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Abstract. Averaged One-Dependence Estimators (AODE) is a popu-
lar and effective approach to Bayesian learning. In this paper, a new
attribute selection approach is proposed for AODE. It can search in a
large model space, while it requires only a single extra pass through the
training data, resulting in a computationally efficient two-pass learning
algorithm. The experimental results indicate that the new technique sig-
nificantly reduces AODE’s bias at the cost of a modest increase in train-
ing time. Its low bias and computational efficiency make it an attractive
algorithm for learning from big data.
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1 Introduction

Naive Bayes (NB) [1] is a simple, computationally efficient probabilistic approach
to classification learning. It assumes that all attributes are conditionally inde-
pendent of each other given the class. As an improvement to NB, Averaged
One-Dependence Estimators (AODE) [2] relaxes the attribute independence as-
sumption by averaging all models that assume all attributes are conditionally
dependent on the class and one common attribute, known as the super-parent.
This often improves the classification performance significantly. An extensive
comparative study [3] shows that AODE obtains significant lower error rates
than most alternative semi-naive Bayes algorithms with similar computational
complexity. One of the attractive features of AODE is that it has complexity
linear with respect to data quantity, making it a useful approach for big data.

Attribute selection has been demonstrated to be effective at improving the
accuracy of AODE [4,5]. However, the most effective conventional attribute se-
lection techniques have high computational complexity and hence are not feasible
in the context of big data. In this paper we develop an efficient attribute selec-
tion algorithm for AODE that is linear with respect to data quantity, and of
low polynomial complexity in the number of attributes and hence well suited to
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big data. The empirical results show that this technique obtains lower bias than
AODE, and thus usually achieves lower error on larger data sets, at the cost of
only a modest increase in training time.

2 Background

The classification task can be described as follows, given a training sample T
of t classified objects, we are required to predict the probability P(y | x) that a
new example x = 〈x1, . . . , xa〉 belongs to some class y, where xi is the value of
the attribute xi and y ∈ {c1, . . . , ck}.

In the following sections, we describe AODE for this classification task and a
number of its key variants.

2.1 AODE

From the definition of conditional probability, we have P(y | x) = P(y,x)/P(x) .

As P(x) =
∑k

i=1 P(ci,x) and y ∈ {c1, . . . , ck}, it is reasonable to consider P(x)
as the normalizing constant and estimate only the joint probability P(y,x) in
the remainder of this paper.

Since the example x does not appear frequently enough in the training data,
we cannot directly derive an accurate estimate of P(y,x) and must extrapolate
this estimate from observations of lower-dimensional probabilities in the data
[6]. Applying the definition of conditional probabilities again, we have P(y,x) =
P(y)P(x | y) . The first term P(y) on the right side can be sufficiently accurately
estimated from the sample frequencies, if the number of classes, k, is not too
large. For the second term P(x | y), AODE assumes every attribute depends
on the same parent attribute, the super-parent, thus obtains an one-dependence
estimator (ODE), and then averages all eligible ODEs [2]. The joint probability
P(y,x) is estimated as follows,

P̂(y,x) =

∑
i:1≤i≤a∧F(xi)≥m P̂(y, xi)

∏a
j=1 P̂(xj | y, xi)

|{i : 1 ≤ i ≤ a ∧ F(xi) ≥ m}| , (1)

where |·| denotes the cardinality of a set, P̂(·) represents an estimate of P(·),
F(xi) is the frequency of xi and m is the minimum frequency to accept xi as a
super parent. The current research uses m = 1 [7].

2.2 Weightily AODE

In the classification of AODE, each ODE is treated equally, that is, all eligible
models are averaged and contribute uniformly to the classification rule. How-
ever, in many real world applications, attributes do not play the same role in
classification. This observation inspires the weightily AODE [8], in which the
joint probability is estimated as,

P̂(y,x) =

∑
i:1≤i≤a∧F(xi)≥m WiP̂(y, xi)

∏a
j=1 P̂(xj | y, xi)

∑
i:1≤i≤a∧F(xi)≥m Wi

. (2)
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In practice, mutual information between the super-parent and the class is often
used as the weight Wi.

2.3 AODE with Subsumption Resolution

One extreme type of inter-dependence between attributes results in a value of
one being a generalization of a value of the other. For example, consider Gender
and Pregnant as two attributes, then Pregnant = yes implies that Gender =
female. Therefore, Gender = female is a generalization of Pregnant = yes.
Likewise, Pregnant = no is a generalization of Gender = male. Where one value
xi is a generalization of another, xj , P (y|xi, xj) = P (y|xj). In consequence
dropping the more general value from any calculations should not harm any
posterior probability estimates, whereas assuming independence between them
may.

Motivated by this observation, Subsumption Resolution (SR) [9] identifies
pairs of attribute values such that one appears to subsume the other and deletes
the generalization. Suppose that the set of indices of the resulting attribute
subset is denoted by R, the joint probability is estimated as,

P̂(y,x) =

∑
i:i∈R∧F(xi)≥m P̂(y, xi)

∏
j∈R P̂(xj | y, xi)

|{i : i ∈ R ∧ F(xi) ≥ m}| . (3)

2.4 Forward and Backward Attribute Selection in AODE

In order to repair harmful inter-dependencies among highly correlated attributes,
Zheng et al [5] proposed to select an appropriate attribute subset by hill climbing
search. Two different search strategies can be used: FSS begins with the empty
attribute set and successively adds attributes [10], while BSE starts with the
complete attribute set and successively removes attributes [11]. Both strategies
greedily select the attribute whose addition or elimination best reduces the leave-
one-out cross validation error on the training set. The process is terminated if
there is no error improvement.

To differentiate the selection of parent or child, they introduce the use of
a parent (p) and a child (c) set, each of which contains the set of indices of
attributes that can be employed in, respectively, a parent or a child role in
AODE. The joint probability is estimated as,

P̂(y,x) =

∑
i:i∈p∧F(xi)≥m P̂(y, xi)

∏
j∈c P̂(xj | y, xi)

|{i : i ∈ p ∧ F(xi) ≥ m}| . (4)

As indicated in [5], the performance of BSE is better than FSS, so we focus
on BSE in this paper. Four types of attribute elimination are considered, parent
elimination (PE), child elimination (CE), parent and child elimination (P∧CE),
parent or child elimination (P∨CE) which performs the former three types of
attribute eliminations in each iteration, selecting the option that best reduces
the error.

The last strategy allows flexible selection of parents and children, but comes
at a high cost, since it needs to scan the training data 2a times in the worst case.
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2.5 AnDE

The last extension to AODE we review here is AnDE [6], which allows children
to depend on not just one super-parent, but a combination of n parents. The
joint probability P(y,x) is estimated as follows,

P̂(y,x) =

∑
s:s∈(An)∧F(xs)≥m P̂(y, xs)

∏a
j=1 P̂(xj | y, xs)

|{s : s ∈
(A
n

)
∧ F(xs) ≥ m}|

, (5)

where
(A
n

)
indicates the set of all size-n subsets of {1, · · · , a} and xs means the

set of attribute values indexed by the element in s.
Note that AnDE is in fact a superclass of AODE and NB. That is, AODE is

AnDE with n = 1 (A1DE) and NB is AnDE with n = 0 (A0DE).

3 Our Proposal: Attribute Selective AODE

Previous work on attribute selection for AODE through BSE and FSS [4,5] has
demonstrated attribute selection did succeed in reducing the harmful influence
of inter-dependencies among attributes. This success may be attributed to their
ability to search in a large model space. For P∨CE, the search space is of size
2a+1, as it includes all subsets of attributes in parent role coupled with all subsets
of attributes in child role.1

Nevertheless, this is achieved at a high computational overhead. The strategy
of P∨CE needs to scan the training data 2a times, as each time either one child or
one parent can be deleted. This is impractical for data sets with a large number
of attributes.

In order to explore a large space of models in a single additional pass through
the data, we propose a new attribute selection approach for AODE. Our proposal
is based on the observation that it is possible to nest a large space of alternative
models such that each is a trivial extension to another. Let p and c be the set of
indices of parent and child attributes, respectively. For every attribute xi, the
AODE models that use attributes in p as parents and attributes in c ∪ {i} as
children are minor extensions of a model that uses attributes in p as parents
and attributes in c as children. The same is true of models that use attributes in
p ∪ {i} as parents and attributes in c as children. Importantly, multiple models
that build upon one another in this way can be efficiently evaluated in a single
set of computations. Using this observation, we create a space of models that
are nested together, and then select the best model using leave-one-out cross
validation in single extra pass through the training data.

Step by step information of the algorithm is provided in the following sections.

1 Note that although the search space is of size 2a+1, the actual number of models
evaluated is O(a2), which is much smaller.
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3.1 Ranking the Attributes

Our method for nesting models depends on a ranking of the attributes. Models
containing lower ranked attributes will be built upon models containing higher
ranked attributes. The mutual information between an attribute and the class
measures how informative this attribute is about the class [12], and thus it is a
suitable metric to rank the attributes.

The advantage of using mutual information is that it can be computed very
efficiently after one pass through the training data. Although the mutual infor-
mation between an attribute and the class can help to identify the attributes
that are individually most discriminative, it is important to note that it does not
directly assess the discriminative power of an attribute in combination with other
attributes. Nevertheless, the ranking of attributes based on mutual information
with the class will permit the search over a large space of possible models and
the deficiencies of this discriminative approach will be mitigated by the richness
of the search space that is evaluated in a discriminative fashion.

3.2 Building the Model Space

Without loss of generality, in the following we assume that the attributes are
ordered by mutual information. That is, xi represents the attribute with the ith

greatest mutual information with the class. As the attributes have been ranked,
we can create, in total, a2 nested submodels of attribute subsets. To be more
specific, suppose we select top r attributes as parents and top s attributes as
children, where 1 ≤ r, s ≤ a, the candidate AODE model would be,

P̂(y,x)r,s =

∑
i:1≤i≤r∧F(xi)≥m P̂(y, xi)

∏s
j=1 P̂(xj | y, xi)

|{i : 1 ≤ i ≤ r ∧ F(xi) ≥ m}| . (6)

Figure 1 gives an example of the model space with 3 attributes. For instance,
model m21 considers the two attributes {x1,x2} as parents and a single attribute
{x1} as a child. Then, when the attribute x2 is considered to be added as a child,
we obtain a new model m22. When instead the attribute x3 is considered to be
added as a parent, we obtain a new model m31. Both of these models are minor
extensions to the existing model m21 and all three (and all their extensions) can
be applied to a test instance in a single nested computation. Consequently all
models can be efficiently evaluated in a single set of nested computations.

children

{x1} {x1,x2} {x1,x2,x3}

p
a
r
e
n
t
s {x1} m11 m12 m13

{x1,x2} m21 m22 m23

{x1,x2,x3} m31 m32 m33

Fig. 1. An example of the model space with 3 attributes
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3.3 Selecting the Best Model

Once we have built the model space, we can perform model selection within this
space. To evaluate the goodness of an alternative model, an evaluation function
is required, which commonly measures the discriminative ability of the model
among classes.

We use leave-one-out cross validation error to measure the performance of each
model. Rather than building a new model for every fold, we use incremental cross
validation [13], in which the contribution of the training example being left out
in each fold is simply subtracted from the count table, thus producing a model
without that training example. This method allows the model to be evaluated
quickly, whilst obtaining a good estimate of the generalization error.

There are several loss functions to measure model performance for leave-one-
out cross validation, zero-one loss and root mean squared error (RMSE) are
among the most common and effective. Zero-one loss simply assigns a loss of ‘0’
to correct classification, and ‘1’ to incorrect classification, treating all misclassi-
fications as equally undesirable. RMSE, however, accumulates for each example
the squared error, which is the probability of incorrectly classifying the example,
and then computes the root mean of the sum. As RMSE gives a finer grained
measure of the calibration of the probability estimates compared to zero-one loss,
with the error depending not just on which class is predicted, but also on the
probabilities estimated for each class, we use RMSE to evaluate the candidate
models in this research.

3.4 Algorithm and Analysis

Based on the methodology presented above, we develop the training algorithm
for attribute selective AODE shown in Algorithm 1.

Algorithm 1. Training algorithm for attribute selective AODE

1: Form the table of joint frequencies of pairwise attribute-values and class
2: Compute the mutual information
3: Rank the attributes
4: for all example in T do
5: Build all a2 models while leaving the current example out
6: Predict the current example using a2 models
7: Accumulate the squared error for each model
8: end for
9: Compute the root mean squared error for each model
10: Select the model with the lowest RMSE

As in AODE, we need to form the table of joint frequencies of pairs of
attribute-values and class from which the probability estimates P̂(y, xi), P̂(xj |
y, xi) and the mutual information between the attributes and class are derived.
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This is done in one pass through the training data (line 1). Note that this pro-
vides all of the information needed to create any selective AODE model with
any sets of parent and child attributes.

In the second pass through the training data (line 4-8), the squared error is
accumulated for each model. After this pass, the RMSE will be computed and
used to select the best model.

At training time, the space complexity of the table of joint frequencies of
attribute-values and class is O(k(av)2) as in AODE, where v is the average
number of values per attribute. Attribute selection will not require more memory.
Derivation of the frequencies required to populate this table is of time complexity
O(ta2). Attribute selection needs one more pass through the training data, the
time complexity of which is O(tka2), since for each example we need to compute
the joint probability in (1) for each class. So the overall time complexity is
O(t(k + 1)a2).

Classification requires the table of probability estimates formed at training
time of space complexity O(k(av)2). The time complexity of classifying a single
example is O(ka2) in the worst-case scenario, because some attributes may be
omitted after attribute selection.

4 Empirical Comparisons

In this section, we compare the newly proposed attribute selective AODE (AS-
AODE) with AODE, weightily AODE (WAODE), AODE with subsumption
resolution (AODESR), BSE selective AODE (BSEAODE) and A2DE.

Zheng et al [9] discussed three different subsumption resolution techniques,
Lazy SR, Eager SR and Near SR. Lazy SR is used in this paper, as it can improve
AODE with low training time and modest test time overheads. The minimum
frequency for identifying generalizations is set to 100. The results in [5] show that
BSE performs better than FSS, and the elimination of a child is more effective
than the elimination of a parent. So we select only the children in BSEAODE.
However, we do not perform statistical tests in BSEAODE, as we do not do this
in ASAODE, either. We also include A2DE in the set of experiments so as to
provide a comprehensive comparison.

The experimental system is implemented in C++. In order to deal with nu-
merical data, Minimum Description Length (MDL) discretization [14] is imple-
mented. More specifically, the cut points are computed on 100,000 examples
randomly selected from training data or on all training examples if the train-
ing data is less than 100,000. These cut points are then used to discretize the
training and test data. The base probabilities are estimated using m-estimation
(m = 1) [15]. Missing values have been considered as a distinct value.

We run the above algorithms on 71 data sets from the UCI repository [16].
Table 1 presents the detailed characteristics of data sets in ascending order on
the number of instances. We run the experiments on a single CPU single core
virtual Linux machine running on a Sun grid node with dual 6 core Intel Xeon
L5640 processors running at 2.27 GHz with 96 GB RAM.
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Table 1. Data sets

No. Name Inst Att Class
1 contact-lenses 24 4 3
2 lung-cancer 32 56 3
3 labor-negotiations 57 16 2
4 post-operative 90 8 3
5 zoo 101 16 7
6 promoters 106 57 2
7 echocardiogram 131 6 2
8 lymphography 148 18 4
9 iris 150 4 3

10 teaching-ae 151 5 3
11 hepatitis 155 19 2
12 wine 178 13 3
13 autos 205 25 7
14 sonar 208 60 2
15 glass-id 214 9 3
16 new-thyroid 215 5 3
17 audio 226 69 24
18 hungarian 294 13 2
19 heart-disease-c 303 13 2
20 haberman 306 3 2
21 primary-tumor 339 17 22
22 ionosphere 351 34 2
23 dermatology 366 34 6
24 horse-colic 368 21 2
25 house-votes-84 435 16 2
26 cylinder-bands 540 39 2
27 chess 551 39 2
28 syncon 600 60 6
29 balance-scale 625 4 3
30 soybean 683 35 19
31 credit-a 690 15 2
32 breast-cancer-w 699 9 2
33 pima-ind-diabetes 768 8 2
34 vehicle 846 18 4
35 anneal 898 38 6
36 tic-tac-toe 958 9 2

No. Name Inst Att Class
37 vowel 990 13 11
38 german 1000 20 2
39 led 1000 7 10
40 contraceptive-mc 1473 9 3
41 yeast 1484 8 10
42 volcanoes 1520 3 4
43 car 1728 6 4
44 segment 2310 19 7
45 hypothyroid 3163 25 2
46 splice-c4.5 3177 60 3
47 kr-vs-kp 3196 36 2
48 abalone 4177 8 3
49 spambase 4601 57 2
50 phoneme 5438 7 50
51 wall-following 5456 24 4
52 page-blocks 5473 10 5
53 optdigits 5620 64 10
54 satellite 6435 36 6
55 musk2 6598 166 2
56 mushrooms 8124 22 2
57 thyroid 9169 29 20
58 pendigits 10992 16 10
59 sign 12546 8 3
60 nursery 12960 8 5
61 magic 19020 10 2
62 letter-recog 20000 16 26
63 adult 48842 14 2
64 shuttle 58000 9 7
65 connect-4 67557 42 3
66 ipums.la.99 88443 60 19
67 waveform 100000 21 3
68 localization 164860 5 11
69 census-income 299285 41 2
70 poker-hand 1025010 10 10
71 record-linkage 5749132 11 2

4.1 Bias, Variance and RMSE

Because ASAODE explores a larger space of models than AODE and BSEAODE
explores a larger space of models than ASAODE, we expect BSEAODE to have
the lowest bias, followed by ASAODE then AODE and this order to be reversed
for their relative variance. Hence we expect AODE to deliver the lowest error on
smaller datasets, ASAODE to dominate at some intermediate data size, and for
BSEAODE to deliver the lowest error on very large data. The bias and variance
of ASAODE relative to WAODE, AODESR and A2DE can be expected to vary
from dataset to dataset as these all embody different learning biases and none
of their spaces of models subsumes the other.

In order to assess these expectations, we first perform bias variance decompo-
sition using the experimental method proposed by Kohavi and Wolpert [17]. As
this study is more meaningful with more data, we run these experiments only
on the largest 28 data sets which have at least 2000 examples. For each data set,
1000 training examples and 1000 test examples are randomly selected. The bias
variance decomposition is calculated from the error on the test examples. This
process is repeated 10 times to obtain the mean bias and variance.
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A summary of pairwise win/draw/loss records, which indicate the number of
data sets on which one algorithm has lower, equal or higher outcome relative
to the other, is presented in Table 2. Each entry in cell [i, j] compares the al-
gorithm in row i against the algorithm in column j. The p value following each
win/draw/loss record is the outcome of a binomial sign test and represents the
probability of observing the given number of wins and losses if each were equally
likely. The reported p value is the result of a two-tailed test. We consider a
difference to be significant if p ≤ 0.05. All such p values have been changed to
boldface in the table.

Table 2 shows that all five variants to AODE achieve significant reductions in
bias relative to AODE. While ASAODE achieves lower bias than WAODE and
AODESR more often than not, the reverse is true for BSEAODE and A2DE;
although these differences are not significant.

Next, we conduct 10-fold cross validation experiments to obtain the error of
the alternative algorithms. As attribute selection is based on the RMSE metric,
we are inclined to evaluate the error by RMSE. The win/draw/loss records of
alternative algorithms for RMSE on 71 data sets are also presented in Table 2.

We can see that all five improvements to AODE have achieved significant
reductions in RMSE relative to AODE. ASAODE has also achieved signif-
icant reductions in RMSE relative to WAODE and AODESR. The p value
(0.807)indicates that ASAODE and BSEAODE have achieved almost the same
performance. But the advantages of BSEAODE over WAODE and AODESR
are not as significant as those of ASAODE over WAODE and AODESR. While
A2DE achieves significant reductions in RMSE relative to AODE, WAODE,
AODESR and BSEAODE, its advantage over ASAODE is not significant.

The fact that ASAODE obtains, in general, lower bias and higher variance
compared with WAODE and AODESR, indicates that it will perform better
on larger datasets, since it will be able to capture more complex relationships
from large amount of data [18]. In order to demonstrate this hypothesis, we also
compile the win/draw/loss results in terms of RMSE on the 43 smallest data
sets and the 28 largest data sets in Table 2. We can see that the performance
of ASAODE is better on large data sets than on small data sets. While for
even larger data sets BSEAODE and A2DE might outperform ASAODE for the
same reason, both have high computational complexity that can be prohibitive
for large data, since BSEAODE requires 2a pases on the whole training set
and A2DE’s memory requirements and classification time are very high (see the
following Section 4.2).

4.2 Computation Time

The logarithmic means of training and classification time on the 71 data sets for
all algorithms are shown in Fig. 2. We have added 1 to each mean before comput-
ing the logarithm to avoid negative bars. ASAODE requires more training time
than such one pass algorithms as AODE, WAODE and AODESR. This is because
ASAODE involves two passes through the training data. As BSEAODE needs
at most 2a passes, it requires significantly more training time than ASAODE.
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Table 2. Win/draw/loss records of bias, variance and RMSE with binomial sign test

AODE WAODE AODESR BSEAODE ASAODE

W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p

B
ia
s1

WAODE 21/2/5 0.002
AODESR 15/8/5 0.041 12/1/15 0.701
BSEAODE 19/5/4 0.003 17/4/7 0.064 17/2/9 0.169
ASAODE 21/3/4 <0.001 18/1/9 0.122 16/1/11 0.442 11/2/15 0.557
A2DE 23/2/3 <0.001 21/1/6 0.006 20/3/5 0.004 14/1/13 1 17/1/10 0.248

V
a
ri
a
n
c
e
1 WAODE 13/1/14 1

AODESR 7/8/13 0.263 13/0/15 0.851
BSEAODE 11/5/12 1 10/0/18 0.185 12/3/13 1
ASAODE 9/1/18 0.122 11/1/16 0.442 13/0/15 0.851 13/2/13 1
A2DE 14/1/13 1 14/0/14 1 14/3/11 0.69 14/1/13 1 14/0/14 1

R
M

S
E

2 WAODE 45/5/21 0.004
AODESR 32/27/12 0.004 28/6/37 0.321
BSEAODE 40/20/11 <0.001 40/4/27 0.142 35/14/22 0.111
ASAODE 43/6/22 0.013 42/4/25 0.05 42/5/24 0.036 35/4/32 0.807
A2DE 52/4/15 <0.001 47/2/22 0.004 48/3/20 <0.001 42/4/25 0.05 43/2/26 0.053

R
M

S
E
S
3 WAODE 26/3/14 0.081

AODESR 20/19/4 0.002 18/3/22 0.636
BSEAODE 19/14/10 0.136 23/2/18 0.533 16/10/17 1
ASAODE 19/5/19 1 19/4/20 1 18/5/20 0.871 20/4/19 1
A2DE 27/3/13 0.038 24/1/18 0.441 23/2/18 0.533 22/3/18 0.636 25/2/16 0.211

R
M

S
E
L

4 WAODE 19/2/7 0.029
AODESR 12/8/8 0.503 10/3/15 0.424
BSEAODE 21/6/1 <0.001 17/2/9 0.169 19/4/5 0.007
ASAODE 24/1/3 <0.001 23/0/5 <0.001 24/0/4 <0.001 15/0/13 0.851
A2DE 25/1/2 <0.001 23/1/4 <0.001 25/1/2 <0.001 20/1/7 0.019 18/0/10 0.185

1 Bias and variance results on the 28 largest data sets.
2 RMSE results on all the 71 data sets.
3 RMSES: RMSE results on the 43 smallest data sets.
4 RMSEL: RMSE results on the 28 largest data sets.
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Fig. 2. Computation time comparison of different algorithms (seconds)

As for the classification time, ASAODE, AODESR and BSEAODE require, in
general, less time than AODE and WAODE because they might eliminate some
attributes. Fig. 2 also shows that ASAODE requires even less classification time
than AODESR and BSEAODE.
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A2DE requires more training and classification time than AODE, as it needs
to compile a more complicated table at training time and requires more compu-
tation at classification time.

5 Conclusion

In this paper, a new attribute selection algorithm is proposed for AODE. It is
a two-pass algorithm, so compared to AODE, it just requires one more pass
through the training data. The alternative attribute selection methods, such as
FSA and BSE, need a number of passes that is linear to the number of attributes
to obtain similar results.

The empirical results show that the new algorithm is significantly more accu-
rate than AODE, WAODE and AODESR, has comparable error to BSEAODE,
and as we expected, worse than A2DE. It requires significantly less training time
than BSEAODE, and less classification time than AODE and all other variants,
especially than A2DE.

It is worthwhile to note that the technique proposed in this paper is of squared
complexity in the number of attributes, so it is not scalable to high dimensional
data. On the other hand, it is compatible with weighting, subsumption resolution
and higher orders of AnDE. Consequently, it might be possible to further improve
the accuracy by combining it with weighting, subsumption resolution and A2DE.
This is a promising direction for future research.
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