definable by a B-formula, are exactly those that can be obtained from
B by superposition, together with all projections [1]. By superposition, we mean
substitution (that is, composition of functions), permutation and identification
of variables, and introduction of fictive variables (variables on which the value
of the function does not depend). This class of functions is denoted by [B]. B is
closed (or said to be a clone) if [B] = B. A base of a clone F is any set B with
[B] = F .

Already in the early 1920s, Emil Post extensively studied Boolean functions,
identified all closed classes, found a finite base for each of them, and detected
their inclusion structure [11]. The closed classes form a lattice, called Post’s
lattice, depicted in Figure 1; a table of the bases can be found e.g. in [1], a
modern proof e.g. in [19]. The classes are defined as follows:

– BF is the class of all Boolean functions.
– For a ∈ {0, 1}, an n-ary Boolean function f is called a-reproducing, if

f(a, . . . , a) = a; the classes Ra contain all a-reproducing functions.
– f is called monotonic, if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤

f(b1, . . . , bn); M is the class of all monotonic functions.
– f is called self-dual, if f(x1, . . . , xn) = f(x1, . . . , xn); D is the class of all

self-dual functions.

The Connectivity of Boolean Satisfiability 355

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

Sn
1

S1

S2
12

S3
12

Sn
12

S12

S2
11

S3
11

Sn
11

S11

S2
10

S3
10

Sn
10

S10

S2
0

S3
0

Sn
0

S0

S2
02

S3
02

Sn
02

S02

S2
01

S3
01

Sn
01

S01

S2
00

S3
00

Sn
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

st-BF-Conn,
BF-Conn,
st-Circ-Conn,
Circ-Conn

/ Diameter:

PSPACE-complete
/ exponential
in P / linear
in P / linear

st-QBF-Conn,
QBF-Conn,
/ Diameter for

quantified formulas:

PSPACE-complete
/ exponential
PSPACE-complete
/ exponential
in P / linear

Fig. 1. Post’s lattice with our results for the connectivity problems and the diameter.
For comparison, the satisfiability problem (without quantifiers) is NP-complete for the
bold circled classes, and in P for the other ones.

356 K. Schwerdtfeger

– f is called affine, if f(x1, . . . , xn) = xi1 ⊕ · · · ⊕ xim ⊕ c with i1, . . . , im ∈
{1, . . . , n} and c ∈ {0, 1}; L is the class of all affine functions.

– For c ∈ {0, 1}, f is called c-separating, if there exists an i ∈ {1, . . . , n} s.t.
ai = c for all a ∈ f−1(c); the classes Sc contain all c-separating functions.

– For c ∈ {0, 1} and k ≥ 2, f is called c-separating of degree k, if for all
U ⊆ f−1(c) of size |U | = k there exists an i ∈ {1, . . . , n} s.t. ai = c for all
a ∈ U ; the classes Sk

c contain all c-separating functions of degree k.
– The class E contains the constant functions and all conjunctions.
– The class V contains the constant functions and all disjunctions.
– f is called a projection, if there exists an i ∈ {1, . . . , n} s.t. f(x1, . . . , xn) =

xi; The class I contains the constant functions and all projections.
– The class N contains the constant functions, all projections and all negations

of projections.
– All other classes are defined from the above by intersection according to

Post’s lattice.

Not surprisingly, the complexity of problems defined by B-formulas and B-
circuits depends on [B], and the complexity of numerous problems for B-circuits
and B-formulas has been classified by means of Post’s lattice [12,14], starting
with satisfiability: Analogously to Schaefer, Lewis in 1978 found a dichotomy for
B-formulas [6]; if [B] contains the function x ∧ y, Sat is NP-complete, else it is
in P.

While for B-circuits the complexity of every decision problem solely depends
on [B] (up to AC0 isomorphism), for formulas this need not be the case, since the
transformation of a B-formula into a B′-formula might require an exponential
increase in the formula size even if [B] = [B′], as the B′-representation of some
function from B may need to use some input variable more than once [10]. For
example, let h(x, y) = x ∧ y; then there is no shorter {h}-representation of the
function x ∧ y than h(x, h(x, y)).

4 Computational and Structural Dichotomies

Now we consider the connectivity problems for B-formulas and B-circuits:

– BF-Conn(B): Given a B-formula φ, is G(φ) connected?
– st-BF-Conn(B): Given a B-formula φ and two solutions s and t, is there

a path from s to t in G(φ)?

The corresponding problems for circuits are denoted Circ-Conn(B) resp. st-
Circ-Conn(B).

Theorem 1. Let B be a finite set of Boolean functions.

1. If B ⊆ M, B ⊆ L, or B ⊆ S0, then
(a) st-Circ-Conn(B) and Circ-Conn(B) are in P,
(b) st-BF-Conn(B) and BF-Conn(B) are in P,
(c) the diameter of every function f ∈ [B] is linear in the number of variables

of f .

The Connectivity of Boolean Satisfiability 357

2. Otherwise,
(a) st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,
(b) st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,
(c) there are functions f ∈ [B] such that their diameter is exponential in the

number of variables of f .

The proof follows from the Lemmas in the next subsections. By the following
Proposition, we can relate the complexity of B-formulas and B-circuits.

Proposition 1. Every B-formula can be transformed into an equivalent B-
circuit in polynomial time.

Proof. A B-formula already is a suitable encoding for a special B-circuit with
outdegree of at most one. �	

4.1 The Easy Side of the Dichotomy

Lemma 3. If B ⊆ M, the solution graph of any n-ary function f ∈ [B] is
connected, and df (a, b) = |a − b| ≤ n for any two solutions a and b.

Proof. The table of all closed classes of Boolean functions shows that f is mono-
tonic in this case. Thus, either f = 0, or (1, . . . , 1) must be a solution, and every
other solution a is connected to (1, . . . , 1) in G(φ) since (1, . . . , 1) can be reached
by flipping the variables assigned 0 in a one at a time to 1. Further, if a and
b are solutions, b can be reached from a in |a − b| steps by first flipping all
variables that are assigned 0 in a and 1 in b, and then flipping all variables that
are assigned 1 in a and 0 in b. �	
Lemma 4. If B ⊆ S0, the solution graph of any function f ∈ [B] is connected,
and df (a, b) ≤ |a − b| + 2 for any two solutions a and b.

Proof. Since f is 0-separating, there is an i such that ai = 0 for every vector
a with f(a) = 0, thus every b with bi = 1 is a solution. It follows that every
solution t can be reached from any solution s in at most |s − t| + 2 steps by
first flipping the i-th variable from 0 to 1 if necessary, then flipping all other
variables in which s and t differ, and finally flipping back the i-th variable if
necessary. �	
Lemma 5. If B ⊆ L,

1. st-Circ-Conn(B) and Circ-Conn(B) are in P,
2. st-BF-Conn(B) and BF-Conn(B) are in P,
3. for any function f ∈ [B], df (a, b) = |a − b| for any two solutions a and b

that lie in the same connected component of G(φ).

Proof. Since every function f ∈ L is linear, f(x1, . . . , xn) = xi1 ⊕. . .⊕xim ⊕c, and
any two solutions s and t are connected iff they differ only in fictional variables:
If s and t differ in at least one non-fictional variable (i.e., an xi ∈ {xi1 , . . . , xim}),
to reach t from s, xi must be flipped eventually, but for every solution a, any

358 K. Schwerdtfeger

vector b that differs from a in exactly one non-fictional variable is no solution.
If s and t differ only in fictional variables, t can be reached from s in |s − t|
steps by flipping one by one the variables in which they differ.

Since {x ⊕ y, 1} is a base of L (see Fig. 1 int [1]), every B-circuit C can
be transformed in polynomial time into an equivalent {x ⊕ y, 1}-circuit C′ by
replacing each gate of C′ with an equivalent {x ⊕ y, 1}-circuit. Now one can
decide in polynomial time whether a variable xi is fictional by checking for C′

whether the number of “backward paths” from the output gate to gates labeled
with xi is odd, so st-Circ-Conn(B) is in P.

G(C) is connected iff at most one variable is non-fictional, thus Circ-Conn(B)
is in P.

By Proposition 1, st-BF-Conn(B) and BF-Conn(B) are in P also. �	
This completes the proof of the easy side of the dichotomy.

4.2 The Hard Side of the Dichotomy

Proposition 2. st-Circ-Conn(B) and Circ-Conn(B), as well as st-BF-

Conn(B) and BF-Conn(B), are in PSPACE for any finite set B of Boolean
functions.

Proof. This follows as in Lemma 1. �	
Proposition 3. For 1-reproducing 3-CNF-formulas, the problems st-Conn and
Conn are PSPACE-complete.

Proof. We chose the variables in the proof of Lemma 1 such that the accepting
configuration of the Turing machine corresponds to the (1, . . . , 1) vector. �	
An inspection of Post’s lattice shows that if B � M, B � L, and B � S0,
then [B] ⊇ S12, [B] ⊇ D1, or [B] ⊇ Sk

02, ∀k ≥ 2, so we have to prove PSPACE-
completeness and show the existence of B-formulas with an exponential diameter
in these cases.

In the proofs, we will use the following abbreviations: If we have the n variables
x1, . . . , xn, we write x for x1 ∧ · · · ∧ xn and x for x1 ∧ · · · ∧ xn. Also, we write
(x = c1 · · · cn) for x1 ↔ c1∧· · ·∧xn ↔ cn, where c1, . . . , cn ∈ {0, 1} are constants;
e.g., we write (x = 101) for x1 ∧ x2 ∧ x3. Further, we use x ∈ {a, b, . . .} for
(x = a)∨(x = b)∨. . .. Finally, if we have two vectors of Boolean values a and b of
length n and m resp., we write a·b for their concatenation (a1, . . . , an, b1, . . . bm).

Lemma 6. If [B] ⊇ S12,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,
2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,
3. for n ≥ 3, there is an n-ary function f ∈ [B] with diameter of at least

2
n−1
2 �.

The Connectivity of Boolean Satisfiability 359

Proof. 1. We reduce the problems for 1-reproducing 3-CNF-formulas to the ones
for B-formulas: We map a 1-reproducing 3-CNF-formula φ and two solutions s
and t of φ to a B-formula φ′ and two solutions s′ and t′ of φ′ such that s′ and
t′ are connected in G(φ′) iff s and t are connected in G(φ), and such that G(φ′)
is connected iff G(φ) is connected.

First for any 1-reproducing formula ψ, we define a connectivity-equivalent
formula Tψ ∈ S12 using the standard connectives, then we show how to transform
φ into the B-formula φ′ that will be equivalent to Tφ.

Let ψ be a 1-reproducing formula over the variables x1, . . . , xn. We define the
formula Tψ over the n + 1 variables x1, . . . , xn and y as

Tψ = ψ ∧ y,

where y is a new variable. All solutions a of Tψ(x, y) have an+1 = 1, so Tψ is
1-seperating and 0-reproducing. Moreover, Tψ is still 1-reproducing, and thus in
S12. For any two solutions s and t of ψ(x), s′ = s · 1 and t′ = t · 1 are solutions
of Tψ(x, y), and it is easy to see that they are connected in G(Tψ) iff s and t
are connected in G(ψ), and that G(Tψ) is connected iff G(ψ) is connected.

Now we know that for any 1-reproducing 3-CNF-formula φ, Tφ can be ex-
pressed as a B-formula φ′ since Tφ ∈ S12. However, the transformation could
lead to an exponential increase in the formula size (see Section 3), so we have to
show how to construct φ′ in polynomial time. We do this by parenthesizing the
conjunctions of φ such that we get a tree of ∧’s of depth logarithmic in the size of
φ, and then replacing each clause Ci with some B-formula ξCi , and each expres-
sion φ1 ∧ φ2 with a B-formula ξ∧(φ1, φ2), s.t. the resulting formula is equivalent
to Tφ. This can increase the formula size by only a polynomial in the original size
even if ξ∧ uses some input variable more than once. This is a standard-technique
for such proofs in Post’s framework, see e.g. [1]. Here we easily see that we can
simply replace each clause Ci of φ with some B-formula equivalent to TCi and
each ∧ with a B-formula equivalent to T∧ since (ψ1∧y)∧(ψ2∧y)∧y ≡ ψ1∧ψ2∧y,
but in the next proofs this will not be obvious, so we formalize the procedure.

Let φ = C1 ∧ · · · ∧ Cn be a 1-reproducing 3-CNF-formula. Since φ is 1-
reproducing, every clause Ci of φ is itself 1-reproducing, and we can express TCi

through a B-formula T ∗
Ci

. Also, we can express T∧(x1, x2) = x1 ∧ x2 ∧ y through
a B-formula T ∗

∧ since ∧ is 1-reproducing. Now let φ′ =Tr

(
T ∗

C1
, . . . , T ∗

Cn

)
, where

Tr is the following recursive algorithm that takes a list of formulas as input,

Algorithm Tr(ψ1, . . . , ψm)

1. if m = 1 return ψ1
2. else if m is even, return

Tr(T ∗
∧ [x1/ψ1, x2/ψ2] , T ∗

∧ [x1/ψ3, x2/ψ4] , . . . , T ∗
∧ [x1/ψm−1, x2/ψm])

3. else return
Tr(T ∗

∧ [x1/ψ1, x2/ψ2] , T ∗
∧ [x1/ψ3, x2/ψ4] , . . . , T ∗

∧ [x1/ψm−2, x2/ψm−1] , ψm).

360 K. Schwerdtfeger

Here ψ[xi/ξ] denotes the formula obtained by substituting the formula ξ for the
variable xi in the formula ψ. Note that in every T ∗

ψ we have the same variable y.
Since the recursion terminates after a number of steps logarithmic in the

number of clauses of φ, and every step increases the total formula size by
only a constant factor, the algorithm runs in polynomial time. We show φ′ =
Tφ by induction. The basis is clear. Since Tψ ≡ T ∗

ψ, it suffices to show that
T∧ [x1/Tψ1 , x2/Tψ2] ≡ Tψ1∧ψ2 :

T∧ [x1/Tψ1 , x2/Tψ2] = Tψ1∧Tψ2∧y = (ψ1∧y)∧(ψ2∧y)∧y ≡ ψ1∧ψ2∧y = Tψ1∧ψ2 .

2. This follows from 1. by Proposition 1.
3. By Lemma 2 there is an 1-reproducing (n−1)-ary function f with diameter

of at least 2
n−1
2 �. Let f be represented by a formula φ; then, Tφ represents an

n-ary function of the same diameter in S12. �	
Lemma 7. If [B] ⊇ D1,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,
2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,
3. for n ≥ 5, there is an n-ary function f ∈ [B] with diameter of at least

2
n−3
2 �.

Proof. 1. This proof is similar to the previous one, but the construction is more
intricate; for every 1-reproducing 3-CNF formula we have to construct a self-dual
function s.t. the connectivity is retained. For clarity, we do the construction in
two steps.

For a 1-reproducing formula ψ over the n variables x1, . . . , xn, we construct
a formula T ∼

ψ ∈ D1 with three new variables (y1, y2, y3) = y,

T ∼
ψ = (ψ(x) ∧ y) ∨

(
ψ(x) ∧ y

)
∨ y ∈ {100, 010, 001} .

Observe that T ∼
ψ (x,y) is self-dual: for any solution ending with 111, the in-

verse vector (that ends with 000) is no solution; all vectors ending with 100,
010, or 001 are solutions and their inverses are no solutions. Also, T ∼

ψ is still
1-reproducing, and it is 0-reproducing since ψ(0 · · · 0) ≡ ψ(1 · · · 1) ≡ 0.

Further, for any two solutions s and t of ψ(x), s′ = s · 111 and t′ = t · 111
are solutions of T ∼

ψ (x,y) and are connected in G(T ∼
ψ) iff s and t are connected

in G(ψ): Every solution a of ψ corresponds to a solution a · 111 of T ∼
ψ , and the

connectivity does not change by padding the vectors with 111, and since there
are no solutions of T ∼

ψ ending with 110, 101, or 011, every other solution of T ∼
ψ

differs in at least two variables from the solutions a · 111 that correspond to
solutions of ψ.

Note that exactly one connected component is added in G(T ∼
ψ) to the com-

ponents corresponding to those of G(ψ): It consists of all vectors ending with
000, 100, 010, or 001 (any two vectors ending with 000 are connected e.g. via
those ending with 001). It follows that G(T ∼

ψ) is always unconnected. To fix

The Connectivity of Boolean Satisfiability 361

this, we modify T ∼
ψ to a function Tψ by adding 1 · · · 1 · 110 as a solution, thereby

connecting 1 · · · 1 · 111 (which is always a solution because T ∼
ψ is 1-reproducing)

with 1 · · · 1 · 100, and thereby with the additional component of Tψ. To keep the
function self-dual, we must in turn remove 0 · · · 0 · 001, which does not alter the
connectivity. Formally,

Tψ =
(
T ∼

ψ ∨ (x ∧ (y = 110))
) ∧ ¬(x ∧ (y = 001))

= (ψ(x) ∧ y) ∨
(

ψ(x) ∧ y
)

(1)

∨ (y ∈ {100, 010, 001} ∧ ¬(x ∧ (y = 001))) ∨ (x ∧ (y = 110)).

Now G(Tψ) is connected iff G(ψ) is connected.
Next again we use the algorithm Tr from the previous proof to transform any

1-reproducing 3-CNF-formula φ into a B-formula φ′ equivalent to Tφ, but with
the definition (1) of T . Again, we have to show T∧ [x1/Tψ1 , x2/Tψ2] ≡ Tψ1∧ψ2 .
Here,

T∧ [x1/Tψ1, x2/Tψ2] = (Tψ1 ∧ Tψ2 ∧ y) ∨
(

Tψ1 ∧ Tψ2 ∧ y
)

∨ (
y ∈ {100, 010, 001} ∧ ¬ (

Tψ1 ∧ Tψ2 ∧ (y = 001)
))

∨ (Tψ1 ∧ Tψ2 ∧ (y = 110)) .

We consider the parts of the formula in turn: For any formula ξ we have Tξ(xξ)∧
y ≡ ξ(xξ) ∧ y and Tξ(xξ) ∧ y ≡ ψ(xξ) ∧ y, where xξ denotes the variables of
ξ. Using Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ y = (Tψ1(xψ1) ∨ Tψ2(xψ2)) ∧ y, the first line
becomes

(ψ1(xψ1) ∧ ψ2(xψ2) ∧ y) ∨
((

ψ1(xψ1) ∧ ψ2(xψ2)
)

∧ y
)

.

For the second line, we observe Tψ(xψ) ≡
(

ψ(xψ) ∨ ¬(y)
)

∧ (ψ(xψ) ∨ ¬(y)) ∧
(y /∈ {100, 010, 001} ∨ (xψ ∧ (y = 001))) ∧ (¬(xψ) ∨ (y = 110)), thus Tψ(xψ) ∧
(y = 001) ≡ xψ ∧ (y = 001), and the second line becomes

∨ (y ∈ {100, 010, 001} ∧ ¬ (xψ1 ∧ xψ2 ∧ (y = 001))) .

Since Tψ(xψ)∧(y = 110) ≡ (xψ ∧(y = 110)) for any ψ, the third line becomes

∨ (xψ1 ∧ xψ2 ∧ (y = 110)) .

Now T∧ [x1/Tψ1 , x2/Tψ2] equals

Tψ1∧ψ2 = (ψ1(xψ1) ∧ ψ2(xψ2) ∧ y) ∨
(

ψ1(xψ1) ∧ ψ2(xψ2) ∧ y
)

∨ (y ∈ {100, 010, 001} ∧ ¬ (xψ1 ∧ xψ2 ∧ (y = 001)))
∨ (xψ1 ∧ xψ2 ∧ (y = 110)) .

2. This follows from 1. by Proposition 1.
3. By Lemma 2 there is an 1-reproducing (n−3)-ary function f with diameter

of at least 2
n−3
2 �. Let f be represented by a formula φ; then, Tφ represents an

n-ary function of the same diameter in D1. �	

362 K. Schwerdtfeger

Lemma 8. If [B] ⊇ Sk
02,

1. st-BF-Conn(B) and BF-Conn(B) are PSPACE-complete,
2. st-Circ-Conn(B) and Circ-Conn(B) are PSPACE-complete,
3. for n ≥ k + 4, there is an n-ary function f ∈ [B] with diameter of at least

2
n−k−2
2 �.

Proof. 1. This proof is analogous to the previous one. For a 1-reproducing for-
mula ψ over the n variables x1, . . . , xn, we construct the formula T ∼

ψ ∈ Sk
02 with

the additional variables y and (z1, . . . , zk+1) = z,

T ∼
ψ = (ψ ∧ y ∧ z) ∨ z /∈ {0 · · · 0, 10 · · · 0, 010 · · ·0, . . . , 0 · · · 01} .

T ∼
ψ (x, y, z) is 0-separating of degree k since all vectors that are no solutions

of T ∼
ψ end with a vector b ∈ {0 · · · 0, 10 · · · 0, 010 · · ·0, . . . , 0 · · · 01} ⊂ {0, 1}k+1

and thus any k of them have at least one common variable assigned 0. Also, T ∼
ψ

is 0-reproducing and still 1-reproducing.
Further, for any two solutions s and t of ψ(x), s′ = s · 1 · 0 · · · 0 and t′ =

t · 1 · 0 · · · 0 are solutions of T ∼
ψ (x, y, z) and are connected in G(T ∼

ψ) iff s and t
are connected in G(ψ).

But again, we have produced an additional connected component (consisting
of all vectors not ending with 10 · · · 0, 010 · · ·0, . . . , 0 · · · 01, or 0 · · · 0). To connect
it to a component corresponding to one of ψ, we add 1 · · · 1·1·10 · · ·0 as a solution,

Tψ = (ψ ∧ y ∧ z) ∨ z /∈ {0 · · · 0, 10 · · · 0, 010 · · ·0, . . . , 0 · · · 01}
∨(x ∧ y ∧ (z = 10 · · · 0)).

Now G(Tψ) is connected iff G(ψ) is connected.
Again we show that the algorithm Tr works in this case. Here,

T∧ [x1/Tψ1, x2/Tψ2] = (Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ y ∧ z)
∨z /∈ {0 · · · 0, 10 · · · 0, 010 · · ·0, . . . , 0 · · · 01}
∨ (Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ y ∧ (z = 10 · · · 0)) ,

which is equivalent to

Tψ1∧ψ2 = (ψ1(xψ1) ∧ ψ2(xψ2) ∧ y ∧ z)
∨z /∈ {0 · · · 0, 10 · · · 0, 010 · · · 0, . . . , 0 · · · 01}
∨ (xψ1 ∧ xψ2 ∧ y ∧ (z = 10 · · · 0)) .

2. This follows from 1. by Proposition 1.
3. By Lemma 2 there is an 1-reproducing (n − k − 2)-ary function f with

diameter of at least 2
n−k−2
2 �. Let f be represented by a formula φ; then, Tφ

represents an n-ary function of the same diameter in Sk
02. �	

This completes the proof of Theorem 1.

The Connectivity of Boolean Satisfiability 363

5 The Connectivity of Quantified Formulas

Definition 3. A quantified B-formula φ (in prenex normal form) is an expres-
sion of the form

Q1y1 · · · Qmymϕ(y1, . . . , ym, x1, . . . xn),

where ϕ is a B-formula, and Q1, . . . , Qm ∈ {∃, ∀} are quantifiers. x1, . . . , xn are
called the free variables of φ.

For quantified B-formulas, we define the connectivity problems

– QBF-Conn(B): Given a quantified B-formula φ, is G(φ) connected?
– st-QBF-Conn(B): Given a quantified B-formula φ and two solutions s and

t, is there a path from s to t in G(φ)?

Theorem 2. Let B be a finite set of Boolean functions.

1. If B ⊆ M or B ⊆ L, then
(a) st-QF-Conn(B) and QBF-Conn(B) are in P,
(b) the diameter of every quantified B-formula is linear in the number of

free variables.
2. Otherwise,

(a) st-QBF-Conn(B) and QBF-Conn(B) are PSPACE-complete,
(b) there are quantified B-formulas with at most one quantifier such that

their diameter is exponential in the number of free variables.

Proof. See the extended version of this paper [16].

Remark 1. An analog to Theorem 2 also holds for quantified circuits as defined
in [12, Section 7].

6 Conclusions

While the classification for CSPs required an essential enhancement of Schae-
fer’s framework and the introduction of new classes of CNF(S)-formulas, for
B-formulas and B-circuits the connectivity issues fit entirely into Post’s frame-
work, although the proofs were quite novel, and made substantial use of Gopalan
et al.’s results for 3-CNF-formulas.

As Gopalan et al. stated, we also believe that “connectivity properties of
Boolean satisfiability merit study in their own right”, which is substantiated by
the recent interest in reconfiguration problems. Moreover, we imagine our results
could aid the advancement of circuit based SAT solvers.

Acknowledgments. I am grateful to Heribert Vollmer for pointing me to these
interesting themes.

364 K. Schwerdtfeger

References

1. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part
i: Posts lattice with applications to complexity theory. In: SIGACT News (2003)

2. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form
descriptions. In: 20th International Conference on VLSI Design, Held Jointly with
6th International Conference on Embedded Systems, pp. 37–42. IEEE (2007)

3. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
boolean satisfiability: Computational and structural dichotomies. SIAM J. Com-
put. 38(6), 2330–2355 (2009), http://dx.doi.org/10.1137/07070440X

4. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput.
Sci. 412(12-14), 1054–1065 (2011),
http://dx.doi.org/10.1016/j.tcs.2010.12.005

5. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths
and independent sets. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS,
vol. 6460, pp. 56–67. Springer, Heidelberg (2011)

6. Lewis, H.R.: Satisfiability problems for propositional calculi. Mathematical Sys-
tems Theory 13(1), 45–53 (1979)

7. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem
for horn relations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 187–200. Springer, Heidelberg (2007)

8. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and
its generalizations. Journal of the ACM (JACM) 54(4), 17 (2007)

9. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfi-
ability problem. Physical Review Letters 94(19), 197205 (2005)

10. Michael, T.: On the applicability of post’s lattice. Information Processing Let-
ters 112(10), 386–391 (2012)

11. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic(AM-5),
vol. 5. Princeton University Press (1941)

12. Reith, S., Wagner, K.W.: The complexity of problems defined by Boolean circuits
(2000)

13. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978,
pp. 216–226 (1978)

14. Schnoor, H.: Algebraic techniques for satisfiability problems. Ph.D. thesis, Univer-
sität Hannover (2007)

15. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean satis-
fiability. ArXiv CoRR abs/1312.4524 (2013), extended version of a paper submitted
to the JSAT Journal, http://arxiv.org/abs/1312.4524

16. Schwerdtfeger, K.W.: The connectivity of boolean satisfiability: Dichotomies for
formulas and circuits. ArXiv CoRR abs/1312.6679 (2013), extended version of this
paper, http://arxiv.org/abs/1312.6679

17. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York, Inc. (1999)

18. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.R.: Qutesat: a robust circuit-based sat
solver for complex circuit structure. In: Proceedings of the Conference on Design,
Automation and Test in Europe, EDA Consortium, pp. 1313–1318 (2007)

19. Zverovich, I.E.: Characterizations of closed classes of boolean functions in terms of
forbidden subfunctions and post classes. Discrete Appl. Math. 149(1-3), 200–218
(2005), http://dx.doi.org/10.1016/j.dam.2004.06.028

http://dx.doi.org/10.1137/07070440X
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://arxiv.org/abs/1312.4524
http://arxiv.org/abs/1312.6679
http://dx.doi.org/10.1016/j.dam.2004.06.028

	The Connectivity of Boolean Satisfiability: Dichotomies for Formulas and Circuits
	1 Introduction
	2 Propositional Formulas and Their Solution Space Connectivity
	3 Circuits, Formulas, and Post’s Lattice
	4 Computational and Structural Dichotomies
	4.1 The Easy Side of the Dichotomy
	4.2 The Hard Side of the Dichotomy

	5 The Connectivity of Quantified Formulas
	6 Conclusions
	References

