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Preface

PAKDD 2014 was the 18th conference of the Pacific Asia Conference series on
Knowledge Discovery and Data Mining. The conference was held in Tainan,
Taiwan, during May 13-16, 2014. Since its inception in 1997, the PAKDD con-
ference series has been a leading international conference in the areas of data
mining and knowledge discovery. It provides an inviting and inspiring forum for
researchers and practitioners, from both academia and industry, to share new
ideas, original research results, and practical experience. The 18th edition con-
tinues the great tradition with three world-class keynote speeches, a wonderful
technical program, a handful of high quality tutorials and workshops, and a data
mining competition.

The PAKDD 2014 conference received 371 submissions to the technical pro-
gram, involving more than 980 authors in total. Each submitted paper underwent
a rigorous double-blind review process and was reviewed by at least three Pro-
gram Committee (PC) members as well as one senior PC member. Based on
the extensive and thorough discussions by the reviewers, the senior PC members
made recommendations. The Program Co-chairs went through each of the senior
PC members’ recommendations, as well as the submitted papers and reviews,
to come up with the final selection. Overall, 100 papers were accepted in the
technical program among 371 submissions, yielding a 27% acceptance rate. 40
of which (10.8%) had full presentations and 60 of which (16.2%) had short pre-
sentations. The technical program consisted of 21 sessions, covering the general
fields of data mining and KDD extensively. We thank all reviewers (Senior PC,
PC and external invitees) for their great efforts in reviewing the papers in a
timely fashion. Without their hard work, we would not have been able to see
such a high-quality program.

The conference program this year included three keynote talks by world-
renowned data mining experts, namely, Professor Vipin Kumar from the Uni-
versity of Minnesota (Understanding Climate Change: Opportunities and Chal-
lenges for Data Driven Research); Professor Ming-Syan Chen from the National
Taiwan University (On Information Extraction for Social Networks); Professor
Jian Pei from the Simon Fraser University (Being a Happy Dwarf in the Age
of Big Data). The program also included 12 workshops, which covered a number
of exciting and fast growing hot topics. We also had 7 very timely and educa-
tional tutorials, covering the hot topics of social networks and media, pattern
mining, big data, biomedical and health informatics mining and crowdsourcing.
PAKDD 2014 also organized a data mining competition for those who wanted
to lay their hands on mining interesting real-world datasets.

Putting together a conference on a scale like PAKDD 2014 requires tremen-
dous efforts from the organizing team as well as financial support from the
sponsors. We would like to express our special thanks to our honorary chairs,
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Hiroshi Motoda and Philip S. Yu, for providing valuable advice and kind sup-
port. We thank Wen-Chih Peng, Haixun Wang, and James Bailey for organizing
the workshop program. We also thank Mi-Yen Yeh, Guandong Xu and Seung-
Won Hwang for organizing the tutorial program. As well, we thank Shou-De Lin,
Nitesh Chawla and Hung-Yi Lo for organizing the data mining competition. We
also thank Hung-Yu Kao for preparing the conference proceedings. Finally, we
owe a big thank you to the great team of publicity co-chairs, local arrangement
co-chairs, sponsorship chair and helpers. They ensured the conference attracted
many local and international participants, and the conference program proceeded
smoothly.

We would like to express our gratitude to all sponsors for their generous spon-
sorship and support. Special thanks are given to AFOSR/AOARD (Air Force
Office of Scientific Research/Asian Office of Aerospace Research and Develop-
ment) for their support to the success of the conference. We also wish to thank
the PAKDD Steering Committee for offering the student travel support grant.

Finally, we hope you found the conference a fruitful experience and trust you
had an enjoyable stay in Tainan, Taiwan.

May 2014 Vincent S. Tseng
Tu Bao Ho

Zhi-Hua Zhou

Arbee L.P. Chen

Hung-Yu Kao
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Abstract. What are the patterns that typical network attackers ex-
hibit? For a given malicious network behaviors, are its attacks spread uni-
formly over time? In this work, we develop MALSPOT, multi-resolution
and multi-linear (Multi?) network analysis system in order to discover
such malicious patterns, so that we can use them later for attack detec-
tion, when attacks are concurrent with legitimate traffic. We designed
and deployed MALSPOT, which employs multi-linear analysis with dif-
ferent time resolutions, running on top of MapReduce (Hadoop), and we
identify patterns across attackers, attacked institutions and variation of
time scales. We collect over a terabyte of proven malicious traces (along
with benign ones), from the Taiwanese government security operation
center (G-SOC) , during the entire year of 2012. We showcase the effec-
tiveness of MALSPOT, by discovering interesting patterns and anomalies
on this enormous dataset. We observed static and time-evolving pat-
terns, that a vast majority of the known malicious behavior seem to
follow.

Keywords: multi-resolution, tensor, anmoaly detection, multi-linear,
uncorrelated levels.

1 Introduction

In today’s wide interconnected world, malicious network attacks have a long
incubation period, and as a result, existing state-of-the-art information secu-
rity /data analysis mechanisms find it very challenging to compete against those
attacks in a timely manner. Information security monitoring enterprises have
limited information and, hence, fail to see the big picture of the attacks that are
being orchestrated. However, due to it’s immense scale, the Internet provides us
with a large variety of data, both structured (e.g. logs), as well as unstructured,
that can be used in aid of information security analysis. Thus, today’s Internet’s
scale calls for big data analysis techniques. The main focus of the present work is
to investigate large-scale and stealthy malware behaviour. Our analysis is based
on considerable number of logs from real security information event management
systems.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 1-14, 2014.
© Springer International Publishing Switzerland 2014
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Detection of stealthy attacks is particularly challenging, since, statistically,
they are hard to distinguish from normal connections. Furthermore, obtaining
attack data (e.g. through a network sniffer or a honeynet) poses challenges in its
own right. Dainotti et al.[1] employ a horizontal scan of the entire IPv4 address
space, in order to detect attacks created by the Sality botnet. Chen et al.[8] pro-
pose a scalable network forensic mechanism for stealthy, self-propagating attack
detection; However, both these state-of-the-art methods are specialized in terms
of the attacks they target. Therefore, there is still need for a tool that is able
to identify attacks without specific assumptions of their characteristics or their
behaviour/propagation pattern.

Key to the discovery of malicious patterns is the summarization of the network
behaviour, characteristics, and propagation of a connection. Therefore, we need
a systematic and scalable approach which is able to effectively summarize large
heterogeneous pieces of data that represent different aspects of the network.
Such tools can be drawn from time evolving graph mining and tensor analy-
sis literature. In particular tensors or multi-dimensional arrays have appeared
in numerous interesting application including clustering, trend & anomaly de-
tection [6], and network forensics [3]. In [13] the authors propose GigaTensor,
a scalable, distributed algorithm for large scale tensor decomposition. In this
work, we leverage GigaTensor to the end of stealthy malware detection, without
assuming prior knowledge on the malware’s behaviour.

A more formal definition of the problem at hand is as follows

Problem 1. Attack Patterns Discovery in MalSpot

— Given: (1) intrusion detection system (IDS) event logs, recording
( event name, timestamp, target ip ) (2) Honeynet firewall logs, recording
( source ip, target ip, timestamp )

— Find: (1) the suspicious and common patterns in all three modes/aspects
of the data, (2) provide an intuitive visualization of the above patterns, and
(3) scale up in millions of nodes in our network.

Guided by the format of the data at hand, we propose MALSPOT which choses

to formulate the problem as multi-linear solution as well as tensor analysis. Ad-
ditionally, we propose to experiment with the granularity of the time window in
our data; hence, we propose a multi-resolution approach, which will be able to
identify different types of anomalies, in uncorrelated levels of temporal granular-
ity.
Definition 1 (Uncorrelated Levels). Two different levels of temporal gran-
ularity are called uncorrelated, if the network behavior in those levels, for a
particular node, or set of nodes, is significantly different. For instance, a set of
nodes may experience different patterns in network traffic in an hourly scale, as
opposed to a daily scale.

By leveraging multi-level, multi-linear analysis of the aforementioned data,
we are able to conduct scalable and efficient anomaly detection. Our main con-
tributions are the following:
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— Design of the MALSPOT system: leveraging hadoop, our proposed system
can scale up to arbitrarily big datasets, and it is scales near linearly with
the network trace size (number of non-zero entries).

— Discoveries: we report that attacks come in different flavours: there are, for
example, attacks that are particularly short in time and stop showing after
a period of time, while other attacks are more persistent, or focus only on a
specific port.

The benefit from using MALSPOT as opposed to standard techniques is the fact
that by doing so, we are able to detect correlations of entities participating in
a heterogeneous network for a very long term, and additionally detect multi-
aspect correlations of entities (e.g. using the port number as a dimension), the
comparison is as shown in Table 1.

Table 1. Qualitative analysis of commercial SIEM event analysis packages, as com-
pared to our proposed method.

Time Granularity Anomaly Pattern
Detection Discovery
MalSpot Second to Year v v
Splunk Second to Day X X
ArcSight (HP) Second to Min X x

The rest of this paper is organized as follows: related work is outlined in
Section 2. We first elaborate on MALSPOT, in Section 3, we then provide ex-
perimental studies in Section 4. Finally, Section 5 concludes the discussion and
highlights future directions.

2 Related Work

For handling huge collections of time-evolving events, [9] proposes a multi-
resolution clustering scheme for time series data using k-means clustering and
progressively renes the clusters. In order to discover the streaming pattern in
multiple time-series, [11] propose SPIRIT (Streaming Pattern dIscoveRy in mul-
tIple Time-series) which can incrementally find correlations and hidden variables
by means of using principal components analysis (PCA) and singular value de-
composition (SVD) to summarize the key trends in the entire stream collection.
In [10] the authors propose TriMine which consider multiple features to provide
hidden topics modeling and forecast future events. In [4] the authors apply SVD
to compress sensor data sequences by decomposing them into local patterns and
weight variables.

Tensors and tensor decompositions have been extensively used in a variety
of fields, including but not limited to Data Mining, Chemometrics, Signal Pro-
cessing and Psychology. A concise review of tensor decompositions in the lit-
erature can be found in [5]. In this particular work, we focus on the so called
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CP/PARAFAC decomposition, however, [5] provides an overview of the entire
variety of decompositions that have been introduced.

In the immediate field of interest, anomaly detection, there has been a fair
amount of tensor applications. In particular, [2] develop a decomposition model
that is suitable for stream data mining and anomaly detection. The authors of
[6] introduce a scalable anomaly detection framework using tensors. In [12] the
authors perform anomaly detection in a (source IP, destination IP, port number)
dataset, and in [7] the authors operate on (source IP, destination IP, port number,
timestamp) dataset. Finally, in [3] the authors propose a framework for anomaly
detection in multi-aspect data that is based in tensor decompositions.

In terms of scalable tensor decompositions, [12] proposes a fast, sparse and
approximate method that scales very well mostly in multicore environments.
In [13], the authors propose a MapReduce, scalable and distributed algorithm
for CP/PARAFAC; this suits better our purpose, since our data resides in a
distributed file system.

3 MalSpot

In this section, we describe the MALSPOT, an approach for finding the pat-
tern in huge data from scalable design. The MALSPOT has two modes, i.e.,
single-resolution mode and multi-resolution mode based on multi-linear analysis
process. The notations are shown in Table 2.

Initially, given the data description, provided a few lines above, we are able to
form three mode tensors, whose non-zero entries correspond to the non-zero entries
of the network logs. Since the logs record counts of events, and due to high data
skew, it is often the case that a few set of connections will outnumber the rest of
the connections, in terms of counts. To that end, we have two choices, in order to
alleviate this issue: We may, either, make our data binary, where the tensor, we
may take the logarithm of the counts, so that we compress very big values.

Tensor Formulation of Our Problem

In order to form a tensor out of the data that we posses, we create a tensor entry for
each (i, 7, k) triple of, say (source IP, target IP, timestamp) that exists in our data
log. The choice for the value for each (4, j, k) varies: we can have the raw counts of
connections, we can compress that value (by taking its logarithm), or we can simply
indicate that such a triplet exists in our log, by setting that value to 1.

Tensor decomposition leverages multi-linear algebra in order to analyze such
high-order data. The canonical polyadic (CP) or PARAFAC decomposition we
employ can be seen as a generalization of the Singular Value Decomposition
(SVD) for matrices. CP/PARAFAC decomposes a tensor to the weighted sum
of outer products of mode-specific vectors for a 3-order tensor. Formally, for an
M-mode tensor X of size {I; x [o X - - -x Ips}, its CP/PARAFAC decomposition of
rank R yields X ~ Zle ,\(aﬁ” 0..0 ag«M)) = Zle Hi‘:{zl a'™ where o denotes
the outer product, and [ is in the sense of vector outer product multiplication
(and not in the traditional multiplication operation).
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Table 2. Table of Symbols

Notations Definitions and Descriptions

D raw data from different types of information security logs with three
different kinds of features

T1,T2,23 the three features defined in data D

A B C tensor factor matrices, associated with z1, x2 and z3

X the 3-mode tensor

C covariance matrix for measuring the prioritizing of investigation from
clusters

R the rank for tensor decomposition

k the number of clusters given for the malicious patterns clustering

A the threshold of the top-n selected result

k-means(M,k) scalable k-means algorithms given matrix M
GigaTensor(x)  scalable tensor decomposition [13]

S string concatenation

Cov(GT,G*) covariance measures between clustering groups G* and G*

3.1 Network Malicious Behavior Decomposition

Given the data description, provided a few lines above, we are able to form three
mode tensors, whose non-zero entries correspond to the non-zero entries of the
network logs. Since the logs record counts of events, and due to high data skew,
it is often the case that a few set of connections will outnumber the rest of the
connections, in terms of counts. To that end, we have two choices, in order to
alleviate this issue: We may, either, make our data binary, where the tensor,
instead of counts, stores 1 or 0, depending on whether a specific triplet exists in
the logs, or, we may take the logarithm of the counts, so that we compress very
big values.

Introduction to Tensors

We start by introducing a few definitions. A tensor is essentially a multi-dimensional
extension of a matrix; more precisely, a n-mode tensor is a structure that is indexed
by n indices. For instance, a 1-mode tensor is a vector, a 2-mode tensor is a matrix,
and a 3-mode tensor is a cubic structure. In this work, we focus on three-mode ten-
sors, however, given the appropriate data, we can readily extend our techniques to
higher modes.

Tensor Formulation of Our Problem
In order to form a tensor out of the data that we posses, we create a tensor entry for
each (i, 7, k) triple of, say (source IP, target IP, timestamp) that exists in our data
log. The choice for the value for each (i, j, k) varies: we can have the raw counts
of connections, we can compress that value (by taking its logarithm), or we can
simply indicate that such a triplet exists in our log, by setting that value to 1.
The X is no longer approximate if R is equal to rank(X), however, we often
want to decompose X to R < rank(X), so that we force similar patterns to
map to the same low rank basis. Forcing R to be small is key to our application,
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because in this way, we force connections behaving similarly to map to the same
low rank subspace.

3.2 Single Resolution Mode in MalSpot

We obtain suspicious patterns via scalable tensor decomposition, as mentioned
in previously. In order to find out the groups of similar patterns, we use a scalable
k-means implementation, in MapReduce, so that we cluster different malicious
patterns, produced by the tensor decomposition. For the cluster, we choose to
use the cosine similarity (or rather its inverse) as a distance measure. The cosine
distance we used in this study is shown as similarity(p,q) = cos(8) = HP1T|.\(|IQH
where p and q are pairs of columns of the factor matrices A, B or C, produced
by the decomposition.

Algorithm 1: MALSPOT algorithm (single-resolution mode)

Input: Dataset D with z1,z2 and z3, with size of [, m and n, and a
decomposition rank R, clustering number &

Output: Prioritized malicious patterns groups G

/* step 1: Tensor Construction */

MapReduce:

key < x1 ® z2 P x3

Map (key ,1) < D

Tensor X «+ Reduce ( key , count ), i=1 to | D]

/* step 2: Decomposition */

(Axr] Bimxr)s Cinxr)) < GigaTensor(X)

/* step 3: Clustering and Ranking */

a; € columns of A,i=1...R < k-means(A, k)

b; € columns of B,i = 1...R < k-means(B, k)

c; € columns of C,i =1...R + k-means(C, k)

{G4 | {GY,...,.GE}} «+ PrioritizeCov(a,\)

10 {Gp | {GE,....G%}} « PrioritizeCov(b,\)

11 {Gc | {G¢,...,GE}} + PrioritizeCov(c,\)

® N o o W =

©

After clustering, we obtain different groups of connections, as summarized
by decomposing X. Prioritization of each group is helpful for recommending
groups of anomalous connections to domain experts, for further inspection.
The covariance distance between two clusters Gt and G* as Cov(GT,G*) =
S(Gf -GGy

n—1
ters ; we then rank the groups according to Zle C(:,7) and choose the top-k*
to show to a domain expert, for further inspection.

=) We use the covariance matrix Clrx k) to store all-pairs of clus-

3.3 Multi Resolution Mode in Malspot

As opposed to the single-resolution mode MALSPOT, the multi-resolution version
takes significant changes among different temporal granularities into account, in
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order to identify pieces of the data that bear the uncorrelated levels characteristic.
In order to introduce the multi-resolution mode of MaLSpoOT, let Ty, T5, ..., T,
be the different time granularities (i.e., hourly, daily, weekly and so on). For
each T;, there are k clusters denoted by G (j = 1 to k). In order to identify
uncorrelated levels among these different temporal levels of resolution, we use
the adjacency matreix of GG;, which we denote by A;. A detailed outline of the
procedure we follow is shown in Algorithm 2.

Algorithm 2: MALSPOT algorithm - (multi-resolution mode)

Input: For each time scale T; we have a set of k clusters G; = {G? | j =1 to k}
where Ji_, G = D and GI* (G} = 0Ym #n
Output: data N; ;41 that change clusters from T; to T;+1 and I; ;+1(a) the
degree of similarity between Fj(a) and Fjt1(a).

/* step 1: Generating Adjacency matrices A; = {amn} of G; */
1 Calculate amn according to (1)
/* step 2: Generating reduced adjacency matrices AI**™° = {a/ .} */

2 Calculate a,, according to (2)
/* step 3: Find data N, ;11 that change clusters from 7; to Tj41 */
3 A;hff: A;jidluce 7A§educe
4 Find the minimum number of lines L = {(p,1)} where | represents row number
or column number that cross the nonzero rows or columns of A&® p represents
nonzero row or column entry of I.
5 Njit1 < {p|(p,1) € L for some 1}
/* step 4: Calculate the probability of migration of each datum */
6 Calculate I; ;+1(a) Vi and Va according to (4)

In Algorithm 2, we have a set of k clusters G; = {G? | j = 1 to k} where

U§:1 Gg = D, which are generated iteratively from different temporal resolu-
tions. In the first step, we use the adjacency matrices A; = {amn} in order to
record whether a member of a cluster changes its cluster assignment between
different resolutions, as shown in Eq. 1

] a. if m < n and data m and n are in the same cluster
Amn ’

b. if m =n and data m itself forms a cluster (1)

0, otherwise

In order to reduce the computational complexity, we summarize the the re-
duced adjacency matrices as Areduce = {q/ 1 by employing the characteristics
of transitivity among clusters as shown in Eq. 2.

, <_{1, if gy =1and ap, =0 Vp>m @)

0, otherwise
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Let F; be a function that maps the data in time scale T; to its cluster. That
is, F; : D+ G, s.t. Fy(a) = G iff a € G. For any a € D, denote C;_;41(a) =
Fi(a)( Nii+1 (C denotes change), Ciciy1(a) = Fiy1(a )ﬂNz i+1, Risiti(a) =
Fi(a)\N;i+1 = Fi(a) — O;4i+1(a) (R denotes that the assignment remain the
same), Ri;11(a) = Fit1(a)\N; 11, the conditions considering change or no
change are shown in Eq. 3.

z~>z+1 ﬂ Cz(—erl a lf ac Ni,iJrl
Sii+1(a) ) (3)
z—>z+1 ﬂ Ru—erl a lf a ¢ Ni,iJrl

I; i+1(a) is the degree of similarity between F;(a) and F;yq(a) is as shown in
Equation (4).
Zaesi,iﬂ (a) Pii+1 (a)
2 aeFi i1 (a) Piit1(a)

where the p; ;+1(a) is given as in Eq. 5.

Liiy1(a) = (4)

Diji+1(a) < [Siiti(a)] —1 (5)

4 Experiments

In this section we show the effectiveness of MALSPOT in detecting anomalous
behavior in diverse settings of information security logs, i.e., Security Opera-
tions Center (SOC) event logs and Honeynet firewall logs. We design all the
experiments in order to answer the following questions:

— Q1: Malicious pattern discovery: how can MALSPOT effectively identify
malicious events in a variety of sites or for a long term. Especially, how effec-
tive is MALSPOT in detecting random scanning, and hit-list scan behavior?

— Q2: Providing insights to domain experts: what is an intuitive and
concise way of presenting the detected anomalies to domain experts and
network administrators, so that they can, in turn, validate our methodology,
as well as further investigate a set of attacks.

4.1 Dataset and Environment

As we mention in the problem definition, we analyze data coming from three
different sources. We use three different types and sources of datasets in our
experiments to demonstrate MALSPOT performances. These two datasets are
1) a Honeynet dataset, 2) an intrusion detection system (IDS) events dataset
from Taiwan government; we summarize the datasets in Table 3. The Honeynet
dataset was collected especially for the purposes of this work, using the Honeynet
project system from 10 distributed sites in Taiwan!. The IDS events dataset is

! Honeynet project, http://www.Honeynet .org/
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collected from the Security Operation Center of the Taiwanese government, for
the entire year of 2012. This dataset includes the IDS triggered alerts from 61
government institutes with 4,081 types of events. These types of events can be
categorized into 39 classes, Of which 33 classes of attack is defined by Snort IDS,
the other 6 classes are custom by us (including: blacklist, high threat malware
behavior and so on). In total, the SOC dataset contains 828,069,066 events, the
dataset details could be shown as Table 3. .

Table 3. Datasets harvested & analyzed

Dataset Description Dimension Nonzeros

Honeynet Gathered from 10 distributed 368K x 64K x 31 3243K
Honeynet sensors in Jan. 2013

G-SOC Taiwan official institutes IDS [8187, 361, 52, 12] x 4081 x 800M+

(Type) events in 2012 61

G-SOC(Cat) Taiwan official institutes IDS [8187, 361, 52, 12] x 39 x 61 1742K
events in 2012

We leveraged the scalability of GigaTensor[13] in 16 nodes of a Hadoop cluster
where each machine has 2 quad-core Intel 2.83 GHz CPU, 8 GB RAM, and
2 Terabytes disk. The Apache Mahout(Scalable Machine Learning and Data
Mining)? version 0.7 is used for supporting clustering algorithms.

4.2 Analysis of the Honeynet Data

For this dataset, we set R = 5 as the low rank of the tensor decomposition; after
decomposing the tensor, we obtain three factor matrices each representing one
of the three modes of our data: source IP, target IP and timestamp respectively.
Each column of those factor matrices corresponds to one out of the R latent
groups, in our low rank representation of the data. Based on this low rank
embedding of the data, we compare pairs of columns for each factor matrix, in
order to detect outliers. For example, given the factor matrix A that corresponds
to the source IP, if we plot, say, columns 1 and 2 against each other, we will see
a scatterplot that contains one point for each source IP; given this scatterplot,
we are able to detect the outliers. We henceforth refer to the ’score’ for each
source IP (or any other entity associated to a particular mode of a tensor), as
expressed by the values of the columns of the corresponding factor matrix, as
TENSORSCORE. We show our most outstanding results in Figure 1.

According to the scatterplots obtained from tensor analysis, in Figure 1(a)-(c),
we may observe the relative attackers’ relations according to different directions
of the TENSORSCORE. In Figure 1(a), we found two outliers (denoted as A and
C) out of three clusters. After further inspection of the participating of the
attacks, we found out that the attackers in group A are focused on port port 110

2 Apache Mahout, http://mahout .apache.org/
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Fig. 1. Scatter plot in Honeynet result from both attackers and victims views. (a) In
1°t-2"? concept of source IP view, we observe three different cases, case A is POP3
(port 110) brute force attacks, and case C is port scanning in port 25. Case B contains
a lot of instances but cannot be separated in this plot ; (b) In 2m9374 concept sof
source [P view, case C and D appear in this plot which is medium scale of scanning
behavior, using ports 22, 23, 135 and 445; (c) In 4th_5t" concepts of source IP view,
case E appears which represents another scanning behavior.

and perform POP3 probing. The attackers in group C attempted to use ports
50 79 aiming to perform a large scale port scan. Both attack groups (A and C)
appear only on a single day (January 10th and January 25th respectively). In
Figure 1(b) and (c), we are able to discover a new set of anomalies, as we choose
a different couple of latent factor vectors to obtain the TENSORSCORE from. In
attack group D, we were able to identify an attacker who attempted to trigger
14,652 connections to 236 target Honeynet system IP addresses, with a duration
of 8 days. We present the attacks that belong to group E; those attacks focus
on a particular Microsoft Network security vulnerability that is associated with
ports 139 and 445.

4.3 1IDS Event Result

The IDS events consist of an entire year’s worth of data, collected by the G-SOC
of Taiwan in 2012. The single resolution mode of MALSPOT use the day scale
granularity to analyze these logs. In Fig. 2(a), we illustrate the two groups that
MALSPOT was able to spot in the IDS event logs. The first group is associated
with the Web and native IDS event rules, whereas the second group is related
to the blacklist-based event rules.

We proceed to the second step of our analysis, by setting £ = 5 and cluster
the tensor decomposition latent groups as shown in Fig. 2(b). This post-analysis,
forces hosts with similar characteristics to end up in the same cluster. For in-
stance, cluster 1 contains a vast number of hosts that are related to a large scale
government institute. In clusters 4 and 5, we mostly observe service-oriented
information systems tend.

In order to evaluate the multi-resolution nature of MALSPOT, we select 4
different time resolutions, i.e., hour, day, week and month, and seek to identify
the uncorrelated levels. The result is shown as Fig. 4. In fact, hosts A, B and C
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Fig. 2. IDS alert events scatterplot: (a) In 3rd-4th concept of event view (IDS alerts),
we observe three different cases, part of alerts are triggered more often and part of them
triggered rarely; (b) from the organization’s view, we can see 5 groups are clustered
together.

are grouped as the same cluster in both hourly and daily levels. MALSPOT is able
to select the uncorrelated levels for B and C in weekly and monthly granularities,
respectively.

In Fig. 3, we use event classes with 4 different temporal resolutions to identify
uncorrelated levels of activity, for various institutes. We identify that institute
A has an uncorrelated level of activity between weekly and daily granularity,
as opposed to institutes B and C. From further investigation, institute A has
suffered from a ”system-call detect” event class during the uncorrelated time
period (e.g., B and C have a uniform distribution of activity during the entire
year, but A is skewed towards early 2012). Additionally, MALSPOT offers huge
savings in computational time in order to detect the aforementioned attacks,
when compared to competing methods.

‘ < Group 0 ] . " [ Growp0
* Group 1 3 « Group 1
Group 2 029 e, xtx Group 2
v : Iy . CcB .
. o = ‘ A
s ton oo ) Uncorrelated*
A e ¥ W B . )
) T T - T T (0 65 ba 5% 35 05 L
(a) (b)

Fig. 3. Scatter plot of different time resolutions of G-SOC(cat) dataset. Each point in
the scatter-plot denotes an institution. (a) day resolution and (b) week resolution.

Based on the Fig. 4 (a), we plot the scatter-plots from the hour and week (X-
axis) versus the triggered event types (Y-axis). We observed a critical difference
between institute A and institutes B, C with respect to attack periodicity. Institutes
B and C suffered so-called ” WEB-MISC TOP10.dll access” attacks ® while A did

3 This event is generated when an attempt is made to exploit a buffer overflow in the
Trend Micro InterScan eManager.



12

not. Fig. 5 shows detail time-event scatter plots. Therefore, MALSPOT identifies
potential malicious behavior between hosts A and B, C employing the notion of
uncorrelated levels. Host A suffered periodic attacks targeted on the Windows OS
(Windows ANI File Parsing Buffer Overflow (MS05-002)), whereas the periodic

H.-H. Mao et al.

attacks of host B and C were concentrated on a malicious relay station.
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an institution. (b) The scalability of MALSPOT, as the input size grows.
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Fig. 5. Scatter plot of different time resolutions. (X-axis is time scale and Y-axis is
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event types). We can see the difference in the distribution of scatterplots.
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5 Conclusion

In this work, we develop a big data analytics system in order to discover mali-
cious patterns in a variety of network/malware propagation settings, so that we
can further use them for attack detection and prevention, when attacks are con-
current with legitimate traffic. By conducting large-scale information security
data analysis, our proposed method, MALSPOT, can easily identify the patterns
in massive IDS logs, spamming delivery logs, and Honeynet firewall logs, per-
taining to long-term and stealthy attack behavior.

The contributions of this work are the following:

— Design of the MALSPOT system: based on hadoop, it can scale up to
arbitrary-size datasets, and it is nearly linear as the log trace size grows.

— Discoveries: We report very interesting attack patterns, and positively
identified attacks, as detected by MALSPOT.

— Scalability: regardless of data scale or data source variety, MALSPOT is
able to detect attacks efficiently and effectively.
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Abstract. The process of frequent pattern extraction finds interesting
information about the association among the items in a transactional
database. The notion of support is employed to extract the frequent
patterns. Normally, in a given domain, a set of items can be grouped into
a category and a pattern may contain the items which belong to multiple
categories. In several applications, it may be useful to distinguish between
the pattern having items belonging to multiple categories and the pattern
having items belonging to one or a few categories. The notion of diversity
captures the extent the items in the pattern belong to multiple categories.
The items and the categories form a concept hierarchy. In the literature,
an approach has been proposed to rank the patterns by considering the
balanced concept hierarchy. In a real life scenario, the concept hierarchies
are normally unbalanced. In this paper, we propose a general approach
to calculate the rank based on the diversity, called drank, by considering
the unbalanced concept hierarchy. The experiment results show that the
patterns ordered based on drank are different from the patterns ordered
based on support, and the proposed approach could assign the drank to
different kinds of unbalanced patterns.

Keywords: data mining, association rules, frequent patterns, diversity,
diverse rank, interestingness, concept hierarchy, algorithms.

1 Introduction

In the field of data mining, the process of frequent pattern mining has been
widely studied [1]. The related concepts of frequent pattern mining are as follows
[2]. Let I = {i1,42, - ,i,} be the set of n items and D be the database of m
transactions. Each transaction is identified with unique identifier and contains
n items. Let X C I be a set of items, referred to as an item set or a pattern.
A pattern that contains k items is a k-item pattern. A transaction T is said to
contain X if and only if X C T. The frequency or support of a pattern X in D,
denoted as f(X), is the number of transactions in D containing X. The support

X, denoted as S(X), is the ratio of its frequency to the |D| i.e., S(X) = fl(gl)'

The pattern X is frequent if its support is not less than the user-defined minimum
support threshold, i.e., S(X) > minSup.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 15-27, 2014.
© Springer International Publishing Switzerland 2014
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The techniques to enumerate frequent patterns generates large number of
patterns which could be uninteresting to the user. Research efforts are on to
discover interesting frequent patterns based on constraints and/or user-interest
by using various interestingness measures such as closed [3], maximal [4], top-k
[5], pattern-length [6] and cost (utility) [7].

Normally, in a given domain, a set of items can be grouped into a category
and a pattern may contain the items which belong to multiple categories. In
several applications, it may be useful to distinguish between the pattern having
items belonging to multiple categories and the pattern having items belonging to
the one or a few categories. The existing frequent pattern extraction approaches
do not distinguish the patterns based on the diversity. The notion of diversity
captures the extent of items in the pattern belong to multiple categories. The
items and the categories form concept hierarchy. In [8], an effort has been made to
rank the patterns based on diversity by considering balanced concept hierarchy.
However, in real life scenarios, the concept hierarchies are unbalanced. In this
paper, we have proposed an approach to assign the diverse rank, called drank, to
patterns by considering unbalanced concept hierarchy. The proposed approach is
a general approach which can be applied to calculate drank value by considering
both balanced and unbalanced concept hierarchies. Experiments on the real-
world data set show that patterns ordered based on drank are different from the
patterns ordered based on support, and the proposed approach could assign the
drank to different kinds of unbalanced patterns.

In the literature, the concept hierarchies have been used to discover the gener-
alized association rules in [9] and multiple-level association rules in [10]. In [11], a
keyword suggestion approach based on the concept hierarchy has been proposed
to facilitate the user’s web search. The notion of diversity has been widely ex-
ploited in the literature to assess the interestingness of summaries [12],[13],[14].
In [15], an effort has been made to extend the diversity-based measures to assess
the interestingness of the data sets using the diverse association rules. The diver-
sity is defined as the variation in the items’ frequencies. Such a method cannot be
directly applied to rank the patterns based on the diversity. Moreover, the work
in [15] has focused on comparing the data sets using diverse association rules.
In this paper, we developed a framework to compute the diversity of patterns
by analyzing the categories of items.

The rest of the paper is organized as follows. In the next section, we explain
about concept hierarchy and diversity of pattern. In section 3, we explain the
approach to computing the drank of a pattern by considering balanced concept
hierarchy. In section 4, we present the proposed approach. In section 5, we present
experimental results. The last section contains summary and conclusions.

2 About Concept Hierarchy and Diversity of Patterns

The notion of concept hierarchy plays the main role in assigning the rank to a
pattern based on the diversity. In this section, we explain about concept hierarchy
and the basic idea employed in the proposed approach to calculate the diversity.
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2.1 Concept Hierarchy

A pattern contains data items. A concept hierarchy is a tree in which the data
items are organized in an hierarchical manner. In this tree, all the leaf nodes
represent the items, the internal nodes represent the categories and the top
node represents the root. The root could be a virtual node.

root

fresh food house hold
drinks \\fru'ts baby ding e7iics

tea coffee juice milk orange apple cherry diapers battery mobile

Fig. 1. An example of balanced concept hierarchy

Let C be a concept hierarchy. A node in C' may be an item, category or root.
The height of root node is 0. Let n be a node in C. The height of n, is denoted
as h(n), is equal to the number of edges on the path from root to n.

Figure 1 represents a concept hierarchy. In this, the items orange, apple and
cherry are mapped to the category fruits. Similarly, the categories drinks and
fruits are mapped to the category fresh food. Finally, the categories fresh food
and house hold are mapped to root.

The concept hierarchy having height A has the same number of levels. The
items at the given height are said to be at the same level. In C, all the lower-level
nodes, except the root, are mapped to the immediate higher level nodes. In this

Level 0 / ot

Level 1 milk drinks soft drinks hair beauty
Level 2 original flavor cola juice shampoo hair air
VA NEYAN spray ol
Level 3 fat no-fat mango 1, qam pepsi  coke organic fresh
milk e juice  juice

Level 4 whole 2% fat-free

milk il milk apple mango grape

juice juice juice

Fig. 2. An example of unbalanced concept hierarchy
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paper, we consider the concept hierarchies in which a lower level node is mapped
to only one higher level node.
The concept hierarchies can be balanced or unbalanced.

— Balanced concept hierarchy: In balanced concept hierarchy, the height
of all leaf level nodes is the same. The height of balanced concept hierarchy
is equal to the height of a leaf level item. Figure 1 is an example of balanced
concept hierarchy.

— Unbalanced concept hierarchy: In an unbalanced concept hierarchy, the
height of at least one of the leaf level node is different from the height of
other leaf level nodes. The height of unbalanced concept hierarchy is equal
to the height of the leaf level node having maximum height. Figure 2 is an
example of the unbalanced concept hierarchy.

2.2 Diversity of Patterns

The diversity of a pattern is based on the category of the items within it. If the
items of a pattern are mapped to the same/few categories in a concept hierarchy,
we consider that the pattern has low diversity. Relatively, if the items are mapped
to multiple categories, we consider that the pattern has more diversity. We have
developed an approach to assign the diversity for a given pattern based on the
merging behavior in the corresponding concept hierarchy. If the pattern merges
into few higher level categories quickly, it has low diversity. Otherwise, if the
pattern merges into one or a few high level categories slowly, it has relatively
high diversity value.

As an example, consider the concept hierarchy in Figure 1. For the pattern
{tea, juice}, the items tea and juice are mapped to the next level category drinks.
In this case, the merging occurs quickly. For the pattern {coffee, orange}, the
items coffee is mapped to category drinks and item orange maps to the category
fruits. Further, both the categories drinks and fruits are mapped to the category
fresh food, and the category fresh food in turn maps to root. We say that the
pattern {coffee, orange} is more diverse than the pattern {tea, juice} as the
merging is relatively slow in case of {coffee, orange} as compared to {tea, juice}.
Consider the pattern {milk, battery} which is relatively more diverse than the
pattern {coffee, orange} as both items merge at the root. The merging of {milk,
battery} occurs slowly as compared to {coffee, orange}.

3 Computing Diverse Rank with Balanced Concept
Hierarchy

In this section, we explain the process of calculating diverse rank of the pattern,
called drank, proposed in [8]. We also introduce the concepts balanced pattern
and projection of a pattern which are useful in presenting the proposed approach
in the next section.
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Definition 1. Balanced Pattern (BP): Consider a pattern Y = {iy,ia, -,
in} with ‘n’ items and a concept hierarchy of height ‘h’. The patternY is called
balanced pattern, if the height of all the items in Y is equal to ‘h’.

Definition 2. Projection of Balanced Concept Hierarchy forY (P(Y/C)):
LetY be BP and C be balanced concept hierarchy. The P(Y/C) is the projection
of C' for'Y which contains the portion of C'. All the nodes and edges exists in the
paths of the items of Y to the root, along with the items and the root, are included
in P(Y/C). The projection P(Y/C) is a tree which represents a concept hierarchy
concerning to the pattern Y.

Given two patterns of the same length, different merging behavior can be
realized, if we observe how the items in the pattern are mapped to higher level
nodes. That is, one pattern may quickly merge to few higher level items within
few levels and the other pattern may merge to few higher level items by crossing
more number of levels. By capturing the process of merging, we define the notion
of diverse rank (drank). So, drank(Y") is calculated by capturing how the items
are merged from leaf-level to root in P(Y/C). It can be observed that a given
pattern maps from the leaf level to the root level through a merging process by
crossing intermediate levels. At a given level, several lower level items/categories
are merged into the corresponding higher level categories.

Two notions are employed to compute the diversity of a BP: Merging Factor
(MF) and Level Factor (LF).

We explain about M F' after presenting the notion of generalized pattern.

Definition 3. Generalized Pattern (GP(Y, l, P(Y/C))): Let Y be a pat-
tern, ‘h’ be the height of P(Y/C) and 1’ be an integer. The GP(Y,l, P(Y/C)) in-
dicates the GP of Y at level 17 in P(Y/C). Assume that the GP(Y,l+1, P(Y/C))
is given. The GP(Y,1, P(Y/C)) is calculated based on the GP of Y at level (1+1).
The GP(Y,l,P(Y/C)) is obtained by replacing every item at level (I + 1) in
GP(Y,l 4+ 1,P(Y/C)) with its corresponding parent at the level 1’ with dupli-
cates removed, if any.

The notion of merging factor at level [ is defined as follows.

Merging factor (MF(Y, 1, P(Y/C))): Let Y be BP and [ be the height. The
merging factor indicates how the items of a pattern merge from the level [+ 1 to
the level [ (0 <1 < h). If there is no change, the MF(Y,1) is 1. If all items merges
to one node, the MF(Y,1) value equals to 0. So, the MF value at the level [ is
denoted by MF(Y,], P(Y/C)) which is equal to the ratio of the number of nodes
in (GP(Y, 1, P(Y/C)-1) to the number of nodes in (GP(Y, 141, P(Y/C)-1).
|GP(Y, I, P(Y/C))| -1
ME®,L,P(Y/0) = |GP(Y, I+1, P(Y/C))| -1 S
We now define the notion of level factor to determine the contribution of nodes
at the given level.

Level Factor (LF(1,P(Y/C)): For a given P(Y/C), h be the height of P(Y/C)
# {0,1}. Let I be such that 1 <! < (h —1). The LF value of P(Y/C) height I
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indicates the contribution of nodes at [ to drank. We can assign equal, linear or
exponential weights to each level. Here, we provide a formula which assigns the
weight to the level such that the weight is in proportion the level number.

2% (h —1)

2
hx(h—1) 2)
Diverse rank of a pattern Y: The drank of BF Y for a given C, is calculated

by summing up the product of M F and LF from the leaf level to the root of
P(Y/C). The formula is as follows.

LF(I,P(Y/C)) =

drank(Y,C) = Z F(Y,1,P(Y/C)) = LF(l, P(Y/C)) (3)

l=h—

where, Y is BP, h is height of P(Y/C).

4 Computing Diverse Rank with Unbalanced Concept
Hierarchy

In this section, we explain the approach to assign the drank to unbalanced pat-
tern. The term unbalanced pattern is defined as follows.

Definition 4. Unbalanced Pattern (UP): Consider a patternY and an un-
balanced concept hierarchy U of height ‘h’. A pattern is called unbalanced pattern,
if the height of at least one of the item in Y is less than ‘h’.

The notion of unbalanced-ness depends on how the heights of the nodes in
the concept hierarchy are distributed. It can be noted that we consider a pattern
as unbalanced pattern, if the height of at least one item is less than the height
of unbalanced concept hierarchy. Suppose, all the items of a pattern are at the
height, say k. The pattern X is unbalanced, if & is less than the height of concept
hierarchy.

The basic idea to compute drank of UP is as follows. We first convert the
unbalanced concept hierarchy to balanced concept hierarchy called, “extended
unbalanced concept hierarchy” by adding dummy nodes and edges. We calculate
the drank of UP with Equation 3 by considering the “extended unbalanced
concept hierarchy”. Next, we reduce the drank in accordance with the number
of dummy nodes and edges. So, the drank of UP is relative to the drank of the
same pattern computed by considering all of its items are at the leaf level of the
extended unbalanced concept hierarchy.

Given UP and the corresponding unbalanced concept hierarchy U, the follow-
ing steps should be followed to calculate the drank of UP.

(i) Convert the U to the corresponding extended U.
(ii) Compute the effect of the dummy nodes and edges.
(iii) Compute the drank.
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Level 0 root

Level 1 milk drinks soft drinks hair beauty

Level 2 original flavor cola juice £ :

Level 3 no-fat M # fresh \ :k

% -

juice

Level 4 whole 7q, fat- Iﬁango l')adampepsi coke orga- apple mango grape s'h am- l; air ilail‘

milk i1k free milk  milk nic  juice juice juice poo spray oil
milk juice

Fig. 3. Extended Unbalanced Concept Hierarchy for the Figure 2

(i) Convert the Unbalanced Concept Hierarchy to Extended Unbal-
anced Concept Hierarchy
We define the extended unbalanced concept hierarchy as follows.

Definition 5. Extended Unbalanced Concept Hierarchy (E): For a given
unbalanced concept hierarchy U with height ‘h’, we convert U into extended U,
say E, by adding dummy nodes and edges such that the height of each leaf level
item is equal to ‘h°.

Figure 3 shows the extended unbalanced concept hierarchy of Figure 2. In
Figure 3, ‘+’ indicates the dummy node and dotted line indicates the dummy
edge.

We define the projection of extended unbalanced concept hierarchy for Y as
follows.

Definition 6. Projection of Extended Unbalanced Concept Hierarchy
of Y (P(Y/E)): Let Y be UP, U be unbalanced concept hierarchy, and E be
the corresponding extended unbalanced concept hierarchy of U. The projection of
E for the unbalanced pattern'Y is P(Y/E). The P(Y/E) contains the portion of
U which includes all the paths of the items of Y from the root.

It can be noted that, in addition to real nodes/edges, P(Y/E) may contain
dummy nodes/edges.

As an example, consider the unbalanced concept hierarchy shown in Figure
4(i). In this figure, the items a, b, ¢, and d are located at different levels. We
find the longest path (root,l, k,a) in the unbalanced concept hierarchy. The ad-
ditional dummy nodes and edges are added such that all the items are at the
height h. This extended unbalanced concept hierarchy is shown in Figure 4(ii).
The projections of the patterns {a, b}, {b, c}, {b, d}, and {c, d} are shown in
Figures 4(iii), 4(iv), 4(v), and 4(vi) respectively.
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AN NN L
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Fig. 4. (i) Unbalanced Concept Hierarchy, (ii) Extended Unbalanced Concept Hierar-
chy of (i). The projection of Extended Unbalanced Concept Hierarchies for the patterns
{a, b}, {b, ¢}, {b, d}, and {c, d} are shown in (iii), (iv), (v), and (vi) respectively.

(ii) Compute the Effect of the Dummy Nodes and Edges
We define the notion of adjustment factor to compute the effect of the dummy
nodes and edges.

Adjustment factor (AF): We define the AF at the given level. The Ad-
justment Factor (AF) at level [ helps in reducing the drank by measuring the
contribution of dummy edges/nodes relative to the original edges/nodes at the
level [. The AF for a pattern Y at a level [ should depend on the ratio of num-
ber of real edges formed with the children of the real nodes in P(Y/FE) versus
total number of edges formed with the children of real and dummy nodes at [ in
P(Y/E). The value of AF at a given height should lie between 0 and 1. If the
number of real edges is equals to zero, AF is zero. If the pattern at the given
level does not contain dummy nodes/edges, the value of AF becomes 1. Note
that the AF value is not defined at the leaf level nodes as children do not exist.
The AF for Y at height [ is denoted as AF(Y,l, P(Y/FE)) and is calculated by
the following formula.

_ # of Real Edges of UP(Y,l,P(Y/E))

AR, P(Y/U)) = # of Total Edges of UP(Y,l, P(Y/E)) )

where numerator is the number of edges formed with the children of the real
nodes and denominator is the number of edges formed with the children of both
real and dummy nodes at the level [ in P(Y/E).

Consider the frequent pattern Y = {whole milk, pepsi, coke, shampoo} in Fig-
ure 3. The level of the item whole milk is 4. As I is between (0, h), we calculate the
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number of edges at level 3. At the level 3, the number of real edges in P(Y/E) is 1
and the total number edges including real and dummy edges in P(Y/E) is 4, i.e.,
AF(Y,4,P(Y/U)) = } = 0.25. Similarly, the AF value at level 2, level 1, level
and 0.75, 1, and 1 respectively.

(iii) Computing the drank of UP
The drank of UP is a function of M F, AF and LF.

Definition 7. Diverse rank of a frequent pattern Y (drank(Y)): LetY
be the pattern and U be the unbalanced concept hierarchy of height ‘h’. The drank
of Y, denoted by drank(Y), is given by the following equation.

=0
drank(Y,U) = Y [MF(Y.l, P(Y/E)) x AF(Y.1, P(Y/E))| x LF(l, P(Y/E))

l=h—1
()

where, h is the height of the P(P/E), E is the extended unbalanced concept
hierarchy, MF(Y,l,P(Y/E)) is the MF of Y at level I, LF(I, P(Y/E)) is the
LF at level [ and AF(Y,l,P(Y/E)) is the AF of Y at level .

It can be noted that Equation 5 can be used for computing drank of the
patterns with both balanced and unbalanced concept hierarchy as the values of
AF becomes 1 at all levels in case of balanced concept hierarchy.

5 Experiment Results

For conducting experiments, we have considered the groceries data set which con-
tains 30 days of point-of-sale transaction data from a typical local grocery outlet.
The data set contains 9,835 transactions and 168 items. The average transaction
size in the data set is 4.4. The maximum and minimum transaction size is 32 and 1
respectively. To generate a concept hierarchy for the items, a web based Grocery
API provided by Tesco [20] (a United Kingdom Grocery Chain Store) is used.
Some of the items of the transactional data that were not listed in the concept hi-
erarchy of Tesco are added manually by consulting the domain experts. There are
220 items (excluding internal nodes) available in the concept hierarchy of Tesco.
We have removed the items which do not exist in the transactional data. The dis-
tribution of remaining 168 items at different levels in the concept hierarchy are
shown in Table 1.

Top Diverse Patterns: In Table 3, we present the list of the top 3-item patterns
ordered by drank. In this table, the first column shows the pattern, the second
column shows the support of the pattern, the third column shows the drank of
UP, the fourth column shows the drank of UP with extended concept hierarchy
(E), and the final column shows the difference from drank of UP and the drank
of UP with E.

Top Frequent Patterns: Table 4 contains the list of top 3-item patterns or-
dered by support value.
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Table 1. Distribution of items in unbal- Table 2. Distribution of items in the sim-
anced concept hierarchy ulated concept hierarchy

Level No. No. of items Level No. No. of items

4 5
g g ; 14
9 29 6 12
7 36
3 104
4 34 8 17
9 25
10 12
11 40
12 7

From these two tables, we can observe that there are no common patterns
between them. The results show that the pattern having the highest drank value
may not be the patterns with the highest support. Similarly, the patterns with
the highest support may not have the highest value of drank. So, the patterns
ordered by drank indicates a different kind of knowledge which could not be
extracted by support.

Table 3. Patterns ordered by drank

Support drank drank

Top 10 3-item diverse patterns (%) of UP of UP Diff.
with E
{rolls-buns, soda, sausages} 1.0 1.00 1.0 0.00
{soda, rolls-buns, other vegetables} 1.0 1.00 1.0 0.00
{rolls-buns, soda, shopping bags} 0.6 1.00 1.0 0.00
{soda, whole milk, shopping bags} 0.7 0.89 1.0 0.11
{rolls-buns, whole milk, newspapers} 0.8 0.89 1.0 0.11
{rolls-buns, bottled water, other vegetables} 0.7 0.89 1.0 0.11
{rolls-buns, bottled water, yogurt} 0.7 0.89 1.0 0.11
{rolls-buns, soda, whole milk} 0.6 0.89 1.0 0.11
{rolls-buns, soda, yogurt} 0.9 0.89 1.0 0.11
{rolls-buns, bottled water, whole milk} 0.9 0.89 1.0 0.11

The drank value of UP is obtained after reducing the effect of dummy nodes/
edges from E. It can be noted that the drank of UP with E indicates the value
of diversity without considering AF'. So, the value in the final column of Table
3 and Table 4 indicates the degree of unbalanced-ness. If the value is low, the
UP is less imbalanced and if the value is high, the UP is highly imbalanced.
However, in Table 3 and Table 4, the values in the last column are very low.
This is due to the fact that the concept hierarchy is relatively more balanced.
Influence of Adjustment Factor: In this experiment, we change the concept
hierarchy such that it becomes very unbalanced. For this, we increase the level
of some items. A random number from the list {1, 2, 4, 4, 6, 8, 8} is chosen to
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Table 4. Patterns ordered by support

Support drank drank

Top 10 frequent patterns (%) of UP of UP Diff.
with E

{whole milk, other vegetables, root vegetables} 2.3 0.29 0.33 0.04
{yogurt, whole milk, other vegetables} 2.2 0.31 0.33  0.02
{rolls-buns, whole milk, other vegetables} 1.8 0.67 0.75  0.08
{whole milk, tropical fruit, other vegetables} 1.7 0.44 0.50  0.06
{rolls-buns, yogurt, whole milk} 1.6 0.78 0.83 0.05
{yogurt, whole milk, root vegetables} 1.5 0.31 0.33  0.02
{yogurt, whole milk, tropical fruit} 1.5 0.31 0.33  0.02
{whipped sour cream, whole milk, other vegeta- 1.5 0.31 0.33  0.02
bles}

{whole milk, pip fruit, other vegetables} 14 0.44 0.50  0.06
{soda, whole milk, other vegetables} 1.4 0.67 0.75  0.08

add the number of edges to increase the height of the items. The height of the
simulated concept hierarchy is 12 and the distribution of items are shown in the
Table 2.

Table 5 provides the details of drank of UP by considering the simulated
concept hierarchy. In this table, the first column shows the pattern, the second
column shows the drank of UP, the third column shows the drank of UP with E,
and the last column shows difference between the drank of UP and the drank of
UP with E. The values in the last column show that the notion of AF, along with
MF and LF, helps in computing the drank for all kinds of patterns including
less unbalanced patterns to high unbalanced patterns.

Table 5. Patterns by considering the simulated concept hierarchy

drank drank

Patterns of UP of UP Diff.
with E
{whole milk, beef, root vegetables} 0.705 0.866  0.161
{whole milk, root vegetables, frozen vegetables} 0.750 0.933  0.183
{rolls-buns, whole milk, pork} 0.634 0.933 0.299
{pastry yogurt, other vegetables} 0.416 0.804  0.388
{yogurt, pip fruit, other vegetables} 0.454 0.866  0.412
{rolls-buns, whole milk, pip fruit} 0.434 0.933  0.499
{whole milk, yogurt, other vegetables} 0.036 0.805 0.769
{rolls-buns, whole milk, yogurt} 0.045 0.938  0.893
{rolls-buns, whole milk, other vegetables} 0.032 0.933  0.901

6 Summary and Conclusions

Finding interesting patterns is one of the issues in frequent pattern mining.
Several interestingness measures have been proposed to extract the subset of
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frequent patterns according to the application’s requirements. In this paper, we
have proposed a new interestingness measure to rank the patterns based on
diversity. We have proposed a general approach to assign the drank to the pat-
terns by considering unbalanced concept hierarchy. For computing the drank of
a pattern, the unbalanced concept hierarchy is being converted into balanced
concept hierarchy by adding dummy nodes and edges. The notion of adjustment
factor is proposed to remove the effect of the dummy nodes and edges. The
drank is calculated using the notions of merging factor, level factor and adjust-
ment factor. The experiments on the real world data set show that the patterns
with high drank are different from the patterns with high support. Also, the
proposed approach could assign the drank to patterns having different degrees
of unbalanced-ness.

As a part of future work, we are planning to refine the approach by considering
all types of unbalanced hierarchies. We are also planning to investigate how
the notion of diversity influences the performance of frequent pattern based
clustering, classification and recommendation algorithms.
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Abstract. Condensed representations have been studied extensively for
15 years. In particular, the maximal patterns of the equivalence classes
have received much attention with very general proposals. In contrast,
the minimal patterns remained in the shadows in particular because of
their difficult extraction. In this paper, we present a generic framework
for minimal patterns mining by introducing the concept of minimizable
set system. This framework addresses various languages such as itemsets
or strings, and at the same time, different metrics such as frequency. For
instance, the free and the essential patterns are naturally handled by
our approach, just as the minimal strings. Then, for any minimizable set
system, we introduce a fast minimality check that is easy to incorporate
in a depth-first search algorithm for mining the minimal patterns. We
demonstrate that it is polynomial-delay and polynomial-space. Experi-
ments on traditional benchmarks complete our study.

Keywords: Pattern mining, condensed representation, minimal pattern.

1 Introduction

Minimality is an essential concept of pattern mining. Given a function f and
a language £, a minimal pattern X is one of the smallest pattern with respect
to the set inclusion in £ satisfying the property f(X). Interestingly, the whole
set of minimal patterns forms a condensed representation of £ adequate to f: it
is possible to retrieve f(Y) for any pattern of Y in £. Typically, the set of free
itemsets [1] (also called generators or key itemsets [2]) is a condensed representa-
tion of all itemsets (here, f and £ are respectively the frequency and the itemset
language). Of course, it is often more efficient to extract minimal patterns rather
than all patterns because they are less numerous. In addition, minimal patterns
have a lot of useful applications including higher KDD tasks: producing the
most relevant association rules [3], building classifiers [4] or generating minimal
traversals [5]. Minimality has been studied in the case of different functions (like
frequency [6] and condensable functions [7]) and different languages (e.g., item-
sets [1] and sequences [8]). Although the minimality has obvious advantages [9],
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very few studies are related to the minimality while maximality (i.e., closed pat-
terns) has been widely studied. In particular, to the best of our knowledge, there
is no framework as general as those proposed for maximality [10].

We think that a current major drawback of minimal patterns lies in their inef-
ficient extraction. This low efficiency comes mainly from the fact that most exist-
ing algorithms use a levelwise approach [1,7,11] (i.e., breadth-first search/generate
and test method). As they store all candidates in memory during the generation
phase, the extraction may fail due to memory lack. To tackle this memory pitfall, it
seems preferable to adopt a depth-first traversal which often consumes less mem-
ory and is still very fast. However, check whether the minimality is satisfied or not
is very difficult in a depth-first traversal. In the case of frequency with itemsets,
the best way for evaluating the minimality for a pattern (saying abc) is to compare
its frequency with that of all its direct subsets (here, ab, ac and bc). But, when the
pattern abc is achieved by a depth-first traversal, only frequencies of a and ab have
previously been calculated. As the frequency of ac and be are unknown, it is im-
possible to check whether the frequency of abc is strictly less than that of ac and
be. To cope with this problem, [11,12] have adopted a different traversal with re-
ordered items. For instance, when the itemset abc is reached by this new traversal,
¢, b, be, a, ac and be were previously scanned and their frequency are known for
checking whether abc is minimal. Unfortunately, such a method requires to store
all the patterns in memory (here, ¢, b, bc and so on) using a trie [11] or an hash
table [12]. For this reason, existing DFS proposals [11,12] do not solve the low
memory consumption issue as expected.

Contributions. The main goal of this paper is to present a generic and efficient
framework for minimal pattern mining by providing a depth-first search algo-
rithm. We introduce the notion of minimizable set system which is at the core of
the definition of this framework. This latter covers a broad spectrum of minimal
patterns including all the languages and measures investigated in [7,10]. Fast
minimality checking in a depth-first traversal is achieved thanks to the notion of
critical objects which depends on the minimizable set system. Based on this new
technique, we propose the DEFME algorithm. It mines the minimal patterns for
any minimizable set system using a depth-first search algorithm. To the best of
our knowledge, this is the first algorithm that enumerates minimal patterns in
polynomial delay and in linear space with respect to the dataset.

The outline of this paper is as follows. In Section 2, we propose our generic
framework for minimal pattern mining based on set systems. We introduce our
fast minimality checking method in Section 3 and we indicate how to use it
by sketching the DEFME algorithm. Section 4 provides experimental results. In
Section 5, we discuss some related work in light of our framework.

2 Minimizable Set System Framework

2.1 Basic Definitions

A set system (F,E) is a collection F of subsets of a ground set E (i.e. F is a
subset of the power set of E). A member of F is called a feasible set. A strongly



30 A. Soulet and F. Rioult

accessible set system (F, E) is a set system where for every feasible sets X, Y
satisfying X C Y, there is an element e € Y\ X such that Xe € F'. Obviously,
itemsets fits this framework with the set system (2Z,Z) where Z is the set of
items. (27, 7) is even strongly accessible. But the notion of set system allows con-
sidering more sophisticated languages. For instance, it is easy to build a family
set Fg denoting the collection of substrings of S = abracadabra by encoding each
substring Sg4+15k+2 - - - Sk+n by a set {(sg+1,1), (Sk+2,2)s - -, (Sk+n,n)}. The set
sytem (Fs, Es = |J Fg) is also strongly accessible. The set system formalism has
already been used to describe pattern mining problems (see for instance [10]).
Intuitively, a pattern always describes a set of objects. This set of objects is
obtained from the pattern by means of a cover operator formalized as follows:

Definition 1 (Cover operator). Given a set of objects O, a cover operator
cov : 2F — 29 s a function satisfying cov(X UY) = cov(X) Ncov(Y) for every
X c2F andY € 2F.

This definition indicates that the coverage of the union of two patterns is
exactly the intersection of their two covers. For itemsets, a natural cover operator
is the extensive function of an itemset X that returns the set of tuple identifiers
supported by X: covz(X) = {o € O | X C o}. But, in general, the cover is
not the final aim: the cardinality of covz(X) corresponds to the frequency of
X. In the context of strings, the index list of a string X also define a cover
operator: covg(X) = {i | V¥(sj,7) € X, (sj,7 +14) € S}. Continuing our example
with the string S = abracadabra, it is not difficult to compute the index lists
covg({(a,1)}) = {0,3,5,7,10} and covg({(b,2)}) = {0,7} and then, to verify
covs({(a, 1), (b,2)}) = covs({(a, 1)}) N covs({(b,2)}) = {0,7}.

For some languages, the same pattern is described by several distinct sets
and then it is necessary to have a canonical form. For example, consider the
set {(a,1),(b,2),(r,3)} corresponding to the string abr. Its suffix {(b,2), (r,3)}
encodes the same string br as {(b,1), (r,2)}. The latter is the canonical form
of the string br. To retrieve the canonical form of a pattern, we introduce the
notion of canonical operator:

Definition 2 (Canonical operator). Given two set systems (F, E) and (G, E),
a canonical operator ¢ : FUG — F is a function satisfying (i) X CY = ¢(X) C
oY) and (i1) X € F = ¢(X) = X for all sets X, Y € G.

In this definition, the property (i) ensures us that the canonical forms of two
comparable sets with respect to the inclusion remain comparable. The property
(ii) means that the set system (F, F) includes all canonical forms. Continuing
our example about strings, it is not difficult to see that ¢g : {(sk, k), (Sk+1,k +
D)yeooy (Skpn,n) = {(sk, 1), (Sk41,2), - -, (Sktn,n—k+1)} satisfies the two de-
sired properties (i) and (ii). For instance, ¢s({(b,2), (r, 3)}) returns the canonical
form of the string {(b,2), (r,3)} which is {(b,1), (r,2)}.

! We use the notation Xe instead of X U {e}.



Efficiently Depth-First Minimal Pattern Mining 31

2.2 Minimizable Set System

Rather than considering an entire set system, it is wise to select a smaller part
that provides the same information (w.r.t. a cover operator). For this, it is neces-
sary that this set system plus the cover operator form a minimizable set system:

Definition 3 (Minimizable set system). A minimizable set system is a tuple
((F,E),G,cov, @) where:

— (F,E) is a finite, strongly accessible set system. A feasible set in F is called
a pattern.

— (G, E) is a finite, strongly accessible set system satisfying for every feasible
set X,Y € F such that X CY and elemente € E, X\{e} € G = Y\{e} € G.
A feasible set in G is called a generalization.

— cov : 28 — 29 s 4 cover operator.

— ¢ : FUG — F is a canonical operator such that for every feasible set X € G,
it implies cov(p(X)) = cov(X).

Let us now illustrate the role of G compared to F in the case of strings. In fact,
Gs gathers all the suffixes of any pattern of Fg. Typically, {(b,2), (r,3)} € Gs is
a generalization of {(a, 1), (b,2),(r,3)} € Fs. As said above, {(b,2), (r,3)} has
an equivalent form in Fg: ¢s({(b,2), (r,3)}) = {(b,1), (r,2)}. By convention, we
extend the definition of covg to Gg by considering that covs(¢s(X)) = covg(X).
In addition, it is not difficult to see that Gg satisfies the desired property with
respect to Fg: for every feasible set X,Y € Fg such that X C Y and element
e € Eg, X\ {e} € Gs = Y \ {e} € Gs. Indeed, if X \ {e} is a suffix of X,
it means that e is the first letter. If we consider a specialization of X and we
again remove the first letter, we also obtain a suffix belonging to Gg. Therefore,
((Fs,Es),Gs, covg, ¢g) is a minimizable set system.

Obviously, a minimizable set system can be reduced to a system of smaller
cardinality of which the patterns are called the minimal patterns:

Definition 4 (Minimal pattern). A pattern X s minimal for
((F,E),G,cov,¢) iff X € F and for every generalization ¥ € G such
that Y C X, cov(Y) # cov(X). M(S) denotes the set of all minimal patterns.

Definition 4 means that a pattern is minimal whenever its cover differs from
that of any generalization. For example, for the cover operator covg, the minimal
patterns have a strictly smaller cover than their generalizations. The string ab is
not minimal due to its suffix b because covg({(b,2))}) = covs({(a, 1), (b,2)}) =
{0,7}. For our running example, the whole collection of minimal strings is
M(Ss) ={a,b,r,c,d,ca,ra,da}.

Given a minimizable set system S = ((F,E), G, cov, ¢), the minimal
pattern mining problem consists in enumerating all the minimal pat-
terns for S.
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3 Enumerating the Minimal Patterns

This section aims at effectively mining all the minimal patterns in a depth-first
search manner (Section 3.3). To do this, we rely on two key ideas: the pruning
of the search space (Section 3.1) and the fast minimality checking (Section 3.2).

Before, it is important to recall that the minimal patterns are sufficient to
induce the cover of any pattern. From now, we consider a minimizable set system
S ={((F,E),G,cov,d). The minimal patterns M(S) is a lossless representation
of all patterns of F in the sense we can find the cover of any pattern.

Theorem 1 (Condensed representation). The set of minimal patterns is a
concise representation of F adequate to cov: for any pattern X € F, there exists
Y C X such that ¢(Y) € M(S) and cov(p(Y)) = cov(X).

Theorem 1 means that M(S) is really a condensed representation of S because
the minimal pattern mining enables us to infer the cover of any pattern in S. For
instance, the cover of the non-minimal pattern {(a, 1), (b, 2)} equals to that of the
minimal pattern ¢({(b,2)}) = {(b,1)}: covs({(a, 1), (b,2)}) = covs({(b,1)}) =
{0,7}. Tt is preferable to extract M(S) instead of S because its size is lower
(and, in general, much lower) than the total number of patterns.

3.1 Search Space Pruning

The first problem we face is fairly classical. Given a minimizable set system S =
((F,E),G,cov, p), the number of patterns |F| is huge in general (in the worst
case, it reaches 27| patterns). So, it is absolutely necessary not to completely
scan the search space for focusing on the minimal patterns. Effective techniques
can be used to prune the search space due to the downward closure of M(S):

Theorem 2 (Independence system). If a pattern X is minimal for S, then
any pattern Y € F satisfying Y C X is also minimal for S.

The proof of this theorem strongly relies on a key lemma saying that a non-
minimal pattern has a direct generalization having the same cover (proofs are
omitted due to lack of space):

Lemma 1. If X is not mininal, there exists e € X such that X \ {e} € G and
cov(X) = cov(X \ {e}).

For instance, as the string da is minimal, the substrings d and a are also
minimal. More interestingly, as ab is not minimal, the string abr is not minimal.
It means that the string ab is a cut-off point in the search space. In practice, anti-
monotone pruning is recognized as a very powerful tool whatever the traversal
of the search space (level by level or in depth).
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3.2 Fast Minimality Checking

The main difficulty in extracting the minimal patterns is to test whether a
pattern is minimal or not. As we mentioned earlier, this is particularly difficult in
a depth-first traversal because all subsets have not yet been enumerated. Indeed,
depth-first approaches only have access to the first parent branch contrary to
levelwise approaches. To overcome this difficulty, we introduce the concept of
critical objects inspired from critical edges in case of minimal traversals [13].
Intuitively, the critical objects of an element e for a pattern X are objects that
are not covered by X due to the element e. We now give a formal definition of
the critical objects derived from any cover operator:

Definition 5 (Critical objects). For a pattern X, the critical objects of an
element e € X, denoted by cov(X, e) is the set of objects that belongs to the cover
of X without e and not to the cover of e: cov(X,e) = cov(X \ e) \ cov(e).

Let wus illustrate the critical objects with our running example. For
{(a,1),(b,2)}, the critical objects cov(ab, a) of the element (a,1) correspond to
0 (=40,71\{0,3,5,7,10}). It means that the addition of a to b has no impact
on the cover of ab. At the opposite, for the same pattern, the critical objects of
(b,2) are {3,5,10} (= {0,3,5,7,10} \ {0, 7}). It is due to the element b that ab
does not cover the objects {3,5,10}.

The critical objects are central in our proposition for the following reasons: 1)
the critical objects easily characterize the minimal patterns; and 2) the critical
objects can efficiently be computed in a depth-first search algorithm.

The converse of Lemma 1 says that a pattern is minimal if its cover differs
from that of its generalization. We can reformulate this definition thanks to the
notion of critical objects as follows:

Property 1 (Minimality). X € F is minimal if Ve € X such that X \ e € G,
cov(X,e) # 0.

Typically, as bis a generalization of the string ab and at the same time, cov(ab, a)
is empty, ab is not minimal. Property 1 means that checking whether a candidate
X is minimal only requires to know the critical objects of all the elements in X . Un-
like the usual definition, no information is required on the subsets. Therefore, the
critical objects allow us to design a depth-first algorithm if (and only if) computing
the critical objects does not also require information on the subsets.

In a depth-first traversal, we want to update the critical objects of an element
e for the pattern X when a new element e’ is added to X. In such case, we now
show that the critical objects can efficiently be computed by intersecting the old
set of critical objects cov(X, e) with the cover of the new element ¢’:

Property 2. The following equality holds for any pattern X € F and any two
elements e, e’ € E: cov(Xe',e) = cov(X, e) N cov(e’).

For instance, Definition 5 gives covg(a,a) = {1,2,4,6,8,9}. As covg(b) =
{0,7}, we obtain that covg(ab,a) = éovg(a,a) N covg(b) = {1,2,4,6,8,9} N
{0,7} = (. Interestingly, Property 2 allows us to compute the critical objects
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of any element included in a pattern X having information on a single branch.
This is an ideal situation for a depth-first search algorithm.

3.3 Algorithm DEFME

The algorithm DEFME takes as inputs the current pattern and the current tail
(the list of the remaining items to be checked) and it returns all the minimal
patterns containing X (based on tail). More precisely, Line 1 checks whether
X is minimal or not. If X is minimal, it is output (Line 2). Lines 3-14 explores
the subtree containing X based on the tail. For each element e where Xe is a
pattern of F (Line 4) (Property 1), the branch is built with all the necessary
information. Line 7 updates the cover and Lines 8-11 updates the critical objects
using Property 2. Finally, the function DEFME is recursively called at Line 12
with the updated tail (Line 5).

Algorithm 1. DEFME(X, tail)

Input: X is a pattern, fail is the set of the remaining items to be used in order to
generate the candidates. Initial values: X = 0, tail = E.

Output: polynomially incrementally outputs the minimal patterns.

1: if Ve € X, éov(X,e) # 0 then

2:  print X

3 for all e € tail do

4 if Xe € F then

5: tail := tail \ {e}

6: Y = Xe

7 cov(Y') := cov(X) N cov(e)
8: cov(Y,e) := cov(X) \ cov(e)
9: for all ¢’ € X do

10: cov(Y,e') := cov(X,e’) N cov(e)
11: end for

12: DEFME(Y, tail)

13: end if

14: end for

15: end if

Theorems 3 and 4 demonstrate that the algorithm DEFME has an efficient be-
havior both in space and time. This efficiency mainly stems from the inexpensive
handling of covers/critical objects as explained by the following property:

Property 3. The following inequality holds for any pattern X € F:
jeou(X)] + 3 160X, €)| < leov(W)
ecX

Property 3 means that for a pattern, the storage of its cover plus that of all the
critical objects is upper bounded by the number of objects (i.e., [cov(f)]). Thus,
it is straightforward to deduce the memory space required by the algorithm:

Theorem 3 (Polynomial-space complexity). M(S) is enumerable in
O(Jcov(D)| x m) space where m is the mazimal size of a feasible set in F.
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In practice, the used memory space is very limited because m is small. In
addition, the amount of time between each output pattern is polynomial:

Theorem 4 (Polynomial-delay complexity). M(S) is enumerable in
O(|E? x |cov(D)|) time per minimal pattern.

It is not difficult to see that between two output patterns, DEFME requires
a polynomial number of operations assuming that the membership oracle is
computable in polytime (Line 4). Indeed, the computation of the cover and that
of the critical objects (Lines 7-11) is linear with the number of objects due to
Property 3; the loop in Line 3 does not exceed |E| iterations and finally, the
number of consecutive backtracks is at most |E|.

4 Experimental Study

The aim of our experiments is to quantify the benefit brought by DEFME both on
effectiveness and conciseness. We show its effectiveness with the problem of free
itemset mining for which several prototypes already exist in the literature. Then
we instantiate DEFME to extract the collection of minimal strings and compare
its size with that of closed strings. All tests were performed on a 2.2 GHz Opteron
processor with Linux operating system and 200 GB of RAM memory.

4.1 Free Itemset Mining

We designed a prototype of DEFME for itemset mining as a proof of concept and
we compared it with two other prototypes: ACMINER based on a levelwise algo-
rithm [1] and NDI? based on a depth-first traversal with reordered items [11]. For
this purpose, we conducted experiments on benchmarks coming from the FIMI
repository and the 2004 PKDD Discovery Challenge®. The first three columns
of Table 1 give the characteristics of these datasets. The fourth column gives
the used minimal support threshold. The next three columns report the running
times and finally, the last three columns indicate the memory consumption.

The best performances are highlighted in bold in Table 1 for both time and
space. ACMINER is by far the slowest prototype. Its levelwise approach is par-
ticularly penalized by the large amount of used memory. Except on the genomic
datasets 74x822 and 90x27679, the running times of NDI clearly outperform
those of DEFME. As a piece of information, Figure 1 details, for various minsup
thresholds, the speed of DEFME. It plots the number of minimal patterns it
extracted for each second of computing time.

Concerning memory consumption, DEFME is (as expected) the most efficient
algorithm. In certain cases, the increase of the storage memory would not be
sufficient to treat the most difficult datasets. Here, ACMINER and NDI are

2 As this prototype mines non-derivable itemsets, it enable us to compute free patterns
when the depth parameter is set to 1.
3 fimi.ua.ac.be/data/ and lisp.vse.cz/challenge/ecmlpkdd2004/
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Table 1. Characteristics of benchmarks and results about free itemset mining

time (s) memory (kB)
dataset objects items minsup ACMINER NDI DEFME ACMINER NDI DEFME
74x822 74 822 8% fail fail 45 fail fail 3,328
90x27679 90 27,679  91% fail fail 79 fail fail 13,352
chess 3,196 B 22% 6,623 187 192 3,914,588 1,684,540 8,744

connect 67,557 129 7% 34,943 115 4,873 2,087,216 1,181,296 174,680
pumsb 49,046 2,113 51% 70,014 212 548 7,236,812 1,818,500 118,240
pumsb* 49,046 2,088 5% 21,267 202 4,600 5,175,752 2,523,384 170,632

not suitable to process genomic datasets even with 200GB of RAM memory
and relatively high thresholds. More precisely, Figure 1 plots the ratio between
NDI’'s and DEFME’s memory use for various minsup thresholds. It is easy to
notice that this ratio quickly leads NDI to go out of memory. DEFME works
with bounded memory and then is not minsup limited.
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Fig. 1. Ratio of mining speed (left) and memory use (right) of NDI by DEFME

4.2 Minimal String Mining

In this section, we adopt the formalism of strings stemming from our running ex-
ample. We compared our algorithm for minimal string mining with the MAXMOTIF
prototype provided by Takeaki Uno that mines closed strings [10]. Our goal is to
compare the size of condensed representations based on minimal strings with those
based on all strings and all closed strings. We do not report the execution times
because MAXMOTTF developed in Java is much slower than DEFME (developed in
C++). Experiments are conducted on two datasets: chromosom* and msnbc com-
ing from the UCI ML repository (www.ics.uci.edu/~mlearn).

Figure 2 and 3 report the number of strings/minimal strings/closed strings
mined in chromosom and msnbc. Of course, whatever the collection of patterns,

4 This dataset is provided with MAXMOTIF: research.nii.ac.jp/~uno/codes.htm
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Fig. 2. Number of patterns in chromosom  Fig. 3. Number of patterns in msnbc

the number of patterns increases with the decrease of the minimal frequency
threshold. Interestingly, the two condensed representations become particularly
useful when the frequency threshold is very small. Clearly the number of mini-
mal strings is greater than the number of closed strings, but the gap is not as
important as it is the case with free and closed itemsets.

5 Related Work

The collection of minimal patterns is a kind of condensed representations. Let
us recall that a condensed representation of the frequent patterns is a set of pat-
terns that can regenerate all the patterns that are frequent with their frequency.
The success of the condensed representations stems from their undeniable bene-
fit to reduce the number of mined patterns by eliminating redundancies. A large
number of condensed representations have been proposed in literature [6,14]:
closed itemsets [2], free itemsets [1], essential itemsets [15], Non-Derivable Item-
sets [11], itemsets with negation [16] and so on. Two ideas are at the core of
the condensed representations: the closure operator [14] that builds equivalence
classes and the principle of inclusion-exclusion. As the inclusion-exclusion prin-
ciple only works for the frequency, this paper exclusively focuses on minimal
patterns considering equivalence classes. In particular, as indicated above the
system Sz = ((2%,7),2%, covr, Id) is minimizable and M (Sz) corresponds ex-
actly to the free itemsets (or generators). The frequency of each itemset is com-
puted using the cardinality of the cover. Replace the cover operator covz by
covg : X — {o € O | XNo = 0} leads to a new minimizable set system
((21,7),2%, covz, Id) of which minimal patterns are essential itemsets [15]. The
disjunctive frequency of an itemset X is |O| — |covz(X)]|.

Minimal pattern mining has a lot of applications and their use is not limited
to obtain frequent patterns more efficiently. Their properties are useful for higher
KDD tasks. For instance, minimal patterns are used in conjunction of closed pat-
terns to produce non-redundant [3] or informative rules [2]. The sequential rules
also benefit from minimality [17]. It is also possible to exploit the minimal pat-
terns for mining the classification rules that are the key elements of associative
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classifiers [4]. Our framework is well-adapted for mining all such minimal classi-
fication rules that satisfy interestingness criteria involving frequencies. Assuming
that the set of objects O is divided into two disjoint classes O = Oy U Os, the
confidence of the classification rule X — classy is |01 N covz(X)|/|covz(X)].
More generally, it is easy to show that any frequency-based measure (e.g., lift,
bond) can be derived from the positive and negative covers. In addition, the
essential patterns are useful for deriving minimal traversals that exactly corre-
sponds to the maximal patterns of M({(2Z,7), 2%, covr, Id)). Let us recall that
the minimal transversal generation is a very important problem which has many
applications in Logic (e.g., satisfiability checking), Artificial Intelligence (e.g.,
model-based diagnosis) and Machine Learning (e.g., exact learning) [5,13].

The condensed representations of minimal patterns are not limited to
frequency-based measures or itemsets. Indeed, it is also possible to mine the min-
imal patterns adequate to classical aggregate functions like min, max or sum [7].
Minizable set systems are also well-adapted for such measures. For instance, let
us consider the function covyn (X) = {val(i)|3i € Z,val(i) < min(X.val)} that
returns all the possible values of val less than min(X.val). This function is a
cover operator and ((2%,7), 2%, covmin, Id) is even a minimizable set system. The
minimal patterns adequate to min correspond to the minimal patterns of the
previous set system. Furthermore, the value min(X.val) could be obtained as
follows max(covmn(X)). A similar approach enables us to deal with maz and
sum. In parallel, several studies have extended the notion of generators to ad-
dress other languages such as sequences [8,18], negative itemsets [19], graphs [20].
Unfortunately no work proposes a generic framework to extend the condensed
representations based on minimality to a broad spectrum of languages as it was
done with closed patterns [10]. For instance, [1,2,11,12] only address itemsets or
[8,18] focus exclusively on sequences. In this paper, we have made the connec-
tion between the set systems and only two languages: itemsets and strings due
to space limitation. Numerous other languages can be represented using this set
system framework. In particular, all the languages depicted by [10] are suitable.

6 Conclusion

By proposing the new notion of minimizable set system, this paper extended the
paradigm of minimal patterns to a broad spectrum of functions and languages.
This framework encompasses the current methods since the existing condensed
representations (e.g., free or essential itemsets) fit to specific cases of our frame-
work. Besides, DEFME efficiently mines such minimal patterns even in difficult
datasets, which are intractable by state-of-the-art algorithms. Experiments also
showed on strings that the sizes of the minimal patterns are smaller than the
total number of patterns.

Of course, we think that there is still room to improve our implementation
even if it is difficult to find a compromise between generic method and speed.
We especially want to test the ability of the minimal patterns for generating
minimal classification rules with new types of data, such as strings. Similarly, it
would be interesting to build associative classifiers from minimal patterns.
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Abstract. Sequential pattern mining algorithms using a vertical repre-
sentation are the most efficient for mining sequential patterns in dense
or long sequences, and have excellent overall performance. The vertical
representation allows generating patterns and calculating their supports
without performing costly database scans. However, a crucial performance
bottleneck of vertical algorithms is that they use a generate-candidate-
and-test approach that can generate a large amount of infrequent candi-
dates.To address this issue, we propose pruning candidates based on the
study of item co-occurrences. We present a new structure named CMAP
(Co-occurence MAP) for storing co-occurrence information. We explain
how CMAP can be used to prune candidates in three state-of-the-art ver-
tical algorithms, namely SPADE, SPAM and ClaSP. An extensive experi-
mental study with six real-life datasets shows that (1) co-occurrence-based
pruning is effective, (2) CMAP is very compact and that (3) the result-
ing algorithms outperform state-of-the-art algorithms for mining sequen-
tial patterns (GSP, PrefixSpan, SPADE and SPAM) and closed sequential
patterns (ClaSP and CloSpan).

Keywords: sequential pattern mining, vertical database format, candi-
date pruning.

1 Introduction

Mining useful patterns in sequential data is a challenging task. Many studies have
been proposed for mining interesting patterns in sequence databases [9]. Sequen-
tial pattern mining is probably the most popular research topic among them.
A subsequence is called sequential pattern or frequent sequence if it frequently
appears in a sequence database, and its frequency is no less than a user-specified
minimum support threshold minsup [1]. Sequential pattern mining plays an im-
portant role in data mining and is essential to a wide range of applications such
as the analysis of web click-streams, program executions, medical data, biologi-
cal data and e-learning data [9]. Several efficient algorithms have been proposed
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for sequential pattern mining such as ClaSP [7], CloSpan [12], GSP [11], PrefixS-
pan [10], SPADE [13] and SPAM [3]. Sequential pattern mining algorithms can
be categorized as using a horizontal database format (e.g. CloSpan, GSP and
PrefixSpan) or a wvertical database format (e.g. ClaSP, SPADE, SPAM). Using
the vertical format provides the advantage of generating patterns and calculat-
ing their supports without performing costly database scans [3,7,13]. This allows
vertical algorithms to perform better on datasets having dense or long sequences
than algorithms using the horizontal format, and to have excellent overall perfor-
mance [2,3,7]. However, a crucial performance bottleneck of vertical algorithms
is that they use a generate-candidate-and-test approach, which can generate a
large amount of patterns that do not appear in the input database or are in-
frequent. An important research questions that arises is: Could we design an
effective candidate pruning method for vertical mining algorithms to improve
mining performance? Answering this question is challenging. It requires design-
ing a candidate pruning mechanism (1) that is effective at pruning candidates
and (2) that has a small runtime and memory cost. Moreover, the mechanism
should preferably be generic. i.e. applicable to any vertical mining algorithms.

In this paper, we present a solution to this issue based on the study of item
co-occurrences. Our contribution is threefold. First, to store item co-occurrence
information, we introduce a new data structure named Co-occurrence MAP
(CMAP). CMAP is a small and compact structure, which can be built with
a single database scan.

Second, we propose a generic candidate pruning mechanism for vertical se-
quential pattern mining algorithms based on the CMAP data structure. We
describe how the pruning mechanism is integrated in three state-of-the-art algo-
rithms ClaSP, SPADE and SPAM. We name the resulting algorithms CM-ClaSP,
CM-SPADE and CM-SPAM.

Third, we perform a wide experimental evaluation on six real-life datasets. We
compare the performance of CM-ClaSP, CM-SPADE and CM-SPAM with state-
of-the-art algorithms for mining sequential patterns (GSP, PrefixSpan, SPADE
and SPAM) and closed sequential patterns (ClaSP and CloSpan). Results show
that the modified algorithms (1) prune a large amount of candidates, (2) and
are up to eight times faster than the corresponding original algorithms and (3)
that CM-ClaSP and CM-SPADE have respectively the best performance for
sequential pattern mining and closed sequential pattern mining.

The rest of the paper is organized as follows. Section 2 defines the problem of
sequential pattern mining and reviews the main characteristics of ClaSP, SPADE
and SPAM. Section 3 describes the CMAP structure, the pruning mechanism,
and how it is integrated in ClaSP, SPADE and SPAM. Section 4 presents the
experimental study. Finally, Section 5 presents the conclusion.

2 Problem Definition and Related Work

Definition 1 (sequence database). Let I = {i1,i2,...,7;} be a set of items
(symbols). An itemset I, = {i1,42,...,%m} C I is an unordered set of distinct
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items. The lexicographical order ., is defined as any total order on I. Without
loss of generality, it is assumed in the following that all itemsets are ordered
according to =je.. A sequence is an ordered list of itemsets s = (I, I, ..., I, )
such that I, C I (1 <k <mn). A sequence database SDB is a list of sequences
SDB = (s1,S2, ..., Sp) having sequence identifiers (SIDs) 1,2...p. Example. A
sequence database is shown in Fig. 1 (left). It contains four sequences having
the SIDs 1, 2, 3 and 4. Each single letter represents an item. Items between
curly brackets represent an itemset. The first sequence ({a,b}, {c},{f,g},{g},
{e}) contains five itemsets. It indicates that items a and b occurred at the same
time, were followed by ¢, then f, g and lastly e.

SID | Sequences 1D Pattern Support
1 ({a, b},{c},{f g}.1g}.{e}) pl ({a}. {11 3
2 (la, d},{c},{b}.1a, b, e, f}) p2 ({ab.{ct{fh) |2
3 ({a},{b},{f}.{e}) p3 ({b},{fg}) 2
4 (SIRIN4)) p4 ({g}.{c}) 2
p3 ({c}.{t}h) 2
p6... ({b}) 4

Fig. 1. A sequence database (left) and some sequential patterns found (right)

Definition 2 (sequence containment). A sequence s, = (41, Aa, ..., Ay) is
said to be contained in a sequence s, = (B, Ba, ..., By,) iff there exist integers
1<y <ig < ... <ip <msuch that A7 C B;1, As C Bya, ..., A, C By, (denoted
as sq C sp). Example. Sequence 4 in Fig. 1 (left) is contained in Sequence 1.

Definition 3 (prefix). A sequence s, = (41, Aa, ..., A,) is a prefix of a se-
quence s, = <Bl,BQ, ...,Bm>7 Vn < m, iff A) = Bl,AQ = BQ,...,An_l = B,_1
and the first |A,| items of B,, according to ., are equal to A,.

Definition 4 (support). The support of a sequence s, in a sequence database
SDB is defined as the number of sequences s € SDB such that s, C s and is
denoted by supspp(sa).

Definition 5 (sequential pattern mining). Let minsup be a threshold set
by the user and SDB be a sequence database. A sequence s is a sequential
pattern and is deemed frequent iff supspp(s) > minsup. The problem of mining
sequential patterns is to discover all sequential patterns [11]. Example. Fig. 1
(right) shows 6 of the 29 sequential patterns found in the database of Fig. 1
(left) for minsup = 2.

Definition 6 (closed sequential pattern mining). A sequential pattern s,
is said to be closed if there is no other sequential pattern s, such that s, is a
superpattern of s,, s, C s, and their supports are equal. The problem of closed

sequential patterns is to discover the set of closed sequential patterns, which is
a compact summarization of all sequential patterns [7,12].
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Definition 7 (horizontal database format). A sequence database in hori-
zontal format is a database where each entry is a sequence. Example. Fig. 1
(left) shows an horizontal sequence database.

Definition 8 (vertical database format). A sequence database in vertical
format is a database where each entry represents an item and indicates the list
of sequences where the item appears and the position(s) where it appears [13].
Example. Fig. 2 shows the vertical representation of the database of Fig. 1
(left).

From the vertical representation, a structure named IdList [13] can be as-
sociated with each pattern. IdLists allow calculating the support of a pattern
quickly by making join operations with IdLists of smaller patterns. To discover
sequential patterns using IdLists, a single database scan is required to create
IdLists of patterns containing a single items, since IdList of larger patterns are
obtained by performing the aforementioned join operation (see [13] for details).
Several works proposed alternative representations for IdLists to save time in
join operations, being the bitset representation the most efficient one [3,2].

a b c d
SID | Itemsets | | SID | Itemsets | | SID | Itemsets | | SID | Itemsets
1 1 1 1 1 2 1
2 1,4 2 3,4 2 2 2 1
3 1 3 2 3 3
4 4 1 4 4
e f g
SID | Iltemsets | | SID | Itemsets | | SID | Itemsets

1 5 1 3 1 3,4

2 4 2 4 2

3 4 3 3 3

4 4 2 4 2

Fig. 2. The vertical representation of the example database shown in Figure 1(left)

The horizontal format is used by Apriori-based algorithms (e.g. GSP) and
pattern-growth algorithms (e.g. CloSpan and PrefixSpan). The two main algo-
rithms using the vertical database format are SPADE and SPAM. Other algo-
rithms are variations such as bitSPADE [2] and ClaSP [7]. SPADE and SPAM
differ mainly by their candidate generation process, which we review thereafter.

Candidate Generation in SPAM. The pseudocode of SPAM is shown in
Fig. 3. SPAM take as input a sequence database SDB and the minsup thresh-
old. SPAM first scans the input database SDB once to construct the vertical
representation of the database V(SDB) and the set of frequent items Fy. For
each frequent item s € Fy, SPAM calls the SEARCH procedure with (s), F7,
{e € File =ies s}, and minsup. The SEARCH procedure outputs the pattern
({s}) and recursively explore candidate patterns starting with the prefix ({s}).
The SEARCH procedure takes as parameters a sequential pattern pat and two
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sets of items to be appended to pat to generate candidates. The first set S,, repre-
sents items to be appended to pat by s-extension. The s-extension of a sequential
pattern (Iy,Is,...I) with an item z is defined as (Iy, I, ...I, {z}). The second
set S; represents items to be appended to pat by i-extension. The i-extension of
a sequential pattern (I1, I, ...I5) with an item x is defined as (Iy, I, ...Ip U{z}).
For each candidate pat generated by an extension, SPAM calculate its support
to determine if it is frequent. This is done by making a join operation (see [3] for
details) and counting the number of sequences where the pattern appears. The
IdList representation used by SPAM is based on bitmaps to get faster operations
[3]. If the pattern pat is frequent, it is then used in a recursive call to SEARCH
to generate patterns starting with the prefix pat. Note that in the recursive call,
only items that resulted in a frequent pattern by extension of pat are considered
for extending pat. SPAM prunes the search space by not extending infrequent
patterns. This can be done due to the property that an infrequent sequential
pattern cannot be extended to form a frequent pattern [1].

SPAM(SDB, minsup)

1. Scan SDB to create V(SDB) and identify F'), the list of frequent items.
2. FOReachitems € F,

3. SEARCH((s), F|, {e € F| | e >x S}, minsup).

SEARCH(pat, S, I, minsup)
1. Output pattern pat.

2 Stemp =1 temp - =0

3. FOReachitem; €S,

4. IF the s-extension of pat is frequent THEN S, := Siemp U {i}.

5. FOR each item jE Siepp,

6 SEARCH(the s-extension of pat with j, Siemp , {€ € Siemp | € >1ex j}, minsup).
7. FOReachitem; € I,

8 IF the i-extension of pat is frequent THEN [y, := Liemp U {7}

9. FOR each itemj € [y,

10. SEARCH(i-extension of pat with j, Siemp , {€ € fiemp | € >1ex j}, minsup).

Fig. 3. The pseudocode of SPAM

Candidate Generation in SPADE. The pseudocode of SPADE is shown in
Fig. 4. The SPADE procedure takes as input a sequence database SDB and the
minsup threshold. SPADE first constructs the vertical database V(SDB) and
identifies the set of frequent sequential patterns Fj containing frequent items.
Then, SPADE calls the ENUMERATE procedure with the equivalence class
of size 0. An equivalence class of size k is defined as the set of all frequent
patterns containing k items sharing the same prefix of k — 1 items. There is
only an equivalence class of size 0 and it is composed of F;. The ENUMERATE
procedure receives an equivalence class F' as parameter. Each member A; of
the equivalence class is output as a frequent sequential pattern. Then, a set T5,
representing the equivalence class of all frequent extensions of A; is initialized to
the empty set. Then, for each pattern A; € F such that i >, j, the pattern A;
is merged with A; to form larger pattern(s). For each such pattern r, the support
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of r is calculated by performing a join operation between IdLists of A; and A;.
If the cardinality of the resulting IdList is no less than minsup, it means that r
is a frequent sequential pattern. It is thus added to T;. Finally, after all pattern
A; have been compared with A;, the set T; contains the whole equivalence class
of patterns starting with the prefix A;. The procedure ENUMERATE is then
called with T; to discover larger sequential patterns having A; as prefix. When
all loops terminate, all frequent sequential patterns have been output (see [13]
for the proof that this procedure is correct and complete).

SPADE and SPAM are very efficient for datasets having dense or long sequences
and have excellent overall performance since performing join operations to cal-
culate the support of candidates does not require scanning the original database
unlike algorithms using the horizontal format. For example, the well-known Pre-
fixSpan algorithm, which uses the horizontal format, performs a database projec-
tion for each item of each frequent sequential pattern, in the worst case, which is
extremely costly. The main performance bottleneck of vertical mining algorithms
is that they use a generate-candidate-and-test approach and therefore spend lot
of time evaluating patterns that do not appear in the input database or are in-
frequent. In the next section, we present a novel method based on the study of
item co-occurrence information to prune candidates generated by vertical mining
algorithms to increase their performance.

SPADE(SDB, minsup)
1. Scan SDB to create V(SDB) and identify F; the list of frequent items.
2. ENUMERATE(F)).

ENUMERATE(an equivalence class F)
1. FOR each pattern 4; € F/

2 Output 4;,

3 T, =0.

4. FOR each pattern 4; € F, with j > i
5. R = MergePatterns(4;, 4;)

6 FOR each pattern » € R

7 IF sup(R) > minsup THEN
8 T, == T; U(R);

9 ENUMERATE(T)

Fig. 4. The pseudocode of SPADE

3 Co-occurrence Pruning

In this section, we introduce our approach, consisting of a data structure for
storing co-occurrence information, and its properties for candidate pruning for
vertical sequential pattern mining. Then, we describe how the data structure is
integrated in three state-of-the-art vertical mining algorithms, namely ClaSP,
SPADE and SPAM.
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3.1 The Co-occurrence Map

Definition 9. An item k is said to succeed by i-extension to an item j in a
sequence (I, I, ..., I,) iff j,k € I, for an integer x such that 1 < 2 < n and
k >lex j

Definition 10. An item k is said to succeed by s-extension to an item j in a
sequence (I1, I, ..., I,) iff j € I, and k € I, for some integers v and w such that
1<v<w<n.

Definition 11. A Co-occurrence MAP (CMAP) is a structure mapping each
item k € I to a set of items succeeding it. We define two CMAPs named CM AP;
and CMAP;. CM AP; maps each item k to the set ecm;(k) of all items j € I
succeeding k by i-extension in no less than minsup sequences of SDB. CM AP;
maps each item k to the set emg(k) of all items j € I succeedings k by s-
extension in no less than minsup sequences of SDB. Example. The CMAP
structures built for the sequence database of Fig. 1(left) are shown in Table 1,
being CM AP; on the left part and CM APs on the right part. Both tables have
been created considering a minsup of two sequences. For instance, for the item f,
we can see that it is associated with an item, ecm;(f) = {g}, in CM AP;, whereas
it is associated with two items, cms(f) = {e, g}, in CM AP;. This indicates that
both items e and g succeed to f by s-extension and only item g does the same
for i-extension, being all of them in no less than minsup sequences.

Table 1. CM AP; and C M AP;s for the database of Fig. 1 and minsup = 2

CMAP; CMAP;
item is succeeded by (i-extension) item is succeeded by (s-extension)
a {b} a {b,c,e, f}
b 0 b {e, f, g}
c 0 c {e, f}
e 0 e 0
f {9} f {e. g}
g 0 g 1]

Size Optimization. Let n = |I| be the number of items in SDB. To implement
a CMAP, a simple solution is to use an n X n matrix (two-dimensional array) M
where each row (column) correspond to a distinct item and such that each entry
m;,r € M represents the number of sequences where the item k succeed to the
item i by i-extension or s-extension. The size of a CMAP would then be O(n?).
However, the size of CMAP can be reduced using the following strategy. It can be
observed that each item is succeeded by only a small subset of all items for most
datasets. Thus, few items succeed another one by extension, and thus, a CMAP
may potentially waste large amount of memory for empty entries if we consider
them by means of a n x n matrix. For this reason, in our implementations we
instead implemented each CMAP as a hash table of hash sets, where an hashset
corresponding to an item k only contains the items that succeed to k in at least
minsup sequences.
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3.2 Co-occurrence-Based Pruning

The CMAP structure can be used for pruning candidates generated by vertical
sequential pattern mining algorithms based on the following properties.

Property 1 (pruning an i-extension). Let be a frequent sequential pattern
A and an item k. If there exists an item j in the last itemset of A such that
k belongs to ¢m;(j), then the i-extension of A with k is infrequent. Proof. If
an item k does not appear in ¢m;(j), then k succeed to j by i-extension in less
than minsup sequences in the database SDB. It is thus clear that appending k
by i-extension to a pattern A containing j in its last itemset will not result in a
frequent pattern. O

Property 2 (pruning an s-extension). Let be a frequent sequential pattern A
and an item k. If there exists an item j € A such that the item k belongs to em(j),
then the s-extension of A with & is infrequent. Proof. If an item %k does not appear
in emg(j), then k succeeds to j by s-extension in less than minsup sequences from
the sequence database SDB. It is thus clear that appending j by s-extension to a
pattern A containing k will not result in a frequent pattern. O

Property 3 (pruning a prefix). The previous properties can be generalized
to prune all patterns starting with a given prefix. Let be a frequent sequential
pattern A and an item k. If there exists an item j € A (equivalently j in the last
itemset of A) such that there is an item k € em(j) (equivalently in em; (7)), then
all supersequences B having A as prefix and where k succeeds j by s-extension
(equivalently i-extension to the last itemset) in A in B are infrequent. Proof. If
an item k does not appear in ¢cm(j) (equivalently ¢m;(j)), therefore k succeeds
to j in less than minsup sequences by s-extension (equivalently i-extension to
the last itemset) in the database SDB. It is thus clear that no frequent pattern
containing j (equivalently j in the last itemset) can be formed such that & is
appended by s-extension (equivalently by i-extension to the last itemset). O

3.3 Integrating Co-occurrence Pruning in Vertical Mining

Integration in SPADE. The integration in SPADE is done as follows. In the
ENUMERATE procedure, consider a pattern r obtained by merging two patterns
A; =PUzx and A; = PUy, being P a common prefix for A; and A;. Let y be
the item that is appended to A; to generate r. If r is an i-extension, we use the
CM AP; structure, otherwise, if r is an s-extension, we use CM AP;. If the last
item a of r does not have an item = € cm;(a) (equivalently in cms(a)), then the
pattern r is infrequent and r can be immediately discarded, avoiding the join
operation to calculate the support of r. This pruning strategy is correct based
on Properties 1, 2 and 3.

Note that to perform the pruning in SPADE, we do not have to check if items
of the prefix P are succeeded by the item y € A;. This is because the items of
P are also in A;. Therefore, checking the extension of P by y was already done,
and it is not necessary to do it again.
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Integration in SPAM. The CMAP structures are used in the SEARCH pro-
cedure as follows. Let a sequential pattern pat being considered for s-extension
(x € Sp,) or i-extension (x € S;) with an item z (line 3). If the last item a in pat
does not have an item x € ¢ms(a) (equivalently ¢m;), then the pattern resulting
from the extension of pat with x will be infrequent and thus the join operation
of x with pat to count the support of the resulting pattern does not need to
be performed (by Property 1 and 2). Furthermore, the item z should not be
considered for generating any pattern by s-extension (i-extension) having pat as
prefix (by Property 3). Therefore « should not be added to the variable Siemp
(Itemp) that is passed to the recursive call to the SEARCH procedure.

Note that to perform the pruning in SPAM, we do not have to check for
extensions of pat with = for all the items since such items, except for the last
one, have already been checked for extension in previous steps.

Integration in ClaSP. We have also integrated co-occurrence pruning in
ClaSP [7], a state of the art algorithm for closed sequential pattern mining. The
integration in ClaSP is not described here since it is done as in SPAM since
ClaSP is based on SPAM.

4 Experimental Evaluation

We performed experiments to assess the performance of the proposed algorithms.
Experiments were performed on a computer with a third generation Core i5 pro-
cessor running Windows 7 and 5 GB of free RAM. We compared the performance
of the modified algorithms (CM-ClaSP, CM-SPADE, CM-SPAM) with state-of-
the-art algorithms for sequential pattern mining (GSP, PrefixSpan, SPADE and
SPAM) and closed sequential pattern mining (ClaSP and CloSpan). All algo-
rithms were implemented in Java. Note that for SPADE algorithms, we use the
version proposed in [2] that implement IdLists by means of bitmaps. All mem-
ory measurements were done using the Java API. Experiments were carried on
six real-life datasets having varied characteristics and representing four differ-
ent types of data (web click stream, text from books, sign language utterances
and protein sequences). Those datasets are Leviathan, Sign, Snake, FIFA, BMS
and Kosarak10k. Table 2 summarizes their characteristics. The source code of
all algorithms and datasets used in our experiments can be downloaded from
http://goo.gl/hDtdt.

The experiments consisted of running all the algorithms on each dataset while
decreasing the minsup threshold until algorithms became too long to execute,
ran out of memory or a clear winner was observed. For each dataset, we recorded
the execution time, the percentage of candidate pruned by the proposed algo-
rithms and the total size of CMAPs. The comparison of execution times is shown
in Fig. 5. The percentage of candidates pruned by the proposed algorithms is
shown in Table 3.

Effectiveness of Candidate Pruning. CM-ClaSP, CM-SPADE and CM-
SPAM are generally from about 2 to 8 times faster than the corresponding
original algorithms (ClaSP, SPADE and SPAM). This shows that co-occurrence
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Table 2. Dataset characteristics

dataset sequence count distinct item avg. seq. length type of data
count (items)
Leviathan 5834 9025 33.81 (std= 18.6) book
Sign 730 267 51.99 (std = 12.3) language utterances
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85)  web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream
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Table 3. Candidate reduction

BMS Kosarak  Leviathan Snake Sign Fifa
CM-SPAM 78 to 93 % 94 to 98 % 50 to 51 % 28% 63 % 61 to 68 %
CM-SPADE 75 to 76 % 98 % 50 % 25 t0 26 % 69 % 63 to 69 %
CM-ClaSP 79 to 93% 75 % 50 to 52 % 18 % 63 % 67 to 68 %

Table 4. CMAP implementations comparison

BMS Kosarak Leviathan Snake Sign Fifa
minsup 38 16 60 105 43 2500
CMAP Size (hashmap) 0.5 MB 33.1 MB 15 MB 64 KB 3.19 MB 0.4 MB
CMAP Size (matrix) 0.9 MB 388 MB 310 MB 1.7 KB 0.2 MB 34.1 MB
Pair count (hashmap) 50,885 58,772 41,677 144 17,887 2,500
Pair count (matrix) 247,009 101,888,836 81,450,625 400 71,289 8,940,100

pruning is an effective technique to improve the performance of vertical mining
algorithms. The dataset where the performance of the modified algorithms is
closer to the original algorithms is Snake because all items co-occurs with each
item in almost all sequences and therefore fewer candidates could be pruned.
For other datasets, the percentage of candidates pruned range from 50% and to
98 %). The percentage slowly decrease as minsup get lower because less pairs
in CMAP had a count lower than minsup for pruning.

Best Performance. For mining sequential patterns, CM-SPADE had the best
performance on all but two datasets (Kosarak and BMS). The second best algo-
rithm for mining sequential patterns is CM-SPAM (best performance on BMS
and Kosarak). For mining closed sequential patterns, CM-ClaSP has the best
performance on four datasets (Kosarak, BMS, Snake and Leviathan). CM-ClaSP
is only outperformed by CloSpan on two datasets (FIFA and SIGN) and for low
minsup values.

Memory Overhead. We also studied the memory overhead of using CMAPs.
We measured the total memory used by a matrix implementation and a hashmap
implementation of CMAPs (cf. section 3.1) for all datasets for the lowest minsup
values from the previous experiments. Results are shown in Table 4. Size is
measured in terms of memory usage and number of entries in CMAPs. From
these results, we conclude that (1) the matrix implementation is smaller for
datasets with a small number of distinct items (Snake and SIGN), while (2) the
hashmap implementation is smaller for datasets with a large number of items
(BMS, Leviathan, Kosarak and FIFA) and (3) the hashmap implementation has
a very low memory overhead (less than 35 MB on all datasets).

5 Conclusion

Sequential pattern mining algorithms using the vertical format are very efficient
because they can calculate the support of candidate patterns by avoiding costly
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database scans. However, the main performance bottleneck of vertical mining
algorithms is that they usually spend lot of time evaluating candidates that do
not appear in the input database or are infrequent. To address this problem,
we presented a novel data structure named CMAP for storing co-occurrence
information. We have explained how CMAPs can be used for pruning candi-
dates generated by vertical mining algorithms. We have shown how to integrate
CMAPs in three state-of-the-art vertical algorithms. We have performed an ex-
tensive experimental study on six real-life datasets to compare the performance
of the modified algorithms (CM-ClaSP, CM-SPADE and CM-SAPM) with state-
of-the-art algorithms (ClaSP, CloSpan, GSP, PrefixSpan, SPADE and SPAM).
Results show that the modified algorithms (1) prune a large amount of candi-
dates, (2) are up to 8 times faster than the corresponding original algorithms
and (3) that CM-SPADE and CM-ClaSP have respectively the best performance
for mining sequential patterns and closed sequential patterns.

The source code of all algorithms and datasets used in our experiments can
be downloaded from http://goo.gl/hDtdt.

For future work, we plan to develop additional optimizations and also to
integrate them in sequential rule mining [5], top-k sequential pattern mining [4]
and maximal sequential pattern mining [6].
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Abstract. A main challenge in pattern mining is to focus the discovery
on high-quality patterns. One popular solution is to compute a numerical
score on how well each discovered pattern describes the data. The best
rating patterns are then the most analyzed by the data expert. In this
paper, we evaluate the quality of discovered patterns by anticipating
of how user analyzes them. We show that the examination of frequent
patterns with the notion of support led to an unbalanced analysis of the
dataset. Certain transactions are indeed completely ignored. Hence, we
propose the notion of balanced support that weights the transactions
to let each of them receive user specified attention. We also develop an
algorithm ABSOLUTE for calculating these weights leading to evaluate
the quality of patterns. Our experiments on frequent itemsets validate
its effectiveness and show the relevance of the balanced support.

Keywords: Pattern mining, stochastic model, interestingness measure.

1 Introduction

For twenty years, the pattern mining algorithms have gained performance and
now arrive to quickly extract patterns from large amounts of data. However,
evaluate and ensure the quality of extracted patterns remains a very open issue.
In general, a pattern is considered to be relevant if it deviates from what was
expected from a knowledge model. In the literature, there are two broad cate-
gories of knowledge models [1,2,3]: user-driven and data-driven ones. User-driven
approaches discover interesting patterns with subjective models based on user
oriented information, such as domain knowledge, beliefs or preferences. Data-
driven approaches discover interesting patterns with objective models based on
the statistical properties applied to data, such as frequency of patterns. Most
often these methods neglect how the user will analyze the collection of patterns.
In this paper, we present a novel approach, named analysis-driven, to evaluate
discovered patterns by foreseeing how the collection will be analyzed.

Before presenting in depth our motivations, we first recall the context of fre-
quent itemset mining [4]. Let Z be a set of distinct literals called items, an item-
set corresponds to a non-null subset of Z. A transactional dataset is a multi-set
of itemsets, named transactions. Table 1 (a) presents such a dataset D where
4 transactions ti,...,ts4 are described by 4 items A, ..., D. The support of an

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 53-64, 2014.
© Springer International Publishing Switzerland 2014
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itemset X in a dataset D is the fraction of transactions containing X. An itemset
is frequent if it appears in a database with support no less than a user specified
threshold. For instance, Table 1 (b) shows the frequent itemsets of D (with 0.25
as minimal support) that are ranked according to the support.

Table 1. An unbalanced analysis of a dataset by frequent patterns

(a) Dataset D (b) The mined pattern set P (c) Analysis resulting from the scoring
TID Items PID Pattern Support

Reality Expected
t AB P A 0.50 TID Length Proportion IT Preference p
to AC D2 B 0.50
t1 1.25 0.3125 > 0.25

t3 BC p3 C 0.50
¢ D D 0.25 to 1.25 0.3125 > 0.25
4 by R 028 ts 1.25 0.3125 > 0.25

ps : ta 0.25 0.0625 < 0.25

pe AC 0.25 g | !

pr  BC 0.25 ums

In a post-analysis process based on the scoring of patterns, we assume that
an analyst examines each pattern with a diligence proportional to an interest-
ingness measure (here, the support) for analyzing the dataset (we will justify
our proposal of analysis model in Section 3). Hence, it is not difficult to see that
the attention paid to A is twice that for AB since their support is respectively
0.5 and 0.25. We also assume that the analysis proportion of each transaction
is proportional to the sum of the time spent on each pattern covering it. The
transaction t; covered by A, B and AB is then analyzed for a length of 1.25
(= 0.5+ 0.5 + 0.25). Therefore, according to this observation, the individual
analysis of t1, t2, or t3 in the analysis is 5 times greater than that of ¢4 as shown
by the third column of Table 1 (c). Assuming that the user considers all trans-
actions equally interesting (see the preference vector p in the fourth colmun),
we say that such an analysis is unbalanced. It means that some transactions are
understudied while others are overstudied! For us, a good way to balance the
analysis is to increase the score (here the support) of the pattern D. Its score
increase will also increase the analysis proportion of ¢4 and decrease that of the
other three transactions. More interestingly, we think that D is peculiar and
deserves a higher valuation because it describes a singular transaction that is
described by no other pattern.

In this work, we seek to balance the analysis of the dataset by proposing a new
interestingness measure to rate the patterns. More precisely, a preference vector
p: D — (0,1] indicates the intensity of his/her interest for each transaction such
that ), p(t) = 1. Indeed, the user does not always devote the same interest in
all transactions as in our example above. Sometimes he/she prefers to focus on
rare data as it is often the case in fraud detection or with biomedical data. An
analysis is balanced when each transaction ¢ is studied with an acuity I1 (¢, M)
corresponding to that specified by a user-preference vector p(t): II(t, M) =
p(t) where IT(t, M) is the analysis proportion of the transaction ¢ given an
analysis model M that simulates analysis sessions conducted to understand the
data. To the best of our knowledge, we propose the first model, called scoring
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analysis model, to simulate the sessions of analyzing pattern sets according to an
interestingness measure. Its strength is to rely on a stochastic model successfully
used in Information Retrieval [5,6] while integrating the preferences given by the
user. As main contribution, we then introduce the balanced support that induces
balanced analysis under our model. This measure removes the equalized axiom
of support saying that every transaction has the same weight in its calculation.
It gives a higher weight to the most singular transactions in the calculation
of the balanced support. For instance, in Table 1, the transaction t4 will be
weighted 5 times more than others so that it receives the same attention as
other transactions. We also develop an algorithm, ABSOLUTE, to compute the
balanced support. Our experiments show its effectiveness for balancing frequent
itemsets and compare the balanced support with the traditional support.

The rest of this paper is organized as follows. Section 2 introduces the basic
notations. In Section 3, we introduce the scoring analysis model allowing us to
simulate the behavior of an analyst. Under this model, we propose in Section 4
the balanced support and the algorithm ABSOLUTE to compute it. Section 5
presents experiments demonstrating its efficiency and the interest of the balanced
support. Section 6 reviews some related work. We conclude in Section 7.

2 Preliminaries

For the sake of clarity, we illustrate our definitions with the notion of itemsets
but, our problem is not limited to a particular type of pattern. We consider a
language £ and a dataset D that is a multiset of £ (or another language). A
specialization relation = is a partial order relation on £ [7]. Given a specialization
relation < on £, [ < I’ means that [ is more general than I’, and I’ is more specific
than [. For instance, A is more general than AB w.r.t C.

Given two posets (£1,=1) and (L2, <2), a binary relation <« C £1 x L2 is a
cover relation iff for any I <ly, we have lf <lz (resp. I <l}) for any pattern 1] <1 I
(resp. la =2 1}). The relation I3 <o means that I; covers I, and Iy is covered
by l;. The cover relation is useful to relate different languages together (e.g.,
for linking patterns to data). Note that a specialization relation on L is also a
cover relation on £ x L. For instance, the set inclusion is used for determinating
which patterns of P cover a transaction of D. Given two pattern sets L C L,
L' C £ and a cover relation < C £ x L', the covered patterns of L' by | € L is
the set of patterns of L’ covered by the pattern I: L), = {I" € L’|l «l’}. Dually,
the covering patterns of L for I’ € L’ is the set of patterns of L covering the
pattern I: Loy = {l € L|l<l'}. With Table 1, we obtain that D54 = {t1,t2} and
Pc,, ={A, B, AB}.

Pattern discovery takes advantage of interestingness measures to evaluate the
relevancy of a pattern. The support of a pattern ¢ in the dataset D can be
considered as the proportion of transactions covered by ¢ [4]: Supp(p, D) =
|Dyo|/|D|. A pattern is said to be frequent when its support exceeds a user-
specified minimal threshold. For instance, with a minimal threshold 0.25, the
pattern A is frequent because Supp(A, D) = |{t1,t2}|/4 (> 0.25). Thereafter, any
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function f : £ — R is extended to any pattern set P C £ by considering f(P) =

>_pep [(p). For instance, S/J]_);)(P, D) corresponds to 3 . p Supp(p, D) = 2.5
with P ={A, B,C, D, AB, AC, BC'} in Table 1.

3 Simulating Analysis Using a Scoring of Patterns

3.1 Scoring Analysis Model

In this section, we propose the scoring analysis model to simulate an analyst
faced with a set of scored patterns. This model generates sessions by randomly
picking patterns taking into account the scoring of patterns. More precisely, the
“simulated analyst” randomly draws a pattern by favoring those with the highest
measure, and then studies each transaction covered by this pattern during a
constant period weighted by its preference vector. Indeed, it is important to
benefit from these preferences for better approximating the user behavior. After
each pattern analysis, the session can be interrupted (if the analyst is satisfied,
no longer has time to pursue, etc.) or continued (if the analyst is dissatisfied,
wants more information, etc). This interruption of the session of analysis can be
modeled by a halting probability. We now formalize this model:

Definition 1 (Scoring analysis model). Let D be a dataset, P C L a pattern
set, m: L — [0,1] an interestingness measure and p a preference vector.

The scoring analysis model with a halting probability o € (0,1) and a unit
length 6 > 0, denoted by Sy q,5, generates sessions with the following process:

1. Pick (with replacement) a pattern ¢ of P with probability distribution p(y) =
m(y)/m(P) (wherey € P).

2. Study each transaction t € D covered by ¢ during a length 6 X p(t).

3. Stop the session with probability o or then, continue at Step 1.

Basically, Step 1 favors the analysis of patterns having the highest measure
(with replacement because the end-user can re-analyze a pattern in the light
of another). Step 2 takes into account the user-preferences for the analysis of
transactions. Simulating a data expert by randomly picking patterns may seem
strange and unrealistic at first. However, this mechanism has been successfully
used in other high-level tasks such as web browsing [5] and text analysis [6].
We think that the strength of our stochastic model is to describe the average
behavior of users. By analogy with the random surfer model, each pattern would
be a web page. The web pages would then be completely interconnected where
each link is weighted by the support of the destination page. In this context, the
probability a would correspond to the probability of interrupting navigation.

3.2 Analysis Proportion of a Transaction under S, 4,5

Starting from the scoring analysis model, we desire to derive the analysis pro-
portion of each transaction.
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Theorem 1 (Analysis proportion). The analysis proportion II(t,Sy q.5) of
the transaction t is:

m(Pq) x p(t)
Y vep M(Papr) X p(t')

Theorem 1 (proofs are omitted due to lack of space) means that the analysis
proportion of a pattern is independent of the parameters o and §. Therefore,
in the following, I1(t,Sy.q,s) is simply denoted II(t,S,). Let us consider the
analysis proportion of each transaction of Table 1 in light of Theorem 1 us-
ing a uniform preference vector. As the itemsets A, B and AB cover t1, we
obtain that %(Pqtl7p) = 0.5+ 0.5+ 0.25 = 1.25. The same result is ob-
tained for ¢t and ¢3 and similarly, %(P4t4,p) = 0.25. Finally, I1(t1,S,) =
Supp(Paty s D)/ Y pep Supp(Pa, D) = 1.25/(3 x 1.25 4 0.25) = 5/16 = 0.3125
and IT(t4,S,) = 0.25/4 = 1/16 = 0.0625. It means that under the scoring anal-
ysis model, the transaction t4 will be less analyzed than the transactions t1, to
or t3 as indicated in Table 1 (c).

(t Sp,oz 5)

3.3 Balanced Analysis under S, q s

We now deduce what a balanced analysis with respect to p is under the scoring
analysis model:

Property 1 (Balanced analysis). The analysis of D by the pattern set P with
m is balanced with respect to p under the scoring analysis model iff for any
transaction ¢ € D, the following relations holds:

(P<1t X Z P<1t’

t'eD

The crucial observation highlighted by Property 1 is that the balance of an
analysis is independent of the preference vector specified by the user, under the
scoring analysis model. Indeed, the preference vector p involved in the right side
of the equation II(t, M) = p(t) is canceled by the one appearing in the analysis
proportion (see Theorem 1). Consequently, if the analysis of a dataset D by a
pattern set P with a measure m is balanced with respect to a given preference
vector p, then it is also balanced with respect to any other preference vector.
However, note that the analysis length of a transaction will take into account
the considered preference vector.

Let us compute whether the analysis of the dataset D by the pattern set
P with the measure Supp (see Table 1) is balanced under the model S, using

Property 1. First, the transaction ¢; is too much studied because %(Pqtl ,D) =
Supp({A, B,AB},D) = 1.25 and 1/|D| x >, cp Supp(Payr, D) = 1/4 x (3 x
1.25+0.25) = 1. Conversely, as Supp(Pqt,, D) = Supp({D}, D) = 0.25 (< 1), the
transaction t4 is not studied enough. In Section 5, we observe that the use of

frequent patterns with the support for the analysis of datasets coming from the
UCIT repository always leads to an unbalanced analysis.
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4 Balancing the Analysis of Patterns

4.1 Axiomatization of Support

Under the scoring analysis model, we aim at balancing the analysis of the dataset
by proposing a new interestingness measure that satisfies the equation of Prop-
erty 1. At this stage, the right question is “what characteristics should satisfy this
measure?” Unfortunately we found that the support does not lead to balanced
analysis. However, this extremely popular measure is both intuitive for experts
and useful in many applications. Moreover, it is an essential atomic element
to build many other interestingness measures. For all these reasons, we desire
a measure that leads to balanced analysis while maintaining the fundamental
properties of the support. To achieve this goal, we first dissect the support by
means of its axiomatization (we only focus on the support measure and not on
the frequent itemset mining as proposed in [8]).

Property 2 (Support axioms). The support is the only interestingness measure
m that simultaneously satisfies the three below axioms for any dataset D:

1. Normalized: If a pattern ¢ covers no transaction (resp. all transactions),
then its value m(yp) is equal to 0 (resp. 1).

2. Cumulative: If patterns ¢ and @9 cover respectively the set of transactions
Ty and T3 such that Ty NTy = (), then the value m(p) of a pattern ¢ covering
exactly Th U Ty is m(p1) + m(p2).

3. Equalized: If two patterns cover the same number of transactions, then
they have the same value for m.

Clearly the first axiom does not constitute the keystone of support, since
similar normalizations are widely used by other measures (e.g., confidence or J-
measure). Furthermore, it has no impact on the fact that an analysis is balanced
or not, since Step 1 of scoring analysis model performs another normalization.
Conversely, we believe that the other two axioms (not verified by other measures)
are the main characteristics of the support. If we do not find reason to reconsider
the cumulative axiom, we think the third is not fair. Ideally, an interestingness
measure should favor the patterns covering the least covered transactions as
explained in the introduction. Thus, the value of a measure should not only
depend on the number of transactions covered but also on the singularity of
these transactions. To this end, we propose to retain the first two axioms and
to substitute the equalized axiom by the axiom of balance: a measure of interest
must lead to the balanced analysis of the dataset by the pattern set.

4.2 Balanced Support

We first introduce a relaxation of the support by removing the constraint due
to the equalized axiom:

Definition 2 (Weighted support). Given a function w : D — RT, the
weighted support of a pattern ¢ in the dataset D is defined as: Supp,(p, D) =

Ztepw w(t)/ztep w(t).
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It is not difficult to see that the weighted support satisfies the normalized
axiom and the cumulative axiom. Now it only remains to choose the right vec-
tor w to get a balanced analysis. A naive idea would be to use the preference
vector p to weight the support. That does not work in the general case: Supp,,
(where p,, : t — 1/|D|) corresponds exactly to the support Supp which lead to
an unbalanced analysis as shown by our running example (see Section 3.3) or
observed in experimental study (see Section 5). In fact, to find the right weights,
it is necessary to solve the equation of Property 1 by using the definition of the
weighted support. Then, the weighted support induced by these weights defines
the optimal balanced support:

Definition 3 (Optimal balanced support). If it exists, the optimal balanced
support of a pattern @ € P in the dataset D with the pattern set P, denoted by
BS*(p, D, P), is the weighted support where the weight w satisfies the following
equation for all transactions t € D:
o~ 1 o~

Suppuw(Pat, D) = D * > Suppw(Parr, D)

t'eD

Interestingly, this definition underlines that the whole set of mined patterns
P is necessary to compute the optimal balanced support of any individual
pattern. Let us illustrate the above equation with the example given by Ta-
ble 1. With the weight wpq where tq,ta,t3 — 1/8 et t4 + 5/8, we obtain
Suppwb z(A D) Suppwbal(B D) - 1/8 + 1/8 = 2/8 Suppwb z(AB D) - 1/8
and Suppw,m, (D, D) =5/8. Then, we can check that the equation of Definition 3
is satisfied Suppwbal(Pqtl, D) = Suppwbal({A B, AB}, D) =2/8+2/84+1/8=5/8

(similar for t5 and t3) and Suppwbal (Pg,,D) = Suppwbal({D} D) = 5/8. In
other words, Supp.,,, corresponds exactly to the optimal balanced support
BS*(p, D, P).

Theorem 2. The optimal balanced support (if it exists) is the single interest-
ingness measure that satisfies the normalized and cumulative axioms, and that
leads to a balanced analysis.

Theorem 2 achieves our main goal as stated in introduction. However, the
equation of Definition 3 can admit no solution and then the optimal balanced
support is not defined. For instance, it is impossible to adjust the weighted
support for balancing the analysis of D = {4, B,AB} by P = {A, B, AB}.
Indeed, whatever the weighted support, the transaction AB is still more analyzed
than the other two since it is covered by all patterns. So, the next section proposes
an algorithm to approximate the optimal balEI_l\(_ie/d support by minimizing the

deviation between %(P«, D) and ), cp Suppw(Patr, D)/|D|.

4.3 Approximating the Balanced Support

ABSOLUTE (for an anagram of balanced support) returns the weights w such
that the analysis S, .5(D, P, Suppy,) is balanced as better as possible. Its in-
put parameters consist in a pattern set P, a dataset D and a threshold e. The
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latter is the maximal difference expected between two weight vectors stemming
from consecutive iterations before terminating the algorithm. The weights out-
putted by ABSOLUTE enable us to define the (approzimated) balanced support
BS(¢, D, P).

Algorithm 1. ABSOLUTE

Input: a dataset D, a set of patterns P, a difference threshold e
Output: a weight vector that balances the support
1: for all ¢t € D do
T wolt] + 1/|D|
3: end for
4: i+ 0
5: repeat
6: W<+o0
T for all t € D do o
8 |é‘ XXy ep Surpw (Pgyr D)
9
10

wit1[t] < w;[t] x // Correct the weight of t

Suppw; (Pat,D)
W« W + wi+1[t]

: end for
11:  diff <0
12:  for all t € D do
13: wiy1[t] < wit1[t]/W // Normalize the weight of t
14: diff «+ diff + |wit1[t] — wilt]] // Update diff

15: end for
16: i+ i+1
17: until diff/|D| < e
18: return w;

Note that in Algorithm 1, w; are symbol tables where the keys are transac-
tions. Lines 1-3 initialize all the weigths with 1/|D|. The main loop (Lines 5-17)
adjusts the weigths until the sum of differences between w;;11 and w; is less
than e. More precisely, Lines 7-10 correct the weight of each transaction. Using
Definition 3, Line 8 computes the new weight w;1[t] by multiplying the pre-
vious weight w;[t] by the ratio between the average coverage (i.e., a constant

1/|D] x 3y ep Suppw, (Payr, D) shared by all transactions) and the coverage of ¢

—~

(i-e., Suppw, (Pq, D)). For instance, if the coverage of ¢ is below the average cov-
erage, the ratio is above 1 and the new weight is stronger. Thus, it increases the
support of all the patterns covering this transaction. This operation therefore
operates a local balance for each transaction. Nevertheless, there is also a global
modification since a normalization is performed on these weights at Line 13
(where W is computed Line 9). Line 14 updates diff (initialized Line 11) ac-
cumulating the difference between w;;1 and w; for all the transactions. Finally,
Line 18 returns the last weights that correspond to a balanced analysis.

5 Experimental Evaluation

This section evaluates the effectiveness of the algorithm for balancing the analy-
sis and to compare the quality of the balanced support with respect to the usual
one. All experiments reported below were conducted with a difference thresh-
old € = 107° on datasets coming from the UCI Machine Learning Repository
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(www.ics.uci.edu/~mlearn/MLRepository.html). Given a minimal support thresh-
old minsupp, we select all the frequent itemsets for P. Increasing the weight of
singular transactions does not cause the extraction of random noise patterns
because the final patterns are selected from the collection of frequent patterns.
For simplicity, we use the uniform preference vector p, : t — 1/|D| for p.

Table 2. ABSOLUTE on UCI benchmarks for frequent itemsets (minsupp = 0.05)

Dataset |P| # of iter. DKLg',’jpp DKLﬁuS Gain
abalone 2,527 17 0.180 0.021 8.72
anneal 25,766 24 0.339 0.013 26.2
austral 20,386 29 0.076 0.006 12.6
breast 2,226 41 0.145 0.006 22.5
cleve 11,661 35 0.172 0.012 14.7
cmc 2,789 23 0.091 0.002 50.8
crx 34,619 24 0.122 0.011 10.9
german 124,517 17 0.172 0.029 5.96
glass 3,146 52 0.084 0.005 17.7
heart 16,859 37 0.116 0.014 7.95
hepatic 511,071 13 0.568 0.040 14.1
horse 17,084 19 0.275 0.017 15.9
lymph 275,278 34 0.138 0.016 8.34
page 3,190 42 0.054  0.004 14.8
vehicle 187,449 24 0.636 0.020 31.3
wine 12,656 46 0.154 0.009 17.8
zoo 586,579 34 0.353 0.019 18.2

Efficiency of ABSOLUTE Table 2 (columns 2-3) presents the number of patterns
and the number of iterations required by ABSOLUTE for balancing all the fre-
quent patterns. Note that we do not provide running times because they are very
low. Indeed, the worst case is the balancing time for all the frequent patterns on
z00, but it does not exceed 16 seconds performed on a 2.5 GHz Xeon processor
with the Linux operating system and 2 GB of RAM memory (ABSOLUTE is im-
plemented in C++). Table 2 shows that the number of iterations varies between
13 and 52. No simple relationship was found between the number of iterations
and the features of datasets.

Table 2 also reports the Kullback-Leibler divergence for support and BS
(columns 4-6). Let us recall that Kullback-Leibler divergence defined by
Dgr(P||Q) = >, P(i) x log 58 measures the difference between two proba-
bility distributions P and @ [9]. For any transaction ¢, we fix P(t) = p,(t) as
reference and Q(t) = II(t, M, ) as model. Table 2 shows that ABSOLUTE reaches
its goal since the Kullback-Leibler divergence is always significantly reduced by
benefiting from the balanced support. This divergence is at least divided by 5
and it is even divided by more than 10 in 13 datasets. The average gain is 17.56
for frequent itemsets. Similar experiments conducted on collections of free and
closed itemsets [10] gave respectively an average gain of 12.36 and 11.94.

Effectiveness of Balanced Support. We desire to quantify the number of
non-correlated patterns (i.e., the number of extracted patterns that are spurious)
with a usual/balanced support. Unfortunately, the pattern discovery process is
unsupervised and the (ir)relevant patterns are unknown. We tackle this issue
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Fig. 1. Estimating the number of non-correlated patterns for Supp and BS

by using an experimental protocol inspired by [11]. The idea is to make the
assumption that a pattern is non-correlated if this pattern is also extracted (by
the same method) in a random dataset D* having the same characteristics as D
(i.e., the same dimensions and the same support for each item).

Figure 1 depicts the ratio of non-correlated patterns (averaged from 10 ran-
dom datasets D*) for abalone and anneal for frequent itemsets with a minimal
usual/balanced support varying between 0 and 0.5. This ratio is the number of
non-correlated patterns divided by the total number of patterns. For the bal-
anced support, we use three collections of frequent patterns P obtained with
minsupp = 0.01/0.05/0.10 independently of the second threshold applied to
balanced support. Given a minimal threshold (see horizontal axis), the ratio of
non-correlated patterns for Supp is always higher than that of BS and most
of times, with a significant difference. Interestingly, the change of minsupp for
the collection of patterns has a marginal impact on the ratio of non-correlated
patterns. Recall that balanced support only differs from the traditional one by
replacing the equalized axiom by the axiom of balance (see Section 4.1). So it
is this axiom that enables our measure to keep out uncorrelated patterns. More
generally, this experience justifies the interest of a balanced analysis and even
the usefulness of the scoring analysis model for simulating an analysis.

6 Related Work

As mentioned in the introduction, many interestingness measures have been
proposed for evaluating the pattern interest as alternative to the support [2,12,3].
They can be categorized into two sets [1]: user-driven measures and data-driven
ones. Among the data-driven approaches, the statistical models are often based
on the null hypothesis. A pattern is interesting if it covers more transactions
than what was expected. Some models simply require the frequency of items
forming the itemset [12], others rely on its subsets [13,14] or even, patterns
already extracted [15]. These methods consider that all transactions have the
same weight. However, in practice, the user tends to attach more importance
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to information that describes the least common facts. Thus, the most singular
transactions should have an important weight in the evaluation of patterns that
describe such transactions. In this sense, this paper proposes another alternative
resting on the integration of the analysis method into the metric. To the best
of our knowledge, this way has not yet been explored in the literature. A major
and original consequence of our approach lies in the fact that each transaction
contributes with a different weight in the balanced support and this weight
depends on the entire extracted collection.

However, the problem of unbalance induced by a pattern set is indirectly ad-
dressed by several approaches removing the patterns that describe transactions
covered by other patterns. For instance, the condensed representations [10] which
remove redundant patterns, often decrease the unbalanced of the analysis. But,
empirical experiments have shown that the unbalance remains important (see
Section 5). In the same way, global models based on patterns [16,17,18] favor
balanced analyses of the dataset. Indeed, one goal of these approaches is to de-
scribe all the data by choosing the smallest set of patterns. The overlap between
the coverings of the different patterns is very reduced (ideally each transaction
should be described by a unique pattern as it is the case with a decision tree). Un-
fortunately, relevant patterns may be removed from such models. Our approach
balances the analysis of the dataset by preserving the whole set of patterns to
avoid losing information.

Rather than modifying the collection of mined patterns, it would be possible
to modify the initial dataset in order to satisfy user preferences. Sampling meth-
ods [19,20] are widely used in machine learning and data mining in particular
to correct a problem of unbalance between classes. There is no reason that the
change of the dataset with a usual sampling method leads to a balanced analysis.
We think that our approach is complementary to those of sampling.

7 Conclusion

In this paper, we introduce the scoring analysis model for simulating analysis
sessions of a dataset by means of a pattern set. Under this model, we define the
balanced support that induces a balanced analysis of the dataset for any user-
specified preference vector. We propose the algorithm ABSOLUTE to iteratively
calculate transaction weights leading to the balanced support. This new inter-
estingness measure strongly balances the analysis and in parallel, it enables us
to filter-out non-correlated patterns. The originality of our work is to show that
the integration of the analysis method to drive the data mining is profitable.
In future work, we are interested in examining our approach on real-world
data for better understanding the semantic of the balanced support: what are
the patterns which balanced support is much higher than traditional support?
What are domains and datasets where the balanced support is most appropri-
ate? Dually, we must also study the properties of the weights resulting from
ABSOLUTE that could be interesting to identify the outliers. Furthermore, the
prospects of using the scoring analysis model are manifold. For instance, this
model could be used to balance other measures of interest like the confidence.
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Abstract. Given a budget and a network where different nodes have different
costs to be selected, the budgeted influence maximization is to select seeds on
budget so that the number of final influenced nodes can be maximized. In this
paper, we propose three strategies to solve this problem. First, Billboard strat-
egy chooses the most influential nodes as the seeds. Second, Handbill strategy
chooses the most cost-effective nodes as the seeds. Finally, Combination strategy
chooses the “best” seeds from two “better” seed sets obtained from the former
two strategies. Experiments show that Billboard strategy and Handbill strategy
can obtain good solution efficiently. Combination strategy is the best algorithm
or matches the best algorithm in terms of both accuracy and efficiency, and it is
more balanced than the state-of-the-art algorithms.

Keywords: Budgeted Influence Maximization, Information Propagation, Social
Networks.

1 Introduction

Influence maximization is a hot topic for viral marketing and has been heavily studied
in the previous literature [5,3,4]. The traditional problem statement is to find a k-node
set of seeds that propagate influence so that the number of resulting influenced nodes
can be maximized. This definition is proposed by Kempe at al. [5] and implies an as-
sumption that each node has an uniform cost to be chosen. Following his work, most of
the existing works comply with the same assumption and focus on the k-node influence
maximization problem [11,3,4]. However, this assumption does not accord with most
real-world scenarios. For example, in the domain of online advertising service, different
web sites have different advertising prices. If a company promotes its product by online
advertisement, how to choose the web sites on budget? Spend much money on some
few famous portal sites or choose less popular web sites to add the number of adver-
tisements? Obviously, this problem is different from k-node influence maximization.
The problem statement of influence maximization can be extended to a generalized
form. Given a social network where nodes may have different costs to be selected,
an influence diffusion model and a budget, influence maximization is to find a seed
set within the budget that maximizes the number of final influenced nodes. Nguyen et
al. [10] call this problem budgeted influence maximization(BIM). In mathematics, k-
node influence maximization and budgeted influence maximization have two different
mathematical abstractions [8,6]. And it has been proved that the algorithms for the
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(© Springer International Publishing Switzerland 2014
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former will no longer produce satisfactory solutions for the latter [6]. Thus, most of the
existing approaches for k-node influence maximization do not suit for the BIM problem.

The other challenge to influence maximization is the efficiency. A common method
to this problem is Greedy algorithm [5], which does well in accuracy but has a bad
performance in efficiency. Some researchers adopt different ideas to address this prob-
lem efficiently [3,2,4]. However, either they improve the efficiency at the cost of ef-
fectiveness, or the proposed approach can only address k-node influence maximization
problem. To our knowledge, there are only two existing studies focusing on budgeted
influence maximization [7,10], and both of them are based on Greedy algorithm. Al-
though these studies concentrate on improving Greedy algorithm to reduce the runtime,
they still can not overcome its intrinsic flaw of expensive computation.

In this paper, we tackle the problem of budgeted influence maximization and aim to
propose an approach that has good performance in both accuracy and efficiency. We
first analyze real networks empirically, including defining node roles and studying seed
selection heuristics, which is the foundation of the proposed algorithm. Then, we ad-
vance three strategies to address this problem. The first one is Billboard strategy that
chooses the most influential nodes as the seeds. The second one is Handbill strategy that
chooses the most cost-effectvie nodes as the seeds. And the third one, called Combina-
tion strategy, uses Simulated Annealing to choose the best combination of nodes from
the two nonoverlapping sets resulting from the previous two strategies. Experiments
show that Billboard strategy and Handbill strategy can solve this problem efficiently
and obtain good accuracies. Combination strategy is the best algorithm or matches the
best algorithm in terms of both accuracy and efficiency, and is more balanced than the
state-of-the-art algorithms.

2 Problem Statement and Preliminaries

2.1 Problem Statement

A social network can be modeled as a graph G = (V, E), where vertices v represent
individuals and edges E represent the relationship between two individuals, each vertice
v € V has a cost c(v) denoting the expense when it is selected. A diffusion model
describes the spread of an information through the social network G. In this paper, we
adopt Independent Cascade(IC) model for simulating influence propagation, which is
a classical information propagation model and is widely used in the previous influence
maximization research [5,7,4]. Given a network G, a diffusion model and a budget B,
budgeted influence maximization is to find a seed set S € V such that subjecting to the
budget constraint ) ¢ c(v) < B, the number of final influenced individuals o'(S) can
be maximized. The important notations used in this paper are declared in Table 1.

Table 1. Important Notations

Notation Description
G = (V, E) A social network with vertex set V and edge set E
B The total budget
N(v)  The out-neighbors of node v
c(v) The cost of node v
ce(v)  The cost-efficient value of node v to influence propagate
o(S)  The final influence of seed set S
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2.2 Billboards and Handbills

There are two natural ideas commonly used to select seeds for the BIM problem in the
real-life scenario. In this paper, we call them Billboard strategy and Handbill strategy.
Billboard strategy is to choose the most influential nodes as seeds in the network. We
call these nodes billboards, because they are like billboard advertisements that are lo-
cated in high traffic area and can create the most impactful visibility to people. Handbill
strategy is to choose the low-cost nodes as seeds. We call them handbills, because hand-
bills are inexpensive to produce but can be distributed to a large number of individuals.

The two strategies select seeds from two different kinds of node candidates. They are
billboard nodes and handbill nodes. In this paper, we distinguish them according to the
degree. Since most real networks have scale-free property [1], we could adopt Pareto
principle to distinguish between billboards and handbills, that is, the top 20% of nodes
with the largest degree can be defined as billboards and the remainders are handbills.
Fig.1 is a degree Pareto chart for a citation network (called HEP-PH network and its
description is given in Section 4.1). From the chart, the degree distribution has a long
tail and fits Pareto’s law. The border degree for this network is 19, that is, the nodes
whose degree is larger than 19 are billboards and the others are handbills.

2500 Cumulative Percentage (a)
I Frequency of Occurrence
Billboard Point O (b)
08
8 2000 ° b
c o
g £ d
= f =
3 Jos 8
§ 1500 5 a B
k) o
> 2
e 104 ®
§ 1000 2
E 8
w
02 (c) (d)
500 . r ‘
--O0—0O0—0—0 O
0 . . 0
0 19 100 200 300
Degree
Fig. 1. Degree Distribution (HEP-PH) Fig. 2. Basic Structures of Social Network

2.3 Node Roles

A node role is a characterization of the part it plays in a network structure [11]. Nodes
with different degrees or in different locations can be assigned different roles for de-
scribing their abilities to influence propagation. In our study, we first abstract four typi-
cal topologies from real networks, which are the basic structures to compose a network.
They are respectively multi-cluster, single cluster, chain and loner, shown in Fig.2. Ob-
serving the nodes in these topologies, we define six roles to characterize different kinds
of nodes, and they can cover all the nodes in the network. The definitions are follows.

— King. King is a global hub node in a multi-cluster topology, providing connections
to many local communities. It has a wide influence by two characteristics. Firstly,
it is a high-degree node that can influence many nodes directly. Secondly, many of
its neighbors are also high-degree nodes. The influence can further propagate by
the influential neighbors indirectly. In Fig.2, node a is a king node.
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— Seignior. Seignior is a hub node in a local community. It is also a high-degree node.
However, comparing with the king, it does not have that many influential neighbors
and its influence is limited to a local region. In Fig.2, node b is a seignior.

— Butterfly. We call a node butterfly from the word “butterfly effect” meaning that a
low-degree node can have wide influence by activating its influential neighbors. For
example, in Twitter network, once a grassroot’s tweet is forwarded by a celebrity,
it will be popular explosively. In Fig.2, node c is a butterfly.

— Leaf. Leaf is the end of a communication chain. In Fig.2, node f is a leaf node. It
only accepts information from spreaders, but can not further transmit it to others.

— Loner. Loner is an isolated node that has no connections with others, shown as
node g in Fig.2.

— Civilian. Except for the above five types of nodes, the remaining nodes of a network
can be categorized as civilians. Civilian nodes have no particular characteristics for
influence propagation. In Fig.2, node e is a civilian.

Based on the above description, we distinguish the roles by quantification. We de-
fine kings and seigniors as billboard nodes, which have the top 20% largest degree in
the network, and the other four roles are handbill nodes. We distinguish kings from
seigniors by calculating the ratio of the sum of a node’s neighbors’ degree to its own
degree and comparing it with a threshold. If the ratio is larger than a threshold, it is a
king, otherwise, it is a seignior. For the four handbill roles, if a node’s neighbors contain
billboard nodes, we call it butterfly. If a node has precursors but has no followers, we
call it leaf. If a node has neither precursors nor followers, we call it loner. Except for
the five roles, the remaining nodes of a network are called civilians.

3 The Proposed Methods

In this paper, we propose three strategies to address the BIM problem. They are Billboard
strategy, Handbill strategy and Combination strategy. Before designing algorithms, we
first investigate seed selection heuristics through experimental analysis, which provides
the basis for the proposed algorithms.

3.1 Seed Selection Heuristics

An commonly used method for the BIM problem is Modified Greedy algorithm [7,10].
In this section, we compute the seed set with Modified Greedy algorithm and obtain
some heuristics from the seeds, which are the foundation of the proposed algorithms.
Firstly, we calculate the proportion of each role in a real network according to the
role definition. The statistical result of a citation network (HEP-PH) is shown in Table 2.

Table 2. Proportion of Each Role in the HEP-PH Network

Role King Seignior Butterfly = Leaf Loner  Civilian
Proportion  0.0398  0.1652  0.3369  0.0721 0 0.3860

Then, we compute the seeds with Modified Greedy algorithm and calculate the pro-
portion of each role in the seed set. The basic idea of Modified Greedy algorithm is
to compute the solutions by using two different heuristics and return the better one as
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the result. Consequently, we can get two seed sets and each set is computed by one
heuristic. The first heuristic is the basic greedy heuristic:

v = argmax o(Skg—1 Uv) —o(Sk_1), (1)
vEV\SK_1

where vy, is the target seed in step k, Si_1 is the seed set in step k — 1, and o(Sk—1) is
the influence of seed set S;_1. We perform the Greedy algorithm on HEP-PH network
and calculate the proportion of each role in the seed set. The result is shown in Table 3.

The second heuristic takes cost into account and choose the most cost-effective nodes

as the seeds.
o(Sk—1Uv) — o (Sk-1)

U = argmax
veEV\SK_1 C(U)

) 2

where ¢(v) is the cost of node v. The proportion of each role in the seeds computed by
this heuristic is shown as Table 4.

Table 3. Proportion of Each Role in the Seed Set with Formula (1)
Budget King Seignior Butterfly Leaf Loner  Civilian

1000 0.7273  0.0909  0.1818 0 0 0
3000 0.7857  0.1071 0.0714 0 0 0.0357
5000 0.8235  0.1373  0.0392 0 0 0

Table 4. Proportion of Each Role in the Seed Set with Formula (2)
Budget King Seignior Butterfly Leaf Loner  Civilian

1000 0.1667  0.0513  0.6026 0 0 0.1795
3000 0.1216  0.0378  0.6622 0 0 0.1784
5000 0.1961  0.0784  0.6118 0 0 0.1137

From the above calculations, we can obtain two heuristic methods. The first one
is role heuristic. Comparing Table 3 with Table 2, we could find that although there
are very few king nodes in the network, they account for a large percentage in the
seed set obtained by basic greedy heuristic. The basic greedy heuristic chooses the
most influential seeds in the network, which is in accord with Billboard strategy. Then,
the approach of Billboard strategy should distinguish kings from seigniors. Comparing
Table 4 with Table 2, we could find that when we take cost into account, the butterfly
node has more advantage than the other roles in influence propagation. Since, Handbill
strategy is to choose the most cost-effective nodes as the seeds, the approach of Handbill
strategy should distinguish butterfly from other roles.

The second heuristic method is distance heuristic. We measure the distance between
each pair of the selected seeds, that is the length of the shortest path form a seed to
another one. The average distance of HEP-PH network is larger than 2. Thus, in the
proposed algorithms, we do not choose the nodes whose neighbors have already existed
in the seed set, which can avoid the overlap of the seeds’ influence.

In our study, we also do the same analyses on three other networks (their descriptions
are declared in Section 4.1) and obtain similar conclusions. Due to the space limitation,
we do not show the analysis results here.
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3.2 Billboard Strategy

Billboard strategy is the idea that chooses the most influential nodes in the network as
the seeds. For example, companies put advertisements on major media and products are
endorsed by celebrities, both of the marketing actions are Billboard strategy.

We have defined that Billboard strategy chooses seeds from billboard nodes, whose
roles are kings and seigniors. And according to the role heuristic, the proposed approach
of Billboard strategy should distinguish kings from seigniors. The distinguishing char-
acteristic of kings from seigniors is that not only king nodes themselves but also most
of their neighbors are high-degree nodes. It implies that when we evaluate the influence
of a node, we need to consider its neighbors’ abilities to influence propagation. Then,
evaluating a node’s influence can be converted as calculating the expected number of
influenced nodes in its two-hop area.

Theorem 1. Given a social network G = (V, E) and the IC model with a small propa-
gation probability p, let N(u) = {v|v € V, ey, € E} be the out-neighbors of node v,
outD(v) be the out-degree of node v. The expected number of influenced nodes in seed
u’s two-hop area is estimated by

1+ Z (14 outD(v) -p)-p— Z p°. (3

vEN (u) Hvi,vjEN(u),eUi,vj €eE

(2)

Fig. 3. The Topology of a Seed’s Two-hop Area

Proof. Firstly, We consider a simple situation that there are no connections between the
nodes in a seed’s two-hop area, shown as Fig.3(a). Suppose node w is the seed, node
v; € N(u) is the seed’s neighbor, and node w; € {wjw € N(v;),v; € N(u)} is the
seed’s neighbor’s neighbor. The probability that node v; is influenced by seed u is p and
the probability that node wj is influenced by seed u is p®. Then, the expected number
of influenced nodes in seed u’s two-hop area can be defined as:

1+ Z (14 outD(v) - p) - p, 4)
vEN (u)

where outD(v) is the out-degree of node v. In this definition, 1 means node w itself,
that is sure to be activated, and 3, () (1 + outD(v) - p) - p means the number of the
potentially influenced nodes in its neighbors and neighbors’ neighbors.
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However, real-world networks usually have many tightly-knit groups that are char-
acterized by a high density of ties [12], shown as Fig.3(b). In this situation, Formula (4)
can not estimate a seed’s influence accurately. For example, suppose that there are m
edges connecting from node v; (i # 2) to node vs. In the correct calculation, the proba-
bility p,, ., that node vs is influenced by node w is:

Puw, =1 — (1 —p)(1 7p2)m

=1-(1-p[l—mp*+Chp*+o(p*)]

=p+mp® —mp® + o(p®).
Suppose that there are n edges connecting from v; to node ws. In the correct calculation,
the probability p,, ., that node ws is influenced by node w is:

Puws =1 —(1 —p?)"
=1—[L—np®>+ C2p* + o(p")]

np? + o(p?).
Since the propagation probability p is usually very small, we can ignore o(p?).

However, in formula (4), we calculate the probability p,, », as p + mp?, since the
probability that node vs is directly influenced by seed u is p and indirectly influenced by
the m neighbors is mp?. And we calculate the probability p., ., as np?, since node ws
is indirectly influenced by the n neighbors. Comparing this calculation with the above
derivation, for each edge e € {ey,,v;|€v; v, € E,v; € N(u),v; € N(u)}, Formula (4)
should minus p3. Then, we can get Formula (3).

From the above, the algorithm of Billboard strategy can be stated as follows. We only
take billboards that are the top 20% nodes with the largest degree in the network as the
candidates for seed selection, and calculate their abilities to influence propagation by
Formula (3). We in turn select the next best candidate with the largest ability value as
the seed until the budget is exhaust. Based on the distance heuristic, when choosing a
seed, we would judge whether its neighbors have already existed in the seed set. If not
yet, we will choose it, otherwise, we will ignore it and take the next one.

3.3 Handbill Strategy

Handbill strategy is the idea that chooses the most cost-effective nodes as the seeds.
In the real world, advertisers, limiting each location’s cost to increase the advertising
locations, can also broaden the awareness of product.

We have defined that Handbill strategy chooses seeds from handbill nodes, whose
roles are butterfly, leaf, loner and civilian. And according to the role heuristic, the pro-
posed approach of Handbill strategy should prioritize butterfly nodes. The distinguish-
ing characteristic of butterfly nodes from other handbill roles is that there are some
high-degree nodes existing in their neighbors. They can indirectly influence more nodes
by their high-degree neighbors. Then, Formula (3) can also evaluate a node’s influence
for Handbill strategy. Moreover, since Handbill strategy is sensitive to cost, we divide
the influence of a node by its cost and evaluate a node’s cost-effective value as:

ce(u) = (1+ Z (1+outD(v)-p)-p— Z p2)/e(u),  (5)
vEN (u) Hvi,vjeN(u),eq,i‘q,j eFE

where ce(u) is the cost-effective value of node u, c(u) is the cost of node u, N(u) is
the out-neighbors of node u and outD(v) is the out-degree of node v.
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From the above, the algorithm of Handbill strategy can be stated as follows. We only
take handbills that are the nodes with the bottom 80% largest degree in the network as
the candidates for seed selection, and calculate their cost-effective value by Formula (5).
We in turn select the next best candidate with the largest cost-effective value as the seed
until the budget is exhaust. Based on the distance heuristic, when choosing a seed, we
would judge whether its neighbors have already existed in the seed set. If not yet, we
will choose it, otherwise, we will ignore it and take the next one.

3.4 Combination Strategy

After performing the above two strategies, we could get two nonoverlapping seed sets.
One is billboard set, where the seeds have great influence. The other one is handbill set,
where the seeds are cost-effective. Then, we proposed Combination strategy to select
the “best” seeds from the two “better” seed sets and obtain a compositive solution.
The proposed approach is based on Simulated Annealing algorithm [9], which taking
influence maximization as the objective, searches an approximate solution in the two
set of nodes.

We first give a brief introduction of the procedure of SA algorithm as follows.

(1) The algorithm firstly initializes an initial state Sy, an initial temperature 7, an
annealing schedule 7'(¢) and an objective function E(S;).

(2) At each step t, it produces a new state .S; from the neighbors of the current state
S;. It probabilistically decides between moving the system to state .S; or staying in state
Si. If E(S]) > E(S:), the system moves to the new state .S; with the probability 1;
otherwise, the system does this move with a probability of exp(—(E(S};) — E(S:))/T).

(3) The algorithm iteratively does step (2), until the system reaches a good enough
state, or until the temperature T" decreases to 0.

The Combination strategy is outlined in Algorithm 1. In this strategy, we evaluate
the influence of a node by Formula(3) and define the objective function E(S) as the
sum of the influence of each node in the seed set. We set the initial seed set as billboard
seed set. The algorithm has two levels of node replacements. The first one is billboard
replacement(lines 3-10). In this level, we reduce a billboard b € S' and add the equal cost
of handbills h; ¢ S to produce a neighbor set. Then, we judge whether to accept the new
set(lines 4-10). If accepted, the algorithm comes into the second level of replacement:
handbill replacement(lines 12-20). In the second level, we randomly replace a handbill
h € S with the equal cost of other handbills h; ¢ S to produce a neighbor set, and judge
whether to accept the new set(lines 14-20). We repeat this replacement for g times. The
billboard replacement is the outer iteration. We in turn try to replace each billboard.
When all the billboard replacements have been executed, the algorithm is finished.

4 Experiments

4.1 Datasets

We use four real-world networks in our experiments. The first one is HEP-PH citation
network, where nodes are papers and an directed edge means one paper cites another.
The second one is an Email network, which records one day of email communication
in a school, where nodes are email addresses and edges are communication records.
The third one is a P2P network, where nodes represent hosts and edges represent the
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Algorithm 1. Combination Strategy
Input: Graph G = (V, E), budget B, billboard seed set S, handbill seed set Sy, initial tem-
perature T, temperature drop AT, objective function E(S) and the number of loop q.
Output: The final seed set S.
l. t+ 0,7y + To, S+ SB, |SB| =k;
2. fori < 1to k do flag <+ false;
3. create a neighbor set S’; /*replace a billboard S (i) with the equal cost of handbills*/

4 calculate the influence difference AE < E(S") — E(S);
5. if AE > 0 then
6. S+ 9, flag + true;
7 else
8. create a random number £ € U(0, 1);
9. if exp(AE/T;) > £ then
10. S+ S, flag + true;
11. if flag is true then
12. while g > 0do g < g—1
13. create a neighbor set S’; /*replace a handbill with the equal cost of other handbills*/
14. calculate the influence difference AE < E(S’) — E(S);
15. if AE > 0 then
16. S« S
17. else
18. create a random number £ € U(0,1);
19. if exp(AE/T;) > € then
20. S« S
22. return S;

connections between two hosts. And the last one is a Web network, where nodes are
web pages and edges are links. Some of them are used in recent influence maximization
research [3,4,10]. The basic statistics of the datasets are given in Table 5.

Table 5. Statistics of Datasets

Dataset HEP-PH Email P2P Web
Nodes 34,546 27,018 62,586 148,468
Edges 421,578 66,012 147,892 356,294

4.2 Experiment Setup

In the experiment, we adopt simulation method [5] to compute the influence propaga-
tion of the resulting seed set. Given a seed set, we repeat the simulations for =10, 000
times and take the average. We use IC model to simulate the influence propagation and
set the propagation probability to be 0.1. In Combination strategy, we set Tp=1, 000, 000
and AT=1,000. All the experiments are performed on a server with Intel(R) Core i7-
4770K CPU, 32G memory. All the codes are written in Java.

We evaluate the accuracy and efficiency of the three proposed strategies with
three state-of-the-art algorithms. The first baseline algorithm is CELF Greedy
algorithm(CELF G) [7], which is the basic greedy algorithm with CELF speed op-
timization. The second one is Modified Greedy algorithm(Modified G) [7], which has
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been introduced in Section 3.1. The third one is DegreeDiscountIC algorithm(DDIC) [3].
It is a fast algorithm for influence maximization problem, and we modify it to make it
suit for BIM problem.

4.3 Experiment Results

Accuracy When Varying Budget. In this experiment, we evaluate the accuracy of each
algorithm by varying the budget. In the real world, the advertising price of a web site is
always relevant to its popularity. Then we define the cost of a node u as outD(u) -p+1,
where outD(u) is the out-degree of node u and p is the propagation probability.
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8000 8000
6000 - 6000 -

4000 4000
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Modified Greedy
DegreeDiscountiC

—&— CELF Greedy
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2000 2000
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Fig. 4. Influence Propagation of Different Algorithms as Budget is Varied

The experiment results are shown in Fig. 4. For HEP-PH network, Combination strat-
egy has the best accuracy. It outperforms the second best algorithm Handbill strategy
by 1.19% averagely, but this advantage reduces with the increase of budget. Combina-
tion strategy and Handbill strategy are superior to Billboard strategy obviously, which
implies it is better to choose cost-effective nodes rather than influential nodes as seeds
for HEP-PH network. Modified G and DDIC have similar accuracies. They are respec-
tively inferior to Combination strategy by 10.36% and 13.3% averagely. And CELF G
has the worst performance in accuracy.
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For Email network, when the budget B € [0,5,000], Billboard strategy is better
than Handbill strategy in accuracy. But when B € (5,000, 12,000], the latter over-
takes the former. When B € [0, 2,000], Modified G and CELF G have the best ac-
curacies and outperform Combination strategy by 2.7%. When B € (2,000, 4, 000],
DDIC has the best accuracy and outperforms Combination strategy by 1.45%. When
B € (4,000, 12, 000], Combination strategy becomes the best algorithm in accuracy.

For P2P network, when the budget B € [0, 8,000], Billboard strategy has a bet-
ter performance than Handbill strategy in accuracy. But when B € (8,000, 20, 000],
the latter overtakes the former. When B € [0, 4,000], Modified G and CELF G have
the best accuracies and outperform Combination strategy by 2.6% averagely. When
B € (4,000, 10,000], DDIC overtakes Greedy algorithm to be the best algorithm and
slightly outperforms Combination strategy by 1.15%. When B € (10,000, 20, 000],
Combination strategy becomes the best algorithm in accuracy. It outperforms DDIC by
3.03% and outperforms Modified G by 3.71% averagely.

For Web network, when the budget B € [0, 5,000, Billboard strategy is better than
Handbill strategy in accuracy. But when B € (5,000, 20, 000], the latter overtakes the
former. When B € [0, 4, 000], Combination strategy has the best accuracy and outper-
forms the second best algorithm Modified G by 2.18%. When B € (4,000, 9, 000],
DDIC overtakes Combination strategy and becomes the best algorithm in accuracy.
It slightly outperforms Combination strategy by 1.72%. When B € (9,000, 20, 000],
Combination strategy once again becomes the best algorithm. It outperforms Modified
G by 10.85% and outperforms DDIC by 10.89% averagely.

Accuracy with Different Cost Definitions. This experimentis to evaluate the accuracy
of each algorithm with different cost definitions. We respectively define the cost of a
node w as outD(u) + 1 and outD(u) - ¢ + 1, where out D(u) is the out-degree of node
u, p is the propagation probability and c is a random number in (0, 1]. Due to the space
limitation, we only show the results of HEP-PH network in Fig.5.
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Fig. 5. Influence Propagation of Different Algorithms as Cost is Varied

With these two cost definitions, when the budget is small, Billboard strategy always
has a better accuracy than Handbill strategy. But with the increase of budget, Handbill
strategy overtakes the former and even outperforms most other algorithms. Combina-
tion strategy has an excellent and stable performance in accuracy. When the budget is
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small, it may fall behind with the best algorithm slightly. However, as the budget in-
creases, it narrows the gap rapidly and becomes the best algorithm, which outperforms
Handbill strategy slightly and outperforms other algorithms obviously. Modified G has
a good accuracy when the budget is small. But it is inferior to Combination strategy and
Handbill strategy when the budget is large. We can find that the curve of Modified G
have some drops, which implies the Greedy algorithm falls into local optimums. CELF
G performs well when the budget is small, but it can not maintain the advantage when
the budget is increasing. Comparing with other algorithms, DDIC has a low accuracy.

Efficiency We compare the runtimes of the six algorithms, when the budget is 5,000
and the propagation probability is 0.1 on the four networks.

From Table 6, we observe that Billboard strategy, Handbill strategy, Combination
algorithm and DDIC have the runtime in the same order of magnitude. And Combina-
tion algorithm is slightly slower than the other three. By contrast, CELF G has a much
longer runtime and it is slower than the fastest algorithm by three orders of magnitude.
Modified G has the longest runtime, it is even slower than CELF G by 2 times at least.

Table 6. Runtime(seconds) of Each Algorithm on Different Networks

Network Billboard Handbill Combination CELFG Modified G DDIC

HEP-PH 5.89 8.23 23.21 4.95 x 10° 1.23 x 10*  6.85
Email 491 6.96 19.78 227 x 10% 7.63 x 103>  5.08
P2P 6.32 9.61 27.76 5.05 x 10° 1.26 x 10*  7.53
Web 11.03 13.49 40.25 7.36 x 10° 2.09 x 10* 13.42

5 Conclusions

Unlike most of the existing works on k-node influence maximization, this paper focuses
on budgeted influence maximization. We address the BIM problem by three strategies:
Billboard strategy, Handbill strategy and Combination strategy. From the comparison
experiments with the state-of-the-art algorithms, we can conclude that Combination
strategy is the most balanced algorithm. On one hand, it has the best performance or
matches the best algorithms in accuracy. On the other hand, it has the runtime in the
same order of magnitude with the fastest algorithm. Billboard strategy and Handbill
strategy have the best efficiencies. They can obtain good solutions in some situations.
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Abstract. While community detection is an active area of research in social net-
work analysis, little effort has been devoted to community detection using time-
evolving social network data. We propose an algorithm, Persistent Community
Detection (PCD), to identify those communities that exhibit persistent behavior
over time, for usage in such settings. Our motivation is to distinguish between
steady-state network activity, and impermanent behavior such as cascades caused
by a noteworthy event. The results of extensive empirical experiments on real-life
big social networks data show that our algorithm performs much better than a set
of baseline methods, including two alternative models and the state-of-the-art.

Keywords: Community detection, persistent behavior, social networks.

1 Introduction

Much effort has been devoted to the development of community detection algorithms
[7,2,3,5], which can be used to identify clusters of nodes in social network data whose
connections exhibit similar tendencies. Such clusterings may be intended for use as a
predictive feature, or as a crude summary of network structure. In empirical studies,
these algorithms often produce clusters that agree with general intuition about the net-
work that is being studied, corresponding closely with known affiliations or genres held
by the network nodes.

Here we develop a community detection model for time-evolving network data, and
use this model to analyze a real-world call network. This data set is challenging to
analyze, in part because of its large size (3.6 million users), and more importantly,
because its structure also appears to change over time. To illustrate that the network
is time-varying, Figure 1 shows a Q-Q plot of the degree distribution for calls made
between 7-8AM and 8-9AM on a single day. The plot suggests that 7-8AM exhibits
higher call density, and also a more heavy-tailed distribution (i.e., the largest values of
the degree distribution grow more extreme). However, it is unclear to what extent the
change in layout is due to time-varying structure (as opposed to being an artifact of the
visualization process), and more importantly, how to quantify our observations.

In light of these concerns, we take a statistical model-based approach. Statistical
modeling of dynamic network structure is challenging, and still nascent as a field of
research. Sociological theories for dynamic networks are not as well developed as for

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 78-89, 2014.
(© Springer International Publishing Switzerland 2014
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Fig. 1. Dynamics in mobile phone social networks on March 37, 2008. Q-Q plot of call volumes
from 7-8 AM and 8-9 AM.

static networks, and hence less guidance is available for modeling. Perhaps due to this,
existing time-varying models are typically designed to model many potential types of
behavior [14]. Here we take a different approach. Our model is designed to detect only
a single type of behavior; specifically, we find communities that exhibit persistent lev-
els of communication over time. Our motivation is to distinguish between steady-state
activity and impermanent behavior, such as cascades caused by a noteworthy event. We
feel that persistence is the simplest type of dynamic behavior, making it a logical next
step from the static setting.
Our contributions are summarized as follows.

1. We formally define a new network structure, persistent community, which exhibits
persistent behavior/ structure over time.

2. We propose a novel algorithm to detect persistent community by a time and degree
corrected blockmodel. We also provide inference of the model.

3. We conduct extensive empirical experiments on real-life big social networks data.
Interesting findings and discussions are provided.

The rest of the paper is organized as follows. Section 2 surveys the previous work
on community detection in dynamic networks. Section 3 proposes our algorithm. The
empirical experiment results are reported in Section 4. At last, we conclude our work
and give the future research directions in Section 5.

2 Related Work

The literature on static community detection is very large. Various extensions to the
basic community model have been proposed, such as overlapping or mixed community
membership [1,13], degree-corrections which allow for heterogeneity within commu-
nities [6,16], and community detection from trajectories [12]. In particular, without
degree-correction, maximum likelihood methods often group the nodes according to
their degree (i.e. their number of neighbors) [6]. As such behavior is typically undesir-
able, we will also include degree-corrections in our model.

Recent attention has been paid to community detection in dynamic social networks.
Existing approaches, such as [7,8,4], generally detect communities separately for each
time slot, and then determine correspondences by various methods [15,18,17]. How-
ever, such approaches often result in community structures with high temporal variation
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[10,9]. Our approach differs in that inference in performed jointly across time, so as to
find communities with low temporal variation (excepting network-wide fluctuations in
call volume, such as night/day and weekday/weekend cycles).

3 Methodology

Our model can be considered to be a time-varying version of degree-corrected block-
model in [6], specialized to directed graphs, where the expected call volumes within
each community are assumed to all follow a single network-wide trajectory over time.

3.1 Time and Degree-Corrected Blockmodel

General Model. We assume a network of /N nodes over 7' time periods, where nodes
are free to leave and re-enter the network. Let Z; C {1,...,N},t = 1,...,T denote
the subset of nodes which are present in the network at time ¢. Let K denote the number
of communities, which determines the model order. Let A®) € NV XN denote a matrix
of call counts at time ¢t = 1,...,T}; i.e., fori # j, Ag) denotes the number of calls

from node i to node j at time ¢. Our model is that the elements of A1) ... A
are independent Poisson random variables, whose parameters are jointly parameterized
(with explanation of all parameters to follow):

AZ(.;) ~ Pois </\§§))

\O _ 0060wy ifi € I, j € T,
K 0 otherwise

We see that the expected number of calls \A;; for each dyad (¢, 7) is a function of
parameters g, w, 0, ¢, and . We now describe each parameter, its allowable values, and
its function:

1. The vector g € {1,..., K} assigns each node to a latent community in 1, ..., K.
2. The matrix w® € RE*K gives the expected total call volume between each com-
munity at time ¢ = 1, ..., 7. In other words, w((l? is the expected call volume from
community a to community b at time ¢. To enforce persistence, w is restricted to

satisfy the following constraint:
wh =) ¢ el,... T,acl,... K. (1)

As a result, intra-community call volumes are modeled as being constant over
time (up to the network-wide effect of x, which we discuss shortly), while inter-
community call volumes may follow arbitrary trajectories over time.

3. The vector 0 € [0, 1]V controls the out-degree for each node at time t = 1,...,T.
Nodes whose element in §(*) is high will have higher expected outgoing call vol-
umes than whose with low values in (*). This allows for heterogeneity within com-
munities. For identifiability, 6 is restricted to satisfy the following constraint:

S =1 t=1..T a=1..K
i1€Ls,9:=a
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The effect of this constraint is that w((l? determines the total number of calls from
community a to community b, while § determines the proportion of calls emanating
from each node in community a.
4. The vector ¢ € [0, 11" controls the in-degree for each node at time t = 1,..., T,
but is otherwise analogous to §. A similar constraint is also enforced:

3 ¢V=1  t=1,.... T, a=1,... K
i€Zi,gi=a

5. The scalar u® € [0,1] for t = 1,...,T, modifies the total network call volume
as a function of ¢. This allows for network-wide trends to be modelled, such as
day/night or weekday/weekend cycles. For identifiability, 4 is restricted to satisfy
the following constraint:

T
Zu(t) - 1.
t=1

The effect of this constraint is that Twé}l) determines the total number of calls within
community a, while p determines the proportion of those calls occurring within
each time slot.

Discussion. While self-calls are disallowed in a phone network, we note that our model
assigns nonzero probability to positive values of Agf). This is a simplification which de-
couples estimation of §7) (1T 1, (1T) and w(1:T) | Jeading to analytically tractable
expressions for the parameter estimates. Self-calls predicted under the model should
be disregarded as a modeling artifact. As the number of predicted self-calls will be a
vanishing fraction of the total call volume, the effect will be negligible.

In the data, there exist pairs of individuals with extremely high call volumes, exceed-
ing an average of 10 calls to each other per day. Such pairs are very sparse in the data
(< 1% of all dyads), and do not seem to conform to the idea of community-based call-
ing behavior. It is unlikely that the Poisson-based community model will explain these
dyads. As such, we have opted to treat these dyads as outliers, and remove them before
estimating the model parameters. Our interpretation is that the data is best described
by the community based model, plus a small set of dyads whose high call volumes
distinguish them from the overall network.

We note that 6 and ¢ involve large numbers of parameters, as they are allowed to vary
over time. A simpler model, in which 6 and ¢ are constant over time, was considered.
However, formulas for parameter inference become significantly more complicated in
this case, unless Z; is also constant over time. If Z; is constant over time, so that nodes
cannot enter and leave the network, then the equations to be presented in Section 3.2
may be used with only slight modification if 6 and ¢ are held constant over time.

3.2 Inference

We will estimate g and {6, ¢®), u® w®T | by maximum likelihood. We show
here that given g, the maxmizing values of the remaining parameters can be found
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analytically, so that the maximizing the likelihood consists of a search over all commu-
nity assignments in {1,..., K }"V. While this exact maximization is computationally
intractable, heuristic methods seem to give good results in practice, and we use a greedy
search method described in [6] with multiple restarts.

We now derive formula for the remaining parameter estimates given g. The joint
distribution of ATT) = (AM . AT (or equivalently the likelihood) is given by
the product of Poisson distributions

(t)

T (Q(t)(b(_t)u w(t))
% J 9i9j
L(0, ¢,w, 1,9 AV = ] A
1] *

t=14,5€Z;
X exp ( G(t)¢(t)ﬂ(t) E(h)g,)

This expression can be simplified using the following intermediate terms. Given g
and AST) for all 4, j, ¢ let:

P S o0}

JETL: JjEL,
my = > AP Ugi = a,9; = b},
4,J €Ly

Z m) Z m®.

In words, dg_t) and d(f ) are the out-degree and in-degree of node 7 at time ¢; m( b) is

the call volume between communities a and b at time ¢; m,(l,l is the total call volume

within community a over all time, and m'Y is the total intra-community call volume
(versus inter-community call volume) at time ¢. Using these terms, the likelihood L can
be written as

L(8, 6,0, 1, g; ATT)Y = ﬁﬁ ([9“)] ' [cb(”]dm)
y Py W,y Uy G5 H“] ” e i
T

m(®)
<11 ([u(”wffb)} “ exp (—u(”wi?)) :
a,b=1

t=1a,

where we have used the constraints that )

0" and Y iez, 4,0 8" = 1. The
function ¢ = log L is given by

1€Zy,gi=a 1
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We observe that ¢ can be grouped into terms which can be separately maximized,

N
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where the mapping H is given by H({x;}}_,) = Zle z; log Ekxi for z € R%,
i=1%j
and the mapping b is given by h(z) = zlogax — x forx € R,
We estimate the model parameters by optimizing £(g) over all group assignments
g € {1,..., K}¥. While it is intractable to find a global maximum, a local maximum
can be found using the method described in [6]. After multiple restarts, the highest

scoring local optima was chosen for the parameter estimate.
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4 Empirical Experiment Results

4.1 Description of Data and Fitting Procedure

The call records correspond to all mobile calls involving a particular service provider,
with origin and destination within a particular city region, in the year 2008. The city
area is roughly 8700 km?, is covered by 5120 base stations, and serves 3.6 million
mobile phone users. The data set is roughly 1 TB in size (more than 10 billion phone
call records). The data set was prepared by the service provider, for the purpose of data
mining to improve service and marketing capabilities. It contains call metadata (such
as phone number, date of call, instant location of call), linked with customer profile
information.

Using the call metadata, a set of directed adjacency matrices (A(l), ey A(365)) was
created, with nodes corresponding to customers (i.e., phone numbers), and edge weights
corresponding to the number of calls between the sender and receiver on each day of
the year. Community labels g were chosen to maximize ¢ as given by Eq.(2), using the
algorithm described in Section 3.2, with the number of groups K chosen to be 800.

4.2 Out of Sample Prediction

To test the model, out of sample prediction was conducted, by randomly withholding
5% of the dyads from the fitting procedure. After fitting, the probability of connection
according to the model (i.e., P (A(;) > 0)) was used to predict which of the with-

1,
held dyads had non-zero call volume. The model was highly predictive of the withheld
dyads, with precision is 0.74=£0.05 and recall is 0.53+0.05.

4.3 Description of Model Fit

To describe the fitted model, we give the following statistics. From the CDF giving
the fraction of customers belong to the k largest communities, for k£ = 1,...,800, it
shows that the majority of customers are concentrated in the 10 largest communities
by the algorithm. Figure 2 (a) shows the fitted intra-community call densities, i.e., the
call volume divided by the number of dyads in each community. The figure shows that
the network is quite dense, with 30% of users in the largest community, in which every
pair of members experienced an average of 0.008 phone calls over the course of a year.
Figure 2 (b) plots the call densities (i.e., normalizing by the square of the community
size). Figure 2 (c) shows the fitted inter-community call volumes w((ltb), for a # b and
t=1,...,T, as a quantile-plot. Based on Figure 2 (b) and Figure 2 (c), we see that the
inter- and intra- community parameters follow different different distributions. Figure
3 (a) and 3 (b) shows the fitted degree corrections 6 and ¢ as quantile plots. Figure 4
shows the fitted time-corrections ;1) ..., u(T). We note that larger values of 1 occur
on holidays and weekends.

To further understand the inferred communities, we compared the community labels
g with groupings produced by various customer covariates included in the customer
profile information:
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Age: the age of the customer, grouped by increments of six months.

— Gender: the gender of the customers.

— Workplace: the geographic region containing the registered workplace address of
the customer. In our record, we have almost ten thousand workplace address and
half a million customers provide this information.

— Residence: the geographic region containing the registered home address of the
customer. In our record, we have almost ten thousand workplace address and half a
million customers provide this information.

— Shopping mall: the shopping mall location. In our record, we have fifty shopping
mall locations. On the other hand, based on the location information of each call,
we are able to localize each customer, as reported in [11].

— Occupation: The occupational category reported by the customer. In our record,

one hundred thousand customers have this information.

Table 1 (second column) reports the Jacaard similarity between the inferred community
labels ¢ and the customer covariates !. We find that the model has high similarity with
Age, Workplace, and Residence, and Occupation, but not with Gender and Shopping
Mall.

Figure 5 (a) shows the correlation coefficient for the intra-community and inter-
community call volumes, for time lags varying from 10 to 40 weeks.

' J(A,B) = I‘:Gg} , where A and B are two label sets.
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Table 1. Community Detection Evaluation on PCD

Covariate PCD Al A2
Age 0.713 0.387 0.331
Gender 0.137 0.007 0.008
Workplace 0.728 0.411 0.527
Residence 0.617 0.208 0.317
Shopping Mall 0.21 0.087 0.012
Occupation 0.678 0.310 0.423

The figure shows that the observed intra-community call volumes are more persistent
over time compared to the inter-community call volumes, suggesting that the method is
successful in finding communities with persistent intra-community call volumes.

4.4 Work v.s. Leisure Groupings

To differentiate work and leisure interactions, the data was separated into weekdays and
weekends, and then g was fit separately by Eq.(2) on the two scenarios. As shown in
Table 2, we found that the weekday groupings corresponded more closely to (place of
employment, or some other covariate), which the weekend groups were more closely
aligned with family relationships (which are recorded in the data set).

We also notice that the usage of persistence constraints had a larger effect in the
weekend groups; this suggests that the social/weekend groups are less visible in the
data (i.e., a “weaker signal”), causing the model regularization to have greater effect.

Table 2. Weekday grouping v.s. weekend grouping (Jacaard Similarity)

Covariate  Weekday Weekend
Age 0.731 0.702
Gender 0.152 0.120
Workplace 0.801 0.568
Residence 0.578 0.817
Shopping Mall  0.124 0.453
Occupation 0.831 0.542
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Fig. 5. Persistence evaluation. Within-group call volumes are persistent over time, up to network-
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follow network-wide trends, suggesting that communication between groups was more sporadic.
The persistence of the communities detected by alternative model 1 and 2 are not good as the
result of PCD.

4.5 Comparison with Other Community Detection Algorithms

The results of our method were compared against several other algorithms. Specifically:

— Al: The persistence constraint w,(lz) = w,(lg) given by Eq. 1 is removed when fitting
the model. As a result, the intra-community expected call volumes are no longer
constrained to follow any particular trajectory over time.

— A2: A static deigree-corrected blockmodel, as described in [6], is fit to the static
matrix A =3, A®.

— DSBM: A bayesian approach [17] for detecting communities in dynamic social
networks.

Under the algorithm A1, as shown in Table 1 (third column), the groupings differed
significantly compared to those found by our proposed method, and did not correspond
as well to observed covariates, as described in Table 1 (second column). Figure 5 (b)
shows the average correlation coefficients for the intra- and inter-community call vol-
umes. We observe that the coefficients are lower compared to our proposed algorithm,
suggesting that the call volumes are less persistent over time.

Under the algorithm A2, similar findings resulted, as shown in Table 1 (fourth col-
umn) and Figure 5 (c). It is interesting that the similarity results of Al and A2 are
different and can be interpreted by the methods we use. For A1, we release the persis-
tence constraint for intra-community connection, while for A2, we use a static model.
For Age and Gender, Al and A2 give similar results, but for Workplace, Residence
and Occupation, A2 can give much better similarity result than A1, while for Shopping
Mall, A1 is better. It means in working places and resident locations, people prefer to
make connections within communities, while in shopping mall locations, the dynamics
of social connection is much stronger and impacted by time of day and day of week.
We can further interpret the result as that human social behavior is not only impacted
by real life behaviors, but also the time of day and day of week.
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Fig. 6. Efficiency evaluation of different algorithms. The running time cost of our algorithm
(PCD) is much lower than two other baseline algorithms.

4.6 Computational Runtime

In Figure 6, we report computational runtimes for the different algorithms. The results
show that our method runs much faster than two other baseline methods. For a fixed
number of random restarts, the runtime scales nearly linearly for the graph sizes con-
sidered here. All algorithms were conducted on a standard server (Linux), with four
Intel Core Quad CPUs, Q9550 2.83 GHz and 32 GB main memory.

5 Conclusion and Future Work

In this paper, we studied an interesting but challenging problem, persistent community
detection in evolving social graphs. Extensive empirical experiment results show that
our proposed method performs much better than a set of baseline methods, in merits of
persistence in time series analysis, consistency in social graph structure and efficiency
in algorithm running time cost.

In the future, we are going to apply our method to online social networks (e.g.,
Facebook and Twitter), and then we would like to compare the persistent community in
mobile social networks with the persistent community in online social networks.
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Abstract. In recent years, social media has become important and omnipresent
for social network and information sharing. Researchers and scientists have be-
gun to mine social media data to predict varieties of social, economic, health and
entertainment related real-world phenomena. In this paper, we exhibit how so-
cial media data can be used to detect and analyze real-world phenomena with
several data mining techniques. Specifically, we use posts from TencentWeibo to
detect influenza and analyze influenza trends. We build a support vector machine
(SVM) based classifier to classify influenza posts. In addition, we use associa-
tion rule mining to extract strongly associated features as additional features of
posts to overcome the limitation of 140 words for posts. We also use sentimental
analysis to classify the reposts without feature and uncommented reposts. The
experimental results show that by combining those techniques, we can improve
the precision and recall by at least ten percent. Finally, we analyze the spatial and
temporal patterns for positive influenza posts and tell when and where influenza
epidemic is more likely to occur.

Keywords: Influenza Epidemics, Social Media, Data Mining.

1 Introduction

Influenza is a severe disease and seasonally spreads around the world in epidemics,
causing over 3 million yearly cases of severe illness and about 250,000 to 500,000
yearly death' Global attention has been drawn to this issue from both medical and
technical perspectives. However, influenza is unable to be detected under the traditional
surveillance system both effectively and efficiently, thus making the disease monitoring
a challenging topic.

In recent years, social media, for instance, Facebook, Twitter, MySpace and Tencen-
Weibo, has become a popular platform among people on which they create, share, and

* This research is partially funded by the NSF of China (Grant No. 11271351 and 61303167)
and the Basic Research Program of Shenzhen (Grant No. JCYJ20130401170306838 and
JC201105190934A). Xin Wang’s research is partially funded by the NSERC Discovery Grant.
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propagate information. Social media gains ascendancy over traditional media because
of its better performance in stability, fast propagation and efficient resource utilization.
Therefore, it is gradually replacing traditional medias and grows in fast pace as the plat-
form of useful information sharing. Recent work has demonstrated that prediction of va-
rieties of phenomena can be made by using social media data. These phenomena include
disease transmission [18], movie box-office revenues [4], and even elections [20]. In this
paper we illustrate how social media can be used to detect and analyze influenza epi-
demics in China. Specifically, we consider the task of detecting and analyzing influenza
by utilizing the posts from TencentWeibo, one of the most popular social networks with
more than 500 million users in China.

We first extract influenza-like posts from our TencentWeibo data corpus. The most
common influenza symptoms are chills, fever, runny nose, sore throat, headache, cough-
ing, fatigue and discomfort. Although, these symptoms as keywords can be utilized to
determine whether a post is an influenza-like post, inaccurate, ambiguous or keywords
related posts might still disturb the collection of the real influenza-like posts such as (all
posts and words are translated from Chinese to English in this paper):

— One should have more water when catching flu.
— Avian flu is under epidemics this spring.
— Jesus, fevering, have I got cold?

These posts all mention the word of “flu” or flu symptoms. Nevertheless that does not
mean that the posters have been affected by influenza. We consider these posts (news,
advices or suspicion) as negative influenza posts. Our goal is to detect positive influenza
posts and analysis influenza epidemics in China with TencentWeibo data. As discussed
above, it is necessary to extract positive influenza posts from the whole dataset to get
more accurate results. In this paper, we propose a machine learning based classifier to
filter out negative influenza posts with 0.900 precision and 0.913 recall.

Next, after classification, TencentWeibo data is analyzed and processed from the
perspective of time and space respectively. From the perspective of time we can find
out which place is more likely for influenza outbreak and from the perspective of space,
we can discover when is more likely for influenza outbreak in one city or a certain
province in China.

This paper is organized as follows: related works are presented in next section. In
Section 3, a short introduction to TencentWeibo and the characteristics of our dataset are
provided. In Section 4, several data mining techniques which are used in our research
are introduced. In Section 5, evaluation of our model is shown. In Section 6, our model
is applied in detecting and analyzing influenza epidemics in China. We conclude and
give the future work in Section 7.

2 Related Works

In recent years, scientists have been using social media data or other information to
detect influenza epidemics and to provide earlier influenza warnings.

Espino et al. [7] proposed a public health early warning system by utilizing data from
telephone triage (TT) which is a public service to give advice to users via telephone
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in 2003. They obtained TT data from a healthcare call center services and software
company. By investigating the relationship between the number of telephone calls and
influenza epidemics, then reported a signification correlation.

Magruder [13] utilized the amount of over-the-counter (OTC) drug sales to build a
possible early warning indicator of human disease like influenza. Influenza patients re-
quirement for anti-influenza drugs makes this approach reasonable. They reported the
magnitude of correlations between clinical data and some OTC sales data and then mea-
sured the time lead after controlling for day-of-week effects and some holiday effects.

Ginsberg et al. [8] built a system, utilizing Google web search queries, to generate
more comprehensive models for use in influenza surveillance. Their approach demon-
strated high precision, obtaining an average correlation of 0.97 with the CDC-observed
influenza-like illness (ILI) percentage.

Lampos el al. [11] proposed a regression model, by applying Balasso, the boot-
strapped version of Lasso, for tracking the prevalence of ILI in part of UK using the
contents of Twitter. Compared to the actual HPA’s ILI rates, their model achieved high
accuracy.

Aramaki el al. [3] proposed a system to detect influenza epidemics. First, the system
extracts influenza related tweets via Twitter API. Next, a support vector machine (SVM)
based classifier was used to extract tweets that mention actual influenza patients. Their
approach was feasible with 0.89 correlation to the gold standard.

However, these previous approaches ignored some major characteristics of posts that
may impede the classification. First, all posts and reposts have 140 word limitation.
That could cause limited features we can use in SVM. Second, the reposts could be no
comments or the comments without features. We propose words association rules and
sentiment analysis to overcome those problems and improve the classification precision
and recall.

3 Dataset

3.1 TencentWeibo Dataset

Launched in April, 2010 by Tencent Holding Limited, TencentWeibo is a Chinese
micro-blogging (weibo) website, which is extremely popular around China, consist-
ing of more than half a billion of users (0.54 billion users by Dec, 201 22). Like Twitter,
each user of TencentWeibo has a set of followers, and from this point TencentWeibo
can be considered as a social network. Users can upload and share with its followers
photos, videos and text within a 140 word limit, known as posts like tweets in Twitter,
that typically consist of personal information about the users. The posts composed by
one user are displayed on the user’s profile page, so that its followers can either just
read, comment or repost the same content and post to their own pages. For one user,
it is also possible to send a direct message to another user. A repost, called retweet in
Twitter, is a post made by one user that is forwarded by another user. Reposts are useful
and fast for information spreading, like photos, videos, text and links through Tencen-
tWeibo community. Due to its huge amount of users and prevalence, TencentWeibo is

2http://it.210n.com/itnews/a/2013/0121/11/20247640.shtml
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increasingly used by a number of companies and organizations to advertise products
and disseminate information. Mining TencentWeibo data to make the future prediction
on some social phenomena has become an innovative approach in China.

3.2 Dataset Characteristics

The data we used in our experiments was obtained by downloading the posts from Ten-
centWeibo.com with TencentWeibo Search API. We used “flu” and its common influenza
symptoms, such as fever, runny nose, as keywords to ensure that the posts we obtained
were influenza related. We obtained 2.59 million influenza related posts over a period
of six months from Nov, 2012 to May, 2013. Most of these posts contain location infor-
mation which indicates the poster’s living city. By accurately classifying influenza posts
from this data set, we can analyze spatial and temporal patterns of influenza epidemics.

3.3 Label Rules

Three annotators are responsible for assigning positive or negative label to every post
in both training dataset and test dataset. One post is labeled as a positive only when it
meet one of the following requirements.

— Post indicates the poster has influenza. Since each post has one attribute showing
the city name which indicates where the post is sent, we can use this information to
do spatial analysis of the positive posts.

— The post mentions other person (relative or friend) has influenza and also mentions
the location of the other person. For example, one post says “My poor brother got
fever in Beijing”. Then we annotate it as positive post and the count of influenza
case in Beijing will be increased by one. Otherwise, if there is no indication of lo-
cation, then the post is annotated as negative post since it has no use to our analysis.

— For reposts, if one repost has no comment, we consider the reposter is consented
with the original poster, thus the repost is annotated as the original post’s label. If
the repost has comment, we label it according to the previous two rules.

Each of these three annotators individually labeled a post x as negative (-1) or posi-
tive (+1) influenza-like post described as y1, y2, and y3. Each post was given the final
label by the following function L = Z?,:l vi, ¥i € {41, —1}, where the positive value
of L indicates a positive influenza post, while the negative value of L indicates a nega-
tive influenza post.

4 Methodology

We build a support vector machine (SVM) [5, 12, 14, 16] based classifier to classify
influenza posts with the help of association rule mining and sentiment analysis. SVMs
are well-known supervised learning models used in machine learning, particularly for
text classification and regression analysis. In terms of linear SVM, the training data set
D with points is defined as below.

D = {(z,y:)|z; € RP,y; € {+1,-1}}1, (1
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Where Z, is a p-dimensional real vector and y; is the label of the point z, indicating to
which class 7| belongs. And the classification function of linear SVM is:

f(x) = sign(z ayie] © +b) 2)

Where the value of f(x) indicates the point’s class, «; is Lagrange multiplier and b is
the intercept.

In the rest of this section, several techniques that we utilized in our model will be
illustrated.

4.1 Association Rule Mining

Most TencentWeibo posts are short texts with significant characteristics of short length
and few features. If potential strongly associated features can be added to the original
texts, making longer length and more diversified features, classification performance
will be improved. In data mining, association rule learning [1,2,9,21] is a popular and
well researched method for discovering interesting relations between variables in large
databases. For these reasons, association rule learning is applied to find strong rules in
our data.

According to the original definition by Agrawal et al. [1] the problem of association
rule mining in our research is defined as: Let I = {41,149, ...,%, } be a set of n texts
features called items. Let D = {¢;, ¢, ...,t,} be a set of posts called the database. In
a given database D, an association rule is similar to a form of A=-B where A, B€I and
A[B=(), the sets of items A and B are respectively called antecedent and consequent of
the rule. An easy attempt of differentiation of strong rules is calculating its support and
confidence, and thus, mining frequent patterns is the key to obtain strong association
rules.

Methods like Apriori [2] can be used for mining association rules and frequency pat-
terns. Apriori is not an efficient algorithm as it needs to find all the candidate itemsets
and to repeatedly scan the data base during the process. However, in our research, since
frequent patterns with 2 features, such as {cold, runny nose}, are needed and the can-
didate sets with more than 2 features (k > 2) are avoided, Apriori algorithm becomes
efficient and is applied in our research.

Frequent patterns with a given minimum thresholds on support and confidence are
regarded as strong association rules which then will be utilized to extend short posts to
improve classification performance. For example, if “cold”’=*runny nose” is a strong
association rule in our data base, then word token “runny nose” will be added into the
texts of the posts which contain word token “cold” as a feature.

4.2 Sentiment Analysis

Sentiment analysis [6, 15,17, 19] refers to the application of natural language process-
ing (NLP), computational linguistics, and identification plus extraction of subjective
information over text analysis® Generally speaking, sentiment analysis is designed for

3 http://en.wikipedia.org/wiki/Sentiment analysis
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acquiring the attitude of the corresponding author or lecturer upon his or her contextual
works on a comprehensive level. The basics of sentiment analysis is to categorize the
absolute standing or meaning of the given material words based on the opinion deliv-
ered into three classification positive, negative, or neutral.

In our research, an important component of sentiment analysis which focuses on the
automatic identification for whether a repost contains positive or negative opinion about
influenza is to identify the emotion expressed in the posts if the according poster has
infected with influenza.

In our dataset, each post that is downloaded by keywords is one of the following
three kinds:

— Posts with features after feature selection.
— Commented reposts with an original post, but no features in comment.
— Uncommented reposts with an origin post.

For the first kind of posts, the SVM classifier directly classifies them. As to the rest
two kinds, we separate the reposts 7 into two parts, comment part ¢ and original post
part o. Take “Fortunately, I didn’t. || @ someone: I got flu” as an example. “Fortunately,
I didn’t. ”is part c and “I got flu.” is part o. After feature selection, however, this post
has no features. The SVM randomly classifies it as positive influenza post or negative
one; nevertheless, the poster definitely has not got influenza. In this situation, sentiment
analysis is needed to improve the SVM’s precision. Our approach can be described as:

_ {50 f(0). flo) = +1
1= {23 ®

+1, no negative word in c

() = { —1, has negative word in c “)

where f(0) is defined in formula 2, s(¢) indicates whether comment part ¢ has nega-
tive attitude to the origin part o (we regard reposters have positive attitude towards the
original post if the according reposts have no comment on the original posts), and the
value of L(r) indicates the repost’s class.

5 Experiments

We collected about 2.59 million posts posted within the time period from Nov 2012 to
May 2013, using TencentWeibo Search API. We separated those posts into three groups.

Training data consists of 4092 posts which were randomly selected by computer
and annotated by 3 annotators. Then these posts were used for the purpose of SVM
classifier training.

Test data consists of 2500 posts randomly selected by computer and annotated by 3
annotators like training data. These data were used to evaluate the SVM based classifier.

Experiment data are the rest of the posts collected. They were used in experi-
ments of influenza epidemics detection and analysis. Those posts were separated into
six groups by month within the time range that we studied, from Nov 2012 to April
2013.
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Table 1. Examples of positive and negative weighted significant features of our SVM classifier

Positive Weighted Feature Weight Negative Weighted Feature Weight

have cold 1713.39 fatigue 132.99
feel ill 385.70 faint 86.98
fevering 146.85 healthy 56.43
runny nose 85.06 question 47.41
very 82.26 share 46.23
sore throat 48.61 later 43.00
serious 48.22 little 41.64
rhinobyon 40.01 lack 39.99
headache 38.67 sneeze 37.04
seemingly 37.43 nervous 36.01

We first applied feature selection for SVM training because of three reasons: (1) To
improve the efficiency of training and testing process. (2) To delete noisy features. (3)
To improve classification precision.

We calculated Chi-squared value for every word token that appeared in the training
data set. As SVM features, top 1,000 word tokens ranked by Chi-squared value were uti-
lized. Before word segmentation and vectorization, punctuation and special characters
were striped, mentions of user names (the“@” tag), reposts (the “||” tag) and expres-
sions (the “/” tag) were removed, and all other language characters were ignored. Table

1 lists examples of significant features we used as SVM features.

2 *x precision * recall
Besides precision and recall, F; = p o which is a weighted har-
precision + recall

monic mean that trades off precision versus recall was utilized to evaluate our classifier.

In our experiment, the kernel of SVMs is linear. The evaluation of this SVM classifier
on test set showed 0.79 precision, 0.80 recall and 0.795 F}. There are two reasons to
cause relative low precision and recall:

— A TencentWeibo post consists text with a 140 word limit and most of the posts
are short texts with only several words. Not even a single feature is contained in
some processed short posts after word segmentation and vectorization. Our SVM
classifier’s scheme of random labeling them leads to relative low precision and
recall.

— In terms of reposts, reposts without comment are also qualified for the condition
above, as reposts with comment always indicate the reposter’s attitude on the orig-
inal post. However a SVM classifier is not capable of analyzing poster’s sentiment
on this kind of post.

We handled the first case by applying rule mining to extend word-segmented posts
to obtain more features before vectorization. Based on our training data, we learned
some word association rules as shown in Table 2 with the threshold of 0.01 minimum
support and 0.6 minimum confidence. However, the performance of the SVM classifier
with 0.797 precision, 0.804 recall and 0.800 F;did not improve too much.

We then utilized sentiment analysis to improve the evaluation of classification.
First, we collected thousands of emotional-related words and put them into 2 groups
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Table 2. Examples of word associations rules with support and confidence

Feature 1 Feature2 Support Confidence
feeling ill having cold  0.085 0.67
sore throat having cold  0.011 0.60
runny nose having cold  0.017 0.65
sneezing runny nose  0.013 0.65
serious  having cold 0.012 0.69
question having solved 0.011 0.65
lack voting 0.011 0.65
bad having cold  0.015 0.67

Table 3. Examples of both emotional negative and emotional positive words

Negative no don’t think so deny don’t agree disappoint abhorrent annoyed angry insane bad
Positive yes Ithinkso accept agree gladness amused happy glad smart good

(emotional negative and emotional positive). Table 3 lists examples of both emotional
negative and emotional positive words. We then applied formula 3 and 4 to classify
reposts with an original post.

As shown in Figure 1, when considering word associations and sentiment of posters,
the classification performance substantially improves, achieving up to 0.900 precision,
0.913 recall and 0.905 F;.

precision recall F1

Evaluating indicators of classification

Fig. 1. Summary of evaluation results. SVM1 represents original SVM classifier, SVM2 repre-
sents the SVM based classifier with association rule mining, and SVM3 represents the SVM
based classifier with association rule mining and sentiment analysis.
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Fig. 2. Spatial analysis of influenza epidemics in China from Nov 2012 to Apr 2013. The darker
colored area indicates a higher influenza index and the lighter colored means a lower index.

6 Spatial and Temporal Analysis of Influenza Epidemics

A simple model was built on the experiment dataset to monthly estimate the aver-
age extent of influenza epidemics of every province in Chinese mainland. For every
month from Nov 2012 to Apr 2013, our model automatically calculates the index of
each provinces influenza epidemics by summing each provinces positive influenza posts
which were extracted from the whole posts corpus with the help of the SVM based clas-
sifier, dividing the sum by net citizen scale of the certain province which was obtained
from Statistical Report on Internet Development in China published by China Internet
Network Information Center (CNNIC) in 2012, and multiplying the result with 10,000
to make the final number more readable. For example, in Nov 2012, in our database
Beijing has 6,916 positive influenza posts and 13,790,000 net citizens. Therefore, the
influenza index of Beijing in Nov 2012 is 6,916 x 10,000/13, 790,000 = 5.015.

6.1 Spatial Analysis of Influenza Epidemics

After computing the monthly index of influenza epidemics in each province, we as-
sign that value to the capital city of the corresponding province. The we use Krig-
ing [10]which is a geostatistical estimator that infers the value of a random field at
an unobserved location to spatially interpolate influenza epidemics index of the whole
map. Figure 2 represents the distribution of influenza epidemics in China from Nov
2012 to April 2013. From Figure 2, we obtain some conclusions as below:
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Fig.3. Time analysis of influenza epidemics in China from Nov 2012 to Apr 2013. Different
kinds of dots represent different provinces and each dot shows the influenza index of a given
province in the given month.

— With the drop of temperature from Nov 2012 to Dec 2012, high influenza-index
regions are increasing and low influenza-index regions are reducing. On the con-
trary, with the rise of temperature from Dec 2012 to Apr 2013, high influenza-index
regions are reducing and low influenza-index regions are increasing.

— From Nov 2012 to Apr 2013, southeast coastal provinces including Guangdong,
Guangxi, and Hainan have higher influenza indices. While west provinces including
Xinjiang, Qinghai, and Tibet have relatively lower influenza indices.

— Areas such as Beijing-Tianjin, Chengdu-Chongqing, Yangtze River Delta, and Pearl
River Delta with bigger fluid population and more density of population have higher
influenza indices. Areas such as Xinjiang, Xizang (Tibet), Qinghai, and Gansu
where density of population is far smaller than the areas mentioned above have
lower influenza indices.

6.2 Temporal Analysis of Influenza Epidemics

Figure 3 represents the influenza indices of each province in China mainland from Nov,
2012 to Apr, 2013. Some conclusions can be obtained by observing Figure 3:

— From Nov 2012 to Apr 2013, Guangxi, Guangdong, and Hainan have relatively
higher influenza indices than other provinces. Xizang and Qinghai contrarily have
relatively lower influenza indices.
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— The influenza indices of Xizang and Qinghai from Nov 2012 to Apr 2013 slightly
change. However, the influenza indices of Guangxi, Hainan, and Henan fluctuate a
relatively great deal.

7 Conclusions and Future Work

In this paper we propose a TencentWeibo based influenza epidemics detection and anal-
ysis model with data mining techniques. Basically, we build a support vector machine
(SVM) based classifier to classify influenza posts. In addition, we use association rule
mining to enrich the features of posts to overcome the limitation of 140 words for posts.
We also use sentimental analysis to classify the reposts without feature and uncom-
mented reposts. Our experimental results show that by combining those techniques, we
can improve the precision and recall by at least ten percent. Finally, we analyze the spa-
tial and temporal patterns for positive influenza posts and tell when and where influenza
epidemic is more likely to occur.

In future work, we will use more TencentWeibo data to verify our model’s efficiency
and effectiveness. Also we will focus on the personal prediction of a certain poster
whether he or she would catch influenza in the next a few days based on its personal
TencentWeibo data.
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Abstract. With the growing popularity of location-based social net-
works, vast amount of user check-in histories have been accumulated.
Based on such historical data, predicting a user’s next check-in place is
of much interest recently. There is, however, little study on the limit of
predictability of this task and its correlation with users’ demographics.
These studies can give deeper insight to the prediction task and bring
valuable insights to the design of new prediction algorithms. In this pa-
per, we carry out a thorough study on the limit of check-in location
predictability, i.e., to what extent the next locations are predictable, in
the presence of special properties of check-in traces. Specifically, we be-
gin with estimating the entropy of an individual check-in trace and then
leverage Fano’s inequality to transform it to predictability. Extensive
analysis has then been performed on two large-scale check-in datasets
from Jiepang and Gowalla with 36 M and 6M check-ins, respectively. As a
result, we find 25% and 38% potential predictability respectively. Finally,
the correlation analysis between predictability and users’ demographics
has been performed. The results show that the demographics, such as
gender and age, are significantly correlated with location predictability.

Keywords: Location predictability, entropy, LBSN.

1 Introduction

With the proliferation of smart phones and the development of positioning tech-
nologies, users can obtain location information more easily than ever before.
This development has triggered a new kind of social network service - location-
based social networks (LBSNs). In a LBSN, people can not only track and
share location-related information of an individual, but also leverage collabora-
tive social knowledge learned from them. “Check-in” is such user-generated and
location-related information, being used to represent the process of announcing
and sharing users’ current locations in LBSNs.

In this paper, we are interested in predicting users’ future check-in locations
based on their location histories accumulated in LBSNs. In particular, we at-
tempt to determine at which Point Of Interest (POI), such as a clothing store or

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNATI 8443, pp. 102-113, 2014.
© Springer International Publishing Switzerland 2014
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a western restaurant, a user will check in next. Though this problem has been
recently investigated [1,2,3], there is little study on the limit of predictability,
i.e., to what degree the next check-in locations are predictable, and its correla-
tion with users’ demographics. We believe this study will bring valuable insights
to the design of prediction algorithms and help to understand users’ behavior
from both social and physical perspectives.

The limit of location predictability was first studied on cell tower location se-
quences in [4]. The authors discovered a 93% potential predictability in human
mobility. However, a check-in trace is quite different from a cell tower trace in the
following three aspects. First, check-in is a proactive behavior comparing to the
passive recording of cell tower traces. In other words, a user might not check in
at boring places where he has actually been but may check in at locations where
there is no visiting behavior. Therefore, check-in locations are usually discontin-
uous, and many important mobility patterns could have been lost. Second, the
spatial granularity of check-in locations is much finer than cell tower locations
(e.g., a point location versus an area of one square kilometers). Thus there are
more candidate locations to choose for check-in so that it is much more difficult
to predict next check-in location. Last but not least, users are equipped with
rich profile information and social relationships, since their check-ins are usually
shared on different social networks. This would be helpful for developing more
accurate algorithms. In our work, we analyze the problem of check-in location
prediction in the presence of these characteristics.

To study the limit of location predictability, we begin with estimating the
entropy of an individual check-in trace by first considering an individual check-
in trace as a sample of underlying stochastic processes and then calculating
the entropy of stochastic processes. We then leverage Fano’s inequality [5] to
transform the estimated entropy into the limit of predictability for each user.
The limit of check-in location predictability is measured for each user on two
large-scale check-in datasets from Jiepang and Gowalla with 36 M and 6M check-
ins, respectively. As a result, we find 25% and 38% potential predictability on
these two datasets, respectively.

However, according to our observation, the variance of location predictability
among population is large. It implies there is large diversity of human mobility
patterns among population. To better understand such large diversity, we can
study the difference in predictability of users with different demographics. Par-
ticularly, we will perform correlation analysis between predictability and demo-
graphics. This task can be more easily done than ever before since users have
been already equipped with rich profile information on social networks, includ-
ing gender, age, social relationship and so on. By conducting case studies on these
check-in datasets, we show that the demographics including users’ gender, age and
influence (measured as the number of followers) as well as the repetitiveness of
check-ins (measured as the ratio of the number of check-ins to locations) are sig-
nificantly correlated with location predictability. More specifically, the mobility
of students is higher predictable since their activity areas are usually constrained
around the campus and their mobility patterns tend to be more regular; the users
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with high social influence are hard to predict because they don’t usually repeat to
check in at those familiar locations. In this case, it is evident that incorporating
demographics into the prediction task could be beneficial.

2 Related Work

The limit of location predictability was first studied in [4] on cell tower data,
on which they derived an upper bound of predictability from the entropy of
the individual location sequence and found a 93% potential predictability in
human mobility. They also studied on a lower bound, Regularity, which pre-
dicted the next location as the most frequently visited location at given hour
of week. Following them, in [6], the authors studied the predictability from mo-
bile sensor data and also found a high potential predictability on mobile sensor
data. And in [7] the authors investigated the scaling effects on the predictability
using the high resolution GPS trajectories and derived another equivalent sta-
tistical quantities to the predictability. In their conclusion, they stated that high
predictability was still present at the very high spatial/temporal resolutions. Al-
though all these work focused on the analysis of the limit of predictability, their
mobility data differs from ours in the following two major aspects. First, the
check-in trace is more discontinuous since a user might not check in many places
which he has actually visited. Second, the spatial granularity of check-ins is even
finer than physical locations since there might be many different semantic loca-
tions in the same physical location. These properties lower the check-in location
predictability and only achieve a 25%-40% potential predictability.

As for the correlation between mobility patterns and demographics, in [8],
the authors analyzed mobility patterns based on the travel diaries of hundreds
of volunteers and figured out people with different occupation had distinct mobil-
ity patterns. In particular, students and employees were more tending to move
among those frequented locations than retirees. From the perspective of pre-
dictability, it seems that students and employees were more easily predicted.
The direct correlation between predictability and users’ demographics was also
studied in [4] on cell tower traces logged by hundreds of volunteers with some
demographics. They concluded that there were no significant gender- or age-
based differences. Different from theirs, we perform analysis on check-in traces
of hundreds of thousands of users on social networks, where users are usually
equipped with rich profile information. The results of analysis show that user’s
demographics including age, gender, social influence and so on, are significantly
correlated with location predictability.

3 Check-in Datasets

We perform our analysis on two check-in datasets. The first check-in dataset
is from Jiepang, which is a Chinese location-based social network similar to
Foursquare. For the sake of protecting privacy, in these LBSNs, users’ historical
check-ins are not shown to strangers. Thus we cannot directly obtain users’



Location Predictability on LBSNs 105

check-ins from these LBSNs without becoming their friends. However, users may
share their check-ins as tweets on other social networking platforms, such as
Weibo and Twitter. For example, Jiepang check-ins are synchronized on Weibo
as a particular type of tweets (called location tweets). Thus these check-ins can
be crawled from these social networking platforms via their open APIs. Some
check-in datasets were also crawled in this way [2,3].

We crawled 36,143,085 Jiepang check-ins at 1,000,457 POIs from 454,375 users
via the Weibo API from March. 2011 to March. 2013, where each user has 80
check-ins and check in at 47 POIs on average. If we distribute these check-ins into
their date, we find that each user only make 1.5 check-ins each day on average.
If we distribute these POIs into 3 km? regions, each region owns 13 POIs on
average and up to 13,068 POIs in the maximal case. In addition, users on Weibo
may fill their profile information more precisely so we also crawled these data,
including age, gender, and social relationship as well as tags.

The other check-in dataset, used in [9] and crawled from Gowalla from Feb.
2009 to Oct. 2010, contains 6,423,854 check-ins at 1,280,969 POlIs from 107,092
users, where each user has 60 check-ins and check in at 37 POIs on average. If we
distribute these check-ins into their date, we find that each user only make 2.1
check-ins each day on average. If we distribute these POIs into 3 km? regions,
each region owns 7 POIs on average and up to 3,940 POIs in the maximal case.

Based on the above statistics, it is easily observed that the frequency of check-
ins is significantly smaller than calling or messaging (SMS) and that location
density on check-in datasets is significantly higher than cell towers since each
cell tower covers a 3-km? perception area on average.

In order to guarantee that the entropy of location sequence is well estimated,
we only reserve those users with more than 50 check-ins. As a result, 144,053 and
27,693 users are then kept on Jiepang and Gowalla, respectively. All remaining
users on Jiepang have gender information while 53,377 out of them have age
information. Moreover, they have 3.9 tags and 15 followees on average. Based on
the filtered datasets, we perform extensive analysis after presenting the limits of
predictability and then compare them with cell tower traces.

4 Location Predictability

Assume we predict the nt" check-in location L,, for user u, given her past lo-

cation sequence of length n — 1, hy,_1 = {l1,l2, ..., ln—1}. From the probabilistic
perspective, we need to model the probability distribution of L, given h,_1,
i.e., P(Ln|hn_1). In the context of prediction, we choose the location [ with the
maximum probability

= argmlaxP(Ln =l|hn-1). (1)

Intuitively, if the distribution of P(Ly|h,—1) is flat, the prediction [ with the
maximum probability has a low likelihood of being correct; if the distribution
peaks at location [ significantly, then the prediction can be made with high confi-
dence. Thus the probability at [ (denoted as 7(h,—1)) contains the full predictive
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power including the potential long range dependency. Summing 7(h,_1) over all
possible sequences of length n— 1, the predictability at the n'" location is defined

o)=Y Plhn-r)m(hn-), (2)

hn_1

where P(h,_1) is the probability of observing h,_1.
After averaging the predictability over all time indices and taking the limit,
each user’s predictability IT is defined as

= lim Z II(i (3)

7L—>OO n

The limit that IT can reach is estimated by first calculating the entropy of
a user’s check-in location sequence using non-parametric approaches, and then
transforms the estimated entropy into the limit of IT using Fano’s inequality [5].

4.1 Entropy of Check-in Location Sequence

The history of check-in locations of a user can be considered as one sample path
of its underlying stochastic process, e.g., Markov process. Therefore, the entropy
estimation of the location history is equivalent to deriving the entropy rate of
the stochastic process. According to the definition of entropy, the entropy rate
of a stationary stochastic process £ = {L;} is defined as,

S = lim ZSL|HZ 1 (4)

n—o00 N

where S(L;|H;—1) is the conditional entropy of L; given H;_1, which is a random
variable corresponding to h;—1 (i.e., the past location sequence of length i —
1). If the stochastic process lacks any long range temporal correlations, i.e.,
P(Li|hi—1) = P(L;), its entropy is S%"¢ = — Zl 1 P(l)logy P(1), where P(1) is
the probability of being at location [ and N is the number of locations. In this
case, the user moves around N locations according to previous visiting frequency,
which we named as the MostFreq algorithm. Another special entropy of interest
is the random entropy S™*"¢ = log, N, obtained when P(l) = 11[ In this case,
the user moves around N locations randomly, which we named as the Random
algorithm. It is obvious that 0 < .S < §%"¢ < Srand o,

One practical way of calculating the entropy of the user’s location history is
to fix a underlying stochastic process model and then estimate its parameters,
e.g., transition probability of first-order Markov process, and finally derive the
entropy rate. This method follows a parametric way and somewhat over-specific.
From the non-parametric perspective it can also be achieved to use an estimator
based on Lempel-Ziv data compression [10]. This method doesn’t assume the
stochastic process model and thus is more general. In [10], the authors discussed
three kinds of LZ estimators and proved that they can converge to the real
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entropy of a time series when the length of observation sequence is approaching
infinity. They applied them to calculate the entropy of English texts (number of
bits storage). One estimator for a time series with n steps is defined as follows:

Inn
S~ ) 5
Sy ®)

where A is the length of the shortest substring starting at position i which
doesn’t previously appear from position 1 to 7 — 1.

To get the real entropy for any user, her location must be recorded contin-
uously (e.g., hourly). However, the cell tower traces used in [4] only contain
locations when a person uses her phone, e.g., she sends a short text message
or makes a call, and thus exhibits discontinuity and bursting characteristics in
temporal dimension. To handle bursting, the authors merged locations within
the same hour. To deal with discontinuity, they first studied the relationship
between the entropy of discontinuous location history and the degree of discon-
tinuity, and then extrapolated the entropy where the degree of discontinuity was
zero. However, in addition to discontinuity and bursting, check-ins are at the
granularity of POIs instead of regions in the cell tower traces. POIs are physical
coordinates with semantic labels so that it is possible for different POIs to share
the same physical coordinates. Thus POIs are even finer-grained than physical
coordinates. For instance, shops in the same building share the physical loca-
tion. As the check-in POIs within the same hour may have different semantic
labels, it is difficult to merge them so that the subsequent extrapolation cannot
be applied. Instead, we can simply use the entropy calculated from the check-in
history. This is reasonable to some extent since the benefit of extrapolation re-
sults from imputing unseen locations while imputing unseen check-in location is
more difficult than imputing physical locations.
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Fig. 1. The distribution of S, $*™¢ and S"*"? across user population on Jiepang (left)
and Gowalla (right)

Next we measure three entropy quantities S, S“"¢ and S™*"? for each user,
and show their probability distribution across users on Jiepang and Gowalla
separately in Figure 1. Compared to the results obtained from cell tower traces,
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there is no big gap between P(S) and P(S7%"¢) on both check-in datasets. In-
deed, P(S™*d) peaks around 5.8 on both check-in datasets, indicating if we
assume users moved randomly, their next locations can be found on average in
any of 2°-¥=56 locations. However, P(S) peaks around 5.59 and 4.83 on Jiepang
and Gowalla, respectively. In other words, if we make a prediction with the
help of their past history, we reduce less than 2 bits of uncertainty and must
choose among 2°°9=48 and 24-83=28 locations on average, respectively, which
is much larger than the corresponding number (2°%=1.74) obtained from cell
tower traces. Therefore, the prediction of check-in location is more difficult than
the cell tower location. To get deep understanding on the difficulty of prediction
on LBSNs, we compile statistics on what percentage of transition across loca-
tions will repeat. The result indicates that there are only 3.4% and 6.5% repeti-
tive transitions across locations on Jiepang and Gowalla, respectively. This may
be because users’ proactive check-in behaviour renders checking in at locations
without actual visit and missing check-ins at locations where they often go. To
continue analyzing Figure 1, we observe that the difference between P(S7e"?)
and P(S) on the Jiepang check-in dataset is smaller than on the Gowalla check-
in dataset, which means that check-in location prediction on Jiepang is more
difficult. This is in line with the previous results that there are larger repetitive
transitions across locations on Gowalla than on Jiepang. Comparing P(S%"¢)
with P(S7e"?), there is only a small gap on the Jiepang check-in dataset, which
indicates that a large number of locations are checked in only once since the
average times of users’ check-in at POIs is less than 2. The extra part of P(S)
over P(S""¢) can be explained by the temporal correlation between locations in
the location sequence and thus helps us to understand the effect of the sequen-
tial patterns. Due to their small gap, we could foresee the limited benefit from
sequential patterns in the check-in traces.

4.2 Limit Analysis and Discussions

As soon as we get three quantities of entropy, we can transform them to the limit
of their corresponding prediction algorithms. For the aforementioned predictabil-
ity I, it satisfies Fano’s inequality. That is, if a user with entropy S moves be-
tween N locations, her predictability IT meets this condition IT < IT™*" where
II™** is the root of following equation

S = Sp(IIm*) (6)

Sr(p) = (1—p)logy (N —1)4 H(p) is a Fano function (H (p) is a binary entropy),
which is concave and monotonically decreases with p when p € | ]1,, 1). Therefore,
the satisfaction of IT < II"™** only requires Sp(IT) > S = Sp(II™**) since it
is easily verified that IT > 1{[ and [I™%* > ]1, Based on the concavity and
monotonicity properties of Sp(p) as well as Jensen’s inequality, Sp(IT) > S
is equivalent to Sp(m(hn—1)) > S(Ln|hn—1). The latter inequality is simply
the well-known Fano’s inequality when the probability of error prediction is
1 —w(hp—1) so that IT < II™% is proved.
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Since I1™** > ]1,, Eq (6) has a unique root. We can leverage any root finding
algorithm, e.g., Newton’s method to find the solution of I7™%*. Similarly from
Srend and S¥n¢, we can determine IT7%"? and IT¥"¢, which are limits of Random
and MostFreq, respectively.
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Fig. 2. The distribution of I1™*, I1""°, II"*"® on Jiepang (left) and Gowalla (right)

After determining I7™%* [T""¢ and I1™*"¢ for each user using Eq (6), we
demonstrate their distribution over all users in Figure 2. We can see that IT™*
on the Jiepang and Gowalla check-in datasets peaks around 0.25 and 0.38, re-
spectively, which means that no matter how good the algorithm is, its accuracy
can not be larger than 25% and 38%, respectively when using their individual
check-in history. In addition, we can see that the variance of II™** is larger
than that obtained from cell tower traces and thus the predictability in terms of
check-in location varies more from person to person. In other words, some people
show high regularity while others do not. IT%™¢ shows a similar trend to IT but
is left shifted and more narrowly distributed. Thus IT*"¢ shows more universal
patterns across user population than IT7™%*. This observation agrees with the
phenomena that users check in at the most locations only once.

Although there is 25%-38% potential predictability on the check-in data, there
are two assumptions behind. The first is not to impute unseen check-in loca-
tions. The reason of making this assumption is that it is difficult to impute
unseen check-in locations in practice. The second assumption is not to resort to
other information, such as check-ins of friends and similar users. This assumption
mainly results from the dominated effect of individual check-in history according
to our observation and the conclusion in [1,2]. In the future, we can relax the
second assumption to consider these information so as to get a higher limit of pre-
dictability. Although the potential predictability is much lower than that of cell
tower traces, it is still a theoretically tight bound, which is difficult to achieve in
practice. In order to approach this bound, according to the definition of entropy,
we should leverage all orders of sequential patterns, from 0 order (MostFreq)
to possibly highest (the number of all check-ins) order. In practice, significant
high-order sequential patterns are difficult to discover due to limited check-in
history, so the combination of 0 order and other low order sequential patterns
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can be a possible way of designing prediction algorithm [3]. Additionally, for the
sake of approaching this bound, according to Fano’s inequality, the probability
of error 1 — w(h,—1) should be distributed as uniformly as possible over all lo-
cations except the most possible one [. To achieve this, we can introduce other
information, such as the time of next check-in, to increase m(hy,—_1).

5 Predictability and Demographic

After calculating the limit of location predictability based on individual check-in
history, we further study the correlation between location predictability and sev-
eral users’ demographics. Such study is important since it could provide evidence
for the demographic-based advertisement targeting and the demographic-boosted
prediction task. In this study, the demographics are split into two categories: cat-
egorical and numerical. Categorical demographics include gender and age group.
Numerical demographics include number of locations, number of check-ins, and
number of followers. The age information is numerical in practice, but we quan-
tized it into the following ordinal groups, i.e., 7 <19”,719-23”, 7 24-28"729-33",
734-38”,7 >38” for better visualization. Since the ages of most users are distributed
within [19, 38], users both younger than 19 and older than 38 are aggregated into
separate groups.

For categorical variables, we perform analysis of variance (ANOVA) test for
the statistical correlation between a demographic measure and user’s predictabil-
ity. For numerical variables, since we don’t know the concrete form of their cor-
relation, we calculate a non-parametric correlation, i.e., Kendall rank correlation
coefficient, and perform non-parametric hypothesis test, i.e., tau test, to see the
significance of their correlation.

Table 1. Analysis of variance (ANOVA) for testing the correlation between gender as
well as age and predictability. F' is F-statistics and p is the p-value of statistical test.

Gender Age
Fooop F P
Predictability 4584 <1e-10 260.1 <1le-10

Before performing ANOVA test, we first check the assumption of ANOVA
test on the categorical variables and predictability. The result of testing shows
the assumption can be satisfied with a p-value smaller than le-10. The result of
ANOVA test is shown in Table 1. From this table, we observe that the correlation
of predictability with the categorical demographics including gender and age
group is significant. And gender is more correlated with predictability, which
indicates that male users and female users show different degree of predictability.
In order to see how these categorical variables are correlated with predictability,
we draw the box plot of predictability with respect to these categorical variables
and show them in Figure 3. From them, we have the following observations: 1)
male users show higher regularity than female users. According to the statistics
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of the categories of POIs, the four most frequent check-in categories from female
users are residential, coffee shop, shopping mall and chaffy dish while the four
most frequented check-in categories made by male users are residential, airport,
office building and subway station. Thus this observation sounds reasonable. 2)
young users (age<24) are easier to predict. This is because these young users are
mainly students at school so that their check-ins are constrained around their
campus. According to the statistics of the POI categories, three most frequent
check-in categories by these young users are teaching building, dormitory and
campus. According to the analysis to the tags of each user, 10% of these young
users are tagged by “students” while only 1% of elder users are such tagged.
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Fig. 3. Box plot of predictability with respect to gender and age

Next we study the correlation between numerical variables and predictability
and show the results of tau test in Table 2. From this table, we can answer
the following two questions. 1) Are users with larger social influence harder to
predict? We measure social influence as the number of followers (#F) in this
paper. Users with more followers are more cautious about their reputation so
that they will not check in at those boring locations, such as home, subway
station. According to this table (last column), the answer to this question is yes
and thus the immediately preceding explanation is justified. 2) which of these
three factors, the number of locations (#L), the number of check-ins (#C) and
the ratio of the number of check-ins to the number of locations which we name
as CLR, are consistently and significantly correlated to predictability? From
this table, we see that the correlation between predictability and the number of
locations is significant but not consistent on Jiepang (positively correlated) and
Gowalla (negatively correlated). More discussions are provided in Figure 4 and
in the subsequent paragraphs. As for the number of check-ins and its ratio CLR
to the number of locations, they are both significantly correlated to the limit
of location predictability on both datasets from the perspectives of statistics
testing. However, CLR is more strongly correlated with location predictability
than the number of locations. The principle reason is that the larger number of
check-ins doesn’t necessarily indicate more repetitive patterns since some users
like to check in at many neighbour locations which they didn’t visit in practice.
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Table 2. Kendall rank correlation test between numerical profile variables and pre-
dictability. Z means the Z-statistics in 7 test of Kendall rank correlation, 7 is the
correlation coefficient and p is the p-value. The cells with bold font indicate negative
correlation and the cell with bold italic font shows insignificant correlation.

Dataset Stat  #L #C CLR #F
Z 426 184.5 516.5 -10.3

Jiepang p <le-10 <le-10 <le-10 <1le-10
UB T 0.075 0.325 0.907 -0.018
Z -56.7 244 212.1
Gowalla p <1le-10 <le-10 <1e-10
T -0.228 0.098 0.850

To find how predictability covariates with the number of locations and CLR,
we plot them together with predictability in Figure 4. We can see that the rela-
tionship between the limit of predictability and the number of location is really
inconsistent on the two check-in datasets according to Figure 4(a). Specifically,
when the number of locations is larger than 52, predictability of users from
Jiepang is increasing while on Gowalla it is keeping comparatively stable. The
reason behind may be that Jiepang users who check in at more locations may
also check in more at their regular locations. To justify, we compute the corre-
lation between the number of check-ins and the ratio of the number of check-ins
to the number of locations (CLR). We find that on Jiepang there exists posi-
tive Kendall rank correlation (7 = 0.155) between them while on Gowalla they
are negatively correlated (7 = —0.208). This means that when checking in at
more locations, the average number of check-ins at locations is increasing on
Jiepang. This implies that these users also check in more at these familiar loca-
tions. However, a contrast trend is observed on Gowalla. Thus, the correlation
between predictability and the number of locations on check-ins seems incompat-
ible with the result discovered in [4], that regularity was inversely proportional

Gowalla Gowalla
Jiepang 0.6- Jiepang
0.6
2 2
] §0.4
0.4 £
o o
o o
0.2
0.2

32 64 128 256 512 1 2 3 4
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(a) (b)

Fig. 4. Predictability with respect to some continuous profile variables. Continuous
profile variables are quantized into 50 groups by its uniform quantiles. For each group,
we show the median, 25% and 75% quantile of predictability in the error bar plot.
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to N~1, where N is the number of locations. However, according to Figure 4(b),
the correlation between the limit of location predictability and CLR is consis-
tently positive on both datasets. This indicates larger CLR could imply more
repetitive patterns so that users’ behaviour can be more accurately predicted.

6 Conclusion and Future Work

We have analyzed check-in location predictability on two large scale check-in
datasets from Jiepang and Gowalla, and found 25% and 38% potential pre-
dictability respectively. Then we have studied the correlation between location
predictability and users’ demographics. The results show that the check-in be-
haviour of the male users and the young students are more higher predicted. By
comparing the correlation between location predictability and the number of lo-
cations on two check-in datasets, we have not observed the universal correlation
between them. In other words, the number of locations is not directly correlated
to location predictability. However, the number of check-ins and its ratio to the
number of locations was significantly and positively correlated to predictability,
but the degree of the ratio’s correlation to predictability is stronger.

In the future, we will extend our predictability analysis from a single user
to user groups and study location predictability in the presence of both real
friendship on social network and virtual friendship based on location visiting
history. This analysis can be helpful to predict check-ins at novel locations where
users have never visited before.
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Abstract. Along with twitter’s tremendous growth, studying users’ be-
haviors, such as retweeting behavior, have become an interesting research
issue. In literature, researchers usually assumed that the twitter user
could catch up with all the tweets posted by his/her friends. This is un-
true most of the time. Intuitively, modeling the reading probability of
each tweet is of practical importance in various applications, such as so-
cial influence analysis. In this paper, we propose a ReadBehavior model
to measure the probability that a user reads a specific tweet. The model is
based on the user’s retweeting behaviors and the correlation between the
tweets’ posting time and retweeting time. To illustrate the effectiveness
of our proposed model, we develop a PageRank-like algorithm to find in-
fluential users. The experimental results show that the algorithm based
on ReadBehavior outperforms other related algorithms, which indicates
the effectiveness of the proposed model.

1 Introduction

Micro-blog services, such as Twitter, have grown rapidly in recent years. It has
more than 500 million registered users and 200 million active users. More than
400 million tweets are posted per day!. On twitter, the user whose tweets are
followed is called friend, while the user who is following is called follower.
Followers may get lots of tweets from their friends?. One scenario is that
the user has too many active friends, who post tweets very frequently. In this
scenario, he/she is unable to read all the tweets. Previous works, such as on iden-
tifying influential users [1], assumed that followers could read all the tweets on
their micro-blog spaces. However, it is actually untrue most of the time. Another
work [2] systematically investigated the underlying mechanism of the retweeting

! http://expandedramblings.com/index . php/march-2013-by-the-numbers-a-few-
amazing-twitter-stats/.

2 Without causing misunderstanding, we will use “tweets” to denote “tweets from
users’ friends” in the rest of this paper.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNATI 8443, pp. 114-125, 2014.
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behaviors, and divided the tweets into three categories: retweet, ignore3, and
miss. Nonetheless, it is not obvious to detect whether the tweets are missed or
ignored in some situations, even with the help of users’ login time.

In this paper, we propose a ReadBehavior model to measure the reading
probability of each tweet, where reading probability means the probability of
a tweet that is read by a user. The model is based on the user’s retweeting
behavior, which is the correlation between the tweet’s original posting time and
the corresponding retweeting time. ReadBehavior is of practical importance and
can be beneficial for various applications, such as social influence analysis.

To illustrate the effectiveness of ReadBehavior, we develop an Improved
PageRank (IPR) algorithm, which is an extension of the PageRank [3] algo-
rithm. Both IPR and PageRank find influential users on the whole network.
PageRank assumes that all the tweets are read by the user, whereas IPR calcu-
lates the reading probability of tweets, and then estimates the number of tweets
that are read.

Experiments are then conducted to evaluate the performance of our proposed
model. The results show that IPR outperforms other related algorithms, such as
PageRank, FollowersNum, and TweetsNum. Consequently, the results also verify
the effectiveness of ReadBehavior.

The main contributions of this paper include:

1. We propose a ReadBehavior model to measure the reading probability of
each tweet posted to a user according to his/her retweeting behaviors. To the
best of our knowledge, it is the first model to measure the reading probability
of tweets.

2. Based on our proposed model, we develop an IPR algorithm to find influ-
ential users. The experimental results show the advantages and effectiveness
of the proposed model.

The rest of this paper is organized as follows. A review of related work is given in
section 2. Section 3 presents the proposed ReadBehavior model in detail. Follow-
ing that, in Section 4, we present IPR, which is based on ReadBehavior. Then,
experimental results are presented in Section 5. Finally, Section 6 concludes this

paper.

2 Related Work

There have been quite some studies on micro-blog services, especially on Twit-
ter, e.g., identifying influential users. The Web Ecology project [4] measured
influential users for a 10-day period. This work performed a comparison of three
measures of influence - retweet, reply, and mention. Cha et al. [5] used men-
tions, retweets, and the number of followers as influence measurement. Kwak
et al. [6] used PageRank of the network constructed by followers. Bakshy et
al. [7] used the information cascades. Recently, researchers also studied social

3 “ijgnore” means that followers read the tweets but do not choose to retweet them.
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influence from the topics perspective [8,9,10,11,12]. Romero et al. [1] designed
the influence-passivity algorithm to measure influential users. However, all these
methods assumed that followers could read all the tweets. Whereas in reality,
users may miss some of the tweets.

Other works studied the retweeting behaviors. Boyd et al. [13] treated retweet-
ing behaviors as conversations inside Twitter, and studied the basic issues about
retweet. Hong et al. [14] studied the problem of predicting popular tweets ac-
cording to the future retweets. Petrovic et al. [15] explored tweets features to
predict whether a tweet would be retweeted. Benevenuto et al. [16] analyzed the
user workloads based on users’ behaviors. Uysal and Feng [17,18] proposed a
tweet ranking method to help users to catch up with valuable tweets based on
the retweet history. Compared with our model, they always ignored the tweets
time (tweets’ posting time), which we treat as an important factor.

There were some works that mentioned the tweets time. Yang et al. [2] studied
the underlying mechanism of the retweeting behaviors. They divided the tweets
into three categories - retweet, ignore, and miss, and then classified the retweeting
delay into short-term intervals and long-term intervals. However, they did not
mention how to deal with the situation when it was not clear whether a tweet
was missed or ignored. Dabeer et al. [19] proposed response probability that bear
the similarity with susceptibility using the tweets time. However, as far as we
know, very few researchers have studied the tweets time in the view of measuring
the reading probability.

3 The Proposed Model

To measure the reading probabilities of the tweets on users’ micro-blog spaces,
we propose the ReadBehavior model according to users’ retweeting behaviors.
In this section, we will describe the model in detail.

3.1 Terminology, Assumption, and Fact

When users reading tweets on their micro-blog spaces, the timeline lists the
tweets in reverse chronological order. Once they find an interesting tweet, they
will retweet it. This is denoted as the retweeting behavior.

For the simplicity of the analysis, we have the following terms, assumptions,
and facts. We should make it clear that our assumptions are based on users’
general reading habits. Although we do not think about special cases, the ex-
perimental results in Section 5 still show the advantages of our model.

Term. Check means the user’s reading behavior. Check period means a period
when the user is continuously reading the tweets, and check time means the start
time of the check period.

Assumption 1. Users read the tweets from top to bottom, i.e., they read
from the latest one to the earliest one. Although the mobile Twitter client starts
from the last tweet that was shown to the user, he/she must refresh to get new
tweets with the latest one on the top.
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Assumption 2. If users encounter a tweet which they have already read,
they will not read the tweets below it.

Assumption 3. Once users read an interesting tweet, they will retweet it,
i.e., they will not read back to retweet a tweet.

Assumption 4. Assume that time t; and time t;- are two adjacent retweets
time during one check period, and t; and t; are the corresponding tweets time,
respectively. If t; < ¢, then t;- > t;», and the user must read the tweets posted
between ¢; and t¢;. Because we think he/she is continuously reading the tweets.

Fact 1. Given a tweet posted at time t;, and it was retweeted at time t;». The
check time of this reading behavior must be between ¢; and t,.

Fact 2. If a user retweets a tweet, he/she must have read the tweet.

Fact 3. Tweets, which are posted after the check time, are not able to be
read by the user in this check period. If users refresh to get new tweets, we treat
it as a new check period.

3.2 ReadBehavior Model

Two Retweeting Behaviors. In the proposed ReadBehavior model, we study
the retweets time and the corresponding original tweets time. For example, as-
sume that user A was reading the tweets. When he/she found an interesting
tweet C; which was posted at time t;, he/she retweeted it at time t; (t; < t;)
After that, he/she may continue reading or become idle. Assume that there also
exists another retweeting behavior at time t;-, and the original tweet C; was

posted at time ¢; (¢; < t;) There are three intuitive scenarios considering the
time sequence if ¢; < t;:

Scenario 1: t; <t; < t; < t;»

Scenario 2: t; < t; <t; <t

j
Scenario 3: t; <t; <t <t;

friends”  tweets timeline user’ s retweets

) - tweet timeline
carliest

retweet timeline

LI

[

(a) Reading Behaviors (b) Reading Probability

Fig. 1. Reading Behaviors and Reading Probability of scenario 1

For scenario 1, we show an intuitive example in Fig. 1(a). When the user was
reading the tweets, he/she retweeted Cy at t,. Then he/she continued reading
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the tweets, and retweeted C5 at t/5. As the user was continuously reading the
tweets, he/she read the tweets posted between t and t5. It was not sure whether
C was read or missed. Here ¢; and ¢; are corresponding to t5 and t2, respectively.

The reading probability is illustrated by Fig. 1(b). According to Fact 2, the
two retweeting behaviors take place in one check period. The reading probability
of every tweet posted between ¢; and t; (including ¢; and ¢;) is 1 according
to Assumption 4. The check time is between t; and t;- according to Fact 1.
Similarly, the reading probabilities of tweets newer than C’; are 0 according to

Fact 3. Because the reading probabilities of tweets posted between ¢; and t;- are
descending, we assume that the reading probabilities are linearly descending. So
given t, which is between t; and t;, then the reading probability of C, in this
check period is measured by:

t—ty
P(Cy) = ity G <ta< t (1)
0, t;- <ty <

0 i L - tweet timeline

earliest

retweet timeline
v Y

(a) Reading Behaviors (b) Reading Probability
Fig. 2. Reading Behaviors and Reading Probability of scenario 2

Fig. 2(a) is an example of scenario 2. The user retweeted Cs at t5 in a check
period. Then he/she stopped reading the tweets. In the next check period, he/she
retweeted Cy at tlg. It was not sure whether Cy, C3, and C4 were read or missed.
Here t; and t; are corresponding to t5 and t,, respectively.

We can infer that the two retweeting behaviors take place in two check periods.
Consequently, we calculate the reading probability for these two check periods
respectively, as shown in Fig. 2(b). The black line and the blue line illustrate the
reading probability of C, measured by the former check period (where C; was
retweeted) and the latter check period (where C; was retweeted), respectively.
For the former check period, similar to the analysis of scenario 1, the reading
probabilities of tweets posted at t; and t; (if exist) are 1 and 0, respectively. If
t <ty < t;, the reading probability of C} is ttftt* For the latter check period,

i

the reading probabilities of tweets posted before t; are 0 according to Fact 3. If t,
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is between ¢; and t;-, the reading probability of C, is i{:i: . And if ¢, is between
J
t; and t;, the reading probability of C, is ij:?
C; are not read according to Assumption 2. Now we take both the check periods
into account. When the reading probability of C, can be measured by two check
periods, we will choose the higher one.
To sum up, the reading probability of C, posted between t; and t;» is measured

by:

. The tweets posted earlier than

t

it te—t;
P(C,) = maX(tZ—ti’ij—;)’ ti St <1y 2)
z) = N th—te
ti—tj’ tjSta S t;'

Fig. 3(a) is an example of scenario 3. Similar to scenario 2, Cs was retweeted at
tg in the first check period. Cy was retweeted at ¢, in the second check period.
Here t; and t; are corresponding to ¢ and t4, respectively.

friends’  tweets timeline user’ s retweets

tweet timeline

retweet timeline

& Y

(a) Reading Behaviors (b) Reading Probability

Fig. 3. Reading Behaviors and Reading Probability of scenario 3

The main difference of this scenario from scenario 2 is that the retweet time
t; is just after the tweet time t;. It means that the first check time is between
t; and t; (just after t;), as shown in Fig. 3(b). Then similar to scenario 2, the
reading probability of C, posted between t; and t;- is measured by:

tj—ta x —li
P(C max(y 7 1) S e <1 ;
( ac)— th—tg bt <y ()
t—t; IR le XY

For tweets which are earlier than both of the original tweets, the reading
probabilities of them can be measured by earlier check periods, which will be
discussed in the following section.

Three and More Retweeting Behaviors. The above three scenarios are
the essential situations. Now we expand them to three and more continuous
retweeting behaviors, which are the combination of the three scenarios. We can
summarize that if ¢, is between ¢; and ¢;, the reading probability of C, can be
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measured by one of the three scenarios, otherwise, the reading probability of C,
can be measured by additional boundary conditions.

Formally, assume the retweets time sequence is (t/l,t/z, ...,t/n_l,til), and the
corresponding tweets time sequence is (t1,ta, ..., tn_1,%n)*. list; is the time list
of the tweets that are retweeted, tsqr+ is the start time of the dataset and te,q is
the end time of the dataset. If C,, is between two adjacent retweeting behaviors,
t; and t; are the former tweet time and the latter tweet time, respectively, then
the reading probability of C, is measured by Algorithm 1.

Algorithm 1. Reading probability of tweet C, posted at time ¢,

Input:
The time of a tweet posted by user A’s friends;
The set of user A’s retweets time and the corresponding tweets time;
Output:
The reading probability of the tweet;
Lif o >t AND £, < ¢, then

P(Cy)= 1% # The latest check period

1

2

3

4 P(Ca) =1 # Cy was retweeted
5: elseif t, > t; AND ¢, < t;- then
6: if t; <t; then

7

8

P(C5) is measured by Equation 2; # Scenario 2
. elseif t; < t; then

9: P(Cy) =15 # Scenario 1
10:  else if t; < t; AND t; < ¢; then
11: P(C5) is measured by Equation 3; # Scenario 3
12:  end if
13: else if t, <t1 AND t; > tstart then
14:  P(Cp) = i;::::;;f ; # The earliest check period
15: else
16:  P(Cy) = 0;
17: end if

18: return P(C,);

With the reading probability of each tweet, we estimate the number of tweets
read by a user. Assume that user B is a friend of A, and the number of tweets
B posted is n, then the number of tweets read by A from B is measured by:

NumBA:i:P(CI) (4)

r=1

4 Though the tweets time sequence is in the order of time, the corresponding retweets
time sequence may not be.
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4 The Improved PageRank Algorithm

In this section, we will describe the IPR algorithm with our proposed ReadBe-
havior model. First of all, we have the following definition:

Definition 1. G = (N, E, W) is a directed graph. N is the set of nodes. E is
the set of arcs. W is the set of arc weights. If user ¢ has ever retweeted from user
j, then there is a directed arc (i, j) between them.

Based on the proposed model, we develop an IPR algorithm, which extends
from the well-known PageRank algorithm. PageRank [3] was used by researchers
to find influential users in social media. It took both the pairwise influence and
the link structure into account. The main difference between IPR and PageRank
is the calculation of the arc weight in Definition 1. The arc weight of PageRank
is measured by:

S,

= ”.a (5)
Qj

where S;; is the number of tweets that ¢ has retweeted from j, and @; is the

number of tweets posted by j.
While the arc weight of IPR is measured by:

Sij
- 9
Numij

wij

(6)

where S;; is the number of tweets posted by j and retweeted by ¢, and Num;;
is the estimated number of tweets read by ¢ from j according to Equation 4.

With the directed graph G, both PageRank and IPR iteratively compute to
find influential users. Since G is weighted, the random surfer probability from 3
to 7 is measured by i . » Where E'is the set of arcs in G.

w;
k:(i,k)EE

Wi j

5 Experiments

To evaluate the effectiveness of our proposed model, we present the experiments
on a large-scale Twitter dataset in this section.

5.1 Twitter Dataset

A set of Twitter data from [6] is prepared for this study. The dataset contains
a continuous stream of about 132 million tweets. In order to compare with the
work in [1], we also use the tweets with URLs. We get about 3.38 million users
posting at least one URL. In the following descriptions, we will use “tweets” to
represent “tweets with URLs” in short. Similar to [1], we choose to concern users
who have at least 7 tweets with URLs, and exclude the invalid users whose user
ID cannot be accessed with the usernames. After that, we get 497,782 users with
17,592,586 tweets. We then strike out the isolated users (users that never retweet
or are retweeted by others). Finally, we get 74,813 users who post 3,150,334
tweets. Among them, 83,356 pairs of users have retweeting relationships, and
the number of retweets is 103,774.
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5.2 Comparison of IPR with Other Related Algorithms

In this section, we study the effectiveness of IPR in finding influential users.
Several related comparison algorithms are conducted, which include:

— Follower Num, which measures the influence of users by the number of
followers. This measurement is widely used in many Twitter services.

— TweetsNum, which measures the influence of users by the number of tweets
posted by them.

— PageRank, which measures the influence of users taking both link structure
and pairwise influence into account. Nevertheless, unlike IPR, the arc weight
is measured by Equation 5.

Evaluation Method. All the four algorithms can find influential users. How-
ever, there is no existing method to directly compare their performances. We
use a cross-validation method [20] to compare these algorithms. The method is
described as below:

Given four algorithms A, B, C, and D, and the sets of Top-K influential
users discovered by them are I4, Ig, Ic, and Ip, respectively. The criterion set
is denoted as:

I :(IAﬁIB)U(IAﬁIC)U(IAﬁID)U(IBﬂIc')U(IBQID)U(IcﬂID) (7)

Then, the precision of algorithm X is:

‘IX OIQ‘
P =
The recall is: | |
. Ix NI
Rx = L] 9)

A better algorithm will get a higher precision score and a higher recall score.
Because the best algorithm should have the greatest contribution to the criterion
set.

Performance and Analysis. We compare the precision, recall, and F measure
of Top-K (K = 200,250,300, 350,400,450, 500) influential users of the above
four algorithms. Fig. 4 shows the results.

We see from Fig. 4(a) that the precisions of all the algorithms increase when
the parameter K increases. In addition, as K increases, the precisions of IPR and
PageRank significantly increase, whereas the precisions of FollowersNum and
TweetsNum only increase little. This is because both IPR and PageRank have
greater contributions to the criterion set in Equation 7. The greater contributions
cause the numerator of Equation 8 to grow at faster rate comparing with the
denominator. We also find that the precisions of all the algorithms are low.
The reason is that the Top-K influential users discovered by these algorithms
are rarely correlated with each other. However, as K increases, the correlation
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Fig. 4. Precision, Recall, and F measure of different algorithms in finding influential
users

between IPR and PageRank becomes stronger. This also indicates the significant
performance increasing of IPR and PageRank.

Fig. 4(b) shows the recalls of different algorithms. Surprisingly, as K increases,
the recalls of FollowersNum and TweetsNum decrease. We note that the decrease
in recall can be attributed to two main factors: first, both algorithms have little
contribution to the criterion set, and second, both algorithms do not correlate
with other algorithms. So these two factors cause the value of the numerator of
Equation 9 to be small. We also observe that the recalls of IPR and PageRank
are really high, which indicates that most elements of the criterion set are consist
of the influential users discovered by the two algorithms.
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Fig. 5. The average of Precision, Recall, and F measure of different algorithms

By combining precision and recall, we get a comprehensive measurement-F
measure-of those algorithms, as shown in Fig. 4(c). It is clear that IPR out-
performs other algorithms in most cases except K = 450. When checking in
detail, we find that the influential users (discovered by IPR), whose ranks are
between 400 and 450, post and retweet small number of tweets containing URLs.
Moreover, we find that IPR and PageRank significantly outperform Follower-
sNum and TweetsNum in all of the measurements, which suggests that both
the number of followers and the number of tweets may not be good measures of
influence.
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We also compare the average precision, recall, and F measure of different
algorithms. Fig. 5 clearly shows that IPR outperforms other algorithms.

All the experimental results verify the effectiveness of the proposed model.
This is because the pairwise influence measured by ReadBehavior is more ac-
curate than traditional methods, and this leads to more precision results of the
global influence.

6 Conclusion and Future Work

The number of messages on the micro-blog space is large, and it is almost im-
possible for users to catch up with all the messages. Motivated by the fact,
this paper focuses on proposing a ReadBehavior model to measure the reading
probabilities of tweets posted by a user’s friends according to his/her retweeting
behaviors. To the best of our knowledge, this work is the first to measure the
reading probabilities of tweets. To illustrate the effectiveness of our proposed
model, an Improved PageRank (IPR) algorithm is proposed to find influential
users on the whole network. We find from the experimental results that PR
outperforms its competitors, which indicate the effectiveness of our model. We
should emphasize that the model not only can be used to measure influential
users, but also can be used to a lot of applications which capture the reading
behaviors of users.

Nevertheless, as the first attempt, it still has spaces for improvement. First,
as a preliminary model, the linear approximation is used due to its simpleness.
In the future, a more appropriate method should be used to better simulate
users’ reading behaviors. Second, the current model takes only the retweeting
behaviors into account. So the reading probability cannot be measured by our
model in the extreme situation when a user never retweets others. Although this
does not impact the calculation in the current application, in our future work,
we consider taking other user information into account. User behaviors, such as
reply and mention, could also contribute to the reading probability estimation.
Last but not least, Twitter Lists and Groups may be other factors that influence
the reading probability. This would be an exciting direction for future work.
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Abstract. Given a multimillion-node social network, how can we sum-
marize connectivity pattern from the data, and how can we find unex-
pected user behavior? In this paper we study a complete graph from a
large who-follows-whom network and spot lockstep behavior that large
groups of followers connect to the same groups of followees. Our first
contribution is that we study strange patterns on the adjacency matrix
and in the spectral subspaces with respect to several flavors of lockstep.
We discover that (a) the lockstep behavior on the graph shapes dense
“block” in its adjacency matrix and creates “ray” in spectral subspaces,
and (b) partially overlapping of the behavior shapes “staircase” in the
matrix and creates “pearl” in the subspaces. The second contribution is
that we provide a fast algorithm, using the discovery as a guide for practi-
tioners, to detect users who offer the lockstep behavior. We demonstrate
that our approach is effective on both synthetic and real data.

1 Introduction

Given a large social network, how can we catch strange user behaviors, and how
can we find intriguing and unexpected connectivity patterns? While the strange
behaviors have been documented across services ranging from telecommunication
fraud [1] to deceptive Ebay’s reviews [2] to ill-gotten Facebook’s page-likes [3],
we study here a complete graph of more than 117 million users and 3.33 billion
edges in a popular microblogging service Tencent Weibo (Jan. 2011). Several
recent studies have used social graph data to characterize connectivity patterns,
with a focus on understanding the community structure [4-6] and the cluster
property [7, 8]. However, no analysis was presented to demonstrate what strange
connectivity pattern we can infer strange behavior from and how.

In this paper, we investigate lockstep behavior pattern on Weibo’s “who-
follows-whom” graph, that is, groups of followers acting together, consistently
following the same group of followees, often with little other activity. Therefore,
though the followees are not popular, they could have a large number of followers.
We study different types of lockstep behavior, characterize connectivity patterns
in the adjacency matrix of the graph, and examine the associated patterns in

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNATI 8443, pp. 126-138, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. Lockstep behavior shows interesting connectivity patterns and spectral pat-
terns: On synthetic graph, followers are around the origin in all spectral subspaces.
On WEIBO, non-overlapping lockstep behaviors of followers in group Fy shape a dense
“block” in adjacency matrix and create “rays” in spectral subspace. Overlapping lock-
step behaviors of followers in group Fi-F3 create a “staircase” and “pearls”.

spectral subspaces. Fig.1.(a,c,e) plot connections in the matrix, in which a black
point shows the follower on the X-axis connecting to the followee on the Y-axis.
Fig.1.(b,d,f) plot each follower node by its values in a pair of the left-singular
vectors of the adjacency matrix. These figures visualize the spectral subspaces,
and the dashed lines are X- and Y-axis. Specifically, we show that

— No lockstep behavior: According to the Chung-Lu model [9], we generate
a random power law graph where no lockstep behavior exists. The adja-
cency matrix in Fig.1.(a) has no large, dense components. We study every
2-dimensional spectral subspace of this synthetic graph and observe that
follower nodes are around the original point, as shown in Fig.1.(b).

— Non-overlapping lockstep behavior: On WEIBO, there is a group of followers
in Fy connecting to the same group of followees. Thus, the adjacency matrix
shows a large, dense “block” (83,208 followers, 81.3% dense) in Fig.1.(c).
Fig.1.(d) plots the spectral subspace formed by the 1%¢ and 3" left-singular
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vectors. The followers in group Fy neatly align the Y-axis. We name this
pattern “ray” according to the shape of the points.

— Partially overlapping lockstep behavior: A more surprising connectivity pat-
tern we discover in the adjacency matrix is a “staircase” (10,052 followers,
43.1% dense), as shown in Fig.1.(e). Groups of followers in F;-F3 behave in
lockstep, forming three more than 89% dense blocks. However, different from
the non-overlapping case, F;-F5 have the same large group of followees Ej,
and Fi-F3 share a small group Es. The overlapping lockstep behaviors of the
followers create multiple micro-clusters of points that deviate from the origin
and lines in the 2"% and 8'" left-singular vector subspace. Fig.1.(f) shows the
spherical micro-clusters, roughly on a circle, so called “pearls” pattern.

Motivated by this investigation, we further propose a novel approach, which
include effective and efficient techniques that can learn the connectivity patterns
and infer following behaviors in lockstep. The contributions are as follows:

— Insights: We offer new insights into the fingerprints on the singular vectors
left by different types of synthetic lockstep behaviors. This gives us a set
of rules that data scientists and practitioners can use to discover strange
connectivity patterns and strange user behaviors.

— Algorithm: We propose an efficient algorithm that exploits the insights above,
and automatically find the followers that behave in lockstep. We demonstrate
the effectiveness on both synthetic data and a real social graph.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 provides insights from strange connectivity patterns and Section 4 in-
troduces our algorithm inferring lockstep behaviors. We give experimental results
in Section 5 and conclude in Section 6.

2 Related Work

A great deal of work has been devoted to mining connectivity patterns. For
finding social communities, Leskovec et al. [4] capture the intuition of a cluster as
set of users with better internal connectivity than external connectivity. Clauset
et al. [10] and Wakita et al. [11] infer community structure from network topology
by optimizing the modularity. It is desirable that user of a community have
a dense internal links and small number of links connected to users of other
communities. For graph clustering and partitioning, Ng et al. [12] present a
spectral clustering algorithm using eigenvectors of matrices derived from the
data. Huang et al. [13] devise a spectral bi-partitioning algorithm using the
second eigenvector of the normalized Laplacian matrix.

The properties of spectral subspaces have recently received much attention.
Prakash et al. [14] show that the singular vectors of mobile call graphs, when
plotted against each other, have separate lines along specific axes, which is asso-
ciated with the presence of tightly-knit communities. The authors propose SPO-
KEN to chip the communities embeded in the graphs. Ying et al. [15] suggest
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that the lines formed by nodes in well-structured communities are not necessar-
ily axes aligned. Wu et al. [16] give theoretical studies to explain the existence
of orthogonal lines in the spectral subspaces.

However, none of the above approaches provided a guide for practitioners
to understand real settings, namely, non-overlapping and partially overlapping
lockstep behaviors, with an explanation for the strange spectral patterns we
observe (“staircase” and “pearl”), and strange connectivity patterns.

3 Guide for Lockstep Behavior Inference

In this section, we first introduce how to plot spectral subspaces. We then study
different types of lockstep behavior, show the connectivity patterns. and give a
list of rules on which type of behavior the spectral patterns represent.

3.1 Spectral-subspace Plot

The concept of “spectral-subspace plot” is fundamental. The intuition behind
it is that it is a visualization tool to help us see strange patterns. Let A be the
N x N adjacency matrix of our social graph. Each user can be envisioned as an
N-dimensional point; a spectral-subspace plot is a projection of those points in
N dimensions, into a suitable 2-dimensional subspace. Specifically, the subspace
is spanned by two singular vectors.

More formally, the k-truncated singular value decomposition (SVD) is a fac-
torization of the form A = UXVT, where X is a k x k diagonal matrix with
the first k singular values, and U and V are orthonormal matrices of dimensions
N x k. U and V contain as their columns the left- and right- singular vectors, re-
spectively. Let u,, ; be the (n,i) entry of matrix U, and similarly, v, ; is the entry
of matrix V. The score u,_; is the coordinate of n-th follower on the -th left-
singular vector. Thus, we define (,5)-left-spectral-subspace plot as the scatter
plot of the points (w4, un,j), for n =1,..., N. This plot is exactly the projec-
tion of all N followers on the i-th and j-th left-singular vectors. We have the
symmetric definition for the N users as followees: (7,7)-right-spectral-subspace
plot is the scatter plot of the points (vy, , vy ;), for n = 1,..., N. Clearly, it is
easy to visualize such 2-dimensional plots; if used carefully, the plots can reveal
a lot of information about the adjacency matrix, as we will show shortly.

As we had shown in Fig.1.(a-b), normally, given a random power law graph,
we would expect to find a cloud of points around the origin in all the spectral
subspaces. However, we find strange shapes (“ray” and “pearl”) in some left-
spectral-subspace plots of WEIBO data. The question we want to answer here is:
What kind of user behavior could cause “rays” and “pearls” in spectral subspaces?

The short answer is different types of lockstep behavior. We explain below in
more detail what type of lockstep behavior generates such the odd patterns.

3.2 “Ray” for Non-overlapping Lockstep Behavior

In order to enumerate all the types of lockstep behavior, we introduce concepts
of “camouflage” and “fame”. If a group of followers F' had monetary incentives
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Fig. 2. Rule 1-3 (“rays”): non-overlapping blocks in adjacency matrix

to follow the same group of followees F in lockstep, they could follow additional
followees who are not in F, which is called “camouflage” that helps look normal.
Similarly, the group of followees E could have additional followers who are not
in F', which we succinctly call “fame”.

With these concepts, we can now study users’ lockstep behavior with synthetic
datasets. We first generate a 1M x 1M random power law graph and then inject
two groups of followers that separately operate in lockstep. In detail, we create
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50 new followers in group Fi to consistently follow 50 followees in group Fj.
Similarly, we create another new follower group F5 to follow a followee group
FE5. Thus, if we plot black dots for non-zero entries in the adjacency matrix in the
left side of Fig.2, we spot two 50 x 50 non-overlapping, dense blocks. Properties
of the non-overlapping lockstep behavior are discussed as follows:

— Density: High, if a new follower connects to 90% of the related followee
group; low, if the ratio is as small as 50%.

— Camouflage: With camouflage, if the follower connects to 0.1% of other fol-
lowees; no camouflage, if he follows only the new followees and no one else.

— Fame: With fame, if a new followee is also followed by 0.1% of other followers;
no fame, if the followee is followed by no one else.

The spectral subspaces formed by left- and right-singular vectors are plotted
in the middle and right of Fig.2, respectively. We spot footprints left in these
plots by the different types of non-overlapping lockstep behavior and summarize
the following rules:

— Rule 1 (short “rays”): If the lockstep behavior of followers is compact on the
graph, the adjacency matrix contains one or more non-overlapping blocks of
high density like 90%. The spectral-subspace plots show short rays: a set of
points that densely fall along a line that goes through the origin.

— Rule 2 (long “rays”): If a group of followers and a group of followees are
consistently but loosely connected, the adjacency matrix contains blocks of
low density like 50%. The plots show long rays: the rays stretch into lines
aligned with the axes and elongate towards the origin.

— Rule 3 (tilting “rays”): If the follower group has “camouflage” or the followee
group has “fame”, the adjacency matrix shows sparse external connections
outside the blocks. Different from Rule 1-2, a more messy set of rays come
out of the origin at different angles, called tilting rays.

In summary, we find that non-overlapping lockstep behavior creates rays on
the spectral-subspace plots: as the density decreases, the rays elongate; as the
followers add camouflage or the followees add fame, the rays tilt.

3.3 “Pear]l” for Partially Overlapping Lockstep Behavior

If a group of followers consistently follows their related group of followees, and
partially connect to other groups of followees, we say they have partially over-
lapping lockstep behavior.

Here we inject the random power law graph with three follower groups Fj, for
1 =1,...,3, and five followee groups E;, for i = 1,...,5. Each follower group
has 1,000 fans and each followee group has 10 idols. Followers in F} connect to
followees in E1-FEs5; followers in F5 connect to followees in E>-FEy; and followers
in F3 connect to followees in E3-Es; Fig.3.(a) plots the adjacency matrix and
(b) plots the left- and right-spectral subspaces. We summarize a new rule here.
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— Rule 4 (“pearls”): Overlapping lockstep behavior creates “staircase” in the
matrix, that is, multiple dense blocks that are overlapping due to followers
from each block also connecting to some followees in some other blocks. The
spectral-subspace plots show “pearls” as a set of points that form spherical-
like high density regions within roughly a same radius from the origin, rem-
iniscent of pearls in a necklace.
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(a) adjacency matrix (b) left-spectral subspace plot (c¢) right-spectral subspace plot

Fig. 3. Rule 4 (“pearls”): a “staircase” of three partially overlapping blocks

In our case, Fig.3.(b) shows “pearls” of three clusters, each having 1,000 fol-
lowers in groups from Fj to F3. Fig.3.(c) shows five clusters, each having 10
followees in Ey to Ej5. If the follower groups share some followees, or followee
groups have the same followers, their clusters are close on these plots.

With the insights into patterns on spectral-subspace plots (Rule 1-4), it is now
easy for a practitioner to predict connectivity patterns in the adjacency matrix
and infer different types of lockstep behavior.

4 Lockstep Behavior Inference Algorithm

Our lockstep behavior inference algorithm has two steps:

— Seed selection: Following Rule 1-4 in Sect.3, select nodes as seeds of followers
that behave in lockstep, simiply called “lockstep” followers.

— “Lockstep” propagation: Propagate “lockstep” score between followers and
followees, and thus catch the lockstep behaviors.

4.1 Seed Selection

The algorithm can start with any kind of seeds, even randomly selected ones.
However, careful selection of seeds obviously accelerates the response time. Fig.4
shows how we conduct the seed selection.

First, generate a range of spectral-subspace plots. We compute the top k
left-singular vectors ui, ..., ug, and plot all the follower points in the subspace
formed by each pair of the singular vectors. For example, Fig.4.(a) shows “rays”
and “pearls” in (1,3)- and (2,8)-left-spectral-subspace plot, respectively.
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Fig. 4. Find “rays” and “pearls”: (a) spectral-subspace plot (b) hough transform (c)
bin plot of perpendicular distance r frequency (d) bin plot of rotation angle 8 frequency

Second, use the points as input to Hough transform and plot them in polar
coordinates (r,0), where r is the perpendicular distance and 6 is the rotation
angle. As shown in Fig.4.(b), for “rays”, it shows two straight lines at § = 0°
and 6 = 90°; for “pearls”, it shows a set of micro-clusters at some big r values.

Third, divide r and 8 axes into bins and plot node frequencies in each bin.
Therefore, for “rays”, the 6-bin plot shows two apparent spikes at 0° and 90°;
for “pearls”, the r-bin plot shows a single spike apart from r = 0. With median
filtering, we can detect the spikes and then catch the related nodes as seeds.

Notice that if there is no lockstep behavior, no dense block in the adjacency
matrix, the spectral-subspace plots show a cloud of points around the origin, as
shown in Fig.1.(a-b). The node frequency of angle 6 should be almost a constant,
and the node frequency of distance r should decrease smoothly with the value
increasing. The r- and #-bin plots are omitted for saving space.

4.2 “Lockstep” Propagation

We now interpret how we start with the seeds and refine a group of followers and
followees with lockstep behavior. The “lockstep” value of a followee is defined as
the percentage of the seeds or “lockstep” followers who are its followers. Similarly,
the “lockstep” value of a follower is defined as the percentage of the “lockstep”
followees who are its followees. We need a threshold to decide which users are
new “lockstep” followers/followees and here we use 0.8 as default.

The algorithm recursively propagates this value from followers to followees,
and vice versa, like what Belief Propagation method does. In more detail, we
explain the steps as follows.
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— From follower to followee: Fig.5.(a) shows an example of a directed graph
with followers at the top and followees at the bottom. We start with 5 “lock-
step” followers as seeds for propagation. For each followee, we count how
many its followers are in the seed set. We select the group of “lockstep”
followees who have too many “lockstep” followers.

— From followee to follower: Next for each follower, we count how many its fol-
lowees are “lockstep”. Fig.5.(b) shows how we select new “lockstep” followers
and exonerate those innocent with zero or one “lockstep” followee.

— Repeat until convergence: Report the groups of “lockstep” followers and fol-
lowees if they are not empty.

Note that our algorithm is linear to the scale of the social graph and thus scalable
to be applied in real applications.

from fo”ower A seed ("lockstep") follower to fo”ower A "lockstep" follower (next)

= "lockstep" followee (next) = "lockstep" followee
= how many m are followed

0/5 5/5 5/5 5/5 5/5 5/5 5/5 1/5

1/5 1/5 2/5 4/5 4/5 4/5 4/5 4/5

= how many A follows

to followee from followee
(a) select “lockstep” followees: (b) select “lockstep” followers:
from (seed) followers to followees from followees to followers

Fig. 5. Find lockstep behavior of users by propagating “lockstep” value: select followers
(followees) who have too many “lockstep” followees (followers)

5 Experimental Results

In this section we present our empirical evaluation, first on a large, real-world
graph, and then on synthetic graphs where the ground truth is known.

5.1 Real-world Graph

We operate our algorithm on the 100-million-node social graph WEIBO. Table 1
report the statistics of strange connectivity patterns that we find on the network.

— “Blocks” and “staircase”: With the proposed rules and algorithm, we catch
a dense block with the “ray” pattern and a staircase of three overlapping
blocks with the “pear]” pattern on spectral-subspace plots. Fig.1.(c,e) have
show the adjacency matrix and their sets of followers Fjy and Fi-Fj.

— High density, small “camouflage” and small “fame”: The density of every
block is greater than 80%, while the density of the “staircase” is only 43%.
It proves that the staircase consists of partially overlapping blocks. The
camouflage, that is the connectivity between “lockstep” followers and other
followees, is as small as 0.2% dense. The fame is smaller than 2%.
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Table 1. Statistics of connectivity patterns formed by groups of users with lockstep
behavior: The density of the “block” and blocks in “staircase” is greater than 80%,
while the WEIBO followers have little “camouflage” and followees have little “fame”

“ray” Fo “pearl” Fy “pearl” F> “pearl” F53 “pearl” Total

Num. seeds 100 1,239 107 990 —
Size of block 83,208 x 30 3,188 x 135 7,210 x 79 2,457 x 148 10,052 x 270
Density 81.3% 91.3% 92.6% 89.1% 43.1%
Camouflage 0.14% 0.06% 0.10% 0.05% 0.07%
Fame 0.05% 1.93% 1.94% 1.72% 1.73%
Out-degree  231+109 3107 31247 30445 3107
In-degree 2.0+1.4 946 10+6 17+13 1249

The above numbers validate the existence of non-overlapping and partially over-
lapping lockstep behavior and also the effectiveness of our method. Further, we
give additional evidence of the similar personalities of the “lockstep” followers.

— Strange profiles: The login-names of 10,787 accounts from the “lockstep”
users are like “a#t##HH##" (# is a digital number, for example, “a27217”).
Their self-declared dates of birth are in lockstep the Jan. 1%¢. They were
probably created by a script, as opposed to natural users.

— Small in-degree values of followers: The average in-degree value of followers
in the single “block” is as small as 2.0, while that of followers in the “stair-
case” is smaller than 20. The “lockstep” followers actively connect to their
followees but they have little reputation themselves.

— Similar out-degree values of followers: The out-degree values of “lockstep”
followers in the “staircase” are similarly around 300. In Fig.6, we plot the
out-degree distribution of the graph in log-log scale and spot two spikes,
which means abnormally high frequency of nodes who have around 300 fol-
lowees. After we remove the “lockstep” followers, we find out that the spikes
disappear and the distribution becomes smoother.

For the last point, we want to say, most graphs exhibit smooth degree distri-
butions, often obeying a heavy-tailed distribution (power law, lognormal, etc).
Deviations from smoothness are strange: Border et al. [17] said that in the case
of the web graph, the spikes were due to link farms. Thus, if the removal of some
“lockstep” users makes the degree plots smoother, then we have one more reason
to believe that indeed those users were strange.

5.2 Synthetic Data

Here we want to validate the effectiveness of Rule 3 (tilting “rays”) and 4
(“pearls”). We inject a group of followers and followees operating in lockstep
on a l-million-node random power law graph. The goal is to predict who are
the injected nodes. We adopt Accuracy to qualify the performance, which is the
ratio of correct predictions.
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Fig. 6. The out-degree distribution (in log-log scale) becomes smoother after the re-
moval of “lockstep” followers. The followers have similar out-degree values, i.e., similar
numbers of followees from the same group.

First, we add camouflage to the followers, i.e., we increase the density of
connections between the followers and other followees on the graph from 0 to
0.01. We compare the performance of different versions of our algorithm: one
considers Rule 3 when it selects seeds from spectral-subspace plots, and the other
does not. Rule 3 says when the followers have camouflage, the rays tilt. Fig.7.(a)
shows that both accuracy values decrease with the camouflage increasing, and
the algorithm that considers Rule 3 performs much better.
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when lockstep followers have “camouflage” when lockstep followers form “staircase”

Fig. 7. Effectiveness of Rule 3-4. If the accuracy is higher, the performance is better.

Second, we inject partially overlapping lockstep behavior. In other words, we
put a “staircase” in the adjacency matrix. We change the size of the staircase,
i.e., the number of followers. One of the algorithms compared here considers
Rule 4 and the other does not. Rule 4 says when there is a staircase, some
spectral-subspace plots have “pearls”. Fig.7.(b) shows that our algorithm that
fully considers all the rules is sensitive to the number of “lockstep” followers.
When it is bigger than 7, which is big enough for the behaviors to show footprints
in the eigenspaces, we can catch over 95% of the followers, while the version that
does not consider Rule 4 fails to predict them.
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6 Conclusion

In this paper, we have proposed a novel method to infer users’ lockstep behaviors
from connectivity patterns on large “who-follows-whom” social graphs. We offer
new understanding into the plots of spectral subspaces. The suspicious “ray”
and “pearl” patterns are created by different types of lockstep behaviors. Using
the insights, we design a fast algorithm to detect such behavior patterns. We
demonstrate the effectiveness of our method on both a large real-world graph
and synthetic data with injected lockstep behaviors.
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Abstract. The structure of an online social network in most cases can-
not be described just by links between its members. We study online
social networks, in which members may have certain attitude, positive
or negative, toward each other, and so the network consists of a mix-
ture of both positive and negative relationships. Our goal is to predict
the sign of a given relationship based on the evidences provided in the
current snapshot of the network. More precisely, using machine learning
techniques we develop a model that after being trained on a particular
network predicts the sign of an unknown or hidden link. The model uses
relationships and influences from peers as evidences for the guess, how-
ever, the set of peers used is not predefined but rather learned during the
training process. We use quadratic correlation between peer members to
train the predictor. The model is tested on popular online datasets such
as Epinions,; Slashdot, and Wikipedia. In many cases it shows almost
perfect prediction accuracy. Moreover, our model can also be efficiently
updated as the underlying social network evolves.

Keywords: Signed Networks, machine learning, quadratic optimization.

1 Introduction

Online social networks provide a convenient and ready to use model of rela-
tionships between individuals. Relationships representing a wide range of social
interactions in online communities are useful for understanding individual atti-
tude and behaviour as a part of a larger society.

While the bulk of research in the structure on social networks tries to ana-
lyze a network using the topology of links (relationships) in the network [21],
relationships between members of a network are much richer, and this addi-
tional information can be used in many areas of social networks analysis. In
this paper we consider signed social networks, which consist of a mixture of
both positive and negative relationships. This type of networks has attracted
attention of researchers in different fields [6,10,17]. This framework is also quite
natural in recommender systems [3]where we can exploit similarities as well as
dissimilarities between users and products.

* We'd like to thank Dr.Jian Pei for his valuable suggestions and feedbacks on our
work.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 139-150, 2014.
© Springer International Publishing Switzerland 2014
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Over the last several years there has been a substantial amount of work done
studying signed networks, see, e.g. [14,7,8,5,12,15,23,24]. Some of the studies
focused on a specific online network, such as Epinions [8,18], where users can
express trust or distrust to others, a technology news site Slashdot [12,13], whose
users can declare others ‘friends’ or ‘foes’, and voting results for adminship of
Wikipedia [5]. Others develop a general model that fits several different net-
works [7,14]. We build upon these works and attempt to combine the best in the
two approaches by designing a general model that nevertheless can be tuned up
for specific networks.

Edge Sign Prediction. Following Guha et al. [8] and Kleinberg et al. [14], [17]
we consider a signed network as a directed (or undirected) graph, every edge
of which has a sign, either positive to indicate friendship, support, approval, or
negative to indicate enmity, opposition, disagreement. In the edge sign prediction
problem, given a snapshot of the signed network, the goal is to predict the sign
of a given link using the information provided in the snapshot. Thus, the edge
sign problem is similar to the much studied link prediction problem [16,11], only
we need to predict the sign of a link rather than the link itself.

Several different approaches have been taken to tackle this problem. Kunegis
et al. [4] studied the friends and foes on Slashdot using network characteris-
tics such as clustering coefficient, centrality and PageRank; Guha et al. [8] used
propagation algorithms based on exponentiating the adjacency matrix to study
how trust and distrust propagate in Epinion. Later Kleinberg et al. [14] took a
machine learning approach to identify features, such as local relationship pat-
terns and degree of nodes, and their relative weight, to build a general model
predicting the sign of a given link. They train their predictor on some dataset,
to learn the weights of these features by logistic regression.

Our Contribution. In this paper we also take the machine learning approach, only
instead of focusing on a particular network or building a general model across
different networks, we build a model that is unique to each individual network,
yet can be trained on different networks. We suggest several new features into
both the modeling of signed networks and the method of processing the model.

The basic assumption of our model is that users’ attitude can be determined
by the opinions of their peers in the network (compare to the balance and status
theories [6] from social psychology, see [14]). Intuitively, peer opinions are guesses
from peers on the sign of the link from a source to target node. We assume that
peer opinions are only partially known, some of them are hidden. We introduce
two new components into the model: set of trusted peers and influence.

Not all peer opinions are equally reliable, and we therefore choose a set of
trusted peers whose opinions are important in determining the user’s action. The
set of trusted peers is one of the features our algorithm learns during the training
phase. The algorithm forms a set of trusted peers for each individual node. The
optimal composition of such a set is not quite trivial, because even trusted peers
may disagree, and sometimes it is beneficial to have trusted peers who disagree.
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Thus, the set of trusted peers of a node has to form a wide knowledge base on
other nodes in the network.

While peer opinions provide important information, this knowledge is some-
times incomplete. Relying solely on peer opinions implies that the attitude of a
user would always agree with the attitude of a peer. However, it also matters is
how this opinion correlates with the opinion of the user we are evaluating. To
take this correlation into account we introduce another feature into the model,
influence. Suppose the goal is to learn the sign of the link between user A and
user B, and C is a peer of A. Then if A tends to disagree with C, then pos-
itive attitude of C' towards B should be taken as indication that A’s attitude
towards B is less likely to be positive. The opinion of C is then considered to
be the product of his attitude towards B and his influence on A. Usually, influ-
ence is not given in the snapshot of the network and has to be learned together
with other unknown parameters. We experiment with different ways of defining
peer opinion, and found that using relationships and influences together is more
effective than using relationships alone.

To learn the weights of features providing the best accuracy we use the stan-
dard quadratic correlation technique from machine learning [9]. This method in-
volves finding an optimum of a quadratic polynomial, and while being relatively
computationally costly, tends to provide very good accuracy. To mitigate the
cost of computation we use two approaches. Firstly, we apply several techniques
to split the problem and avoid solving large quadratic problems. Secondly, we
attempt to make the main algorithm independent on a specific tool of quadratic
optimization so that this step consuming the bulk of processing time can be
easily improved as better solvers appear.

2 Approach

In our method, we start with the underlying model of a network, then proceed to
the machine learning formulation of the edge sign prediction problem, and finally
describe the method to solve the resulting quadratic optimization problem.

2.1 Underlying Model

We are given a snapshot of the current state of a network. Such a snapshot is
represented by a directed graph G = (V, E), where nodes represent the members
of the network and edges represent the links (relationships). Some of the links
are signed to indicate positive or negative relationships. Let s, , denote the sign
of the relationship from z to y in the network. It may take two different values,
{—1, 1}, indicating negative and positive relationships respectively.

To estimate the sign s, , of a relationship from x to y, we collect peer opinions.
In different versions of the model a peer can be any node of the network, or any
node linked to z. Let p; , € {—1,0,1} denote the peer opinion of peer z on
the sign sy . When p; =1 or p; , = —1, it indicates that the z believes that
Sz,y = 1 or sy, = —1 respectively. When p; , = 0 that means z does not have
enough knowledge to make a valid estimation.
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Another assumption made in our model is that not every peer can make a
reliable estimation. Therefore we divide all peers of a node into two categories,
and count the opinions only of the peers from the first category, trusted peers.
The problem of how to select a set of trusted peers and use their opinions for
the estimation will be addressed later. Let P, denote the set of trusted peers
of a. We estimate the sign s, , of a relationship from x to y by collecting the
opinions of peers z € P,. If the sum of the opinions is nonnegative, then we say
5z,y should be 1, otherwise, it should be —1. This can be expressed as,

Szy = SigN (Z p;y> .

z€EP,

2.2 Machine Learning Approach

Our approach to selecting an optimal set of trusted peers is to consider the
quadratic correlations between each pair of peers. The overall performance of
a set of peers is determined by the sum of the individual performances of each
of them together with the sum of their performance in pairs. The individual
performance measures the accuracy of individual estimations, while the pairwise
performance measures the degree of difference between the estimations of the
pair of peers. We want to maximize the accuracy of each individual and the
diversity of each pair at the same time.

Our goal is to use the information in G to build a predictor S(x,y) that
predicts the sign s, , of an unknown relationship from z to y with high accuracy.
Function S(z,y) is defined as the sign of the sum of peer opinions as follows. Let

Fe(y) =Y i, (1)

2€E P,

be the sum of individual peer opinions. Then set

1, ifFy(y) >0,
S(a,y) = —1, if Fy(y) <0.

Since P is unknown, we introduce a new variable w, , € {0, 1} which indicates
if a node z € V should be included into set P,. Hence, we rewrite (1) using the
characteristic function w, , as,

Fo(y) =Y w.api, (2)

zeV

Quadratic optimization problem. We are now ready to set the machine learning
problem. A training dataset (a subset of G) is given. Every entry of the training
dataset is a known edge along with its sign. Let a training dataset be D =
{(24,Yis 82,,9:)|8 = 1,..., M}. The goal is to minimize the objective function,
finding the optimal weight vector w = {wy|z € V}, where w, = {w, 4|z € V}.
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We use machine learning methods [9] to train the predictor S(z,y) and learn an
optimal weight vector such that the objective function below is minimized.

1
o —argmine (S (S wnsriy sl

(z,y,52,y)ED z€V

Note that there will be more details on peer opinion terms p7 .

2.3 Peer Opinion Variants

As mentioned earlier, we are going to test our model using different peer opinion
formulations. First, let s;’y be extension of s, to edges with unknown sign and
also to pairs of nodes that are not edges defined by

, Sz, if 85,4 exists,
Szy = :
0, otherwise.

Simple-adjacent. The simplest option, later referred to as Simple-adjacent, is
based on the given information, to formulate peer opinions using existing rela-
tionships from peers to the target node, that is, p; , = s’zy

Standard-pg. In the Standard-pq option the influences r, , € {—1,0, 1} associ-
ated with each pair of vertices z, x is an unknown parameter. A positive influence,
ry» = 1, indicates that the attitude of z affects x positively, while a negative
influence, r, , = —1 indicates that the attitude of z affects x negatively, and
our expectation of p7 , based on z’s opinion s’zy has to be reversed, that is,
Piy = Slz,yTz,m- Also, in the Standard-pq mode we consider nonadjacent nodes
as potential peers to accommodate the problem of possible missing edges. De-
tails of the Standard-pq mode is explained in the experiment section. Since the
standard formulation gives us the best result in experiments, we use it through-
out our discussion. Using the standard formulation, we rewrite Equation (2) as

Fo(y) = Z wz,wslz,yrzw- (3)

zeV

Standard-adjacent. Finally, in the Standard-adjacent option the peers of x are
restricted to the neighbours of z. Fj(y) = ZzeN(x) wz’ms’zyrz’m. The rest is
defined in the same way as for the Standard-pq option.

2.4 Simplifying the Model

In our model, we are given a directed complete graph G = (V| E). In (3), both
Wy, and 7, 5 are unknown parameters. Since r, , € {—1,0, 1}, we can reduce the
number of unknown parameters by considering all possible values of r, ,, and
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rewriting Fi.(y) as Fiu(y) = Y. oy wi, 8%, — w; s, ,where w, , = w}, +w;

z,x°z,y z,xT , T
for wt,,w;, € {0,1}. If w}, =1, then z € P, and ﬁzw = 1. Similarly, w;, =1
indicates that z € P, and r., = —1. When both w;, = 0 and w}, = 0,
then z ¢ P,. When w;, = 1 and w}, = 1, the two term cancel out each
other. Moreover, the regularization term ensures such case will not happen as
w;, = wi, = 0 is always better than w,, = wj:m = 1. Although r, , can
take three possible values, there are only two terms in Equation (3) since when
7.z = 0, the term is also zero regardless of the value of s’ .

Now to minimize the objective function, we need to determine the optimal

weight vector w = {wz|z € V} where w, = {w},,w, |z € V} such that

2
wPt = argmin,, Z (]if Z(wjm — w;x)s;y — sxy> + Aw|
(%,y,80,y)ED zeV
(4)
From the definition, we know that w, and w, are independent for different
nodes z and y. Instead of solving for w°P* directly, we can solve w2l for each
x € V separately, and then combine their values to get w°P! = {wot|z € V'}

2
woP' = argmin.,, Z (]1[ Z(wjm —w, ), , — sxy> + Awg]
(%,y,80,y)ED zeV

()
Now, instead of solving a QUBO of size 2n?, we could solve n QUBOs of size 2n
separately which can be solved approximately by a heuristic solver. Another ap-
proach (similar to [20]) is to further simplify the problem, as it is still challenging
to solve each of these size 2n QUBOs exactly.

Breaking down the problem. In order to find a good approximation of the optimal
solution to the QUBO defined by (4), we could break it down to much smaller
QUBOs. Given a subset U C V, let w, v = {w]f,,w; |z € U}, and define a
restricted optimization problem as follows

2

. 1 B

wi =argming, Z (N Z(wjx —w; )8, — sxy> + Nwg |
(%,Y,82,4)ED z€U

o

The optimal solution w3”* can be approximated by combining wj'y; for V' =

Ui, Ui Next, we describe a method to decompose V and to combine wy?, (tj

2.5 Method

The optimization problem defined by (4) is a quadratic unconstrained binary
optimization problem which is NP-hard in general. To solve the problem, we use
two approaches. First, we solve the problem for each individual node separately,
as given by (5), using METSLib Tabu search heuristics. The clear setback of
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this method is that for large problems the tabu search does not find the best
solution. Second, we apply a similar method as described in [20] to reduce the size
of the problem dramatically. In order to do that the variables are first ordered
according to their individual prediction error: For each data point (a,u, sq,,) in
the training dataset, we count e, , the number of instances py , # $4,. When
Tv,a = —1, and e, , the number of instances pg’u # Sq., when r, , = 1 separately.
Note that since pj , = 74,45} ,, We can compute this number; and that if u is
not a neighbour of v then it contributes to both e,_ and e, . Then, we replace
v by vy and v_ with individual prediction error, e,, and e,_ respectively. The
subset U is iteratively selected by picking the first d nodes in the list that are
not yet considered. The value of d is an important parameter of the algorithm
and is selected manually at the beginning of the algorithm. In the experiment
section, we show how the prediction accuracy changes as the size of d changes.
The sorting and selecting processes not only reduce the amount of computation,
but also allow us to consider the relevant nodes first. The small subproblems
are now solved by the brute-force method or Cplex. Algorithm 1 describes the
method we use to solve each subproblem. Algorithm 2 uses Algorithm 1 as a
subroutine and explains how the problem is broken down into subproblems and
also how to combine the solutions of subproblems to obtain an approximate
solution.

Algorithm 1. Learn the parameters for a subset
Require: training dataset: TD, validation dataset: VD, a subset of nodes: U
Ensure: values of w and Z C U where Z is the set of trusted peers

Z =10, émin = |TD|

for A = A\nin to Amas do

Zeurrent = @
solve the optimization w°?* = argminw(zgl( N e (Wi —wr sy — Say)? +
Alwl)

if w, == 1 then
Zcurrent = Zcurrent Uz
end if
Measure the validation error e,q; on VD using Zcurrent
if epar < emin then

Z =Zcurrent, €min = €yal
end if
end for

2.6 Running Time

Although the QUBO problem is NP-hard in general, the proposed algorithm
can be very efficient when using the right solver and right parameter d. Let T'(d)
denote the time of solving a size d optimization problem defined by (6), and k)
be the number of X values tested. The running time of Algorithm 1 is O(k\T'(d)).
Let n, denote the number of neighbours of a node v. By our definition, n,, is at
most ||V]|. In Algorithm 2, Algorithm 1 is repeated at most "} times. Therefore,
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Algorithm 2. Solve the optimization problem
Require: training dataset: TD, validation dataset: VD, The size of the subset: d
Ensure: values of w, for z € V, and the set of trusted peers Z
€old = ‘TD‘, Cnew :|TD|']-, 27 Zcurrent = @
sort nodes of V' by their individual prediction errors in increasing order
U = the first d nodes in V'
while e,1q > €enew do
Z = Zcurrent uz
Wz, Zeurrent = Algorithm 1(T'D, VD, U) eoia=€new
Measure the validation error ene., on vd using Z
update U with the next d nodes in V'
end while

the running time of Algorithm 2 is O("™;*T'(d)). Traditionally, the best X for
a model is determined before training stage through cross validations. In our
model, we are building a personalized predictor for each node. Hence, we need
to pick a A for each node separately. During the training stage, we test ky = 25
different values in the range [Amin = 001, Az = 0.25], and use the A which
gives the lowest validation error. Since k) is a constant, the running time crucially
depends on the efficiency of the QUBO solver. For example, in the experiments,
when d = 10 and T'(d) is limited to 1 sec for METSLib-solver [2], the predictor
for a node can be determined instantly. Yet, when d = 10, using Cplex-solver [1]
would take a few seconds to minutes to determine the predictor for a node.
Since the main focus of our paper is on the prediction accuracy of the model,
we do not measure and compare the running times for different solvers, and
we keep our experiments on a standard set of solvers rather than some exclu-
sive ones. Although the model is currently limited by the power of the software
solvers, it has shown a good potential. Its performance will improve as bet-
ter solutions are found by more efficient solvers. One of such solvers could be
the quantum system which is rapidly developing at D-wave System. A recent
work [19] which compares the performances of different software solvers with D-
wave hardware on different combinatorial optimization problems shows promise.

3 Experiment

3.1 Datasets

We use three datasets borrowed from [14]. In order to make comparison possible
the datasets are unchanged rather than updated to their current status. The
dataset statistics is therefore also from [14] (see Table 1).

3.2 Parameters of Datasets

In our experiment, we split each dataset into two parts. We randomly pick one
tenth of the dataset for testing. The remaining dataset is used for training.
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Table 1. Basic statistics on the Table 2. Number of edges passing the
datasets threshold

Dataset Epinions Slashdot Wikipedia Dataset Epinions Slashdot Wikipedia
Nodes 119217 82144 7118 (p,a)=(15,20) 247725 25436 51372
Edges 841200 549202 103747  embeddedness 205796 21780 28287
+1 edges 85.0% 77.4%  78.7% 25 ([14])

-1 edges 15.0% 22.6%  21.2%

The training dataset is split into two equal parts, half for training and half for
validating during the training process.

When the dataset is sparse, it is hard to build good classifiers due to the
lack of training and testing data. In order to get a better understanding of
the performance of the model, edge embeddedness of an edge uv is introduced
in [14,7] as the number of common neighbours (in the undirected sense) of u
and v. Instead of testing the model over the entire dataset, they only consider
the performance restricted to subsets of edges of different levels of minimum
embeddedness. For example, Kleinberg et al. [14] restrict the analysis to edges
with minimum embeddedness 25.

Similarly, we also introduce two parameters that restrict the analysis of our
model. Instead of considering the edge embeddedness of a link, we consider
the node embeddedness of the source and target nodes. The first parameter,
p, controls which nodes are considered peers of a given node v. A node u is
considered a peer of v if it has at least p common neighbours with v. When p = 0,
we consider every node in the network as a peer of v. The second parameter, g,
restricts the set of links whose sign we attempt to predict. We try to predict the
sign sy, only if w is connected to at least g peers of v.

In Table 3, we show the dependence of the prediction accuracy of our model
on different values of p and ¢q. The data in Table 3 is obtained using option
Standard-pq with d = 10 solved by Cplex. As p and ¢ grows, the performance of
the model clearly improves. However, increasing the values of p and ¢ severely
restricts the set of nodes that can be processed. We choose somewhat optimal
values of these parameters, ¢ = 20 and p = 15 and use them in the rest of our
experiments. It is also worth to notice that values ¢ = 20 and p = 15 are less
restrictive than edge embeddedness 25. As shown in Table 2, more edges pass
the ¢ = 20 and p = 15 threshold than the edge embeddedness 25 threshold.

3.3 Experimental Results

As explained before, our model depends on several parameters: internal parame-
ters, such as, the peer opinion variant and the method of solving the QUBO, and
external parameter, such as, balancing the dataset. We first make the comparison
for different internal parameters using the original unbalanced datasets.

In Table 6, we compare the performance of our model using different peer opin-
ion formulations. As shown in the table, standard formulations (Standard-adjacent,
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Table 3. Prediction Accuracy for Dif- Table 4. Prediction Accuracy of Bal-
ferent Values for p, q anced Approach

Dataset Epinions Slashdot Wiki Dataset Epinions Slashdot Wiki
(p,a)=(10,0) 91.7%  84.2% 85.0% Standard-pd 85.14 % 82.82% 62.58%
(10,10) 92.8%  91.6% 86.5% (average)
=(10,20) 93.7%  93.9% 86.6% false negative 0.84%  0.50% 2.10%
(10,30) 95.6%  95.1% 87.6% false positive 28.89% 33.8% 72.6%
=(15,0) 93.7%  87.7% 85.2% Standard-pq 89.36% 85.37% 76.81%
=(15,10) 95.8% 96.1% 86.3% (balanced)
(15,20) 96.2%  97.9% 86.9% false negative 6.20% 14.37% 22.5%
(15,30) 96.3%  96.0% 88.5% false positive 22.93% 15.35% 23.90%
=(20,0) 93.5% 87.4% 85.0% All123 ([14]) 93.42% 93.51% 80.21%
=(20,10) 96.2% 98.1% 86.8% EIG ([8]) 85.30% N/A N/A
=(20,20) 96.3%  98.6% 86.9%
=(20,30) 96.5%  99.2% 89.0%

Table 5. Prediction Accuracy of Dif- Table 6. Prediction Accuracy of Dif-
ferent Values of d ferent Algorithms

Dataset Epinions Slashdot Wiki  Dataset Epinions Slashdot Wiki
d=10 (exact) 96.36% 98.00% 87.69% Standard-adj 96.59% 97.93% 87.29%
d=10 (cplex) 96.17% 97.31% 86.98% Standard-pq 96.36% 98.00% 87.69%
d=25 (cplex) 96.20% 97.52% 85.60% Simple-adj  95.93% 97.68% 87.03%
METSLib 93.03% 96.79% 86.22% HOC-5 ([7]) 90.80% 84.69% 86.05%

All123 ([14]) 90-95% 90-95% N/A

EIG ([8]) 93.60% N/A  N/A

Standard-pq) have better prediction accuracy then the simple formulation (Simple-
adjacent), so it is useful to introduce influences. For Slashdot and Wikipedia, re-
stricting peers to neighbours (Standard-adjacent) is not as effective as using the set
of nodes with at least p = 15 common neighbours as peers (Standard-pq), although
the difference is neglegible. Surprisingly, for Epinions, it is slightly better to only
consider neighbours as peers. We compare the results with those of [7] (HOC-5)
and [14] (All123). Unfortunately, Kleinberg et al. [14] provide only a (somewhat
wide) range of the results their model produces on such datasets. Yet,even such
partial results allow us to conclude that collecting opinions from trusted peers is
an effective method to infer people’s attitude.

In Table 5, we compare the performance of our model with different values of d.
We expected the prediction accuracy to increase as the value of d increases. How-
ever, experimental result shows that it is not the case. Limited by the strength
of each solver, accuracy of the algorithm is very sensitive to the quality of ap-
proximation. But still, we think the prediction accuracy should increase if we
can find a better solution for the problem for larger value of d.

In [8] and [14] the authors use certain techniques to test their approaches
on unbiased datasets. They use, however, different ways to balance the dataset
and/or results. For instance, [8] does not change the dataset (Epinions), but,
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since the dataset is biased toward positive links, they find the error ratio sep-
arately for positive and negative links, and then average the results. More pre-
cisely, they test the method on a set of randomly sampled edges that naturally
contains more positive edges. Then they record the error rate on all negative
edges, sample randomly the same number of positive edges (from the test set),
find the error rate on them, and report the mean of the two numbers.

The approach of [14] is different. Instead of balancing the results they balance
the dataset itself. In order to do that they keep all the negative edges in the
datasets, and then sample the same number of positive edges removing the rest
of them. All the training and testing is done on the modified datasets.

Although we have reservations about both approaches, we tested our model in
both settings. The results are shown in Table 4. Observe that since our approach
is to train the predictor for a particular dataset rather than finding and tuning
up general features as it is done in [8] and [14], and the test datasets are biased
toward positive edges, it is natural to expect that predictions are biased toward
positive edges as well. This is clearly seen from Table 4. We therefore think that
average error rate does not properly reflect the performance of our algorithm.

In the case of balanced datasets our predictor does not produce biased results,
again as expected. This, however, is the only case when its performance is worse
than some of the previous results. One way to explain this is to note that density
of the dataset is crucial for accurate predictions made by the quadratic correla-
tion approach. Therefore we had to lower the embeddedness threshold used in
this part of the experiment to p = 5, ¢ = 5, while [14] still tests only edges of
embeddedness at least 25.

4 Conclusion

We have investigated the link sign prediction problem in online social networks
with a mixture of both positive and negative relationships. We have shown that
a better prediction accuracy can be achieved using personalized features such as
peer opinions. Although the improvement upon previous results is not significant,
a nearly perfect prediction accuracy is hard to achieve. Another advantage of
the model is that it accommodates the dynamic nature of online social networks
by building a predictor for each individual nodes independently. This enables
fast updates as the underlying network evolves over time.
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Abstract. We study the problem of topic modeling in continuous social media
streams and propose a new generative probabilistic model called Hash-Based
Stream LDA (HS-LDA), which is a generalization of the popular LDA
approach. The model differs from LDA in that it exposes facilities to include
inter-document similarity in topic modeling. The corresponding inference
algorithm outlined in the paper relies on efficient estimation of document
similarity with Locality Sensitive Hashing to retain the knowledge of past social
discourse in a scalable way. The historical knowledge of previous messages is
used in inference to improve quality of topic discovery. Performance of the new
algorithm was evaluated against classical LDA approach as well as the stream-
oriented On-line LDA and SparseLDA using data sets collected from the
Twitter microblog system and an IRC chat community. Experimental results
showed that HS-LDA outperformed other techniques by more than 12% for the
Twitter dataset and by 21% for the IRC data in terms of average perplexity.

1 Introduction

In this paper we are motivated by the problem of topic discovery in social media. We
recognize that topic discovery systems for online social discourse need to address a
set of challenges associated with the scale of modern social media outlets such as
Twitter, chat systems and others. To be useful, these systems must operate
continuously for extended periods of time, as social conversations do not stop,
produce output in a timely fashion to remain relevant and ensure high quality of
output.

Commonly used data mining techniques handle the problem of social stream topic
discovery by applying batching heuristics to process the never-ending stream of
messages. Since retaining all messages is not feasible in practice, current topic
modeling approaches improve quality of topic discovery by retaining globally
applicable statistics such as topic-word counters, but fail to take advantage of
document-level information as no technique has existed so far to retain such
information in a scalable and meaningful way.

Therefore, in this work we propose a new generative probabilistic model called
Hash-based Stream LDA (HS-LDA), which is a generalization of the popular Latent
Dirichlet Allocations (LDA) [1]. The model improves upon previous works by
introducing a theoretical framework that makes it possible to retain the knowledge of
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historical stream messages in a scalable way and use this knowledge to improve the
quality of topic discovery in social streams. Further, an efficient inference mechanism
for the HS-LDA model is outlined, which makes use of the scalable hashing
algorithm called Locality Sensitive Hashing (LSH) [2]. We show that the HS-LDA
model and the associated inference algorithm are well suited for topic discovery in
streams by comparing the predictive power of the topic models inferred by HS-LDA
with that of topics learned by applying the classical LDA, On-line LDA [3] and
SparseLDA [4] approaches to stream data. Evaluation was performed using data
collected from the Twitter microblog site and an IRC chat system. Our experiments
showed that HS-LDA outperformed other techniques by more than 12% for the
Twitter dataset and by 21% for the IRC data in terms of average perplexity.

The paper is organized as follows. In section 2, current state of the art of topic
modeling and stream mining is discussed. Section 3 introduces the HS-LDA model,
outlines an efficient inference algorithm and discusses its application to stream data.
In section 4, comparison of performance of our method to that of other modeling
approaches in terms of perplexity is presented. Section 5 concludes the paper and
outlines future work.

2 Related Works

The seminal work on Latent Dirichlet Allocation (LDA) [1] provides basis for
numerous extensions and generalizations in the field topic modeling. LDA considers
document collections as bag-of-words assemblies that are generated by stochastic
processes. To generate a document, a random process first selects a topic from a
distribution over topics and then generates a word by sampling the associated topic-
word distribution. Both the topic and the word distributions are governed by hidden
(or latent) parameters.

The LDA framework is designed to operate on a fixed set of documents and cannot
be applied to stream data directly as converting an unbounded number of documents to
a finite collection is not possible. To overcome this challenge, many approaches limit
the training scope by aggregating messages based on attributes such as authorship or
hash tag annotations and training models based on these aggregates [5], [6, 7].

An interesting recent work by Want et al. introduced an efficient topic modeling
technique called TM-LDA for stream data. This approach is based on the notion that
if document topic model is known at time ¢, at time t + 1 a new topic model can be
predicted and an error can be computed by comparing the “old” and the “new” topic
models. This error computation reduces the challenge of estimating topic models for
new documents to a least-squares problem, which can be solved efficiently. Focusing
on the popular Twitter micro-blog data, TM-LDA selects a set of individual authors
and trains a separate model for each of the authors. To accomplish this, TM-LDA
monitors Twitter for an extended period of time (a week’s worth of data was collected
in the original work) and then trains a model to be able to predict new messages.

The idea of using authorship to improve topic modeling quality is not unique to
TM-LDA. A recent work by Xu et al. modified the well-known Author-Topic [8]
model for Twitter data [6]. Xu et al. extended the insight of the Author-Topic model
by taking advantage of additional features available in Twitter such as links, tags, etc.

Another way to approach topic modeling in streams is to apply LDA machinery to
snapshots or buffers of documents of fixed size. Online Variational Inference for
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LDA [9] is one such technique. The algorithm assembles mini-batches of documents
at periodic intervals and uses Expectation Maximization (EM) algorithm to infer
distribution parameters by holding topic proportions fixed in the E-step and then re-
computing topic proportions as if the entire corpus consisted of document mini-
batches repeated numerous times. Topic parameters are then adjusted using the
weighted average of previous values of each topic proportion.

Another approach termed On-line LDA [3] considers the data stream as a sequence
of time-sliced batches of documents. The approach processes each time-slice batch
using the classical LDA sampling techniques, with the variation being that the
corresponding collapsed Gibbs sampler initialization is augmented with the inclusion
of topic-word counters from histories of pervious time-slice batches. The histories are
maintained using a fixed-length sliding window and the contribution of each history
to the current slice initialization is predicated upon a set of weights associated with
each element in the sliding window.

In another work, Yao et al in [4] considered topic discovery in streaming documents
and proposed the SparseLDA model. Noticing that the efficiency of sampling-based
inference depends on how fast the sampling distribution can be evaluated for each
token, their work enhanced the inference procedure in a way as to allow parts of
computations used in sampling to be pre-computed, thus improving performance.
Further, the sampling procedure proposed by Yao et al. restricted training to a fixed
collection of training documents and then, for each test document, sampled topics using
counts from the training data and test document only, ignoring the rest of the stream.

The explosion of micro-blog popularity has attracted much attention from outside
of the topic modeling community. One particularly interesting application is the field
of first story detection. Conceptually, first story detection is concerned with locating
emergent clusters of similar stream messages, which are said to be indicative of
particularly interesting and currently relevant stories. First story detection approaches
require the ability to discover clusters of similar documents in near real-time fashion,
which is difficult to accomplished using classic clustering tools since the
computational complexity of commonly used clustering algorithms (hierarchical,
partitioning, etc.) is quite high. Therefore, recent works on first story detection have
seized upon the concept of Locality Sensitive Hashing (LSH) [2], which is an
approach for identifying a datum neighborhood in constant time [10]. In [10],
Petrovic et al use a combination of LSH and inverse index searching to show that
clusters of similar documents may be identified in constant time with exceptional
accuracy and low variability.

3 Hash-Based Stream LDA

As noted in the preceding survey of related works, many approaches to topic modeling in
streams have been developed in recent years. A number of these approaches [3, 9]
attempted to enhance quality by preserving various aspects of topic inference calculations
and predicating topic learning upon past knowledge. Unfortunately, none of these
techniques were successful in retaining the knowledge of stream documents relying
instead on storing global structures such as topic-word multinomials. Hurdles for
retaining document knowledge are two-pronged — 1) the number of documents in streams
is unbounded making storage of individual document information not feasible, and 2)
since previous documents do not get replayed in streams, retaining records of their
presence directly may be meaningless for topic modeling.
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Therefore, this section introduces the new Hash-Based Stream LDA (HS-LDA)
model, which provides a mechanism for retaining document knowledge for stream
modeling in a scalable and meaningful way. HS-LDA is a generative probabilistic
model that describes a process for generating a document collection. Like LDA, in
HS-LDA each document is viewed as a mixture of underlying topics and each word is
generated by drawing from a topic-word distribution. HS-LDA departs from LDA by
imagining that, in addition to words, the generative process also emits certain
auxiliary objects that are not directly observable in data. In order to refer to these
objects in an intuitive way, we reach out to the physical world for a descriptive
analogy. We borrow from particle physics nomenclature and recall that, in physics, a
neutrino is a nearly massless, uncharged particle that is detectable only through its
interactions with other matter [11]. Since the auxiliary objects postulated by the HS-
LDA model are similarly ethereal, we introduce the notion of HS-LDA neutrinos (or
pseudo-neutrinos for short), as the analogy with the real particle seems appropriate.

Following the analogy, as the physical neutrinos are said to be classifiable into a
collection of categories [11], the HS-LDA pseudo-neutrinos are also thought to
belong to a fixed set of possible types (or flavors). The physics analogy is abandoned
at this point, however, as HS-LDA makes no further claims as to the properties or
nature of each flavor. The generative process is graphically outlined in Figure 2.

- L L - (S

Fig. 1. Visualization of the HS-LDA generative process. Ovals si,...,S5 represent process
states, shaded ovals represent word generation and dashed circles represent emissions of
neutrinos v of types A and B. Dashed circles surrounding neutrinos labels aim to emphasize
the notion that neutrinos are assumed to be present but difficult to detect.

OO

X
O ©

D

Fig. 2. Graphical model representation of HS-LDA. N is the number of words in a document,
D is the number of documents, K is the number of topics and H is the number of pseudo-
neutrino types. a,n and f§ are Dirichlet prior vectors that are assumed to be symmetrical in
this paper. 6 represents the vector multinomial over topics, ¢ is the multinomial over words,
z is the topic draw, w stands for a word realization and v is the emitted pseudo-neutrino. The
clear circles represent hidden entities, shaded circles represent directly observable entities and
the dashed circles stand for indirectly detectable ones.
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In Figure 3, the generative process is outlined. There, words are generated in a way
common to many LDA-type models by drawing from a distribution over words.
Unlike other approaches, however, a pseudo-neutrino is also emitted by a draw from a
multinomial distribution parameterized by a vector of topic-specific neutrino type
proportions.

For each topic k € {1, ..., K}:

1

2 Generate ¢y = {¢r1, ...,qbk_V}T~Dir(- 18)
3 Generate A, = {/11{,1: ...,Ale}T~Dir(- )
4 For each document d:

5. Generate 0@ ~Dir(- |a)

6 Foreach i € {1, ..., N4}

7 Generate z; € {1, ..., K}~Mult(- |6 @)
8 Generate w; € {1, ..., V}~Mult(- |¢;,)

9 Generate v; € {1, ..., H}~Mult(- |15,)

Fig. 3. Generative process for HS-LDA: ¢, is a vector consisting of parameters for the
multinomial distribution over words corresponding to kth topic, A, is a vector consisting of
parameters for the multinomial distribution over neutrino types corresponding to kth topic, « is
the Dirichlet document topic prior vector, § word prior vector, 7 is the neutrino type prior
vector and Ny is the number or words in document d and K is the number of topics

It is important to note that if a user were to restrict the set of possible neutrino
types to just a single type (say {“root”}), HS-LDA would become equivalent to LDA
as all draws of type label assignments would be the same making the generative
branch from z to v redundant. Therefore, HS-LDA is a generalization of Latent
Dirichlet Allocations [1], which is important to note since the general nature of HS-
LDA suggests that its insight can be applied to other models that extend LDA, of
which there are many. Later sections will take advantage of this fact and show the
experimental results of application of HS-LDA to other successful models.

3.1  Gibbs Sampling with HS-LDA

The generative probabilistic HS-LDA model describes the process of document
collection creation. The hidden model parameters 6, ¢ and 1 may be estimated
using a Monte Carlo procedure, which is relatively easy to implement, does not
require a lot of memory and produces output that is competitive with that of other
more complicated and slower algorithms [3, 12]. The rest of the section describes the
derivation of an efficient sampling algorithm used to infer models parameters with
HS-LDA.

We start by framing the problem of topic discovery in terms of collections of D
documents containing K topics expressed over W words and H pseudo-neutrino
types. The task of learning topic models is to discover the makeup of 6, ¢ and A,
which can be estimated by evaluating the probability of a topic having observed both
a word and a pseudo-neutrino. The posterior distribution is formally stated as

P(w,z,v)
P(z|w,v) = T
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The joint distribution P(w,v,z) can be computed by considering that Dirichlet
priors @,  and 1 in the HS-LDA model are conjugate to 8,¢ and A respectively.
Since P(w,v,z) = P(w|v,z)P(v|z)P(z) by the chain rule and since w and v are
conditionally independent in our model (see Figure 2), P(w|v,z) = P(w|z) which
simplifies the joint distribution as

P(w,v,z) = P(w|z)P(v|z)P(2)
Observing that ¢, 1 and 0 only appear in first, second and third terms respectively,
each term may be evaluated separately. Integrating out ¢, A and € in each term gives

w)
_(TWB) er(nj +ﬁ)
P(le) = (F(B)W) H] 1< F(n(A)+Wﬂ) (1a)
Wy
_ (rem\K g (IvC ( +1)
-G () o
(d)
_ra\P p (TT(n+a)
P(z) = (F(a)K) Hd:l( ( (d)+1(a) (1)
where n( ") is the number of times word w has been assigned to topic j, n (d) is the
number of time a word from document d has been assigned to tOplC j.n ( ) s the

number of times a neutrino of type v has been assigned to topic j, n j and n@ are

the total numbers of assignments in topic j and document d respectively. I'(+) is the
standard gamma function.

Since computing the exact distributions in Equations la-c is intractable [1, 12], we
follow the pattern in other topic modeling approaches [3, 4, 6-8, 13] and estimate 6,
¢ and A by relying on the Gibbs sampling procedure. The Gibbs procedure operates
by iteratively sampling all variables from their distributions conditioned on their
current values and data and updating variables for each new state. The full conditional
distribution P(z; = j|z_;, w, V) that is necessary for the Gibbs sampling algorithm is
obtained by probabilistic argument [12] as well as by observing that first terms in
each of the Equations la-c are constant and values of denominators and numerators of
second terms are proportional to the arguments of their gamma functions. Therefore,

the sampling equation is as follows:
(Wl)

_L]

i +B 2D tq n( )+‘r]
P(z; = jlz_y w,v) x ()

Lt @)

+Wﬁ‘ n(d) +Ka n() +H77

(D)

where, n}'; is the count of times neutrino v; has been assigned to topic j excluding

current assignment and n is the total number of topics j assignments in any

Lj
document excluding current assignment. Reader may notice that denominators in the
first and third product terms in Equation 2 have identical counters. That is because, in
the HS-LDA model, the number of words is always exactly the same as the number of
neutrino emissions by process construction.

The Gibbs sampling algorithm can be implemented in an on-line fashion by first
initializing topic assignments to a random state and then using Equation 2 to assign
words to topics. The algorithm operates by reconsidering data for a number of
iterations during which new states of topic assignments are found using Equation 2.
The algorithm is fast as the only information necessary to estimate the new state is the
word, topic and neutrino counters, which can be cached and updated efficiently [12].
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3.2 Pseudo-Neutrino Detection

The sampling algorithm outlined in the previous section estimates parameter values
by relying on two detectable quantities — words and pseudo-neutrino emissions. To
detect pseudo-neutrinos, which cannot be observed directly in text, we assumed a
Gaussian distribution of pseudo-neutrinos in documents, as this distribution was
common to many phenomena [14]. With this assumption, we could refer to all
pseudo-neutrinos in a given document in a meaningful way by identifying the most
common (or mean) neutrino type. That is, for H € Z* possible pseudo-neutrino
types, we assumed that there existed a mean pseudo-neutrino type 1 < Cﬁ < H for
each document d. With that, a rough approximation vector of pseudo-neutrino
assignments hy = {hg 4, ..., hg z} could be constructed for each document d of size
Ny, if i = C;f

0, otherwise’

Constructing the vector h; as described in the previous paragraph suggested that a
meaningful approximation of document pseudo-neutrinos could be found by
identifying a representative (mean) neutrino type for each document. To locate the
representative flavor, we noticed that pseudo-neutrino types essentially constituted a
kind of vocabulary akin to that of words. With that, considering topics from
conceptual point of view, intuitively, documents on the same topic would be close to
one another in terms of similarity of their content regardless of the vocabulary used to
express the content (e.g. for any language, documents about the “World Cup’ sporting
event would contain text related to the even in that language). With that, since the
number of pseudo-neutrino types was known, clustering documents into H clusters
based on word similarity would approximate document-level (mean) neutrino types as
cluster indices could be used as the neutrino type identifiers.

To implement this intuition in practice, we searched for a clustering strategy that
would perform in a scalable way while at the same time ensuring that similar
documents were likely to share a cluster. We realized that by restricting H = 2™ for
some positive integer n, it would be possible to make use of Locality Sensitive
Hashing (LSH)[2].

LSH relies on existence of a set of hash functions H (referred to as a function
family) for some d-dimensional coordinate space R® where each hash function can
be efficiently implemented with the help of Random Projections (RP) [15]. To use
LSH, we start by defining a function space f:R% - {0,1} and constructing a
function family H = {fj, ..., fiog, ulfi € f}. Each function f; € H is associated with
a random projection vector p/°"4°™ € R? with components that are selected at
random from a Gaussian distribution V'(0,1) [16]. Each random projection is used to
compute a dot-product between it and any point p € R% allowing the mapping
function to be constructed in the following way:

Ng such that hy; = {

1 ifp . p{andom >0

2
Ol-fp.plrandom <0 (2]

fi(p) ={

Then, for any p € R*, LSH hash value is constructed by invoking each of the
functions in H on p and concatenating output bits as a bit string. Treating the bit



158 A. Slutsky, X. Hu, and Y. An

string as a binary number, a mapping function assigns p to a number between one

and H as follows:

map(p) = |1 f(p)

Since the bit string generated by the above procedure is of finite size, the space of

possible values is bound by 27, Recalling that H = 2" and |H| =log, H =

function map can be used to map each point in R? to a positive integer bound by H.
Further, since it is proven in [17] (proof omitted here) that P(f;(p) = fi(q)) = 1 —

£ 161ds for any function f; €  and all points p,q € R?, the probability of LSH

hash collision for two vectors increases with the decrease to the angle between them.
Then, since the value of cosine of two vectors is directly related to the size of the
angle

P(fi(p) = fi(q)) « cos(4(p, q))
where £ is the angle between the two vectors in radians'.

Therefore, since LSH hashing allowed for fast clustering of vectors in a way that
preserved document similarity, LSH was used to approximate the mean pseudo-
neutrino type by treating LSH hash value as the type identifier. To make use of LSH
hashing in topic modeling, we restricted the size of the set H to be a power of two
and rewrote the sampling equation (Equation 2) in terms of LSH hash family F of
size log, H as:

(Wl)
_”
+WB n

where hf is the hash value of document d, nf;f

documents with hash value hf assigned to topic j excluding current assignment and

n(_)l ; is the total number of words in any document assigned to topic j excluding

current assignment. The sampling algorithm, then, proceeds as outlined in section 3.1
using Equation 3 to assign words to topics.

D)
+B n(‘?]ﬂx n l‘j +n (3)
(d)+Kan() +H‘r]

P(zi = jlz_,w, %) o« ~

is the number of words from

4 Evaluation

In order to validate the utility of our model, the approach was tested on two distinct
data sets. Our first data set consisted of 1,000,000 English language messages
collected from Twitter micro-blog site using its public sampling API over a period of
one week. The second data set was comprised of 300,000 English language chatroom
messages collected by connecting to the public irc.freenode.net public chat server and
monitoring chat rooms with more than 150 chatters for the same one week period.
Filtering of non-English texts was accomplished with the help of the open source
language-detection® library.

The language models produced by our approach were compared to those learned
by On-line LDA [3] and SparseLDA [4] as these models were designed to operate
efficiently on stream data. In addition, to provide a common baseline, topic models

! Unusual angle operator used to avoid confusion with topic modeling notation.
2 https://code.google.com/p/language-detection/
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learned by HS-LDA were compared to those discovered by the classic LDA [1]
algorithm. We did not evaluate our approach against TM-LDA as it required
partitioning by author as well as a significant and static training sample to be
collected prior to producing any output at all. These constraining requirements made
TM-LDA unfit for continuous topic modeling application, which was the motivation
of this work.

To compare language models, evaluation was performed using the perplexity
measure over held-out subset of data W = {w, ..., w,;} given language model M and
the training data calculating perplexity using the following formula:

B 1 n 1 [wil ~
perpu (W) = exp (= "= > " 10g (o (7))
= Iwil j=1
where n = |W|, w € W, w is the jth term in the ith string in the held-out collection
and py(w € W) is the probability of term w as per the learned language model M.
Further, to account for possible overfitting, our evaluation was validated using the 5-
fold cross-validation.

4.1 Parameter Selection

As pointed out in earlier works [10, 18] Locality Sensitive Hashing is highly sensitive
to choices of the hash family size. This choice governs the scatter within each hash
bucket as chance of collision decreases with the increase of hash family size.
Therefore, hash family size selection was approached from the point of view of
estimating a reasonable number of buckets for the number of messages expected.

Considering the Twitter micro-blog service as being one of the most vibrant and
popular social forums today, we experimented with the numbers of English language
messages that could be downloaded over a given period. Recalling the industry-
oriented motivation for this work and selecting one working week as the target period
(timeframe common to the industry environment) the number of messages that could
be gathered from Twitter’s sampling service was empirically estimated to number in
some millions. Realizing that if the number of hash family function was chosen to be
high (ex.: 22° = 1,048,576) the algorithm could potentially map every message into
an individual bucket, negating the entire insight of HS-LDA. With that, the reasonable
number of hash functions for our experiments was chosen to be 17 (217 = 131,072)
as this number would allow for variability within each cluster while at the same time
providing reasonable specificity.

4.2  Experimental Setup and Results

Having thus chosen the hash family size, HS-LDA was evaluated against LDA, On-
line LDA and Sparse LDA using the two test datasets. For all models, the number of
topics was chosen to be 100 and experimented with various hyperparameter settings.
Results reported here were for hyperparameter values of ¢ = 0.05, f = 0.05 and
1 = 1 as these values produced best results for all models.

Figure 4 shows perplexity results for the two test datasets. In order to provide a
readable graphic, the Simple Moving Average (SMA) smoothing technique was
applied to raw results, setting the moving average window set to 10,000.
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While cross-model comparison shows that HS-LDA approach outperformed other
models in terms of perplexity, performance of LDA-type models could be sensitive to
parameter choices [19]. Since some parameter choices could be more beneficial to
performances of some frameworks and less so for others and since all models used for
evaluation were derivative of the classic LDA model, we applied the insight of the
HS-LDA approach to each test algorithm and conducted a pairwise comparison in
terms of perplexity, thus controlling for model parameter sensitivity. Figures 5-6
show pairwise comparisons for each test model with the same approach augmented
with HS-LDA (LDA/HS-LDA pairwise comparison is not reported as it can be found
in Figure 4).
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To summarize results in numerical way, average perplexities are reported for all
tested models in Table 1. The purpose of this report is to identify the model with the
highest predictive prowess as well as to quantify amount of improvement in terms of
percentages.

Table 1. Average perplexity results for Twitter and IRC datasets

Model Average Perplexity (Twitter) | Average Perplexity (IRC)
LDA 2044.42 1300.92
On-Line LDA 2773.99 1835.74
Sparse LDA 2860.27 1998.53
HS-LDA 1803.67 1023.12

In Table 1, HS-LDA outperformed other models by at least approximately 12% for
the Twitter dataset and 21% for the IRC chatroom data. Significantly better predictive
power of resulting topic models learned from the chatroom discourse may be
explained by noting that chatrooms are often oriented towards particular themes, thus
introducing loose structuring to social discourse. Such structuring does not exist in
Twitter where the discourse is entirely unstructured, making the job of theme
discovery more difficult.

5 Conclusions and Future Work

To improve the quality of topic models learned from social media streams, we
introduced the new HS-LDA model for topic modeling, which was a generalization of
the well-known LDA topic discovery technique. We experimented on large data sets
collected from popular social media services and showed that our model
outperformed other state-of-the-art stream topic modeling techniques in all cases.
Further, we enhanced other topic modeling approaches with the insight of HS-LDA
and showed that applying core notions of HS-LDA to other techniques improves their
performance in terms of predictive power of resulting topic models.

While our results showed improvement in all cases where HS-LDA insight was
used, combining HS-LDA with other models aimed at preserving global context did
not immediately result in substantial performance gains. It seems, however, that such
a combination has merit and we will continue this investigation in the future work.

Further, while this work was instrumental in moving towards the goal of
constructing an industry-grade stream topic monitoring system, one of the major
hurdles for constructing such a system with HS-LDA was the necessity to specify the
number of topics. In our future work, we plan to investigate topic modeling
approaches based on the popular Chinese Restaurant Process paradigm and will
attempt to apply the insight of HS-LDA to dynamically discovered topic allocations.
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Abstract. There are millions of accounts in Twitter. In this paper, we
categorize twitter accounts into two types, namely Personal Communi-
cation Account (PCA) and Public Dissemination Account (PDA). PCAs
are accounts operated by individuals and are used to express that in-
dividual’s thoughts and feelings. PDAs, on the other hand, refer to ac-
counts owned by non-individuals such as companies, governments, etc.
Generally, Tweets in PDA (i) disseminate a specific type of information
(e.g., job openings, shopping deals, car accidents) rather than sharing
an individual’s personal life; and (ii) may be produced by non-human
entities (e.g., bots). We aim to develop techniques for identifying PDAs
so as to (i) facilitate social scientists to reduce “noise” in their study of
human behaviors, and (ii) to index them for potential recommendation
to users looking for specific types of information. Through analysis, we
find these two types of accounts follow different temporal, spatial and
textual patterns. Accordingly we develop probabilistic models based on
these features to identify PDAs. We also conduct a series of experiments
to evaluate those algorithms for cleaning the Twitter data stream.

1 Introduction

As Twitter! has grown, many different kinds of user accounts have emerged.
At a general level, we roughly classify them into two categories: (i) Personal
Communication Account (PCA) and (ii) Public Dissemination Account (PDA).
PCAs are accounts that are usually operated by unique individuals and used for
interpersonal communication (e.g., to share personal experiences and opinions).
PDAs, in contrast, are typically linked to and operated by a company?, a web
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2 https://twitter.com/#!/citi
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site® or a program?* and used to disseminate specific news and information (e.g.,
locations of car accidents, shopping deals, crimes).

Existence of PDA may cause problems when attempting to study human
behavior using Twitter data. Recently, a Twitter-based analysis in Science sug-
gested that changes in overall tweet sentiment over time (hours of the day)
may be interpreted as evidence of biologically-based diurnal cycles in the mood
patterns of humans [7]. However, an underlying assumption is that the tweets
were produced by human individuals as part of their natural daily lives. If the
data stream is a mixture of PCAs (humans) and PDAs (corporate/entity), the
conclusion may be unwarranted. To illustrate it, In Figure 1 we plot the time
evolution of average sentiment for 2,787 PCAs and 389 PDAs that were labelled
manually. As can be seen, the daily diurnal cycle, i.e., the mood increases in
the early morning and decrease later, is easily discernable in the overall data
(Figure 1(a)) as similar to the previously published analysis. However, contrary
to expectations, we find that the cycles are much less prominent in the PCA (hu-
man individual) sub-sample (Figure 1(b)) than in the PDA (corporate/entity)
sub-sample (Figure 1(c)). The importance of separating the different account
types for reaching accurate conclusions is clear.
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Fig. 1. Sentiment change within a 24 hour time period across different account types

Beyond potentially adding noise to researchers’ data streams, PDAs are po-
tentially very useful for various types of data consumers. For instance, an indi-
vidual looking for jobs may follow PDAs that publish job postings of a particular
type (e.g., web development) in a particular geographic area (e.g., New York).
Similarly, shoppers may follow PDAs that provide timely notification of nearby
sale events and hot deals. In sum, as PDAs’ tweets are often focused on a very
specific topic and formatted in a uniform manner, they are relatively easy to
process and may thus provide rich content for individuals, researchers, and the
recommendation engines that support those populations.

The enormous size of the Twitter data stream makes it highly impractical to
manually check the account type. In this paper we develop and test a variety

3 https://twitter.com/#!/WHERE
4 https://twitter.com/#!/memcrime
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Fig. 2. The framework for PDA detection

of techniques for automatic classification of PDAs and PCAs using multiple
temporal, spatial, and textual features of accounts’ tweet publishing patterns.

Figure 2 gives an overview of the proposed framework for PDA detection. As
shown, tweets are continuously sent to the database. Once a new user arrives,
her profile of raw data is checked and different types of features are extracted.
Specifically as illustrated in Figure 2, there are temporal, spatial and textual
features (details are discussed in Section 2). With extracted features, a classifi-
cation model is then employed to determine the account type. After a PDA is
detected, the system checks its posted tweets to model its topic as well as catego-
rizing its spatial characteristics. Finally, all extracted features and topic models
are also saved in the database. Twitter applications, e.g., user recommendation,
can then be built upon the knowledge mined in this framework.

The rest of the paper is organized as follows. Section 2 describes the feature
extraction. Section 3 provides details of our models. Section 4 reports the eval-
uation of our model and shows some PDAs found using our model. Section 5
reviews relevant research and finally Section 6 concludes the whole paper.

2 Feature Extraction

In this section we discuss the extraction features used to identify PCAs and
PDAs. The work makes use of an archive of geo-tagged tweets published between
March 1, 2011 and January 18, 2012 [1]. During this time, 39,994,126 geo-tagged
tweets (with latitude and longitude attached) were posted by 1,506,937 users.
Ground truth classification data were generated by randomly selecting 5,000
accounts that published at least 200 tweets and manually labeling them as PCA,
PDA, or unknown. Of the 5,000 randomly selected accounts 2,787 were PCAs,
389 PDAs, 0 spam accounts and 1,824 unknown accounts®. These data were then
used to extract and analyze the temporal, spatial and textual features of PCAs
and PDAs.

5 In our manual search of the data we did not identify any spam accounts. They
may not appear in the geo-tagged tweet stream, perhaps to maintain anonymity, or
because Twitter had already detected and blocked the tweet content (in which case
we would have labeled them as unknown).
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2.1 Temporal Feature

PDAs are, by definition, regularly disseminating useful information. Often this
task is facilitated by use of automated computer programs that publish tweets
at specific times or at regular intervals [23]. In contrast, PCAs, being human,
may be less regimented in their communication of daily live events and feelings.
Figure 3(a) and 3(b) show the timing (minutes by seconds) of tweets published
by two Twitter accounts. The specific times at which tweets were sent by the
user depicted in the Figure 3(a) are spread relatively uniformly across the space.
That is, the user does not appear to have a preference for specific minute-second
combinations. In contrast, the user depicted in the right panel tweets at very
specific times. While this program/bot- controlled PDA is not able to get the
tweet out at exactly the same second each hour, the temporal distribution is
clearly non-uniform.

User 16270679

020 % a0 w0 60 o 10 20 30 40 50 60 | ra—r
Minute of hour Minute of hour

62 64 4 6 12 14
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Fig. 3. Time distribution of tweets published by PCA and PDA

Consider the two-dimensional time space shown in Figure 3(a) and 3(b) where
the z-axis is the exact minute (0-59) within the hour that the tweet was pub-
lished, and the y-axis is the exact second (0-59) of that minute. Tweets’ time-
stamp information can be used to locate each tweet as a point in this space.
For each account, we count the number of tweets within each section of the
grid and compute the sum of the difference between the observed frequency and
the expected uniform frequency to obtain a temporal feature. Formally, let ¢
denote the total number of grids and each time stamp can be converted to a
g-dimensional vector @ = (21, ,x4), where 2;{0,1} and Y 7 | z; = 1. This
vector indicates which grid the time stamp belongs to. Suppose there are NV
tweets and the expected number of tweets falling in each grid should be N/g for
a uniform distribution. We define a time uniformity metric du to measure the
difference between the observed time distribution and a uniform one.

N
N Y. -Y”
Y=S"2,-" I du= 1)
; "y N/g (
where I = (1,---,1) denotes a g-dimensional unit vector.

N N~

g
The lower value of du suggests a higher probability of uniform distribution.
As can be seen in Figure 3(c) and 3(d) the distribution of du for PCAs satisfies
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a log-Gaussian distribution centered around 6, while the PDAs du are skewed
from 6 upwards.

2.2 Spatial Feature

PCA’s and PDA’s tweets may also exhibit different spatial distributions. As
people go about their daily lives, they often tend to move around within a limited
area, periodically switch between previously visited locations (e.g., home and
work), and are constrained by the physical parameters bounding how fast they
can travel between locations [8,20,5,4]. In contrast, PDAs, by their very nature,
are not constrained. Twitter APIs can be used to tweet from multiple locations
simultaneously and/or purposively designate the geo-locations that should be
attached to each tweet. Figure 4(a) and 4(b) show the footprints of geo-located
tweets respectively published by a PCA and a PDA. It can be seen that the PCA
tweets from a small area (303.0233 km?) in New York, while the PDA tweets
from all across the United States (about 9.6302 x 10 km?). The narrow and
sharp peak in Figure 4(c) indicates a PCA visits the same locations repeatedly.
In contrast, the density distribution of a PDA in Figure 4(d) is much flatter,
indicating that this account rarely tweets from the same locations.
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Fig. 4. Spatial pattern of tweets published by a PCA and a PDA. The z-axis is the
longitude and the y-axis is the latitude. In Figure 4(c) and Figure 4(d), the z-axis
represents the smoothed frequency of visits.

We define two metrics, namely Mobility Area (MA) and Unit Mobility Entropy
(UME) to capture the spatial features. MA is a measure of an account’s mobility
range. For a set of points in geographic space (p1,--- ,pn), where p; = (x4, y;)
consists of a longitude z; and a latitude y;, we can find a minimum bounding
box (Pmin = (Tmin, Ymin)s Pmaz = (Tmaz, Ymaz)) that covers all points. MA is
defined as the surface area of the bounding box in the earth.

Ymax

Tmax
MA = Area(pmin, Pmaz) = / / R?. cos(z)dydx
Tmin

= R? (Ymaz — Ymin ) (SIN(Zmaz) — SIN(Zmin)) = R2AyA sin(x)

min

(2)

where R is constant representing the radius of the earth.
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UME measures the diversity of spatial locations visited during a specific unit
of time. A smaller value indicates a higher probability of revisiting the same
location. Formally, given a unique set of locations (pi1,--- ,p,) that appear in
one’s tweets and a minimum bounding box (pPrmin, Pmaz) that covers these points,
the UME is defined in Equation (3).

where f; represents the frequency of tweets that contains the geographical point
p; and AT is the time interval between the earliest tweet and the most recent
one.

Furthermore, we can calculate the “moving” speed of the account by checking
the time stamp and geo-coding of its successive tweets. For some PDAs, where
account holders may publish tweets from multiple, distant locations within a
short interval, moving speed may be quite large. In contrast, PCAs are bounded
by the physical constraints on human mobility.

UME =

2.3 Textual Feature

Content of PDA’s tweets may also differ from that of PCA’s. Given that PDASs’
main objective is to disseminate a specific kind of information, they may reuse
particular words. In contrast, PCAs tend to share a more diverse set of infor-
mation and thus use a wider variety of words. Here we define a metric tweet
coverage of a word as the proportion of tweets that contain the word.

We focus on two textual features: word-usage size and tweet coverage. The
former measures the number of unique words appearing in an account’s tweets.
Since tweets of PDA aim to propagate one particular type of information, the
word set is constrained towards a specific topic. In this case, the size of word set
is relatively small compared to that of PCAs.

Formally, let W = (w1, - - - , w,,) denote the global word set and f* denote the
number of user u’s tweets that contain the word w;. For N posted tweets of an
account, the word-usage size of the user ws" is defined in Equation (4).

n
ws* = Z 1fiu¢0 (4)
i=1

Tweet coverage is the probability of a single word appearing in the tweet.
Given a user u’s NV tweets, the tweet coverage for a word w; can be computed by
JIC{; . Particularly, we are focused on the mean of top-k (k < n) words (referred to
as top-k mean) and tweet-coverage variance of all words (referred to as global
variance) for that user. Suppose we sort the words in a non-ascending order
based on their tweet frequency, i.e., Vi, j € [1,ws"], we have f! < [jei=7.
The top-k mean /1, and global variance o2 of tweet coverage for the user account
u are defined in Equation (5).

k n o f 2
i1 Ji' iy — 1)
p= St g 2ty (5)

wsY
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Figure 5(a) and 5(b) show the words’ tweet coverage of 1,000 randomly sam-
pled tweets for a PCA and a PDA. It can be easily seen that the tweet coverage
for a PCA is quite low and the maximal one is about 0.04, i.e., the most frequent
word appears in 4% of her published tweets. In contrast, the PDA (Figure 5(b))
uses some words in almost every tweet. In this example the PDA is a corporate
account that tweets jobs for mobile phone retail in different US cities. The words
with 100% tweet coverage are job, mobile and retail.
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Fig. 5. Tweet coverage and sentiment distribution for PCA and PDA

Moreover, since PCA’s tweets are a reflection of their daily life, the sentiment
of the tweets are more likely to fluctuate than that of PDAs. By adopting the
lexicon for word-sentiment in existing works [16,17], we estimate a sentiment
score for each tweet. Figure 5(c) and 5(d) show the standard deviation of PCA’s
and PDA’s sentiment in Tweets covering a 24 hour time period. It can be seen
that on average the PDA’s tweets display less fluctuation of sentiment than the
PCA’s. Therefore, the deviation of sentiment is also extracted as a feature.

3 Detection Model

In this section we describe details of our detection model, including model de-
velopment, parameter learning and detection function. Specifically to fit the
temporal, spatial and textual features of PCAs, we propose a generative model
that is adapted for stream training data. Classification of PDAs is solved by
detecting the outliers of the fitted model.

3.1 Model Development

Without loss of generality, let D = (1, - ,x,) denote the values of extracted
features. Here each element x; represents the feature value of an account. The
semantics depends on the feature types. For instance, x; could indicate the
log-value of du (see Equation (1) for definition) for a temporal feature, or
ma (Equation (2)) for a spatial feature, or ws (Equation (4)) for a textual
feature. Based on maximum-likelihood theory, to learn the model parameter
1, A, we need to maximize the probability Pr(u, A|D). Using Bayesian inference,
Pr(u, \\D) = Pr(D|u, \)Pr(u, A), where the Pr(u, \) is the prior distribution.
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Under the assumption that the data D is generated by some Gaussian distri-
bution A(u, A=2), we can write the probability as in Equation (6).

Pr(D|u, \) = (21)_3 exp {—; zn:(l‘i - M)Q}

i=1
1 )\M2 n n )\ n
= Jon {)\1/26.%]9 ( 5 ﬂ erp )\;Lin ~ Zm,z
i=1 i=1

Furthermore, since Pr(u, A) = Pr(u|\)Pr()\), we use a Gaussian and Gamma
distribution as the conjugate prior distribution Pr(u|A) and Pr(\), as shown in
Equation (7) and (8).

(6)

Pr(p) = N(ji o, (X)) = \/ Aeap {—“j (- Mo)z} (7)

where g, o are prior distribution parameters for p.

Pr(\) =G(\;a,b) = !ba)\“*lexp(—b)\) (8)

(a—1)

Therefore, the prior distribution is represented by a product of a Gaussian and
a Gamma distribution. Conversion to match the format of posterior distribution
in Equation (6) gives us

Pr(s, A) = Pr(u\)Pr(A) = N (4: o, (aX) )G (A ,b)

x {Amexp (— /\52 )} " exp {BA — YA} ©)

Note that in Equation (9), we define for simplicity new parameters 8 = apuy,

2
v = ‘“2“) + b to. Also, to maintain consistency with the posterior distribution, we
constrain a = “1.
After unifying the posterior and prior distribution, we can represent the prob-

ability Pr(u, A|D) as below:

Pr(p, A|D) = Pr(D|u, \)Pr(p|A)Pr(\) «

s >\M2 n+ao n 1 n ) (
{A Pexp ( / )} capd (B+ 3 wM— (v + 3 S #D
i=1 1=1

10)

3.2 Model Training for Stream Data

In previous subsection we unified the prior and posterior distribution in Equation
(10). Now we can define the objective function and learn the parameters by
maximizing it.

Let 0 = {(a, 8,v) denote the parameters for prior distribution and we define
the objective function as the log of the probability Pr(u, A|D), i.e., £(u,\) =
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log Pr(u, A|D, 8). By setting partial differential gﬁ and gi to 0, we can estimate
the value for model parameters. Without loss of generality, suppose there are
two sets of training samples coming in a stream, where X = (x1,- - ,z,, ) arrives
first and it is followed by Y = (y1,- -+ , Yn,)- Also, let (uz, A;) denote the model
parameters learned purely based on X, the sequential learning process is then
illustrated in Equation (11) and (12).

ni n2 n2
= B+t mi+ Zj:l Y — Zj:l (yj — Ha) (11)
o+ ny+no a+ny + no
n2 o 2 _ -1 n2 _ 2
)\_1 _ )\I_l + Zg:l[(y] ru’ﬂc) T } . Zg:l(y :u’ac) (12)

a+ny+ ng a—+ny+ne

From the Equation (11) and Equation (12) we can see good characteristics
of the model. Suppose the model has been trained based on the dataset X and
a new dataset Y comes. With such sequential learning equations, instead of re-
training on the whole dataset, we can simply update the model parameters with
the new dataset.

3.3 Detection Function

Given the extracted features of a target account, we use the trained model to
compute the probability that this account is generated by the model. The higher
the value is, the more likely the account is a PCA.

Formally, suppose there is an unknown account with features ug = (f1,- - , fo).
The parameters of corresponding Gaussian distribution are denoted by M =
(-, (mis A1), -+ ). The ranking score S, is a vector of log-likelihood that the
given feature vector is generated by the model M.

Suo - Rank(anM) = < o alOgN(fi;/Lia)‘i_l)a o >

log N (fi; iy A ) = (10g)\i - ); (fi — Mi)Q) +C

(13)

where C' is a constant that is independent of the target account uy and model
parameters.

The final detection is a voting process. Given the threshold vector 8, the
detection function will judge whether the given account is PDA in each feature
dimension. If the number of votes exceeds a threshold v, the function will output
1, indicating the account is classified as PDA.

1, if > {Rank(ug, M) < §71:0} > v

. (14)
0, otherwise

Detect(ug, M, 9) {
3.4 Other Classifiers

Besides the proposed probabilistic model, we also examine the utility of other
widely used classifiers in this framework. Particularly we examine Support Vector



172 P. Yin et al.

Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree and Naive Bayes.
The latter two are both implemented by Weka [10].

The SVM we adopt is developed by LIBSVM [2]. Since the number of PDA
is far smaller than that of PCA, we develop three variant SVM for imbalanced
classification problem. The first one over-samples minor class and is denoted as
DUP-SVM. The second one under-samples the major class and is referred to as
RED-SVM. Finally we increase the misclassification cost of the minority class
to 100 times than that of the majority class and is referred to as Biased-SVM.

4 Evaluation

This section we evaluate the classifiers in terms of both effectiveness measured
by Fj and efficiency measured by training time. All evaluation are based on
four-fold cross-validation and average performance is reported. Then we run our
generative model on the unlabeled data to mine new PDAs. The data set we use
for evaluation is a collection of manually labeled accounts, 389 PDAs and 2,787
PCAs. For Fjg, we set 8 = 0.25 because precision is relatively more important
than recall in our case.

4.1 Experiments

Figure 6(a) shows the impact of threshold on the performance of the generative
model. Generally, small threshold can achieve high accuracy PDA detection but
may miss many PDAs. On the other hand, big threshold may reduce missing
rate but lead to false identification. Figure 6(b) shows the general comparison
of different methods on PDA/PCA classification. Particularly we choose the
feature threshold § and vote threshold vs with regarding to maximize PDA’s
and PCA’s F-measure, which are respectively denoted as Mdf and Mcf. The
tuning process is not shown in this paper due to the page limit. We can see that
our probabilistic model is either better than or close to the best performance of
other classifiers. We also use synthetic data to evaluate the efficiency. Figure 6(c)
shows the result and it can be seen that the time cost of training our model
increases slowest as the data set grows. Note that the time cost for KNN mainly
comes from classification where all training data is scanned for each classification
task. The experiment shows it takes KNN 1.0334 seconds to classify one account
when the training data set is 100,000. For SVM, the time cost is 401.785 seconds
for 20,000 training samples in our experiment.

4.2 Exploration

In this section we run our trained model on the unlabeled data to explore new
possible PDAs. By the time the paper is written, we have detected 13,871 PDAs.
Table 1 shows some of the detected PDAs. In the table, some twitter account
has such symbols as XXX and YYY. They mean there is a bunch of twitter
accounts with similar naming rules, where XXX means the type of jobs while
YYY stands for a particular area name, e.g., tmj tx intern is a PDA that tweets
internship in Texas, sp arizona tweets about deals and coupons in Arizona.
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Table 1. Result of exploration
Topic Key Words PDA Description
tweetmyjobs tmj XXX YYY tweeting jobs in different areas
job intern, internship GetXXXJobs tweeting jobs
job, jobs Memphiscareers tweeting jobs in Memphis

theft, traffic TotalTrafficYYY real time traffic in YYY areas
traffic accident, police PinellasCo911  Fire/EMS 911 Dispatches for Pinel-
las County, Florida
delay HPD scanner  police incidents in Houston
healthcare, nursing tmj YYY health tweeting jobs of health
health  hospitality, medical tmj YYY nursing tweeting jobs of nursing

rescue tofireYYY fire incidents in Toronto
university, education berkeleymedia real time news in Berkeley
education instructor, news tmj YYY edu educational jobs in YYY areas
hall SchoolSpring  teaching and education jobs
coupon, free sp YYY deals and coupons in US
coupon service, hotel eatcheapnearu best restaurants with discounts
restaurant KidsDineFree restaurants providing free kid-meal

5 Related Work

Two areas are related, (i) human mobility modeling, and (ii) spam detection.

As more and more people use geo-enabled smart phones to share their loca-
tions via social media, there is a large number of studies on modeling individ-
ual’s mobility pattern. Generally there are two categories: (i) predicting user’s
location [3,11,12], and (ii) modeling continuous moving behavior [4,5,14]. These
works and our work are of mutual benefit to each other. On one hand, observa-
tions of these works serve as a guideline for us to design spatial features for our
detection model. On the other hand, these existing works do not differentiate
common user accounts and non-human accounts. Our work can facilitate them
to reduce “noise” in the data.

Many works studied the methods to battle with spammer in Twitter. In
[19,18,6,22,15,21], following/followee structure was exploited. Also, spammers are
usually controlled by some program and thus the times tamp of their published
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tweets can be used for detection [9,23,6,13]. Since one of the spammer’s moti-
vations is to propagate some information, content-based features (e.g., ratio of
URLs, number of hash tags, etc) were also used in some works [18,9,9,13].

These spammer-detection works are complementary to ours. Firstly, some
features (e.g., minute-second distribution in [23]) can be used to detect PDA.
Also, some spammers may disguise themselves as a PDA (e.g., adding random
geo-tag in their tweets) and techniques of these works can be of great help to
our framework to refine the detection result.

6 Conclusion and Future Work

The Twitter data stream is an immensely rich data resource to which many
different types of entities are contributing. As such, effective use may require
separation of tweets by account type. We identified types of accounts that may
be especially interesting to researchers and information consumers, with specific
concentration on Public Dissemination Account (PDA) and Personal Communi-
cation Account (PCA). To separate PDAs from millions of PCAs in Twitter, we
defined and extracted temporal, spatial and textual features of each account’s
tweets and compared our proposed probabilistic model to other conventional
classifiers including SVM, KNN, Decision Tree and Naive Bayes. The experiment
showed while the probabilistic model displays better or similar performance with
these classifiers, it shows higher efficiency in training and is more adapted for
stream data.

In future work we plan to strengthen our current system so that it can auto-
matically build a detailed and dynamic taxonomy of PDAs, thus turning gold
specks into nuggets that are more easily mined out of the Twitter stream.
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Abstract. Recommendation systems have become popular in recent years. A
key challenge in such systems is how to effectively characterize new users’
tastes — an issue that is generally known as the cold-start problem. New users
judge the system by the ability to immediately provide them with what they
consider interesting. A general method for solving the cold-start problem is to
elicit information about new users by having them provide answers to interview
questions. In this paper, we present Matrix Factorization K-Means (MFK), a
novel method to solve the problem of interview question construction. MFK
first learns the latent features of the user and the item through observed rating
data and then determines the best interview questions based on the clusters of
latent features. We can determine similar groups of users after obtaining the
responses to the interview questions. Such recommendation systems can
indicate new users’ tastes according to their responses to the interview
questions. In our experiments, we evaluate our methods using a public dataset
for recommendations. The results show that our method leads to better
performance than other baselines.

Keywords: Recommendation System, Collaborative Filtering, Cold Start.

1 Introduction

Recommendation systems have become increasingly popular in recent years and are
widely used in e-commerce and in social networks such as Amazonl, Netflix> and
Facebook * . Amazon.com recommends specific products that customers may be
interesting when they are shopping. Facebook recommends friends to users by
analyzing the relationships among users. The goal of a recommendation system is to
provide personalized recommendations for products that are aligned with users’ tastes.

There are two types of users in recommendation systems: existing users and new
users. Existing users are those who already have historical data attached to them, and
new users are those who have not previously been evaluated in the recommendation
system. However, we can also categorize all items as existing items or new items by
considering whether the item has received ratings. Thus, there are four partitions in a
recommendation system, consisting of two types of users and two types of items. Fig.
1 illustrates these partitions.

! http://www.amazon.com
2 https://signup.netflix.com/global
3 https://www. facebook.com

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 176-187, 2014.
© Springer International Publishing Switzerland 2014
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Existing User New User

Existing ltem 1 3

New ltem

2 4

Fig. 1. The four partitions in a recommendation system

Partition 1 consists of the recommendations of existing items to existing users and
represents the standard situation in recommendation systems. Many Collaborative
Filtering techniques, such as k-nearest neighbors (KNN) and singular value
decomposition (SVD), work well in this situation. Partition 2 is a situation that
includes recommendations of new items to existing users. Content-based Filtering
works well in this category because it does not rely on the historical data of users.
This approach can recommend items if the content information of the items is
available [3], for example, the actors, genre and release year of a movie or the text in
a book. Partition 3 is an important part of recommendation systems and represents the
situation of recommendation of existing items to new users. To survive,
recommendation systems always need to attract new users as customers. The system
should indicate the taste of a new user within a short time. New users may continue to
use the system if they find what they are looking for in the recommendations offered
by the system. Therefore, the situation defined by Partition 3 is the focus of this
paper. Partition 4 indicates recommendations of new items to new users, which is
difficult because it represents a case in which there are no historical data for both
items and users.

This situation with new users and new items is referred to as the cold-start problem
[12]. A natural method for solving the cold-start problem to elicit new users’
information by having them answer interview questions [9]. The system characterizes
the users based on their responses to the questions, thus it can provide appropriate
recommendations in the future. The interview process should not be time-consuming.
Customers will become impatient and leave the system if they are presented with too
many interview questions. Furthermore, the system should construct a rough profile
for each new user by asking a limited number of interview questions. The decision
tree method has been found to work well for the interview process [4, 5, 14]. In a
decision tree, each node represents a question that is determined by certain
measurements. They build the best decision tree in the interview process through the
optimization of a certain loss function defined in the training step. However, some
users who have similar tastes might have different paths because of their different
responses to just one question. The decision tree method locally chooses the interview
question and groups the users in the nodes. The method only considers the behavior of
users in certain nodes. We argue that this method should be used to globally build the
framework of the interview process.
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2 Related Work

2.1  Collaborative Filtering

The term Collaborative Filtering was developed by the author of the first
recommendation system, called Tasestry [6]. The system was designed to recommend
documents to prevent users from becoming inundated by a huge stream of documents.
In recent years, many studies of recommendation systems have focused on
collaborative filtering approaches. This method can identify the new user-item
association by analyzing the relationships between both users and items. The two
primary types of collaborative filtering methods are memory-based [2] and model-
based [13]. Memory-based methods compute the relationships between items and
users. The item-item approach [8] predicts the rating of a user of an item based on
ratings by the same user of neighboring items. Two items are considered to be
neighbors if they receive similar ratings by users. Model-based methods are an
alternative approach that characterizes users and items by rating data. This approach
has become popular in recent studies of collaborative filtering because it can handle
large datasets effectively and has good prediction performance. Matrix Factorization
[7] is one of the most popular approaches in collaborative filtering; it uses a low-
dimension vector to represent each user and item and learns the vectors by user-item
rating data.

2.2 Cold-Start Collaborative Filtering

A recommendation system knows nothing about the new users because there is no
information available. The most direct way to learn the preferences of new users is to
ask them for ratings of items. Each interview question asks the user to rate items
selected by the system according some criteria. Several studies have focused on the
strategies for finding the best items through interview questions. The GroupLens team
[9, 11] provides a balanced strategy that considers both the popularity and the entropy
of movies based on the selection of interview questions. In a decision tree, each node
is an interview question, and users are directed to one of the child nodes according by
their responses at the parent node. These responses serve [5, 14] to learn a ternary
decision tree based on the interview questions. The decision is created and optimized
by analyzing the user rating data. All the tree nodes are items for the interview
questions. Users have three choices—*like,” “unlike,” or ‘“unknown”—for their
responses to the items in each node on their path. The users are split into three
separate groups in each node. Thus, the next question is determined by the user’s
response to the current question. Different responses to the current question result in
different following questions. New users are characterized after answering the
questions from the root node to the leaf nodes. The work in [1] presented a new
similarity measure based on neural learning and also shown good results on Netflix
and Movielens databases.
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3 Our Approach

We first group the training users by observed the rating data. Because the real-world
data are sparse, and no user provides ratings for all of the items, we group the users to
find virtual users who have similar rating behaviors to the users in same group. When
a new user comes into the system, she will be asked for responses to the interview
questions. The system then calculates the similarity between the new user and the
virtual users according to their responses. Thus, the system can predict the new users’
tastes based on the similar virtual users. Our system’s flowchart is presented in Fig. 2.
We first apply the feature extraction model to determine the latent features of the
users and the items, and then we use a question selection model to find the best
interview questions by fitting the latent user features.

(a) System Interview Concept (b) System Flowchart
Feature Extraction Model Question Selection Model
= Latent Factor ¥
'j New User User |
n Feature E> Clustenng :
Matrix 1
Interview Processing Factorization e |
y Dptlmlzatlon !
» ¥ o = ED‘ Process :
) ) ) Feature )
= 2 ¢ . < )
< _\) ( }VirtuaIUser X \‘ ----------------------
Response -
New Users /7~ :> Interview
<::| Questions
| Existing User Predict Taste

Fig. 2. The system interview concept and flowchart

3.1 Low-Rank Matrix Factorization

Matrix Factorization maps users and items to the latent factor space of dimensionality
D. Each user i is associated with a vector u; € RP, and each item j is also associated
with a vector v; € RP. For a given item j, the elements of v; measure the extent of
each factor. For a given user i, the elements of u; measure the interest of each factor.
The dot product, ul-ij , captures the interaction between user i and item j and
approximates the rating r;;, which is user i’s rating of item j. Thus, the rating matrix
R can be approximated by the product of the user matrix U € RP*M and item matrix
V € RP*Y | which contain M user feature vectors and N item feature vectors,
respectively.

~ T
R=U'V (1)

This model is closely related to singular value decomposition (SVD), which is a well-
known technique in information retrieval. The system learns the models by fitting the
observed ratings to predict the unknown ratings. It should avoid overfitting the
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observed data by regularizing the learned parameters. Thus, the regularization terms
are added to the following equation. The system learns the user and item feature
matrix by minimizing the regularized squared error. Here, O is the set that contains
all observed ratings and A is a constant that controls the extent of the regularization.

argmin Z (rij — uf v)?* + A(llugl1? + ”VjHZ)

uyv
TijE(D)

@)

3.2  Latent Factor Clustering

The goal of grouping users is to find several cliques that can represent different tastes
of users. Each user has his or her own attributes in the features vector, as described in
the in previous section. Thus, we can group users based on these features. The K-
Means Clustering method is a simple and fast clustering method that has been often
used. We apply the K-Means Clustering method to group the user features vectors in
the training data by minimizing the within-cluster sum of squares, which is define as
follows:

C

argrrgzi)n Z Z (Wi — ¢p)? 3)

p=1 uiE(Cp

where Cp is the centroid of the cluster (Cp and C is the number of clusters.

3.3  Question Selection Process

We present an optimization process to ensure that the questions we select can identify
the new users’ tastes. We first define an objective function:

Err(Q) = Z (rij — Fij.0)° 4)

rije@

where Q denotes the interview question set. We define the value Err(Q) as the
error if we use Q as the interview questions. Thus, we can calculate the error for each
item in the training data. The 7 denote the predicting value for the observed rating
7y; after asking the interview questions in Q. We define #; o as the following:

Yh=1Cp if user i answers more than one question
A — —_— U
Tje=y K 7 )
Uavg Vi  otherwise
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where K denotes the number of nearest neighbors and ¢, is one of cluster centers that
approaches the user u;. We use the average of the choices of the cluster centers by the
K-Nearest Neighbor (KNN) method to prevent overfitting. Next, we calculate the
similarity of the answers to the current interview questions to find the k-nearest
clusters to the users. The similarity of cluster center ¢, and user u; is defined as
follows:

sim(cp, u;) = Z Iij (cpvj — 1) 6)

UjEQt

where Q; is the current interview question set and v; is one of the items in Q;. I;;
equals 1 if 7;; € O and 0 otherwise. It is a constant that indicates whether the user u;
has a rating to item v;. Finally, we select the interview question by considering the
error of the current and previous questions. We choose an item to be an interview
questions because it has minimum error when this item and the previous item we
select are both interview questions. The following equation shows how we choose the
interview questions:

qn = ar}ger;lin{ Err(Qqhzj)} (7)

where g, denotes the A’th interview question and Qg,-; means item j is the A’th

interview question in Q. S denotes a set that contains a number of items. The
following section describes how we select the items in S.

3.4  Question Selection Strategies

The popularity of an item indicates how familiar the users are with it. The more
ratings the item receives, the more popular it is considered. Thus, we define these
items as popular items. The advantage of choosing the most popular items to be
interview questions is that new users usually provide answers. However, popular
items are not effectively characterized by users. We cannot indicate the users’ tastes
by their responses to an item that nearly everyone liked. Users often give a high rating
to such popular items. We cannot identify users’ tastes by simply referencing the
users’ responses to popular items. The contention of the item indicates how widely
the receiving ratings spread. The more widely the ratings spread, the more
controversial the item is. Prior works [10] define the entropy of item to indicate how
controversial it is, as defined by the following equation:

Entropy(v;) = — Z Ps18(ps) ®
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where p, denotes the fraction of ratings of item v; that equal s. For example, an
item v; has been rated by 1000 people, while there are a total of 2000 people in the
data set. In the 1000 ratings data, there are 100 ratings equal to 1, 100 ratings equal to
2, 200 ratings equal to 3, 300 ratings equal to 4 and 300 ratings equal to 5. The
ps,1 <s <5 are 100/1000, 100/1000, 200/1000, 300/1000, 300/1000, respectively.
The same amount of ratings for each score leads to the maximum entropy, while all
ratings having the same score leads to the minimum entropy.

Popular items usually are not controversial, while items that have widely spread
ratings are often not popular enough. [9] uses a balance strategy to consider both
popularity and contention at the same time. It ranks the items by the product of
entropy and the log of popularity. It takes the log of popularity because the number of
ratings of items is an exponential distribution. Popularity will dominate the score if it
does not take the log.

(log Popularity(v;)) X Entropy(v;) )

4 Experiment

4.1 Data Set

We used the Movielens dataset for our experiment, which is a public dataset that can
be downloaded from GroupLens4 website. The data set contains a total of 1,000,209
rating data items from 6,040 users on 3,951 movies.

Training .
Model Interview
Questions
Training Users AnswerT Predict

Answer
Set
Evaluation
—_— Set

Testing Users

Fig. 3. System evaluation process

We split the dataset into two separate sets: the training set and the testing set. The
training set contains 75% of all users, and the testing set contains 25% of the users. In
the testing set, we split the users’ ratings into an answer set and an evaluation set,
which contain 75% and 25% of the ratings, respectively. The answer set is used to

4 http://www.grouplens.org/node/73/
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generate the user response for the interview questions. Each tested user answers the
interview question based on the ratings in the answer set and answers “Unknown” if
there is no such rating in the answer set. The evaluation set is used to evaluate the
performance after the interview process. The system characterizes each new user after
the interview process and predicts the ratings in the evaluation set. Then, the RMSE
mentioned previously is calculated to evaluate the performance.

4.2  Evaluation

Root mean square error (RMSE) measurement has been widely used to evaluate the
performance of collaborative filtering algorithm. The RMSE formula is defined as
follows:

2 ZrijeT(T’ij — fij)?

(10)
IT|

RMSE =

where T is the set of test ratings, 7;; is the ground-truth rating of user / on movie j and
#;; is the value predicted by models. The smaller value of RMSE means better
performance of the model because the prediction ratings are approaching the ground-
truth rating.

4.3  Comparisons

Because MFK methods predict the rating by finding the neighbors of feature clusters
according to the responses to interview questions, we compare two types of baseline
to our approach. The first type of baseline is the method of predicting ratings. We use
three baselines to predict the new users’ ratings in the evaluation set. The second
baseline is the strategy used to select the interview questions. We use different
strategies to determine the interview questions and predict the ratings by finding the
neighbor cluster according to the response.

® Global Average:
We do not characterize each new user by the interview questions. Instead, we
return only the global average rating (i.e., 3.58) to be the prediction of new
users’ ratings.

® User Average:
For each tested user, we return rating 7;, as defined in the following, to
predict the observed rating in the evaluation set.

®  Jtem Average:
We predict the observed rating r;; by the average received rating of item j.
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Table 1 shows the performance of our approach compared with baselines. Note
that MFKggiance 1n this case is the performance we show for seven interview
questions, and 0.9583 is the predicted performance of users who answer zero to the
seven interview questions.

Table 1. RMSE for different methods

Global Average 1.1072
User Average 1.0299
Item Average 0.9745

MFKgaiance 0.9583

The following strategies are our approaches, which combine the selection criteria
and optimization processes we described in Section 3.

L4 MFKPopularity-
We rank all items by their popularity and include the top 100 items in the
question set. Then, we determine the interview questions by using the
optimizing process described in Section 3.3.

L4 MFKConvention-
We rank all items by their entropy score and include the top 100 items in the
question set. Then, we determine the interview questions by using the
optimizing process described in Section 3.3.

L4 MF KEalance~
We rank all items by the score defined in Equation ( 9 ) and include the top
100 items in the question set. Then, we determine the interview questions by
using the optimizing process described in Section 3.3.

In Table 2, the performance of the popularity strategy shows a substantial
improvement when we show seven questions. However, the entropy strategy does not
improve when the number of shown questions increases. Fig. 4 shows that more than
90% of users do not give any response to interview questions that have high entropy
scores. For almost all the interview questions, the system cannot indicate users’ tastes
correctly through the “Unknown” response. The balance method shows better
performance than the popularity methods. This finding indicates that considering the
entropy of an item is a way to improve the performance. In our approach, we consider
both the popularity and the entropy of items, and we also implement an optimization
process to ensure that we obtain the best performance compared with other strategies.
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100% 100% 100%
80% 80% 80%
60% 60% | 60%
a0% | a0% | 0%
20% 20% e iEr -
T popuirty | micPopularity ” ﬁ¥ J S v—
#Usersdo not give response #Usersdo not give response Husers do not give response
m#Users give more than one response m#Users give more than one response m#Users give more than one response
Fig. 4. The ratio of non-responses to users who provide more than one response
Table 2. Comparison with baselines
#Shown Questions 3 4 5 6 7
Random 0.9808 0.9812 0.9812 0.9812 0.9812
Popularity 0.9902 0.9847 0.9766 0.9722 0.9662
Convention 0.9833 0.9839 0.9833 0.9839 0.9837
Balance 0.9869 0.9825 0.9788 0.9671 0.9634
MFKpopyiarity 0.9822 0.9820 0.9828 0.9743 0.9628
MFK onvention 0.9839 0.9884 0.9892 0.9832 0.9892
MFKgaiance 0.9674 0.9614 0.9604 0.9591 0.9583

4.4

Impact of Parameters

Fig. 5 and Fig. 6 show the different numbers of neighbors in certain clusters. We will
discuss the effect of the number of clusters and the number of user neighbors selected
by their response to interview questions.

#nsighbors/aCiusters

Fig. 5. RMSE in different numbers of neighbors with certain clusters
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Fig. 5 shows the different numbers of neighbors in certain clusters. We calculate
the RMSE by the different ratios of neighbors for different number of clusters. We
observe good performance when we set 20% or 30% of the number of clusters as the
number of neighbors. In the case of 100% clusters, the number of neighbors equals
the number of clusters, indicating that the prediction of ratings is based on the average
of all the clusters. Thus, the RMSEs are similar. When we consider only the smaller
number of neighbors for the new users, we obtain bad performance because we
consider a small amount of information.

We cluster users in different numbers of groups, as shown in Fig. 6. The figure
reveals that we obtain better performance when we set larger numbers of clusters. In
large numbers of clusters, users can find their neighbors more accurately because
there are more different numerical responses to the interview questions.

0.968 ’A

0.966 \
0.964

—8—270% Neighbors
0.962 —m—30% Neighbors

N.958

RMSE

100 200 300 400 500 600 700 800 900 1000
#Clusters

Fig. 6. RMSE in different numbers of clusters

5 Conclusions

In this paper, we proposed the MFK algorithm, which combines user feature selection
and interview question optimization to address the new user problem. We can
determine the best interview questions and extract the latent features by minimizing
the objective functions. We first use the feature extraction model to extract the latent
features of users and items. With the latent features, we can address the missing
values in user-item rating data and indicate the existing users’ tastes. After clustering
the user features, we can ensure that the users in the same cluster are similar. We can
indicate the new users’ tastes according to their responses to the interview questions,
which we learn through an optimization process.
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Abstract. Semi-supervised learning is an eminent domain of machine
learning focusing on real-life problems where the labeled data instances
are scarce. This paper innovatively extends existing factorization mod-
els into a supervised nonlinear factorization. The current state of the art
methods for semi-supervised regression are based on supervised manifold
regularization. In contrast, the latent data constructed by the proposed
method jointly reconstructs both the observed predictors and target vari-
ables via generative-style nonlinear functions. Dual-form solutions of the
nonlinear functions and a stochastic gradient descent technique which
learns the low dimensionality data are introduced. The validity of our
method is demonstrated in a series of experiments against five state-of-
art baselines, clearly improving the prediction accuracy in eleven real-life
data sets.

Keywords: Supervised Matrix Factorization, Nonlinear Dimensionality
Reduction, Feature Exctraction.

1 Introduction

Regression is a core task of machine learning, aiming at identifying the relation-
ship between a series of predictor variables and a special target variable (labeled
instances) of interest [1]. Practitioners often face budget constraints in record-
ing/measuring instances of the target variable, in particular due to the need for
domain expertise [2]. On the other hand, the instances composed of predictor
variables alone (unlabeled instances) appear in abundant amounts because they
typically originate from less expensive automatic processes. Eventually the re-
search community realized the potential of unlabeled instances as an important
guidance in the learning process, establishing the rich domain of semi-supervised
learning [2]. Semi-supervised learning is expressed on two flavors: regression and
classification, depending on the metric used to evaluate the prediction of the
target variable.

The principle of incorporating unlabeled instances relies heavily on exploring
the geometric structure of unlabeled data, addressing the synchronization of the
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detected structural regularities against the positioning of the labeled instances.
A stream of research focuses on the notion of clusters, where the predicted target
values were influenced by connections to labeled instances through dense data re-
gions [3,4]. The other prominent stream elaborates on the idea that data is closely
encapsulated in a reduced dimensionality space, known as the manifold princi-
ple. Subsequently, the method of Manifold Regularization restricted the learning
algorithm by imposing the manifold geometry via the addition of structural reg-
ularization penalty terms [5]. Discretized versions of the manifold regularization
highlighted the structural understanding of data through elaborating the graph
Laplacian regularization [6]. The extrapolating power of manifold regularization
have been extended to involve second-order Hessian energy regularization [7],
and parallel vector field regularization [8].

Throughout this study we introduce a semi-supervised regression model. The
underlying foundation of our approach considers the observed data variables to
be dependent on a smaller set of hidden/latent variables. The proposed method
builds a low-rank representation of the data which can reconstruct both the
predictor variables and the target variable via nonlinear functions. The target
variable is utilized in guiding the reduction process, which in comparison to
unsupervised methods, help filtering only those features which boosts the tar-
get prediction accuracy [9,10]. The proposed method operates by constructing
latent nonlinear projections, opposing techniques guiding the reconstruction lin-
early [9]. Therefore we extend supervised matrix factorization into non-linear
capabilities. The nonlinear matrix factorization belongs to the family of mod-
els known as Gaussian Process Latent Variable Modeling [11]. Our stance on
nonlinear projections is further elaborated in Section 3.

The modus operandi of our paper is defined as a joint nonlinear reconstruction
of the predictors and target variable by optimizing the regression quality over
the training data. The nonlinear functions are defined as regression weights in a
mapped data space, which are expressed and learned in the dual-form using the
kernel theory. In addition, a stochastic gradient descent algorithm is introduced
for updating the latent data based on the learned dual regression weights. In
the context of semi-supervision our model can operate with very few labeled
instances. Detailed explanation of the method and all necessary derivations are
described in Section 4.

No previous paper has attempted to compare factorization approaches against
the state of the art in manifold regularization, regarding semi-supervised regres-
sion problems. In order to demonstrate the superiority of the presented method
we implemented and compared against five strong state-of-art methods. A bat-
tery of experiments over eleven real life datasets at varying number of labeled
instances is conducted. Our method clearly outperforms five state-of-art base-
lines in the vast majority of the experiments as discussed in Section 5. The main
contributions of this study are:

— Formulated a supervised nonlinear factorizations model

— Developed a learning algorithm in the dual formulation

— Conducted a throughout empirical analysis against the state of the art (man-
ifold regularization)
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2 Related Work

Even though a plethora of regression models have been proposed, yet Sup-
port Vector Machines (SVMs) are among the strongest general purpose learning
models. A particular implementation of SVMs tailored for approximating square
error loss is called Least Square SVMs (LS-SVM) [12], and is shown to perform
equivalently to the epsilon loss regression SVMs [13]. This study empirically
compares against LS-SVM, in order to demonstrate the additive gain of incor-
porating unlabeled information.

The semi-supervised regression research was boosted by the elaboration
of the unlabeled instances’ structure into the regression models. A major stream
explored the cluster notion in utilizing high density unlabeled instances’ regions
for predicting the target values [3,4]. The other stream, called Manifold Reg-
ularization, assumes the data lie on a low-dimensional manifold and that the
structure of the manifold should be respected in regressing target values of the
unlabeled instances [5]. A discretized variant of the regularization was proposed
to include the graph Laplacian representation of the unlabeled data as a penalty
term [6]. The regularization of the manifold surfaces have been extended to in-
volve second-order Hessian energy regularization [7], while a formalization of the
vector field theory was employed in the so-called Parallel Field Regularization
(PFR) [8]. In addition, a recent elaboration of surface smoothing included en-
ergy minimizations called total variation and Euler’s elastica [14]. Another study
attempts to discover eigenfunctions of the integral operator derived from both
labeled and unlabeled instances [15], while efforts have extended to incorporate
kernel theory to manifold regularization [16]. In this study we compare against
three of the strongest baselines, the Laplacian regularization, the Hessian Regu-
larization and the PFR regularization. In contrast to these existing approaches,
our novel method explores hidden data structures via latent nonlinear recon-
structions of both predictors and target variable.

Supervised Dimensionality Reduction involves label information as a
guidance for dimensionality reduction. The Linear Discriminant Analysis is the
pioneer of supervised decomposition [17]. SVMs were adjusted to high dimen-
sional data through reducing the dimensionality via kernel matrix decompo-
sition [18]. Generalized linear models [19] and Bayesian mixture modeling [10]
have also been combined with supervised dimensionality reduction. Furthermore
convolutional and sampling layers of convolutional networks are functioning as
supervised decomposition [20]. The field of Gaussian Process Latent Variable
Models (GPLVM) aims at detecting latent variables through a set of functions
having a joint Gaussian distribution [21]. A similar model to ours has utilized
GPLVM for pose estimation in images [22].

Due to its empirical success, matrix factorization has been employed in detecting
latent features, while supervised matrix factorization is engineered to emphasize
the target variable [9]. For the sake of clarity, methods that reduce the dimensional-
ity in anonlinear fashion such as the kernel PCA [23], or kernel non-negative matrix
factorization [24], should not be confused with the proposed method, because such
methods are unsupervised in terms of target variable. Our method offers novelty
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compared to state-of-art techniques in proposing joint nonlinear reconstruction of
both predictors and target variables, in a semi-supervised fashion, from a minimal-
istic latent decomposition through dual-form nonlinearity.

3 Elaborated Principle

The majority of machine learning methods expect a target variable to be a con-
sequence of, or directly related to, the predictor variables. This study operates
over the hypothesis that both the predictors and the target variables are observed
effects of other hidden original factors/variables which are not recorded /known.
Our method extracts original variables which can jointly approximate both pre-
dictors and target variables in a nonlinear fashion. The current study claims
that original variables contain less noise and therefore better predict the target
variable, while empirical results of Section 5 demonstrate its validity.

Let us assume the unknown original data to be composed of D-many hidden
variables in N training and N’ testing instances and denoted as Z € RN+N)xD,
Assume we could observe M-many predictor variables X € RIV+N %M and one
target variable Y € RV, with the aim of accurately predicting the test targets
Y, e RY. Semi-supervised scenarios where N’ > N are taken into consideration.
Our method learns the original variables Z and nonlinear functions g;, h € RP —
R which can jointly approximate X,Y. Equation 1 describes the idea, while
we included natural Gaussian noise with variance ox,oy in the process. We
introduce a syntactic notation NZ ={a,a+1,...,b—1,b}.

Xij=9;(Zi.) + N(0,0x); Yi=hZ.)+N(0,0v) (1)

i e NVFNV e NM

4 Supervised Nonlinear Factorizations (SNF)

As aforementioned, our novelty relies on learning a latent low-rank representa-
tion Z from observed data X,Y, such that the predictor variables and the target
variable are jointly reconstructible from the low-rank data via nonlinear func-
tions. Nonlinearity is achieved by expanding the low-rank data Z to a (probably
much) higher-dimensional space R space via a mapping ¢ : R? — RF. Lin-
ear hyperplanes V € RF*M 1/ ¢ RF with bias terms V0 € RM W0 € R can
therefore approximate X,Y in the mapped space as described in Equation 2.

Xij=W(Zi.), Vi) + V05 Yi=((Zi.), W)+ W° (2)
i e NNHN' e NM

4.1 Maximum Aposteriori Optimization

Consecutively the objective is to maximize the joint likelihood of the predic-
tors X, target Y and the maximum aposteriori estimators V,VO W, W° as
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shown in Equation 3. The hyperplanes parameters incorporate normal priors
V ~ N(0,A\"), W ~ N(0,\;}). The distribution of the observed variables is
also assumed normal X ~ N((¢(Z),V),o0x) and Y ~ N(((Z),W),oy) and
independently distributed. The logarithmic likelihood, depicted in Equation 4
converts the objective to a summation of terms.

N+N'

argmax H p(Xi:[0(Zi), V,VO) p(V)
B(Z),VVOW,WO i

p(Yilt(Z1,:), W, W) p(W)

3)

=

1

N+N'

argmax log (p(X,:|¢ VVO log (Yilw(Z W,WO
W(Z),V,VO, W, WO ; (X2 Z Y|y (Zu,:), )

+ Z log (p ) + log (p(W)) (4)

Inserting the normal probability into Equation 4 converts logarithmic likeli-
hoods into L2 norms with Tikhonov regularization terms as shown in Equation 5
and the variance terms ox, oy drop out as constants. An additional biased reg-
ularization term Az(Z,Z) is included in order to help the latent data avoid
over-fitting.

M

argmin | Y (&;.65) + Av (Vi Vig) | 4 (6.0) + Aw (W, W) + Az(Z, Z)
ZV,Vowwe \ ST

subject to: & = X j — (W(Zi), Vi) — VP, i e NV j e NV (5)
o =Y — (W(Z.),W)-Ww°  1eN¥

Computing the ¥(Z) directly is intractable, therefore we will derive the dual-
form representation in the next Section 4.2, where the kernel trick will be utilized
to compute Z in the original space RP.

4.2 Dual-Form Solution - Learning the Nonlinear Regression
Weights

The optimization of Equation 5 is carried on in an alternated fashion. Hyper-
plane weights V, VO, W, W° are converted to dual variables and then solved by
keeping Z fixed, while in a second step Z is solved keeping the dual weights
fixed. This section is dedicated to learning the nonlinear weights in the dual-
form. Each of the M-many predictors loss terms from Equation 5, (one per each
predictor variable X. ;) can be learned isolated as described in the sub-objective
function J; of Equation 6. To facilitate forthcoming derivations we multiplied
the objective function by 2/\1V.
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argmin J; =
VZ‘JVVjO 2

§ij = Xij— (W(Zi.), V. 5) — Vjo

In order to optimize Equation 6, the equality conditions are added to the
objective function through Lagrange multipliers «; ;. The inner minimization
objective is solved by computing stationary solution points V,j,V}O,{;,j and

eliminating out the first derivatives (g‘fj_ =0, ggL =0, gé’% = 0) as shown
7 7 7

1 1
Ay (g &) + 5 (Vig, Vi) (6)

in Equation 7.

1 1
argmax argmin L; = (€50 &) + o (Vijs Vig)
Oh‘jyv'jO ‘/:‘jvvvjovf:,j 2)\V 2
N+N'
+ > iy (Xiy— @(Zi), Vo) =V = &) (7)
i=1
N+N'
- V= Z ;¥ (Zi:)
i=1
g.,j - >\Va ,J
N+N'
> i =0
i=1

Replacing the stationary point solution of V. , :, 7, V}O back into the objective
function 7, we get rid of the variables V. ;,&. ;, yielding Equation 8.

N+Nt?
argmax — > oo (Y(Zi:), ¥(Z0:)) = Av (e, o)
niiVj i=1,l=1
N+Nt
+2 > g (X = V) (8)
1=1

The solution of the dual maximization is given through eliminating the deriva-
tive of a?f, = 0 as presented in Equation 9. The kernel notation is introduced

as K;; = <1]/J(Zz‘,:),¢(zl,:)>-

2,\Va:7j+2K.a:7j+2<1,Vj°> =2X.; — (K+,\V1)a:7j+<1,vj°> =X.;(9)

Combining Equation 9 and the constraint of Equation 8, the final nonlinear
reconstruction solution is given through the closed-form formulation of a j, V;-O
as depicted in Equation 10.

[m N {(1) K ij;\vf] : [;j] (10)
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Symmetrical to the predictors case, a dual-form maximization objective func-
tion is created and a mot-a-mot procedure like Section 4.2 can be trivially
adopted in solving the nonlinear regression for the target variable. The derived
solution is shown in Equation 11. Instead of using the symbol o we denote the
dual-weights of the target regression dual problem using the symbol w.

wel fo 17 17'[o
_[o ; (1)
w 1KY+ wl Y
where K = (V(Zi.),%(Z..)); i,1€ NY
A prediction of the target value of a test instance t € N%flv " is conducted
using the learned dual weights as shown in Equation 12.

N
Vi=Y wiK"(Zi., Zi.) + WO (12)
=1

Stochastic Gradient Descent - Learning the Low Dimensionality Rep-
resentation. A novel algorithm is applied to learn Z for optimizing Equa-
tion 8. Sub-losses composing only of o ;,a; ; are defined for all combinations
Vi € N{VJrNt,Vl € N{VJrNt and Z is updated in order to optimize each sub-loss
in a stochastic gradient descent fashion as presented in Equation 13. The ad-
dition of penalty terms controlled by the hyper-parameter Az which controls
the regularization of Z as described in Equation 5. Our model called Supervised
Nonlinear Factorizations (SNF) utilizes polynomial kernels with the derivatives
needed for gradient descent represented in Equation 13.

K
Zik < Zik+1 (Oéz‘,jal ' \2Zi k) (13)

8 i’
)] 821’ s

0K;,
AR R AN (ai,jal,j 82;7;6 - )\ZZl,k)

oK Zl,k ifr=1
Kii={Zi Z1)y+ 1) — aZ“; = d(Ziy 1)+ 1) % Zig ifr=1
" 0 else

Algorithm 1 combines all the steps of the proposed method. During each epoch
all predictors’ non-linear weights are solved and the latent data Z is updated.
The target model is updated multiple times after each predictor model to boost
convergence. The learning algorithm makes use of two different learning rates in
updating Z, one for the predictors’ loss (1x) and one for the target loss (ny ).
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Algorithm 1. Learn SNF

Require: Data X € RONFNIXM 'y o RM', Latent Dimension: D, Learn Rates:
nx,ny, Number of Iterations: Numlter, Regularization parameters: Az, Av, A\w
1: Randomly set: Z € RNTNIXD 0 ¢ RM 10 ¢ R o € RNFEN)XM ) ¢ ]RNZ,
2: for 1...Numlter do
3: forje{l...M} do
4 Compute K;; = K(Zi.., Z;.), i, € NNtV
5

sove []= [ 5] [
Qa5 - 1 K+ M1 X;,j

6: for i € NNV 1 e NVY' L e NP do

7 Zik & Zikx +1x (Oéi,jal,j ggj; - /\ZZi,k>

8: Zik < Zik +nx (ai,jOél,j 22‘; - )\zZz,k)

9: end for

10: Compute K}, = K(Zi.., Z1..), i, € NY

w°l o 1T 17'To

11: Solve [w} = L KY—i—)\WI} v

12: for i € NNV 1 e NVN' ke NP do
oK},

13: Zik < Lk + 1y (UJiUJl 825’; - Az&,k)
oKY,

14: Zik = Zik +ny (wiwn g0 — Az 21k

15: end for

16:  end for

17: end for

18: return Z,a, V° w, W°

5 Empirical Results

Five strong state of the art baselines and empirical evidence over eleven datasets
are mainly the outline of our experiments, which will be detailed in this section,
together with the results and their interpretation.

5.1 Baselines

The proposed method Supervised Nonlinear Factorizatoins (SNF) is compared
against the following five baselines:

— Least Square Support Vector Machines (LS-SVM) [12] is a strong
general purpose regression model and the comparisons against it will show
the gain of incorporating unlabeled instances.

— Laplacian Manifold Regularization (Laplacian) [5], Hessian En-
ergy Regularization (Hessian) [7], Parallel Field Regularization
(PFR)[8] are strong state-of-art baselines belonging to the popular field
of manifold regularization. Comparing against them gives an insight into
the state-of-art quality of our results.



196 J. Grabocka, E. Bedalli, and L. Schmidt-Thieme

— Linear Latent Reconstructions (LLR) [9] offers the possibility to un-
derstand the addiditive benefits of exploring nonlinear projections compared
to plain linear ones.

5.2 Reproducibility

All our experiments were run in a three fold cross-validation mode and the hyper-
parameters of our model were tuned using only train and validation data. The
evaluation metric used in all experiments is the Mean Square Error (MSE).

SNF requires the tuning of seven hyper-parameters: the regularization weights
Az, Av, Aw, the learning rates 1x,ny, the number of latent dimensions D and
the degree of the polynomial kernel d. The search ranges of hyper-parameters are:
Az, Av, Aw € {1076,1075 ... 1,10}, mx, my € {107°,107*...0.1};d € {1,2,3,4}
while the latent dimensionality was set to one of 50%, 75% of the original dimen-
sions. The maximum number of epochs was set to 1000. A grid search method-
ology was followed in finding the best combination of hyper-parameters. Please
note that we followed exactly the same fair principle in computing the hyper-
parameters of all baselines.

We selected eleven popular regression datasets in a random fashion from
dataset repository websites. The selected datasets are AutoPrice, ForestFires,
BostonHousing, MachineCPU, Mpg, Pyrimidines, Triazines, WisconsinBreast-
Cancer from UCI' ; Baseball, BodyFat from StatLib?; Bears®. All the datasets
were normalized between [-1,1] before usage.

5.3 Results

The experiments comparing the accuracy of our method SNF against the five
strong baselines were conducted in scenarios with few labeled instances, as typ-
ically encountered in semi-supervised learning situations.

In the first experiment 5% labeled instances were selected randomly, while all
other instances left unlabeled. Therefore, the competing methods had 5% target
visibility and all methods, except LS-SVM, utilized the predictor variables of all
the unlabeled instances. The results of the experiments are shown in Table 1.
The metric of evaluation is the Mean Square Error (MSE), while both the mean
MSE and the standard deviation are shown in each dataset-method cell. The
winning method of each baseline is highlighted in bold. As it is distinguishable
from the sum of wins, SNF outperforms the baselines in the majority of datasets
(six in total), while the closest competing baseline wins in only two datasets.
Furthermore in datasets such as AutoPrice, BodyFat and Mpg the improvement
is significant. Even when SNF is not the winning method, the margin to the
first method is not significant, as it occurs in the Baseball, ForestFires and
WisconsinBreastCancer datasets.

! archive.ics.uci.edu
2 1ib.stat.cmu.edu
3 people.sc.fsu.edu/~jburkardt/datasets/triola/
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Table 1. Results - MSE - Real-life Datasets (5 % Labeled Instances)

Dataset LS-SVM Laplacian Hessian PFR LLR SNF
A.Price 0.075 £ 0.012  0.156 £ 0.059 0.102 £ 0.036 0.067 £ 0.024  0.090 £ 0.026 0.049 + 0.026
B.ball 0.093 £+ 0.019 0.131 4+ 0.020 0.072 + 0.015 0.082 4+ 0.029 0.086 + 0.022 0.073 £ 0.017
Bears 0.205 £+ 0.046  0.407 £ 0.212 0.399 £ 0.218 0.380 £ 0.220 0.292 £ 0.146 0.130 £ 0.032
B.Fat 0.013 £+ 0.007 0.081 4+ 0.002 0.039 £+ 0.009 0.019 4+ 0.007 0.017 £ 0.006 0.008 + 0.002
F.Fires 0.020 + 0.004 0.0137 4+ 0.015 0.0141 4+ 0.015 0.0137 4+ 0.015 0.018 4+ 0.017 0.0139 + 0.014
B.Hous. 0.087 £ 0.027 0.123 £ 0.027 0.104 £ 0.042 0.071 £ 0.027 0.110 £ 0.031 0.069 £ 0.024
M.Cpu 0.061 £+ 0.041 0.053 4+ 0.043 0.027 £+ 0.016 0.018 4+ 0.012 0.030 £ 0.021 0.015 + 0.007
Mpg 0.044 £+ 0.006  0.074 £ 0.009 0.055 £ 0.007 0.052 £ 0.008 0.062 £ 0.015 0.041 £ 0.006
Pyrim 0.131 4+ 0.020 0.106 4+ 0.043 0.097 + 0.050 0.101 4+ 0.055 0.152 + 0.065 0.102 + 0.053
Triaz. 0.191 £ 0.014 0.160 £+ 0.026 0.165 + 0.031 0.166 £ 0.035 0.196 £ 0.026 0.175 £ 0.039
WiscBC. 0.608 + 0.074 0.356 4+ 0.039 0.356 + 0.042 0.3499 + 0.035 0.429 + 0.074 0.3504 4+ 0.028

Wins o 1.5 2 1.5 o 6

Table 2. Results - MSE - Real-life Datasets (10 % Labeled Instances)

Dataset LS-SVM Laplacian Hessian PFR LLR SNF
A.Price 0.051 £ 0.007 0.115 4 0.054 0.084 £ 0.042 0.048 £ 0.018 0.062 + 0.005 0.037 £ 0.014
B.ball 0.127 £ 0.035 0.092 + 0.021 0.068 + 0.011 0.080 + 0.022 0.084 + 0.014 0.072 4+ 0.010
Bears 0.160 £ 0.053 0.182 £ 0.067 0.202 £ 0.018 0.156 £ 0.051 0.067 £+ 0.021  0.071 £ 0.020
B.Fat 0.006 + 0.001 0.058 £+ 0.006 0.015 4+ 0.007 0.008 4+ 0.004 0.011 4+ 0.004 0.003 + 0.002
F.Fires 0.018 £ 0.001 0.0146 + 0.014 0.0140 £+ 0.015 0.0142 + 0.014 0.016 £+ 0.015 0.0139 + 0.015
B.Hous. 0.067 +0.015 0.115 + 0.026 0.095 4+ 0.024 0.067 4+ 0.004 0.071 4+ 0.015 0.061 + 0.015
M.Cpu 0.030 £ 0.007 0.039 & 0.025 0.041 £+ 0.030  0.020 £ 0.011  0.024 £ 0.015 0.012 £ 0.003
Mpg 0.071 £ 0.047 0.062 £ 0.009  0.048 £ 0.011 0.038 + 0.008 0.066 £ 0.016 0.040 £ 0.004
Pyrim 0.076 + 0.005 0.086 £+ 0.042 0.076 £ 0.041 0.069 + 0.021 0.107 + 0.060 0.076 4+ 0.030
Triaz. 0.265 + 0.068 0.173 4 0.041 0.162 £+ 0.033 0.163 £ 0.038 0.169 £ 0.012 0.175 £ 0.009
WiscBC. 0.624 + 0.044 0.283 + 0.027 0.287 + 0.017 0.284 4+ 0.024 0.344 + 0.079 0.307 4+ 0.020
Wins o 1 2 2 1 5

For the sake of completeness we repeated the experiments with another de-
gree of randomly re-drawn labeled instances (10 % labeled instances). Table 2
presents the details of experiments over the selected eleven real-life datasets. The
accuracy of SNF is prolonged even in this experiment. The sum of the winning
methods (depicted in bold) shows that SNF wins in five of the datasets against
the only two wins of the closest baseline. In particular the cases of BodyFat and
MachineCpu demonstrate significant improvements in terms of MSE. As shown
by the results, even in cases where our method is not the first, still it is close to
the winner.

BodyFat AutoPrice BostonHousing
0.09r 0.16 0.18
LS-SVM LS-SVM LS-SVM
0.08%, : ==L aplacian . = ==1| aplacian 0.16 == Laplacian
5 == Hessian 0.14f -\, = Hessian = Hessian
0.07F--N =x=PFR =x=PFR 0.14 =x=PFR
N ——LLR G ——LLR ——LLR
0.06- S —==SNF .| -m=sNF
e -
~
w 0.05 '~ T
2 . g
0.04 L 0.08

omi\_ i R et
&

—
20

10 15 10 15
% Labeled Instances % Labeled Instances

Fig. 1. Scale-up Experiments
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In addition to the aforementioned results we extend our empirical analysis
by conducting more fine-grained scale-up experiments with varying degree of
labeled training instances. Figure 1 demonstrates the performance of all com-
peting methods on a subset of datasets with a range of present labels varying
from 5% up to 20%. SNF is seen to win in the earliest labeled percentages of the
BostonHousing dataset (up to 10 %) while following in the later stages. On the
contrary, we observe that our method dominates in all levels of label presence
in the scaled-up experiments involving the BodyFat and AutoPrice datasets.

The accuracy of our method is grounded on a couple of reasons/observations.
First of all, we would like to emphasize that each mentioned method is based
on a different principle and modus operandi. Consequently, the dominance of a
method compared to baselines depends on whether (or not) the datasets follow
the principle of that particular method. Arguably the domination of SNF over
manifold regularization baselines is due to the fact that our principle of mining
hidden latent variables is likely (as results show) more present in general real-life
datasets, therefore SNF is suited to the detection of those relations.

6 Conclusions

Throughout the present paper, a novel method that addresses the task of semi-
supervised regression was proposed. The proposed method constructs a low-rank
representation which jointly approximates the observed data via nonlinear func-
tions which are learned in their dual formulation. A novel stochastic gradient
descent technique is applied to learn the low-rank data using the obtained dual
weights. Detailed experiments are conducted in order to compare the perfor-
mance of the proposed method against five strong baselines over eleven real-
life datasets. Empirical evidence over experiments in varying degrees of labeled
instances demonstrate the efficiency of our method. The supervised nonlinear
factorizations outperformed the manifold regularization state-of-art methods in
the majority of experiments.
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Abstract. Crowdsourcing services have been proven efficient in collecting large
amount of labeled data for supervised learning, but low cost of crowd work-
ers leads to unreliable labels. Various methods have been proposed to infer the
ground truth or learn from crowd data directly though, there is no guarantee that
these methods work well for highly biased or noisy crowd labels. Motivated by
this limitation of crowd data, we propose to improve the performance of crowd-
sourcing learning tasks with some additional expert labels by treating each labeler
as a personal classifier and combining all labelers’ opinions from a model combi-
nation perspective. Experiments show that our method can significantly improve
the learning quality as compared with those methods solely using crowd labels.

Keywords: Crowdsourcing, multiple annotators, model combination, classifica-
tion.

1 Introduction

Crowdsourcing services such as Amazon Mechanical Turk have made it possible to col-
lect large amount of labels at relatively low cost. Nonetheless, since the reward is small
and the ability of workers is not certified, the labeling quality of crowd labelers is often
much lower than that of an expert. In the worst case, some workers just submit ran-
dom answers to get the fee deviously. One approach to dealing with low quality labels
is repeated-labeling. Sheng ef al. [16] empirically showed that under certain assump-
tions, repeated-labeling can improve the label quality. Thus in crowdsourcing, people
may collect multiple labels v, 2, ..., y* from L different labelers for one instance z;,
while in traditional supervised learning, one instance x; corresponds to one label y;.

The problem remains as how to learn a reliable predictive model with the unreliable
crowd labels. Various methods have been proposed to infer the ground truth [4, 10] or
learn from crowd labels directly [8, 15]. The basic idea is employing generative models
for the labeling processes of crowd labelers. While these models are useful under certain
conditions, their assumptions on labelers are not easy to verify for a certain task.

This situation motivates us to investigate making full use of opinions collected from
crowds by incorporating some expert labels, which seems more sensible than trying
to verify the behavior of each labeler. Intuitively, combining expert labels with crowd

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 200211, 2014.
(© Springer International Publishing Switzerland 2014
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labels is expected to achieve higher learning quality than solely using crowd labels
though, little work has been done under this configuration since most of the existing
work has focused on crowd labels.

This paper proposes to improve the performance of crowdsourcing learning tasks
with a minimum number of expert labels by maximizing the utilization of both the
crowd and expert labels'. Our major contribution is a formalized framework for utiliz-
ing expert labels in crowdsourcing. Following a series of existing work [8, 15, 19], our
work focuses on supervised classification problems.

Some existing models [8, 13, 15] are capable of combining expert labels by straight-
forward extensions. The major difference between our method and these models is that
we use prior beliefs on experts much more explicitly.

1.1 An Illustrative Example

In what follows, we illustrate the limitation of crowd data with an example and explain
the idea which forms the basis of our framework. Fig. 1(a) shows a synthetic dataset for
binary classification. For each class, we sample 100 points respectively from two differ-
ent Gaussian distributions, and get four underlying clusters. We simulate two labelers
whose opinions differ in one cluster as shown in Figs. 1(b) & 1(c). Here no model that
uses the crowd labels without extra information can weight one labeler over the other
since there is simply not enough evidence. Nonetheless, these two labelers provide very
informative labels. Labeler 1 actually gave all correct labels. If we can identify this fact
by a few expert labels, we achieve an efficient method.

However, the problem is not trivial even for this toy data set. Supposing that we
choose a controversial point and let an expert label it, we will find that Labeler 1 gave
the correct answer. This is far from enough to conclude that Labeler 1 gave true labels
for all controversial points given that in practice we only have crowd labels and are not
aware of the underlying data distribution. Adding more expert labels may increase our
confidence on Labeler 1, still a formalized mechanism is needed to combine the ground
truth with crowd data.

We address the problem by a model combination process. We train a logistic re-
gression classifier for each labeler separately with the labels provided by that labeler,
thus get 2 classifiers. A data instance x; will then get 2 predictions { f1(x;), f2(x;)}
from the 2 classifiers, where fy(x;) (¢ € {1,2}) is the posterior probability of the class
colored in blue. We treat the values of f;(x;) as features in a new space, shown in Fig-
ure 1(d). This is referred to as the intermediate feature space [11]. The final prediction
is made by another classifier in this intermediate feature space.

By summarizing the opinions of labelers using personal classifiers, the separation
between classes becomes clearer and the controversial area is projected to the bottom
right in the new space and becomes more compact. Incorporating expert label evidence
in this space is much easier compared with the crowd labels in the original space. A
few ground truth labels in the controversial area will enables most classifiers built in

! We assume that an expert always gives true labels and use the two terms ‘expert labels’ and
‘ground truth’ interchangeably. As experts can also make mistakes, this assumption is a sim-
plification and may be relaxed in future work.
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Fig. 1. An illustrative example. Instances labeled with cross(+) in (b)(c)(d) are controversial be-
tween the two labelers. These controversial data instances are gathered at the bottom right in the
intermediate feature space as shown in (d).

this space to favor Labeler 1 over Labeler 2 naturally. We leave the the crucial step of
combining expert evidence to the experiment section after we formalize our framework.

2 Related Work

With the arising of crowdsourcing services, crowd workers have shown their power in
applications such as sentiment tracking [3], machine translation [1] and name entity
annotating [5]. A key problem in crowdsourcing research is modeling data from multi-
ple unreliable sources for inferring the ground truth. The problem has its origin in the
early work [4] for combining multiple diagnostic test results. Recent work addressed
problems with the same formulation by methods such as message transferring [10] and
graphical models [13].

Our framework adopts the idea of learning a classifier from crowd data directly.
Raykar et al. [15] and Yan et al. [19] treat true labels as hidden variables which are
inferred by the EM algorithm. Kajino et al. [8] infer only the true classifier by personal
classifiers without considering true labels explicitly. The nature of our method is similar
to that of Kajino et al. [8], focusing on the final learning tasks and not being tangled
with the correctness of a certain label.

To the best of our knowledge, very little work considered the case of learning from
crowd and expert data simultaneously. Kajino et al. [9] addressed this problem by ex-
tending some existing models straightforwardly. Wauthier and Jordan [18] also used
some expert labels. In their model crowd labels only make effects through the shared
latent factors which express labelers. Our method differs from these work in both moti-
vation and formulation.

We treat combining opinions of labelers as model combination. Getting the opti-
mal combination of a group of pattern classifiers has been studied thoroughly for a long
time and various methods have been proposed to employ the intermediate feature space.
Merz [14] proposed to do feature extraction using singular decomposition in this space
and Kuncheva er al. [12] proposed to combine classifiers giving soft labels using de-
cision templates. In traditional model combination framework, multiple classifiers are
obtained by different models trained on the same data set. Here the scenario is different,
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i.e., we have multiple unreliable label sets to train multiple classifiers, and we propose
to use some reliable labels to combine them. Under the crowdsourcing setting the idea
of absorbing the evidence of true labels in the intermediate feature space is also original.

3 Learning from Crowds and Experts

In this paper we focus on binary classification problems with crowdsourcing training
data. The extension to multi-class cases is conceptually straightforward.

3.1 Problem Formulation

Formally, a crowdsourcing training set is denoted as D = {(x;, y;) }}¥.,, where instance
x; € RP is a D-dimensional feature vector. We have L distinct labelers each of which
gives labels to all N data instances.” The label given by the /th labeler for instance x;
is denoted as yf where yf € {—1,1}. All labels corresponding to «; are collected in the
L-dimensional vector y;.

Different from most of the existing methods, we use some additional expert-labeled
instances to improve the model quality. If there are [Ny expert labels, then the expert
training set is Dy = {(x;, y;))}jvzol where x; is again a D-dimensional feature vector
and y? is the true label provided by the expert. Note that an expert-labeled instance
x; in Dy is not necessarily in D. The task is to learn a reliable predictive function
f : RP — [0, 1] for unseen data by taking both training sets D and Dy as inputs where
f(x) = p(y = 1|x) is the posterior probability of the positive class. We denote the
predictive function in this way for the convenience of the following steps.

3.2 Building Intermediate Feature Space

We extract the crowd opinions by treating labelers as personal classifiers. For the ¢th
labeler, we use the personal training set Dy = {(z;,y¢)}¥, to learn a classifier. Any
classification model that expresses predictions as posterior probabilities of classes is
compatible with our approach. Here we follow the work [8] and use a logistic regression
model for each labeler, which is given by

Prly = 1|z, w] = o(w™

) ey

where w is the model parameter and the logistic sigmoid function is defined as o (a) =
1/(1 + e~*). We express all prediction functions of classifiers as an ensemble F =
{f1, f2y- .., fr} where f;(x) is the prediction of the classifier obtained from labeler ¢
on instance . The outputs of all L classifiers for a particular instance «; is organized
in an L-dimensional vector [f1(x;), fo(;), ..., fo(x:)]*, which is referred to as a
decision profile [11]. In what follows, we denote this vector as dp; with the ¢th element
dpt = fu(w;). We treat values of dp{ as features in a new feature space, namely the
intermediate feature space, and use another classifier taking these values as inputs for
making the final prediction.

2 We assume at this point that all labelers give full labels to keep the notations simple. We will
discuss the case of missing labels in Section 3.5.
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3.3 Combination of Evidence from Crowds and Experts

The next step is to train a classifier in the intermediate feature space by utilizing expert
labels. As expert labels are much more reliable than crowd labels, we should put more
weights on them. However, if we discard crowd labels and use expert labels solely,
building a stable model can be costly even in the more compact and representative
intermediate feature space. Thus a balance has to be made between the crowd opinions
and expert evidence.

We address the problem by imposing a Bayesian treatment on the model parame-
ters of the classifier in the intermediate feature space. We use some straightforward
combination of personal classifiers as the prior distribution of model parameters, and
absorb expert label evidence by updating the posterior distribution sequentially. We be-
lieve that a fully Bayesian method is essential here for utilizing the prior distribution on
parameters, which is informative in our framework as we will show later.

Specifically, we use the Bayesian logistic regression model [7] as our classifier in
the intermediate feature space. The model achieved a tractable approximation of the
posterior distribution over parameter w in Equation (1) by using accurate variational
techniques. In our problem, the decision profile dp; in the new space corresponding
to the instance x; in the original space is an (L + 1)-dimensional vector consisting of
all values of dpf, ¢ =1,...,L and an additional constant 1 corresponding to the bias
in parameter w. The corresponding true label is 3. The model assumes that the prior
distribution over w is Gaussian with mean g and covariance matrix X'. Absorbing the
evidence of expert-labeled instance dp and the true label y amounts to updating the
mean and covariance matrix by

St = X1+ 2A(€)|dp - dp” 2)
pfpost - Zpost[zilpf + (y/2)dp} (3)

where A\(§) = [1/2 — a(£)]/2€ and £ = [dpT X postdp + (dp™ ppost)?]%-5. The update
process is iterative and converges very fast (about two iterations) [7].

While one common criticism of the Bayesian approach is that the prior distribution
is often selected on the basis of mathematical convenience rather than as a reflection of
any prior beliefs [2], the prior distribution here is informative with a specific mean and
an isotropic covariance matrix given by

11 1.p
=[- L 4
l"’ [ 27La ’L] ()

Y=a'I (5)

The mean is chosen such that all personal classifiers are combined by weighting them
equally, and the bias is —0.5 to fit the shape of the logistic sigmoid function which is
equal to 0.5 for a = 0.

There is a single precision parameter o governing the covariance matrix. We can
interpret v as our confidence on the crowds. A large o will cause the prior distribution
over w to peak steeply on the mean, thus the affect of absorbing one expert label will
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Algorithm 1. Learning from crowd labelers and experts

1. Input: Crowd and expert training sets D and Do;
2. Train the ensemble F of logistic regression classifiers defined by Equation (1) using D,
where = 1,...,L;

. Use F to get predictions of data instances in Dy, collect results in DP;

. Initialize p and X' by Equations (4) & (5);

. for j=1 to No do
Calculate ftp0s¢ and 3,5 by Equations (2) & (3) using the evidence from dp; and y?;
Set M= KUpost, XY= Epost;

end for

. Output: Personal classifier ensemble J, mean g and covariance matrix 3;

© XN AW

be relatively small, leading to a final classifier depending heavily on the mean of prior,
which is the simple combination of personal classifiers. On the other hand, a small «
means that the prior is close to uniform, causing the final classifier to make predictions
mainly based on expert labels.

Intuitively, we should use a large @ when personal classifiers are generally good,
and use a small one when crowd labels are inaccurate. In a crowdsourcing scenario
however, we usually do not have such knowledge. One alternative is to let o be related
to the number of expert labels Ny given by @ = 1/Ny. As this number increases, we
decrease the confidence on crowds to let the final model put more weight on expert
labels. Experiments show that with such selection of a, our model achieves relatively
stable performance under various values of Ny.

Once the prior over w is chosen, we update its posterior distribution sequentially
with Equations (2) & (3) by adding one expert label each time. If an instance x; labeled
by the expert is not in D, we should first calculate its predictions dp; by personal
classifiers and use these values to update the model. We collect all dp; in a set DP =
{dp;} ;\/:01_ The complete steps of learning our model are summarized in Algorithm 1.

3.4 Classification

To classify a new coming instance xj, using the above results, we firstly get the predic-
tions dpy, of personal classifiers on x, and calculate the predictive distribution of the
true label Y in the intermediate feature space by marginalizing w.r.t. the final distribu-
tion M (w|w, X). The predictive likelihood is given by

1
log P(yp|xk, D, Do) = log o (&) — oSk — Mér)&R
(6)
1 | X% |

1 ¢ _ 1
— Tyt Tyt 1
2u u+2uk & uk+20g‘ |

where subscript k assigned to p and X refers to the posterior distribution over w after
absorbing the evidence of dpj and yg.
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Fig. 2. Decision boundaries before and after absorbing expert label evidence. Dotted lines are
means of prior distributions over w, and solid lines are means of posterior distributions respec-
tively after absorbing the label information of the circled instance(s) .

3.5 Missing Labels

In real crowdsourcing tasks, workers may label part of the instances instead of the whole
set. Our model handles this problem naturally by training multiple personal classifiers
independently. A worker only labels a few instances may lead to a pool personal classi-
fier. But this is not fatal as he uses only a tiny proportion of the whole budget. Also in
practice, we can avoid such cases simply by designing HITs with a moderate size.

4 Experiments

We use synthetic data to illustrate the process of absorbing expert evidence, and evaluate
the performance of our method on both UCI benchmark data and real crowdsourcing
data.

4.1 Synthetic Data

We complete our example in Figure 1 by illustrating the process of absorbing expert
labels, shown in Figure 2. For clarity, we only show the decision boundaries given
by means of the distributions over model parameter w. Dotted lines are priors before
adding expert labels. This prior is given by weighting each labeler equally following
our framework.

In the left sub-figure, we add one expert label and get the posterior. Since the true
label is blue, the decision boundary moves downward to suggest that data points near
this labeled instance is more likely to be blue. In the right sub-figure, we add four expert
labels for each class. The final decision boundary separates the actual class very well
using merely eight expert labels. In this experiment we adjusted the model parameter o
to get the best illustrative effect.
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Table 1. Results on Waveform 1 Table 2. Results on Spambase

Classifier A Az As Classifier A Az Az

GT 0.853+ 0.010 GT 0.924+ 0.008

MV 0.408 0.123 0.638+ 0.074 0.831% 0.007 MV 0.477+ 0.327 0.641% 0.228 0.885+ 0.013
AOC  0.490-+ 0.153 0547+ 0.101 0.831+ 0.006 AOC  0.535+ 0.302 0.578 0.208 0.879+ 0.013
ML 0.437=+ 0.190 0.743= 0.063 0.842 0.009 ML 0.510+ 0.357 0.711= 0.302 0.925 0.007
EL-10  0.718 0.046 0.740= 0.045 0.740- 0.059 EL-10  0.672= 0.057 0.606 0.113 0.665- 0.069
PCE-10 0.7374+ 0.051 0.742+ 0.043 0.732+ 0.051 PCE-10 0.592= 0.095 0.641== 0.083 0.770 0.049
CCE-10 0.725+£ 0.075 0.7404 0.068 0.8164 0.032 CCE-10 0.8574+ 0.035 0.7554 0.165 0.890+ 0.022
EL-20  0.756 0.037 0.759+ 0.034 0.783- 0.034 EL-20  0.860= 0.025 0.758 0.033 0.755-+ 0.047
PCE-20 0.755 0.033 0.768= 0.037 0.773= 0.048 PCE-20 0.764= 0.080 0.708 0.062 0.799- 0.046
CCE-20 0.801+£ 0.056 0.812+ 0.057 0.822+ 0.023 CCE-20 0.8914 0.025 0.802+ 0.087 0.894+ 0.016
EL-50  0.792 0.028 0.788= 0.033 0.798+ 0.014 EL-50  0.830= 0.041 0.826: 0.032 0.831 0.051
PCE-50 0.799+ 0.025 0.796=+ 0.037 0.805+ 0.016 PCE-50 0.820= 0.053 0.803= 0.028 0.850+ 0.017
CCE-50 0.816= 0.027 0.7804 0.039 0.8334 0.007 CCE-50 0.900+£ 0.017 0.8604 0.053 0.895+ 0.013
EL-100 0.7974 0.023 0.782+ 0.023 0.767+ 0.046 EL-100  0.860= 0.025 0.859+ 0.025 0.858- 0.034
PCE-100 0.803+ 0.008 0.811+ 0.010 0.807+ 0.015 PCE-100 0.856+ 0.025 0.861+ 0.017 0.8834 0.010
CCE-100 0.831= 0.017 0.830- 0.024 0.829+ 0.014 CCE-100 0.891+ 0.025 0.879+ 0.031 0.903+ 0.010

4.2 UCI Data

We test our method on three data sets from UCI Machine Learning Repository [6],
Waveform 1(5000 points, 21 dimensions), Wine Quality(6497 points, 12 dimensions)
and Spambase(4601 points, 57 dimensions). These data sets have moderate sizes which
enable us to perform experiments when number of crowd labels varies.

Since multiple labelers for these UCI datasets are unavailable, we simulate L label-
ers for each dataset. We firstly cluster the data into L clusters using k-means and assign
some labeling accuracy to each cluster for every labeler. Thus each labeler can have
different labeling qualities for different clusters. We use an L x L matrix A = [ai;]rx1
to express the simulation process, in which a;; is the probability that labeler ¢ gives the
true label for an instance in the jth cluster, thus a row corresponds to a labeler and a
column to a cluster. We set L = 5 and use three different accuracy matrices A1, As,
and Aj to simulate different situations of labelers as follows.

01010 0.30.10.80.80.8 0.55 0.550.55 0.55 0.55
11001 0.30.80.10.80.8 0.65 0.65 0.65 0.65 0.65
A;=100110],A,={0.30.80.80.10.8|, A3=10.750.750.750.750.75
10011 0.30.80.80.80.1 0.68 0.68 0.68 0.68 0.68
10110 0.80.10.10.10.1 0.950.950.950.95 0.95

A; simulates severely biased labelers. A, simulates labelers whose labels are both
noisy and biased. A3 simulates simply noisy labels. Note that A3 satisfies the model
assumption in the work by Raykar et al. [15].

We choose three baseline methods that learn with crowd data solely for comparison.
To verify the ability of our method to utilize the crowd labels, we compare the results
trained on expert labels solely. For comparison with existing methods we use the model
proposed by Kajino et al. [9], which is a state-of-art model that addresses the same
problem. We use the results trained on the original datasets which have all ground truth
labels as the approximate upper bounds of the classification performance. Methods used
in experiments are summarized as follows.
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Table 3. Results on Wine Quality

Classifier A A, As
GT 0.743+0.010

MV 0.42440.119 0.571+ 0.110 0.739+ 0.007
AOC 0.5824 0.118 0.500+ 0.109 0.740+ 0.004
ML 0.4174 0.133 0.701+£ 0.020 0.739+ 0.004

EL-10  0.5504 0.042 0.583+ 0.047 0.582+ 0.083
PCE-10 0.5914 0.035 0.578+ 0.063 0.613+ 0.033
CCE-10 0.63440.078 0.651+£ 0.092 0.715+ 0.022

EL-20  0.623+ 0.064 0.575+ 0.075 0.623+£ 0.063
PCE-20 0.6294 0.019 0.604+ 0.047 0.642+ 0.041
CCE-20 0.679+4 0.042 0.688+ 0.047 0.720+ 0.022

EL-50  0.6664 0.036 0.675+ 0.040 0.682+ 0.024
PCE-50 0.648+40.019 0.644+ 0.011 0.662+ 0.022
CCE-50 0.6874 0.038 0.707+ 0.025 0.722+ 0.019

EL-100 0.7074 0.017 0.706+ 0.017 0.711+ 0.016
PCE-100 0.666+ 0.011 0.665+ 0.009 0.685+ 0.020
CCE-100 0.7184 0.017 0.720+£ 0.010 0.733+ 0.006

Table 4. Results under the variation of crowd label numbers on Spambase

Num. 50 100 200 500 1000
GT 0.826+ 0.037 0.855+ 0.023 0.878+ 0.022 0.900+ 0.009 0.913+ 0.003
EL-50 0.835+0.032

MV 0.757+ 0.057 0.734+ 0.039 0.770+ 0.021 0.849+ 0.012 0.884+ 0.012
AOC  0.58740.0450.7274+ 0.025 0.798+ 0.025 0.8524 0.010 0.880+ 0.010
ML 0.807+ 0.065 0.822+ 0.025 0.876+£ 0.012 0.905+ 0.005 0.9214£ 0.005

PCE-50 0.838+ 0.025 0.839+ 0.024 0.842+ 0.016 0.8374 0.018 0.861+ 0.026
CCE-50 0.7924 0.045 0.8074+ 0.045 0.820+ 0.018 0.8734 0.008 0.903+£ 0.006

Majority Voting (MV) method learns from the single-labeled training set esti-

mated by majority voting.

— All-in-One-Classifier (AOC) treats all labels as in one training set.

— Multiple Labelers (ML) method [15] learns from crowd labels directly.

— Kajino et al. [9] extended their personal classifier model [8] to incorporate expert
labels, which we refer to as Personal Classifiers with Experts (PCE). PCE-Nj is
the results trained with Ny expert labels.

— We refer to our method as Classifier Combination with Experts (CCE). CCE-N,
is the results after absorbing the evidence of Ny expert labels.

— Training with expert labels solely is referred as Expert Labels (EL) classifiers.
EL-Nj is the results trained with Ny expert labels.

— Ground Truth (GT) classifier uses the original datasets for training.

For MV, AOC, GT, and EL, we use a logistic regression model respectively to train
the classifiers. For PCE, CCE and EL, the set of expert labels are randomly chosen from
the original datasets given the number of expert labels Ny which is restricted to a small
proportion of N. We divide each dataset into a 70% training set and a 30% test set and
each result is averaged on 10 runs.
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Tables 1-3 show the results for different datasets respectively. Results are in the form
of classification accuracy and averaged on 10 trials. The GT classifier is independent of
crowd labels thus it has only one result on each dataset. Our CCE outperforms EL, and
also outperforms MV, ACL and ML in most cases. This validates the ability of CCE
for combining crowd and expert labels. The only exception appears in ML under As
where labelers are not biased. CCE outperforms PCE with clear advantages. There are
a number of cases that PCE performs worse than EL, which suggests that in the PCE
model expert evidences are easily disturbed by inaccurate crowd labels.

Table 4 shows the results under the variation of numbers of crowd labels. We show
the results on Spambase data under Aj since under this situation all methods seem to
work well. The top number of each column represents the number of labels provided
by each labeler. This is also the number of expert labels used for GT. We use 50 expert
labels for EL, PCE and CCE. EL has only one result as it is independent of crowd labels.

There is no surprise that ML performs very well in this experiment as the configura-
tion here meets ML’s model assumption. Yet we should not forget that ML fails in many
cases as shown in Tables 1-3. We do not choose those cases because showing groups
of failed results does not make any sense. Generally PCE and CCE outperform MV and
AOC by using extra expert labels. CCE performs slightly worse than PCE when the
number of crowd labels is small, while the performance raise of PCE is quite limited
when using more crowd labels.

In summary, our method CCE achieved reasonable performance on different data
sets with various labeler properties. The accuracy and stability of our CCE increase as
we use more expert labels. On the other hand, learning solely from crowd labels is risky,
especially when crowd labels are biased. PCE’s performance is limited compared with
CCE when we have enough crowd labels.

4.3 Affective Text Analysis Data

In this section we show results on the data for affective text analysis collected by Snow
et al. [17]. The data is collected from Amazon Mechanical Turk. Annotators are asked
to rate the emotions of a list of short headlines. The emotions include anger, disgust,
fear, joy, sadness, surprise and the overall positive or negative valence. The former six
are expressed with an interval [0,100] respectively while valence is in [—100, 100].
There is a total number of 100 headlines labeled by 38 workers. For each headline 10
workers rated for each of the seven emotions. Most workers labeled 20 or 40 instances
thus more than one half labels are missing. All 100 instances are also labeled by the
experts and have an average rating for each emotion, which we treat as ground truth.

We design the classification task which predicts the surprising level of a headline
using other emotion ratings as features. We define that a headline of which the surprise
rating is above 20 is a surprise, while others not, and use ratings of other six emotions
provided by the experts to express a headline. Thus we get a binary classification task
in a 6-dimensional feature space.

Figure 3 shows classification accuracy when continually adding expert labels. Re-
sults of MV, AOC and ML are not shown in this figure, which are three horizontal lines
below GT and stay close to each other. PCE only performs similarly with EL, which
collapses to GT when using all expert labels.
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Fig. 3. Results on Affective Text Analysis data. The z-axis is the number of expert labels used
while the y-axis is the classification accuracy.

The result of CCE is promising. The value of GT is 0.65, which suggests that accord-
ing to the experts, there is no strong correlation between the surprising level and other
emotions. However, CCE only uses about 20 expert labels to get a similar performance
level with GT, and when adding more expert labels, CCE outperforms GT and achieves
an accuracy up to 0.8. We attribute this fact to the power of our CCE model as a ‘feature
extractor’. Among the 38 workers, one or more of them did give ratings in manners that
relate surprising levels to other emotions even if experts did not do so. Personal clas-
sifiers trained from these workers will then be able to predict the target and our model
identifies these classifiers successfully using expert labels.

5 Conclusion and Future Work

In this paper, we have proposed a framework for improving the performance of crowd-
sourcing learning tasks by incorporating the evidence of expert labels with a Bayesian
logistic regression classifier in the intermediate feature space. Experimental results have
verified that by combining crowd and expert labels, our method has achieved better
performance as compared with some existing methods, and has been stable under the
variation of the number of expert labels and crowd labeler properties.

A promising direction of future work is to investigate actively querying for the expert
labels, for which we can develop models by adopting basic ideas from active learning
and considering the particular situation of crowdsourcing.
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Program of the Chinese Ministry of Science and Technology under Grant No.
2012BAH94F03.



Learning from Crowds under Experts’ Supervision 211

References

11.

12.

14.

15.

. Ambati, V., Vogel, S., Carbonell, J.: Active learning and crowd-sourcing for machine trans-

lation. Language Resources and Evaluation (LREC) 7, 2169-2174 (2010)

. Bishop, C.M,, et al.: Pattern recognition and machine learning, vol. 4. Springer, New York

(2006)

. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to track

sentiment in online media. In: ECAI 2010, pp. 145-150 (2010)

. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the

EM algorithm. Applied Statistics, 2028 (1979)

. Finin, T., Murnane, W., Karandikar, A., Keller, N., Martineau, J., Dredze, M.: Annotating

named entities in twitter data with crowdsourcing. In: Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, pp.
80-88. Association for Computational Linguistics (2010)

. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
. Jaakkola, T., Jordan, M.: A variational approach to Bayesian logistic regression models and

their extensions. In: Proceedings of the 6th International Workshop on Artificial Intelligence
and Statistics (1997)

. Kajino, H., Tsuboi, Y., Kashima, H.: A convex formulation for learning from crowds. In:

Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012) (to appear)

. Kajino, H., Tsuboi, Y., Sato, 1., Kashima, H.: Learning from crowds and experts. In: Pro-

ceedings of the 4th Human Computation Workshop, HCOMP 2012 (2012)

. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems. In:

Advances in Neural Information Processing Systems (NIPS 2011), pp. 1953-1961 (2011)
Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms (kuncheva, li;
2004)[book review]. IEEE Transactions on Neural Networks 18(3), 964 (2007)

Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion:
an experimental comparison. Pattern Recognition 34(2), 299-314 (2001)

. Liu, Q., Peng, J., Ihler, A.: Variational inference for crowdsourcing. In: Advances in Neural

Information Processing Systems (NIPS 2012), pp. 701-709 (2012)

Merz, C.J.: Using correspondence analysis to combine classifiers. Machine Learning 36(1),
33-58 (1999)

Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning
from crowds. The Journal of Machine Learning Research 11, 1297-1322 (2010)

. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? Improving data quality and data

mining using multiple, noisy labelers. In: Proceeding of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 614-622 (2008)

. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast—but is it good? evaluat-

ing non-expert annotations for natural language tasks. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 254-263. Association for Compu-
tational Linguistics (2008)

. Wauthier, F.L., Jordan, M.I.: Bayesian bias mitigation for crowdsourcing. In: Advances in

Neural Information Processing Systems (NIPS 2011), pp. 1800-1808 (2011)

. Yan, Y., et al.: Modeling annotator expertise: Learning when everybody knows a bit of some-

thing. In: Proceedings of 13th International Conference on Artificial Intelligence and Statis-
tics (AISTATS 2010), vol. 9, pp. 932-939 (2010)



A Robust Classifier for Imbalanced Datasets

Sori Kang and Kotagiri Ramamohanarao

Department of Computing and Information Systems, The University of Melbourne,
Parkville Victoria 3052 Australia

Abstract. Imbalanced dataset classification is a challenging problem,
since many classifiers are sensitive to class distribution so that the clas-
sifiers’ prediction has bias towards majority class. Hellinger Distance has
been proven that it is skew-insensitive and the decision trees that employ
Hellinger Distance as a splitting criterion have shown better performance
than other decision trees based on Information Gain. We propose a new
decision tree induction classifier (HeDEx) based on Hellinger Distance
that is randomized ensemble trees selecting both attribute and split-point
at random. We also propose hyperplane as a decision surface for HeDEx
to improve the performance. A new pattern-based oversampling method
is also proposed in this paper to reduce the bias towards majority class.
The patterns are detected from HeDEx and the new instances generated
are applied after verification process using Hellinger Distance Decision
Trees. Our experiments show that the proposed methods show perfor-
mance improvements on imbalanced datasets over the state-of-the-art
Hellinger Distance Decision Trees.

1 Introduction

In machine learning, the classification problem aims to predict class labels of
new unseen examples on the basis of previously observed training datasets.
Many methods have been proposed to generate high accuracy classifiers, but
most classification methods show good performance on balanced class problems
- the number of instances of classes is balanced - while yielding relatively poor
performance on imbalanced class problems.

Imbalanced class distribution - one class (majority class, denoted as ’-’) vastly
outnumbers the other class (minority class, denoted as '+’) in training datasets -
hinders the accuracy of classification of minority class, since typical classification
algorithms, such as decision trees, intend to maximize the overall prediction
accuracy and tend to have bias toward the majority class [1]. The class imbalance
problem, however, is important, since imbalanced datasets are prevalent in real
world (e.g. fraud/intrusion detection, medical diagnosis/monitoring) and the
cost of misclassification for a minority class is usually much higher in many
cases. For instance, since the examples of patient with a rare cancer are relatively
very small, the classifier usually has a poor ability to predict the rare cancer.
Therefore, the classifier can simply classify the patient with a rare cancer into
the patient with a common cancer while the classifier keeps high accuracy. When

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 212-223, 2014.
© Springer International Publishing Switzerland 2014
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such a misclassification happens, however, the misclassified patient may suffer
from misdiagnosis.

There have been various approaches to tackle the class imbalance problems;
kernel modification methods, sampling methods, and cost-sensitive methods. In
this paper, we focus on methods that can apply to Decision Tree Induction Clas-
sification, as decision tree is one of the most effective methods for classification
[2]. Based on the decision tree, there have been many studies that showed per-
formance improvement on imbalanced datasets. However, there is still a room
for improvement.

In this paper, we propose Hellinger Distance Extra Decision Tree (HeDEx)
that employs Hellinger Distance as a split criterion and builds extremely ran-
domized ensemble trees. Hellinger Distance Extra Decision Tree is named after
Hellinger Distance Decision Tree [3] and Extra-Trees [4]. We also propose a
novel oversampling method that helps not only our proposed decision tree but
also other existing classifiers to get better performance for minority class. Our
experiments show that HeDEx has generally better performance than other ex-
isting decision tree methods in terms of AUC and F-Measure for minority class.
The proposed oversampling method improves the performance of F-Measure for
minority class.

2 Related Work

Information gain and Gini index are used as the splitting criteria for the popu-
lar decision trees such as C4.5 and CART, respectively. However, several stud-
ies [5][6][7] have shown that these measures are skew-sensitive so that they have
bias toward majority class. Equation 1 and 2 denote Entropy and Information
Gain for binary class and binary split, respectively. In order to maximize the in-
formation we need to minimize the second term of Equation 2, since the first term

Entropy(S) is fixed for the dataset S. The second term of Equation 2 is denoted

S S1— S So_
as | & (=114 [loga et = |1 [loga Far N+ |5 (= IS4 1l0gs (25! — 15— [logs (3.

Therefore, the minority class could not influence equally on Entropy like majority
class, since |S14+| and |S24] is relatively small in class imbalanced datasets. The
classifier that uses Gini Index (Equation 4) also has the same problem. The stud-
ies also shows the skew-sensitivity of Information Gain using isometric form [8][3].
Cieslak et al. [3] proposed Hellinger Distance as a splitting criterion that is
skew-insenstive. Equation 5 shows Hellinger Distance, and it shows that the class
priors do not influence the distance calculation. Thus the minority class would
not be ignored on distance calcuation. The experiments of Cieslak et al. showed
that Hellinger Distance Decision Tree (HDDT) outperforms C4.4 - unpruned,
uncollapsed C4.5 with Laplace smoothing - [3] in imbalanced class problems.

|Sel, 15|

Entropy(S) = — Z 15| loga 15| (1)
c=+,—
InfoGain(S) = Entropy(S) — Z ‘Fé'Entropy(Sﬂ (2)

j=1,2
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InfoGainRatio(S) = Info‘G’Sfb‘zn(S)ls/.l 3)
Z]’:l,Z S| logz S|
Gini(S) =1 — [Sely2 4
ini(S) = Z(|S|) (4)
c=+4,—
Hellinger Disttance(S) = Z (\/'f;] - ‘éﬁjH)Q (5)
j=1,2 + -

Sampling methods are typically used to tackle imbalanced class problems.
The experimental studies[9] have shown that using sampling methods gener-
ally improve the classifier performance. The sampling methods alter the class
distribution to make the class distribution balanced.

Synthetic Minority Oversampling TEchnique (SMOTE) [10] takes the same
approach with One-Sided Selection; mitigating bias toward majority class. The
difference between two methods is that while One-Sided Selection removes the
majority class data, SMOTE proposes creating synthesized minority class ex-
amples. Synthetic examples are generated by selecting a random point along
the line between two minority class examples. Chawla et al. shows that this
synthesized examples facilitate larger decision regions in feature space for mi-
nority class avoiding overfitting. Despite improved performance of SMOTE, the
problem of SMOTE is overgeneralization, which means the region enlarged for
minority class could be blindly generalized so that synthetic instances can lead
to overlapping between classes. Many other synthetic sampling methods based
on SMOTE have been proposed to address the overgeneralization problem of
SMOTE; Border-line SMOTE [11], Safe-Level SMOTE [12], and LN-SMOTE
[13].

Cluster-Based Oversampling [14] is the other method to solve the small dis-
junction problem by using clustering approach. It clusters the training data of
each class separately and oversamples the minority instances per each cluster. In
this idea, the new generated minority instances cannot be located in some ma-
jority class cluster. Thus, by clustering approach, it can handle both inter-class
imbalance and between-class imbalance simultaneously.

The other approach for oversampling is pattern-based synthetic method. Al-
hammady et al. [15] proposed Emerging Patterns Decision Tree (EPDT) that is
decision tree induction classifier using Emerging Patterns of minority class for
generating new minority class instances. Emerging Pattern of minority class is
a pattern whose support changes significantly from majority class to minority
class in the training dataset.

Ensemble method is known to be very efficient to reduce variance by building
multiple classifiers and averaging the classifiers output so that it allows us not to
choose the classifier with a poor performance. There have been many ensemble
methods based on Bagging [16] and Boosting [17]. In this review, however, we
focus on Randomized ensemble trees that use a subset of attributes, since our
method is based on Random Subspace [18].
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Table 1. Comparison of Randomized Ensemble Methods

Ensemble method Training samples for tree Candidate split-points at node

Random Subspace all training samples all values of selected attributes
Random Forest bootstrap replicas all values of selected attributes
Extra-Trees all training samples ¢ =1, a random value of

each selected attribute
¢ > 1, random values of

HeDEx all training samples gt
each selected attribute

Instead of using all attributes to find the optimal split-point at a tree node,
Random Subspace and Random Forests randomly select a subset of attributes at
a tree node and find the optimal split-point among only these selected attributes.
The level of randomization is determined by the number K of attributes to be
chosen at each node. The difference between two methods is the formation of
the training examples of each tree. Random Subspace uses the entire training
dataset for each tree so that only the randomly chosen attributes impact the
variability of base classifiers. On the other hand, Random Forests is based on
Bagging [16] - random sampling of training dataset with replacement - so that
both attribute selection and training data impact the variability.

Extra-Trees [4] was proposed as extremely randomized trees. It randomly
selects not only the number K of attributes but also a candidate split-point
for each chosen attribute. The split-point at a tree node is determined among
the number K of candidate split-points so that the split-point is sub-optimal
for a corresponding node. Therefore, among three methods (Random Subspace,
Random Forests, and Extra-Trees) Extra-Trees has the highest randomness. The
advantage of Extra-Trees is computational efficiency while keeping comparative
accuracy, reducing variance and slightly increasing bias.

3 Hellinger Distance Extra Decision Tree

In this paper, we propose Hellinger Distance Extra Decision Tree (HeDEx) that
employs Hellinger Distance as a splitting criterion and build extremely random-
ized ensemble trees using entire training dataset for imbalanced dataset prob-
lems. HeDEx is basically based on Extra-Trees [4]. The main differences with
other ensemble methods are that Extra-Trees and HeDEx randomly choose not
only the attributes but also split-points for splitting the tree nodes and use the
entire training examples (rather than a bootstrap replica) to build each base
classifier. Due to the randomization on both attribute selection and split-point
selection, Extra-Trees and HeDEx can achieve high level of varierity of trees even
without sampling of training examples (bootstrap replicas).

The two main differences with Extra-Trees and HeDEx are splitting-criterion
and the number of candidate split-points. Extra-Trees selects one candidate split-
point for each attribute, while HeDEx selects more than one split-points, since we
found from experiments that considering multiple candidate split-points to find a
sub-optimal split-point showed better accuracy. The other difference is splitting
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Table 2. HeDEx Parameters

Parameter Description

M the number of trees to be built

K the number of attributes randomly selected at each node

C the number of split-points randomly selected for each attribute
Nomin the minimum sample size at a leaf node

criterion. HeDEx uses Hellinger Distance for skew-insensitiveness, while Extra-
Trees uses a score measure based on information gain. We provide the comparison
table of existing random ensemble methods in Table 1. Notice that although the
number of split-points ¢ of HeDEx becomes equal to the number of values of the
corresponding attribute in learning samples, HeDEx is different from Random
Subspace. This is because HeDEx draws the split-points independently from the
values in the learning samples.

We use weighted method as the aggregation rule for our HeDEx. Equation 6
shows how to predict the class label of a test example. C' in Equation 6 is a set
of class labels and py, . is the probability of classifying as class label ¢ in tree ¢;
such that ) .- pr, .. = 1 for each tree.

M

class = arg maprti,c (6)

ceC i—1

3.1 Variant of Hellinger Distance Extra Decision Tree

We also propose a variant of HeDEx that employs different decision boundary
from the original HeDEx. Hellinger Distance Extra Hyperplane Decision Tree
(HeDExh) uses an arbitrary hyperplane as a decision surface, thus selects the
optimal hyperplane at a node among K candidate hyperplane decision bound-
aries. To be brief, we could say that HeDEx uses single variable inequations
when it tries to split the node according to the split-point, while HeDExh uses
two variable inequations when it tries to split the node. The arbitrary hyperlane
is determined by choosing two different points from feature space of the dataset;
e.g. (v11,v21) and (v12,v22) where vy, for attribute 1 and v, for attribute 2.
The number of candidate hyperplane for a pair of chosen attributes is also an
option parameter, C. The number of attributes to be used for hyperplane could
be more than two. In this paper, we present 2-dimensional hyperplane only but
the dimensionality can be extended.

4 Pattern-Based New Instance Creation

In this section, we propose the new method for generating minority instances
based on patterns that are detected from HeDEx. This process consists of three
parts; pattern detection, instance generation, and instance validation.
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Fig. 1. An example of HeDEx for pattern detection

4.1 Pattern Detection

The main idea of pattern detection is that in decision tree the splitting criteria
at each node of tree represent the patterns of the examples at the node. The
patterns are detected from HeDEx that are built using the training samples. As
HeDEx builds sub-optimal trees, it has a variety of patterns that are not highly
coupled with training examples. After building HeDEx, we look at the leaf node
of each tree, and if the number of minority instances is greater than that of
majority, we build a pattern according to the split rules from root to the leaf
node. For example, from the trees in Figure 1, we can build patterns; {a; > 10
and ag < 4} and {az ¢ {0,1} and a4 ¢ {y}}, respectively.

The patterns detected from multiple HeDEx trees get scores with respect to
the strength of the pattern, and a pattern with higher score has higher probabil-
ity of being selected for generating new instances. The equations 7 and 8 show
how to get strength score of a pattern. For example, for the pattern detected
from Figure 1 has GrowthRate., = 10/3 and Strength., = 10x'°/3/(10/s +1) for
minority class.

GrowthRateC+

t thc = tc
Streng + Suppor + ¥ GrowthRat8c+ +1 (7)
Support.
G thRate., = ’ ®
rowthiiatec Support._ )

4.2 Instance Generation

New instances are generated based on the patterns. If the selected pattern does
not cover all attributes, the values of missing attributes are generated at random
but based on the distribution of the values of the training examples. Figure 2
shows an example of generating a new instance. As the pattern 1 has the rule
{a1 > 10 and a3 < 4}, we generate random values of a; and a3 according to the
rule; 10 < vy < max(a1) and min(az) < vs < 4. For the remaining attributes,
we randomly draw the values such that v; ~ histogram(a;) for ith attribute.
For the nominal attributes, we select the attribute values at random according
to the rule. For example, the second pattern of Figure 1 is {as ¢ {0,1} and
as ¢ {y}}. The value of ay is drawn uniformly from Set,,\{0,1} and the value
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Fig. 2. Instance creation based on patterns and attribute value histogram

Fig. 3. An example of HDDT for instance validation

of a4, is drawn uniformly from Set,,\{y} where Set,, is the set of attribute
a;’s distinct values. For remaining attributes, we randomly draw each value such
that v; ~ histogram(a;) for ith attribute.

4.3 Instance Validation

We propose the instance validation phase to ensure that the newly generated
instances are not noisy for minority class. The main idea of this validation phase
is that if a classifier cannot distinguish instances of two different classes well,
which can mean that the instances of two different classes are similar.

After generating new instances, we make a synthetic training dataset using
the original minority instances and newly generated instances to validate new
instances. We set the original minority instances as positive class and the new
instances as negative class. We build a Hellinger Distance Decision Tree and visit
each leaf node to check the instance distribution. Figure 3 shows the example.
The right-most leaf node illustrates that the negative instances are not distin-
guishable from the positive instances, so we can add these negative instances
(newly generated instances) as the instances for minority class to the training
examples for building a classifier. On the other hand, the left most node con-
tains only the negative instances, which implies that the three negative instances
are well distinguishable from the positive class instances so that the three in-
stances could become noisy if we add these instances to training examples. In
that case, we do not include such instances for our training examples. Notice
that we employ Hellinger Distance Decision Tree for validating instances, since
HDDT builds a tree with optimal, discriminative splitting criteria.
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Table 3. Datasets for imbalanced classes

Dataset Classes Type Features Instances CV Dataset Classes Type Features Instances CV

. o -
compustat 2 mente 20 10358 = 0.93 segment 2 numeric 19 2310 0.71
covtype 2 numeric 10 38500  0.86 .
. . credit-g 2 both 20 1000 0.4
estate 2 numeric 12 5322 0.76 .
. boundary 2 nominal 175 3661 0.93
german.numer 2 numeric 24 1000 0.4 .
. . . breast-y 2 nominal 9 286 0.41
ism 2 numeric 6 11180  0.95 .
. cam 2 nominal 13 18916 0.9
letter 2 numeric 16 20000  0.92 . .
. . car 4 nominal 6 1728 1.25
oil 2 numeric 49 937 0.91 .
. ; dna 3 nominal 180 3186  0.48
page 2 numeric 10 5473 0.8 .
.. . glass 6 numeric 9 214 0.83
pendigits 2 numeric 16 10992 0.79 ) . ) .
. . nursery 4 nominal 8 12961  0.60
phoneme 2 numeric 5 5400 0.41 .
p . page-5 5 numeric 10 5473 1.95
PhosS 2 numeric 480 11411 0.89 sat 6 numeric 36 6435  0.41
satimage 2 numeric 36 6430  0.81 umere ’

5 Experiements

The 23 datasets were chosen from the datasets that were used in HDDT exper-
iments!. These datasets originate from UCI?, LibSVM? and two other studies
[8][10]. The 23 datasets have a variety of characteristics in terms of the level of
imbalance and the number of attributes including both binary class and multi-
class. Dataset 'page’ and 'satimage’ are originally the same dataset with 'page-5’
and ’sat’, respectively, but have different number of classes. In order to measure
the level of imbalance in class distribution, we employ the coeflicient of variance
(CV =0a/,) of class distribution like the study of HDDT [3]. Higher CV means
higher skewness in class distribution. Table 3 provides details of the dataset
used in this experiment.

We chose Bagging HDDT and Extra-Trees as the methods to be compared
with our proposed methods. As Cieslak et al. showed in the study of HDDT [3]
that Bagging HDDT outperforms other methods including C4.4, C4.4 combined
with Bagging and Sampling methods, and HDDT combined with Sampling, we
excluded other ensemble and sampling methods in this paper. We also use Bag-
ging HDDT for the performance comparison of pattern-based oversampling while
excluding other oversampling methods, since Bagging HDDT is proved that it
has better performance than other oversampling methods[3]. We included Bag-
ging C4.5 as a baseline and Logistic Regression for comparison purpose as it
is insensitive to class distribution. Table 4 shows terminologies for algorithms
that we use in this experiment. 5x2 cross-validation is used to evaluate each
algorithm.

We used the default parameters that are mentioned on the corresponding
papers for both Bagging HDDT and Extra-Trees; 100 unpruned trees (M = 100)
with laplace smoothing and n,,;, = 2. For Extra-Trees and our methods the K
number of candidate attributes is K = /n as Extra-Trees recommended. HeDEx
and HeDExh have another parameter for the number of candidate split-points, C.
We set C' = 10 as default, as we found that for most datasets above 10 candidate

! nttp://www3.nd.edu/~dial/hddt/
2 http://archive.ics.uci.edu/ml/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 4. Algorithms

Abbr. Algorithm

LR Bagging Logistic Regression

C4.5 Bagging C4.5, pruned

HDDT Bagging Hellinger Distance Decision Tree

ET Extra-Trees

HeDEx Hellinger Distance Extra Decision Trees

HeDExh Hellinger Distance Extra Hyper Decision Trees

b & Algorithm X with pattern-based oversampling e.g. LR®

Table 5. (Win/Draw/Loss) table of statistical significance test (corrected t-test) result
at 95% for F-Measure™

LR C45 ET HDDT HeDEx HeDExh LR® C4.5° ET® HDDT® HeDEx® HeDExh®
LR 8/10/5 8/11/4 9/10/4 10/10/3 11/9/3 LR® 9/12/2 11/12/0  9/12/2 12/10/1  11/12/0
Cc4.5 5/10/8 3/18/2 3/19/1 7/15/1 17/15/1 C4.5° 2/12/9 6/17/0 0/22/1 7/16/0  8/15/0
ET 4/11/8  2/18/3 3/18/2 5/18/0  7/16/0 ET® 0/12/11  0/17/6 0/19/4 2/21/0  3/20/0
HDDT  4/10/9 1/19/3 2/18/3 3/19/1  5/18/0 HDDT®  2/12/9 1/22/0 4/19/0 6/17/0  6/17/0
HeDEx 3/10/10 1/15/7 0/18/5 1/19/3 1/22/0 HeDEx® 1/10/12 0/16/7 0/21/2 0/17/6 1/21/1
HeDExh 3/9/11 1/15/7 0/16/7 0/18/5 0/22/1 HeDExh® 0/12/11  0/15/8 0/20/3 0/17/6 1/21/1

Total  19/50/46 13/77/25 13/81/21 16/84/15 25/84/6 31/80/4 Total 5/58/52 10/82/23 21/89/5 9/87/19 28/85/2 29/85/1

Table 6. (Win/Draw/Loss) table of statistical significance test (corrected t-test) result
at 95% for AUC

LR C45 ET HDDT HeDEx HeDExh LR® C4.5° ET* HDDT® HeDEx® HeDExh®
LR 9/12/2 13/9/1 9/12/2 14/8/1 12/10/1 LR® 9/11/3 15/7/1 11/9/3 15/7/1  14/8/1
Cc4.5 2/12/9 8/15/0 4/17/2 9/14/0  9/14/0 C4.5° 3/11/9 7/16/0  2/19/2  7/16/0  8/15/0
ET 1/9/13  0/15/8 0/18/5 2/21/0  4/19/0 ET® 1/7/15  0/16/7 0/15/8 7/16/0  9/12/2
HDDT  2/12/9 2/17/4 5/18/0 7/16/0  8/15/0 HDDT®  3/9/11 2/19/2 8/15/0 8/15/0  9/14/0
HeDEx 1/8/14 0/14/9 0/21/2 0/16/7 2/21/0 HeDEx® 1/7/15 0/16/7 0/16/7 0/15/8 3/20/0
HeDExh 1/10/12  0/14/9 0/17/6 0/15/8 0/21/2 HeDExh® 1/8/14 0/15/8 2/12/9 0/14/9 0/20/3
Total  7/51/57 11/72/32 26/80/9 13/78/24 32/80/3 35/79/1 Total — 9/42/64 11/77/27 32/66/17 13/72/30 37/74/4 43/69/1

split-points has no significant effects on the performance improvement. For the
pattern-based oversampling method, the amount of newly generated minority
instances makes the class distribution of final training dataset balanced, since
we noticed that balanced distribution brought the best performance on HeDEx,
although we cannot present the experiments results due to the space limitation.

The popular evaluation measure for imbalanced dataset problems is Area Un-
der the Receiver Operating Characteristic curve (AUC), thus we employ AUC in
our paper to compare different classifiers’ performance. In addition, we present
the comparison of Fi-Measure for the minority class to show the classifiers’ per-
formance toward minority class. In this paper, F-Measure™ denotes Fj-Measure
for the minority. We used corrected paired t-test to determine the statistical
significance of performances of the compared algorithms.
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Table 7. F-Measure™ performance results for dataset in Table 3

LR LR® C4.5 C4.5° ET ET* HDDT HDDT® HeDEx HeDEx®* HeDExh HeDExh®

compustat 0.026 0.222v 0.101 0.292v 0.064 0.322v 0.136 0.298 v 0.153 0.340v 0.222 0.355v
covtype 0369  0476v 0.866  0.851 0869  0.867  0.880 0859 0887  0.878 0.904 0.896
estate 0.047 0.216v 0.007 0.212v 0.036 0.218v 0.054 0.208 v 0.067 0.210v 0.087 0.220v
german.numer  0.542 0.593v 0.528 0.571  0.465 0.576 v 0.546 0.580 0.501 0.570 0.539 0.578
ism 0.543 0.507  0.634 0.603  0.612 0.628 0.647 0.613 0.645 0.631 0.647 0.629
letter 0.878 0.801*% 0.948 0.925* 0.943 0.945 0.957 0.940 0.965 0.959 0.965 0.961
oil 0476 0463 0433 0473 0250 0583 0392 0464 0345  0.570 0.434 0.550
page 0.726 0.705  0.875 0.868  0.865 0.872 0.877 0.864 0.881 0.880 0.869 0.871
pendigits 0910  0.860% 0.960  0.969 0988 0988  0.977 0970 0986  0.985 0.989 0.990
phoneme 0.522 0.626v 0.791 0.799  0.814 0.816 0.798 0.804 0.823 0.825 0.822 0.824
PhosS 0178 0239v 0102  0.228v 0001  0.251v  0.083 0234y 0005  0.249v  0.041 0.248v
satimage 0.044 0.274v 0.634 0.626  0.614 0.640 0.647 0.641 0.654 0.655 0.647 0.655
segment 0.990 0.962  0.977 0.973  0.989 0.987 0.980 0.976 0.992 0.984 0.992 0.988
credit-g 0528 0571 0491  0.553v 0393  0.557v  0.534 0558 0502 0.567 0.476 0.563v
boundary 0.162 0.174  0.009 0.146v 0.000 0.147v 0.000 0.142v 0.000 0.154v 0.006 0.158 v
breast-y 0381 0433 0349  0.449v 0392 0471 0420 0452 0419  0.465 0.439 0.485
cam 0.185 0.317v 0.015 0.250v 0.005 0.276 v 0.022 0.241v 0.014 0.281v 0.023 0.294v
car 0855 0842 0603 0739 0859 0806 0865  0.791 0913 0.837 0.926 0.842
dna 0894 0912 0913 0910 0930 0920 0895 0895 0930  0.923 0.924 0.914
glass 0.633 0.684 0.687 0.723  0.634 0.628 0.420 0.554 0.635 0.666 0.489 0.607
nursery 0770 0730 0.672  0.793v 0.713  0.891v 0004  0.280v 0984  0.956 0.984 0.963
page-blocks-5 0.579 0.576  0.805 0.743  0.791 0.660 0.782 0.730 0.809 0.752 0.784 0.641
sat 0456 0549v 0656  0.649 0657 0649  0.650 0646 0669  0.659 0.670 0.658
(win/draw /loss)" (9/12/2) (8/14/1) (8/15/0) (6/17/0) (5/18/0) (6/17/0)

* The result of statistical significance test (corrected paired t-test) at 95% against algorithm X*®. v means win and * means loss.

Table 8. AUC performance results for dataset in Table 3

LR LR® C4.5 C4.5° ET ET* HDDT HDDT® HeDEx HeDEx®* HeDExh HeDExh*®

compustat 07843 0.7899 0.8811  0.8595 0.9211  0.8924% 0.8988  0.8719% 09212  0.8986*  0.9281 0.9039*
covtype 09026 0.9035 0.9918  0.9894 0.9945  0.9929% 0.9940  0.9912%  0.9952  0.9938%  0.9966 0.9955 *
estate 0.6245 0.6183 0.6400 0.6301 0.6439 0.6433  0.6281  0.6292  0.6328  0.6363 0.6336 0.6381
german.numer 07792 0.7802 0.7750  0.7770 0.7786  0.7798  0.7794  0.7781  0.7787  0.7795 0.7819 0.7806
ism 09181 09264 0.9278  0.9342 0.9494  0.9481 09391  0.9435  0.9493  0.9472 0.9481 0.9464
letter 0.9861  0.9825% 0.9 0.9987 0.9998  0.9994  0.9988  0.9981  0.9999  0.9997 0.9999 0.9997
oil 0.8870  0.9072 0.8964  0.8905 0.9206 09164 09058  0.8922 09251  0.9192 0.9268 0.9256
page 09474  0.9203% 0.9903 09898 0.9915 0.9908  0.9916  0.9903  0.9922  0.9914 0.9919 0.9914
pendigits 0.9907  0.9864* 0.9992  0.9982 1.0000  0.9999  0.9988  0.9972  0.9999  0.9999 1.0000 1.0000
phoneme 08125 08129 09398 09401 09531 09513 09451 09437 09554  0.9534 0.9567 0.9553
PhosS 07269  0.7420v 0.7431  0.7285 0.7715  0.7594  0.7459  0.7313  0.7697  0.7525 0.7673 0.7510
satimage 0.7657  0.7565 0.9480  0.9416 0.9563  0.9483% 0.9537  0.9479%  0.9591  0.9523*  0.9607 0.9532*
segment 0.9999  0.9988* 0.9977  0.9977 0.9999  0.9999  0.9971  0.9965  0.9999  0.9999 1.0000 0.9999
credit-g 0.7618  0.7670 0.7568  0.7591 0.7794  0.7773 07755  0.7709  0.7775  0.7766 0.7817 0.7818
boundary 0.7357  0.7270 0.5548  0.6691 0.6802 0.6817  0.6732  0.6527  0.6888  0.6811 0.7092 0.6999
breast-y 0.6284  0.6380 0.6754  0.6639 0.6648 0.6718  0.6552  0.6651  0.6659  0.6729 0.6624 0.6679
cam 0.8312  0.828) 0.7045 0.7315 0.7775 0.7805  0.7806  0.7512% 0.7892  0.7847 0.8051 0.7987
car 0.9893  0.9892 0.9831  0.9821 0.9954 0.9940  0.9941  0.9940  0.9971  0.9967 0.9980 0.9974
dna 0.9855  0.9873 0.9888  0.9880 0.9925  0.9923  0.9797  0.9782  0.9925  0.9915 0.9917 0.9908
glass 08410  0.8402 0.8763 0.8790 0.9184 09176  0.8772  0.8699  0.9090  0.9095 0.8992 0.8983
nursery 0.9882  0.9871* 0.9958  0.9955 0.9984  0.9989v  0.9479  0.9367  0.9998  0.9998 0.9999 0.9999
page-blocks-5  0.9889  0.9862% 0.9895  0.9885 0.9916 0.9913  0.9907  0.9895  0.9924  0.9920 0.9917 0.9916
sat 0.9802  0.9811 0.9889  0.9887 0.9897  0.9891% 0.9887 09885  0.9901  0.9897*  0.9905 0.9900*
(win/draw/loss)* (1/16/6) (0/23/0) (1/18/4) (0/19/4) (0/19/4) (0/19/4)

! The result of statistical significance test (corrected paired t-test) at 95% against algorithm X*. v means win and * means loss.

6 Experiment Results

6.1 Comparison of Methods

Table 5 shows win/draw/loss counts for F-Measure™ of 23 datasets comparing
the algorithm in the column versus the algorithm in the row. As can be seen,
HeDEx has almost the same or better performance in terms of F-Measure™
than HDDT and has bigger improvements from C4.5 than HDDT does. The
only loss of HeDEx against HDDT and C4.5 is the dataset PhoSs. This is due to
that Extra-Trees’ performance becomes poorer as the dimensionality of dataset
becomes higher. However, we noticed that HeDExh overcomes this disadvantage
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of extremely randomized trees. We also noticed that Logistic Regression has
better performance on imbalanced dataset with higher dimensionality than other
classifiers we compared. In terms of both AUC presented in Table 6 and F-
Measuret, HeDEx and HeDExh are the best option among others on average.
Table 7 and 8 show the figures of F-Measure™ and AUC for each method.

6.2 Effects of Pattern-Based Oversampling

Table 7 and Table 8 show the effects of pattern-based oversampling in terms
of F-Measure for minority class and AUC. Pattern-based oversampling helps the
performance improvement especially when the dataset has higher dimensionality.
The F-Measure™ is improved from 150% to more than 3000% compared to not
using pattern-based oversampling. For F-Measure™, we noticed that the degree
of performance improvement due to oversampling varies among the classifiers.
Decision Trees based on Hellinger Distance splitting criterion (HDDT, HeDEx,
HeDExh) generally have lower improvements on performance than other classi-
fiers such as LR, C4.5 and Extra-Trees.

In terms of AUC, however, pattern-based oversampling shows statistically sig-
nificant losses on performance for 4 datasets among 23 datasets. That is why over-
sampling favors to minority class and AUC weights more on majority due to the
class distribution. This result is similar to other studies [3][7] in which authors
said that sampling is not helpful if the classifier employs a skew-insensitive split
criterion.

7 Conclusion

In this paper, we have proposed a new decision tree induction classifier (HeDEx)
that combines extremely randomized tree (Extra-Trees [4]) with multiple candi-
date split-points and Hellinger Distance as a splitting criterion for imbalanced
dataset problems. We also have proposed a variant of HeDEx that employs a
hyperplane decision surface (HeDExh). The main contribution of our proposed
methods is that they build robust decision trees against imbalanced datasets
with high computational efficiency. Moreover, because of choosing sub-optimal
split-points at each node, the ensemble trees produced are all independent from
each other. Due to the diversity of the shape of trees we can gather the variety
of patterns from training examples, and the patterns are used to generate new
minority class instances.

Overall, we ensure that Hellinger Distance is skew-insensitive as a splitting
criterion, since applying Hellinger Distance to Extra-Trees shows improvement in
the performance for imbalanced datasets. Moreover, we also verify that random-
ization at both attribute and split-point selection improves the performance of
decision tree methods especially when combined with Hellinger Distance. There-
fore, HeDEx and HeDExh for imbalanced dataset gives better prediction ability
at lower or similar computational cost, respectively. In addition, as shown in
study of HDDT[8], HeDEx can also be employed in the case of balanced datasets.
Thus, we recommend HeDEx should be considered as one of classification meth-
ods to be chosen.
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Abstract. This paper suggets a modification of the Conformal Predic-
tion framework for regression that will strenghten the associated guaran-
tee of validity. We motivate the need for this modification and argue that
our conformal regressors are more closely tied to the actual error distri-
bution of the underlying model, thus allowing for more natural interpre-
tations of the prediction intervals. In the experimentation, we provide an
empirical comparison of our conformal regressors to traditional confor-
mal regressors and show that the proposed modification results in more
robust two-tailed predictions, and more efficient one-tailed predictions.

Keywords: Conformal Prediction, prediction intervals, regression.

1 Introduction

Conformal Prediction (CP) [1] is a framework for producing reliable confidence
measures associated with the predictions of an underlying classification or regres-
sion model. Given a confidence level § € (0, 1), a conformal predictor outputs
prediction regions that, in the long run, contain the true target value with a
probability of at least 1 — d. Unlike Bayesian models, CP does not rely on any
knowledge of the a priori distribution of the problem space; and, compared to
the PAC learning framework, CP is much more resiliant to noise in the data.
Clearly, the motivation for using CP is the fact that the resulting predici-
ton regions are guaranteed to be valid. With this in mind, it is vital to fully
understand what validity means in a CP context. Existing literature (e.g. [1])
provides a thorough explanation of how the validity concept relates to conformal
classification, but leaves something to be desired regarding conformal regression.
In this paper, we identify an inherent but non-obvious weakness associated
with the most common type of inductive conformal regressor — conformal regres-
sors where the nonconformity score is based on the absolute error of a predictive
regression model (Abs. Error CP Regression, or AECPR). Specifically we show
that when the underlying model has a skewed error distribution, AECPR pro-
duces unbalanced prediction intervals — prediction intervals with no guarantee
regarding the distribution of errors above and below the prediction interval —

* This work was supported by the Swedish Foundation for Strategic Research through
the project High-Performance Data Mining for Drug Effect Detection (IIS11-0053)
and the Knowledge Foundation through the project Big Data Analytics by Online
Ensemble Learning (20120192).

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 224-236, 2014.
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and argue that this limits the expressiveness of AECPR models. We suggest to
instead produce two one-tailed conformal predictors, one for the low end of the
prediction interval and one for the high end. The only modification needed is to
use a nonconformity score based on the signed error of the underlying model.
Once we have these two conformal predictors, they can either be used to output
valid one-tailed predictions, or combined to create two-tailed prediction intervals
that exhibit a stronger guarantee of validity than standard AECPR prediction
intervals. In addition, we show that the suggested approach is more robust, i.e.,
less sensitive to outliers. In particular when ¢ is small, AECPR may be seriously
affected by outliers, resulting in very conservative (large) prediction intervals.

2 Background

CP was originally introduced in [2], and further developed in [3], as a trans-
ductive approach for associating classification predictions from Support Vector
Machine models with a measure of confidence. Vovk, Gammerman & Shafer pro-
vide a comprehensive guide on conformal classification in [1], and Shafer & Vovk
provide an abridged tutorial in [4]. Since its introduction, CP has been frequently
applied to predictive modeling and used in combination with several different
classification and regression algorithms, including Ridge Regression [5] k-Nearest
Neighbors [6], Artificial Neural Networks [7, 8] and Evolutionary Algorithms [9].

In [10] and [5], Papadopoulos proposes a modified version of CP based on
inductive inference called Inductive Conformal Prediction (ICP). In ICP, only
one predictive model is generated, thus avoiding the relative computational in-
efficiency of (transductive) conformal predictors.

Conformal predictors have been applied to a number of problems where con-
fidence in the predictions is of concern, including prediction of space weather
parameters [8], estimation of software project effort [11], early diagnostics of
ovarian and breast cancers [12], diagnosis of acute abdominal pain [13] and as-
sessment of stroke risk [14].

2.1 Conformal Prediction

Given a set of training examples Z = ((x1,y1), ...(x1,y1)), and a previously un-
seen input pattern z;, the general idea behind CP is to consider each possible
target value ¢ and determine the likelihood of observing (z;, ) in Z.

To measure the likelihood of observing (z;,9) in Z, a conformal predictor
first assigns a nonconformity score a? to each instance in the extended set Z =
Z U {(z;,7)}. This nonconformity score is a measure of the strangeness of each
instance (z;,y;) € Z compared to the rest of the set, and is, in a predictive
modeling scenario, often based on the predictions from a model generated using
a traditional machine learning algorithm, referred to as the underlying model of
the conformal predictor. The underlying model is trained using Z as training
data, and the nonconformity score for an instance (z;,y;) € Z is defined as the
level of disagreement (according to some error measure) between the prediction
of the underlying model g; and the true label y;.
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The nonconformity score ajy- is compared to the nonconformity scores of all

other instances in Z to determine how unusual (x,9) is according to the non-
conformity measure used. Specifically, we calculate the p-value of § using

#{ziGZ\ai Za?}
=" . (1

A key property of conformal prediction is that if p(g) is below some threshold
0, the likelihood of § being the true label for z; is at most § if Z is iid. If we
select 0 to be very low, e.g., 0.05, we can thus conclude that if p(g) < 0.05 it is
at most 5% likely that g is the true label for ;. These p-values are calculated for
each tentative label ¢, and the conformal predictor outputs a prediction region
containing each label § for which p(g) > 0; i.e., a set of labels that contains the
true label of z; with probability 1—4. Given that we already know the probability
of any prediction region containing the true output for a test instance x;, the
goal in CP is not to maximize this probability, but rather to minimize the size
of the prediction regions. In essence, CP performs a form of hypothesis testing.
For each label g, we want to reject the null hypothesis that (z;, ) is conforming
with Z, and for every ¢ we are able to reject, we reduce the size of the prediction
region, thus increasing the efficiency of the conformal predictor.

Since (z;,9) is included in the training data for the underlying model, the
model needs to be retrained for each tentative label g; as such, this form of CP
suffers from a rather poor computational complexity. ICP, as described in the
next subsection, solves this problem by dividing the data set into two disjunct
subsets: a proper training set and a calibration set.

2.2 Inductive Conformal Prediction
An ICP needs to be trained only once, using the following scheme:

1. Divide the training set Z = {(z1,y1),...(x1, 1)} into two disjoint subsets:
— a proper training set Z' = {(x1,91), ..., (Tm, ym)} and
— a calibration set Z"” = {(Tm+1, Ym+1)s --» (Tm+q> Ym+q) }
2. Train the underlying model hz using Z’ as training data.
3. For each calibration instance (z;,y;) € Z":
— let hyz predict the output value for x; so that §; = hz(x;) and
— calculate the nonconformity score a; using the nonconformity function.

For a novel (test) instance we simply supply the input pattern x; to the under-
lying model and calculate aé’f using our nonconformity function. The p-value of

each tentative label y is then calculated by comparing aé’? to the nonconformity
scores of the calibration set:

#{ziGZ”|ai Za?}-ﬁ-l
() = : (2)
P qg+1
where ¢ is the size of the calibration set. If p(g) < ¢, it is at most 6% likely that
7 is the true output of x;, and ¥ is thus excluded from the prediction region.
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2.3 Inductive Conformal Regression

In regression it is not possible to consider every possible output value ¥, so we
cannot explicity calculate the p-value for each and every g. Instead a conformal
regressor must effectively work in reverse. First, the size of the (1 — d)-percentile
nonconformity score, a,(s), is determined; second, the nonconformity function is
used to calculate the magnitude of error that would result in x; being given a
nonconformity score at most ays); i.e., the conformal regressor determines the
largest error that would be commited by the underlying model when predicting
y; with probability 1 — . To perform conformal regression, we first define a
nonconformity function, typically using the absolute error, see e.g., [5-8]:

o = |y — Uil - (3)

Then, given a significance level § and a set of calibration scores S, the goal

is to find ajy- such that P(aé’f > a; € 5) < 0; ie., the largest nonconformity
score — and, due to the definition of (3), also the largest absolute error — with
probability 1—4. To do this, we simply sort the calibration scores in a descending

order, and define the prediction interval as

V= (§; — ass), U5 + s(5)) (4)

where s(8) = [d(g+1)], i.e., the index of the (1 — §)-percentile in the sorted list
of nonconformity scores. Since the underlying model’s error is at most a5y with
probability 1 —J, the resulting interval covers the true target y; with probability
1 — 4. Note that when using (3) and (4) the conformal regressor will, for any
specific significance level §, always produce prediction intervals of the same size
for every x;; i.e., it does not consider the difficulty of a certain instance x;.
Papadopoulos et al. [5] suggest that prediction intervals can be normalized using
some estimation of the difficulty of each instance, e.g., by using a separate model
for estimating the error of the underlying predictor. In this paper, we will not
consider normalized nonconformity scores, but leave them for future work.

3 Method

AECPR will, as described in the Background, always produce ’symmetrical’
prediction intervals where the underlying model’s prediction is the center of
the interval, and the distance from the interval’s center to either boundary is
equal to ay(s), i.e., the absolute error from the calibration set associated with
the significance level 1 — 4. If the errors of the underlying model are symmetri-
cally distributed — i.e., the underlying model is equally likely to underestimate
and overestimate the true output — AECPR will always yield optimal inter-
val boundaries in the sense that neither boundary is overly optimistic nor overly
pessimistic in relation to the error distribution of the model (as estimated on the
calibration set). However, when the error distribution of the underlying model is
skewed, it is possible for one of the boundaries to become overly optimistic, while
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the other becomes overly pessimistic, simply because the errors committed in
one direction will influence the nonconformity scores, and consuequently the pre-
diction intervals, in both directions. Figure 1 shows an example of a skewed error
distribution, where the AECPR nonconformity scores of the underlying model (a
neural network) fail to capture the model’s tendency to produce smaller negative
errors (overestimation) and larger positive errors (underestimation).

Error Distribution

< - —— Predictor Error
- - - +/- Absolute Error /\

Probability Density
2

-0.5 0.0 0.5
Error

Fig. 1. Error distribution of an ANN on the Boston Housing data set. The signed error
(solid line) approximates the skewed distribution of the ANN’s error rate, while the
absolute error (dashed line) assumes a symmetrical distribution when mirrored onto
the negative range as per equations (3) and (4).

AECPR is proven valid [5], and thus there is no need to suspect that the
mismatch between absolute error nonconformity scores and skewed error distri-
butions would lead to invalid prediction intervals; however, it is necessary to be
very specific about what validity means in the context of AECPR. Given that
AECPR operates on the magnitude of the underlying model’s error, the validity
applies to the magnitude of errors and nothing else; i.e., AECPR guarantees that
the absolute error of the underlying model is no larger than a5y with probability
1 — 0. However, without considering the underlying model’s tendency to commit
positive or negative errors, AECPR cannot provide information regarding how
¢ is distributed above and below the prediction interval.

Without this information, it is not possible for a user of AECPR to distinctly
assess the validity of the prediction boundaries. To illustrate, consider a 95%-
confidence prediction interval on the form (—1, 1). If asked to assess the likelihood
of the true value y; being greater than 1, one is easily tempted to assume a
probability of 2.5%, since intuitively, the probability of y; being greater than
the interval’s upper boundary should be about the same as the probability of y;
being less than the interval’s lower boundary. The true answer however, is that
AECPR can only guarantee that there is at most a 5% probability of y; being less
than —1, and at most a 5% probability of y; being greater than 1, since we have
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no information of the probabilities of the true value being higher or lower than
the prediction interval’s upper and lower boundaries respectively. In the following
subsections, we expand on this argument, and propose a straightforward method
for producing prediction intervals that possess a stronger guarantee of validity for
the individual boundaries than for the full interval, while maintaining efficiency.

3.1 Validity of Interval Boundaries

IfYy = (Ylow, Y/high) is a valid prediction region at § = d, the one-tailed predic-
tions (—oo, Y;L,’gh) and (f’low, +00) must also be valid prediction regions at § = d,
as they both cover at least the same error probability mass covered by Y. How-
ever, without any knowledge of how the error probability d is distributed above
and below Y it is not possible to assume that one specific one-tailed prediction
is valid at any J < d. Hence, we can, in fact, only be confident in the one-tailed
predictions with probability 1—d, i.e., if ¥ = (Ylow, f’high) is valid at § = d, then
(—oo,f’high) and (Ylow, +00) are valid at § = d, but may be invalid at § < d.

On the other hand, if (—oo, }A/'high) and (Yzow, +00) are both known to be valid
at § = , we know by definition that either of these one-tailed predictions will
be 1ncorrect with probability at most g. Thus, if the two one-tailed predictions
are combined into a prediction interval Y = (f’low,ff;”gh) we can guarantee
that Y, will be wrong in a specific direction with probability at most ¢ 5, and
in total with probability at most d. Now, we are able to express not only a
confidence 1 — d for the interval, but also a greater confidence 1 — g for the
individual boundaries. Hence, if (—o0, f’high) and (?zow, +00) are valid at § = g
then Y, = (Ylow,ffhigh) must be valid at § = d. This follows from the fact that
when two one-tailed predictions are combined into a two-tailed interval, the
probability of the resulting interval being wrong is the sum of the probabilities
of the boundaries being wrong.

Using AECPR, prediction intervals with boundaries guaranteed at g can be
constructed simply by creating a prediction region }70'55 and outputting it as a

combined interval Y‘Z This is of course rather 1mpractlcal — as |YO 9| > \Y‘;|,
we’re not only ‘increasing’ the guarantee of validity for the 1nd1v1dual boundames
in Y‘S compared to Y5 we’re also effectively guaranteeing that our prediction in-

erval is unnecessarlly 1arge' We would much rather output a combined interval
such that |5A/c‘f I~ \Yj‘s |. To accomplish this, we are required to reduce the size of

the predicted boundaries Ylow and Yhigh. We note the following: if the underlying
model’s predictions tend to underestimate the true output values, we are only re-
quired to adjust the upper boundary of the prediction intervals for them to remain
valid; similarly, if the underlying model’s predictions tend to overestimate, we are
only required to adjust the lower boundary. Hence when predicting Yiow we only
need to consider the negative errors made by the underlying predictor; and, when
predicting Yhigh, we only need to consider the positive errors made by the under-
lying predictor. That is, we can construct the interval boundaries by considering
only about half of the errors commited by the underlying model, thus reducing the
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expected size of each boundary while maintaining validity in the one-tailed pre-
dictions. This follows directly from the semantics of validity we are applying to the
lower and upper boundary predictions — in both cases, we are only interested in
guaranteeing validity in a single direction, i.e., for the upper boundary, we want to
guarantee only that the probability of y; belng greater than Yhzgh isat most 1 —
and for the lower boundary we want to guarantee that the probability of y; belng
less than Yo, is at most 1 — g. Thus, if we are interested in predicting the upper
boundary of y;, we can define the nonconformity measure as «; = y; — s, i.e., a
nonconformity function that returns larger nonconformity scores with larger pos-
itive errors, and define the prediction interval as (—oo, §; + s )). In this case, we
guarantee that the true value y; < g; + ay(3) with probability 1 — g. Conversely,
we can define the nonconformity score such that it increases with larger negative
errors, i.e., &; = §; — y;, output the prediction interval (g; — Q) +00), and
guarantee that y; > 3; — Qg (s) with probability 1 — g

From this point, we are able to do one of two things: we can output either
(—o0 Y;L,gh) or (Ylow, +00) as the prediction with confidence 1 — J; or, we can
combine the two one-tailed predictions, and guarantee the boundarles at 1 — ,
and the interval at 1 — §.

3.2 Signed Error CPR

To approximate the (potentially skewed) error distribution of the underlying
model, we propose a nonconformity measure based on the signed error of the
model; i.e., we define the nonconformity score as

o =Y — Ui - (5)

Just as in AECPR, we sort « in a descending order — note though, that while
the sorted o in AECPR contains the absolute errors from largest to smallest, the
sorted o in SECPR ranges from maximum positive error to maximum negative
error. The prediction interval for a novel instance z; is then formulated as

5 « .
Y;' = (yj + Oélow(g)7yj + ahigh(g))’ (6)

where high(3) = | (¢ +1)] and low(3) = [ (1 — §)(g + 1)| +1. In effect, SECPR
performs two simultaneous conformal predictions — one for each boundary of
the interval. The boundaries are predicted with confidence 1 — g and, when
combined, form a prediction interval with confidence 1 — 6.

3.3 Evaluation

The two methods (AECPR and SECPR) were evaluated on 33 publicly available
data sets from the UCI [15] and Delve [16] repositories. Before experimentation
all output values were scaled to [0,1], only to enhance interpretability in effi-
ciency comparisons — with the outputs scaled to [0, 1], the size of a prediction
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interval expresses the fraction of possible outputs covered by the interval. For
each data set, 100 random sub-sampling tests were performed; in each iteration,
a randomized subsample (20%) of the data set was used as the test set, and re-
maining instances were used for training and calibration. The calibration set size

was defined as a function of the training set size: |Z”| = 100 U%H x 0.1+ 199.

Standard multilayer perceptron neural networks with [\/ k:—‘ + 1 hidden nodes

were used as underlying models for the conformal predictors, where k is the
number of input features of each data set. In each iteration, both AECPR
and SECPR predictions were calculated from the same model and calibration
instances.

4 Results

Given any § € (0,1), an ICR should produce valid prediction intervals — in
reality however, predictions with low confidence are rarely of interest. Thus, we
choose to show the empirical validity and evaluate the efficiency of AECPR and
SECPR at three commonly used confidence levels: 99%, 95% and 90%.

4.1 Validity of Intervals

As illustrated in Table 1, both methods produce prediction intervals that cover
the true targets of the test set at or very close to the predefined significance
levels; thus, in terms of interval coverage both methods are, as expected, valid.

Table 1. Mean coverage (portion of predictions that coincide with the true output of
the test instances) for AECPR and SECPR at 6 € {0.01,0.05,0.10} on the 33 sets

99% 95% 90% 99% 95% 90%

Abs Sign Abs Sign Abs Sign Abs Sign Abs Sign Abs Sign
abalone  .990 .990 .950 .949 .902 .902 kin8nh 990 .990 .950 .950 .901 .902
anacalt 1.00 1.00 .943 .997 .920 .944 kin8nm 990 .990 .950 .950 .900 .901
bank8fh .989 .989 .950 .949 .900 .901 laser 990 .991 .949 .948 .898 .901
bank8fm .990 .991 .950 .951 .902 .903 mg 991 .994 .951 .954 .905 .911
bank8nh .989 .990 .951 .949 .901 .901 mortage .990 .994 .950 .952 .906 .907
bank8nm .990 .991 .950 .951 .900 .901 plastic 999 1.00 .997 .997 .994 .993
boston 996 .992 .948 .958 .897 .897 puma8fh .990 .990 .949 .950 .900 .902
comp 1992 .993 .952 .962 .904 .923 puma8fm .990 .990 .950 .950 .901 .902

concrete .989 .993 .947 .954 .898 .904 puma8nh .990 .990 .951 .951 .902 .903
cooling 990 990 .949 .949 .898 .903 puma8nm .990 .990 .950 .950 .901 .902

deltaA 991 991 .950 .951 .901 .902 quakes 992 995 .955 .970 .908 .934
deltaE 990 .991 .951 .951 .901 .902 stock .990 .990 .948 .948 .899 .896
friedm 990 994 .948 .951 .902 .906 treasury .991 .993 .952 .952 .903 .910
heating  .990 .991 .948 .950 .895 .897 wineR 991 .994 .956 .957 .910 .913
istanbul  .991 .991 .952 .955 .903 .903 wineW 1993 993 .954 .963 .911 .913
kin8fh 990 .990 .952 .951 .902 .902 wizmir 991 .994 949 .954 .904 .908
kin8fm 990 .990 .951 .951 .901 .903 mean 991 992 .952 .955 .905 .909

min 989 .989 .943 .948 .895 .896
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4.2 Validity of Boundaries

Here, we take a closer look at the coverage of the lower and upper boundaries of
the intervals produced by AECPR and SECPR. Specifically, we expect AECPR
and SECPR to have a clear difference in coverage of their one-tailed predictions
(Ylow,Jroo) and (foo,}}high). We expect SECPR’s boundaries to be valid at
1- g, and AECPR boundary coverage to vary between 1 — g and 1 — 9.

Table 2. Mean low/high coverage for AECPR and SECPR at ¢ € {0.01,0.05,0.10}

99% 95% 90%
Abs Sign Abs Sign Abs Sign

low high low high low high low high low high low high
abalone 999 991 .995 .995 .989 .961 .974 .976 .968 .934 .949 .953
anacalt 1.00 1.00 1.00 1.00 .943 1.00 .997 1.00 .920 1.00 .944 1.00
bank8fh 1999 990 .995 .995 .986 .964 .975 .974 .967 .933 .950 .951
bank8fm .997 .993 .995 .995 .981 .970 .975 .976 .958 .944 .952 .951
bank8nh 1.00 .990 .995 .995 .995 .956 .974 .975 .981 .920 .950 .951
bank8nm .998 .992 .995 .995 .983 .967 .976 .974 .959 .941 .951 .950
boston 999 997 .994 998 .993 .955 .975 .983 .967 .930 .950 .947
comp 1995 997 997 .996 .960 .992 .979 .983 .919 .985 .953 .970
concrete  1.00 .989 .997 .996 .994 .953 .977 .976 .972 .927 .954 .950
cooling 1.00 .990 .996 .994 .997 .952 .976 .973 .984 .914 .954 .949

deltaA 995 996 996 .996 .971 .978 .976 .975 .946 .956 .952 .949
deltaE 994 996 .996 .995 .975 .976 .976 .976 .953 .949 .951 .951
friedm 995 995 .996 .997 .978 .970 .974 .976 .956 .946 .951 .955

heating 1.00 .990 .996 .995 .998 .951 .976 .974 .982 .913 .949 .947
istanbul 995 996 .996 .994 .976 .976 .977 .978 .947 .955 .952 .951

kin8fh 993 997 995 .995 .972 .980 .976 .975 .948 .954 .952 .951
kin8fm 994 996 .995 .995 .971 979 .975 .976 .946 .955 .951 .952
kin8nh 995 995 995 .994 .972 979 .975 .975 .946 .954 .950 .951
kin8nm 996 .994 995 .995 .974 .975 .975 .975 .949 .952 .951 .950
laser 995 995 .994 .997 .973 976 .973 .975 .947 .952 .950 .950
mg 996 995 .996 .998 .978 .972 977 .977 .952 .953 .955 .956

mortage  1.00 .990 .998 .997 .998 .952 .976 .976 .995 .911 .955 .953
plastic 1.00 .999 1.00 1.00 1.00 .997 .998 .998 .998 .995 .996 .997
puma8fh .995 .995 .995 .995 .972 .977 .974 .975 .946 .955 .950 .951
puma8fm .994 .996 .995 .995 .973 .977 .975 .975 .950 .951 .952 .950
puma8nh .993 .997 .995 .995 .972 .980 .976 .975 .947 .955 .951 .952
puma8nm .994 .995 .995 .995 .974 .976 .976 .975 .949 .952 .952 .950
quakes 1.00 .992 .998 .997 1.00 .956 .991 .980 .998 .910 .979 .955

stock 996 .994 995 .994 .978 .970 .974 .974 .957 .942 .948 .948
treasury  1.00 .991 .996 .997 .999 .953 .973 .978 .993 .911 .956 .954
wineR 994 997 997 .997 .976 .980 .977 .980 .952 .958 .955 .959
wineW 996 .996 .996 .997 .984 .970 .978 .985 .961 .949 .955 .957
wizmir 994 997 997 .997 .974 976 .976 .978 .954 .950 .954 .954
mean 997 994 996 .996 .981 .971 .977 .978 .960 .946 .954 .955
min .989 .994 .943 973 910 1944

Table 2 reveals that AECPR’s interval boundaries show only a small deviance
from 1 — g—validity on average (across all data sets). However, more often than
not, one of the boundaries is overly optimistic and the other overly pessimistic to
compensate, and the reason the two interval boundaries appear valid on average
is the simple fact that they are alternatingly optimistic and pessimistic. We also
note that, in the worst cases (e.g. the treasury data set), one of the boundaries
is valid only at 1 — 4. In contrast, SECPR interval boundaries show coverage at
or very near 1 — g—validity in both the average and worst cases.
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To further illustrate, we let the Dg be the average coverage of the boundary
(low or high) that has the highest average coverage for data set D (the most
pessimistic boundary), and we let DS be the average coverage of the boundary
with the lowest average coverage for D (the most optimistic boundary). E.g.,
for abalone, AECPR has DJ? = 0.991 and D)° = 0.999; and SECPR has DJ? =
0.995 and D? = 0.995. We then calculate the mean coverage DS and Dg for
each d, and for both AECPR and SECPR (Table 3).

Table 3. Mean optimistic and pessimistic boundary coverage of AECPR and SECPR

D99 D99 D95 D95 DQD DQD

) P o P o p
AECPR .994 .997 .967 .985 .939 .966
SECPR .996 .996 .977 .979 .952 .957

In Table 3 we can clearly see that, as we argued in the Method, AECPR
intervals show a tendency towards having an overly pessimistic boundary and
an overly optimistic boundary, in such a way that the error probability é above
and below the interval is unevenly distributed. Furthermore, we are not given any
information regarding the distribution of §, and thus as noted in the Method and
supported by the empirical evidence, AECPR can only guarantee the validity of
its interval boundaries at 1 — 4.

SECPR intervals can guarantee the interval boundaries at 1— g; so, this state-
ment is supported by the empirical evidence. We also note that SECPR tends to
produce balanced intervals — i.e., intervals where ¢ is evenly distributed above
and below the prediction intervals. More importantly, even in the cases where
the intervals are not perfectly balanced, we have already defined the boundaries
to be valid at 1 — g.

4.3 Efficiency

We can choose to compare the interval sizes of AECPR and SECPR (Table 4)
based on two different criteria: either we compare intervals that share the same
guarantee of validity for the full interval; or, we compare intervals that share
the same guarantee of validity for the individual boundaries. That is, we either
compare the 99% SECPR intervals to the 99% AECPR intervals, and so on,
and remember that SECPR provides a stronger guarantee of validity for the
boundaries than does AECPR; or, we compare the 90% SECPR intervals to the
95% AECPR intervals, and so on, and remember that the two methods in this
case provide the same guarantee for the one-tailed prediction boundaries.

First, we consider predictions that share the same guarantee of validity for the
full interval. Here, we note that on average SECPR produces tighter intervals
than AECPR at the 99% confidence level, due to SECPR taking into account the
sign of the underlying model’s error. If the underlying model commits large errors
in only one direction, only one of the interval boundaries predicted by SECPR
is affected, while both boundaries are affected in AECPR. Thus, for data sets
where the underlying model commits outlier errors — atypical errors that are of
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Table 4. Mean-median interval sizes for AECPR and SECPR at § € {0.01,0.05,0.10}

99% 95% 90% 99% 95% 90%

Abs Sign Abs Sign Abs Sign Abs Sign Abs Sign Abs Sign
abalone  .528 .486 .324 .322 .238 .248 kin8nh 628 .631 .482 .482 .405 .407
anacalt 1.77 1.00 1.18 .985 .728 .707 kin8nm 549 551 .395 .396 .321 .323
bank8fh  .543 .540 .379 .371 .295 .297 laser 625 .605 .291 .281 .208 .215
bank8fm .266 .255 .191 .186 .152 .153 mg 787 .837 .513 .529 .401 .411
bank8nh .793 .720 .452 .440 .327 .338 mortage 1.15 .915 .895 .791 .663 .721
bank8nm .390 .374 .224 .221 .158 .162 plastic 993 .976 .983 .973 .975 .968
boston 1.11 .969 .712 .707 .488 .554 puma8fh .765 .768 .570 .571 .470 .472
comp .790 .685 .419 .405 .286 .303 puma8fm .359 .361 .266 .266 .223 .224

concrete 1.00 .933 .753 .780 .646 .673 puma8nh .762 .756 .552 .554 .448 .451
cooling 1.07 .910 .787 .779 .655 .665 puma8nm .369 .365 .253 .255 .205 .207
deltaA 269 .283 .162 .164 .126 .127 quakes 1.08 .871 .709 .639 .492 .527

deltaE 317 .333 .214 .215 .175 .175 stock 748 733 .597 .604 .530 .530
friedm .289 .317 .210 .213 .175 .179 treasury 1.13 .889 .807 .763 .556 .649
heating  1.04 .952 .904 .840 .776 .752 wineR .841 1.10 .556 .567 .448 .449
istanbul  .503 .542 .338 .344 .274 .274 wineW 741 756 .546 .552 .403 .394
kin8fh 387 .383 .286 .287 .238 .239 wizmir 507 .558 .418 .424 .383 .384
kin8fm 163 .162 .119 .120 .099 .100 mean 705 .652 .500 .486 .393 .402

std dev 349 260 .266 .242 .212 .216

a much larger magnitude than typical errors — in only one direction, SECPR will
produce tighter intervals than AECPR. It must be noted that while this applies
to all significance levels, most of the outlier errors will, for lower signficance
levels, be excluded from the prediction intervals anyway. Consuequently, at the
95% confidence level we observe a similar pattern, but the effect is much less
pronounced. At 90%, the effect is all but gone, and SECPR is instead slightly less
effective than AECPR on almost all data sets. A Wilcoxon signed-ranks test at
a = 0.05 shows that, in terms of efficiency, SECPR is significantly better than
AECPR for 99%-confidence predictions, while AECPR is significantly better
than SECPR for 90%-confidence predictions. Thus, at 90% confidence or lower,
we can expect that the strengthened guarantee of validity provided by SECPR
is accompanied with a small but significant decrease in efficiency.

Second, we consider one-tailed predictions, specifically at the 95%-confidence
level (i.e., AECPR at 95%, SECPR at 90%); here, we can clearly see that SECPR
produces tighter intervals than AECPR for all data sets. Hence, simply by ensur-
ing that the boundaries are affected only by the relevant errors of the underlying
model, we can significantly increase the efficiency of one-tailed predictions.

5 Conclusions

In this paper, we have shown that conformal regressors based on the absolute
error of the underlying model produce unbalanced prediction intervals — inter-
vals with no guarantee for the distribution of error above and below the intervals
— and that this unbalance leads to prediction intervals with weak guarantees
of validity for the individual interval boundaries. To address this issue, we have
proposed a straightforward approach for producing prediction intervals based on
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the signed error of the underlying model (SECPR) that can provide a stronger
guarantee of validity for the interval boundaries. Also, we have shown that
SECPR is less sensitive to outlier errors than AECPR, resulting in more effi-
cient prediction intervals at the highest confidence levels. Finally, we show that,
when expected to provide the same guarantees of boundary validity as AECPR,
SECPR produces much more efficient prediction intervals than corresponding
AECPR models.
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Abstract. Many methods exist to solve multi-instance learning by us-
ing different mechanisms, but all these methods require that both posi-
tive and negative bags are provided for learning. In reality, applications
may only have positive samples to describe users learning interests and
remaining samples are unlabeled (which may be positive, negative, or
irrelevant to the underlying learning task). In this paper, we formulate
this problem as positive and unlabeled multi-instance learning (puMIL).
The main challenge of puMIL is to accurately identify negative bags for
training discriminative classification models. To solve the challenge, we
assign a weight value to each bag, and use an Artificial Immune System
based self-adaptive process to select most reliable negative bags in each
iteration. For each bag, a most positive instance (for a positive bag) or
a least negative instance (for an identified negative bag) is selected to
form a positive margin pool (PMP). A weighted kernel function is used
to calculate pairwise distances between instances in the PMP, with the
distance matrix being used to learn a support vector machines classifier.
A test bag is classified as positive if one or multiple instances inside the
bag are classified as positive, and negative otherwise. Experiments on
real-world data demonstrate the algorithm performance.

Keywords: Multi-instance learning, unlabeled bags, classification.

1 Introduction

Multi-instance learning (MIL) [1] is a special type of learning task where each ob-
servation contains a bag of instances. A bag is labeled positive if one or multiple
instances inside the bag are positive, and negative otherwise. The uniqueness
of not requiring labels for individual instances makes multi-instance learning
very suitable for applications without label information for individual instances.
Because the genuine positive instance(s) inside each positive bag is unknown,
the main challenge of multi-instance learning is to leverage bag labels and con-
straints to derive accurate classification models. Roughly, existing MIL methods
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[2] can be separated into the following three categories: (1) instance-based mod-
eling, which finds most positive and most negative instances from bags to derive
MIL models; (2) bag-based modeling, which directly builds classification models
at the bag level; and (3) hybrid approaches, which use instances and bags to
confine the learning space to build classification models.

For all existing MIL methods, one prerequisite is that training data must
contain both positive and negative bags to derive discriminative models. In re-
ality, many applications may only have positive bags to indicate users learning
interests and the remaining bags are unlabeled (which may be positive, nega-
tive, or irrelevant to the learning task). For example, during an image retrieval
process [3], users may click one or multiple images which are interesting to them
(the clicked images can be regarded as positive bags), but majority images re-
main unchecked, so we do not know whether those images do not contain users
retrieval concepts (i.e. negative bags) or users simply overlook the images. In this
case, there is no negative bag but only positive and unlabeled bags are available.

When only positive and unlabeled bags are available, a straightforward solu-
tion for MIL is to propagate a bag’s label to each instance inside the bag, so the
problem can be solved by using standard Positive-Unlabeled learning [4]. Indeed,
this simple solution is ineffective because not all instances inside a positive bag
are positive, so some instances will be mislabeled and deteriorate the classifica-
tion accuracy. A slightly more intelligent way is to use Positive and Unlabeled
learning strategy [5] to first treat all unlabeled bags as negative bags and train
an MIL classifier, and then iteratively refine identified negative bags by using
trained MIL classifiers. This solution is still ineffective mainly because the iden-
tification of negative bags only relies on the MIL classifiers but does not take
the unique MI bag constraints into consideration, so directly training MIL clas-
sifiers using positive bags and identified negative bags will severely deteriorate
the classification accuracy.

The above observations motivate a very practical learning task where only
positive and unlabeled bags are available for multi-instance learning. In this pa-
per, we formulate this problem as positive and unlabeled multi-instance learning
(puMIL), where the key challenge is twofold: (1) MIL learning with unreli-
able bag labels: Although it is always possible to identify some unlabeled bags
as negative bags, the labels of identified negative bags are unreliable. Directly
building MIL classifiers from positive and identified negative bags may result in
low classification accuracy. This reality calls for new MIL learning frameworks
capable of handling unreliable bag labels; and (2) Tacking uncertainty in-
side positive bags: For MIL, the genuine labels of instances inside a positive
bag are unknown, although at least one instance has to be positive. Finding
“most positive instances” plays a significant role for multi-instance learning. In
a puMIL setting, this process is further complicated because no negative bags
are available to help identify positive instance(s) in a positive bag.

In this paper, we propose a self-adaptive learning framework to tackle the
above challenges for puMIL. More specifically, we assign a weight value to each
bag, and use an Artificial Immune System based search process to update bag
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Fig.1. A conceptual view of the proposed puMIL framework: Given a number of
positive and unlabeled bags, puMIL starts from assigning a weight value for each bag.
(a): the weight values help identify some unlabeled bags as reliable negative bags. (b):
the obtained reliable negative bags help build a weighted distribution, which is used to
measure instances in positive and reliable negative bags, respectively, (c). After that,
the “most positive pattern” (d) for positive bags and the “least negative pattern” (e)
for reliable negative bags are selected to form a Positive Margin Pool (PMP), which
helps build a weighted SVM classifier for classification. Based on the constructed PMP,
a self-adaptive strategy (discussed in Section 4.3) is used to update weight value of each
bag (f). The iteration process continues, with the objective of improving the quality of
reliable negative bags and the quality of PMP, and achieving optimal accuracy.

weight values and identify the most reliable negative bags in each iteration. For
each bag, a “most positive instance” (for a positive bag) or a “least negative
instance” (for an identified negative bag) is selected to form a positive margin
pool (PMP). A weighted kernel function is used to calculate pairwise distances
between instances in the PMP, with the distance matrix being used to learn a
weighted support vector machines classifier. Experiments on real-world positive
and unlabeled bags confirm the effectiveness of the proposed design.

The remainder of the paper is structured as follows. Preliminary and prob-
lem statement are addressed in Section 2, followed by the overall framework in
Section 3. Section 4 introduces detailed algorithms, followed by experiments in
Section 5. We conclude the paper in Section 6.

2 Preliminaries and Problem Statement

Denote B = {Bi,- -, B} a bag set with n bags, and B; is the ¢th bag in the set.
The bag set contains both positive and unlabeled bags, with B;r and B} indi-
cating a positive and an unlabeled bag, respectively (for ease of representation,
we also use B; to denote a bag). Let Y = [y1,- -+ ,yn] where y; is the label of
B;. In generic MIL settings, a positive and a negative bag’s label can be denoted
by y; = +1 and y; = —1, respectively. In a puMIL setting, an unlabeled bag
B}’s label is denoted by y; = 0. The collections of positive and unlabeled bag
sets can be denoted by BT and BY, respectively. During the learning process,
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the algorithm may identify a set of unlabeled bags as a negative bag set, which
is denoted by B~. It is worth noting that BT contains bags which are genuinely
positive, whereas B~ contains bags which are “identified” as negative bags.

For each bag B;, the number of instances inside the bag is denoted by n;, and
Xij,J = 1,2,--- ,n; represents the jth instance in B;. Each instance x; ; also
has a label but cannot be directly observed, because of the bag constraint. In
order to tackle unreliable bag labels in puMIL setting (challenge # 1), we use a
weight value w; to indicate the label confidence of each bag B;. So for a positive
bag B;‘ , its weight value w; is 1 (because it is genuinely positive), whereas for
an identified negative bag B;, its weight value w; € (0, 1], with a higher w; value
indicating that B; is more likely being a negative bag.

Given a training set B containing a handful of positive BT bags and many
unlabeled B* bags, puMIL learning aims to build a prediction model from B to
accurately predict previously unseen bags with maximum F-score.

3 Overall Framework

Figure 1 illustrates the conceptual view of the proposed puMIL framework, which
includes two major steps to solve key challenges identified in Section 1.

Positive Margin Pool (PMP): In order to carry out multi-instance learning
with positive and unlabeled bags only, we propose to use maximum margin
idea [6] to build a positive margin pool (PMP) by modeling the distributions of
the positive and unlabeled bags. More specifically, we utilize bag weight values to
identify some unlabeled bags as most reliable negative bags. After that, we select
“most positive patterns” from positive bags and “least negative patterns” from
identified negative bags to form a positive margin pool. Because PMP contains
signature patterns with respect to positive and identified negative bags, it will
help differentiate decision boundaries to separate positive bags.

Self-Adaptive Bag Weight Updating: In order to properly identify most
negative bags from unlabeled bags, we assign a weight value to each bag and
will employ a self-adaptive iterative process to update bag weight values to find
reliable negative bags. The proposed iterative bag weight updating process is
based on clonal selection theory [7] in Artificial Immune Systems. It iteratively
searches different weight values, including mutations and clones of weight values
from the previous iteration, to find the one which optimizes the object function
(i.e. the F-score in our case). As a result, the self-adaptive weight updating can
ensure high quality negative bags are identified to form positive margin pool
(PMP) for multi-instance learning without negative bags. The weight updating
is detailed in Section 4.3.

4 Positive and Unlabeled Multi-Instance Learning

4.1 Optimization Framework with Unreliable Bag Labels

To handle unreliable bag labels from identified negative bags, we propose to build
a Positive Margin Pool (PMP) which contains “most positive patterns” from
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positive bags and “least negative patterns” from identified negative bags. Our
multi-instance learning is then achieved by building an optimization framework
based on the PMP, under the condition that negative bags are unreliable and
therefore need to be carefully handled. In Eq. (1), we propose our objective
function in handling unreliable bag labels.

1 o
7)

st £(xP,wiyi;w) = maz(0,1 — wiyw ' %!

where xf denotes a “most positive pattern” or a “least negative pattern” in
PMP with m denoting the number of instances in PMP. w; denotes weight
confidence of the ith instance in PMP. In our design, because only one instance
is selected from each bag, the weight confidence of the instance is equal to the
weight confidence value of the bag. More specifically, if the instance is from a
positive bag, its weight confidence w; = 1. For instances from identified negative
bags, their weight values are w; € (0, 1], with a higher w; value indicating that
B; is more likely being a negative bag.

The cost function in Eq. (1) is the linear SVM in the primal formulation,
where ¢(xZ, w;y;;w) is the hinge loss function used by the SVM classifier. The
above primal form can be formulated into a dual version as

1
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where «; is the Lagrangian multiplier. Indeed, the above optimization problem
defines a nonlinearly constrained nonconvex optimization task. It contains two
sub-problems: (1) learning continuous variables @ which is equivalent to finding
hyper-plane w, and (2) selection of instances x? for PMP which is equivalent
to finding optimal weight values w. To the best of our knowledge, no direct
solution exists to find its global optimal. In this paper, we derive an self-adaptive
approach to find optimal bag weights for unlabeled bags, and then use generic
SVM optimization to solve the above optimization problem.

In the following, we first explain the construction of the PMP, and then in-
troduce detailed self-adaptive process for finding optimal bag weight values.

4.2 PMP: Positive Margin Pool

The main purpose of building a Positive Margin Pool is to identify some “most
positive patterns” (for positive bags) and “least negative patterns” (for possible
negative bags), so PMP can help build classifiers to differentiate positive wvs.
negative instances for multi-instance classification. This also provides solutions
to tackle unreliable bag labels obtained from unlabeled bags.

The construction of the PMP is motivated by the margin principle, which
states that samples close to the decision boundary play critical roles in improv-
ing the performance of the underlying classifier. In our puMIL setting, we assign
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a weight confidence value w; to each bag, so it can help identify unlabeled bags
which are most likely being negative as “reliable negative bags” and then ex-
tract most positive patterns from positive bags and least negative patterns from
identified negative bags to form PMP.

According to MIL definition, a negative bag does not contain positive in-
stances, and negative instances in negative bags can have very general distribu-
tions, we use a Weighted Kernel Density Estimator [8] (WKDE) to model the
distributions of negative instances in reliable negative bags as follows.

p(x|B) = zjni )

where w, denotes weight of the bag to which the instance x belongs to. x

i K (wyx, wix; ;) (3)
i
denotes the jth instance of the ith reliable negative bag with its size to be n;,
and we use an isotropic Gaussian kernel K. Depending on whether the underlying
bag is positive or is identified as negative, the “most positive pattern” or “least
negative pattern” x2 in PMP can be obtained by Eq.(4), with B~ denoting the

set of all identified reliable negative bags.

X7 = arg min p(xi,;187) (4)
Xi,j€Bi,j=1,"- ,n;

After that, the optimization problem in Eq. (2) can be solved through stan-
dard linear SVM. In other words, once weight values are fixed, a weighted SVM
classifier can be trained from PMP for classification.

4.3 Self-Adaptive Bag Weight Optimization

In the proposed puMIL learning framework, a weight confidence value w; is
assigned to each bag to determine whether an unlabeled bag is likely being a
reliable negative bag or not. In this section, we propose a self-adaptive process
to search optimal bag weight values. Because the aim of puMIL is to propose
a learning framework to maximize the performance measure (F-score), a good
weight combination should corresponds to a high F-score, which trades off the
precision P and the recall R: F-score= 2 x P x R/(P+ R). Accordingly, we drive
a self-adaptive strategy to obtain optimal weights based on a clone selection
theory in Artificial Immune Systems.

When pathogens invade the body, antibodies that are produced from B-cells
will respond for the detection of a foreign antigen. This response process can be
explained by clonal selection theory. More specifically, immune individuals with
high affinity will gradually increase during the clone and mutation process. Mean-
while, some immune individuals will polarize into memory individuals, which will
be evolved towards final optimal. In our solution, antigen is simulated as train-
ing bag set B, while the antibody, presented by confidence weight vector w will
experience a form of clone and mutation. The evolving optimization process will
help discover optimal bag weight values w* which will lead to the best affinity
(i.e. F-score). The details of the optimal weight search process are described as:
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Algorithm 1. puMIL: Positive and Unlabeled Multi-Instance Learning

Input: R

Antibody Population (weight vectors): W = {wy,--- ,Wr};

Antigen Population (bags): B = BT U BY;

Clone Factor ¢; Threshold T'; Maximum Evolution Iterations M;
Output:

The target class label ys of a test bag Bs;

// Training Phase:

1: W « Initialize L weight vectors (Step (1) in Section 4.3).

20t 1;
3t while {t<M and fIwWET] — f[wi] > T) OR (¢t =1)} do
4: (B, )« Use w to find unlabeled bags with the largest weight values to form reliable negative

bag set (which has the same number of bags as B).
(D; )" + Generate a weighted distribution from the (B; ) via Eq. (3).
PMP} + Apply (D; )" to BT and (B; )" and obtain positive margin pool via Eq. (4).
fIW!] < Apply PMP} to B and calculate the affinity score for W} via Eq. (2).
\fvz < Apply f[vAvf] to W' and find weight vector vAvﬁ with the highest affinity score.
Wittt Apply \fvz to Wt via Steps (2-4) in Section 4.3 and update weight population.
10: vAvi+1 < Apply f[\?v:"'l] to W*t? and update the best weight vector.
11: t+t+1.
12: end while
13: wi « Wi // The final optimal weight vector
// Testing Phase:
14: H « Apply the global optimal w to all instances in the underlying PMP to build a weighted
SVM classier H(x?) = w x? + b withw = 3, aiw:,iyix?.
15: ys « Apply H to each instance in test bag By to predict its bag label.

1) Initialization: Given an MI set B with n bags, a set of weight vec-
tors W = {W1,-+-,wr} are randomly generated, with each vector w; =<
Wi, , Wik, ,Win > where w; ;, represents a weight value of bag Bj, € B. If
By, is a positive bag, w; j is set to 1. If By, is an unlabeled bag, w; j is a random
value within range (0, 1]. It is worth noting that each weight vector w; contains
initial weight value for all bags. Because there are L weight vectors, each bag
will have L initial weight values.

2) Antibody Clone: For each weight vector w! in the tth generation, if
we use their weight values as the bag weights as defined in Eq. (1), each w!
will correspond to an SVM classifier with an affinity score (i.e. F-score) on the
unlabeled bag set B*. This score allows us to assess the quality of weight vectors
and use clone selection to find optimal weight vector. During antibody clone
process, the individual w', € W! with the best affinity score will be selected as
the memory antibody to be further cloned. To ensure a fixed population size in
every generation, w’ will be cloned under the clone factor ¢ to replace weight
vectors W' € W! with low affinity under the same rate c.

3) Antibody Mutation: In order to maintain the diversity of the weight
vectors, the mutation operation should be applied. Specifically, for any w! from
the tth generation, the new variation individual v; +1 can be generated as follows:

Vit = WL Fx N(0,1) * (W) — W) (5)

K2

Among them, N(0,1) is a normally distributed random variable within [0,1].
F=1-fw ] as the variation factor, can be adaptlvely obtained according to
different clones [9] where f[Ww!] denotes the affinity of w!.
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4) Antibody Update: This process determines whether the variation of
weight vectors (from above steps (2) and (3)) can be used to replace a target
weight vector in the next generation. In our algorithm, we adopt a greedy search
strategy. Only if the affinity of VE-H is better than that of the target weight
vector w!, the new weight vector is then selected as the offspring.

4.4 puMIL Framework

Algorithm 1 reports the detailed process of the proposed puMIL framework,
which combines the (1) PMP construction (Section 4.2); and (2) adaptive weight
optimization (Section 4.3), to iteratively refine unlabeled bags for learning.

During the initial process, puMIL will initialize the bag weight vectors W (line
1). During each while loop, puMIL will first select the “reliable negative bags”
(B;)! (this set has the same size as the number of positive bags B*) for each
weight vector w! in W, So (B; )" consists of unlabeled bags with the largest
weight values in w! (line 4). After that, puMIL will form a positive margin pool
for each weight vector (lines 5-6). The clone selection theory will be employed
to update the weight vectors in order to find a better weight value in the next
iteration (lines 7-10). The evolutionary process will repeat until (1) the algorithm
surpasses the pre-set maximum number M, or (2) the same result is obtained
for a number (e.g. T) of consecutive iterations.

After obtaining the best weight vector w, puMIL uses the discovered optimal
weight values to obtain PMP, and then builds a weighted SVM classifier H. A
test bag is classified as positive if one or multiple instances inside the bag are
classified as positive, and negative otherwise.

5 Experiments

To evaluate the effectiveness of our puMIL framework, we use F-score as the
evaluation metric (its definition is given in Section 4.3). For benchmark data
sets used in the experiments, 30% of bags are randomly selected as testing set in
each run, with the remaining bags being used as training set. All results are based
on the average performance over 10 repetitions. Besides, the two parameters M
and T in Algorithm 1 are set to 50 and 0.001, respectively.

Because there is no existing method for positive and unlabeled multi-instance
learning, for comparison purposes we implement following baseline approaches
from bag- and instance-level perspectives. The former directly employs Positive-
Unlabeled learning [5] at the bag level, and the latter propagates bag label to
instances and transfer MIL as a generic Positive-Unlabeled learning problem.

Bag-Level Approaches: (a) MILR4+MISVM-MI: This method first labels all
unlabeled bags as negative bags, and then uses MI learning approach MILR [10],
which outputs probability estimation, to obtain a set of identified negative bags.
After that, it runs MISVM [6] iteratively on the positive set and refined nega-
tive set until converges; and (b) Spy+MISVM-MI: The difference between Spy
based PU learning [5] on bag-level and MILR+MISVM-MI is in its initialization.
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Spy+MISVM-MI randomly samples a set of positive bags as “spies”, and marks
them as unlabeled bags. Because spies are genuinely positive and behave similarly
to unknown positive samples the unlabeled set, adding spies allows algorithm to
infer characteristics of unknown positive bags in the unlabeled set. Previous stud-
ies [5] on text documents have demonstrated good performance of this PU learning
strategy.

Instance-Level Approaches: (a) NB4+SVM-MI. The variation of traditional
PU setting in [5,11] is used for comparison. Specifically, a Naive Bayes classifier
[12] is used to obtain identified negative instance set from unlabeled instance
set. After that, an iterative process is used to train SVM classifier from positive
instances and identified negative instances; and (b) Spy+SVM-MI Similar to
the approaches used in [5,11], during the initialization process, Spy+SVM-MI
randomly selects a set of positive instances as “spies”, and adds them into the
unlabeled set. After that it follows the same procedure as NB+SVM-MI.

For ease of understanding, we also refer to MILR+MISVM-MI and NB+SVM-
MI as “no-spy” based approaches, and Spy+MISVM-MI and Spy+SVM-MI are
called “spy” based approaches.

5.1 Drug Activity Prediction

The objective of drug activity prediction is to predict whether a drug molecule
can bind well to a target protein related to certain disease states, which are
primarily determined by the shape of the molecule. Our drug activity predic-
tion data set, MUSK1 [1], is a benchmark used for MI learning. It contains 476
instances grouped into 92 bags (45 inactive and 47 active), with each instance
being described by a 166-dimensional feature vector. In our experiments, we
use r X 100% active bags as positive bags, and the remaining active bags and all
inactive bags are treated as unlabeled bags. The results for the two types of base-
lines (bag-level and instance-level) and proposed puMIL with different r values,
varying from 0.1 to 0.7, are reported in Figures 2(A) and 2(B), respectively.

Overall, “no-spy” based approaches achieve competitive F-score as “spy”
based methods, which demonstrates that simply adding “spy” to unlabeled bags
may not help differentiate positive vs. negative bags. Meanwhile, the proposed
puMIL achieves better performances compared to other methods, especially for
bag-level baselines. For small r values, such as v = 0.2 or less, puMIL demon-
strates very significant performance gain, compared to other baselines. This fur-
ther assets that when the number of positive bags is very limited, leveraging
useful information from unlabeled bags, like puMIL does, can be very useful for
positive and unlabeled multi-instance learning.

5.2 Scientific Publication Retrieval

The DBLP data set consists of bibliography data in computer science'. Each
record in DBLP contains a number of attributes such as abstract, authors, ti-
tle, and references [13]. To build a puMIL task, we select papers published in

! http://dblp.uni-trier.de/xml/
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Fig. 2. F-score comparisons on MUSK, DBLP, and Corel Image data sets with
respect to different r values. Where (A) and (B) represent MUSK data, (C) and (D)
represent DBLP data, and (E) and (F) represent Corel Image data.

Artificial Intelligence field (AI: IJCAI, AAAT \NIPS, UAI, COLT, ACL, KR,
ICML, ECML and IJCNN) as positive bags and randomly select papers from
other fields, such as computer vision, multimedia, pattern recognition as unla-
beled bags. A “bag-of-words” representation based on TFIDF [14] is adopted to
convert the abstract of a paper to an instance. So each paper is a bag and each
instance inside the bag denotes either the paper’s abstract or the abstract of a
reference cited in the paper.

In our experiments, we choose 200 papers in total (which correspond to 200
bags), with each paper containing 1 to 10 references. For all 200 papers, the total
number of references cited (i.e. instances) is 1136. Each instance is described by
a 4497-dimensional feature vector. To vary the number of positive bags, we
randomly select r x 100% of AI bags (varying from 0.1 to 0.7) as positive bag
set, and the remaining Al bags and all other bags are used as unlabeled bags. In
Figures 2(C) and 2(D), we report the results with respect to different r values.
The results show that “spy” based approaches can achieve a slightly better
performance than ‘no-spy” versions when r is greater than 0.4. This is possibly
because that when a large number of positive bags are used, the “spies” selected
from the positive bags will not reduce the role of positive bags. Meanwhile,
puMIL clearly outperforms all baselines, especially when only a small portion of
positive bags are labeled (i.e. 7=0.1). This suggests that puMIL is effective over
a wide range of percentage of labeled positive bags.

5.3 Region-Based Image Annotation

In the third experiment, we report puMIL’s performance for automatic image
annotation tasks. The original data are color images from the Corel data set
[15] that have been preprocessed and segmented using Blobworld system [16].
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Fig. 3. Example images from the Corel image database used in the experiment. The
first and the second rows show positive and negative objects, respectively. Each image
is considered as a bag with each region denoting an instance.

An image contains a set of segments (or blobs), each characterized by color,
texture, and shape descriptors. In this case, each image is considered as a bag,
and each region inside the image denotes an instance. Some example images from
the database are shown in Figure 3. In our experiment, we use category “tiger”
as positive bags (100 bags with 544 instances) and randomly draw 100 photos
of other animals to form unlabeled bags with 676 instances. Each instance is
described by a 230-dimensional feature vector which represent color, texture,
and shape of the region. To validate the performance of puMIL with respect to
different number of positive bags, we randomly select r x 100% “tiger” images
(varying from 0.1 to 0.7) as positive bags, and combine remaining “tiger” images
and all other images as unlabeled bag set.

In Figures 2(E) and 2(F), we compare the performance of puMIL with two
types of baselines by using different portions of positive bags. The results show
that bag-level baselines can have a high F-score than instance-level methods
when the percentage of positive bag is very small (e.g. r < 0.2). Because instance-
level approaches directly assign bag labels to all instances in positive bags, for a
small number of positive bags, the mislabeled instances in positive bags will have
severe impact on the classifiers trained from labeled data. As a result, the clas-
sifier may not be able to accurately differentiate positive vs. negative instances.
However, as the r values become sufficiently large, instance-level methods demon-
strate better performance than bag-level approaches. By properly utilizing in-
formation in unlabeled bags, puMIL consistently outperforms all baselines for
different percentages of positive bags.

6 Conclusions

In this paper, we formulated a unique multi-instance learning task, which only
has positive and unlabeled bags available for multi-instance learning. This prob-
lem setting is more general but significantly more challenging than traditional
multi-instance learning because no negative bags exist for deriving discriminative
classification models. To address the challenge, we proposed a puMIL framework
which self-adaptively selects some reliable negative bags (from unlabeled bags)
and further selects some representative patterns from the positive bags and iden-
tified negative bags to help train SVM classifiers. The classifiers will further help
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refine the selection of negative bags and iteratively lead to updated classifiers for
classification. Our main technical contribution, compared to existing research,
is threefold: (1) a general framework to handle multi-instance learning with
only positive and unlabeled bags; (2) an effective algorithm to identify reliable
negative bags from unlabeled bags; and (3) an effective approach for utilizing
unreliable labels derived for unlabeled bags.

Acknowledgments. The work was supported by the Key Project of the Natu-
ral Science Foundation of Hubei Province, China (Grant No. 2013CFA004), and
the National Scholarship for Building High Level Universities, China Scholarship
Council (No. 201206410056).
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Abstract. In this paper, we tackle a novel problem of mining contrast
subspaces. Given a set of multidimensional objects in two classes C'y and
C_ and a query object o, we want to find top-k subspaces S that maxi-
mize the ratio of likelihood of 0 in C+ against that in C_. We demonstrate
that this problem has important applications, and at the same time, is
very challenging. It even does not allow polynomial time approximation.
We present CSMiner, a mining method with various pruning techniques.
CSMiner is substantially faster than the baseline method. Our experi-
mental results on real data sets verify the effectiveness and efficiency of
our method.

Keywords: contrast subspace, kernel density estimation, likelihood
contrast.

1 Introduction

Imagine you are a medical doctor facing a patient having symptoms of being
overweight, short of breath, and some others. You want to check the patient
on two specific possible diseases: coronary artery disease and adiposity. Please
note that clogged arteries are among the top-5 most commonly misdiagnosed
diseases. You have a set of reference samples of both diseases. Then, you may
naturally ask “In what aspect is this patient most similar to cases of coronary
artery disease and, at the same time, dissimilar to adiposity?”
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The above motivation scenario cannot be addressed well using existing data
mining methods, and thus suggests a novel data mining problem. In a multidi-
mensional data set of two classes, given a query object and a target class, we
want to find the subspace where the query object is most likely to belong to the
target class against the other class. We call such a subspace a contrast subspace
since it contrasts the likelihood of the query object in the target class against
the other class. Mining contrast subspaces is an interesting problem with many
important applications. As another example, when an analyst in an insurance
company is investigating a suspicious claim, she may want to compare the sus-
picious case against the samples of frauds and normal claims. A useful question
to ask is in what aspects the suspicious case is most similar to fraudulent cases
and different from normal claims. In other words, finding the contrast subspace
for the suspicious claim is informative for the analyst.

While there are many existing studies on outlier detection and contrast min-
ing, they focus on collective patterns that are shared by many cases of the target
class. The contrast subspace mining problem addressed here is different. It fo-
cuses on one query object and finds the customized contrast subspace. This
critical difference makes the problem formulation, the suitable applications, and
the mining methods dramatically different. We will review the related work and
explain the differences systematically in Section 2.

To tackle the problem of mining contrast subspaces, we need to address several
technical issues. First, we need to have a simple yet informative contrast measure
to quantify the similarity between the query object and the target class and the
difference between the query object and the other class. In this paper, we use
the ratio of the likelihood of the query object in the target class against that in
the other class as the measure. This is essentially the Bayes factor on the query
object, and comes with a well recognized explanation [1].

Second, the problem of mining contrast subspaces is computational challeng-
ing. We show that the problem is MAX SNP-hard, and thus does not allow poly-
nomial time approximation methods unless P=NP. Therefore, the only hope is
to develop heuristics that may work well in practice.

Third, one could use a brute-force method to tackle the contrast mining prob-
lem, which enumerates every non-empty subspace and computes the contrast
measure. This method, however, is very costly on data sets with a non-trivial
dimensionality. One major obstacle preventing effective pruning is that the con-
trast measure does not have any monotonicity with respect to the subspace-
superspace relationship. To tackle the problem, we develop pruning techniques
based on bounds of likelihood and contrast ratio. Our experimental results on
real data sets clearly verify the effectiveness and efficiency of our method.

The rest of the paper is organized as follows. We review the related work in
Section 2. In Section 3, we formalize the problem, and analyze it theoretically.
We present a heuristic method in Section 4, and evaluate our method empirically
using real data sets in Section 5. We conclude the paper in Section 6.
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2 Related Work

Our study is related to the existing work on contrast mining, subspace outlier
detection and typicality queries. We review the related work briefly here.

Contrast mining discovers patterns and models that manifest drastic differ-
ences between datasets. Dong and Bailey [2] presented a comprehensive review.
The most renowned contrast patterns include emerging patterns [3], contrast
sets [4] and subgroups [5]. Although their definitions vary, the mining methods
share heavy similarity [6].

Contrast pattern mining identifies patterns by considering all objects of all
classes in the complete pattern space. Orthogonally, contrast subspace mining
focuses on one object, and identifies subspaces where a query object demon-
strates the strongest overall similarity to one class against the other. These two
mining problems are fundamentally different. To the best of our knowledge, the
contrast subspace mining problem has not been systematically explored in the
data mining literature.

Subspace outlier detection discovers objects that significantly deviate from
the majority in some subspaces. It is very different from our study. In contrast
subspace mining, the query object may or may not be an outlier. Some recent
studies find subspaces that may contain substantial outliers. Bohm et al. [7] and
Keller et al. [8] proposed statistical approaches CMI and HiCS to select sub-
spaces for a multidimensional database, where there may exist outliers with high
deviations. Both CMI and HiCS are fundamentally different from our method.
Technically, they choose subspaces for all outliers in a given database, while our
method chooses the most contrasting subspaces for a query object.

Our method uses probability density to estimate the likelihood of a query
object belonging to different classes. There are a few density-based outlier de-
tection methods, such as [9-12]. Our method is inherently different from those,
since we do not target at outlier objects at all.

Hua et al. [13] introduced a novel top-k typicality query, which ranks ob-
jects according to their typicality in a data set or a class of objects. Although
both [13] and our work use density estimation methods to calculate the typical-
ity /likelihood of a query object with respect to a set of data objects, typicality
queries [13] do not consider subspaces at all.

3 Problem Formulation and Analysis

In this section, we first formulate the problem. Then, we recall the basics of
kernel density estimation, which can estimate the probability density of objects.
Last, we investigate the complexity of the problem.

3.1 Problem Definition

Let D = {D,...,Dg4} be a d-dimensional space, where the domain of D; is R,
the set of real numbers. A subspace S C D (S # (}) is a subset of D. We also
call D the full space.
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Consider an object o in space D. We denote by 0.D; the value of 0 in dimension
D; (1 < i< d). For a subspace S = {D,,,...,D;,} C D, the projection of o in
Sis 0% = (0.Djy,...,0.D;,). For a set of objects O = {o; | 1 < j < n}, the
projection of O in S is O = {05g |oj €0,1<j<n}

Given a set of objects O, we assume a latent distribution Z that generates the
objects in O. For a query object ¢, denote by Lp(g | Z) the likelihood of ¢ being
generated by Z in full space D. The posterior probability of ¢ given O, denoted
by Lp(g | O), can be estimated by Lp(q | Z). For a non-empty subspace S
(S C D, S # (), denote by Z° the projection of Z in S. The subspace likelihood
of object ¢ with respect to Z in S, denoted by Lg(q | £), can be estimated by
the posterior probability of object ¢ given O in S, denoted by Ls(q | O).

In this paper, we assume that the objects in O belong to two classes, C and
C_, exclusively. Thus, O = O UO_ and Oy N O_ = (), where O, and O_
are the subsets of objects belonging to C'.. and C_, respectively. Given a query
object g, we are interested in how likely ¢ belongs to Cy and does not belong
to C_. To measure these two factors comprehensively, we define the likelihood

contrast as LC(q) = égg;gf;-

Likelihood contrast is essentially the Bayes factor! of object ¢ as the obser-
vation. In other words, we can regard O; and O_ as representing two models,
and we need to choose one of them based on query object g. Consequently, the
ratio of likelihoods indicates the plausibility of model represented by O, against
that by O_. Jeffreys [1] gave a scale for interpretation of Bayes factor. When
LC(q) is in the ranges of < 1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, and over 100,
respectively, the strength of the evidence is negative, barely worth mentioning,
substantial, strong, very strong, and decisive.

We can extend likelihood contrast to subspaces. For a non-empty subspace

S C D, we define the likelihood contrast in the subspace as LCs(q) = Ieggg‘lgf;

To avoid triviality in subspaces where Lg(q | O4) is very small, we introduce a
minimum likelihood threshold § > 0, and consider only the subspaces S where
Ls(q| Oy) = 6.

Given a multidimensional data set O in full space D, a query object ¢, and
a minimum likelihood threshold 4 > 0, and a parameter k > 0, the problem
of mining contrast subspaces is to find the top-k subspaces S ordered by the
subspace likelihood contrast LCs(q) subject to Lg(g | O4) > 4.

3.2 Kernel Density Estimation

We can use kernel density estimation [14] to estimate likelihood Lg(q | O). In
this paper, we adopt the Gaussian kernel, which is natural and widely used in
density estimation. Given a set of objects O, the density of a query object ¢ in
subspace S, denoted by fs(q, 0), can be estimated as

1 —distg(q,0)2

_ 7 S _ 2;%
fs(q,0) = fs(¢°,0) = Olv2rhs O;e

! Generally, given a set of observations @, the plausibility of two models M; and M

_ Pr(Q|My)
can be assessed by the Bayes factor K = Pr(O|My)
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where dists(q,0)> = Y. (¢.D; — 0.D;)? and hg is a bandwidth parameter.
D;eS

Silverman [15] suggested that the optimal bandwidth value for smoothing nor-

mally distributed data with unit variance is hs opr = A(K)|O|~YISIF9)  where

A(K) = {4/(IS] + 2) /08140,

As the kernel is radially symmetric and the data is not normalized in sub-
spaces, we can use a single scale parameter og in subspace S and set hg =
0s - hg opt- As Silverman suggested [15], a possible choice of og is the root of
the average marginal variance in S.

Using kernel density estimation, we can estimate Lg(q | O) as

1 —distg(q,0)?

— 2hZ% 1
0|V 27hs Ze ) M

0€O

Ls(q | 0) = fs(4,0)

Correspondingly, the likelihood contrast of object ¢ in subspace S is given by

—distg(q,0)2

F e 2%,
O_lhs. o
LCS(an+,Of) = ']is(q’O'i') _ ‘ | S_ . EO+

B distg(0.0)? (2)
fs(q’()*) ‘()+|hS+ E: . distg(a,0)

on2
2hg_

0€O_

We often omit Oy and O_ and write LCs(q) if Oy and O_ are clear from
context.

3.3 Complexity Analysis

We have the following theoretical result. It can be proved by a reduction from
the emerging pattern mining problem [3], which is MAX SNP-hard [16]. Limited
by space, we omit the details here.

Theorem 1 (Complexity). The problem of mining contrast subspaces is MAX
SNP-hard.

The above theoretical result indicates that the problem of mining contrast
subspaces is even hard to approximate — it is impossible to design a good ap-
proximation algorithm. In the rest of the paper, we turn to practical heuristic
methods.

4 Mining Methods

In this section, we first describe a baseline method that examines every possible
non-empty subspace. Then, we present a bounding-pruning-refining method that
expedites the search substantially.
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4.1 A Baseline Method

A baseline method enumerates all possible non-empty spaces S and calculates
the exact values of both Lg(q | O1) and Lg(q | O-). Then, it returns the
top-k subspaces S with the largest LCs(q) values. To ensure the completeness
and efficiency of subspace enumeration, the baseline method traverses the set
enumeration tree [17] of subspaces in a depth-first manner.

Ls(q | O4) is not monotonic in subspaces. To prune subspaces using the min-
imum likelihood threshold §, we develop an upper bound of Lg(q | O4). We sort
all the dimensions in their standard deviation descending order. Let S be the set

of children of S in the subspace set enumeration tree using the standard deviation
—distg(q,0)?

descending order. Define L% OL) = L e25hopt maa)®

g 5(a ] 04) |04 1V2mal, bl min OGXO:Jr )
where oy ;. = min{os | S" € S}, hipy ppin = min{hs ope | S € S}, and
h;pt maz = Maz{hg opt | S” € S}. We have the following result.

Theorem 2 (Monotonic density bound). For a query object q, a set of
objects O, and subspaces S1, Sa such that S1 is an ancestor of So in the sub-
space set enumeration tree using the standard deviation descending order in O,

L§1(q ‘ OJF) 2 LS2(q | O+)

Using Theorem 2, in addition to Lg(¢ | O+) and Lg(q | O—), we also compute
L¥(q | O4) for each subspace S. Once L§(g | O4+) < 6 in a subspace S, all
super-spaces of S can be pruned.

Using Equations 1 and 2, the baseline algorithm computes the likelihood con-
trast for every subspace where Lg(q | O4) > §, and returns the top-k subspaces.
The time complexity is O(2!P! - (|OL |+ |O_])).

4.2 A Bounding-Pruning-Refining Method

For a query object ¢ and a set of objects O, the e-neighborhood (e > 0) of ¢
in subspace S is N§(¢q) = {o € O | dists(q,0) < €}. We can divide Lg(g | O)
into two parts, that is, Ls(q | O) = Ly<(q | O) + L'Est(q | O). The first part
is contributed by the objects in the e-neighborhood, that is, Lys(q | O) =

—distg(q,0)?

1 2h?% : : :
Olv2rhs >oe 5 , and the second part is by the objects outside the
0€N5(q)
) —dists2(q,o)2
e-neighborhood, that is, LE! (¢ | O) = e s
) |O|v27hs 0€O\NE (q)

Let dists(q | O) be the maximum distance between ¢ and all objects in O in
subspace S. We have,
istg(g,0)2 € €
|O| - |N§(q)‘ . e_d 5}5%0) < Lrest(q ‘ O) < |O| - ‘NS(q)‘ . _2}%
|0|v/2rhs = = |O|v2rhs

Using the above, we have the following upper and lower bounds of Lg(q | O)
using e-neighborhood.
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Theorem 3 (Bounds). For a query object q, a set of objects O and € > 0,

LLg(q|0) < Ls(q | 0) <ULs(q | O)

where
psaio= b (5 T o - eane M
O1v2hs \ (eigta g
and
ULa10)= > eiditggmz+<\0\—|Nf(q)l)e‘2fz
S |O|\/27Th,s ey S

We obtain an upper bound of LCg(q) based on Theorem 3 and Equation 2.

Corollary 1 (Likelihood Contrast Upper Bound). For a query object q, a

set of objects Oy, a set of objects O_, and ¢ > 0, LCs(q) < gﬁg((g“gj;.
Using Corollary 1, for a subspace S, if there are at least k& subspaces whose
UL? (q|0+)
LLE(q|0-)’
spaces of the largest likelihood contrast.

Using the e-neighborhood, L% (¢ | O4) is computed by

likelihood contrast are greater than then S cannot be a top-k sub-

—dist (q,0)2 _ &2
5 st e 4 (104 — [Ngla)je st et
ENg(q)
Li(q)04)=""
|O+ ‘\/271-0-;11171 hi)pt min

Our bounding-pruning-refining method, CSMiner (for Contrast Subspace
Miner), conducts a depth-first search on the subspace set enumeration tree.
For a candidate subspace S, CSMiner calculates ULg(¢q | O4) and LLg(g | O-)
using the e-neighborhood. If ULg(gq | O4) is less than the minimum likelihood
threshold, S cannot be a contrast subspace. Otherwise, CSMiner checks whether
the likelihood contrasts of the current top-k subspaces are larger than the up-
per bound of LCg(q). If not, CSMiner refines Lg(q | O4) and Lg(q | O-) by
involving objects that are out of the e-neighborhood. S will be added into the
current top-k list if its likelihood contrast is larger than one of the current top-k
ones. Algorithm 1 gives the pseudo-code of CSMiner. Due to the hardness of
the problem shown in Theorem 1 and the heuristic nature of this method, the
time complexity of CSMiner is O(2!°! - (|O4 | +|O_|)), the same as the exhaus-
tive baseline method. However, as shown by our empirical study, CSMiner is
substantially faster than the baseline method.

Computing e-neighborhood is critical in CSMiner. The distance between ob-
jects increases when dimensionality increases. Thus, the value of € should not be
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Algorithm 1. CSMiner(q,04+,0_,0,k)

Input: g¢: a query object, O4: the set of objects belonging to C4, O_: the set of objects belonging
to C_, ¢é: a likelihood threshold, k: positive integer

Output: k subspaces with the highest likelihood contrast

1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with
likelihood contrast O

2: for each subspace S in the subspace set enumeration tree, searched in the depth-first manner
do

31 i ULS(q| O4) > 6 and 38’ € Ans s.t. g;;;;;gj; > LCg/(q) then
4: calculate Lg(q | O4), Ls(g| O-) and LCgs(q); // refining

5: if Ls(q| O4+) > 6 and 35’ € Ans s.t. LCs(q) > LCg/(q) then
6: insert S into the top-k list

7 end if

8: end if

9: if Lg(q| O4) <6 then

10: prune all super-spaces of S;

11: end if

12: end for

13: return Ans;

Table 1. Data set characteristics

Data set # objects # attributes
Breast Cancer Wisconsin (BCW) 683 9
Climate Model Simulation Crashes (CMSC) 540 18
Glass Identification (Glass) 214 9
Pima Indians Diabetes (PID) 768 8
Waveform 5000 21
Wine 178 13

fixed. The standard deviation expresses the variability of a set of data. For sub-

space S, weset e = [r- > (02 , 402 _) (r >0), where 0%,
D, cs 7 i

the marginal variances of O4 and O_, respectively, on dimension D; (D; € S),

and r is a system defined parameter. Our experiments show that r can be set in

the range of 0.3 ~ 0.6, and is not sensitive.

+ and UQDi_ are

5 Empirical Evaluation

In this section, we report a systematic empirical study using real data sets to
verify the effectiveness and efficiency of our method. All experiments were con-
ducted on a PC computer with an Intel Core i7-3770 3.40 GHz CPU, and 8
GB main memory, running Windows 7 operating system. All algorithms were
implemented in Java and compiled by JDK 7.

5.1 Effectiveness

We use 6 real data sets from the UCI machine learning repository [18]. We
remove non-numerical attributes and all instances containing missing values.
Table 1 shows the data characteristics.
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Table 2. Distribution of LC's(g) in BCW Table 3. Distribution of LCs(gq) in Glass

LC§**(q) LCg**(q)
1 [1,3) [3,10) [10,10%) > 10% Total <1 [1,3) [3,10) [10,10%) > 102 Total
. <10%* 0 o0 0 2 21 23 . <10 0 4 0 2 4 10
Z[10%,10% 6 7 5 8 11 37 £ [10,10%) 11 70 26 6 4 117
3001 [10%,10%) 176 37 18 15 18 264 S] [10%,10%) 2 24 5 3 2 36
3 [10%,10%) 99 7 6 4 5 121 3 [10%,10%) 0 0 4 0 1 5
>10° 38 25 87 82 6 238 >10* 0 23 14 6 3 46
Total 319 76 116 111 61 683 Total 13 121 49 17 14 214

Table 4. Distribution of LC's(¢q) in PID Table 5. Distribution of LCs(q) in Wine

LCg"*(q) LCE*(q)
<1 [1,3) [3,10) [10,10%) > 10? Total <1 [1,3) [3,10) [10,10%) > 102 Total
—~ <1 0 0 1 1 0 2 . <10® 2 22 10 13 9 56
S 1,3 0 124 99 19 2 244 2010 0o 17 11 6 2 36
So [3,10) 17 241 54 4 0 316 £ [10%,10°) 0 10 4 2 2 18
8 [10,10%) 28 146 19 4 0 197 8 [10°,10%) 0 5 5 2 0 12
>102 1 8 0 0 0 9 >10 4 21 15 12 4 56
Total 46 519 173 28 2 768 Total 6 75 45 35 17 178

Table 6. Distribution of LCs(q) in CMSC

LCg" (q)

[10,10%) [10%,10%) [10%,10%) [10%,10°) > 10° Total

~ <10® 2 6 41 15 0 64
EE [10%,10%) 4 28 47 17 4 100
i [10%,10°) 7 38 44 17 7 113
3 [10°,10%) 1 30 36 10 3 80
> 106 4 82 75 16 6 183
Total 18 184 243 75 20 540

Table 7. Distribution of LCs(g) in Waveform

LCg* (q)

[1,3) [3,10) [10,10%) [10%,10%) > 10% Total

. <10 0 8 24 10 7 49
§ [10,10%) 88 462 695 222 98 1565
0 [10%,10%) 235 686 956 299 104 2280
3 [103, 104) 151 346 383 71 23 974
>10* 36 46 45 5 0 132
Total 510 1548 2103 607 232 5000

For each data set, we take each record as a query object ¢, and all records ex-
cept ¢ belonging to the same class as ¢ forming the set O;, and records belonging
to the other classes forming the set Oy. Using CSMiner, we compute for each
record (1) the inlying contrast subspace taking Oy as O4 and Oz as O_, and (2)
the outlying contrast subspace taking Os as Oy and O; as O_. In this experi-
ment, we only compute the top-1 subspace. For clarity, we denote the likelihood
contrasts of inlying contrast subspace by LC%(g) and those of outlying contrast
subspace by LC2"*(q). The minimum likelihood threshold is set to 0.001.

Tables 2 ~ 7 list the joint distributions of LC¥(q) and LCZ"(q) in each data
set. As expected, for most objects LCZ(q) are larger than LC%*(q). However,
interestingly a good portion of objects have strong outlying contrast subspaces.
For example, in CMSC, more than 50% of the objects have outlying contrast
subspaces satisfying LCZ"(q) > 10%. Moreover, we can see that, except PID,
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Fig. 2. Dimensionality distributions of outlying contrast subspaces

a non-trivial number of objects in each data set have both strong inlying and
outlying contrast subspaces (e.g., LCZ(q) > 10* and LCZ"(q) > 10?).

Figures 1, 2 show the distributions of dimensionality of inlying and outlying
contrast subspaces, respectively. The dimensionality distribution is an interesting
feature characterizing a data set. For example, in most cases the dimensionality of
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contrast subspaces follows a two-side bell-shape distribution. However, in BCW
and PID, the outlying contrast subspaces tend to have low dimensionality.

5.2 Efficiency

To the best of our knowledge, there is no previous method tackling the exact
same mining problem. Therefore, we evaluate the efficiency of only CSMiner and
the baseline method. Limited by space, we report the results on the Waveform
data set only, since it is the largest one with the highest dimensionality. We
randomly select 100 records from Waveform as query objects, and report the
average runtime. The results on the other data sets follow similar trends.
Figure 3(a) shows the runtime (in logarithmic scale) with respect to the mini-
mum likelihood threshold §. As § decreases, the runtime increases exponentially.
However, the heuristic pruning techniques in CSMiner expedites the search sub-
stantially in practice. Figures 3(b) and 3(c) show the scalability on data set size
and dimensionality. CSMiner is substantially faster than the baseline method.
CSMiner uses a user defined parameter r to define e-neighborhood. Figure 4
shows the relative runtime with respect to r. The runtime of CSMiner is not very
sensitive to 7 in general. Experimentally, the shortest runtime of CSMiner hap-
pens when r is in [0.3,0.6]. Figure 5 illustrates the relative runtime of CSMiner
with respect to k, showing that CSMiner is linearly scalable with respect to k.
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6 Conclusions

In this paper, we studied a novel and interesting problem of mining contrast
subspaces to discover the aspects that a query object most similar to a class and
dissimilar to the other class. We showed theoretically that the problem is very
challenging, and cannot even be approximated in polynomial time. We presented
a heuristic method based on upper and lower bounds of likelihood and likelihood
contrast. Our experiments on real data sets show that our method expedites
contrast subspace mining substantially comparing to the baseline method.
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Abstract. In this paper, we explore a new research problem of predict-
ing an incoming classifier on dynamic data streams, named as forward
classification. The state-of-the-art classification models on data streams,
such as the incremental and ensemble models, fall into the retrospective
classification category where models used for classification are built from
past observed stream data and constantly lag behind the incoming un-
observed test data. As a result, the classification model and test data
are temporally inconsistent, leading to severe performance deterioration
when the concept (joint probability distribution) evolves rapidly. To this
end, we propose a new forward classification method which aims to build
the classification model which fits the current data. Specifically, forward
classification first predicts the incoming classifier based on a line of re-
cent classifiers, and then uses the predicted classifier to classify current
data chunk. A learning framework which can adaptively switch between
forward classification and retrospective classification is also proposed.
Empirical studies on both synthetic and real-world data streams demon-
strate the utility of the proposed method.

Keywords: Data stream classification, linear dynamic system, concept
drifting.

1 Introduction

Data stream classification is an important tool for real-time applications. For
example, data stream classification is popularly used in real-time intrusion de-
tection, spam filtering, and malicious website monitoring. Compared to data
mining models, data stream classification models face extra challenges from the
unbounded stream data and the continuously evolving concept (joint probability
distribution)[21,18] underneath stream data.

In data stream scenarios, the classification ability of a stream classification
model generally decreases with time because of the concept evolving reality[1].
For example, in data streams, a classification model ¢y built at time stamp IV
may classify its synchronous data chunk Dy accurately, but its accuracy on in-
coming data chunk Dy 1 may deteriorate significantly. This is because that data
distributions in Dy 41 may be significantly different from the training samples

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 261-272, 2014.
© Springer International Publishing Switzerland 2014
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collected at time stamp N (in this paper, samples, records, and instances are
interchangeable terms). As a result, in data stream classification, it is important
to build the classifier which fits the concept of current data.

Unfortunately, existing data stream classification models, including the incre-
mental models[5,8] and ensemble models[12], are based on the assumption that
same data is first used for training then for testing. However, in real-world ap-
plications, we have to classify the incoming data first and the labeled samples
of the incoming data for training tend to lag behind (for example, for fraud be-
havior classification in bank, typically it will take days or weeks to find whether
the user was actually a fraud or not.). As a result, the classifier does not tempo-
rally consistent with test data, as illustrated in Fig.1. This type of approaches
regard concepts of data stream as sequence of recurring events, so they can
only model the recurring probability of old concepts/classifiers, but cannot fore-
cast a new classifier not showing up before. In this paper, we refer to this type
of classification models as retrospective prediction, i.e., uses models directly
trained from past stream data to classify incoming data. To synchronize the

Ensemble

TL TL T4 TZ;

D, D, F——I

t

1 n n+l

Stream S

Fig. 1. The ensemble (retrospective) model can describe all the past concepts. However,
it fails to describe the incoming concept(classifier) cy+1 that never appeared before.

classification model and test data on data streams, we present a novel forward
classification method. Forward classification uses past classifiers to predict an
incoming classifier, which is further used to classify incoming test data. Com-
pared to the retrospective classification, the classifier used to classify incoming
test data is not directly trained from historical stream records.

The main challenge of forward classification is to accurately predict the incom-
ing classifier based on the past classifiers, which demands to model the evolution
trend underneath the classifiers built from historical stream data. In this paper,
we assume that concept evolution is a Markov process, i.e., the current con-
cept of data stream is probabilistically determined by its previous state. This
assumption is commonly used in data stream research [17]. Then, based on the
observation that the classification boundaries of all the past classifiers can be
represented as continuous vectors, we propose to use Linear Dynamic System
(LDS)[3,11] as the solution. In this way, tracking the evolving concept is tan-
tamount to learning the LDS model based on all the past observed classifiers
(continuous vectors), and predicting the incoming classifier is equivalent to in-
ferring the next state of the system.
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Forward classification does not always outperform retrospective classification.
As a model’s performance is closely related to its version space [6,15], we design
a flexible learning framework, which can adaptively switch between the forward
classification and the retrospective classification, which is based on ensemble
learning. In doing so, our learning framework is robust under different concept
drifting patterns. We also demonstrate the effectiveness of the proposed method
by experiments on both synthetic and real-world data streams.

The remainder of the paper is structured as follows: Section 2 introduces
the modeling of the forward classification using Linear Dynamic System (LDS).
Section 3 conducts the experiments. Section 4 surveys related work. We conclude
the paper in Section 5.

2 Model for Forward Classification

In this section, we first describe concept evolution with a graphical model. Then,
we discuss how to use Linear Dynamic System (LDS) as the solution. Finally, a
forward classification framework is proposed. Consider a data stream S consist-
ing of infinite number of records (z,y), where x € R? is the feature vector and y
is the class label. Assume the records arrive chunk-by-chunk. The records arrive
at time stamp n are denoted as data chunk D,,. The classifier built on D, is
denoted as ¢,. The concept at time stamp n is the joint probability distribution

p(x,y|n).

. Py pxyl2) Posyln=D) pleyln) pleyln+)

Classifier

- -5

Concept

C ¢y

Fig. 2. Graphical model for concept description

Fig. 2 is the graphical model describing the concept evolution under the
Markov assumption. The solid gray circles stand for the classifiers. The hol-
low circles represent the hidden concepts. The graph can be decomposed into
two processes: a evolution process p(z, y|n — 1) — p(z, y|n) that describes the
concept evolution between two neighboring concepts, and a modeling process
p(z,yln) — ¢, that describes the classifier training from the labeled training
data. Noise is also involved in modeling process because the training set usually
is a small biased data set sampled from the hidden concept. Based on graph
model forward classification is formally defined as:

Forward classification: Given W historical classifiers C = {cny_w+1, - ,cN}
which are built consecutively from data stream S, the forward classification aims
to predict the incoming classifier cyy1:

fi{env—wir, - en}) — v (1)
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Here, cy41 is the correct incoming classifier but cannot be known before
hand while ¢y41 is our prediction. To solve the prediction problem, we use
Linear Dynamic System(LDS) as the solution. In a deterministic LDS, a set of
linear equations, governs the system evolution. Generally, the evolution of hidden
concept is a stochastic process instead of a deterministic one. Thus, we add a
random variable (denoted as w) to model the randomness as shown in Eq. (2).

Zn+1 = A- Zn + Wn+1- (2)

To model the concept drifting in data stream with LDS, we assume the classi-
fier model ¢, can be converted to a vector of fixed length, such as linear classifier
model y = wax + b can be represented by the vector [w,b]. And we assume the
concept p(x,y) can be represented by a vector z. So the concept drifting process
equates to the evolving of z. Moreover, to model the probabilistic dependence of
p(2n|2n-1) and p(cp|zn), we assume that probabilities p(z,|2zn—1) and p(cn|zn)
follow Gaussian distributions:

p(zn‘zn—l) = N(ZMA *Zn—1, F) (3)

plcn|zn) = N(Cn|B “2n, X) (4)

where A represents the transform matrix that governs how the concept evolves,
A - z,_1 is the mean value of z,, I' is the covariance of the Gaussian noise
incurred by the irregular concept evolution. B represents the transform matrix
that governs how the latent concept maps to the classifier, X' is the Gaussian
noise incurred by the biased sampled training data. Eqgs. (3) and (4) can be
described as noisy linear equations:

Zn=A- Zp_1+ wy (5)
cn =Bz, +v, (6)
Z1 = Mo —+u (7)

)

where Eq. (7) describe the initial state in LDS, wy, ~ N (w0, '), v, ~ N (v,|0, X
and u ~ N(u]0, V) are the Gaussian noises.

We have described classifier prediction problem with LDS, then we will show
how to learn the model and the resulting forward classification framework.

2.1 Model Learning

The learning problem [10,13] is to find the optimal parameter 6 that maximizes
the likelihood function of the observations C' = {¢ny_w 41, ,¢cn} , asin Eq. (8),

~

0 = arg maxlogp(C|0). (8)

where p(C0) is a marginal distribution of the joint distribution p(C, Z|6) w.r.t.
Z, as in Egs. (9) and (10).

p(C10) = / p(C, 2|0)dZ (9)
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N N
p(C, 216) = p(alpo) | [ w1121 ]H ¢l B (10)
=2 j=1

Eq. (10) is comprised of three parts. The first part is the probability of the initial
state, the second part is probability of the concept evolution, and the last part is
the probability of mapping the latent variables to classifiers. All the three parts
are under the Gaussian distribution assumption.

Because p(C|0) = [,p(C, Z|0)dZ is very difficult to calculate, finding op-
timal solution is hardly achievable. Therefore, we use the Expectation Max-
imization (EM) algorithm to maximize logp(C|¢). The EM algorithm starts
with well-selected initial values for the parameters 6°/¢. Then, in the E-step, we
use 6°!¢ to find the posterior distribution of the latent variables p(Z|C,§°).
We then take the expectation of the log likelihood w.r.t the posterior dis-
tribution p(Z|C,0°?). In the M-step, we aim to find 6" that maximizes
Q(6,6°4) = Ezjgota[Inp(C, Z|0)]. The E-step and M-step are recursively exe-
cuted until Q(6, 8°'4) converges. The details for the E-step and M-step of EM
algorithm for learning LDS can be found in [3]. The basic process is summa-
rized in Algorithm 1. The future classifier ¢y 41 can be predicted based on the
parameters  and estimated current hidden state Zy learned above:

enTi=B-A-Z% (11)

Algorithm 1. Learning LDS

Require: A set of classification model in time sequential C = {cy—w41, - ,cnN};
Initial value 6°'%;
The up bound of iterations M;
The convergence threshold e.
Ensure: 0" = {ug®", Vgrew, Anew [new Brew ymewl.
The expected latent state Zz\v for N time block.

1: Complete-data likelihood Q; Qpre +— +00,Qnew <— 0;
2: 4 +— 0;

3: while |Qpre — Qnew| > €¢ AND ¢ < M do

4: 14— 1+1

5: Qpre — Qnew

6:  {E[zn],E[znzl_1], E[znzl]} +— E-step(G"ld,C)

7 6" «— M-step([E[zn], E[znzl_1], E[zn21]], C, 8°?)
8 Evaluate Quew <— Q(6™",6°%) based on 6", C

9: end while

10: return 0™, zy = E[zn]

2.2 Method Comparison and Selection

In this part, we try to answer the following questions: does the forward classi-
fication always outperform retrospective classification (e.g., ensemble method)?
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If the answer is NO, then how to select proper methods for real-world data
streams? Here we denote the predicted classifier in forward classification as cy,
and we use ensemble method as a typical example of retrospective method. As
a classifier can be mapped to a point in hyperspace, the ensemble classifier c.
will lie at the center of the most recently W classifiers, i.e. c. = (1/W) Z:/L C;.

Intuitively, if a data stream evolves continuously with stable patterns, i.e., the
transform matrix A is time-invariant, the classifier is predictable; otherwise, the
predicted classifier will overfit to the fake pattern. Except the irregular evolving
pattern, the random noise will also make it difficult to learn the correct evolving
pattern. So forward classification will not dominate retrospective method on all
data streams. What’s worse, there is no analytic solution for LDS, so ¢y cannot
be directly compared to c. It raise the problem how to adaptively select between
these methods in real-world data stream?

We solve the problem from the view of version space. Version space, in concept
learning or induction, refers to a subset of all hypotheses that are consistent with
the observed training examples. For data stream, all possible classifiers form the
version space. As concept drifts continuously, for an incoming data chunk at
time N + 1, the classifier ¢y4+1 may have many possibilities, namely the version
space of ¢y 41 can be large. According to Tong’s theory in [16], the larger version
space is, the less accurate the classifier tends to be. We illustrate different version
space on different concept evolving scenarios in Fig. 3. We can notice that, for
data stream with clear evolving patterns, the version space of ¢y is smaller than
ce; while for data stream without clear evolving pattern, the version space of
cy is bigger than c..

Based on the Gaussian noise assumption, ¢y obeys Gaussian distribution, i.e.
cy ~ N(BAzZn,¥s). We take the volume within standard deviation from BAZy
as the version space, which is determined by ¥y. According the analysis in [3],
we have ¢; = éyt1 = N(BAzy, BPyBT + X)), where Py = AVyAT +T'. So
¥; = BPyBT + X. On the other hand, the covariance of c., denoted as ¥, is
v, = (1/W) Z:/L (¢; —ce)(ci—ce)T. The volume of version space of the classifier
can be calculated by ¢ =[] A;, where \; is the eigenvector of ¥. By comparing
the version space of ¢ and c., we can adaptively decide which method to adopt
for the data stream on hand.

2.3 The Learning Framework

In this part, we introduce the classification framework which combines retro-
spective and forward classification. In data streams, it is often very hard to im-
mediately obtain labeled records for model updating. In contrast, the proposed
framework can avoid such a shortcoming, by tracing the trend of concept drift-
ing and forecasting the model that reflects the current concept, then select the
proper classifier based on criteria of version space. Learning from data streams
contains both training and testing processes. Our framework mainly focuses on
the training process. The framework is summarized in Algorithm 2.
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Algorithm 2. Learning Framework

Require: Data stream D;

10:
11:
12:
13:
14:
15:
16:

Time window size 3;
maximum size of classifier set W.

Build initial classification model sets C' = {c1 };
N «+—1;
Calculate proper initial value
while true do
[0™* E[zn]] <— learnLDS(C, §"™);
Predict Model éyt1 +— B™" A" E[zn];
Calculate ¢y and c. and their corresponding version space (y and (.
Compared version space and send proper classifier to test process for
classifying N + 1 data chunk.
Sleep during N + 1 time window as labeled records cannot be get
immediately.
Build c¢y+1 based on the labeled records in N + 1 time window;
C+—CuU CN+1;
if |C| > W then
C+—C - {CN_W};
end if
Ginit — gnev N +— N +1;
end while

einit
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Efficiency Analysis. The time cost of the proposed framework comes from two
parts: training base classifiers, and predicting a future classifier. For simplicity,
we take the cost of the first part as a constant value O(1). The second part
contains two sub-parts: an EM learning process and a prediction process. The E-
step, which using the forward and backward recursions, has O(Wd,d.) time cost,
where W is the size of the historical classifier set, and d, is the dimension of latent
concept while d. the classifier. The M-step directly updates the parameters, with
time complexity of O(W). Since we set the max number of iterations for EM as
I, the time complexity of EM learning process is O(WId,d.). In addition, from
Eq.(11), the time complexity of predicting a future classifier is O(1). To sum up,
the total time complexity for a loop in the learning framework is O(W1Id.d.).

3 Experimental Study

In this section, we first introduce the benchmark methods, followed by the test-
bed. The test results on both synthetic and real-world data sets and the analysis
will be given in the end.

We compare our method with four state-of-the-art classification method on
data stream: ensemble learning[2,19], incremental learning[14], drift detection
method(DDM)[7] and random walk model[9]. All of them fall into the category
of retrospective learning.

3.1 Data Stream Test-Bed

In our experiment, we adopt both synthetic data stream generator and real world
data streams as our test-bed.
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Evolving Gaussian Generator. As we have described in the previous sections,
the concept of data stream is a joint distribution p(z,y). So we can generate a
evolving data stream by generating records according to certain distribution and
changes the distribution as time passes. For simplicity, we assume a binary clas-
sification problem, where the positive and negtive records are generated accord-
ing to the Gaussian distribution. To simulate the concept evolving, we gradually
change mean of the distribution as time passes. Particularly, we generate data
stream with 6 types of concept drifting: stay still, shift, hybrid, spin, random
walk and periodic variation.

Rotating Hyperplane is used as a test bed for CVFDTI[8] models. A hyper-
plane in a d-dimensional space is a set of points x that satisfies Z?Zl Wi xT; = W,
where z; is the i*" dimension of the vector . Records satisfying Z?:l wW;T; > Wo
are labeled as positive. Otherwise, negative. To simulate concept evolution, we
let each weight attribute w; = w; + do change with time, where ¢ denotes the
probability that the direction of change is reversed and d denotes that the change
degree.

Sensor Stream. Sensor stream[20] contains information (temperature, humid-
ity, light, and sensor voltage) collected from 54 sensors deployed in Intel Berkeley
Research Lab. The learning task is to correctly identify the sensor ID based on
the sensor data. This dataset can be downloaded from website!.

Power Supply. Power Supply stream [20] contains hourly power supply of an
Italian electricity company. The learning task is to classify the time the current
power supply belongs to. This dataset can be downloaded from website?.

3.2 Results

In Fig.4 we report the algorithm performance w.r.t. different types of concept
drifting scenarios. From Fig.4(a), we can observe that our model is as good as
the classic methods if there is no concept drifting in the stream data. Fig.4(b)
indicates that for concept shifting data stream, our method outperforms oth-
ers. This is because when concept drifting follows stable pattern, our method
can track the pattern of the changes and more accurately predict future classi-
fiers. In Fig.4(c), the drifting pattern is unstable. For example, before ¢t = 10,
the concept stays still, classifiers {c1,- -+, c10} are determined by the parameter
st while {ci9,--- ,cn} are determined by 6gripe. When g5 — Oarige, the
error rate of LDS arises, as the classifier predicted with 6, for the future con-
cept. As the drifting records increase, the LDS model can gradually tracking the
concept evolution. So the error rate gradually decreases. In Fig.4(d), the con-
cept’s evolving rate is fast. We can observe that LDS significantly outperforms
other methods for the fast evolving data stream. In Fig.4(e), the concept of data
stream evolves in a random walk manner. We can see that LDS can handle the
noise factor well for it can switch to retrospective method when the evolving

! http://www.cse.fau.edu/"xqzhu/Stream/sensor.arff
2 http://www.cse.fau.edu/ xqzhu/Stream/powersupply.arff
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Table 1. Error rate comparisons among different methods

DataSet Average EN Weighted EN H.T. DDM RWM LDS
Gaussian Static 0.07740.001 0.079+0.001 0.087+0.004 0.079+0.001 0.0841+0.001 0.079+0.002
Gaussian Shift  0.35140.003 0.13840.017 0.109+40.004 0.10310.004 0.10240.003 0.0824¢.004
Gaussian Hybrid 0.085i0.002 0‘221:&0.045 0.087i0.005 0.085:‘:0.002 0‘094:&0.003 0‘111:{0,010
Gaussian Spin 0.343i0_001 0.230;&0.012 0.143i0_005 0.121i0_005 0.267:&0.001 0.086:‘:0'007

Gaussian Random 0.09340.003 0.091+40.002 0.105+0.008 0.09540.018 0.0874+0.001 0.090+0.005
Gaussian Period 0.21840.031 0.11340.014 0.11740.004 0.09410.003 0.096+0.003 0.0894¢.003
Hyperplane 0.17310.043 0.11040.027 0.17610.031 0.107+0.021 0.10310.024 0.10040.023
Power Supply = 0.0641+0.027 0.070+0.028 0.077+0.035 0.055+0.019 0.073+0.033 0.05240.026
Sensor O~O42i0.006 0.039:&0.004 0.037i0.009 0.034io.003 0.079:&0.022 0.032:|:0‘020

pattern is blurred. Random walk model also perform well and it can filter out
the random noise of {c1, - - -, cn }, and track the proper concept, as in this model,
A =TI so it will not learn false drifting patterns. In Fig.4(f), the evolving pat-
tern of the data stream is changing periodically. the LDS model is robust to this
kind of concept drifting. In summary, our learning framework outperforms other
benchmark methods for data streams with regular evolving patterns.

In Table 1, we summarize and compare the performance of different methods
on all data streams. Overall, for data streams having regular evolving patterns,
the performance of the proposed LDS model outperforms other benchmark meth-
ods. For data streams whose evolving is not a stable Markov process, learning
methods such as drift detection and random walk perform better.

Efficiency. From our experiments, we observe that the EM algorithm converges
within 100 iterations, so M is manually set to 100. In most cases, when W > 50,
the predicted classifier is stable, so W is manually set to 50. With these settings,
on our PC with 2.8G Hz CPU, the time cost for predicting the classifier is less
than 1 minute. In real-world applications, it usually takes hours for the concept
having detectable change, so the framework is efficient.

4 Related Work

Existing data stream classification models can be categorized into three groups:
online / incremental models[8,14], ensemble learning[12,18,19] and drift detec-
tion methods [7]. We briefly describe them based on the development trace. In
the simplest situation, where the concept of data stream remains stable, for
each time window, the classifier has prediction variance due to limited training
samples. We can use majority voting method to ensemble these classifiers, be-
cause random variance tends to compensate each other. This is the fundamental
framework for retrospective classification. For data stream with concept drifting,
the majority voting for ensemble is inappropriate. An alternative solution is to
use weighted ensemble, where each classifier is weighted according to their con-
sistence with the most recent observed training data. For incremental or DDM
method, they keep updating the classifier using newly arriving records, enabling
the learning model to adapt to new concepts. For retrospective learning models
[17,4], they regard concepts of data stream as a sequence of recurring events
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and use the most probable concept in the future to classify incoming stream
data. Unfortunately, existing weighing and updating approaches, including the
proactive learning framework, cannot forecast a completely new classifier. Thus,
they cannot synchronize the classifier to the evolving stream data.

Forward classifier prediction method, on the other hand, uses probabilistic
model to define time evolution of the concept. By using the probabilistic model,
we can approximate the distribution that maximizes the posterior probability of
the model [3]. Moreover, we can predict the optimal incoming classifier by adopt-
ing the inference method. That is to say, forward classifier prediction method is
able to derive better classification results.

5 Conclusions

In this paper, we present a novel forward classification method for classifying
evolving stream data. Due to the temporal evolving of data streams, simply
learning classification models from historical data, as existing retrospective clas-
sification methods do, is inadequate and inaccurate. So a proper classification
design is to capture the evolution trend underneath stream data and use it to
predict a future classifier for classification. With this vision and the assumption
that the concept evolving can be characterized by Markov process, we propose to
model the trend of classifiers using the Linear Dynamic System, through which
we can model the concept drifting and predict incoming classifier. We also notice
that forward classification is not overwhelmingly better than retrospective clas-
sification. Then we design the learning framework, which adaptively switches
between the forward classification based on LDS and basic ensemble learning
method, so it is robust to different types of data streams. Experiments on syn-
thetic and real-world streams demonstrate that our framework outperforms other
methods in different types of concept drifting scenarios.

Acknowledgments. This work was supported by the NSFC (No. 61003167), IIE
Chinese Academy of Sciences (No. Y3Z0062101),863 projects (No.2011AA010703
and 2012AA012502), 973 project (No. 2013CB329606), and the Strategic Leading
Science and Technology Projects of Chinese Academy of Sciences (No.
XDA06030200).
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Abstract. A probabilistic finite state machine approach to statically
disassembling x86 machine language programs is presented and eval-
uated. Static disassembly is a crucial prerequisite for software reverse
engineering, and has many applications in computer security and binary
analysis. The general problem is provably undecidable because of the
heavy use of unaligned instruction encodings and dynamically computed
control flows in the x86 architecture. Limited work in machine learn-
ing and data mining has been undertaken on this subject. This paper
shows that semantic meanings of opcode sequences can be leveraged to
infer similarities between groups of opcode and operand sequences. This
empowers a probabilistic finite state machine to learn statistically signifi-
cant opcode and operand sequences in a training corpus of disassemblies.
The similarities demonstrate the statistical significance of opcodes and
operands in a surrounding context, facilitating more accurate disassem-
bly of new binaries. Empirical results demonstrate that the algorithm is
more efficient and effective than comparable approaches used by state-
of-the-art disassembly tools.

Keywords: Binary analysis, disassembly, reverse-engineering, probabilis-
tic finite state machines.

1 Introduction

Statistical data mining techniques have found wide application in domains where
statistical information is valuable for solving problems. Examples include com-
puter vision, web search, natural language processing, and more. A recent addition
to this list is static disassembly [1,2]. Disassembly is the process of translating byte
sequences to human-readable assembly code. Such translation is often deemed a
crucial first step in software reverse engineering and analysis.
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Although all binary-level debuggers perform dynamic disassembly to display
assembly code for individual runs of target programs, the much more challenging
task of static disassembly attempts to provide assembly code for all possible runs
(i.e., all reachable instructions). Static disassembly is therefore critical for ana-
lyzing code with non-trivial control-flows, such as branches and loops. Example
applications include binary code optimization, reverse engineering legacy code,
semantics-based security analysis, malware analysis, intrusion detection, and dig-
ital forensics. Incorrectly disassembled binaries often lead to incorrect analyses,
and therefore bugs or security vulnerabilities in mission-critical systems.

Static disassembly of binaries that target Intel-based architectures is par-
ticularly challenging because of the architecture’s heavy use of variable-length,
unaligned instruction encodings, dynamically computed control-flows, and inter-
leaved code and data. Unalignment refers to the fact that Intel chipsets consider
all memory addresses to be legal instruction starting points. When some pro-
grams compute the destinations of jumps dynamically using runtime pointer
arithmetic, statically deciding which bytes are part of reachable instructions
and which are (non-executed) static data reduces from the halting problem.
As a result, the static disassembly problem for Intel architectures is provably
Turing-undecidable in general.

Production-level disassemblers and reverse engineering tools have therefore
applied a long history of evolving heuristics to generate best-guess disassem-
blies. Such heuristics include fall-through disassembly, various control-flow and
dataflow analyses, and compiler-specific pattern matching. Unfortunately, even
after decades of tuning, these heuristics often fail even for non-obfuscated, non-
malicious, compiler-generated software. As a result, human analysts are often
forced to laboriously guide the disassembly process by hand using an interactive
disassembler [3]. When binaries are tens or hundreds of megabytes in size, the
task quickly becomes intractable.

Wartell et al. recently proposed to apply machine learning and data mining
to address this problem [1]. Their approach uses statistical data compression
techniques to reveal the semantics of a binary in its assembly form, yielding
a segmentation of code bytes into assembly instructions and a differentiation
of data bytes from code bytes. Although the technique is effective and exhibits
improved accuracy over the best commercial disassembler currently available [4],
the compression algorithm suffers high memory usage. Thus, training on large
corpora can be very slow compared to other disassemblers.

In this paper, we present an improved disassembly technique that is both more
effective and more efficient. Rather than relying on high-order context seman-
tic information (which leads to long training times), we leverage a finite state
machine with transitional probabilities to infer likely execution paths through a
sea of bytes. Our main contributions include a graph-based static disassembly
technique; a simple, efficient, but effective disassembler implementation; and an
empirical demonstration of the effectiveness of the approach.

Our high-level strategy involves two linear passes: a preprocessing step which
recovers a conservative superset of potential disassemblies, followed by a filtering
step in which a state machine selects the best disassembly from the possible
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candidates. While the resulting disassembly is not guaranteed to be fully correct
(due to the undecidability of the general problem), it is guaranteed to avoid
certain common errors that plague mainstream disassemblers. Our empirical
analysis shows our simple, linear approach is faster and more accurate than the
observably quadratic-time approaches adopted by other disassemblers.

The rest of the paper proceeds as follows. Section 2 discusses related work in
static disassembly. Section 3 presents our graph-based static disassembly tech-
nique. Section 4 presents experimental results, and Section 5 concludes and sug-
gests future work.

2 Related Work

Existing disassemblers mainly fall into three categories: linear sweep disassem-
blers, recursive traversal disassemblers, and the hybrid approach. The GNU util-
ity objdump [5] is a popular example of the linear sweep approach. It starts at
the beginning of the text segment of the binary to be disassembled, decoding
one instruction at a time until everything in executable sections is decoded. This
type of disassembler is prone to errors when code and data bytes are interleaved
within some segments. Such interleaving is typical of almost all production-level
Windows binaries generated by non-GNU compilers.

IDA Pro [3,4] follows the recursive traversal approach. Unlike linear sweep
disassemblers, it decodes instructions by traversing the static control flow of
the program, thereby skipping data bytes that may punctuate the code bytes.
However, not all control flows can be predicted statically. When the control flow
is constructed incorrectly, some reachable code bytes are missed, resulting in
disassemblies that omit significant blocks of code.

The hybrid approach [6] combines linear sweep and recursive traversal to
detect and locate disassembly errors. The basic idea is to disassemble using
the linear sweep algorithm and verify the output using the recursive traversal
algorithm. While this helps to eliminate some disassembly errors, in general it
remains prone to the shortcomings of both techniques. That is, when the sweep
and traversal phases disagree, there is no clear indication of which is correct; the
ambiguous bytes therefore receive an error-prone classification.

Wartell et al. recently presented a machine learning- and data mining-based
approach to the disassembly problem [1]. Their approach avoids error-prone
control-flow analysis heuristics in favor of a three-phase approach: First, executa-
bles are segmented into subsequences of bytes that constitute valid instruction
encodings as defined by the architecture [7]. Next, a language model is built from
the training corpus with a statistical data model used in modern data compres-
sion. The language model is used to classify the segmented subsequence as code
or data. Finally, a set of pre-defined heuristics refines the classification results.
The experimental results demonstrate substantial improvements over IDA Pro’s
traversal-based approach. However, it has the disadvantage of high memory us-
age due to the large statistical compression model. This significantly slows the
disassembly process relative to simple sweep and traversal disassemblers.
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Our disassembly algorithm presented in this paper instead adopts a prob-
abilistic finite state machine (FSM) [8,9] approach. FSMs are widely used in
areas such as computational linguistics, speech processing, and gene sequencing.
Although the transitions of probabilistic FSMs are non-deterministic, they are
labeled with probabilities given training data. For any given byte stream, there
is more than one trace through the FSM. By querying the FSM, the likelihood
of each trace can be computed, revealing the most probable path of reachable
opcode and operand sequences in an executable.

3 Disassembler Design

Our machine learning approach to disassembly frames the disassembly problem
as follows:

Problem Definition. Givenan arbitrary stringof bytes, which subset of the bytes
is the most probable set of potentially reachable instruction starting points, where
“probable” is defined in terms of a given corpus of correct binary disassemblies?

Figure 1 shows the architecture of our disassembly technique. It consists of a
shingled disassembler that recovers the (overlapping) building blocks (shingles)
of all possible valid execution paths, a finite state machine trained on binary
executables, and a graph disassembler that traces and prunes the shingles to
output the maximum-likelihood classification of bytes as instruction starting
points, instruction non-starting points, and data.

source shing|ed (3707 cee axnfl)

binary disassembler

A 4 A 4
opcode Pr(zi — z;) | graph optimal
state machine disassembler execution path

Fig. 1. Disassembler architecture

3.1 Shingled Disassembler

Since computed branch instructions in x86 have their targets established at
runtime, every byte within the code section can be a target and thus must
be considered as executable code. This aspect of the x86 architecture allows
for instruction aliasing, the ability for two instructions to overlap each other.
Therefore, we refer to a disassembler that retains all possible execution paths
through a binary as a shingled disassembler.

Definition 1 Shingle
A shingle is a consecutive sequence of bytes that decodes to a single machine
instruction. Shingles may overlap.
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The core functionality of the shingled disassembler is to eliminate bytes that
are clearly data (because all flows that contain them lead to execution of bytes
that do not encode any valid instruction), and to compose a byte sequence
that retains information for generating every possible valid shingle of the source
binary. This is a major benefit of this approach since the shingled disassembly
encodes a superset of all the possible valid disassemblies of the binary. In later
sections, we discuss how we apply our graph disassembler to prune this superset
until we find the most probable byte classifications. In order to define what
consists of a valid execution path, we must first discuss a few key concepts.

Definition 2 Fall through'

Shingle x (conditionally) falls through to shingle y, denoted x — vy, if shingle y is
located adjacent to and after instruction x, and the semantics of instruction x do
not (always) modify the program counter. In this case, execution of instruction
x is (sometimes) followed by execution of instruction y at runtime.

Definition 3 Unconditional Branch

A shingle is an unconditional branch if it only falls through when its operand ex-
plicitly targets the immediately following byte. Unconditional branch instructions
for x86 include jmp and ret instructions.

Unconditional branch instructions are important in defining valid disassem-
blies because the last instruction in any disassembly must be an unconditional
branch. If this is not the case, the program could execute past the end of its
virtual address space.

Definition 4 Static Successor

A control-flow edge (x,y) is static if x — y holds or if x is a conditional or un-
conditional branch with fized (i.e., non-computed) destination y. An instruction’s
static successors are defined by S(x) = {y | (z,y) is static}.

Definition 5 Postdominating Set

The (static) postdominating set P(z) of shingle x is the transitive closure of S
on {x}. If there exists a static control-flow from x to an illegal address (e.g., an
address outside the address space or whose bytes do not encode a legal instruc-
tion), then P(x) is not well defined and we write P(x) = L.

Definition 6 Valid Exzecution Path
All paths in P(x) are considered valid execution paths from x.

! At first glance, it would seem that we could strengthen our defintion of fall-throughs
to any two instructions that do not have an unconditional branch instruction between
them. However, there are cases where a compiler will place a call and jcc instruction
followed by data bytes. A common example of this is call [IAT:ExceptionHandler]
since the exception handler function will never return.
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The x86 instruction set does not make use of every possible opcode sequence;
therefore certain bytes cannot be the beginning of a code instruction. For ex-
ample, the OxFF byte is used to distinguish the beginning of one of 7 different
instructions, using the byte that follows to distinguish which instruction is in-
tended. However, OxFFFF is an invalid opcode that is unused in the instruction
set. This sequence of bytes is common because any negative offset in two’s com-
plement that branches less than OxFFFF bytes away starts with OxFFFF. The
shingled disassembler can immediately mark any shingle whose opcode is not
supported under the x86 instruction set as data. A shingle that is marked as
data is either used as the operand of another instruction, or it is part of a data
block within the code section. Execution of the instruction would cause the pro-
gram to crash.

Lemma 1. Invalid Fall-through
Ve,y nx—yAy:=0— x:=0), in which § stands for data bytes.

Any time that we encounter an address that is marked data, all fall-throughs
to that instruction can be marked as data as well. Direct branches also fall into
this definition. All direct call and jmp instructions imply a direct executional
relationship between the instruction and its target. Therefore, any shingle that
targets a shingle previously marked as data is also marked as data.

Definition 7 Sheering
A shingle = is sheered from the shingled disassembly when Yy :: x — y, = and
all y are marked as data in the shingled disassembly.

Figure 2 illustrates how our shingled disassembler works. Given a binary of
byte sequence 6A 01 51 56 8B C7 E8 B6 E6 FF FF ..., the shingled disassem-
bler performs a single-pass, ordered scan over the byte sequence. Data bytes and
invalid shingles are marked along the way. Figure 2(a) demonstrates the first se-
ries of valid shingles, beginning at the first byte of the binary. Figure 2(b) starts
at the second byte, which falls through to a previously disassembled shingle. The
shingle with byte C7 is then marked as data (shaded in Figure 2(c)) since it is
an invalid opcode. Figure 2(d) shows an invalid shingle since it falls through to
an invalid opcode FF FF. Our shingled disassembler marks the two shingles B6
and FF as invalid in the sequence. Figure 2(e) shows another valid shingle that
begins at the ninth byte of the binary. After completing the scan, our shingled
disassembler has stored information necessary to produce all valid paths in P(z).

The secondary function of the shingled disassembler is to collect local statistics
called code/data modifiers that are specific to the executable. These modifiers
keep track of the likelihood that a shingle is code or data in this particular
executable. The following heuristics are used to update modifiers:

1. If the shingle at address a is a long direct branch instruction with o’ as
its target, the address a’ is more likely to be a code instruction. We apply
this heuristic with short direct branches as well, but with less weight since
two byte instructions are more likely to be seen within other instruction
operands.
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/i}push 1 V6| V|6
1oL | v]ot| viot |
/i} push ecx V| 51 |padd [ecx+56h] ,edx V[ 51 |
V|56 [}push esi /|56 ] vise
'/ﬁ} mov eax,edi '/ﬁ} mov eax,edi vjee
| c7 | ’ | c7 | ’ >< invalid
v|E8 | v|E8 | V| E8 |
E3 E3 E3
| E6 |p call 41D510 | E6 | ¢ call 41D510 | E6 | out FFh,al
[¥F | [¥F | [ |
[¥F | = [¥F |
N S N S /]
(a) (b) (c)

Fig. 2. Shingled disassembly of a sample byte sequence: (a) a shingle sequence be-
ginning at the first byte; (b) a shingle sequence beginning at the second byte; (c) a
non-shingle that starts with an invalid opcode; (d) a shingle that falls through to an
invalid opcode; and (e) a shingle sequence beginning at the ninth byte

[\

. If three shingles sequentially fall-through to each other and match one of the
most common instruction opcode sequences, each of these three addresses
is more likely to be code. Common sequences include function prologues,
epilogues, etc.

3. If bytes at address a and a+ 4 both encode addresses that reference shingles

within the code section of the binary, the likelihood that addresses a through

a + 7 are data is very high. Shingles a through a + 7 are marked as data,

as well as any following four byte sequences that match this criteria. This is

most likely a series of addresses referenced by a conditional branch elsewhere
in the code section.

The pseudocode for generating a shingled disassembly for a binary is shown in
Figure 3. For simplicity, the heuristics used to update modifiers are not described
in the pseudocode. Lines 1-17 construct a static control-flow graph G in which
all edges are reversed. A distinguished node bad is introduced with outgoing
edges to all shingles that do not encode any valid instruction, or that branch to
static, non-executable addresses. Lines 18-20 then mark all addresses reachable
from bad as data. The rest are possible instruction starting points.

3.2 Opcode State Machine

The state machine is constructed from a large corpus of pre-tagged binaries,
disassembled with IDA Pro v6.3. The byte sequences of the training executables
are used to build an opcode graph, consisting of opcode states and transitions
from one state to another. For each opcode state, we label its transition with the
probability of seeing the next opcode in the training instruction streams. The
opcode graph is a probabilistic finite state machine (FSM) that encodes all the
correct disassemblies of the training byte sequences annotated with transition
probabilities. The accepting state of the FSM is the last unconditional branch
seen in the binary.

Figure 4 shows what this transition graph might look like if the x86 instruction
set only contained four opcodes: 0x01 through 0x04. Each directed edge in the
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Input: zo,...,z,—1 € [0,2%)
Output: yo,...,yn—1 € {data,maybe code}

G:=10

1

2 fora :=0ton—1do

3 Yo := maybe code

4 1 := decode(TaZat1 ")

5 if ¢ is undefined then

6 G.insert(bad, a)

7 else

8 if ¢ falls through then

9 if a + |i| < n then G.insert(a + |i|, a)
10 else G.insert(bad, a)

11 endif

12 if ¢ is a static jump/branch then

13 if is exec ok(dest (7)) then G.insert(dest(4), a)
14 else G.insert(bad, a)

15 endif

16 endif

17 endfor

18 foreach a € depth first search(G,bad) do
19 Yo = data

20 endfor

Fig. 3. Shingled disassembly algorithm

graph between opcode x; and x; implies that a transition between x; and z; has
been observed in the corpus, and the edge weight of x; — x; is the probability
that given z;, the next instruction is z;. It is also important to note the node
db in the graph which represents data bytes. Any transition from an instruction
to data observed in the corpus will be represented by a directed edge to the db
node. The graph for the full x86 instruction set includes more than 500 nodes,
as each observed opcode must be included.

Fig. 4. Instruction transition graph: 4 opcodes
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3.3 Maximum-Likelihood Execution Path

We name the output of the shingled disassembler a shingled binary. The shingled
binary of the source executable encodes within it up to 2™ possible valid disas-
semblies. Our graph disassembler is designed to scan the shingled binary and
prune shingles with lower probabilities. By using our graph disassembler, we can
find the maximum-likelihood set of byte classifications by tracing the shingled
binary through the opcode finite state machine. At every receiving state, we
check which preceding path (predecessor) has the highest transition probability.
For example in Figure 2, the 5th byte (8B) is the receiving state of two preceding
addresses: byte 1 (see Figure 2(a)) and byte 2 (see Figure 2(b)). We compute
the transition probability from each of the two addresses and sheer the one with
a lower probability.

Theorem 1. The graph disassembler always returns the maximum-likelihood
byte classifications among the set S of all valid shingles.

Proof. Each byte in the shingled binary is a potential receiving state of multiple
predecessors. At each receiving state, we keep the best predecessor with the
highest transition probability. Therefore, when we reach the last receiving state—
the accepting state, which represents the last unconditional brach instruction—
we find the shingle with the highest probability as the best execution path.

The transition probability of a predecessor consists of two parts: the global
transition probability taken from the opcode state machine and the local modi-
fiers, and local statistics of each byte being code or data based on several heuris-
tics. This is important because runtime reference patterns specific to the binary
being disassembled are included in distinguishing the most probable disassembly
path.

Let r be a receiving state of a transition triggered at z; in the shingled bi-
nary, let Pr(pred(x;)) be the transition probability of the best predecessor of x;,
and let ¢m and dm be the code and data modifiers computed during shingled
disassembly. The transition probability to r is as follows:

Pr(r) = Pr(pred(z;)) * cm/dm
if x; is a fall-through instruction, or
Pr(r) = Pr(pred(x;)) * cm/dm % Pr(db;) * Pr(db,)

if z; is a branch instruction, where Pr(db;) is the probability that z; is followed
by data and Pr(db,) is the probability that r is proceeded by data. Every branch
instruction can possibly be followed by data. To account for this, when determin-
ing the best predecessor for each instruction, branch instructions are treated as
fall-throughs to their following instruction and to data. Each branch instruction
can be a predecessor to the following instruction or to any instruction that is on
a 4-byte boundary and is reachable via data bytes.
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Therefore, the transition probability of any valid shingle-path s resulting in a
trace of rg,..., T, ..., Tg is:

Pr(s) = Pr(ro)Pr(ry)--- Pr(r;)--- Pr(rg)
and the optimal execution path s* is:

*
= P .
s* = argmax r(s)

3.4 Algorithm Analysis

Our disassembly algorithm is much quicker than other approaches of comparable
accuracy due to the small amount of information that needs to be analyzed. The
time complexity of each of the three steps is as follows:

— Shingled disassembly: Lines 1-17 of Figure 3 complete in O(n) time (where
n is the number of bytes in executable sections) and construct a CFG G with
at most 2n edges. The depth-first search in Lines 18-20 is linear in the size
of G. We conclude that the algorithm in Figure 3 is O(n).

— Sheering: Pruning invalid shingles also requires O(n) time.

— Graph disassembly: The graph-based disassembler performs a single-pass
scan over the shingled binary, and is therefore also O(n).

Therefore, our disassembly algorithm runs in time O(n), that is, linear in the
size of the source binary executable.

4 Evaluation

A prototype of our shingled disassembler was developed in Windows using Mi-
crosoft NET C#. Testing of our disassembly algorithm was performed on an
Intel Xeon processor with six 2.4GHz cores and 24GB of physical RAM. We
tested 24 difficult binaries with very positive results.

4.1 Broad Results

Table 1 shows the different programs on which we tested our disassembler, as well
as file sizes and code section sizes. It also displays the number of instructions that
the graph disassembler identified that IDA Pro didn’t identify as code. Figure 5
shows the percentage of instructions that IDA Pro identified as code that our
disassembler also identified as code.

Our disassembler runs in linear time in the size of the input binary. Figure 6
shows how many times longer IDA Pro took to disassemble each binary relative
to our disassembler. Our disassembler is increasingly faster than IDA Pro as the
size of the input grows.

Finally, for each binary we used Ollydbg to create and save the traces of ex-
ecutions. Tracing executions in this way does not reveal the ground truth of
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Fig. 5. Percent of instructions identified by IDA Pro that were also identified by our
disassembler

Table 1. File Statistics

File Size Code Size # Instr.

File Name (KB) (KB) Missed by IDA
calc 114 75 1700
Tz 163 126 680
cmd 389 129 5449
synergyc 609 218 12607
diff 1161 228 3002
gee 1378 254 2760
c++ 1380 256 2769
synergys 738 319 8061
size 1703 581 5540
ar 1726 593 8626
objcopy 1868 701 6293
as 2188 772 7463
objdump 2247 780 7159
steam 1353 860 16928
git 1159 947 9776
xetex 14424 1277 18579
gvim 1997 1666 19145
Dooble 2579 1884 57598
luatex 3514 2118 18381
celestia 2844 2136 24950
DosBox 3727 3013 24217
emule 5758 3264 52434
filezilla 7994 7085 79367
IdentityFinder 23874 12781 180176

non-executed bytes (which may be data or code), but the bytes that do execute
are definitely code. We compared these results to the static disassembly yielded
by our disassembler, by IDA Pro, and by the dynamic disassembly tool VDB/-
Vivisect [10]. Both our disassembler and IDA Pro were 100% accurate against
the execution paths that actually executed during the tests, but VDB/Vivisect
exhibited much lower accuracies of around 15-35%. We also used VDB/Vivi-
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Fig. 6. Ratio of IDA Pro’s disassembly time to our disassembly time

sect to dynamically trace command line tools, such as the Spec2000 benchmark
suite and Cygwin, and obtained similar code coverages. This provides signifi-
cant evidence that purely dynamic disassembly is not a viable solution to many
disassembly problems where high code coverage is essential.

5 Conclusion

We presented an extremely simple yet highly effective static disassembly tech-
nique using probabilistic finite state machines. It finds the most probable set of
byte classifications from all possible valid disassemblies. Compared to the cur-
rent state-of-the-art IDA Pro, our disassembler runs in time linear in the size of
the input binary. We achieve greater efficiency, and experiments indicate that
our resulting disassemblies are more accurate than those yielded by IDA Pro.

We are currently working on extending our disassembler to instrument and
record the actual execution traces of executables, for better estimation of ground
truth and therefore more comprehensive evaluation of accuracy. One major chal-
lenge is to get high code coverage—the percentage of the code sections covered
during each execution—especially for large applications. The instrumented ex-
ecution traces would give us the advantage to verify all identified code sections
in a controlled and automatic fashion.
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Abstract. Due to the small size of available labeled data for semi-
supervised learning, approaches to this problem make strong assump-
tions about the data, performing well only when such assumptions hold
true. However, a lot of effort may have to be spent in understanding
the data so that the most suitable model can be applied. This process
can be as critical as gathering labeled data. One way to overcome this
hindrance is to control the contribution of different assumptions to the
model, rendering it capable of performing reasonably in a wide range of
applications. In this paper we propose a collective matrix factorization
model that simultaneously decomposes the predictor, neighborhood and
target matrices (PNT-CMF) to achieve semi-supervised classification. By
controlling how strongly the model relies on different assumptions, PNT-
CMF is able to perform well on a wider variety of datasets. Experiments
on synthetic and real world datasets show that, while state-of-the-art
models (TSVM and LapSVM) excel on datasets that match their char-
acteristics and have a performance drop on the others, our approach
outperforms them being consistently competitive in different situations.

Keywords: Semi-supervised classification; factorization models.

1 Introduction

In certain domains, the acquisition of labeled data might be a costly proccess
making it difficult to exploit supervised learning models. In order to surmount
this, the field of semi-supervised learning [2] studies how to learn from both
labeled and unlabeled data. Given the small amount of available labeled data,
semi-supervised learning methods need to make strong assumptions about the
data distribution. The most prominent assumptions (briefly discussed in Section
2) are the cluster and the manifold assumption.

It is usually the case that, if such assumptions do not hold, unlabeled data may
be seriously detrimental to the algorithms performance [3]. As a consequence, de-
termining in advance good assumptions about the data and developing or choosing
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© Springer International Publishing Switzerland 2014


http://www.ismll.uni-hildesheim.de

Collective Factorization for Semi-supervised Classification 287

models accordingly may be as critical as gathering labeled data. In chapter 21 from
[2] an extensive benchmark evaluation of semi-supervised learning approaches on a
variety of datasets is presented resulting in no overall winner, i.e. no method is con-
sistently competitive at all datasets, so that one has to rely on background knowl-
edge about the data. General models that can work well on different kinds of data
offer a means to circumvent this pitfall. One promising family of models that work
in this direction are factorization models [10]. Such models are flexible enough to
fit different kinds of data without overfitting (given that they are properly regular-
ized). However, to the best of our knowledge, there is no systematic evaluation of
the capabilities of factorization models as semi-supervised classifiers.

In this work, we show how semi-supervised learning can be approached as a
factorization problem. By factorizing the predictor matrix, one can exploit unla-
beled data to learn meaningful latent features together with the decision bound-
ary. This approach however is suboptimal if the data is not linearly separable.
Thus, we enforce neighboring points in the original space to still be neighbors in
the learned latent space by factorizing also the adjacency matrix of the nearest
neighbor graph. We call this model the Predictor/Neighborhood/Target Collec-
tive Matrix Factorization (PNT-CMF). While the state-of-the-art approaches
may usually be very effective in some datasets, they perform poorly in others;
we provide empirical evidence that PNT-CMF can profit from unlabeled data,
making them competitive in settings where different model assumptions hold
true. The main contributions of the paper are:

— We propose PNT-CMF, a novel model for semi-supervised learning that
collectively factorizes the predictor, neighborhood and target relation.

— We devise a learning algorithm for PNT-CMF that is based on simultaneous
stochastic gradient descent over all three relations.

— In experiments on both synthetic and real-world data sets we show that
our approach PNT-CMF outperforms existing state-of-the-art methods for
semi-supervised learning. Especially we show that while existing approaches
work well for datasets with matching characteristics (cluster-like datasets for
TSVM and manifold-like datasets for LapSVM), our approach PNT-CMF
consistently performs competitive under varying characteristics.

2 Related Work

For a thorough survey of literature on semi-supervised learning in general, the
reader is referred to [2] or [15]. In order to learn from just a few labeled data
points, the models have to make strong assumptions about the data. One can
categorize semi-supervised classification methods according to such assumptions.
Historically, the first semi-supervised algorithms were based on the idea that, if
two points belong to the same cluster, they have the same label. This is called the
cluster assumption. If this assumption holds, it is reasonable to expect that the
optimal decision boundary should stay in a low density region. Methods which
fall into this category are the transductive SVMs [5] and the information regu-
larization framework [11]. As pointed out by [15], this assumption does not hold
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true if, for instance, the data is generated by two highly overlapping gaussians.
In this case, a generative model like the EM with mixture models [8] would be
able to devise an appropriate classifier.

The second most relevant assumption is that data points lie on a low dimen-
sional manifold [1]. One can think of the manifold assumption as the cluster
assumption on the manifold. A successful approach implementing this assump-
tion is the class of algorithms based on manifold regularization [1] [7], which
regularizes the model by forcing points with short geodesic distances to have
similar values for the decision function. Since the geodesic distances are com-
puted based on the laplacian of a graph representation of the data, these methods
can also be regarded as graph-based methods. This class of semi-supervised algo-
rithms define a graph where the nodes are the data points and the edge weights
are the similarity between them and are regularized to force neighboring nodes
to have similar labels. Graph based methods like the one based on Gaussian
Fields and Harmonic functions [16] and global consistency method [14] rely on
the laplacian of the similarity graph to achieve this. These methods can be seen
as special cases of the manifold regularization framework [1].

All of those methods have shown to be effective when their underlying as-
sumptions hold true. However, when this is not the case, their performance might
actually be worsened by unlabeled data. The factorization models proposed here
are more flexible regarding the structure of the data since (i) they do not assme
decision function lies in a low density region, but map the features to a space
where they are easily separable instead and (ii) enforces neighboring points to
have the same label by co-factorizing the nearest neighbor matrix, which contri-
bution to the model can be adjusted so that the model is robust to datasets where
this information is not relevant. Multi-matrix factorization as predictive models
have been investigated by [10]. Previous work on the semi-supervised learning of
factorization models has either focused on different tasks or had different goals
from this work. While we are here focused on semi-supervised classification,
previous work has focused on other tasks like clustering [12] and non-linear un-
supervised dimensionality reduction [13]. A closer match is the work from Liu et
al. [6] which approaches multi-label classification. Their method relies on ad-hoc
similarity measures for instances and class labels that should be chosen for each
kind of data. While their method only works for multi-label cases, the approach
presented here deals with binary classification.

3 Problem Formulation

In a traditional supervised learning problem, data are represented by a predictors
matrix X, where each row represents an instance predictor vector x; € RIZI, F
being the set of predictors, and a target matrix Y, with each row y; containing
the values of the target variables for the instance i. Depending on the task, Y
can take various forms. Since throughout the paper we will consider the binary
classification setting, we assume Y to be a one dimensional matrix (i.e. a vector)
y € {—1,+1}* where T the set of instances.
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Generally speaking, a learning model uses some training data DTrain .=
(X Train yTrain) £ Jearn a model that is able to predict the values in some test
data yTest given X 1°* all unseen when learning.

In the semi-supervised learning scenario