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Abstract  This chapter addresses the theoretical foundation of a field-proven 
real-time steady-state stability tool (The commercial name of this tool is Siemens 
Spectrum Power QuickStab. The software is owned by Siemens AG, Germany, 
and is seamlessly integrated with the Spectrum Power SCADA/EMS platform 
and SIGUARD® Dynamic Security Assessment suite) that quickly and reliably 
quantifies and visualizes the risk of blackout due to instability. The approach is 
inspired from Paul Dimo’s steady-state stability analysis method and uses the 
Bruk–Markovic reactive power stability criterion in the REI Nets framework to 
determine how far the power system is from a state where voltages may col-
lapse and generators may lose synchronism. The technique derives its speed and 
robustness from Dimo’s sound approximations and simplifying assumptions, 
which are analyzed and substantiated. Metrics that quantify the distance to insta-
bility and to the security margin are also discussed, along with innovative tools 
that extract and visualize essential information from the large amount of compu-
tational results.

2.1 � Introduction

Modern transmission networks must sustain megawatt (MW) transfers that can be 
quite different from those for which they were planned. This is because energy 
transactions across multi-area systems may cause parallel flows, excessive network 
loadings, and low bus voltages. Under certain conditions, such degraded states may 
lead to blackouts—but how to quantify the risk of blackout? How to do it quickly in 
real time, using input from the most recent state estimate and displaying the results 
before the immediately next state estimation cycle, so that the operator could make 
truly online, split-second decisions? And how to extract essential information from 
large amounts of data and computational results and present it in formats that can 
be instantly understood and relied upon?
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28 S. C. Savulescu

The industry has taken for granted concepts such as the Available Transfer Capability 
(ATC), Total Transfer Capability (TTC), and Transmission Reliability Margin (TRM), 
but was slow to recognize the need to run real-time stability checks after every single 
state estimation solution and after each market clearing computation.

According to the North American Electric Reliability Corporation (NERC; 
NERC 1966), the TTC is given by

Thermal and voltage limits can reliably be defined off-line. They are predictable 
and can even be briefly violated. But how about “stability limits?” NERC’s Policy 
9 (NERC 2000) requires reliability coordinators to compute “stability limits” for 
the current and next-day operation processes to “foresee whether the transmission 
loading progresses or is projected to progress beyond the operating reliability lim-
it.” This is easier said than done, for detecting thermal and voltage violations is 
relatively straightforward, whereas defining, quantifying, and computing “stability 
limits” is an altogether different proposition, especially if it has to be done online.

In order to qualify for real-time deployment, the stability software must, of 
course, be fast and reliable but, in addition, it should also provide the ability to iden-
tify, quantify, and visualize the stability limits, as opposed to just assessing whether 
a given condition is stable or unstable.

Many, if not most, stability tools available until a few years ago, would not meet 
both these requirements. They “determine whether a given condition is stable or 
unstable, [but] have not been efficient in quickly and automatically determining the 
stability limits” (Kundur 1999).

Actually, Professor Kundur’s statement was an understatement, in the sense 
that the term “stability limit” was used without having been explicitly defined or 
mathematically quantified—not only in this widely quoted reference but also in 
the literature available at that time. Common sense suggests that if conventional 
techniques can neither quantify the stability limit, or limits, nor perform split-
second computations, an alternate paradigm, perhaps entailing simplifications, 
should be used—provided that such simplifications would come from sound as-
sumptions and lead to algorithms that are fast and provide dependable answers as 
well.

Indeed, a method that meets these requirements was developed in Europe in 
the early 1960s by Paul Dimo (Dimo 1961, 1975) and introduced in the USA in 
the 1990s (EPRI 1992, 1993; Savulescu et al. 1993; Erwin et al. 1994). It quickly 
became obvious that, if taken from the drawing board to the real life, this approach 
does have the potential to overcome the real-time stability challenge. As a result, 
practical features were incorporated and a commercial-grade stability tool was de-
veloped and, then, deployed in actual power system control centers (Gonzalez 2003; 
Avila-Rosales et al. 2004; Savulescu 2004; Tweedy 2004; Avila-Rosales and Giri 
2005; Vergara et al. 2005a; Campeanu et al. 2006; Virmani et al. 2007; Vickovic 
et al. 2009; Arnold et al. 2009; Eichler et al. 2011; Stottok et al. 2013).

TTC Min Thermal Limit  Voltage Limit  Stability Limit= { }, ,
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292  Fast Computation of the Steady-State Stability Limit

The subsequent sections of this chapter:

•	 Discuss the general background
•	 Address the benefit of approaching the real-time stability problem through the 

steady-state stability prism
•	 Review the mathematical foundation of Dimo’s steady-state stability analysis 

method
•	 Briefly close the gap from theory to implementation and review a set of user-

friendly visualization tools inspired from the otherwise cryptic Nodal Images 
originally introduced by Dimo half a century ago.

2.2 � General Background

2.2.1 � In Search of the Stability Limit

Conceptually, the “stability limit” is a local property of the system state vector: For 
each new solution of the system of equations that describe the system state, there 
is a new stability limit. For example, the stability conditions change when static 
capacitors and shunt reactors are switched. Likewise, transformer tap changes, line 
outages, load variations, and generator trips affect the distance to instability. To 
further complicate things, the stability limit also depends upon the path followed to 
approach it: different search paths may lead to different stability limits.

Simply stated, stability limits exist, are not fixed, and change with the total 
MW system grid utilization,1 bus voltage profile, network topology, and the path 
followed to approach them. It is precisely because of this changing nature of the 
stability limits that they must be recalculated as often as possible—assuming, of 
course, that a metric has previously been defined so that such stability limits could 
be quantified.

Furthermore, instability develops instantly and leaves no time to react, so, in ad-
dition to the need of indices that quantify the distance to instability, the ability must 
also be provided to rapidly recompute the underlying indices for each new system 
state, after each state estimate, and after each load flow.

2.2.1.1 � Transient and Voltage Stability Limits2

The main directions investigated in the industry during the past two decades point 
primarily at transient stability and voltage stability. On the transient stability venue, 

1  �When the system is importing power, the total MW system grid utilization is calculated by sum-
ming up the total MW generation with the total imported MW; when exporting power, the total 
MW system grid utilization is the total generated MW. In other words, this number shows how 
many MW are currently “circulating” in the transmission system.

2  Portions of this section have been reprinted with permission from Savulescu, S.C. (2004).
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much work was done to develop “transient stability indices” aimed at computing 
the “degree of stability”3 (Kundur 1999).

Regardless of the specific details, these methods follow similar scenarios:

•	 Start with a base case and a postulated major contingency
•	 Derive a “severity index” for this contingency
•	 Compute new power flows for successively degraded states
•	 Repeat the sequence until either the load flow diverges or an unstable case has 

been obtained

Their limitations are similar, too:

•	 Computational burden, which some authors attempted to alleviate by
−	 merging all the machines into an equivalent generator, which makes it impos-

sible to identify the dangerous generators and their impact on the system sta-
bility conditions

−	 using the infinite bus assumption, i.e., implying that voltages are constant, 
although, in real life, the bus voltages drop when the power system is 
approaching a state where instability might occur

•	 Need to examine a huge set of disturbance scenarios, thus further escalating the 
computational complexity

Voltage stability, also known as load stability (Venikov 1977; Barbier and Barret 
1980; Vournas et al. 1996), refers to the maximum MW that can be transferred to a 
given load bus prior to the occurrence of voltage collapse. But in order to develop 
a system-wide view from such bus-oriented calculations, the procedure must be 
repeated for all the load buses, which becomes computationally expensive for large 
system simulations.

A more serious limitation comes from the load model. If the load is modeled 
as constant impedance, the bus MW initially increases up to a maximum, then it 
gets smaller and dual power states (same power at different voltages) are obtained 
(Ionescu and Ungureanu 1981)—and this is what actually causes the “nose” pattern 
of the P–V curves. But dual states cannot happen in real life, and the validity of any 
P–V curve drawn on this basis is questionable.

Let us mention en passant the inadequacy of “assessing stability” by running 
load flows at successively increased load levels and stopping when the load flow 
diverged. While it is true that Newton–Raphson load flows diverge near instability 
(Venikov et al. 1975), they may diverge for many reasons. Sauer and Pai (Sauer 
and Pai 1990) have demonstrated that “for voltage collapse and voltage instability 
analysis, any conclusions based on the singularity of the load-flow Jacobian would 
apply only to the voltage behavior near maximum power transfer. Such analysis 
would not detect any voltage instabilities associated with synchronous machines 
characteristics and their controls.”

3  �With all the respect due to Professor Kundur, this often-quoted paper uses the term “degree of 
stability” as an a priori concept but neither defines nor quantifies it.
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Perhaps the most significant challenge is the representation of generators, which 
must be taken into account (Barbier and Barret 1980; Ionescu and Ungureanu 1981; 
Sauer and Pai 1990; Kundur and Morison 1993). In the world of continuation load 
flows, this is a classic catch-22 situation: If the generator reactances are not in-
cluded in the power system model, the ensuing load-flow calculations are meaning-
less from the point of view of stability; if the machine reactances are represented, 
the values of the generators’ internal electromotive force (emf), which are typically 
much higher than 1.0 pu, would cause the load-flow calculations to diverge.

One way out of this dilemma is to represent the machines in detail, via transfer 
functions, in which case, much more complex algorithms would have to be de-
ployed (EPRI 1992; Morison et al. 2004), thus significantly increasing the compu-
tational burden—or, even better, to change gears entirely and move into the much 
more promising realm of steady-state stability.

2.2.1.2 � The Steady-State Stability Connection

Steady-state stability4 is the stability of the system under conditions of gradual or 
relatively slow changes in load (Crary 1945). Accordingly, the steady-state stability 
limit (SSSL) of a power system is “a steady-state operating condition for which the 
power system is steady-state stable but for which an arbitrarily small change in any 
of the operating quantities in an unfavorable direction causes the power system to 
lose stability” (IEEE 1982; Navarro-Perez and Prada 1993).

Voltage collapse, units losing synchronism, and instability caused by self-ampli-
fying small-signal oscillations are all forms of steady-state instability. Empirically, 
the risk of steady-state instability5 is associated with low real/reactive power re-
serves, low voltage levels, and large bus voltage variations in the presence of small 
load or generation changes.

Recurring “temporary faults” where breakers trip without apparent reason, i.e., 
are disconnected by protection without being able to identify the fault, might also be 
indicative of steady-state instability. Breaker trips can happen when loads increase 
due to “balancing rotors” of generators that trip near instability and then get back in 
synchronism. In some cases, “the resynchronization happened after the rotor turned 
360°, which, in turn, led to lower voltages” (Dimo 1968).

The possibility of operating for a very short time in an unstable operating state 
and resynchronization due to the action of fast voltage controllers has been known 
for a long time (Magnien 1964). Also, according to the same report, “any network 

4  �By “steady-state stability,” we refer to the classical concept described by Crary (1945), Venikov 
(1977), IEEE (1982), and Anderson and Fouad (1990), as opposed to “small-signal stability,” as 
it is understood nowadays (IEEE/CIGRE 2004).

5  �Throughout the remainder of this chapter and, in general, in the literature that addresses Dimo’s 
concepts and related stability applications, “steady-state instability” actually refers to “aperiodic 
steady-state instability” and assumes that self-amplifying system oscillations either do not occur 
or have been prevented by the existence of power system stabilizers.
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that meets the steady-state stability conditions can withstand dynamic perturbations 
and end in a stable operating state” (Magnien 1964).

The SSSL spans a promising landscape. First and foremost, it is quantifiable, as 
shown in the Sect. 3.4.1. Then, it does represent an operating limit, in the sense that 
operating conditions immediately below SSSL become unstable if a small change in 
any of the operating quantities in an unfavorable direction takes place.

Simplicity is another benefit: For a given topology, load and generation condi-
tions, and reactive compensation scenario, the SSSL is simply the total MW grid 
utilization of the transmission system, including both internal generation and tie-
line imports, where voltages may collapse and units may lose synchronism.

Furthermore, although the SSSL depicts an unsafe state, the algorithm used to 
compute it can be reversed to determine a security margin, thus potentially eliminat-
ing the need to perform dynamic simulations, if the total base case MW system grid 
utilization is below such “security margin” (Moraite et al. 1966).

On this basis, a metric of system-wide indices emerges and provides for quanti-
tatively assessing “how far from SSSL” and “how safe” is a given operating state. 
One pillar of this metric is the steady-state stability reserve index; the other one is 
the security margin index. Both these indices change, and need to be computed, for 
each new system state—and, together, they span the concept of stability envelope, 
as shown in the following section.

2.2.2 � Transient stability limit , total transfer capability, and the 
Stability Envelope

A Transient Stability Limit (TSL) also exists (Navarro-Perez and Prada 1993), but, 
as opposed to SSSL, and because of the computational algorithms and strategy used 
to detect transient instability, it is not quantifiable through a specific formula. In 
order to find it, transient stability simulations would have to be performed for each 
potential fault starting from a base case scenario and continuing with a sequence of 
successively degraded operating states until the first unstable state has been found.

The intrinsic computational complexity and the large number of credible contin-
gencies render such a problem practically unsolvable.

However, intuition suggests (Fig. 2.1) that:

•	 For a given set of relay settings, TSL depends, just like the SSSL, upon topology, 
voltage levels, and total MW system grid utilization.

•	 For any system state, SSSL and TSL are interrelated and move in the same direc-
tion: if SSSL is high, TSL is also high, and vice versa.

In the past, empirical values approximating the TSL/SSSL ratio have been used to 
compute a “safe” MW system grid utilization, referred to as security margin, such 
that, for any system state with a steady-state stability reserve smaller than it, no 
contingency, no matter how severe, would cause transient instability (Moraite et al. 
1966; Dimo et al. 1971).
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The security margin, which is expressed as a percentage of the steady-state sta-
bility reserve, depends upon topology, loads, generators, and reactive compensa-
tion. It changes from system to system and, for a particular power system, must be 
reassessed periodically and for alternate operating scenarios.

For example, extensive studies and operational experience with the Romanian 
power system, as it was in the 1960s and 1970s, led to setting the security margin 
at 15 % for normal operating conditions and 8% for contingency cases (Dimo et al. 
1971).

We do not know if a mathematical formula relating TSL and SSSL can be devel-
oped analytically, but the empirical approach described in Vergara et al. (2005a) can 
be expanded to build the following heuristic:

1.	 Start with a base case load flow for peak load conditions and compute the SSSL 
and related security margin.

2.	 Run an extensive suite of transient stability simulations. If no instability has been 
detected, go to Step 5. If at least one contingency (fault) case was found to be 
unstable, go to Step 3.

MW

δ

SSSL = Maximum Power Transfer Limit  = 
EV
 X

VE

X

Operating states below TRM are
supposed to be safe 

TSL = TTC = Total Transfer Capability
TRM = Transmission Reliability Margin

Fig. 2.1   TTC and TRM seen from the steady-state stability perspective
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3.	 Use the security margin MW generation schedules from Step 1 to calculate a new 
base case load flow.

4.	 For the load flow computed in Step 3, run an extensive suite of transient stability 
simulations.

5.	 If no instability has been detected, repeat Step 4 for successively increased MW 
levels until at least one contingency causes transient instability. The steady-state 
stability reserve for the immediately precedent state is the security margin of the 
system under evaluation.

6.	 If the Step 4 calculations detected at least one contingency (fault) that would 
cause instability, build a new load-flow case for a slightly reduced load level and 
repeat the transient stability checks. If no instability has been detected, recalcu-
late the SSSL and the steady-state stability reserve, which is the security margin 
of the system under evaluation.

The MW value of the security margin represents a “safe system MW loading limit” 
that can be interpreted as a stability envelope (Fig. 2.2).

Assuming there are no thermal violations, i.e., if the TSL in Fig. 2.2 is the same 
as NERC’s TTC, the stability envelope corresponds to NERC’s definition of TRM 
and is obtained as follows:

Fig. 2.2   The “stability envelope”
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•	 First: Starting from a state estimate or solved load flow, determine the steady-
state stability reserve, i.e., the distance to SSSL.

•	 Subsequently: For a postulated x% value of the security margin, determine the 
corresponding safe system MW loading below the SSSL.

The computation of the steady-state stability reserve can be accomplished both by 
detailed analysis and via approximate methods. Detailed steady-state stability meth-
ods have been proposed (Arie et al. 1973) but do not seem to have been actually 
implemented.

By contrast, approximate methods, if fast and reasonably accurate, are attractive 
both for real-time and for off-line stability checks. Dimo’s technique belongs to this 
category. At the time when it was introduced, it was used in operations and long-
range planning. Its recent extensions improved the computational speed and robust-
ness and, with the newly added visualization capabilities, it has been implemented 
and successfully used in real time for several years. This topic is addressed in the 
following section.

2.3 � Overview of Paul Dimo’s Steady-State Stability 
Analysis approach

2.3.1 � General

Paul Dimo’s methodology is predicated on the following major concepts:

•	 Short-circuit current’s network transformation that leads to an REI Net
•	 Vectorial representation of the short-circuit currents on a Nodal Image
•	 Use of the reactive power voltage and steady-state stability criterion in conjunc-

tion with the Nodal Image
•	 ase-worsening procedure for computing successively degraded power system 

states when performing system-wide stability analysis

2.3.2 � Short-Circuit Currents and REI Nets

Let us consider a typical power system network (Fig. 2.3) and let I , Y  and V  be 
the vector of complex injected currents, matrix of complex nodal admittances, and 
vector of complex bus voltages. The steady-state conditions of this network are 
given by

� (2.1)

� (2.2)

I YV=

S I Vk k k= *
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where Sk
is the complex power injected into the bus k, Ik

*  is the conjugate of the 
complex current injected into the bus k, and Vk

is the complex bus voltage of the bus 
k. The load buses are numbered sequentially after the generator buses as follows: 
1 … m … G generator buses and i … N load buses, where, for convenience, G + 1 
was noted as i.

The standard approach to evaluate the system generators’ impact on a specific 
load bus, let us say the load bus L1, is to linearize all the other load buses, i.e., 
replace the injected currents with constant admittances, include these admittances 
in the diagonal term of Y , and perform Gauss–Seidel eliminations to reduce the 
system to a network encompassing only the 1 … G generator buses and the load bus 
L1. Figure 2.4 shows how the power system network depicted in Fig. 2.3 is “seen” 
from the load buses L1 and L2.

This process, which allows seeing the system generators from any load bus in the 
power system network, has been used extensively in the voltage stability literature, 
e.g., (Barbier and Barret 1980) and is known as the short-circuit currents trans-
formation. The currents that flow from generators to the load bus in the reduced 
network are none other than the currents from the bottom equation obtained from 
Eqn (2.1) after eliminating the linearized buses (Fig. 2.5).

If the bus voltages of the generator nodes are the internal voltages of the genera-
tors applied at the ends of their internal reactance (synchronous, transient, etc.), then 
the two components of the current Ii

 in Fig. 2.5 are short-circuit currents (perma-
nent, transient, etc.):

•	 ΣY Eim im  is the symmetric threephase short-circuit current flowing into the bus i 
in the case where the voltage Vi = 0

•	 ( )ΣY Y Vi io i+  is the “no-load short-circuit current” of the bus i and corresponds 
to the short-circuit current at the bus i if the load current was equal to zero before 
the short circuit.

G2G1

G3

L2

L1

Fig. 2.3   Typical power 
system network
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REI Net representing the
generators and the study bus i 

Power system network after retaining
only the generators and the study bus i 

Imshc = Ishc
full-load short-circuit current
into the study bus i 

no-load short-circuit current load current

1

i

m

G
Imshc

Ishc-0 I

E1 EG

Em

Yim

Yio

iVi

Ii = Yim Em - Yii Vi

Yii = Yim + Yio

Ii = Yim Em - ( YΣ

Σ

Σ

Σ

ii + Yio) Vi Ii = Ishc - Ishc-o
Fallou's Theorem

Σ

Fig. 2.5   Short-circuit currents and short-circuit admittances. The REI Net

 

System generators "seen" from L2System generators "seen" from L1

L2L1

G1 G3

G2G2

G3G1

short-circuit admittances

short-circuit currents

Fig. 2.4   System generators “seen” from load buses
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This radial network of short-circuit admittances, or REI Net,6 in Dimo’s terminol-
ogy (Dimo 1962), is built for a reference state, or base case, for which a load-flow 
computation has been performed and converged. The base case may depict a peak 
load case or some other system state involving certain particular features, e.g., high 
percentage use of hydraulic power, single or multiple line and/or generator contin-
gency, and so on.

The study-bus retained in the model may be actual or fictitious. If it is an actual 
load bus connected directly to generators, the machines are “seen” via the short-cir-
cuit currents that flow across the actual admittances between generators and load. If 
the study-bus is an actual load bus connected to generators through a typical trans-
mission network, the generator buses are “seen” via short-circuit currents flowing 
across short-circuit admittances between generators and the load bus.

If the study-bus is a fictitious load center, i.e., an equivalent bus where all the 
system loads have been aggregated by inserting a Zero Power Balance Network 
and reducing the system to the particular type of REI Equivalent shown in Fig. 2.6, 
the machines are “seen” via the short-circuit currents that flow across short-circuit 
admittances between generators and the fictitious load bus.

The generator buses may correspond to either actual synchronous machines or 
virtual generators introduced to model tie-line imports, static VAr compensators 
(SVCs), Direct Current (DC) injections, etc. It must also be strongly emphasized 
that in the model built for the purpose of assessing stability, as opposed to a con-
ventional REI Equivalent, the machines, either real or virtual, must be represented 
explicitly, and should not be merged into an equivalent generator.

The REI Net, without introducing any approximations, allows “seeing” the 
power system network from any bus, either real or fictitious, radially connected 
with generators via admittances, either actual, i.e., internal generator admittances, 
or virtual, i.e., short-circuit admittances. As such, it provides a certain amount of 
information, although rather limited, about the base case for which the short-circuit 
admittances have been computed.

For example, the module of a short-circuit admittance gives a preliminary in-
dication about the effect of the associated generator on the state of the study-bus. 
Since, for normal states, the voltages Em

 may vary only within a narrow range 
around the nominal value, it is the short-circuit admittance, i.e., the admittance of 
the radial branch and the angle across it that have the main impact. Actually, this is 
a simple way to identify generators and tie-line injections that are negligible when 
seen from a study bus and to recognize system areas whose impact on the study-
bus is significant. The short-circuit admittances’ ability to visualize how significant 
the machines are as seen from a load bus has also been noted by other authors, e.g. 
Barbier and Barret (1980).

6  �The REI Net is quite different from the so-called REI Equivalent. The former is a radial network 
of short-circuit admittances that connect the generators to a specific bus, whereas the latter is 
a reduced model of the power system where the generators have been aggregated into one or 
several equivalent generators and the loads have been aggregated into one or several equivalent 
load centers (Dimo 1968, 1975; Tinney and Powell 1977; DyLiacco et al. 1978; Wu and Nara-
simhamurti 1979; Oatts et al. 1990; Savulescu 1981).
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We will return to this topic in Sect. 4.2.2. For the moment, let us just say that 
the short-circuit admittances can help understand the structure of the transmission 
system, but not more than that. It is only when the REI Net is associated with its 
“nodal image” that a large amount of meaningful information can be obtained by 
simple “visualization.”

2.3.3 � The Nodal Image

The Nodal Image of a bus, either actual or fictitious, is a diagram that shows in 
detail the short-circuit currents that flow from generators towards that bus across 
the short-circuit admittances. It is a vectorial representation of the short-circuit cur-
rents in a system of coordinates defined as follows:

•	 The ordinate axis is in the direction of the active current Iw.
•	 The abscissa axis is in the direction of the reactive current Id.

We will illustrate this concept in two steps—first, an elementary Nodal Image of a 
synchronous machine connected to a load, then a generalized Nodal Image that can 
be used to depict the state of any network as “seen” from any actual or fictitious bus.

Let us consider a generator with internal emf and impedance equal to E  and Z
, respectively,connected at full load to a bus where the voltage has the value V  and 
its phasors are used for reference (Fig. 2.7).

Synchronous Machines

Other Injections

IFL, SFL

Loads

Ground

YFL

VFL

I'FL

Yi-o

m i

Fictitious Load Center

Fictitious Ground

Fig. 2.6   Dimo’s Zero Power Balance Network used to build a fictitious load center
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The symmetric threephase short-circuit current of the generator is given by

� (2.3)

If the machine was functioning in no-load conditions prior to the short-circuit, its 
short-circuit current would be given by

� (2.4)

and with the notation

� (2.5)

I
E

Z
Y Eshc = =

I
V

Z
YVshc− = =0 ,

tan
X

R
ϕ =

Generator (emf = E) injects the current I into the bus O (bus voltage module = V)

Ishc = full-load short-circuit of the generator

= angle between E and V, where V is used as reference
Ishc-o = no-load short-circuit of the generator 

 
Id

Id

Iw

Iw

I

 

O

φ

δ

δ

γ

Fig. 2.7   Nodal Image of a synchronous machine connected to a load bus
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we have |Z ϕ and |Y ϕ .
By taking V  as phase origin and noting with δ  the angle between E and V , the 

full-load current of the machine can be expressed as:

� (2.6)

The complex power on the machine’s terminals is given by

� (2.7)

� (2.8)

� (2.9)

With the notations 90γ ϕ°= −  and tan
R

X
γ = , we get:

� (2.10)

� (2.11)

The real, or “watted,” and reactive, or “de-watted,” components of the generator 
currents are given by

� (2.12)

� (2.13)

respectively, and since YV  and YE  are the moduli of the of the no-load and full-
load short-circuit currents of the generator, respectively, we obtain:

� (2.14)

� (2.15)

The general case of G generators connected to a load bus, either actual or fictitious, 
through short-circuit admittances is illustrated in Fig. 2.8.

Simple vectorial algebra manipulations result in the following equations:

� (2.16)

( ) .I E V Yδ ϕ= − −

2( ) .P jQ E V VY EVY V Yδ ϕ ϕ δ ϕ+ = − − = − −

2cos( ) cosP YEV YVϕ δ ϕ= − −

2sin( ) sin .Q YEV YVϕ δ ϕ= − −

2sin( ) sinP YEV YVδ γ γ= + −

2cos( ) cos .Q YEV YVδ γ γ= + −

w sin( ) sinI YE YVδ γ γ= + −

d cos( ) cos ,I YE YVδ γ γ= + −

0sin( ) sinw shc shcI I Iδ γ γ−= + −

0cos( ) cos .d shc shcI I Iδ γ γ−= + −

0 0sin sin sin( )wm shc m m w shc m m shcm m mI I I Iγ γ δ γ− −Σ + Σ = + Σ = Σ +



42 S. C. Savulescu

� (2.17)

In other words:

•	 The real component Iw
 of the total current flowing from generators to the load 

bus is equal to the sum of the full-load short-circuit currents projections on the 
ordinate axis minus the sum of the no-load short-circuit currents projections on 
the ordinate axis.

•	 The reactive component Id
 of the total current flowing from generators to the 

load bus is equal to the sum of the full-load short-circuit currents projections on 
the abscissa axis minus the sum of the no-load short-circuit currents projections 
on the abscissa axis.

With the notations from Fig. 2.8 and remembering that V is the phase origin, the 
Eqs (16) and (17) can be rewritten as:

� (2.18)

0 0cos cos cos( ).dm shc m m d shc m m shcm m mI I I I Iγ γ δ γ− −Σ + Σ = + Σ = Σ +

0 0 .shc shc m m m

m m

I I I Y E Y Y V−= − = − +
 
  ∑ ∑
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Fig. 2.8   Multiple generators connected to a bus via short-circuit admittances
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In addition to the information about currents and powers, the Nodal Image also 
provides information about voltages:

•	 The angles mδ  measure the angle between the phasors Em and the voltage V , 
which is used as reference—therefore, the angle differences between the internal 
voltages of the generators retained in the model can be visualized by simply 
comparing their full-load short-circuit currents with the no-load short-circuit 
currents.

•	 The magnitude of the V voltage is proportional to the projection of the total full-
load short-circuit current on the abscissa axis and may be measured by using a 
conveniently established scale.

Let us note that a generator injection represents an actual current only if the respec-
tive branch corresponds to a machine directly connected to the load bus. If this is 
not the case, the currents calculated with the previous formulae represent the con-
tribution of each machine to the total current injected into the load bus. If similar 
REI Nets are built for all the load buses, the actual currents injected in generator 
buses can be calculated by adding the contributions of each generator node to the 
REI Nets.

Also important is the representation of generators. The base case is obtained from 
a load-flow calculation by modeling either the high-voltage busbars of the power 
stations, which is typical in planning studies, or the machine terminals, which is the 
current practice in real-time and study-mode network analysis as deployed in sys-
tem operations. But neither approach can represent the internal admittances of the 
generators because, due to the ensuing emf values, which are higher or much higher 
than 1.0 pu, the load flow would diverge. Stability calculations, however, must take 
into account the behavior of the generators—otherwise, they would be meaningless.

Dimo solved this problem in a simple and elegant way. After the base case has 
been obtained, but prior to computing the short-circuit currents, the Y matrix is 
extended with the generators’ internal admittances, which may correspond to syn-
chronous reactances or some other reactance.

If synchronous reactances were used, the Nodal Images would give information 
about permanent short-circuit currents (without regulation) and about the “natural” 
stability of the system. For steady-state stability studies, where the effect of fast 
voltage controllers must be reflected, the generators are represented through tran-
sient reactances. Further details about the representation of generators are provided 
in the Sect. 3.4.2.

2.3.4 � Reactive Power dQ/dV Stability Criterion

2.3.4.1 � Exact, Algebraic and Practical Steady-State Stability Criteria

The conventional method of the small oscillations for estimating the steady-state 
stability (Anderson and Fouad 1990; Sauer and Pai 1990; Venikov 1977) consists of 
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examining the eigenvalues of the characteristic equation associated with the system 
of differential equations that describe the free transient processes after a small dis-
turbance takes place in an automatically controlled power system.

The necessary and sufficient condition for steady-state stability is that all the real 
parts of the eigenvalues be negative (Venikov 1977, p. 216). The analysis encom-
passes the following steps:

•	 Describe the transient processes in the form of a system of nonlinear differential 
equations

•	 Linearize the equations around the solution point by expanding them into a Tay-
lor series and retaining only the linear (first order) terms

•	 Calculate the main (characteristics) determinant and its minors and develop the 
characteristic equation

•	 Determine the sign of the real roots and the sign of the real part of the complex 
roots of the characteristic equation.

The approach is laborious and is replaced by determining relationships between the 
roots and the coefficients of the characteristic equation. Venikov calls these rela-
tions steady-state stability criteria (Venikov 1977, p. 216) and classifies them into 
algebraic (Routh–Hurwitz), frequency-domain (Nyquist), and practical.

A necessary condition for steady-state stability is derived from the Hurwitz cri-
terion by evaluating the sign of the last term of the characteristic equation, which is 
the Jacobian determinant D. A change of sign from positive to negative (all Hurwitz 
determinants are positive) with further loading of the system indicates aperiodic 
instability. The instability in the form of self-oscillations, however, remains unre-
vealed by this method (Venikov 1977, p. 138).

If the generators are radially connected to a nodal point, and if, based on practical 
considerations, it may be assumed that some operating variables are constant, the 
condition D = 0 leads to “practical criteria” that are valid within certain limits, for 
example, the synchronizing power criterion / 0dP dδ > , which assumes constant 
frequency and constant voltage at the nodal point, and the reactive power voltage 
and steady-state stability criterion / 0dQ dV < , which assumes that the frequency 
is constant and the power balance is maintained at the load node (Venikov 1977, 
p. 138).

At the first sight, the requirement that the network be radial may seem impos-
sible to meet, for power system transmission networks are never radial. However, 
Dimo recognized that the practical criteria match perfectly with the case of a power 
system network that has been replaced with an REI Net, which, in fact, is a radial 
network—not a radial network of physically identifiable admittances, except for 
the particular case of generators directly supplying a load, but a radial network of 
short-circuit admittances connecting the system generators to a central node. This 
is the case of both REI Nets built for actual load buses and REI Nets where all the 
system loads have been aggregated into a fictitious load bus, as shown in Fig. 2.9.

Dimo used the reactive power voltage and steady-state stability criterion 
/ 0dQ dV <  in conjunction with the Nodal Image and obtained a simple and efficient 
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steady-state stability evaluation algorithm (Dimo 1961, 1975), which is described 
in detail in Sect. 3.4.4.

But before developing the general expression of Dimo’s formulation of the 
reactive power voltage and steady-state stability criterion / 0dQ dV < , we need to 
discuss further aspects of generator and load modeling.

2.3.4.2 � Modeling the Generators

Two approaches are possible for modeling the machines: representing in detail the 
excitation control systems, or using approximate models.

In planning studies where system alternatives must be explored in detail, e.g., 
when simulating past events that have actually occurred, or when developing pro-
tection schemes and operating criteria to maintain the power system stability, ac-
curate modeling is necessary and requires detailed generator models. In the ini-
tial stages of such studies, though, or in operations planning studies, “simplified 
models may be adequate for real-time determination of operating limits and for 
some contingency analysis studies” (IEEE 1990).

The simplest model is the classical model, which consists of a constant voltage 
E′ = const.  behind the transient reactance 'dx (IEEE 1990; Anderson and Fouad 
1990; Venikov 1977; Dimo 1975). E′  is determined from the pretransient con-
ditions. During the transient condition, the magnitude E′  is maintained constant 
while its angle δ  is considered the angle between the rotor position and the voltage 
V  on the machine’s terminals.

Bus-Level Stability AnalysisSystem-Wide Stability Analysis

Bus Load

Real Part: P [MW]

Imaginary Part: Q =  YV2

Option 2: Y at cos φ constant 
Option 1: Y = constant 

E1 EG

Em

Actual Load Bus

Real Part: P [MW]

Imaginary Part: Q = YV2

Option 2: Y at cos φ constant 
Option 1: Y = constant 

Total System Load

E1 EG

Em

Equivalent Load Center

Fig. 2.9   Short-circuit current models for steady-state stability assessment
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As shown by Venikov, machines equipped with forced-action voltage controllers 
can be modeled as a constant voltage V  and 0genx =  (Venikov 1977, pp. 214). Ac-
tually, this is how generators are represented, or, rather, not represented, in load-flow 
calculations, where the assumption is implicitly made that the generator bus volt-
ages either at the machine terminals or on the high voltage side of the step-up trans-
former are and remain constant. In real life, however, these voltages are not constant 
and some “further constant voltage point must be found, such as the emf behind the 
synchronous reactance of an alternator” (Barbier and Barret 1980, p. 681).

Taking a more conservative approach, Dimo always represents the generators 
and, depending on how they are modeled, classifies the steady-state stability into 
“natural stability,” in the absence of voltage regulation, and “artificial stability” if 
there is voltage regulation (Dimo 1975 p. 129). The natural stability is determined 
by extending the network with the synchronous reactances, whereas the artificial 
stability corresponds to the case where the network is extended with the transient 
reactances of the machines.

Relatively, recent research (Dobson and Liu 1993; Van Cutsem 1993) confirmed 
these early findings. Accordingly, generators that operate at the reactive power limits 
under light load conditions will cause the steady-state stability to decrease but not to 
be destroyed. At sufficiently high loadings, however, encountering the reactive pow-
er limits will immediately destabilize the system and precipitate a voltage collapse.

On this basis, an important extension of the original Dimo’s method has been 
proposed (EPRI 1992/1993; Savulescu et al. 1993) and subsequently incorporated 
in the fast steady-state stability software documented in (Gonzalez 2003; Avila-
Rosales et al. 2004; Savulescu 2004; Tweedy 2004; Avila-Rosales and Giri 2005; 
Vergara et al. 2005a; Campeanu et al. 2006; Virmani et al. 2007; Vickovic et al. 
2009; Arnold et al. 2009; Eichler et al. 2011; Stottok et al. 2013).. It consists of 
simulating this behavior of the synchronous machine by changing its model from a 
constant emf 'dE  behind the transient reactance 'dx  to a constant emf E  behind 
the synchronous reactance xd  when the reactive power at the machine terminals has 
reached the MVAr limit.

2.3.4.3 � Modeling the Loads: Voltage Collapse and Dual Power States

Once a steady-state stable power-flow case has been obtained, the next step is to 
determine how far it is from instability. The limit, or critical state, is approached 
through a series of degraded states where, at each step, the generators produce more 
power and the bus voltage magnitudes become lower, until the point of voltage col-
lapse is reached.

The results of this system stressing process, which is referred to as “case wors-
ening,” are affected significantly by how the loads have been represented. Three 
hypotheses can be made about modeling the load: constant admittance; constant P 
and Q; and a combination of the two.

AQ4
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Hypothesis 1: Load Modeled as P = GV2 and Q = BV2

Successive load increases cause the real powers flowing from generators into the 
study-bus to increase until the point of maximum power transfer, while the bus 
voltage magnitudes get smaller and smaller. Beyond that point, the power supply 
starts to decrease, the bus voltage continues to drop, and dual power states (same 
power at different voltages) are obtained. Ionescu and Ungureanu have demonstrat-
ed that, in this case, all the states are theoretically feasible, including the dual states, 
and a steady-state stability limit cannot be obtained (Ionescu and Ungureanu 1981; 
Ionescu 1993).

Hypothesis 2: Load Modeled as P = const and Q = const

In this case, the condition stated by the maximum power transfer theorem does cor-
respond to the steady-state stability limit, and the dual states are unstable and have 
no physical meaning. This hypothesis is rigid and provides conservative results (Io-
nescu and Ungureanu 1981; Ionescu 1993).

Hypothesis 3: Load Modeled as P = const and Q = BV2

This hypothesis, which was used extensively by Dimo, implies that the real part of 
the load does not vary with the bus voltage, and that the reactive component of the 
load can be represented as a fixed susceptance. This model implies that, while the 
real power increases, the load’s susceptance is maintained constant and a reduction 
of the bus voltage implies a reduction of the reactive power. In this case, the state as-
sociated with the maximum power transfer is critical and occurs when dQ dV/ = 0 .

This model can further be refined by considering that the reactive power of the 
load varies proportionally with the power factor in the base case. If we note the 
power factor of the load in the base case with tan bcϕ , the reactive part of the load 
for the base case is given by

� (2.19)

and the load’s susceptance at different values of P  [MW] can now be recomputed 
with formula (20)

� (2.20)

With the notation, 2tan /bc bc bcc Vϕ= , where cbc
is constant, we get:

� (2.21)

2tan ,bc bc bcQ P BVϕ= =

2

n
.

ta bc

bc

P
B

V

ϕ
=

2
bcQ c PV=
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The formulation (2.21) of Hypothesis 3 corresponds to an average scenario and is 
well suited for steady-state stability simulations.

2.3.4.4 � General Expression of Dimo’s Formulation of the Reactive Power 
Voltage and Steady-State Stability Criterion

As shown in Sect. 3.4.1, the only assumption required to apply the reactive power 
voltage and steady-state stability criterion to the case of a slow and small variation 
of the voltage or of the reactive power at a bus connected radially to generators 
through short-circuit admittances is for the system frequency to be maintained con-
stant (Venikov 1977). In order to build the REI Net and the associated Nodal Image, 
we start from a solved base case and, then, extend the network with the internal 
reactances of the generators in accordance with the criteria discussed in Sect. 3.4.2.

When performing a system-wide stability study, all the system loads are ag-
gregated into a single load center as shown in Fig. 2.6. If we perform a bus-level 
analysis, the study-bus is retained with its actual identity. In either case, the real and 
reactive parts of the load at the central node of the REI Net are modeled as shown 
in Fig. 2.9 and in accordance with Hypothesis 3 in Sect. 3.4.3.3.

Dimo derived his version of the dQ dV/  criterion for a Nodal Image associated 
to an REI Net of reactances, in which case the angles mγ  in Fig. 2.8 are equal to 
zero. In the following, we will prove the reactive power voltage and steady-state 
stability criterion for the general case, and then, by substituting 0γ = , we will 
obtain the original Dimo’s formula.

Let us consider an REI Net with n generators. The total real and reactive powers 
supplied by these machines are:

� (2.22)

� (2.23)

and, by using the relationships (10) and (11), the Eqs (2.22) and (2.23) may be writ-
ten as:

� (2.24)

� (2.25)

the reactive load being given by

� (2.26)

P P P Pg n= + + +1 2 ...

Q Q Q Qg n= + + +1 2 ... ,

1 1 1 1 2 2 2 2
2 2 2

1 1 2 2

sin( ) sin( ) ...

sin( ) sin sin ... sin
g

n n n n n n

P Y E V Y E V

Y E V YV Y V Y V

δ γ δ γ
δ γ γ γ γ

= + + + +
+ + − − − −

1 1 1 1 2 2 2 2

2 2 2
1 1 2 2

cos( ) cos( ) ...

cos( ) cos cos ... cos

g

n n n n n n

Q Y E V Y E V

Y E V YV Y V Y V

δ γ δ γ

δ γ γ γ γ

= + + + +

+ + − − − −

Q YVl l= 2 .
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Applying the dQ dV/ criterion (Venikov 1977, pp.  138–139) to Eqs  (2.25) and 
(2.26), we obtain:

� (2.27)

The partial derivatives 
1 / ,..., /nV Vδ δ∂ ∂ ∂ ∂ are obtained from Eq  (2.10) by 

considering that the real powers are constant (Hypothesis 3, Sect. 3.4.3.3) and the 
angles 1 2, ,..., nγ γ γ  do not depend upon V

� (2.28)

� (2.29)

whence

� (2.30)

� (2.31)

By substituting Eqs (2.30) and (2.31) in Eq (2.27), we obtain:

�

(2.32)

and, with the notation (2.33)

� (2.33)

1 1 1 1 2 2 2 2

1 2
1 1 1 1 2 2 2 2

1 1 2 2

( )
cos( ) cos( ) ... cos( )

sin( ) sin( ) ...

sin( ) 2 cos 2 cos ... 2 cos 2 .

g l
n n n n

n
n n n n n n l

d Q QdQ
Y E Y E Y E

dV dV

Y E V Y E V
V V

Y E V Y V Y V Y V YV
V

δ γ δ γ δ γ

δ δδ γ δ γ

δδ γ γ γ γ

−
= = + + + + + +

∂ ∂
− + − + −

∂ ∂
∂

− + − − − − −
∂

1 1
1 1 1 1 1 1 1 1 1 10 sin( ) cos( ) 2 sin

dP
Y E Y E V Y V

dV V

δδ γ δ γ γ∂
= = + + + −

∂

0 sin( ) cos( ) 2 sin ,n n
n n n n n n n n n n

dP
Y E Y E V Y V

dV V

δδ γ δ γ γ∂
= = + + + −

∂

1 1 1 1 1

1 1 1

2 sin sin( )

cos( )

V E

V E V

δ γ δ γ
δ γ

∂ − +
=

∂ +

2 sin sin( )
.

cos( )
n n n n n

n n n

V E

V E V

δ γ δ γ
δ γ

∂ − +
=

∂ +

1 1 2 2
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1 1 1
1

1 1

1 1 2 2

...
cos( ) cos( ) cos( )

sin sin( )sin sin( )
2 ...

cos( ) cos( )

2( cos cos ... cos ) ,

n n

n n

n n n
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Y EY E Y EdQ
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Y Y V
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we obtain the general expression of Dimo’s formulation of the reactive power 
voltage and steady-state stability criterion:

�
(2.34)

If the REI Net branches are approximated through pure reactances, i.e., if 
1 2 ... 0nγ γ γ= = = = , we get the original formulation of Dimo’s reactive power 

voltage and steady-state stability criterion (Dimo 1961., 1977)

�
(2.35)

2.3.4.5 � Distance to Instability: The Case-Worsening Procedure

In voltage and steady-state stability problems, it is not the base case, which presum-
ably comes from a fully converged load flow or state estimate, that is of primary 
importance, since, in most cases, the base case is stable. What really counts is the 
ability to characterize the system state by its “distance” from an unstable one.

The steady-state stability calculations per se, either via simplified techniques 
such as practical stability criteria or based on detailed simulation, e.g., evaluating 
the eigenvalues of the Jacobian associated with the system of dynamic equations, 
would not give such information. In order to find the distance to instability, the 
steady-state stability calculation must be combined with a “system stressing,” or 
“case-worsening,” procedure, whereby various system parameters are changed in a 
direction that is unfavorable to stability.

When using Dimo’s methodology, there are several ways to perform case wors-
ening without having to recalculate the base case load flow:

•	 Increase the total generated power to supply successively increased MW load 
levels—this is achieved by rotating the Nodal Image vectors anticlockwise (trig-
onometrically) and, as far as the load model is concerned, by considering that the 
reactive load is modeled by a susceptance that either:

•	 has a fixed value, as per Hypothesis 3 in Sect. 3.4.3.3 or
•	 varies proportionally with the power factor in the nominal (base) case, as per 

Eq (21) in Sect. 3.4.3.3.
•	 Represent the loss of excitation on one or several machines—on the Nodal Im-

age, this is done by reducing the length (module) of the short-circuit currents of 
the generators.

•	 Sudden change of the operating conditions of generators that have reached the 
reactive power limits—if this happens under

•	 light load conditions, replacing the transient reactance with the synchronous re-
actance will cause the steady-state stability to decrease but not to be destroyed.

•	 high loadings, the same machine model change may destabilize the system and 
precipitate a voltage collapse.

2 cos .
cos( )

m m
m m l

m mm m

Y EdQ
Y Y Y V

dV
γγ

δ γ
 

= − + +  +∑ ∑
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m l
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Y EdQ
Y Y V

dV δ
 
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Some structural changes can also be simulated on the Nodal Image, for example, 
adding or removing capacitor banks. But if the network changes are significant, 
e.g., after single and/or multiple line and/or generator contingencies, a new load-
flow solution is required to correctly apply Dimo’s technique. Once the new base 
case has been calculated, the REI Net and the Nodal Image are updated and, then, 
the steady-state stability index and distance to instability for the new system state 
are evaluated.

Another situation appears frequently in power systems where, due to specific 
network topology and load characteristics, significant reactive compensation re-
sources, such as shunt capacitors and MVAr generating units, must be brought on 
line during peak-load conditions in order to maintain an “adequate” system voltage 
profile, “adequate” meaning that the bus voltages are sufficiently high to preclude 
the risk of blackout.

When the same power system operates at medium and light load levels, the reac-
tive compensation goes the other way—capacitors are removed, shunt reactors are 
reconnected, synchronous condensers and/or units that were running essentially for 
generating MVArs are taken off-line, and major high-voltage transmission lines are 
disconnected.

It is obvious that during peak-load conditions, such operating procedures push 
the network’s “maximum loadability,” i.e., its steady-state stability limit, at val-
ues much higher than the maximum loadability at medium and light load levels. 
Accordingly, the voltage and steady-state stability calculations should be initiated 
from different base cases, each one reflecting the structurally different operating 
scenarios. A fine example that illustrates this situation is described in the reference 
Vergara et al. (2005).

2.3.4.6 � P–V Relationship at the Study Bus

As indicated in Sect. 3.2, the short-circuit current’s model has been used extensively 
in the voltage stability literature to develop power–voltage relationships at load bus-
es. Two references come immediately to mind: the Appendix of Barbier and Barret 
(1980) and the paper by Ionescu and Ungureanu(1981). The former calculates the 
critical voltage at the study bus by assuming that the load is modeled as a constant 
impedance, whereas the later discusses P f V= ( )  P–V relationship for a network of 
reactances when the load is represented as per Hypothesis 3 in Sect. 3.4.3.3. In both 
cases, it is assumed that the voltages at the generator buses are constant, i.e., they 
correspond to the emf behind some internal generator reactance.

In the following, we will generalize Ionescu and Ungureanu’s approach and 
develop a P f V= ( )  function for a network of complex admittances with a load 
P jQ+ at the study bus, with Q given by Eq (2.21). In order to simplify the nota-
tions, the formula will be initially developed for an elementary REI Net (Fig. 2.7), 
then it will be extended for the general case.
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Let us consider again the Eqs (2.8) and (2.9) and, using (2.21) to express Q as a 
function of P and V 2, rewrite them as follows:

�
(2.36)

� (2.37)

By eliminating δ  between Eqs (2.36) and (2.37), we obtain:

� (2.38)

then

� (2.39)

With the notations (2.40) and (2.41)

� (2.40)

�
(2.41)

Eq (2.39) can be successively be rewritten as:

By effecting all the substitutions and algebraic manipulations, we finally obtain 
the P f V= ( )  function that expresses the relationship between the power supplied 
by a generator to a bus and the voltage at that bus

� (2.42)
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With the substitution 0γ = , which corresponds to the case of a generator con-
nected to a load through a reactance, e.g., a high-voltage transmission line with 
resistance practically equal to zero, we obtain the formula developed by Ionescu 
and Ungureanu in Ionescu and Ungureanu (1981)

�
(2.43)

Formula (2.42) can easily be generalized to relate the voltage V  of a bus, where the 
power P  is supplied by 1,..., ,...,m n  generators with internal voltages E E Em n1,..., ,...
through an REI Net of complex admittances 1 1, ..., , ...,m m n nY Y Yϕ ϕ ϕ− − − , with 

1 190 ,..., 90 ,..., 90m m n nγ ϕ γ ϕ γ ϕο ο ο= − = − = −

� (2.44)

When applying the formula (2.44), it must be remembered that the

•	 Powers Pm
that flow from generators towards the load bus enter the branches of 

the REI Net after the equivalent shunts near the generator buses (Figs. 2.4 and 2.5) 
and reach the point i (Fig. 2.5) before the equivalent shunt Yi0. In other words, 
the total power supplied by generators to the study bus covers both the load 
and whatever shunts resulted after linearizing and eliminating all the other load 
buses.

•	 Internal reactances of the generators must be included in the model after the load-
flow case has been calculated but before reducing the system to the REI Net.

2.4 � Practical Considerations

2.4.1 � Visualization Capabilities of Nodal Images

Dimo used Nodal Images to characterize the power system structure and operating 
conditions: “Once the network representation has been established, a more general 
characterization of it can be achieved with the help of the geometry of the result-
ing Nodal Images. For example, a Nodal Image built for an arbitrary node allows 
grasping the interdependence between the represented node and every other node 
retained in the REI Net. The aspect of the vector which appears in the chain com-
posing the vector of the short-circuit current, compared with the resultant vector and 
with the other component vectors, supplies the necessary indications” (Dimo 1975).
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In the following, we will focus on the ability to extract information from the 
results of steady-state stability analysis calculations and, using the Nodal Image 
analogy, to display the results in graphical formats suitable for use with modern 
computing technologies.

2.4.2 � Displaying the Results of Steady-State Stability 
Calculations

2.4.2.1 � Distance to Instability and Security Margin. Steady-State Stability 
Reserve

The search for the steady-state stability limit begins with a Nodal Image for the 
base case and continues by rotating the chain of vectors in trigonometric sense until 
dQ dV/  becomes positive. The state immediately before instability is called critical 
state. Once the critical state has been obtained, the security margin is calculated by 
reversing the case-worsening algorithm and “derotating” the Nodal Image until the 
system full-load short circuit current vector projection on the ordinate axis becomes 
equal to, or smaller than, a predefined threshold, e.g. 15 % below the critical state.

The angle between the system full-load short circuit current vector in the base 
case and the system full-load short circuit current vector in the critical state mea-
sures the distance to instability. These vectors can be mapped on a speedometer 
chart normalized on a 90°-wide proportional scale where the system state is rep-
resented by a needle situated between 0°, corresponding to 0 MW, and 90°, which 
corresponds to instability.

If the security margin MW is also shown on the speedometer, the area between 
it and the critical MW depicts the set of potentially unsafe operating states, whereas 
the area to its left corresponds to states where there is no risk of instability.

If the needle’s position maps the value of the dQ dV/ derivative rather than the 
amount of generated MW, a nonproportional scale speedometer is obtained. On 
this type of speedometer, the needles corresponding to two different system states 
with the same total MW generation but different dQ dV/  values would be shown 
at different distances from instability. The linear (MW) and nonlinear ( dQ dV/ ) 
speedometers can be combined on a two-speedometer chart, as shown in  Fig.  2.10.

This ergonomically powerful representation embodies the stability envelope con-
cept illustrated in Fig. 2.2, where the “safe” operating region is shown in green (or 
blue on the dQ dV/ speedometer) and corresponds to system MW grid utilization 
values smaller than the MW security margin. Let us also note that the red sector does 
not depict an operating area for the very simple reason that, after instability, a system 
state would not exist: it is blackout, so there would be no system state any longer.7

7  �Technically speaking, the “red area” should have been just a thin line; however, for ergonomic 
reasons, it is shown with some depth so that it could be easily identified on the display. Accord-
ingly, for the speedometers in Fig. 2.10, the distance to instability is conveyed by the position of 
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Figure  2.11 illustrates a two-speedometer chart where the base case and the 
worst contingency case, respectively, are represented side by side.

As opposed to the Nodal Image, which requires a thorough familiarity with 
the theoretical background that substantiates the visualization of system states via 
short-circuit current vectors, the speedometer charts make it possible to see, and 
instantly evaluate, both how far a system state is from instability and how far it is 
from the security margin—without reading numbers, and without the need to under-
stand the underlying technology. Furthermore, the speedometer charts facilitate the 
comparison between different system states and, just through the movement of the 
needles, allow monitoring the system evolution towards, or away from, instability.

2.4.2.2 � Impact of Generators on Steady-State Stability. System-Wide and 
Bus-Level Unit Ranking

Another capability of the Nodal Image is its ability to show which generators are 
important and how they impact the steady-state stability of the system, in system-
wide analysis, or of the load-bus, in bus-level calculations. For example, a short-
circuit current vector that is negligible with respect to the module of the resultant 

the needle with respect to the left edge of the red sector and, on the right-hand speedometer, is 
quantified by the stability reserve below the SSSL.

Fig. 2.10   Two-speedometer chart depicting base case system conditions. The left-hand speedometer 
is rated in dQ/dV units whereas the right-hand speedometer is rated in MW
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vector and has a small angle corresponds to a machine that has little or no effect 
upon the bus that is being investigated.

The unit impact bar chart illustrated in Fig. 2.12 is built from the information 
conveyed by the Nodal Image. It depicts the impact of synchronous machines, 
SVCs, tie-line injections, etc. on the system’s steady-state stability conditions in the 
descending order of the normalized values of / cosm m mY E δ .

2.4.3 � Real-Time Implementation

At the outset, it is important to define what is actually meant by “real time.” For 
instance, an application may use real-time input but, due to lengthy calculations, 
may not be able to converge quickly enough for the results to be used online. This, 
of course, is not quite … real-time.

On the other hand, an application that is fast enough to produce real-time results 
and graphics from real-time input can be implemented in two ways:

•	 Seamlessly integrated with the Supervisory Control And Data Acquisition/En-
ergy Management System (SCADA)/EMS, i.e., executing on the application 
servers and triggered, automatically, upon event and/or operator request, by the 
real-time scheduler of the SCADA/EMS system.

Fig. 2.11   Two-speedometer chart depicting a contingency case developed from the base case con-
ditions shown in Fig. 2.10. Note how the black needle has moved to the right, thus indicating that 
the system’s steady-state stability reserve has decreased
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•	 In parallel with the real-time system, i.e., using real-time data computed on the 
SCADA/EMS but running on an off-line processor.

Due to its remarkable solution speed, the steady-state stability assessment technique 
described in this chapter has been both seamlessly integrated on SCADA/EMS 
servers and used on off-line processors with state estimation results imported from 
the real-time system.

Figure 2.13 depicts the early seamless integration of this tool with third-party 
SCADA/EMS installations. Updated information about the current implementation 
and use of Siemens Spectrum Power QuickStab is provided in the Chap. 4 of this 
book (Eichler et al. 2014).

Fig. 2.12   Unit ranking chart. The generators are shown in the order of their impact on the system-
wide steady-state stability conditions
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2.5 � Conclusions

The main purpose of this chapter was to set the stage for the use of steady-state 
stability analysis tools to compute the risk of steady-state instability in real time. 
The approach was illustrated with a field-proven technique that has been success-
fully deployed in multiple SCADA/EMS installations to assess the power system’s 
distance to instability both in real time, in conjunction with state estimators, and 
off-line, with conventional power-flow programs.

The method, inspired from Paul Dimo’s steady-state stability assessment meth-
od, determines quickly and reliably how far the transmission network is from a state 
where voltages may collapse and units may lose synchronism.

The underlying assumptions were extensively analyzed and their validity was 
substantiated. For the theoretically oriented reader, this chapter also included the 
detailed development of the generalization of Dimo’s formulation of the reactive 
power steady-state stability criterion, and an extension of the P f V= ( )  relation-
ship for the case where the bus loads are modeled as P + j Q, rather than constant 
impedances, and their reactive parts vary proportionally with the power factor in the 
nominal (base) case.
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Fig. 2.13   Seamless SCADA/EMS integration of the fast steady-state stability tool
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Both the theoretical analysis and the actual implementation experience, includ-
ing accuracy and validity tests performed in several control centers, which are sum-
marized in Chap. 3 of this book, point to a mandatory tool for the online computa-
tion and monitoring of the distance to instability.

Acknowledgement  The display pictures shown in Fig. 2.10 through 2.13 have been provided by 
and used with permission from Siemens AG, Nuremberg, Germany.
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