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Abstract. How frequently are computer jobs submitted to an industrial-scale
datacenter? We investigate the trace that contains job requests and execution col-
lected in one of large-scale industrial datacenters, which spans near half of a Ter-
abyte. In this paper, we discover and explain two surprising patterns with respect
to the inter-arrival time (IAT) of job requests: (a) multiple periodicities and (b)
multi-level bundling effects. Specifically, we propose a novel generative process,
Hierarchical Bundling Model (HIBM), for modeling the data. HIBM is able to
mimic multiple components in the distribution of IAT, and to simulate job re-
quests with the same statistical properties as in the real data. We also provide a
systematic approach to estimate the parameters of HIBM.

1 Introduction

What are the major characteristics of job inter-arrival process in a datacenter? Could we
develop a tool to create synthetic inter-arrivals that match the properties of the empirical
data? Understanding the characteristics of job inter-arrivals is the key to design effec-
tive scheduling policies to manage massively-integrated and virtually-shared comput-
ing resources in a datacenter. Conventionally, during the development of a cloud-based
scheduler, job requests are assumed (1) to be submitted independently and (2) to follow
a constant rate λ, which results in a simple and elegant model, Poisson process (PP).
PP generates independent and identically distributed (i.i.d.) inter-arrival time (IAT) that
follows an (negative) exponential distribution [5]. However, in reality, how much does
this inter-arrival process deviate from PP?

To demonstrate how the real inter-arrival process deviates from PP, we use Fig. 1
to present the histogram of the IAT for 668,000 jobs submitted and collected in an in-
dustrial, large-scale datacenter. The resolution of IAT is 1 microsecond (μs, 10−6 sec).
As Fig. 1(a) shows, the IATs “seem” to follow an (negative) exponential distribution.
However, in logarithmic scale as Fig. 1(b) shows, surprisingly, four distinct clusters
(denoted as A, B, C and D) with either center-or left-skewed shapes can be seen. This
distribution (or a mixture of distributions) clearly does not follow an (negative) expo-
nential distribution, which is always right-skewed in logarithmic scale and therefore
cannot create such shapes. This phenomenon has confirmed that the i.i.d. assumption
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Fig. 1. Deviation from Poisson Process: (a) Histogram of job IAT (≈ 668, 000 jobs) in linear-
scale. (b) Same histogram in log-scale. (c) Synthetic IATs from HIBM. In (a), the histogram has
limited number of bins to demonstrate IATs of such a fine-resolution, and the marginal distribu-
tion may be misidentified as an (negative) exponential distribution. In (b), four distinct clusters
can be seen: A: 1μs, B: 10-103μs, C: 103-105μs, and D: 106-109μs. All four clusters are captured
by HIBM as shown in (c).

of PP barely holds since certain job requests may depend on one another. For exam-
ple, a request of disk-backup may immediately be submitted after a request of Gmail
service; this dependency violates the i.i.d assumption and thus invalidates conventional
statistical analysis. In this paper we aim at solving the following two problems:

– P1: Find Patterns. How to characterize this marginal distribution?
– P2: Pattern-Generating Mechanism. What is a possible mechanism that can gen-

erate such job inter-arrivals?

This work brings the following two contributions:

– Pattern Discovery. Two key patterns of job inter-arrivals are provided: (1) mul-
tiple periodicities and (2) bundling effects. We show the majority (approximately
78%) of job requests show a regular periodicity with a log-logistic noise, a skewed,
power-law-like distribution. Furthermore, the submission of a job may depend on
the occurrence of its previous job, and we refer to this dependency as the bundling
effect, since these two associated jobs are considered to belong to the same bundle.

– Generative Model. We propose HIBM, a “HIerarchical Bundling Model,” that
is succinct and interpretative. HIBM’s mathematical expression is succinct that
requires only a handful of parameters to create synthetic job inter-arrivals matching
the characteristics of empirical data, as shown in Fig. 1(c). Furthermore, HIBM has
the capability to explain the attribution of the four clusters (A, B, C and D) and the
“spikes” (A, C1, C2, D1, and D2) in Fig. 1(b).

The remainder of this paper is organized as follows. Section 2 provides the problem
definition, Section 3 details the proposed HIBM, Section 4 provides the discussions and
Section 5 surveys the previous work. Finally, Section 6 concludes this paper.

2 Problem Definition

In this work, we use the trace from Google’s cluster [12], which is the first publicly
available dataset that presents the diversity and dynamic behaviors of real-world service
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requests, from a large-scale, multi-purpose datacenter. The trace contains the scheduler
requests and actions recorded from 29 days (starting at 19:00 EST, on Sunday May 1st,
2011) of activity in a 12,500-machine cluster. Each request submitted by a user forms a
job and the trace records approximately 668,000 job submissions.

2.1 Terminology and Problem Formulation

First, we define the terminology used throughout this paper.

Definition 1 (Job type and job instance). “Job type” represents a certain type of job
that can occur once or multiple times, and “job instance” is the actual occurrence of a
job request.

For example, “disk-backup” is a job type that can instantiate several requests; each
request (such as “disk-backup at 1:00P.M. on May 2nd”) is a job instance.

Definition 2 (Job bundle). “Job bundle” represents the association of two job types
− if two job types are in the same job bundle, the IATs of their job instances will be
correlated.

Like the example used in Section 1, two job types “disk-backup” and “Gmail” are
functionally-associated, and thus they are considered belonging to the same job bundle.
In this case, the inter-arrival of each disk-backup instance will depend on the occurrence
of each Gmail instance.

Definition 3 (Job class). “Job class” represents the priority (or latency sensitiveness)
of a job type. In the trace, job class is enumerated as {0, 1, 2, 3} with a job type of class
3 being the highest priority.

As mentioned in the Introduction, we have two goals:

– P1: Find patterns. Given (1) the job type j, (2) the time stamp of its ith instance
(denoted as tj,i), and (3) the job class, find the most distinct patterns that are suffi-
cient to characterize the IATs of all job instances in a datacenter.

– P2: Pattern-generating mechanism. Given the patterns found in P1, design a
model that can generate IATs that match these characteristics of the empirical data
and report the model parameters.

2.2 Dataset Exploration

We begin this section by illustrating the number of job instances over time in Fig. 2(a).
We collect the time stamp of each job instance when it is first submitted to the datacen-
ter, and then aggregate the total number of job instances within each hour to construct a
dataset of one-dimensional time-series. On average, 959.8 job instances are submitted
per hour, and in general, less instances are submitted on the weekends whereas more are
submitted during weekdays. Interestingly, around 2:00 A.M. on May 19th (Thursday),
a burst of 3,152 job instances can be observed, and its amount is approximately three
times higher than the amount on typical Thursday midnights.
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Fig. 2. A burst and periodicities: (a) Job instances per hour. A burst (indicated by the red circle) at
May 19th can be observed. (b) Discrete Fourier Transform (DFT) on the job-instance series. The
high-amplitude signals correspond to the periods of 1 week, etc. (c) Class-0 (the lowest priority)
and class-2 instance series. Notice their similarity (correlation coefficient is 0.94).

Discrete Fourier Transform (DFT) is also performed on the job-instance series. Fig.
2(b) provides the amplitude of each discrete frequency, on which we denote four fre-
quencies of high power-spectrum amplitudes: 1-week, 5-min, 4-min and 2.5-min. The
reason that the 1-week signal has a high amplitude can be explained by the periodic
behavior between weekends and weekdays. Later in Section 3.1, we characterize the
periodicity and show that both 5-min and 4-min periods can be found during the job
inter-arrivals.

2.3 Class Interdependency

Not all jobs are submitted equal: certain job types have higher priority to be scheduled
and executed (class-3, e.g., website services), whereas other jobs do not (class-0, e.g.
MapReduce workloads) [12].

Observation 1. The spike A (1μs) in Fig. 1(b) is attributed to the 1μs IAT between a
class-0 and a class-2 instance.

As shown in Fig. 2(c), the pattern of class-0 job instances (low priority) is highly similar
with the pattern of class-2 instances (high priority), in terms of both trend and quantity.
As it can be seen that these instances of class-0 and class-2 contribute to the burst
on May 19th observed in Fig. 2(a). Furthermore, the correlation coefficient between
class-0 and class-2 instances is 0.94, which makes us think: what is the IAT between
a class-0 and a class-2 instance? Surprisingly, this IAT is exactly 1μs , which forms
the first cluster in Fig. 1(b). This phenomenon immediately piques our interest: how to
characterize and attribute the rest of three clusters (B, C, and D) and the corresponding
spikes? The answer lies in the “bundling effect” as we will elaborate in Section 3.

3 HIBM: HIerarchical Bundling Model

In this section, we introduce two major components of HIBM: cross-bundle effects
(Section 3.1) and within-bundle effects (Section 3.2). The complete HIBM framework
is presented in Section 3.3.
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Fig. 3. Multiple periodicities: (a) IAT of job type j and fitted PDF by HIBM. (b) IAT of all job
types. (c) Illustration of the cross-bundle noise (εc,i) and the within-bundle noise (εw,i) under the
period τj .

3.1 First Component: Cross-Bundle Effect

Multiple periodicities To characterize the periodicity of each job type, we first calculate
the IAT between every two consecutive job instances of that job type as follows:

δj,i = tj,i − tj,i-1, for i = 1 . . . nj (1)

where δj,i is the ith IAT, tj,i represents the occurrence time of the ith instance of job type
j, and nj is the total number of instances of job type j. Fig. 3(a) shows the histogram of
such IATs, δj,i. The histogram is symmetric and has a spike at 600 seconds (10 minutes),
which means each instance of job type j arrives approximately every 10 minutes with
some noise. Therefore, tj,i can be expressed as:

tj,i = i · τj + εc,i (2)

where τj stands for the period (e.g., 10 minutes in this case) and εc,i is a random variable
representing the “cross-bundle noise.” As illustrated in Fig. 3(c), the cross-bundle noise
(εc,i) represents the delay of a job bundle from its scheduled time (i · τj) and in this
example two job types j and j′ are in the same bundle. Here, we focus on only the job
type j (the red arrows); the within-bundle noise will be elaborated in Section 3.2. In
this work, τj is estimated by using the median of IATs of job type j; however, what
distribution εc,i follows remains unclear for now.

Observation 2. Multiple periodicities are observed: 4-min, 5-min, 10-min, 15-min, 20-
min, 30-min, and 1-hr.

One question may arise: is this periodic job type a special case, or do IATs of many job
types behave like this? To find the answer, we further collect the IATs from all job types
and illustrate them by using Fig. 3(b). For better visualization, only periods smaller
than one hour are demonstrated. In Fig. 3(b), multiple periodicities are observed, and
the two highest peaks are 4-min and 5-min, which matches the DFT results in Fig. 2(b):
the frequencies with high amplitudes are 4-min and 5-min. 4-min is also the smallest
period that exists in the trace. We would like to point out that the “10-min peak” in
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Fig. 4. Modeling cross-bundle noise: (a) PDF, (b) CDF (c) Odds Ratio are demonstrated by using
Log-logistic, negative-exponential and Pareto distribution, respectively

Fig. 3(b) seems sharper than the peak in Fig. 3(a); this is because Fig. 3(b) contains
several job types that have the same period (10-min), whereas Fig. 3(a) contains only
one such job type.

Now the question is: what random noise εc,i will create such IAT distribution shown
in Fig. 3(a)? Could we use famous “named” distributions, say (negative) exponential or
Pareto (power-law), to model this noise?

Modeling cross-bundle noise. Among many statistical distributions, we propose to
model the cross-bundle noise εc,i by using Log-logistic distribution (LL), since it is
able to model both the cross-bundle noise and the within-bundle noise (Section 3.2),
leading to the unified expression in HIBM. Also, it provides intuitive explanations for
sporadic, large delays. The Log-logistic distribution has a power-law tail and its defini-
tion is as follows.

Definition 4 (Log-logistic distribution). Let T be a non-negative continuous random
variable and T ∼ LL(α, β); the cumulative density function (CDF) of a Log-logistic
distributed variable T is , CDF (T = t) = FT (t) = 1

1+(t/α)−β , where α > 0 is the

scale parameter, and β > 0 is the shape parameter. The support t ∈ [0,∞).

Fig. 4(a) presents the cross-bundle noise εc,i and three fitted distributions by using
Maximum Likelihood Estimate (MLE) [3]. The distribution shows a left-skewed be-
havior and sporadically, a few job instances suffer from large delays. This phenomenon
is difficult to be captured by distributions with tails decaying exponentially fast (e.g.,
negative-exponential). On the other hand, the Pareto distribution (a power-law probabil-
ity distribution), which is also a heavy-tail distribution, lacks the flexibility to model a
“hill-shaped” distribution. The goodness-of-fit is tested by using Kolmogorov-Smirnov
test [11] with the null hypothesis that the cross-bundle noise is from the fitted Log-
logistic distribution. The resulting P-value is 0.2441, and therefore we retain the null
hypothesis under the 95% confidence level and conclude that the cross-bundle noise
follows Log-logistic distribution.

To better examine the distribution behavior both in the head and tail, we propose to
use the Odds Ratio (OR) function.
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Lemma 1 (Odds Ratio). In logarithmic scale, OR(t) has a linear behavior, with a
slope β and an intercept (− lnα), if T follows Log-logistic distribution:

OddsRatio(t) = OR(t) =
FT (t)

1− FT (t)
=

(
t

α

)β

(3)

⇒ lnOR(t) = β ln(t)− lnα �

As Fig. 4(c) shows, the OR of the cross-bundle noise seems to entirely follow the linear
line, which serves as another evidence that its marginal distribution follows a Log-
logistic distribution. The Log-logistic distribution presents a modified version of the
well known phenomenon − “rich gets richer.” We conjecture that this phenomenon can
be adapted to explain the cross-bundle noise of periodic job instances − “those delayed
long get delayed longer.” If the submission schedule of a job instance is delayed (or
preempted) by other jobs with a higher priority, it is likely that this job instance is going
to suffer from being further delayed.

3.2 Second Component: Within-Bundle Effect

Bundling effect and within-bundle noise The bundling effect represents the temporal
dependency between two job types j and j′. If the instances of two job types (e.g., Gmail
and disk-backup, denoted as job type j and j′, respectively) are independent from each
other, the correlation coefficient of their IATs should be close to zero. However, as Fig.
5(a) shows, IATs of two job types can be highly correlated; the correlation coefficient
(CC) is 0.9894. In this context, each tj,i and tj′,i must share the same εc,i due the
high correlation. More interestingly, the instances of job type j′ always occur after the
corresponding instance of j, i.e., tj,i < tj′,i as illustrated in Fig. 3(c).

We further examine the IAT between job type j and j′, namely, tj′,i−tj,i, referred as
“within-bundle noise” (εw,i). The concept of the within-bundle noise also is illustrated
by Fig. 3(c); furthermore, Fig. 5(b) presents a bi-modal distribution of εw,i: one peak
at 1.5-sec observed from 2:00P.M. to 6:00A.M. and the other at 16-sec observed from
6:00A.M. to 2:00P.M.

Observation 3. The spikes D1 (1.5sec) and D2 (16sec) in Fig. 1(b) are attributed to
HiBM’s within-bundle noise in the scale of seconds.

A possible explanation is that the submissions of job type j′ (class 1, latency-insensitive)
are delayed or preempted by other high priority job types during the working hours from
6:00A.M. to 2:00P.M., which creates the second mode (the 16-sec peak). Therefore, we
model this bi-modal distribution by using a mixture of two Log-logistic distributions.
Fig. 5(c) shows the Q-Q plot between the empirical εw,i and samples drawn from the fit-
ted Log-logistic mixture. As it can be seen, each quantile of simulated samples matches
the empirical εw,i very well.

A highly similar situation can be observed from another job bundle, shown in Fig.
5(d)(e)(f). Instead of seconds, as Fig. 5(e) shows, εw,i is bi-modal and in the scale of
millisecond.

Observation 4. The spikes C1 (3ms) and C2 (5.5ms) in Fig. 1(b) are attributed to
HiBM’s within-bundle noise in the scale of milliseconds.
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Fig. 5. HIBM fits real within-bundle noises: (a) IATs of job type j and j′ are highly correlated;
the correlation coefficient (CC) is 0.9894. Here, both job type j and j′ have the period of 1 hour.
(b) Within-bundle noise (εw,i) that creates the spikes D1 and D2 can be modeled as a mixture
of two Log-logistic distributions. (c) Q-Q plot between the empirical εw,i and the samples drawn
from the fitted Log-logistic mixture. (d)(e)(f) demonstrate another εw,i in millisecond-scale, and
have similar explanations. We would like to point out the spikes C1 and C2 can be attributed to
the within-bundle noise shown in (e).

In this case, εw,i can also be modeled by a mixture of two Log-logistic distributions as
Fig. 5(e)(f) show. For both cases (within-bundle noises in both second-and millisecond-
scale), Kolmogorov-Smirnov test is performed; the null hypothesis that εw,i and the
fitted Log-logistic mixture follow the same distribution, is retained under the 95% con-
fidence level. In addition, within-bundle noises are also observed in μs scale, which
forms the cluster (and the spike) B in Fig. 1(b) and can also be modeled by the Log-
logistic distribution. This is not shown here due to the space limit. Now we are able
to explain and model all the clusters and spikes (B, C1, C2, D1 and D2) with the Log-
logistic distribution, leading to the succinctness of HIBM.

Interestingly, even if εw,i exists, the IATs of job type j and of j′ are still highly
correlated. The key to create such a phenomenon lies in the hierarchy that cross-bundle
noise is always larger than within-bundle noise, εc,i > εw,i. In the trace, the scale of
εc,i is approximately in the magnitude of minutes, whereas εw,i is in the magnitude of
seconds, milliseconds or even microseconds. Based on this observation, we propose a
unified model to describe the IATs of two job types in the same bundle, which serves as
the backbone of the proposed HIBM:



206 D.-C. Juan et al.

{
tj,i = i · τj + εc,i

tj′,i = tj,i + εw,i = i · τj + εc,i + εw,i

(4)

where εc,i ∼ LL(αc,κ, βc,κ), εw,i ∼ a mixture of two LL distributions, expressed as:

εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ) (5)

pw,κ ∈ [0, 1], κ ∈ {B, C,D}. Given the empirical data, αc,κ, βc,κ can be estimated by
MLE and pw,κ, αw,κ, βw,κ, αw′,κ, βw′,κ can be estimated by Expectation Maximization
(EM) [3].

Bundle detection algorithm. After explaining the bundling effect, the next question
is how to determine if two certain job types belong to the same job bundle. We ask:
given each pair of tj,i and tj′,i, how do we know these IATs, namely, |tj,i − tj′,i|, are
caused by within-bundle noises (εw,i), or just coincidentally by a job instance occurring
closely to another instance? What if two job types have different periods? To answer
these questions, we propose a metric “expected occurrence ratio” (EOR) that compares
the empirical counts and the expected counts of within-bundle noises. EOR ∈ [0, 1]
and a high EOR value indicates that job type j and j′ are likely to be in the same job
bundle. The details of the proposed EOR are in Appendix (Section 6). The intuition is
similar to hypothesis testing. We examine the EOR between each pair of job types, and
the majority of pairs have EOR less than 0.3, whereas other few pairs have EOR very
close to 0.8. In this work, we select an EOR of 0.3 as threshold and therefore two job
types are considered unbundled if their EOR is less than 0.3.

3.3 Complete HIBM Framework

By assembling the cross-bundle effect (Section 3.1) and the within-bundle effect (Sec-
tion 3.2) together, we describe here the complete HIBM framework by using Algorithm
1. The inputs to HIBM are user-defined periods, the total duration T , and the parame-
ters of Log-logistic distributions as described in Eq (4). In our case, the periods are set
according to the empirical data as shown in Fig. 3(b), the T is set to one month as men-
tioned in Section 2.2, and the parameters described in Eq (4) are estimated by MLE and

EM. For each job type j, HIBM calculates its total number of instances by
⌊
T
τj

⌋
. Next,

for the ith instance of job type j, there will be two possible cases: (1) tj,i is bundled with
tj′,i or (2) tj,i is in its own job bundle (not bundled with any other job type). In the first
case, tj,i is estimated according to Eq (2), whereas in the second case, tj,i is estimated
according to Eq (4). The estimated tj,i is recorded in JS for all j and i. Finally, JS is
sorted in ascending order and then HIBM outputs JS as job inter-arrivals.

4 Experimental Results and Discussion

We validate HIBM by using the empirical data. The comparisons between the synthetic
IATs generated by HIBM and empirical IATs are illustrated by Fig. 6. Fig. 6(a)(b)
present the histogram of the empirical IATs and the synthetic IATs side by side. As it
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Algorithm 1. HIBM Generation
Result: Inter-arrival process of job instances, tj,i for all j and i, given periods τj for each

job type j, total duration T , αc,κ, βc,κ, pw,κ, αw,κ, βw,κ, αw′ ,κ, and βw′,κ.
initialization: JS = [];
for each j do

for i = 1 to
⌊

T
τj

⌋
do

if job type j is bundled with job type j′ then
tj,i = tj′,i + εw,i,
εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′ ,κ, βw′,κ);

else
tj,i = i · τj + εc,i, εc,i ∼ LL(αc,κ, βc,κ);

JS = JS appending tj,i;

Sort JS in ascending order;
return JS;

can be seen, the synthetic IATs match the distinct characteristics of the empirical IATs:
the job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A,
B, C1, C2 D1, and D2). Fig. 6(c) presents the Q-Q plot, from which we can also observe
that each quantile of the synthetic IATs matches the corresponding quantile from the
empirical data very well.

We begin the discussion with HIBM’s succinctness. HIBM requires only a handful
of parameters as described in Algorithm 1 to generate job inter-arrivals that match the
characteristics from the empirical data, even when the i.i.d. assumption is violated −
the submissions of certain instances depend on one another. Therefore, HIBM can be
used as a tool to create more realistic job inter-arrivals to design, evaluate, and optimize
the cloud-based scheduler of a datacenter.

Also thanks to HIBM’s interpretability, we now understand the four distinct clusters
observed from the empirical data can be attributed to both class interdependency (A:
1μs) and within-bundle noises (B: 10-103μs, C:103-105μs, and D:106-109μs). In addi-
tion, the 3ms and 5ms spikes (C1 and C2) can be attributed to the within-bundle noise
shown in Fig. 5(e), and similarly 1.5sec and 16sec spikes (D1 and D2) can be attributed
to the within-bundle noise shown in Fig. 5(b). Furthermore, the cross-bundle noises in
HIBM provides intuitive explanation − “those delayed long get delayed longer” − for
the delays occurred on periodic job instances.

5 Related Work

Many papers have attempted to model the sequential and streaming data. Leland et al.
[10], Wang et al. [14], and Kleinberg et al. [8] have addressed the issues of self-similar
and bursty internet traffic. Saveski et al. [13] has adapted active learning to model the
web services. Benson et al. [2] has proposed a network-level, empirical traffic generator
for datacenters. Ihler et al. [7] has proposed a time-varying poisson process for adaptive
event detection. However, none of these work has addressed the issue of inter-arrivals
with both periodicity and bundling effects.
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Fig. 6. Comparisons between Synthetic IATs and the empirical IATs: (a) Histogram of empirical
IATs in log scale. (b) Histogram of synthetic IATs in log scale. (c) Q-Q plot. The synthetic IATs
generated by HIBM match the characteristics of the empirical IATs: the job-instance counts (only
0.3% difference), the four clusters, and all the spikes (A, B, C1, C2 D1, and D2). In addition, each
quantile of the synthetic IATs matches the corresponding quantile from the empirical data very
well.

Regarding to the Log-logistic distribution, it has been developed and used for sur-
vival analysis [9,1]. Recently, prior work has demonstrated its use in modeling the dura-
tion of telecommunication [4] and software reliability [6]. To the best of our knowledge,
this is the first work to use Log-logistic distributions to model the delays of job inter-
arrivals in a datacenter.

6 Conclusion

In this work, we investigate and analyze the inter-arrivals of job requests in an industrial,
large-scale datacenter. Our paper has two contributions:

– Pattern Discovery. We discover two key patterns of job inter-arrivals: (a) multiple
periodicities and (b) bundling effects. In addition, we propose to use Log-logistic
distributions to model both cross-bundle and within-bundle noises.

– Generative Model. We propose HIBM, a succinct and interpretative model. HIBM
requires only a handful of parameters to generate job inter-arrivals mimicking the
empirical data. In addition, HIBM also attributes the four distinct clusters and the
corresponding spikes to both within-bundle noises and class interdependency, and
provides intuitive explanation “those delayed long get delayed longer” to the cross-
bundle noises of periodic job types.
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A Appendix

The expected occurrence ratio (EOR) of job type j and j′ can be calculated as:

EOR(j, j′) = Nκ ·
(

T
LCM(τj , τj′)

· ρj · ρj′
)−1

(6)

where Nκ represents the number of the IATs occurred in the range of the cluster κ ∈
{B, C,D} in Fig. 1(b), T is the total duration, LCM(τj , τj′ ) is the Least Common
Multiple (LCM) between two periods τj and τj′ , finally ρj and ρj′ are the missing rates
of job type j and j′, respectively.
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