
Gaussian Processes Autoencoder

for Dimensionality Reduction

Xinwei Jiang1, Junbin Gao2, Xia Hong3, and Zhihua Cai1

1 School of Computer Science,
China University of Geosciences, Wuhan, 430074, China

ysjxw@hotmail.com, zhcai@cug.edu.cn
2 School of Computing and Mathematics,

Charles Sturt University, Bathurst, NSW 2795, Australia
jbgao@csu.edu.au

3 School of Systems Engineering,
University of Reading, Reading, RG6 6AY, UK

x.hong@reading.ac.uk

Abstract. Learning low dimensional manifold from highly nonlinear
data of high dimensionality has become increasingly important for dis-
covering intrinsic representation that can be utilized for data visual-
ization and preprocessing. The autoencoder is a powerful dimensionality
reduction technique based on minimizing reconstruction error, and it has
regained popularity because it has been efficiently used for greedy pre-
training of deep neural networks. Compared to Neural Network (NN),
the superiority of Gaussian Process (GP) has been shown in model infer-
ence, optimization and performance. GP has been successfully applied
in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaus-
sian Process Latent Variable Model (GPLVM). In this paper we propose
the Gaussian Processes Autoencoder Model (GPAM) for dimensionality
reduction by extending the classic NN based autoencoder to GP based
autoencoder. More interestingly, the novel model can also be viewed
as back constrained GPLVM (BC-GPLVM) where the back constraint
smooth function is represented by a GP. Experiments verify the perfor-
mance of the newly proposed model.

Keywords: Dimensionality Reduction, Autoencoder, Gaussian Process,
Latent Variable Model, Neural Networks.

1 Introduction

Dimensionality Reduction (DR) aims to find the corresponding low dimensional
representation of data in a high-dimensional space without incurring significant
information loss and has been widely utilized as one of the most crucial pre-
processing steps in data analysis such as applications in computer vision [15].
Theoretically the commonly-faced tasks in data analysis such as regression, clas-
sification and clustering can be viewed as DR. For example, in regression, one

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 62–73, 2014.
c© Springer International Publishing Switzerland 2014

Gaussian Processes Autoencoder for Dimensionality Reduction 63

tries to estimate a mapping function from an input (normally with high dimen-
sions) to an output space (normally with low dimensions).

Motivated by the ample applications, DR techniques have been extensively
studied in the last two decades. Linear DR models such as Principal Compo-
nent Analysis (PCA) and Linear Discriminant Analysis (LDA) may be the most
well-known DR techniques used in the settings of unsupervised and supervised
learning [2]. These methods aim to learn a linear mapping from high dimensional
observation to the lower dimension space (also called latent space). However, in
practical applications the high dimensional observed data often contain highly
nonlinear structures which violates the basic assumption of the linear DR models,
hence various non-linear DR models have been developed, such as Multidimen-
sional Scaling (MDS) [11], Isometric Mapping (ISOMAP) [19], Locally Linear
Embedding (LLE) [16], Kernel PCA (KPCA) [17], Gaussian Process Latent Vari-
able Model (GPLVM) [9], Relevance Units Latent Variable Model (RULVM) [6],
and Thin Plate Spline Latent Variable Model (TPSLVM) [7].

Among the above mentioned nonlinear DR approaches, the Latent Variable
Model (LVM) based DR models attract considerable attention due to their in-
tuitive explanation. LVM explicitly models the relationship between the high-
dimensional observation space and the low-dimensional latent space, thus it is
able to overcome the out-of-sample problems (projecting a new high-dimensional
sample into its low-dimensional representation) or pre-image problems (project-
ing back from the low-dimensional space to the observed data space). The linear
Probabilistic PCA (PPCA) [20] and GPLVM [9] may be the most well-known
LVM based DR techniques, where the mapping from the low dimensional latent
space (latent variables) to the high dimensional observation space (observed vari-
ables) is represented by a linear model and a nonlinear Gaussian Process (GP),
respectively. Since the nonlinear DR technique GPLVM performs very well in
many real-world data sets, this model has become popular in many applications,
such as movement modelling and generating [9]. Meanwhile, many GPLVM ex-
tensions have been developed to further improve performance. For instance, the
Gaussian Process Dynamical Model (GPDM) [22] allows modelling dynamics
in the latent space. The back constraint GPLVM (BC-GPLVM) was proposed
in [10] to maintain a smooth function from observed data points to the cor-
responding latent points thus enforcing the close observed data to be close in
latent space. Other extensions, such as Bayesian GPLVM, shared GPLVM and
supervised GPLVM which further extend the classical GPLVM to unsupervised
and supervised settings, can be referred to [4,21,8].

The autoencoder [3] can be regarded as an interesting DR model, although
originally it is a neural network (NN) architecture used to determine latent rep-
resentation for observed data. The idea of autoencoder is to resolve the latent
embedding within the hidden layer by training the NN to reproduce the input
observed data as its output. Intuitively this model consists of two parts: the
encoder which maps the input observed data to a latent representation, and the
decoder which reconstructs the input through a map from the latent represen-
tation to the observed input (also called output). Basically, the two mappings

64 X. Jiang et al.

in the encoder and decoder are modelled by neural network (NN). Recently, au-
toencoder has regained popularity because it has been efficiently used for greedy
pre-training of deep neural network (DNN) [1].

The relationship between GP and NN was established by Neal [12], who
demonstrated that NN could become GP in the limit of infinite hidden units
and the model inference may be simpler. With specific covariance function (NN
covariance) [14], the back constraint GPLVM (BC-GPLVM) can be seen as
autoencoders[18], where the encoder is NN and the decoder is GP. The superi-
ority of GP over NN lies in small-scale model parameters, easy model inference
and training [12,14], and in many real-world applications GP outperforms NN.
Motivated by the comparison, we propose the Gaussian Processes Autoencoder
Model (GPAM), which can be viewed as BC-GPLVM where GP represents the
smooth mapping from latent space to observation space, and also as an au-
toencoder where both the encoder and decoder are GPs. It is expected that the
proposed GPAM will outperform typical GPLVM, BC-GPLVM and autoencoder
models.

The rest of the paper is organized as follows. In Section 2 we briefly review
the GP, GPLVM, and autoencoder models. The proposed Gaussian Processes
Autoencoder Model (GPAM) will be introduced in Section 3. Then, real-world
data sets are used to verify and evaluate the performance of the newly proposed
algorithm in Section 4. Finally, the concluding remarks and comments are given
in Section 5.

2 Related Works

In this and following section, we use the following notations: X = [x1, ...,xN]T

are observed (inputs) data in a high dimensional space RD, i.e., xn ∈ RD;
Y = [y1, ...,yN]T are observed (outputs or labels) data with each yn ∈ Rq; and
Z = [z1, ..., zN]T are the so-called latent variables in a low dimensional space Rp

with p � D where each zn is associated with xn. For the sake of convenience,
we also consider X as an N ×D matrix, Y an N × q and Z an N × p matrix.
We call D = {(xn,yn)}Nn=1 (or D = {xn}Nn=1 if no labels (outputs) given) the
observed dataset. Data items are assumed to be i.i.d. Let N (μ,Σ) denote the
Gaussian distribution with mean μ and covariance Σ.

2.1 Gaussian Process

Given a dataset D = {(x1,y1), · · · , (xN ,yN)} as defined above, the classical
Gaussian Process Regression (GPR) is concerned with the case when q = 1. It
aims to estimate the predictive distribution p(y|x∗) for any test data x∗. In the
classical GPR model, each sample yn is generated from the corresponding latent
functional variable g with independent Gaussian noise

y = g(x) + ε

Gaussian Processes Autoencoder for Dimensionality Reduction 65

where g is drawn from a (zero-mean) GP which only depends on the covari-
ance/kernel function k(·, ·) defined on input space and ε is the additive Gaussian
noise with zero mean and covariance σ2.

Given a new test observation x∗, it is easy to prove that the predictive distri-
bution conditioned on the given observation is

g∗|x∗, X, Y ∼N (Kx∗X(KXX + σ2I)−1Y,

Kx∗x∗ −Kx∗X(KXX + σ2I)−1KXx∗) (2.1)

where Ks are the matrices of the covariance/kernel function values at the cor-
responding points X and/or x∗.

2.2 Gaussian Process Latent Variable Model (GPLVM)

Lawrence introduced GPLVM in [9], including the motivation of proposing the
GPLVM and the relationship between PPCA and GPLVM. Here we just review
GPLVM from the view of GP straightforwardly.

Given a high dimensional dataset D = {x1, ...,xN} ⊂ RD without any given
labels or output data. We aim to obtain the latent/unknown variables zn ∈ Rp

corresponding to each data item xn (n = 1, 2, ..., N). GPLVM [9] defines a
generative mapping from the latent variables zn to its corresponding observed
variables xn which is governed by a group of GPs xn = g(zn) + ε where g =
[g1, ..., gD]T is assumed to be a group ofD GPs, and ε is an independent Gaussian
noise with zero mean and covariance σ2I, which means the likelihood of the
observations is Gaussian

P (X |g, Z) =

N∏

n=1

N (xn|g(zn), σ
2I) (2.2)

Suppose that each GP gi (i = 1, ..., D) has the same covariance function
k(·, ·), then the data likelihood defined by equation (2.2) can be marginalized
with respect to the given GP priors over all gds, giving rise to the following
overall marginalized likelihood of the observations X

P (X |Z) =
1

(2π)DN/2|K|D/2
exp

(
−1

2
tr(K−1XXT)

)
(2.3)

where K = KZZ + σ2I is the kernel matrix over latent variables Z.
The model learning is implemented by maximizing the above marginalized

data likelihood with respect to the latent variables Z and the parameters of the
kernel function k.

Although GPLVM provides a smooth mapping from latent space to the ob-
servation space, it does not ensure smoothness in the inverse mapping. This can
be undesirable because it only guarantees that samples close in latent space will
be close in data space, while points close in data space may be not close in
latent space. Besides, due to the lack of direct mapping from observation space

66 X. Jiang et al.

to latent space the out-of-sample problem becomes complicated, meaning that
the latent representations of testing data must be optimized conditioned on the
latent embedding of the training examples [9]. In order to address this issue, the
back constraint GPLVM (BC-GPLVM) was proposed in [10]. The idea behind
this model is to constrain latent points to be a smooth function of the corre-
sponding data points, which forces points which are close in data space to be
close in latent space. The back constraint smooth function can be written by

zmn = fm(xn,α) (2.4)

where α are parameters of the smooth function. Typically, we can use a linear
model, a kernel based regression (KBR) model or a multi-layer perception (MLP)
model to represent this function. As the function fm is fully parameterized in
terms of a set of new parametersα, the learning process becomes an optimization
process aiming at maximizing the likelihood (2.3) w.r.t. the latent variables X
and parameters α.

2.3 Autoencoder

The autoencoder[3] is based on NN, which will be termed NNAM (NN Autoen-
coder Model) for short throughout the paper. Basically it is a three-layer NN
with one hidden layer where the input and output layers are the observation
data. Our goal is to find the latent representation over the hidden layer of the
model through minimizing reconstruction errors. The autoencoder model can be
separated into two parts: an encoder (mapping the input into latent represen-
tation) and a decoder (reproducing the input through a map from the latent
representation to input).

With the above notations, let’s define the encoder as a function z = f (x, θ,
and the decoder as a function x = g(z, γ). Given a high dimensional dataset
D = {x1, ...,xN} ⊂ RD, we jointly optimize the parameters of the encoder θ
and decoder γ by minimizing the least-squares reconstruction cost:

{θ, γ} = argmax
{θ,γ}

N∑

n=1

D∑

d=1

{
xd
n − gd(f (xn, θ), γ)

}2
(2.5)

where gd(·) is the dth output dimension of g(·). When f and g are linear
transformations, this model is equivalent to PCA. However, nonlinear projec-
tions show a more powerful performance. This function is also called the ac-
tive function in NN framework. In this paper we use the sigmoidal function
f(x, θ) = (1 + exp(−xT θ))−1 as the active function. The model can be opti-
mized by gradient-based algorithms, such as scaled conjugate gradient (SCG).

3 Gaussian Processes Autoencoder Model

Based on the relationship between GP and NN, we introduce the detailed model
inference of Gaussian Processes Autoencoder Model (GPAM). The fundamental

Gaussian Processes Autoencoder for Dimensionality Reduction 67

idea of this novel model is to use Gaussian Process (GP) to replace Neural
Networks (NN) that was originally used in autoencoder.

Given a high dimensional dataset D = {x1, ...,xN} ⊂ RD without any labels
or output data, where each sample xn is assumed to be associated with the la-
tent/unknown variables zn ∈ Rp (n = 1, 2, ..., N). Our goal is to find these latent
variables which should clearly show the intrinsic structures of the observation
data for data visualization or preprocessing.

The idea behind GPAM is to define a mapping from the observation variables
xn to the corresponding latent variables zn (encoder) and a mapping from the
latent variables zn to the corresponding observation variables xn (decoder) by
using Gaussian Processes Regressions (GPRs) defined as follows

z = f (x, θ) + ε1; x = g(z, γ) + ε2 (3.1)

where f = [f1, ..., fp]T and g = [g1, ..., gD]T are assumed to be two groups of p
and D GPs with hyperparameters θ and γ, respectively, and both ε1 and ε2 are
the independent Gaussian noises with zero mean and covariance σ2I. Thus it is
easy to see that the likelihood of the observations is Gaussian,

P (Z|f , X, θ) =

N∏

n=1

N (zn|f(xn), σ
2
1I); P (X |g, Z, γ) =

N∏

n=1

N (xn|g(zn), σ
2
2I)

Let’s further assume that both functions f and g are nonlinearly modelled
by GPs

P (f |X, θ) = N (f |0,KX,X); P (g|Z, γ) = N (g|0,KZ,Z) (3.2)

By marginalizing over the unknown functions f and g, we have

P (Z|X, θ) =
1

(2π)pN/2|KX |p/2 exp
{
−1

2
tr(K−1

X ZZT)

}
(3.3)

P (X |Z, γ) = 1

(2π)DN/2|KZ |D/2
exp

{
−1

2
tr(K−1

Z XXT)

}

with KX = KX,X + σ2
1I and KZ = KZ,Z + σ2

2I where KX,X and KZ,Z are the
covariance matrices defined over the input data X , and the latent variables Z,
respectively.

Furthermore, in order to do model inference let’s assume that the input X
of encoder function f is different from the output X of decoder function g,
which is rewritten by Xc. Thus the notation of marginal likelihood P (X |Z, γ)
can be changed to P (Xc|Z, γ). Based on the conditional independence prop-
erty of graphical model the posterior distribution over latent variables Z given
observation (X,Xc) can be derived as follows

P (Z|X,Xc, θ, γ) = P (Z|X, θ)P (Xc|Z, γ)/P (Xc|X, γ, θ) (3.4)

68 X. Jiang et al.

In order to learn the unknown variables (Z, θ, γ), we maximize the log poste-
rior distribution P (Z|X,Xc, θ, γ) (3.4) w.r.t. (Z, θ, γ)

max
Z,θ,γ

{
logP (Z|X, θ) + logP (Xc|Z, γ)− logP (Xc|X, θ, γ)

}
(3.5)

For the sake of convenience, we simply denote the negative log posterior dis-
tribution P (Z|Y,X, θ, γ) by

L = Lr + Ll = − logP (Z|X, θ)− logP (Xc|Z, γ) (3.6)

=
1

2

{
pN log 2π + p log|KX |+ tr(K−1

X ZZT)

}

+
1

2

{
DN log 2π +D log|KZ |+ tr(K−1

Z XcX
T
c)

}

where P (Xc|X, θ, γ) has been omitted because it is irrelevant to Z.
The process of model training is equal to simultaneously optimizing a GPR

(corresponding to the encoder distribution P (Z|X, θ)) and a GPLVM (corre-
sponding to the decoder distribution P (Xc|Z, γ)). To apply a gradient based op-
timization algorithm like SCG algorithm to learn the parameters of the model,
we need to find out the gradient of L w.r.t. the latent variables Z, and the kernel
parameter (θ, γ).

Firstly for the part of GPR corresponding to P (Z|X, θ) we can simply obtain
the following gradients

∂Lr

∂Z
= K−1

X Z (3.7)

As for the parameter θ in kernel KX , since we consider the output of the
mapping z = f(x, θ) as the known quantity in the GPR model, the optimization
process is identical to the procedure of determining parameters for a typical
GPR model from training data. Thus we can derive the partial derivative of the

hyperparameter θ by chain rule (refer to Chapter 5 in [14])
∂Lr

∂θ
=

∂Lr

∂KX

∂KX

∂θ
.

Subsequently for the second part of GPLVM corresponding to P (Xc|Z, γ) it
is easy to evaluate the gradients of Ll w.r.t. the latent variables Z

∂Ll

∂Z
=

∂Ll

∂KZ

∂KZ

∂Z
(3.8)

where the gradients of log likelihood w.r.t. kernel matrix KZ is evaluated by

∂Ll

∂KZ
= K−1

Z −K−1
Z Y Y TK−1

Z . (3.9)

Similarly the gradient of Ll w.r.t. the hyperparameter γ can be calculated by

∂Ll

∂γ
=

∂Ll

∂KZ

∂KZ

∂γ
(3.10)

Gaussian Processes Autoencoder for Dimensionality Reduction 69

and the computation of the derivative of the kernel matrix w.r.t. the latent
variable Z and hyperparameter depend on a specific kernel function.

By combining equations (3.7) with equation (3.8) and (3.9), it is quite simple
to get the complete gradients of L w.r.t. the latent variables Z (∂L/∂Z). Once
we get all the derivative ready, the derivative based algorithms like SCG can
be utilized to iteratively optimize these parameters. However, when we perform
experiments, we find that the value of Lr (corresponding to the encoder distri-
bution P (Z|X, θ)) is much smaller than that of Ll (corresponding to the decoder
distribution P (Xc|Z, γ)), leading to very little performance improvement com-
pared to GPLVM. Thus we propose a novel algorithm to train the model based
on two-stage optimization; this is to say, we try to asynchronously optimize the
model consisting of GPR and GPLVM rather than simultaneously learn it. The
algorithm is detailed in Algorithm 1.

Algorithm 1. Train and Test GPAM

Input: High dimensional training inputs X ⊂ RD×N , pre-fixed latent dimensionality
p, number of training iterations T and testing inputs X∗ ⊂ RD×M .

Output: s = {Z,Z∗,θ,γ}.
1. Initialize Z = PPCA(X, p), θ and γ (depending on specific kernel function);
2. For i = 1:T{
3. Optimize {Zt, γ} = argmaxZ,γ logP (X|Zt−1, γ);

4. Optimize {Zt+1, θ} = argmaxZ,θ logP (Zt|X, θ);

5. Check converges: break if Error(Z) = ||Zt+1(:)− Zt(:)||2 � η}; //end loop
6. Compute latent variables Z∗ = Kx∗XK−1

X Z with learnt hyperparameters θ for
testing data X∗;

7. return s

To sum up, there are two ways to view the proposed GPAM. Firstly, it can
be seen as the generalization of classic NNAM. While GPAM makes use of GPR
model to encode and decode the data, NN is utilized to do encoding and decoding
in classic NNAM. Based on the superiority of GP over NN, we believe that the
proposed GPAM will outperform typical NNAM. Secondly, the proposed GPAM
can also be considered as the BC-GPLVM where the back constrain function is
modelled by GPR. Compared to classic BC-GPLVM, such as the KBR or MLP
based models, the smooth mapping from the observation space to the latent space
in the proposed GPAM is modelled by GPR, which results in better performance
than typical KBR and MLP based BC-GPLVM.

4 Experiments

In this section, we compare the proposed GPAM with original GPLVM [9], BC-
GPLVM [10] and NNAM [3], in two real-world tasks to show the better perfor-
mance that GPAM provides. In order to assess the performance of these models
in visualizing high dimensional data sets, we perform dimensionality reduction

70 X. Jiang et al.

by using a 2D latent space for visualization. Moreover, the nearest neighbour
classification error is tested in the low dimensional latent space to objectively
evaluate the quality of visualization for training data. After the DR models are
learnt, we further use them as feature extraction, followed by a k-Nearest Neigh-
bour (kNN) classifier for testing data. Of course we can use other classifier such
as GP Classifier (GPC) rather than a simple kNN to classify the testing data,
but the final goal is to reduce the dimensionality of the observation, and the
learnt low-dimensional data would be utilized for other proposes, such as data
visualization and compression, so the simple kNN classifier is better to evaluate
the quality of DR models. By comparing the classification accuracies in low di-
mensional latent space for testing data, we demonstrate the improvement of the
proposed model again. The experimental results verify that the proposed GPAM
is an efficient DR model and outperforms GPLVM, BC-GPLVM and NNAM.

For a fair comparison, we ran 500 iterations for all the models, and the co-
variance used for GPLVM, BC-GPLVM and GPAM was optimally selected from
RBF(ARD), POLY(ARD), and MLP(ARD) in Neil D. Lawrence’s MATLAB
packages Kern. The back constraint function of BC-GPLVM is manually picked
from KBR and MLP. The code GPLVM/BC-GPLVM and NNAM are based
on Neil D. Lawrence’s MATLAB packages FGPLVM1, and R. B. Palm’s Deep

Learning Toolbox2 [13], respectively. Since the learning rate of NNAM needs
to be selected manually, we varied it between 0.1 and 10 optimally with sigmoidal
active function.

4.1 Oil Flow Data

The oil flow data set [17] consists of 12 dimensional measurements of oil flow
within a pipeline. There are 3 phases of flow associated with the data and 1000
samples in the data set. For all four models, we use 600 samples (200 points
from each class) to learn the corresponding 2D latent data for the purpose of
data visualization, and the remaining 400 samples are the testing data. RBF
covariance function is used for GPLVM/BC-GPLVM (MLP back-constraint) and
GPAM (RBF covariance for both GPR and GPLVM in the model). As can be
seen from Figure 1, the proposed GPAM is superior to GPLVM/BC-GPLVM
and NNAM remarkably because the novel model makes the points in the latent
space which belong to the same class in the original feature space much closer
than the rest of three models.

Furthermore, in order to objectively evaluate the new DR technique we com-
pare the nearest neighbour errors and the classification accuracies based on kNN
classifier in the learnt 2D latent space provided by the four models on this data
set, respectively. All the four DR models are firstly learnt from training data
with the 2D latent space corresponding to the training data where the nearest
neighbour errors are evaluated, and then based on the trained four DR models
the testing data will be projected to the low dimensional latent/feature space

1 http://ml.sheffield.ac.uk/~neil/fgplvm
2 https://github.com/areslp/matlab/tree/master/DeepLearnToolbox-master

http://ml.sheffield.ac.uk/~neil/fgplvm
https://github.com/areslp/matlab/tree/master/DeepLearnToolbox-master

Gaussian Processes Autoencoder for Dimensionality Reduction 71

(2D in our experiments) where kNN is performed to compare the testing accu-
racies (K = 10 in kNN). Table I tells us that the proposed GPAM outperforms
GPLVM/BC-GPLVM and NNAM in terms of nearest neighbour errors and clas-
sification accuracies for training and testing data respectively, which verifies that
the novel DR model is better than the other three techniques.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Z

(a) GPLVM

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Z

(b) BC-GPLVM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Z

(c) NNAM

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Z

(d) GPAM

Fig. 1. Oil data set is visualized by GPLVM, BC-GPLVM, NNAM and GPAM

Table 1. The comparisons of nearest neighbor classification errors for training data
and kNN classification accuracies for testing data in oil flow data

GPLVM BC-GPLVM NNAM GPAM

NN Error 8 16 108 5
kNN Accuracy 96.75% 97.00% 90.50% 99.25%

4.2 Iris Data

The Iris data set [5] contains three classes of 50 instances each, where each
class refers to a type of iris plant. There are four features for each instance.
All 150 data points are utilized to learn the 2D latent space. POLY covariance
achieves the best results than the other two covariance functions (RBF and MLP)
for GPLVM/BC-GPLVM (MLP back-constraint) and GPAM (POLYARD and
POLY covariances for GPR and GPLVM respectively). Figure 2 and Table II
show the same conclusion as stated for the oil flow data set. Since there is no
more testing data for this data set, the classification comparison for testing is
not given.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Z

(a) GPLVM

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Z

(b) BC-GPLVM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.975

0.98

0.985

0.99

0.995

1

1.005
Z

(c) NNAM

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Z

(d) GPAM

Fig. 2. Iris data set is visualized by GPLVM, BC-GPLVM, NNAM and GPAM

72 X. Jiang et al.

Table 2. The comparisons of nearest neighbour classification errors for training data
in iris data

GPLVM BC-GPLVM NNAM GPAM

NN Error 4 5 17 3

As for the model complexity, we have to admit that the training algorithm of
GPAM is time-consuming compared to GPLVM, BC-GPLVM and NNAM due
to the two-stage optimization. However, in the testing step GPAM is as fast as
BC-GPLVM and NNAM without iterative optimization like classical GPLVM.

5 Conclusion

In this paper a novel LVM-based DR technique, termed Gaussian Processes
Autoencoder Model (GPAM), has been introduced. It can be seen as the gen-
eralization of classic Neural Network Autoencoder Model (NNAM) model by
replacing the NNs with GPs, leading to simpler model inference and better per-
formance. Also, we can view the new model as the back constraint GPLVM
where the smooth back constraint function is represented by GP, and the model
is trained by minimizing the reconstruction error. The experimental results have
demonstrated the performance of the newly developed model.

For the future work, inspired by recent works in deep learning [1] we will ex-
tend the GP Autoencoder to sparse and denoising GP Autoencoder models, and
then we also want to study the deep GP model by stacking the GP Autoencoder.

Acknowledgments. Xinwei Jiang’ work is supported by the Fundamental
Research Funds for the Central Universities, China University of Geosciences
(Wuhan). Junbin Gao and Xia Hong’s work is supported by the Australian Re-
search Council (ARC) through the grant DP130100364.

References

1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems (2007)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

3. Cottrell, G.W., Munro, P., Zipser, D.: Learning internal representations from
grayscale images: An example of extensional programming. In: Conference of the
Cognitive Science Society (1987)

4. Ek, C.H.: Shared Gaussian Process Latent Variables Models. Ph.D. thesis, Oxford
Brookes University (2009)

5. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

6. Gao, J., Zhang, J., Tien, D.: Relevance units latent variable model and nonlin-
ear dimensionality reduction. IEEE Transactions on Neural Networks 21, 123–135
(2010)

Gaussian Processes Autoencoder for Dimensionality Reduction 73

7. Jiang, X., Gao, J., Wang, T., Shi, D.: Tpslvm: A dimensionality reduction algo-
rithm based on thin plate splines. IEEE Transactions on Cybernetics (to appear,
2014)

8. Jiang, X., Gao, J., Wang, T., Zheng, L.: Supervised latent linear gaussian process
latent variable model for dimensionality reduction. IEEE Transactions on Systems,
Man, and Cybernetics - Part B: Cybernetics 42(6), 1620–1632 (2012)

9. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of Machine Learning Research 6, 1783–1816
(2005)

10. Lawrence, N.D., Quinonero-Candela, J.: Local distance preservation in the gp-
lvm through back constraints. In: International Conference on Machine Learning
(ICML), pp. 513–520. ACM Press (2006)

11. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate analysis. Academic Press,
London (1979)

12. Neal, R.: Bayesian learning for neural networks. Lecture Notes in Statistics 118
(1996)

13. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data.
Master’s thesis, Technical University of Denmark (2012)

14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press (2006)

15. Rosman, G., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Nonlinear dimen-
sionality reduction by topologically constrained isometric embedding. International
Journal of Computer Vision 89, 56–68 (2010)

16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290, 2323–2326 (2000)

17. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

18. Snoek, J., Adams, R.P., Larochelle, H.: Nonparametric guidance of autoencoder
representations using label information. Journal of Machine Learning Research 13,
2567–2588 (2012)

19. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

20. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal
of the Royal Statistical Society, Series B 61, 611–622 (1999)

21. Titsias, M.K., Lawrence, N.D.: Bayesian gaussian process latent variable model.
In: International Conference on Artificial Intelligence and Statistics (2010)

22. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In:
Advances in Neural Information Processing Systems (NIPS), pp. 1441–1448 (2005)

	Gaussian Processes Autoencoderfor Dimensionality Reduction
	1 Introduction
	2 Related Works
	2.1 Gaussian Process
	2.2 Gaussian Process Latent Variable Model (GPLVM)
	2.3 Autoencoder

	3 Gaussian Processes Autoencoder Model
	4 Experiments
	4.1 Oil Flow Data
	4.2 Iris Data

	5 Conclusion
	References

