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Abstract. We study the following information-theoretic witness finding
problem: for a hidden nonempty subset W of {0, 1}n, how many non-
adaptive randomized queries (yes/no questions about W ) are needed to
guess an element x ∈ {0, 1}n such that x ∈ W with probability > 1/2?
Motivated by questions in complexity theory, we prove tight lower bounds
with respect to a few different classes of queries:

• We show that the monotone query complexity of witness finding
is Ω(n2). This matches an O(n2) upper bound from the Valiant-
Vazirani Isolation Lemma [8].

• We also prove a tight Ω(n2) lower bound for the class of NP queries
(queries defined by an NP machine with an oracle to W ). This shows
that the classic search-to-decision reduction of Ben-David, Chor,
Goldreich and Luby [3] is optimal in a certain black-box model.

• Finally, we consider the setting where W is an affine subspace of
{0, 1}n and prove an Ω(n2) lower bound for the class of intersection
queries (queries of the form “W ∩ S �= ∅?” where S is a fixed subset
of {0, 1}n). Along the way, we show that every monotone property
defined by an intersection query has an exponentially sharp threshold
in the lattice of affine subspaces of {0, 1}n.

1 Introduction

We initiate a study of the following information-theoretic search problem, pa-
rameterized by a family W of subsets of {0, 1}n and a family Q of functions
W → {�,⊥} (i.e. yes/no questions about elements of W , which we refer to as
“queries”).

Question 1. What is the minimum number of nonadaptive randomized queries
from Q required to guess an element x ∈ {0, 1}n such that P[x ∈ W ] > 1/2 for
every nonempty W ∈ W?

Formally, Question 1 asks for a joint distribution (Q1, . . . ,Qm) on Qm to-
gether with a function f : {�,⊥}m → {0, 1}n such that

P[f(Q1(W ), . . . ,Qm(W )) ∈ W ] > 1/2
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for every nonempty W ∈ W . We emphasize that randomized queries Q1, . . . ,Qm

are non-adaptive, though not necessarily independent.1

We refer to Question 1 as the witness finding problem and to its answer,
m = m(W ,Q), as the Q-query complexity of W-witness finding. (We introduce
the terminology “witness finding” to distinguish this information-theoretic prob-
lem from traditional computational search problems where the solution space is
determined by an input, such as a boolean formula ϕ in the case of the search
problem for SAT.) Note that m(W ,Q) is monotone increasing with respect to W
and monotone decreasing with respect to Q. In this paper, we mainly study the
setting where W is the set of all subsets of {0, 1}n. Here, to simplify notation,
we simply write m(Q) and speak of the Q-query complexity of witness finding.

Our main results are tight lower bounds on m(Q) for a few specific classes of
queries (namely, intersection queries, monotone queries and NP queries). How-
ever, before defining these classes and stating our results formally, let us first
dispense with the trivial cases whereQ is the class All of all possible queries or the
class Direct of direct queries of the form “x ∈ W?” where x ∈ {0, 1}n. It is easy
to see that m(All) = n and m(Direct) = 2n − 1. Both lower bounds m(All) ≥ n
and m(Direct) ≥ 2n − 1 follow from considering the random singleton witness
set {x} where x is uniform in {0, 1}n. The upper bound m(Direct) ≤ 2n − 1
is obvious, while the upper bound m(All) ≤ n comes via deterministic queries
Q1, . . . , Qn where Qi(W ) asks for the ith coordinate in the lexicographically
minimal element of W .

1.1 Intersection Queries and Monotone Queries

The first class Q that we consider, for which the question of m(Q) is nontrivial,
is the class Intersection of intersection queries of the form “S ∩ W 	= ∅?” for
fixed S ⊆ {0, 1}n. As we now explain, the Valiant-Vazirani Isolation Lemma [8]
gives an elegant upper bound of m(Intersection) = O(n2). First, note that if W
is a singleton {w}, then n nonadaptive intersection queries suffice to learn w: for
1 ≤ i ≤ n, we ask “Si∩W 	= ∅?” where Si = {x ∈ {0, 1}n : xi = 0}. Moreover, by
asking n additional intersection queries “Ti∩W 	= ∅?” where Ti = {x ∈ {0, 1}n :
xi = 1}, we can learn whether or not W is a singleton, in addition to learning
w in the event that W = {w}. The Valiant-Vazirani Isolation Lemma gives a
distribution X on subsets of {0, 1}n such that P[|W ∩X| = 1] = Ω(1/n) for every
nonempty W ⊆ {0, 1}n. By taking s = O(n) independent copies of X1, . . . ,Xs

of this distribution X, we have P[
∨s

j=1 |W ∩Xj | = 1] > 1/2 for every nonempty

W ⊆ {0, 1}n. We now get a witness finding procedure which makes 2ns = O(n2)
randomized intersection queries for sets Si,j := Si∩Xj and Ti,j := Ti∩Xj . (By
now the reader will have noticed our convention of designating random variables
by bold letters.)

1 That is, Q1 and Q2 may be dependent random variables. However, conditioned on
Q1 = Q1, Q2 cannot depend on the answer Q1(W ) ∈ {�,⊥}. We remark that
Question 1 is trivial for adaptive queries: for any class Q which includes queries
“∃x ∈ W such that xi = 1?”, n adaptive (deterministic) queries suffice to find an
element in every nonempty W .
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The present paper started out as an investigation into the question whether
O(n2) is a tight upper bound onm(Intersection). This question arose from work of
Dell, Kabanets, van Melkebeek and Watanabe [7], who showed that the Valiant-
Vazirani Isolation Lemma is optimal among so-called black-box isolation proce-
dures:

Theorem 1 ([7]). For every distribution X on subsets of {0, 1}n, there exists
nonempty W ⊆ {0, 1}n such that P[|X ∩W | = 1] = O(1/n).

Borrowing an idea from the proof of Theorem 1 (namely, a particular distribu-
tion on subsets of {0, 1}n), we were able to show m(Intersection) = Ω(n2). (Note
that Theorem 1 can be derived from this lower bound, as any black-box isolation
procedure with success probability o(1/n) would show that m(Intersection) =
o(n2) by the argument sketched above.) As a natural next step, we consid-
ered the class of monotone queries, that is, Q : ℘({0, 1}n) → {�,⊥} such that
Q(W ) = � ⇒ Q(W ′) = � for all W ⊆ W ′ ⊆ {0, 1}n. Note that intersec-
tion queries are monotone, hence n ≤ m(Monotone) ≤ m(Intersection) = Θ(n2).
Generalizing our lower bound for intersection queries, we were able to prove the
stronger result:

Theorem 2. The monotone query complexity of witness finding, m(Monotone),
is Ω(n2).

We present the proof of Theorem 2 in §2. The proof uses an entropy argument,
which hinges on the threshold behavior of monotone queries (in particular, the
theorem of Bollobás and Thomason [4]).

1.2 NP Queries

Another motivation for studying Question 1 comes from a question concerning
search-to-decision reductions. In the context of SAT, a search-to-decision reduc-
tion is an algorithm which, given a boolean function ϕ(x1, . . . , xn), constructs a
satisfying assignment x ∈ {0, 1}n for ϕ (if one exists) using an oracle for the SAT
decision problem. The standard PNP search-to-decision reduction uses n adap-
tive deterministic queries. In the setting of nonadaptive randomized queries,
Ben-David, Chor, Goldreich and Luby [3] (using the Valiant-Vazirani Isolation
Lemma) gave a BPPNP

|| search-to-decision reduction with O(n2) queries. (BPPNP
||

is the class of BPP algorithms with non-adaptive (parallel) query access to an
NP oracle.)

We are interested in lower bounds for the query complexity of search-to-
decisions for SAT. Of course, any nontrivial lower bound would separate P from
NP. However, we can consider a “black-box” setting where, instead of receiving
a boolean formula ϕ(x1, . . . , xn) as input, the BPP

NP
|| algorithm (including both

the BPP machine and the NP machine) are given input 1n as well as an oracle
to the set {x ∈ {0, 1}n : x is a satisfying assignment for ϕ}. On inspection, it is
clear that the reduction of Ben-David et al. (which is indifferent to the syntax
of the boolean formula ϕ) carries over to this black-box setting. Thus, we have
the upper bound:
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Theorem 3 (follows from [3]). There is a BPPNP
|| algorithm which solves the

black-box satisfiability search problem with O(n2) queries.

Motivated by this connection to complexity theory, we next set our sights on
the question whether O(n2) is tight in Theorem 3. To fit the question into the
framework of Question 1, we define the class of NP queries as follows.

Definition 1. Informally, an NP query is a query Q given by an NP machine
M with an oracle to W where Q(W ) = MW (1n) (i.e. Q(W ) = � ⇔ MW has
an accepting computation on input 1n). Formally, an NP query is a sequence
Q = (Q1, Q2, . . . ) of queries Qn : ℘({0, 1}n) → {�,⊥}) such that there exists a
single NP machine M () (with an unspecified oracle) where Qn(W ) = MW (1n)
for every W ⊆ {0, 1}n. An ensemble of NP queries is a sequence (Q1, . . . , Qm)
of NP queries given by NP machines M1, . . . ,Mm which have a common upper
bound t(n) = nO(1) on their running time.

The NP query complexity of witness finding, m(NP), gives a lower bound on
the query complexity of BPPNP

|| algorithms solving the black-box satisfiability
search problem. Note that NP queries and monotone queries are incomparable:
NP queries clearly need not be monotone, while it can be shown that the mono-
tone “majority” query (defined by Qmaj(W ) = � iff |W | ≥ 2n−1) is not an NP
query.2 Nevertheless, we show that every NP query can be well-approximated by
a monotone query (Lemma 7). Using this result together with our lower bound
for m(Monotone), we show:

Theorem 4. The NP query complexity of witness finding, m(NP), is Ω(n2).

Theorem 4 thus establishes the optimality of the search-to-decision reduction
of Ben-David et al. in the black-box setting. The proof is presented in §3.

1.3 Affine Witness Sets

Finally, we consider the setting where W is the set of affine subspaces of {0, 1}n.
Here, for a class of queries Q, we write maffine(Q) and speak of the Q-query
complexity of affine witness finding. While maffine(Q) ≤ m(Q) by definition,
intuitively the affine witness finding problem is easier because there are only
2O(n2) possibilities for W , as opposed to 22

n

. One motivation for studying the
affine setting comes from the observation that lower bounds onmaffine(NP) imply
lower bounds on the complexity of the black-box satisfiability search problem
on polynomial-size boolean formulas, since every affine subspace of {0, 1}n is the
set of satisfying assignments to a polynomial-size boolean formula of n variables.
While we were unable to prove any nontrivial lower bounds on maffine(Monotone)
or maffine(NP), we did get a result for intersection queries:

2 Due to uniformity issues, it does not make sense to compare the classes of NP queries
and intersection queries. However, for a natural notion of non-uniform NP queries,
every intersection query “S ∩ W �= ∅?” is a non-uniform NP query where the NP
machine M hardwires S using 2n advice bits, non-deterministically guesses x ∈ S
and simply verifies that x ∈ W using one oracle call to W .
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Theorem 5. The intersection query complexity of affine witness finding,
maffine(Intersection), is Ω(n2).

The proof is presented in §4. Along the way, we show that every monotone
property defined by an intersection query has an exponentially sharp thresh-
old in the lattice of affine subspaces of {0, 1}n (Theorem 6). This raises the
question whether all monotone properties have an exponentially sharp threshold
in the affine lattice (Question 2); we note that a positive answer would imply
maffine(Monotone) = Ω(n2).

2 Lower Bound for Monotone Queries

In this section, we proveTheorem2 (m(Monotone) = Ω(n2)) using an information-
theoretic argument.We briefly present the relevant notation. LetH : [0, 1] → [0, 1]
denote the binary entropy functionH(p) := p log(1/p)+(1−p) log(1/(1−p)). For
finite random variables X and Y, entropy H(X) and relative entropy H(X | Y)
are defined by

H(X) :=
∑

x∈Supp(X)

P[X = x] · log(1/P[X = x]),

H(X | Y) :=
∑

y∈Supp(Y)

P[Y = y] ·H(X | Y = y).

(Here H(X | Y = y) is the entropy of the marginal distribution of X conditioned
on Y = y.) We assume familiarity with the basic properties of entropy, namely
the chain rule H(X,Y) = H(X) +H(Y | X), the fact that H(f(X)) ≤ H(X) for
every deterministic function f of X, and the fact H(X) ≤ log |Supp(X)| with
equality iff X is uniform (for more background, see [6]).

Our lower bound uses a standard averaging argument (Yao’s principle) to
invert the role of randomness in the definition of m(W ,Q). For completeness,
the proof is included in Appendix A.

Lemma 1. Suppose W is a random variable on W \ {∅} such that for all
Q1, . . . , Qm ∈ Q and every function f : {�,⊥}m → {0, 1}n,

P[f(Q1(W), . . . , Qm(W)) ∈ W] ≤ 1/2.

Then the Q-query complexity of W-witness finding is > m.

We now define a particular random subset W of {0, 1}n. For all 0 ≤ k ≤ n, let
Wk be the random subset of {0, 1}n containing each x ∈ {0, 1}n independently
with probability nk−n. Let k be uniformly distributed in {1, . . . , n/2}.3 Finally,
let W := Wk. (A similar distribution was considered by Dell et al. [7] in proving

3 For convenience, we assume n/2 is an integer (or an abbreviation for 	n/2
). For
purposes of §2, k could just as well be monotone in {1, . . . , n}. For purposes of §3, we
merely require that k be uniformly distributed in {1, . . . , n′} where n′ ≤ n−logω(1) n.
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an upper bound of O(1/n) on the success probability of black-box isolation
procedures.)

The following lemma is a special case of the Bollobás-Thomason Theorem [4]
(informally, “every monotone increasing property of subsets of a fixed set has a
threshold function”). For completeness, a simple self-contained proof is included
in Appendix B.

Lemma 2. Let Q be a non-trivial monotone increasing property of subsets of
{0, 1}n. For all 0 ≤ k ≤ n, let pk := P[Wk has property Q]. Let θ be the unique
index such that pθ ≤ 1/2 < pθ+1. Then

pθ−i ≤ 2−i ln 2 for all 0 ≤ i ≤ θ,(1)

pθ+i+1 ≥ 1− 2−2i for all 0 ≤ i ≤ n− θ − 1,(2)

H(pk) ≤ (|θ − k|+ 1)/2|θ−k|−1 for all 0 ≤ k ≤ n.(3)

Using Lemma 2(3), we prove a sharp bound on the relative entropy Q(W | k)
all monotone queries Q.

Lemma 3. H(Q(W) | k) = O(1/n) for every monotone query Q.

Proof. If Q is identically ⊥ or �, then the statement is trivial (as H(Q(W) |
k) = 0). So assume Q is a non-trivial monotone query and let p0, . . . , pn and θ
be as in Lemma 2. Then

H(Q(W) | k) =
n/2∑

k=0

P[k = k] ·H(Q(Wk))

=
2

n

n/2∑

k=1

H(pk) ≤ 2

n

n/2∑

k=1

|θ − k|+ 1

2|θ−k|−1
≤ 4

n

∞∑

i=0

i+ 1

2i−1
≤ 24

n
.

The next lemma relates the entropy of an arbitrary random variable z on
{0, 1}n to the probability that z ∈ W.

Lemma 4. For every random variable z on {0, 1}n (not necessarily independent
of W),

P[z ∈ W] ≤ 4

n
H(z) +

1

2n/4
.

Proof. Define S ⊆ {0, 1}n by S := {x ∈ {0, 1}n : P[z = x] ≥ 2−n/4}. Note that

P[z ∈ W] ≤ P[z /∈ S] + P[S ∩W 	= ∅].

We bound each these righthand probabilities. First, by definition of S and H(z),

P[z /∈ S] =
∑

x∈{0,1}n\S
P[z = x] ≤

∑

x∈{0,1}n\S
P[z = x]

log(1/P[z = x])

n/4
≤ 4

n
H(z).
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(Here we used x /∈ S ⇒ P[z = x] < 2−n/4 ⇒ log(1/P[z = x]) > n/4.) Finally,
noting that |S| ≤ 2n/4 and P[x ∈ W] < 2−n/2 for all x ∈ {0, 1}n, we have

P[W ∩ S 	= ∅] ≤
∑

x∈S

P[x ∈ W] <
1

2n/4
.

Combining Lemmas 3 and 4, we get our main lemma:

Lemma 5. For all monotone queriesQ1, . . . , Qm and every function f : {�,⊥}m
→ {0, 1}n,

P[f(Q1(W), . . . , Qm(W)) ∈ W] ≤ O(m/n2) + o(1).

Proof. By standard entropy inequalities,

H(f(Q1(W), . . . , Qm(W))) ≤ H(Q1(W), . . . , Qm(W))

≤ H(Q1(W), . . . , Qm(W),k)

= H(k) +H(Q1(W), . . . , Qm(W) | k)
≤ H(k) +H(Q1(W) | k) + · · ·+H(Qm(W) | k).

Since H(k) = log(n/2) and H(Qi(W) | k) = O(1/n) for all i by Lemma 3, we
have

H(f(Q1(W), . . . , Qm(W))) ≤ O(m/n) + logn.

Since f(Q1(W), . . . , Qm(W)) is a random variable on {0, 1}n, we can apply
Lemma 4 to get

P[f(Q1(W), . . . , Qm(W)) ∈ W] ≤ 4

n
H(f(Q1(W), . . . , Qm(W))) +

1

2n/4

≤ O(m/n2) +
4 logn

n
+

1

2n/4

= O(m/n2) + o(1).

Finally, we prove the main theorem of this section.

Theorem 2. (restated) The monotone query complexity of witness finding,
m(Monotone), is Ω(n2).

Proof. Let m = m(Monotone). By Lemma 1, there exist monotone queries
Q1, . . . , Qm and a function f : {�,⊥}m → {0, 1}n such that

P[f(Q1(W), . . . , Qm(W)) ∈ W | W 	= ∅] > 1/2.

By Lemma 5 and the fact that P[W 	= ∅] = 1− o(1),

P[f(Q1(W), . . . , Qm(W)) ∈ W | W 	= ∅] = P[f(Q1(W), . . . , Qm(W)) ∈ W]

P[W 	= ∅]
≤ O(m/n2) + o(1).

It follows that 1/2 < O(m/n2) + o(1) and hence m = Ω(n2).
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3 Lower Bound for NP Queries

In this section, we prove Theorem 4 (m(NP) = Ω(n2)). The main idea in the
proof involves showing that every NP query is well-approximated by a monotone
query. First, we give a normal form for NP queries.

Lemma 6. For every NP query Q, there exists a sequence (A1, B1), . . . , (As, Bs)
where Ai, Bi ⊆ {0, 1}n and |Ai|, |Bi| ≤ nO(1) and Ai ∩ Bi = ∅ such that for all
W ⊆ {0, 1}n,

Q(W ) = � ⇐⇒
s∨

i=1

(Ai ⊆ W ) ∧ (Bi ∩W = ∅).

Proof. Let M () be the nondeterministic Turing machine (with an unspecified
oracle) which defines Q, that is, Q(W ) = MW (1n). Let t = nO(1) be the maxi-
mum running time of M (). For each accepting computation of M () on input 1n,
there is a sequence σ = ((x1, y1), . . . , (xt′ , yt′)) ∈ ({0, 1}n × {�,⊥})t′, t′ ≤ t,
such that the computation makes oracle calls x1, . . . , xt′ and receives answers
y1, . . . , yt′ . Let Aσ := {xi : yi = �} and Bσ := {xi : yi = ⊥} and note that
|Aσ|, |Bσ| ≤ t′ ≤ t and Aσ ∩ Bσ = ∅. Let (A1, B1), . . . , (As, Bs) enumerate
pairs (Aσ, Bσ) over all σ corresponding to accepting computations of M (). This
sequence (A1, B1), . . . , (As, Bs) satisfies the conditions of the lemma.

The next lemma gives the approximation of NP queries by monotone queries.
Let W continue to denote the random subset of {0, 1}n defined in the previous
section.

Lemma 7. For every NP query Q, there is a monotone query Q+ such that
P[Q(W) 	= Q+(W)] = 2−Ω(n).

Proof. Let (A1, B1), . . . , (As, Bs) be as in Lemma 6. Define Q+ by

Q+(W ) = � def⇐⇒
s∨

i=1

(Ai ⊆ W ).

Clearly, Q+ is a monotone query and Q(W ) ⇒ Q+(W ) (i.e. Q(W ) = � implies
Q+(W ) = �). We have

P

[
Q(W) 	= Q+(W)

]
= P

[
¬Q(W) ∧Q+(W)

]

= P

[( s∧

i=1

(Ai � W) ∨ (Bi ∩W 	= ∅)
)
∧
( s∨

i=1

(Ai ⊆ W)
)]

≤ P

[ s∨

i=1

(Bi ∩W 	= ∅) ∧ (Ai ⊆ W) ∧
i−1∧

j=1

(Ai � W)
]

≤ max
i

P

[
Bi ∩W 	= ∅

∣
∣
∣ (Ai ⊆ W) ∧

i−1∧

j=1

(Ai � W)
]
,(4)
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where this last inequality is justified by the fact that events {(Ai ⊆ W) ∧
∧i−1

j=1(Ai � W)} are mutually exclusive over i ∈ {1, . . . , s}.
Now fix i which maximizes (4). We claim that

P

[
Bi ∩W 	= ∅

∣
∣
∣ (Ai ⊆ W) ∧

i−1∧

j=1

(Ai � W)
]
≤ P[Bi ∩W 	= ∅].(5)

This may be seen as follows. For 1 ≤ k ≤ n/2, write Xk,Yk,Zk for events

Xk := {Bi ∩Wk 	= ∅}, Yk := {Ai ⊆ Wk}, Zk := {∧i−1
j=1

∨
y∈Ai\Aj

(y /∈ Wk)}.
First, note that Yk ∧

∧i−1
j=1(Ai � Wk) is equivalent to Yk ∧Zk . Next, note that

(Xk,Zk) is independent ofYk (by the independence of events {x ∈ Wk} over x ∈
{0, 1}n and the fact that Ai ∩Bi = ∅). Therefore, P[Xk |Yk ∧ Zk] = P[Xk |Zk].
Next, note that Xk is monotone increasing and Zk is monotone decreasing in
the lattice of subsets of {0, 1}n. By well-known correlation inequalities (the
FKG inequality, see Ch. 6 of [1]), it follows that P[Xk |Zk] ≤ P[Xk]. Therefore,
P[Xk |Yk∧Zk] ≤ P[Xk] for all 1 ≤ k ≤ n/2 and hence P[Xk |Yk∧Zk] ≤ P[Xk].
Finally, note that (5) is equivalent to the statement P[Xk |Yk ∧ Zk] ≤ P[Xk].

Picking up from (5), we have

P[Bi ∩W 	= ∅] ≤
∑

x∈Bi

P[x ∈ W] ≤ |Bi|
2n/2

=
nO(1)

2n/2
= 2−Ω(n).(6)

Stringing together (4), (5) and (6), we conclude that P[Q(W) 	= Q+(W)] =
2−Ω(n).

Using this approximation of NP queries by monotone queries, we prove:

Theorem 4. (restated) The NP query complexity of witness finding, m(NP), is
Ω(n2).

Proof. Let m = m(NP). By Lemma 1, there exist NP queries Q1, . . . , Qm and a
function f : {�,⊥}m → {0, 1}n such that

P[f(Q1(W), . . . , Qm(W)) ∈ W | W 	= ∅] > 1/2.

Let Q+
1 , . . . , Q

+
m be monotone queries approximating Q1, . . . , Qm as in Lemma

7. We have

P[f(Q+
1 (W), . . . , Q+

m(W)) ∈ W]

≥ P[f(Q1(W), . . . , Qm(W)) ∈ W]−
m∑

i=1

P[Qi(W) 	= Q+
i (W)]

= Ω(1)− m

2Ω(n)
.

On the other hand, by Lemma 5,

P[f(Q+
1 (W), . . . , Q+

m(W)) ∈ W] ≤ O(m/n2) + o(1).

It follows that Ω(1) − m2−Ω(n) ≤ O(m/n2) + o(1), which is only possible if
m = Ω(n2).
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4 Affine Witness Sets

At this point, we have shown that m(Intersection), m(Monotone) and m(NP)
are all Θ(n2) by a combination of our lower bound (Theorems 2 and 4) and
the upper bounds mentioned in §1. We now turn our attention to the setting of
affine witness sets. We would like to prove lower bounds on maffine(Intersection),
maffine(Monotone) and maffine(NP) using similar information-theoretic argu-
ments. We begin by considering the natural affine analogue of the random witness
set W. For all 0 ≤ k ≤ n, let Ak be the uniform random k-dimensional subspace
of {0, 1}n. Let k be uniform in {1, . . . , n/2} (as before) and let A := Ak.

Unfortunately, when we attempt to repeat the argument in §2, we get stuck
at Lemma 2 (the Bollobás-Thomason Theorem). In particular, in order to have
an appropriate version of Lemma 2(3) in the affine setting, we need a positive
answer the following question:

Question 2. Let Q be a non-trivial monotone increasing property of affine sub-
spaces of {0, 1}n. For all 0 ≤ k ≤ n, let pk := P[Ak has property Q]. Let θ
be the unique index such that pθ ≤ 1/2 < pθ+1. Is it necessarily true that
min{pk, 1− pk} ≤ 2−|θ−k|+O(1) for all k?

In other words, Question 2 asks whether every monotone property has an
exponentially sharp threshold in the lattice of affine subspaces of {0, 1}n.
Remark 1. We can ask a similar question with respect to the lattice Ln of linear
subspaces of {0, 1}n (we suspect that the answer is the same). Writing Pn (resp.
P2n) for the lattice of subsets of [n] (resp. {0, 1}n), note that Ln has an ambigu-
ous status in relation to Pn and P2n : on the one hand, Ln is the “q-analogue” of
Pn; on the other hand, Ln is a subset (in fact, a sub-meet-semilattice) of P2n . Us-
ing a q-analogue of the Kruskal-Katona Theorem due to Chowdhury and Patkos
[5], we can show that pk ≤ 2−Ω(θ/k) for all k < θ and 1− pk ≤ 2−Ω((n−θ)/(n−k))

for all k > θ. This shows that the threshold behavior of monotone properties in
Ln scales at least like monotone properties in Pn. The linear version of Ques-
tion 2 asks whether the threshold behavior of monotone properties in Ln in fact
scales like monotone properties in P2n .

If the answer to Question 2 is “yes”, then we get maffine(Monotone) = Ω(n2)
by using the same information-theoretic argument as in our proof of Theorem 2
in §2. While we were unable to answer Question 2 for general monotone queries,
the next theorem gives a positive answer in the special case where Q is an
intersection query.

Theorem 6. Let S be any subset of {0, 1}n. For all 0 ≤ k ≤ n, let pk :=
P[Ak ∩S 	= ∅]. Let τ := n− log |S|. Then min{pk, 1− pk} ≤ 2−|τ−k|+O(1) for all
k.

(Note that |θ − τ | = O(1) for θ as in Question 2.)
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Proof. The case where k ≤ τ follows from a simple union bound. Let a1, . . . , a2k
enumerate the elements of Ak in any order. Then

pk = P[Ak ∩ S 	= ∅] ≤
2k∑

i=1

P[ai ∈ S] =

2k∑

i=1

|S|
2n

= 2−(τ−k).

The case k > τ requires a more careful argument. Let H be a uniform random
affine hyperplane (i.e. (n − 1)-dimensional subspace) in {0, 1}n. (That is, H =
An−1.)

Claim 1. For all λ > 0, P
[
|S ∩H| ≤ (12 − λ)|S|

]
≤ 1

4λ2|S| .

Proof (Proof of Claim 1). Let Z := |S ∩H|. We have E[Z] = |S|/2 and

E[Z2] =
∑

x∈S

P[x ∈ H] +
∑

x,y∈S :x �=y

P[x, y ∈ H]

=
|S|
2

+ |S|(|S| − 1)
2n−1 − 1

2(2n − 1)
≤ 1

4
(|S|+ |S|2).

By Chebyshev’s inequality,

P

[
Z ≤ (12 − λ)|S|

]
≤ P

[
|Z− E[Z]| ≤ λ|S|

]
≤ Var(Z)

λ2|S|2 =
E[Z2]− E[Z]2

λ2|S|2 ≤ 1

4λ2|S| .

��Claim

Claim 2. Let S ⊆ {0, 1}n, let B = An−j be a uniform random affine subspace
of {0, 1}n of co-dimension j, and let b = 2−1/4. Then

P[B ∩ S = ∅] ≤ 2j+4(1+b+b2+···+bj)

|S| .

Proof. We argue by induction on j. In base case j = 0 (where B = {0, 1}n), the
lemma holds since P[B ∩ S = ∅] = 0.

For induction step, let j ≥ 1 and assume the lemma holds for j − 1. By the
induction hypothesis, for every affine hyperplane H ,

P[B ∩ S = ∅ | B ⊆ H ] ≤ 2j−1+4(1+b+b2+···+bj−1)

|S ∩H | .

Let H be a uniform random affine hyperplane. Note that H is independent of
the event that B ⊆ H.
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Let λ := bj/4. We have

P[B ∩ S = ∅] = P[B ∩ S = ∅ | B ⊆ H]

≤ P

[
B ∩ S = ∅ or |S ∩H| < (12 − λ)|S|

∣
∣
∣ B ⊆ H

]

≤ P

[
|S ∩H| < (12 − λ)|S|

]

+ P

[
B ∩ S = ∅

∣
∣
∣ B ⊆ H and |S ∩H| ≥ (12 − λ)|S|

]

≤ 1

4λ2|S| +
2j−1+4(1+b+b2+···+bj−1)

(12 − λ)|S| (Claim 1 and ind. hyp.)

=
(
2(j+4)/2 +

2j+4(1+b+b2+···+bj−1)

1− (bj/2)

) 1

|S| .

Noting that 1− (bj/2) ≥ 2−bj , we have

2(j+4)/2 +
2j+4(1+b+b2+···+bj−1)

1− (bj/2)
≤ 2(j+4)/2 + 2j+4(1+b+b2+···+bj−1)+bj

≤ 2j+4(1+b+b2+···+bj−1)+bj (1 + 2−(j+4)/2)

≤ 2j+4(1+b+b2+···+bj−1)+bj e2
−(j+4)/2

≤ 2j+4(1+b+b2+···+bj−1+bj).

The proof is completed by combining the above inequalities. ��Claim

Returning to the proof of Theorem 6, we now show the case k > τ using Claim
2 as follows:

1− pk = P[Ak ∩ S = ∅] ≤ 2n−k+4(1+b+···+bn−k)

|S| ≤ 2τ−k+4
∑∞

j=0 bj ≤ 2−(k−τ)+26.

Therefore, max{pk, 1 − pk} ≤ 2−|τ−k|+O(1), which completes the proof of the
theorem.

As a corollary of Theorem 6, we get:

Theorem 5. (restated) The intersection query complexity of affine witness find-
ing, maffine(Intersection), is Ω(n2).

Proof. We use the same information-theoretic argument as the proof of Theorem
2 in §2, except A plays the role of W and Theorem 6 plays the role of Lemma
2(3) (in particular, we require the bound H(pk) ≤ (|τ − k|+O(1))/2|τ−k|−O(1),
which follows from Theorem 6).

5 Conclusion

We initiated the study of the information-theoretic witness finding problem.
For three natural classes of queries (intersection queries, monotone queries, NP
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queries), we proved lower bounds of Ω(n2) on the query complexity of wit-
ness finding over arbitrary subsets of {0, 1}n. These lower bounds match upper
bounds coming from classic results of Valiant and Vazirani [8] and Ben-David
et al. [3]. In addition, we considered the setting where witness sets are affine
subspaces of {0, 1}n and proved a tight lower bound of Ω(n2) for intersection
queries. (All of our lower bounds hold even under the strong interpretation of
Ω, i.e., for all but finitely many n.) Our investigation of affine witness finding
led to an interesting and apparently new question about the threshold behavior
of monotone properties in the affine lattice (Question 2). Other questions left
open by this work are to resolve the monotone and NP query complexity of
affine witness finding (i.e. maffine(Monotone) and maffine(NP)). Finally, we won-
der whether the idea in §3 of approximating NP queries by monotone queries
might have other applications in complexity theory.
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A Proof of Lemma 1

In order to apply Yao’s minimax principle [9], we express m(W ,Q) in terms of
a particular matrix M . Let F be the set of functions {�,⊥}m → {0, 1}n. Let
A := Qm ×F (representing the set of deterministic witness finding algorithms).
Let W0 := W \ {∅}. Finally, let M be the A×W0-matrix defined by

M(Q1,...,Qm;f),W :=

{
1 if f(Q1(W ), . . . , Qm(W )) ∈ W,

0 otherwise.

In this context, Yao’s minimax principle states that for all random variables
W on W0 and (Q1, . . . ,Qm; f) on A,

min
(Q1,...,Qm;f)∈A

E[M(Q1,...,Qm;f),W] ≤ max
W∈W0

E[M(Q1,...,Qm;f),W ].

It follows that, if P[f(Q1(W), . . . , Qm(W)) ∈ W] ≤ 1/2 for all Q1, . . . , Qm ∈ Q
and every function f : {�,⊥}m → {0, 1}n, then for all (Q1, . . . ,Qm; f) ∈ A
(including the special case where f is deterministic, as in the definition of witness
finding procedures), there exists W ∈ W0 such that P[f(Q1(W ), . . . ,Qm(W )) ∈
W ] ≤ 1/2. Therefore, the Q-query complexity of W-witness finding is > m.

B Proof of Lemma 2

For inequality (1), let Y1, . . . ,Y2i be independent copies of Wθ−i. Note that

P[x ∈ (Y1 ∪ · · · ∪Y2i)] = 1− (1− 2θ−i−n)2
i

< 2θ−n = P[w ∈ Wθ]

independently for all x ∈ {0, 1}n. Therefore, by monotonicity,

P[Q(Y1) ∨ · · · ∨Q(Y2i)] ≤ P[Q(Y1 ∪ · · · ∪Y2i)] ≤ P[Q(Wθ)].

Using independence of Y1, . . . ,Y2i , we have

1/2 ≥ P[Q(Wθ)] ≥ P[
∨2i

j=1 Q(Yj)] = 1− P[¬Q(Wθ−i)]
2i = 1− (1− pθ−i)

2i .

Therefore, pθ−i ≤ 1− (1/2)1/2
i

< (ln 2)/2i.
For inequality (2), let Z1, . . . ,Z2i be independent copies ofWθ+1. By a similar

argument, we have

pθ+i+1 = P[Q(Wθ+i+1)] ≥ P[
∨2i

j=1Q(Zj)] = 1− P[¬Q(Wθ+1)]
2i > 1− 1

22i
.

Finally, for inequality (3), note that for all p, q ∈ [0, 1],

0 ≤ min(p, 1− p) ≤ q ≤ 1/2 =⇒ H(p) ≤ H(q) ≤ 2q log(1/q).

By this observation, together with (1) and (2), we have

H(pθ−i−1) ≤ 2
ln 2

2i+1
log(

2i+1

ln 2
) <

i+ 2

2i
, H(pθ+i+1) ≤ 2

1

22i
log(22

i

) =
1

22i−i−1
.

From these two inequalities, it follows that H(pk) ≤ (|θ − k|+ 1)/2|θ−k|−1.
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