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Abstract. The metric dimension is quite a well-studied graph param-
eter. Recently, the adjacency metric dimension and the local metric di-
mension have been introduced. We combine these variants and introduce
the local adjacency metric dimension. We show that the (local) metric
dimension of the corona product of a graph of order n and some non-
trivial graph H equals n times the (local) adjacency metric dimension
ofH . This strong relation also enables us to infer computational hardness
results for computing the (local) metric dimension, based on according
hardness results for (local) adjacency metric dimension that we also give.

Keywords: (local) metric dimension, (local) adjacency dimension,
NP-hardness.

1 Introduction and Preliminaries

Throughout this paper, we only consider undirected simple loop-free graphs and
use standard graph-theoretic terminology. Less known notions are collected at
the end of this section.

Let (X, d) be a metric space. The diameter of a point set S ⊆ X is defined
as diam(S) = sup{d(x, y) : x, y ∈ S}. A generator of (X, d) is a set S ⊆ X such
that every point of the space is uniquely determined by the distances from the
elements of S. A point v ∈ X is said to distinguish two points x and y of X if
d(v, x) �= d(v, y). Hence, S is a generator if and only if any pair of points of X
is distinguished by some element of S.

Four notions of dimension in graphs. Let N denote the set of non-negative
integers. Given a connected graph G = (V,E), we consider the function dG :
V × V → N, where dG(x, y) is the length of a shortest path between u and v.
Clearly, (V, dG) is a metric space. The diameter of a graph is understood in this
metric. A vertex set S ⊆ V is said to be a metric generator for G if it is a
generator of the metric space (V, dG). A minimum metric generator is called a
metric basis, and its cardinality the metric dimension of G, denoted by dim(G).
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Motivated by the problem of uniquely determining the location of an intruder in
a network, the concept of metric dimension of a graph was introduced by Slater
in [33], where the metric generators were called locating sets. Independently,
Harary and Melter introduced this concept in [16], where metric generators were
called resolving sets. Applications of this parameter to the navigation of robots
in networks are discussed in [25] and applications to chemistry in [22,23]. This
graph parameter was studied further in a number of other papers including
recent papers like [1,10,13,20,35].

Keeping in mind the robot navigation scenario, where the robot can determine
its position by knowing the distances to the vertices in the metric generator, it
makes sense to consider local variants of this parameter, assuming that the robot
has some idea about its current position. A set S of vertices in a connected graph
G is a local metric generator for G (also called local metric set for G [29]) if every
two adjacent vertices of G are distinguished by some vertex of S. A minimum
local metric generator is called a local metric basis for G and its cardinality, the
local metric dimension of G, is denoted by diml(G).

If the distances between vertices are hard to determine, then it might still
be the case that the robot can sense whether or not it is within the range
of some sender installed on some other vertex. This has motivated the next
definition. A set S of vertices in a graph G is an adjacency generator for G
(also adjacency resolving set for G [21]) if for every x, y ∈ V (G) − S there
exists s ∈ S such that |NG(s) ∩ {x, y}| = 1. This concept is very much related
to that of a 1-locating dominating set [5]. A minimum adjacency generator is
called an adjacency basis for G and its cardinality, the adjacency dimension
of G, is denoted by dimA(G). Observe that an adjacency generator of a graph
G = (V,E) is also a generator in a suitably chosen metric space, namely by
considering (V, dG,2), with dG,2(x, y) = min{dG(x, y), 2}, and vice versa.

Now, we combine the two variants of metric dimension defined so far and
introduce the local adjacency dimension of a graph. We say that a set S of
vertices in a graph G is a local adjacency generator for G if for every two adjacent
vertices x, y ∈ V (G) − S there exists s ∈ S such that |NG(s) ∩ {x, y}| = 1. A
minimum local adjacency generator is called a local adjacency basis for G and
its cardinality, the local adjacency dimension of G, is denoted by dimA,l(G).

Our main results. In this paper, we study the (local) metric dimension of corona
product graphs via the (local) adjacency dimension of a graph. We show that
the (local) metric dimension of the corona product of a graph of order n and
some non-trivial graph H equals n times the (local) adjacency metric dimension
of H . This relation is much stronger and under weaker conditions compared to
the results of Jannesari and Omoomi [21] concerning the lexicographic product
of graphs. This also enables us to infer NP-hardness results for computing the
(local) metric dimension, based on corresponding NP-hardness results for (lo-
cal) adjacency metric dimension that we also provide. To our knowledge, this
is the first time combinatorial results on this particular form of graph product
have been used to deduce computational hardness results. The obtained reduc-
tions are relatively simple and also allow us to conclude hardness results based
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on the Exponential Time Hypothesis. We also discuss NP-hardness results for
planar graphs, which seem to be of some particular importance to the sketched
applications. This also shows the limitations of using corona products to ob-
tain hardness results. Finally, we indicate why computing the (local) adjacency
metric dimension is in FPT (under the standard parameterization), contrasting
what is known for computing the metric dimension.

Some notions from graph theory. Let G = (V,E) be a graph. A vertex set D ⊆ V
is called a dominating set if

⋃
v∈D NG[v] = V . The domination number of G,

denoted by γ(G), is the minimum cardinality among all dominating sets in G. A
vertex set C ⊆ V is called a vertex cover if for each edge e ∈ E, C ∩ e �= ∅, The
vertex cover number of G, denoted by β(G), is the minimum cardinality among
all vertex covers of G.

Fig. 1. The bold type forms an adjacency basis for P4 � P5 but not a dominating set

Let G and H be two graphs of order n and n′, respectively. The join (graph)
G + H is defined as the graph obtained from vertex-disjoint graphs G and H
by taking one copy of G and one copy of H and joining by an edge each vertex
of G with each vertex of H . Graph products is one of the recurring themes in
graph theory, see [15]. The corona product (graph) G�H is defined as the graph
obtained from G andH by taking one copy of G and n copies ofH and joining by
an edge each vertex from the ith copy of H with the ith vertex of G [11]. We will
denote by V = {v1, v2, . . . , vn} the set of vertices of G and by Hi = (Vi, Ei) the
ith copy of H so that NG�H(vi) = Vi ∪NG(vi) and NG�H(x) = {vi} ∪NHi(x)
for every x ∈ Vi. Notice that the corona graph K1 � H is isomorphic to the
join graph K1 + H . For our computational complexity results, it is important
but easy to observe that these graph operations can be performed in polynomial
time, given two input graphs. Some of the notions important in this paper are
illustrated in Figure 1.

Simple facts. By definition, the following inequalities hold for any graph G:

– dim(G) ≤ dimA(G);
– diml(G) ≤ dimA,l(G);
– diml(G) ≤ dim(G);
– dimA,l(G) ≤ dimA(G).
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Moreover, if S is an adjacency generator, then at most one vertex is not
dominated by S, so that

γ(G) ≤ dimA(G) + 1.

Namely, if x, y are not dominated by S, then no element in S distinguishes them.
We also observe that

dimA,l(G) ≤ β(G),

because each vertex cover is a local adjacency generator.
However, all mentioned inequalities could be either equalities or quite weak

bounds. Consider the following examples:

1. diml(Pn) = dim(Pn) = 1 ≤ ⌊
n
4

⌋ ≤ dimA,l(Pn) ≤
⌈
n
4

⌉ ≤ ⌊
2n+2

5

⌋
= dimA(Pn),

n ≥ 7;
2. diml(K1,n) = dimA,l(K1,n) = 1 ≤ n− 1 = dim(K1,n) = dimA(K1,n), n ≥ 2;
3. γ(Pn) =

⌈
n
3

⌉ ≤ ⌊
2n+2

5

⌋
= dimA(Pn), n ≥ 7;

4.
⌊
n
4

⌋ ≤ dimA,l(Pn) ≤
⌈
n
4

⌉ ≤ ⌊
n
2

⌋
= β(Pn), n ≥ 2.

The proofs of results marked with an asterisk symbol (∗) can be found in the
long version of this paper that can be retrieved as a Technical Report [30].

2 The Metric Dimension of Corona Product Graphs
versus the Adjacency Dimension of a Graph

The following is the first main combinatorial result of this paper and provides a
strong link between the metric dimension of the corona product of two graphs
and the adjacency dimension of the second graph involved in the product op-
eration. A seemingly similar formula was derived in [20,35], but there, only the
notion of metric dimension was involved (which makes it impossible to use the
formula to obtain computational hardness results as we will do), and also, special
conditions were placed on the second argument graph of the corona product.

Theorem 1. For any connected graph G of order n ≥ 2 and any non-trivial
graph H, dim(G�H) = n · dimA(H).

Proof. We first need to prove that dim(G � H) ≤ n · dimA(H). For any i ∈
{1, . . . , n}, let Si be an adjacency basis of Hi, the ith-copy of H . In order to
show that X :=

⋃n
i=1 Si is a metric generator for G � H , we differentiate the

following four cases for two vertices x, y ∈ V (G�H)−X .

1. x, y ∈ Vi. Since Si is an adjacency basis of Hi, there exists a vertex u ∈ Si

so that |NHi(u) ∩ {x, y}| = 1. Hence,

dG�H(x, u) = d〈vi〉+Hi
(x, u) �= d〈vi〉+Hi

(y, u) = dG�H(y, u).

2. x ∈ Vi and y ∈ V . If y = vi, then for u ∈ Sj , j �= i, we have

dG�H(x, u) = dG�H(x, y) + dG�H(y, u) > dG�H(y, u).

Now, if y = vj , j �= i, then we also take u ∈ Sj and we proceed as above.
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3. x = vi and y = vj . For u ∈ Sj , we find that

dG�H(x, u) = dG�H(x, y) + dG�H(y, u) > dG�H(y, u).

4. x ∈ Vi and y ∈ Vj , j �= i. In this case, for u ∈ Si we have

dG�H(x, u) ≤ 2 < 3 ≤ dG�H(u, y).

Hence, X is a metric generator for G�H and, as a consequence,

dim(G�H) ≤
n∑

i=1

|Si| = n · dimA(H).

It remains to prove that dim(G � H) ≥ n · dimA(H). To do this, let W be
a metric basis for G �H and, for any i ∈ {1, . . . , n}, let Wi := Vi ∩W . Let us
show that Wi is an adjacency metric generator for Hi. To do this, consider two
different vertices x, y ∈ Vi−Wi. Since no vertex a ∈ V (G�H)−Vi distinguishes
the pair x, y, there exists some u ∈ Wi such that dG�H(x, u) �= dG�H(y, u). Now,
since dG�H(x, u) ∈ {1, 2} and dG�H(y, u) ∈ {1, 2}, we conclude that |NHi(u) ∩
{x, y}| = 1 and consequently, Wi must be an adjacency generator for Hi. Hence,
for any i ∈ {1, . . . , n}, |Wi| ≥ dimA(Hi). Therefore,

dim(G�H) = |W | ≥
n∑

i=1

|Wi| ≥
n∑

i=1

dimA(Hi) = n · dimA(H).

Consequences of Theorem 1 We can now investigate dim(G � H) through the
study of dimA(H), and vice versa. In particular, results from [3,32,35] allow us
to deduce the exact adjacency dimension for several special graphs. For instance,
we find that dimA(Cr) = dimA(Pr) =

⌊
2r+2

5

⌋
for any r ≥ 7. Other combinatorial

results of this type are collected in the long version of this paper [30].

A detailed analysis of the adjacency dimension of the corona product via the
adjacency dimension of the second operand. We now analyze the adjacency di-
mension of the corona product G�H in terms of the adjacency dimension of H .

Theorem 2. (∗) Let G be a connected graph of order n ≥ 2 and let H be a
non-trivial graph. If there exists an adjacency basis S for H which is also a
dominating set, and if for every v ∈ V (H) − S, it is satisfied that S �⊆ NH(v),
then dimA(G�H) = n · dimA(H).

Corollary 1. (∗) Let r ≥ 7 with r �≡ 1 mod 5 and r �≡ 3 mod 5. For any con-
nected graph G of order n ≥ 2, dimA(G� Cr) = dimA(G� Pr) = n · ⌊ 2r+2

5

⌋
.

Theorem 3. Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. If there exists an adjacency basis for H which is also a dominating
set and if, for any adjacency basis S for H, there exists some v ∈ V (H) − S
such that S ⊆ NH(v), then dimA(G�H) = n · dimA(H) + γ(G).
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Proof. Let W be an adjacency basis for G � H and let Wi = W ∩ Vi and
U = W ∩ V . Since two vertices belonging to Vi are not distinguished by any
u ∈ W − Vi, the set Wi must be an adjacency generator for Hi. Now consider
the partition {V ′, V ′′} of V defined as follows:

V ′ = {vi ∈ V : |Wi| = dimA(H)} and V ′′ = {vj ∈ V : |Wj | ≥ dimA(H)+1}.

Note that, if vi ∈ V ′, then Wi is an adjacency basis for Hi, thus in this
case there exists ui ∈ Vi such that Wi ⊆ NHi(ui). Then the pair ui, vi is not
distinguished by the elements of Wi and, as a consequence, either vi ∈ U or
there exists some vj ∈ U adjacent to vi. Hence, U ∪ V ′′ must be a dominating
set and, as a result, |U ∪ V ′′| ≥ γ(G). So we obtain the following:

dimA(G�H) = |W | =
⋃

vi∈V ′
|Wi|+

⋃

vj∈V ′′
|Wj |+ |U |

≥
∑

vi∈V ′
dimA(H) +

∑

vj∈V ′′
(dimA(H) + 1) + |U |

= n · dimA(H) + |V ′′|+ |U | ≥ n · dimA(H) + |V ′′ ∪ U |
≥ n · dimA(H) + γ(G).

To conclude the proof, we consider an adjacency basis S for H which is also
a dominating set, and we denote by Si the copy of S corresponding to Hi. We
claim that for any dominating set D of G of minimum cardinality |D| = γ(G),
the set D ∪ (

⋃n
i=1 Si) is an adjacency generator for G�H and, as a result,

dimA(G�H) ≤
∣
∣
∣
∣
∣
D ∪

(
n⋃

i=1

Si

)∣
∣
∣
∣
∣
= n · dimA(H) + γ(G).

This can be seen by some case analysis. Let S′ = D ∪⋃n
i=1 Si and let us prove

that S′ is an adjacency generator for G�H . We differentiate the following cases
for any pair x, y of vertices of G�H not belonging to S′.

1. x, y ∈ Vi. Since Si is an adjacency basis of Hi, there exists ui ∈ Si such that
ui is adjacent to x or to y but not to both.

2. x ∈ Vi, y ∈ Vj , j �= i. As Si is a dominating set of Hi, there exists u ∈ Si

such that u ∈ NHi(x) and, obviously, u �∈ NG�H(y).
3. x ∈ Vi, y = vi ∈ V . As y = vi �∈ D, vj ∈ NG(vi) distinguishes the pair x, y.
4. x ∈ Vi ∪ {vi}, y = vj ∈ V , i �= j. In this case, every u ∈ Sj is a neighbor of

y but not of x.

Corollary 2. Let r ≥ 2. Let G be a connected graph of order n ≥ 2. Then,
dimA(G�Kr) = n(r − 1) + γ(G).

Theorem 4. (∗) Let G be a connected graph of order n ≥ 2 and let H be a
non-trivial graph. If no adjacency basis for H is a dominating set, then we have:
dimA(G�H) = n · dimA(H) + n− 1.
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It is easy to check that any adjacency basis of a star graph K1,r is composed
of r − 1 leaves, with the last leaf non-dominated. Thus, Theorem 4 implies:

Corollary 3. For a connected graph G of order n ≥ 2, dimA(G�K1,r) = n·r−1.

Given a vertex v ∈ V we denote by G − v the subgraph obtained from G
by removing v and the edges incident with it. We define the following auxiliary
domination parameter: γ′(G) := minv∈V (G){γ(G− v)}.
Theorem 5. (∗) Let H be a non-trivial graph such that some of its adjacency
bases are also dominating sets, and some are not. If there exists an adjacency
basis S′ for H such that for every v ∈ V (H)−S′ it is satisfied that S′ �⊆ NH(v),
and for any adjacency basis S for H which is also a dominating set, there exists
some v ∈ V (H) − S such that S ⊆ NH(v), then for any connected graph G of
order n ≥ 2, dimA(G�H) = n · dimA(H) + γ′(G).

As indicated in Figure 1, H = P5 satisfies the premises of Theorem 5, as in
particular there are adjacency bases that are also dominating set (see the leftmost
copy of a P5 in Figure 1) as well as adjacency bases that are not dominating sets
(see the rightmost copy of a P5 in that drawing). Hence, we can conclude:

Corollary 4. For any connected graph G of order n ≥ 2, dimA(G � P5) =
2n+ γ′(G).

Since the assumptions of Theorems 2, 3, 4 and 5 are complementary and for
any graph G of order n ≥ 3 it holds that 0 < γ′(G) ≤ γ(G) ≤ n

2 < n − 1, we
can conclude that in fact, Theorems 2 and 5 are equivalences for n ≥ 3 (or even
n ≥ 2 in the first case). Therefore, we obtain:

Theorem 6. Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. The following statements are equivalent:

(i) There exists an adjacency basis S for H, which is also a dominating set,
such that for every v ∈ V (H)− S it is satisfied that S �⊆ NH(v).

(ii) dimA(G�H) = n · dimA(H).
(iii) dimA(G�H) = dim(G�H).

This should be conferred to the combinatorial results in [20], as it exactly tells
when they could possibly apply.

As an example of applying Theorem 6 we can take H as the cycle graphs Cr

or the path graphs Pr , where r ≥ 7, r �≡ 1 mod 5, r �≡ 3 mod 5, see Cor. 1.

Theorem 7. Let G be a connected graph of order n ≥ 3 and let H be a non-
trivial graph. The following statements are equivalent:

(i) No adjacency basis for H is a dominating set.
(ii) dimA(G�H) = n · dimA(H) + n− 1.
(iii) dimA(G�H) = dim(G�H) + n− 1.
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3 Locality in Dimensions

First, we consider some straightforward cases. If H is an empty graph, then
K1�H is a star graph and diml(K1�H) = 1. Moreover, ifH is a complete graph
of order n, then K1�H is a complete graph of order n+1 and diml(K1�H) = n.
It was shown in [31] that for any connected nontrivial graph G and any empty
graph H , diml(G �H) = diml(G). We are going to state results similar to the
non-local situation as discussed in the previous section. We omit all proofs as
they are along similar lines.

Theorem 8. (∗) For any connected graph G of order n ≥ 2 and any non-trivial
graph H, diml(G�H) = n · dimA,l(H).

Based on [31], this allows to deduce quite a number of combinatorial results
for the new notion of a local adjacency dimension, as contained in [30].

Fortunately, the comparison of the local adjacency dimension of the corona
product with the one of the second argument is much simpler in the local version
as in the previously studied non-local version.

Theorem 9. (∗) Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. If there exists a local adjacency basis S for H such that for every
v ∈ V (H)−S it is satisfied that S �⊆ NH(v), then dimA,l(G�H) = n·dimA,l(H).

Theorem 10. (∗) Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. If for any local adjacency basis for H, there exists some v ∈ V (H)−
S which satisfies that S ⊆ NH(v), then dimA,l(G�H) = n · dimA,l(H) + γ(G).

Remark 1. As a concrete example for the previous theorem, consider H = Kn′ .
Clearly, dimA,l(H) = n′ − 1, and the neighborhood of the only vertex that is
not in the local adjacency basis coincides with the local adjacency basis. For any
connected graph G of order n ≥ 2, we can deduce that

dimA,l(G�Kn′) = n · dimA,l(Kn′) + γ(G) = n(n′ − 1) + γ(G).

Since the assumptions of Theorems 9 and 10 are complementary, we obtain
the following property for dimA,l(G�H).

Theorem 11. Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. Then the following assertions are equivalent.

(i) There exists a local adjacency basis S for H such that for every v ∈ V (H)−
S it is satisfied that S �⊆ NH(v).

(ii) dimA,l(G�H) = n · dimA,l(H).
(iii) diml(G�H) = dimA,l(G�H).

Theorem 12. Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. Then the following assertions are equivalent.

(i) For any local adjacency basis S for H, there exists some v ∈ V (H) − S
which satisfies that S ⊆ NH(v).
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(ii) dimA,l(G�H) = n · dimA,l(H) + γ(G).

(iii) diml(G�H) = dimA,l(G�H)− γ(G).

As a concrete example of graph H where we can apply the above result is the
star K1,r, r ≥ 2. In this case, for any connected graph G of order n ≥ 2, we find
that dimA,l(G�K1,r) = n · dimA,l(K1,r) + γ(G) = n+ γ(G).

4 Computational Complexity of the Dimension Variants

In this section, we not only prove NP-hardness of all dimension variants, but
also show that the problems (viewed as minimization problems) cannot be solved
in time O(poly(n + m)2o(n)) on any graph of order n (and size m). Yet, it is
straightforward to see that each of our computational problems can be solved in
time O(poly(n+m)2n), simply by cycling through all vertex subsets by increasing
cardinality and then checking if the considered vertex set forms an appropriate
basis. More specifically, based on our reductions we can conclude that these
trivial brute-force algorithms are in a sense optimal, assuming the validity of the
Exponential Time Hypothesis (ETH). A direct consequence of ETH (using the
sparsification lemma) is the hypothesis that 3-SAT instances cannot be solved
in time O(poly(n + m)2o(n+m)) on instances with n variables and m clauses;
see [19,4].

From a mathematical point of view, the most interesting fact is that most of
our computational results are based on the combinatorial results on the dimen-
sional graph parameters on corona products of graphs that are derived above.

Due to the practical motivation of the parameters, we also study their com-
putational complexity on planar graph instances.

We are going to investigate the following problems:
Dim: Given a graph G and an integer k, decide if dim(G) ≤ k or not.
LocDim: Given a graph G and an integer k, decide if diml(G) ≤ k or not.
AdjDim: Given a graph G and an integer k, decide if dimA(G) ≤ k or not.
LocAdjDim: Given a graph G and an integer k, decide if dimA,l(G) ≤ k or not.

As auxiliary problems, we will also consider:
VC: Given a graph G and an integer k, decide if β(G) ≤ k or not.
Dom: Given a graph G and an integer k, decide if γ(G) ≤ k or not.
1-LocDom: Given a graph G and an integer k, decide if there exists a 1-locating
dominating set of G with at most k vertices or not. (A dominating set D ⊆ V in
a graph G = (V,E) is called a 1-locating dominating set if for every two vertices
u, v ∈ V \D, the symmetric difference of N(u)∩D and N(v)∩D is non-empty.)

Theorem 13. Dim is NP-complete, even when restricted to planar graphs.

Different proofs of this type of hardness result appeared in the literature.
While this result is only mentioned in the textbook of Garey and Johnson [12],
a proof was first published in [25]. For planar instances, we refer to [9] where
this result is stated.
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Remark 2. In fact, we can offer a further proof for the NP-hardness of Dim

(on general graphs), based upon Theorem 1 and the following reasoning. If there
were a polynomial-time algorithm for computing dim(G), then we could compute
dimA(H) for any (non-trivial) graph H by computing dim(K2 � H) with the
assumed polynomial-time algorithm, knowing that this is just twice as much
as dimA(H). As every NP-hardness proof adds a bit to the understanding of
the nature of the problem, this one does so, as well. It shows that Dim is NP-
complete even on the class of graphs that can be written as G�H , where G is
some connected graph of order n ≥ 2 and H is non-trivial.

Theorem 14. (∗) 1-LocDom is NP-hard, even when restricted to planar graphs.
Moreover, assuming ETH, there is no O(poly(n + m)2o(n)) algorithm solving
1-LocDom on general graphs of order n and size m.

Proof. (Sketch) Recall the textbook proof for the NP-hardness of VC (see [12])
that produces from a given 3-SAT instance I with n variables and m clauses a
graph G with two adjacent vertices per variable gadget and three vertices per
clause gadget forming a C3 (and 3m more edges that interconnect these gadgets
to indicate which literals occur in which clauses). So, G has 3m + 2n vertices
and 3m+ n+ 3m = 6m+ n edges. We modify G to obtain G′ as follows: Each
edge that occurs inside of a variable gadget or of a clause gadget is replaced by a
triangle, so that we add 3m+n new vertices of degree two. All in all, this means
that G′ has (3m+2n)+(3m+n) = 6m+3n vertices and 9m+3n+3m = 12m+3n
edges. Now, assuming (w.l.o.g.) that I contains, for each variable x, at least one
clause with x as a literal and another clause with x̄ as a literal, we can show
that I is satisfiable iff G has a vertex cover of size at most 2m+ n iff G′ has a
1-locating dominating set of size at most 2m+ n. ��

The general case was treated in [7], but that proof (starting out again from
3-SAT) does not preserve planarity, as the variable gadget alone already con-
tains a K2,3 subgraph that inhibits non-crossing interconnections with the clause
gadgets. However, although not explicitly mentioned, that reduction also yields
the non-existence of O(poly(n+m)2o(n)) algorithms based on ETH. In [30], we
also provide a reduction that works for planar graphs, working on a variant of
Lichtenstein’s reduction [27] that shows NP-hardness of VC on planar graph
instances.

Theorem 15. AdjDim is NP-complete, even when restricted to planar graphs.
Assuming ETH, there is no O(poly(n+m)2o(n)) algorithm solving AdjDim on
graphs of order n and size m.

Proof. (Sketch) From an instance G = (V,E) and k of 1-LocDom, produce an
instance (G′, k) of AdjDim by obtaining G′ from G by adding a new isolated
vertex x /∈ V to G. We claim that G has a 1-locating dominating set of size at
most k if and only if dimA(G

′) ≤ k. ��
Alternatively, NP-hardness of AdjDim (and even the ETH-result) can be

deduced from the strong relation between the domination number and the ad-
jacency dimension as stated in Cor. 2, based on the NP-hardness of Dom.
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�1

�2

�3

Fig. 2. The clause gadget illustration. The square-shaped vertices do not belong to the
gadget, but they are the three literal vertices in variable gadgets that correspond to
the three literals in the clause.

As explained in Remark 2, Theorem 1 can be used to deduce furthermore:

Corollary 5. Assuming ETH, there is no O(poly(n+m)2o(n)) algorithm solving
Dim on graphs of order n and size m.

Lemma 1. [28] Assuming ETH, there is no O(poly(n+m)2o(n)) algorithm solv-
ing Dom on graphs of order n and size m.

From Remark 1 and Lemma 1, we can conclude:

Theorem 16. LocAdjDim is NP-complete. Moreover, assuming ETH, there
is no O(poly(n+m)2o(n)) algorithm solving LocAdjDim on graphs of order n
and size m.

We provide an alternative proof of the previous theorem in [30]. That proof
is a direct reduction from 3-SAT and is, in fact, very similar to the textbook
proof for the NP-hardness of VC, also see the proof of Theorem 14. This also
proves that LocAdjDim is NP-complete when restricted to planar instances.
More precisely, the variable gadgets are paths on four vertices, where the middle
two ones interconnect to the clause gadgets in which they occur. The clause
gadgets are a bit more involved, as shown in Fig. 2.

As explained in Remark 2, we can (now) use Theorem 8 together with Theo-
rem 16 to conclude the following hitherto unknown complexity result.

Theorem 17. LocDim is NP-complete. Moreover, assuming ETH, there is no
O(poly(n+m)2o(n)) algorithm solving LocDim on graphs of order n and size m.

Notice that the reduction explained in Remark 2 does not help find any hard-
ness results on planar graphs. Hence, we leave it as an open question whether
or not LocDim is NP-hard also on planar graph instances.
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5 Conclusions

We have studied four dimension parameters in graphs. In particular, establish-
ing concise formulae for corona product graphs, linking (local) metric dimension
with (local) adjacency dimension of the involved graphs, allowed to deduce NP-
hardness results (and similar hardness claims) for all these graph parameters,
based on known results, in particular on Vertex Cover and on Dominating

Set problems. We hope that the idea of using such types of non-trivial (com-
binatorial) formulae for computational hardness proofs can be also applied in
other situations.

For instance, observe that reductions based on formulae as derived in The-
orem 1 clearly preserve the natural parameter of these problems, which makes
this approach suitable for Parameterized Complexity. However, let us notice here
that Dim is unlikely to be fixed-parameter tractable under the natural parame-
terization (i.e., an upper bound on the metric dimension) even for subcubic graph
instances; see [17]. Conversely, it is not hard to see that the natural parameter-
ization of AdjDim can be shown to be in FPT by reducing it to Test Cover.
Namely, let G = (V,E) be a graph and k be an integer, defining an instance of

AdjDim. We construct a Test Cover instance as follows: Let S =

(
V
2

)

be

the substances and define the potential test set T = {tv | v ∈ V } by letting

tv({x, y}) =
{
1, if v ∈ N [x]�N [y]
0, otherwise

Now, if D is some adjacency generator, then TD = {tv | v ∈ D} is some test cover
solution, i.e., for any pair of substances, we find a test that differentiates the two.
The converse is also true. Test Cover has received certain interest recently in
Parameterized Complexity [8,14]. Does AdjDim admit a polynomial-size kernel,
or does it rather behave like Test Cover?

From a computational point of view, let us mention (in-)approximability
results as obtained in [26,34]. In particular, inapproximability of 1-LocDom

readily transfers to inapproximability of AdjDim and this in turn leads to in-
approximability results for Dim as in Remark 2; also see [17].

Also, 1-locating dominating sets have been studied (actually, independently
introduced) in connection with coding theory [24]. Recall that these sets are
basically adjacency bases. Therefore, it might be interesting to try to apply
some of the information-theoretic arguments on variants of metric dimension, as
well. Conversely, the notion of locality used in this paper connects to the idea
of correcting only 1-bit errors in codes. These interconnections deserve further
studies.

All these computational hardness results, as well as the various different ap-
plications that led to the introduction of these graph dimension parameters, also
open up the quest for moderately exponential-time algorithms, i.e., algorithms
that should find an optimum solution for any of our dimension problems in time
O(poly(n + m)cn) on graphs of size m and order n for some c < 2, or also to
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finding polynomial-time algorithms for special graph classes. In this context, we
mention results on trees, series-parallel and distance-regular graphs [7,13,18].

In view of the original motivation for introducing these graph parameters,
it would be interesting to study their complexity on geometric graphs. Notice
that the definition of a metric generator is not exclusively referring to (finite)
graphs, which might lead us even back to the common roots of graph theory and
topology.

In view of the many different motivations, also the study of computational
aspects of other variants of dimension parameters could be of interest. We
only mention here the notions of resolving dominating sets [2] and independent
resolving sets [6].
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15. Hammack, R., Imrich, W., Klavžar, S.: Handbook of product graphs. Discrete
Mathematics and its Applications, 2nd edn. CRC Press (2011)



166 H. Fernau and J.A. Rodŕıguez-Velázquez
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metric dimension of corona product graph (2013) (submitted)

32. Saputro, S., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.,
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