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Abstract  The material in this chapter focuses on the relationship between power 
system dynamic equilibrium, power flow, and operating point stability. It addresses 
issues relating steady-state equilibrium in electric power systems with possible 
implications about stability of the associated operating point. It presents various 
connections between dynamic models, dynamic equilibrium, power-flow analysis, 
and the significance of singularities of Jacobian matrices involved in various com-
putations. It includes advances on earlier work on this subject and provides recent 
results on computing the equilibrium of “post-contingency” models. These post-
contingency models are created to enforce the concept of “constant control inputs” 
in the steady-state analysis. This impacts subtle things such as post-contingency 
speed (frequency) and remote voltage regulation. The concepts are illustrated on 
small system models. Different methods of computation are presented to provide 
alternatives for possible practical implementation.

Keywords  Steady-state stability · Power-flow Jacobian · Power system dynamics · 
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1.1 � Introduction1

There are many subtle issues associated with power systems and the viability of 
mathematical models associated with the physical system. A number of these issues 
have to do with voltage collapse, voltage instability, and equilibrium conditions. 
These include the concept of maximum loadability. The issue of load modeling 
alone raises many questions about the proper modeling techniques and assumptions 

1  Portions of this chapter were previously published with IEEE copyright in the paper by P. W. 
Sauer and M. A. Pai, “Power System Steady-State Stability and the Load flow Jacobian,” IEEE 
Transactions on Power Systems, Vol. 5, No. 4, November 1990, pp. 1374–1383, reprinted here 
with permission from IEEE.
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about aggregate behavior. This chapter focuses primarily on equilibrium analysis 
and information that can be obtained from various types of steady-state analysis. 
The subjects of voltage collapse and voltage instability have created interest in 
power-flow Jacobian singularities and their relationship with steady-state stability 
and voltage collapse.

In 1975, Venikov et al. published a paper that proposed that, under certain condi-
tions, a direct relationship exists between the singularity of the standard power-flow 
Jacobian and the singularity of the system dynamic state Jacobian (Venikov et al. 
1975). This paper has been cited as the primary justification for studying the power-
flow Jacobian matrix to determine critical load levels.

In this chapter, we clarify this result in the context of a fairly general dynamic 
model and show that the result should be considered optimistic for any type of 
steady-state stability analysis. This chapter includes a tutorial on the role of power 
flow in dynamic analysis.

1.2 � Detailed Dynamic Model Without Stator/Network 
Transients

This section presents a basic nonlinear multi-machine dynamic model that includes 
the fundamental features of voltage and frequency control, but assumes that all sta-
tor/network transients have been eliminated. The elimination of the stator/network 
transients leads to algebraic equations that accompany the multi-machine dynamic 
model as follows:

� (1.1)

� (1.2)

� (1.3)

� (1.4)

� (1.5)

� (1.6)

� (1.7)
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�
(1.8)

� (1.9)

� (1.10)

�
(1.11)

� (1.12)

� (1.13)

� (1.14)

where the notation is standard for a machine with one damper winding plus field 
(two-axis model), IEEE type I excitation system, and simplified turbine/governor 
model (Sauer and Pai 1998). The notation for an m-machine, n-bus system is,

�
(1.15)

� (1.16)

� (1.17)

� (1.18)

� (1.19)

The algebraic variables P Qi iand  are introduced so that the standard power-
flow equation (1.14) is preserved for any load models (1.12) and (1.13). Note 
that these equations can be supplemented with algebraic or dynamic models 
that have an output of P V jQ VLi i Li i( ) ( )+ . This full dynamic model contains 10m 
dynamic states CH SV( , , , , , , , , , ),2 4q d fd R f ME E E V R T P P m nδ ω +′ ′  real algebraic states 

T
dT

dt
T

K T

T
P

K T

T
P iRHi

Mi
Mi

HPi RHi

CHi
CHi

HPi RHi

CHi
SVi= − + −







+1 == 1,...,m

T
dP

dt
P P i mCHi

CHi
CHi SVi= − + = 1,...,

1
1,...,SVi i

SVi SVi ci
i s

dP
T P P i m

dt R

ω
ω

 
= − + − =  

( )( ) ( )

( ) ( )

/ 2

/2
1,...,

0 i i

i

jj
di

qi didi qi

i si qidi

j
qiX X i m

V e R jX I jI e

E I jE e

δ πθ

δ π 


−


  

−

=

− =′ ′

+ + +′

− + +′ ′

( ) ( ) ( ) ( )/ 20 1,...,ii jj
i i i di qi Li i Li iP jQ V e I jI e P V jQ V i mδ πθ − −= − − + − + + =

0 = − − + ( ) + ( ) = +P jQ P V jQ V i m ni i Li i Li i 1,...,

( )

1

0 1,..., ,
i k ik

j i k ik
n

i i
k

V V YP jQ i n
θ θ α− −

=
= − − + =∑

voltage at bus 1,...,ij
iV e i nθ = =

( ) ( / 2) 1,...,i ij j
i di qiV e V jV e i mθ δ π−= + =

( ) ( / 2) 1,...,i ij j
Gi di qiI e I jI e i mγ δ π−= + =

standard power-flow bus admittance matrix entry , 1,...,ikj
ikY e i k nα = =

net injected power into busifrom a path not 

                included in thebus admittance matrix 1,..., .
i iP jQ

i n

+ =
=



4 P. W. Sauer and M. A. Pai

( , , , , , ), 2d qI I P Q V and mθ  inputs ( , )V Pcref
. Equation (1.11) is the stator algebraic 

equation, which is normally expressed either as a phasor diagram or as a quasi-static 
phasor circuit in the literature (Sauer and Pai 1990). There are m n+ 2  complex 
algebraic equations, which should in principle be solved for the 2 4m n+  real alge-
braic states as functions of the 10m dynamic states.

The machine currents Id
 and Iq  can easily be eliminated by solving (1.11) and 

substituting into (1.2)–(1.12). The P and Q algebraic states can easily be eliminated 
by substituting (1.12) and (1.13) into (1.14), leaving only n complex algebraic equa-
tion (1.14) to be solved for the 2n real algebraic states θ  and V. These remaining 
algebraic equations cannot normally be solved explicitly.

In the special case of constant impedance loads, it is customary to use an internal 
generator bus model and include all loads and the machine impedance R jXs d+ ′  in 
the bus admittance matrix (enlarged to m n+  buses).

With the additional assumption of ′ = ′X Xq d ,  all algebraic states can be explicitly 
eliminated with a reduced ( )m m×  admittance matrix. For nonlinear load models, 
the algebraic equations must be retained. This chapter does not introduce internal 
machine buses.

Wind turbine generators can be included in this model using the basic model of 
Pulgar and Sauer (2011), where the wind turbine controls add additional dynamic 
states to the traditional blade rotation and generator electrical transients.

1.3 � Standard Power Flow

Standard load flow (or power flow) has been the traditional mechanism for comput-
ing a proposed steady-state operating point. For this chapter, we define standard 
power flow as the following algorithm (Pai 2004):

•	 Specify bus voltage magnitudes numbered 1 to m
•	 Specify bus voltage angle number 1 (slack bus)
•	 Specify net injected real power Pi  at buses numbered 2 to m
•	 Specify load powers PLi

 and QLi  at all buses numbered 1 to n
•	 Solve the following equations ((1.13) and (1.14) rewritten) for 2 1,..., , ,...,n m nV Vθ θ +

�
(1.20)

(PV buses)

�
(1.21)
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(PQ buses)

� (1.22)

(PQ buses)
where

and 1θ  are the specified numbers. The standard power-flow Jacobian matrix is the 
linearization of (1.20)–(1.22) with respect to 

2 1,..., and ,...,n m nV Vθ θ + . After the 
power-flow solution, compute

� (1.23)

� (1.24)

This standard power flow has many variations, including the addition of other de-
vices such as Tap Changing Under Load (TCUL) transformers, switching Volt–
Ampere Reactive (VAr) sources, and High-Voltage Direct Current (HVDC) con-
verters. It can also include inequality constraints on quantities such as Qi

, and can 
be revised to distribute the slack power between all generators.

We would like to make one important point about power flow. Power flow is nor-
mally used to evaluate operation at a specific load level (specified by a given set of 
powers). For a specified load and generation schedule, the solution is independent 
of the actual load model. That is, it is certainly possible to evaluate the voltage at a 
constant impedance load for a specific case where that impedance load consumes a 
specific amount of power.

Thus, the use of “constant power” in power-flow analysis does not require or 
even imply that the load is truly a constant power device. It merely gives the volt-
age at the buses when the loads (any type) consume a specific amount of power. 
The load characteristic is important when the analyst wants to study the system in 
response to a change such as contingency analysis or dynamic analysis. For these 
purposes, standard power flow usually provided the “initial conditions.”

1.4 � Initial Conditions for Dynamic Analysis

For any dynamic analysis using (1.1)–(1.14), it is necessary to compute the initial 
values of all dynamic states and to specify the fixed inputs ( , )V Pcref

. In the power 
system dynamic analysis, the fixed inputs and initial conditions are normally found 
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from a base case power-flow solution. That is, the values of Vref
 are computed such 

that the m generator voltages are as specified in the power flow.
The values of Pc

 are computed such that the m generator real power outputs are 
as specified and computed in the power flow for rated speed ( )sω . To see how this 
is done, we assume that a power-flow solution (as defined in Sect. 1.3) has been 
found. The first step in computing initial conditions is normally the calculation of 
generator currents from (1.12) and (1.17) as:

� (1.25)

and machine relative rotor angles from the manipulation of (1.11) and the algebraic 
equation from (1.4)

� (1.26)

With these quantities, the remaining dynamic and algebraic states can be found by

� (1.27)

� (1.28)
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� (1.29)
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�
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� (1.31)

� (1.32)
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� (1.34)

( )( ) ( )( ) ( ) 1,...,i ij j
Gi i Li i i Li i iI e P P V j Q Q V V e i mγ θ− = − − − = 

( )angleof 1,..., .i ij j
i i si qi GiV e R jX I e i mθ γδ  = + + = 

( / 2) 1,...,i ij
di qi GiI jI I e i mγ δ π− ++ = =

( )/ 2 1,...,i ij
di qi iV jV V e i mθ δ π− ++ = =

E X I V R I i mfdi di di qi si qi= + + = 1,..., .

R
K

T
E i mfi

Fi

Fi
fdi= = 1,...,

V K S E E i mRi Ei Ei fdi fdi= + ( )( ) = 1,...,

V V V K i mrefi i Ri Ai= + ( ) =/ ,..., .1

′ = − − ′( ) + =E X X I E i mqi di di di fdi 1,...,

′ = − − ′( ) =E X X I i mdi qi qi qi 1,..., .



71  Power System Dynamic Equilibrium, Power Flow, and Steady-State Stability

Note that, if the machine saturation is included, this calculation for ′Eqi  and ′Edi
 

may be iterative. The mechanical states and Pc
 are found from (1.1), (1.2), and 

(1.8)–(1.10) as:

� (1.35)

� (1.36)

� (1.37)

� (1.38)

� (1.39)

This completes the computation of all dynamic state initial conditions and fixed 
inputs.

For a given disturbance, the inputs remain fixed throughout the simulation. If 
the disturbance occurs in the algebraic equations, the algebraic states must change 
instantaneously to satisfy the initial condition of the dynamic states and the new 
algebraic equations. Thus, it may be necessary to re-solve the algebraic equations 
with the dynamic states specified at their initial conditions to determine the new 
initial values of the algebraic states.

From the above description, it is clear that once a standard power-flow solution 
is found, the remaining dynamic states and inputs can be found in a straightforward 
way. The machine relative rotor angles 

iδ  can always be found provided

� (1.40)

If control limits are enforced, a solution satisfying these limits may not exist. In this 
case, the state that is limited would need to be fixed at its limiting value, and a cor-
responding new steady-state solution would have to be found.

This would require a new power-flow solution specifying either different values 
of generator voltages, different generator real powers, or possibly generator reac-
tive power injections, thus allowing generator voltage to be a part of the power-flow 
solution. In fact, the use of reactive power limits in power flow can usually be traced 
back to an attempt to consider excitation system limits or generator capability limits.

1.5 � Angle Reference

In any rotational system, the reference for angles is arbitrary. Examination of (1.1)–
(1.14) clearly shows that the order of this dynamic system can be reduced from 10m  
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� (1.41)

� (1.42)

The full system remains exactly the same as (1.1)–(1.14) with each 
iδ  replaced by 

iδ ′ , each 
iθ  replaced by 

iθ′ , and 
sω  replaced by 

iδ ′  in (1.1). During a transient, 
the angle 

1δ  still changes from its initial condition (as found in the last section) as 
1ω  changes, so that each original 

iδ  and 
iθ  can be easily recovered if needed.

The angle 
1δ ′  remains at zero for all time. Thus, for dynamic simulation, the 

differential equation for 
1δ  is normally replaced by the algebraic equation which 

simply states 
1 0δ =′ . Notice that 

1θ  is normally arbitrarily selected as zero for the 
power-flow analysis.

This means that the initial value of 
1δ  is normally not zero. During a transient, 

1θ′  and 
1θ  change as all angles except 

1δ ′  change. If the inertia of machine 1 is set 
to infinity, 

1ω  and 
1δ  remain constant for all time.

1.6 � Steady-State Stability

The steady-state stability of multi-machine systems is usually evaluated by comput-
ing the eigenvalues of the system dynamic state Jacobian matrix that is the linearized 
version of (1.1)–(1.14) with all algebraic equations eliminated. This dynamic model 
has one zero eigenvalue corresponding to the angle reference discussed above.

Elimination of 1δ  through the use of (1.41) and (1.42) would eliminate this zero 
eigenvalue. The system is linearized around a steady-state operating point found us-
ing standard power flow. The Jacobian matrix for this standard power flow appears 
as a sub-matrix in the lower right block and is denoted as JLF

 below:

�

(1.43)

where v contains the power-flow variables 
2 1,..., , ,...,n m nV Vθ θ + . In order to evalu-

ate the stability of the dynamic system, the algebraic equations must be eliminated. 
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For B equal to the submatrices B1 and B2 and C equal to the submatrices C1 and C2, 
the stability of the steady-state equilibrium point is then determined by the system 
dynamic state Jacobian:

� (1.45)

Special cases where the three Jacobians J J Jsys AE LFand, , can be more explicitly 
related are given in the following section.

1.7 � Special Cases

There are two special cases where the standard power-flow Jacobian can be directly 
related to the system dynamic state Jacobian. We do not claim that these are neces-
sarily realistic cases, only that they lead to cases where the three Jacobians can be 
explicitly related.

a.	 The first special case makes the following assumptions:
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and each Vi
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1ω  as 
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for this special case (after eliminating Pi
 and Qi

) is

�
(1.46)

� (1.47)

� (1.48)

� (1.49)
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with

� (1.50)

�
(1.51)

�
(1.52)

�
(1.53)

�
(1.54)

The linearized form of this model is,

�

(1.55)

where 
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L L
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The determinant of J a
sys
( )  is (Sauer and Pai 1990)
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(1.57)

The standard power-flow Jacobian as previously defined can be written in terms of 
these submatrices as

�
(1.58)
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and Pai 1990)
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� (1.59)

For this case, a clear relationship between the determinant of the standard power-
flow Jacobian and the determinant of the system dynamic state Jacobian exists as

�
(1.60)

This means that under these assumptions, monitoring the power-flow Jacobian de-
terminant can detect a possible dynamic instability. The basic structure of this case 
(a) is used frequently, but assumptions (a1)–(a3) are slightly different. The same 
structure of (1.46)–(1.49) can be obtained by assuming a constant voltage behind 
transient reactance model with the terminal buses eliminated. This leads to a non-
standard power-flow Jacobian matrix that includes machine parameters in the bus 
admittance matrix.

The results of (1.58)–(1.60) above, which were previously published in Sauer and 
Pai, (Sauer and Pai 1990), were questioned by M. K. Pal, a discusser of Rajagopalan 
et al. (1992). The question had to do with the assumption of a nonsingular K4

. A sin-
gle-machine example was presented by Pal in his discussion to Yorino et al. (1992).

This example had a special structure where the determinant of K4
 was in fact 

zero at the same condition as det  and det LF sys
aJ J ( ) . However, additional analysis was 

not done to determine the general validity of the test. Additional testing by Vera-
stegui (Verastegui 2000) indicated that, for more general systems, the power-flow 
Jacobian and system Jacobian can become zero while maintaining nonsingular K4

. 
Figure 1.1 shows a three-bus power system that was used to illustrate the result.

The impedance of the two lines is purely reactive with an impedance of 0.1 pu. 
The load at bus 3 starts out at 1.0 pu (power base is 100 MW). The two-generator 
bus voltages are maintained at 1.0 pu. The load at bus 3 remains at unity power fac-
tor for the entire example.

For this example, the load at bus 3 is increased from 1 pu while monitoring the 
values of det det and det LF sys

aK J J4 , , ( ) . The values of these three quantities as the 
load is increased are shown in Figs. 1.2, 1.3, 1.4.

b.	  A second case where such a relationship can be firmly established was proposed 
in principle by Venikov et  al. (1975). This special case makes the following 
assumptions:

det det  detLFJ K K K K K
m= −( ) −( )− −

4 1 2 4
1

3

1
1

det 
det 

det det sys
(a) LFJ

J

K M
=

4

~ ~

Bus 3

Bus 2

Bus 1

1.00 pu
1.00 pu

1.00 pu
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Fig. 1.1   Three-bus power system
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(b1) Stator resistance is negligible R i msi = =( )0, ,...,1
(b2) No damper windings or speed damping

′ = = =( )T D i mqoi i0 0, , ,...,1
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Fig. 1.4   Plot of detJsys
(a) versus load P3
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(b3) High gain and fast excitation systems so that all generator terminal voltages are 
constant V i mi = =( )constant, ,...,1

(b4) Constant mechanical torque to the shaft of each generator

(b5) Generator number one has infinite inertia and negligible reactances. This to-
gether with (b1)–(b3) makes 

1 1constantand constantV θ= =  (infinite bus)
(b6) All loads are constant power

With these assumptions, the special case dynamic model (after eliminating Pi
 and 

Qi
) is

� (1.61)

� (1.62)

�

(1.63)

�
(1.64)

� (1.65)

with

� (1.66)

� (1.67)

� (1.68)

� (1.69)

�
(1.70)

T i mMi = =( )constant, 1,...,

P V Q V i nLi i Li i( ) = ( ) = =( )constant constant, , ,..., .1

2,...,i
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i m

dt

δ ω ω= − =

( ) 2,...,i
qi dii Mi qiqi di
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=
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The m n+ − 2 complex algebraic equations must be used to eliminate the 2 2 4m n+ −  
real algebraic variables , , ( 2,..., ), ( 2,..., ), ( 1,..., ).qi di qi i iE I I i m i n andV i m nθ= = = +′
We begin by first noting that from (1.63) and (1.64),

�
(1.71)

This can be substituted into (1.62). Second, we note that (1.63) and (1.64) can be 
rewritten as

� (1.72)

� (1.73)

�
(1.74)

�
(1.75)

Eliminating ′E I Iqi di qi, , and  (simply equating Iqi  in (1.72) and (1.75)) gives

�

(1.76)

Using (1.71), (1.76), and (1.65), this special case dynamic model with 
, , and ( 2,..., )qi di qiE I I i m=′ eliminated is

�
(1.77)

� (1.78)

�

(1.79)
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�
(1.80)

�
(1.81)

with

� (1.82)

� (1.83)

� (1.84)

� (1.85)

The linearized form of this dynamic model is

�

(1.86)

For the case (b), the algebraic equation Jacobian J AE
( )b  is

�

(1.87)

Defining ′B  and ′C  as

�
(1.88)

for nonsingular J AE
b( ) , the system dynamic state Jacobian for case (b) is

�
(1.89)
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and (Sauer and Pai 1990)

� (1.90)

Note that the eigenvalues of Jsys
b( )  will all be either pure imaginary or will include 

one or more values which are positive real. We will consider the dynamic system 
case (b) to be stable as long as no eigenvalues are positive real. By rearranging rows 
and columns of the matrix in (1.86) (Sauer and Pai 1990),

� (1.91)

where JLF
 is as in (1.58). This gives the following relationship between the deter-

minants of the standard power-flow Jacobian, the algebraic equation Jacobian, and 
the system dynamic state Jacobian:

� (1.92)

This means that under these assumptions, monitoring the power-flow Jacobian de-
terminant can detect a possible dynamic instability. This is discussed in the follow-
ing section.

1.8 � Instability and Maximum Loadability

When studying a proposed load or interchange level, a power-flow solution is re-
quired before steady-state stability can be analyzed. If a power-flow solution can-
not be found, then it is normally assumed that the proposed loading exceeded the 
“maximum power transfer” capability of the system. This maximum power transfer 
point is normally assumed to coincide with a zero determinant for the standard 
power-flow Jacobian.

Using this as a criterion, any load level that produces a zero determinant for the 
standard power-flow Jacobian is an upper bound and hence an optimistic value 
of the maximum loadability. It is also important to note that non-convergence of 
power-flows is also a matter of solution technique. Cases have been cited where 
Gauss–Seidel routines converge when Newton–Raphson routines do not.

If a standard power-flow solution and associated dynamic system equilibrium 
point are found (as described in Sects. 1.3 and 1.4), the stability of the point must be 
determined. In order to do this, the algebraic equation Jacobian must be nonsingu-
lar. This matrix is given by (1.44) in general, by K4

 for case (a), and by (1.87) for 
case (b). Assuming these algebraic equation Jacobians are nonsingular for a given 
case, steady-state stability must be evaluated from the eigenvalues of the system 

det
det

det
J

B J C

Msys
b AE

b
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( )

=
− ′ ′( )

−( )
−

−
1

1
1

det det det detJ B J C K JAE
b

AE
b

LF
( ) ( )− ′ ′( ) =−1
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det
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K J
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dynamic state Jacobian. This matrix is given by (1.45) in general, by (1.56) for case 
(a), and by (1.89) for case (b).

A system is at a critical point when the real part of one of its eigenvalues is 
zero. If a real eigenvalue is zero, then the determinant is zero. In the general case 
of (1.45), the zero eigenvalue due to the angle reference can easily be removed by 
using a dynamic model reduced in order by 1 (see Sect. 1.5). Clearly, many cases 
can be found where an equilibrium point can be critically unstable (at least one ei-
genvalue has a zero real part) and the power-flow Jacobian is nonsingular.

In cases (a) and (b), all detailed model dynamic states have been eliminated by 
making rather drastic assumptions. In special case (a), as long as detM and det K4

 
are nonzero and bounded, a dynamic equilibrium point exists and has a system 
dynamic state Jacobian that is singular if and only if the power-flow Jacobian is sin-
gular. In special case (b), we need to look at the matrix K5

. Examination of (1.79) 
shows that K5

 is diagonal with the ith diagonal entry equal to

�

(1.93)

From (1.74),

� (1.94)

and from (1.73),

� (1.95)

In steady state, (1.4) and (1.11) give (with Rsi = 0 )

�

(1.96)

This means that K i5
 can be zero (for nonzero Vi

) only if (see (1.17))

� (1.97)

This also shows that K i5
 is proportional to the magnitude of the voltage behind X qi  

in steady state. This was discussed in Sect. 1.4 as a condition for the existence of a 
dynamic equilibrium from a power-flow solution. Thus, if a dynamic equilibrium 
point exists (Eq. (1.40) is satisfied), then K5

 cannot be singular. Thus, if detM and 
det JAE

(b)  are nonzero and bounded, then the system dynamic state Jacobian of case 
(b) is singular if and only if the power-flow Jacobian is singular.
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Since Jsys
(b)  must have all pure imaginary eigenvalues to be stable, det Jsys

(b)  must 
be positive to be stable. Venikov et al. (1975) originally proposed the monitoring 
of the power-flow Jacobian determinant during power-flow iterations to see if it 
changed sign between the initial guess and the converged solution. The implica-
tion was that if it did, then the case (b) dynamic model would be unstable at that 
solution, and if it did not then the case (b) dynamic model would be stable (all pure 
imaginary eigenvalues).

Our interpretation indicates that they did not account for possible values of 
det K5

 and det JAE
b( ) . A change in sign of either of these would affect stability issues. 

We have shown that det K5
 would probably never change sign, but whether the 

det JAE
b( )  changes sign or not remains an open question.

1.9 � Post-Contingency Equilibrium Analysis

The earlier sections of this chapter presented a method to compute the equilibrium 
condition based on standard Power-Flow Methods (PFMs) assuming generator volt-
ages and rated frequency. When contingencies occur, the equilibrium immediately 
following the contingency will be based on the constant control inputs. This sec-
tion proposes and analyzes several techniques for computing this “post-contingency 
equilibrium condition.”

Traditional contingency analysis of power systems uses either standard power-
flow analysis or full transient simulation. The full transient simulation is normally 
only used to assess stability information following a hypothetical disturbance. It is 
rarely used to compute the steady-state equilibrium condition. The reference values 
fed into the control systems of a generator eventually determine the real power out-
put and some desired bus voltage magnitude (possibly modified by a compensation 
circuit).

In a dynamic simulation, these control inputs are normally computed from a 
base case power-flow solution as discussed in Sect. 1.4. If the base case is subjected 
to a contingency (loss of line), the dynamic model (and therefore presumably also 
the real system) would respond according to these fixed control inputs until they 
are changed by an operator or other higher-level control. This means that the post-
contingency equilibrium is determined by the fixed controls. This may not produce 
the same result as a simple power-flow solution modified to reflect a line outage.

This section reports on various techniques to compute the post-contingency equi-
librium with fixed control inputs, and compares the results with simple power-flow 
results. Clearly, running a dynamic solution until steady state is reached (for stable 
systems) would give the nearly exact post-equilibrium condition and would be con-
sidered the benchmark for all other approximate or alternative solution techniques.

The nearly exact post-equilibrium condition should also be computable using 
analytical methods. However, commercial power-flow programs already solve a 
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subset of the equilibrium equations and can be utilized to solve for part of the post-
contingency equilibrium state. So, rather than creating a completely new Newton-
based program to solve the entire problem, an alternative would be to create a new 
program only for the machine dynamic equilibrium equations and couple this in an 
iterative fashion with the standard power-flow program.

The potential for decoupling each of the machine equations is also a motivation 
for pursing this technique. The remainder of this chapter focuses on these tech-
niques and compares them with the “time domain method” (TDM) and “PFM”.

The basic dynamic model that describes a power system has been given in 
Sect. 1.1 above. It includes the dynamics of the generator, exciter, and turbine gov-
ernor along with the algebraic network constraints. The model was changed slightly 
from above to coincide with the model used in the commercial software known as 
PSS/E (Power System Simulator for Engineering).

The change included the use of power over per unit speed for the generator me-
chanical torque, and (( ) / )i i s iD ω ω ω− −  rather than ( )i i sD ω ω− −  for the damping 
torque. This was important because the post-contingency generator speeds may not 
be equal to the nominal rated speed.

The power system equilibrium equations were obtained by setting the time de-
rivatives of the dynamic model to zero. The equations are for an n bus system where 
the first m buses are connected to a generator. Also, all the machine and bus voltage 
angles were referenced to the machine angle 1( )δ  of the generator at bus number 1 
(also the slack bus for the power-flow portion of the analysis). This is denoted by 
the prime above all the angle variables.

These post-contingency equilibrium equations include the power-flow equations 
and the steady-state machine equations. The post-contingency equilibrium con-
ditions contain the voltages (magnitude and angle) of a contingency analysis (2n 
states) plus the states introduced by the machine, referred to as the reduced machine 
states (5m states).

� (1.98)

These are referred to as the reduced machine states because the other machine dy-
namic states have been eliminated by substitution. Their equilibrium values can 
be recovered by simple substitution at the end if desired. Collectively, there are 
5 2m n+  equations to be solved for the 5 2m n+  states.

The challenge of post-contingency analysis is to compute the solution of the 
equilibrium algebraic equations. A solution of these equations by a “full Newton 
method” (FNM) should produce nearly the same post-contingency solution as the 
full dynamic simulation run to steady-state TDM.

, , , , , 1,..., 2,...,T
m j di qi fdi MiI I E P i m j mω δ = = =′ x
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1.9.1 � Partitioned Newton Method

In the “partitioned Newton method” (PNM), the equilibrium equations are divided 
into two sets. The power-flow program is used to solve the power-flow equations. 
The dependent and independent variables for the power-flow equations are

� (1.99)

� (1.100)

where PGj
 is defined as P Pj Lj− . This power-flow step includes the solution of 

2 1n m− − equations for 2 1n m− −  states. The remaining 6 1m +  equations are 
solved using Newton’s method for the 6 1m +  states. The dependent and indepen-
dent variables for this set of machine equations are:

� (1.101)

� (1.102)

The steps for computing the equilibrium condition by the PNM are shown in 
Fig. 1.5.

Starting from the base case power-flow solution and the reference values of the 
generators that satisfy this condition, a disturbance in the network is introduced that 
changes the network topology. The machine equations are then solved using New-
ton’s method to give a new voltage value of the slack bus generator and a new volt-
age magnitude and real power output of the Power–Voltage (PV) bus generators.

These are the new independent variable values for the power-flow equations. 
Then the power-flow is solved to provide the new network voltages that are used 
to solve the machine equations. This loop of updating the independent variables in 
each equation set is made until the change in the power and voltage values of the 
generators becomes negligible.

In this technique, the calculation of the power and voltage values of the gen-
erators was done by solving all of the machine equations together using Newton’s 
method. This method alternates between this Newton solution and a standard pow-
er-flow solution. It does not exploit the natural decoupling between generator dy-
namics.

1.9.2 � Decoupled Newton Method

All the machines are coupled together by the synchronism of the machine speed at 
equilibrium. In fact, the speed term ω  is the only term that couples the different 
machines together among the machine states. In the “decoupled Newton method” 

, 1,..., 2,...,T
i jpf V i m n j nθ = = + =′ x

1, , , , 1,..., 2,..., 1,...,T
i Gj Lk Lkpf V P P Q i m j m k nθ = = = =′ u

1, , , , , , , 1,..., 2,...,T
i j di qi fdi Mimp V I I E P i m j mθ ω δ = = =′ ′ x

1
1,..., 2,...,, , , , , ,
1,..., 1,...,

T
refi ci l j Lk Lkmp

i m j nV P V P Q
k n l m n

θ δ = = = ′ ′  = = +u
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(DNM), the speed term is solved for by only using the power-flow solution and 
the machine states of the slack bus generator. This decouples the calculation of the 
power and voltage values of the generators from other generator machine states.

As before in the PNM, the power-flow program is utilized to solve the power-
flow equations. Then the slack bus voltage magnitude and angle are calculated by 
solving the machine equilibrium equations for i = 1 using Newton’s method. The 
dependent and independent variables for this calculation are shown in (1.103) and 
(1.104). The decoupling of the machines allows the voltage magnitudes and angles 
of all the other buses, including generator buses, to be independent variables. These 
voltage values are obtained from the power-flow solution.

�
(1.103)

� (1.104)

The slack bus calculation must be made first in the DNM. This is because, while all 
the voltage magnitude, real power output, and machine speed values of each gen-
erator are updated after the calculation is made for all the generators, the slack bus 

1 1 1 1 1 1 1, , , , , ,T
d q fd Mmd V I I E Pθ ω = ′ x

1 1 1 1, , , , , , 2,..., 1,...,T
ref c k k Li Limd V P V P Q k n i nθ δ = = =′ ′ u

Compute base case power-flow

Calculate reference values and initial guess
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K=1

Calculate V (k+1) and P (k+1) by
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Fig. 1.5   Post-contingency 
equilibrium calculation. (Yeu 
2005)
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angle must be updated before the calculation of the next set of power and voltage 
values of the PV buses.

An update in the slack bus angle along with the other updates would just change 
the angle reference value of the power flow and would neglect the control of the 
power output of the slack bus generator driven by the power reference, Pc1

. The 
update in the slack bus angle is made before the other updates so that the power 
and voltage updates of the PV bus generators take into account not only its own 
control but also the slack bus generator power requirements through the network 
constraints.

The calculation of the remaining generator voltage and power values can be 
made in an arbitrary order using Newton’s method. The dependent and independent 
variables for this calculation are shown in (1.105) and (1.106) for , ,j m= …2 .

�
(1.105)

� (1.106)

The steps of the DNM are similar to those of the PNM. The starting point is the 
base case power flow. Then power and voltage reference values of the generators 
are calculated to satisfy the base case condition. After a line is opened, the slack 
bus voltage magnitude and angle are calculated and the slack bus angle is updated. 
Then the PV bus generator real power and voltage magnitude values are calculated 
in arbitrary order or in parallel as previously described.

If the change in the power and voltage values of the generators is within the 
tolerance range, then the equilibrium solution is reached. Otherwise, the power and 
voltage values of the generators are updated and used to calculate a new power-flow 
solution. Another set of power and voltage values of the generators are then calcu-
lated using the new power-flow solution and this loop of calculating the updates and 
calculating the power flow is repeated until the change in the updates is within the 
tolerance range.

Figure 1.5 with one modification describes these steps. The block for calculating 
the voltage and power values is replaced by m blocks. The first block represents the 
calculation of the slack bus voltage values and the update of the slack bus angle, 
and the remaining blocks represent the voltage and power update of each PV bus 
generators.

Since the machines are decoupled, the size of the Jacobian used in each of the 
Newton’s methods to calculate the machine states is 7 7×  for the slack bus calcula-
tion and 6 6×  for each of the m −1  PV bus calculations.

This is a significant reduction in the size of the Jacobian from the one used in 
the PNM, which is ( ) ( )6 1 6 1m m+ × + . Another advantage of the DNM is that dif-
ferent machine models can be incorporated for the equilibrium analysis easily. This 
is because of the fact that independent variables for a given machine stay the same 
for different machine models while the dependent variables are independent from 
other machine states.

, , , , ,T
j j dj qj fdj Mjmj V I I E Pδ = ′ x

, , , , , , 1, , 1, , .T
mj refj cj k i Li Li

k j
V P V P Q k n i nω θ

≠
 = = =′  … …u
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1.9.3 � Test Cases

The post-contingency equilibrium analysis was done on two power-system cases 
using five methods:

•	 TDM
•	 FNM
•	 PNM
•	 DNM
•	 PFM

As a benchmark reference, a dynamic simulation using the PSS/E-30 software was 
run to equilibrium to calculate the post-contingency equilibrium state for the TDM. 
The next three methods were programmed in Matlab 7.0.1. The Power System 
Toolbox 2.0 power-flow program was used to solve the power-flow equations in 
the PNM, DNM, and PFM. The first test case was the so-called Western Electric 
Coordinating Council (WECC) nine-bus power system (Sauer and Pai 1998). This 
system contains three machines and nine transmission lines. Only three single line 
outage cases were stable according to the PSS/E simulations.

Out of these three cases, the maximum per unit differences of the voltage mag-
nitude and real power output from the four methods were compared to the results 
from the TDM equilibrium analyses with the results shown in Tables 1.1 and 1.2. 
The maximum differences are shown only for the generator buses.

The second case was the 57-bus test case (Power System Test Case Archive 
2014). This system contains 6 machines and 80 transmission lines. All but two sin-
gle line outage cases were stable.

The maximum per unit differences of the voltage magnitude and real power out-
put from the four methods were compared to the results from the TDM equilibrium 
analyses with the results shown in Tables 1.3 and 1.4. As before, the maximum dif-
ferences are only shown for the generator buses.

The results of the post-contingency equilibrium analysis using the FNM, PNM, 
and DNM and the results from the TDM are basically the same as would be ex-
pected. The only explanation we have for the errors shown is the truncation error of 

Table 1.1   Maximum pu voltage magnitude difference from TDM (nine-bus case)
Bus FNM PNM DNM PFM
1 0.0001 0.0001 0.0001 0.0031
2 0.0004 0.0004 0.0004 0.0088
3 0.0002 0.0002 0.0002 0.0131

Table 1.2   Maximum pu real power difference from TDM (nine-bus case)
Bus FNM PNM DNM PFM
1 0.0052 0.0052 0.0052 0.0311
2 0.0036 0.0036 0.0036 0.0184
3 0.0014 0.0014 0.0014 0.0177
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numerical integration to steady state and convergence mismatch of iterative solvers. 
This shows that the different equilibrium analyses with fixed control inputs accu-
rately characterized the post-contingency equilibrium states.

On the other hand, there are some significant differences between the PSS/E 
simulation (TDM) and the traditional contingency analysis (PFM). This is also ex-
pected since the voltage magnitude and the real power output of a generator do not 
necessarily stay constant from the base case to the post-contingency equilibrium 
state as is generally assumed in standard power-flow contingency analysis.

Generally, the voltage and power values did not deviate by a great amount from 
the base case to the post-contingency state. However, significant deviations such as 
the 0.06 pu voltage difference on bus 2 for the 57-bus case can occur. Deviations 
of this magnitude can affect the reliability of a power system considerably and can 
introduce errors in a contingency analysis.

1.10 � Conclusions

Standard power flow is used to find system voltages for a specified level of loading 
or interchange (regardless of the dynamic load model). It is also the starting point 
for determining the initial conditions for dynamic analysis. The standard power-
flow Jacobian can provide information about the existence of a steady-state equilib-
rium point for a specified level of loading or interchange. There are two very special 
cases when the determinant of the standard power-flow Jacobian implies something 
about the steady-state stability of a dynamic model.

Table 1.3   Maximum pu voltage magnitude difference from TDM (57-bus case)
Bus FNM PNM DNM PFM
1 0.0001 0.0001 0.0001 0.0054
2 0.0003 0.0003 0.0003 0.0653
3 0.0004 0.0004 0.0004 0.0141
6 0.0002 0.0002 0.0002 0.0162
8 0.0001 0.0001 0.0001 0.0015
9 0.0004 0.0004 0.0004 0.0372
12 0.0002 0.0002 0.0002 0.0058

Table 1.4   Maximum pu real power difference from TDM (57-bus case)
Bus FNM PNM DNM PFM
1 0.0058 0.0058 0.0058 0.2793
2 0.0027 0.0027 0.0027 0.0442
3 0.0076 0.0076 0.0076 0.0453
6 0.0021 0.0021 0.0021 0.0440
8 0.0045 0.0045 0.0045 0.0532
9 0.0027 0.0027 0.0027 0.0440
12 0.0054 0.0054 0.0054 0.0501
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While these two cases have been presented previously, the extensions here il-
lustrate the validity of the basic results. Both of these cases involve very drastic 
assumptions about the synchronous machines and their control systems. The load 
level, which produces a singular power-flow Jacobian, should be considered an 
optimistic upper bound on maximum loadability. The actual upper bound would be 
either the same or lower since it requires both the existence of a solution and stable 
dynamics.

For voltage collapse and voltage instability analysis, any conclusions based on 
the singularity of the standard power-flow Jacobian would apply only to the phe-
nomena of voltage behavior near maximum power transfer. Such analysis would not 
detect any voltage instabilities associated with synchronous machine characteristics 
or their controls.

This chapter also addressed the issue of post-contingency steady state condi-
tions. New analytical methods of computing the post-contingency equilibrium state 
of a power system have been described and illustrated. The main observation is 
that all of the methods provide a solution, which agrees reasonably well with the 
so-called exact solution of a dynamic simulation run to steady state. The particular 
illustrations also indicated that there can be substantial error between this true post-
contingency equilibrium and standard power-flow contingency analysis.

The FNM is a brute force analytical method requiring an entirely new software 
program to solve all of the machine and network equations simultaneously. The 
PNM is an alternative method that divides the solution into two parts—one utilizing 
a standard power-flow program and another new one for the machine equations—
alternating solution updates. The DNM is the most promising method because it 
exploits the utilization of a standard power-flow program and also decouples the 
machine equations so that they can be solved by a very low-order iterative program. 
This also allows the extension to more detailed generator dynamic models that in-
clude more complex local dynamics and control actions.

Recent activity in this area has focused on using phasor measurement unit data 
to detect steady-state stability criteria. This activity is summarized in Reinhard 
et al. (2013) where Thévenin equivalents are used to represent complete systems 
on either side of each transmission line. The results propose that as the system ap-
proaches a steady-state stability limit, the angle across the entire system approaches 
90° (between the two Thévenin equivalents) for at least one line in the system.
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