
Chapter 7
Feedback Control

Feedback control is the most commonly used technique for eliminating positioning
errors in nanopositioning systems. This chapter provides an overview of feedback
control techniques with an experimental comparison of integral control, inversion-
based control, and IRC damping control. When the reference trajectory is periodic,
repetitive control (RC) can significantly improve the tracking performance of a feed-
back loop. The RC approach is introduced for nanopositioning.

7.1 Introduction

When operated in open-loop, the static accuracy of a nanopositioning system is
limited by piezoelectric hysteresis, creep, cross-coupling from other axes, external
disturbances, and temperature drift. To eliminate or reduce these error sources,
nanopositioning systems require some form of feedback or feedforward
compensation.

As illustrated in Fig. 7.1, a feedback controller works by comparing the com-
manded position to the actual displacement. By minimizing the positioning error, a
feedback controller can compensate for all forms of positioning errors that are within
its effective bandwidth. Due to the simplicity and ability to compensate for a wide
range of errors, feedback controllers are commonly used in commercial nanoposi-
tioning systems.

In applications where fast changes in the reference siganl occur, large positioning
errors can also arise from the mechanical resonances of the stage. To avoid excitation
of the mechanical resonance in open-loop, the frequency of driving signals is limited
to between 1 and 10 % of the resonance frequency (depending on the signal). In
applications where the frequency of driving signals should be maximized, for exam-
ple, in high-speed atomic force microscopy (Ando et al. 2005; Schitter et al. 2007;
Humphris et al. 2005; Rost et al. 2005), the nanopositioner is operated in open-
loop with driving signals that are shaped to reduce harmonic content. Although
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Fig. 7.1 A nanopositioner G in a displacement feedback control loop. The feedback controller
C(s) drives the nanopositioner G(s) so that the difference between the reference r and measured
position d is minimized

command shaping techniques, reviewed in (Fleming and Wills 2009), can provide a
fast response, they do not account for nonlinearity or disturbances.

Since the first resonance mode typically dominates the response, the dynamics of
a nanopositioner can be approximated by a second-order low-pass system

G(s) = ω2
n

s2 + 2ωnζ s + ω2
n
, (7.1)

where ωn and ζ are the natural frequency and damping ratio. Although a second-
order system is a highly simplified model, it is sufficient to demonstrate the limitations
experienced by some feedback controllers. The magnitude and phase responses of
this system are plotted in Fig. 7.4.

The first closed-loop nanopositioning systems were piezoelectric tube scanners
with capacitive (Griffith et al. 1990) or optical sensors (Barrett and Quate 1991).
Although the early controllers were primarily manually tuned, model-based lead-lag
and H∞ controllers were also investigated (Tamer and Dahleh 1994).

To improve the gain-margin and closed-loop bandwidth of nanopositioning sys-
tems, notch filters or inversion filters can be effective (Leang and Devasia 2007).
Such techniques can provide excellent closed-loop bandwidth, up to or greater than
the resonance frequency (Abramovitch et al. 2008). However, to achieve high per-
formance, an extremely accurate system model is required. Due to the dependency
on model accuracy, a small change in the system dynamics can result in instabil-
ity. For example, a resonance frequency reduction of 10 % may cause a high-gain
inversion-based feedback controller to become unstable. In many applications, the
high sensitivity to modeling error is unacceptable as the load mass and resonance
frequency of a nanopositioner can vary significantly during service. As a result, high-
performance inversion-based controllers are only applied in applications where the
resonance frequency is stable, or when the feedback controller can be continually
recalibrated (Abramovitch et al. 2008).

Damping control is an alternative method for reducing the bandwidth limitations
imposed by mechanical resonance. Damping control uses a feedback loop to artifi-
cially increase the damping ratio of a system. With an integral controller, an increase
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in ζ allows a proportional increase in the feedback gain and closed-loop bandwidth.
Although damping controllers alone cannot increase the closed-loop bandwidth to
beyond the resonance frequency, they have the advantage of being insensitive to vari-
ations in the resonance frequency. In addition, damping controllers suppress, rather
than invert, the mechanical resonance so they can provide better rejection of external
disturbances than inversion-based systems.

A number of techniques for damping control have been demonstrated successfully
in the literature, these include positive position feedback (PPF) (Fanson and Caughey
1990), polynomial-based control (Aphale et al. 2008), shunt control (Fleming and
Moheimani 2006; Fleming et al. 2002), resonant control (Sebastian et al. 2008), and
integral resonance control (IRC) (Aphale et al. 2007; Bhikkaji and Moheimani 2008).

In Aphale et al. (2007), IRC was demonstrated as a simple means for damping
multiple resonance modes of a cantilever beam. The IRC scheme employs a constant
feedthrough term and a simple first-order controller to achieve substantial damping of
multiple resonance modes. An adaption of this controller that is suitable for tracking
control was reported in (Fleming et al. 2010). The regulator form of IRC is a first-
order low-pass filter, which is straightforward to implement. A major benefit of the
regulator form is that it can be enclosed in a simple tracking control loop to eliminate
drift and effectively reduce nonlinearity at low frequencies.

Optimal controllers with automatic synthesis have also been successfully applied
to nanopositioning applications. Examples include robust H∞ controllers (Salapaka
et al. 2002; Sebastian and Salapaka 2005) and LMI-based controllers (Lee and
Salapaka 2009). Robust controllers have also been incorporated with approximate
models of hysteresis to improve performance (Chen 1992).

Other control techniques include methods that are targeted at particular trajecto-
ries, such as triangular scanning signals (Eielsen et al. 2011). Such periodic reference
trajectories often arise in nanopositioning applications (Kenton and Leang 2012). A
commonly used technique for controlling systems with periodic inputs or distur-
bances is RC, as discussed in Sect. 7.10. Another technique that can be used to
improve the reference tracking performance of a feedback system is feedforward
control (Wu and Zou 2009; Leang and Devasia 2007), which is discussed in Chap. 9.

In the following, an experimental nanopositioner is described for the purpose
of examining the performance of three practical controllers. In Sect. 7.3, the per-
formance limitations of basic integral control are discussed. This is followed by a
description of inverse control and damping control in Sects. 7.4 and 7.5. In Sect. 7.6,
the bandwidth, settling time, and robustness of the three controllers are compared.
Each controller is designed to maximize bandwidth while retaining stability margins
of at least 6 dB and 60◦.

Scanning probe microscopy is an application that requires high-performance con-
trol of the sample and probe nanopositioner. The performance implications of each
control strategy are demonstrated by applying each technique to an atomic force
microscope in Sect. 7.9.

http://dx.doi.org/10.1007/978-3-319-06617-2_9
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Fig. 7.2 A two-axis serial kinematic nanopositioning platform with a range of 30 µm

7.2 Experimental Setup

To compare the controller characteristics, each technique will be applied to the XY
lateral nanopositioning stage pictured in Fig. 7.2. Each axis contains a 12 mm piezo-
electric stack actuator (Noliac NAC2003-H12) with a free displacement of 12 µm at
200 V. The flexure design includes a mechanical amplifier to provide a total range of
30 µm. The flexures also mitigate cross-coupling between the axes so that each axis
can be controlled independently. The position of the moving platform is measured
by a Microsense 6810 capacitive sensor and 6504-01 probe, which has a sensitivity
of 2.5 µm/V. The stage is driven by two PiezoDrive PDL200 voltage amplifiers with
a gain of 20.

The x-axis, which translates from left to right in Fig. 7.2, has a resonance frequency
of 513 Hz. The y-axis contains less mass so the resonance frequency is higher, 727 Hz.
Since the x-axis imposes a greater limitation on performance, the comparison will
be performed on this axis. However, the design process for the other axis is identical.

The frequency response for a nominal load is plotted in Fig. 7.3a. With the max-
imum payload, the resonance frequency reduces to 415 Hz as shown in Fig. 7.3b.
It can be observed that payload mass significantly modifies the higher frequency
dynamics.

For the purpose of control design, a second-order model is procured using the
frequency domain least-squares techniques. The model parameters are:

G(s) = 2.025 × 107

s2 + 48.63s + 1.042 × 107 . (7.2)
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Fig. 7.3 The open-loop frequency response measured from the voltage amplifier input to the sensor
output, scaled to µm/V. In a the nominal response is compared to the identified model. In b the
frequency response of the system with maximum load is compared to the nominal response

The frequency response of the model is compared to the experimental data in
Fig. 7.3a. The model closely approximates the first resonance mode, which is suffi-
cient for control design.
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Fig. 7.4 A nanopositioning system G controlled by an integral controller CI = ki /s. The frequency
response of G and the system loop-gain CI G are plotted on the left and right hand side respectively

7.3 PI Control

A popular technique for control of commercial nanopositioning systems is sensor-
based feedback using integral or proportional-integral control (Li et al. 2006). The
transfer function of a PID controller is

CPID(s) = kp + ki/s + kds, (7.3)

However, the derivative term is rarely used due to the increased noise sensitivity and
stability problems associated with high frequency resonance modes. PI controllers are
simple to tune and effectively reduce piezoelectric nonlinearity at low frequencies.
However, the bandwidth of PI tracking controllers is severely limited by the presence
of highly resonant modes. The limited closed-loop bandwidth can be explained by
examining the loop gain CI G in Fig. 7.4. Here, the resonant system G is controlled
by an integral controller CI with gain ki . The factor limiting the maximum feedback
gain and closed-loop bandwidth is gain-margin.

Above the natural frequency ωn , which is approximately equal to the resonance
frequency in systems with low damping, the phase lag of the loop-gain exceeds π so
the magnitude must be less than 1 (0 dB) for stability in closed-loop. The condition
for closed-loop stability is approximately

ki

ωn
× 1

2ζ
< 1, or ki < 2ωnζ . (7.4)

As the system G is unity gain, the complementary sensitivity function is
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d(s)

r(s)
= CI (s)G(s)

CP I (s)G(s) + 1
≈ ki

s + ki
. (7.5)

Thus, the feedback gain ki is also the approximate 3-dB bandwidth of the
complementary sensitivity function and the 0-dB crossing of the loop-gain (in radians
per second). From this fact, and the stability condition (7.4), the maximum closed-
loop bandwidth is equal to twice the product of damping ratio ζ and natural frequency
ωn , i.e.,

max. closed-loop bandwidth < 2ωnζ . (7.6)

This is a severe limitation as the damping ratio is usually on the order of 0.01, so
the maximum closed-loop bandwidth is less than 2 % of the resonance frequency. If
a certain amount of gain-margin is required, the bandwidth further reduces to:

max. closed-loop bandwidth <
2ωnζ

gain-margin
, (7.7)

where the gain margin is specified as a linear magnitude rather than in dB, for
example, 2 rather than 6 dB. The maximum closed-loop bandwidth can also be
estimated directly from the frequency response by replacing the factor 2ζ with 1/P ,
where P is the linear magnitude of the resonance peak divided by the DC gain, that
is

max. closed-loop bandwidth <
ωn

P × gain-margin
, (7.8)

Due to the second-order resonance, adding a first-order zero to the loop-gain with
a proportional term offers little improvement. A derivative term can be beneficial,
however this is rarely used as it can destabilize higher frequency modes. A better
alternative to derivative action is the notch filter or damping controller discussed in
the following sections.

For the nanopositioner under consideration, an integral gain of 15.5 results in a
gain-margin of 6 dB and a bandwidth of 13 Hz. The performance is compared to the
inversion and damping controllers in Sect. 7.6.

7.4 PI Control with Notch Filters

Techniques aimed at improving the closed-loop bandwidth are typically based on
either inversion of resonant dynamics using a notch filter (Abramovitch et al. 2008;
Leang and Devasia 2007) or the use of a damping controller (Fleming et al. 2010;
Aphale et al. 2008). Inversion techniques are popular as they are simple to imple-
ment and can provide a high closed-loop bandwidth if they are finely tuned and the
resonance frequency does not vary (Abramovitch et al. 2008). The transfer function
of a typical inverse controller is
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CNotch(s) =
(

kp + ki

s

)
s2 + 2ωzζzs + ω2

z

ω2
z

(7.9)

where ζz and ωz are approximately the damping ratio and first resonance frequency
of the nanopositioner. Depending on the implementation method, an additional pole
may be required above the bandwidth of interest in order to ensure causality.

The direct inversion controller (7.9) may not be suitable when significant higher-
frequency resonances exist. In this case, a notch filter is more appropriate since it
attempts to replace the lightly damped resonance with a pair of real poles. Other
denominator posibilities include, for example, a pair of complex poles with critical
damping. The transfer function is

CNotch(s) =
(

kp + ki

s

)
s2 + 2ωzζzs + ω2

z

(s + ωz)2 (7.10)

If an inverse controller is precisely tuned to the first mechanical resonance, the
presence of this mode can be essentially eliminated from the loop-gain. The maxi-
mum bandwidth is now limited by the second system resonance rather than the first.
Equations (7.7) or (7.8) predict the maximum closed-loop bandwidth based on the
resonance frequency and damping ratio of the second significant resonance mode.
Additional notch filters can be used to invert higher order resonances, however this
requires an extremely accurate system model.

A major consideration with inversion-based control is the possibility for modeling
error. In particular, if the resonance frequency drops below the frequency of the notch
filter, the phase lag will cause instability. Therefore, a notch filter must be tuned to
the lowest resonance frequency that will occur during service. For example, the
nanopositioner under consideration has a nominal resonance frequency of 513 Hz
and a minimum resonance frequency 410 Hz. Thus, the notch filter is tuned to 410 Hz
with an estimated damping of ζz = 0.01.

To maintain a gain-margin of 6 dB, the maximum integral gain is ki = 44. The
loop-gain during nominal and maximum load conditions is plotted in Fig. 7.5. During
nominal conditions, the phase-lag does not exceed 180◦ until the second resonance
mode; however, the first resonance mode remains dominant in the response and can be
excited by high-frequency components of the input or disturbances. This behavior is
evident in the closed-loop frequency and step responses plotted in Sect. 7.6. Since the
notch filter is tuned to the lowest resonance frequency, the system actually performs
better with the maximum payload. The loop-gain in Fig. 7.5 shows that the first
resonance-mode is almost inverted during this condition.

Due to the sensitivity of inversion-based controllers to variations in the resonance
frequency, they are most suited to applications where the resonance frequency is
stable, or where the feedback controller can be continually recalibrated (Abramovitch
et al. 2008).
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Fig. 7.5 The loop-gain of the nanopositioner and inversion based controller during nominal and
maximum load (Cnotch(s)G(s))
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Fig. 7.6 Integral resonance control scheme (Aphale et al. 2007)

7.5 PI Control with IRC Damping

Integral Resonance Control (IRC) was introduced in 2007 as a means for augmenting
the structural damping of resonant systems with collocated sensors and actua-
tors (Aphale et al. 2007). A diagram of an IRC loop is shown in Fig. 7.6. It consists
of the collocated system G yu , an artificial feedthrough D f and a controller C . The
input disturbance w represents environmental disturbances but can also be used to
obtain some qualitative information about the closed-loop response to piezoelectric
nonlinearity. That is, if the disturbance rejection at the scan frequency and first few
harmonics is large, a significant reduction in hysteresis could be expected.
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Fig. 7.7 Frequency response of the open-loop system G yu and with artificial feedthrough G yu+D f ,
where D f = −2.5. The 180◦ phase change of G yu + D f is due to the negative feedthrough which
also makes the system inverting

The first step in designing an IRC controller is to select, and add, an artificial
feedthrough term D f to the original plant G yu . The new system is referred to as G yu+
D f . It has been shown that a sufficiently large and negative feedthrough term will
introduce a pair of zeros below the first resonance mode and also guarantee zero-pole
interlacing for higher frequency modes (Aphale et al. 2007). Smaller feedthrough
terms permit greater maximum damping. Although it is straightforward to manually
select a suitable feedthrough term, it can also be computed from Theorem 2 in (Aphale
et al. 2007).

For the model G yu described in (7.2), a feedthrough term of D f = −2.5 is
sufficient to introduce a pair of zeros below the first resonance mode. The frequency
responses of the open-loop system G yu and the modified transfer function G yu + D f

are plotted in Fig. 7.7.
The key behind IRC is the phase response of G yu + D f , which now lies between

between −180◦ and 0◦ as shown in Fig. 7.7. Due to the bounded phase of G yu + D f

a simple negative integral controller

C = −k

s
, (7.11)

can be applied directly to the system. To examine the stability of such a controller,
we consider the loop-gain C × (

G yu + D f
)
. For stability, the phase of the loop-gain

must be within ±180◦ while the gain is greater than zero. The phase of the loop-gain
C ×(

G yu + D f
)

is equal to the phase of G yu + D f −180◦ for the negative controller
gain and a further 90◦ for the single controller pole. The resulting phase response
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Fig. 7.8 The integral resonance controller of Fig. 7.6 rearranged in regulator form

of the loop-gain lies between +90◦ and −90◦. That is, regardless of controller gain,
the closed-loop system has a phase margin of 90◦ and an infinite gain-margin with
respect to G yu + D f .

A suitable controller gain k can be selected to maximize damping using the root-
locus technique (Aphale et al. 2007). For the system under consideration, a gain of
k = 1,900 results in a maximum damping ratio 0.57.

In order to facilitate a tracking control loop, the feedback diagram must be
rearranged in a form where the input does not appear as a disturbance. This can
be achieved by finding an equivalent regulator that provides the same loop gain, as
shown in Fig. 7.8. In Fig. 7.6, the control input g is related to the measured output y
by

g = C(y − D f g), (7.12)

thus, the equivalent regulator C2 is

C2 = C

1 + C D f
. (7.13)

When C = −k
s the equivalent regulator is

C2 = −k

s − k D f
. (7.14)

The closed-loop transfer function of the damping loop is,

G y f = G yuC2

1 + G yuC2
. (7.15)

With D f = −2.5 and k = 1,900, the frequency responses of the open-loop and
damped system are plotted in Fig. 7.9.

To achieve integral tracking action, the IRC loop can be enclosed in an outer loop
as shown in Fig. 7.10. From the response in Fig. 7.9 or a pole-zero map, it can be
observed that the damped system contains the resonance poles, plus an additional
first-order pole mid-way between the resonance frequency and the zeros of G yu +D f .
To eliminate the additional pole from the loop-gain, an ideal tracking controller is a



186 7 Feedback Control

10
1

10
2

10
3

−50

0

50

M
ag

 (
dB

)

10
1

10
2

10
3

−200

−100

0

100

200

θ

Frequency (Hz)

Open−Loop

Damped

Fig. 7.9 The open- and closed-loop frequency response of the system with integral resonance
control
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Fig. 7.10 Tracking control system with the damping controller C2(s) and tracking controller C3(s).
The signal w is the disturbance input and n is the sensor noise

PI controller with a fixed zero at the frequency of the additional pole, that is,

C3 = −ki (s + ωz)

sωz
. (7.16)

where ki is chosen in the normal way to provide the desired stability margins or
bandwidth. Note that C3 is inverting to cancel the inverting nature of G y f . For the
system under comparison, a gain of ki = 245 results in a phase margin of 60◦. The
closed-loop response performance is examined in Sect. 7.6.

The transfer function of the closed-loop system is

y

r
= C3G y f

1 + C3G y f
, (7.17)
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Table 7.1 Summary of controller parameters

PI PI + Notch PI + IRC

Tracking TF 15.5
s

44
s

2π103

s+2π103
−245

s
s+2720

2720

Inverse or damping TF – s2+50.27s+6.317×106

6.317×106
−1900
s+4750

or alternatively,
y

r
= C2C3G yu

1 + C2(1 + C3)G yu
. (7.18)

In addition to the closed-loop response, the transfer function from disturbance to the
regulated variable y is also of importance,

y

w
= G yu

1 + C2(1 + C3)G yu
. (7.19)

That is, the disturbance input is regulated by the equivalent controller C2(1 + C3).

7.6 Performance Comparison

In Sects. 7.3–7.5, three controllers were designed to maintain a gain and phase margin
of at least 6 dB and 60◦. The controller parameters are summarized in Table 7.1,
and the simulated stability margins are listed in Table 7.2. The integral and inverse
controller were limited by gain-margin while the damping controller was limited by
phase margin.

The simulated and experimental closed-loop frequency responses are plotted in
Figs. 7.11 and 7.12. The frequency where the phase-lag of each control loop exceeds
45◦ is compared in Table 7.2. In nanopositioning applications, the 45◦ bandwidth
is more informative than the 3 dB bandwidth since it is more closely related to the
settling time. Due to the higher permissible servo gain, the PI + IRC controller
provides the highest bandwidth by a significant margin.

The simulated and experimental step responses are plotted in Figs. 7.13 and 7.14
and summarized in Table 7.2. The PI+IRC controller provides the shortest step
response by approximately a factor of 5, however the response exhibits some over-
shoot.

Out of the three controllers, the combination of PI control and IRC provides
the best closed-loop performance under both nominal and full-load conditions. This
is the key benefit of damping control, it is more robust to changes in resonance
frequency than inverse control. If the variation in resonance frequency were less, or
if the resonance frequency was stable, there would not be a significant difference
between the dynamic performance of an inverse controller and damping controller.
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Table 7.2 Closed-loop performance summary of integral, inversion based, and damping controller

PI PI + Notch PI + IRC

Gain margin
Nominal load (dB) 6.1 6.0 14
Full load (dB) 7.0 5.1 10
Phase margin
Nominal load inf 89◦ 69◦
Full load (◦) 90 89 69
Nominal bandwidth (45◦)
Simulated (Hz) 4.8 13 74
Experimental (Hz) 5.0 13 50
Full-load bandwidth (45◦)
Simulated (Hz) 4.8 13 77
Experimental (Hz) 5.0 13 78
Nominal settling time (99 %)
Simulated (ms) 160 54 6.2
Experimental (ms) 164 48 9.7
Full-load settling time (99 %)
Simulated (ms) 170 53 11
Experimental (ms) 165 42 7.6

Since the damping controller requires more design effort than an inverse controller,
it is sensible to choose this option when some variation in the resonance frequencies
are expected, or if there are multiple low-frequency resonances that are difficult to
model.

7.7 Noise and Resolution

The noise sensitivity of each control strategy is the transfer function from the sensor
noise n to the actual position y. For the sake of comparison, the noise contribution
of the voltage amplifier is assumed to be small compared to the sensor noise. As
discussed in Chap. 13, the RMS value or standard deviation of the sensor-induced
noise is equal to

σ =

√√√√√
∞∫

0

Sn( f )

∣∣∣∣ y(2π j f )

n(2π j f )

∣∣∣∣
2

d f , (7.20)

where Sn( f ) is the power spectral density of the sensor noise. If the sensor noise
is Gaussian distributed, the resolution is equal to 6σ . Therefore, if the sensor noise
spectral density is constant, the closed-loop resolution is proportional to the area
under the noise sensitivity transfer function.

http://dx.doi.org/10.1007/978-3-319-06617-2_13
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Fig. 7.11 The simulated closed-loop frequency response of each controller under nominal and
maximum load conditions. a Nominal load, fr = 513 Hz. b Maximum load, fr = 415 Hz

For the PI and inverse controller, the noise sensitivity is the complementary sen-
sitivity function with opposite sign, that is

y

n
= −C3G yu

1 + C3G yu
. (7.21)

However, with a damping controller as shown in Fig. 7.10, the noise sensitivity is
not identical to the complementary sensitivity (7.17). Rather, it is
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Fig. 7.12 The experimental closed-loop frequency response of each controller under nominal and
maximum load conditions. a Nominal load, fr = 513 Hz. b Maximum load, fr = 415 Hz

y

n
= −C2(1 + C3)G yu

1 + C2(1 + C3)G yu
. (7.22)

It can be observed from Eq. (7.21) that the noise sensitivity for a standard control
loop can be reduced by reducing the closed-loop bandwidth or controller gain. How-
ever with a damping controller, the noise sensitivity bandwidth is dominated by the
damping control loop, not the tracking loop. This is a drawback since the noise sensi-
tivity bandwidth cannot be reduced by varying the tracking controller gain. However,
since the noise sensitivity of the IRC system is not strongly affected by the tracking



7.7 Noise and Resolution 191

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Time (s)

P
os

iti
on

 (
um

) PI+IRC

PI+Notch

PI

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Time (s)

P
os

iti
on

 (
um

)

PI+IRC

PI+Notch

PI

(a)

(b)

Fig. 7.13 The simulated closed-loop step response of each controller under nominal and maximum
load conditions. a Nominal load, fr = 513 Hz. b Maximum load, fr = 415 Hz

controller gain C3, the tracking controller can be tuned to the highest practical gain
since there is little noise penalty in doing so.

The noise sensitivity of each control strategy is plotted in Fig. 7.15. Due to the wide
bandwidth of the damping controller, the noise sensitivity bandwidth is significantly
greater than the PI and inverse controllers.

A straightforward technique for estimating the positioning resolution is to measure
the sensor noise and filter it by the noise sensitivity function. Following the guidelines
in Sect. 13.9.3, the sensor noise was amplified using an SR560 amplifier with a gain of
10,000 and a bandwidth of 0.03–10 kHz. A 100 s of data was recorded at a sampling
rate of 30 kHz. A 3 s record of the closed-loop position noise for each controller

http://dx.doi.org/10.1007/978-3-319-06617-2_13
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Fig. 7.14 The experimental closed-loop step response of each controller under nominal and
maximum load conditions. a Nominal load, fr = 513 Hz. b Maximum load, fr = 415 Hz

is plotted in Fig. 7.16. While the PI and inverse controller contain low-frequency
noise plus randomly excited resonance, the IRC controller results in a more uniform
spectrum but with a wider noise bandwidth. Considering that the IRC controller
increases the closed-loop bandwidth from 5 to 78 Hz (compared to PI control), the
decrease in resolution from 0.27 to 0.43 nm is small.
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7.8 Analog Implementation

Due to the simplicity of the IRC damping and tracking controller, it is
straightforward to implement in both analog and digital form. The IRC damping
and tracking controller shown in Fig. 7.10 can be implemented directly with the
analog circuit shown in Fig. 7.17. Although the controller requires only two opamps,
the four-opamp circuit shown in Fig. 7.17 is easier to understand, trouble-shoot, and
tune (if necessary).

The operation of the circuit is self-explanatory. The first stage is a unity-gain
differential amplifier that implements the subtraction function r−y. The second stage
implements the PI tracking controller. The corresponding circuit transfer function of
the PI controller is

C3(s) = − s + 1
r3bc3

r3ac3
1

r3bc3
s
, (7.23)

which results in the equality r3ac3 = 1/ki and r3bc3 = 1/ωz

The third stage is a unity-gain differential amplifier with two noninverting inputs
for f and u f . The final stage implements the IRC controller C2, where

C2(s) = −k

s − k D f
. (7.24)

The circuit transfer function is

C2(s) = − 1
r2ac2

s + 1
r2bc2

. (7.25)

As k is positive and D f is negative, the equalities are
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r2ac2 = 1

k
, and r2bc2 = 1

k D f
. (7.26)

In both of the integrating stages, a 100 nF film capacitor (e.g., Polypropylene)
is recommended as these capacitors are highly linear and temperature stable. The
capacitance value should not be less than 100 nF to avoid large resistances that
contribute thermal noise and amplify current noise. The opamps should have a gain-
bandwidth product of around 10 Mhz or greater to avoid controller phase lag. The
opamps should also be suited to a source impedance in the k� range with the lowest
possible noise corner frequency. The Texas Instruments OPA4227 is a suitable device,
which is readily available at low cost.
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scanning waveforms and records the image while an xPC Target performs the real-time control

7.9 Application to AFM Imaging

To illustrate the impact of positioning bandwidth on application performance, the
nanopositioner will be employed for lateral scanning in an atomic force micro-
scope (Abramovitch et al. 2007; Salapaka and Salapaka 2008; Ando et al. 2008;
Schitter 2009; Clayton et al. 2009; Fleming et al. 2010).

The experimental setup is shown in Fig. 7.18. A National Instruments PCI-6115
data acquisition card and LabView application1 are used to generate the raster signals
and acquire the image (Fleming et al. 2010). The AFM head is a NanoSurf EasyScan
microscope which is only used for holding the cantilever and measuring the deflec-
tion. The microcantilver is a Budget Sensors ContAl cantilever with a stiffness of

1 The easyLab SPM Interface is available by contacting K. K. Leang at kam@unr.edu.
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0.2 N/m and the sample under consideration is a silicon calibration grating with a
period of 6 µm and a height of 20 nm.

The scan waveforms are standard triangular raster signals. To acquire an image,
the y-axis is driven with a slow ramp while the x-axis reference is a 10 Hz triangular
waveform. With a scan rate of 10 Hz, a 200 × 200 pixel image is acquired in 20 s.
Due to the slow scan rate of the y-axis, the tracking error can be neglected. However,
significant positioning errors can arise from the x-axis response. The positioning
error for each controller and the resulting image is plotted in Fig. 7.19. The higher
bandwidth of the IRC control system is observed to significantly reduce scan-induced
imaging artifacts.

7.10 Repetitive Control

7.10.1 Introduction

Many applications in nanopositioning require the stage to track periodic reference
trajectories with precision. For example, in AFM a nanopositioner is used to raster
back and forth a probe tip relative to a sample surface to obtain high-resolution
topographical images, directly measure various properties of a specimen, and even
investigate nano-scale dynamic interactions in real time (Radmacher 1997; Salapaka
and Salapaka 2008; Ando et al. 2008). The periodicity of the desired trajectory
lends itself nicely for applying RC for precision positioning, even at relatively high
speed. Recently, the RC approach has been applied to piezo-based positioners and
SPMs (Aridogan et al. 2009; Merry et al. 2011; Shan and Leang 2012a, b, 2013).

Repetitive control (RC) is a direct application of the internal model principle
(Francis and Wonham 1976), where a signal generator—the transfer function of
the reference trajectory—is incorporated into a feedback loop to provide high gain
at the fundamental frequency of the reference trajectory and its harmonics (Inoue
et al. 1981; Hara et al. 1988). Repetitive controllers have been used to address
run-out issues in disk drive systems (Chew and Tomizuka 1990; Steinbuch et al.
2007) and to improve the performance of machine tools (Li and Li 1996; Chen and
Hsieh 2007). Compared to traditional proportional-integral or proportional-integral-
derivative (PID) feedback controllers, where careful tuning is required and the resid-
ual tracking error persists from one operating cycle to the next, RC has the ability
to reduce the error as the number of operating cycles increases. For applications in
which the desired trajectory is periodic and the signal period is known a priori, a
repetitive controller offers many advantages. First, it can be plugged into an existing
feedback control loop to enhance performance for scanning applications. Second,
compared to iterative learning control (ILC) (Arimoto et al. 1984; Moore et al.
1992), a control method that has been used extensively for piezo-based positioning
systems (Leang and Devasia 2006; Wu and Zou 2007), RC does not require the initial
condition to be reset at the start of each iteration trial (Hara et al. 1988). Therefore, the
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strategies. The scanning trajectory is a full-range (27 µm) 10 Hz triangle wave. a PI control, b PI
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implementation is simplified. Third, compared to model-based feedforward
approaches (Clayton et al. 2009; Croft et al. 2001), RC does not require extensive
modeling of the system. Due to variations in the system dynamics, for example due to
aging (Lowrie et al. 1999) or temperature variations (Lee and Saravanos 1998), open-
loop feedforward approaches often lack robustness. On the other hand, the feedback
mechanism built into RC provides robustness to parameter variation. Finally, RC
can be easily implemented digitally, and thus high-speed data acquisition and con-
trol hardware such as field-programmable gate array systems (Fantner et al. 2005)
can take advantage of the RC structure for precision control. It has also recently
been demonstrated that RC can also be implemented using a single FIR filter which
dramatically simplifies the implementation (Teo and Fleming 2014).

7.10.2 Repetitive Control Concept and Stability Considerations

To illustrate the concept of RC, consider an example of the discrete-time RC closed-
loop system shown in Fig. 7.20a. The dynamics of the nanopositioner, assumed to
be linear, is represented by G p(z), where z = e jωTs , ω ∈ (0, π/Ts). In the block
diagram, Gc(z) is a feedback controller, such as an existing PID controller; Q(z) is a
low-pass filter for robustness; krc is the RC gain; and P1(z) = zm1 and P2(z) = zm2 ,
where m1, m2 are non-negative integers, are positive phase lead compensators to
enhance the performance of the RC feedback system. It is emphasized that the phase
lead compensators zm1 and zm2 provide a linear phase lead of (in units of radians)

θ1,2(ω) = m1,2Tsω, for ω ∈ (0, π/Ts). (7.27)

The key component of the repetitive controller is the signal generator. To create a
signal generator with period Tp, the inner loop contains the pure delay z−N , where
the positive integer N = Tp/Ts is the number of points per period Tp; and Ts is the
sampling time. An analysis of the performance of the closed-loop system is presented
below, where the following assumptions are considered: (1) the reference trajectory
R(z) is periodic and has period Tp and (2) the closed-loop system without the RC
loop is asymptotically stable, i.e., 1 + Gc(z)G p(z) = 0 has no roots outside of the
unit circle in the z-plane.

Assumptions 1 and 2 are easily met for many applications in nanopositioning,
including SPMs. For example in AFM imaging, the lateral movements of the piezoac-
tuator are periodic, such as a triangle scanning signal. Also, most SPMs are equipped
with feedback controllers Gc(z) to control the lateral positioning, which can be tuned
to be stable.

The transfer function of the signal generator [or RC block, Fig. 7.20a] that relates
E(z) to A(z) is given by

A(z)

E(z)
= Q(z)P1(z)z−N

1 − Q(z)P1(z)z−N
= Q(z)z(−N+m1)

1 − Q(z)z(−N+m1)
. (7.28)
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In the absence of both the low-pass filter Q(z) and positive phase lead P1(z) = zm1 ,
the poles of the signal generator are 1 − z−N = 0; therefore, the frequency response
of the signal generator shown in Fig. 7.21 reveals infinite gain at the fundamental
frequency and its harmonics ω = 2nπ/Tp , where n = 1, 2, 3, . . .. The infinite gain at
the harmonics is what gives the RC its ability to track a periodic reference trajectory.
As a result, RC is a useful control method for applications such as SPM in which the
scanning motion is repetitive. Unfortunately, the RC also contributes phase lag which
causes instability. Therefore, the stability, robustness, and tracking performance of
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the RC closed-loop system must be carefully considered. In the following, these
issues will be addressed, and the conditions for how to choose the RC gain krc are
presented, along with a discussion of the effects of the phase lead compensators
P1(z) and P2(z) on the performance of the closed-loop system.

To analyze the stability of the closed-loop RC system shown in Fig. 7.20a, consider
the transfer function relating the reference trajectory R(z) and the tracking error E(z),

E(z)

R(z)
= 1 − H(z)

1 − H(z) + [
(krc P2(z) − 1)H(z) + 1

]
Go(z)

, (7.29)

where H(z) = Q(z)z(−N+m1) and Go(z) = Gc(z)G p(z). Multiplying the numerator
and denominator of (7.29) by the sensitivity function S(z) = 1/(1 + Go(z)) of the
feedback system without the repetitive controller, the following transfer function is
obtained:

Src(z) = E(z)

R(z)
=

[
1 − H(z)

]
S(z)

1 − H(z)
[
1 − krc P2(z)Go(z)S(z)

] . (7.30)

The Src(z) shown above is referred to as the sensitivity function of the closed-loop
RC system.

The stability conditions for the RC system can be determined by simplifying
the block diagram in Fig. 7.20a to the equivalent interconnected system shown in
Fig. 7.20b, which results in Fig. 7.20c. Then the RC sensitivity transfer function
(7.30) can be associated with the M(z) and �(z) terms in Fig. 7.20c for stability
analysis.

Because the closed-loop system without the RC loop is assumed to be asymp-
totically stable, then the sensitivity function without RC, S(z), has no poles outside
the unit circle in the z-plane, so it is stable. Likewise, 1 − H(z) is required to be
bounded input - bounded output stable. Replacing z = e jωTs , the positive feedback
closed-loop system in Fig. 7.20c is internally stable according to The Small Gain
Theorem (Zhou and Doyle 1998) when

∣∣H(z)
[
1 − krc P2(z)Go(z)S(z)

]∣∣ =∣∣∣H(e jωTs )
[
1 − krce jθ2(ω)Go(e

jωTs )S(e jωTs )
]∣∣∣ < 1, (7.31)

for all ω ∈ (0, π
Ts

), where the phase lead θ2(ω) is defined by Eq. (7.27). By satisfying
condition (7.31), the closed-loop RC system shown in Fig. 7.20a is asymptotically
stable.

In general, both the RC gain krc and the phase lead θ2(ω) affect the stability and
robustness of RC as well as the rate of convergence of the tracking error. In the
following, condition (7.31) is used to determine explicitly the range of acceptable
krc for a given Q(z) and Go(z). The effects of the phase lead θ2(ω) on robustness
and the phase lead θ1(ω) on the tracking performance will be discussed next.
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Let T (z) represent the complementary sensitivity function of the closed-loop
feedback system without RC, that is, T (z) = Go(z)S(z). Suppose the magnitude
of the low-pass filter |Q(z)| approaches unity at low frequencies and zero at high
frequencies, hence |Q(e jωTs )| ≤ 1, for ω ∈ (0, π/Ts). Therefore, condition (7.31)
becomes

∣∣∣1 − krce jθ2(ω)T (e jωTs )

∣∣∣ < 1 ≤ 1

|Q(e jωTs )| . (7.32)

Replacing the complementary sensitive function with T (e jωTs ) = A(ω)e jθT (ω),
where A(ω) > 0 and θT (ω) are the magnitude and phase of T (e jωTs ), respectively,
Eq. (7.32) becomes

∣∣∣1 − krc A(ω)e j[θT (ω)+θ2(ω)]
∣∣∣ < 1. (7.33)

Finally, solving Eq. (7.33) leads to the following two conditions for the RC gain krc
and linear phase lead θ2(ω) to ensure stability:

0 < krc <
2 cos[θT (ω) + θ2(ω)]

A(ω)
and (7.34)

−π/2 < [θT (ω) + θ2(ω)] < π/2. (7.35)

By Eq. (7.35), the lead compensator P2(z) = zm2 accounts for the phase lag of
the closed-loop feedback system without RC. In fact, P2(z) enhances the stability
margin of the closed-loop RC system by increasing the frequency at which the phase
angle crosses the ±90◦ boundary. This frequency will be referred to as the crossover
frequency.

7.10.3 Dual-Stage Repetitive Control

The challenges with designing and implementing RC include stability, robustness,
and achieving good steady-state tracking performance. One solution to the stability
and robustness problem is to incorporate a low-pass filter into the RC loop (Tomizuka
et al. 1998) or employ a simple frequency aliasing filter (Ratcliffe 2005). It is pointed
out that a tradeoff is made between robustness and high-frequency tracking when
such filters are used. The steady-state tracking performance of RC can be improved
as shown above, for example by cascading a phase-lead compensator to account for
the phase lag of the low-pass filter to increase the controller gain at the harmonics
of the reference trajectory (Broberg and Molyet 1994; Aridogan et al. 2009). High-
order RC has been studied in (Steinbuch et al. 2007) to improve performance and
robustness in the presence of noise and variations in the signal period.
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RC with a linear phase-lead compensator P2(z) = zm2 and a RC gain krc to enhance performance.
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Dual-stage repetitive control (dual-RC) can be used to further improve tracking
performance. The dual-RC design is motivated by the need to further reduce the
magnitude of the sensitivity function of the closed-loop system to help lower the
tracking error. This is achieved by cascading a conventional RC with an odd-harmonic
RC (Zhou et al. 2007; Shan and Leang 2012a), effectively ‘squaring’ the controller.
This structure not only lowers the tracking error compared to conventional RC, but
also offers good robustness for tracking odd-harmonic trajectories. It is noted that
a similar dual-RC structure has been studied in (Kim and Tsao 2004), where two
identical RCs are cascaded together (series connection); and a parallel configuration
is presented in (Zhou et al. 2007). In contrast, the proposed dual-RC cascades an
enhanced conventional RC with an odd-harmonic RC, and the series configuration
is specifically tailored for tracking periodic scanning trajectories such as triangle
signals with odd harmonics. Such reference signals are commonly used in piezo-
based nanopositioners for raster-type and scanning applications, like AFM imaging.

The tracking performance of the conventional RC system shown in Fig. 7.22a is
governed by the sensitivity function

Src(z) � E(z)

R(z)
= [1 − H1(z)]S(z)

1 − H1(z)[1 − krcG0(z)S(z)] , (7.36)
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where H1(z) = Q(z)z−N+m1 and S(z) = 1/[1 + G0(z)] is the sensitivity function
of the feedback system without the repetitive controller. One approach to improve
the tracking performance of the conventional RC is to reduce the magnitude of
Src by cascading together two signal generators, effectively producing a squaring
effect (Kim and Tsao 2004). However, the reference trajectories used in the scanning
operation in SPMs are generally odd-harmonic signals (e.g., triangle trajectories), it
is preferred that an odd-harmonic RC (Zhou et al. 2007) as depicted in Fig. 7.22b be
cascaded with a conventional RC as shown in Fig. 7.23a, instead of cascading two
conventional RCs. By doing this, the resultant sensitivity function is

S̃rc(z) = [1 − H1(z)][1 − H2(z)]
W (z) + [1 − H1(z)(1 − k1)][1 − H2(z)(1 − k2)]G0(z)

, (7.37)

where W (z) = [1− H1(z)][1− H2(z)] and H2(z) = −z− N
2 +m2 Q(z). The advantage

of the enhanced dual-RC design over cascading two conventional RCs together is
added performance and robustness. Cascading two conventional RCs together results
in excessive gain at the even harmonics, which can degrade the system’s performance
for tracking odd-harmonic reference trajectories (Costa-Castello et al. 2004). The
performance of the enhanced dual-RC is illustrated by comparing the magnitude
response of the sensitivity function S̃rc(z) of the enhanced dual-RC in Eq. (7.37) to
the magnitude response of the sensitivity function Src(z) of the conventional RC in
Eq. (7.36) and the sensitivity function Src(z) of the odd-harmonic RC in Fig. 7.22b,
given by

Src(z) = [1 − H2(z)]S(z)

1 − H2(z)[1 − krcG0(z)S(z)] . (7.38)

The comparison of the three RC configurations is shown in Fig. 7.24, where the
frequency response functions are generated in Matlab using the ‘margin’ command
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using N = 100, m1 = m2 = 0, Q(z) = 1, and Ts = 10µs as an illustrative example.
The results reveal that the odd-harmonic RC has little affect on the even-harmonics
like the conventional RC (gain at first even harmonic: −13.7 dB for conventional RC,
4.49 dB for odd-harmonic RC, and −8.69 dB for dual-RC). Instead, the magnitude
of the sensitivity function for the dual-RC is significantly lower than the conven-
tional RC at the odd-harmonics (−24.4 dB for conventional RC vs. −47.1 dB for
dual-RC at the first odd harmonic). This implies that (1) the odd-harmonic RC has
the same tracking performance as the conventional RC for tracking odd-harmonic
trajectories but it provides the system with more robustness by reducing the gain
at the even harmonics, which effectively minimizes the amplification of signals in
that frequency range, such as noise and (2) the dual-RC provides higher gain than
the conventional RC at the odd-harmonics; therefore, the dual-RC will improve the
tracking of trajectories with odd-harmonics.

The stability conditions for the dual-RC is presented as follows. First, the stability
conditions for the odd-harmonic RC is presented, then the conditions for the dual-RC
is presented. Readers are referred to Shan and Leang (Shan and Leang 2012a) for
details of the stability analysis and proof.

Let Ts be the sampling time. Consider the odd-harmonic RC shown in Fig. 7.22b
and the following assumptions: (1) the reference trajectory R(z) is periodic in time
with period Tp and (2) the closed-loop system without the RC is asymptotically
stable, i.e., 1 + G0(z) = 0 has no roots outside of the unit circle in the z-plane. For
the odd-harmonic RC, if Assumptions 1 and 2 hold and if |Q(e jωTs )|≤1 and

0 < krc <
2 cos[θT (ω)]

A(ω)
and − π/2 < θT (ω) < π/2, (7.39)

for ω ∈ (0, π/Ts), then the odd-harmonic RC feedback system shown in Fig. 7.22b
is asymptotically stable. This result states that within an acceptable operating fre-
quency range, there exists a sufficiently small RC gain krc such that the closed-loop
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odd-harmonic RC system is stable. Next, the stability conditions for the dual-RC,
created by cascading an odd-harmonic RC with the conventional RC, is presented.

Consider the enhanced dual-RC system shown in Fig. 7.23a. If Assumptions 1
and 2 hold and if |Q(e jωTs )|≤1 and

3 cos[θT (ω)] − �

3A(ω)
< k1, k2 < 1 +

√
1 + 3 cos[θT (ω)] + �

3A(ω)
,

−π/9 ≤ θT (ω) ≤ π/9, (7.40)

with � = √
9 cos2[θT (ω)] − 8 for ω ∈ (0, π/Ts), then the closed-loop system in

Fig. 7.23a is asymptotically stable (see Shan and Leang (2012a) for details of the
stability analysis and proof). Therefore by satisfying the above conditions, that is by
picking appropriate values for the RC gains, k1 and k2, within a particular operating
frequency range, the dual-RC is guaranteed stable.

7.10.4 Handling Hysteresis

In the above analysis, the effects of hysteresis were not considered explicitly in the RC
design. Hysteresis can drastically affect the performance of a closed-loop controller,
particularly if the controller is designed around a linear dynamics model (Main
and Garcia 1997). To keep the analysis simple, an approach to minimize the affect
of hysteresis for RC is optimizing the resident feedback controller Gc(z) in such
a way that the closed-loop performance accounts for the hysteresis behavior over
the bandwidth of interest. Additionally, it has been shown that high-gain feedback
control is effective for significantly reducing hysteresis behavior (Leang and Devasia
2007). Another approach is depicted in Fig. 7.25a, where an internal feedback loop is
used to linearize the plant dynamics (Choi et al. 2002). Recently in (Shan and Leang
2012b) the design of RC which factors in the hysteresis effect was studied. If the
hysteresis nonlinearity exceeds a particular bound, the hysteresis can be accounted
for using model-based feedforward compensation as illustrated in Fig. 7.25b (Ahn
2003; Shan and Leang 2012a, b) (see Chap. 11). Therefore, compensating for the
hysteresis effect permits the application of the analysis presented above.

7.10.5 Design and Implementation

Two repetitive controllers were designed, implemented, and their responses were
compared to PID control. The first was a standard RC with a low-pass filter Q(z)
in the RC loop. The standard RC did not include phase lead compensators. The
second RC contained the two phase lead compensators zm1 and zm2 to improve the

http://dx.doi.org/10.1007/978-3-319-06617-2_11
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Fig. 7.25 Techniques to account for hysteresis in RC design. a feedback-linearization approach
and b feedforward hysteresis compensation (Shan and Leang 2012a, b)

tracking performance and stability, respectively. The details of the design process
are described below.

The experimental AFM system (Molecular Imaging PicoPlus model) and block
diagram of the control system are shown in Fig. 7.26a, b, respectively. The AFM
uses a piezoelectric tube-shaped actuator for positioning the cantilever and probe tip.
The AFM was customized to permit the application of control signals to control the
movement of the piezoactuator in the three coordinate axes (x , y, and z). Inductive
sensors were used to measure the displacements of the piezoactuator and the signals
were accessible through a custom signal access module. The gain of the inductive
sensors were 96–97µm/V in the x-axis and y-axis, respectively. A PC computer
and data acquisition system running custom C code were used to implement the RC
control system. The sampling frequency of the data acquisition and control hardware
was 10 kHz.

The RC was applied to track a periodic reference trajectory in the x-axis as an
illustrative example. This axis was the fast-scanning axis because the probe tip was
moved back and forth at least 100 times faster than the up and down motion in the
y-direction during imaging. For example, a 100×100 pixel image requires the AFM
tip to scan back and forth across the sample surface 100 times and slowly move from
top to bottom. It is noted that the effects due to cross-coupling in piezo-tube actuators
were not considered in this work. Interested readers are referred to the work of Tien
et al. (2005), for additional details to further improve tracking performance.

A linear dynamics model for the piezoactuator was obtained for designing the
RC system. The model was found by curve fitting the measured frequency response
function. The frequency response along the x axis was measured using a dynamic
signal analyzer (DSA, Hewlett Packard, Model 35670A). The response was measured
over small ranges to minimize the effects of hysteresis and above 1 Hz to avoid the
effects of creep (Croft et al. 2001). The resulting frequency response curves are
shown in Fig. 7.27. A linear 12th-order transfer function model G(s) (dash-dot line
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Fig. 7.26 a The AFM system and b a block diagram of the AFM and control system. An external
computer running custom C code was used to implement the control algorithm

in Fig. 7.27) was curve fitted to the measured frequency response function. The
continuous-time model was then converted to the discrete-time model G p(z) using
the Matlab function c2dwith a sampling frequency of 10 kHz (shown by the dashed
line in Fig. 7.27).

Prior to integrating the RC, a PID controller was designed for the piezoactuator
to control the motion along the x axis. The PID controller is given by

Gc(z) = K p + Ki

(
z

z − 1

)
+ Kd

(
z − 1

z

)
, (7.41)

where the Ziegler-Nichols method (Franklin et al. 2006) was used to tune the parame-
ters of the controller to K p = 1, Ki = 1450, and Kd = 0.0002. The PID controller
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Fig. 7.27 The frequency response of piezoactuator along the x axis. The solid line is the measured
response; the dash-dot line represents the linear continuous-time model G(s); and the dash line is
the linear discrete-time model G p(z) using Matlab function c2dwith zero-order hold and sampling
frequency of 10 kHz

was implemented at a sampling frequency of 10 kHz. The performance of the PID
controller to a step reference is shown in Fig. 7.28a. It can be observed that without
PID control, the open-loop response shows significant overshoot. Also, after 30 ms
creep effect becomes noticeable. Creep is a slow behavior and after several minutes
the tracking error can be in excess of 20 % (Leang and Devasia 2006). On the other
hand, the PID controller minimized the overshoot and creep effect.

The response of the PID controller for tracking a triangular trajectory at 1, 5,
and 25 Hz are shown in Fig. 7.28b. Triangle reference signals are commonly used
in AFM imaging. The maximum tracking error for the three cases are shown in
Fig. 7.28c. The error at 1 Hz (low speed) was relatively small, approximately 1.48 %
of the 10-µm range (±5 µm). However, at 25 Hz (high speed) scanning the error was
unacceptably large at 10.70 %. Due to vibrational dynamics and hysteresis effects,
open-loop AFM imaging is limited to less than 2–3 Hz. The objective was to reduce
the tracking error by adding a repetitive controller to the PID loop.

The next steps are to design the low-pass filter and phase lead zm2 for stability and
robustness, followed by designing the phase lead zm1 to minimize the steady-state
tracking error. The steps are outlined as follows:

First, the RC was designed for stability and robustness. This involves designing
a low-pass filter Q(z) and adding phase lead via m2 to satisfy the conditions given
by Eqs. (7.34) and (7.35). The following low-pass filter was used in the RC loop,

Q(z) = a

z + b
, (7.42)
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Fig. 7.28 The measured responses of the PID controller to a a step reference and b triangle
references at 1, 5, and 25 Hz. c The tracking error for the triangle reference signals associated with
plot (b)

where |a| + |b| = 1. The cutoff frequency ωQ of the low-pass filter was chosen
below the ±90◦ crossover frequency to satisfy Eq. (7.35). The low-pass filter cutoff
frequency is limited by the crossover frequency. Also, the cutoff frequency limits the
achievable scan rate to about one-tenth of the cutoff frequency, i.e., ωQ/10.

The phase response θT (ω), of the closed-loop feedback system without RC, and
different phase lead θ2(ω) are shown in Fig. 7.29. Without phase lead (m2 = 0), the
±90◦ crossover frequency was approximately 486 Hz. This value sets the maximum
cutoff frequency for the low-pass filter and the maximum scan rate.

Next, simulations were done to show the tracking performance of RC. The chosen
cutoff frequency for Q(z) was 250 Hz and zero phase lead (m2 = 0) was used.
Therefore, the maximum scan rate is 25 Hz. It is noted that for higher rate scanning,
the cutoff can be increased, but only up to 486 Hz when m2 = 0 (see Fig. 7.29).
The 250 Hz cutoff frequency was chosen because it provided a safety margin of
approximately two. Then, the RC gain was determined by satisfying Eq. (7.34),
for instance picking krc = 0.40. The simulated tracking response for ±25µm scan
range at 25 Hz is shown in Fig. 7.30. The first two plots, Fig. 7.30a1 and b1, show
the tracking performance and error, respectively, for a stable RC system without any
phase lead compensators, i.e., m1 = m2 = 0. In this case, increasing krc and/or the
low-pass filter’s cutoff frequency caused instability. Reducing the RC gain, however,
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Fig. 7.29 The phase response of the closed-loop feedback system without RC and added phase
lead θ2(ω), stability condition Eq. (7.35). The inset plot shows the cutoff frequency versus the phase
lead parameter m2. As m2 increases, the frequency range for stability increases. A maximum is
reached when m2 = 9

reduced the convergence rate. The steady-state tracking error was minimally affected
by the RC gain and the phase lead through m2.

The scan rate can be improved by increasing the ±90◦ crossover frequency by
adding phase lead through the parameter m2. The inset in Fig. 7.29 shows the ±90◦
crossover frequency versus the phase lead parameter m2.

With the addition of phase lead, such as m2 = 7, the ±90◦ crossover frequency
was increased to approximately 2,000 Hz. Therefore, the low-pass filter’s cutoff
frequency can be improved to raise the RC’s bandwidth permitting tracking of higher
frequency components. Subsequently, the RC gain Eq. (7.34) can be increased. For
example with m2 = 7, krc = 1.1, and simulation results are shown in Fig. 7.30a2,
b2 that demonstrate improvement in the convergence rate and reduced tracking error
compared to the previous case without phase lead zm2 . As indicated in the inset plot
in Fig. 7.29, higher values of m2 show no improvement in the crossover frequency.

Simulations were done with krc = 0.4 to verify the stability of the closed-loop
system with RC for different low-pass filter cutoff frequencies and values of m2. The
results are summarized in Table 7.3. Comparing the inset plot in Fig. 7.29 and the
summary in Table 7.3, with m2 = 0 the closed-loop RC system is stable when the
low-pass filter frequency is below the crossover frequency of 486 Hz. As the cutoff
frequency increases, for example at 500 Hz and above, the RC system is unstable.
But the stability can be achieved by adding phase lead through m2 as shown by the
results in Table 7.3.

Finally, by adding phase lead using zm1 in the RC loop, for example m1 = 6, the
maximum tracking error, defined as
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Fig. 7.30 Simulation results showing the tracking performance and error for scanning at 25 Hz,
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krc = 1.1
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Table 7.3 Stability of RC system for different low-pass filter cutoff frequencies and phase lead
zm2

Phase lead m2 Low-pass filter Q(z)’s cutoff frequency (Hz)
250 500 1000 2000 4000

0 Stable Unstable Unstable Unstable Unstable
2 Stable Unstable Unstable Unstable Unstable
4 Stable Stable Unstable Unstable Unstable
6 Stable Stable Stable Unstable Unstable
8 Stable Stable Stable Stable Stable
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Fig. 7.31 Maximum error versus phase lead parameter m1. For the experiments, m1 = 6 gave
smallest error

emax(%) =
[

max |y − r |
max(y) − min(y)

]
× 100 %, (7.43)

where y and r are the measured and reference outputs, respectively, was substantially
reduced from 11.96 and 5.32 % [Fig. 7.30a2, b2] to 0.97 % of the total range (50µm)
as illustrated in Fig. 7.30a3, b3.

The optimum value of the phase lead m1 was determined by looking at the maxi-
mum error versus different m1 values. The simulation results are shown in Fig. 7.31,
plotted as normalized maximum error versus m1, along with experimental results,
which will be discussed in the following section. As shown in the figure, the optimum
value is m1 = 6 and this value was also used in the experiments discussed below.

In the experiment, the reference signal was a 25-µm triangle wave at 5, 10, and
25 Hz. The reference trajectory was passed through a two-pole zero-phase-shift
filter with cutoff frequency 250 Hz to remove high frequency components before
applying it to the closed-loop system. Triangle scan signals are typically used for
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Fig. 7.32 Digital implementation of repetitive control. a Equivalent discrete-time block diagram
of the RC loop. b Linear data vector for implementing the one-period delay and the phase lead
compensators. c The flow diagram for implementing the RC loop

AFM imaging, and they were filtered to avoid exciting high-frequency dynamics.
The cutoff frequency for the low-pass filter Q(z) in the RC loop was set at 250 Hz.
Due to hardware limitations where the sampling frequency was 10 kHz, m2 = 0 was
chosen to give a maximum scan frequency of 25 Hz. The RC gain was chosen as
krc = 0.40 and this value satisfied the condition given by Eq. (7.34).

Let N be an integer value representing the delay period, the ratio of signal period
Tp to the sampling period Ts . Figure 7.32a shows the equivalent discrete-time block
diagram for the RC loop, where z−N is a delay of period N . The two phase lead
compensators, zm1 and zm2 , had leads of m1 = 6 and m2 = 0. Both the delay and
phase leads were implemented using a linear data vector d as shown in Fig. 7.32b
with 2N elements. Two counters i and j were used, one controlled the location where
incoming data was stored to the data vector and the other controlled the location where
data was read and sent. The difference in the indices i and j determines the overall
delay −N + m1 + m2, and since N >> m1 + m2, then the delay implementation is
causal. The flow diagram for the RC implementation with respect to the linear data
vector d is shown in Fig. 7.32c. Upon reaching the end of the array at i = 0 and
j = 0, both indices were reset to 2N − 1 and the process was repeated.
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Fig. 7.33 Experimental tracking response and error for PID (dash-dot), RC (dashed line), and RC
with phase lead compensation [m1 = 6 and m2 = 0] (solid line) for 5 Hz (a1 and b1), 10 Hz (a2
and b2), and 25 Hz (a3 and b3) scanning

7.10.6 Experimental Results and Discussion

The tracking results for the PID, regular RC, and the RC with the phase lead com-
pensators for ±25-µm scanning at 5, 10, and 25 Hz are presented in Fig. 7.33 and
Table 7.4. The steady-state tracking errors, measured at the last two cycles, are
reported as a percentage of the range of motion. In particular, the maximum error
Eq. (7.43) and the root-mean-squared error defined as

erms(%) =
⎡
⎣

√
1
T

∫ T
0

[
y(t) − r(t)

]2
dt

max(y) − min(y)

⎤
⎦ × 100 % (7.44)

are reported.
Because the action of the repetitive controller is delayed by one scan period, the

tracking response for the first period is similar for the PID, RC, and RC with phase
lead compensation as shown in Fig. 7.33. However, after the first period, the RC
begins to take action as illustrated by reducing tracking error from one cycle to the
next. On the other hand, the tracking error of the PID controller persists from one
cycle to the next.

The 5 Hz scanning results shown in Fig. 7.33a1, b1 and Table 7.4 demonstrate
that the regular RC controller reduced maximum tracking error from 2.01 to 0.96 %
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Table 7.4 Tracking results for ±25-µm range

Controller 5 Hz 10 Hz 25 Hz
emax(%) erms(%) emax(%) erms(%) emax(%) erms(%)

PID 2.01 1.28 3.99 2.61 9.16 6.61
RC 0.96 0.21 2.74 0.79 8.86 3.69
RC + phase leads 0.43 0.08 0.46 0.10 1.78 0.57
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Fig. 7.34 Tracking results for offset triangle scan at 25 Hz

compared to the PID controller, a 52 % reduction. By using RC with the phase
lead compensation, an additional 55 % improvement in tracking performance was
achieved. In this case, the maximum tracking error is 0.43 %.

At 25 Hz, the tracking error of PID was unacceptable large at 9.16 %. In fact,
for AFM scanning operations the maximum tracking error should be less than a few
percent. The results in Table 7.4 show that the regular plug-in RC controller was
not able to improve the tracking performance at 25 Hz. However, the RC with phase
lead compensation gave lower maximum tracking error at 1.78 %. Therefore, the RC
with phase lead compensation enables precision tracking at higher scan rates. The
optimum value of the phase lead via m1 was chosen using the simulation results in
Fig. 7.31. The simulation results were validated in the experiments as shown in the
figure, where m1 = 6 gave the lowest steady-state tracking error.

Finally, scanning offset from the piezoactuator’s center position is demonstrated
as shown in Fig. 7.34. For this offset scanning operation, the PID controller accounted
for the low frequency dynamics such as creep and the RC was used for tracking the
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periodic trajectory. The tracking results in Fig. 7.34 show that the RC was effective
at minimizing the tracking error.

7.11 Summary

Feedback controllers can be straightforward to design and naturally compensate for
many sources of positioning error and nonlinearity. The foremost disadvantage is the
need for a position sensor and the possibility of instabilities if plant uncertainty is
not taken in account.

This chapter considers three simple controller designs: PI control, inverse control,
and IRC damping control. The integral controller was simplest to design and imple-
ment but provided the lowest closed-loop bandwidth. An inverse controller (notch
filter) can provide much greater bandwidth when the dynamics are well known.
However, if the resonance frequency is expected to vary by more than a few per-
cent, the controller must be designed conservatively which can limit the achievable
performance.

Integral resonance control (IRC) is a new control strategy that damps the system
resonance rather than inverting it. The foremost advantages are simplicity, robust-
ness, and insensitivity to variations in the resonance frequencies. In the experimental
comparison, where the resonance frequency varied by 19 %, the settling time of the
IRC controller with one-fifth that of the inverse controller.

When the reference trajectory is periodic, RC can significantly improve the track-
ing performance of a feedback loop. A repetitive controller was combined with a
PID feedback system for precise tracking of periodic trajectories with disturbance
rejection. Experimental results demonstrate the effectiveness of the RC approach.
With a 25 Hz triangular reference signal, the maximum tracking error was less than
2 % using the improved RC technique compared to 9.16 % with standard PID control.
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