
Chapter 5
Position Sensors

Position sensors with nanometer resolution are a key component of many precision
imaging and fabrication machines. Since the sensor characteristics can define the
linearity, resolution and speed of a nanopositioner, the sensor performance is a fore-
most consideration. The first goal of this chapter is to define concise performance
metrics and to provide exact and approximate expressions for error sources including
nonlinearity, drift, and noise. The second goal is to review current position sensor
technologies and to compare their performance. The sensors considered include:
resistive, piezoelectric and piezoresistive strain sensors; capacitive sensors; elec-
trothermal sensors; eddy current sensors; linear variable displacement transformers;
interferometers and linear encoders.

5.1 Introduction

The sensor requirements of a nanopositioning system are among the most demanding
of any control system. The sensors must be compact, high-speed, immune to envi-
ronmental variation, and able to resolve position down to the atomic scale. In many
applications, such as Atomic Force Microscopy (Abramovitch et al. 2007; Salapaka
and Salapaka 2008) or nanofabrication (Tseng 2008; Vicary and Miles 2008), the
performance of the machine or process is primarily dependent on the performance
of the position sensor, thus, sensor optimization is a foremost consideration.

In order to define the performance of a position sensor, it is necessary to have
strict definitions for the characteristics of interest. At present, terms such as accuracy,
precision, nonlinearity, and resolution are defined loosely and often vary between
manufacturers and researchers. The lack of a universal standard makes it difficult to
predict the performance of a particular sensor from a set of specifications. Further-
more, specifications may not be in a form that permits the prediction of closed-loop
performance.
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This chapter provides concise definitions for the linearity, drift, bandwidth, and
resolution of position sensors. The measurement errors resulting from each source
are then quantified and bounded to permit a straightforward comparison between
sensors. An emphasis is placed on specifications that allow the prediction of closed-
loop performance as a function of the controller bandwidth.

Although there are presently no international standards for the measurement or
reporting of position sensor performance, this chapter is aligned with the definitions
and methods reported in the ISO/IEC 98:1993 Guide to the Expression of Uncertainty
in Measurement (ISO/IEC 1994), and the ISO 5723 Standard on Accuracy (Trueness
and Precision) of Measurement Methods and Results (ISO 1994).

The noise and resolution of a position sensor is potentially one of the most misre-
ported sensor characteristics. The resolution is commonly reported without mention
of the bandwidth or statistical definition and thus has little practical value.

To improve the understanding of this issue, the relevant theory of stochastic
processes is reviewed in Sect. 5.2. The variance is then utilized to define a con-
cise statistical description of the resolution, which is a straightforward function of
the noise density, bandwidth, and 1/ f corner frequency.

The second goal of this chapter is to provide a tutorial introduction and comparison
of sensor technologies suitable for nanopositioning applications. To be eligible for
inclusion, a sensor must be capable of a 6σ -resolution better than 10 nm with a
bandwidth greater than 10 Hz. The sensor cannot introduce friction or contact forces
between the reference and moving target, or exhibit hysteresis or other characteristics
that limit repeatability.

The simplest sensor considered is the metal foil strain gauge discussed in
Sect. 5.3.1. These devices are often used for closed-loop control of piezoelectric
actuators but are limited by temperature dependence and low sensitivity (Schitter et
al. 2002). Piezoresistive and piezoelectric strain sensors provide improved sensitivity
but at the cost of stability and DC performance.

The most commonly used sensors in nanopositioning systems (Devasia et al.
2007) are the capacitive and eddy-current sensors discussed in Sects. 5.3.4 and 5.3.6.
Capacitive and eddy-current sensors are more complex than strain sensors but can be
designed with subnanometer resolution, albeit with comparably small range and
low bandwidth. They are used extensively in applications such as atomic force
microscopy (Salapaka and Salapaka 2008; Leang et al. 2009; Fleming et al. 2010a, b)
and nanofabrication (Tseng et al. 2008; Vicary and Miles 2008). The Linear Variable
Displacement Transformer (LVDT) described in Sect. 5.3.7 is a similar technology
that is intrinsically linear. However, this type of sensor is larger than a capacitive
sensor and due to the larger range, is not as sensitive.

To achieve high absolute accuracy over a large range, the reference standard is the
laser heterodyne interferometer discussed in Sect. 5.3.8. Although bulky and costly,
the interferometer has been the sensor of choice for applications such as IC wafer
steppers (Butler 2011; Mishra et al. 2007) and metrological systems (Merry et al.
2009). New fiber interferometers are also discussed that are extremely compact and
ideal for extreme environments.
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Aside from the cost and size, the foremost difficulties associated with an interfer-
ometer are the susceptibility to beam interference, variation in the optical medium,
and alignment error. Since an interferometer is an incremental position sensor, if
the beam is broken or the maximum traversing speed is exceeded, the system must
be returned to a known reference before continuing. These difficulties are some-
what alleviated by the absolute position encoders described in Sect. 5.3.9. A position
encoder has a read-head that is sensitive to a geometric pattern encoded on a refer-
ence scale. Reference scales operating on the principle of optical interference can
have periods of 128 nm and a resolution of a few nanometers.

Other sensor technologies that were considered but did not fully satisfy the eli-
gibility criteria include optical triangulation sensors (Shan et al. 2008), hall effect
sensors, and magnetoresistive sensors. In general, optical triangulation sensors are
available in ranges from 0.5 mm to 1 m with a maximum resolution of approximately
100 nm. Hall effect sensors are sensitive to magnetic field strength and hence the
distance from a known magnetic source. These sensors have a high resolution, large
range, and wide bandwidth but are sensitive to external magnetic fields and exhibit
hysteresis of up to 0.5 % which degrades the repeatability. The magnetoresistive sen-
sor is similar except that the resistance, rather than the induced voltage, is sensitive to
magnetic field. Although typical anisotropic magnetoresistive (AMR) sensors offer
similar characteristics to the Hall effect sensor, recent advances stimulated by the
hard disk industry have provided major improvements (Parkin et al. 2003). In partic-
ular, the giant magnetoresistive effect (GMR) can exhibit two orders of magnitude
greater sensitivity than the AMR effect which equates to a resistance change of up
to 70 % at saturation. Such devices can also be miniaturized and are compatible
with lithographic processes. Packaged GMR sensors in a full-bridge configuration
are now available from NVE Corporation, NXP Semiconductor, Siemens, and Sony.
Aside from the inherent nonlinearities associated with the magnetic field, the major
remaining drawback is the hysteresis of up to 4 % which can severely impact the
performance in nanopositioning applications. Despite this, miniature GMR sensors
have shown promise in nanopositioning applications by keeping the changes in mag-
netic field small (Sahoo et al. 2011; Kartik et al. 2012). However, to date, the linearity
and hysteresis of this approach has not been reported.

5.2 Sensor Characteristics

5.2.1 Calibration and Nonlinearity

Position sensors are designed to produce an output that is directly proportional to the
measured position. However, in reality, all position sensors have an unknown offset,
sensitivity, and nonlinearity. These effects must be measured and accounted for in
order to minimize the uncertainty in position.
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Fig. 5.1 The actual position versus the output voltage of a position sensor. The calibration function
fcal (v) is an approximation of the sensor mapping function fa(v) where v is the voltage resulting
from a displacement x . em(v) is the residual error

The typical output voltage curve for a capacitive position sensor is illustrated in
Fig. 5.1. A nonlinear function fa(v) maps the output voltage v to the actual position
x . The calibration process involves finding a curve fcal(v) that minimizes the mean-
square error, known as the least-squares fit, defined by

θ∗ = arg min
N∑

i=1

[xi − fcal(θ, vi )]
2 , (5.1)

where vi and xi are the data points and θ∗ is the vector of optimal parameters for
fcal(θ, v). The simplest calibration curve, as shown in Fig. 5.1, is a straight line of
best fit,

fcal(v) = θ0 + θ1v. (5.2)

In the above equation, the sensor offset is θ0 and the sensitivity is θ1 µm/V. More
complex mapping functions are also commonly used, including the higher order
polynomials
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fcal(v) = θ0 + θ1v + θ2v
2 + θ3v

3 · · · (5.3)

Once the calibration function fcal(v) is determined, the actual position can be
estimated from the measured sensor voltage. Since the calibration function does not
perfectly describe the actual mapping function fa(v), a mapping error results. The
mapping error em(v) is the residual of (5.1), that is

em(v) = fa(v) − fcal(θ
∗, v). (5.4)

If em(v) is positive, the true position is greater than the estimated value and vice-
versa. Although the mapping error has previously been defined as the peak-to-peak
variation of em(v) (Hicks et al. 1997), this may underestimate the positioning error if
em(v) is not symmetric. A more conservative definition of the mapping error (em) is

em = ± max |em(v)| (5.5)

It is also possible to specify an unsymmetrical mapping error such as + max em(v),
− min em(v) however, this is more complicated. For the sake of comparison, the max-
imum mapping error (nonlinearity) is often quoted as a percentage of the full-scale
range (FSR), for example

Mapping Error (%) = ±100
max |em(v)|

FSR
. (5.6)

Since there is no exact consensus on the reporting of nonlinearity, it is important
to know how the mapping error is defined when evaluating the specifications of a
position sensor. A less conservative definition than that stated above may exaggerate
the accuracy of a sensor and lead to unexplainable position errors. It may also be
necessary to consider other types of nonlinearity such as hysteresis (Nyce 2004).
However, sensors that exhibit hysteresis have poor repeatability and are generally
not considered for precision sensing applications.

5.2.2 Drift and Stability

In addition to the nonlinearity error discussed above, the accuracy of a positioning
sensor can also be severely affected by changes in the mapping function fa(v).
The parameters of fa(v) may drift over time, or be dependent on environmental
conditions such as temperature, humidity, dust, or gas composition. Although, the
actual parametric changes in fa(v) can be complicated, it is possible to bound the
variations by an uncertainty in the sensitivity and offset. That is,

fa(v) = (1 + ks) f ∗
a (v) + ko, (5.7)
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Fig. 5.2 The worst-case range of a linear mapping function fa(v) for a given error in sensitivity
and offset. In this example the greatest error occurs at the maximum and minimum of the range

where ks is the sensitivity variation usually expressed as a percentage, ko is the offset
variation, and f ∗

a (v) is the nominal mapping function at the time of calibration. With
the inclusion of sensitivity variation and offset drift, the mapping error is

ed(v) = (1 + ks) f ∗
a (v) + ko − fcal(v). (5.8)

Equations (5.7) and (5.8) are illustrated graphically in Fig. 5.2. If the nominal map-
ping error is assumed to be small, the expression for error can be simplified to

ed(v) = ks fcal(v) + ko. (5.9)

That is, the maximum error due to drift is

ed = ± (ks max | fcal(v)| + ko) . (5.10)

Alternatively, if the nominal calibration cannot be neglected or if the shape of the
mapping function actually varies with time, the maximum error due to drift must be
evaluated by finding the worst-case mapping error defined in (5.5).
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5.2.3 Bandwidth

The bandwidth of a position sensor is the frequency at which the magnitude of the
transfer function v(s)/x(s) drops by 3 dB. Although the bandwidth specification
is useful for predicting the resolution of a sensor, it reveals very little about the
measurement errors caused by sensor dynamics. For example, a sensor phase-lag of
only 12 degrees causes a measurement error of 10 % FSR.

If the sensitivity and offset have been accounted for, the frequency domain position
error is

ebw(s) = x(s) − v(s), (5.11)

which is equal to
ebw(s) = x(s) (1 − P(s)) , (5.12)

where P(s) is the sensor transfer function and (1 − P(s)) is the multiplicative error.
If the actual position is a sine wave of peak amplitude A, the maximum error is

ebw = ±A |1 − P(s)| . (5.13)

The worst-case error occurs when A = FSR/2, in this case,

ebw = ±FSR

2
|1 − P(s)| . (5.14)

The error resulting from a Butterworth response is plotted against normalized
frequency in Fig. 5.3. Counter to intuition, the higher order filters produce more
error, which is surprising because these filters have faster roll-off, however, they also
contribute more phase-lag. If the poles of the filter are assumed to be equal to the
cut-off frequency, the low-frequency magnitude of |1 − P(s)| is approximately

|1 − P(s)| ≈ n
f

fc
, (5.15)

where n is the filter order and fc is the bandwidth. The resulting error is approximately

ebw ≈ ±A n
f

fc
. (5.16)

That is, the error is proportional to the magnitude of the signal, filter order, and
normalized frequency. This is significant because the sensor bandwidth must be
significantly higher than the operating frequency if dynamic errors are to be avoided.
For example, if an absolute accuracy of 10 nm is required when measuring a signal
with an amplitude of 100 µm, the sensor bandwidth must be ten-thousand times
greater than the signal frequency.
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Fig. 5.3 The magnitude of error caused by the sensor dynamics P(s). The frequency axis is
normalized to the sensor 3 dB bandwidth. Lower order sensor dynamics result in lower error but
typically result in significantly lesser bandwidths. In this example the dynamics are assumed to be
nth order Butterworth

In the above derivation, the position signal was assumed to be sinusoidal, for
different trajectories, the maximum error must be found by simulating Eq. (5.12).
Although the RMS error can be found analytically by applying Parseval’s equality,
there is no straightforward method for determining the peak error, aside from numer-
ical simulation. In general, signals that contain high-frequency components, such as
square and triangle waves cause the greatest peak error.

5.2.4 Noise

In addition to the actual position signal, all sensors produce some additive measure-
ment noise. In many types of sensors, the main source of noise is from the thermal
noise of resistors and the voltage and current noise in conditioning circuit transistors.
As these noise processes can be approximated by Gaussian random processes, the
total measurement noise can also be approximated by a Gaussian random process.

A Gaussian random process produces a signal with normally distributed values
that are correlated between instances of time. We also assume that the noise process
is zero-mean and that the statistical properties do not change with time, that is, the
noise process is stationary. A Gaussian noise process can be described by either the
autocorrelation function or the power spectral density. The autocorrelation function
of a random process X is

RX (τ ) = E [X (t)X (t + τ)] , (5.17)
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where E is the expected value operator. The autocorrelation function describes the
correlation between two samples separated in time by τ . Of special interest is RX (0)

which is the variance of the process. The variance of a signal is the expected value
of the varying part squared. That is,

Var X = E

[(
X − E [X ]

)2
]

. (5.18)

Another term used to quantify the dispersion of a random process is the standard
deviation σ which is the square-root of variance,

σX = Standard deviation of X = √
Var X (5.19)

The standard deviation is also the Root-Mean-Square (RMS) value of a zero-mean
random process. Further properties of the variance and standard deviation can be
found in Chap. 13.

The power spectral density SX ( f ) of a random process represents the distribution
of power or variance across frequency f . For example, if the random process under
consideration was measured in Volts, the power spectral density would have the
units of V2/Hz. The power spectral density can be found by either the averaged peri-
odogram technique or from the autocorrelation function. The periodogram technique
involves averaging a large number of Fourier transforms of a random process,

2 × E

[
1

T
|F {XT (t)}|2

]
⇒ SX ( f ) as T ⇒ ∞. (5.20)

This approximation becomes more accurate as T becomes larger and more records
are used to compute the expectation. In practice, SX ( f ) is best measured using a
Spectrum or Network Analyzer, these devices compute the approximation progres-
sively so that large time records are not required. Practical techniques for the mea-
surement of power spectral density are discussed in Sect. 13.7. The power spectral
density can also be computed from the autocorrelation function. The relationship
between the autocorrelation function and power spectral density is known as the
Wiener-Khinchin relations, given by

SX ( f ) = 2F {RX (τ )} = 2

∞∫

−∞
RX (τ )e− j2π f τ dτ , and (5.21)

RX (τ ) = 1

2
F−1 {SX ( f )} = 1

2

∞∫

−∞
SX ( f )e j2π f τ d f, (5.22)

If the power spectral density is known, the variance of the generating process can be
found from the area under the curve, that is

http://dx.doi.org/10.1007/978-3-319-06617-2_13
http://dx.doi.org/10.1007/978-3-319-06617-2_13
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σ 2
X = E

[
X 2(t)

]
= RX (0) =

∞∫

0

SX ( f ) d f, (5.23)

Rather than plotting the frequency distribution of power or variance, it is often
convenient to plot the frequency distribution of the standard deviation, which is
referred to as the spectral density. It is related to the standard power spectral density
function by a square-root, that is,

Spectral density = √
SX ( f ). (5.24)

The units of
√

SX ( f ) are units/
√

Hz rather than units2/Hz. The spectral density is
preferred in the electronics literature as the RMS value of a noise process can be
determined directly from the noise density and effective bandwidth. For example, if
the noise density is a constant c V/

√
Hz and the process is perfectly band limited

to fc Hz, the RMS value or standard deviation of the resulting signal is c
√

fc. To
distinguish between power spectral density and noise density, A is used for power
spectral density and

√
A is used for noise density. An advantage of the spectral density

is that a gain k applied to a signal u(t) also scales the spectral density by k. This
differs from the standard power spectral density function that must be scaled by k2.

Since the noise in position sensors is primarily due to thermal noise and 1/ f
(flicker) noise, the power spectral density can be approximated by

S( f ) = A
fnc

| f | + A, (5.25)

where A is power spectral density and fnc is the noise corner frequency illustrated in
Fig. 5.4. The variance of this process can be found by evaluating Eq. (5.23). That is,

σ 2 =
∫ fh

fl
A

fnc

| f | + A d f. (5.26)
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where fl and fh define the bandwidth of interest. Extremely low-frequency noise
components are considered to be drift. In positioning applications, fl is typically
chosen between 0.01 and 0.1 Hz. By solving Eq. (5.26), the variance is

σ 2 = A fnc ln
fh

fl
+ A( fh − fl). (5.27)

If the upper frequency limit is due to a linear filter and fh >> fl , the variance can
be modified to account for the finite roll-off of the filter, that is

σ 2 = A fnc ln
fh

fl
+ Ake fh . (5.28)

where ke is a correction factor that accounts for the finite roll-off. For a first-, second-,
third-, and fourth-order response ke is equal to 1.57, 1.11, 1.05, and 1.03, respec-
tively (van Etten 2005).

5.2.5 Resolution

The random noise of a position sensor causes an uncertainty in the measured position.
If the distance between two measured locations is smaller than the uncertainty, it is
possible to mistake one point for the other. In fabrication and imaging applications,
this can cause manufacturing faults or imaging artifacts. To avoid these eventualities,
it is critical to know the minimum distance between two adjacent but unique locations.

Since the random noise of a position sensor has a potentially large dispersion, it
is impractically conservative to specify a resolution where adjacent locations never
overlap. Instead, it is preferable to state the probability that the measured value
is within a certain error bound. Consider the plot of three noisy measurements in
Fig. 5.5 where the resolution δy is shaded in gray. The majority of sample points
in y2 fall within the bound y2 ± δy/2. However, not all of the samples of y2 lie
within the resolution bound, as illustrated by the overlap of the probability density
functions. To find the maximum measurement error, the resolution is added to other
error sources as described in Sect. 5.2.6.

If the measurement noise is approximately Gaussian distributed, the resolution
can be quantified by the standard deviation σ (RMS value) of the noise. The empirical
rule (Brown and Hwang 1997) states that there is a 99.7 % probability that a sample
of a Gaussian random process lie within ±3σ . Thus, if we define the resolution as
δ = 6σ there is only a 0.3 % probability that a sample lies outside of the specified
range. To be precise, this definition of resolution is referred to as the 6σ -resolution.
Beneficially, no statistical measurements are required to obtain the 6σ -resolution if
the noise is Gaussian distributed.

In other applications where more or less overlap between points is tolerable,
another definition of resolution may be more appropriate. For example, the 4σ
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Fig. 5.5 The time-domain recording y(t) of a position sensor at three discrete positions y1, y2, and
y3. The large- shaded area represents the resolution of the sensor and the approximate peak-to-peak
noise of the sensor. The probability density function fy of each signal is shown on the right

resolution would result in an overlap 4.5 % of the time, while the 10σ resolution
would almost eliminate the probability of an overlap. Thus, it is not the exact defi-
nition that is important; rather, it is the necessity of quoting the resolution together
with its statistical definition.

Although there is no international standard for the measurement or reporting of
resolution in a positioning system, the ISO 5725 Standard on Accuracy (Trueness
and Precision) of Measurement Methods and Results (ISO 1994) defines precision
as the standard deviation (RMS Value) of a measurement. Thus, the 6σ -resolution is
equivalent to six times the ISO definition for precision.

If the noise is not Gaussian distributed, the resolution can be measured by obtain-
ing the 99.7 percentile bound directly from a time-domain recording. To obtain a sta-
tistically valid estimate of the resolution, the recommended recording length is 100 s
with a sampling rate 15 × the sensor bandwidth (Fleming 2012), see Sect. 13.9.3. An
anti-aliasing filter is required with a cut-off frequency 7.5 × the bandwidth. Since
the signal is likely to have a small amplitude and large offset, an AC coupled pream-
plifier is required with a high-pass cut-off of 0.03 Hz or lower (Fleming 2012), see
Sect. 13.9.3.

Another important parameter that must be specified when quoting resolution is
the sensor bandwidth. In Eq. (5.28), the variance of a noise process is shown to be
approximately proportional to the bandwidth fh . By combining Eq. (5.28) with the
above definition of resolution, the 6σ -resolution can be found as a function of the
bandwidth fh , noise density

√
A, and 1/ f corner frequency fnc,

6σ -resolution = 6
√

A

√

fnc ln
fh

fl
+ ke fh . (5.29)

http://dx.doi.org/10.1007/978-3-319-06617-2_13
http://dx.doi.org/10.1007/978-3-319-06617-2_13
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and a 1/ f corner frequency of 10 Hz. ( fl = 0.01 Hz and ke = 1). At low frequencies, the noise is
dominated by 1/ f noise; however, at high frequencies, the noise increases by a factor of 3.16 for
every decade of bandwidth

From Eq. (5.29), it can be observed that the resolution is approximately proportional
to the square-root of bandwidth when fh >> fnc. It is also clear that the 1/ f corner
frequency limits the improvement that can be achieved by reducing the bandwidth.
Note that Eq. (5.29) relies on a noise spectrum of the form (5.25) which may not
adequately represent some sensors. The resolution of sensors with irregular spec-
trum’s can be found by solving (5.23) numerically. Alternatively, the resolution can
be evaluated from time-domain data, as discussed above.

The trade-off between resolution and bandwidth can be illustrated by considering
a typical position sensor with a range of 100 µm, a noise density of 10 pm/

√
Hz,

and a 1/ f corner frequency of 10 Hz. The resolution is plotted against bandwidth
in Fig. 5.6. When the bandwidth is below 100 Hz, the resolution is dominated by
1/ f noise. For example, the resolution is only improved by a factor of two when the
bandwidth is reduced by a factor of 100. Above 1 kHz, the resolution is dominated
by the flat part of the power spectral density, thus a ten times increase in bandwidth
from 1 to 10 kHz causes an approximately

√
10 reduction in resolution.

Many types of position sensors have a limited full-scale range (FSR); examples
include strain sensors, capacitive sensors, and inductive sensors. In this class of
sensor, sensors of the same type and construction tend to have an approximately pro-
portional relationship between the resolution and range. As a result, it is convenient
to consider the ratio of resolution to the full-scale range, or equivalently, the dynamic
range (DNR). This figure can be used to quickly estimate the resolution from a given
range, or conversely, to determine the maximum range given a certain resolution. A
convenient method for reporting this ratio is in parts per million (ppm), that is
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Table 5.1 Summary of the exact and simplified worst-case measurement errors

Error source Exact Simplified bound

Mapping error em fa(v) − fcal (θ
∗, v) ± max |em(v)|

Drift ed (1 + ks) f ∗
a (v) + ko − fcal (v) ± (ks max | fcal (v)| + ko)

Bandwidth ebw F−1 {x(s)(1 − P(s))} ± An f
fc

(sine-wave)

Noise δ NA 6
√

A
√

fnc ln fh
fl

+ ke fh

DNRppm = 106 6σ -resolution

Full-scale range
. (5.30)

This measure is equivalent to the resolution in nanometers of a sensor with a range
of 1 mm. In Fig. 5.6 the resolution is reported in terms of both absolute distance and
the dynamic range in ppm. The dynamic range can also be stated in decibels,

DNRdb = 20 log10
Full-scale range

6σ -resolution
. (5.31)

Due to the strong dependence of resolution and dynamic range on the bandwidth
of interest, it is clear that these parameters cannot be reported without the frequency
limits fl and fh , to do so would be meaningless. Even if the resolution is reported
correctly, it is only relevant for a single operating condition. A better alternative is to
report the noise density and 1/ f corner frequency, which allows the resolution and
dynamic range to be calculated for any operating condition. These parameters are also
sufficient to predict the closed-loop noise of a positioning system that incorporates
the sensor (Fleming 2012). If the sensor noise is not approximately Gaussian or the
spectrum is irregular, the resolution is measured using the process described above
for a range of logarithmically spaced bandwidths.

5.2.6 Combining Errors

The exact and worst-case errors described in Sect. 5.2 are summarized in Table 5.1. In
many circumstances, it is not practical to consider the exact error as this is dependent
on the position. Rather, it is preferable to consider only the simplified worst-case
error. An exception to the use of worst-case error is the drift error ed . In this case,
it may be unnecessarily conservative to consider the maximum error since the exact
error is easily related to the sensor output by the uncertainty in sensitivity and offset.

To calculate the worst-case error et , the individual worst-case errors are summed,
that is

et = em + ed + ebw + δ/2 (5.32)
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Fig. 5.7 The total uncertainty of a two-dimensional position measurement is illustrated by the
dashed box. The total uncertainty et is due to both the static trueness error es and the noise δ

where em , ed , ebw, δ/2 are the mapping error, the drift error, the error due to finite
bandwidth, and the error due to noise whose maximum is half the resolution δ. The
sum of the mapping and drift error can be referred to as the static trueness error
es which is the maximum error in a static position measurement when the noise is
effectively eliminated by a slow averaging filter. The total error and the static trueness
error are illustrated graphically in Fig. 5.7.

5.2.7 Metrological Traceability

The error of a position sensor has been evaluated with respect to the true position.
However, in practice, the “true” position is obtained from a reference sensor that
may also be subject to calibration errors, nonlinearity and drift. If the tolerance of
the calibration instrument is significant, this error must be included when evaluating
the position sensor accuracy. However, such consideration is usually unnecessary
as the tolerance of the calibration instrument is typically negligible compared to the
position sensor being calibrated. To quantify the tolerance of a calibration instrument,
it must be compared to a metrological reference for distance. Once the tolerance is
known, measurements produced by the instrument can then be related directly to the
reference, such measurements are said to be metrologically traceable.
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Metrological traceability is defined as “the property of a measurement result
whereby the result can be related to a reference through a documented unbroken
chain of calibrations, each contributing to the measurement uncertainty” (JCGM200
2008). The reference for a distance measurement is the meter standard, defined
by the distance traveled by light in vacuum over 1/299 792 458 seconds. Laser
interferometers are readily calibrated to this standard since the laser frequency can
be compared to the time standard which is known to an even higher accuracy than
the speed of light.

Metrological traceability has little meaning by itself and must be quoted with an
associated uncertainty to be valid (JCGM200 2008). If a position sensor is calibrated
by an instrument that is metrologically traceable, subsequent measurements made
by the position sensor are also metrologically traceable to within the bounds of the
uncertainty for a specified operating environment (ISO/IEC 1994).

To obtain metrologically traceable measurements with the least uncertainty, an
instrument should be linked to the reference standard through the least number of
intervening instruments or measurements. All countries have a national organization
that maintains reference standards for the calibration instruments. It should be noted
that these organizations have individual policies for the reporting of traceability if
their name is quoted. For example, to report that a measurement is NIST Traceable,
the policy of the National Institute of Standards and Technology (USA), must be
adhered to. Examples of measurement standards organizations include:

• National Measurement Institute (NIM), Australia
• Bureau International des Poids et Mesures (BIPM), France
• Physikalisch-Technische Bundesanstalt (PTB), Germany
• National Metrology Institute of Japan (NMIJ), Japan
• British Standards Institution (BMI), United Kingdom
• National Institute of Standards and Technology (NIST), USA.

5.3 Nanometer Position Sensors

5.3.1 Resistive Strain Sensors

Due to their simplicity and low-cost, resistive strain gauges are widely used for posi-
tion control of piezoelectric actuators. Resistive strain gauges can be integrated into
the actuator or bonded to the actuator surface. An example of a piezoelectric actuator
and resistive strain gauge is pictured in Fig. 5.14a. Other application examples can
be found in Lu et al. (2004), Dong et al. (2007), Schitter et al. (2008), Fleming and
Leang (2010).

Resistive strain gauges are constructed from a thin layer of conducting foil lami-
nated between two insulating layers. With a zig-zag conductor pattern, strain gauges
can be designed for high sensitivity in only one direction, for example, elongation.
When a strain gauge is elongated, the resistance increases proportionally. The change
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Fig. 5.8 A two-varying-element bridge circuit that contains two fixed resistors and two strain-
dependent resistors. All of the nominal resistance values are equal. A simultaneous change in the
two-varying-elements produces a differential voltage across the bridge

in resistance per unit strain is known as the gauge factor GF defined by

GF = �R/RG

ε
, (5.33)

where �R is the change in resistance from the nominal value RG for a strain ε.
As the gauge factor is typically in the order of 1 or 2, the change is resistance is
similar in magnitude to the percentage of strain. For a piezoelectric transducer with
a maximum strain of approximately 0.1 %, the change in resistance is around 0.1 %.
This small variation requires a bridge circuit for accurate measurement.

In Fig. 5.14b, a 10 mm Noliac SCMAP07 piezoelectric actuator is pictured with
a strain gauge bonded to each of the two nonelectrode sides. The strain gauges are
Omega SGD-3/350-LY13 gauges, with a nominal resistance of 350 Ohms and pack-
age dimensions of 7×4 mm. The electrical wiring of the strain gauges is illustrated
in Fig. 5.8. The two-varying-element bridge circuit is completed by two dummy
350 Ohm wire wound resistors and excited by a 5 Volt DC source. The differ-
ential bridge voltage (V + − V −) is acquired and amplified by a Vishay Micro-
Measurements 2120B strain gauge amplifier. The developed voltage from a two-
varying-element bridge is

Vs = AvVb

2

(
�R

RG + �R/2

)
, (5.34)

where Av=2000 is the differential gain and Vb=5 V is the excitation voltage. By
substituting (5.33) into (5.34) and neglecting the small bridge nonlinearity1, the
measured voltage is proportional to the strain ε and displacement d by

1 In a two-varying-element bridge circuit, the nonlinearity due to �R/2 in Eq. (5.34) is 0.5 %
nonlinearity per percent of strain (Kester 2002). Since the maximum strain of a piezoelectric actuator
is 0.1 %, the maximum nonlinearity is only 0.05 % and can be neglected. If this magnitude of
nonlinearity is not tolerable, compensating circuits are available (Kester 2002)
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Vs = 1

2
AvVbGFε (5.35)

Vs = 1

2L
AvVbGFd, (5.36)

where L is the actuator length. With a gauge factor of 1, the position sensitivity of
the amplified strain sensor is predicted to be 0.5 V/µm which implies a full-scale
voltage of 5 V from a displacement of 10 µm. The actual sensitivity was found to
be 0.3633 V/µm (Fleming and Leang 2010).

The bridge configuration shown in Fig. 5.8 is known as the two-varying-element
bridge. It has twice the sensitivity of a single-element bridge but is also slightly non-
linear and sensitive to temperature variations between the gauge and bridge resis-
tances. A detailed review of bridge circuits and their associated instrumentation can
be found in Ref. Kester (2002). The best configuration is the four-varying-element
differential bridge. This arrangement requires four strain gauges, two of which expe-
rience negative strain and another two that experience positive strain. Since the
bridge is made entirely from the same elements, the four-varying-element bridge
is insensitive to temperature variation. The bridge nonlinearity is also eliminated.
In applications where regions of positive and negative strain are not available, the
two-varying-element bridge is used.

Compared to other position sensors, strain gauges are compact, low-cost,
precise, and highly stable, particularly in a full-bridge configuration (Kester 2002;
Schitter et al. 2008). However, a major disadvantage is the high measurement noise
that arises from the resistive thermal noise and the low sensitivity. The power spectral
density of the resistive thermal noise is

S( f ) = 4kT R V2/Hz, (5.37)

where k is the Boltzmann constant (1.38 × 10−23), T is the room temperature in
Kelvin (300◦), and R is the resistance of each element in the bridge. In addition to
the thermal noise, the current through the bridge also causes 1/ f .

The strain gauge pictured in Fig. 5.14a has a resistance of 350 Ohms, hence the
spectral density is 2.4 nV/

√
Hz. Since the sensitivity is 0.3633 V/µm, the predicted

spectral density is 13 pm/
√

Hz. This figure agrees with the experimentally measured
spectral density plotted in Fig. 5.9. The sensor exhibits a noise density of approxi-
mately 15 pm/

√
Hz and a 1/ f noise corner frequency of around 5 Hz. This compares

poorly with the noise density of a typical inductive or capacitive sensor which is
on the order of 1 pm/

√
Hz for a range of 10 µm. Hence, strain gauges are rarely

used in systems designed for high resolution. If they are utilized in such systems, the
closed-loop bandwidth must be severely restrained.

As an example of strain gauge resolution, we consider a typical two-varying-
element strain gauge with an excitation of 5 V and a gauge factor of 1. The full-scale
voltage is predicted to be 2.5 mV for a 0.1 % strain. If we assume a 1/ f noise corner
frequency of 5 Hz, fl = 0.01 Hz, and a first-order bandwidth of 1 kHz (ke = 1.57).
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Fig. 5.9 The noise density of the strain sensor and instrumentation. The spectrum can be approxi-
mated by a constant spectral density and 1/ f noise

The resolution predicted by Eq. (5.29) is 580 nV or 230 ppm. In other words, if the
full-scale range was 100µm, the resolution would be 23 nm, which is not competitive.

5.3.2 Piezoresistive Strain Sensors

In 1954, a visiting researcher at Bell Laboratories, Smith, demonstrated that “excep-
tionally large” resistance changes occur in silicon and germanium when subjected
to external strain (Smith 1954). This discovery was the foundation for today’s semi-
conductor piezoresistive sensors that are now ubiquitous in applications such as
integrated pressure sensors and accelerometers (Barlian et al. 2009).

Compared to metal foil strain gauges that respond only to changes in geometry,
piezoresistive sensors exhibit up to two orders of magnitude greater sensitivity. In
addition to their high strain sensitivity, piezoresistive sensors are also easily integrated
into standard integrated circuit and MEMS fabrication processes which is highly
advantageous for both size and cost. The foremost disadvantages associated with
piezoresistive sensors are the low strain range (0.1 %), high temperature sensitivity,
poor long-term stability, and slight nonlinearity (1 %) (Barlian et al. 2009). The
elimination of these artifacts requires a more complicated conditioning circuit than
metal foil strain gauges; however, integrated circuits are now available that partially
compensate for nonlinearity, offset, and temperature dependence, for example, the
Maxim MAX1450.

As shown in Fig. 5.10, a typical integrated piezoresistive strain sensor consists of
a planar n-doped resistor with heavily doped contacts. When the sensor is elongated
in the x-axis, the average electron mobility increases in that direction, reducing
resistance (Barlian et al. 2009). The effect is reverse during compression, or if the
resistor is p-type. Since the piezoresistive effect is due to changes in the crystal lattice,
the effect is highly dependent on the crystal orientation. The change in resistance
can be expressed as,
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Fig. 5.10 A cross-section of a piezoresistive strain sensor. Deformation of the semiconductor
crystal causes a resistance change one-hundred times that of a resistive strain gauge

�R = RG
[
πLσxx + πT

(
σyy + σzz

)]
, (5.38)

where �R is the change in resistance; RG is the nominal resistance; σxx , σyy , and
σzz are the tensile stress components in each axis; and πL and πT are the longitudi-
nal and transverse piezoresistive coefficients which are determined from the crystal
orientation (Barlian et al. 2009).

Due to the temperature dependence and low strain range, piezoresistive sensors
are primarily used in microfabricated devices where the difficulties are offset by
the high sensitivity and ease of fabrication, for example, meso-scale nanoposition-
ers (DiBiasio and Culpepper 2008) and MEMs devices (Messenger et al. 2009).
Discrete piezoresistive sensors are also available for standard macro-scale nanoposi-
tioning applications, for example, Micron Instruments SS-095-060-350PU. Discrete
piezoresistive strain sensors are significantly smaller than metal foil gauges, for
example, the Micron Instruments SS-095-060-350PU is 2.4 mm × 0.4 mm. The
sensitivity is typically specified in the same way as a metal foil sensor, by the gauge
factor defined in Eq. (5.33). While the gauge factor of a metal foil sensor is between
1 and 2, the gauge factor of the Micron Instruments SS-095-060-350PU is 120.

Due to the temperature dependence of piezoresistive strain sensors, practical appli-
cation requires a closely collocated half- or full-bridge configuration, similar to a
metal foil gauge. The required signal conditioning is also similar to the metal foil
gauges. If an accuracy of better than 1 % is required, or if large changes in temperature
are expected, the piezoresistive elements must be closely matched and the signal con-
ditioning circuit must be compensated for temperature and nonlinearity. Two fully
integrated bridge conditioning circuits include the MAX1450 and MAX1452 from
Maxim Integrated Products, USA.

Alike metal foil strain gauges, the noise in piezoresistive sensors is predominantly
thermal and 1/ f noise (Barlian et al. 2009). However, since piezoresistive sensors
are semiconductors, the 1/ f noise can be substantially worse (Barlian et al. 2009).
Consider the Micron Instruments SS-095-060-350PU piezoresistive sensor which
has a gauge factor of 120 and a resistance of 350 Ω . In a two-varying-element bridge
with 2-V excitation, Eq. (5.35) predicts that a full-scale strain of 0.1 % develops
120 mV. The thermal noise due to the resistance is 2.4 nV/

√
Hz. If the 1/ f noise

corner frequency is assumed to be 10 Hz, the resolution with a first-order bandwidth
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of 1000 Hz is 130 nV which implies a 6σ -resolution of 590 nV or 4.9 ppm. Restated,
if the full-scale displacement was 100 µm, the resolution would be 0.49 nm.

Although the majority of piezoresistive sensors are integrated directly into MEMS
devices, discrete piezoresistive strain sensors are available from: Kulite Semiconduc-
tor Products Inc., USA; and Micron Instruments, USA.

5.3.3 Piezoelectric Strain Sensors

In addition to their actuating role, piezoelectric transducers are also widely utilized
as high sensitivity strain sensors (Sirohi and Chopra 2000; Fleming and Moheimani
2005; Maess et al. 2008; Fleming et al. 2008; Fleming 2010; Yong et al. 2010,
2013). This is a common use for piezoelectric transducers in fields such as vibration
control (Moheimani and Fleming 2006) but not in positioning applications. Benefi-
cially, piezoelectric sensors can provide extremely high strain sensitivity with low
measurement noise at high frequencies. However, they are also highly sensitive to
temperature, prone to drift, and unable to measure static and low-frequency strains.
The key is to utilize piezoelectric strain sensors in applications that benefit from their
advantages but are not hindered by their limitations. In nanopositioning applications,
piezoelectric strain sensors can be used for damping and vibration control as dis-
cussed in Chaps. 7 and 8, and for position measurement when an additional sensor
is available, for example, in Ref. Fleming et al. (2008) or Chap. 8.

The basic operation of a piezoelectric strain sensor is illustrated in Fig. 5.11a. In
this case the applied force F and resulting strain �h/h is aligned in the same axis as
the polarization vector. Recall from Chap. 2 that the polarization vector points in the
same direction as the internal dipoles which is opposite in direction to the applied
electric field. Thus, compression of the actuator results in a voltage of the same
polarity as the voltage applied during polarization. From the stress-voltage form of
the piezoelectric constituent equations, the developed electric field E is

E = q33
�h

h
, (5.39)

where �h is the change in thickness, h is the thickness, and q33 is the piezoelectric
coupling coefficient for the stress-voltage form. The constant q33 is related to the
piezoelectric strain constant d33 by

q33 = d33

εT s D
, (5.40)

where εT is the permittivity under constant stress (in Farad/m), and s D is the elas-
tic compliance under constant electric displacement (in m2/N). If the piezoelectric
voltage constant g33 is known instead of q33 or d33, q33 can also be derived from
q33 = g33/s D . By multiplying (5.40) by the thickness h, the measured voltage can
be written as:

http://dx.doi.org/10.1007/978-3-319-06617-2_7
http://dx.doi.org/10.1007/978-3-319-06617-2_8
http://dx.doi.org/10.1007/978-3-319-06617-2_8
http://dx.doi.org/10.1007/978-3-319-06617-2_2
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Fig. 5.11 A piezoelectric stack and plate strain sensor. The polarization vector is shown as a
downward arrow. Axial sensors are typically used to measure dynamic forces while flexional
sensors are used to measure changes in strain or curvature

Vs = q33�h, (5.41)

If there are multiple layers, the voltage is

Vs = q33

n
�h, (5.42)

where n is the number of layers. The developed voltage can also be related to the
applied force (Fleming and Leang 2010), as discussed in Sect. 8.2.2.

Vs = nd33

C
F, or Vs = d33h

nεT A
F, (5.43)

where C is the transducer capacitance defined by C=n2εT A/h, and A is the area
The voltage developed by the flexional sensor in Fig. 5.11b is similar to the axial

sensor except for the change of piezoelectric constant. In a flexional sensor, the
applied force and resulting strain are perpendicular to the polarization vector. Hence,
the g31 constant is used in place of the g33 constant. Assuming that the length L is
much larger than the width and thickness, the developed voltage is

http://dx.doi.org/10.1007/978-3-319-06617-2_8
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Fig. 5.12 A piezoelectric tube actuator with one electrode utilized as a strain sensor. The electrical
equivalent circuit consists of the induced piezoelectric voltage Vp in series with the transducer
capacitance. The dielectric leakage and input impedance of the buffer circuit are modeled by the
parallel resistance Rp . An effective method for shielding the signal is to use a triaxial cable with the
intermediate shield driven at the same potential as the measured voltage. (Tube drawing courtesy
K. K. Leang)

Vs = −g31

L
F, (5.44)

which can be rewritten in terms of the stiffness k and strain,

Vs = −g31k
�L

L
(5.45)

Vs = −g31 A

s D L

�L

L
, (5.46)

where A is the cross-sectional area equal to width × thickness.
When mounted on a host structure, flexional sensors can be used to detect the

underlying stress or strain as well as the curvature or moment (Moheimani and
Fleming 2006; Preumont 2006; Sirohi and Chopra 2000). In nanopositioning appli-
cations, the electrodes of a piezoelectric tube act as a plate sensor and can be used
to detect the strain and hence displacement (Maess et al. 2008; Fleming et al. 2008;
Yong et al. 2010). This application is illustrated in Fig. 5.12.

Due to the high mechanical stiffness of piezoelectric sensors, thermal or Boltz-
mann noise is negligible compared to the electrical noise arising from interface
electronics. As piezoelectric sensors have a capacitive source impedance, the noise
density NV s(ω) of the sensor voltage Vs is due primarily to the current noise in gen-
erated by the interface electronics. The equivalent electrical circuit of a piezoelectric
sensor and high-impedance buffer is shown in Fig. 5.13. Neglecting the leakage
resistance R, the noise density of the sensor voltage is

NV s(ω) = in
1

Cω
, (5.47)
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Fig. 5.13 The electrical model of a piezoelectric force sensor. The open-circuit voltage Vp is
high-pass filtered by the transducer capacitance C and leakage resistance R. The current source in
represents the current noise of a high-impedance buffer

where NV s and in are the noise densities of the sensor voltage and current noise,
measured in Volts and Amps per

√
Hz respectively.

The experimentally measured and predicted noise density of a piezoelectric sensor
is plotted in Fig. 5.14. The sensor is a 2-mm Noliac CMAP06 stack mounted on top of
10-mm long actuator, the assembly is mounted in the nanopositioning stage pictured
in Fig. 5.15. The sensor has a capacitance of 30 nF and the voltage buffer (OPA606)
has a noise density of 2 fA/

√
Hz. Further details on the behavior of piezoelectric

force sensors can be found in Sect. 8.2.2.
In Fig. 5.14b the noise density of the piezoelectric sensor is observed to be more

than two orders of magnitude less than the strain and inductive sensors at 100 Hz.
The noise density also continues to reduce at higher frequencies. However, at low
frequencies the noise of the piezoelectric force sensor eventually surpass the other
sensors. As the noise density is equivalent to an integrator excited by white noise,
the measured voltage drifts significantly at low frequencies. A time record that illus-
trates this behavior is plotted in Fig. 5.16. The large drift amplitude is evident. Thus,
although the piezoelectric force sensor generates less noise than the strain and induc-
tive sensors at frequencies in the Hz range and above, it is inferior at frequencies
below approximately 0.1 Hz.

In addition to noise, piezoelectric force sensors are also limited by dielectric
leakage and finite buffer impedance at low-frequencies. The induced voltage Vp

shown in Fig. 5.13 is high-pass filtered by the internal transducer capacitance C and
the leakage resistance R. The cut-off frequency is

fhp = 1

2π RC
Hz. (5.48)

The buffer circuit used in the results above has an input impedance of 100 MΩ , this
results in a low-frequency cut-off of 0.05 Hz. To avoid a phase lead of more than 6
degrees, the piezoelectric force sensor cannot be used to measure frequencies of less
than 0.5 Hz.

http://dx.doi.org/10.1007/978-3-319-06617-2_8
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Fig. 5.14 a A piezoelectric stack actuator with an integrated force sensor and two resistive strain
gages bonded to the top and bottom surface (the bottom gauge is not visible). In b, the noise density
of the piezoelectric sensor is compared to the resistive strain gauge and a Kaman SMU9000-15N
inductive sensor, all signals are scaled to nm/

√
Hz. The simulated noise of the piezoelectric force

sensor is also plotted as a dashed line

Piezoelectric actuators and sensors are commercially available from: American
Piezo (APC International, Ltd.), USA; CeramTec GmbH, Germany; Noliac A/S,
Denmark; Physik Instrumente (PI), Germany; Piezo Systems Inc., USA; and Sensor
Technology Ltd., Canada.

5.3.4 Capacitive Sensors

Capacitive sensors are the most commonly used sensors in short-range nanopo-
sitioning applications. They are relatively low-cost and can provide excellent lin-
earity, resolution and bandwidth (Baxter 1997). However, due to the electronics
required for measuring the capacitance and deriving position, capacitive sensors are
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Fig. 5.15 A nanopositioning platform with a two-varying-element strain gauge fitted to the y-
axis actuator (Fleming and Leang 2010). The nanopositioner is driven by two piezoelectric stack
actuators that deflect the sample platform by a maximum of 10 µm in the x and y lateral axes
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Fig. 5.16 Low-frequency noise of the piezoelectric sensor pictured in Fig. 5.14a, scaled to nanome-
ters. The peak-to-peak noise over 220 s is 38 nm or 26 mV

inherently more complex than sensors such as resistive strain gauges. Larger ranges
can be achieved with the use of an encoder-style electrode array (Kim et al. 2006).

All capacitive sensors work on the principle that displacement is proportional
to the change in capacitance between two conducting surfaces. If fringe effects are
neglected, the capacitance C between two parallel surfaces is

C = ε0εr A

h
, (5.49)
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Fig. 5.17 Types of capacitive sensor. The axial moving plate produces the highest sensitivity but
the smallest practical travel range. Lateral moving plate and moving dielectric sensors are most
useful in long-range applications

where ε0 is the permittivity of free space, εr is the relative permittivity of the dielectric
(or dielectric constant), A is area between the surfaces, and h is the distance between
the surfaces.

Three types of capacitive sensor are illustrated in Fig. 5.17. The lateral moving
plate design is used for long range measurements where the plate spacing can be held
constant. This is often achieved with two concentric cylinders mounted on the same
axis. In this configuration, the change in capacitance is proportional to the change in
area and hence position. A similar arrangement can be found in the moving dielectric
sensor where the area and distance are constant but the dielectric is variable. This
approach is not commonly used because a solid dielectric is required that causes
friction and mechanical loading.

The axial moving plate, or parallel plate capacitive sensor is the most common
type used in nanopositioning applications. Although the useful range is smaller than
other configurations, the sensitivity is proportionally greater. The capacitance of a
moving plate sensor is

C = ε0εr A

d
, (5.50)

hence, the sensitivity is
d C

d d
= C0

d0
F/m, (5.51)

where C0 and d0 are the nominal capacitance and distance. Thus, for a sensor with a
nominal capacitance of 10 pF and spacing of 100 µm, the sensitivity is 100 fF/µm.
The sensitivity of different capacitive sensor types is compared in Hicks et al. (1997).

A practical parallel plate capacitive sensor is illustrated in Fig. 5.18. In addi-
tion to the probe electrode, a guard electrode is also used to shield the probe from
nearby electric fields and to improve linearity. The guard electrode is driven at the
same potential as the probe but is not included in the capacitance measurement.
As the fringing effect in the electric field is only present at the outside electrode,
the nonlinearity in the capacitance measurement and distance calculation is reduced.
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Fig. 5.18 A capacitive sensor probe and electrode configuration. The guard electrode is driven at
the same potential as the probe in order to linearize the electric field and reduce fringing effects

A summary of correction terms for different guard electrode geometries can be found
in Refs. Hicks et al. (1997) and Baxter (1997).

To measure the capacitance and thus derive the position, a wide variety of circuits
are available (Nyce 2004; Baxter 1997). The simplest circuits are timing circuits
where the timing capacitor is replaced by the sensor capacitance. Examples include
the ubiquitous 555 timer in the one-shot or free-running oscillator modes. The output
of a one-shot circuit is a pulse delay proportional to the capacitance. Likewise, the
output of the oscillator is a square-wave whose frequency is proportional to capac-
itance. Although these techniques are not optimal for nanopositioning applications,
they are simple, low-cost, and can be directly connected to a microcontroller with
no analog-to-digital converters.

A direct measurement of the capacitance can be obtained by applying an AC
voltage V to the probe electrode and grounding the target. The resulting current I is
determined by Ohms law,

I = jωV C, (5.52)

where ω is the excitation frequency in rad/s. Since the current is proportional to
capacitance, this method is useful for the lateral moving plate and moving dielectric
configurations where the displacement is also proportional to capacitance. For the
axial moving plate configuration, where the displacement is inversely proportional
to capacitance, it is more convenient to apply a current and measure the voltage. In
this case, the measured voltage in response to an applied current is

V = I

jωC
, (5.53)

which is inversely proportional to capacitance and thus proportional to displacement.
Regardless of whether the current or voltage is the measured variable, it is neces-

sary to compute the AC magnitude of the signal. The simplest circuit that achieves this
is the single-diode demodulator or envelope detector shown in Fig. 5.19a. Although
simple, the linearity and offset voltage of this circuit are dependent on the diode char-
acteristics which are highly influenced by temperature. A better option is the syn-
chronous demodulator with balanced excitation shown in Fig. 5.19b. A synchronous



5.3 Nanometer Position Sensors 131

Vs

Vs

CrCr

CC

ref

input
mag

(a) (b)

Fig. 5.19 Demodulation circuits for measuring capacitance. The linearity, temperature sensitivity,
and noise performance of the synchronous detector is significantly better than the single-diode
envelope detector

Table 5.2 A summary of error sources in a parallel plate capacitive sensor studied in Hicks et al.
(1997)

Errors due to tilting
Tilt angle 2 mrad 5 mrad
Nonlinearity 0.08 % 0.6 %
Offset 0.35 % 2.4 %
Scale error 0.8 % 5.4 %
Errors due to bowing
Bow depth 10 µm 30 µm
Nonlinearity 0.025 % 0.33 %
Offset 5 % 18 %
Scale error 3 % 11 %

The sensor has a gap of 100 µm, a radius of 6 mm, and a nominal capacitance of 10 pF

demodulator can be constructed from a filter and voltage controlled switch (Nyce
2004; Baxter 1997). Integrated circuit demodulators such as the Analog Devices
AD630 are also available. Synchronous demodulators provide greatly improved lin-
earity and stability compared to single-diode detectors.

The balanced excitation in Fig. 5.19b eliminates the large DC offset produced by
single-ended demodulators, such as Fig. 5.19a. The balanced configuration also elim-
inates the offset sensitivity to changes in the supply voltage, which greatly improves
the stability. Although single-ended excitation can be improved with a full-bridge
configuration, this requires a high common-mode rejection ratio, which is difficult
to obtain at high frequencies.

In general, capacitive sensors with guard electrodes can provide excellent lin-
earity in ideal conditions (10 ppm or 0.001 %); however, practical limitations can
significantly degrade this performance. A detailed analysis of capacitive sensor non-
linearity in Hicks et al. (1997) concluded that the worst sources of nonlinearity are
tilting and bowing. Tilting is the angle between the two parallel plates and bowing
is the depth of concavity or convexity.

A summary of the error analysis performed in Hicks et al. (1997) is contained in
Table 5.2. Considering that the linearity of an capacitive sensor in ideal conditions can
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Fig. 5.20 An example of two commercially available capacitive sensors. Photos courtesy of
Queensgate Instruments, UK and Micro-Epsilon, Germany

be 0.001 %, the effect of tilting and bowing severely degrades the performance. These
errors can be reduced by careful attention to the mounting of capacitance sensors. It
is recommended that capacitive sensors be fixed with a spring washer rather than a
screw. This can significantly reduce mounting stress on the host structure and sensor.
In addition to deformation, excessive mounting forces can slowly relieve over time
causing major drifts in offset, linearity, and sensitivity.

The magnitude of error due to tilting and bowing can be reduced by increasing
the nominal separation of the two plates, this also increases the range. However, if
the area of the sensor is not increased, the capacitance drops, which increases noise.

The noise developed by a capacitive sensor is due primarily to the thermal and
shot-noise of the instrumentation electronics. Due to the demodulation process, the
noise spectral density is relatively flat and does not contain a significant 1/ f com-
ponent. Although the electronic noise remains constant with different sensor con-
figurations, the effective position noise is proportional to the inverse of sensitivity.
As the sensitivity is C0/d0 (5.51), if the capacitance is doubled by increasing the
area, the position noise density is reduced by half. However, if the nominal gap d0
is doubled to improve the linearity, the capacitance also halves, which reduces the
sensitivity and increases the noise density by a factor of four. The position noise
density is minimized by using the smallest possible plate separation and the largest
area.

A typical commercial capacitive sensor with a range of 100µm has a noise density
of approximately of 20 pm/

√
Hz (Fleming et al. 2008). The 1/ f corner frequency of

a capacitive sensor is typically very low, around 10 Hz. With a first-order bandwidth
of 1 kHz, the resolution predicted by Eq. (5.29) is 2.4 nm or 24 ppm. This can be
reduced to 0.55 nm or 5.5 ppm by restricting the bandwidth to 10 Hz.

Capacitive position sensors are commercially available from: Capacitec, USA;
Lion Precision, USA; Micro-Epsilon, Germany; MicroSense, USA; Physik Instru-
mente (PI), Germany; and Queensgate Instruments, UK. Two commercially available
devices are pictured in Fig. 5.20.
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Fig. 5.21 Three examples of MEMs capacitive sensor geometries. a Standard comb sensor; b
Differential comb sensor; c Incremental capacitive encoder

5.3.5 MEMs Capacitive and Thermal Sensors

MEMs capacitive sensors operate on a similar principles to their macro-scale coun-
terpart discussed in the previous section. However, due to their small size, a more
complicated geometry is required to achieve a practical value of capacitance. The
comb type sensor illustrated in Fig. 5.21a is a common variety found in a number of
nanopositioning applications, for example Chu and Gianchandani (2003), Zhu et al.
(2011). In this configuration, the total capacitance is approximately proportional to
the overlap area of each electrode array.

The basic comb sensor can be improved by employing a differential detection
method as illustrated in Fig. 5.21b. Here, two sets of excitation electrodes (terminals
2 and 3) are driven 180 degrees out of phase. Thus, at the central position, the
potential at terminal 1 is zero. This configuration provides a higher sensitivity than
the basic comb sensor and is used extensively in devices such as accelerometers and
gyroscopes (Baxter 1997; Kovacs 1998).

To increase the range of motion beyond a single inter-electrode spacing, the con-
figuration in Fig. 5.21c uses withdrawn electrodes to form a capacitive incremental
encoder (Kuijpers et al. 2003, 2006a, b). The slider can now move freely in either
direction, limited only by the length of the excitation array. As the slider moves hor-
izontally, the induced voltage at terminal 1 alternates between the phase of terminals
2 and 3. A second array is typically used to create a quadrature signal for ascertain-
ing the direction of travel. This approach can provide a large travel range with high
resolution but the decoding electronics is more complicated and the performance is
sensitive to the separation between the arrays. If the two arrays can be overlain ver-
tically, the capacitance can be increased while the difficulties with array separation
are reduced (Lee et al. 2009; Lee and Peters 2009).

Electrothermal sensors are an alternate class of position sensors first utilized in
nanopositioning applications by IBM in 2005 (Lantz et al. 2005). An example of
a differential electrothermal position sensor is illustrated in Fig. 5.22. Two micro-
heaters are driven by a DC voltage source resulting in a temperature increase. Due
to the heat transfer between the microheater and moving heatsink, the temperature
of each microheater becomes a function of the overlap area and hence position.
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Fig. 5.22 An electrothermal position sensor. The two stationary microheaters are driven by a
constant voltage source versus the rate of heat transfer and the resulting temperature is proportional
to the overlap between the heater and the heatsink. The position of the heatsink can be estimated
by measuring the current difference between the two microheaters which indicates the difference
in resistance and temperature

The heatsink position is estimated by measuring the difference in current which is
related to the resistance and temperature.

An advantage of electrothermal sensors over capacitive sensors is the compact
size which has made them appealing in applications such as data storage (Pantazi
et al. 2007; Sebastian et al. 2008; Sebastian and Wiesmann 2008) and nanoposi-
tioning (Sebastian and Pantazi 2012; Zhu et al. 2011). The noise performance of
electrothermal sensors can be similar or superior to capacitive sensors under certain
conditions. However, due to the elevated temperature, electrothermal sensors are
known to exhibit a significant amplitude of low-frequency noise (Zhu et al. 2011).

With a range of 100 µm, a thermal position sensing scheme achieved a noise
density of approximately 10 pm/

√
Hz with a 1/f corner frequency of approximately

3 kHz (Sebastian and Pantazi 2012). This resulted in a resolution of 10 nm over a
bandwidth of 4 kHz. As a result of the low frequency noise and drift, an auxiliary
position sensor was utilized at frequencies below 24 Hz (Sebastian and Pantazi
2012).

5.3.6 Eddy-Current Sensors

Eddy-current, or inductive proximity sensors, operate on the principle of electro-
magnetic induction (Fraden 2004; Fericean and Droxler 2007). As illustrated in
Fig. 5.23, an eddy-current probe consists of a coil facing an electrically conductive
target. When the coil is excited by an AC current, the resulting magnetic field passes
through the conductive target and induces a current according to Lenz’s law. The
current flows at right angles to the applied magnetic field and develops an opposing
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Fig. 5.23 The operating principle of an eddy-current sensor. An alternating current in the coil
induces eddy-currents in the target. Increasing the distance between the probe and target reduces
the eddy-currents and also the effective resistance of the coil
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Fig. 5.24 Types of eddy-current sensor. The unshielded type has the greatest range but is affected
by nearby fields and conductors. A shield makes the magnetic field more directional but reduces
the range. A reference coil can be used to reduce the sensitivity to temperature

field. The eddy-currents and opposing field become stronger as the probe approaches
the target.

The distance between probe and target is detected by measuring the AC resistance
of the excitation coil which depends on the magnitude of the opposing field and eddy-
current. The required electronics are similar to that of a capacitive sensor and include
an oscillator and demodulator to derive the resistance (Roach 1998; Fraden 2004;
Nyce 2004).

Three common types of eddy-current sensor are depicted in Fig. 5.24. The
unshielded sensor has a large magnetic field that provides the greatest range; however,
it also requires the largest target area and is sensitive to nearby conductors. Shielded
sensors have a core of permeable material such as Permalloy, which reduces the sen-
sitivity to nearby conductors and requires less target area; however, they also have
less range. The balanced type has a second shielded or noninductive coil that is used
to null the effect of temperature variation (Li and Ding 2005). The second coil is
used in a divider or bridge configuration such as that illustrated in Fig. 5.25.
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Fig. 5.25 Synchronous demodulation circuit for a balanced eddy-current sensor. Lr and Rr are the
inductance and resistance of the reference coil

Another type of position sensor similar to an eddy-current sensor is the inductive
proximity sensor, also referred to as a differential reluctance transducer if a reference
coil is present. Rather than a conductive target, an inductive proximity sensor requires
a ferromagnetic target. Since the reluctance of the magnetic path is proportional to the
distance between the probe and target, the displacement can be derived from the coil
inductance. Inductive proximity sensors have the same construction and electronics
requirement as an eddy-current sensor. Their main drawback compared to eddy-
current sensors is the temperature-dependent permeability of the target material and
the presence of magnetic hysteresis.

Eddy-current sensors are not as widely used as capacitive sensors in nanopo-
sitioning applications due to the temperature sensitivity and range concerns. The
temperature sensitivity arises from the need of an electrical coil in the sensor head
and the varying resistance of the target. The minimum range of an eddy-current sen-
sor is limited by the minimum physical size of the coil, which imposes a minimum
practical range of between 100 and 500 µm. In contrast, capacitive sensors are avail-
able with a range of 10 µm, which can provide significantly higher resolution in
applications with small travel ranges.

The major advantage of eddy-current and inductive sensors is the insensitivity to
dust and pollutants in the air-gap and on the surface of the sensor. This gives them a
significant advantage over capacitive sensors in industrial applications.

The noise performance of an eddy-current sensor can be similar to that of a capaci-
tive sensor. For example, the noise density of the Kaman SMU9000-15N which has a
range of 500 µm is plotted in Fig. 5.14b. The 1/ f corner frequency is approximately
20 Hz and the constant density is approximately 20 pm/

√
Hz. Equation (5.29) pre-

dicts a resolution of 5 nm or 10 ppm with a bandwidth of 1 kHz. Due to the physical
size of the coils, smaller ranges, and higher resolution is difficult to achieve.

Eddy-current position sensors are commercially available with ranges of approx-
imately 100 µm–80 mm. Manufacturers include: Micro-Epsilon, Germany; Kaman
Sensors, USA; MicroStrain, USA; Keyence, USA; Lion Precision, USA; and Ixthus
Instrumentation, UK. Two commercially available devices are pictured in Fig. 5.26
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Fig. 5.26 Two commercially available eddy-current sensors. Photos courtesy of Lion Precision,
USA and Micro-Epsilon, Germany
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Fig. 5.27 The operating principle of a Linear Variable Displacement Transducer (LVDT). Changes
in the core position produce a linear differential change in the coupling between the driving coil
and the pick-up coils

5.3.7 Linear Variable Displacement Transformers

Linear Variable Displacement Transformers (LVDTs) are used extensively for dis-
placement measurement with ranges of 1 mm to over 50 cm. They were originally
described in a patent by G. B. Hoadley in 1940 (US Patent 2,196,809) and became
popular in military and industrial applications due to their ruggedness and high res-
olution (Nyce 2004).

The operating principle of an LVDT is illustrated in Fig. 5.27. The stationary part
of the sensor consists of a single driving coil and two sensing coils wound onto a
thermally stable bobbin. The movable component of the transducer is a permeable
material such as Nickel-Iron (Permalloy), and is placed inside the bobbin. The core
is long enough to fully cover the length of at least two coils. Thus, at either extreme,
the central coil always has a complete core at its center.

Since the central coil always has a complete core, all of the magnetic flux is
concentrated in the core. As the core moves, the amount of flux passing through
each sensor coil is proportional to the length of core contained within. Hence, the
displacement of the core is proportional to the difference in voltage induced in the
sensor coils. This principle is shown in Fig. 5.28.
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Fig. 5.28 The relationship between the sensor coil voltage and core position in an LVDT. The coil
voltage is proportional to the amount or core it contains
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Fig. 5.29 A LVDT conditioning circuit with a synchronous demodulator and differential ampli-
fier (Nyce 2004)

In addition to the components in Fig. 5.27, a bearing is required to guide the
motion of the core through the bobbin. An external case is also required that can be
constructed from a permeable material to provide magnetic shielding of the coils. It
is important that the push-rod be constructed from a nonmagnetic material such as
Aluminum or plastic otherwise it contributes erroneously to the coupling between
the coils.

The electronics required by an LVDT are similar to that required for a capacitive
or inductive sensor. An oscillator excites the driving coil with a frequency of around
1 kHz. Although higher frequencies increase the sensor bandwidth they also induce
eddy-currents in the core that are detrimental to performance (Nyce 2004). Alike
a capacitive or eddy-current sensor, a demodulator is required to determine the AC
magnitude of the voltage induced in each coil. A simple synchronous demodulator
circuit for this purpose is shown in Fig. 5.29 (Nyce 2004). The square-wave oscillator
is replaced by a sine-wave oscillator if the electronics and LVDT are not physically
collocated. Other demodulation circuits include the single-diode demodulator in
Fig. 5.19a and the AD630-based demodulator in Fig. 5.19b.
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Fig. 5.30 Two commercially available LVDT sensors. Photos courtesy of Singer Instruments, Israel
and Macro Sensors, USA

The greatest advantages of LVDTs are the infinitesimal resolution, large range,
simplicity, and ruggedness. Very low levels of electrical noise can be achieved due
to the low-impedance of the sensing coils. Nonlinearity is also below 1 % without
the need for field calibration or mapping functions. The major drawbacks of LVDTs
include the limited bandwidth and sensitivity to lateral motion. Due to eddy-currents
and the inter winding capacitance, the excitation frequency is limited to a few tens
of kHz, which limits the bandwidth to between 100 Hz and 1 kHz. Although classi-
fied as a noncontact sensor, bearings are required to guide the core linearly through
the bobbin. This can be a significant disadvantage in nanopositioning applications
if the sensor adds both friction and mass to the moving platform. However, if the
platform is already flexure-guided, additional bearings may not be required. LVDTs
are most suited to one-degree-of-freedom applications with relatively large displace-
ment ranges of approximately 1 mm or greater. A range of less than 0.5 mm is
difficult to achieve due to the small physical size of the coils. A notable exception
is the air core LVDT coils used to detect position in the Asylum Research (USA)
atomic force microscopes (Proksch et al. 2007). The air core eliminates eddy- current
losses and Barkhausen noise caused by the high permeability materials. An RMS
noise of 0.19 nm was reported for a range of 16 µm which equates to a resolution of
approximately 1.14 nm and a dynamic range of 71 ppm (Proksch et al. 2007).

The theoretical resolution of LVDT sensors is limited primarily by the Johnson
noise of the coils and Barkhausen noise in the magnetic materials (Proksch et al.
2007). However, standard conditioning circuits like the Analog Devices AD598 pro-
duce electronic noise on the order of 50 µVp-p with a bandwidth of 1 kHz. This
imposes a resolution of approximately 10 ppm when using a driving amplitude of
5 Vp-p. Since the smallest commercially available range is 0.5 mm, the maximum
resolution is approximately 5 nm with a 1 kHz bandwidth.

Due to their popularity, LVDTs and the associated conditioning electronics are
widely available. Some manufacturers of devices that may be suitable in micro- and
nanopositioning applications include: Macro Sensors, USA; Monitran, UK; Singer
Instruments, Israel; MicroStrain, USA; Micro-Epsilon, USA; and Honeywell, USA.
Two commercially available LVDTs are pictured in Fig. 5.30.
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Fig. 5.31 The operation of a Michelson interferometer. The laser light is split into two paths, one
that encounters a moving mirror and another that is fixed. The two beams are recombined and
interfere at the detector. If the distance between the paths is an integer number of wavelengths,
constructive interference occurs

5.3.8 Laser Interferometers

Since 1960, the meter length standard has been defined by optical means. This change
arose after Michelson invented the interferometer which improved the accuracy of
length measurement from a few parts in 107, to a few parts in 109 (Hariharan 2007).
Thus, in 1960, the meter was redefined in terms of the orange line from a 86Kr
discharge lamp.

In 1983, the meter was redefined as the length traveled by light in a vacuum dur-
ing a time interval of 1/299 792 458 s (Hariharan 2007). This definition was chosen
because the speed of light is now fixed and the primary time standard, based on
the 133Cs clock, is known to an accuracy of a few parts in 1011 (Hariharan 2007).
Length measurements are performed by interferometry using lasers with a frequency
measured against the time standard. With a known frequency and speed, the laser
wavelength can be found to an extremely high accuracy. Stabilized lasers are now
available with precisely calibrated wavelengths for metrological purposes. Metro-
logical traceability is described further in Sect. 5.2.7.

The operating principle of a Michelson interferometer is described in Fig. 5.31.
A laser beam is split into two paths, one that is reflected by a moving mirror and
another reflected by a stationary mirror. The movement of the mirror is measurable
by observing the fringe pattern and intensity at the detector. If the distance between
the paths is an integer number of wavelengths, constructive interference occurs. The
displacement of the moving mirror, in wavelengths, is measured by counting the
number of interference events that occur. The phase of the interference, and hence
the displacement between interference events, can also be derived from the detector
intensity.
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Fig. 5.32 A ZMI™two-axis heterodyne interferometer with a single laser source for measuring
the angle and displacement of a positioning stage. Courtesy of Zygo, USA

Although simple, the Michelson interferometer is rarely used directly for displace-
ment metrology. Due to the reference path, the Michelson interferometer is sensitive
to changes or movement in the reference mirror and the beam splitter. Differences
between the optical medium in the reference and measurement path are also prob-
lematic. Furthermore, the Michelson interferometer is not ideal for sub-wavelength
displacement measurements as the phase sensitivity is a function of the path length.
For example, at the peaks of constructive and destructive interference, the phase
sensitivity is zero.

Modern displacement interferometers are based on the Heterodyne interferome-
ter by Duke and Gordon from Hewlett-Packard in 1970 (Dukes and Gordon 1970).
Although similar in principle to a Michelson interferometer, the heterodyne interfer-
ometer, overcomes many of the problems associated with the Michelson design. Most
importantly, the phase sensitivity remains constant regardless of the path length.

Since the original work in 1970, a wide variety of improvements have been made
to the basic heterodyne interferometer, for example Sommargren (1986). All of these
devices work on the heterodyne principle, where the displacement is proportional to
the phase (or frequency) difference between two laser beams. In heterodyne interfer-
ometers, the displacement signal is shifted up in frequency which avoids 1/ f noise
and provides immunity from low-frequency light source intensity variations.

In the original design, the two frequencies were obtained from a He-Ne laser forced
to oscillate at two frequencies separated by 2 MHz. However, later designs utilize
acousto-optic frequency shifters to achieve a similar result. An example application of
a heterodyne interferometer is pictured in Fig. 5.32. Here, the angle and displacement
of a linear positioning stage is measured using two interferometers and a single laser
source.

A drawback of conventional interferometers is the large physical size and sensi-
tivity to environmental variations which preclude their use in extreme environments
such as within a cryostat or high magnetic field. To allow measurement in such
environments, the miniature fiber interferometer, pictured in Fig. 5.33a, was devel-
oped (Karrai and Braun 2010). The measuring head contains a single-mode optical
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Fig. 5.33 The operating principle of an Attocube FPS miniature fibre interferometer (Karrai and
Braun 2010), courtesy of Attocube, Germany. In (a) the transmitted light is reflected from the
mirror, the fiber surface, the mirror again, and is then focused onto the fiber core. The interferogram
plotted in (b) shows the direct reflected power (black) and the quadrature reflected power (red)
versus displacement. The quadrature signal is obtained by modulating the laser wavelength and
demodulating at the receiver. By plotting the power of the direct and quadrature signals (c), the
direction of travel and sub-wavelength displacement can be resolved

fiber with a 9 µm core diameter coupled to a collimator lens. Approximately 4 %
of the applied light is immediately reflected off the fiber termination and is returned
down the fiber, forming the reference beam. The transmitted light passes through the
collimator lens and is reflected off the slightly angled target mirror back towards the
fiber surface but away from the core. As the fiber surface is a poor reflector, only 4 %
of the incident light is reflected from the fiber surface. This reflected light travels
back through the lens, is reflected off the mirror and is coupled directly to the fiber
core, thus forming a Fabry-Perot interferometer with a cavity length equal to twice
the distance between the fiber and mirror.

As the cavity length changes, the two beams interfere so that the reflected power
is modulated periodically by the distance as illustrated in Fig. 5.33b. A problem
with the basic interferogram is the lack of directional information. To resolve the



5.3 Nanometer Position Sensors 143

direction of travel, the light source wavelength is modulated at a high-frequency and
demodulated at the receiver to provide an auxiliary interferogram in quadrature with
the original. By considering both the directly reflected power and the demodulated
reflected power, the direction of travel and can be deduced from the phase angle
shown in Fig. 5.33c.

Since the miniature fiber interferometer is physically separated from the laser and
receiver electronics it is both physically small and robust to extreme environments
such as high vacuum, cryogenic temperatures, and magnetic fields. Due to the sec-
ondary reflection from the fiber surface, the fiber interferometer is also less sensitive
to mirror misalignment compared to some other interferometers.

In general, laser interferometers are the most expensive displacement sensors due
to the required optical, laser and electronic components. However, unlike other sen-
sors, laser interferometers have an essentially unlimited range even though the reso-
lution can exceed 1 nm. Furthermore, the accuracy, stability, and linearity exceed all
other sensors. For these reasons, laser interferometers are widely used in applications
such as semiconductor wafer steppers and display manufacturing processes. They are
also used in some speciality nanopositioning applications that require metrological
precision, for example, the metrological AFM described in Merry et al. (2009).

Aside from the cost, the main drawback of laser interferometers is the suscepti-
bility of the beam to interference. If the beam is broken, the position is lost and the
system has to be restarted from a known reference. The position can also be lost if
the velocity of the object exceeds the maximum velocity imposed by the electronics.
The maximum velocity is typically a few centimeters per second and is not usually
a restriction; however, if the object is subject to shock loads, maximum velocity can
become an issue.

The noise of laser interferometers is strongly dependent on the instrument type
and operating environment. As an example, the Fabry-Perot interferometer discussed
in Ref. Karrai and Braun (2010) has a 1/ f noise corner frequency of approximately
10 Hz and a noise density of approximately 2 pm/

√
Hz. This results in a resolution of

approximately 1.6 nm with a 12 kHz bandwidth. Equation (5.29) predicts a resolution
of 0.49 nm with a 1 kHz bandwidth. Although the resolution of interferometers
is excellent, small range sensors such as capacitive or piezoresistive sensors can
provide higher resolution. However, the comparison is hardly fair considering that
interferometers have a range in the meters while small range sensors may be restricted
to 10 µm or less.

Some manufacturers of interferometers designed for stage metrology and position
control include: Agilent, USA; Attocube, Germany (fiber Interferometer); Keyence,
Japan (Fiber Interferometer); Renishaw, UK; Sios, Germany; and Zygo, USA. Instru-
ments from these manufacturers are pictured in Figs. 5.33a and 5.34.
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Fig. 5.34 Two commercially available Laser Interferometers. Photos courtesy of Agilent, USA and
Sios, Germany

5.3.9 Linear Encoders

A linear encoder consists of two components, the reference scale and the read-head.
The read-head is sensitive to an encoded pattern on the reference scale and produces
a signal that is proportional to position. Either the scale or the read-head can be free
to move, however the scale is typically fixed since the read-head is usually lighter.

The earliest form of linear encoder consisted of a bar with a conductive metal
pattern, read by a series of metal brushes (Nyce 2004). Although simple, the constant
contact between the brush and scale meant a very limited life and poor reliability.

In the 1950’s optical linear encoders became available for machine tools. The
reference scales were glass with a photochemically etched pattern. The photolitho-
graphic method used to produce the scale resulted in the highest resolution and
accuracy at the time.

Although today’s optical encoders still produce the highest resolution, other tech-
nologies have also become available. Magnetic or inductive linear encoders can not
match the absolute accuracy or resolution of an optical scale encoder, however they
are cheaper and more tolerant of dust and contamination. The most common type of
encoder is possibly the capacitive encoder found in digital calipers. These devices
use a series of conductive lines on the slider and scale to produce a variable capacitor.

The operation of a simple reflective optical encoder is illustrated in Fig. 5.35. Light
from a laser diode is selectively reflected from the scale onto a photodetector. As
the read-head is moved relative to the scale, the peaks in received power correspond
the distance between the reflective bars. In between the peaks, the position can be
estimated from the received power. Rather than partial reflection, other gratings
contain height profiles that modulate the proximity and thus received power (Khiat
et al. 2010).
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Fig. 5.35 The operation of a simple reflective optical encoder. The peaks in the received power
correspond to the distance between reflective bars

Fig. 5.36 The image scanning technique is used for reference scales with a grating pitch of between
10 and 200 µm. Image courtesy of Heidenhain, Germany

There are two major difficulties with the design illustrated in Fig. 5.35. First, the
received power is highly sensitive to any dust or contamination on the scale. Second,
it is difficult to determine the direction of motion, particularly at the peaks where the
sensitivity approaches zero.

To provide immunity to dust and contamination, commercial optical encoders
use a large number of parallel measurements to effectively average out errors. This
principle relies on the Moire phenomenon (Sirohi 2009) and is illustrated by the
image scanning technique shown in Fig. 5.36. In Fig. 5.36 a parallel beam of light
is projected onto a reflective scale through a scanning reticle. The reflected Moire
pattern is essentially the binary product of the scanning reticle and the scale and is
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Fig. 5.37 Two commercially available optical linear encoders. Photos courtesy of Heidenhain,
Germany and Renishaw, UK

detected by an array of photodetectors. Aside from the immunity to contamination,
this technique also provides a quadrature signal that provides directional information.

Optical reference scales are encoded with a geometric pattern that describes either
the absolute position or the incremental position. Absolute scales contain additional
information that can make them physically larger than incremental scales. Compared
to an incremental encoder, an absolute encoder is also typically more sensitive to
alignment errors, lower in resolution, slower, and more costly. The benefit of an
absolute scale is that the read-head does not need to return to a known reference
point after a power failure or read error.

The noise of high resolution optical encoders is described as “jitter” and is typ-
ically on the order of 1 nm RMS, or 6 nm peak-to-peak. The overall accuracy is
around 5 µm/m (FASTRACK 2014), however accuracies as high as 0.5 µm/m are
possible with ranges up to 270 mm (Heidenhain 2014).

The highest resolution optical encoders operate on the principle of interfer-
ence (Heidenhain 2014; Lee et al. 2007). The technique involves light that is diffracted
through a transparent phase grating in the read-head and reflected from a step grat-
ing on the scale (Heidenhain 2014). Since this technique operates on the principle
of diffraction, extremely small signal periods of down to 128 nm are possible with a
resolution on the order of a few nanometers.

Other encoder technologies include techniques where the position information
is actually encoded into the medium being scanned. Examples of this approach
include hard disk drives (Chen et al. 2006) and MEMS mass storage devices
(Sebastian et al. 2008).

Companies that produce linear encoders suitable for nanometer scale metrology
include: Heidenhain, Germany; MicroE Systems, USA; and Renishaw, UK. Two
instruments from these manufacturers are pictured in Fig. 5.37.
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Table 5.3 Summary of position sensor characteristics

Sensor type Range DNR Resolution Max. BW Accuracy
(ppm) (nm) (kHz) (ppm FSR )

Metal foil 10–500 µm 230 23 1–10 1 %
Piezoresistive 1–500 µm 4.9 0.49 >100 1 %
Capacitive 10–10 mm 24 2.4 100 0.1 %
Electrothermal 10 µm–1 mm 100 10 10 1 %
Eddy current 100 µm–80 mm 10 1 40 0.1 %
LVDT 0.5–500 mm 10 5 1 0.25 %
Interferometer Meters 0.49 >100 1
Encoder Meters 6 >100 5

The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100 µm
and a first-order bandwidth of 1 kHz

5.4 Comparison and Summary

Due to the extreme breadth of position sensor technologies and the wide range of
applications, it is extremely difficult to make direct performance comparisons. In
many applications, characteristics such as the physical size and cost play a greater
role than performance. Nevertheless, it is informative to compare some aspects of
performance.

In Table 5.3 the specifications under consideration are the range, the dynamic
range, the 6σ -resolution, the maximum bandwidth, and the typical accuracy. Con-
sider the following notes when interpreting the results in Table 5.3:

• The quoted figures are representative of commercially available devices and do
not imply any theoretical limits.

• The dynamic range and 6σ -resolution is an approximation based on a full-scale
range of 100 µm and a first-order bandwidth of 1 kHz. The low-frequency limit
is assumed to be fl = 0.01 Hz.

• The quoted accuracy is the typical static trueness error defined in Sect. 5.2.6.

Metal foil strain gauges are the simplest and lowest cost sensor considered in
this study. Due to their size (a few mm2) strain gauges are suitable for mounting
directly on to actuators or stages with a range from 10 to 500 µm. The parameters
in Table 5.3 pertain to the example of a two-varying- element bridge discussed in
Sect. 5.3.1. Although strain gauges can be calibrated to achieve higher accuracy, it is
reasonable to consider an error of 1 % FSR due to drift and the indirect relationship
between the measured strain and actual displacement.

Piezoresistive sensors are smaller than metal foil strain gauges and can be bonded
to actuators that are only 1 mm long with a range of up to 1 µm. Although the
resolution of piezoresistive sensors is very high, the absolute accuracy is limited
by nonlinearity, temperature sensitivity, and inexact matching. An error budget of
1 % FSR is typical. Although strain sensors require contact with the actuator or
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flexural components, they do not introduce forces between the reference and moving
platforms, thus, in this sense, they are considered to be noncontact.

Capacitive sensors are relatively simple in construction, provide the highest res-
olution over short ranges, are insensitive to temperature, and can be calibrated to
an accuracy of 0.01 % FSR. However, in general purpose applications where the
sensor is not calibrated after installation, alignment errors may limit the accuracy
to 1 % FSR. The capacitive sensor parameters under consideration are described in
Sect. 5.3.4.

Eddy-current sensors can provide excellent resolution for travel ranges greater
than 100 µm. They are more sensitive to temperature than capacitive sensors but are
less sensitive to dust and pollutants which is important in industrial environments. The
quoted noise and resolution is calculated from the example discussed in Sect. 5.3.6.

LVDT sensors are among the most popular in industrial applications requiring a
range from a few millimeters to tens of centimeters. They are simple, have a high
intrinsic linearity and can be magnetically shielded. However, they also have a low
bandwidth and can load the motion with inertia and friction. The maximum resolution
is limited by the physical construction of the transducer which is generally suited
to ranges of greater than 1 mm. The bandwidth of LVDT sensors is limited by the
need to avoid eddy currents in the core. With an excitation frequency of 10 kHz, the
maximum bandwidth is approximately 1 kHz.

Compared to other sensor technologies, laser interferometers provide an unprece-
dented level of accuracy. Stabilized interferometers can achieve an absolute accuracy
exceeding 1 ppm, or in other words, better than 1 um/m. Nonlinearity is also on the
order of a few nanometers. Due to the low-noise and extreme range, the dynamic
range of an interferometer can be as high as a few parts per billion, or upwards
of 180 dB. The quoted resolution in Table 5.3 is associated with the Fabry-Perot
interferometer discussed in Sect. 5.3.8.

Linear encoders are used in similar applications to interferometers where absolute
accuracy is the primary concern. Over large ranges, absolute accuracies of up to
5 ppm or 5 µm/m are possible. Even greater accuracies are possible with linear
encoders working on the principle of diffraction. The accuracy of these sensors can
exceed 1 ppm over ranges of up to 270 mm, which is equivalent to the best laser
interferometers.

5.5 Outlook and Future Requirements

One of the foremost challenges of position sensing is to achieve high resolution
and accuracy over a large range. For example, semiconductor wafer stages require
a repeatability and resolution in the nanometers while operating over a range in the
tens of centimeters (Butler 2011; Mishra et al. 2007). Such applications typically use
interferometers or high resolution optical encoders which can provide the required
performance but can impose a significant cost. Long range sensors are also becom-
ing necessary in standard nanopositioning applications due to the development of
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dual-stage actuators (Michellod et al. 2006; Chassagne et al. 2007; Fleming 2011;
Zheng et al. 2011) and stepping mechanisms (Chu and Fan 2006; Merry et al. 2011).
Capacitive sensors can be adapted for this purpose by using a periodic array of elec-
trodes (Lee and Peters 2009). Such techniques can also be applied to magnetic or
inductive sensing principles. Due to the increasing availability of long range nanopo-
sitioning mechanisms, an increased focus on the development of cost-effective long
range sensors is required.

A need is also emerging for position sensors capable of measuring position at
frequencies up to 100 kHz. Applications include: high-speed surface inspection
(Borionetti et al. 2004; Humphris et al. 2006); nanofabrication (Tseng et al. 2008;
Vicary and Miles 2008; Tseng 2008; Ferreira and Mavroidis 2006), and imaging of
fast biological and physical processes (Fantner et al. 2006; Kobayashi et al. 2007;
Schitter et al. 2007; Picco et al. 2007; Ando et al. 2008; Fleming et al. 2010a).
Although, many sensor technologies can provide a bandwidth of 100 kHz, this figure
is the 3 dB bandwidth where phase and time delay render the signal essentially useless
in a feedback loop. High speed position sensors are required with a bandwidth in the
MHz that can provide accurate measurements at 100 kHz with negligible phase shift
or time delay. Due to the operating principle of modulated sensors such as capac-
itive and inductive sensors, this level of performance is difficult to achieve due to
the impractically high carrier frequency requirement. Applications requiring a very
high sensor bandwidth typically use an auxiliary sensor for high bandwidth tasks,
for example, a piezoelectric sensor can be used for active resonance damping (Yong
et al. 2013; Fleming 2010). Technologies such as piezoresistive sensors (Guliyev et
al. 2012) have also shown promise in high-speed applications since a carrier fre-
quency is not required. Magnetoresistive sensors are also suitable for high frequency
applications if the changes in field strength can be kept small enough to mitigate
hysteresis (Sahoo et al. 2011; Kartik et al. 2012).

Due to the lack of cost-effective sensors that provide both high-resolution and
wide bandwidth, recent research has also considered the collaborative use of multiple
sensors. For example, in Fleming et al. (2008) a piezoelectric strain sensor and
capacitive sensor were combined. The feedback loop utilized the capacitive sensor
at low frequencies and the piezoelectric sensor at high frequencies. This approach
retains the low-frequency accuracy of the capacitive sensor and the wide bandwidth
of the piezo sensor while avoiding the drift from the piezo sensor and wide-band
noise from the capacitive sensor. The closed-loop noise was reduced from 5 nm with
the capacitive sensor to 0.34 nm with both sensors. Piezoelectric force sensors have
also been used for high-frequency damping control while a capacitive, inductive or
strain is used for tracking control (Fleming 2010; Fleming and Leang 2010).

Data storage systems are an example application that requires both long range
but extreme resolution and increasingly wide bandwidth. In these applications, a
media derived position error signal (PES) can provide the requisite range and reso-
lution but not the bandwidth. In Ref. Sebastian et al. (2008) a MEMs storage device
successfully combined the accuracy of a media derived position signal with the
speed of an electrothermal sensor. Electrothermal sensors have also been combined
with capacitive sensors to reduce the inherent 1/f noise (Zhu et al. 2011). Multiple
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sensors can be combined by complementary filters (Fleming 2010) or by an optimal
technique in the time domain (Fleming et al. 2008) or frequency domain (Sebastian
and Pantazi 2012). Given the successful applications to date, it seems likely that the
trend of multiple sensors will continue, possibly to the point where multiple sensors
are packaged and calibrated as a single unit.
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