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Preface

PAKDD 2014 was the 18th conference of the Pacific Asia Conference series on
Knowledge Discovery and Data Mining. The conference was held in Tainan,
Taiwan, during May 13–16, 2014. Since its inception in 1997, the PAKDD con-
ference series has been a leading international conference in the areas of data
mining and knowledge discovery. It provides an inviting and inspiring forum for
researchers and practitioners, from both academia and industry, to share new
ideas, original research results, and practical experience. The 18th edition con-
tinues the great tradition with three world-class keynote speeches, a wonderful
technical program, a handful of high quality tutorials and workshops, and a data
mining competition.

The PAKDD 2014 conference received 371 submissions to the technical pro-
gram, involving more than 980 authors in total. Each submitted paper underwent
a rigorous double-blind review process and was reviewed by at least three Pro-
gram Committee (PC) members as well as one senior PC member. Based on
the extensive and thorough discussions by the reviewers, the senior PC members
made recommendations. The Program Co-chairs went through each of the senior
PC members’ recommendations, as well as the submitted papers and reviews,
to come up with the final selection. Overall, 100 papers were accepted in the
technical program among 371 submissions, yielding a 27% acceptance rate. 40
of which (10.8%) had full presentations and 60 of which (16.2%) had short pre-
sentations. The technical program consisted of 21 sessions, covering the general
fields of data mining and KDD extensively. We thank all reviewers (Senior PC,
PC and external invitees) for their great efforts in reviewing the papers in a
timely fashion. Without their hard work, we would not have been able to see
such a high-quality program.

The conference program this year included three keynote talks by world-
renowned data mining experts, namely, Professor Vipin Kumar from the Uni-
versity of Minnesota (Understanding Climate Change: Opportunities and Chal-
lenges for Data Driven Research); Professor Ming-Syan Chen from the National
Taiwan University (On Information Extraction for Social Networks); Professor
Jian Pei from the Simon Fraser University (Being a Happy Dwarf in the Age
of Big Data). The program also included 12 workshops, which covered a number
of exciting and fast growing hot topics. We also had 7 very timely and educa-
tional tutorials, covering the hot topics of social networks and media, pattern
mining, big data, biomedical and health informatics mining and crowdsourcing.
PAKDD 2014 also organized a data mining competition for those who wanted
to lay their hands on mining interesting real-world datasets.

Putting together a conference on a scale like PAKDD 2014 requires tremen-
dous efforts from the organizing team as well as financial support from the
sponsors. We would like to express our special thanks to our honorary chairs,
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Hiroshi Motoda and Philip S. Yu, for providing valuable advice and kind sup-
port. We thank Wen-Chih Peng, Haixun Wang, and James Bailey for organizing
the workshop program. We also thank Mi-Yen Yeh, Guandong Xu and Seung-
Won Hwang for organizing the tutorial program. As well, we thank Shou-De Lin,
Nitesh Chawla and Hung-Yi Lo for organizing the data mining competition. We
also thank Hung-Yu Kao for preparing the conference proceedings. Finally, we
owe a big thank you to the great team of publicity co-chairs, local arrangement
co-chairs, sponsorship chair and helpers. They ensured the conference attracted
many local and international participants, and the conference program proceeded
smoothly.

We would like to express our gratitude to all sponsors for their generous spon-
sorship and support. Special thanks are given to AFOSR/AOARD (Air Force
Office of Scientific Research/Asian Office of Aerospace Research and Develop-
ment) for their support to the success of the conference. We also wish to thank
the PAKDD Steering Committee for offering the student travel support grant.

Finally, we hope you found the conference a fruitful experience and trust you
had an enjoyable stay in Tainan, Taiwan.

May 2014 Vincent S. Tseng
Tu Bao Ho

Zhi-Hua Zhou
Arbee L.P. Chen

Hung-Yu Kao



Organization

Honorary Co-chairs

Hiroshi Motoda Osaka University, Japan
Philip S. Yu University of Illinois at Chicago, USA

General Co-chairs

Zhi-Hua Zhou Nanjing University, China
Arbee L.P. Chen National Chengchi University, Taiwan

Program Committee Co-chairs

Vincent S. Tseng National Cheng Kung University, Taiwan
Tu Bao Ho JAIST, Japan

Workshop Co-chairs

Wen-Chih Peng National Chiao Tung University, Taiwan
Haixun Wang Google Inc., USA
James Bailey University of Melbourne, Australia

Tutorial Co-chairs

Mi-Yen Yeh Academia Sinica, Taiwan
Guandong Xu University of Technology Sydney, Australia
Seung-Won Hwang POSTECH, Korea

Publicity Co-chairs

Takashi Washio Osaka University, Japan
Tzung-Pei Hong National University of Kaohsiung,

Taiwan
Yu Zheng Microsoft Research Asia, China
George Karypis University of Minnesota, USA

Proceedings Chair

Hung-Yu Kao National Cheng Kung University, Taiwan



VIII Organization

Contest Co-chairs

Shou-De Lin National Taiwan University, Taiwan
Nitesh Chawla University of Notre Dame, USA
Hung-Yi Lo Shih-Chien University, Taiwan

Local Arrangements Co-chairs

Jen-Wei Huang National Cheng Kung University, Taiwan
Kun-Ta Chuang National Cheng Kung University, Taiwan
Chuang-Kang Ting National Chung Cheng University, Taiwan
Ja-Hwung Su Kainan University, Taiwan

Sponsorship Chair

Yue-Shi Lee Ming Chuan University, Taiwan

Registration Co-chairs

Hsuan-Tien Lin National Taiwan University, Taiwan
Chien-Feng Huang National University of Kaohsiung, Taiwan

Steering Committee

Chairs

Graham Williams Australian Taxation Office, Australia
Tu Bao Ho (Co-Chair) Japan Advanced Institute of Science and

Technology, Japan

Life Members

Hiroshi Motoda AFOSR/AOARD and Osaka University, Japan
(Since 1997)

Rao Kotagiri University of Melbourne, Australia (Since 1997)
Ning Zhong Maebashi Institute of Technology, Japan

(Since 1999)
Masaru Kitsuregawa Tokyo University, Japan (Since 2000)
David Cheung University of Hong Kong, China (Since 2001)
Graham Williams (Treasurer) Australian National University, Australia

(Since 2001)
Ming-Syan Chen National Taiwan University, Taiwan

(Since 2002)
Kyu-Young Whang Korea Advanced Institute of Science &

Technology, Korea (Since 2003)



Organization IX

Members

Huan Liu Arizona State University, USA (Since 1998)
Chengqi Zhang University of Technology Sydney, Australia

(Since 2004)
Tu Bao Ho Japan Advanced Institute of Science and

Technology, Japan (Since 2005)
Ee-Peng Lim Singapore Management University, Singapore

(Since 2006)
Jaideep Srivastava University of Minnesota, USA (Since 2006)
Zhi-Hua Zhou Nanjing University, China (Since 2007)
Takashi Washio Institute of Scientific and Industrial Research,

Osaka University, Japan (Since 2008)
Thanaruk Theeramunkong Thammasat University, Thailand (Since 2009)
P. Krishna Reddy International Institute of Information

Technology, Hyderabad (IIIT-H), India
(Since 2010)

Joshua Z. Huang Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, China
(Since 2011)

Longbing Cao Advanced Analytics Institute, University of
Technology Sydney, Australia (Since 2013)

Jian Pei School of Computing Science, Simon Fraser
University, Canada (Since 2013)

Myra Spiliopoulou Information Systems, Otto-von-Guericke-
University Magdeburg, Germany
(Since 2013)

Senior Program Committee Members

James Bailey University of Melbourne, Australia
Michael Berthold University of Konstanz, Germany
Longbing Cao University of Technology Sydney, Australia
Sanjay Chawla University of Sydney, Australia
Lei Chen Hong Kong University of Science and

Technology, Hong Kong
Ming-Syan Chen National Taiwan University, Taiwan
Peter Christen The Australian National University, Australia
Ian Davidson UC Davis, USA
Wei Fan IBM T.J. Watson Research Center, USA
Bart Goethals University of Antwerp, Belgium
Xiaohua Hu Drexel University, USA
Ming Hua Facebook, USA
Joshua Huang Shenzhen Institutes of Advanced

Technology, Chinese Academy of Sciences,
China



X Organization

George Karypis University of Minnesota, USA
Hisashi Kashima University of Tokyo, Japan
Shonali Krishnaswamy Institute for Infocomm Research, Singapore
Jiuyong Li University of South Australia, Australia
Ee-Peng Lim Singapore Management University, Singapore
Chih-Jen Lin National Taiwan University, Taiwan
Charles Ling The University of Western Ontario, Canada
Huan Liu Arizona State University, USA
Jiming Liu Hong Kong Baptist University, Hong Kong
Nikos Mamoulis University of Hong Kong, Hong Kong
Wee Keong Ng Nanyang Technological University, Singapore
Jian Pei Simon Fraser University, Canada
Wen-Chih Peng National Chiao Tung University, Taiwan
P. Krishna Reddy International Institute of Information

Technology, Hyderabad (IIIT-H), India
Dou Shen Baidu, China
Kyuseok Shim Seoul National University, Korea
Myra Spiliopoulou Otto-von-Guericke University Magdeburg,

Germany
Jaideep Srivastava University of Minnesota, USA
Masashi Sugiyama Tokyo Institute of Technology, Japan
Dacheng Tao University of Technology Sydney, Australia
Thanaruk Theeramunkong Thammasat University, Thailand
Hanghang Tong CUNY City College, USA
Shusaku Tsumoto Shimane University, Japan
Haixun Wang Google, USA
Jianyong Wang Tsinghua University, China
Wei Wang University of California at Los Angeles, USA
Takashi Washio Osaka University, Japan
Ji-Rong Wen Microsoft Research Asia, China
Xindong Wu University of Vermont, USA
Xing Xie Microsoft Research Asia, China
Hui Xiong Rutgers Univesity, USA
Takahira Yamaguchi Keio University, Japan
Xifeng Yan UC Santa Barbara, USA
Jieping Ye Arizona State University, USA
Jeffrey Xu Yu The Chinese University of Hong Kong,

Hong Kong
Osmar Zaiane University of Alberta, Canada
Chengqi Zhang University of Technology Sydney, Australia
Yanchun Zhang Victoria University, Australia
Yu Zheng Microsoft Research Asia, China
Ning Zhong Maebashi Institute of Technology, Japan
Xiaofang Zhou The University of Queensland, Australia



Organization XI

Program Committee Members

Shafiq Alam University of Auckland, New Zealand
Aijun An York University, Canada
Hideo Bannai Kyushu University, Japan
Gustavo Batista University of Sao Paulo, Brazil
Bettina Berendt Katholieke Universiteit Leuven,

The Netherlands
Chiranjib Bhattachar Indian Institute of Science, India
Jiang Bian Microsoft Research, China
Marut Buranarach National Electronics and Computer Technology

Center, Thailand
Krisztian Buza University of Warsaw, Poland
Mary Elaine Califf Illinois State University, USA
Rui Camacho Universidade do Porto, Portugal
K. Selcuk Candan Arizona State University, USA
Tru Cao Ho Chi Minh City University of Technology,

Vietnam
James Caverlee Texas A&M University, USA
Keith Chan The Hong Kong Polytechnic University,

Hong Kong
Chia-Hui Chang National Central University, Taiwan
Muhammad Cheema Monash University, Australia
Chun-Hao Chen Tamkang University, Taiwan
Enhong Chen University of Science and Technology of China,

China
Jake Chen Indiana University-Purdue University

Indianapolis, USA
Ling Chen University of Technology Sydney, Australia
Meng Chang Chen Academia Sinica, Taiwan
Shu-Ching Chen Florida International University, USA
Songcan Chen Nanjing University of Aeronautics and

Astronautics, China
Yi-Ping Phoebe Chen La Trobe University, Australia
Zheng Chen Microsoft Research Asia, China
Zhiyuan Chen University of Maryland Baltimore County, USA
Yiu-ming Cheung Hong Kong Baptist University, Hong Kong
Silvia Chiusano Politecnico di Torino, Italy
Kun-Ta Chuang National Cheng Kung University, Taiwan
Bruno Cremilleux Universite de Caen, France
Bin Cui Peking University, China
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Bing Tian Dai Singapore Management University, Singapore
Dao-Qing Dai Sun Yat-Sen University, China



XII Organization

Anne Denton North Dakota State University, USA
Bolin Ding Microsoft Research, USA
Wei Ding University of Massachusetts Boston, USA
Guozhu Dong Wright State University, USA
Dejing Dou University of Oregon, USA
Haimonti Dutta Columbia University, USA
Vladimir Estivill-Castro Griffith University, Australia
Philippe Fournier-Viger University of Moncton, Canada
Dragan Gamberger Rudjer Boskovic Institute, Croatia
Cong Gao Nanyang Technological University, Singapore
Jun Gao Peking University, China
Junbin Gao Charles Sturt University, Australia
Yong Guan Iowa State University, USA
Ravi Gupta Bioinformatics Head SciGenom Labs, India
Sung-Ho Ha Kyungpook National University, Korea
Michael Hahsler Southern Methodist University, USA
Yi Han National Defence Technology University, China
Choochart Haruechaiyasak National Electronics and Computer Technology

Center, Thailand
Jing He Victoria University, Australia
Jingrui He IBM Research, USA
Robert Hilderman University of Regina, Canada
Shoji Hirano Shimane University, Japan
Chin-Kuan Ho Multimedia University, Malaysia
Jaakko Hollmen Aalto University, Finland
Tzung-Pei Hong National Univesity of Kaohsiung, Taiwan
Kuo-Wei Hsu National Chengchi University, Taiwan
Wynne Hsu National University of Singapore, Singapore
Jun Huan University of Kansas, USA
Jen-Wei Huang National Cheng Kung University, Taiwan
Eyke Huellermeier University of Marburg, Germany
Daisuke Ikeda Kyshu University, Japan
Akihiro Inokuchi Osaka University, Japan
Sanjay Jain National University of Singapore, Singapore
Toshihiro Kamishima National Institute of Advanced Industrial

Science and Technology, Japan
Murat Kantarcioglu University of Texas at Dallas, USA
Ben Kao The University of Hong Kong, China
Hung-Yu Kao National Cheng Kung University, Taiwan
Panagiotis Karras Rutgers University, USA
Hiroyuki Kawano Nanzan University, Japan
John Keane The University of Manchester, UK
Latifur Khan University of Texas at Dallas, USA
Hiroyuki Kitagawa University of Tsukuba, Japan



Organization XIII

Irena Koprinska University of Sydney, Australia
Walter Kosters Universiteit Leiden, The Netherlands
Marzena Kryszkiewicz Warsaw University of Technology, Poland
James Kwok Hong Kong University of Science and

Technology, China
Wai Lam The Chinese University of Hong Kong,

Hong Kong
Wang-Chien Lee Pennsylvania State University, USA
Yue-Shi Lee Ming Chuan University, Taiwan
Yuh-Jye Lee University of Science and Technology, Taiwan
Philippe Lenca Telecom Bretagne, France
Carson K. Leung University of Manitoba, Canada
Chengkai Li The University of Texas at Arlington, USA
Chun-hung Li Hong Kong Baptist University, Hong Kong
Gang Li Deakin University, Australia
Jinyan Li University of Technology Sydney, Australia
Ming Li Nanjing University, China
Tao Li Florida International University, USA
Xiaoli Li Institute for Infocomm Research, Singapore
Xue Li The University of Queensland, Australia
Xuelong Li Chinese Academy of Sciences, China
Yidong Li Beijing Jiaotong Univeristy, China
Zhenhui Li Pennsylvania State University, USA
Grace Lin Institute of Information Industry, Taiwan
Hsuan-Tien Lin National Taiwan University, Taiwan
Shou-De Lin National Taiwan University, Taiwan
Fei Liu Bosch Research, USA
Qingshan Liu NLPR Institute of Automation Chinese

Academy of Science, China
David Lo Singapore Management University, Singapore
Woong-Kee Loh Sungkyul University, South Korea
Chang-Tien Lu Virginia Polytechnic Institute and State

University, USA
Hua Lu Aalborg University, Denmark
Jun Luo Hua Wei Noah’s Ark Lab, Hong Kong
Ping Luo Institute of Computing Technology, Chinese

Academy of Sciences, China
Shuai Ma Beihang University, China
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Abstract. Current social media services like Twitter and Sina Weibo have  be-
come an indispensable platform, and provide a large number of real-time mes-
sages. However, users are often overwhelmed with large amounts of informa-
tion delivered via their followees, and may miss out on much enjoyable or use-
ful content. An information overload problem has troubled many users, espe-
cially those with many followees and thousands of tweets arriving every day. In 
this case, real-time personalized recommendation plays an extreme important 
role in microblog, which needs analyzing users’ preference and recommending 
most relevant and newest content. Both of them pose serious challenges. In this 
paper, we focus on personal online tweet recommendation and propose a Colla-
borative Tweet Ranking Online Framework (CTROF) for the recommendation, 
which has integrated the Optimized Collaborative Tweet Ranking model CTR+ 
and Reservoir Sampling algorithm together. The experiment conducted on a 
real dataset from Sina microblog shows good performance and our algorithm 
outperforms the other baseline methods. 

Keywords: Bayesian Personalized Ranking, Latent Factor Model, Online Rec-
ommendation, Reservoir Sampling. 

1 Introduction 

In recent years, microblog such as Weibo and Twitter becomes very popular, because 
it allows users to post a short message named tweet or status for sharing viewpoints 
and acquiring knowledge in real time. According to statistics, more than 400 million 
tweets are generated per day in Twitter. As a result, the rich information in microblog 
not only expands our horizon, but also has wide applications in public opinions su-
pervision, natural disaster prediction and political upheaval detection.  

Microblog facilitates our life, but the information overload problem prevents it 
from developing further. A user usually follows many interested users such as friends, 
stars and organizations, and receives a lot of tweets at all times because of frequent 
updates. So the users are hard to consume so much content instantly in an effective 
way. In some cases, as for those with limited time to read, it’s necessary to filter out 
those irrelevant and boring tweets by online recommending expected content. 
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There are several challenges to be tackled for online personalized tweet  recom-
mendation. Firstly, although some latent factor models such as CTR [1] (Collabora-
tive Tweet Ranking) have been proposed, yet they show poor performance as the da-
taset grows larger. Secondly, online algorithms can shorten the processing time, but 
they also reduce prediction quality. Thirdly, most online algorithms are generally 
based on recent data, and don’t consider the history records which are relevant with 
users’ customs and preferences. All the problems above have posed severe challenges 
for online tweets recommendation. 

In this paper, we propose a Collaborative Tweet Ranking Online Framework 
(CTROF). Figure 1 below shows the algorithm process. Suppose we have some tweet 
history data in advance, we build an initial model called Optimized Collaborative 
Tweet Ranking model CTR+. For recommending the interested tweets in real time, 
we sample the tweet stream to update Double Reservoir for capturing the “sketch” of 
the stream. Then the training set is sampled and the initial CTR+ base model can be 
updated incrementally. Eventually, we get an online model for recommending inter-
ested tweets to users. 

 

… 
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Fig. 1. Overview of CTROF in sampling and modeling online tweet stream 

To the best of our knowledge, this work is the first experimental study to integrate 
tweet content (past and online), social structure and personal profile into collaborative 
filter model, and demonstrate a practical online personalized tweet recommendation 
framework. To summarize, the main contributions of our work are as follows. 

 

(1) We propose a novel CTROF for online personal tweet recommendation. The 
novelty lies in a complete stream processing framework for real-time tweet ranking. 

(2) We improve the performance of state-of-the-art tweet recommendation model 
CTR [1] by introducing personal hashtags to optimize BPR (Bayesian Personalized 
Ranking) [2], and creatively apply the model into online scenario. 

(3) We use Reservoir Sampling algorithm for acquiring the “sketch” of incoming 
tweet stream dataset, which considers both the historical and the changing prefe-
rences. 

(4) Finally, our algorithm considers the performance of time and space, and is able 
to balance the recommendation quality and the complexity of time and space well. 
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The structure of the rest of the paper is as follows. Related work is discussed brief-
ly in Section 2. In Section 3, we briefly review CTR and propose a novel CTR+  rec-
ommendation model. In Section 4, we introduce the collaborative tweet ranking on-
line framework CTROF. Section 5 introduces the classification of explicit features in 
detail. Section 6 compares CTROF with the other baseline models. In Section 7, we 
make a conclusion and point out the directions for our future work.  

2 Related Work 

CF (collaborative filtering) technique behind RS (recommender system) has been 
developed for years and kept to be a hotspot in academic and industrial field. Real 
applications include goods at Amazon, news at Google, movies at Yahoo and CDs at 
Netflix. In recent years, latent factor model proposed by Simon Funk has been widely 
applied in CF. Koren [3,4] and Xiang & Yang [5] improved it by considering neigh-
borhood or time. Besides explicit feedback (rating), abundant implicit feedback [6] 
was also used. In high-order setting, Tensor Decomposition models [7,8] were stu-
died. In addition, some learning methods were studied, such as Stochastic Gradient 
Descent (SGD), Alternating Least Squares [9] and Markov Chain Monte Carlo [10]. 

RS in microblog generally contains six categories factors in content: followee,  
follower, hashtag, tweet, retweet and URL. In recommendation pattern, it includes 
offline and online RS. In offline RS, [11] ranked incoming tweets by using author 
profile, syntactic feature, content and followee feature. Hong et al. [12] proposed a 
co-factorization machine to model interest and recommend relevant tweets. Chen et 
al. [1] proposed CTR model with high precision, however extra user preference signs, 
i.e. labels, were not considered. In addition, offline models are not suitable in online 
scenario with large continuous incoming data. In online RS, Diaz-Aviles et al. [13] 
proposed a RMFX online framework, however it had complex sampling algorithm 
and just considered hashtags of tweet. Work for ranking tweets also includes [14,15]. 

In this paper, we focus on recommending tweets in real time by integrating offline 
model and stream sampling algorithm together. We propose a novel CTROF frame-
work by improving the drawbacks of Chen and Diaz-Aviles’s work and absorbing 
their advantages. For this purpose, we first review CTR model briefly and propose  
an innovative CTR+ model by considering content, social relation and hashtags in 
Section 3. And then we utilize Reservoir Sampling [16] algorithm and propose a 
CTROF algorithm framework for ranking tweet stream in Section 4. 

3 Optimized Collaborative Tweet Ranking Model 

3.1 Notations Definition  

We firstly define some notations being frequently used later. Let U={u1, u2, …, un} 
be a user set, and I={i1, i2, …, im} be a tweet set. Suppose there is interaction between 
any two entities, which shows the degree of interest. Then we get an interactive ma-
trix X: U×I, and each element xui∈X represents an observation value. Predicting uix̂  

value can be seen as the task of estimating X̂ . As we aim to get a personalized total 
ranking >u⊂I2(?) of all tweets for a specific user u, we use Bayesian Personalized 
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Ranking for estimating X̂ , instead of Root Mean Square Error (RMSE). As for any 

two entries uix̂  and ujx̂  (i≠j) in X̂ , if uix̂ > ujx̂ , then i>u j.  

After above modeling process, a basic offline model is built. Based on the model, 
we give out an optimized collaborative tweet ranking model CTR+ in offline scenario. 

3.2 Optimizing Offline CTR to CTR+ Model 

CTR [1] is an excellent offline RS, considers content, social relation, and explicit fea-
tures simultaneously. In view of data sparsity and expandability, each tweet is de-
composed into several words at topic level. All words from tweet set I constitute bag 
of words. Therefore, let u∈U and i∈I, CTR model is described as follows: 

,

1
ˆ ( )

i

T
u i u w

w W

x bias p q
Z ∈

= +                             (1) 

where Wi is word set of tweet i, qw is vector of word w∈Wi, ∑qw is vector combination 
of tweet i, pu is vector of user u, bias=bu+∑bw is bias term, bu and bw are user bias and 
word bias, and Z is normalization term which equals |Wi|

1/2 in general. 
In addition, social relations are also important because users are more likely to ret-

weet favorite publisher’s tweets. As for any incoming tweet i, it can be mapped into 
corresponding publisher p(i). So the formula can be further rewritten as: 

 
, ( )

1
ˆ ( )

i

T
u i u w p i

w W

x bias p q d
Z

κ
∈

′= + +                       (2) 

where dp(i) is publisher vector of i, bias´=bp(i)+bias is bias term, bp(i) is publisher bias 
and κ is an adjustable weighting parameter indicating publisher’s importance relative 
to content. 

In this paper, we introduce personal hashtags, a profile of personal interests and 
hobbies, into CTR model. Suppose users with similar interests are more likely to ret-
weet each other. As for any tweet i, it can be mapped into its publisher’s personal 
hashtag set Hp(i). So we rewrite Formula (2) and represent CTR+ as: 

( )

, ( ) '

1
ˆ ( )

i p i

T
u i u w p i h

w W h H

x bias p q d g
Z Z

βκ
∈ ∈

′′= + + +                 (3) 

where gh is hashtag vector of any tag h in Hp(i), bias″=bias´+∑bh, bh is tag bias, β is 
an adjustable weighting parameter indicating hashtags’ importance relative to the con-
tent and Z´=|Hp(i)|

1/2 is normalization term.  
Besides the above latent features, information such as tweet quality can also be in-

corporated into CTR+ as explicit features. Then bias″ term is replaced by ∑br, a 
weighted linear combination of bias″ and explicit feature biases. In the final CTR+ 
offline model, we get Formula (4) shown below: 

( )

, ( ) '

1
ˆ ( )

i p i

T
u i j j u w p i h

j w W h H

x b r p q d g
Z Z

βκ
∈ ∈

= + + +              (4) 

where bj is any latent or explicit feature bias and rj is weighting parameter represented 
by explicit feature value. For simplified formula, the weight r of bu, bw, bp(i) and bh is 
set 1 by default. Details about explicit feature classification are discussed in Section 5. 
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Different from rating prediction, users just need to be recommended a list of sorted 
tweets. Similar to [1,12], retweet represents users’ preference. Slightly different from 
Root Mean Square Mean in rating prediction, a BPR method is used instead. 

Given a tweet set I, we should transform I into training set D in the form of tuples 
at first. For convenience, we define retweet set Ru⊂I for any user u. Let ((u, i), (u, j)) 
∈D denotes a training instance, where i∈Ru has been retweeted and j∉Ru not. Thus, D 
is formally defined as the tuple set from I, and we can describe it as: D={((u, i), (u, 
j))|i∈Ru∧j∉Ru∧u∈U}. According to BPR Optimization Criterion, probability p(Θ) 
follows normal distribution N(0, ∑Θ), in which diagonal matrix ∑Θ=λΘE, E is a unit 
diagonal matrix and λΘ is a constant, we aim to maximize the formula below: 

(( , ),( , ))

ˆ( ( )) ( )uij
u i u j D

x pδ
∈

Θ × Θ∏                             (5) 

where δ is sigmoid function. For convenience, Formula (5) is transferred as equivalent 
Formula (6) below by maximizing logarithm of posterior probability:  

, , 2ˆ ˆ( )

(( , ),( , ))

: max ln(1 / 1 )u i u jx x

u i u j D

BPR Opt e λ− −
ΘΘ ∈

− = + − Θ           (6) 

In general, SGD is used for estimating parameter space Θ, and λΘ||Θ||2 is a L2 re-
gularization term. The training process of CTR+ model is shown below. 

Algorithm. Training Offline Model CTR+ based on SGD for Θ estimation; 
Input: Tweet training set D; Parameter space Θ; Relative weighting β and κ; Explicit 
feature weighting vector r; Latent factor number f ; Learning rate η; Regularization pa-
rameters λΘ; Number of iterations TΘ; 
Output: Θ; 
Description: 

1) procedure CTR+Model(D, Θ, λΘ, f, η, TΘ, β, κ, r); 
2) initialize Θ; 
3) for t=1 to TΘ 
4)  for each p=((u,i), (u,j))∈D 
5)   ˆ ˆ ˆ(( /1 ) ( / ) )uij uijx x

uije e xη λ− −
ΘΘ ← Θ + + ⋅ ∂ ∂Θ − Θ ;  

6) return Θ; 

4 Collaborative Tweet Ranking Online Framework 

4.1 Building Online CTROF Model 

In Section 3, we discussed CTR+ with tweet training set D. CTR+ is an offline model, 
because D is a static training set. As for new incoming tweet i+, we calculate uix̂ + by 

decomposing i+ into words, publisher and hashtag vectors. The larger uix̂ + is, the 

higher i+ is ranked. Based on offline CTR+, we introduce CTROF in real-time scena-
rio, which update model dynamically every time new tweets arrive. 

In social network (such as Facebook) or microblogging service (like Twitter and 
Sina Weibo), messages are updated rapidly. A flow of messages constitutes data 
stream, called tweet stream in Twitter or Weibo. Diaz-Aviles [13] proved that Reser-
voir Sampling outperformed Single Pass, User Buffer, and captured the “sketch” of 
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history under the constraint of fixed space quite well. CTROF uses it and achieves 
online model by training CTR+ incrementally without retraining model completely. 

Under the background of tweet stream, we use S to represent incoming tweet 
stream i1, i2… that arrives sequentially. As for tweet stream S, it is divided into ret-
weet stream Sret and non-retweet stream Snret. Our algorithm maintains two fixed size 
Reservoirs R+ and R−, which contains random samples from Sret and Snret. So the key is 
to define reservoir R+={s1, s2,…,s|R+|} for Sret, and reservoir R− for Snret as well. Simi-
larly, let notation t+ and t− be tweet index for Sret and Snret respectively, reflecting the 
order of arrival of data in the stream. At the beginning, all incoming tweets will be 
pushed into reservoir R+ and R− continually and indiscriminately until t+=|R+| and 
t−=|R−|. For subsequent t, we will decide whether a new incoming tweet will be put in 
reservoirs or not, and in which the old record will be replaced instead. The process of 
Collaborative Tweet Recommendation Online framework CTROF is shown below. 

Algorithm. CTROF Framework; 
Input: Tweet stream S; Reservoirs R+ and R−; Offline model parameters Θ′; Relative 
weighting β and κ; Explicit feature weighting vector r; Latent factor number f;   
Regularization parameters λΘ; Learning rate η; Number of iterations TΘ for   
updateCTR+Model; Parameters cr and cnr control updates frequency of model; 
Output: Θ; 
Description: 

1) procedure CTROF(S, Θ′, R+, R−,λΘ, f, η, TΘ, β, κ, r, cr, cnr); 
2) initialize Θ=Θ′; countr←0; countnr←0; 
3) for t=1 to |S| do 
4)  if t is retweet 
5)    R+←ReservoirSampling(R+, it); 
6)    countr←countr+1; 
7)  else if t is non-retweet 
8)    R−←ReservoirSampling (R−, it); 
9)    countnr←countnr+1; 

 10)  if countr=cr and countnr=cnr 
 11)    Θ←updateCTR+Model (Θ,R+, R−, λΘ, f, η, TΘ, β, κ, r); 
 12)    countr←0, countnr←0; 
 13) Return Θ; 

 

In above process, we selectively update two fixed-size reservoirs R+ and R− by  
Reservoir Sampling algorithm every time a new tweet arrives. For convenience, let R* 
denotes R+ or R−. During R* initialization, a new incoming tweet it is saved in the  
corresponding R* directly until t=|R*|. For subsequent t, random index μ is selected 
randomly within the scope of |t|. If μ≤|R*|, we replace t-th tweet in R* with tweet it. 
Above Reservoir Sampling ensures that each tweet is selected with equal probability.  

4.2 Updating Online CTROF Model 

In Algorithm CTROF Framework, updateCTR+Model (Line 11) updates the model 
incrementally by sampling training instances from R*. We design a simple but effec-
tive sampling strategy by computing time distance between retweet and nonretweet. 
For formulization, as for any particular user u in each iteration, let pair (u, i) be   
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retweet selected randomly from reservoir R+, and closest pair (u, j) from R−, where 
distance δ=min|Timei-Timej| and 1≤j≤|R 

−|. Then we select randomly m training in-
stance pairs as TrainSet, and perform model update based on it.  

Algorithm. Online Updating CTR+ based on Reservoir for Θ estimation; 
Input: Tweet stream reservoirs R+ and R−; Relative weighting β and κ; Explicit feature 
weighting vector r; Latent factor number f; base model Θ′; Regularization parameters 
λΘ; Learning rate η; Number of iterations TΘ; 
Output: Θ; 
Description: 

1) procedure updateCTR+Model(Θ′,R+, R−, λΘ, f, η, TΘ, β, κ, r); 
2) initialize Θ=Θ′; TrainSet ={}; 
3) for t=1 to SampleNum 
4)  Draw pair (u, i) from R+ randomly and closest negative (u, j) from R−, 
        save triple (u, i, j) into training set TrainSet; 
5) for t=1 to TΘ 
6)  for each triple (u, i, j) from TrainSet 

7)    
( ) ( )

( ) ( )

1 1 1 1
ˆ( (

) ) ;

i p i j p j

u u w h w h
w W h H w W h H

p i p j u u

p p e q g q g
Z Z Z Z

d d p

η

κ κ λ

+ + − −
+ + − −

∈ ∈ ∈ ∈

+ −

← + + − − +
′ ′

− −

     

8)    
( ) ( ) ( ) ( )ˆ( )p i p i u p i p id d ep dη κ λ+ + +← + − ; 

9)    
( ) ( ) ( ) ( )ˆ( )p j p j u p j p jd d ep dη κ λ− − −← − + ; 

 10)   for each w∈Wi    // Wi is the word set of tweet i 
 11)     ˆ( / )w w u w wq q ep Z qη λ+ + + +← + − ; 

 12)   for each w∈Wj   // Wj is the word set of tweet j 
 13)     ˆ( / )w w u w wq q ep Z qη λ− − − −← − + ; 

 14)   for each h∈Hp(i)  // Hp(i) is the hashtag set of followee p(i) 
 15)     ˆ( / )h h u h hg g ep Z gη β λ+ + + +′← + − ; 

 16)   for each h∈Hp(j)   // Hp(j) is the hashtag set of followee p(j) 
 17)     ˆ( / )h h u h hg g ep Z gη β λ− − − −′← − + ; 

 18)   for each explicit or latent feature bias k 
 19)     ˆ( ( ) )k k k k k kb b e r r bη λ+ −← + − − ; 

 20) return Θ=(p*, d*, q*, g*, b*); // o*represents any estimated parameter 

Here notation o+ denotes parameter vector of pair (u, i), while o− for (u, j). We use 
ˆ ˆˆ ( /1 )uij uijx xe e e− −= + for convenience. Given new reservoirs R+ and R−, we update model 

incrementally. Therefore, CTROF captures the history “sketch” and the current inter-
est, and can overcome the problem of short-memory and avoids retraining model. 

5 Relevant Features 

In Section 3, we introduce CTR+ integrating linear combination of explicit features 
with bias″ by bias term ∑br. In this section, we will further classify explicit features 
for capturing users’ interests. Although [1,12] have defined different categories re-
spectively, yet we will propose a more complete solution including four categories. 
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1) User Relationship Features: User relationship feature refers to the relationship 
between target user u and his/her friend v. It makes an assumption that: The more 
familiar with each other, the more likely to retweet his/her messages. 

• Co-Friends Score: The similarity between u’s followee set and v’s. 
• Co-Follow Score: The similarity between u’s follower set and v’s. 
• Mention Score: The number of times u mentions v. 
• Retweet Score: The number of times u retweets v. 
• Reply Score: The number of times v replys to u. 
• Mutual Friend Score: If u and v follow each other, it is 1, else 0. 
2) Content Features: The features are the relevance between new incoming tweet i 

and the profiles of a target user u. Let w(i) as term set of i, SP(u) as word set of u’s 
status data, RP(u) as word set of u’s retweet data, LP(u) as hashtag set of u’s profile, 
NP(u) =SP(u)∪RP(u)∪CP(u), and ℜ(w1,w2) as similarity between two term sets.  

• Relevance to Status: ℜ(w(i), SP(u)) is the similarity between w(i) and SP(u). 
• Relevance to Retweets: ℜ(w(i), RP(u)) is similarity between w(i) and RP(u). 
• Relevance to Hash Tags: ℜ(w(i), LP(u)) is similarity between w(i) and LP(u). 
• Relevance to Neighborhood: ℜ(w(i), NP(u)) is similarity of w(i) and NP (u). 
3) Tweet Features: Tweet features refer to the attributes of tweet, including gener-

al tweet length, hash tag count, URL count, reply count, retweet count. In addition, 
we add another two new features, that is, thumb up score and view score. 

• Thumb Up Score: The number of times that tweet i is favorable or agreed. 
• View Score: The number of times that tweet i is viewed. 
4) Publisher Features: Publisher features represent the influence power of corres-

ponding publisher of i, including not only mention, followee, follower and status 
count in [1], but also activity degree and loyalty degree. Let timeui be the time u pub-
lish tweet i, τu=max{timeui-timeuj}(i≠j) as the period from first status to the last. 

• Loyal activity: The feature measures how long the publisher u is active in RS. In 
general, we use τu to show the degree of loyalty. 

• Activity Degree: The feature shows the activity of publisher and we may use 
NT(u)/τu to measure it, NT(u) is the number of tweets that u has published. 

6 Experiments 

6.1 Experiment Setup 

Our experiments are based on Sina Weibo platform and utilize the API tool [17]. Our 
work focuses on real-time personal tweet recommendation in Chinese microblog sce-
nario and we use ICTCLAS [18] to handle word segmentation. For getting dataset, we 
randomly select a user and adopt user-based breadth-first traversal method by follow-
ing followers and followees’ links. Different from [1], our dataset includes tweet  
content, retweet action, personal hashtags and social relation. Retweeted and non-
retweeted tweets are named positive and negative samples respectively. The dataset 
includes 46385 users’ profile (user id, tags, followees) and their publishing historical 
data (tweet id, content, time, repost number). We select 675 users with more than 20 
retweets, and others as their followees. Then tweets flood continuously from follo-
wees into corresponding followers in chronological order. Three fifths of dataset is as 
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training set and the others as testing set. Finally, training set for offline training  con-
tains 171,937 positive samples and 1,124,840 negative ones. Testing set contains 
113,941 positive samples and 458,104 negative ones for offline testing. For testing 
stream dataset, we set parameters cr and cnr for controlling update frequency, and test-
ing set can be further divided into tweet stream set S={s1, s2 …s11} by parameters, of 
which sn (1≤ n ≤10) is for incremental online training, and sn+1 for online testing. The 
experiment shows that the crawled dataset coincides with our proposed model. 

FM (Factorization Machines) [19] and SVD Feature [20] are generic factorization 
models tools. Considering coding workload and algorithm efficiency, we use the later. 

Different from rating prediction, we focus on ranking tweets. So we measure rec-
ommendation precision by P@N and recommendation quality by MAP metric. Let 
MAP=∑APu/|U| and P@N=∑pu@n/|U|. Given u∈U, pu@n is retweet proportion of top 
n in list, averaging precision (APu) is the average precision of each user: 

@1 ( )N
n u

u
u

p n n
AP

R

δ= ×
=                                 (8) 

where δ(n) is an indicator function, which returns 1 if n-th tweet in the list is ret-
weeted, and 0 otherwise. |Ru| is total number of retweeted tweets in top N list, and 
|Ru|≤N. And pu@n measures the precision of top n tweets. 

6.2 Experiment Result 

In Section 3, we have proposed CTR+ model for offline tweet recommendation sys-
tem modeling. CTR+ includes necessary components (explicit factor, term factor, 
social factor and hash tag factor). For studying components’ influence, we make a 
comparison by s1∈S in Figure 2. We compare MAP by N=15 and P@N by setting N 
to 5, 10 and 15. The number of iterations and factors is set to 40 and 64 respectively. 
Relative weight parameters β and κ are set 0.8 uniformly. CTR performs well 
(MAP=0.8074~0.8114) when β is around 0.8, so we choose best parameter 0.8. Given 
fixed β, we randomly select κ=0.8 because MAP remains stable when κ ranges from 
0.7 to 1. As large training dataset rarely encounter the over-fitting problem, the regu-
larization parameter λ is set 0.005. For approaching optimal value, the learning rate η 
is set small value 0.004, despite a certain loss in convergence rate. 

Figure 2 shows the precision of CTR+ is always higher than CTR, and reflects the 
importance of single component and their combination. Chronological method’s pre-
cision is shown for reference. For simplicity, we just choose explicit features (Text 
Length, Retweet Score, and Relevance to Hash Tags) as global features. We find that 
explicit features, term, hash tag, and social component improve MAP by 54%, 70%, 
86% and 92% respectively relative to chronological method, which indicates all com-
ponents are necessary and effective. CTR contains all components except hash tag, 
and outperforms any single component. However, CTR+, compared with CTR, im-
proves precision by 12.3%, which indicates that our model is better. 

Figure 3 shows that runtime convergence of different models. All models have dif-
ferent convergence rate and converge to steady values after 30 rounds. So our offline 
base model is reasonably set to 40 rounds. In addition, we calculate P@5 value by 
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Fig. 2. Evaluation of Compared Methods        Fig.3. Runtime Convergence of CTR+ 

setting factor number to 32, 64, 80, 96, and 112. Term Feature (0.4438~0.4439), Tag 
Feature (0.6644~0.6752), Social Feature (0.8114~0.8124), CTR (0.8219~0.8229) and 
CTR+ (0.8637~0.8641) remains stable. Therefore, we set 64 factors reasonably. 

We imitate tweets flow into our framework in chronological sequence continually. 
In addition, we let each one’ tweet stream arrive at the same opportunity. Retweetes   
in testing set are far less than non-retweets, and the ratio is about 1/4. So we set the 
size of reservoirs R+ and R− to 10,000 and 40,000 respectively for reflecting real data 
distribution. Therefore, we won’t update our base model until 10,000 retweets and 
40,000 non-retweets arrive. In order to verify prediction precision of top-N items in 
recommendation list, N is set to 5, 10 and 15 respectively. We compare our stream 
framework CTROF with two offline models CTR and CTR+. The MAP for each me-
thod, in different list size, is shown in Figure 4 below. 
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Fig. 4. Recommendation precision of different sized list. The number of factor is 64 for CTR, 
CTR+, and CTROF. Si (1≤i≤10) denotes the incoming retweet and nonretweet tweet stream by 
setting cr=10,000 and cnr=40,000, which is also as big as the size of reservoir R+ and R−. 

Figure 4 shows that online model CTROF achieves better performance over offline 
CTR, and slightly below than offline CTR+ model. Compared with CTR+, CTROF 
just capture information sketch by sampling, so precision is slightly lower. In addi-
tion, additional hash tag factor represents personal preference and makes CTROF 
outperform CTR model. As online recommendations focus more on comprehensive 
performance of runtime, space and precision, our method saves lots of runtime and 
space and precision is close to best offline model CTR+. 

Next, we further discuss time, space and recommendation precision comparison of 
CTROF and CTR+, which are implemented by SVDFeature tool in C++. We ran 
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CTR+ and CTROF on an Intel Core i7-2600 3.4GHz CPU and 2G memory virtual 
machine with Linux 32bit operating system. As none of the methods is parallel, we 
run the program on a single CPU. As the platform and implementation technique in-
fluence the performance greatly, so the setting can be used as a reference indicator. 

The performance of CTROF is not only related to the number of factors and itera-
tions, but also related to the training set size of the initial base model and the reservoir 
size. If we train base model with a very big training set about 1.3 million tweets, then 
the size of reservoir has little impact on the recommendation quality. That’s because 
long-term accumulated dataset may include almost all possible situations in terms, 
retweet relation and tags, so a small amount of tweet stream will not change the mod-
el greatly. So we just choose about 0.4 million training instances, and set different 
sized reservoirs. The experiment comparison result is shown below. 

Table 1. Comparison among time, space, and recommendation quality with different sized 
reservoir R+ and R−. The number of iteration and factors is set to 40 and 64. The base model 
CTR+ is trained by 0.4 million tweets. List length N is 40. The testing set has 0.1 million 
tweets. Time is the runtime sum of six tests, and Space is the disk space of training text. 

Method (64 factors, 40 r) 
Reservoir size of R+, R− 

Time 
(second) Space MAP Recommendation 

Quality of CTROF 

CTR+ [Baseline] 464s 100% 0.802 100% 

CTROF R+=1,000   R−=4,000 40s 1.11% 0.752 93.82% 

CTROF R+=5,000   R−=20,000 66s 5.25% 0.771 96.13% 

CTROF R+=10,000  R−=40,000 92s 10.43% 0.780 97.23% 

Table 1 shows that the reservoir size can influence the final recommendation qual-
ity obviously. Offline model CTR+ is used as a reference. When reservoir is big 
enough, the data distribution is much more appropriate and close to real data distribu-
tion. In this paper, we set reservoir size to T1=(R+=1,000: R−=4,000), T2=(R+=5,000: 
R−=20,000), and T3=(R+=10,000: R−=40,000) respectively. By comparison, we find T2 
is close to T3 in recommendation quality, but faster than T3 by 28.2%. In addition, T2 

outperforms T1 by 2.5% within the scope of tolerable time. So we can draw a conclu-
sion that recommendation quality is good enough when 5,000≤|R+|≤10,000 and 
R−=4|R+|. 

7 Conclusions and Future Work 

In this paper, we propose an offline ranking model CTR+ which considers explicit 
feature, content, social relation and personal hashtags. Moreover, we propose a novel 
tweet ranking online framework CTROF for real-time personalized recommendation. 
CTROF integrates Reservoir Sampling algorithm and CTR+ together, which captures 
“sketch” of tweet historical data, and absorbs new preference change from incoming 
tweet stream in the meantime. By experiments, we show that CTR+ outperforms CTR 
offline model and CTROF can capture real data distribution and achieve quite good 
precision, which demonstrates that our proposed method is effective and efficient. 
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Future work includes further analyzing semantics of content and studying more ac-
curate and efficient sampling methods for improving the recommendation quality. We 
will consider more media factors in tweet such as images and videos. In addition, the 
tensor factorization for tweet recommendation is also our future direction. 
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Abstract. Context and social network information have been intro-
duced to improve recommendation systems. However, most existing work
still models users’ rating for every item directly. This approach has two
disadvantages: high cost for handling large amount of items and unable
to handle the dynamic update of items. Generally, items are classified
into many categories. Items in the same category have similar/relevant
content, and hence may attract users of the same interest. These char-
acteristics determine that we can utilize the item’s content similarity to
overcome the difficultiess of large amount and dynamic update of items.
In this paper, aiming at fusing the category structure, we propose a novel
two-phase layered learning recommendation framework, which is matrix
factorization approach and can be seen as a greedy layer-wise training:
first learn user’s average rating to every category, and then, based on
this, learn more accurate estimates of user’s rating for individual item
with content and social relation ensembled. Based on two kinds of clas-
sifications, we design two layered gradient algorithms in our framework.
Systematic experiments on real data demonstrate that our algorithms
outperform other state-of-the-art methods, especially for recommending
new items.

Keywords: Collaborative filtering, Matrix Factorization, Recommender
Systems, Layered Learning.

1 Introduction

With the rapid development of the Internet, information growth has gone be-
yond the capacity of our social infrustucture. Recommendation systems that can
suggest users with useful information become a powerful way to solve the infor-
mation overload. A successful technique in recommendation systems is collabo-
rative filtering (CF) [1]. It has been applied in many areas, such ase ecommerce
(e.g., Amazon) and social networks (e.g., Twitter). Two primary approaches to
CF are memory based [2] and model based [3,4] algorithms. The basic differ-
ence is that memory based algorithms predict the missing rating based on sim-
ilar users or items which can be found from the whole user-item rating matrix

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014
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(Figure 1(a)) using the similarity measurement (PCC, VSS [5]), whereas model
based algorithms explore the training data to train a model, which can make
fast prediction using only a few parameters of the model instead of manipulating
the whole matrix.

Traditional CF algorithms have several challenges. Due to the sparsity, they
cannot make reliable recommendation for lazy users who have rated few items
or cold start users who have never rated any items because of insufficient data
to capture their tastes accurately. Mining purely the rating matrix may give un-
realistic recommendation. In order to solve these problems, lots of studies have
been done. Matrix factorization can solve the sparsity problem [4]. Context-
aware algorithms [6] that incorporate contextual information have improved the
accuracy. With the popularity of online social networks, social recommenda-
tion models [7,8,9,10,11] that incorporate social networks information (Figure
1(b)) not only improve the recommendation quality, but also solve the cold start
problem.

Even so, there are still some drawbacks. They typically model users’ rating
for every item. As the number of items increases, the rating matrix becomes
very large so that matrix operations in all CF algorithms become exceedingly
expensive which may even go beyond the physical computation/storage power.
Beside that, attention to an individual item does not reveal users’ tastes ex-
plicitly, and provides no ability to deal with new items to arrive in the future.
There is therefore an urgent need to establish a general system that can provide
scalable solutions for both the large amount and dynamic update of data. As
nowadays we can easily get a greater variety of data than ever before, informa-
tion extraction methods that can extract keyword from item content (Figure
1(c)) are widely adopted. There are classification methods that can accurately
classify the items into many categories (Figure 1(d)). Intuitively, for items un-
der the same category, their content is relevant, and hence the user’s tastes to
them may well be similar. This means that we can explore the category structure
to find user’s similar tastes. Since this information is comparatively static, we
can use it to improve the scalability of a recommendation system. However, the
current models cannot be adopted to incorporate this information. Therefore,
a more flexible recommendation mechanism that can efficiently integrate this
information is needed.

(a) rating matrix (b) social network (c) keyword (d) category

Fig. 1. A Toy Example
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To address the above problems, we apply a new strategy of layered learning
toconsider separately different factors in different layers. Motivated by this idea,
we propose a two-phase layered learning recommendation framework integrat-
ing various information. The main process is defined as: we first learn user’s
average tastes to every category of items in phase one, then we regard them as
baseline estimates and learn more accurate estimates of user’s rating for each
item with content and social relation ensembled in phase two. We employ matrix
factorization to factorize different user preference matrixes: user-category pref-
erence matrix and user-keyword preference matrix. According to the two kinds
of classification, we design two layered gradient algorithms in our framework,
and conduct experiments on real dataset. The experimental result and analysis
demonstrate that our framework not only increases the classification accuracy,
but also has good performance for dynamic updates of items.

The rest of this paper is organized as follows. In Section 2, we introduce the
related work. Our recommendation framework is formulated in Section 3, and
experimental results are reported in Section 4. Section 5 is the conclusion.

2 Related Work

2.1 Matrix Factorization(MF)

Matrix factorization is one of the most popular approaches for low-dimensional
matrix decomposition. Here, we review the basic MF method [4]. The rating
matrix R∈RM×N (M is the number of users and N is the number of items)
can be predicted by UV T with the user latent factor matrix U∈RD×Mand item
latent factor matrix V ∈RD×N , where D is the dimension of the vectors. In order
to learn the two matrices, the sum-of-squared-error function L is defined (with
Frobenius regularization ‖ . ‖F ).

L =

M∑
i=1

N∑
j=1

Iij
(
Rij − UT

i Vj

)2
+ λ1‖U‖2F + λ2‖V ‖2F (1)

where λ1 or λ2 is the extent of regularization and Iij is the indicator function
that is equal to 1 if user i rated item j and equal to 0 otherwise. The optimization
problem argminU,V L can be solved using gradient descent method.

2.2 Classification Based on Flat Approache and Top-Down
Approache

Classification is an important data analysis method. It can help us better un-
derstand data. Classification can be artificial, also can be automatic based on
machine learning. According to the division structure, there are two main clas-
sification methods: flat approach and top-down approach [12] (Figure 2). Flat
approach divides the data into multi-category directly, not considering the hi-
erarchical relation between categories. Top-down approach uses the divide and
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conquer technique: classify the current category into some small-scale subcate-
gories, perform the step iteratively until a reasonable classification. In this paper,
we introduce the category of items to find the similarity among items.

(a) Flat Approaches (b) Top-down Approaches

Fig. 2. Two kinds of classifications

2.3 Social Recommendation

Traditional recommendation systems assume users are i.i.d (independent and
identically distributed). In real life, people’s decision is often affected by friends’
action or recommendation. How to utilize social information has been extensively
studied. Trust-aware models [7,9,13] fusing users’ social network graph with the
rating matrix move an important step forward for recommendation systems. Re-
cently, social-based models make some further improvements. [10] proposed two
better methods to leverage the social relation. [8] revealed two important factors:
individual preference and interpersonal influence for better utilization of social
information. CircleCon [11] used the domain-specific “Trust Circles” to extend
the SocialMF [7]. However, all of them give no consideration to item content
and the similarity among items. In this paper, we incorporate this information
to elaborate recommendation.

3 Layered Learning Frameworks for Recommendation

We introduce the problem description, basic idea and define notations in Section
3.1, and present two layered gradient algorithms in Section 3.2 and 3.3.

3.1 Preliminaries

Because of the weakness of directly modeling every rating mentioned in Section
1, we take advantage of user’s tastes to the information of items and indirectly
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model the rating. Choosing the appropriate category and keyword from the infor-
mation, we can present the rating matrix as the combination of the user-category
preference matrix and user-keyword preference matrix. The first problem is how
to fuse the two matrices into the CF model. We apply the two-phase layered
learning strategy: Find user’s average tastes to every category and En-
semble it with content and social relation. The second problem is how to
deal with different classifications. For the flat approach, we directly learn user’s
tastes to every category , whereas for the top-down approach, we apply the same
layered learning strategy: after learning user’s average taste to current category,
we learn their tastes to the subcategories.

Suppose that we have M users, N items and K keywords. Every item belongs
to one category. For the flat approach, we assume that the values of a category
are discrete variables in the range c = {1, 2, . . . , n}. For the top-down approach,
we assume that the category is expressed hierarchically as a string c1.c2.c3.c4,
where the categories are delimited by the character ‘.’, ordered in top-down
fashion (i.e., category ‘c1’ is a parent category of ‘c2’, and category ‘c3’ is a
parent category of ‘c4’, and so on). ci = {1, 2, . . . , ni} is the set of discrete values
of a category in the i-th layer. The rating matrix is denoted by R ∈ RM×N . We
also have a directed social follow graph G = (Δ, ε) where Δ represents the users
and the edge set ε represents the following relationships between users.

3.2 Layered Learning Framework on Flat Approach

For the flat approach, we directly learn user’s average tastes to every category.

Phase One: Find User’s Average Tastes to Every Category.We associate
user i with factor vector Ui ∈ RD and category k with factor vector Ck ∈ RD.
Rij can be computed by R̂ij = UT

i CCa(j), where Ca(j) is the category that item
j belongs to. The sum-of-squared-error function L1 is defined:

L1 =

M∑
i=1

N∑
j=1

Iij

(
Rij − R̂ij

)2
+ λu‖U‖2F + λc‖C‖2F (2)

We perform gradient descent in Ui and Ck (Eq.3 and 4) to minimize L1.

∂L1

∂Ui
=

N∑
j=1

IijCCa(j)

(
R̂ij −Rij

)
+λuUi,

∂L1

∂Ck
=

∑
j∈δ(k)

∑
i∈ϕ(j)

(
R̂ij −Rij

)
+λcCk

(3)
where φ (k) is the set of the items belong to category k, ϕ (j) is the set of users
who have rated item j and λu or λc is the extent of regularization. After the
optimization, we can get the user-category preference matrix Rc = UTC. The
matrix base, where baseij = Rc

iCa(j) = UT
i CCa(j) means user i’s average taste

to item j’s category is taken as the initial prediction to R.

Phase Two: Ensemble User’s Rating with Content and Social Relation.
Although we have user’s tastes to every category, user’s preference for individual
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Algorithm 1. Layered gradient algorithm for flat approach

Require: 0 < αu, αc, αk < 1, t = 0.

Ensure: L(0)
1 (U

(0)
i , C

(0)
k ) ≥ 0, L(0)

2

(
U

(0)
i , k

(0)
z

)
≥ 0, L(t+1)

1 < L(t)
1 , L(t+1)

2 < L(t)
2 .

Phase one:
Initialization:U

(0)
i , C

(0)
k

for t = 1, 2, · · · do
Calculate

∂L(t−1)
1
∂Ui

,
∂L(t−1)

1
∂Ck

U
(t)
i = U

(t−1)
i − αu

∂L(t−1)
1
∂Ui

, C
(t)
k = C

(t−1)
k − αc

∂L(t−1)
1

∂Ck

end for
Generate the baseline estimate matrix base whose elements are baseij = UT

i CCa(j)

Phase two:
Initialization: K

(0)
z . Take current value Ui as the initial value: U

(0)
i ← Ui

for t = 1, 2, · · · do
Calculate

∂L(t−1)
2
∂Ui

,
∂L(t−1)

2
∂Kz

U
(t)
i = U

(t−1)
i − αu

∂L(t−1)
2
∂Ui

,K
(t)
z = K

(t−1)
z − αk

∂L(t−1)
2

∂Kz

end for

item is around the average estimate. For example, a user’s taste to one category
is 3, but the user’s rating for individual item may be some higher 3.3 or some
lower 2.9. We introduce user’s preference for item’s keywords to help optimize
the initial estimates. We associate keyword t with factor vector Kt ∈ RD. The
user-keyword preference matrix is denoted by RK = UTK. I (j) is the set of
the keywords extracted from item j. User i’s preference for item j’s keywords is
denoted by R̃ij =

∑
t∈I(j) R

K
it =

∑
t∈I(j) U

T
i Kt. Given the baseij, we define the

new prediction:R̂ij = baseij + R̃ij . The error function is redefined:

L =

M∑
i=1

N∑
j=1

Iij

(
Rij − baseij − R̃ij

)2
+ λu‖U‖2F + λk‖K‖2F (4)

Beside item content, we have social network information. Inspired by SoReg
[10], with the same assumption that if user i has a friend f , there is a similarity
between their tastes, the regularization term to impose constraints between one
user and their friends is formulated as:

λf

M∑
i=1

N∑
f∈F+(i)

Sim (i, f) ‖Ui − Uf‖2F (5)

where F+ (i) is the set of outlink friends of user i and Sim (i, f) ∈ [0, 1] is the
similarity function. We use PCC to compute this value. We change Eq.4 to L2:

L2 = L+
λf

2

M∑
i=1

N∑
f∈F+(i)

Sim (i, f) ‖Ui − Uf‖2F (6)

We perform gradient descent in Ui and Kz (Eq.7 and 8) to minimize L2.
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∂L2

∂Ui
=

N∑
j=1

Iij

⎛⎝ ∑
t∈I(j)

Kt

⎞⎠(
baseij + R̃ij −Rij

)
+ λf

|F+(i)|∑
f∈F+(i)

Sim (i, f) (Ui − Uf )

+ λf

|F−(i)|∑
g∈F−(i)

Sim (i, g) (Ui − Ug) + λuUi (7)

∂L2

∂Kz
=

∑
j∈ψ(z)

∑
i∈ϕ(j)

Ui

(
baseij + R̃ij −Rij

)
+ ηKz (8)

where ψ (z) is the set of the items that contain the keyword z, F− (i) is the set
of inlink friends of user i and | F+ (i) |/| F− (i) | denote the number of friends
in the set F+ (i)/F− (i). The whole algorithm is presented in Algorithm 1.

3.3 Layered Learning Framework on Top-Down Approach

In order to adapt our framework to the multi-layer category, we do some adjust-
ments to Algorithm 1. The improved algorithm is shown in Algorithm 2.

Phase One: Find User’s Average Tastes to Every Category. Suppose
that the category has L layers. Cal (j) is the category that item j belongs to
in the l-th layer. We associate user i with latent factor U l

i ∈ RD and category
k with latent factor Cl

k ∈ RD in the l-th layer. In the 1st layer, the method
is consistent with phase one of Algorithm 1. In the l-th layer, user’s taste to

item’s category is denoted by R̃l
ij =

(
U l
i

)T
CCal(j). Given user’s average taste

to the parent category basel−1
ij in the l − 1-th layer, Rij can be predicted by

basel−1
ij + R̃l

ij . The sum-of-squared-error function Ll
1 given by:

Ll
1 =

M∑
i=1

N∑
j=1

Iij

(
Rij − basel−1

ij − R̃l
ij

)2
+ λu‖U l‖2F + λc‖Cl‖2F (9)

We perform gradient descent in U l
i and Cl

k (Eq.10 and 11) to minimize Ll
1 in the

l-th layer given by Eq.9.

∂Ll
1

∂U l
i

=

N∑
j=1

IijCCal(j)

(
basel−1

ij + R̃l
ij −Rij

)
+ λuU

l
i (10)

∂Ll
1

∂Cl
k

=
∑

j=∈δl(k)

∑
i=∈ϕ(t)

U l
i

(
basel−1

ij + R̃l
ij −Rij

)
+ λcC

l
k (11)

where φl (k) is the set of the items belonging to category j in the l-th layer. Then
basic estimate baselij for the category in the l-th layer is given by: baselij =

basel−1
ij +

(
U l
i

)T
CCal(j). Repeat the operation down the categories until the
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Algorithm 2. Layered gradient algorithm for top-down approach

Require:0 < αu, αc, αk < 1, t = 0, l = 1.

Ensure: L(0)
1 (U

(0)
i , C

(0)
k ) ≥ 0, L(0)

2

(
U

(0)
i , k

(0)
z

)
≥ 0, L(t+1)

1 < L(t)
1 , L(t+1)

2 < L(t)
2 .

Phase one:
for l = 1, 2, · · · , L do

Initialization:U l
i
(0) ← U l−1

i , Cl
k
(0)

fort = 1, 2, · · · do
Calculate

∂Ll
1
(t−1)

∂Ul
i

,
∂Ll

1
(t−1)

∂Cl
k

U l
i
(t) = U l

i
(t−1) − αu

∂Ll
1
(t−1)

∂Ul
i

, Cl
k
(t) = Cl

k
(t−1) − αk

∂Ll
1
(t−1)

∂Cl
k

end for
Generate the baseline estimate matrix basel in the l-th layer.

baselij = basel−1
ij +

(
U l

i

)T
CCal(j)

end for
Generate the baseline estimate matrix base whose elements are baseij = baseLij
Phase two:
Initialization:K

(0)
z . Take current value Ui as the initial value:U

(0)
i ← UL

i

The following process is the same as phase two in Algorithm 1

lowest layer. Finally, we can get the more accurate baseline estimate baseij =
baseLij in the L-th layer.

Phase Two: Ensemble User’s Rating with Content and Social Relation.
Given the baseline estimate base, the phase is the same as the phase two in
Algorithm 1.

4 Experimental Results

4.1 Datasets and Metrics

In our experiments, we use the real Tencent Weibo1 data published by KDD
Cup 20122. Beside the social network information, it contains much context
information such as keyword, category and timestamp. The items have been
organized using four-layer categories, such as “1.2.5.8”; each category belongs
to another category, and all categories together form a hierarchy. This structure
is suitable for our framework. We predict user’s action to items, where “1”
represents that the user accepts the item, and “0” otherwise.

We extract a small dataset over a period of time randomly. It is much bigger
and richer than other datasets used by [7,11]. The statistics of the dataset are
summarized in Table 1.

For the flat approach, we only use the categories in the 4th layer. The density
of the rating matrix is 379598

12518×3610 = 0.84%. We divide the dataset into three
parts: the training set Rtrain., test set Rtest, and set Rnew containing all items
not in Rtrain.

1 http://t.qq.com/
2 http://www.kddcup2012.org/

http://t. qq. com/
http://www. kddcup2012. org/
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Table 1. Statistics of dataset extracted

(a) The basic statistics

Description Number Description Number

user 12518 user-item rating 375989

item 3610 item-keyword pair 85107

keyword 1102 Min.Num.of Rating per user 1

Social link 3898 Max.Num.of rating per user 325

(b) Category

category Number

1st layer 6

2nd layer 23

3rd layer 83

4th layer 258

The evaluation metrics we use in our experiments are two popular error met-
rics: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). A
smaller MAE or RMSE value means higher accuracy.

4.2 Implementation and Comparisons

We compare our algorithms with four state-of-art CF algorithms.

– PMF [4]: It is a Low-rank matrix factorization based on minimizing the
sum-of-squared-error. It does not take into account the social information.

– SocialMF [7] is a trust-based model incorporating the mechanism of trust
propagation. It can reduce recommendation error for cold start users.

– SoReg [10]: It is a matrix factorization model with social regularization,
which treats dissimilar tastes of friends with different social regularization.

– CircleCon [11]: It incorporates the concept of circle-based recommendation,
which only considers the trust circle specific to one category.

We call our Algorithm 1/Algorithm 2 proposed in section 3 LLR1/LLR2. In all
the experiments, the tradeoff parameter settings are λu = λc = λk = λf = 0.001.

JAMA3 is an open matrix package for Java, developed at NIST and the Uni-
versity of Maryland. It provides the fundamental operations of numerical linear
algebra. All algorithms are implemented using this library.

4.3 Impacts of Different Factors

The Number of Layers of Category: The difference between LLR1 and LLR2
is the number of layers of category. The results of LLR1/LLR2 (Figure 3) show
in phase one, LLR1 achieves 0.1906/0.2910 on MAE/RMSE, but for LLR2, the
training of each layer decreases the values: the training of the 1st layer and 2nd
layer reduce the values greatly, the training of the 3rd layer and 4th layer have
made only minor changes to the results of the 2nd layer, and after the training
of the 4th layer, the values can be reduced to 0.1503/0.2739. Contrasts looked,
LLR2 has smaller prediction error than LLR1 in phase one. So our framework
benefits more from the top-down approaches than the flat approach. We believe
classification based on hierarchy can better model the similarity among items.

3 http://math.nist.gov/javanumerics/jama/

http://math.nist.gov/javanumerics/jama/
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(a) MAE for LLR1 (b) MAE for LLR2

(c) RMSE for LLR1 (d) RMSE for LLR2

Fig. 3. The results of different phases of LLR1 and LLR2 (Dimensionality = 5)

The Item Content and Social Networks Information: After we get the
baseline estimate, we discuss how the content and social information may con-
tribute to improving the values. The results of phase two (Figure 3) show
we get more accurate estimate of user’s rating for individual item: LLR1 and
LLR2 achieve 0.1440/0.2751 and 0.1417/0.2702 on MAE/RMSE respectively. For
LLR1, this information improves the accuracy as high as 24.44%/5.46% in con-
trast to phase one. For LLR2, this information improves as high as 5.72%/1.35%.
The improvement demonstrates that the content and social information are help-
ful to boost the performance, especially for LLR1, although classification on the
flat approach improves much less than LLR2 based on the top-down approach
in phase one, the information significantly enhance more accuracy than LLR2
in phase two. Overall, final results show LLR2 achieves better performance than
LLR1.

4.4 Analysis of Recommendation Performance

Figure 4 shows the results of the algorithms on different amounts of training
data (25%, 50%, 75%). We observe PMF has the worst MAE/RMSE. SocialMF
and SoReg have almost the same accuracy, both superior to PMF, but SoReg is
a bit lower because it uses better social regularization terms. CircleCon viewed
as an extension of SocialMF is better than the three algorithms. This demon-
strates only considering the trust circle belong to one category is useful for learn-
ing user’s tastes. Our algorithms have the minimum of MAE/RMSE: when the
training is 25%, LLR2 gets the decrease by 5.57%/2.99% over CircleCon/SoReg
, when the training is 50%, the decrease is 13.68%/10.18% over CircleCon, when
the training is 75%, the decrease is 20.88%/6.37% over CircleCon. Experiments
demonstrate that our algorithms have higher accuracy than purely using the
user-item rating matrix, purely utilizing social networks information or purely
considering category-specific circles.
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(a) MAE (b) RMSE

Fig. 4. Performance comparison with other algorithms (Dimensionality = 5)

4.5 Performance on Dynamic Update of Items

We analyze the performance of our algorithms on dynamic update of items, i.e.,
addition of new items. Except some very special items, usually we can know the
keywords and category of new items before their addition. The predicted value
of Rijnew in Rnew can be computed by baseijnew + R̃ijnew . Figure 5 shows the
results of our algorithms on training data (25%, 50%, 75%). We observe although
the new items are not in the rating matrix, our algorithms still make very good
prediction using the new item’s category and keywords.

(a) MAE (b) RMSE

Fig. 5. The results on addition of new items (Dimensionality = 5)

5 Conclusion

In this paper, based on the similarity in the classification, we proposed a novel
two-phase layered learning framework, which incorporates the category, item
content and social networks information. For two kind of classifications, we de-
signed two layered gradient algorithms in our framework. We conducted exten-
sive experiments on real data. Comparison results of different phases of LLR1
and LLR2 show that the top-down approaches are more helpful to find user’s
similar tastes than the flat approach, and item content and social networks in-
formation contribute to improve the classification accuracy. The analysis results
show that our algorithms outperform other state-of-the-art methods. The results
also show that our algorithms has good scalability for the dynamic update of
items to cope with addition of new items.
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Abstract.This paper presents a novel framework for dynamic circle
recommendation for a query user at a given time point from
historical communication logs. We identify the fundamental factors that
govern interactions and aim to automatically form dynamic circle for
scenarios, such as, who should I dial to in the early morning? whose
mail would I reply first at midnight? We develop a time-sensitive
probabilistic model (TCircleRank) that not only captures temporal
tendencies between the query user and candidate friends but also
blends frequency and recency into group formation. We also utilize the
model to support two types of dynamic circle recommendation: Seedset
Generation: single-interaction suggestion and Circle Suggestion:
multiple interactions suggestion. We further present approaches to infer
relevant time interval in determining circles for a query user at a
given time. Experimental results on Enron dataset, Call Detail Records
and Reality Mining Data prove the effectiveness of dynamic circle
recommendation using TCircleRank.

1 Introduction

As the emergence of on-line social media, users can easily share information to
their friends via Mobile Social Media Apps such as Gmail, WhatsApp, Facebook
using their mobile devices. Social media gather and syndicate these information
to target users. Users can browse through the information shared by their friends.
Most existing social media generally render information based on recency, that
is, latest information always appear on top of personal feed walls. Some may
provide manual tools for users to explicitly adjust friend circles so that users can
control how information are rendered on their walls or which friend circles to
share information with. Such great efforts motivate us to wonder: Is it possible to
design a dynamic circle recommendation system which can automatically suggest
a ranked list of friend candidates driven by both historical interaction statistics
and contextual information such as time point?

Most studies on formation of groups mainly focus on static group formation,
where a group is a fixed set of friedns manually pre-defined by a user. We argue

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 25–37, 2014.
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Fig. 1. Distribution of Time Centrality

that the notion of group should dynamically adapt to context information such
as location, time, etc. That is, some users may have the tendency to share
information to different groups of friends at certain time points while some users
may share information to the same group of friends at all time. For example,
a user may have the tendency to share information to his/her family during
daytime and share information to his/her close colleagues in the evening. To
discover time-dependency for a target user, we need to identify his/her tendency
at different time point. Following this, we need to provide a ranked list of friends
that a user has the highest probability to interact with at each time point.

The general problem of recommendation system has been widely studied
[6]. Several prior studies attempt to consider temporal factor in designing
recommendation systems [9][3][2][11]. For example, [9] leveraged user’s long-term
and short-term preferences for temporal recommendation. Nonetheless, non of
them addresses the fact that user interactions are not always correlate with time
as users present diverse variation of temporal dependency. For example, some
users have higher temporal dependency in sharing information. Moreover, a user
may only be sensitive to certain time points during a day. In this paper, we
argue that temporal tendency should be analyzed individually for each pair of
query user and friend candidate at each time point. As an evidence, Figure 1
illustrates a distribution of time centrality for all pairs of users. If a pair of users’
interactions only fall into a few time slots during a day, they have lower entropy
and thus indicating higher time centrality and vice versa. We observe that over
60% pairs of users’ have higher time centrality in interactions (entropy ≤ 0.5),
meaning the rest 40% user interactions are driven or dominated by other factors.

In this paper, we propose a framework to discover personalized dynamic
circle for a given time point. Given a query user, a time point, and historical
communication logs, our recommendation system returns a ranked list of friends
(referred to as Circle) for the query user at given time point. To achieve this, we
propose a temporal probabilistic model (TCircleRank) to capture user behaviors
in terms of three factors: frequency, recency and time-dependency. After this,
we utilize TCircleRank to derive two types of dynamic circle recommendation:
Seedset Generation: single interaction suggestion and Circle Suggestion:
multiple interactions suggestion. TCircleRank considers the dynamic importance
of each candidate user for a query user to incorporate the factor, different users
show different temporal dependency with related to a target user at different time.
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Seedset Generation aims to generate a candidate user by TCircleRank for two
purposes: shifting the burden for query users (especially mobile users) to provide
a list of users who intent to interact with at the very beginning, and the query
user merely interact with a single user at given time.

Recommending dynamic circle is useful in many applications. For example,
dynamic circle can be utilized to enhance the ranking results for content-based
on-line social media (e.g., Gmail, WhatsApp, Facebook), where the information
for each user can be adjusted based on the dynamic circle. Moreover, it can
be used in location sharing services (e.g., Foursquare), where the ranking of
locations can be adjusted based on a user’s dynamic circle at particular time
point. To summarize, our contributions are as follows.

–We propose a framework to discover personalized dynamic circle for a query
user at given time point.

–We propose a temporal probabilistic model (TCircleRank) to capture user’s
interaction tendency at different time point.

–We consider three fundamental factors in user interactions and propose
approaches to support: single interaction suggestion and multiple
interactions suggestion.

–We proposes two methods to find the most appropriate time interval for our
probabilistic model.

–We conduct experiments on real datasets to demonstrate the effectiveness of
our framework and report empirical insights.

This paper is organized as follows. Section 2 presents the related work for this
paper. Section 3 introduces TCircleRank and then discusses the two types of
dynamic circle recommendation. Section 4 presents two methods to infer time
interval for TCircleRank. Section 5 shows the experimental results using the
three real datasets. Section 6 concludes this paper.

2 Related Work

2.1 Relationship Link Prediction

Friends suggestion can be modeled as relationship link prediction, if we predict
the occurrence of an interaction at a given time. Liben-Nowell and Kleinberg
[4] formalized the link prediction problem and employed random walk methods
to address this problem. Yang et al. [10] proposed FIP model bridges between
Collaborative Filtering (CF) and link prediction to provide a unified treatment
for interest targeting and friendship prediction. Sun et al. [7] built a relationship
building time prediction model, which uses learning algorithms to fit different
distributions and then gets a probability for building relationships between two
nodes. However, the edges are only constructed once, so we cannot use it for
communication networks which change over time.
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Fig. 2. Framework Overview

2.2 Friends Suggestion System

Our main idea is based on Roth et al. [5], who proposed a friends recommendation
system for Gmail using group information and three criteria. Gmail is a
well-known mail system constructed by Google, which may have many history
records to retrieve for friends suggestion. However, the algorithm in [5] could
not work effectively for sparse data, insufficient interaction history resulting in
some recommendation lists to be empty. Moreover, T ime-Dependency of user
interactions is not addressed in their work. Bartel and Dewan [1] enhanced
[5] with a hierarchical structure, which re-orders the recommendation list by
ranking past communication group and hierarchically predicts next group. Wu
et al. [8] proposed a interactive learning framework to formulate the problem of
recommending patent partners into a factor graph model. Similarly, no attention
has been paid to address the problem of T ime-Dependency of user interactions.

3 Dynamic Circle Recommendation

We propose a framework for dynamic circle recommendation without requiring
query users to provide any information as a prior. The system framework
overview is illustrated in Fig. 2. Our system consists of two phases: Seedset
Generation and Circle Suggestion. Seedset Generation automatically derives
a set of core users (referred to as seedset) with the highest probability to
be contacted with the query user. Seedset Generation is achieved by mining
frequent and time-dependent communication patterns from historical interaction
logs. Circle Suggestion phase aims to provide a group of friends whenever the
query user intends to interact with multiple users at the same time (referred
to as circle) based on the derived seedset. Once the query user chooses partial
members from the list, our system updates the circle suggestion list by adding
selected users to current seedset and then launching Circle Suggestion again
to update the ranked list of friends. This process continues until no more
friends can be suggested or the query user drops this session. Notice that
our recommendation system provides a generic framework where the Circle
Suggestion component can be replaced by other state-of-the-art algorithms to
serve different requirements.
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3.1 TCircleRank

When a query user attempts to share information (e.g., photos), the query user
forms a list of friends in his/her mind. Without any assistance, query users has
to manually and sequentially select the list of friends by scanning through their
friends pool. This brings lots of unnecessary efforts. To solve this problem, we
first propose Seedset Generation that uses TCircleRank to predict a set of users
as seeds for Circle Suggestion.

We claim that if a query user interacts with a user in a particular time
interval, the query user has a higher probability to interact with the user in the
time interval as well. Fig. 1 verifies this by showing that, over 60% of interactions
are strongly temporal-correlated with entropy is no greater than 0.5.

To address this, we propose a framework, TCircleRank, to predict a ranked
list of friends who are most likely to be interacted with the query user a given
time point. There are three factors considered in TCircleRank:

1.Frequency: Receivers who have more interactions with the query user are
more important than those who interact less with the query user.

2.Recency: More recent interactions should have more importance whereas
older interactions decay over time.

3.Time-Dependency: If receivers always interact with the query user in a
similar time interval, they should have more importance in that time interval.

Frequency is a straightforward yet effective measurement. Inspired from
Interaction Rank [5], we unify Frequency with Recency into a single
measurement as shown in Equation (1). [5] introduced a decaying parameter λ, to
control the importance of every interaction according to its time. Namely, every
interaction decays exponentiation over time with a half life λ. To fit TCircleRank,
we form the two factors into a probability, which can be expressed as:

P (Rn) =

∑
i∈I(Rn)

(12 )
d∑

i∈I(
1
2 )

d
(1)

where P (Rn) is the probability of the query user interacting with Rn in the past,
I is a set of all the query user’s interactions, and I(Rn) is a set of all interactions
between query user and Rn. d is a decay function which is expressed as tnow−ti

λ ,
where tnow is the current time, ti is the time of interaction i ∈ I, and a half-life
parameter λ that assigns score 1 to an interaction at current time and decays
the importance of an interaction to 1

2 with the half-life λ.
To incorporate the third factor, T ime-Dependency, we formulate a

conditional probability as:

P (Rn|t) =
P (Rn ∩ t)

P (t)
. (2)

Equation (2) shows the probability of the query user interacting with Rn in a
time interval t, where P (Rn ∩ t) and P (t) can be derived like Equation 1 if we
change I(Rn) to I(Rn ∩ t) and I(t).
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To take into the following three factors into consideration, Frequency,
Recency and T ime-Dependency. Intuitively, we combine P (Rn) and P (Rn|t)
by a linear combination with a tunable parameter α, which can be formulated
as follows:

Score(Rn) = (1− α)P (Rn) + α · P (Rn|t) (3)

where α is the weight of T ime-Dependency and the range of α is between 0
and 1. In general, Equation (3) does not make sense, because when a candidate
receiver Rn has higher P (Rn) and also has higher P (Rn|t), it should be chosen
with more chances. When both probabilities are not relative to each other, we
should think about other methods to merge them. Calculating the mean between
P (Rn) and P (Rn|t) is a good idea to balance Equation (3), because it considers
the influence from not only specific time intervals but also all time intervals. We
adjust Equation (3) by using geometric mean, and thus the equations can be
expressed as follows:

Scoregeo(Rn) = (1 − α)P (Rn) + α · 1+ω
√
P (Rn)(P (Rn|t))ω (4)

where ω represents the weight of a specific time interval. We find that geometric
mean makes sense for our assumption: if one of P (Rn) and P (Rn|t) is much
lower than the other, their mean should be closer to the lower one.

To refine Equation (4), we need to define the best α. According to our
observations, we find that not all receivers have high time-dependency, as
some shows similar behaviors regardless of any time points. In other words,
receivers have different time-dependencies in different time intervals. Thus,
time-dependencies will vary from person to person. To achieve this, we change α
to another conditional probability, P (t|Rn), which is indicates the probability of
Rn interacting with the query user in time interval t. If P (t|Rn) is higher, Rn has
a higher time-dependency with the query user and vice versa. We then utilize
Z-score to normalize importance of time-dependency. Because Z-score may be
negative, we normalize Z-score by considering the central point from the range
[-3, 3] to [0, 1]. Therefore, we can reformulate Equation (4) as follows:

Scorefinal(Rn) = (1−NZ(Rn)) · P (Rn)

+NZ(Rn) · 1+ω
√
P (Rn)(P (Rn|t))ω

(5)

where NZ(Rn) is the normalized Z-score and the range is from 0 to 1.

3.2 Seedset Generation

Seedset Generation phase derives a set of core friends who are most likely to be
the receivers with related to the query user at given time. In a sense, Seedset
Generation can serve as a Circle Suggestion in a special case when query users
intend to communicate with a single user instead of a group of users. In that case,
Seedset Generation phase returns the potential receivers as a top-k list of users.
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Without specific groups information, Seedset Generation adopts TCircleRank
mentioned before predicting which friends in the past are most likely to be
the receivers, merely based on specified query time. The algorithm of Seedset
Generation is summarized in Algorithm 1.

Algorithm 1. Seedset Generation Algorithm

Input: query user’s history interactions I and current time interval t
Output: a set of core friends S

1 S = φ;
2 foreach i ∈ I do
3 Sum scores of i for TCircleRank;
4 C = GetFriend(i);
5 foreach c ∈ C do
6 if c /∈ S then
7 Put c into S;

8 foreach c ∈ S do
9 Calculate all probabilities P (c), P (t), P (c|t) and P (t|c);

10 S[c] = Scorefinal(c);

3.3 Circle Suggestion

Circle Suggestion can be applied to any seed-based suggestion approach. In
this subsection, we propose an enhanced approach, Circle Suggestion, by
incorporating the state-of-the-art ranking model [5] with TCircleRank.

TCircleRank can be combined with Interaction Rank [5]. Interaction Rank
only considered three factors, Frequency, Recency and Direction, and we
consider one additional factor, T ime-Dependency. Interaction Rank is formally
defined as follows:

IR(g) = θout
∑

i∈Iout(g)

(
1

2
)d +

∑
i∈Iin(g)

(
1

2
)d (6)

where Iout(g) is the set of outgoing interactions between a query user and
a group, Iin(g) is the set of incoming interactions and θout is the weight of
outgoing interactions to represent Direction. To form a circle of friends, we
adopt Intersection Weighed Score, which considers the intersection of group
and seedset to weight the score of the group. As reported in [5], Interaction
Weighted Score achieves the best performance among their proposals.

4 Time Interval Adjustment

Considering the following scenario: A user A has a regular behavior to call user
B after user A finishes his works during 5:00pm and 6:00pm. One day, user A
has finished his works early at 3:30pm and he calls user B immediately. Should
the interaction at 3:30pm be considered as reference interactions in suggesting
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friends? To answer this question, we propose two approaches to identify the
time intervals as references in ranking friends. The main idea is to analyze the
time distribution of interactions in one day and then determine an optimal time
interval to describe the interaction behaviors.

4.1 Entropy Examination

We utilize entropy as a measurement to determine the optimal time interval.
A narrow time interval indicates regular behavior and a broad time interval
indicates relatively irregular behavior. To measure the regularity of user
behaviors, we start with 24 time slots and calculate the entropy for user
interactions across each time slots. If the entropy is lower than a threshold,
which means the level of regularity is higher enough, we choose (h− 1)/2 as the
optimal time interval, where h is the length of each time slot. Otherwise, we
continue to split 24 hours into 16, 12, 8, 6 or 4 time slots until the entropy is
lower than a threshold.

4.2 Close Peak Detection

To detect the close peak, we only need to know the trends between each time
slot. The goal is to find the cluster that contains the current time slot and
then we can choose this cluster as optimal time interval. First, we consider the
trend between two adjacent time slots. Larger number of interactions time slot
should be less or equal τ times than smaller number of interactions time slot,
where τ is a threshold for clustering time slots. Otherwise, the detection would
be terminated and the final cluster has been determined. Algorithm 2 describes
Close Peak Detection in detail.

Algorithm 2. Close Peak Detection

Input: Time Distribution in 24 hours D, Current Time h and Threshold τ
Output: Time Interval Start Ts and Time Interval End Te

1 Ts = h;
2 Te = h;
3 foreach Clockwise Time Slots: Te, x2 ∈ D do
4 if p(x2) > p(Te)&p(x2) ≤ τ ∗ p(Te) then
5 Te = x2;
6 else if p(x2) < p(Te)&p(Te) ≤ τ ∗ p(x2) then
7 Te = x2;

8 foreach Counterclockwise Time Slots: Ts, x2 ∈ D do
9 if p(x2) > p(Ts)&p(x2) ≤ τ ∗ p(Ts) then

10 Ts = x2;
11 else if p(x2) < p(Ts)&p(Ts) ≤ τ ∗ p(x2) then
12 Ts = x2;



Dynamic Circle Recommendation: A Probabilistic Model 33

5 Experiment

5.1 Datasets

Social interactions present in calling and mailing behaviors. Therefore, we
use calling behavior and mailing behavior datasets to simulate general social
behavior dataset. In our experiment, we use three real datasets, Enron Mail1,
call detail records (cdr) from Chunghwa Telecom (CHT)2 and Reality Mining
Dataset (RMD) from MIT3. The basic information of each dataset is shown
in Table 1, where Enron Mail contains multiple interaction data and the others
only contains single interaction data. Therefore, we adopt Enron Mail to evaluate
Seedset Generation and Circle Suggestion, and the others two dataset to evalute
Seedset Generation.

Table 1. Basic Information on the Enron/CHT/RMD Datasets

Element Enron CHT RMD

No. of user 65,182 76,263 92
No. of interactions 236,505 2,443,667 78,110
No. of group interactions 67,631 - -
time 1998/01/04 - 2002/12/21 2010/08 2004/01/19 - 2005/07/15

5.2 Time Centrality Analysis

In time centrality experiment, we constrained the number of interaction between
the user and the test query user exceeds four times, because we split the time of
one day into four time slots of six hours.

We observe the difference of time centrality distribution between Enron and
other datasets on Fig. 3 and find that Enron Mail has higher time centrality
because its entropy is relatively lower than those of CHT andRMD. This indicates
that mailing behavior is relatively regular for the same receiver, i.e., most user
tend to send their mail to the same receiver at particular time points. Unlike
mailing behavior, calling behavior does not show strong time centrality. The
calling behaviors in CHT andRMDare similar and they distribute around entropy
0.5. This explains that when the entropy is 0.5, the users call callees not only at
the same time slot but also at the adjacent time slots. In other words, the regular
calling behavior may shift to the temporally close time points occasionally.

5.3 Experimental Setup

For Enron Mail, we chose 21,262 mails from Enron Mail to be the testing data
and extracted 30 days before testing data to be the training data, where the

1 The Enron Mail data can be downloaded from
http://www.cs.cmu.edu/~enron/

2 The CHT data is not in public, and Chunghwa Telecom’s website is
http://www.cht.com.tw/

3 The Reality Mining Dataset can be downloaded from
http://realitycommons.media.mit.edu/realitymining4.html

http://www.cs.cmu.edu/~enron/
http://www.cht.com.tw/
http://realitycommons.media.mit.edu/realitymining4.html
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Fig. 3. CDF of Time Centrality with 4 time slots in (a) CHT (b) RMD (c) Enron

Table 2. Parameter Settings

Parameter Meaning Enron CHT RMD

λ time decay parameter 7 days 3 days 3 days
θout outlink weight parameter 5 - -
ω time dependency parameter 1 1 1

T ime Interval additional hours next to 1 hour 1 hour 1 hour
the current hour

rule in selecting testing data is as follows: (1) the mail should be sent to at least
two receivers, or a group, and (2) the sender of the mail had sent no less than
four mails before. CHT, which is a single interaction data, do not have group
information, because CHT consists of cell phone call records and we only need
to predict the most likely callee. We chose 30,295 records from CHT to be the
testing data and extracted 30 days before testing data to be the training data.
The testing data is all in the last day in CHT. We chose 44,166 records from
RMD to be the testing data and extracted 30 days before testing data to be the
training data. Parameter settings are shown in Table 2.

To evaluate the recommendation quality, we adopt normalized discounted
cumulative gain (nDCG) as the measurements. DCG measures the gain of a hit
result based on its rank in the list, where the top rank has more gain and the
lower rank has less gain.

5.4 Circle Recommendation Quality

Evaluation on Seedset Generation: Figure 4(a)(b)(c) shows the impact of
each fundamental factor: Frequency (F), Recency (R) and Time-dpendency (T)
on Seedset Generation quality. We also compare with RecentLog which directly
generates the recommendation list in order by the recent contacts.

In Fig. 4(a), the pink line (All) is our proposal which considers all factors
and outperforms other models with at most 4.2% increase in accuracy compare
to the baseline. In Fig. 4(b), it is worth mentioning that the lines assemble the
log-likelihood, because CHT only has one receiver for recommendation in each
record. Our proposal outperforms other models with 26% increase in accuracy
compare to the baseline when k is 5. The similar results could be found on
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Fig. 4. nDCG Comparison for Seedset Generation, Circle Suggestion and Time Interval
Adjustment

RMD. Fig. 4(c) shows the nDCG comparison for four models and our proposal
outperforms other models with 16% increase in accuracy to the baseline when k
is 5. Based on above results, we conclude that TCircleRank presents consistent
improvement than straightforward suggestion such as frequency or recency.

Evaluation on Circle Suggestion: Fig. 4(d) shows the performance
comparison of Gmail Approach [5] and TCircleRank. Because Gmail Approach
is a seed-based suggestion approach, we use Seedset Generation to generate a
seedset with k = 3 and pass the input to Gmail and TCircleRank respectively.
The final recommendation list contains the seeds which are different from the
original Gmail Approach, but it will not affect the recommendation result
because the seeds appears at the top of the list and they are also uncertain
receivers for the query user. We use the same test data from Enron Mail as
in Fig. 4(a). In Fig. 4(d), the x-axis is top-k (1 ≤ k ≤ 30) and the y-axis is
the nDCG value, where the red line is Gmail Approach and the green line is
TCircleRank. We can see that no matter in what situation, TCircleRank always
has higher nDCG than Gmail Approach.

5.5 Time Interval Adjustment Quality

We compare fixed time interval and our proposed methods. We set δ to 0.5 for
Entropy Examination (EE) and τ to 2 for Close Peak Detection (CPD). In Fix
Time Interval (Fix), we fixed the time interval to 1 hour because it results in
highest nDCG among all fixed time intervals.

Fig. 4(e) shows three methods comparison on CHT. The x-axis is top-k and
the y-axis is the nDCG. CPD has the lowest nDCG among three methods, and it
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has 4% decrease in accuracy compare to Fix when k is 3. EE outperforms other
methods, and it has 5% increase in accuracy compare to Fix when k is 3. On
the other hand, Fig. 4(f) shows different comparison results on RMD, where the
worst method among the three methods is Fix. CPD becomes an useful method
with 17% increase in accuracy compare to Fix when k is 3. This is because that
RMD shows stronger time centrality against CHT. EE outperforms the other
methods and achieves 24% increase in accuracy compare to Fix when k is 3. We
conclude that EE is the best methods for our datasets. In summary, inferring
relevant time interval is useful for dynamic circle recommendation.

6 Conclusion

In this paper, we study the problem of suggesting friends by implicit social graph
and temporal importance. In this paper, we propose a temporal probabilistic
model (TCircleRank) that combine three factors, Frequency, Recency and
T ime-Dependency to address the fact that different users have different
importance of time for a query user. Based on TCircleRank, Seedset Generation
generates a set of seeds automatically. To recommend circles, we utilize the
seedset generated by TCircleRank and considers an additional feature,Direction
of interactions in our Circle Suggestion approach. We enhance the probabilistic
model by further dynamically determine the time interval, which is a parameter
to identify time-dependent interactions in derived time intervals. Our experiment
results show that TCircleRank and dynamic circle recommendation system are
effective on three real datasets, Enron Mail, CHT call detail records and Reality
Mining Dataset. We also show that inferring optimal time interval is useful for
dynamic circle recommendation. We will extend TCircleRank by automatically
deciding the number of seeds and using user clusters. We will further apply
our approach in other applications such as content-based sharing and temporal
community detection.
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Abstract. Current top-N recommendation methods compute the rec-
ommendations by taking into account only relations between pairs of
items, thus leading to potential unused information when higher-order re-
lations between the items exist. Past attempts to incorporate the
higher-order information were done in the context of neighborhood-based
methods. However, in many datasets, they did not lead to significant
improvements in the recommendation quality. We developed a top-N
recommendation method that revisits the issue of higher-order relations,
in the context of the model-based Sparse LInear Method (SLIM). The
approach followed (Higher-Order Sparse LInear Method, or HOSLIM)
learns two sparse aggregation coefficient matrices S and S′ that cap-
ture the item-item and itemset-item similarities, respectively. Matrix S′

allows HOSLIM to capture higher-order relations, whose complexity is
determined by the length of the itemset. Following the spirit of SLIM,
matrices S and S′ are estimated using an elastic net formulation, which
promotes model sparsity. We conducted extensive experiments which
show that higher-order interactions exist in real datasets and when in-
corporated in the HOSLIM framework, the recommendations made are
improved. The experimental results show that the greater the presence
of higher-order relations, the more substantial the improvement in rec-
ommendation quality is, over the best existing methods. In addition, our
experiments show that the performance of HOSLIM remains good when
we select S′ such that its number of nonzeros is comparable to S, which
reduces the time required to compute the recommendations.

1 Introduction

In many widely-used recommender systems [1], users are provided with a ranked
list of items in which they will likely be interested in. In these systems, which are
referred to as top-N recommendation systems, the main goal is to identify the
most suitable items for a user, so as to encourage possible purchases. In the last
decade, several algorithms for top-N recommendation tasks have been developed
[12], the most popular of which are the neighborhood-based (which focus either
on users or items) and the matrix-factorization methods. The neighborhood-
based algorithms [6] focus on identifying similar users/items based on a user-
item purchase/rating matrix. The matrix-factorization algorithms [5] factorize

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 38–49, 2014.
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the user-item matrix into lower rank user factor and item factor matrices, which
represent both the users and the items in a common latent space.

Though matrix factorization methods have been shown to be superior for
solving the problem of rating prediction, item-based neighborhood methods are
shown to be superior for the top-N recommendation problem [3,6,9,10]. In fact
the winning method in the recent million song dataset challenge [3] was a rather
straightforward item-based neighborhood top-N recommendation approach.

The traditional approaches for developing item-based top-N recommendation
methods (k-Nearest Neighbors, or k-NN) [6] use various vector-space similarity
measures (e.g., cosine, extended Jaccard, Pearson correlation coefficient, etc.) to
identify for each item the k most similar other items based on the sets of users
that co-purchased these items. Then, given a set of items that have already
been purchased by a user, they derive their recommendations by combining the
most similar unpurchased items to those already purchased. In recent years, the
performance of these item-based neighborhood schemes has been significantly
improved by using supervised learning methods to learn a model that both cap-
tures the similarities (or aggregation coefficients) and also identifies the sets of
neighbors that lead to the best overall performance [9,10]. One of these methods
is SLIM [10], which learns a sparse aggregation coefficient matrix from the user-
purchase matrix, by solving an optimization problem. It was shown that SLIM
outperforms other top-N recommender methods [10].

However, there is an inherent limitation to both the old and the new top-N
recommendation methods as they capture only pairwise relations between items
and they are not capable of capturing higher-order relations. For example, in a
grocery store, users tend to often buy items that form the ingredients in recipes.
Similarly, the purchase of a phone is often combined with the purchase of a screen
protector and a case. In both of these examples, purchasing a subset of items
in the set significantly increases the likelihood of purchasing the rest. Ignoring
these types of relations, when present, can lead to suboptimal recommendations.

The potential of improving the performance of top-N recommendation meth-
ods was recognized by Mukund et al. [6], who incorporated combinations of
items (i.e., itemsets) in their method. In that work, the most similar items were
identified not only for each individual item, but also for all sufficiently frequent
itemsets that are present in the active user’s basket. This method referred to
as HOKNN (Higher-Order k-NN) computes the recommendations by combining
itemsets of different size. However, in most datasets this method did not lead to
significant improvements. We believe that the reason for this is that the recom-
mendation score of an item is computed simply by an item-item or itemset-item
similarity measure, which does not take into account the subtle relations that
exist when these individual predictors are combined.

In this paper, we revisit the issue of utilizing higher-order information, in the
context of model-based methods. The research question answered is whether the
incorporation of higher-order information in the recently developed model-based
top-N recommendation methods will improve the recommendation quality fur-
ther. The contribution of this paper is two-fold: First, we verify the existence
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of higher-order information in real-world datasets, which suggests that higher-
order relations do exist and thus if properly taken into account, they can lead
to performance improvements. Second, we develop an approach referred to as
Higher-Order Sparse Linear Method, (HOSLIM) in which the itemsets capturing
the higher-order information are treated as additional items and their contri-
bution to the overall recommendation score is estimated using the model-based
framework introduced by SLIM. We conduct a comprehensive set of experiments
on different datasets from various applications. The results show that this combi-
nation improves the recommendation quality beyond the current best results of
top-N recommendation. In addition, we show the effect of the support threshold
chosen on the quality of the method. Finally, we present the requirements that
need to be satisfied in order to ensure that HOSLIM computes the predictions
in an efficient way.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions used in this paper. Section 3 presents the related work. Section 4 explains
the method proposed. Section 5 provides the evaluation methodology and the
dataset characteristics. In Section 6, we provide the results of the experimental
evaluation. Finally, Section 7 contains some concluding remarks.

2 Notations

In this paper, all vectors are represented by bold lower case letters and they are
column vectors (e.g., p, q). Row vectors are represented by having the transpose
superscript T , (e.g., pT ). All matrices are represented by upper case letters (e.g.,
R, W ). The ith row of a matrix A is represented by aTi . A predicted value is
denoted by having a ∼ over it (e.g., r̃).

The number of users will be denoted by n and the number of items will be
denoted by m. Matrix R will be used to represent the user-item implicit feedback
matrix of size n×m, containing the items that the users have purchased/viewed.
Symbols u and i will be used to denote individual users and items, respectively.
An entry (u, i) in R, rui, will be used to represent the feedback information for
user u on item i. R is a binary matrix. If the user has provided feedback for a
particular item, then the corresponding entry in R is 1, otherwise it is 0. We will
refer to the items that the user has bought/viewed as purchased items and to
the rest as unpurchased items.

Let I be the set of sets of items that are co-purchased by at least σ users in
R, where σ denotes the minimum support threshold. We will refer to these sets
as itemsets and we will use p to denote the cardinality of I (i.e., p = |I|). Let R′

be a matrix whose columns correspond to the different itemsets in I (the size
of this matrix is n× p). In this matrix r′uj will be one, if user u has purchased
all the items corresponding to the itemset of the jth column of R′ and zero
otherwise. We refer to R′ as the user-itemset implicit feedback matrix. We will
use Ij to denote the set of items that constitute the itemset of the jth column
of R′. In the rest of the paper, every itemset will be of size two (unless stated
otherwise) and considered to be frequent, even if it is not explicitly stated.
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3 Related Work

In this paper, we combine the idea of higher-order models introduced by HOKNN
with SLIM. The overview of these two methods is presented in the following
subsections.

3.1 Higher-Order k-Nearest Neighbors Top-N Recommendation
Algorithm (HOKNN)

Mukund et al. [6] had pointed out that the recommendations could potentially
be improved, by taking into account higher-order relations, beyond relations
between pairs of items. They did that by incorporating combinations of items
(itemsets) in the following way: The most similar items are found not for each
individual item, as it is typically done in the neighborhood-based models, but
for all possible itemsets up to a particular size l.

3.2 Sparse LInear Method for top-N Recommendation (SLIM)

SLIM computes the recommendation score on an unpurchased item i of a user
u as a sparse aggregation of all the user’s purchased items:

r̃ui = rTu si, (1)

where rTu is the row-vector of R corresponding to user u and si is a sparse size-m
column vector which is learned by solving the following optimization problem:

minimize
si

1
2 ||ri −Rsi||22 + β

2 ||si||22 + λ||si||1,
subject to si ≥ 0

sii = 0,

(2)

where ||si||22 is the l2 norm of si and ||si||1 is the entry-wise l1 norm of si.
The l1 regularization gets used so that sparse solutions are found [13]. The l2
regularization prevents overfitting. The constants β and λ are regularization
parameters. The non-negativity constraint is applied so that the matrix learned
will be a positive aggregation of coefficients. The sii = 0 constraint makes sure
that when computing the weights of an item, that item itself is not used as
this would lead to trivial solutions. All the si vectors can be put together into
a matrix S, which can be thought of as an item-item similarity matrix that is
learned from the data. So, the model introduced by SLIM can be presented as
R̃ = RS.

4 HOSLIM: Higher-Order Sparse LInear Method for
Top-N Recommendation

The ideas of the higher-order models can be combined with the SLIM learning
framework in order to estimate the various item-item and itemset-item similari-
ties. In this approach, the likelihood that a user will purchase a particular item is
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computed as a sparse aggregation of both the items purchased and the itemsets
that it supports. The predicted score for user u on item i is given by

r̃ui = rTu si + r′
T
u s

′
i, (3)

where si is a sparse vector of size m of aggregation coefficients for items and s′i
is sparse vector of size p of aggregation coefficients for itemsets.

Thus, the model can be presented as:

R̃ = RS +R′S′, (4)

where R is the user-item implicit feedback matrix, R′ is the user-itemset implicit
feedback matrix, S is the sparse coefficient matrix learned corresponding to items
(sizem×m) and S′ is the sparse coefficient matrix learned corresponding to item-
sets (size p×m). The ith columns of S and S′ are the si and s′i of Equation 3.

Top-N recommendation gets done for the uth user by computing the scores
for all the unpurchased items, sorting them and then taking the top-N values.

The sparse matrices S and S′ encode the similarities (or aggregation coeffi-
cients) between the items/itemsets and the items. The ith columns of S and S′

can be estimated by solving the following optimization problem:

minimize
si,s′i

1
2 ||ri −Rsi −R′s′i||22 +β

2 ||si||22 +
β
2 ||s′i||22

+λ||si||1 + λ||s′i||1
subject to si ≥ 0

s′i ≥ 0
sii = 0, and
s′ji = 0, where {i ∈ Ij}.

(5)

The constraint sii = 0 makes sure that when computing rui, the element rui
is not used. If this constraint was not enforced, then an item would recommend
itself. Following the same logic, the constraint s′ji = 0 ensures that the itemsets
j for which i ∈ Ij will not contribute to the computation of rui.

The optimization problem of Equation 5 can be solved using coordinate de-
scent and soft thresholding [7].

5 Experimental Evaluation

5.1 Datasets

We evaluated the performance of HOSLIM on a wide variety of datasets, both
synthetic and real. The datasets we used include point-of-sales, transactions,
movie ratings and social bookmarking. Their characteristics are shown in Table 1.

The groceries dataset corresponds to transactions of a local grocery store.
Each user corresponds to a customer and the items correspond to the distinct
products purchased over a period of one year. The synthetic dataset was gen-
erated by using the IBM synthetic dataset generator [2], which simulates the
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Table 1. Dataset Characteristics

Name #Users #Items #Transactions Density
Average

Basket Size

groceries 63,035 15,846 1,997,686 0.2% 31.69
synthetic 5000 1000 68,597 1.37% 13.72
delicious 2,989 2,000 243,441 4.07% 81.44
ml 943 1,681 99,057 6.24% 105.04
retail 85146 16470 820,414 0.06% 9.64
bms-pos 435,319 1,657 2,851,423 0.39% 6.55
bms1 26,667 496 90,037 0.68% 3.37
ctlg3 56,593 39,079 394,654 0.017% 6.97

Columns corresponding to #users, #items and #transactions
show the number of users, number of items and number of
transactions, respectively, in each dataset. The column corre-
sponding to density shows the density of each dataset (i.e.,
density=#transactions/(#users×#items)). The average basket size
is the average number of transactions for each user.

behavior of customers in a retail environment. The parameters we used for gen-
erating the dataset were: average size of itemset= 4 and total number of itemsets
existent= 1, 200. The delicious dataset [11] was obtained from the eponymous
social bookmarking site. The items on this dataset correspond to tags. A non-
zero entry indicates that the corresponding user wrote a post using the cor-
responding tag. The ml dataset corresponds to MovieLens 100K dataset, [8]
which represents movie ratings. All the ratings were converted to one, showing
whether a user rated a movie or not. The retail dataset [4] contains the retail
market basket data from a Belgian retail store. The bms-pos dataset [14] con-
tains several years worth of point-of-sales data from a large electronics retailer.
The bms1 dataset [14] contains several months worth of clickstream data from
an e-commerce website. The ctlg3 dataset corresponds to the catalog purchasing
transactions of a major mail-order catalog retailer.

5.2 Evaluation Methodology

We employed a 10-fold leave-one-out cross-validation to evaluate the perfor-
mance of the proposed model. For each fold, one item was selected randomly for
each user and this was placed in the test set. The rest of the data comprised
the training set. We used only the data in the training set for both the itemset
discovery and model learning.

We measured the quality of the recommendations by comparing the size-N
recommendation list of each user and the item of that user in the test set. The
quality measure used was the hit-rate (HR). HR is defined as follows,

HR =
#hits

#users
, (6)
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where “#users” is the total number of users (n) and “#hits” is the number of
users whose item in the test set is present in the size-N recommendation list.

5.3 Model Selection

We performed an extensive search over the parameter space of the various meth-
ods, in order to find the set of parameters that gives us the best performance for
all the methods. We only report the performance corresponding to the param-
eters that lead to the best results. The l1 regularization λ was chosen from the
set of values: {0.0001, 0.001, 0.01, 0.1, 1, 2, 5}. The lF regularization parameter β
ranged in the set: {0.01, 0.1, 1, 3, 5, 7, 10}. The larger β and λ were, the stronger
the regularizations were. The number of neighbors examined lied in the interval
[1 − 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]. The
support threshold σ took on values {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000}.

6 Experimental Results

The experimental evaluation consists of two parts. First, we analyze the various
datasets in order to assess the extent to which higher-order relations exist in
them. Second, we present the performance of HOSLIM and compare it to SLIM
as well as HOKNN.

6.1 Verifying the Existence of Higher-Order Relations

We verified the existence of higher-order relations in the datasets, by measuring
how prevalent are the itemsets with strong association between the items that
comprise it (beyond pairwise associations). In order to identify such itemsets,
(which will be referred to as “good”), we conducted the following experiment.
We found all frequent itemsets of size 3 with σ equal to 10. For each of these
itemsets we computed two quality metrics. The first is

dependency max =
P (ABC)

max(P (AB), P (AC), P (BC))
, (7)

which measures how much greater the probability of a purchase of all the items
of an itemset is than the maximum probability of the purchase of an induced
pair. The second is

dependency min =
P (ABC)

min(P (AB), P (AC), P (BC))
, (8)

which measures how much greater the probability of the purchase of all the
items of an itemset is than the minimum probability of the purchase of an
induced pair. These metrics are suited for identifying the “good” itemsets, as
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Table 2. Coverage by Affected Users/Non-zeros

Name
Percentage (%) with at least one
“good” itemset of dependency:

max≥ 2 max≥ 5 min≥ 2 min≥ 5
users non-zeros users non-zeros users non-zeros users non-zeros

groceries 95.17 68.30 88.11 47.91 97.53 84.69 96.36 73.09
synthetic 98.04 76.50 98.00 75.83 98.06 76.80 98.06 76.79
delicious 81.33 59.02 55.34 22.88 81.80 59.97 72.57 44.14
ml 99.47 69.77 28.42 3.75 99.89 77.94 63.63 37.62
retail 23.54 13.69 8.85 4.10 49.70 40.66 38.48 25.63
bms-pos 59.66 81.51 32.61 44.77 66.71 91.92 51.53 80.09
bms1 31.52 63.18 29.47 60.82 31.55 63.22 31.54 63.21
ctlg3 34.95 24.85 34.94 24.81 34.95 24.85 34.95 24.85

The percentage of users/non-zeros with at least one “good” itemset. The itemsets
considered have a support threshold of 10, except in the case of delicious and ml,
where the support threshold is 50, (as delicious and ml are dense datasets and thus
a large number of itemsets is induced).

they discard the itemsets that are frequent just because their induced pairs are
frequent. Instead, the above-mentioned metrics discover the frequent itemsets
that have all or some infrequent induced pairs, meaning that these itemsets
contain higher-order information.

Given these metrics, we then selected the itemsets of size three that have
quality metrics greater than 2 and 5. The higher the quality cut-off, the more
certain we are that a specific itemset is “good”.

For these sets of high quality itemsets, we analyzed how well they cover the
original datasets. We used two metrics of coverage. The first is the percentage of
users that have at least one “good” itemset, while the second is the percentage of
the non-zeros in the user-item matrix R covered by at least one “good” itemset
(shown in Table 2). A non-zero in R is considered to be covered, when the
corresponding item of the non-zero value participates in at least one “good”
itemset supported by the associated user.

We can see from Table 2 that not all datasets have uniform coverage with
respect to high quality itemsets. The groceries and synthetic datasets contain a
large number of “good” itemsets that cover a large fraction of non-zeros in R
and nearly all the users. On the other hand, the ml, retail and ctlg3 datasets
contain “good” itemsets that have significantly lower coverage with respect to
both coverage metrics. The coverage characteristics of the good itemsets that
exist in the remaining datasets is somewhere in between these two extremes.
These results suggest that the potential gains that HOSLIM can achieve will
vary across the different datasets and should perform better for groceries and
synthetic datasets.
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Table 3. Comparison of 1st order with 2nd order models

p
SLIM models k-NN models

SLIM HOSLIM Improved k-NN HOKNN Improved
Dataset β λ HR σ β λ HR % nnbrs HR nnbrs σ HR %

groceries 5 0.001 0.259 10 10 0.0001 0.338 32.03 1000 0.174 800 10 0.240 37.93
synthetic 0.1 0.1 0.733 10 3 1 0.860 17.33 41 0.697 47 10 0.769 10.33
delicious 10 0.01 0.148 50 10 0.01 0.156 5.41 80 0.134 80 10 0.134 0
ml 1 5 0.338 180 5 0.0001 0.349 3.25 15 0.267 15 10 0.267 0
retail 10 0.0001 0.310 10 10 0.1 0.317 2.26 1000 0.281 1,000 10 0.282 0.36
bms-pos 7 2 0.502 20 10 5 0.509 1.39 700 0.478 600 10 0.480 0.42
bms1 15 0.01 0.588 10 10 0.001 0.594 1.02 200 0.571 200 10 0.571 0
ctlg3 5 0.1 0.581 15 5 0.1 0.582 0.17 700 0.559 700 11 0.559 0

For each method, columns corresponding to the best HR and the set of parameters
with which it is achieved are shown. For SLIM (1st order), the set of parameters con-
sists of the l2 regularization parameter β and the l1 regularization parameter λ. For
HOSLIM (2nd order), the parameters are β, λ and the support threshold σ. For k-
NN (1st order), the parameter used is the number of nearest neighbors (nnbrs). For
HOKNN (2nd order), the parameters are the number of nearest neighbors (nnbrs) and
the support threshold σ. The columns “Improved” show the percentage of improve-
ment of the 2nd order models above the 1st order models. More specifically, the 1st
column “Improved” shows the percentage of improvement of HOSLIM beyond SLIM.
The 2nd column “Improved” shows the percentage of improvement of HOKNN be-
yond k-NN.

6.2 Performance Comparison

Table 3 shows the performance achieved by HOSLIM, SLIM, k-NN and HOKNN.
The results show that HOSLIM produces recommendations that are better than
the other methods in nearly all the datasets. We can also see that the incorpora-
tion of higher-order information improves the recommendation quality, especially
in the HOSLIM framework.

Moreover, we can observe that the greater the existence of higher-order rela-
tions in the dataset, the more significant the improvement in recommendation
quality is. For example, the most significant improvement happens in the gro-
ceries and the synthetic datasets, in which the higher-order relations are the
greatest (as seen from Table 2). On the other hand, the ctlg3 dataset does not
benefit from higher-order models, since there are not enough higher-order re-
lations. These results are to a large extent in agreement with our expectations
based on the analysis presented in the previous section. The datasets for which
HOSLIM achieves the highest improvement are those that contain the largest
number of users and non-zeros that are covered by high-quality itemsets.

Figure 1 demonstrates the performance of the methods for different values
of N (i.e., 5, 10, 15 and 20). HOSLIM outperforms the other methods for all
different values of N as well. We choose N to be quite small, as a user will not
see an item that exists in the bottom of a top-100 or top-200 list.
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6.3 Performance only on the Users Covered by “Good” Itemsets

In order to better understand how the existence of “good” itemsets affects the
performance of HOSLIM, we computed the correlation coefficient of the per-
centage improvement of HOSLIM beyond SLIM (presented in Table 3) with
the product of the affected users coverage and the number of non-zeros cov-
erage (presented in Table 2). The correlation coefficient is 0.712, indicating a
strong positive correlation between the coverage (in terms of users and non-zeros)
of higher-order itemsets in the dataset and the performance gains achieved by
HOSLIM.

6.4 Sensitivity on the Support of the Itemsets

As there are lots of possible choices for support threshold, we analyzed the
performance of HOSLIM, with varying support threshold σ. The reason behind
this is that we wanted to see the trend of the performance of HOSLIM with
respect to σ. Ideally, we would like HOSLIM to perform better than SLIM, for
as many values of σ, as possible; not for just a few of them.

Figure 2 shows the sensitivity of HOSLIM to the support threshold σ. We
can see that there is a wide range of support thresholds for which HOSLIM
outperforms SLIM. Also, a low support threshold means that HOSLIM benefits
more from the itemsets, leading to a better HR.
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Table 4. Comparison of unconstrained HOSLIM with constrained HOSLIM and SLIM

Dataset
constrained unconstrained
HOSLIM HR HOSLIM HR SLIM HR

groceries 0.327 0.338 0.259
synthetic 0.860 0.860 0.733
delicious 0.154 0.156 0.148
ml 0.340 0.349 0.338
retail 0.317 0.317 0.310
bms-pos 0.509 0.509 0.502
bms1 0.594 0.594 0.588
ctlg3 0.582 0.582 0.581

The performance of HOSLIM under the constraint
nnz(S′)+nnz(SHOSLIM) ≤ 2nnz(SSLIM ) is compared
to that of HOSLIM without any constraints and SLIM.

6.5 Efficient Recommendation by Controlling the Complexity

Until this point, the model selected was the one producing the best recommen-
dations, with no further constraints. However, in order for HOSLIM to be used
in real-life scenarios, it also needs to be applied fast. In other words, the model
should compute the recommendations fast and this means that it should have
non-prohibitive complexity.

The question that normally arises is the following: If we find a way to control
the complexity, how much will the performance of HOSLIM be affected? In
order to answer this question, we did the following experiment: As the cost of
computing the top-N recommendation list depends on the number of non-zeros
in the model, we selected from all learned models the ones that satisfied the
constraint:

nnz(S′) + nnz(SHOSLIM ) ≤ 2nnz(SSLIM). (9)

With this constraint, we increased the complexity of HOSLIM little beyond the
original SLIM (since the original number of non-zeros is now at most doubled).

Table 4 shows the HRs of SLIM and constrained and unconstrained HOSLIM.
It can be observed that the HR of the constrained HOSLIM model is close to
the optimal one. This shows that a simple model can incorporate the itemset
information and improve the recommendation quality in an efficient way, making
the approach proposed in this paper usable, in real-world scenarios.

7 Conclusion

In this paper, we revisited the research question of the existence of higher-order
information in real-world datasets and whether its incorporation could help the
recommendation quality. This was done in the light of recent advances in the top-
N recommendation methods. By coupling the incorporation of higher-order asso-
ciations (beyond pairwise) with state-of-the-art top-N recommendation methods
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like SLIM, the quality of the recommendations made was improved beyond the
current best results.
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Abstract. The wide use of GPS sensors in smart phones encourages
people to record their personal trajectories and share them with others
in the Internet. A recommendation service is needed to help people pro-
cess the large quantity of trajectories and select potentially interesting
ones. The GPS trace data is a new format of information and few works
focus on building user preference profiles on it. In this work we proposed
a trajectory recommendation framework and developed three recommen-
dation methods, namely, Activity-Based Recommendation (ABR), GPS-
Based Recommendation (GBR) and Hybrid Recommendation. The ABR
recommends trajectories purely relying on activity tags. For GBR, we
proposed a generative model to construct user profiles based on GPS
traces. The Hybrid recommendation combines the ABR and GBR. We
finally conducted extensive experiments to evaluate these proposed solu-
tions and it turned out the hybrid solution displays the best performance.

1 Introduction

With the rapid development of mobile devices, wireless networks and Web 2.0
technology, a number of location-based sharing services, e.g., Foursquare1,
Facebook Place2, Everytrail3 and GPSXchange4, have emerged in recent years.
Among them, Everytrail and GPSXchange are particularly unique because they
allow users to share their outdoor experiences by uploading GPS trajectory data
of various outdoor activities, e.g., hiking and biking. By sharing trajectory in-
formation, these Web 2.0 sites provide excellent resources for their users to plan
or explore outdoor activities of interests.

The rich amount of trajectories available in those web sites brings significant
challenges for users to find what they search for. Also, different from conven-
tional items with enrich texts, it is difficult to judge whether the trajectory is
interesting or not based on the activity tag or GPS raw data. Therefore, in order
to automatically discover interesting trajectories, a trajectory recommendation
service is highly desirable.

1 http://www.foursquare.com
2 http://www.facebook.com/places/
3 http://www.everytrail.com
4 http://www.gpsxchange.com/

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 50–61, 2014.
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Conventional collaborative filtering (CF) techniques do not fit the problem
trajectory recommendation. The CF requires people to access the same items to
compute user interest similarity. However, in trajectory sharing website, there are
no two people who generate exactly the same trajectory and the user similarity
can not be calculated by “accessing the same item”.

In this work, we explore the ideas of content-based recommendation tech-
niques [1,8,13]. We consider two types of trajectory “content”, activity tags and
GPS points. The activitiy tags, such as hiking or biking, are annotated by the
users themselves. The trajectory is represented as a sequence of GPS points with
corresponding time stamps.

Recommendation based on tags is named as activity-based recommendation
(ABR), which utilizes the tag content (if available) to make trajectory recom-
mendation. Since the tags are manually labeled by the creator, they can be
treated as a good feature for a trajectory. Unfortunately, activity tags are not
always available for a GPS trajectory. In the Everytrail data we collected, about
12.61% of the trajectories do not have tags. Additionally, ABR may not be able
to make recommendation if there are too many candidates with the same tag.
For example, in our collected data, 14% of all tagged trajectories, are tagged
with “hiking”. One intuitive solution would be using geographical region as a
filtering to eliminate infeasible candidates. However, it does not really solve the
problem. For example, after constraining the search result into “San Fran”, we
still found 96 hiking trajectories in the collected Everytrail dataset. Finally, tra-
jectories with the same tag may have different moving patterns, which the ABR
is unable to capture. Let’s consider two hiking fans. The first one likes to take a
gentle walk so she can take a lot of photographs but the other one treats hiking
as a physical exercise. Naturally, the two trajectories, although both labeled as
“hiking”, may contain very different features, which ABR fails to capture.

Considering these weak points of ABR discussed above, we also exploit the
sampled points in GPS trajectories for recommendation and call the proposed
technique GPS based recommendation (GBR). The raw GPS data contains plen-
tiful movement information (e.g., speed, change of speed, etc.), which captures
the user’s outdoor experiences implicitly. For example, techniques for using raw
GPS data to infer the transportation modes (e.g., taking bus, taking subway,
biking and walking) of trajectories have been studied [22,21,17,18,7,6]. However,
these techniques are not applicable to our trajectory recommendation service
since we aim to capture users’ moving habits and use them to differentiate the
trajectories of the same activity type. Take the example of hiking fans mentioned
earlier, existing techniques can only classify them as “hiking”. However, what
a recommender system needs are more personalized moving habits, e.g., gentle
walking or intense trotting. We argue that such information is embedded in GPS
data and we aim to mine them out to facilitate trajectory recommendation.

The rest of the paper is organized as follows. Section 2 formally defines the
problem, introduces ABR and reviews the related work. Section 3 and 4 re-
spectively detail the GPS feature extraction and the generative model in GBR.
Section 5 presents the evaluation of our proposed solutions. Finally, Section 6
concludes the paper.
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2 Preliminaries

In this section, we first formally introduce the trajectory recommendation prob-
lem and discuss the sub-tasks to tackle the proposed problem. Then we provide
a comprehensive literature review on recommendation and trajectory related
research work.

2.1 Problem Formulation

A trajectory consists of two parts, i.e., an activity tag (could be absent) and
a raw GPS trace. Formally, a trajectory is represented as T = 〈a, TG〉, where
a ∈ {”hiking”, ”biking”, · · · , ”null”} denotes the activity tag and TG stands for
the raw GPS trace.

The GPS trace is obtained via GPS sensor which sampled the moving object’s
current location together with the sampled time stamp. Thus the original format
is a series of triple tuples defined below.

Definition 1 (Raw GPS Trace). A GPS trace TG = {pt1, · · · , ptn} is defined
as a series of sample points, pti = 〈xi, yi, ti〉 where xi, yi represent the latitude
and longitude of the ith point and ti stands for the time stamp.

The recommendation problem is to find a subset of candidate trajectories
that could be of interest to an active user. More formally, given a collection of
trajectories S = {T1, · · · , Tn} and a person u, recommendation needs to find
k trajectories S′ = {Tr1 , · · · , Trk} that u is most interested in. Suppose we
have a ranking function Score(T, u) that can compute the “interest degree” of
a trajectory to a user, the recommendation can be formulated as follows.

Definition 2 (Top-k Trajectory Recommendation). Given a trajectory set
S = {T1, · · · , Tn}, the recommendation service for user u needs to find a subset
of k trajectories S′ = {Tr1 , · · · , Trk} so that ∀Ti ∈ S − S′, we have

Score(Ti, u) ≤ min
Tj∈S′

Score(Tj , u) (1)

The above definition reveals three problems for trajectory recommendation.
The first two problems are how to represent the trajectory (Feature Extraction)
and the user (User Profile Modeling) in a proper way to facilitate the computa-
tion of a ranking score. And the final one is how to design an effective ranking
function Score(T, u) to measure the “interest degree”.

2.2 Activity-Based Recommendation

The ABR tries capturing a person’s activity preferences based on her previously
shared trajectories. This preference to different activities is represented as a series
of probabilities, whose values are obtained by maximizing the joint probability
of observed data.

Let A = {a1, · · · , an} denote the collection of all activity tags and pi, 1 ≤ i ≤ n
denote the probability that the user u is interested in activity ai. Obviously∑n

i=1 pi = 1. For the user’s previously published trajectories, the activity tags
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are X = {x1, · · · , xm} where xj ∈ A, 1 ≤ j ≤ m. X is the observed data for the
user and the solution is to guess the user’s preference, or exactly the value of pi
based on these experiences. We assume that the instance xj ∈ X is independent
of each other and the probability of observing X is given in Equation (2).

P (X |p1, · · · , pm) =

m∏
j=1

P (xj |p1, · · · , pm) =

m∏
j=1

n∑
i=1

pi · 1xj=ai =

n∏
i=1

pni

i (2)

where ni represents the number of trajectories that is tagged with ai in X .
To learn the value of pi, we need to maximize the Equation (2) under the con-

straint that the sum of all probabilities is equal to 1, i.e., the objective function
as shown in Equation (3).

L(p1, · · · , pn) = logP (X |p1, · · · , pn)+λ(1−
n∑

i=1

pi) =

n∑
i=1

ni log pi+λ(1−
n∑

i=1

pi)

(3)
where λ is a Lagrange multiplier.

The objective function is solved by setting each partial differential ∂L
∂pi

to 0.

For ABR, the ranking function is thus defined as:

Scoreabr(T, u) = log

n∑
i=1

pi · 1T.activity=pi pi =
ni∑n
j=1 nj

(4)

2.3 Related Work

Due to the wide use of GPS-equipped smart phones, much attention is focused
on the use of the trajectory data to improve people’s life, among which trans-
portation mode detection is most related to our work.

Zheng et. al. [21,22] collected 47 people’s GPS data and compared differ-
ent machine learning techniques to classify transportation modes. The methods
however can not be used for recommendation. Trajectory recommendation re-
quires to give a ranking score to each candidate trajectory while classification
algorithms, e.g., decision tree, can only output binary values. In [17,18], Reddy
et. al. compared and even ranked different types of trajectory features. One of
the most important features in their work is the instant acceleration recorded
by accelerometer. This information is usually unavailable for common trajectory
information since most of the smart phones are not equipped with accelerome-
ter. In [6,7], different trajectories of moving objects, including eye-tracking, are
collected for transportation mode classification.

Trajectories contain plenty of valuable information. Previous classification
works explored different types of features that can well capture the trajectory
modes. However they did not pay attention to user’s moving habit that is also
contained in trajectory data. Li et. al. [10,11] tries to mine moving patterns from
GPS data of animals. GPS data in our case are records of a person’s trips that
happen at different places and few of them overlap with each other. Therefore
no periodic patterns can be mined out of such “scattered” data. In [9,14,15],
Discrete Fourier Transformation is also used to extract features from trajectory
data. However, their goal is for clustering, which is quite straightforward with
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the extracted data. Our work is to develop generative model based on these
features to learn user moving habits for recommendation.

Other works related to recommendation are based on semantic information
of trajectory [3,4,20]. These works treats trajectory as a sequence of ”meaning-
ful places” and use the semantic information of the locations, e.g., restaurant,
shopping centers.In our case, trajectories do not have semantic tags. Further-
more, not all trajectories contain meaningful locations. For example, a hiking
trajectory is unlikely to pass places such as restaurant, shopping center.

3 GPS Feature Extraction

In this section we focus on extracting features from GPS data. Specifically, we
introduce two types of features, i.e., partial-view feature (PVF) and entire-view
feature (EVF). The PVF mainly consists of physic values such as speed, velocity,
etc., and is easy to understand.

Specifically, given a trajectory’s raw GPS data, average velocity, average ac-
celeration and other physical measurements can be easily computed and they
represent some characteristics of that trajectory. In this work, the PVF contains
the total length of trajectory Len, the total time of the trajectory Time and
top-pf1 maximum velocity V̂1, · · · , V̂pf1 and top-pf2 acceleration Â1, · · · , Âpf2 .

The EVF tries to capture the global features and is harder to understand
semantically. We adopt Discrete Fourier Transform (DFT) to transform the GPS
data and a discussion is provided in Section 3.2.

3.1 Entire-View Feature

Before applying DFT on GPS, there are two issues need to be addressed. Firstly,
different trajectories may have different lengths, i.e., different number of sam-
pling points. If we take the whole GPS trace as input, DFT will generate features
that have different dimensions. This situation makes it difficult to compare two
trajectories as they might be in different frequency spectrums. Secondly, there
are three kinds of signals that can be obtained from GPS traces, i.e., distance sig-
nal, velocity signal and acceleration signal. We need to decide which one should
be used as DFT input.

For the first problem, a sliding window of fixed size is used to split the GPS
trace into several segments. DFT coefficients of these segments are then refined to
form a GPS feature of the same size. This processing method is similar to music
compression and classification [12,16]. As for the second problem, we choose
speed signal because i) it suffers less impact of sampling rates than the distance
signal and ii) it is more accurate in reflecting the moving status than acceleration
signal. Given two trajectories which have the same sampled data points (i.e.,
latitude, longitude and the number of points) except for the time stamp, the
DFT features will be same. However, the moving status for the two trajectories
could be quite different if the sampling rates are not the same. The speed series
can avoid this weakness. Also, note that the acceleration signal is converted from
the velocity signal under the assumption that the object is moving at a constant
acceleration between two sampled points. Each manipulation of the GPS data,
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e.g., linear interpolation, converting to distance signal etc., may introduce some
errors. Therefore the velocity signal is better than the acceleration signal in
terms of accuracy.

A final feature of size ws × r is obtained by keeping the top-r max value for
each dimension. The process is both shown in Figure 1. The use of overlapping
window is to mitigate the “loss” at the edges of the window5. The refined value
r is to mitigate the impact of path condition. because extreme cases are usually
free of road limitation. For example, if it is found that a user drove 35 miles
per hour for some segment while 25 miles per hour for other. The it is more
reasonable to believe that the speed 35 mph is more likely to represent the
user’s habit instead of 25 mph.

Trajectory
Speed Signal

DFT

DFT

DFT

Segment 1

Segment 2

Segment m

Entire-view Feature

Frequency 
Spectrum

Overlap
Ratio

Sliding 
Window ws

...
Refine r Refine r

Interpolation
Time unit tu

Raw GPS 
Data

Fig. 1. Illustration of EVF extraction.
Four parameters, interpolation time
unit tu, window size ws, overlap ratio
α and refine value r, are involved.
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Fig. 2. Illustration of feature meaning

3.2 Discussion of the Entire-View Feature

The basic waves have two components, i.e., frequency and amplitude. The fre-
quency indicates the intensity of speed change. That is, lower frequency suggests
that the moving is smoother while higher one means the moving object frequently
changes its speed. The amplitude of the wave reflects the strength of a signal, or
exactly, the absolute value of the speed. We use the example shown in Figure 2
to illustrate this point.

As shown in Figure 2(a), the speed signal of two trajectories are drawn. It
is easily seen that the trajectories are quite different. Firstly, trajectory 1 has a
smaller speed than trajectory 2. Also, the signal of trajectory 2 is smooth while
the speed of trajectory 1 suffers frequent change. Figure 2(b) displays the result
of DFT. Trajectory 2’s amplitudes are bigger than that of Trajectory 1, corre-
sponding to its original bigger speed. Furthermore, the frequency of trajectory

5 http://en.wikipedia.org/wiki/Window_function#Overlapping_windows

http://en.wikipedia.org/wiki/Window_function#Overlapping_windows
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1 lies mainly in higher spectrum while that of trajectory 2 in lower part. This
is consistent with the change of their original speed signal where low frequency
reflects smooth signal and high frequency corresponds to intense change.

4 User Profile Modeling and Trajectory Ranking

In this section we formally define the proposed generative model and introduce
the designed ranking functions.

4.1 Generative Model

Formally, suppose a person u has k latent habits z = {z1, · · · , zk} which sat-
isfies some distribution. For each habit zi, there are n groups of parameters
〈μi

1, σ
i
1〉, · · · , 〈μi

n, σ
i
n〉 corresponding to each dimension of trajectory feature.

For each dimension, we assume that the value follows a Gaussian distribution
N (μi

j , σ
i
j) with mean μi

j and standard variance σi
j . The generative model works

as follows. The person u first chooses a latent habit zk with probability πk.
Then this habit generates the amplitude for each frequency in the feature space,
which is determined by a Gaussian distribution. The generated feature finally
constructs a trajectory.

Given a set of trajectories S = {T1, · · · ,TN}, where Ti = 〈f i
1, · · · , f i

n〉 is a
trajectory with n features. If all trajectories in S is known to be generated by
the person u, then the parameters θ = {π, μ, σ} can be learned by maximizing
the following log-likelihood function:

L(θ) = logP (S|θ)+λ(

k∑
i=1

πi−1) =

N∑
i=1

k∑
j=1

τij(log πj+

n∑
m=1

logG(·))+λ(

k∑
i=1

πi−1)

(5)

where G(f i
m, μj

m, σ
j
m) = 1√

2πσj
m
e
− (fi

m−μ
j
m)2

2(σ
j
m)2 is the probability of value f i

m for

Gaussian distribution N (μj
m, σj

m), λ is the Lagrange multiplier and τij is an
indicator function whose value is 1 if and only if the trajectory Ti is generated
by habit zj .

We use EM algorithm [5] to solve this problem. In the following, let θ(t) denote
the values of parameters at tth iteration.

E-Step

E[τij ] =
P (Ti|zj)P (zj)∑k

m=1 P (Ti|zm)P (zm)
=

∏n
d=1 G(f i

d, μ
j
d(t− 1), σj

d(t− 1))π
(t−1)
j∑k

m=1

∏n
d=1 G(f i

d, μ
m
d (t− 1), σm

d (t− 1))π
(t−1)
m

(6)

M-Step

π
(t)
j =

∑N
i=1 E[τij ]∑N

i=1

∑k
m=1E[τim]

μj
m(t) =

∑N
i=1 E[τij ]f

i
m∑N

i=1 E[τij ]
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σj
m(t) =

√√√√∑N
i=1E[τij ](μ

j
m(t)− f i

m)2∑N
i=1 E[τij ]

4.2 Ranking Function

We provide two ranking functions, of which one is developed from the generative
model and the other is hybrid of ABR and GBR.

The generative model discussed above captures the user’s moving habit and
can then be used for recommendation. Each user has a profile expressing her
latent habits 〈z1, · · · , zk〉 with probability 〈π1, · · · , πk〉. For each habit zi, there
is a n-dimension Gaussian distribution {〈μ1, σ1〉, · · · , 〈μn, σn〉}. The ranking of
a trajectory to a given user’s profile is to compute the probability that the
trajectory is generated by that user. More specifically, for a trajectory T =
〈f1, · · · , fn〉, its ranking score is computed below.

Scoregm(T, u) = logP (T |u) = log

k∑
i=1

P (T |zi)P (zi) = log

k∑
i=1

πi

n∏
j=1

G(fj , μj, σj)

(7)
The probability P (u) is omitted since it is a constant to all candidate trajectories.

The ABR introduced in Section 2.2 is aware of a person’s historical activities
but can not distinguish two trajectories with the same activity. On the other
hand, the GBR described in Section 4 ranks trajectories purely based on its
GPS data and the user profile. In other words, it gives different ranking scores
to trajectories disregarding their activity tags. Therefore it indicates a poten-
tial improvement when the two methods are combined. Equation (8) shows the
hybrid ranking function that merges the two recommendation methods.

Scorehybrid(T, u) = (1− λ)Scoregm(T, u) + λScoreabr(T, u) (8)

where 0 ≤ λ ≤ 1 is a balance parameter adjusting the weight of the two sep-
arate ranking scores. Note that when λ = 0 the hybrid ranking becomes pure
generative model and λ = 1 reduces the method to pure ABR.

5 Evaluation

All the experiments are based on a real data set collected from Everytrail. Ev-
erytrail is a trajectory sharing website encouraging people to publish their trip
trajectories recorded by the smart phones. Each trajectory may also be associ-
ated with an activity tag, e.g., hiking, road biking, driving and so on. We crawled
the website from June 05, 2010 to August 07, 2010 and obtains 8,444 users and
63,760 trajectories in total.

5.1 Data Preparation

Because the trajectory data is uploaded by different people and there is no
strict examination, the raw data contains much noise for mining. We take the
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(f) Recall r = 3

Fig. 3. Parameter Tuning for the EVF

following steps to clean the data. Firstly, all untagged trajectories are removed
to guarantee a fair comparison of ABR and GBR. Also, we removed trajectories
which have “illegal” GPS traces, defined as those i) whose sampled time stamp
are not monotone increasing ii) whose total time length is less than 300 seconds.
Finally, users whose shared trajectories are less than 20 are removed since small
sample may hurt the model accuracy and thus the recommendation performance.
After this preprocessing, there are 252 users and 9,120 trajectories remaining.

For each user in the preprocessed data, we randomly masked 20% of her
trajectories. These masked data serve as the test data to evaluate our proposed
recommendation methods and the remaining part is used as training data to
build the user’s profile. Furthermore precision and recall are metrics used to
evaluate the recommendation performance.

5.2 Parameter Tuning for Entire-View Feature

Figure 3 shows the tuning process for the remaining parameters, where ws ranges
from 8 to 128, α from 0.1 to 0.8 and r from 1 to 3. Also, the optimal configuration
for different r is highlighted in the figure. As is shown, best performance is
achieved when the feature dimension is 64, the overlapping window percentage
is 30% and the refined window size is 3.

Figure 4 shows experiments on time unit tu which varies from 3 seconds to
20 seconds. It can be seen that the time unit should be neither too small nor
too large. For a small time unit, many pseudo points have to be added via
linear interpolation and it may introduce too many errors. On the other hand, a
big time unit may discard some true sample points, which may miss important
information. Judging from the result, tu is properly set to 5 seconds.

Finally Figure 5 shows the tuning of λ for hybrid recommendation. Note that
when λ = 0 the method is reduced to the ABR and when λ = 1 it is equivalent
to the GBR. Based on the result we set λ to 0.9 for the rest experiments.
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5.3 Comparison of Different Features

After determining the optimal configuration of EVF, we compare its recommen-
dation performance with two other features, namely, partial-view feature (PVF)
and combined feature. The PVF, as introduced in Section 3, consists of top-pf1
maximum velocity, top-pf2 acceleration, the length and time of the trajectory.
In the empirical study, the best performance of PVF is obtained when both pf1
and pf2 are set to 3. Combined feature is the combination of the two types of
features. As is seen in Figure 6, the combined feature outperforms the other two
in terms of both precision and recall, especially for top-1 recommendation. This
scenario proves our earlier argument that these two types of features represent
different aspects of a trajectory. The PVF aims to capture the locally extreme
characteristics while the EVF places more emphasis on the global picture of
a trajectory. They are complimentary to each other and can achieve the best
performance when combined together.
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Fig. 7. Method Comparison

5.4 Comparison of Different Recommendation Approaches

In this set of experiment, we evaluate the performance of the proposed recom-
mendation methods, i.e., ABR in Section 2.2, GBR in Section 4 and Hybrid
Recommendation where the λ is set to 0.9. We also include several baseline
methods for comparison. The details of them are listed below.

– Support Vector Machine (SVM)6. The SVM treats each user as a class and
all the trajectories’ combined features as training data. Then each candidate
trajectory will be assigned a series of probabilities indicating how likely it
belongs to each class (user). These values are thus treated as ranking scores.

6 In this experiment we used LIBSVM [2].
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– Maximum Similarity (MS). This method computes the cosine similarity of
the candidate trajectory’s combined feature to each of those uploaded by the
user and uses the maximum one as its score.

– Maximum Average Similarity (MAS). This method computes a centroid for
a collection of feature vectors of the user’s trajectories. Ranking score is
then determined by computing the cosine similarity between the candidate
trajectory to this centroid.

The MS and MAS can also be treated as an variant of item-based recommen-
dation [19]. Note that the above baselines share the same features (i.e., GPS
combined features) with our proposed GBR but adopt different approaches for
user-profile modeling and trajectory ranking. To distinguish the difference, we
use generative model (GM) to denote our proposed GBR.

The experiment results are shown in Figure 7. It is easily seen that the gener-
ative model outperforms other methods that use GPS feature. These recommen-
dation methods, SVM, MS, MAS, are solely based on user’s previous trajectories
and thus may be too biased to history data. The generative model, instead of
limiting to the data, tries to learn the users’ hidden moving pattern and thus
can achieve higher precision. ABR is the only method that relies on the tag
of the trajectory. In Figure 7, its performance, in terms of both precision and
recall, is worse than GM except for N = 50. As mentioned in Section 1, this
method can not distinguish trajectories of the same activity. This explains its
low precision and recall when N is small. The performance improvement for
bigger N , however, suggests a user’s concentration on the number of different
trajectory’s activities. Finally, the hybrid recommendation, which combines the
ranking functions of ABR and GM, shows the best performance. The ABR is
aware of a person’s historical activities but can not distinguish two trajecto-
ries with the same activity. On the other hand, the proposed generative model
ranks trajectories without any knowledge of their activities. The hybrid recom-
mendation method integrates both of their advantages, taking care of textual
information and the GPS traces. It can thus not only narrow down the range
of candidate trajectories but also distinguish those with the same activity tag.
This explains why the hybrid approach displays the best performance.

6 Conclusion

In this paper we studied the problem of trajectory recommendation. Each trajec-
tory usually consists a GPS trace and may contain an activity tag. A recommen-
dation service is supposed to find potentially interesting trajectories and push
them to particular people. We proposed a recommendation framework and divide
the task into three subproblems, i.e., feature extraction, user profile modeling
and trajectory ranking. Under this framework, we developed three recommen-
dation methods, namely, Activity-Based Recommendation (ABR), GPS-Based
Recommendation (GBR) and Hybrid recommendation. We conduct extensive
experiments to evaluate our solutions. For GPS feature, it is shown that the
combination of partial-view feature and entire-view feature achieves best per-
formance. As for the recommendation approach, the hybrid one that combines
ABR and GBR obtains highest precision and recall. In future work, we will focus
on ways of integrating travelogues, if available, into recommendation methods.
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Abstract. Learning low dimensional manifold from highly nonlinear
data of high dimensionality has become increasingly important for dis-
covering intrinsic representation that can be utilized for data visual-
ization and preprocessing. The autoencoder is a powerful dimensionality
reduction technique based on minimizing reconstruction error, and it has
regained popularity because it has been efficiently used for greedy pre-
training of deep neural networks. Compared to Neural Network (NN),
the superiority of Gaussian Process (GP) has been shown in model infer-
ence, optimization and performance. GP has been successfully applied
in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaus-
sian Process Latent Variable Model (GPLVM). In this paper we propose
the Gaussian Processes Autoencoder Model (GPAM) for dimensionality
reduction by extending the classic NN based autoencoder to GP based
autoencoder. More interestingly, the novel model can also be viewed
as back constrained GPLVM (BC-GPLVM) where the back constraint
smooth function is represented by a GP. Experiments verify the perfor-
mance of the newly proposed model.

Keywords: Dimensionality Reduction, Autoencoder, Gaussian Process,
Latent Variable Model, Neural Networks.

1 Introduction

Dimensionality Reduction (DR) aims to find the corresponding low dimensional
representation of data in a high-dimensional space without incurring significant
information loss and has been widely utilized as one of the most crucial pre-
processing steps in data analysis such as applications in computer vision [15].
Theoretically the commonly-faced tasks in data analysis such as regression, clas-
sification and clustering can be viewed as DR. For example, in regression, one
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tries to estimate a mapping function from an input (normally with high dimen-
sions) to an output space (normally with low dimensions).

Motivated by the ample applications, DR techniques have been extensively
studied in the last two decades. Linear DR models such as Principal Compo-
nent Analysis (PCA) and Linear Discriminant Analysis (LDA) may be the most
well-known DR techniques used in the settings of unsupervised and supervised
learning [2]. These methods aim to learn a linear mapping from high dimensional
observation to the lower dimension space (also called latent space). However, in
practical applications the high dimensional observed data often contain highly
nonlinear structures which violates the basic assumption of the linear DR models,
hence various non-linear DR models have been developed, such as Multidimen-
sional Scaling (MDS) [11], Isometric Mapping (ISOMAP) [19], Locally Linear
Embedding (LLE) [16], Kernel PCA (KPCA) [17], Gaussian Process Latent Vari-
able Model (GPLVM) [9], Relevance Units Latent Variable Model (RULVM) [6],
and Thin Plate Spline Latent Variable Model (TPSLVM) [7].

Among the above mentioned nonlinear DR approaches, the Latent Variable
Model (LVM) based DR models attract considerable attention due to their in-
tuitive explanation. LVM explicitly models the relationship between the high-
dimensional observation space and the low-dimensional latent space, thus it is
able to overcome the out-of-sample problems (projecting a new high-dimensional
sample into its low-dimensional representation) or pre-image problems (project-
ing back from the low-dimensional space to the observed data space). The linear
Probabilistic PCA (PPCA) [20] and GPLVM [9] may be the most well-known
LVM based DR techniques, where the mapping from the low dimensional latent
space (latent variables) to the high dimensional observation space (observed vari-
ables) is represented by a linear model and a nonlinear Gaussian Process (GP),
respectively. Since the nonlinear DR technique GPLVM performs very well in
many real-world data sets, this model has become popular in many applications,
such as movement modelling and generating [9]. Meanwhile, many GPLVM ex-
tensions have been developed to further improve performance. For instance, the
Gaussian Process Dynamical Model (GPDM) [22] allows modelling dynamics
in the latent space. The back constraint GPLVM (BC-GPLVM) was proposed
in [10] to maintain a smooth function from observed data points to the cor-
responding latent points thus enforcing the close observed data to be close in
latent space. Other extensions, such as Bayesian GPLVM, shared GPLVM and
supervised GPLVM which further extend the classical GPLVM to unsupervised
and supervised settings, can be referred to [4,21,8].

The autoencoder [3] can be regarded as an interesting DR model, although
originally it is a neural network (NN) architecture used to determine latent rep-
resentation for observed data. The idea of autoencoder is to resolve the latent
embedding within the hidden layer by training the NN to reproduce the input
observed data as its output. Intuitively this model consists of two parts: the
encoder which maps the input observed data to a latent representation, and the
decoder which reconstructs the input through a map from the latent represen-
tation to the observed input (also called output). Basically, the two mappings
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in the encoder and decoder are modelled by neural network (NN). Recently, au-
toencoder has regained popularity because it has been efficiently used for greedy
pre-training of deep neural network (DNN) [1].

The relationship between GP and NN was established by Neal [12], who
demonstrated that NN could become GP in the limit of infinite hidden units
and the model inference may be simpler. With specific covariance function (NN
covariance) [14], the back constraint GPLVM (BC-GPLVM) can be seen as
autoencoders[18], where the encoder is NN and the decoder is GP. The superi-
ority of GP over NN lies in small-scale model parameters, easy model inference
and training [12,14], and in many real-world applications GP outperforms NN.
Motivated by the comparison, we propose the Gaussian Processes Autoencoder
Model (GPAM), which can be viewed as BC-GPLVM where GP represents the
smooth mapping from latent space to observation space, and also as an au-
toencoder where both the encoder and decoder are GPs. It is expected that the
proposed GPAM will outperform typical GPLVM, BC-GPLVM and autoencoder
models.

The rest of the paper is organized as follows. In Section 2 we briefly review
the GP, GPLVM, and autoencoder models. The proposed Gaussian Processes
Autoencoder Model (GPAM) will be introduced in Section 3. Then, real-world
data sets are used to verify and evaluate the performance of the newly proposed
algorithm in Section 4. Finally, the concluding remarks and comments are given
in Section 5.

2 Related Works

In this and following section, we use the following notations: X = [x1, ...,xN ]T

are observed (inputs) data in a high dimensional space RD, i.e., xn ∈ RD;
Y = [y1, ...,yN ]T are observed (outputs or labels) data with each yn ∈ Rq; and
Z = [z1, ..., zN ]T are the so-called latent variables in a low dimensional spaceRp

with p � D where each zn is associated with xn. For the sake of convenience,
we also consider X as an N ×D matrix, Y an N × q and Z an N × p matrix.
We call D = {(xn,yn)}Nn=1 (or D = {xn}Nn=1 if no labels (outputs) given) the
observed dataset. Data items are assumed to be i.i.d. Let N (μ,Σ) denote the
Gaussian distribution with mean μ and covariance Σ.

2.1 Gaussian Process

Given a dataset D = {(x1,y1), · · · , (xN ,yN )} as defined above, the classical
Gaussian Process Regression (GPR) is concerned with the case when q = 1. It
aims to estimate the predictive distribution p(y|x∗) for any test data x∗. In the
classical GPR model, each sample yn is generated from the corresponding latent
functional variable g with independent Gaussian noise

y = g(x) + ε
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where g is drawn from a (zero-mean) GP which only depends on the covari-
ance/kernel function k(·, ·) defined on input space and ε is the additive Gaussian
noise with zero mean and covariance σ2.

Given a new test observation x∗, it is easy to prove that the predictive distri-
bution conditioned on the given observation is

g∗|x∗, X, Y ∼N (Kx∗X(KXX + σ2I)−1Y,

Kx∗x∗ −Kx∗X(KXX + σ2I)−1KXx∗) (2.1)

where Ks are the matrices of the covariance/kernel function values at the cor-
responding points X and/or x∗.

2.2 Gaussian Process Latent Variable Model (GPLVM)

Lawrence introduced GPLVM in [9], including the motivation of proposing the
GPLVM and the relationship between PPCA and GPLVM. Here we just review
GPLVM from the view of GP straightforwardly.

Given a high dimensional dataset D = {x1, ...,xN} ⊂ RD without any given
labels or output data. We aim to obtain the latent/unknown variables zn ∈ Rp

corresponding to each data item xn (n = 1, 2, ..., N). GPLVM [9] defines a
generative mapping from the latent variables zn to its corresponding observed
variables xn which is governed by a group of GPs xn = g(zn) + ε where g =
[g1, ..., gD]T is assumed to be a group ofD GPs, and ε is an independent Gaussian
noise with zero mean and covariance σ2I, which means the likelihood of the
observations is Gaussian

P (X |g, Z) =
N∏

n=1

N (xn|g(zn), σ
2I) (2.2)

Suppose that each GP gi (i = 1, ..., D) has the same covariance function
k(·, ·), then the data likelihood defined by equation (2.2) can be marginalized
with respect to the given GP priors over all gds, giving rise to the following
overall marginalized likelihood of the observations X

P (X |Z) =
1

(2π)DN/2|K|D/2
exp

(
−
1

2
tr(K−1XXT )

)
(2.3)

where K = KZZ + σ2I is the kernel matrix over latent variables Z.
The model learning is implemented by maximizing the above marginalized

data likelihood with respect to the latent variables Z and the parameters of the
kernel function k.

Although GPLVM provides a smooth mapping from latent space to the ob-
servation space, it does not ensure smoothness in the inverse mapping. This can
be undesirable because it only guarantees that samples close in latent space will
be close in data space, while points close in data space may be not close in
latent space. Besides, due to the lack of direct mapping from observation space
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to latent space the out-of-sample problem becomes complicated, meaning that
the latent representations of testing data must be optimized conditioned on the
latent embedding of the training examples [9]. In order to address this issue, the
back constraint GPLVM (BC-GPLVM) was proposed in [10]. The idea behind
this model is to constrain latent points to be a smooth function of the corre-
sponding data points, which forces points which are close in data space to be
close in latent space. The back constraint smooth function can be written by

zmn = fm(xn,α) (2.4)

where α are parameters of the smooth function. Typically, we can use a linear
model, a kernel based regression (KBR) model or a multi-layer perception (MLP)
model to represent this function. As the function fm is fully parameterized in
terms of a set of new parametersα, the learning process becomes an optimization
process aiming at maximizing the likelihood (2.3) w.r.t. the latent variables X
and parameters α.

2.3 Autoencoder

The autoencoder[3] is based on NN, which will be termed NNAM (NN Autoen-
coder Model) for short throughout the paper. Basically it is a three-layer NN
with one hidden layer where the input and output layers are the observation
data. Our goal is to find the latent representation over the hidden layer of the
model through minimizing reconstruction errors. The autoencoder model can be
separated into two parts: an encoder (mapping the input into latent represen-
tation) and a decoder (reproducing the input through a map from the latent
representation to input).

With the above notations, let’s define the encoder as a function z = f (x, θ,
and the decoder as a function x = g(z, γ). Given a high dimensional dataset
D = {x1, ...,xN} ⊂ RD, we jointly optimize the parameters of the encoder θ
and decoder γ by minimizing the least-squares reconstruction cost:

{θ, γ} = argmax
{θ,γ}

N∑
n=1

D∑
d=1

{
xdn − gd(f (xn, θ), γ)

}2
(2.5)

where gd(·) is the dth output dimension of g(·). When f and g are linear
transformations, this model is equivalent to PCA. However, nonlinear projec-
tions show a more powerful performance. This function is also called the ac-
tive function in NN framework. In this paper we use the sigmoidal function
f(x, θ) = (1 + exp(−xT θ))−1 as the active function. The model can be opti-
mized by gradient-based algorithms, such as scaled conjugate gradient (SCG).

3 Gaussian Processes Autoencoder Model

Based on the relationship between GP and NN, we introduce the detailed model
inference of Gaussian Processes Autoencoder Model (GPAM). The fundamental
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idea of this novel model is to use Gaussian Process (GP) to replace Neural
Networks (NN) that was originally used in autoencoder.

Given a high dimensional dataset D = {x1, ...,xN} ⊂ RD without any labels
or output data, where each sample xn is assumed to be associated with the la-
tent/unknown variables zn ∈ Rp (n = 1, 2, ..., N). Our goal is to find these latent
variables which should clearly show the intrinsic structures of the observation
data for data visualization or preprocessing.

The idea behind GPAM is to define a mapping from the observation variables
xn to the corresponding latent variables zn (encoder) and a mapping from the
latent variables zn to the corresponding observation variables xn (decoder) by
using Gaussian Processes Regressions (GPRs) defined as follows

z = f (x, θ) + ε1; x = g(z, γ) + ε2 (3.1)

where f = [f1, ..., fp]T and g = [g1, ..., gD]T are assumed to be two groups of p
and D GPs with hyperparameters θ and γ, respectively, and both ε1 and ε2 are
the independent Gaussian noises with zero mean and covariance σ2I. Thus it is
easy to see that the likelihood of the observations is Gaussian,

P (Z|f , X, θ) =

N∏
n=1

N (zn|f(xn), σ
2
1I); P (X |g, Z, γ) =

N∏
n=1

N (xn|g(zn), σ
2
2I)

Let’s further assume that both functions f and g are nonlinearly modelled
by GPs

P (f |X, θ) = N (f |0,KX,X); P (g|Z, γ) = N (g|0,KZ,Z) (3.2)

By marginalizing over the unknown functions f and g, we have

P (Z|X, θ) =
1

(2π)pN/2|KX |p/2
exp

{
−
1

2
tr(K−1

X ZZT )

}
(3.3)

P (X |Z, γ) =
1

(2π)DN/2|KZ |D/2
exp

{
−
1

2
tr(K−1

Z XXT )

}

with KX = KX,X + σ2
1I and KZ = KZ,Z + σ2

2I where KX,X and KZ,Z are the
covariance matrices defined over the input data X , and the latent variables Z,
respectively.

Furthermore, in order to do model inference let’s assume that the input X
of encoder function f is different from the output X of decoder function g,
which is rewritten by Xc. Thus the notation of marginal likelihood P (X |Z, γ)
can be changed to P (Xc|Z, γ). Based on the conditional independence prop-
erty of graphical model the posterior distribution over latent variables Z given
observation (X,Xc) can be derived as follows

P (Z|X,Xc, θ, γ) = P (Z|X, θ)P (Xc|Z, γ)/P (Xc|X, γ, θ) (3.4)
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In order to learn the unknown variables (Z, θ, γ), we maximize the log poste-
rior distribution P (Z|X,Xc, θ, γ) (3.4) w.r.t. (Z, θ, γ)

max
Z,θ,γ

{
logP (Z|X, θ) + logP (Xc|Z, γ)− logP (Xc|X, θ, γ)

}
(3.5)

For the sake of convenience, we simply denote the negative log posterior dis-
tribution P (Z|Y,X, θ, γ) by

L = Lr + Ll = − logP (Z|X, θ)− logP (Xc|Z, γ) (3.6)

=
1

2

{
pN log 2π + p log|KX |+ tr(K−1

X ZZT )

}
+

1

2

{
DN log 2π +D log|KZ |+ tr(K−1

Z XcX
T
c )

}
where P (Xc|X, θ, γ) has been omitted because it is irrelevant to Z.

The process of model training is equal to simultaneously optimizing a GPR
(corresponding to the encoder distribution P (Z|X, θ)) and a GPLVM (corre-
sponding to the decoder distribution P (Xc|Z, γ)). To apply a gradient based op-
timization algorithm like SCG algorithm to learn the parameters of the model,
we need to find out the gradient of L w.r.t. the latent variables Z, and the kernel
parameter (θ, γ).

Firstly for the part of GPR corresponding to P (Z|X, θ) we can simply obtain
the following gradients

∂Lr

∂Z
= K−1

X Z (3.7)

As for the parameter θ in kernel KX , since we consider the output of the
mapping z = f(x, θ) as the known quantity in the GPR model, the optimization
process is identical to the procedure of determining parameters for a typical
GPR model from training data. Thus we can derive the partial derivative of the

hyperparameter θ by chain rule (refer to Chapter 5 in [14])
∂Lr

∂θ
=

∂Lr

∂KX

∂KX

∂θ
.

Subsequently for the second part of GPLVM corresponding to P (Xc|Z, γ) it
is easy to evaluate the gradients of Ll w.r.t. the latent variables Z

∂Ll

∂Z
=

∂Ll

∂KZ

∂KZ

∂Z
(3.8)

where the gradients of log likelihood w.r.t. kernel matrix KZ is evaluated by

∂Ll

∂KZ
= K−1

Z −K−1
Z Y Y TK−1

Z . (3.9)

Similarly the gradient of Ll w.r.t. the hyperparameter γ can be calculated by

∂Ll

∂γ
=

∂Ll

∂KZ

∂KZ

∂γ
(3.10)



Gaussian Processes Autoencoder for Dimensionality Reduction 69

and the computation of the derivative of the kernel matrix w.r.t. the latent
variable Z and hyperparameter depend on a specific kernel function.

By combining equations (3.7) with equation (3.8) and (3.9), it is quite simple
to get the complete gradients of L w.r.t. the latent variables Z (∂L/∂Z). Once
we get all the derivative ready, the derivative based algorithms like SCG can
be utilized to iteratively optimize these parameters. However, when we perform
experiments, we find that the value of Lr (corresponding to the encoder distri-
bution P (Z|X, θ)) is much smaller than that of Ll (corresponding to the decoder
distribution P (Xc|Z, γ)), leading to very little performance improvement com-
pared to GPLVM. Thus we propose a novel algorithm to train the model based
on two-stage optimization; this is to say, we try to asynchronously optimize the
model consisting of GPR and GPLVM rather than simultaneously learn it. The
algorithm is detailed in Algorithm 1.

Algorithm 1. Train and Test GPAM

Input: High dimensional training inputs X ⊂ RD×N , pre-fixed latent dimensionality
p, number of training iterations T and testing inputs X∗ ⊂ RD×M .

Output: s = {Z,Z∗,θ,γ}.
1. Initialize Z = PPCA(X, p), θ and γ (depending on specific kernel function);
2. For i = 1:T{
3. Optimize {Zt, γ} = argmaxZ,γ logP (X|Zt−1, γ);

4. Optimize {Zt+1, θ} = argmaxZ,θ logP (Zt|X, θ);

5. Check converges: break if Error(Z) = ||Zt+1(:)− Zt(:)||2 � η}; //end loop
6. Compute latent variables Z∗ = Kx∗XK−1

X Z with learnt hyperparameters θ for
testing data X∗;

7. return s

To sum up, there are two ways to view the proposed GPAM. Firstly, it can
be seen as the generalization of classic NNAM. While GPAM makes use of GPR
model to encode and decode the data, NN is utilized to do encoding and decoding
in classic NNAM. Based on the superiority of GP over NN, we believe that the
proposed GPAM will outperform typical NNAM. Secondly, the proposed GPAM
can also be considered as the BC-GPLVM where the back constrain function is
modelled by GPR. Compared to classic BC-GPLVM, such as the KBR or MLP
based models, the smooth mapping from the observation space to the latent space
in the proposed GPAM is modelled by GPR, which results in better performance
than typical KBR and MLP based BC-GPLVM.

4 Experiments

In this section, we compare the proposed GPAM with original GPLVM [9], BC-
GPLVM [10] and NNAM [3], in two real-world tasks to show the better perfor-
mance that GPAM provides. In order to assess the performance of these models
in visualizing high dimensional data sets, we perform dimensionality reduction
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by using a 2D latent space for visualization. Moreover, the nearest neighbour
classification error is tested in the low dimensional latent space to objectively
evaluate the quality of visualization for training data. After the DR models are
learnt, we further use them as feature extraction, followed by a k-Nearest Neigh-
bour (kNN) classifier for testing data. Of course we can use other classifier such
as GP Classifier (GPC) rather than a simple kNN to classify the testing data,
but the final goal is to reduce the dimensionality of the observation, and the
learnt low-dimensional data would be utilized for other proposes, such as data
visualization and compression, so the simple kNN classifier is better to evaluate
the quality of DR models. By comparing the classification accuracies in low di-
mensional latent space for testing data, we demonstrate the improvement of the
proposed model again. The experimental results verify that the proposed GPAM
is an efficient DR model and outperforms GPLVM, BC-GPLVM and NNAM.

For a fair comparison, we ran 500 iterations for all the models, and the co-
variance used for GPLVM, BC-GPLVM and GPAM was optimally selected from
RBF(ARD), POLY(ARD), and MLP(ARD) in Neil D. Lawrence’s MATLAB
packages Kern. The back constraint function of BC-GPLVM is manually picked
from KBR and MLP. The code GPLVM/BC-GPLVM and NNAM are based
on Neil D. Lawrence’s MATLAB packages FGPLVM1, and R. B. Palm’s Deep

Learning Toolbox2 [13], respectively. Since the learning rate of NNAM needs
to be selected manually, we varied it between 0.1 and 10 optimally with sigmoidal
active function.

4.1 Oil Flow Data

The oil flow data set [17] consists of 12 dimensional measurements of oil flow
within a pipeline. There are 3 phases of flow associated with the data and 1000
samples in the data set. For all four models, we use 600 samples (200 points
from each class) to learn the corresponding 2D latent data for the purpose of
data visualization, and the remaining 400 samples are the testing data. RBF
covariance function is used for GPLVM/BC-GPLVM (MLP back-constraint) and
GPAM (RBF covariance for both GPR and GPLVM in the model). As can be
seen from Figure 1, the proposed GPAM is superior to GPLVM/BC-GPLVM
and NNAM remarkably because the novel model makes the points in the latent
space which belong to the same class in the original feature space much closer
than the rest of three models.

Furthermore, in order to objectively evaluate the new DR technique we com-
pare the nearest neighbour errors and the classification accuracies based on kNN
classifier in the learnt 2D latent space provided by the four models on this data
set, respectively. All the four DR models are firstly learnt from training data
with the 2D latent space corresponding to the training data where the nearest
neighbour errors are evaluated, and then based on the trained four DR models
the testing data will be projected to the low dimensional latent/feature space

1 http://ml.sheffield.ac.uk/~neil/fgplvm
2 https://github.com/areslp/matlab/tree/master/DeepLearnToolbox-master

http://ml.sheffield.ac.uk/~neil/fgplvm
https://github.com/areslp/matlab/tree/master/DeepLearnToolbox-master
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(2D in our experiments) where kNN is performed to compare the testing accu-
racies (K = 10 in kNN). Table I tells us that the proposed GPAM outperforms
GPLVM/BC-GPLVM and NNAM in terms of nearest neighbour errors and clas-
sification accuracies for training and testing data respectively, which verifies that
the novel DR model is better than the other three techniques.
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Fig. 1. Oil data set is visualized by GPLVM, BC-GPLVM, NNAM and GPAM

Table 1. The comparisons of nearest neighbor classification errors for training data
and kNN classification accuracies for testing data in oil flow data

GPLVM BC-GPLVM NNAM GPAM

NN Error 8 16 108 5
kNN Accuracy 96.75% 97.00% 90.50% 99.25%

4.2 Iris Data

The Iris data set [5] contains three classes of 50 instances each, where each
class refers to a type of iris plant. There are four features for each instance.
All 150 data points are utilized to learn the 2D latent space. POLY covariance
achieves the best results than the other two covariance functions (RBF and MLP)
for GPLVM/BC-GPLVM (MLP back-constraint) and GPAM (POLYARD and
POLY covariances for GPR and GPLVM respectively). Figure 2 and Table II
show the same conclusion as stated for the oil flow data set. Since there is no
more testing data for this data set, the classification comparison for testing is
not given.
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Fig. 2. Iris data set is visualized by GPLVM, BC-GPLVM, NNAM and GPAM
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Table 2. The comparisons of nearest neighbour classification errors for training data
in iris data

GPLVM BC-GPLVM NNAM GPAM

NN Error 4 5 17 3

As for the model complexity, we have to admit that the training algorithm of
GPAM is time-consuming compared to GPLVM, BC-GPLVM and NNAM due
to the two-stage optimization. However, in the testing step GPAM is as fast as
BC-GPLVM and NNAM without iterative optimization like classical GPLVM.

5 Conclusion

In this paper a novel LVM-based DR technique, termed Gaussian Processes
Autoencoder Model (GPAM), has been introduced. It can be seen as the gen-
eralization of classic Neural Network Autoencoder Model (NNAM) model by
replacing the NNs with GPs, leading to simpler model inference and better per-
formance. Also, we can view the new model as the back constraint GPLVM
where the smooth back constraint function is represented by GP, and the model
is trained by minimizing the reconstruction error. The experimental results have
demonstrated the performance of the newly developed model.

For the future work, inspired by recent works in deep learning [1] we will ex-
tend the GP Autoencoder to sparse and denoising GP Autoencoder models, and
then we also want to study the deep GP model by stacking the GP Autoencoder.
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Abstract. In multimedia annotation, labeling a large amount of train-
ing data by human is both time-consuming and tedious. Therefore, to
automate this process, a number of methods that leverage unlabeled
training data have been proposed. Normally, a given multimedia sam-
ple is associated with multiple labels, which may have inherent correla-
tions in real world. Classical multimedia annotation algorithms address
this problem by decomposing the multi-label learning into multiple in-
dependent single-label problems, which ignores the correlations between
different labels. In this paper, we combine label correlation mining and
semi-supervised feature selection into a single framework. We evaluate
performance of the proposed algorithm of multimedia annotation using
MIML, MIRFLICKR and NUS-WIDE datasets. Mean average precision
(MAP), MicroAUC and MacroAUC are used as evaluation metrics. Ex-
perimental results on the multimedia annotation task demonstrate that
our method outperforms the state-of-the-art algorithms for its capability
of mining label correlations and exploiting both labeled and unlabeled
training data.

Keywords: Semi-supervised Learning, Multi-label Feature Selection,
Multimedia Annotation.

1 Introduction

With the booming of social networks, such as Facebook and Flickr, we have
witnessed a dramatical growth of multimedia data, i.e. image, text and video.
Consequently, there are increasing demands to effectively organize and access
these resources. Normally, feature vectors, which are used to represent afore-
mentioned resources, are usually very large. However, it has been pointed out
in [1] that only a subset of features carry the most discriminating information.
Hence, selecting the most representative features plays an essential role in a
multi-media annotation framework. Previous works [2,3,4,5] have indicated that
feature selection is able to remove redundant and irrelevant information in the
feature representation, thus improves subsequent analysis tasks.

Existing feature selection algorithms are designed in various ways. For exam-
ple, conventional feature selection algorithms, such as Fisher Score [6], compute
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weights of all features, rank them accordingly and select the most discriminating
features one by one. While dealing with multi-label problems, the conventional
algorithms generally transform the problem into a couple of binary classification
problems for each concept respectively. Hence, feature correlations and label
correlations are ignored [7], which will deteriorate the subsequent annotation
performance.

Another limitation is that they only use labeled training data for feature se-
lection. Considering that there are a large number of unlabeled training data
available, it is beneficial to leverage unlabeled training data for multimedia an-
notation. Over recent years, semi-supervised learning has been widely studied
as an effective tool for saving labeling cost by using both labeled and unlabeled
training data [8,9,10]. Inspired by this motivation, feature learning algorithms
based on semi-supervised framework, have been also proposed to overcome the
insufficiency of labeled training samples. For example, Zhao et al. propose an
algorithm based on spectral analysis in [5]. However, similarly to Fisher Score
[6], their method selects the most discriminating features one by one. Besides,
correlations between labels are ignored.

Our semi-supervised feature selection algorithm integrates multi-label feature
selection and semi-supervised learning into a single framework. Both labeled and
unlabeled data are utilized to select features while label correlations and feature
correlations are simultaneously mined.

The main contributions of this work can be summarized as follows:

1. We combine joint feature selection with sparsity and semi-supervised learn-
ing into a single framework, which can select the most discriminating features
with an insufficient amount of labeled training data.

2. The correlations between different labels are taken into account to facilitate
the feature selection.

3. Since the objective function is non-smooth and difficult to solve, we propose
a fast iteration algorithm to obtain the global optima. Experimental results
on convergence validates that the proposed algorithm converges within very
few iterations.

The rest of this paper is organized as follows. In Section 2, we introduce
details of the proposed algorithm. Experimental results are reported in Section
3. Finally, we conclude this paper in Section 4.

2 Proposed Framework

To mine correlations between different labels for feature selection, our algorithm
is built upon a reasonable assumption that different class labels have some in-
herent common structures. In this section, our framework is described in details,
followed by an iterative algorithm with guaranteed convergence to optimize the
objective function.



76 X. Chang et al.

2.1 Formulation of Proposed Framework

Let us define X = {x1, x2, · · · , xn} as the training data matrix, where xi ∈
Rd(1 ≤ i ≤ n) is the i-th data point and n is the total number of training data.
Y = [y1, y2, · · · , ym, ym+1, · · · , yn]T ∈ {0, 1}n×c denotes the label matrix and c
is the class number. yi ∈ Rc (1 ≤ i ≤ n) is the label vector with c classes. Yij

indicates the j-th element of yi and Yij := 1 if xi is in the j-th class, and Yij := 0
otherwise. If xi is not labeled, yi is set to a vector with all zeros. Inspired by [11],
we assume that there is a low-dimensional subspace shared by different labels.
We aim to learn c prediction functions {ft}ct=1. The prediction function ft can
be generalized as follows:

ft(x) = vTt x+ pTt Q
Tx = wT

t x, (1)

where wt = vt+Qpt. v and p are the weights, Q is a transformation matrix which
projects features in the original space into a shared low-dimensional subspace.

Suppose there are mt training data {xi}mt

i=1 belonging to the t-th class labeled
as {yi}mt

i=1. A typical way to obtain the prediction function ft is to minimize the
following objective function:

arg min
ft,QTQ=I

c∑
t=1

(
1

mt

mt∑
i=1

loss(ft(xi), yi) + βΩ(ft)) (2)

Note that to make the problem tractable we impose the constraint QTQ = I.
Following the methodology in [2], we incorporate (1) into (2) and obtain the
objective function as follows:

min
{vt,pt},QTQ=I

c∑
t=1

(
1

mt

mt∑
i=1

loss((vt +Qpt)
Txi, yi) + βΩ({vt, pt})) (3)

By defining W = V + QP , where V = [v1, v2, · · · , vc] ∈ Rd×c and P =
[p1, p2, · · · , pc] ∈ Rsd×c where sd is the dimension of shared lower dimensional
subspace, we can rewrite the objective function as follows:

min
W,V,P,QTQ=I

loss(WTX,Y ) + βΩ(V, P ) (4)

Note that we can implement the shared feature subspace uncovering in differ-
ent ways by adopting different loss functions and regularizations. Least square
loss is the most widely used in research for its stable performance and simplicity.
By applying the least square loss function, the objective function arrives at:

arg min
W,P,QT Q=I

‖XTW − Y ‖2F + α‖W‖2F + β‖W −QP‖2F (5)

As indicated in [12], however, there are two issues worthy of further consid-
eration. First, the least square loss function is very sensitive to outliers. Second,
it is beneficial to utilize sparse feature selection models on the regularization
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term for effective feature selection. Following [12,13,14], we employ l2,1-norm to
handle the two issues. We can rewrite the objective function as follows:

arg min
W,P,QTQ=I

‖XTW − Y ‖2F + α‖W‖2,1 + β‖W −QP‖2F (6)

Meanwhile, we define a graph Laplacian as follows: First, we define an affinity
matrix A ∈ Rn×n whose element Aij measures the similarity between xi and xj
as:

Aij =

{
1, xi and xj are k nearest neighbours;
0, otherwise.

(7)

Euclidean distance is utilized to measure whether two data points xi and xj are
k nearest neighbours in the original feature space. Then, the graph Laplacian,
L, is computed according to L = S − A, where S is a diagonal matrix with
Sii =

∑n
j=1 Aij .

Note that multimedia data have been normally shown to process a manifold
structure, we adopt manifold regularization to explore it. By applying mani-
fold regularization to the aforementioned loss function, our objective function
arrives at:

arg min
W,P,QTQ=I

Tr(WTXLXTW ) + γ[α‖W‖2,1

+β‖W −QP‖2F + ‖XTW − F‖2F ]
(8)

We define a selecting diagonal matrix U whose diagonal element Uii = ∞, if xi
is a labeled data, and Uii = 0 otherwise. To exploit both labeled and unlabeled
training data, a label prediction matrix F = [f1, · · · , fn]T ∈ Rn×c is introduced
for all the training data. The label prediction of xi ∈ X is fi ∈ Rc. Following [5],
we assume that F holds smoothness on both the ground truth of training data
and on the manifold structure. Therefore, F can be obtained as follows:

argmin
F

tr(FTLF ) + tr((F − Y )TU(F − Y )). (9)

By incorporating (9) into (6), the objective function finally becomes:

arg min
F,W,P,QTQ=I

tr(FTLF ) + tr(F − Y )TU(F − Y )

+γ[α‖W‖2,1 + β‖W −QP‖2F + ‖XTW − F‖2F ]
(10)

As indicated in [13], W is guaranteed to be sparse to perform feature selection
across all data points by ‖W‖2,1 in our regularization term.

2.2 Optimization

The proposed function involves the l2,1-norm, which is difficult to solve in a
closed form. We propose to solve this problem in the following steps. By setting
the derivative of (10) w.r.t. P equal to zero, we have

P = QTW (11)
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By denoting W = [w1, . . . , wd]T , the objective function becomes

arg min
F,W,P,QTQ=I

tr(FTLF ) + tr(F − Y )TU(F − Y )

+γ[αtr(WTDW ) + β‖W −QP‖2F + ‖XTW − F‖2F ],
(12)

where D is a matrix with its diagonal elements Dii =
1

2‖wi‖2
.

Note that for any given matrix A, we have ‖A‖2F = tr(ATA). Substituting P
in (10) by (11), we can rewrite the objective function as follows:

arg min
F,W,QTQ=I

tr(FTLF ) + tr((F − Y )TU(F − Y ))

+γ[αtr(WTDW ) + βtr((W −QQTW )T (W −QQTW ))

+‖XTW − F‖2F ],

(13)

According to the equation (I −QQT )(I −QQT ) = (I −QQT ), we have:

arg min
F,W,QTQ=I

tr(FTLF ) + tr((F − Y )TU(F − Y ))

+γ(‖XTW − F‖2F + tr(WT (αD + βI − βQQT )W ))
(14)

By the setting the derivative w.r.t. W to zero, we have:

W = (M − βQQT )−1XF (15)

where M = XXT + αD + βI.
Then the objective function becomes:

arg min
F,QTQ=I

tr(FTLF ) + tr((F − Y )TU(F − Y ))

+γ[tr(FTF )− tr(FTXT (M − βQQT )−1XF ]
(16)

By setting the derivative w.r.t. F to zero, we have:

LF + U(F − Y ) + γF − γXT (M − βQQT )−1XF = 0 (17)

Thus, we have
F = (B − γXTR−1X)−1UY, (18)

where
B = L+ U + γI (19)

R = M − βQQT . (20)

Then, the objective function can be written as

max
QTQ=I

tr[Y TU(B − μXTR−1X)−1UY ]. (21)

According to the Sherman-Woodbury-Morrison matrix identity,

(B − γXTR−1X)−1 = B−1 + γB−1XT (R− γXB−1XT )−1XB−1. (22)
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Thus, the objective function arrives at

max
QTQ=I

tr[Y TUB−1XTJ−1XB−1UY ], (23)

where
J = (R − μXB−1XT ) = (M − βQQT − γXB−1XT ). (24)

Theorem 1. The global optimization Q∗ can be obtained by solving the following
ratio trace maximization problem:

maxQTQ=I tr[(Q
TCQ)−1QTDQ], (25)

where
C = I − β(XXT + αD + βI − γXB−1XT )−1 (26)

D = N−1XB−1UY Y TUB−1XTN−1. (27)

Proof. See Appendix.

To obtainQ, we need to conduct eigen-decomposition of C−1D, which is O(d3)
in complexity. However, as the solution of Q requires the input of D which is
obtained according to W , it is still not straightforward to obtain Q and W . So as
shown in Algorithm 1, we propose an iterative approach to solve this problem.

The proposed iterative approach in Algorithm 1 can be verified to converge
to the optimal W by the following theorem. Following the work in [12], we can
prove the convergence of Algorithm 1.

3 Experiments

In this section, experiments are conducted on three datasets, i.e. MIML [16],
MIRFLICKR [17] and NUS-WIDE [18] to validate performance of the proposed
algorithm.

3.1 Compared Methods

To evaluate performances of the proposed method, we compare it with the fol-
lowing algorithms:

1. All features [All-Fea]: We directly use the original data for annotation with-
out feature selection as a baseline.

2. Fisher Score [F-score] [6]: This is a classical method, which selects the most
discriminative features by evaluating the importance of features one by one.

3. Feature Selection via Joint l2,1-Norms Minimization [FSNM] [3]: This algo-
rithm utilizes joint l2,1-norm minimization on both loss function and regu-
larization for joint feature selection.

4. Spectral Feature Selection [SPEC] [15]: It employs spectral regression to
select features one by one.
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Algorithm 1. The algorithm for solving the objective function

Data: The training data X ∈ Rd×n

The training data labels Y ∈ Rn×c

Parameters γ, α and β
Result:

Optimized W ∈ Rd×c

1 Compute the graph Laplacian matrix L ∈ Rn×n ;
2 Compute the selection matrix U ∈ Rn×n;

3 Set t = 0 and initialize W0 ∈ Rd×c randomly;
4 repeat
5 Compute the diagonal matrix Dt as:

6 Dt =

⎡⎢⎢⎣
1

2‖w1
t ‖2

. . .
1

2‖wd
t ‖2

⎤⎥⎥⎦
7 Compute C according to C = I − β(XXT + αD + βI − γXB−1XT )−1.

8 Compute D according to D = N−1XB−1UY Y TUB−1XTN−1.
9 Compute the optimal Q∗ according to Theorem 1.

10 Compute W according to W = (M − βQQT )−1XF .

11 until Convergence;
12 Return W ∗.

5. Sub-Feature Uncovering with Sparsity [SFUS] [12]: It incorporates the lat-
est advances in a joint, sparse feature selection with multi-label learning to
uncover a feature subspace which is shared among different classes.

6. Semi-supervised Feature Selection via Spectral Analysis [sSelect] [5]: It is
semi-supervised feature selection approach based on spectral analysis.

3.2 Dataset Description

Three datasets, i.e., MIML [16] Mflickr [17] and NUS-WIDE [18] are used in the
experiments. A brief description of the three datasets is given as follows.

MIML: This image dataset consists of 2, 000 natural scene images. Each
image in this dataset is artificially marked with a set of labels. Over 22% of the
dataset belong to more than one class. On average, each image has 1.24 class
labels.

MIRFLICKR: The MIRFLICKR image dataset consists of 25 000 images
collected from Flickr.com. Each image is associated with 8.94 tags. We choose
33 annotated tags in the dataset as the ground truth.

NUS-WIDE: The NUS-WIDE image dataset has 269, 000 real-world images
which are collected from Flickr by Lab for Media Search in the National Univer-
sity of Singapore. All the images have been downloaded from the website, among
which 59, 563 images are unlabeled. By removing unlabeled images, we use the
remaining 209, 347 images, along with ground-truth labels in the experiments.
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Table 1. Settings of the Training Sets

Dataset Size(n) Labeled Training Data (m) Number of Selected Features

MIML 1, 000 5× c, 10× c, 15× c {200, 240, 280, 320, 360, 400}
NUS-WIDE 10, 000 5× c, 10× c, 15× c {240, 280, 320, 360, 400, 440, 480}

Mflickr 10, 000 5× c, 10× c, 15× c {200, 240, 280, 320, 360, 400}

3.3 Experimental Setup

In the experiment, we randomly generate a training set for each dataset con-
sisting of n samples, among which m samples are labeled. The detailed settings
are shown in Table 1. The remaining data are used as testing data. Similar to
the pipeline in [2], we randomly split the training and testing data 5 times and
report average results. The libSVM [19] with RBF kernel is applied in the ex-
periment. The optimal parameters of the SVM are determined by grid search
on a tenfold crossvalidation. Following [2], the graph Laplacian, k is set as 15.
Except for the SVM parameters, the regularization parameters, γ, α and β, in
the objective funciton (10), are tuned in the range of {10−4, 10−2, 100, 102, 104}.
The number of selected features can be found in Table 1.

3.4 Performance Evaluation

Tables 2, 3 and 4 present experimental results measured by MAP, MicroAUC
and MacroAUC when using different numbers of labeled training data (5 × c,
10× c and 15× c) respectively.

Taking MAP as an example, it is observed that: 1) The proposed method
is better than All-Fea which does not apply feature selection. Specifically, the
proposed algorithm outperforms All-Fea by about 5.5% using 10 × c labeled
training data in the MIML dataset, which indicates that feature selection can
contribute to annotation performance. 2) Our method has consistently better
performances than the other supervised feature selection algorithms. When using
5×c labeled training data in the MIML dataset, the proposed algorithm is better
than the second best supervised feature selection algorithm by 3.8%. 3) The
proposed algorithm gets better performances than the compared semi-supervised
feature selection algorithm, which demonstrates that mining label correlations
is beneficial to multimedia annotation.

Table 2. Performance Comparison(±Standard Deviation(%)) when 5 × c data are
labeled

Dataset Criteria All-Fea F-Score SPEC FSNM SFUS sSelect Ours

MIML
MAP

MicroAUC
MacroAUC

26.1 ± 0.1
54.6 ± 0.1
52.4 ± 0.3

26.9 ± 0.2
54.4 ± 0.2
52.6 ± 0.4

26.1 ± 0.2
54.6 ± 0.2
52.4 ± 0.2

26.1 ± 0.3
54.6 ± 0.2
52.4 ± 0.2

26.2 ± 0.2
54.7 ± 0.1
52.6 ± 0.3

28.9 ± 0.3
55.1 ± 0.2
53.1 ± 0.4

31.4± 0.1
55.8± 0.2
54.4± 0.2

NUS
MAP

MicroAUC
MacroAUC

5.8 ± 0.2
86.4 ± 0.4
64.0 ± 0.4

5.4 ± 0.1
86.1 ± 0.1
63.7 ± 0.2

5.9 ± 0.2
86.5 ± 0.3
64.2 ± 0.4

5.8 ± 0.3
87.2 ± 0.2
64.4 ± 0.3

6.0 ± 0.2
87.4 ± 0.4
64.9 ± 0.2

6.4 ± 0.3
87.9 ± 0.3
65.5 ± 0.3

7.1± 0.2
89.1± 0.2
66.3± 0.2

Mflickr
MAP

MicroAUC
MacroAUC

12.2 ± 0.2
75.2 ± 0.2
50.3 ± 0.3

12.2 ± 0.3
75.1 ± 0.3
50.3 ± 0.4

12.3 ± 0.2
75.4 ± 0.3
50.4 ± 0.3

12.3 ± 0.2
75.3 ± 0.4
50.5 ± 0.2

12.4 ± 0.3
75.5 ± 0.2
50.7 ± 0.4

13.6 ± 0.2
76.1 ± 0.3
51.3 ± 0.3

15.8± 0.1
77.3± 0.1
52.6± 0.2
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Table 3. Performance Comparison(±Standard Deviation(%)) when 10 × c data are
labeled

Dataset Criteria All-Fea F-Score SPEC FSNM SFUS sSelect Ours

MIML
MAP

MicroAUC
MacroAUC

31.6 ± 0.3
59.3 ± 0.4
62.0 ± 0.3

33.0 ± 0.2
58.9 ± 0.3
61.0 ± 0.2

31.6 ± 0.2
59.3 ± 0.2
62.0 ± 0.2

31.6 ± 0.3
59.4 ± 0.3
62.0 ± 0.1

33.0 ± 0.1
59.8 ± 0.2
62.0 ± 0.2

35.2 ± 0.2
60.4 ± 0.2
62.6 ± 0.2

37.1± 0.1
61.7± 0.2
63.7± 0.2

NUS
MAP

MicroAUC
MacroAUC

6.6 ± 0.2
87.3 ± 0.3
67.5 ± 0.4

6.0 ± 0.1
87.2 ± 0.2
67.4 ± 0.3

6.5 ± 0.2
87.4 ± 0.5
67.7 ± 0.4

6.4 ± 0.3
87.3 ± 0.2
67.6 ± 0.2

7.0 ± 0.2
87.6 ± 0.3
67.9 ± 0.3

6.9 ± 0.3
88.2 ± 0.3
68.2 ± 0.4

8.0± 0.2
89.5± 0.3
69.4± 0.3

Mflickr
MAP

MicroAUC
MacroAUC

12.8 ± 0.3
78.1 ± 0.2
55.1 ± 0.3

12.6 ± 0.2
78.2 ± 0.3
55.3 ± 0.2

12.3 ± 0.2
78.1 ± 0.2
55.2 ± 0.4

12.4 ± 0.3
78.4 ± 0.3
55.4 ± 0.3

12.9 ± 0.2
78.4 ± 0.2
55.6 ± 0.2

14.2 ± 0.3
78.8 ± 0.3
56.4 ± 0.4

16.1± 0.2
80.0± 0.1
57.3± 0.2

Table 4. Performance Comparison(±Standard Deviation(%)) when 15 × c data are
labeled

Dataset Criteria All-Fea F-Score SPEC FSNM SFUS sSelect Ours

MIML
MAP

MicroAUC
MacroAUC

33.0 ± 0.2
63.4 ± 0.4
62.3 ± 0.3

34.7 ± 0.1
63.3 ± 0.3
62.5 ± 0.2

33.0 ± 0.2
63.5 ± 0.1
62.3 ± 0.2

33.5 ± 0.3
63.4 ± 0.3
62.3 ± 0.4

34.1 ± 0.1
63.7 ± 0.2
62.5 ± 0.2

35.8 ± 0.2
64.2 ± 0.3
63.1 ± 0.3

37.9± 0.1
65.1± 0.2
64.2± 0.1

NUS
MAP

MicroAUC
MacroAUC

6.9 ± 0.1
89.4 ± 0.2
69.2 ± 0.3

6.5 ± 0.3
89.1 ± 0.3
69.1 ± 0.2

6.8 ± 0.2
89.5 ± 0.2
69.3 ± 0.1

6.9 ± 0.2
89.8 ± 0.4
69.5 ± 0.3

7.3 ± 0.3
90.1 ± 0.3
69.7 ± 0.5

7.4 ± 0.3
90.7 ± 0.4
70.2 ± 0.3

8.5± 0.2
91.9± 0.4
71.5± 0.5

Mflickr
MAP

MicroAUC
MacroAUC

13.0 ± 0.2
79.2 ± 0.3
58.7 ± 0.4

12.9 ± 0.1
79.1 ± 0.3
58.5 ± 0.3

12.9 ± 0.1
79.2 ± 0.2
58.8 ± 0.2

12.8 ± 0.2
79.2 ± 0.4
59.1 ± 0.3

13.1 ± 0.3
79.5 ± 0.2
58.6 ± 0.3

14.8 ± 0.2
80.2 ± 0.4
59.9 ± 0.2

16.7± 0.4
81.6± 0.2
60.4± 0.3

3.5 Convergence Study

In this section, an experiment is conducted to validate that our proposed iterative
algorithm monotonically decreases the objective function until convergence. 10×
c labeled training data in MIML dataset are tested in this experiment. γ, α and
β are fixed at 1 which is the median value of the tuned range of the parameters.

Fig. 1. Convergence
Fig. 2. Influence of selected feature
number

Figure 1 shows the convergence curve of the proposed algorithm w.r.t. the
objective function value in (10) on the MIML dataset. It is observed that the
objective function values converge within 4 iterations.
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3.6 Influence of Selected Features

In this section, an experiment is conducted to study how the number of selected
features affect the performance of the proposed algorithm. Following the above
experiment, we still use the same setting.

Figure 2 shows MAP varies w.r.t. the number of selected features. We can
observe that: 1) When the number of selected features is relatively small, MAP
of annotation is quite small. 2) When the number of selected features rises to
280, MAP increases from 0.269 to 0.284. 3) When we select 280 features, MAP
arrives at the peak level. 4) MAP keeps stable when we increase the number
of selected features from 320 to full features. From this figure, feature selection
benefits to the annotation performance.

3.7 Parameter Sensitivity Study

Another experiment is conducted to test the sensitivity of parameters in (10).
Among different parameter combinations, the proposed algorithm gains the best
performance when γ = 101, α = 104 and β = 102. We show the MAP variations
w.r.t. γ, α and β. From Figure 3, we notice that the performance of the proposed
algorithm changes corresponding to different parameters. In summary, better
results are obtained when α, β and γ are in the range of [10−2, · · · , 102].
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Fig. 3. The MAP variations of different parameter settings using the MIML dataset

4 Conclusion

In this paper, we have proposed a novel framework for semi-supervised feature
analysis by mining label correlation. First, our method simultaneously discov-
ers correlations between labels in a shared low-dimensional subspace to improve
the annotation performance. Second, to make the classifier robust for outliers,
l2,1-norm is applied to the objective function. Third, this framework is extended
into a semi-supervised scenario which exploits both labeled and unlabeled data.
We evaluate the performance of a multimedia annotation task on three differ-
ent datasets. Experimental results have demonstrated that the proposed algo-
rithm consistently outperforms the other compared algorithms on all the three
datasets.
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Appendix

In this appendix, we prove Theorem 1.
To prove Theorem 1, we first give the following lemma and prove it.

Lemma 1. With the same notations in the paper, we have the following equation:

(R− γXB−1XT )−1 = N−1 + βN−1Q(QT (I − βN−1)Q)−1QTN−1, (28)

where

N = M − γXB−1XT . (29)

Proof.

(R − γXB−1XT )−1

=(M − βQQT − γXB−1XT )−1

=N−1 + βN−1Q(I − βQTN−1Q)−1QTN−1

=N−1 + βN−1Q(QT (I − βN−1)Q)−1QTN−1

Proof of Theorem 1

Proof. From Eq. (29), we can tell that N is independent from Q. By employing
Lemma 1, the objective function arrives at:

max
QTQ=I

tr[Y TUB−1XTN−1Q(QTKQ)−1QTN−1XB−1UY ], (30)

where K = I − βN−1. At the same time, we have:

N−1 = (M − γXB−1XT )−1 = (XXT + (α+ β)I − γX(L+ U + γI)−1XT )−1.

Thus, K = I − βN−1 = C. According to the property of trace operation that
tr(UV ) = tr(V U) for any arbitrary matrices U and V , the objective function
can be rewritten as:

max
QTQ=I

tr[QTN−1XB−1UY Y TUB−1XTN−1Q(QTKQ)−1].

The objective function is equivalent to:

max
QTQ=I

tr[(QTCQ)−1QTDQ].
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Abstract. Averaged One-Dependence Estimators (AODE) is a popu-
lar and effective approach to Bayesian learning. In this paper, a new
attribute selection approach is proposed for AODE. It can search in a
large model space, while it requires only a single extra pass through the
training data, resulting in a computationally efficient two-pass learning
algorithm. The experimental results indicate that the new technique sig-
nificantly reduces AODE’s bias at the cost of a modest increase in train-
ing time. Its low bias and computational efficiency make it an attractive
algorithm for learning from big data.

Keywords: Classification, Naive Bayes, AODE, Semi-naive Bayes,
Attribute Selection.

1 Introduction

Naive Bayes (NB) [1] is a simple, computationally efficient probabilistic approach
to classification learning. It assumes that all attributes are conditionally inde-
pendent of each other given the class. As an improvement to NB, Averaged
One-Dependence Estimators (AODE) [2] relaxes the attribute independence as-
sumption by averaging all models that assume all attributes are conditionally
dependent on the class and one common attribute, known as the super-parent.
This often improves the classification performance significantly. An extensive
comparative study [3] shows that AODE obtains significant lower error rates
than most alternative semi-naive Bayes algorithms with similar computational
complexity. One of the attractive features of AODE is that it has complexity
linear with respect to data quantity, making it a useful approach for big data.

Attribute selection has been demonstrated to be effective at improving the
accuracy of AODE [4,5]. However, the most effective conventional attribute se-
lection techniques have high computational complexity and hence are not feasible
in the context of big data. In this paper we develop an efficient attribute selec-
tion algorithm for AODE that is linear with respect to data quantity, and of
low polynomial complexity in the number of attributes and hence well suited to

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 86–97, 2014.
c© Springer International Publishing Switzerland 2014
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big data. The empirical results show that this technique obtains lower bias than
AODE, and thus usually achieves lower error on larger data sets, at the cost of
only a modest increase in training time.

2 Background

The classification task can be described as follows, given a training sample T
of t classified objects, we are required to predict the probability P(y | x) that a
new example x = 〈x1, . . . , xa〉 belongs to some class y, where xi is the value of
the attribute xi and y ∈ {c1, . . . , ck}.

In the following sections, we describe AODE for this classification task and a
number of its key variants.

2.1 AODE

From the definition of conditional probability, we have P(y | x) = P(y,x)/P(x) .

As P(x) =
∑k

i=1 P(ci,x) and y ∈ {c1, . . . , ck}, it is reasonable to consider P(x)
as the normalizing constant and estimate only the joint probability P(y,x) in
the remainder of this paper.

Since the example x does not appear frequently enough in the training data,
we cannot directly derive an accurate estimate of P(y,x) and must extrapolate
this estimate from observations of lower-dimensional probabilities in the data
[6]. Applying the definition of conditional probabilities again, we have P(y,x) =
P(y)P(x | y) . The first term P(y) on the right side can be sufficiently accurately
estimated from the sample frequencies, if the number of classes, k, is not too
large. For the second term P(x | y), AODE assumes every attribute depends
on the same parent attribute, the super-parent, thus obtains an one-dependence
estimator (ODE), and then averages all eligible ODEs [2]. The joint probability
P(y,x) is estimated as follows,

P̂(y,x) =

∑
i:1≤i≤a∧F(xi)≥m P̂(y, xi)

∏a
j=1 P̂(xj | y, xi)

|{i : 1 ≤ i ≤ a ∧ F(xi) ≥ m}| , (1)

where |·| denotes the cardinality of a set, P̂(·) represents an estimate of P(·),
F(xi) is the frequency of xi and m is the minimum frequency to accept xi as a
super parent. The current research uses m = 1 [7].

2.2 Weightily AODE

In the classification of AODE, each ODE is treated equally, that is, all eligible
models are averaged and contribute uniformly to the classification rule. How-
ever, in many real world applications, attributes do not play the same role in
classification. This observation inspires the weightily AODE [8], in which the
joint probability is estimated as,

P̂(y,x) =

∑
i:1≤i≤a∧F(xi)≥mWiP̂(y, xi)

∏a
j=1 P̂(xj | y, xi)∑

i:1≤i≤a∧F(xi)≥mWi
. (2)
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In practice, mutual information between the super-parent and the class is often
used as the weight Wi.

2.3 AODE with Subsumption Resolution

One extreme type of inter-dependence between attributes results in a value of
one being a generalization of a value of the other. For example, consider Gender
and Pregnant as two attributes, then Pregnant = yes implies that Gender =
female. Therefore, Gender = female is a generalization of Pregnant = yes.
Likewise, Pregnant = no is a generalization of Gender = male. Where one value
xi is a generalization of another, xj , P (y|xi, xj) = P (y|xj). In consequence
dropping the more general value from any calculations should not harm any
posterior probability estimates, whereas assuming independence between them
may.

Motivated by this observation, Subsumption Resolution (SR) [9] identifies
pairs of attribute values such that one appears to subsume the other and deletes
the generalization. Suppose that the set of indices of the resulting attribute
subset is denoted by R, the joint probability is estimated as,

P̂(y,x) =

∑
i:i∈R∧F(xi)≥m P̂(y, xi)

∏
j∈R P̂(xj | y, xi)

|{i : i ∈ R ∧ F(xi) ≥ m}| . (3)

2.4 Forward and Backward Attribute Selection in AODE

In order to repair harmful inter-dependencies among highly correlated attributes,
Zheng et al [5] proposed to select an appropriate attribute subset by hill climbing
search. Two different search strategies can be used: FSS begins with the empty
attribute set and successively adds attributes [10], while BSE starts with the
complete attribute set and successively removes attributes [11]. Both strategies
greedily select the attribute whose addition or elimination best reduces the leave-
one-out cross validation error on the training set. The process is terminated if
there is no error improvement.

To differentiate the selection of parent or child, they introduce the use of
a parent (p) and a child (c) set, each of which contains the set of indices of
attributes that can be employed in, respectively, a parent or a child role in
AODE. The joint probability is estimated as,

P̂(y,x) =

∑
i:i∈p∧F(xi)≥m P̂(y, xi)

∏
j∈c P̂(xj | y, xi)

|{i : i ∈ p ∧ F(xi) ≥ m}| . (4)

As indicated in [5], the performance of BSE is better than FSS, so we focus
on BSE in this paper. Four types of attribute elimination are considered, parent
elimination (PE), child elimination (CE), parent and child elimination (P∧CE),
parent or child elimination (P∨CE) which performs the former three types of
attribute eliminations in each iteration, selecting the option that best reduces
the error.

The last strategy allows flexible selection of parents and children, but comes
at a high cost, since it needs to scan the training data 2a times in the worst case.
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2.5 AnDE

The last extension to AODE we review here is AnDE [6], which allows children
to depend on not just one super-parent, but a combination of n parents. The
joint probability P(y,x) is estimated as follows,

P̂(y,x) =

∑
s:s∈(An)∧F(xs)≥m P̂(y, xs)

∏a
j=1 P̂(xj | y, xs)

|{s : s ∈
(A
n

)
∧ F(xs) ≥ m}|

, (5)

where
(A
n

)
indicates the set of all size-n subsets of {1, · · · , a} and xs means the

set of attribute values indexed by the element in s.
Note that AnDE is in fact a superclass of AODE and NB. That is, AODE is

AnDE with n = 1 (A1DE) and NB is AnDE with n = 0 (A0DE).

3 Our Proposal: Attribute Selective AODE

Previous work on attribute selection for AODE through BSE and FSS [4,5] has
demonstrated attribute selection did succeed in reducing the harmful influence
of inter-dependencies among attributes. This success may be attributed to their
ability to search in a large model space. For P∨CE, the search space is of size
2a+1, as it includes all subsets of attributes in parent role coupled with all subsets
of attributes in child role.1

Nevertheless, this is achieved at a high computational overhead. The strategy
of P∨CE needs to scan the training data 2a times, as each time either one child or
one parent can be deleted. This is impractical for data sets with a large number
of attributes.

In order to explore a large space of models in a single additional pass through
the data, we propose a new attribute selection approach for AODE. Our proposal
is based on the observation that it is possible to nest a large space of alternative
models such that each is a trivial extension to another. Let p and c be the set of
indices of parent and child attributes, respectively. For every attribute xi, the
AODE models that use attributes in p as parents and attributes in c ∪ {i} as
children are minor extensions of a model that uses attributes in p as parents
and attributes in c as children. The same is true of models that use attributes in
p ∪ {i} as parents and attributes in c as children. Importantly, multiple models
that build upon one another in this way can be efficiently evaluated in a single
set of computations. Using this observation, we create a space of models that
are nested together, and then select the best model using leave-one-out cross
validation in single extra pass through the training data.

Step by step information of the algorithm is provided in the following sections.

1 Note that although the search space is of size 2a+1, the actual number of models
evaluated is O(a2), which is much smaller.
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3.1 Ranking the Attributes

Our method for nesting models depends on a ranking of the attributes. Models
containing lower ranked attributes will be built upon models containing higher
ranked attributes. The mutual information between an attribute and the class
measures how informative this attribute is about the class [12], and thus it is a
suitable metric to rank the attributes.

The advantage of using mutual information is that it can be computed very
efficiently after one pass through the training data. Although the mutual infor-
mation between an attribute and the class can help to identify the attributes
that are individually most discriminative, it is important to note that it does not
directly assess the discriminative power of an attribute in combination with other
attributes. Nevertheless, the ranking of attributes based on mutual information
with the class will permit the search over a large space of possible models and
the deficiencies of this discriminative approach will be mitigated by the richness
of the search space that is evaluated in a discriminative fashion.

3.2 Building the Model Space

Without loss of generality, in the following we assume that the attributes are
ordered by mutual information. That is, xi represents the attribute with the ith

greatest mutual information with the class. As the attributes have been ranked,
we can create, in total, a2 nested submodels of attribute subsets. To be more
specific, suppose we select top r attributes as parents and top s attributes as
children, where 1 ≤ r, s ≤ a, the candidate AODE model would be,

P̂(y,x)r,s =

∑
i:1≤i≤r∧F(xi)≥m P̂(y, xi)

∏s
j=1 P̂(xj | y, xi)

|{i : 1 ≤ i ≤ r ∧ F(xi) ≥ m}| . (6)

Figure 1 gives an example of the model space with 3 attributes. For instance,
modelm21 considers the two attributes {x1,x2} as parents and a single attribute
{x1} as a child. Then, when the attribute x2 is considered to be added as a child,
we obtain a new model m22. When instead the attribute x3 is considered to be
added as a parent, we obtain a new model m31. Both of these models are minor
extensions to the existing model m21 and all three (and all their extensions) can
be applied to a test instance in a single nested computation. Consequently all
models can be efficiently evaluated in a single set of nested computations.

children

{x1} {x1,x2} {x1,x2,x3}

p
a
r
e
n
t
s {x1} m11 m12 m13

{x1,x2} m21 m22 m23

{x1,x2,x3} m31 m32 m33

Fig. 1. An example of the model space with 3 attributes
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3.3 Selecting the Best Model

Once we have built the model space, we can perform model selection within this
space. To evaluate the goodness of an alternative model, an evaluation function
is required, which commonly measures the discriminative ability of the model
among classes.

We use leave-one-out cross validation error to measure the performance of each
model. Rather than building a new model for every fold, we use incremental cross
validation [13], in which the contribution of the training example being left out
in each fold is simply subtracted from the count table, thus producing a model
without that training example. This method allows the model to be evaluated
quickly, whilst obtaining a good estimate of the generalization error.

There are several loss functions to measure model performance for leave-one-
out cross validation, zero-one loss and root mean squared error (RMSE) are
among the most common and effective. Zero-one loss simply assigns a loss of ‘0’
to correct classification, and ‘1’ to incorrect classification, treating all misclassi-
fications as equally undesirable. RMSE, however, accumulates for each example
the squared error, which is the probability of incorrectly classifying the example,
and then computes the root mean of the sum. As RMSE gives a finer grained
measure of the calibration of the probability estimates compared to zero-one loss,
with the error depending not just on which class is predicted, but also on the
probabilities estimated for each class, we use RMSE to evaluate the candidate
models in this research.

3.4 Algorithm and Analysis

Based on the methodology presented above, we develop the training algorithm
for attribute selective AODE shown in Algorithm 1.

Algorithm 1. Training algorithm for attribute selective AODE

1: Form the table of joint frequencies of pairwise attribute-values and class
2: Compute the mutual information
3: Rank the attributes
4: for all example in T do
5: Build all a2 models while leaving the current example out
6: Predict the current example using a2 models
7: Accumulate the squared error for each model
8: end for
9: Compute the root mean squared error for each model
10: Select the model with the lowest RMSE

As in AODE, we need to form the table of joint frequencies of pairs of
attribute-values and class from which the probability estimates P̂(y, xi), P̂(xj |
y, xi) and the mutual information between the attributes and class are derived.
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This is done in one pass through the training data (line 1). Note that this pro-
vides all of the information needed to create any selective AODE model with
any sets of parent and child attributes.

In the second pass through the training data (line 4-8), the squared error is
accumulated for each model. After this pass, the RMSE will be computed and
used to select the best model.

At training time, the space complexity of the table of joint frequencies of
attribute-values and class is O(k(av)2) as in AODE, where v is the average
number of values per attribute. Attribute selection will not require more memory.
Derivation of the frequencies required to populate this table is of time complexity
O(ta2). Attribute selection needs one more pass through the training data, the
time complexity of which is O(tka2), since for each example we need to compute
the joint probability in (1) for each class. So the overall time complexity is
O(t(k + 1)a2).

Classification requires the table of probability estimates formed at training
time of space complexity O(k(av)2). The time complexity of classifying a single
example is O(ka2) in the worst-case scenario, because some attributes may be
omitted after attribute selection.

4 Empirical Comparisons

In this section, we compare the newly proposed attribute selective AODE (AS-
AODE) with AODE, weightily AODE (WAODE), AODE with subsumption
resolution (AODESR), BSE selective AODE (BSEAODE) and A2DE.

Zheng et al [9] discussed three different subsumption resolution techniques,
Lazy SR, Eager SR and Near SR. Lazy SR is used in this paper, as it can improve
AODE with low training time and modest test time overheads. The minimum
frequency for identifying generalizations is set to 100. The results in [5] show that
BSE performs better than FSS, and the elimination of a child is more effective
than the elimination of a parent. So we select only the children in BSEAODE.
However, we do not perform statistical tests in BSEAODE, as we do not do this
in ASAODE, either. We also include A2DE in the set of experiments so as to
provide a comprehensive comparison.

The experimental system is implemented in C++. In order to deal with nu-
merical data, Minimum Description Length (MDL) discretization [14] is imple-
mented. More specifically, the cut points are computed on 100,000 examples
randomly selected from training data or on all training examples if the train-
ing data is less than 100,000. These cut points are then used to discretize the
training and test data. The base probabilities are estimated using m-estimation
(m = 1) [15]. Missing values have been considered as a distinct value.

We run the above algorithms on 71 data sets from the UCI repository [16].
Table 1 presents the detailed characteristics of data sets in ascending order on
the number of instances. We run the experiments on a single CPU single core
virtual Linux machine running on a Sun grid node with dual 6 core Intel Xeon
L5640 processors running at 2.27 GHz with 96 GB RAM.
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Table 1. Data sets

No. Name Inst Att Class
1 contact-lenses 24 4 3
2 lung-cancer 32 56 3
3 labor-negotiations 57 16 2
4 post-operative 90 8 3
5 zoo 101 16 7
6 promoters 106 57 2
7 echocardiogram 131 6 2
8 lymphography 148 18 4
9 iris 150 4 3

10 teaching-ae 151 5 3
11 hepatitis 155 19 2
12 wine 178 13 3
13 autos 205 25 7
14 sonar 208 60 2
15 glass-id 214 9 3
16 new-thyroid 215 5 3
17 audio 226 69 24
18 hungarian 294 13 2
19 heart-disease-c 303 13 2
20 haberman 306 3 2
21 primary-tumor 339 17 22
22 ionosphere 351 34 2
23 dermatology 366 34 6
24 horse-colic 368 21 2
25 house-votes-84 435 16 2
26 cylinder-bands 540 39 2
27 chess 551 39 2
28 syncon 600 60 6
29 balance-scale 625 4 3
30 soybean 683 35 19
31 credit-a 690 15 2
32 breast-cancer-w 699 9 2
33 pima-ind-diabetes 768 8 2
34 vehicle 846 18 4
35 anneal 898 38 6
36 tic-tac-toe 958 9 2

No. Name Inst Att Class
37 vowel 990 13 11
38 german 1000 20 2
39 led 1000 7 10
40 contraceptive-mc 1473 9 3
41 yeast 1484 8 10
42 volcanoes 1520 3 4
43 car 1728 6 4
44 segment 2310 19 7
45 hypothyroid 3163 25 2
46 splice-c4.5 3177 60 3
47 kr-vs-kp 3196 36 2
48 abalone 4177 8 3
49 spambase 4601 57 2
50 phoneme 5438 7 50
51 wall-following 5456 24 4
52 page-blocks 5473 10 5
53 optdigits 5620 64 10
54 satellite 6435 36 6
55 musk2 6598 166 2
56 mushrooms 8124 22 2
57 thyroid 9169 29 20
58 pendigits 10992 16 10
59 sign 12546 8 3
60 nursery 12960 8 5
61 magic 19020 10 2
62 letter-recog 20000 16 26
63 adult 48842 14 2
64 shuttle 58000 9 7
65 connect-4 67557 42 3
66 ipums.la.99 88443 60 19
67 waveform 100000 21 3
68 localization 164860 5 11
69 census-income 299285 41 2
70 poker-hand 1025010 10 10
71 record-linkage 5749132 11 2

4.1 Bias, Variance and RMSE

Because ASAODE explores a larger space of models than AODE and BSEAODE
explores a larger space of models than ASAODE, we expect BSEAODE to have
the lowest bias, followed by ASAODE then AODE and this order to be reversed
for their relative variance. Hence we expect AODE to deliver the lowest error on
smaller datasets, ASAODE to dominate at some intermediate data size, and for
BSEAODE to deliver the lowest error on very large data. The bias and variance
of ASAODE relative to WAODE, AODESR and A2DE can be expected to vary
from dataset to dataset as these all embody different learning biases and none
of their spaces of models subsumes the other.

In order to assess these expectations, we first perform bias variance decompo-
sition using the experimental method proposed by Kohavi and Wolpert [17]. As
this study is more meaningful with more data, we run these experiments only
on the largest 28 data sets which have at least 2000 examples. For each data set,
1000 training examples and 1000 test examples are randomly selected. The bias
variance decomposition is calculated from the error on the test examples. This
process is repeated 10 times to obtain the mean bias and variance.
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A summary of pairwise win/draw/loss records, which indicate the number of
data sets on which one algorithm has lower, equal or higher outcome relative
to the other, is presented in Table 2. Each entry in cell [i, j] compares the al-
gorithm in row i against the algorithm in column j. The p value following each
win/draw/loss record is the outcome of a binomial sign test and represents the
probability of observing the given number of wins and losses if each were equally
likely. The reported p value is the result of a two-tailed test. We consider a
difference to be significant if p ≤ 0.05. All such p values have been changed to
boldface in the table.

Table 2 shows that all five variants to AODE achieve significant reductions in
bias relative to AODE. While ASAODE achieves lower bias than WAODE and
AODESR more often than not, the reverse is true for BSEAODE and A2DE;
although these differences are not significant.

Next, we conduct 10-fold cross validation experiments to obtain the error of
the alternative algorithms. As attribute selection is based on the RMSE metric,
we are inclined to evaluate the error by RMSE. The win/draw/loss records of
alternative algorithms for RMSE on 71 data sets are also presented in Table 2.

We can see that all five improvements to AODE have achieved significant
reductions in RMSE relative to AODE. ASAODE has also achieved signif-
icant reductions in RMSE relative to WAODE and AODESR. The p value
(0.807)indicates that ASAODE and BSEAODE have achieved almost the same
performance. But the advantages of BSEAODE over WAODE and AODESR
are not as significant as those of ASAODE over WAODE and AODESR. While
A2DE achieves significant reductions in RMSE relative to AODE, WAODE,
AODESR and BSEAODE, its advantage over ASAODE is not significant.

The fact that ASAODE obtains, in general, lower bias and higher variance
compared with WAODE and AODESR, indicates that it will perform better
on larger datasets, since it will be able to capture more complex relationships
from large amount of data [18]. In order to demonstrate this hypothesis, we also
compile the win/draw/loss results in terms of RMSE on the 43 smallest data
sets and the 28 largest data sets in Table 2. We can see that the performance
of ASAODE is better on large data sets than on small data sets. While for
even larger data sets BSEAODE and A2DE might outperform ASAODE for the
same reason, both have high computational complexity that can be prohibitive
for large data, since BSEAODE requires 2a pases on the whole training set
and A2DE’s memory requirements and classification time are very high (see the
following Section 4.2).

4.2 Computation Time

The logarithmic means of training and classification time on the 71 data sets for
all algorithms are shown in Fig. 2. We have added 1 to each mean before comput-
ing the logarithm to avoid negative bars. ASAODE requires more training time
than such one pass algorithms as AODE, WAODE and AODESR. This is because
ASAODE involves two passes through the training data. As BSEAODE needs
at most 2a passes, it requires significantly more training time than ASAODE.
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Table 2. Win/draw/loss records of bias, variance and RMSE with binomial sign test

AODE WAODE AODESR BSEAODE ASAODE

W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p

B
ia
s1

WAODE 21/2/5 0.002
AODESR 15/8/5 0.041 12/1/15 0.701
BSEAODE 19/5/4 0.003 17/4/7 0.064 17/2/9 0.169
ASAODE 21/3/4 <0.001 18/1/9 0.122 16/1/11 0.442 11/2/15 0.557
A2DE 23/2/3 <0.001 21/1/6 0.006 20/3/5 0.004 14/1/13 1 17/1/10 0.248

V
a
ri
a
n
c
e
1 WAODE 13/1/14 1

AODESR 7/8/13 0.263 13/0/15 0.851
BSEAODE 11/5/12 1 10/0/18 0.185 12/3/13 1
ASAODE 9/1/18 0.122 11/1/16 0.442 13/0/15 0.851 13/2/13 1
A2DE 14/1/13 1 14/0/14 1 14/3/11 0.69 14/1/13 1 14/0/14 1

R
M

S
E

2 WAODE 45/5/21 0.004
AODESR 32/27/12 0.004 28/6/37 0.321
BSEAODE 40/20/11 <0.001 40/4/27 0.142 35/14/22 0.111
ASAODE 43/6/22 0.013 42/4/25 0.05 42/5/24 0.036 35/4/32 0.807
A2DE 52/4/15 <0.001 47/2/22 0.004 48/3/20 <0.001 42/4/25 0.05 43/2/26 0.053

R
M

S
E
S
3 WAODE 26/3/14 0.081

AODESR 20/19/4 0.002 18/3/22 0.636
BSEAODE 19/14/10 0.136 23/2/18 0.533 16/10/17 1
ASAODE 19/5/19 1 19/4/20 1 18/5/20 0.871 20/4/19 1
A2DE 27/3/13 0.038 24/1/18 0.441 23/2/18 0.533 22/3/18 0.636 25/2/16 0.211

R
M

S
E
L

4 WAODE 19/2/7 0.029
AODESR 12/8/8 0.503 10/3/15 0.424
BSEAODE 21/6/1 <0.001 17/2/9 0.169 19/4/5 0.007
ASAODE 24/1/3 <0.001 23/0/5 <0.001 24/0/4 <0.001 15/0/13 0.851
A2DE 25/1/2 <0.001 23/1/4 <0.001 25/1/2 <0.001 20/1/7 0.019 18/0/10 0.185

1 Bias and variance results on the 28 largest data sets.
2 RMSE results on all the 71 data sets.
3 RMSES: RMSE results on the 43 smallest data sets.
4 RMSEL: RMSE results on the 28 largest data sets.
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Fig. 2. Computation time comparison of different algorithms (seconds)

As for the classification time, ASAODE, AODESR and BSEAODE require, in
general, less time than AODE and WAODE because they might eliminate some
attributes. Fig. 2 also shows that ASAODE requires even less classification time
than AODESR and BSEAODE.
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A2DE requires more training and classification time than AODE, as it needs
to compile a more complicated table at training time and requires more compu-
tation at classification time.

5 Conclusion

In this paper, a new attribute selection algorithm is proposed for AODE. It is
a two-pass algorithm, so compared to AODE, it just requires one more pass
through the training data. The alternative attribute selection methods, such as
FSA and BSE, need a number of passes that is linear to the number of attributes
to obtain similar results.

The empirical results show that the new algorithm is significantly more accu-
rate than AODE, WAODE and AODESR, has comparable error to BSEAODE,
and as we expected, worse than A2DE. It requires significantly less training time
than BSEAODE, and less classification time than AODE and all other variants,
especially than A2DE.

It is worthwhile to note that the technique proposed in this paper is of squared
complexity in the number of attributes, so it is not scalable to high dimensional
data. On the other hand, it is compatible with weighting, subsumption resolution
and higher orders of AnDE. Consequently, it might be possible to further improve
the accuracy by combining it with weighting, subsumption resolution and A2DE.
This is a promising direction for future research.
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Abstract. In data mining and knowledge discovery, evaluation func-
tions for evaluating the quality of features have great influence on the
outputs of feature selection algorithms. However, in the existing entropy-
based feature selection algorithms from incomplete data, evaluation func-
tions are often inadequately computed as a result of two drawbacks. One
is that the existing evaluation functions have not taken into consider-
ation the differences of discernibility abilities of features. The other is
that in the feature selection algorithms of forward greedy search, if the
feature with the same entropy value is not only one, the arbitrary selec-
tion may affect the classification performance. This paper introduces a
new evaluation function to overcome the drawbacks. A main advantage
of the proposed evaluation function is that the granularity of classifica-
tion is considered in the evaluation computations for candidate features.
Based on the new evaluation function, an entropy-based feature selection
algorithm from incomplete data is developed. Experimental results show
that the proposed evaluation function is more effective than the existing
evaluation functions in terms of classification accuracy.

Keywords: Evaluation function, Conditional entropy, Feature selection,
Rough sets, Incomplete data.

1 Introduction

Feature reduction has been shown effective in dealing with high-dimensional
data for efficient data mining, which refers to the study of methods for reduc-
ing the number of dimensions describing data [4, 10]. Its general purpose is to
select relevant features to represent data and reduce computational cost, with-
out deteriorating discriminative capability. It can bring many potential benefits:
alleviating the curse of dimensionality, speeding up the learning process, and im-
proving the generalization capability of a learning model. Many feature reduction
algorithms have been developed at present. In general, they can be broadly clas-
sified into two categories: feature extraction and feature selection [5]. Feature
extraction constructs new features with a linear or nonlinear transformation by
projecting the original feature space to a lower dimensional one. Unlike feature
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extraction methods, feature selection methods preserve the original meaning of
the features after reduction, which can be broadly categorized into wrapper [1]
and filter [7, 9] methods. The wrapper method uses the predictive accuracy of a
predetermined learning algorithm to determine the quality of selected features.
One drawback of the wrapper method, however, is that it is very expensive to
run for data with numbers of features. The filter method separates feature se-
lection from classifier learning so that the bias of a learning algorithm does not
interact with a feature selection algorithm. It relies on many feature measures
such as distance [3], consistency [11], correlation [2] and so on. Much attention
has been paid to filter feature selection.

Generally speaking, filter feature selection methods work under the framework
consisting of four components [4]: subset generation, evaluation, stopping crite-
rion and result validation. The main difference among various feature selection
algorithms lies in how to evaluate the candidate features. Obviously, evaluation
functions have great influence on outputs of feature selection algorithms. Rough
set theory offers a formal methodology for filter feature selection. The main ad-
vantage of rough set theory is that no additional information about the data is
required for data analysis such as thresholds or expert knowledge on a particu-
lar domain. It provides a mathematical tool to handle uncertainty in many data
analysis tasks [6, 13]. The feature subset obtained by rough set-based feature
selection is called a reduct. The features in the reduct are not only strongly
relevant to the classification task, but also no redundant with each other, which
keep consistency with the objective of feature selection.

It is clear that the feature selection work in classical rough set theory is based
on complete data. However, in many real-world applications, it may happen
that some feature values are missing because of many factors such as noise in
data, prediction capability [12, 13, 15]. Here we briefly review the state of the
art about feature selection algorithms from incomplete data. Sun et al. [12]
introduced rough entropy to evaluate the roughness of knowledge in incomplete
data, and developed a rough entropy-based feature selection algorithm. Slezak
[14] proposed an algorithm based on information entropy to compute a reduct. As
the uncertainty measure, conditional entropy, is one key issue in rough set theory,
Dai et al. [15] proposed conditional entropy for incomplete data, and studied
the application of feature selection based on conditional entropy. Evaluation
functions, used to evaluate the quality of features, have great influence on the
outputs of feature selection algorithms. However, there are some drawbacks in the
existing evaluation functions. On the one hand, the existing evaluation functions
only consider the differences of entropy values’ variation, but there exists the
differences of discernibility abilities for candidate features. As much as we know,
the existing research work has not considered this aspect. Even if there are
multiple features leading to the same entropy values, we can still compare the
discernibility power of the features according to the granularity measure. On
the other hand, for the forward greedy search, if the feature with the same
entropy values is not only one, we often arbitrarily choose one of them, but
the arbitrariness may affect the classification performance. Therefore, the main
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contribution of this paper is to present a new evaluation function to overcome
the above stated drawbacks.

This paper is organized as follows. In Section 2, we review some basic concepts
from the theory of rough sets. In Section 3, a simple example is firstly given to
illustrate the drawbacks of existing evaluation functions, and then a new eval-
uation function together with an entropy-based feature selection algorithm are
presented. In Section 4, comparison experiments are made to show the validity
of the proposed evaluation function. Finally, the conclusions are presented in
Section 5.

2 Preliminaries

Data sets are usually given as the form of tables, we call a data table as an infor-
mation system, formulated as IS =< U,A, V, f >, where U is a set of nonempty
and finite objects, called the universe; A is the set of features characterizing the
objects; V is the union of feature domains, i.e., V = ∪a∈AVa, where Va is the
value set of feature a, called the domain of a; and f : U × A → V is an infor-
mation function, which assigns feature values to objects such as ∀a ∈ A, x ∈ U ,
and f(x, a) ∈ Va, where f(x, a) denotes the value of feature a for object x. If the
feature set is divided into condition feature set C and decision feature set D, the
information system is called a decision system. If there exist x ∈ U and a ∈ A
such that f(x, a) is equal to a missing value (a null or unknown value, denoted
as “*”), i.e., ∗ ∈ Va, then the information system is an incomplete information
system (IIS). If ∗ /∈ VD but ∗ ∈ VC , then the decision system is an incomplete
decision system (IDS).

Given a complete information system CIS =< U,A, V, f >, for ∀B ⊆ A,
the equivalence relation generated by B is defined by IND(B) = {(x, y)|∀a ∈
B, f(x, a) = f(y, a)}. The family of all equivalence classes of IND(B) is denoted
as U/IND(B). An equivalence class of IND(B) containing x is denoted by [x]B .
Since there are missing values for some objects, the equivalence relation IND(B)
is not suitable for incomplete information systems.

Given an incomplete information system IIS =< U,A, V, f >, for ∀B ⊆ A, a
tolerance relation between objects that are possibly indiscernible in terms of B is
defined by TR(B) = {(x, y)|∀a ∈ B, f(x, a) = f(y, a)∨f(x, a) = ∗∨f(y, a) = ∗}.
It can be easily shown that TR(B) = ∩a∈BTR({a}). The tolerance class of object
x with reference to a feature set B is denoted as TB(x) = {y|(x, y) ∈ TR(B)}.
Let U/TR(B) denote the family set {TB(x)|x ∈ U}, which is the classification
induced by B. For X ⊆ U , the lower and upper approximation of X with respect
to B can be defined as B(X) = {x ∈ U |TB(x) ⊆ X} and B(X) = {x ∈
U |TB(x)∩X �= ÃŸ}. The lower approximation is called the positive region, that
is POSB(X) = B(X). X is called B−definable iff B(X) = B(X). Otherwise,
B(X) �= B(X) and X is rough.

Given an incomplete decision system IDS =< U,C ∪D,V, f >, for ∀B ⊆ C,
the objects are partitioned into n mutually exclusion crisp subsets U/IND(D) =
{D1, D2, · · · , Dn} by the decision features D. The lower and upper approxima-
tions with respect to B of D are defined as B(D) = {B(D1), B(D2), · · · , B(Dn)}
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andB(D) = {B(D1), B(D2), · · · , B(Dn)}. Denoted by POSB(D) =
⋃n

i=1B(Di),
which is called the positive region of D with respect to B in the IDS. The lower
approximation is a description of the domain objects which are known with
absolute certainty to belong to the decision classes.

3 An Evaluation Function for Entropy-Based Feature
Selection

In this section, a simple example is firstly given to illustrate the drawbacks of
existing evaluation functions, and then a new evaluation function together with
a entropy-based feature selection algorithm are presented.

The conditional entropy of Definition 1 can be used as a reasonable infor-
mation measure in incomplete decision tables[15], and it is quite representative
among other entropies. Correspondingly, the evaluation function in terms of con-
ditional entropy is also defined.

Definition 1. Let IDS =< U,C ∪ D,V, f >be an incomplete decision table,
U = {x1, x2, . . . , xn}, for B ⊆ C, the classification induced by B is U/TR(B) =
{TB(x1), TB(x2), . . . , TB(xn)}, and U/IND(D) = {D1, D2, · · · , Dm} is a par-
tition on decision attribute set D. The conditional entropy of D with respect to
B is defined by

H(D|B) = −
n∑

i=1

m∑
j=1

|TB(xi)∩Dj |
|U| log

|TB(xi)∩Dj |
|TB(xi)| .

Definition 2. Given an incomplete decision table IDS =< U,C ∪ D,V, f >,
suppose B ⊆ C is the selected feature subset, and a ∈ C − B is a candidate
feature. Then the evaluation function of candidate feature a is defined as e(a) =
H(D|B)−H(D|B ∪ {a}).

From Definition 2, the existing evaluation function can be used to evaluate the
importance of features. The smaller the evaluation value is, the more important
the feature will be. However, the drawbacks of above evaluation function can be
explained with reference to the following example.
Example. Suppose there is an incomplete decision table IDS =< U,C ∪
D,V, f >, where U = {x1, x2, x3, x4, x5, x6, x7, x8} and C = {c1, c2, c3, c4}. In
the feature selection process, Definition 2 is applied to compute the evaluation
values of features. By computing, the descending sequence of four candidate fea-
tures is listed as follows: e(c1) > e(c2) > e(c3) = e(c4). Obviously, the features
with the minimum evaluation value are c3 and c4. By direct computation the clas-
sifications induced by two features,U/TR(c3) = {{x1, x2, x5, x6}, {x3, x4, x7, x8}}
and U/TR(c4) = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}, obviously, the discerni-
bility abilities of them are different, feature c3 can describe the stronger discerni-
bility power than c4. However, Definition 2 does not take into consideration this
difference. Thus the evaluation function given by Definition 2 is inadequately
computed as a result of this aspect.
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On the other hand, in the feature selection algorithm of forward greedy search,
due to e(c3) = e(c4), we can select one feature arbitrarily. Consequently, feature
c3 or c4 are chosen to the selected feature subset. The arbitrariness can surely
not guarantee a selected feature subset is a reduct. Suppose that the selected
feature subset containing feature c3 and c2 exhibit the best performance, but
we obtain the final feature subset is {c4, c2} due to the arbitrary selection. Ob-
viously, this result may affect the classification performance. Therefore, we give
a new evaluation function from a reasonable perspective to improve the above
mentioned problems.

Definition 3. Given an incomplete decision table IDS =< U,C ∪ D,V, f >,
suppose B ⊆ C is the selected feature subset, and a ∈ C − B is a candidate
feature, the classification induced by a consists of tolerance class Ai(1 ≤ i ≤ k).
Then a new evaluation function of candidate feature a is defined as f(a) =

e(a) + g(a), where g(a) = 1
|U|2

k∑
i=1

|Ai|
2

, which is the granularity measure of

feature a.

Theorem 1. Given an incomplete decision table IDS =< U,C ∪ D,V, f >,
suppose B ⊆ C is the selected feature subset, for ∀a, b ∈ C−B, there is f(a∪b) <
f(a) or f(a ∪ b) < f(b).

Proof. Suppose the classification induced by a consists of tolerance classesAi(1 ≤
i ≤ k), and the classification induced by a ∪ b consists of tolerance classes
Bj(1 ≤ j ≤ l), by Definition 2 and the definition of conditional entropy, it
is obvious that e(a ∪ b) < e(a). Since a ⊆ a ∪ b, according to the definition of

tolerance class, there is |Bj | < |Ai|, obviously, it holds that
l∑

j=1

|Bj |2 <
k∑

i=1

|Ai|2,

thus g(a ∪ b) < g(a). Therefore, f(a ∪ b) < f(a). In the same way, it can proof
that f(a ∪ b) < f(b).

Theorem 1 shows the rationality of the new evaluation function, which states
the uncertainty decreases when the available knowledge increases. Obviously, the
granularity measure can represent discernibility ability of candidate feature a,
the smaller g(a) is, the stronger its discernibility ability. Through comparison,
the selection of survival features can be achieved. From above example, there is
g(c3) > g(c4), thus it also holds that f(c3) > f(c4), the discernibility ability of
candidate feature c4 is stronger than that of feature c3. Therefore, the survival
feature is c4. It is obvious that the new evaluation function is more reasonable.
Combine the new evaluation function into feature selection, a selected feature
subset (called reduct) can be characterized by the following statement.

Definition 4. Given an incomplete decision table IDS =< U,C ∪ D,V, f >,
a selected feature subset B ⊆ C is called a reduct of the IDS if and only if
H(D|B) = H(D|C), and for∀B′ ⊂ B, H(D|B′) �= H(D|C).

In this definition, the first one indicates that the selected feature subset pre-
serves the same information measure as the whole set of features; the second
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one guarantees that all of the features are indispensable, i.e., there is not any
redundant feature in the reduct.

In the following, we combine the proposed evaluation function with forward
greedy search to construct the feature selection algorithm.

Algorithm 1. Entropy-based Feature Selection Algorithm from Incom-
plete Data
Input: An incomplete decision table IDS =< U,C ∪D,V, f >;
Output: A feature subset Red.
Begin

1. Initialize Red = ∅;
2. For each c ∈ C do
3. compute H(D|C − {c})−H(D|C);
4. if H(D|C − {c})−H(D|C) > 0, then Red = Red ∪ {c};
5. End for
6. While H(D|Red) �= H(D|C) do
7. compute f(c) for all c ∈ C −Red;
8. choose the feature ck that minimizes f(c), and let Red = Red ∪ {ck},

C = C − {ck};
9. End while

10. For each c ∈ Red do
11. compute H(D|Red)−H(D|Red− {c});
12. if H(D|Red)−H(D|Red− {c}) = 0, then Red = Red− {c};
13. End for
14. Return Red.

End

The algorithm begins with an empty subset Red, and adds some indispens-
able features to Red gradually. Then select the features with the minimal value
by the new evaluation function into Red each loop until satisfying the stopping
condition. Finally, a redundancy-removing step is carried out to avoid the re-
dundancy in the selection result. The feature subset selected by this algorithm
obtains the same information as the original feature set from incomplete data.

4 Experimental Analysis

In order to test the validity of the new proposed evaluation function, we conduct
some experiments on a PC with Windows 7, Intel (R) Core(TM) Duo CPU 2.93
GHz and 4GB memory. Algorithms are coded in C++ and the software being
used is Microsoft Visual 2008. The objective of the following experiments is to
show the effectiveness of feature selection algorithm based on the new evaluation
function. We perform the experiments on six real UCI data sets, which are
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downloaded from UCI Repository of machine learning databases in [16]. The
characteristics of six data sets are described in Table 1. For the complete data
sets, we randomly change 5% of the known features values from each original data
set into missing values to create incomplete data sets. For the numerical features,
we use the data tool Rosetta (http://www.lcb.uu.se/tools/rosetta/index.php) to
discretize them.

Table 1. A description of six data sets

Data sets Objects Features Classes
Hepatitis 155 19 2

Soybean-large 307 35 19
Synthetic 600 60 6

Cardiotocography 2126 21 3
Ticdate 2000 5822 85 2
Mushroom 8124 22 2

In what follows, we first make a comparative study on the feature selection
algorithms in terms of feature subset size. The results are shown in Table 2 in
which PFS represents the proposed feature selection algorithm, EFS represents
the feature selection algorithm constructed in [15] and LFS denotes the lower
approximation-based feature selection algorithm in [13]. Note that PFS selects
candidate features by Definition 4, while EFS finds candidate features by Defi-
nition 2. The main difference between PFS and EFS is the evaluation function.

Table 2. Comparison of feature subset size by Algorithms PFS, EFS and LFS

Data sets Original feature set size Feature subset size
PFS EFS LFS

Hepatitis 19 12 14 14
Soybean-large 35 9 11 10

Synthetic 60 13 13 16
Cardiotocography 21 12 13 12

Ticdate 2000 85 24 24 24
Mushroom 22 4 5 5

As shown in Table 2, we can observe that Algorithm PFS selects fewer fea-
tures comparing with EFS and LFS in most data sets. For example, as data set
Hepatitis, PFS selects 12 features, while both of EFS and LFS select 14 features.
The reason can be attributed to that the total number of objects in the data sets
keep invariant, the more objects can be discerned with the selected features by
proposed evaluation function in PFS than that of EFS at certain iterations, such
that fewer features needed to discern all the objects in the data sets by PFS.



A New Evaluation Function for Entropy-Based Feature Selection 105

And it does shows that there is a decrease in feature subset size between PFS
and LFS, demonstrating that there is other information contained in the entropy
other than that in the lower approximation. This phenomenon indicates that the
proposed feature selection algorithm can reduce data dimensions effectively, thus
it verifies the validity of new evaluation function.

We employ two classifiers NaiveBayes and J48 to evaluate the classification
performance of the selected feature subset. Each data set is divided into two
parts: one for training and the other for test. On the basis of the training data,
we employ feature selection algorithms to reduce the data sets. By NaiveBayes
and J48, the rules are extracted from the training set. Using the rules the test set
is classified and the classification results are obtained. The average classification
accuracies and standard deviation are acquired based on tenfold cross-validation
shown in Tables 3 and 4, where Raw depicts the classification performance on
data sets with the original features, and the average classification accuracies are
expressed in percentage. The “Average(ACC)” row records the average classifi-
cation accuracy of the three algorithms on six data sets.

Table 3. Comparison of classification accuracy for NaiveBayes Classifier

Data sets NaiveBayes Classifier
Raw PFS EFS LFS

Hepatitis 84.07±0.99 86.12±0.75 85.30±0.61 85.28±0.73
Soybean-large 91.43±1.07 92.50±1.12 90.89±1.20 90.11±1.54

Synthetic 95.58±2.20 94.97±1.93 94.97±1.93 92.06±1.87
Cardiotocography 89.79±0.61 91.85±0.40 88.56±0.76 89.23±0.31

Ticdate 2000 76.04±1.14 78.07±0.86 77.58±1.39 76.90±2.15
Mushroom 95.52±0.76 98.19±0.58 96.72±0.60 98.95±0.71

Average(ACC) 88.73 90.28 89.00 88.76

Table 4. Comparison of classification accuracy for J48 Classifier

Data sets J48 Classifier
Raw PFS EFS LFS

Hepatitis 79.35±1.16 84.60±1.09 82.32±1.25 80.81±1.74
Soybean-large 88.01±0.63 87.92±0.54 87.09±0.41 87.75±0.90

Synthetic 84.51±1.02 89.40±0.66 89.40±0.66 86.03±0.82
Cardiotocography 95.07±0.84 97.26±0.59 94.01±1.20 95.92±1.03

Ticdate 2000 79.55±0.91 81.70±1.37 79.34±1.44 82.15±1.58
Mushroom 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0

Average (ACC) 87.74 90.15 88.69 88.78

The results shown in Tables 3 and 4 indicate that PFS produces the better
classification performances after feature selection based on the new evaluation
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function than those of EFS and LFS as to NaiveBayes and J48. Regarding Naive-
Bayes, PFS is better than EFS on all the data sets other than data set Synthetic,
and PFS also shows increases in classification accuracies comparing with LFS.
As to J48, PFS outperforms EFS on four of six data sets; PFS outperforms LFS
on most of the data sets. Considering the results between PFS and EFS, it can
demonstrate the effectiveness of new evaluation function in feature selection. In
addition, the three approaches improve the classification capability by selecting
a small portion of the original features. From the experimental results, we can
confirm that the proposed evaluation function leads to promising improvement
on classification performance.

To further explain the reason why the classification performances are improved
using the new evaluation function, we conduct the experiments on four large
data sets using NaiveBayes classifier with Algorithms PFS, EFS and LFS. Fig.1
displays more detailed change trend of the three algorithms in classification
accuracy with the number of selected features.

Fig.1. Trends of accuracies by NaiveBayes with number of features

From Fig.1, the curves between PFS and EFS in the data set Synthetic are
overlapping. The reason is that PFS and EFS select the same features, thus the
classification accuracies are the same for selecting the same number of features.
However, most points in the curves of PFS are higher than those of EFS and
LFS in the data sets. Take data set Cardiotocography as an illustration, the
classification accuracies of PFS are higher than those of EFS and LFS since
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the beginning of selecting three features. The underlying reason perhaps is that
though the number of features is the same by PFS and EFS, the selected fea-
tures are different, PFS employed the new evaluation function always find the
candidate features that can discern more objects for classification learning, such
that the classification performance is better than that of EFS. The similar sit-
uations can be found in two other data sets. Observing the curves, we can find
that PFS can keep a steady increase in accuracy value, whereas EFS and LFS
incur a fluctuant increase, even a decrease. This phenomenon may result from
one possible reason that PFS has a redundancy-removing step, while EFS and
LFS does not consider the redundant information between the selected features.
It shows some dispensable features in the selected feature subset are superfluous,
which deteriorate the classification performance.

Furthermore, we conduct the experiments on the four larger data sets using
J48 classifier with the three algorithms. Fig.2 displays more detailed change trend
of the three algorithms in classification accuracy with the number of selected
features.

Fig.2. Trends of accuracies by J48 with number of features

As shown in Fig.2, the curves between PFS and EFS in the data set Synthetic
are overlapping. However, one may observe that there are many points in the
curves where the classification performance of PFS clearly surpasses those of
EFS and LFS. We can see that, as data set Mushroom, when the selected feature
number is two, the classification accuracy of PFS is higher than those of EFS
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and LFS. Though the same number of selected features, PFS can select the
feature that discerns more objects for classification learning, correspondingly, the
selected features are different, and the classification accuracy is higher than that
of EFS. And comparing with LFS, PFS can find some other useful information
contained in the entropy other than lower approximation, which would result in
better classification performance. For the other three data sets, one may observe
that the similar situations.

Based on the aforementioned experimental results, we can conclude that the
new evaluation function gives an effective way to select satisfactory feature subset
in the process of feature selection from incomplete data.

5 Conclusions

In this paper, we introduce a new evaluation function to overcome the draw-
backs of existing evaluation functions. Based on the new evaluation function, we
construct a conditional entropy-based feature selection algorithm with forward
greedy search from incomplete data. The numerical experiments show the valid-
ity of the new evaluation function. Two main conclusions are drawn as follows.
On the one hand, compared with the existing evaluation function, the new eval-
uation function reflects not only the conditional entropy values’ variation, but
also the discernibility ability of a candidate feature. Thus the new evaluation
function is more reasonable than the existing evaluation function to describe the
discernibility ability. On the other hand, in feature selection, even if there are
more features with same importance in the conditional entropy, our feature se-
lection algorithm can select one with the greatest classification ability, while the
arbitrary selection in the existing feature selection algorithm may affect the clas-
sification performance. Therefore, the new evaluation function is more effective
in the process of feature selection from incomplete data.
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Abstract. Thecore tasksof graphbased semi-supervised learning (GSSL)
are constructing a proper graph and selecting suitable supervisory infor-
mation. The ideal graph is able to outline the intrinsic data structure, and
the ideal supervisory information could represent the whole data. In this
paper, we propose a new graph learning method, called constrained least
squares regression (CLSR), which integrates the supervisory information
into graph learning process. To learn a more adaptive graph, regression
coefficients and neighbor relations are combined in CLSR to capture the
global and local data structures respectively. Moreover, as byproduct of
CLSR, a new strategy is presented to select the high-quality data points as
labeled samples, which is practical in real applications. Experimental re-
sults on different realworld datasets demonstrate the effectiveness ofCLSR
and the sample selection strategy.

Keywords: graph based semi-supervised learning, graph construction,
constrained least squares regression, labeled sample selection.

1 Introduction

Lack of sufficiently labeled data is a big problem when building supervised
learner in real applications. Semi-supervised learning (SSL) can bridge the gap
between labeled and unlabeled data, as it combines limited labeled samples with
rich unlabeled samples to enhance the learner’s ability [20]. As an important
branch of SSL, graph based semi-supervised learning (GSSL) propagates the su-
pervisory information (class labels) on a pre-defined graph and aims to make the
similar samples share the common labels [12]. Under the cluster assumption [4]
or the manifold assumption [8], there are many GSSL methods have been pro-
posed, including Gaussian fields and harmonic functions (GFHF) [21], local and
global consistency (LGC) [19], manifold regularization [2], and etc. For GSSL,
there are several key issues to be solved including graph construction, labeled
sample selection, learning model formulation, parameter adjustment and etc. In
this paper, we will limit to highlight the former two issues.
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An adaptive graph construction is a main challenge of GSSL. Neighborhood-
driven methods (e.g., k -nearest-neighbors (k -NN) [16], ε-ball neighborhood [1]
and b-matching graph [7]) are unable to reflect the overall views of data and sen-
sitive to noise. Recently, some researchers formulate the graph building process
into a subspace learning problem. Under the subspace assumption, each sample
can be represented as a linear combination of other samples, and intuitively, the
representation coefficients could be accepted as a proper surrogate of similar-
ity metric. In the literature, this measurement is referred to as self-expressive
similarity [6]. There are several methods such as sparse representation (SR) [6],
low-rank representation (LRR) [10], least squares regression (LSR) [13] to obtain
the representation coefficients.

Although these approaches have gained great effects in some domains, there
are still some drawbacks. First, labeled samples only work at propagating stage,
so the supervisory information cannot directly influence the affinity learning
process. Second, regardless of noise and outliers, data points may not strictly
lie in a union of subspaces, which indicates that the graph’s adaptability is
restricted owing to the utilization of a single metric. Third, in the context of
the subspace assumption, when we have to select some samples as a labeled set,
however, the existing method, random sampling, does not leverage the structural
characteristic of the original dataset.

Inspired by the work [13], we propose an effective graph construction frame-
work, called constrained least squares regression (CLSR), and try to improve
GSSL from three perspectives:

– The labeled samples are effectively integrated into the graph learning process
of GSSL by representing them as additional pairwise constraints.

– Both local and global data structures are considered to build a more flexible
graph via self-expressive similarity metric and k -NN.

– A greedy-like strategy is designed to pick out more representative samples
as the labeled set.

2 Preliminaries and Related Works

Given a data set X = [x1, x2, . . . , xl, xl+1, . . . , xn] ∈ IRm×n, the subset Xl =
{xi}li=1 with cardinality |Xl| = l contains labeled points and Xu = {xi}ni=l+1

with cardinality |Xu| = n − l contains unlabeled points. The target of graph
learning is to generate a proper graph or weight matrix W ∈ IRn×n and its
elementWij denotes the similarity between the ith point and the j th point under
some measurement. SR [6] and LRR [10] are two popular affinity representation
techniques. SR aims to construct a sparse graph or Λ1-graph [17], where each
point could be reconstructed by a combination of other limited points, and thus
the sparse coefficients correspond to a kind of similarity. Basic SR is formulated
as the following optimization problem:

min
Z

‖Z‖1 s.t. X = XZ, diag(Z) = 0 (1)
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where Z = [z1, z2, . . . , zn] ∈ IRn×n denotes the coefficient matrix, ‖Z‖1 is the
Λ1-norm of Z which can promote sparse solution, ‖Z‖1 =

∑n
i=1

∑n
j=1 |zij |. Then,

the graph weight matrix W could be easily obtained by W = (|Z|+ |Z|T )/2
Compared with the k -NN graph, the Λ1-graph avoids evaluating the hyper-

parameter k and therefore it outputs more robust result. Nevertheless, both
Λ1-graph and k -NN graph are lack of the global views of data, so their perfor-
mance would be degenerated when there is no ”clean” data available [22]. In
order to capture the global data structure, Liu et al. [10] proposed LRR method
which enforces a rank minimization constraint on the coefficient matrix. The
basic LRR problem can be formulated as:

min
Z

‖Z‖∗ s.t. X = XZ (2)

where ‖Z‖∗ denotes the nuclear norm of Z, which is a usual surrogate of rank
function, i.e., the sum of the singular values. Since the sparseness and low-
rankness are merits of a graph, Zhuang et al. [22] presented a non-negative
low-rank and sparse graph (NNLRS) learning method. Recently, Lu et al. [13]
pointed out that, besides Λ1-norm and nuclear norm, Frobenius norm is also
an appropriate constraint for the coefficient matrix Z, and presented the LSR
model with noise as follows:

min
Z

λ‖Z‖2F + ‖X −XZ‖2F (3)

where λ > 0 is the regularization parameter. Note there are little differences in
(1), (2) and (3), but (3) has a close-form solution

Z∗ = (XTX + λI)−1XTX (4)

In this case, LSR can be solved efficiently.
Even though all the above approaches could output suitable graphs for GSSL,

the graph learning itself is still unsupervised. In recent work [15], Shang et
al. presented an enhanced spectral kernel (ESK) model, which makes use of
pairwise constraints to favor graph learning, and is solved as a low-rank matrix
approximation problem [9]. The main difference between ESK and our approach
is as follows. ESK uses the Gaussian kernel to initialize the weight matrix, and
encodes the known labels as the pairwise constraints. While in CLSR, we adopt
the regression coefficients to measure the correlations among data points, and
consider additional local constraints to promote the model’s flexibility.

Additionally, the quality of labeled points play an important role in GSSL,
thus, it is necessary to select the samples with high representability and discrim-
inability as labeled set. In [5] and [11], k-means algorithm has been verified as
an effective method for sample selection. But for GSSL, an extra step is needed
to estimate the labels of clustering centers. Recently, some researchers pointed
out that collaborative representation is a promising method for sample selection
[18], [14]. In this paper, we propose a simple and effective method which applies
minimal reconstruction error criterion to labeled sample selection.
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3 Constrained Least Squares Regression for Graph
Learning

In this section, we first introduce the label consistent penalty for encoding known
labels, then integrate it with original LSR, and finally design its optimization
algorithm.

3.1 Label Consistent Penalty

Given two sets for labeled points, ML = {(xi, xj)} includes must-link con-
straints, where xi and xj have the same label, and CL = {(xi, xj)} covers
cannot-link constraints, where xi and xj have different labels. Let Ω be a set of
indices which correspond to all pairwise constraints. The label consistent penalty
is defined as:

f(Z) = ‖S ◦ Z − L‖2F (5)

where ◦ denotes the element-wise product. The sampling matrix S ∈ IRn×n is
defined as:

Sij =
{
1 (i, j) ∈ Ω
0 otherwise

(6)

The constraint matrix L ∈ IRn×n is defined as:

Lij =

{1 (i, j) ∈ML
0 (i, j) ∈ CL
0 otherwise

(7)

Equation (5) is a squared lose function to measure the consistency between the
predicted affinity matrix induced by Z and the given pairwise constraints. Here,
the pairwise constraints are expected to reflect the data structure. However, the
number of labeled samples is usually few so that it is hard to sufficiently capture
the essential structure of data with them. Thus, it is necessary to bring in more
local pairwise constraints which are encoded as L′ ∈ IRn×n:

L′
ij =

{
1 i ∈ Nj and j ∈ Ni

0 otherwise
(8)

where Ni stands for the set of k -nearest neighbor of xi. Actually, L
′ employs

a k -NN graph to roughly recover the local relations among data points by 0/1
assignments, and thus it will result in some wrong assignments. One way to fix
these incorrect assignments is to utilize the original L with correct assignments
from labeled samples, and the fixed Lf ∈ IRn×n is defined as:

Lf
ij =

{
Lij (i, j) ∈ML or (i, j) ∈ CL
L′
ij (i, j) /∈ML and (i, j) /∈ CL

(9)

From the perspective of matrix approximation, these wrong assignments in
(5) can be taken as one kind of sparse noise. Therefore, the Λ1-norm is used here
instead of the Frobenius norm and we have

f(Z) = ‖S ◦ Z − L‖1 (10)
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3.2 Objection Function

After adding the label consistent penalty to the LSR model, the objective func-
tion of CLSR is written as:

min
Z,E

‖Z‖2F +
λe

2
‖XZ −X‖2F + λs‖E‖1 s.t. E = S ◦ Z − L (11)

where E ∈ IRn×n denotes the sparse error, λe and λs are parameters to trade
off other terms. In (11), the first two items are used to hold the global structure
of data by Z and the third item introduces the pairwise constraints by L which
is defined in (9).

3.3 Optimization

Equation (11) could be solved by the alternating direction method of multipliers
(ADMM) [3] method. To start, we introduce an auxiliary matrix A ∈ IRn×n for
variables separation, then obtain

min
Z,E

‖Z‖2F +
λe

2
‖XA−X‖2F + λs‖E‖1 s.t. E = S ◦ Z − L,Z = A (12)

The augmented Lagrangian function of (12) can be written as:

L = min
Z,E

‖Z‖2F +
λe

2
‖XA−X‖2F + λs‖E‖1+ < Y1, Z −A >

+ < Y2, E − S ◦ Z + L > +
μ

2
(‖Z −A‖2F + ‖E − S ◦ Z + L‖2F )

(13)

where Y1 ∈ IRn×n and Y2 ∈ IRn×n are two Lagrange multipliers. ADMM ap-
proach updates the variables Z, A and E alternately with other variables fixed,
and we can get the updating rules as:

Zk+1 =argmin
Z

‖Zk‖2F +
μk

2
‖Zk −Ak +

Y1

μk
‖2F +

μk

2
‖S ◦ ZK − Ek − L− Y2

μk
‖2F

=(1/(
2

μk
+ 1+ S)) ◦ (Ak −

Y1

μk
+ S ◦ (Y2

μk
) + S ◦ Ek + S ◦ L)

(14)

Ak+1 = argmin
A

λe

2
‖XAk −X‖2F +

μk

2
‖Zk+1 −Ak +

Y1

μk
‖2F

= (λeX
TX + μkI)

−1(λeX
TX + μkZk+1 + Y1)

(15)

Ek+1 =argmin
E

λs‖Ek‖1 +
μk

2
‖Ek − (S ◦ Zk+1 − L− Y2

μk
)‖2F

=S λs
μk

(S ◦ Zk+1 − L− Y2

μk
)

(16)
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where 1 ∈ IRn×n stands for an all-one matrix, and Sμ(·) is the shrinkage-
thresholding operator [9] which is defined as:

Sμ(Δ) = sign(Δ)(|Δ| − μ)+ (17)

The complete algorithm is summarized in Algorithm 1.

Algorithm 1. Solving Problem (11) via ADMM

Input: data matrixX, sampling matrix S, constraint matrix L, and parameters λe, λs.
1. Initialize Z0 = A0 = E0 = Y1 = Y2 = 0, μ0 = 0.1, μmax = 104, ρ = 1.1, Σ = 10−2

2. while not converged do
3. Update Z,A and E by (14-16).
4. Update the multipliers Y1, Y2 as:

Y1 = Y1 + μ(Z − A),
Y2 = Y2 + μ(E − S ◦ Z + L).

5. Update μ : μ = min(ρμ, μmax).
6. Check the convergence conditions:

||E − S ◦ Z + L||∞ < Σ and ||Z −A||∞ < Σ.
7. end while
Output: Zk, Ek

4 Labeled Sample Selection via CLSR

In many real applications, we need select a small part of data set as a labeled set.
Usually, a natural and simple method, random sampling is adopted. However,
this method cannot guarantee the quality of labeled samples. Based on the sub-
space assumption, we could select a more representative data subset to upgrade
graph’s performance in GSSL.

In the CLSR framework, it is convenient to use the basic LSR model for
labeled sample selection. We randomly select c subsets {Xi}ci=1 from X,Xi ∈
IRm×p and each subset contains p samples, p � n. We consider each subset
as a tiny dictionary and use it to reconstruct the whole data set, consequently,
the representative ability of each subset could be ranked by the corresponding
reconstruction error, therefore, the smaller reconstruction error it has, the more
representative it is. The reconstruction error can be solved by

min
Zi,Ei

λ‖Zi‖2F + ‖Ei‖2F s.t. Ei = X −XiZi (18)

where Xi ∈ IRm×p denotes the selected subset, Ei ∈ IRm×n is the reconstruction
error, and Zi ∈ IRp×n is the coefficient matrix of Xi. Note problem (18) has a
close-form solution

Zi = (XT
i Xi + λI)−1XT

i X (19)

The labeled sample selection method is summarized in Algorithm 2.
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Algorithm 2. Labeled Sample Selection via Minimal Reconstruction Error

Input: data matrix X, selected subset {Xi}ci=1, parameter λ.
1. Initialize λ = 10
2. for i = 1, . . . , c do
3. Get Zi by (19).
4. Computer the reconstruction error ri(Xi) = ‖X −XiZi‖2F .
5. end for
6. Find X∗

i with minimal reconstruction error argmini ri(Xi).
Output: X∗

i

5 CLSR for Semi-Supervised Classification

In this section, we integrate CLSR with a popular label propagation approach,
LGC [19], for semi-supervised classification. Define a label set F = {1, . . . , k},
and an initial label matrix Y ∈ IRm×k with Yij = 1 for xi is labeled as j and
Yij = 0 otherwise. The iterative scheme for propagation is

Yk+1 = αWYk + (1 − α)Y0 (20)

where W is a normalized affinity matrix with W = D−1/2WD−1/2 and D is a
diagonal matrix whose diagonal entries are equal to the sum of corresponding
rows. We fix the parameter α to 0.01 in following experiments. The detail of the
algorithm is summarized in Algorithm 3.

Algorithm 3. CLSR for Semi-Supervised Classification

Input: data matrix X, initial label matrix Y , parameters λs, λe, λ.
1. Initialize λ = 10
2. Get the labeled subset Xi by Algorithm 2 or random sampling.
3. Generate the sampling matrix S by (6) and the constraint matrix L by (9).
4. Get the coefficient matrix Z by Algorithm 1.
5. Normalize all column vectors of Z to unit-norm, zi = zi/‖zi‖2.
6. Get the weight matrix W by W = (|Z|+ |Z|T )/2.
7. Compute the label matrix Y by (20).
Output: Y

6 Experimental Results and Analysis

In this section, we evaluate the performance of CLSR and other popular graph
construction methods on six public databases.

6.1 Datasets and Settings

We use two categories of public datasets in the experiments, including UCI data
and image data (see Table 1).
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1. UCI data1.Weperformexperiments on threeUCIdatasets includingWDBC,
Sonar and Parkinsons.

2. Extended YaleB database2. This face database contains 38 individuals
under 9 poses and 64 illumination conditions. We choose the cropped images
of first 10 individuals, and resize them to 48×42 pixels.

3. ORL database3. There are 40 distinct subjects and each of them has 10
different images. For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details. We resize them to
32×32 pixels.

4. COIL20 database4. This database consists of a set of gray-scale images
with 20 objects. For each object, there are 72 images of size 32×32 pixels.

Table 1. Descriptions of datasets

Dataset label Size � of Features � of Classes

WDBC 569 30 2

Sonar 208 60 2

Parkinsons 195 21 2

YaleB 640 2016 10

ORL 400 1024 40

COIL20 1440 1024 20

We compare following six graph construction algorithms. There are some param-
eters in each algorithm, and we tune the parameters on each dataset for every
algorithm and record the best results.

1. k-NN: the Euclidean distance is used as similarity metric, and the Gaussian
kernel is used to reweight the edges. The number of nearest neighbors is set
to 5 for k-NN5, and 15 for k-NN15, respectively. The scale parameter of
Gaussian kernel is set as [22]

2. ESK: Following the lines of [15], a low-rank kernel is learned as the affinity
matrix. ESK model also use the Gaussian kernel to initialize the weight
matrix.

3. LSR: Compared with CLSR, LSR [13] does not consider the pairwise con-
straints in graph leaning process.

4. LRR: Following [10], we construct the low-rank graph and adopt Λ2,1-norm
to model ”sample-specific” corruptions.

5. NNLRS: Following [22], we construct the non-negative low-rank and sparse
graph.

6. CLSR: In CLSR, the neighbor relations are encoded as the additional pair-
wise constraints for reflecting the local data structure. In the experiments,
the sizes of nearest neighbors are set to 0, 5 and 15, respectively.

1 http://archive.ics.uci.edu/ml/
2 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

http://archive.ics.uci.edu/ml/
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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6.2 Results and Discussions

All experiments are repeated 20 times, for each dataset, the label rate varies
from 10% to 40%. Table 2 lists the average accuracies.

From Table 2 we can get following observations.

1. LSR, LRR and NNLRS generally outperform k -NN and ESK on YaleB and
ORL datasets, as these datasets have roughly subspace structures. Corre-
spondingly, datasets WDBC, Parkinsons cater to Euclidean distance-based
measurement, so k -NN, ESK can work well on these datasets.

2. NNLRS usually achieves better performance than LSR and LRR, owing to
it considers both sparseness and low-rankness of the graph.

3. ESK generally outperforms k -NN with the increasing of the sampling per-
centage, which testifies the effectiveness of integrating pairwise constraints
into the graph learning process.

4. In most cases, CLSR outperforms other algorithms, since it takes advantage
of both the self-expressive similarity and local constraints to enhance the
model’s flexibility and performance.

Table 2. Average accuracies (mean and standard deviation) of different graphs inte-
grated with LGC label propagation strategy (The best results are highlighted in bold)

Dataset k-NN5 k-NN15 ESK LSR LRR NNLRS CLSR

WDBC(10%) 93.56±1.26 93.54±0.80 92.41±1.50 89.01±1.70 91.14±1.48 91.11±1.43 94.27±1.23
WDBC(20%) 94.02±0.56 94.08±0.67 94.20±1.15 91.86±1.34 93.27±1.21 92.41±0.87 95.09±0.39
WDBC(30%) 94.84±0.55 94.87±0.63 94.90±0.74 93.51±1.10 94.15±1.03 93.59±0.76 96.18±0.27
WDBC(40%) 95.52±0.51 95.10±0.59 95.60±0.43 94.75±0.89 95.34±0.94 94.64±0.60 96.85±0.26

Sonar(10%) 73.44±4.21 73.41±4.48 67.18±4.34 67.90±4.32 68.37±7.55 71.06±3.98 74.40±3.19
Sonar(20%) 75.60±3.38 76.87±3.08 76.54±3.56 74.25±3.06 75.10±3.20 76.39±3.11 81.38±2.99
Sonar(30%) 79.71±2.03 78.32±3.25 81.82±3.13 79.46±2.42 80.94±2.92 81.39±2.05 85.60±1.66
Sonar(40%) 83.55±1.39 85.20±2.76 85.37±2.24 83.54±1.85 83.31±2.01 85.38±1.13 88.75±0.94

Parkinsons(10%) 75.82±6.23 72.66±3.93 75.27±6.18 67.12±3.54 74.11±3.33 76.10±3.48 77.95±3.26
Parkinsons(20%) 79.24±5.49 72.00±3.17 82.44±5.10 74.43±3.29 77.58±2.34 80.72±1.88 83.59±2.19
Parkinsons(30%) 80.57±4.66 72.29±2.93 85.91±4.78 79.24±2.80 81.66±1.86 82.87±1.55 87.44±1.06
Parkinsons(40%) 81.19±3.98 72.10±2.44 88.34±3.81 82.37±2.10 84.68±2.12 86.26±1.19 89.05±0.85

YaleB(10%) 69.06±2.25 66.98±6.48 60.23±2.51 87.80±1.74 87.88±2.11 88.86±2.35 88.85±1.65
YaleB(20%) 75.91±2.17 74.72±1.53 71.96±2.12 94.21±1.05 94.08±0.96 93.70±1.02 94.37±0.88
YaleB(30%) 79.58±1.89 78.64±2.11 77.82±1.23 96.28±0.94 96.20±0.79 95.39±0.58 96.65±0.43
YaleB(40%) 79.92±1.72 79.96±1.76 81.69±0.83 97.39±0.73 97.00±0.57 96.45±0.41 97.69±0.35

ORL(10%) 40.47±3.39 44.88±3.03 53.50±3.71 49.95±3.78 50.49±3.85 52.58±4.23 54.52±3.07
ORL(20%) 63.88±2.10 66.05±3.36 72.60±2.33 72.15±2.79 71.95±3.24 75.10±2.92 76.65±2.39
ORL(30%) 78.63±5.88 78.95±5.55 82.98±2.35 83.75±2.19 83.98±2.73 84.33±2.73 85.50±2.14
ORL(40%) 86.17±3.19 84.52±3.93 88.20±2.01 91.53±1.65 90.19±2.24 90.95±2.38 92.50±1.91

COIL20(10%) 86.12±0.81 85.80±1.01 86.24±1.21 80.10±1.52 79.38±2.54 81.39±1.55 88.12±1.07
COIL20(20%) 88.24±0.76 86.23±0.91 88.50±1.18 87.85±1.16 87.39±1.18 87.26±1.06 90.84±0.73
COIL20(30%) 89.88±0.85 87.82±1.02 90.69±0.77 91.35±0.92 90.57±1.11 89.96±0.81 92.93±0.69
COIL20(40%) 90.17±0.80 88.61±0.84 92.10±0.60 93.28±0.71 92.98±0.92 92.47±0.74 94.58±0.55

Next, we study the effectiveness of sample selection strategy based on mini-
mal reconstruction error. We first randomly select 50 labeled subsets from each
dataset, and then sort them in ascending order to form a subset-residual array
according to the representative residual of each subset. Secondly, these labeled
subsets are used as the supervisory information for classification and the average
accuracies are recorded. Furthermore, another two results are listed for compari-
son, one is the average accuracy of the top 10% of the array (denoted as AT-10%),
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the other is the average accuracy of the lowest 10% of the array (denoted as AL-
10%). The percentage of labeled samples is 5% on WDBC, Parkinsons, YaleB,
COIL20 and Sonar, because the selection strategy could be useful in case that
there are only limited labeled samples available, especially, we select 20% of sam-
ples from ORL, since there are only 10 samples in each class of ORL.

The results are plotted in Fig. 1(a-f). It shows that our method is almost ef-
fective for all graph construction approaches on each dataset, except Parkinsons.
The result on Parkinsons is unstable. The reason is that there are two classes in
Parkinsons, but its imbalance ratio is nearly 3. In this case, our method tends to
select more samples from the majority class to minimize the total reconstruction
error, which leads to that the selected samples are incapable of capturing the
true geometric structure of the dataset. We balance the sizes of two classes by
randomly selecting some samples from the majority class, and the result shown
in Fig. 1(g) is consistent with the other datasets’.

(a) WDBC (b) Sonar 

(c) Parkinsons (d) YaleB 

(e) ORL (f) COIL20 

(g) Parkinsons (balanced) 
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Fig. 1. Classification results of all graph construction algorithms on each dataset after
applying sample selection strategy
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7 Conclusion

We propose a new graph based semi-supervised learning approach called CLSR,
which utilizes the pairwise constraints to guide the graph learning process. Beside
the labeled information, there constraints also bring in local neighbor relations
to enhance the graph’s flexibility. In addition, based on CLSR, we design a
labeled sample selection strategy which is used to select more representative
points as a labeled set. Experimental results on real world datasets demonstrate
the effectiveness of our method. Furthermore, given a small size of labeled set
(e.g., 5% of total samples), our sample selection strategy could generally improve
the performance of several state-of-the-art methods on most of the datasets used
in the experiments.
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Machine Learning Approaches
for Interactive Verification

Yu-Cheng Chou and Hsuan-Tien Lin
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Abstract. Interactive verification is a new problem, which is closely related to
active learning, but aims to query as many positive instances as possible within
some limited query budget. We point out the similarity between interactive ver-
ification and another machine learning problem called contextual bandit. The
similarity allows us to design interactive verification approaches from existing
contextual bandit approaches. We compare the performance of those approaches
on interactive verification. In particular, we propose to adopt the upper confi-
dence bound (UCB) algorithm, which has been widely used for the contextual
bandit, to solve the interactive verification problem. Experiment results demon-
strate that UCB reaches superior performance for interactive verification on many
real-world datasets.

Keywords: active learning, contextual bandit, upper confidence bound.

1 Introduction

Breast cancer is the most frequently diagnosed cancer in woman (Rangayyan et al.,
2007). Breast cancer screening is a strategy to achieve an earlier diagnosis in asymp-
tomatic women for breast cancer. A common technique for screening is mammography.
Somehow interpreting mammogram images is difficult and requires radiology experts,
while hiring radiology experts is usually expensive. In breast cancer screening, most of
the efforts are spent on interpreting mammogram images from healthy individuals. But
actually only the mammogram images from the patients with breast cancer require the
diagnosis from radiology experts. If we can select a subset of patients that are asymp-
tomatic, we can save radiology experts a lot of efforts. One possible way to do so is
to let computers select the subset automatically in a computer-aided diagnosis (CAD)
system.

CAD systems are designed to assist radiology experts in interpreting mammogram
images (Rangayyan et al., 2007; Li and Zhou, 2007). A CAD system can prompt poten-
tial unhealthy region of interests (ROIs) for radiology experts to verify. A typical CAD
session can be decomposed into three stages: labeling stage, where radiology experts
perform the reading of some mammogram images and record the label (malignant or be-
nign) for each ROI; learning stage, where a learning algorithm within the CAD system
builds a classifier to predict the labels of ROIs for future mammogram images based on
the labels obtained from labeling stage; verification stage, where radiology experts ana-
lyze the prompts given by the CAD system to verify whether the ROIs are malignant or

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014
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benign. A CAD system can reduce the efforts spent in breast cancer screening by select-
ing worthy-verified ROIs for radiology experts. Such a problem, which allows human
experts to verify something (malignant ROIs) selected by computers (CAD system), is
named the “verification problem” in this work.

In a verification problem, there are two stages that require the efforts of human ex-
perts: the labeling stage and the verification stage. These two stages are different from
the point of view of the system. In the labeling stage, the system requests label of an ROI
for learning; in the verification stage, the system prompts an ROI that is considered to
be positive (malignant) for verification. Nevertheless, these two stages are similar from
human experts’ point of view. Both of them require radiology experts to diagnose on
an ROI and return the diagnosis. We call the request of diagnosis as a “query” in the
verification problem. Given the similarity between the labeling stage and verification
stage, we propose to combine these two stages together: a human expert can do the
verification while doing the labeling; and the feedback of the verification can be treat as
the labeling result. By combining the learning and verification, the system can get the
flexibility to decide how to distribute limited human resources on these two stages to
achieve better performance. Given limited query budget, how could we most efficiently
distribute and utilize the queries to verify as many malignant ROIs as possible? This is
the main question of this work.

In this paper, we formalize the question above by defining a new problem called
interactive verification. The problem describes a procedure that performs verification
through the interaction between the system and the human experts. By interacting with
humans, the system aims to verify as many positive instances as possible within limited
query budget, and the query result can be immediately used to learn a better classifier.
An effective approach for the problem can then help reduce the overall human efforts.

In our work, we first point out the similarity of interactive verification to the popular
contextual bandit problem (Langford and Zhang, 2007). We also discuss the similarity
of interactive verification to the active learning problem. Then, we design four possible
interactive verification approaches based on the similarities. In particular, one of the
four is called the upper confidence bound (UCB), which is adopted from a state-of-
the-art family of contextual bandit algorithms. We conduct experiments on real world
datasets to study the performance of these approaches. The results demonstrate that
UCB leads to superior performance.

The rest of this paper is organized as follows. In Section 2, we define the interactive
verification problem and compare it to other problems. We describe our design of the
four approaches to solve the problem in Section 3. Finally, we present the experiment
results in Section 4 and conclude our work in Section 5.

2 Problem Setting

Given a set of instances X = {x1, ..., xm}, where each instance xi is associated with a
label Y (xi) ∈ {−1, 1}. We define the set of positive instances P = {xi ∈ X |Y (xi) =
1}, which is the set of the instances that require verification. Interactive verification is an
iterative process. In the first iteration, we assume that an interactive verification learner
knows the labels of one positive instance and one negative instance as initial instances
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and do not know the labels of other instances. On the t-th iteration, the learner is asked
to select an instance st from unlabeled (un-verified) dataset U , where U = {xi ∈
X |xi �= sτ , ∀τ < t}. The learner then receives the label Y (st) to update its internal
model. The goal is to verify as many positive instances as possible within T iterations.
That is, we want to maximize

T∑
t=1

[Y (st) = 1]

|P | . (1)

Sabato et al. (2013) also proposed an equivalent problem called “auditing”, which
aims to minimize the number of labeled negative instances needed to classify all of
the instances accurately. The work compares the similarity and differences between
auditing and active learning, and only studies one baseline auditing algorithm. In this
work, we consider designing and comparing different approaches for the interactive
verification problem.

As pointed out by Sabato et al. (2013), immediate tools for interactive verification
can be easily found in active learning. Active learning is a form of supervised learning
in which the learner can interactively ask for information (Settles, 2009). The spirit
of active learning is to believe that the information amount carried by each instance is
different. By choosing informative instances to query, the learner can obtain an accurate
model with only few labeled instances, thereby reducing human efforts.

Pool-based active learning is a widely used setting for active learning, which as-
sumes that the learner can only query the instances chosen from a given dataset pool
(Lewis and Gale, 1994). The setting of pool-based active learning is almost the same
as interactive verification: both of them allow the learner to query an instance to obtain
its label in each iteration. The difference between them is the different goals. Active
learning focuses on getting an accurate model; on the other hand, interactive verifica-
tion aims to maximize the number of verified positive instances. Although the goals
are different, the similar setting allows tools of active learning to be possibly used for
interactive verification.

In this work, we will connect interactive verification to another problem called con-
textual bandit. The contextual bandit problem is a form of multi-armed bandit problem,
where a player faces some slot machines and wants to decide in which order to play
them (Auer et al., 2000). In every iteration, the player can select one slot machine (ac-
tion) from some action set A. Then, the player will receive a randomize reward decided
by the distribution under the corresponding slot machine (action). The goal is to max-
imize the rewards received by the player after a given number of iterations. One key
property of the multi-armed bandit problem is that we could only get partial informa-
tion from environment: only the reward of the selected action will be revealed. If an
action has never been selected, the player will not have information about it. Thus, it is
necessary to spend some iterations to explore the actions that the player is not familiar
with. Somehow only doing the exploration cannot maximize the total rewards, and the
player also needs to spend some iterations to exploit the action with high expected re-
wards. The key to solve the multi-armed bandit problem is to find the balance between
the exploration and the exploitation. In addition to the setting above, the contextual ban-
dit problem allows the learner (player) to receive some context information about the
environment prior to making selections in every iteration (Langford and Zhang, 2007).
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The context information makes it possible for contextual bandit algorithms to exercise
a more strategic choice according to the context.

In a first glance, the setting of contextual bandit appears very different from interac-
tive verification. A closer look at the two problems, however, reveal that the trade-off
between the exploration and the exploitation in contextual bandit is similar to the trade-
off between the learning stage and the verification stage in the interactive verification.
In particular, if we define a special contextual bandit problem as follows: The action
set A consists of the choices to query each unlabeled instance; the context represent the
features of each unlabeled instance; the reward is 1 if the selected action (queried in-
stance) is a positive one, and 0 otherwise. Then, we see that maximizing the cumulative
rewards in such a contextual bandit problem is exactly the same as maximizing (1). The
connection leads to new possibilities in designing interactive verification approaches,
which will be discussed in the next section.

Although we find the similarity between contextual bandit and interactive verifica-
tion, there is still a big difference. In a contextual bandit problem, each action is usually
allowed to be selected several times. Then, the actions that are more likely to produce
high rewards could be selected more often. In interactive verification, however, each
instance is supposed to be queried at most once. That is, in the corresponding contex-
tual bandit problem, each action can be selected at most once. The difference make it
non-trivial to apply existing contextual bandit algorithms for interactive verification.

3 Approaches

For the convenience of discussion, we first outline a general framework for interactive
verification approaches. In every iteration, we use a base learner to train the model
from labeled instances, and then the learner chooses the next instance to be queried
according to a scoring function computed from the model. The general framework is
shown in Algorithm 1. By defining the scoring function, we define the behavior of an
approach to interactive verification.

Algorithm 1. General approach to interactive verification
Require: Base learner, B; Unlabeled instances, U ; Labeled instances, L; Number of

iterations, T ;
1. for t = 1 to T do
2. model M = B(L)
3. for all u ∈ U do
4. Compute scoring function: S(u,M)
5. end for
6. st = argmaxu S(u,M)
7. L = L ∪ {(st, Y (st))}
8. U = U\{st}
9. end for
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In this work, we use support vector machine (SVM) with linear kernel as our base
learner, and denote wt to be the liner weights we get from the base learner in the begin-
ning of every iteration.

3.1 Greedy Approach

The goal of our problem is to verify as many positive instances as possible. The most
intuitive solution is querying the instance which be considered most likely to be positive
by current model in every iteration, i.e. the instance with highest p(y = 1|xi). When
using SVM as base learner, the instance to be queried comes with the largest decision
value. That is, the scoring function of the greedy approach is simply

S(xi, wt) = xᵀi wt.

Greedy approach only considers how possible an instance to be positive in each
iteration. It ignores the information amount carried by each instance. If we start from
a biased model, the greedy approach may perform poorly. Here, we give an example
that the greedy approach will fail. Consider the case shown in Figure 1. There are two
clusters of red positive instances and one big cluster of blue negative instances in the
figure. Without loss of generality, we assume the initial positive instance is in the top red
positive cluster. The model we start with will be the dashed line. The optimal model is
the solid line, which is very different from the dashed line. By running greedy approach
on this dataset, we can easily verify the positive instances in top cluster. But after all
the instances in top positive cluster is queried, greedy approach will prefer to query the
instances in the negative cluster than query the instance in bottom positive cluster. To
solve this issue, we may need to do some explorations to help us find the instances in
the bottom positive cluster.

3.2 Random Then Greedy

In the previous subsection we discuss the risk of not doing exploration. Here we pro-
pose an approach using the random as exploration method to solve interactive verifi-
cation problems: random then greedy (RTG). Randomly selecting an instance to query
is a naive yet reasonable strategy to do the exploration. It can provide some unbiased
information. Then, we use greedy approach described in he previous section for ex-
ploitation (verification). In this approach we do an one-time switching from exploration
to exploitation. We use the parameter ε to decide the ratio between exploration and
exploitation. That is, the scoring function of RTG is

S(xi, wt) =

{
random(), if t ≤ εT

xᵀi wt, otherwise
.

3.3 Uncertainty Sampling Then Greedy

As the discussion in Section 2, the setting of the interactive verification is pretty similar
to the active learning problem. It is natural to attempt to use tools of active learning
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for interactive verification. Uncertainty sampling is one of the most commonly used
algorithm for active learning (Settles, 2009). The idea is to query the instances that
the current model is least certain on how to label it. For probabilistic learning mod-
els, uncertainty sampling queries the instances with probability to be positive close
to 50%. Uncertainty sampling can also be employed with non-probabilistic learning
model. When using SVM as the base learning model, uncertainty sampling queries the
instance closest to the linear decision boundary (Tong and Koller, 2001).

To apply the uncertainty sampling on the interactive verification, we can borrow the
framework from RTG as described in previous section. We use greedy as exploitation
method and use uncertainty sampling as our new exploration method to replace random
sampling. We call this approach uncertainty sampling then greedy (USTG). The scoring
function of USTG is

S(xi, wt) =

{
1

|xᵀ
i wt|+1

, if t ≤ εT

xᵀi wt, otherwise
.

Uncertainty sampling may suffer from a biased model like the greedy approach. When
starting with a model of bad quality, the instances that are selected by uncertainty sam-
pling may not be very informative. Thus, using the uncertainty sampling as exploration
method cannot totally solve the issue of biased model in the greedy approach.

3.4 Upper Confidence Bound

Upper confidence bound (UCB) is an algorithm to solve the multi-armed bandit problem
(Auer et al., 2000). The idea of UCB is to keep the upper bound of plausible rewards
of the actions and select the action according this value. In the traditional multi-armed
bandit problem, there is no contextual features. The prediction of confidence bound is
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based on how many times we select the action. In an interactive verification problem,
each action can be only applied once, and hence the algorithm for multi-armed bandit
problem cannot be applied to the interactive verification directly. But as our discussion
in Section 2, we can transform an interactive verification problem to a contextual ban-
dit problem. The UCB-type algorithm for contextual bandit problem may suit for the
interactive verification.

LinUCB is a UCB-type algorithm for contextual bandit problem, which assumes the
problem has linear payoffs (Li et al., 2010). The expected payoff of an action with con-
text xi is xᵀi w

∗ with some unknown w∗. Let D be a matrix of dimension m× d, whose
rows correspond to m labeled instance be queried so far and b as the corresponding
labels. By applying ridge regression, we could get ŵ = (DᵀD + I)−1Dᵀb, so xᵀi ŵ
will be the estimation of the reward. According to (Walsh et al., 2009), with probabil-
ity at least 1 − δ, |xᵀi ŵ − xᵀi w

∗| ≤ α̂
√
xᵀi (DᵀD + Id)−1xi, for any δ > 0, where

α̂ = 1 +
√
ln(2/δ)/2. It makes

√
xᵀi (DᵀD + Id)−1xi a suitable upper confidence

bound measurement. In every iteration, LinUCB will query the instance xi with largest
xᵀi ŵ + α̂

√
xᵀi (DᵀD + Id)−1xi.

Since the interactive verification does not have the assumption of linear payoff, we
use our original base learner SVM instead of ridge regression. We treat confidence
term in LinUCB as a term to measure the uncertainty of each instance in unsupervised
learning view. If the learner is not certain on the instance, the confidence term will
be large; otherwise, it will be small. By using confidence term from LinUCB, we can
find the instances that worthy to be explored. The value of confidence term can also
help to decide the switching timing between exploration and exploitation. We add the
confidence term to the decision value that is produced from SVM and connect these
two terms with a parameter α. The scoring function of the UCB approach to interactive
verification is

S(xi, wt) = xᵀi wt + α
√
xᵀi (DᵀD + Id)−1xi.

3.5 Discussions

We have now discussed four different approaches to solve interactive verification prob-
lems. Among them, the greedy approach could be seen as a special case of the other
three approaches. All four approaches all apply greedy approach during exploitation.
But these four approaches have different philosophy for exploration. The greedy ap-
proach spend all the iterations for exploitation; the exploration method used by RTG is
random sampling, which can get unbiased information; the exploration method used by
USTG is uncertainty sampling, which is widely used for active learning; UCB uses the
confidence term from LinUCB to decide which instances are worthy of being explored
and when the learner should do the exploration.

Now we compare the strategies on switching between exploration and exploitation.
Greedy approach does not do the switching at all; RTG and USTG share a similar frame-
work by only doing a one-time switching from exploration to exploitation; UCB uses
the confidence term to decide the switching between exploration and exploitation auto-
matically. That is, it is possible for UCB to switch between exploration and exploitation
several times.
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4 Experiment

4.1 Datasets and Experiment Setting

We conduct experiments on eight real-world datasets to compare the performance of the
four approaches proposed in Section 3. Table 1 shows the datasets that we use. Among
them, the KDD Cup 2008 dataset is a breast cancer screening dataset as discussed in
Section 1. As the table shows, the percentages of positive instances, which may greatly
affect the performance of interactive verification algorithm, are very different from dif-
ferent datasets. To do a fair comparison, we do the re-sampling on all the datasets to
control the percentages of positive instances in each dataset. We separate the positive
instances from negative instances in original dataset, and sample P positive instances
and N negative instances from corresponding set. For convenience, we set N = 1000
all the time and only adjust the value of P in our experiments. We repeat each exper-
iment 1000 times with different initial instances, which include one positive instance
and one negative instance. We used (1) as the evaluation metric. The results and the dis-
cussions can be seen in following sections. The KDD Cup 2008 dataset will be studied
further in Section 4.4.

Table 1. Dataset characteristics

Dataset Number of instances Number of positive instances Positive rate
KDD Cup 2008 102294 623 0.6%
spambase 4601 1813 39.4%
a1a 1605 395 24.6%
cod-rna 59535 19845 33.3%
mushrooms 8124 3916 48.2%
w2a 3470 107 3%
covtype.binary 581012 297711 51.2%
ijcnn1 49990 4853 9.7%

4.2 Effect of ε

In this section we demonstrate the effect of different ε in RTG and USTG. We con-
duct experiments on the KDD Cup 2008 dataset with P = 50, 100 and T = 100. We
change the value of ε from 0 to 1. The results are shown in Figure 2. The performance
decreases when ε increase both for RTG and USTG, and ε = 0 is one of the best choice.
The rest of the datasets show the same trend. RTG and USTG with ε = 0 are actually
the greedy approach. As our discussion before, the greedy approach spent all the iter-
ations in exploitation. The results that greedy approach has best performance seem to
suggest that spending queries on improving model quality is not important for interac-
tive verification. Nevertheless, if we take a closer look on greedy approach, we will find
out that instances selected by greedy approach could benefit on both verification and
model quality.
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(a) KDD Cup 2008 with P = 100
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(b) KDD Cup 2008 with P = 50

Fig. 2. The effect of Σ

The story is that, the instance selected by greedy approach the instance with high-
est possibility to be positive among all the unlabeled instances. It will have the highest
probability to be a positive instance, and hence the query is likely to be a successful ver-
ification; on the other hand, even if greedy approach queries a negative instance, it may
not totally be a bad news. The instance selected by greedy approach is the instance that
considered most possible to be positive by current model. The truth that the instance is
actually a negative instance is very informative. The query result may greatly improve
the model quality. So no matter what result we get from querying the instance selected
by greedy approach, we either successfully verify a positive instance or label an infor-
mative negative instance. In other word, greedy approach often either does a successful
exploitation or does an efficient exploration.

Although greedy approach has such good property in the interactive verification, it
still will have poor performance on the dataset shown in Figure 1. The reason that the
good property of greedy approach does not work is that the instance selected by greedy
approach may actually have low possibility to be positive. It may happen when there
is no better choice for greedy approach to select. Consider the biased model shown as
dashed line in Figure 1, the instances in negative cluster are considered to be negative
instances by the model. But since the instances in bottom positive cluster are misclas-
sified as extremely negative ones, the greedy approach will still select the instance in
negative cluster to query. To solve this issue, we should do the exploration when the in-
stance selected by greedy approach does not have high enough possibility to be positive,
and do the exploitation when the instance selected by greedy has high enough possibil-
ity to be positive. It is actually what UCB does: when the first term in UCB is large,
it will do the exploitation; when the first term is small, it will do the exploration. So
UCB may be a better choice to solve interactive verification problems than the greedy
approach.

4.3 Comparison of All Approaches

In this section, we conduct experiments for comparing four approaches on all eight
datasets. We set P = 50, 100 and T = 100. For RTG and USTG, we set ε to be 0.2,
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Table 2. Experiment results

Dataset Algorithm P = 50 P = 100
KDD Cup 2008 greedy 0.5868 ± 0.0040 (3) 0.5454 ± 0.0022 (2)

RTG(ρ = 0.2) 0.5615 ± 0.0035 (5) 0.5080 ± 0.0018 (5)
USTG(ρ = 0.2) 0.5863 ± 0.0032 (4) 0.5235 ± 0.0023 (4)
UCB(α = 0.2) 0.5968 ± 0.0031 (2) 0.5434 ± 0.0018 (3)
UCB(α = 0.4) 0.6055 ± 0.0027 (1) 0.5467 ± 0.0015 (1)

spambase greedy 0.7467 ± 0.0024 (1) 0.6055 ± 0.0012 (1)
RTG(ρ = 0.2) 0.7042 ± 0.0020 (4) 0.5422 ± 0.0012 (5)

USTG(ρ = 0.2) 0.7429 ± 0.0023 (2) 0.5905 ± 0.0012 (2)
UCB(α = 0.2) 0.7306 ± 0.0020 (3) 0.5856 ± 0.0013 (3)
UCB(α = 0.4) 0.6965 ± 0.0022 (5) 0.5559 ± 0.0013 (4)

a1a greedy 0.3883 ± 0.0034 (4) 0.3754 ± 0.0020 (2)
RTG(ρ = 0.2) 0.3535 ± 0.0035 (5) 0.3413 ± 0.0018 (5)

USTG(ρ = 0.2) 0.3898 ± 0.0035 (3) 0.3585 ± 0.0018 (4)
UCB(α = 0.2) 0.3915 ± 0.0034 (1) 0.3775 ± 0.0019 (1)
UCB(α = 0.4) 0.3909 ± 0.0031 (2) 0.3711 ± 0.0019 (3)

cod-rna greedy 0.7249 ± 0.0027 (3) 0.6251 ± 0.0012 (2)
RTG(ρ = 0.2) 0.6763 ± 0.0024 (5) 0.5610 ± 0.0012 (5)

USTG(ρ = 0.2) 0.7155 ± 0.0025 (4) 0.6074 ± 0.0012 (4)
UCB(α = 0.2) 0.7333 ± 0.0024 (1) 0.6265 ± 0.0012 (1)
UCB(α = 0.4) 0.7297 ± 0.0025 (2) 0.6236 ± 0.0012 (3)

mushrooms greedy 0.9710 ± 0.0014 (4) 0.9125 ± 0.0008 (1)
RTG(ρ = 0.2) 0.9715 ± 0.0012 (3) 0.8112 ± 0.0006 (5)

USTG(ρ = 0.2) 0.9600 ± 0.0008 (5) 0.8776 ± 0.0005 (4)
UCB(α = 0.2) 0.9776 ± 0.0007 (2) 0.9109 ± 0.0006 (2)
UCB(α = 0.4) 0.9837 ± 0.0006 (1) 0.9031 ± 0.0005 (3)

w2a greedy 0.5944 ± 0.0030 (3) 0.5498 ± 0.0016 (2)
RTG(ρ = 0.2) 0.5371 ± 0.0032 (5) 0.4933 ± 0.0016 (5)

USTG(ρ = 0.2) 0.5931 ± 0.0028 (4) 0.5393 ± 0.0015 (3)
UCB(α = 0.2) 0.6160 ± 0.0024 (1) 0.5601 ± 0.0013 (1)
UCB(α = 0.4) 0.6064 ± 0.0023 (2) 0.5314 ± 0.3883 (4)

covtype.binary greedy 0.2202 ± 0.0026 (5) 0.2306 ± 0.0021 (5)
RTG(ρ = 0.2) 0.2342 ± 0.0027 (3) 0.2388 ± 0.0017 (4)

USTG(ρ = 0.2) 0.2294 ± 0.0026 (4) 0.2491 ± 0.0021 (3)
UCB(α = 0.2) 0.2536 ± 0.0024 (2) 0.2554 ± 0.0021 (2)
UCB(α = 0.4) 0.2798 ± 0.0024 (1) 0.2649 ± 0.0021 (1)

ijcnn1 greedy 0.5220 ± 0.0027 (3) 0.4705 ± 0.0023 (3)
RTG(ρ = 0.2) 0.4668 ± 0.0034 (5) 0.4247 ± 0.0015 (5)

USTG(ρ = 0.2) 0.5184 ± 0.0028 (4) 0.4607 ± 0.0019 (4)
UCB(α = 0.2) 0.5402 ± 0.0029 (2) 0.4750 ± 0.0021 (2)
UCB(α = 0.4) 0.5598 ± 0.0025 (1) 0.4849 ± 0.0018 (1)

Average Rank greedy 3.25 2.25
RTG(ρ = 0.2) 4.38 4.88

USTG(ρ = 0.2) 3.75 3.5
UCB(α = 0.2) 1.75 1.88
UCB(α = 0.4) 1.88 2.5

the best observed choice among ε > 0. For the parameter α in UCB, we consider 0.2
and 0.4. Table 2 shows the result of our experiments. We treat datasets with different
P as different datasets. The results show that greedy outperform RTG and USTG. It
is consistent to our finding in the previous subsection. The table also shows that the
best α for UCB is dataset dependent, so parameter tuning may be necessary for UCB.
Generally, α = 0.2 is a good choice. UCB with α = 0.2 has best performance both for
P = 50 and P = 100 cases. When P = 50, UCB totally outperform greedy. But when
P = 100, although UCB with α = 0.2 still has the best performance, the gap between it
and greedy is smaller. The reason behind that is when P increase from 50 to 100 while
T is still fix to 100, there may be not much iterations left after greedy finish querying
the instances with high probability to be positive, so the ability to dynamically switch
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Table 3. KDD Cup 2008

Dataset Algorithm T = 623 T = 1243
KDD Cup 2008 greedy 0.3649 ± 0.0037 0.4831 ± 0.0059

RTG(ρ = 0.2) 0.3062 ± 0.0022 0.4482 ± 0.0023
USTG(ρ = 0.2) 0.3659 ± 0.0013 0.4802 ± 0.0058
UCB(α = 0.2) 0.3660 ± 0.0016 0.4917 ± 0.0029
UCB(α = 0.4) 0.3655 ± 0.0013 0.4897 ± 0.0048

to the exploration stage will be less significant. The results also show that UCB, which
does dynamic switching from the exploration stage to the exploitation stage approach,
has better performance than RTG and USTG, which does an one-time switching.

4.4 Real-World Task

In this subsection, we conduct experiments on the KDD Cup 2008 dataset without re-
sampling. The KDD Cup 2008 challenge focuses on the problem of early detection of
breast cancer from X-ray images of the breast. In this dataset, only 623 out of 102294
ROIs are malignant mass lesions. The percentage of positive instance is only around
0.6%. The P is given by the dataset, which equals to 623. We set T to be 623 and 1243
separately, which are the value of P and twice the P . We do each experiment 20 times.
The result is shown in Table 3. Although the difference is small when T = 623, UCB
apparently has best performance when T = 1243. The result is consistent with our
experiments on the re-sampled datasets.

5 Conclusion

Interactive verification is a new problem. We pointed out that the trade-off between
the learning stage and the verification stage is similar to the trade-off between explo-
ration and exploitation in the contextual bandit problem, and transformed interactive
verification to a special contextual bandit problem. We discussed the pros and cons of
three basic approaches: greedy, RTG, and USTG, and showed that applying greedy on
the interactive verification leads to better results. We also showed the potential risk of
the greedy approach for interactive verification, and proposed to adopt UCB, which has
been widely used for contextual bandit, to solve interactive verification. UCB avoids the
risk that the greedy approach may encounter. The experimental results on re-sampled
datasets and a real-world task show that greedy is quite competitive and UCB performs
the best among four approaches.
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Abstract. Most existing language modeling approaches are based on the term 
independence hypothesis. To go beyond this assumption, two main directions 
were investigated. The first one considers the use of the proximity features that 
capture the degree to which search terms appear close to each other in a docu-
ment. Another one considers the use of semantic relationships between words. 
Previous studies have proven that these two types of information, including 
term proximity features and semantic relationships between words, are both 
useful to improve retrieval performance. Intuitionally, we can use them in com-
bination to further improve retrieval performance. Based on this idea, this paper 
propose a positional translation language model to explicitly incorporate both of 
these two types of information under language modeling framework in a unified 
way. In the first step, we present a proximity-based method to estimate word-
word translation probabilities. Then, we define a translation document model 
for each position of a document and use these document models to score the 
document. Experimental results on standard TREC collections show that the 
proposed model achieves significant improvements over the state-of-the-art 
models, including positional language model, and translation language models. 

Keywords: Positional Language Model, Translation Language Model, Informa-
tion Retrieval. 

1 Introduction 

Language modeling (LM) for Information Retrieval (IR) has been a promising area of 
research over the past decade and a half. It provides an elegant mathematical model 
for ad-hoc text retrieval with excellent empirical results reported in the literature 
[12][20]. However, language models suffer from one problem: term independence 
assumption which is common for all retrieval models.  

To address this problem, two main directions were investigated. The first one is 
based on the use of the proximity features. These features capture the degree to which 
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search terms appear close to each other in a document. To incorporate the cues of 
term position and term proximity under language model framework, Lv and Zhai [10] 
proposed a positional language model (PLM). In PLM, a language model for each 
term position in a document is defined, and document is scored based on the scores of 
its PLMs.  

The second one considers the use of semantic relationships between words. In or-
der to reduce the semantic gap between documents and queries, statistical translation 
models (TLM) have been proposed for information retrieval to capture semantic word 
relations [2]. The basic idea of translation language models is to estimate the proba-
bilities of translating a word in a document to query words. Since a word in a docu-
ment could be translated into different words in the query, translation language  
models can avoid exact matching of words between documents and queries.  

The previous studies have proven that term proximity features and semantic rela-
tionships between words are both useful information to improve retrieval performance 
(e.g., [2][7][10][11]). Intuitionally, we can use them in combination to further im-
prove retrieval performance. Based on this idea, this paper proposes a positional 
translation language model to explicitly incorporate these two types of information in 
a united way. In the first step, we present a proximity-based method to estimate word-
word translation probabilities. Then, we define a translation document model for each 
position of a document and use these document models to score the document.  

The main contribution of this paper is as follows：First, we propose a new proxim-
ity-based method, in which the proximity of co-occurrences is taking into account, to 
estimate word-word translation probabilities. Second, we propose a positional transla-
tion language model (PTLM) to explicitly incorporate term proximity features and 
semantic relationships between words in a unified way. Finally, extensive experi-
ments on standard TREC collections have been conducted to evaluate the proposed 
model. Experimental results on standard TREC collections show that PTLM achieves 
significant improvements over the state-of-the-art models, including positional lan-
guage model, and translation language models. 

2 Background: PLM and TLM  

2.1 Basic Language Modelling Approach 

The basic idea of language models is to view each document to have its own language 
model and model querying as a generative process. Documents are ranked based on 
the probability of their language model generating the given query. Different imple-
mentations were proposed [20]. The general ranking formula is defined as follows: ( | ) ( , ) ( | )                                 (1) 

where  means equivalence for the purpose of ranking documents, ( , ) is the 
count of word w in query , and  is the vocabulary set. The challenging part is to  
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estimate a document model ( | ). The simplest way to estimate ( | ) is the 
maximum likelihood estimator. However, this method is suffering from the data 
sparseness problem.  To address this problem, some effective smoothing approaches, 
which combine the document model with the background collection model, have been 
proposed. One commonly used method is Dirichlet Prior smoothing methods [18], 
which is defined as follows: ( | )  | || | ( | )  | | ( | )                             (2) 

2.2 Positional Language Model  

To incorporate the cues of term position and term proximity under language model 
framework, Lv and Zhai [10] proposed a positional language model (PLM). In PLM 
model, for each document ( ; … ; ; … ; ; … ; ), where 1, i, j, and N are abso-
lute positions of the corresponding terms in the document, and N is the length of the 
document, a virtual D  document is estimated at each position. This model is repre-
sented as a term frequency vector ( ; ); … ; ( ; ) , where ( ; ) is the 
total propagated count of term w at position i from the occurrences of w in all the 
positions. That is ( , ) ∑ ( , ) ( , ) where c( , ) is the count of term 
w at position i in document D. If w occurs at position i, it is 1, otherwise 0. ( , ) is 
the propagated count to position i from a term at position j. Several proximity-based 
density functions are used to estimate this factor: (Gaussian kernel, Triangle kernel, 
Circle kernel, Cosine kernel). Once the virtual document  is estimated, the lan-
guage model of this virtual document can be estimated as follow ( | , ) ( , )∑ ( , )                                                    (3) 

where V is the vocabulary, ( | , ) is noted as a positional language model at posi-
tion i. To compute the final score of document , they used the position-specific 
scores. Different strategies were used: Best Position Strategy, Multi-Position Strategy, 
Multi-σ Strategy. 

2.3 Statistical Translation Language Model 

To incorporate the semantic relationship between terms under language model 
framework, Berger and Lafferty proposed translation language modelling approach to 
estimate ( | ) based on statistical machine translation [2]. In this approach, the 
document model ( | )  can be calculated by using the following “translation 
document model”:  ( | ) ( | ) ( | )                                            (4) 
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where ( | ) is the probability of seeing word  in document , and ( | ) is 
the probability of “translating” word  into word . In this way, a word can be trans-
lated into its semantically related words with non-zero probability, which allows us to 
score a document by counting the matches between a query word and semantically 
related words in document.  

The key part for translation language model is estimating translation probabilities. 
Berger and Lafferty [2] proposed a method to estimate translation probabilities by 
generating synthetic query. This method is inefficient and does not have good cover-
age of query words. In order to overcome these limitations, Karimzadehgan and Zhai 
[7] proposed an effective estimation method based on mutual information. Recently, 
Karimzadehgan and Zhai [8] defined four constraints that a reasonable translation 
language model should satisfy, and proposed a new estimation method which is 
shown to be able to better satisfy the constraints. This new estimation method, namely 
conditional context analysis, is described in formula 5.  

3 Positional Translation Language Model 

In this section, we will describe the PTLM in detail. In the first part, a proximity-based 
method is presented to estimate word-word translation probabilities. Then, we will 
introduce how to estimate the translation document model for each position within a 
document. Finally, these positional document models are used to score the document. 

3.1 Estimating Translation Probability  

In the conditional context analysis method proposed in [8], the probability of translat-
ing word   into word  can be estimated as follows: ( | ) ( , ) 1∑ ( , ) | |                                                     (5) 

where ( , ) is the co-occurrences of word  with word w, and | | is the size of 
the vocabulary. 

In this method, any co-occurrence within the document is treated in the same way, 
no matter how far they are from each other.  This strategy is not optimal as a docu-
ment may cover several different topics and thus contain much irrelevant information. 
Intuitionally, closer words usually have stronger relationships, thus should be more 
relevant. Therefore, we introduce a new concept, namely proximity-based word co-
occurrence frequency (pcf) to model the proximity feature of co-occurrences. 

Recently, density functions based on proximity are proven to be effective to cha-
racterize term influence propagation. A number of term propagation functions (e.g. 
Gaussian, Triangle, Cosine and Circle) have been proposed [10][11]. In this section, 
we adopted Gaussian functions because it has been shown to be effective in most 
cases. The Gaussian-based pcf can be calculated as follows: 
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( , ) ( , , )2( , )                               (6) 

where,  is a parameter in Gaussian distribution, ( , ) is the set of documents 
which contain both  and , and ( , , ) is the distance score of word  and 

 in document .  
In this paper, three commonly used distance measures are adopted to 

late ( , , ). We will use the following short document D as an example to 
explain how to calculate distance score in the three distance measures. 

 1 2 3 4 5 6 7 8 9 10  
D = { w u c k w u k e w g } 

Minimum pair distance: It is defined as the minimum distance between any oc-
currences of w and u in document D. In the example, ( , , ) is 1 and can be 
calculated from the position vectors. 

Average pair distance: It is defined as the average distance between w and u for 
all position combinations in . In the example, the distances from the first occurrence 
of  (in position 1) to all occurrences of  are: {1 and 5}. This is computed for the 
next occurrence of  (in position 5) and so on. ( , , ) for the example is (((2-
1) + (6-1)) + ((5-2) + (6-5)) + ((9-2) + (9-6)))/(2 · 3) = 20/6 = 3.33.  

Average minimum pair distance: It is defined as the average of the shortest dis-
tance between each occurrence of the least frequently occurring word and any occur-
rence of the other word. In the example, u is the least frequently occurring word so ( , , ) = ((2−1)+(6−5))/2 =1.  

Then, the probability of translating word u into word w can be estimated as follows: ( | ) ( , )∑ ( , ) | |                                           (7) 

where  is a smoothing parameter in order to account for unseen words in the context 
of . Here  is set equals to the smallest of all  values in collection. 

In order to satisfy the constraints defined in [8], we adjust self-translation proba-
bilities as follows: ( | )  ( 0.5)                                                          (8) ( | ) (1 ) ( | )∑ ( | )                                        (9) 

where parameter s is a constant value that could be set to 0.5 <= s <= 1. Note that 
when  = 1, the query likelihood model are gained. 

3.2 Estimating Translation Document Model 

The state-of-art translation language models use an entire document as a unit to esti-
mate the generative probability of the query [7][8]. This strategy is not optimal as a 
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document may cover several different topics. Intuitionally, the words referring to the 
same topic may occur close to each other. Positional language model has been proven 
to be an effective way to incorporate the cues of term position and term proximity 
under language model framework [10]. In this section, we will introduce a positional 
translation language model to naturally incorporate two types of information, includ-
ing term proximity features and semantic relationships between terms, under language 
model framework in a united way.  

The key idea of our method is to extend the translation language model from doc-
ument level to positional level via the positional language model. The proposed model 
can capture the topic of the document at the position by giving more weight on words 
close to the position and less weight on words far away. The translation language 
model at each position can be estimated based on all the propagated counts of all the 
words to the position as if all the words had appeared actually at the position with 
discounted counts.   

Previous studies have shown that translation language model works better with  
Dirichlet prior smoothing [7][8]. Therefore, in the rest of the paper, we further focus 
on PTLM with Dirichlet prior smoothing only. The final positional translation lan-
guage model for position  in document  can be defined as follows: 

( | , ) | || | ( | ) ( | , ) | | ( | )                  (10) 

where ( | ) is the translation probability from word u to word w, and can be 
estimated by formula 8 and 9; ( | , ) is the positional document model at position i 
of document D , and can be estimated as follows: ( | , ) ( , )∑ ( , )                                                          (11) 

where ( , ) is the total propagated count of term   at position  from the oc-
currences of  in all the positions. ( , ) can be estimated using the Gaussian 
kernel function: 

( , ) ( , )exp ( )2| |                                                 (12) 

where   and  are absolute positions of the corresponding terms in document, and | | is the length of the document, ( , ) is the real count of term   at position  . 
3.3 Ranking Document  

In the section 3.2, we have obtained a translation language model for each position in 
a document. Intuitively, we can imagine that the PTLMs give us multiple representa-
tions of D. Thus given a query Q, we can adopt the KL-divergence retrieval model 
[19] to score each PTLM as follows: 
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( , , ) ( | ) ( | )( | , )                                     (13)  
Then, the position-specific scores can be used to compute the final score of doc-

ument D. In this paper, we compute the final score of document D using the best posi-
tion strategy [10], which simply scores a document based on its best match position 
and can be defined as follows: ( , ) , ( , , )                                                (14) 

4 Experiments 

4.1 Data Set 

We used six standard TREC data sets in our study. They represent different sizes and 
genre of text collections. Table 1 shows some basic statistics about these data sets. 
Each document is processed in a standard way for indexing. Words are stemmed (using 
porter-stemmer), and stop words are removed. In the experiments, we only use title of 
the queries because semantic word matching is necessary for such short queries.  

Table 1. Document set characteristic 

 TREC7 DOE WSJ TREC8 AP88-89 FR 

queries 351-400 51-100 51-100 401-450 51-100 51-100 

#doc 528,155 226,087 74,520 528,155 164,597 45,820 

 
In each experiment, we use the KL-divergence model using Dirichlet prior smooth-

ing (with prior parameter μ=1000) to retrieve 2000 documents for each query, and 
then use the PTLM to re-rank them. The top-ranked 1000 documents are used for 
comparison with other models. In order to evaluate our model and compare it to other 
models we use the MAP measure, which is widely accepted measure for evaluating 
effectiveness of ranked retrieval systems. 

In the section 3.1, three different proximity measures are adapted to measure the 
distance score of two words in a document. The corresponding models based on  
the three different proximity measures are evaluated on standard TREC collections. 
The methods used for the experiments are: 

• QL: baseline, query likelihood model with Dirichlet prior smoothing [18]. 
• KL: baseline, KL-divergence model with Dirichlet prior smoothing [19].  
• TM-MI: translation language model with mutual information [7]. 
• TM-CCON: translation language model with conditional context analysis [8]. 
• PLM: positional language model with the best position strategy [10]. 
• PTLM-1: PTLM with minimum pair distance. 
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• PTLM-2: PTLM with average pair distance.  
• PTLM-3: PTLM with average minimum pair distance. 

4.2 Comparing with Existing Retrieval Models 

As we can see from all the PTLM models used in our experiments, there are several 
controlling parameters to tune. In order to make the comparison fair, we evaluate 
PTLMs and PLM by a 5-fold cross-validation on each collection. For the two base-
lines (QL and KL), parameter µ in the Dirichlet smoothing is set to the optimal value 
for each collection. The results of TM-MI, TM-CCON are directly from [8].  

Table 2 shows the results for these models with Dirichlet prior smoothing. Com-
paring the rows in the table indicates that the PTLM models achieve significant im-
provements over the state-of-the-art models, including positional language model and 
translation language models. In addition, the results confirm our hypothesis that the 
two types of information can be used in combination to improve retrieval perfor-
mance. Comparing the three variants of PTLM, PTLM-3 is more effective and robust 
than PTLM-2 and PTLM-1. It also indicates that average-minimum-pair distance 
measure can capture the proximity feature of co-occurrences better than the other two 
measures. The significance test results using Wilcoxon signed-rank test indicate that 
the differences between the PTLM models and the start-of-art models are statistically 
significant.  

Table 2. The comparison of experiment results 
( * and  + mean improvements over TM-CCON and PLM are statistically significant with 
Wilcoxon signed-rank test, respectively) 

 TREC7 DOE WSJ TREC8 AP88-89 FR 

QL  0.1852   0.1740 0.2600  0.2518 0.2154 0.2817  

KL 0.1847  0.1742  0.2584 0.2509 0.2196 0.2697  

TM-MI 0.1854  0.1750  0.2658 - - - 

TM-CON 0.1920  0.1844  0.2780 - - - 

PLM 0.1893  0.1795  0.2641 0.2548 0.2196 0.2842  

PTLM-1 0.2003*+ 0.1952*+ 0.2896*+ 0.2672+ 0.2246+ 0.2885+ 

PTLM-2 0.2021*+ 0.1967*+ 0.2913*+ 0.2685+ 0.2259+ 0.2891+ 

PTLM-3 0.2030*+ 0.1975*+ 0.2924*+ 0.2692+ 0.2276+ 0.2920+ 

4.3 Parameter Sensitivity Study 

An important issue that may affect the robustness of the PTLM models is the sensitiv-
ity of their parameters  (in Equation 8, 9) and  (in Equation 6, 12). The parameter 

 controls the amount of self-translation probabilities. The kernel parameter  in 
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Equation 6 determines the distance in which words are considered to be related. 
Another kernel parameter   in Equation 12 restricts the propagation scope of a vir-
tual document. In this section, we study how sensitive these parameters are to MAP 
measure.  

We investigate a large range of  (in Equation 6) from 10 to 1000. Generally,  
the value of  affects the performance of all PTLM models extensively. The experi-
mental results show that the influence of  is collection-based. For the three PTLM 
models, their curves fluctuate similarly on the same collection. However, the best  
values for these PTLM models are not the same. For example, on the TREC7 collec-
tion, optimal  value for PTLM-1 is 80, and the corresponding value for PTLM-2 is 
150. Thus, the optimal values of  depend on the proximity measures and the collec-
tions. Figure 1 plots the evaluation metrics MAP obtained by the three PTLM models 
with   values ranging from 10 to 1000 on TREC7. 

 

Fig. 1. PTLM-1, PTLM-2, PTLM-3 over TREC7 with  (in Equation 6) values ranging 
from10 to 1000 

The experimental results also show that the influence of  is collection-based. For 
one collection, the best  values for all PTLM models are the same. Specifically, the 
best  values are 0.7, 0.8, and 0.5 for TREC7, DOE, and WSJ, respectively.  

In order to see how the propagation scope parameter  (in Equation 12) affects the 
performance of the PTLM models, we test a set of values from 25 to 275 in incre-
ments of 25. Overall, we see that a relatively large often brings the best performance. 
It also seems that the performance of the PTLM models stabilizes after  reach 175.  

To investigate how the Dirichlet prior parameter µ (in Equation 10) affects the 
performance of the PTLM models, we also change the settings of the smoothing pa-
rameters for them. The results indicate that the optimal smoothing parameters are the 
same (equals to 500) for all the three PTLM models on all collections. 
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5 Related Work 

Most existing information retrieval model including probabilistic and vector space 
models are based on the term independence hypothesis. Given common knowledge 
about language, such an assumption might seem unrealistic. To go beyond the  
term independency assumption in information retrieval, two main directions were 
investigated. 

The first one considers the use of the proximity features that capture the degree to 
which search terms appear close to each other in a document. For example, it looks at 
the minimum span of the query terms appearing in the document. Term proximity, as 
an effective retrieval heuristic, has been studied extensively in the past few years. In 
these papers, various methods have been proposed to integrate proximity information 
into different retrieval models. Keen [9] firstly attempted to import term proximity in 
the Boolean retrieval model by introducing a “NEAR” operator. Buttcher et al. [3] 
proposed an integration of term proximity scoring into Okapi BM25 and obtain im-
provements on several collections. Tao et al. [14] systematically studied five proximi-
ty measures and compared their performance in various retrieval models. Zhao et al. 
[16] used a query term’s proximity centrality as a hyper parameter in Dirichlet lan-
guage model under the language modelling framework. Lv and Zhai [10] integrated 
the position and proximity information into the language model by defining a lan-
guage model for each position within a document. Zhao et al. [17] introduce a pseudo 
term, namely cross term, to model term proximity for boosting retrieval model.  
Miao et al. [11] has attempted to incorporate proximity information into the Rocchio’s 
model.   

The second one considers the use of semantic relationships between words. Under 
this way, relevant words are used to enrich document or query representation.  Many 
studies have tried to bridge the vocabulary gap between documents and queries both 
based on term co-occurrences [1, 6, 13] and hand-crafted thesaurus [15]. Some other 
works have considered to combine both approaches [4]. Berger and Lafferty [2] firstly 
proposed a translation language model to corporate semantic relationship between 
words under the language modeling framework. To train translation models, they used 
synthetically generated query-document pairs. An alternation way of estimating the 
translation model is based on document titles [5]. Recent works have relied on docu-
ment-based word co-occurrences to estimate the translation model [7][8]. 

6 Conclusion 

Term proximity features and semantic relationships between words have proven to be 
two kinds of useful information to improve retrieval performance. In this paper, we 
proposed a positional translation language model to incorporate both of them in a 
unified way. In the first step, a new proximity-based method is presented to estimate 
the translation model. Three proximity measures are then adopted for calculating the 
distance score of two words within a document. The corresponding models based on 
these measures, PTLM-1, PTLM-2 and PTLM-3, are evaluated on six standard TREC 
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collections. Our experiment results indicate that the PTLM models are more effective 
than the state-of-art models, including positional language model and translation lan-
guage models. Comparing the three variants of PTLM, PTLM-3 is more effective 
than the other two. 

Since the number of positions is much larger than the number of documents, the 
cost of estimating PTLMs can be extremely high. For the sake of efficiency, we use 
PTLM to re-rank the top 2000 documents from initial search results. However, such a 
strategy does not fully take advantage of the capacity of PTLM to potentially retrieve 
relevant documents that do not match any query word. In the future, we will try to 
study how to reduce the computational complexity of PTLM and to further improve 
retrieval performance. 
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Abstract. Topic modeling is a powerful tool to uncover hidden thematic
structures of documents. Many conventional topic models represent doc-
uments as a bag-of-words, where the important linguistic structures of
documents are neglected. In this paper, we propose a novel topic model
that enriches text documents with collapsed typed dependency relations
to effectively acquire syntactic and semantic dependencies between con-
secutive and nonconsecutive words of text documents. In addition, we
propose to enforce coherent topic assignments for conceptually simi-
lar words by generalizing words with their synonyms. Our experimen-
tal studies show that the proposed model and strategy outperform the
original LDA model and the Bigram Topic Model in terms of perplexity;
and our performance is comparable to other models in terms of stability,
coherence, and accuracy.

1 Introduction

A large amount of text corpora and discrete data demands more on improving
people’s ability to interpret and comprehend them. Previously, texts were col-
lected and stored in large text repositories and retrieved by a set of keywords.
Documents were seldom analyzed using their themes, because there were very
few technologies to extract their thematic structures. During the past decade,
topic modeling has emerged to remedy the situation. Topic modeling is a powerful
statistical tool to uncover hidden thematic structures of documents, to facilitate
document summarization and organization in a variety of applications in natu-
ral language processing, vision, social network analysis, and text mining [1–3].
Most topic models consider documents to be a weighted mixture of topics, where
each topic is a multinomial distribution over words. An inferred topic model of
a corpus assigns high probability to members of the corpus as well as to other
similar documents [1, 2]. Text documents are the only observed data in most
conventional topic models. However, more recent topic models extend previous
models by incorporating extra information [4]. Extra information is obtained
by enriching text representation to include information, such as authors of the
documents [5], images associated with the text [6], style of writing and reviewers
of the documents [7]. The aforementioned topic models represent documents as

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 146–161, 2014.
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a bag-of-words, where the order of words, thus important linguistic structures
of documents are neglected [1, 2].

In order to include richer linguistic structures of text documents, many meth-
ods were proposed to incorporate local word dependencies into topic models
[8–12]. Local word dependencies are either dependencies between a set of con-
secutive words, or a set of nonconsecutive words with arbitrary distances. For
example, the term1 “data mining” contains two words “data” and “mining” that
are consecutively related. In addition, in sentence “There are countries that deny
human basic civil rights.”, the term “human rights” contains two nonconsecutive
words “human” and “rights” that are syntactically related. In order to capture
sequential consecutive dependencies between words, the Bigram Topic Model [8]
and Topical n-gram Model [9] extend word generation by conditioning on n pre-
vious words. However, the n-gram topic models do not capture relations between
nonconsecutive words.

To remedy this problem, some recent methods integrate grammatical regu-
larities of text documents into topic models. HMM-LDA [11] uses the states of
a Hidden Markov Model to represent syntactic and semantic words. Then, the
model assumes that words are either sampled from topics randomly drawn from
the topic mixture of the documents or from a syntactic class sampled from a
distribution of associated syntactic classes [12]. Their model only considers lo-
cal dependencies between variables of the syntactic states and fails to obtain
syntactic or semantic dependencies between words. The Syntactic Topic Model
(STM) [10] was proposed to integrate grammatical regularities in the text to
detect syntactically relevant topics. In STM, documents are collections of de-
pendency parse trees, in which words in the sentence are the nodes in the graph
and grammatical regularities are the edge labels [13]. The root in the dependency
parse tree is used as a governor. Topic assignment of the root node affects topic
assignments of all its children. Moreover, STM does not draw words from just
the document distribution over topics. Rather, it draws a word from a distri-
bution formed by the document distribution over topics weighted by the parse
tree distributions. Thus, topic assignment of a word depends on both the doc-
ument’s theme as well as the parents of the word in the parse tree. Although,
STM improves topic modeling by combining syntactic and thematic structures of
documents, it does not fully distinguish topic assignment of the words that share
the same parent in the tree, i.e., children of a node. This problem specifically
occurs when a root node has many children [10].

Moreover, text documents consist of words with possible conceptual simi-
larities, called synonyms, defined in lexical resources like WordNet [14]. It is
reasonable to expect the distribution of topics over synonymous words to be
similar.

In this paper, a novel topicmodel is proposed to consider syntactic and semantic
structures of text documents in probabilistic topic models. In essence, we enrich
text documents with the collapsed typed dependency relations to circumvent ob-
stacles in acquiring consecutive and nonconsecutive dependencies between words.

1 A term consists of one or more words forming a unit of a sentence.
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In addition, we investigate the influence of enforcing similar topic distribution over
conceptually similar words by generalizing words with their synonyms.

The structure of this paper is as follows: In Section 2, we discuss our proposed
topic model incorporated with collapsed typed dependency relations. We also
explain our method for generalizing words using synonyms. Section 3 introduces
some criteria to evaluate topic models. Then, it demonstrates the effectiveness of
our approach through experiments. Finally, Section 4 concludes the paper with
some remarks on our future work.

2 Main Contributions

In this section, we first explain the collapsed typed dependency relations and how
to find them from the HPSG parse trees. These relations are used in capturing
consecutive and nonconsecutive dependencies between words of text documents.
We then describe our topic model and how it embodies collapsed typed de-
pendency relations. In addition, we propose a method to enforce similar topic
distribution over synonymous words of text documents. Lastly, we explain the
relationship between our contributions and other related work.

2.1 Collapsed Typed Dependency Relations and HPSG Parse Trees

The bag-of-words representation of text documents is of particular interest in
most topic models. However, this representation does not contain information
about the relations between words. Relations could hold over a consecutive or
nonconsecutive neighborhood of a word [15].

In this work, we use the collapsed typed dependency relations to acquire
syntactic and semantic structures of text documents. This acquisition enables
us to further capture consecutive and nonconsecutive relations between words of
text documents. The collapsed typed dependency relations are extracted from
typed dependency parse trees. The typed dependency parse tree of a sentence
provides a tree representation of detailed grammatical relations between words in
the sentence [16]. Words in the sentence are nodes of the tree and grammatical
relations are the edge labels. The total number of grammatical relations that
can be assigned by typed dependency parse trees is 48 [16]. Table 1 shows most
common grammatical relations used in typed dependency parse trees. For more
information on this set of relations, please see [13].

Typed dependency parse trees are constructed according to the Head-Driven
Phrase Structure Grammar (HPSG). HPSG, developed by Pollard et al. [17], is a
highly structured grammatical representation of text documents that effectively
analyzes syntactic relations concerning multi-word constituents [15, 16]. The
HPSG-based parse tree of a sentence starts from a root and ends in leaf nodes
which represent words. Internal nodes of the tree represent syntactic roles of the
connected leaf nodes. For example, Figure 12 represents the HPSG-based parse

2 Enju is used to extract the HPSG parse tree. This parser is available at
http://www.nactem.ac.uk/enju

http://www.nactem.ac.uk/enju
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Table 1. Most common grammatical relations used in typed dependency parse trees,
defined in de Marneffe et al. [13, 16]

Grammatical Definition Example
Relation

root It points to the root of the sentence; “I love French fries.”
and acts as the root of the tree. root(ROOT, love)

amod Adjective Modifier: An adjective that “Sam eats red meat.”
changes the meaning of the noun. amod(meat, red)

rcmod Relative Clause Modifier: A relative clause “I saw the man you love.”
that changes the meaning of the noun. rcmod(man, love)

nsubj Nominal Subject: A word that is the “Clinton defeated Dole.”
subject of the clause. nsubj (defeated, Clinton)

dobj Direct Object: A word that is the “They win the lottery.”
direct object of the verb. dobj (win, lottery)

expl Expletive: This relation captures the “There is a ghost in the room.”
existential there. expl(is, There)

S

NP

There

VP

VP

are

NP

NNS

countries

SREL

NPREL

WDT

that

VP

VP

deny

NP

ADJP

JJ

human

NP

ADJP

JJ

basic

NP

ADJP

JJ

civil

NP

NNS

rights

Fig. 1. The HPSG-based parse tree for the sentence “There are countries that deny
human basic civil rights.”. Abbreviations that are used in this tree are as follows: S:
sentence; VP: verb phrase; NNS: plural noun; SREL: sentence relation; NPREL: noun
phrase relation; WDT: wh-determiner; ADJP: adjective phrase; JJ: adjective.

tree of the sentence “There are countries that deny human basic civil rights.”.
In this tree, the leftmost branch, node NP represents the role of “noun phrase”
for the leaf node “There”.
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HPSG provides a high level syntactic representation of sentences in text docu-
ments [16]. However, we need to capture specific relations between every individ-
ual related pair of words. Thus, we need to elaborate HPSG to include additional
labeled grammatical relations between words. This is achieved by constructing
typed dependency parse trees from HPSG-based parse trees, using an algorithm
described in [16]. This algorithm has two phases: dependency extraction and de-
pendency typing. In the first phase, a sentence is parsed with a phrase structure
grammar parser (HPSG). The output of this phase is arranged hierarchically
and rooted with the most generic relation. In the second phase, when the rela-
tion between an internal node and its connected leaf node can be identified more
precisely, more specific grammatical relations further down in the hierarchy is
used. Figure 2 shows the typed dependency parse tree constructed from Figure 1
for the sentence “There are countries that deny human basic civil rights.”. As
illustrated in this figure, nonconsecutive relations between words with gaps, i.e.
“human rights” is captured under the amod relation. Typed dependency parse
trees are constructed using the Stanford parser toolkit that has phrase structured
grammars integrated in [13, 16]3.

For each edge in the tree, we extract a relation rel(wi, wj), where rel is the
edge label representing a relation and wi and wj are two nodes of the edge. For
example, the set of relations extracted from the typed dependency parse tree,
illustrated in Figure 2, is as follows: {expl(are, There), nsubj(are, countries),
nsubj(deny, that), rcmod(countries, deny), amod(rights, human), amod(rights,
basic), amod(rights, civil), dobj(deny, rights)}. These relations enable us to bet-
ter distinguish topic assignments for the relations involving the same parent.
For instance, a tree including a parent with c children, will be represented by
c relations, where each relation denotes the edge connecting the child and the
parent. Each relation can have a discriminate topic.

The relations from typed dependency parse trees are further processed by
collapsing relations involving prepositions and conjuncts to get direct dependen-
cies between content words [16]. For instance, in the set of the aforementioned
typed dependency relations, the relations involving the preposition “that” will
be collapsed. Thus, relations rcmod(countries, deny) and nsubj(deny, that) will
become rcmod(countries, deny) and nsubj(deny, countries). As a result, collapsed
typed dependency relations not only capture relations between consecutive and
nonconsecutive words, but they also eliminate less informative relations involv-
ing prepositions. In our work, we use the collapsed typed dependency relations
to represent the corpus. Note that the order of words in the collapsed typed
dependency relations matters.

2.2 Probabilistic Topic Model Using Collapsed Dependency
Relations

We assume that corpus D consists of M documents denoted by D = {d1, d2, · · · ,
dM}. Each document dl contains n words denoted by dl = {w1, w2, · · · , wn}.
3 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
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There are

expl

��
nsubj
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root

��
countries

rcmod

��
that deny

nsubj
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dobj

��
human basic civil rights

amod

��

amod

��

amod

��
.

Fig. 2. The typed dependency parse tree of the sentence “There are countries that
deny human basic civil rights.”. See Table 1 for the explanation of each relation. As
illustrated in this figure, the typed dependency parse tree effectively captures relations
between nonconsecutive words, i.e., dobj relation between words deny and right.

Each document is represented by R collapsed dependency relations between
words of the document, denoted by R = {r1, r2, · · · , rR}. These relations are
instances of the 48 grammatical relations described in Section 2.1, each of which
consists of two words.

Our topic model assumes that each document dl has a multinomial distribution
overK topics with parameters Θ(dl). Thus, for a relation in document dl, P (zl =

j|D = dl) = Θ
(dl)
j , where zl denotes topic assignment to relation l. In our proposed

model, the jth topic is represented by a multinomial distribution overR relations

with parameters Φ(j), thus P (rl|zl = j) = Φ
(j)
rl . Inspired from LDA [1, 2, 18], we

provide a procedure to generate documents. In this procedure, each document dl
is generated by first drawing a distribution over topics (Θ(dl)), generated from a
Dirichlet distribution with parameter α. The relations in the document are then
generated by drawing a topic j from this distribution and then drawing a relation

from that topic according to a multinomial distribution with parameters (Φ
(j)
rl ),

generated from a Dirichlet distribution with parameter β.
Note that the only observed variables are the relations in the collection of

documents. Document distribution over topics and topic distribution over rela-
tions are latent variables generated from Dirichlet distributions with parameters
α and β, respectively. We use Gibbs sampling to obtain approximate estimates
for the latent variables. Gibbs sampling is a simple Markov chain Monte Carlo
algorithm that sequentially replaces the value of one of the latent variables by a
value drawn from the distribution of that variable conditioned on the values of
the remaining variables [19].

We adopt Gibbs sampling algorithm proposed by Griffiths et al. [2, 18] to
draw a topic from the conditional distribution iteratively. For each topic j the
distribution is given by

P (zl = j|z−l,R) ∝ P (rl|zl = j, z−l,R−l)P (zl = j|z−l), (1)

where z−l andR−l denote the z andR for all relations other than rl. This expres-
sion is an instance of Bayes’ rule with P (rl|zl = j, z−l,R−l) as the likelihood of
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the data given a particular choice of zl and P (zl = j|z−l) as the prior on zl. The
likelihood is obtained by integrating over the parameters Φ, which results in

P (rl|zl = j, z−l,R−l) =
n
(rl)
−l,j + β

n
(.)
−l,j +Rβ

, (2)

where n
(.)
−l,j is the total number of relations assigned to topic j, excluding the

current one, and n
(rl)
−l,j is the total number of relation rl assigned to topic j,

excluding the current one.
Similarly, the prior is calculated by integrating over the parameters Θ:

P (zl = j|z−l) =
n
(dl)
−l,j + α

n
(dl)
−l,. +Kα

, (3)

where n
(dl)
−l,j is the total number of relations from document dl assigned to topic j,

excluding the current one, and n
(dl)
−l,. is the total number of relations in document

dl, excluding the current one.
Then, the conditional distribution for the topic assignments is given by

P (zl = j|z−l,R) ∝
n
(rl)
−l,j + β

n
(.)
−l,j +Rβ

n
(dl)
−l,j + α

n
(dl)
−l,. +Kα

. (4)

2.3 Generalizing Words Using Synonyms

Text documents often contain words that are synonyms. Sets of synonyms can
be obtained from lexical resources like WordNet [14]. In this work, we investigate
the influence of generalizing words using a synonym on topic modeling.

Similar to LDA [1], we assume that a document is a multinomial distribution
over K topics, where each topic is a multinomial distribution over N words. We
also assume that documents are represented by a sequence of words, denoted by
W = {w1, w2, · · · , wN}, where wn ∈ W is the nth word in the sequence. Given
the fact that a set of synonyms shares a similar concept, it is reasonable to expect
them to have similar probabilities under topics. For example, if a text document
is about happiness, the inferred topic should assign higher probabilities to words
such as delighted, blessed, and prosperity; and lower probabilities to words such
as sad, bitter, and sorrow. In order to ensure that topics are similarly distributed
over synonyms, we propose the following algorithm to replace all synonyms of a
word with an equivalent synonym with the highest frequency in WordNet:

1. Group the words from WordNet, based on their conceptual similarities. Each
group will contain a set of synonyms.

2. For each group, find the frequency of the words in the group. The frequency
of a word is the number of occurrences of the word in WordNet.

3. Select the most frequent word in the group as the group representative.
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4. For each wi ∈ W:
– Look for a group where wi belongs to.
– If a group is found, replace wi with the group representative, found in
Step 3;
– else, leave the word as is.

For example, consider a text document that contains the word prosperous.
This word belongs to the following group of synonyms {delighted, blessed, pros-
perous, happy, fortunate}. Our algorithm finds the frequency of each synonym
in WordNet. It selects happy as the group representative because it is the most
frequent word in the group. Finally, our algorithm replaces the word prosperous
with the word happy.

2.4 Relationships to Other Work

In this work, we go beyond the bag-of-words representation of documents to
incorporate syntax and semantics of text documents into topic models. This
section reviews the theoretical relationships of our contributions with previous
topic models that used syntactic and semantic structures of texts.

Our proposed topic model is similar to STM [10] due to using typed depen-
dency trees to represent syntactic structures of sentences. However, our topic
model has following major differences with STM. Firstly, STM draws a word from
a single distribution formed by the document distribution over topics weighted
by the parse tree distributions. Thus, topic assignment of a word depends on
both the document’s theme as well as the parent of the word in the parse tree.
However, in our model we use two distributions: document distribution over top-
ics and topic distribution over the collapsed dependency relations. We first draw
a distribution over topics; then, we select a topic from this distribution and then
draw a relation from that topic distribution over the collapsed dependency rela-
tions. Secondly, STM does not fully distinguish topic assignments of the words
that share the same parent in the dependency parse tree, i.e., children of a node,
as stated by Boyd-Graber et al. [10]. However, in our model each pair of related
nodes in the parse tree introduces a discriminate relation. Thus, topic assign-
ment to the relations involving the same parent is better distinguished. Thirdly,
STM does not use labeled dependency relations and lexicalization. However, our
model uses the labels of dependency relations to distinguish and further col-
lapse relations involving prepositions and conjuncts to get direct dependencies
between content words. Finally, STM computes the posterior topic distributions
by Bayesian variational methods. Our model uses Gibbs sampling to infer pos-
terior topic distributions. This final difference is complementary rather than
competitive.

In addition, our proposed topic model differs from the n-gram topic models [8]
in capturing dependencies between words of a sentence. Our topic model con-
siders dependencies between nonconsecutive words with a distance; while the
n-gram topic model is limited to capturing dependencies between consecutive
words.
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Moreover, our proposed model, uses WordNet to enforce topic similarity for
words with conceptual similarities, by generalizing similar words with their syn-
onyms. Lexical resources, i.e. WordNet, were previously used in topic models.
Musat et al. [20] employs WordNet to improve topic models by removing unre-
lated words from the simplified topic descriptions. Mei et al. [21] used WordNet
to label each topic in a multinomial topic model. Newman et al. [22] uses Word-
Net to evaluate topic coherence. None of them uses synonyms to generalize words
prior to building topic models.

3 Experiments

We conducted experiments on two text corpora to compare the performance of
four following topic models: LDA [1], LDA on generalized words using synonyms,
explained in Section 2.3, the Bigram Topic Model [8], and the HPSG Topic
Model, explained in Section 2.24. The first three topic models were trained with
1000 iterations of Gibbs sampling [2, 18] used in the MALLET [23]. However,
the HPSG Topic Model was trained with 1000 iterations of Gibbs sampling.
Initial values for the hyperparameters (α, β) applied to all our experiments were
α = 50.0 and β = 0.01. Note that these parameters are default parameters of
the MALLET [23].

In our experiments we used Associated Press corpus5 that consists of 2246
Associated Press articles, 33872 words, and 454370 collapsed typed dependency
relations. In addition, we used Reuters-21578 Distribution 1.06 that includes 22
files. Each of the first 21 files contain 1000 documents, while the last file contains
578 documents. This corpus contains a total number of 43012 words and 793345
collapsed typed dependency relations.

Table 2 illustrates top 10 terms of the most probable topics generated by
aforementioned topic models on the Reuters corpus. The first column shows the
words generated by LDA. Some words in this topic are ambiguous and can have
multiple meanings. To identify the correct meaning of each word, one needs
to consider other words in the topic. For example, the word “share” has many
meanings. Observing other words in the topic, such as “bank” and “profit”, helps
to identify the correct meaning of the word “share” that is “assets belonging to an
individual”. The second column shows the results of LDA on generalized words
using synonyms. These words are similar to the words in the first column and
still suffer from ambiguity. The terms generated by the Bigram Topic Model and
the HPSG Topic Model are shown in columns three and four, respectively. These
topic models have less ambiguity, given the fact that they generate terms that
include pairs of words that are more descriptive than single words. In addition,

4 Section 2.4 provides a theoretical comparison between our proposed probabilistic
topic model and STM [10]. Given the fact that the source codes of STM was not
available prior to the submission of this paper, experimental comparisons with this
method will be done in our future work.

5 http://www.cs.princeton.edu/~blei/lda-c
6 http://www.research.att.com/~lewis

http://www.cs.princeton.edu/~blei/lda-c
http://www.research.att.com/~lewis
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Table 2. Top 10 terms of the most probable topic, generated by four topic models:
LDA, LDA on generalized words using synonyms, the Bigram Topic Model, and the
HPSG Topic Model from Reuters corpus

LDA LDA on generalized the Bigram Topic Model the HPSG Topic Model
words using synonyms

bank financial reconstruction plans money funds
profit international debt repayment overseas investments
foreign net private institute raising stake
share government traders reported foreign deposits
federal billion existing research commercial banks
japanese withdraw payments improve buyout transaction
policy currency banking office lack assets
rates rise borrowing occurred stock exchange
money sale federal supervisory account balance
shares february bank consultancies bank regulation

as opposed to the Bigram Topic Model, terms generated by the HPSG Topic
Model are not only limited to consecutive pairs of words of a sentence, but they
also contain pairs of related words with gaps.

Given the text corpora, we compare our work with other topic models based
on the following criteria:

– High likelihood on a held-out test set (perplexity) [1].
– Stable distribution of topics over words across samples [5].
– Coherent distribution of words learned by individual topics [22].
– Accurate distribution of topics over words.

These criteria and experimental results are discussed in the subsequent sections.

3.1 Perplexity

Perplexity is the most common criterion to evaluate the quality of topic mod-
els [24]. Perplexity measures the cross-entropy between the word distribution
learned by the topic model and the distribution of words in an unseen test
document. Thus, lower perplexity score indicates that the model is better in
predicting distribution of the test document [1, 25]. We evaluate perplexity as a
function of number of topics for both Associated Press and Reuters corpora. We
trained the topic models on 90% of the corpus to estimate the held out proba-
bility of previously unseen 10% of the corpus. We compute the perplexity of the
held-out test set with respect to the HPSG Topic Model by

perplexity(Dtest) = exp

(
−
∑M

d=1 logP (Rd)∑M
d=1 |Rd|

)
, (5)

whereDtest is the test corpus withM documents,Rd denotes the set of collapsed
typed dependency relations in document d, |Rd| is the total number of collapsed
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Fig. 3. Perplexity as a function of num-
ber of topics, using LDA, and LDA on
generalized words using synonyms on
Association Press corpus

Fig. 4. Perplexity as a function of num-
ber of topics, using the Bigram Topic
Model, and the HPSG Topic Model on
Association Press corpus

Fig. 5. Perplexity as a function of num-
ber of topics, using LDA, and LDA on
generalized words using synonyms on
Reuters corpus

Fig. 6. Perplexity as a function of num-
ber of topics, using the Bigram Topic
Model, and the HPSG Topic Model on
Reuters corpus

typed dependency relations in document d, and P (Rd) is the probability estimate
assigned to Rd by the HPSG topic model. The perplexity of Dtest by other topic
models, such as LDA, is defined similarly, except that Rd is replaced by Wd,
the set of words in the corpus.

The results are illustrated in Figures 3, 4, 5, 6. The x-axis shows the number
of topics (K) used in each model; the y-axis shows the perplexity. These figures
clearly indicate that the perplexity of our proposed topic model drastically de-
creases the perplexity of LDA and LDA on generalized words using synonyms.
Moreover, the perplexity of our proposed topic model is slightly better than the
perplexity of the Bigrams Topic Model.
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Table 3. Topic stability across
two different runs of the HPSG
Topic Model on Reuters corpus

Topics from Best aligned topics Best KL
sample 1 from sample 2

Topic 1 Topic 14 0.834
Topic 2 Topic 20 1.630
Topic 3 Topic 13 0.835
Topic 4 Topic 3 0.730
Topic 5 Topic 11 0.454
Topic 6 Topic 18 0.951
Topic 7 Topic 19 0.450
Topic 8 Topic 18 0.760
Topic 9 Topic 15 0.420
Topic 10 Topic 13 0.939
Topic 11 Topic 5 0.526
Topic 12 Topic 17 0.439
Topic 13 Topic 12 0.953
Topic 14 Topic 7 1.053
Topic 15 Topic 6 1.013
Topic 16 Topic 14 1.139
Topic 17 Topic 5 1.041
Topic 18 Topic 9 1.172
Topic 19 Topic 10 1.026
Topic 20 Topic 17 1.226

Average 0.87955

Table 4. Topic stability across
two different runs of LDA on
Reuters corpus

Topics from Best aligned topics Best KL
sample 1 from sample 2

Topic 1 Topic 5 0.821
Topic 2 Topic 12 1.073
Topic 3 Topic 8 0.533
Topic 4 Topic 19 0.721
Topic 5 Topic 3 1.031
Topic 6 Topic 18 1.050
Topic 7 Topic 7 0.836
Topic 8 Topic 8 0.754
Topic 9 Topic 15 0.428
Topic 10 Topic 13 0.765
Topic 11 Topic 7 0.818
Topic 12 Topic 8 0.798
Topic 13 Topic 6 0.961
Topic 14 Topic 5 0.764
Topic 15 Topic 12 1.161
Topic 16 Topic 8 0.867
Topic 17 Topic 6 0.791
Topic 18 Topic 4 0.921
Topic 19 Topic 18 1.064
Topic 20 Topic 8 1.091

Average 0.8624

3.2 Stability

Stability is the similarity of topic distributions over words across different sam-
ples [5]. We follow the algorithm proposed by Rosen-Zvi et al. [5] to find the
best one-to-one topic alignment across samples. The algorithm finds the best
aligned topic pair by calculating minj=1,··· ,Kd(S1, S2), where d(S1, S2) denotes
symmetrized Kullback Leibler (KL) divergences between the K topic distribu-
tions over relations from samples S1 and S2. KL divergence is calculated by
d(S1, S2) =

∑
x∈X S1(x)log(S1(x)/S2(x)), where X represents the set of rela-

tions in the samples [26]. We compare the stability of topic distributions over
relations across samples, generated by the HPSG Topic Model and LDA on the
Reuters corpus. The results, illustrated in Tables 3 and 4, show that our pro-
posed topic model is comparably as stable as LDA in producing similar topic
distributions over words across multiple samples. Similar results were obtained
using the Bigram Topic Model.

3.3 Topic Coherence

Topic coherence measures the integrity or coherence of a set of words generated
by a topic model. Words generated by topic T , denoted by T = {w1, w2, · · · , wn},
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Table 5. The average topic coherence
of top 50 words of 20 topics generated
from Reuters corpus

Topic model Coherence

LDA 41.35

LDA on generalized 41.68
words using synonyms

the Bigram Topic Model 39.18

the HPSG Topic Model 39.79

Table 6. The average accuracy of topic
distribution over words from a subset of
topic-labeled Reuters corpus

Topic model Accuracy

LDA 0.225

LDA on generalized 0.220
words using synonyms

the Bigram Topic Model 0.221

the HPSG Topic Model 0.223

are coherent if they are semantically similar. In order to calculate the topic co-
herence score, we adopted the method proposed by Newman et al. [22]. We
calculate the semantic similarity scores between every pair of words in a topic
using the Lesk algorithm [27]7. Then, we compute their arithmetic means. We
compared the topic coherence of top 50 words from 20 topics generated by LDA,
LDA on generalized words using synonyms, the Bigram Topic Model, and the
HPSG Topic Model on Reuters corpus. The results are shown in Table 5. The
HPSG Topic Model generates slightly more coherent topic distributions over
words than The Bigram Topic Model. The HPSG Topic Model performs com-
parable to LDA in topic coherence. However, LDA on generalized words using
synonyms results in more coherent topic distribution over words. This coherence
is due to the fact that we replaced conceptually related words with one general
word, prior to modeling the topic assignments.

3.4 Accuracy

The accuracy of a topic model is the degree of closeness of the topic distribution
over words of a test corpus to actual topic distribution over words of a topic-
labeled corpus. Note that calculating accuracy depends on the availability of the
topic-labeled corpus.

Weassume that the test corpusT consists ofM documentsT ={d1, d2, · · · , dM}.
Each document consists ofH actual topic labels, denoted by L = {l1, l2, · · · , lH},
where each li ∈ L represents an actual topic-label for the document. As mentioned
earlier, a topic model generatesK topics, where each topic is a distribution over n
words, denoted by T = {w1, w2, · · · , wn}. The accuracy score of the topic model is

calculated by computing Accuracy =
∑M

i=1 minj=1,··· ,Kd(Tj ,L)

M , where d(Tj , L) de-
notes the semantic similarity between two sets ofTj andL. This semantic similarity
is measured using the Lesk algorithm, explained in Section 3.3.

We compared the accuracy of LDA, LDA on generalized words using syn-
onyms, the Bigram Topic Model, and the HPSG Topic Model on a subset of

7 The Lesk algorithm uses dictionary definitions of two words in a pair and counts
the number of words that are shared between two definitions. The more overlapping
the definitions are, the more related the words are. The Lesk toolkit is available at
http://text-similarity.sourceforge.net

http://text-similarity.sourceforge.net
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Reuters corpus that contains topic-labeled documents. As illustrated in Table 6,
these algorithms are comparable in terms of accuracy. However, LDA is slightly
better.

4 Conclusions

We proposed a novel method that incorporates syntactic and semantic struc-
tures of text documents into probabilistic topic models. This representation has
several benefits. It captures relations between consecutive and nonconsecutive
words of text documents. In addition, the labels of the collapsed typed depen-
dency relations help to eliminate less important relations, i.e., relations involving
prepositions. Also, words of text documents, regardless of their parents in the
collapsed typed dependency parse trees, are distinguished in topic assignment.
Furthermore, our experimental studies show that the proposed topic model sig-
nificantly outperforms LDA and is also better than the Bigram Topic Model in
terms of perplexity. We also show that our model achieves comparable results
with other models in terms of stability, coherence, and accuracy. Besides, the
results from our topic model have less ambiguity, given the fact the generated
terms include pairs of words that are more descriptive than single words.

Moreover, we introduced a method to enforce topic similarity to conceptually
similar words. As a result, this algorithm led to more coherent topic distribution
over words.

In the future, we will extend our topic model to effectively capture more
dependencies between words in sentence or document levels. In addition, we will
investigate the influence of the order of words in the collapsed typed dependency
relations.
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mation Visualization and Data Driven Design (CIV/DDD) established by the
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Abstract. Often, a data object described by many features can be nat-
urally decomposed into multiple “views”, where each view consists of a
subset of features. For example, a video clip may have a video view and
an audio view. Given a set of training data objects with multiple views,
where some objects are labeled and the others are not, semi-supervised
learning with graphs from multi-views tries to learn a classifier by treat-
ing each view as a similarity graph on all objects, where edges are defined
by the similarity on object pairs based on the view attributes. Labels and
label relevance ranking scores of labeled objects can be propagated from
labeled objects to unlabeled objects on the similarity graphs so that
similar objects receive similar labels. The state-of-the-art, one-combo-
fits-all methods linearly and independently combine either the metrics
or the label propagation results from multi-views and then build a model
based on the combined results. However, the similarities between various
objects may be manifested differently by different views. In such situa-
tions, the one-combo-fits-all methods may not perform well. To tackle the
problem, we develop an iterative Semi-Supervised Metric Fusion (SSMF)
approach in this paper. SSMF fuses metrics and label propagation results
from multi-views iteratively until the fused metric and label propagation
results converge simultaneously. Views are weighted dynamically dur-
ing the fusion process so that the adversary effect of irrelevant views,
identified at each iteration of fusion process, can be reduced effectively.
To evaluate the effectiveness of SSMF, we apply it on multi-view based
and content based image retrieval and multi-view based multi-label im-
age classification on real world data set, which demonstrates that our
method outperforms the state-of-the-art methods.

Keywords: Graph-based semi-supervised learning, multiple views.

1 Introduction

Semi-supervised learning with graphs [10] is an important and effective approach,
which propagates limited label information to unlabeled data objects on a sim-
ilarity graph. A similarity graph uses the set of objects as vertices, and links
edges based on the similarity between objects. Edges in a similarity graph may
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c© Springer International Publishing Switzerland 2014
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take similarity scores as weights. After label propagation [10] or manifold rank-
ing [9] in a similarity graph, the more similar two objects, the more likely they
have similar labels or the similar label relevance ranking scores. This property
is called local smoothness [8]. The labeled objects iteratively propagate the la-
bel information or label relevance ranking scores to unlabeled ones via graph
edges until convergence, and the final labeling result based on the label rele-
vance scores should be consistent to the initial label information, which is called
global consistency [8].

Often, a data object described by many features can be naturally decomposed
into multiple “views”, where each view consists of a subset of features. For ex-
ample, an image may have a color view and a shape view. Given a set of training
data objects with multi-views, where some objects are labeled and the others are
not, semi-supervised learning with graphs from multi-views tries to learn a clas-
sifier by incorporating the complementary information from multi-views. More
often than not, the similarities between various objects may be manifested dif-
ferently by different views. In such situations, the one-combo-fits-all methods
[3,5,6] may not perform well, since they use the same linear fusion from multi-
views for all objects. Moreover, different views in such methods don’t collaborate
with each other to achieve consistency when performing fusion process.

To tackle the problem, in this paper, we develop an iterative fusion ap-
proach, called SSMF (for semi-supervised metric fusion and cross-view label
propagation). SSMF fuses metrics and label propagation results from multi-views
iteratively until the fused metric and label propagation results converge simul-
taneously. Views are weighted dynamically during the fusion process so that the
adversary effect of irrelevant views can be reduced effectively. Here, the similar-
ity in an irrelevant view contributes negatively to the similarity measurement
matching the ground truth. Specifically, in each iteration, there are two steps.
In the semi-supervised metric fusion step, for each view we form a fused metric
by combining the current metric of the view and the label propagation results
from other views. Unlike the methods in [2,4] that obtain a fused metric from
multi-views without label information, the metric fusion step in our method
fully utilizes the label information from all views. In the label propagation step,
in each view we conduct label propagation using the fused metric. This step
incorporates the complementary information from other views rather than from
a single view only. Our SSMF method iteratively conducts the two steps until
convergence.

The critical idea here is that the metric fusion and cross-view label propaga-
tion processes are complementary to each other. Moreover, we fuse the similarity
matrix from one view and label the relevance matrix from other views to yield
a cross-view based query (label) driven similarity matrix.

Contributions. Our major contributions can be summarized as follows.

1. We develop an iterative fusion approach SSMF in this paper. SSMF fuses
metrics and label propagation results from multi-views iteratively until the
fused metric and label propagation results converge simultaneously. We prove
the convergence in SSMF theoretically.
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2. To further improve the performance of SSMF, we extend it to WSSMF, a
novel strategy that automatically generates different weight parameters to
views in the fusion process. WSSMF effectively addresses the problem of
irrelevant views that are undesirable to fuse in the fusion process for each
iteration.

3. Our comprehensive experiments on real image data sets show that our tech-
niques significantly outperform the state-of-the-art methods in terms of ac-
curacy evaluated by varied metrics.

2 Related Work

To our best knowledge, our proposed technique is the first co-training based
method for multi-view and graph-based semi-supervised learning problem. Ex-
isting one-combo-fits-all methods linearly and independently combine either the
metric (kernel) or the labeling propagation result from multiple views to yield a
better performance than single view paradigms, as introduced in section 1. Wang
et al. [4] proposed a related Unsupervised based Metric Fusion (UMF for short)
method. However, it fuses equal weight as suggested by UMF. Unlike the adapted
UMF that fuses the pair-wise similarity metric information, which cannot utilize
the graph structure to evaluate the similarity between pair-wise objects. SSMF
fuses label propagation and similarity metric information interactively for each
view and at each iteration, the label propagation can be regarded as a variant
of graph random walk. Wang et al. [7] proposed another metric fusion technique
against multi-view data via a cross-view based graph random walk approach,
however, they studied the unsupervised case rather than semi-supervised learn-
ing studied in this paper.

3 SSMF

In this section, we present SSMF and describe its two nice properties, namely
global consistency and local smoothness [8]. We first review the prelimi-
naries. Then, we discuss SSMF using two views. Last, we present the general
iterative form of SSMF with multi-views.

3.1 Preliminaries

Let X = {x1, x2, · · ·, xn} be a set of data points from M views, we construct
M graphs each using a different feature. Gg denotes a k-NN graph constructed
on X using g-th feature. Specifically, Gg is constructed by connecting every two
vertices xi and xj if one is among the k nearest neighbors of the other. Here,
the nearest neighbors are computed using Euclidean distance between the g-th
feature vectors of the images. The Euclidean distance between the g-th feature
vectors of xi and xj is denoted as ||xi, xj ||g. Wg denotes the edge affinity matrix
of Gg. Each entry Wg(i, j) in Wg represents the similarity between xi and xj
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according to the g-th feature vector. Wg(i, j) is defined by a Gaussian kernel
and is set to

Wg(i, j) = exp(−||xi, xj ||2g/2σ2) (1)

if there is an edge in Gg between xi and xj . Otherwise, Wg(i, j) is zero. Dg is
the diagonal matrix of Gg where each element Dg(i, i) is defined as Dg(i, i) =∑n

j=1 Wg(i, j).
Without loss of generality, assume the first m points xi (i = 1, 2, . . . ,m) are

labeled points and the remaining points are unlabeled. Let the number of labels
be c, and L ∈ Rn×c be the relevance labeling matrix with L(i, j) = 1, if xi is
labeled by label j, denoted by L(xi) = j (1 ≤ j ≤ c), and 0 otherwise. Here,
we assume each point is associated with a single class label from the label set.
Similarly, let Rg ∈ Rn×c be the relevance score of unlabeled point xu belonging
to label j regarding the g-th view. The closed form of optimal Rg is yielded by
minimizing the objective function

F(Rg) =
1

2
(

n∑
i,j=1

Wg(i, j)(
1√

Dg(i, i)
(Rg(i, ·) (2)

− 1√
Dg(j, j)

(Rg(j, ·))2 + αg

n∑
i=1

(Rg(i, ·)− L(i, ·))2)

whereRg(i, ·) and L(i, ·) are the i-th row ofRg and L, respectively. The first term
in the right hand side of Eq. (2) represents the local smoothness, which means
that Rg(i, ·) is similar to Rg(j, ·) if xi and xj are proximate to each other. The
second term in Eq. (2) represents the global consistency, which means that the
final labeling matrix Rg should be consistent to the initial labeling matrix L.

We minimize F(Rg) by setting
∂F(Rg)
∂Rg

= 0, and have

RΣ
g = (I − αgSg)

−1L (3)

where Sg = D
− 1

2
g WgD

− 1
2

g , Dg is the diagonal matrix with the i-th diagonal
element Dg(i, i) =

∑n
j=1 Wg(i, j), and αg is a real value such that 0 < αg < 1.

RΣ
g can also be regarded as the label propagation result on Gg.

3.2 SSMF for Two Views

Instead of directly computing the similarity metric between any pair-wise points
under unsupervised scenario [4], we achieve the similarity, under semi-supervised
scenario, by indirectly measuring relevance between each point and all labels,
formulated as labeling relevance matrix. As such, one can imagine that if both
data points have large relevance regarding all labels, their similarity is large,
otherwise, it is small. In order to learn semi-supervised metric regarding two
views, we need to consider the following two challenges. That is, (1) the learned
similarity metric should encode the relevance between data points and all labels.
(2) the learned metric should well incorporate the complementary information
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from two views to achieve the consistency. Assume W
[t+1]
g (g = 1, 2) denote

the metric similarity matrix for g-th view in t+ 1 iterations, then we define the
following semi-supervised fusion strategy:

W
[t+1]
1 = Q

[t]
1 Rn

[t]
2 (Rn

[t]
2 )T (Q

[t]
1 )T + λI (4)

W
[t+1]
2 = Q

[t]
2 Rn

[t]
1 (Rn

[t]
1 )T (Q

[t]
2 )T + λI (5)

where Q
[t]
g (g = 1, 2) is the normalized affinity matrices such that Q

[t]
g (i, j) =

W[t]
g (i,j)

∑n
j=1 W

[t]
g (i,j)

, Rn[t]
g (i, j) =

R[t]
g (i,j)

∑c
j=1 R

[t]
g (i,j)

, the goal of using normalized form is

to avoid the huge difference in scale of the label relevance matrices in different
views. I is identity matrix, and λI is incorporated to make SSMF robust to the
noise. To better explain the above fusion strategy, we take Eq. (4) as an example
of refining the metric for the first view by applying SSMF.

Intuition. We divide the right-hand-side of Eq. (4) into two parts, as Q
[t]
1 Rn

[t]
2 ,

and its transpose (Rn
[t]
2 )T (Q

[t]
1 )T , we study each entry of Q

[t]
1 Rn

[t]
2 for any iter-

ation t

(Q
[t]
1 Rn

[t]
2 )(i, y) =

n∑
m=1

Q
[t]
1 (i,m)Rn

[t]
2 (m, y) (6)

(Q
[t]
1 Rn

[t]
2 )(i, y) represents the fused relevance scores between the y-th label and

xi in the first view, which can be seen as the summation of propagation of label

relevance score between xm and y-th label formulated as Rn
[t]
2 (m, y), through

the edge weight equivalent to similarity between xi and xm (m �= i), formulated

as Q
[t]
1 (i,m) to xi. Such (Q

[t]
1 Rn

[t]
2 )(i, y) is obtained by incorporating the metric,

Q
[t]
1 (i,m), m �= i, from the first view, and label relevance matrix, Rn

[t]
2 (m, y),

m �= i, from the second view to make the incorporation of the complementary

information from two views. Following this principle, the refined W
[t+1]
1 (i, j)

in next iteration t + 1, for the first view, is yielded by considering relevance
score between all labels and both two points (xi and xj , respectively), while
effectively incorporates the complementary information from two views. Eq. (5)
may be conducted similarly. �

One natural question is how to calculate R
[t]
g , and its normalized form Rn[t]

g

for each iteration t, we propose to adopt the general iterative form in the next
section.

3.3 The General Iterative Form of SSMF

We can get R
[t]
g (g = 1, 2, . . . ,M) iteratively by

R[t]
g = αgP

[t]
g R[t−1]

g + (1 − αg)L (7)

where P
[t]
g (i, j) =

W[t]
g (i,j)

D
[t]
g (i,i)+D

[t]
g (j,j)

(g = 1, 2, . . . ,M), and 0 ≤ αg ≤ 1. P
[t]
g is a

symmetric matrix. L is the initial labeling matrix mentioned in Section 3.1.
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Generalizing Eqs. (4) and (5) regarding two views, W
[t]
g may be calculated

as follows for multi-views.

W[t+1]
g = Q[t]

g (

∑
j �=g Rn

[t]
j

M − 1
)(

∑
j �=g(Rn

[t]
j )T

M − 1
)(Q[t]

g )T + λI (8)

The iterative form of SSMF with multi-view by iteratively applying Eqs. (7)
and (8) represents a novel label propagation process. Specifically, each weighted

graph G
[t]
g associated with the matrix W

[t]
g or P

[t]
g , incorporates the label prop-

agation results inherent in Rn
[t]
j (j �= g) from other views, as shown in Eq. (8),

and hence we call the label propagation formulated as Eq. (7) as cross view
label propagation.

Now, we are ready to prove the convergence of SSMF.

Theorem 1. The iterative form of SSMF formulated in Eq. (7) converges.

It suffices to prove the convergence on one view. Following Eq. (7), we have

R[t]
g = αt

gL
t∏

i=1

P[i]
g + (1 − αg)L

t−1∑
i=1

αi
g

i∏
j=1

P[j]
g (9)

where R
[0]
g = L. Apparently, since 0 < αg < 1,

lim
t→∞

αt
gL[

t∏
i=1

P[i]
g ](i, j) = 0

Moreover, the largest eigenvalue of P
[i]
g (i = 1, 2, . . . , t) is no more than 1 accord-

ing to the Gershgorin circle theorem. For the second term in Eq. (9), (1− αg)L

is a constant matrix for all αi
g[

i∏
j=1

P
[j]
g ] at any step i, thus, we only need to con-

sider the series
∑t−1

i=1 α
i
1[

i∏
j=1

P
[j]
g ]. We denote the i-th term by Hg[i] and study

the convergence of entry Hg[i](l,m). We only need to prove the convergence

of series
∑t−1

i=1 Hg[i](l,m), where Hg[i](l,m) = αi
g[

i∏
j=1

P
[j]
g ](l,m) < αi

g, since

[
i∏

j=1

P
[j]
g ](l,m) < 1, which can be easily verified by simple arithmetic operations.

We construct the series
∑t−1

i=1 α
i
g (0 < αg < 1). Obviously, the series converges,

since [Hg[i]](l,m) ≤ αi
g and each item [Hg[i]](l,m) is positive. �

Let (Rg)
Σ
SSMF be the convergent label relevance matrix regarding the g-th view

by interactively applying Eq. (7) (cross-view label propagation) and Eq. (8)
(semi-supervised metric fusion). The final label relevance matrix regarding multi-

views is RΣ
SSMF =

∑M
g=1

(R�
g)SSMF

M . We summarize the algorithm of SSMF in
Algorithm 1.
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Algorithm 1. The algorithm of SSMF

Input: Initial affinity matrix W
[1]
g (g = 1, 2, ··, ·,M), R

[0]
g , αg, λ , initial label

relevance matrix L in Eq. (7), the convergence threshold Σ.
Output: The final label relevance matrix Rα

SSMF

1 for g = 1, · · ·,M do
2 t = 0.

3 Obtaining the label propagation R
[1]
g by Eq. (7)

4 t = 1.
5 repeat
6 for g = 1, · · ·,M do

7 Z
[t]
g = Q

[t]
g (

∑
j �=g Rn

[t]
j

M−1
)

8 W
[t+1]
g = Z

[t]
g (Z

[t]
g )T + λI

9 R
[t+1]
g = αgP

[t+1]
g R

[t]
g + (1− αg)L

10 t = t+ 1;

11 until change is smaller than Σ;

12 Rα
SSMF =

∑M
g=1

(Rg)
�
SSMF
M

;

13 // (Rg)
α
SSMF is the converged relevance label matrix in the g-th view.

One important issue that SSMF does not consider is that there may be some
irrelevant views, and simply fusing all views using the same weight in Eq. (8)
may not achieve the best overall performance if there are irrelevant views during
the fusion process. To address this issue, we devise an effective learning method
to assign a weight to each view in each fusion iteration. Consequently, we extend
SSMF to WSSMF, which will be described in next section.

4 WSSMF: Learning Weights for SSMF

The basic idea is to consider the labeling result of cross-view label propagation
for unlabeled points in the set U in each iteration. Two views are regarded

consistent if their labeling results are similar. Specifically, we denote by V
[t]
i the

i-th view in iteration t. The more consistent V
[t]
i and V

[t]
j (1 ≤ j �= i ≤ M) are,

the larger the weight parameter θ
[t]
ij is for V

[t]
j . Note that the labeling result of

cross-view label propagation may be different at various iterations. Therefore,
we calculate the weight parameter in different iterations. We define a function

D(V
[t]
i ,V

[t]
j ) in Eq. (10) to measure the mismatch between i-th and j-th view

in terms of cross-view labeling propagation result.

D(V
[t]
i ,V

[t]
j ) =

∑
x
[0]
u ∈U,L(x

[t]
u ) �=0

B(L(x[t]u [i]),L(x[t]u [j])) (10)
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where B(L(x
[t]
u [i]),L(x

[t]
u [j])) = ||L(x[t]u [i])−L(x

[t]
u [j])||, || · || is the absolute value

operator, and L(x
[t]
u ) is the largest label relevance score of x

[t]
u regarding all labels.

We have L(x
[t]
u [i]) = max

l
{Rn

[t]
i (u, l)}.

Initially, we set the label relevance score of all unlabeled points to be 0, and

D(V
[t]
i ,V

[t]
j ) describes the inconsistency degree betweenV

[t]
i andV

[t]
j at iteration

t. The larger D(V
[t]
i ,V

[t]
j ) is, the more inconsistent V

[t]
i and V

[t]
j are. For V

[t]
i ,

the weight parameter θ
[t]
ij (i �= j) for V

[t]
j is defined as

θ
[t]
ij = 1−

D(V
[t]
i ,V

[t]
j )∑

h �=iD(V
[t]
i ,V

[t]
h )

(11)

Immediately, we have θ
[t]
ij = θ

[t]
ji and 0 ≤ θ

[t]
ij ≤ 1. They are the entries in the

coefficient symmetric matrix in iteration t, denoted by Θ[t]. In iteration t, the
j-th view (1 ≤ j �= i ≤ M) is said to be irrelevant with respect to the i-th

view if θ
[t]
ij <

∑
g �=i θ

[t]
ig

M−1 , otherwise, the j-th view is said to be relevant . For the

i-th view, we denote the set of relevant views at iteration t by Re
[t]
i .

Instead of computing global irrelevant views explicitly, for the i-th view, we

only fuse the views from Re
[t]
i in iteration t, and set the correlation strength

weight to be 0 for irrelevant views. Combining Eq. 11 and Eq. 8, we have the
Weighted SSMF (WSSMF for short) for multi-views, which iteratively applies
Eq. 7 and Eq. 12 until convergence.

W[t+1]
g = Q[t]

g (

∑
j∈Re

[t]
g
θ
[t]
gjRn

[t]
j

|Re[t]g |
)×

(

∑
j∈Re

[t]
g
(θ

[t]
gjRn

[t]
j )T

|Re[t]g |
)(Q[t]

g )T + λI (12)

Like SSMF, WSSMF also converges, which can be immediately proved in the
same manner as Theorem 1. Therefore, the final optimal label relevance matrix

can be obtained as RΣ
WSSMF =

∑M
g=1

(Rg)
�
WSSMF

M , where M is the number of
views, (Rg)

Σ
WSSMF is the convergent label relevance matrix in the g-th view

obtained using WSSMF. Based on Algorithm 1, we generate the algorithm of

WSSMF by replacing Z
[t]
g in line 7 with Z

[t]
g = Q

[t]
g (

∑
j∈Re

[t]
g

θ
[t]
gjRn

[t]
j

|Re
[t]
g |

), and W
[t+1]
g

in line 8 with Eq. 12.

4.1 Complexity Analysis

Now, we analyze the time complexity of each iteration in SSMF and WSSMF.
The cost of SSMF mainly comes from two parts: cross-view label propagation

and semi-supervised metric fusion. The iterative cross-view label propagation in
Line 9 of Algorithm 1 takes O(Mn2c) time, and the same time complexity holds
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for semi-supervised metric fusion in Lines 7-8. We remark that all the above cost
is from the matrix multiplication rather than matrix inverse computation. It is
well known that matrix multiplication implementation without inverse compu-
tation is efficient. Similar to SSMF, WSSMF also needs O(Mn2c) time for both
metric fusion and cross-view label propagation. In addition, O(M2n) time is
needed to obtain the view correlation matrix Θ in each iteration regarding M
views. Therefore, the overall time complexity for WSSMF is O(Mn2c)+O(M2n).
As observed in our experiments(refer to Fig 2), both SSMF and WSSMF con-
verge within quite limited iterations for most cases (less than 65 times).

5 Experiments

We evaluate both SSMF and WSSMF using multi-view content based image
retrieval (CBIR) and multi-label image classification on real data sets. We set
the convergence threshold ε to 10−4 for all methods.

In our experiments, we compare with the following state-of-the-art multi-
view graph based methods for both multi-view CBIR and multi-label image
classification.

– The multi-modality graph (MMG) method [3], which uses multiple graph
models under different views. The final ranking score vector is obtained
by combining the independent label propagation (manifold ranking) results
carried by each image in each view with different weights.

– The averaged distance of multiple feature based metric (ADF) method [2],
which constructs a single relevance graph using the metric of average distance
from multiple views.

– The unsupervised metric fusion (UMF) method [4], which conducts metric
fusion without considering label propagation result. It is adapted to tackle
multi-view graph-based semi-supervised learning as follows. We first obtain
the convergent affinity matrix Wg (g = 1, 2, . . . ,M) for the g-th view by ap-
plying UMF, and then obtain the ranking score vector by optimizing Eq. (2),
where the affinity matrix Wg is the fused affinity matrix using UMF on
multi-views.

5.1 Multi-view Content Based Image Retrieval (CBIR)

Multi-view CBIR is a typical problem where graph based multi-view semi-
supervised learning is extensively applied. Specifically, a query image is a labeled
data object in our model, and the label relevance matrix Rg ∈ Rn×c in Eq. (2)
is reduced to a ranking score vector rg ∈ Rn, and Rg(i, ·) ∈ Rn is reduced to
rg(i) ∈ R, which represents the relevance score between xi and the query image
(labeled image). L ∈ Rn×c in Eq. (2) is reduced to an n dimensional vector
Y ∈ Rn with the i-th entry to be 1 if xi is the query image, and 0 otherwise.

We set the number of nearest neighbors k to 20 to calculate the metric
distance in Eq. (1) for all views, which is consistent with the UMF method [4].
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Similar to [9], we set αg to 0.99 in Eq. (7) for all views, set λ to 1 in both Eq. (8)
and Eq. (12). All methods are tested on the COREL5K data set [1], which con-
sists of 5000 images in 50 categories. Each category contains 100 images. Due to
the same number of images in each category, we use the precision-scope [3] as
the evaluation metric. We use HOG, color histogram, RGB-SIFT and Pyramid
wavelet texture feature to construct different views, most of them are utilized
by MMG. For each method, we select every sample of 5000 images as the query
image (labeled objects) each time, and obtain the average precision value and its
statistical distribution regarding all 5000 samples, shown using 3 points (mean,
+1 standard deviation, and -1 standard deviation) in Fig. 1(a).
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Fig. 1. (a) Top-s precision on COREL5K data set. (b) Classification accuracy with
respect to sample rate on Caltech-101 image data set.

Unsurprisingly, WSSMF outperforms the other methods in top-s average pre-
cision, since it can better achieve the consistency from multi-views than the other
methods. In addition, it can effectively address the problem of irrelevant views
at each iteration. SSMF is the next after WSSMF. SSMF does not handle the
problem of irrelevant views. Like SSMF, UMF (1) does not consider the irrele-
vant view detection, either. Moreover, (2) UMF does not fuse label propagation
results during the fusion process, (3) as such UMF fails to further exploring
the graph structure to improve the metric similarity like SSMF and WSSMF as
discussed in section 2. Consequently, UMF is inferior to SSMF.

Both MMG and ADF perform worse than the others. MMG outperforms ADF
in most cases, since MMG fully explores the graph structure for different views,
and it linearly combines the independent label propagation results with different
weights. ADF, however, is different from MMG. It assigns the same weight to
all views in combining the label propagation results, the single graph associated
with averagedmetric obstructs the graph structure of original inherent individual
views. However, MMG is inferior to SSMF and WSSMF, since such one-combo-
fits-all late fusion method is undesirable to achieve the consistency among all
views by independently fusing all the label propagation result from all views.
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Fig. 2. Comparison of (a) number of iterations. (b) running time.

Worse still, it cannot well handle the irrelevant views issue. Fig. 2 shows the
5-point box-plots (maximum, minimum, mean, +1 standard deviation, and -
1 standard deviation) of number of iterations and running time of all queries
in all methods. Both WSSMF and SSMF use more iterations on average and
sot longer running time than ADF and UMF, because ADF and UMF construct
only one similarity graph. Instead, WSSMF, SSMF and MMG construct multiple
graphs. WSSMF and SSMF need less iterations on average to reach convergence
than MMG, since the cross-view based fusion method can speed up the process
of achieving consistency. However, the running time of WSSMF and SSMf is
similar to that of MMG, since more matrix multiplication is performed during
each iteration than MMG.

5.2 Multi-view Based Multi-label Image Classification

Multi-view based multi-label image classification can be regarded as multi-view
based semi-supervised learning with graphs. The Caltech-101 data set (http://
www.vision.caltech.edu/Image_Datasets/Caltech101/) is used to testmulti-
label image classification. It contains 9146 images organized into 101 categories.
The number of images in different categories ranges from 40 to 800.We set c = 101
and n = 9146 in the label relevance matrix Rg ∈ Rn×c and L ∈ Rn×c in Eq. (2),
along with k = 20 in Eq. (1) and λ = 1 in Eq. (12).

We use the same sample rate to draw a random sample of images from each
category as labeled images. The rest of images are treated as unlabeled. Each
experiment is repeated 5 times, and the average value is reported. The classifi-
cation accuracy on all unlabeled images is used to evaluate different methods.
HOG, color histogram, pyramid wavelet texture feature and SIFT are used to
construct different views. The results are shown in Fig. 1(b).

WSSMF outperforms the other methods. SSMF is the second best method. The
results verify the advantages of our iterative fusion methods. We also observe that
the difference among different methods decreases as the sample rate increases,
since a higher sample rate makes the problem less challenging.

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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6 Conclusion

In this paper, we propose a novel iterative fusion technique for graph based semi-
supervised learning frommulti-views. The central idea is to fuse metrics and label
propagation results from multi-views iteratively and weight views dynamically.
The experimental results clearly show that our new methods outperform the
state-of-the-art methods on real data sets. As future work, we will investigate
how to fuse selective labeling results from multi-view based graphs rather than
tackling all the data points including both informative and noise data points.
We will also investigate active learning based methods for better effectiveness
and efficiency.
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Abstract. Crime forecasting is notoriously difficult. A crime incident is
a multi-dimensional complex phenomenon that is closely associated with
temporal, spatial, societal, and ecological factors. In an attempt to utilize
all these factors in crime pattern formulation, we propose a new feature
construction and feature selection framework for crime forecasting. A
new concept of multi-dimensional feature denoted as spatio-temporal
pattern, is constructed from local crime cluster distributions in different
time periods at different granularity levels. We design and develop the
Cluster-Confidence-Rate-Boosting (CCRBoost) algorithm to efficiently
select relevant local spatio-temporal patterns to construct a global crime
pattern from a training set. This global crime pattern is then used for
future crime prediction. Using data from January 2006 to December 2009
from a police department in a northeastern city in the US, we evaluate
the proposed framework on residential burglary prediction. The results
show that the proposed CCRBoost algorithm has achieved about 80%
on accuracy in predicting residential burglary using the grid cell of 800-
meter by 800-meter in size as one single location.

Keywords: Spatio-temporal Pattern, Crime Forecasting, Ensemble Learn-
ing, Boosting.

1 Introduction

Crime forecasting is notoriously difficult. A crime incident is a multi-dimensional
complex phenomenon that is closely associated with temporal, spatial, societal,
and ecological factors. In an attempt to utilize all these factors in crime pattern
formulation, we propose a new feature construction and feature selection frame-
work for crime forecasting. A new concept of multi-dimensional feature denoted
as spatio-temporal pattern, is constructed from local crime cluster distributions
in different time periods at different granularity levels.

Crime distributions are of different sizes and shapes with respect to spatial
space over time. We use clustering to find local crime distributions in differ-
ent time periods. The spatial-temporal patterns then are induced from each
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crime distribution through classification. Each spatio-temporal pattern uses re-
lated crime incidences as indicators to represent a local crime pattern at certain
clustered locations during a certain time period. However, these locally learned
patterns could be redundant or overlapping at global level.

We design and develop the Cluster-Confidence-Rate-Boosting (CCRBoost)
algorithm to efficiently select relevant local spatio-temporal patterns to construct
a global crime pattern from a training set. The main idea of this approach is
to iteratively pick a set of local patterns which give the least classification error
at each boosting round. Each set of local patterns is referred as an ensemble
spatio-temporal pattern and is assigned a score (Called confidence-rate in our
approach). At the end of boosting, a global pattern is constructed from these
ensemble patterns. This global pattern is capable of predicting crime by scaling
the total score of an input, a collection of crime indicators, evaluated on each
crafted ensemble patterns. The proposed algorithm is depicted in Figure 1.
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Fig. 1. The flowchart of the proposed CCRBoost algorithm (Better viewed in color)

In our real-world case study, we collaborated with the police department of a
northeastern city in the US to collect 4-year historical crime data, from January
2006 to December 2009. These data are used to evaluate the proposed framework
on residential burglary prediction. This city is 90 square miles in size and more
than 600 thousands in population. The results show that the proposed CCRBoost
algorithm has achieved about 80% on accuracy in predicting residential burglary
using the grid cell of 800-meter by 800-meter in size as one single location.

This rest of the paper is organized as the followings. The related work is de-
scribed and compared with our algorithm in Section 2. Our proposed CCRBoost
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algorithm is thoroughly discussed in Section 3, including its theoretical analysis.
The setting and results of our experiments are presented in Section 4. We then
conclude our study in Section 5.

2 Related Work

Crime forecasting techniques from feature construction and feature selection
point of view, can be categorized into statistic mapping, mathematical modeling,
and clustering.

Statistic mapping uses historical statistics of the crime occurred at the same
location for forecast[1]. It focuses on seasonality of the crime with the assumption
that same type of crime recurs regularly with respect to time, while our approach,
in addition to time dimension, also factors in spatial neighborhood and other
relevant societal and ecological factors.

In [11], mathematical modeling is used to simulate the formatting of the crime
hotspots based on the crime frequency obtained from statistical model of indi-
vidual criminals. These hotspots are density based and overlapped with each
other. Therefore, a suppression process is needed to filter out the true hotspots.
Later in [8], Mohler proposed a point-based model that eliminates the suppres-
sion step. Using the concept in predicting aftershock, this model simulates how
the crime spreads out, like diseases, from the initial background events. The
hotspots defined in this model are those locations covering most spread points.
The approach suits better for capturing the crime patterns with short life cycles
at local level while our algorithm is able to capture the long term cycles at global
level using our ensemble patterns. Another caveat of this model fitting approach
is that the results can be way off when the incorrect initial points are given. In
our framework, the built-in feature selection process can discard irrelevant or
misrepresenting patterns when learning the global ensemble pattern.

The clustering approach adapted by Kumar is to define the geographic bound-
aries of each spatial clusters [7]. With these boundaries, the changing of crime
densities in a fixed size cluster is considered as the crime trend of this particu-
lar cluster. Our global ensemble spatio-temporal pattern is designed to forecast
crime for the whole study area.

3 Crime Forecasting Using Spatio-temporal Patterns

3.1 The Concept of Spatio-temporal Patterns

Our approach is designed to enhance the utility of the near repeat hypothesis
formulated in Social Science [12]. This hypothesis suggests that the same type
of crime possibly recurs not only at the same neighboring locations but also at
a regular interval of time. In addition, crime incidents are closely related with
social behaviors and environmental conditions[6]. This implies that crime tends
to have similar trends at locations with similar societal and ecological structures.
We hypothesize that crime can be foreseen by investigating the trends of its
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correlated crime incidences. All of these three dimensions (location, time, and
correlated incidences) are taking into account when we define a spatio-temporal
pattern. A spatio-temporal pattern is a local pattern that represents the crime
pattern at certain locations during certain time period using correlated crime
incidences as the indicators. These indicators are used to represent societal and
ecological factors of different locations.

The challenges are that how many local patterns there are during certain
time period and at which locations are unknown. Additionally, crime is not
evenly distributed throughout a city and there are areas that are more attractive
than others to criminals[3]. In order to find the possible local patterns, we use
the unsupervised clustering approach without involving geographical features to
group those locations with similar indicators in the same time period. This group
of locations is considered as the spatial distribution of a possible crime pattern.
By varying the configuration of the clustering method, the clusters with different
sizes during different periods of time can be generated. A classifier is then trained
from each cluster and will be used to represent a local crime pattern.

Our next task is to use the spatio-temporal patterns as features to construct a
global level spatio-temporal pattern. This global crime pattern should be capable
of detecting crime incidences at every location. Which of these patterns should be
selected to form the global crime pattern? Those locally learned spatio-temporal
patterns could be redundant or overlapping. And, how can this global pattern
be constructed? To resolve these two issues at the same time, we propose a
confidence-rate boosting approach. We will first formulate the problem and then
discuss our boosting algorithm in detail.

3.2 Problem Formulation

We denote one crime indicator, a type of relevant crime event, as fp. Different
indicators of the same location in the same period of time are used to form
a vector, denoted as x = [f1, f2, . . . , fP ], where P is the number of correlated
incidence types. Each vector x has one class label y which tells whether this
location is a hotspot. Through the clustering process, the vectors with similar
indicators are grouped into one cluster, denoted as c. A local spatio-temporal
pattern, denoted as r, is defined as: r = q(c). q(), in our case, is a classifier
induced from the cluster c and used to extract the crime pattern. This pattern
r is used to identify whether a vector is a hotspot. We denote x ∈ r if x is
recognized as hotspot by pattern r. Otherwise, x �∈ r.

In reality, a crime pattern might not be represented as one single local pat-
tern because this pattern might shift location-wise or change size over time[9].
In order to truly capture the dynamics of crime patterns, we introduce the en-
semble spatio-temporal pattern, denoted as R = [r1 ∧ r2 ∧ . . . ∧ ri], which is the
conjunction of selected spatio-temporal patterns. Thus, if x ∈ R, then it must
be true that x ∈ r1 and x ∈ r2 and . . . and x ∈ ri. This ensemble pattern is
served as the base learner in our confidence-rate boosting approach.
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3.3 Confidence-Rate Boosting

Before boosting, we balance the training data by setting the weight of hotspots
as 1

2H and 1
2C for coldspots, H and C are the numbers of hotspots and coldspots,

respectively. Each vector xi in the training data is denoted as D(i). The main
idea of our confidence-rate boosting approach is to repeatedly pick the best
hypothesis ht which yields the least error rate at each boosting round t. In our
case, ht is an ensemble spatio-temporal pattern Rt built at round t. The error
function is defined as:

Ei∼Dt [yiht(xi)] =
∑
i

Dt(i)yiht(xi), (1)

where Dt is the weight distribution at boosting round t. The theoretical back-
ground of the confidence-rate boosting approach is analyzed as follows.

Based on the study in [10], it has been proved that
∑

iDt(i)yiht(xi) ≤
∏

t Zt

so the upper bound of the error rate is
∏

t Zt. Zt is defined as:

Zt =
∑
i

Dt(i)exp(−αtyiht(xi)) (2)

Thus, a smaller Zt that has a lower error upper bound will lead to a smaller
training error at each boosting round. Now, we let CR = αtht(xi) and ignore
the boosting round t. Then, we define our loss function as:

Z =
∑
i

D(i)exp(−CRyi) (3)

and we want to find the minimum value of Z to lower the training error as much
as possible. CR is the confidence-rate for pattern R and CR = 0 if xi /∈ R. Here,
xi ∈ R means that xi is recognized by pattern R as a hotspot and then set
yi = 1. Otherwise, set yi = −1. Since CR = 0 where xi /∈ R, we obtain

Z =
∑

i|xi /∈R

D(i) +
∑

i|xi∈R

D(i)exp(−CRyi) (4)

Equation (4) can be rewritten as:

Z = W0 +W+exp(−CR) +W−exp(CR), (5)

whereW0 =
∑

i|xi /∈R D(i) soW0 is the total weights of predicted coldspots. And,

W+ =
∑

i|xi∈R and y=1

D(i),W− =
∑

i|xi∈R and y=−1

D(i), (6)

W+ is the total weights of true hotspots (true positives), and W− is the total
weights of false hotspots (false positives). By taking the first derivative of Z with
respect to CR and let dZ

dCR
= 0, we can find the value of CR when Z has the

maximum or minimum value:
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dZ
dCR

= −W+exp(−CR) +W−exp(CR) = 0
=⇒ W−exp(CR) = W+exp(−CR)
=⇒ ln(W−exp(CR)) = ln(W+exp(−CR))
=⇒ ln(W−) + CR = ln(W+)− CR

=⇒ 2CR = ln(W+)− ln(W−)

=⇒ CR = 1
2 ln(

W+

W−
) And then, we take the second derivative of Z, dZ

dC2
R

=

W+exp(−CR) + W−exp(CR) > 0. Since the second derivative of Z is greater

than zero, Z has the minimum value of W0 + 2
√
W+W− when CR = 1

2 ln(
W+

W−
).

To prevent the situation of W− = 0, we adjust the above equation as:

ĈR =
1

2
ln(

W+ + 1
2n

W− + 1
2n

), (7)

where n is the total number of vectors. Equation (7) is then used to calculate
the confidence-rate ĈRt for pattern Rt at each round t.

3.4 CCRBoost Algorithm

As described in Algorithm 1, the first task of the CCRBoost algorithm is to
identify spatio-temporal patterns of different sizes and shapes with respect to
spatial space during each period of time. To add spatio-temporal dimension to
our feature, a clustering step is adopted to find the crime distributions at local
level in different time periods. K-Means, but not limited to, is chosen to find these
patterns. We perform K-MeansK times to obtain 1+2+. . .+K clusters and then
train classifiers from each cluster to extract local spatio-temporal patterns at
different granularity levels. The data is divided into M subsets before clustering
by certain length of time interval. For example, if the raw crime data is processed
by month, then M equals to 12 when one year worth of data is used. As a result,
there are total M × (1 + 2 + . . .+K) possible patterns acquired from these M
subsets.

Next, the weights of the entire data set is set to be in a probability distribution
which makes the total weight equals to 1. The data set is then randomly divided
into two subsets, GrowSet and PruneSet. This split is based on the total
weight instead of the number of records. By calling BuildChain(), an ensemble
spatio-temporal pattern R is built from those local patterns. This R gives the
minimum Z value while evaluating R onGrowSet. Furthermore, PruneChain()
is called to trim the list of R and prevents R from over fitting by using PruneSet
to reevaluate R and then obtain the final ensemble pattern Rt. The confidence-
rate ĈRt is then calculated by evaluating Rt on the entire data set using Equation
(7). Based on ĈRt , the boosting algorithm updated the weights of those vectors
that are classified as hotspots. This weight update function is defined as:

Dt+1(i) =
Dt(i)

exp(yiĈRt)
, if xi ∈ Rt (8)

The goal is to exponentially lower the weights on those vectors that are recog-
nized by the current global pattern. This way, the data instances which have not
been fitted to the pattern are getting more attentions for the next round.
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The boosting process is repeated for T times, where T is a user-defined vari-
able. At the end, T ensemble spatio-temporal patterns, R1, R2, . . . , RT , and
T confidence-rates, ĈR1 , ĈR2 , . . . , ĈRT are produced. The formula of the final
global spatio-temporal pattern is defined as:

h(x) =

{
hotspot

∑
Rt|x∈Rt

ĈRt > α

coldspot otherwise
, (9)

while α is a user-defined threshold.
By taking an input vector x, this formula evaluates x over each ensemble

pattern Rt. If x is recognized by Rt as a hotspot, then ĈRt is added to the total
confidence score h(x). x is predicted as a hotspot if h(x) is greater than the
threshold α. Normally, this threshold α is set to zero. This ensemble learning
algorithm is inspired by Cohen and Singer’s research in [2]. The steps of the
CCRBoost algorithm are given in Algorithm 1.

Algorithm 1. CCRBoost Algorithm

1. Given crime data (x1, y1), . . . , (xn, yn).
2. K is a user-defined variable and M is the total number of time periods.
3. for k = 1 . . .K do
4. for m = 1 . . .M do
5. Run K-Means using the vectors in period m to generate k clusters. Then, k

spatio-temporal patterns are extracted from these clusters.
6. end for
7. end for
8. Balance the data set by weights.
9. for t = 1 . . . T do
10. Normalize the weights, let Dt be a probability distribution.
11. Divide weighted data into two sets, GrowSet and PruneSet.
12. Call BuildChain() and then PruneChain() to obtain Rt.
13. Calculate ĈRt using entire data set and Equation (7).
14. Update the weights based on Equation (8).
15. end for
16. The final global spatio-temporal pattern is defined as:

h(x) =

{
hotspot

∑
Rt:x∈Rt

ĈRt > α

coldspot otherwise
, α is a user-defined threshold.

4 Case Study: Forecasting Residential Burglary in a
Northeastern City of the U.S.A.

Data Configuration: 4-years’ (January 2006 to December 2009) crime records
have been used for the evaluation. In addition, three different grid resolutions
have been applied to generate three data sets from the original crime records.
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These three resolutions have the squared cell/block with edge lengths of 800,
600, and 450 meters, respectively.

The targeting crime to be predicted is residential burglary in our experiments.
Residential burglary is a particularly interesting crime to study from a predic-
tion perspective since the near repeat hypothesis suggests that proximity to a
burgled residence increases the likelihood of victimization of other domiciles in
the neighborhood[12].

Based on the criminology theory[6] and after consulting with the domain
experts, six categories of incidences are identified having the higher correlation
with residential burglary crime than others. These six categories are arrest, com-
mercial burglary, foreclosure, motor vehicle larceny, 911 call, and street robbery.
Thus, the aggregations of these six categories from the crime records are used
as the crime indicators in our experiments.

The Choice of Pattern Learning Classifier: LADTree[5] has been cho-
sen as the base classifier to identify these patterns in our experiments because
LADTree adapts same confidence-rated system to grow a decision tree. However,
our algorithm is not limited to LADTree because a spatio-temporal pattern can
be represented in any format or model as long as it can tell whether a vector is
a hotspot.

Clustering Approach in Finding Spatio-temporal Patterns: In this
experiment, the effectiveness of K is evaluated. The other user-defined variables
T (The number of boosting iteration) and α (The threshold for h(x)) are set to
500 and 0, respectively. The results of this experiment are obtained from three
data sets with different grid cell sizes. When K = 1, the data is not clustered.
Therefore, the results obtained from the setting of K = 1 is used as the baseline
to compare with others. According to the results shown in Figure 2, the clustering
approach yields not only the better overall accuracy but also the better F1-
score on hotspots. This is because using clustering enhances the feature with
spatial dimension by taking into account the crime distribution at local levels.
Moreover, we found that the performance reaches certain level when K = 4 and
then maintains at this level when K ≥ 5. This shows that the patterns lose the
true representative of local crime distributions when the resolution is set too high
and suggests that there are less than or equal to 5 different levels of local crime
patterns in our target city. Thus, K is set to 5 in the rest of our experiments.

Comparing Spatio-Temporal Pattern Features with Random Sam-
pling Features: In this experiment, the variableK is used to decide the number
of random sampling data sets. This sampling method randomly selects 50% of
the data records from a monthly data set for 1 + 2 + . . .+K times without re-
placement, which means that there is no duplicated records in each sample. This
method constructs 1 + 2+ . . .+K samples with unified size and then trains the
base classifiers from them using the LADTree algorithm. The purpose is to have
same number of features while comparing random sampling with the proposed
spatio-temporal pattern.

Next, our confidence-rate boosting algorithm is used to pick features from
those patterns generated from random sampled clusters and then build a global
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Fig. 2. The results of using different K for clustering on 3 data sets

pattern. By this way, we can tell that which kind of feature delivers the bet-
ter prediction results. According to Figure 3, using spatio-temperal patterns
has better performance regardless the resolution of the data set. Thus, spatio-
temperal patterns do have the advantage over random sampling due to their
spatio-temporal multi-dimensional characteristic.
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Fig. 3. Comparing spatio-temperal patterns with random sampling on different
datasets

Comparing with Classification Approaches: Using the same crime data
sets, other commonly used classification methods are adapted to generate the
prediction results to compare with our proposed algorithm. Support Vector Ma-
chine (SVM), C4.5, Naive Bayes classifier, and LADTree[5] are chosen in this
experiment. As shown in Table 1, our proposed CCRBoost algorithm has the
best accuracy and F1-score over other classifiers on all three data sets.

Comparing CCRBoost with AdaBoost: During this experiment, the var-
ious numbers of iterations, T , are used in comparing our algorithm with the
AdaBoost[4] algorithm. LADTree is chosen as the base learning classifier in both
algorithms. Shown in Figure 4, the accuracy obtained from the AdaBoost algo-
rithm reaches its ceiling when T > 50. However, our CCRBoost algorithm not
only can obtain better accuracy but also has better convergence rate throughout
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Table 1. The results of comapring CCRBoost with existing classifiers

Data Set 800-meter 600-meter 450-meter

Method Accuracy F1 Accuracy F1 Accuracy F1

SVM 0.817 0.801 0.776 0.742 0.651 0.489
C4.5 0.500 0.667 0.500 0.667 0.500 0

NaiveBayes 0.730 0.675 0.703 0.647 0.667 0.592
LADTree 0.772 0.757 0.728 0.702 0.644 0.487
CCRBoost 0.857 0.818 0.820 0.746 0.772 0.610

three data sets. In conclusion, the boosting effect of our algorithm is more effi-
cient than AdaBoost because our algorithm enhanced with new spatio-temporal
features has a strong impact in predicting crime.
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Fig. 4. Comparing AdaBoost with CCRBoost on different iterations T

The Resulting Global Spatio-temporal Pattern: The selection of the
local patterns used in the final spatio-temporal pattern has been visualized on
the map, which is shown in Figure 5. The red grid cells represent hotspots and
blue cells are coldspots. The first pattern chosen by the proposed algorithm is
a cluster from September 2007. The locations of this cluster are consistent with
known crime pattern of our target city. The second cluster representing August
2009 data identifies crime hotspots that were excluded from the first cluster.
More importantly, this second cluster is useful for pinpointing coldspots areas
that have some protective factor against residential burglary and other crimes.

As a result, the first two clusters are complementary in identifying locations
where we would expect residential burglary across the entire city as well as
areas that are coldspots. Interestingly and consistent with criminological liter-
ature, both clusters are in the summer months when children are out of school
and individuals may take vacations and be less vigilant about protecting their
property. It may be that there is an increased likelihood of residential burglary
in this city during the summer time. Based on the consistency with actual crime
patterns, our algorithm does find the patterns which recognize not only the spa-
tial but also the temporal factors that are useful for criminal justice professionals
in predicting the incidence of future crime.
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(1) September 2007 (2) August 2009

Fig. 5. The first two local patterns used in the final global spatio-temporal pattern
resulting from 800-meter grid data set. The red blocks are hotspots and blues are
coldspots. (Better viewed in color).

5 Conclusions

From a practical standpoint, the patterns selected from this algorithm are in-
dicative of the true locations of residential burglaries throughout the target city.
This gives the concrete evidence that using proposed spatio-temporal pattern
has the great potential in predicting crime. The ultimate goal of our research is
to build a crime prediction system with strong predictive power, which is able
to provide forecast in a timely manner and requires less amount of data inputs.
Ultimately, the law enforcement is able to fight criminals pro-actively instead of
passively.
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Abstract. In this paper, we solve the problem of predicting the next locations
of the moving objects with a historical dataset of trajectories. We present a Next
Location Predictor with Markov Modeling (NLPMM) which has the following
advantages: (1) it considers both individual and collective movement patterns in
making prediction, (2) it is effective even when the trajectory data is sparse, (3)
it considers the time factor and builds models that are suited to different time pe-
riods. We have conducted extensive experiments in a real dataset, and the results
demonstrate the superiority of NLPMM over existing methods.

Keywords: moving pattern, next location prediction, time factor.

1 Introduction

The prevalence of positioning technology has made it possible to track the movements
of people and other objects, giving rise to a variety of location-based applications. For
example, GPS tracking using positioning devices installed on the vehicles is becom-
ing a preferred method of taxi cab fleet management. In many social network applica-
tions (e.g., Foursquare), users are encouraged to share their locations with other users.
Moreover, in an increasing number of cities, vehicles are photographed when they pass
the surveillance cameras installed over highways and streets, and the vehicle passage
records including the license plate numbers, the time, and the locations are transmitted
to the data center for storage and further processing.

In many of these location-based applications, it is highly desirable to be able to ac-
curately predict a moving object’s next location. Consider the following example in
location-based advertising. Lily has just shared her location with her friends on the so-
cial network website. If the area she will pass by is known in advance, it is possible to
push plenty of information to her, such as the most popular restaurant and the products
on sale in that area. As another example, if we could predict the next locations of vehi-
cles on the road, then we will be able to forecast the traffic conditions and recommend
more reasonable routes to drivers to avoid or alleviate traffic jams.

Several methods have been proposed to predict next locations, most of which fall into
one of two categories: (1) methods that use only the historical trajectories of individual
objects to discover individual movement patterns [7, 12], and (2) methods that use the
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historical trajectories of all objects to identify collective movement patterns [10, 11].
The majority of the existing methods train models based on frequent patterns and/or
association rules to discover movement patterns for prediction.

However, there are a few major problems with the existing methods. First, those
methods focus on either the individual patterns or the collective patterns, but very of-
ten the movements of objects reflect both individual and collective properties. Second,
in some circumstances (e.g., social check-in, and vehicle surveillance), the data points
are very sparse; the trajectories of some objects may consist of only one record. One
cannot construct meaningful frequent patterns with these trajectories. Finally, the ex-
isting methods do not give proper consideration to the time factor. Different movement
patterns exist in different time, for example, Bob is going to leave his house. If it is 8
a.m. on a weekday, he is most likely to go to work. But if it is 11:30 a.m., he is more
likely to go to a restaurant, and he may go shopping if it is 3 p.m on weekends. Failing
to take time factor into account would result in higher error rates in predicting the next
locations.

To address those problems, we propose a Next Location Predictor with Markov Mod-
eling (NLPMM) to predict the next locations of moving objects given past trajectory
sequences. NLPMM builds upon two models: the Global Markov Model (GMM) and
the Personal Markov Model (PMM). GMM utilizes all available trajectories to discover
global behaviours of the moving objects based on the assumption that they often share
similar movement patterns (e.g., people driving from A to B often take the same route).
PMM, on the other hand, focuses on modeling the individual patterns of each mov-
ing object using its own past trajectories. The two models are combined using linear
regression to produce a more complete and accurate predictor.

Another distinct feature of NLPMM lies in its treatment of the time factor. The move-
ment patterns of objects vary from one time period to another (e.g., weekdays vs. week-
ends). Meanwhile, similarities also exist for different time periods (e.g., this Monday
and next), and the movement patterns of moving objects tend to be cyclical. We thus
propose to cluster the time periods based on the similarity in movement patterns and
build a separate model for each cluster.

The performance of NLPMM is evaluated in a real dataset consisting of the vehicle
passage records over a period of 31 days (1/1/2013 - 1/31/2013) in a metropolitan area.
The experimental results confirm the superiority of the proposed methods over existing
methods.

The contributions of this paper can be summarized as follows.
– We propose a Next Location Predictor with Markov Modeling to predict the next

location a moving object will arrive at. To the best of our knowledge, NLPMM
is the first model that takes a holistic approach and considers both individual and
collective movement patterns in making prediction. It is effective even when the
trajectory data is sparse.

– Based on the important observation that the movement patterns of moving objects
often change over time, we propose methods that can capture the relationships be-
tween the movement patterns in different time periods, and use this knowledge to
build more refined models that are better suited to different time periods.

– We conduct extensive experiments using a real dataset and the results demonstrate
the effectiveness of NLPMM.
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The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 gives the preliminaries of our work. Section 4 describes our approach of
Markov modeling. Section 5 presents methods that take the time factor into consider-
ation. The experimental results and performance analysis are presented in Section 6.
Section 7 concludes this paper.

2 Related Work

There have appeared a considerable body of work on knowledge discovery from trajec-
tories, where a trajectory is defined as a sequence of locations ordered by time-stamps.
In what follows, we discuss three categories of studies that are most closely related
to us.

Route planning: Several studies use GPS trajectories for route planning through con-
structing a complete route [2, 3, 16]. Chen et al. search the k Best-Connected Trajecto-
ries from a database [3] and discover the most popular route between two locations [2].
Yuan et al. find the practically fastest route to a destination at a given departure time
using historical taxi trajectories [16].

Long-range prediction: Long-range prediction is studied in [5, 8], where they try
to predict the whole future trajectory of a moving object. Krumm proposes a Simple
Markov Model that uses previously traversed road segments to predict routes in the
near future [8]. Froehlich and Krumm use previous GPS traces to make a long-range
prediction of a vehicle’s trajectory [5].

Short-range prediction: Short-range prediction has been widely investigated
[7, 10–12], which is concerned with the prediction of only the next location. Some
of these methods make prediction with only the individual movements [7, 12], while
others use the historical movements of all the moving objects [10, 11]. Xue et al. con-
struct a Probabilistic Suffix Tree (PST) for each road using the taxi traces and propose a
method based on Variable-order Markov Models (VMMs) for short-term route predic-
tion [12]. Jeung et al. present a hybrid prediction model to predict the future locations of
moving objects, which combine predefined motion functions using the object’s recent
movements with the movement patterns of the object [7]. Monreale et al. use the previ-
ous movements of all moving objects to build a T-pattern tree to make future location
prediction [10]. Morzy uses a modified version of the PrefixSpan algorithm to discover
frequent trajectories and movement rules with all the moving objects’ locations [11].

In addition to the three aforementioned categories of work, there has also appeared
work on using social-media data for trajectory mining [9, 13]. Kurashima et al. recom-
mend travel routes based on a large set of geo-tagged and time-stamped photographs
[9]. Ye et al. utilize a mixed Hidden Markov Model to predict the category of a user’s
next activity and then predict a location given the category [13].

3 Preliminaries

In this section, we will explain a few terms that are required for the subsequent discus-
sion, and define the problem addressed in this paper.
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Definition 1 (Sampling Location). For a given moving object o, it passes through a
set of sampling locations, where each sampling location refers to a point or a region (in
a two-dimensional area of interest) where the position of o is recorded.

For example, the positions of the cameras in the traffic surveillance system can be
considered as the sampling locations.

Definition 2 (Trajectory Unit). For a given moving object o, a trajectory unit, denoted
by u, is the basic component of its trajectory. Each trajectory unit u can be represented
by (u.l, u.t), where u.l is the id of the sampling location of the moving object at time-
stamp u.t.

Definition 3 (Trajectory). For a moving object, its trajectory T is defined as a time-
ordered sequence of trajectory units: < u1, u2, . . . , un >.

From Definition 2, T can also be represented as < (u1.l, u1.t) , (u2.l, u2.t) , . . . ,
(un.l, un.t) > where ui.t < ui+1.t (1 � i � n− 1).

Definition 4 (Candidate Next Locations). For the sampling location ui.l, we define a
sampling location uj.l as a candidate next location of ui.l if a moving object can reach
uj.l from ui.l directly.

The set of candidate next locations can be obtained either by prior knowledge (e.g.,
locations of the surveillance cameras combined with the road network graph), or by
induction from historical trajectories of moving objects.

Definition 5 (Sampling Location Sequence). For a given trajectory < (u1.l, u1.t) ,
(u2.l, u2.t) , . . . , (un.l, un.t) >, its sampling location sequence refers to a sequence of
sampling locations appearing in the trajectory, denoted as < u1.l, u2.l, . . . , un.l >.

Definition 6 (Prefix Set). For a sampling location ui.l and a given set of trajectories
T , its prefix set of size N , denoted by SN

i , refers to the set of sequences such that each
sequence is a length N subsequence that immediately precedes ui+1.l in the sampling
location sequence of some trajectory T ∈ T .

4 Markov Modeling

We choose to use Markov models to solve the next location prediction problem. Specif-
ically, a state in the Markov model corresponds to a sampling location, and state transi-
tion corresponds to moving from one sampling location to the next.

In order to take into consideration both the collective and the individual movement
patterns in making the prediction, we propose two models, a Global Markov Model
(GMM) to model the collective patterns, and a Personal Markov Model (PMM) to model
the individual patterns and solve the problem of data sparsity. They are combined using
linear regression to generate a predictor.
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4.1 Global Markov Model

Using historical trajectories, we can train an order-N GMM to give a probabilistic pre-
diction over the next sampling locations for a moving object, where N is a user-chosen
parameter. Let P (li) represents a discrete probability of a moving object arriving at
sampling location li. The order-N GMM implies that the probability distribution P (l

′
)

for the next sampling location l
′

of a given moving object o is independent of all but
the immediately preceding N locations that o has arrived at:

P (l
′ | < lj, . . . , li >) = P (l

′ |SN
i ) (1)

For a given trajectory dataset, an order-N GMM for the sampling location li can be
trained in the following way. We first construct the prefix set SN

i . Next, for every prefix
in SN

i , we compute the frequency of each distinct sampling location appearing after this
prefix in the dataset. These frequencies are then normalized to get a discrete probability
distribution over the next sampling location.

We start with a first order GMM, followed by a second-order GMM, etc., until the
order-N GMM has been obtained, to train a variable-order GMM. In contrast to the
order-N GMM, the variable-order GMM learns such conditional distributions with a
varying N and provides the means of capturing different orders of Markov dependen-
cies based on the observed data. There exist many ways to utilize the variable-order
GMM for prediction. Here we adopt the principle of longest match. That is, for a given
sampling location sequence ending with li, we find its longest suffix match from the set
of sequences in the prefix set of li.

4.2 Personal Markov Model

The majority of people’s movements are routine (e.g., commuting), and they often have
their own individual movement patterns. In addition, about 73% of trajectories in our
dataset contain only one point, but they also can reflect the characteristics of the moving
objects’ activities. For example, someone who lives in the east part of the city is unlikely
to travel to a supermarket 50 kilo-meters away from his home. Therefore, we propose a
Personal Markov Model (PMM) for each moving object to predict next locations.

The training of PMM consists of two parts: training a variable-order Markov model
for every moving object using its own trajectories of length than 1, and a zero-order
Markov model for every moving object using the trajectory units.

For training the variable-order Markov model, we construct the prefix set for every
moving object using its own trajectories, and then we compute the probability distri-
bution of the next sampling locations. Specially, we iteratively train a variable-order
Markov model with order i ranging from 1 to N using the trajectories of one moving
object.

We train a zero-order Markov model using the trajectory units. For a moving object,
let N(l

′
) denotes the number of times a sampling location l

′
appears in the training

trajectories. Let Ll′ be the set of distinct sampling locations appearing in the training
trajectories. Then we have

P (l
′
) =

N(l
′
)∑

l∈L
l
′ N(l)

. (2)
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The zero-order Markov model can be seamlessly integrated with the variable-order
Markov model to obtain the final PMM.

4.3 Integration of GMM and PMM

There are many methods to combine the results from a set of predictors. For our prob-
lem, we choose to use linear regression to integrate the two models we have proposed.

For the given i-th trajectory sequence, both GMM and PMM can get a vector of
probabilities, pw

i =
(
pi1, p

i
2, · · · , pim

)′
(w = 1 for GMM and w = 2 for PMM), where

m is the number of the sampling locations, and pij is the probability of location j being
the next sampling location. We also have a vector of indicators yi = (yi1, y

i
2, · · · , yim)′

for the i-th trajectory sequence, where yij = 1 if the actual next location is j and 0
otherwise. We can predict yi through a linear combination of the vectors generated by
GMM and PMM:

ŷi = β01+

2∑
w=1

βwp
w
i (3)

where 1 is a unit vector, and β0, β1, and β2 are the coefficients to be estimated.
Given a set of n training trajectories, we can compute the optimal values of βi

through standard linear regression that minimizes
∑n

i=1 ||yi − ŷi||, where || · || is the
Euclidean norm. The βi values thus obtained can then be used for prediction. For a par-
ticular trajectory, we can predict the top k next sampling locations by identifying the k
largest elements in the estimator ŷ.

5 Time Factor

The movement of human beings demonstrates a great degree of temporal regularity
[1, 6]. In this section, we will first discuss how the movement patterns are affected by
time, and then show how to improve the predictor proposed in the preceding section by
taking the time factor into consideration.

5.1 Observations and Discussions

We illustrate how time could affect people’s movement patterns through Figure 1. In
this case, for a sampling location l, there are seven candidate next locations, and the
distributions over those locations do differ from one period to another. For instance,
vehicles are most likely to arrive at the fifth location during the period from 9:00 to
10:00, whereas the most probable next location is the second for the period from 14:00
to 15:00.

Therefore, the prediction model should be made time-aware, and one way to do this
is to train different models for different time periods. In what follows, we will explore a
few methods to determine the suitable time periods. Here, we choose day as the whole
time span, i.e., we study how to find movement patterns within a day. However, any
other units of time, such as hour, week or month, could also be used depending on the
scenario.
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Fig. 1. An example of time affecting people’s movement patterns

5.2 Time Binning

A straight-forward approach is to partition the time span into a given number (M ) of
equi-sized time bins, and all trajectories are mapped to those bins according to their
time stamps. A trajectory spanning over more than one bin is split into smaller sub-
trajectories such that the trajectory units in each sub-trajectory all fall in the same bin.
We then trainM independent models, each for a different time bin, using the trajectories
falling in each bin. Prediction is done by choosing the right model based on the time-
stamp. We call this approach Time Binning (TB).

However, this approach has some limitations: the sizes of all time bins are equal,
rendering it difficult to find the correct bin sizes that fit all movement patterns in the
time span, as some patterns manifest themselves over longer periods whereas others
shorter. One possible improvement to TB is to start with a small bin size, and gradually
merge the time bins whose distributions are considered similar by some metric.

5.3 Distributions Clustering

We propose a method called Distributions Clustering (DC) to perform clustering of the
time bins based on the similarities of the probability distributions in each bin. Here, the
probability distribution refers to the transition probability from one location to another.
Compared with TB, the trajectories having similar probability distributions are expected
to be put in one cluster, leading to clearer revelation of the moving patterns. Here, we
use cosine similarity to measure the similarities between the distributions, but the same
methodology still applies when other distance metrics such as the Kullback-Leibler
divergence [4] are used.

For an object o appearing at a given sampling location l with a time point falling into
the ith time bin, let pmi be an m-dimensional vector that represents the probabilities of
o moving from l to another location, where m is the total number of sampling locations.
We measure the similarity of two time bins i and j (with respect to o) using the cosine
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similarity, cosij =
(
pmi .p

m
j

)
/
(
|pmi | .

∣∣pmj ∣∣). With the similarity metric defined, we
can perform clustering for each sampling location l on the time bins. The algorithm is
detailed in Algorithm 1. The results will be a set of clusters, each containing a set of
time bins, for the sampling location l.

Algorithm 1. DC: Detecting Q clusters for the M time bins
Input: cluster number Q, time bins number M and the probability distributions of trajectories

in each time bin;
Output: the clusters;
1. random select Q time bins as the initial cluster centres;
2. repeat
3. calculate the similarity of the probability distributions of trajectories in each time bin and

the cluster centres;
4. assign each time bin to the cluster centre with the maximum similarity;
5. recalculate the probability distributions of trajectories in the cluster centres;
6. until clusters do not change or the maximum number of iterations has been reached
7. return the clusters;

For a given location li, we can get Q clusters, defined as Ck
i , k = 1, 2, · · · , Q.

Combined with the order-N Markov model, the probability distribution P (l
′
) for the

next sampling location l
′

of a given moving object o can be computed with the formula:

P (l
′ | < (uj.l, uj.t) , . . . , (ui.l, ui.t) >) = P (l

′ |Ck
i ,SN

i ) (4)

We then train Q models with the trajectories in each cluster to form a new model
NLPMM-DC (which stands for NLPMM with Distributions Clustering). In the new
model, the sequence of just-passed locations and the time factor are both utilized by
combing distributions clustering and Markov model.

6 Performance Evaluation

We have conducted extensive experiments to evaluate the performance of the proposed
NLPMM using a real vehicle passage dataset. In this section, we will first describe the
dataset and experimental settings, followed by the evaluation metrics to measure the
performance. We then show the experimental results.

6.1 Datasets and Settings

The dataset used in the experiments consists of real vehicle passage records from the
traffic surveillance system of a major metropolitan area with a 6-million population. The
dataset contains 10,344,058 records during a period of 31 days (from January 1, 2013
to January 31, 2013). Each record contains three attributes, the license plate number of
the vehicle, the ID of the location of the surveillance camera, and the time of vehicle
passing the location. There are about 300 camera locations on the main roads. The
average distance between a neighboring pair of camera locations is approximately 3
kilometers.



194 M. Chen, Y. Liu, and X. Yu

6.2 Pre-processing

We pre-process the dataset to form trajectories, resulting in a total of 6,521,841 tra-
jectories. According to statistics, the trajectories containing only one point account for
about 73% of all trajectories, which testifies to the sparsity of data sampling. We choose
a total of 1,760,897 trajectories with the length greater than one to calculate the number
of candidate next locations for every sampling location. Due to the sparsity of cam-
era locations, about 86.3% of the sampling locations have more than 10 candidate next
sampling locations, and the average number of candidate next locations is about 43. We
predict top-k next sampling locations in the experiments.

6.3 Evaluation Metrics

Our evaluation uses the following metrics that are widely employed in multi-label clas-
sification studies [14].

Prediction Coverage: It is defined as the percentage of trajectories for which the next
location can be predicted based on the model. Let c (l) be 1 if it can be predicted and 0
otherwise. Then PreCovT =

∑
l∈T c (l) /|T |, where |T | denotes the total number of

trajectories in the testing dataset.
Accuracy: It is defined as the frequency of the true next location occurring in the list

of predicted next locations. Let p (l) be 1 it does and 0 otherwise. Then accuracyT =∑
l∈T p (l) /|T |.
One-error: It is defined as the frequency of the top-1 predicted next location not

being the same as the true next location. Let e (l) be 0 if the top-1 predicted sampling
location is the same as the true next location and 1 otherwise. Then one − errorT =
|
∑

l∈T e (l) /T |.
Average Precision: Given a list of top-k predicted next locations, the average pre-

cision is defined as AvePrecT =
∑

l∈T (p (i) /i) /|T |, where i denotes the position
in the predicted list, and p (i) takes the value of 1 if the predicted location at the i-th
position in the list is the actual next location.

6.4 Evaluation of NLPMM

We evaluate the performance of NLPMM and its components, PMM, and GMM. For
each experiment, we perform 50 runs and report the average of the results. First, we
study the effect of the order of the Markov model by varyingN from 1 to 6. Figure 2(a)
shows that the accuracy has an apparent improvement when the order N increases from
1 to 2 for all models. The accuracy reaches the maximum whenN is set to 3 and remains
stable as N increases further. Therefore, we set N to 3 in the following experiments.
Next, we evaluate the effect of top k on PMM, GMM, and NLPMM. From Figure 2(b),
we can observe that the accuracy of all three models improves as k increases. Further-
more, the accuracy of GMM and NLPMM is significantly better than that of PMM,
and the best results are given by NLPMM. Since the average number of candidate next
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(a) (b)

Fig. 2. Performance of PMM, GMM, and NLPMM

(a) Effect of the size of time bin (b) Effect of the number of clusters

Fig. 3. Effect of parameters

locations is 43 (meaning there are 43 possibilities), the accuracy of 0.88 is surprisingly
good when k is set to 10.

6.5 Effect of the Time Factor

We evaluate the proposed methods that take into consideration of the time factor. Fig-
ure 3(a) shows the effect of bin size on NLPMM-TB (which stands for NLPMM with
Time Binning). The performance of NLPMM-TB starts to deteriorate when the bin size
becomes less than 8, because when the bins get smaller, the trajectories in them become
too sparse to generate a meaningful collective pattern. Figure 3(b) shows the effect of
the number of clusters on NLPMM-DC (which stands for NLPMM with Distributions
Clustering). When it is set to 1, the model is the same as NLPMM. The one-error rate
declines and the average precision improves as the number increases from 1 to 5. When
it continues to increase, the result starts to get worse. This is because having too many
or too few clusters with either hurt the cohesiveness or the separation of the clusters.

We evaluate the performance of NLPMM, NLPMM-TB and NLPMM-DC using one-
error and average precision. The results are shown in Table 1. NLPMM-TB and NLPMM-
DC perform better than NLPMM, which is because we can get a more refined model by
adding the time factor and generate more accurate predictions. NLPMM-DC performs
best, validating the effectiveness of the method of distributions clustering. It will be
used in the following comparison with alternative methods.
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Table 1. one-error and average precision of different models

NLPMM NLPMM-TB NLPMM-DC
one-error 53.8% 53.0% 52.3%

average precision 60.2% 60.5% 60.9%

6.6 Comparison with Existing Methods

We compare the proposed NLPMM-DC with the start-of-the-art approaches VMM [12]
and WhereNext [10]. VMM uses individual trajectories to predict the next locations,
whereas WhereNext uses all available trajectories to discover collective patterns. In this
experiment, we predict top-1 next sampling location. The parameters of VMM are set
as follows: memory length N=3, σ=0.3, and Nmin=1. For WhereNext, the support for
constructing T-pattern tree is set as 20. For the NLPMM-DC, the setting is that the order
N = 3 and the number of clusters is set at 5.

(a) (b)

Fig. 4. Performance comparison of NLPMM-DC, VMM, and WhereNext

Figure 4 shows the performance comparison of NLPMM-DC, VMM and WhereNext
in terms of prediction coverage and accuracy. As shown in Figure 4(a), NLPMM-DC
performs the best, which can be attributed to the combination of individual and collec-
tive patterns as well as the consideration of time factor. Figure 4(b) shows that the accu-
racy of each model improves as the size of training set increases. It is worth mentioning
that NLPMM-DC performs better than VMM and WhereNext in terms of accuracy for
any training set size.

7 Conclusions

In this paper, we have proposed a Next Location Predictor with Markov Modeling to
predict the next sampling location that a moving object will arrive at with a given trajec-
tory sequence. The proposed NLPMM consists of two models: Global Markov Model
and Personal Markov Model. Time factor is also added to the models and we propose
two methods to partition the whole time span into periods of finer granularities, includ-
ing Time Binning and Distributions Clustering. New time-aware models are trained ac-
cordingly. We have evaluated the proposed models using a real vehicle passage record
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dataset. The experiments show that our predictor significantly outperforms the state-of-
the-art methods (VMM and WhereNext).
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Abstract. How frequently are computer jobs submitted to an industrial-scale
datacenter? We investigate the trace that contains job requests and execution col-
lected in one of large-scale industrial datacenters, which spans near half of a Ter-
abyte. In this paper, we discover and explain two surprising patterns with respect
to the inter-arrival time (IAT) of job requests: (a) multiple periodicities and (b)
multi-level bundling effects. Specifically, we propose a novel generative process,
Hierarchical Bundling Model (HIBM), for modeling the data. HIBM is able to
mimic multiple components in the distribution of IAT, and to simulate job re-
quests with the same statistical properties as in the real data. We also provide a
systematic approach to estimate the parameters of HIBM.

1 Introduction

What are the major characteristics of job inter-arrival process in a datacenter? Could we
develop a tool to create synthetic inter-arrivals that match the properties of the empirical
data? Understanding the characteristics of job inter-arrivals is the key to design effec-
tive scheduling policies to manage massively-integrated and virtually-shared comput-
ing resources in a datacenter. Conventionally, during the development of a cloud-based
scheduler, job requests are assumed (1) to be submitted independently and (2) to follow
a constant rate λ, which results in a simple and elegant model, Poisson process (PP).
PP generates independent and identically distributed (i.i.d.) inter-arrival time (IAT) that
follows an (negative) exponential distribution [5]. However, in reality, how much does
this inter-arrival process deviate from PP?

To demonstrate how the real inter-arrival process deviates from PP, we use Fig. 1
to present the histogram of the IAT for 668,000 jobs submitted and collected in an in-
dustrial, large-scale datacenter. The resolution of IAT is 1 microsecond (μs, 10−6 sec).
As Fig. 1(a) shows, the IATs “seem” to follow an (negative) exponential distribution.
However, in logarithmic scale as Fig. 1(b) shows, surprisingly, four distinct clusters
(denoted as A, B, C and D) with either center-or left-skewed shapes can be seen. This
distribution (or a mixture of distributions) clearly does not follow an (negative) expo-
nential distribution, which is always right-skewed in logarithmic scale and therefore
cannot create such shapes. This phenomenon has confirmed that the i.i.d. assumption

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 198–209, 2014.
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Fig. 1. Deviation from Poisson Process: (a) Histogram of job IAT (≈ 668, 000 jobs) in linear-
scale. (b) Same histogram in log-scale. (c) Synthetic IATs from HIBM. In (a), the histogram has
limited number of bins to demonstrate IATs of such a fine-resolution, and the marginal distribu-
tion may be misidentified as an (negative) exponential distribution. In (b), four distinct clusters
can be seen: A: 1μs, B: 10-103μs, C: 103-105μs, and D: 106-109μs. All four clusters are captured
by HIBM as shown in (c).

of PP barely holds since certain job requests may depend on one another. For exam-
ple, a request of disk-backup may immediately be submitted after a request of Gmail
service; this dependency violates the i.i.d assumption and thus invalidates conventional
statistical analysis. In this paper we aim at solving the following two problems:

– P1: Find Patterns. How to characterize this marginal distribution?
– P2: Pattern-Generating Mechanism. What is a possible mechanism that can gen-

erate such job inter-arrivals?

This work brings the following two contributions:

– Pattern Discovery. Two key patterns of job inter-arrivals are provided: (1) mul-
tiple periodicities and (2) bundling effects. We show the majority (approximately
78%) of job requests show a regular periodicity with a log-logistic noise, a skewed,
power-law-like distribution. Furthermore, the submission of a job may depend on
the occurrence of its previous job, and we refer to this dependency as the bundling
effect, since these two associated jobs are considered to belong to the same bundle.

– Generative Model. We propose HIBM, a “HIerarchical Bundling Model,” that
is succinct and interpretative. HIBM’s mathematical expression is succinct that
requires only a handful of parameters to create synthetic job inter-arrivals matching
the characteristics of empirical data, as shown in Fig. 1(c). Furthermore, HIBM has
the capability to explain the attribution of the four clusters (A, B, C and D) and the
“spikes” (A, C1, C2, D1, and D2) in Fig. 1(b).

The remainder of this paper is organized as follows. Section 2 provides the problem
definition, Section 3 details the proposed HIBM, Section 4 provides the discussions and
Section 5 surveys the previous work. Finally, Section 6 concludes this paper.

2 Problem Definition

In this work, we use the trace from Google’s cluster [12], which is the first publicly
available dataset that presents the diversity and dynamic behaviors of real-world service
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requests, from a large-scale, multi-purpose datacenter. The trace contains the scheduler
requests and actions recorded from 29 days (starting at 19:00 EST, on Sunday May 1st,
2011) of activity in a 12,500-machine cluster. Each request submitted by a user forms a
job and the trace records approximately 668,000 job submissions.

2.1 Terminology and Problem Formulation

First, we define the terminology used throughout this paper.

Definition 1 (Job type and job instance). “Job type” represents a certain type of job
that can occur once or multiple times, and “job instance” is the actual occurrence of a
job request.

For example, “disk-backup” is a job type that can instantiate several requests; each
request (such as “disk-backup at 1:00P.M. on May 2nd”) is a job instance.

Definition 2 (Job bundle). “Job bundle” represents the association of two job types
− if two job types are in the same job bundle, the IATs of their job instances will be
correlated.

Like the example used in Section 1, two job types “disk-backup” and “Gmail” are
functionally-associated, and thus they are considered belonging to the same job bundle.
In this case, the inter-arrival of each disk-backup instance will depend on the occurrence
of each Gmail instance.

Definition 3 (Job class). “Job class” represents the priority (or latency sensitiveness)
of a job type. In the trace, job class is enumerated as {0, 1, 2, 3}with a job type of class
3 being the highest priority.

As mentioned in the Introduction, we have two goals:

– P1: Find patterns. Given (1) the job type j, (2) the time stamp of its ith instance
(denoted as tj,i), and (3) the job class, find the most distinct patterns that are suffi-
cient to characterize the IATs of all job instances in a datacenter.

– P2: Pattern-generating mechanism. Given the patterns found in P1, design a
model that can generate IATs that match these characteristics of the empirical data
and report the model parameters.

2.2 Dataset Exploration

We begin this section by illustrating the number of job instances over time in Fig. 2(a).
We collect the time stamp of each job instance when it is first submitted to the datacen-
ter, and then aggregate the total number of job instances within each hour to construct a
dataset of one-dimensional time-series. On average, 959.8 job instances are submitted
per hour, and in general, less instances are submitted on the weekends whereas more are
submitted during weekdays. Interestingly, around 2:00 A.M. on May 19th (Thursday),
a burst of 3,152 job instances can be observed, and its amount is approximately three
times higher than the amount on typical Thursday midnights.
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Fig. 2. A burst and periodicities: (a) Job instances per hour. A burst (indicated by the red circle) at
May 19th can be observed. (b) Discrete Fourier Transform (DFT) on the job-instance series. The
high-amplitude signals correspond to the periods of 1 week, etc. (c) Class-0 (the lowest priority)
and class-2 instance series. Notice their similarity (correlation coefficient is 0.94).

Discrete Fourier Transform (DFT) is also performed on the job-instance series. Fig.
2(b) provides the amplitude of each discrete frequency, on which we denote four fre-
quencies of high power-spectrum amplitudes: 1-week, 5-min, 4-min and 2.5-min. The
reason that the 1-week signal has a high amplitude can be explained by the periodic
behavior between weekends and weekdays. Later in Section 3.1, we characterize the
periodicity and show that both 5-min and 4-min periods can be found during the job
inter-arrivals.

2.3 Class Interdependency

Not all jobs are submitted equal: certain job types have higher priority to be scheduled
and executed (class-3, e.g., website services), whereas other jobs do not (class-0, e.g.
MapReduce workloads) [12].

Observation 1. The spike A (1μs) in Fig. 1(b) is attributed to the 1μs IAT between a
class-0 and a class-2 instance.

As shown in Fig. 2(c), the pattern of class-0 job instances (low priority) is highly similar
with the pattern of class-2 instances (high priority), in terms of both trend and quantity.
As it can be seen that these instances of class-0 and class-2 contribute to the burst
on May 19th observed in Fig. 2(a). Furthermore, the correlation coefficient between
class-0 and class-2 instances is 0.94, which makes us think: what is the IAT between
a class-0 and a class-2 instance? Surprisingly, this IAT is exactly 1μs , which forms
the first cluster in Fig. 1(b). This phenomenon immediately piques our interest: how to
characterize and attribute the rest of three clusters (B, C, and D) and the corresponding
spikes? The answer lies in the “bundling effect” as we will elaborate in Section 3.

3 HIBM: HIerarchical Bundling Model

In this section, we introduce two major components of HIBM: cross-bundle effects
(Section 3.1) and within-bundle effects (Section 3.2). The complete HIBM framework
is presented in Section 3.3.
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types. (c) Illustration of the cross-bundle noise (Σc,i) and the within-bundle noise (Σw,i) under the
period τj .

3.1 First Component: Cross-Bundle Effect

Multiple periodicities To characterize the periodicity of each job type, we first calculate
the IAT between every two consecutive job instances of that job type as follows:

δj,i = tj,i − tj,i-1, for i = 1 . . . nj (1)

where δj,i is the ith IAT, tj,i represents the occurrence time of the ith instance of job type
j, and nj is the total number of instances of job type j. Fig. 3(a) shows the histogram of
such IATs, δj,i. The histogram is symmetric and has a spike at 600 seconds (10 minutes),
which means each instance of job type j arrives approximately every 10 minutes with
some noise. Therefore, tj,i can be expressed as:

tj,i = i · τj + εc,i (2)

where τj stands for the period (e.g., 10 minutes in this case) and εc,i is a random variable
representing the “cross-bundle noise.” As illustrated in Fig. 3(c), the cross-bundle noise
(εc,i) represents the delay of a job bundle from its scheduled time (i · τj) and in this
example two job types j and j′ are in the same bundle. Here, we focus on only the job
type j (the red arrows); the within-bundle noise will be elaborated in Section 3.2. In
this work, τj is estimated by using the median of IATs of job type j; however, what
distribution εc,i follows remains unclear for now.

Observation 2. Multiple periodicities are observed: 4-min, 5-min, 10-min, 15-min, 20-
min, 30-min, and 1-hr.

One question may arise: is this periodic job type a special case, or do IATs of many job
types behave like this? To find the answer, we further collect the IATs from all job types
and illustrate them by using Fig. 3(b). For better visualization, only periods smaller
than one hour are demonstrated. In Fig. 3(b), multiple periodicities are observed, and
the two highest peaks are 4-min and 5-min, which matches the DFT results in Fig. 2(b):
the frequencies with high amplitudes are 4-min and 5-min. 4-min is also the smallest
period that exists in the trace. We would like to point out that the “10-min peak” in
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Fig. 4. Modeling cross-bundle noise: (a) PDF, (b) CDF (c) Odds Ratio are demonstrated by using
Log-logistic, negative-exponential and Pareto distribution, respectively

Fig. 3(b) seems sharper than the peak in Fig. 3(a); this is because Fig. 3(b) contains
several job types that have the same period (10-min), whereas Fig. 3(a) contains only
one such job type.

Now the question is: what random noise εc,i will create such IAT distribution shown
in Fig. 3(a)? Could we use famous “named” distributions, say (negative) exponential or
Pareto (power-law), to model this noise?

Modeling cross-bundle noise. Among many statistical distributions, we propose to
model the cross-bundle noise εc,i by using Log-logistic distribution (LL), since it is
able to model both the cross-bundle noise and the within-bundle noise (Section 3.2),
leading to the unified expression in HIBM. Also, it provides intuitive explanations for
sporadic, large delays. The Log-logistic distribution has a power-law tail and its defini-
tion is as follows.

Definition 4 (Log-logistic distribution). Let T be a non-negative continuous random
variable and T ∼ LL(α, β); the cumulative density function (CDF) of a Log-logistic
distributed variable T is , CDF (T = t) = FT (t) = 1

1+(t/α)−β , where α > 0 is the

scale parameter, and β > 0 is the shape parameter. The support t ∈ [0,∞).

Fig. 4(a) presents the cross-bundle noise εc,i and three fitted distributions by using
Maximum Likelihood Estimate (MLE) [3]. The distribution shows a left-skewed be-
havior and sporadically, a few job instances suffer from large delays. This phenomenon
is difficult to be captured by distributions with tails decaying exponentially fast (e.g.,
negative-exponential). On the other hand, the Pareto distribution (a power-law probabil-
ity distribution), which is also a heavy-tail distribution, lacks the flexibility to model a
“hill-shaped” distribution. The goodness-of-fit is tested by using Kolmogorov-Smirnov
test [11] with the null hypothesis that the cross-bundle noise is from the fitted Log-
logistic distribution. The resulting P-value is 0.2441, and therefore we retain the null
hypothesis under the 95% confidence level and conclude that the cross-bundle noise
follows Log-logistic distribution.

To better examine the distribution behavior both in the head and tail, we propose to
use the Odds Ratio (OR) function.
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Lemma 1 (Odds Ratio). In logarithmic scale, OR(t) has a linear behavior, with a
slope β and an intercept (− lnα), if T follows Log-logistic distribution:

OddsRatio(t) = OR(t) =
FT (t)

1− FT (t)
=

(
t

α

)β

(3)

⇒ lnOR(t) = β ln(t)− lnα �

As Fig. 4(c) shows, the OR of the cross-bundle noise seems to entirely follow the linear
line, which serves as another evidence that its marginal distribution follows a Log-
logistic distribution. The Log-logistic distribution presents a modified version of the
well known phenomenon− “rich gets richer.” We conjecture that this phenomenon can
be adapted to explain the cross-bundle noise of periodic job instances − “those delayed
long get delayed longer.” If the submission schedule of a job instance is delayed (or
preempted) by other jobs with a higher priority, it is likely that this job instance is going
to suffer from being further delayed.

3.2 Second Component: Within-Bundle Effect

Bundling effect and within-bundle noise The bundling effect represents the temporal
dependency between two job types j and j′. If the instances of two job types (e.g., Gmail
and disk-backup, denoted as job type j and j′, respectively) are independent from each
other, the correlation coefficient of their IATs should be close to zero. However, as Fig.
5(a) shows, IATs of two job types can be highly correlated; the correlation coefficient
(CC) is 0.9894. In this context, each tj,i and tj′,i must share the same εc,i due the
high correlation. More interestingly, the instances of job type j′ always occur after the
corresponding instance of j, i.e., tj,i < tj′,i as illustrated in Fig. 3(c).

We further examine the IAT between job type j and j′, namely, tj′,i−tj,i, referred as
“within-bundle noise” (εw,i). The concept of the within-bundle noise also is illustrated
by Fig. 3(c); furthermore, Fig. 5(b) presents a bi-modal distribution of εw,i: one peak
at 1.5-sec observed from 2:00P.M. to 6:00A.M. and the other at 16-sec observed from
6:00A.M. to 2:00P.M.

Observation 3. The spikes D1 (1.5sec) and D2 (16sec) in Fig. 1(b) are attributed to
HiBM’s within-bundle noise in the scale of seconds.

A possible explanation is that the submissions of job type j′ (class 1, latency-insensitive)
are delayed or preempted by other high priority job types during the working hours from
6:00A.M. to 2:00P.M., which creates the second mode (the 16-sec peak). Therefore, we
model this bi-modal distribution by using a mixture of two Log-logistic distributions.
Fig. 5(c) shows the Q-Q plot between the empirical εw,i and samples drawn from the fit-
ted Log-logistic mixture. As it can be seen, each quantile of simulated samples matches
the empirical εw,i very well.

A highly similar situation can be observed from another job bundle, shown in Fig.
5(d)(e)(f). Instead of seconds, as Fig. 5(e) shows, εw,i is bi-modal and in the scale of
millisecond.

Observation 4. The spikes C1 (3ms) and C2 (5.5ms) in Fig. 1(b) are attributed to
HiBM’s within-bundle noise in the scale of milliseconds.
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Fig. 5. HIBM fits real within-bundle noises: (a) IATs of job type j and j′ are highly correlated;
the correlation coefficient (CC) is 0.9894. Here, both job type j and j′ have the period of 1 hour.
(b) Within-bundle noise (Σw,i) that creates the spikes D1 and D2 can be modeled as a mixture
of two Log-logistic distributions. (c) Q-Q plot between the empirical Σw,i and the samples drawn
from the fitted Log-logistic mixture. (d)(e)(f) demonstrate another Σw,i in millisecond-scale, and
have similar explanations. We would like to point out the spikes C1 and C2 can be attributed to
the within-bundle noise shown in (e).

In this case, εw,i can also be modeled by a mixture of two Log-logistic distributions as
Fig. 5(e)(f) show. For both cases (within-bundle noises in both second-and millisecond-
scale), Kolmogorov-Smirnov test is performed; the null hypothesis that εw,i and the
fitted Log-logistic mixture follow the same distribution, is retained under the 95% con-
fidence level. In addition, within-bundle noises are also observed in μs scale, which
forms the cluster (and the spike) B in Fig. 1(b) and can also be modeled by the Log-
logistic distribution. This is not shown here due to the space limit. Now we are able
to explain and model all the clusters and spikes (B, C1, C2, D1 and D2) with the Log-
logistic distribution, leading to the succinctness of HIBM.

Interestingly, even if εw,i exists, the IATs of job type j and of j′ are still highly
correlated. The key to create such a phenomenon lies in the hierarchy that cross-bundle
noise is always larger than within-bundle noise, εc,i > εw,i. In the trace, the scale of
εc,i is approximately in the magnitude of minutes, whereas εw,i is in the magnitude of
seconds, milliseconds or even microseconds. Based on this observation, we propose a
unified model to describe the IATs of two job types in the same bundle, which serves as
the backbone of the proposed HIBM:
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tj,i = i · τj + εc,i

tj′,i = tj,i + εw,i = i · τj + εc,i + εw,i

(4)

where εc,i ∼ LL(αc,κ, βc,κ), εw,i ∼ a mixture of two LL distributions, expressed as:

εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ) (5)

pw,κ ∈ [0, 1], κ ∈ {B, C,D}. Given the empirical data, αc,κ, βc,κ can be estimated by
MLE and pw,κ, αw,κ, βw,κ, αw′,κ, βw′,κ can be estimated by Expectation Maximization
(EM) [3].

Bundle detection algorithm. After explaining the bundling effect, the next question
is how to determine if two certain job types belong to the same job bundle. We ask:
given each pair of tj,i and tj′,i, how do we know these IATs, namely, |tj,i − tj′,i|, are
caused by within-bundle noises (εw,i), or just coincidentally by a job instance occurring
closely to another instance? What if two job types have different periods? To answer
these questions, we propose a metric “expected occurrence ratio” (EOR) that compares
the empirical counts and the expected counts of within-bundle noises. EOR ∈ [0, 1]
and a high EOR value indicates that job type j and j′ are likely to be in the same job
bundle. The details of the proposed EOR are in Appendix (Section 6). The intuition is
similar to hypothesis testing. We examine the EOR between each pair of job types, and
the majority of pairs have EOR less than 0.3, whereas other few pairs have EOR very
close to 0.8. In this work, we select an EOR of 0.3 as threshold and therefore two job
types are considered unbundled if their EOR is less than 0.3.

3.3 Complete HIBM Framework

By assembling the cross-bundle effect (Section 3.1) and the within-bundle effect (Sec-
tion 3.2) together, we describe here the complete HIBM framework by using Algorithm
1. The inputs to HIBM are user-defined periods, the total duration T , and the parame-
ters of Log-logistic distributions as described in Eq (4). In our case, the periods are set
according to the empirical data as shown in Fig. 3(b), the T is set to one month as men-
tioned in Section 2.2, and the parameters described in Eq (4) are estimated by MLE and

EM. For each job type j, HIBM calculates its total number of instances by
⌊
T
τj

⌋
. Next,

for the ith instance of job type j, there will be two possible cases: (1) tj,i is bundled with
tj′,i or (2) tj,i is in its own job bundle (not bundled with any other job type). In the first
case, tj,i is estimated according to Eq (2), whereas in the second case, tj,i is estimated
according to Eq (4). The estimated tj,i is recorded in JS for all j and i. Finally, JS is
sorted in ascending order and then HIBM outputs JS as job inter-arrivals.

4 Experimental Results and Discussion

We validate HIBM by using the empirical data. The comparisons between the synthetic
IATs generated by HIBM and empirical IATs are illustrated by Fig. 6. Fig. 6(a)(b)
present the histogram of the empirical IATs and the synthetic IATs side by side. As it
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Algorithm 1. HIBM Generation
Result: Inter-arrival process of job instances, tj,i for all j and i, given periods τj for each

job type j, total duration T , αc,κ, βc,κ, pw,κ, αw,κ, βw,κ, αw′ ,κ, and βw′,κ.
initialization: JS = [];
for each j do

for i = 1 to
⌊

T
τj

⌋
do

if job type j is bundled with job type j′ then
tj,i = tj′,i + Σw,i,
Σw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′ ,κ, βw′,κ);

else
tj,i = i · τj + Σc,i, Σc,i ∼ LL(αc,κ, βc,κ);

JS = JS appending tj,i;

Sort JS in ascending order;
return JS;

can be seen, the synthetic IATs match the distinct characteristics of the empirical IATs:
the job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A,
B, C1, C2 D1, and D2). Fig. 6(c) presents the Q-Q plot, from which we can also observe
that each quantile of the synthetic IATs matches the corresponding quantile from the
empirical data very well.

We begin the discussion with HIBM’s succinctness. HIBM requires only a handful
of parameters as described in Algorithm 1 to generate job inter-arrivals that match the
characteristics from the empirical data, even when the i.i.d. assumption is violated −
the submissions of certain instances depend on one another. Therefore, HIBM can be
used as a tool to create more realistic job inter-arrivals to design, evaluate, and optimize
the cloud-based scheduler of a datacenter.

Also thanks to HIBM’s interpretability, we now understand the four distinct clusters
observed from the empirical data can be attributed to both class interdependency (A:
1μs) and within-bundle noises (B: 10-103μs, C:103-105μs, and D:106-109μs). In addi-
tion, the 3ms and 5ms spikes (C1 and C2) can be attributed to the within-bundle noise
shown in Fig. 5(e), and similarly 1.5sec and 16sec spikes (D1 and D2) can be attributed
to the within-bundle noise shown in Fig. 5(b). Furthermore, the cross-bundle noises in
HIBM provides intuitive explanation − “those delayed long get delayed longer” − for
the delays occurred on periodic job instances.

5 Related Work

Many papers have attempted to model the sequential and streaming data. Leland et al.
[10], Wang et al. [14], and Kleinberg et al. [8] have addressed the issues of self-similar
and bursty internet traffic. Saveski et al. [13] has adapted active learning to model the
web services. Benson et al. [2] has proposed a network-level, empirical traffic generator
for datacenters. Ihler et al. [7] has proposed a time-varying poisson process for adaptive
event detection. However, none of these work has addressed the issue of inter-arrivals
with both periodicity and bundling effects.
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Fig. 6. Comparisons between Synthetic IATs and the empirical IATs: (a) Histogram of empirical
IATs in log scale. (b) Histogram of synthetic IATs in log scale. (c) Q-Q plot. The synthetic IATs
generated by HIBM match the characteristics of the empirical IATs: the job-instance counts (only
0.3% difference), the four clusters, and all the spikes (A, B, C1, C2 D1, and D2). In addition, each
quantile of the synthetic IATs matches the corresponding quantile from the empirical data very
well.

Regarding to the Log-logistic distribution, it has been developed and used for sur-
vival analysis [9,1]. Recently, prior work has demonstrated its use in modeling the dura-
tion of telecommunication [4] and software reliability [6]. To the best of our knowledge,
this is the first work to use Log-logistic distributions to model the delays of job inter-
arrivals in a datacenter.

6 Conclusion

In this work, we investigate and analyze the inter-arrivals of job requests in an industrial,
large-scale datacenter. Our paper has two contributions:

– Pattern Discovery. We discover two key patterns of job inter-arrivals: (a) multiple
periodicities and (b) bundling effects. In addition, we propose to use Log-logistic
distributions to model both cross-bundle and within-bundle noises.

– Generative Model. We propose HIBM, a succinct and interpretative model. HIBM
requires only a handful of parameters to generate job inter-arrivals mimicking the
empirical data. In addition, HIBM also attributes the four distinct clusters and the
corresponding spikes to both within-bundle noises and class interdependency, and
provides intuitive explanation “those delayed long get delayed longer” to the cross-
bundle noises of periodic job types.
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A Appendix

The expected occurrence ratio (EOR) of job type j and j′ can be calculated as:

EOR(j, j′) = Nκ ·
(

T
LCM(τj , τj′)

· ρj · ρj′
)−1

(6)

where Nκ represents the number of the IATs occurred in the range of the cluster κ ∈
{B, C,D} in Fig. 1(b), T is the total duration, LCM(τj , τj′ ) is the Least Common
Multiple (LCM) between two periods τj and τj′ , finally ρj and ρj′ are the missing rates
of job type j and j′, respectively.
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Abstract. Given a person’s current and historical traces, a useful yet
challenging task is to predict the future locations at high spatial-temporal
resolution. In this study, we propose a Brownian Bridge model to pre-
dict a person’s future location by using the individual’s historical traces
that exhibit similarity with the current trace. The similarity of the traces
with the current trace is evaluated based on the notion of edit distance.
The predicted location at the future point in time is a weighted result
obtained from a modified Brownian Bridge model that incorporates lin-
ear extrapolation. Both Brownian Bridge and linear extrapolation aim
to capture aspects of the individual’s mobility behaviors. Compared to
using either historical records or linear extrapolation method alone, the
proposed location prediction method shows lower mean prediction error
in predicting locations at different time horizons.

Keywords: location prediction, Brownian Bridge, GPS.

1 Introduction

With the wide availability of GPS devices, current location-based services and
applications already have high spatial and temporal requirements for predicting
individuals’ future locations [1]. These requirements pose a nontrivial challenge
to location predictions. For instance, in pervasive or mobile computing, the spa-
tial resolution expected of a prediction is in the order of 10 meters and the
temporal resolution can be as high as a few seconds. In [3,2] both the theoret-
ical studies and experimental studies show that individual’s next locations are
highly predictable, which is around 90%, in either cell tower data or GPS data.
However, in two respects these two studies are incomplete. Firstly, the predicted
results in these two studies are too coarse in terms of both spatial and temporal
resolutions. Specifically, the temporal resolution in two datasets are one hour,
and the spatial resolution in cell tower data is a few kilometers and in GPS data
is around 500 meters [2]. Secondly, the high prediction accuracy indicates the
overall predictability during the entire 14 weeks. This high predictability may
be dominated by the cases when the individuals stay at home or in the office
for most of the time. However, in certain cases, such as, when making moves,
it may be difficult to predict individual’s next location at high spatial-temporal
resolutions.
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In this paper, the location prediction problem is defined as follows. Given a
set of historical positioning records of an individual and a sequence of samples
in the current trace, where all positioning records are GPS readings with a fixed
sampling rate, e.g., 60 seconds, the problem is to predict this individual’s location
in the near future, e.g., 60 seconds, 120 seconds, or 180 seconds later. To achieve
such purpose, a location prediction method making use of historical records while
observing current mobility behaviors is proposed. Since previous studies suggest
that there is a high probability that the individuals will follow previous traces
[3,2], the current trace may be similar to some traces in the past. Therefore,
we propose to use dynamic time warping [4] to measure the similarity between
traces. However, when using similar traces to estimate the future location, there
may not be a record that corresponds exactly to the required point of time,
and hence there is a need to model the individual’s movements in between two
sampled positions. A Brownian Bridge model [12], therefore, is proposed to model
the variance of an inferred location in between two existing sample points. In
the Brownian Bridge model, the location at any time is modeled as a Gaussian
distribution to cater for the measurement errors associated with GPS readings.
A linear extrapolation method is also used to model the individual’s current
mobility behaviors. The predicted location is a combination of the results from
the Brownian Bridge models and the result from the linear extrapolation method.

In order to evaluate our location prediction method, we compare our method
with two baseline methods, namely, the linear extrapolation method and a
method that only uses similar traces. In terms of average prediction errors, the
experimental results show that our method is much better than either method
that uses only linear extrapolation or similar traces alone, in predicting locations
at different time horizons.

Our contributions consist of a few parts. Firstly, we propose an algorithm of
applying the edit distance for measuring the similarity between mobility traces.
Secondly, we present and evaluate the Brownian Bridge model for modeling a
person’s movements in between any two sample points. Thirdly, we present a
prediction method that is capable of high spatial-temporal resolution predic-
tion by exploiting the individual’s mobility behaviors in the current trace and
historical records.

2 Related Work

The existing approaches for location prediction can be classified into two groups.
In the first group, individual’s mobility history is constructed based on either
significant locations [5,6] or region-of-interest [7], both of which are generated by
applying a clustering method, such as DBSCAN [8] or K-Means [9], on histori-
cal records from either the given person or a large population. Then, according
to the transition records between the significant locations or region-of-interest,
a probabilistic model based on either Bayesian theory or Markovian theory is
constructed to infer the next location. A major issue here is that, the con-
structed probabilistic models can be applied to infer the next locations only when
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individuals visit the significant location; otherwise the model fails. Also, in these
studies, the transition time between two locations is generally disregarded.

In the second group of approaches, the next move is predicted entirely based
on trajectory patterns [10,11]. In such cases, the trajectories are represented as
spatio-temporal items, e.g, a list of locations and the corresponding transition
times. The current trace is matched to the historical records by searching through
the pattern tree. Two methods [10,11] that make use of the trajectory patterns
alone typically suffer from the major limitation in the timing allowed for making
predictions, because of the tight coupling between the prediction time and the
sampling rate. Similarly, the trajectory pattern mining method is only applicable
to inferring the location at a point in time for which the corresponding sample
is available in the matched traces; predicting the location at any other time in
between the sampling method is impossible.

3 Trace Distance

Table 1. The meanings of the notations used

Symbol Explanation

Ti = {p1, ...ptn} Trace Ti contains tn sample points

pi,ti The coordinate and time of ith point

Ttr The collection of the traces

Ti(j : k) A sub-trace from index j to index k

M = {m1, ...mk} The collection of portions of historical traces
that match the current trace

mi.tid, mi.δ(tid, p)
Trace index of a matched result
and the distance of the trace with the target trace

mi.sid, mi.eid The starting and ending index in the matched trace

δinit, δthd Initial and maximum distance threshold

In this section, we describe our method for measuring the distance between
traces based on two ideas. Firstly, there is a high probability for the individuals
to follow the same routes [3,2]; however, the recorded traces may be largely
different due to different initial recording time or the errors in GPS readings.
Therefore, it should be useful to find the most similar subtraces while tolerating
certain degree of inexactness. Secondly, individuals often traverse a route in both
directions. Thus, we compare the traces in both directions and record the results
that satisfy the distance threshold.

According to these ideas, we present a trace matching algorithm Trace-
matching based on dynamic time warping. Note that a matching need not be
starting from the first index, but it should always end with the last index |tp|.
This ensures using the last location in finding a match, which is further elab-
orated in Section 4.3. The matching procedure starts by finding a sequence of
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Algorithm 1. Trace-matching(Tp, Ttr, δinit, δthd)

1. for each pi ∈ Tp, i ≥ 2 do
2. initial trace starts at index j = 1;
3. while j ≤ i do
4. for each trace Ti ∈ Ttr do
5. for each point pk ∈ Ti do
6. calculate dist = distance(pj , pk);
7. if dist ≤ δinit then
8. save the trace index and starting index to M ;
9. end if
10. end for
11. end for
12. if M is not empty then
13. k = j + 1;
14. for k ≤ i do
15. M =follow-up-matching(Tp(j : k),M , Ttr, δthd);
16. if M is empty then
17. j = j + 1;break;
18. end if
19. end for
20. end if
21. end while
22. end for
23. return M

Algorithm 2. follow-up-matching(Tp,M , Ttr, δthd)

1. for each matching information mi do
2. Get candidate trace id j = mi.tid, r = mi.sid, s = mi.eid;
3. if r < s then
4. T ′

j = Tj(r : s+ 1);
5. if |Tp| == 2 then
6. Add a new match mk = {j, s, r};
7. end if
8. else
9. Get the inverse partial trace T ′

j = Tj(r : s− 1);
10. end if
11. Calculate dist = D(Tp, T

′
j);

12. if dist < δthd then
13. if r < s then
14. update mi = {tid, sid, eid+ 1};
15. else
16. update mi = {tid, sid, eid− 1};
17. end if
18. end if
19. end for
20. return M
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locations in each trace in Ttr, such that each location is within δinit distance to
the initial index in Tp (Line 3 to Line 11). Given the traces with the points within
δinit distance to the initial index of the target trace, we start matching from the
second location of the target trace to the following locations given in Alg. 2. If
there is a matched candidate within a given distance threshold δthd, we output
the matched results. Otherwise, we shorten the current trace by removing the
most temporally-distant one (Line 19), and the matching process repeats.

Alg. 2 describes the follow-up matching steps given the matched traces from
the initial phase. We determine the direction of the matching when calling the
follow-up-matching for the first time. Specifically, if the starting index sid is
less than the ending index eid, the current candidate trace is from index sid
to eid+ 1 (Line 3). Otherwise, the current candidate trace is the reverse of the
given trace from index sid to eid− 1. Also, when calling follow-up-matching for
the first time, (Line 5), we add an additional piece of information by reversing
the previous matching. The reason is that when comparing two line segments,
we do not consider the direction of each line, therefore the subsequent matching
may be conducted in either direction. The distance of the two traces, given as
D(Tp, T

′
j), is measured by dynamic time warping [4]. If the distance is less than

the threshold δthd, we update the matching information according to the current
direction, otherwise we remove the current matching.

Here the complexity of the two algorithms is analyzed. In Alg. 1, the most
computationally expensive part is the initial matching. The complexity of find-
ing the initial matching in each trace is O(Np), where Np is the total number
of sample points in existing traces. The space requirement is O(Np). In Alg. 2,
the complexity of the matching procedure is O(|Tp|2), where |Tp| is the length of
the target trace. However, once all the current distance values in the matrix are
greater than the threshold, the calculation can be terminated and current match-
ing can be removed. The space requirement is upper-bounded by the distance
matrix of size |Tp|2. Therefore, the overall time complexity is O(|Tp|2). In prac-
tice, the time complexity is determined by the longest trace in each individual’s
data. The overall space requirement is O(|Tp|2).

4 Location Prediction Methods

In this section, we consider the issue of predicting the next location at a specific
point in time, given a few previous locations and historical trajectories that
match the current trace.

4.1 Method A: Linear Extrapolation

The first location prediction method is based on linear extrapolation without
using historical records. We predict the location at time tx based on the last
two locations on the current trace. Let the two locations arise at ti−1 and ti,
and there is no record in current trace in between time ti to tx. In the linear



Brownian Bridge Model for High Resolution Location Predictions 215

extrapolation, the location at time tx is given as

p̃l = pi + (pi − pi−1)
tx − ti
ti − ti−1

(1)

4.2 Method B: Estimation According to the Distance

The predicted location is the weighted mean location from the results of extend-
ing the matched traces one step further following the matched sequence, where
the weight of each location is proportional to the inverse of the corresponding
edit distance to the current trace1.

4.3 Method C: Estimation by Brownian Bridge

This location prediction method combines the inferred location according to the
Brownian Bridge model of each matched trace.

Preliminary. Brownian Bridge is a random process following a specific rule to
generate a path between two given locations.

Definition 1. A one-dimensional Brownian motion [12] W (t) ∈ R is a
continuous-time stochastic process satisfying the following properties: 1)W0 = 0,
2)Wt is almost surely continuous, and 3) for 0 ≤ s ≤ t, Wt has independent
increment, and Wt − Ws ∼ N (0, t − s), where N (μ, σ2) denotes the normal
distribution with mean μ and standard deviation σ.

Definition 2. Let W (t) be a one-dimensional Brownian motion. Given T > 0,
the Brownian Bridge [12] from W0 = 0 to WT = 0 on [0, T ] is the process
X(t) = W (t)− t

T W (T ), where t ∈ [0, T ].

The Brownian Bridge from W0 = a to WT = b on [0, T ] is the process

Xa→b(t) = a+
(b− a)t

T
+X(t) (2)

where X(t) = X0→0 is the Brownian Bridge given in Def. 2.

According to Eq. (2), EXa→b(t) = a+ (b−a)t
T , and var(Xa→b(t)) = t(T−t)

T .
The Brownian Bridge from a to b is described in the following way. At time t,

the estimated location is chosen from a Gaussian distribution, where the mean
of the Gaussian distribution is given by the linear estimation and the variance
varies with respect to time. Specifically, the variance increases at time T/2 to
the maximum, and decreases till time T . The property of the variance is very
suitable for modeling the uncertainties about a person’s locations between two

1 Note that this prediction method is only suitable for the case in which the current
trace has the same sampling rate as that of the historical records. Otherwise, this
method may lead to a large error.
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known locations. When the predicted time is very close to the time obtained
from the existing position samples, the mobility may not change greatly and the
prediction can be of high accuracy. When the time of interest lies in between the
two actual samples, the accuracy of the prediction result decreases.

In our case, the one-dimensional Brownian Bridge is extended to the two-
dimensional version, where the x and y coordinates vary independently. An ad-
ditional parameter, the variance of each trace σ2

m, is introduced to model the
mobility behaviors in each trace. Therefore, the variance of the estimated loca-
tion is adjusted to 2

var(Xa→b(t)) =
t(T − t)

T
σ2
m (3)

According to the Brownian Bridge model, the method of estimating the loca-
tion at time tx based on the current trace is given as follows. In the current trace,
two existing points pk and pk+1 satisfy that tk < tx < tk+1. When considering
the error of each point, the locations at time tk and tk+1 are generated from
pk ∼ N (μk, σ

2
g), pk+1 ∼ N (μk+1, σ

2
g), where σg = 0.01km is the standard error

of the GPS reading. The location at tx is given as p̃x ∼ N (μ̃x, σ̃
2
x), where

μ̃x = αkμk + (1− αk)μk+1 (4)

σ̃2
x = t′xαk(1− αk)σ

2
m + α2

kσ
2
g + (1− αk)

2σ2
g (5)

where σm is the standard deviation of the trace. αk = tx−tk
tk+1−tk

and t′x = tk+1−tk.

Location Prediction. Given individual’s current records in the given trace
Tp = {p1, p2, ..., pi}, similar historical traces and a time value tx, where tx > ti,
we focus on predicting the location at the time tx.

Algorithm 3. location-prediction(M , tx, Tp,ip)

1. Normalize the time in trace Tp and the predicted time tx to t′x according to the
initial matched index ip;

2. for each matched trace information mi do
3. Get trace index j = mi.tid, initial index r = mi.sid, ending index s = mi.eid,

and the edit distance to the current trace δ(p, j);
4. Normalize the time in the matched trace based on index r;
5. Get the location with index is and ie in Tj , such that tis < t′x < tie ;
6. Estimate the location p̃i at time t′x according to the current trace and the loca-

tions at index is and ie;
7. end for
8. Get the mean location from the list of estimated location p̃i ∼ N (μ̃i, σ̃i

2), and the
one p̃l estimated by the linear model given in Eq. (1), where the weight for each
p̃i is the inverse of the corresponding distance value, and the weight for p̃l is the
inverse of the initial distance δinit;

2 Due to the space limit, the estimation of the parameter σm is given in [13].
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Alg. 3 presents the details of the location prediction method. Firstly, we nor-
malize the time in both predicted trace and the matched trace according to
the initial matched index (Line 1 and Line 4). This is because the estimated
results for the Brownian Bridge model is highly time dependant. Secondly, the
estimated location p̃i based on current matched trace is given as a Gaussian
distribution N (μ̃i, σ̃

2
i ), where the parameters are inferred according to Eq. (4)

and Eq. (5), respectively. Lastly, we combine the estimated results from each
Brownian Bridge and also the linear extrapolation result from the current trace.

The estimated location p̃b is given by p̃b ∼ N (μ̃b, σ̃
2
b ), where μ̃b =

∑|M|+1
k=1 w′

kμ̃k∑
w′

k

and σ̃b =
∑|M|

k=1(
w′

k∑
w′

k
)2σ̃2

k. When μ̃k = μ̃i, σ̃k = σ̃i and w′
i = 1/δ(p, j), for

1 ≤ k ≤ |M |, and j is the index of the matched trace. For k = |M | + 1,
μ̃|M|+1 = p̃l and w′

|M|+1 = 1/δinit, which is the result from linear extrapolation.

5 Experimental Results

In this section, we compare three location prediction methods.

5.1 Mobility Data

The mobility data used in this study is a subset of the GPS dataset released by
Zheng Yu [14,15]. From this dataset, we extract 40 individual’s trajectories over
14 weeks. The following preprocessing is conducted. Firstly, each individual’s
trajectory is divided into a series of traces based on the time gap between two
GPS points. If the gap is longer than 300 seconds, the sequence will be divided
into different traces. Each trace is resampled at the rate of 60 seconds, and the
dataset is denoted as Ttr,60. Each individual’s traces are randomly separately
into a training set and predicting set, where the training set contains 70% of all
the traces and the remaining traces are used to evaluate the location prediction
methods. To cater for the characteristics of individual’s mobility behavior, the
training and prediction steps are separately evaluated on the individual’s own
data. The location of each point indicated by a pair of latitude and longitude
is converted to x and y coordinates according to 0◦ in both latitudinal and
longitudinal direction [16].

When estimating the standard deviation of each trace fitted by Brownian
Bridge model according to our method [13], among the 3225 training traces in
our dataset for 82.5% of the traces show a standard deviation of less than 0.05
km, with only one trace presents a standard deviation of 0.069 km, and the mean
standard deviation is 0.021 km, indicating that the Brownian Bridge model is
a suitable choice for predicting the location given the locations before and after
the predicting time.

5.2 Location Prediction

In this subsection, we evaluate the location prediction methods based on Ttr,60 in
two respects. Here, firstly the three location prediction methods are compared.
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For each prediction, all the previous locations in the current trace and the time
for prediction are given. The performance is evaluated by the distance of the
predicted location to the actual location in the current trace. Note that when
predicting using the Brownian Bridge model, the estimated mean location is the
result. Also the parameter δthd is tested with the values of 0.3 km, 0.2 km, 0.1
km and 0.05 km, with the initial threshold set to be δinit = 0.05 km in all these
cases.
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Fig. 1. The mean prediction errors in one step location prediction based on three
different methods, where eb, ew and el corresponds, respectively, with respect to the
mean prediction error given by the Brnownian Bridge method, prediction results using
similar traces, and the linear extrapolation method. esw and esb are the results only
using the most similar trace according to the matched results.

In all the cases tested, the prediction errors given by Method C, the com-
bination of linear extrapolation and Brownian Bridge model, is always lower
than either Method A or Method B that uses linear extrapolation or similar
traces alone, respectively. Secondly, in Method B the choice of using either the
most similar trace or the list of similar traces depends on the distance threshold.
Specifically, in Method B, when the similarity threshold is large, e.g., δthd = 0.3
or 0.2, the prediction result is adversely influenced by the most similar trace,
since using only the most similar trace results in a larger mean prediction error
than that by using all the matched traces. However, when the distance threshold
is small, e.g., δthd = 0.1 or 0.05, using the most similar trace is more effective
than using all the matched traces in Method B, which may be due to the stricter
distance criterion in measuring similarity. However, for the prediction results by
Method C, in all the cases mentioned before, making use of the most similar
trace is slightly worse than that obtained by using all the similar traces. This is
because the Brownian Bridge model is able to adjust the prediction with respect
to the given point of time. Thirdly, given δthd = 0.1, Method C is much more
discriminative than both the linear extrapolation method (Method A) and the
prediction using only similar traces (Method B). Specifically, the mean predic-
tion error for Method C is 0.084 km, while that of the Method A and Method
B is 0.099 km and 0.105 km, respectively.
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Note that the prediction results may be affected by δthd when using either
method B or method C according to the most similar trace. This is because
varying δthd the most similar trace may be different. For instance, when δthd
is small, the most similar trace may have only two or three samples. When
increasing δthd, a longer matched trace or subtrace may be found. Therefore, the
distance threshold δthd also affects the prediction results obtained by the most
similar trace.
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Fig. 2. (a) The distribution of the prediction errors according to linear extrapolation
method el and Method C eb in the following 60 seconds, 120 seconds and 180 seconds.
The two boxplots on the left show the distribution of the one step location prediction
results, i.e., predicting the location 60 seconds into the future. The middle two plots
are the corresponding results given by predicting the location 120 seconds into the
future. The last two are the prediction results for 180 seconds into the future. (b) The
distributions of the standard deviation of the results given by Method C in predicting
the location at 60 seconds, 120 seconds and 180 seconds later.

Secondly, we evaluate our method for predicting location with time horizons of
120 seconds and 180 seconds. Note that the location prediction by using similar
traces is only suitable for the case to predict the location at a point in the
similar traces. This is because the longer the prediction time is, the less likely
to find a location at roughly the same time in the similar traces. Therefore, the
comparison is only made between the linear extrapolation method and Method
C. The prediction results, which are given in terms of the distribution of errors
shown in Figure 2 (a). The mean errors for the consecutive steps are 0.099
km, 0.214 km, and 0.345 km for the linear extrapolation method, while the
corresponding result for the Brownian Bridge model are 0.084 km, 0.173 km,
0.281 km, respectively. In all these cases, the Brownian Bridge model shows
lower mean errors than the linear extrapolation, especially for predicting the
location in longer time horizons.

Moreover, Figure 2 (b) shows the distributions of the estimated standard
deviation of the predictions in Method C in the case of predicting the future
location at tx = 60, tx = 120, and tx = 180. A few observations can be made
from this figure. Firstly, in all the cases, the estimated standard deviation is very
small, which is less than 0.03 in the most cases. This is due to that the estimated
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standard deviation is calculated according to each Brownian Bridge model given
by Eq. (5).

The mean standard deviation σm for the traces is 0.021 km and the error of
GPS measurement is σg = 0.01 km. Therefore, the maximum standard deviation
given by Eq. (5) is when αx = 1

2 , indicating inferring a location in between two
samples, which is roughly 0.082 when t′x = 60 in our case. However, a much
smaller standard deviation given in Figure 2 (b) indicates that the predictions
are mostly near either the starting location or the ending location in the similar
traces. This is because when constructing the Brownian Bridge model in the
similar traces, the predicted locations with low standard deviations are mostly
near either the starting point or the ending point (c.f. Eq. (5)). Secondly, the
estimated standard deviation does not increase significantly when predicting
the location in longer time horizons, e.g., when tx =120 or 180. Recall that in
each prediction the time is always normalized according to the corresponding
initial index in both the current trace and a matched trace. The locations used
in constructing the Brownian Bridge model are always the two locations that
correspond to right before and right after the normalized time of prediction.

According to the comparisons based on the mean prediction errors and the
estimated standard deviations, combining the linear extrapolation method and
individual’s historical records is a suitable choice for location prediction.

5.3 Discussions

For the few location prediction methods discussed before, the Brownian Bridge
model fails to predict if there is no similar trace within a given distance threshold
to the current trace. Because the linear extrapolation method shows decent re-
sults while using only two location samples. A possible remedy to the Brownian
Bridge method is to apply the linear extrapolation in the case of failing to find
a match in the records.

One useful method for location prediction is the Kalman filter. We do not
choose Kalman filter for the following reasons. Firstly, a Kalman filter needs to
be specifically designed for each trace since the mobility behaviors may change
greatly even for the same individual. Secondly, learning the parameters in each
trace needs sufficient number of sample points, implying that the method is
unable to make any prediction for traces with few records. In contrast, with our
Method C, since the matching can be based on a subsequence of the current
trace with a few existing samples, it will be able to predict the future location
even with a few records.

6 Conclusion

In this paper, we have presented a new algorithm for location prediction by
making use of similar traces and individual’s current mobility information. The
similar traces with current target trace are found on the basis of the edit dis-
tance. In order to predict individual’s location at any given point of time, we use
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a Brownian Bridge to model the uncertainties about person’s movements in be-
tween any two locations. The final prediction combine both the current mobility
behaviors described by the linear extrapolation method and also the estimated
results from the individual’s Brownian Bridge models from similar traces. Ex-
perimental results show that our location prediction method by using Brownian
Bridge model is better than that using only the historical records or the linear
extrapolation method.

There are a few issues unresolved in this study. For instance, we have shown
in some cases, the linear extrapolation method is better than using the histor-
ical records or vice versa. Therefore, how to choose the right method at each
predicting time is a relevant question for future research.
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Abstract. Since the great advent of sensor technology, the usage data of ap-
pliances in a house can be logged and collected easily today. However, it is a 
challenge for the residents to visualize how these appliances are used. Thus, 
mining algorithms are much needed to discover appliance usage patterns. Most 
previous studies on usage pattern discovery are mainly focused on analyzing the 
patterns of single appliance rather than mining the usage correlation among ap-
pliances. In this paper, a novel algorithm, namely, Correlation Pattern Miner 
(CoPMiner), is developed to capture the usage patterns and correlations among 
appliances probabilistically. With several new optimization techniques, CoP-
Miner can reduce the search space effectively and efficiently. Furthermore, the 
proposed algorithm is applied on a real-world dataset to show the practicability 
of correlation pattern mining. 

Keywords: correlation pattern, smart home, sequential pattern, time interval-
based data, usage representation. 

1 Introduction 

Recently, due to the advance of sensor technology, the electricity usage data of in-
house appliances can be collected easily. In particular, an increasing number of smart 
power meters, which facilitates data collection of appliance usage, have been dep-
loyed. With the usage data, residents could supposedly visualize how the appliances 
are used. Nonetheless, with an anticipated huge amount of appliance usage data, sub-
tle information may exist but hidden. Therefore it is necessary to devise data mining 
algorithms to discover appliance usage patterns in order to make representative usage 
behavior of appliances explicit. Appliance usage patterns not only help users to better 
understand how they use the appliances at home but also detect abnormal usages of 
appliances. Moreover, it facilitates appliance manufacturers to design intelligent con-
trol of smart appliances. 

Most prior studies focus on knowledge extraction for a single appliance instead  
of the correlation among appliances in a house. In our daily life, we usually use dif-
ferent appliances simultaneously. For example, while the night, air conditioner and  
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television in the living room may be turned on in the evening (as shown in Fig. 1). 
The correlation among the usage of some appliances can provide valuable information 
to assist residents better understand how they use appliances. 

So far, little attention has been paid to the issue of mining correlation among ap-
pliances, which undoubtedly is more complex and arduous than mining the usage 
patterns of an appliance alone, and thus requires new mining techniques. In this paper, 
a new framework fundamentally different from previous work is proposed to discover 
the usage correlation patterns. 

The contributions of our work are as follows: (1) We define the notion of correlation 
pattern based on time interval-based sequence including probability concept. Since the 
usage of a device can be regarded as a usage interval (duration between turn-on and 
turn-off), interval-based sequences can depict users’ daily behaviors unambiguously. (2) 
The relation between any two usage intervals is intrinsically complex which may lead to 
more candidate sequences and heavier workload for computation. We propose a me-
thod, called usage representation, to simplify the processing of complex relations 
among intervals by considering the global information of intervals in the sequence. (3) 
We develop an efficient algorithm, called Correlation Pattern Miner (abbreviated as 
CoPMiner), to capture the usage patterns implying the correlations among appliances 
with several optimized techniques to reduce the search space effectively. (4) The reada-
bility of patterns is also an essential issue. A large number of patterns may become an 
obstacle for users to understand their actual behaviors. A spatial constraint is introduced 
to prune off non-promising correlation and reduce the number of generated correlation 
patterns. (5) To demonstrate the practicability of correlation pattern mining, we apply 
CoPMiner on a real dataset and analyze the results to show the discovered patterns are 
not just an anecdote. 

The rest of the paper is organized as follows. Sections 2 and 3 provide the related 
works and preliminaries, respectively. Section 4 introduces the proposed CoPMiner 
algorithm. Section 5 reports the experimental results in a performance study, and 
finally Section 6 concludes the paper. 

2 Related Work 

In this section, we discuss some previous works extracted useful knowledge and pat-
terns of a single device applying on energy disaggregation [3, 6, 11, 13, 18] or  
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Fig. 1. An example of daily usage sequence 
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appliance recognition [2, 5, 7, 10, 18]. Suzuki et al. [18] use a new NIALM technique 
based on integer programming to disaggregate residential power use. Lin et al. [13] 
use a dynamic Bayesian network and filter to disaggregate the data online. Kim et al. 
[11] investigate the effectiveness of several unsupervised disaggregation methods on 
low frequency power measurements collected in real homes. They also propose a 
usage pattern which consists of on-duration distribution of all appliances. Goncalves 
et al. [6] explore an unsupervised approach to determine the number of appliances in 
the household, including their power consumption and state, at any given moment. 
Chen et al. [3] disaggregate utility consumption from smart meters into specific usage 
associated with certain human activities. They propose a novel statistical framework 
for disaggregation on coarse granular smart meter readings by modeling fixture cha-
racteristic, household behavior, and activity correlations. Ito et al. [7] extract features 
from the current (e.g., amplitude, form, timing) to develop appliance signatures. For 
appliance recognition, Kato et al. [10] use Principal Component Analysis to extract 
features from electric signals and classify them using Support Vector Machine. Arito-
ni et al. [2] develop a software prototype to understand the behaviors of household 
appliances. Chen et al. [5] introduce two types of usage patterns to describe users’ 
representative behaviors. Based on these two types of patterns, an intelligent system, 
Jakkula et al. [8, 9] propose an Apriori-based algorithm for activity prediction and 
anomaly detection from sensor data in a smart home. All aforementioned studies fo-
cus on knowledge extraction for a single appliance instead of the correlation among 
appliances in a house. In this paper, we propose a mining algorithm to extract patterns 
including correlation among appliances and probability concept.  
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Fig. 2. An example of usage database 

3 Preliminaries  

Definition 1 (Usage-interval and usage-interval sequence). Let A = {a1, a2,…, ak} 
be a set of k appliances. Without loss of generality, we define a set of uniformly 
spaced location and time points based on natural numbering N. A function, Loc: A → 
N 3, specifies the location of each appliance in A. Let the triplet (ai, oi, fi) ∈ A × N × N 
denote a usage-interval of ai, where ai ∈ A, oi, fi ∈ N and oi < fi. The two time points 



 Mining Correlation Patterns among Appliances in Smart Home Environment 225 

oi, fi denote the using times, where oi and fi are the turn-on time and the turn-off time 
of appliance ai, respectively. A usage-interval sequence is a series of usage-intervals 
(a1, o1, f1), (a2, o2, f2), …, (an, on, fn), where oi ≤ oi+1, and oi < fi. Loc(ai) is the inte-
rior location of appliance ai in a smart home environment.  
 
Definition 2 (Usage-interval database). Considering a database DB = {r1, r2, …, 
rm}, each record ri, where 1 ≤ i ≤ m, consists of a date, a usage-interval and an interior 
location of appliance. DB is called a usage-interval database. If all records in DB 
with the same date are grouped together and ordered by nondecreasing turn-on time, 
turn-off time and appliance symbol, actually, DB can be transformed into a collection 
of daily usage-interval sequences. Note that the location information can be viewed as 
attachment to appliances. Fig. 2 shows a usage database which consists of 17 usage 
intervals and 4 daily usage-interval sequences. 
 
Definition 3 (Usage-point and usage sequence). Given a usage-interval sequence Q 
= (a1, o1, f1), (a2, o2, f2), …, (an, on, fn), the set TSQ ={o1, f1, o2, f2, …, oi, fi,…, on, fn} 
is called a time set corresponding to Q. By ordering all the elements of TSQ in non-
decreasing order, we can derive a sequence TQ = t1, t2, …, t2n where ti ∈ TSQ , ti ≤ 
ti+1. TQ is called a time sequence corresponding to Q. A function Φ that maps a usage 
interval (ai, oi, fi) into two usage-points ai

＋ and ai
－ is defined as follows,  
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where ai＋ and ai－ are called on-point and off-point of interval (ai, oi, fi), respective-
ly. The usage-points ak

*, …, aℓ
* (* can be ＋ or － ) are collected in brackets as a 

pointset if they occur at the same time in TQ, denoted as (ak
*, …, aℓ*). A usage se-

quence SQ of Q is denoted by s1, …, si,…, s2n where si is a usage-point. For example, 
in Fig. 2, the database collects 4 daily usage-interval sequences. The usage sequence 
of date 2 is B ＋B －D ＋(E ＋F ＋)(E －F －)D －, and (E ＋F ＋) and (E －F －) 
are two pointsets because they occur at the same time, respectively. 
 
Definition 4 (Usage representation). Given a usage-interval sequence Q = (a1, o1, 
f1), …, (an, on, fn) and corresponding time sequence TQ = t1, …, ti, …,t2n, by Defini-
tion 3, we can derive a usage sequence SQ = s1, …, si, …, s2n. The usage representa-
tion of Q is defined as a pair, 
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Note that the using time of usage point si in SQ is ti in TQ. Take the database in Fig. 2 
as an example. Without leading into ambiguity, we consider the turn-on and turn-off 
times by hour. The usage representation of DB is shown in the last column in Fig. 2. 
For the rest of this paper, we assume the usage database has already been transformed 
into usage representation.  
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Let S1 = x1, …, xi, …, xn and S2 = x1
’, …, xj

’, …, xm
’  be two usage sequences, 

where xi, xj
’ are pointsets and n ≤ m. S1 is called a subsequence of S2, denoted as S1 ⊑ 

S2, if there exist integers 1 ≤ k1 ≤ k2 ≤ …≤ kn ≤ m such that x1 ⊆ xk1
’, x2 ⊆ xk2

’, …, xn ⊆ 
xkn

’. Given a usage-interval database DB in usage representation, the tuple (date, S, T ) 

∈DB is said to contain a usage sequence S’ if S’ ⊑ S. The support of a usage sequence 

S’ in DB, denoted as support(S’ ), is the number of tuples in the database containing 

S’. More formally, support(S’  ) = | { (date, S, T ) ∈DB | S’ ⊑ S } |.                 (3) 

As mentioned above, each appliance in a house has its own location. For an ap-
pliance a in A, the function, Loc: A → N × N × N, gives the locations (ax, ay, az) of a. 
The similarity between two appliances a1 and a2 is defined as follows:  
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For example, in Fig. 2, the similarity of appliances B and C is .2.0
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We use a support threshold, min_sup and min_sim, to filter out insignificant usage 
sequences. A usage sequence S = s1, …, sn in DB is called a frequent sequence, if 
support(S) ≥ min_sup and ∀ si, sj in S where i, j ≤ n,  similarity(si, sj) ≥ min_sim. 
 
Definition 5 (Correlation pattern). Given DB in usage representation and two thre-
sholds, min_sup and min_sim, the set of frequent sequences, FS, includes all frequent 
usage sequences in DB. A correlation pattern P is defined as, 
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We modify the idea of multivariate kernel density estimation [14, 17] to estimate the 
probability function of each si in S. Suppose the time information of si in DB is {ti1, 
ti2, …tim}, the probability function is defined as, 
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For example, in Fig. 2, with min_sup = 2 and min_sim = 0.3, A＋A－D－D－ is a 
frequent sequence since its support is 3 ≥ 2 and similarity (A, D) = 0.5 ≥ 0.3. The 

correlation pattern with respective to A＋A－D－D－ is 
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We only discuss fA+ as an example. The time information of A＋ is {2, 6, 13}; hence 
fA+(x) 
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4 Mining Appliance Usage Patterns 

We focus our study on correlation pattern mining in smart home due to its wide appli-
cability and the lack of research on this topic. In this paper, we develop a new algo-
rithm, called Correlation Pattern Miner (abbreviated as CoPMiner), to discover  
correlation patterns effectively and efficiently. CoPMiner utilizes the arrangement of 
endpoints to accomplish the mining of correlation among appliances’ usage. We also 
propose four pruning strategies to effectively reduce the search space and speedup the 
mining process.  

4.1 Merits of Correlation Pattern and Usage Representation  

Extracting correlation patterns from data collected in smart homes can provide resi-
dent useful information to better understand the relation among usage of appliances. 
Given a correlation pattern, as defined in Definition 5, a user can know the distribu-
tion of usage time of appliances. With a turn-on/off time of an appliance, we can de-
rive the usage probability of other appliances. Consider the correlation pattern in 
aforementioned example. Suppose appliances A and D are the light and the coffee 
machine, respectively. Given the turn-on/off times of light and coffee machine, we 
can derive the usage probability for them, i.e., the probability for the light and coffee 
machine to be on/off at that time. This probability information is very useful for sev-
eral applications, such as abnormal detection and activity prediction.  

Obviously, the correlation pattern mining is an arduous task. Since the time period 
of the two usage-intervals may overlap, the relation between them is intrinsically 
complex. Allen’s 13 temporal logics [1], in general, can be adopted to describe the 
relations among intervals. However, Allen’s logics are binary relations. When de-
scribing relationships among more than three intervals, Allen’s temporal logics may 
suffer several problems. 

A suitable representation is very important for describing a correlation pattern. In 
this paper, a new expression, called usage representation, is proposed to effectively 
address the ambiguous and scalable issue [19] for describing relationships among 
intervals. Given two different usage-intervals A and B, the usage representation of 
Allen’s 13 relations between A and B is categorized as in Fig. 3. Several merits of 
usage representation are discussed as follows: (1) Lossless: Usage representation not 
only implies the temporal relation among intervals, but also includes the accurate 
usage time of each interval. This concept can achieve a lossless representation to ex-
press the nature of the interval sequence. (2) Nonambiguity: According to [19], we 
can find that the usage representation has no ambiguous problem. First, by Definition 
3, we can transform every usage-interval sequence to a unique usage sequence.  
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In other words, the temporal relations among intervals can be mapped to a usage se-
quence. Second, in a usage sequence, the order relation of the starting and finishing 
endpoints of A and B can be depicted easily. Hence, we can infer the original temporal 
relationships between intervals A and B nonambiguously. (3) Simplicity: Obviously, 
the complex relations between intervals are the major bottleneck of correlation pattern 
mining. However, the relation between two usage points is simple, just “before,” “af-
ter” and “equal.” The simpler the relations, the less number of intermediate candidate 
sequences are generated and processed. 

4.2 CoPMiner Algorithm  

Before introducing the algorithm, we modify the idea in [16] and define the projected 
database first. Let α be a usage sequence in a database DB with usage representation. 
The α - projected database, denoted as DB|α , is the collection of postfixes of se-
quences (including usage sequences and corresponding time sequence) in DB with 
regards to prefix α. 

Algorithm 1 illustrates the main framework of CoPMiner. It first transforms the 
usage database to usage representation and calculates the count of each usage-point 
concurrently (line 2, algorithm 1). CoPMiner removes infrequent usage-points under 
given support threshold, min_sup (line 3, algorithm 1). For each frequent starting 
usage-point s, we find all its time information {ts1, ts2, …tsm} in DB and estimate the 
probability function fs by Definition 5 (lines 6-7, algorithm 1). 
 

Algorithm 1: CoPMiner (DB, min_sup, min_sim) 

Input: a usage-interval database DB, the support threshold min_sup, the 
similarity threshold min_sim 

Output: all correlation patterns P 
 
01: P ← ∅; 
02: transform DB into usage presentation by Definition 4; 
03: find all frequent usage-points and remove infrequent usage-points in DB; 
04: FS ← all frequent “on-points”; 
05: for  each s ∈ FS  do 
06:      find all corresponding usage time information of s in DB; 
07:      fs ← calculate the probability function of s by Definition 5; 
08:      construct DB|s only with each usage-point v, where  

similarity(s,  v) ≥ min_sim;   // spatial-pruning strategy 
09:     UPrefixSpan(DB|s , s, fs, min_sup, P ); 
10: output all correlation patterns P; 

 
As mentioned above, the spatial distance may conflict with the correlation depen-

dency between two appliances. When building the projected database DB|s, CoPMiner 
collects the postfixes by using spatial pruning strategy. We eliminate the usage-
points which have the similarity with regard to s smaller than min_sim in collected 
postfix sequences (line 8, algorithm 1). Finally, CoPMiner calls UPrefixSpan recur-
sively and output all correlation patterns (lines 9-10, algorithm 1). 

By borrowing the idea of the PrefixSpan [16], UPrefixSpan is developed with two 
search space pruning methods. The pseudo code is shown in Algorithm 2. For a prefix 
α, UPrefixSpan scans its projected database DB|α once to discover all local frequent 
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usage-points and remove infrequent ones (line 1, algorithm 2). For frequent usage-
point s, we can append it to original prefix to generate a new frequent sequence α’ 
with the length increased by 1. We also use the time information of s in DB|α to esti-
mate the probability function fs by Definition 5, and then include fs into f(α’). As such, 
the prefixes are extended (lines 3-7, algorithm 2). If all usage-points in a frequent 
sequence appear in pairs, i.e., every on(off)-point has corresponding off(on)-point, we 
can output this frequent  sequence and its probability function as a correlation pattern 
(lines 8-9, algorithm 2). Finally, we can discover all correlation patterns by construct-
ing the projected database with the frequently extended prefixes and recursively run-
ning until the prefixes cannot be extended (lines 10-11, algorithm 2). 

Taking into account the property of usage-point, we propose two pruning strate-
gies, point-pruning and postfix-pruning to reduce the searching space efficiently and 
effectively. Firstly, the on-points and the off-points definitely occur in pairs in a usage 
sequence. We only require projecting the frequent on-points or the frequent off-points 
which have the corresponding on-points in their prefixes. For example, if we scan the 
projected database DB|A＋ with respective to prefix A＋ and find three frequent 
local usage-points, A－, B＋ and B－. We only require extending prefix A＋ with  
A－ and B＋ (i.e., A＋A－ and A＋B＋), since B－ has no corresponding on-
points in its prefix. It is because that sequence A＋B－ has no chance to grow to a 
frequent sequence. This strategy is called point-pruning strategy (line 2 and lines 
12-19, algorithm 2) which can prune off non-qualified patterns before constructing 
projected database. 

Second, when we construct a projected database, some usage-points in postfix se-
quences need not be considered. With respect to a prefix sequence α, an off-point in 
a projected postfix sequence is insignificant, if it has no corresponding on- points in 
α. Hence, when collecting postfix sequences to construct DB|α , we can eliminate all 
insignificant off-points since they can be ignored in the discovery of correlation pat-
terns. This pruning method is called postfix-pruning strategy which can shrink the 
length of postfix sequence and further reduce the size of projected database effective-
ly (line 14 and lines 20-25, algorithm 2). 
 

Algorithm 2: UPrefixSpan (DB|α, α , f(α), min_sup, P )  
Input: a projected database DB|α , an usage sequence α , the support 

threshold min_sup, a similarity threshold min_sim, and a set of 
correlation patterns P 

Output: a set of correlation patterns P 
 
01: scan DB|α once, remove infrequent usage-points and find every 

frequent usage-point v such that:  
(i) v can be assembled to the last pointset of α  to form a frequent 

sequence; or  
(ii) v can be appended to α  to form a frequent sequence; 

02: FS ← all frequent usage-points;  
03: FS ← point_pruning(FS, α);   // point-pruning strategy 
04: for  each s ∈ FS  do 
05:      find all corresponding usage time information of s in DB|α ; 
06:      fs ← calculate the probability function of s by Definition 5; 
07:      append s to α  to form α’; 
08:      f(α’) ← f(α) + fs ; 
09:      if  α’ is a correlation pattern  then 
10:           P ← P ∪ (α’, f(α’));  
11:      DB|α’ ← DB_construct(DB|α, α’);   // prefix-pruning 

strategy 
12:      UPrefixSpan(DB|α’ , α’, f(α’), min_sup, P);

Procedure point_pruning (FS, α) 
13: temp_point ← ∅; 
14: for  each s ∈ FS  do 
15:      if s is a “off-point”  then   // point-pruning 

strategy 
16:           if  exist corresponding “on-point” in α  then  
17:                temp_point ← temp_point∪ s; 
18:      if s is a “on-point”  then 
19:           temp_point ← temp_point∪ s; 
20: return temp_point; 

 

Procedure DB_construct (DB|α, α’) 
21: temp_seq ← ∅; 
22: find all postfix sequences of α’ in DB|α to form DB|α’ ; 
23: for  each postfix sequence q ∈ DB|α’  do   
24: eliminate the “off-points” in q which has no correspond-

ing “on-point” in α’ ;   // postfix-pruning strategy 
25:      temp_seq ← temp_seq ∪ q; 
26: return temp_seq; 
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5 Experimental Results 

To best of our knowledge, CoPMiner is the first algorithm discussing the correlation 
among appliances included probability concept. Three interval-pattern mining algo-
rithms, CTMiner [4], IEMiner [15] and TPrefixSpan [19] have been implemented for 
performance discussion. For fair comparison, when comparing the execution time of 
CoPMiner with other interval-pattern mining algorithms, we only discuss the part of 
usage sequence mining (i.e., exclusive of computation of probability function). All algo-
rithms were implemented in Java language and tested on a workstation with Intel i7-
3370 3.4 GHz with 8 GB main memory. First, we compare the execution time using 
synthetic datasets at different minimum support. Second, we conduct an experiment to 
observe the memory usage and the scalability on execution time of CoPMiner. Finally, 
CoPMiner is applied in real-world dataset [12] to show the performance and the practi-
cability of mining correlation patterns. The synthetic datasets in the experiments are 
generated using synthetic generator in [4] and the parameter setting is shown in Fig. 3. 
 

Parameters Description 

| D | Number of event sequences 

| C | Average size of event sequences 

| S | Average size of potentially frequent sequences 

Ns Number of potentially frequent sequences 

N Number of event symbols 

Fig. 3. Parameters of synthetic data generator  

5.1 Performance and Scalability on Synthetic Dataset  

In all the following experiments, two parameters are fixed, i.e., | S | = 4 and NS = 
5,000. The other parameters are configured for comparison. Note that, for fair com-
parison, when comparing the performance of CoPMiner with other interval-pattern 
mining algorithms, we only discuss the part of usage sequence mining (i.e., exclusive 
of computation of probability function). Fig. 4(a) shows the running time of the four 
algorithms with minimum supports   varied   from   1 % to 5 % on the dataset 
D100k–C20–N10k. Obviously, when the minimum support value decreases, the 
processing time required for all algorithms increases. We can see that when we  
continue to lower the threshold, the runtime for IEMiner and TPrefixSpan increase 
drastically compared to CTMiner and CoPMiner. This is partly because these two 
algorithms still process interval-based data with complex relationship which may lead 
to generate more number of intermediate candidate sequences. 

Then, we study the scalability of CoPMiner. Here, we use the data set C = 20, N = 
10k with varying different database size. Fig. 4(b) shows the results of scalability tests 
of four algorithms with the database size growing from 100K to 500K sequences. We 
fix the min_sup as 1%. Fig. 4(c) depicts the results of scalability tests of CoPMiner 
under different database size growing with different minimum support threshold  
varying from 1% to 5%. As the size of database increases and minimum support  
 



 Mining Correlation Patterns among Appliances in Smart Home Environment 231 

decreases, the processing time of all algorithms increase, since the number of patterns 
also increases. As can be seen, CoPMiner is linearly scalable with different minimum 
support threshold. When the number of generated patterns is large, the runtime of 
CoPMiner still increases linearly with different database size. 
 

   
(a)                                                            (b) 

  
(c)                                                           (d) 

Fig. 4. Experimental results on synthetic datasets 

5.2 Influence of Proposed Pruning Strategies 

To reflect the speedup of proposed pruning methods, we measure CoPMiner with 
pruning strategies and without pruning strategy on time performance. We compare 
five algorithms, CoPMiner (includes all pruning strategies), CoP_Point (only point-
pruning strategy), CoP_Postfix (only postfix-pruning strategy), CoP_Spatial (only 
spatial-pruning strategy) and CoP_None (without any pruning strategy). The experi-
ment is performed on the data set D100k–C20–N10k. Fig. 4(d) is the results of vary-
ing minimum support thresholds from 0.5% to 1%. As shown in figure, point-pruning 
can improve about 25% performance. Because of removing non-qualified usage-
points before database projection, point-pruning can efficiently speedup the execution 
time. As can be seen from the graph, postfix-pruning can improve about 11% perfor-
mance. Postfix-pruning can improve the performance by effectively eliminating all 
useless usage-points for correlation pattern construction. We also can observe that 
spatial-pruning constantly ameliorate the performance about 2.5. 
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5.3 Real-World Dataset Analysis 

In addition to using synthetic datasets, we also have performed an experiment on real-
world dataset to indicate the applicability of correlation pattern mining. The dataset 
REDD [12] used in the experiment is the power reading of appliances collected from 
six different houses. Each house has about 15 appliances. We convert the raw data 
into the usage interval with turn-on time and turn-off time. Fig. 5 shows the part of 
mining result with min_sup = 0.3 and min_sim = 0.1. The probability function of each 
usage-point in pattern is listed below. 
 

  

Fig. 5. Part of discovered correlation patterns from REDD dataset 

6 Conclusion 

Recently, considerable concern has arisen over the electricity conservation due to the 
issue of greenhouse gas emissions. If representative behaviors of appliance usages are 
available, residents may adapt their usage patterns to conserve energy effectively. 
However, previous studies on usage pattern discovery are mainly focused on analyz-
ing single appliance and ignore the usage correlation. In this paper, we introduce a 
new concept, correlation pattern, to capture the usage patterns and correlations among 
appliances probabilistically. An efficient algorithm, CoPMiner is developed to dis-
cover patterns based on proposed usage representation. The experimental studies indi-
cate that CoPMiner is efficient and scalable. Furthermore, CoPMiner is applied on a 
real-world dataset to show the practicability of correlation pattern mining. 
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Abstract. In this paper, we develop a novel paradigm, namely hyper-
graph shift, to find robust graph modes by probabilistic voting strategy,
which are semantically sound besides the self-cohesiveness requirement in
forming graph modes. Unlike the existing techniques to seek graph modes
by shifting vertices based on pair-wise edges (i.e, an edge with 2 ends),
our paradigm is based on shifting high-order edges (hyperedges) to de-
liver graph modes. Specifically, we convert the problem of seeking graph
modes as the problem of seeking maximizers of a novel objective func-
tion with the aim to generate good graph modes based on sifting edges
in hypergraphs. As a result, the generated graph modes based on dense
subhypergraphs may more accurately capture the object semantics be-
sides the self-cohesiveness requirement. We also formally prove that our
technique is always convergent. Extensive empirical studies on synthetic
and real world data sets are conducted on clustering and graph match-
ing. They demonstrate that our techniques significantly outperform the
existing techniques.

Keywords: Hypergraphs, Mode Seeking, Probabilistic Voting.

1 Introduction

Seeking graph based modes is of great importance to many applications in ma-
chine learning literature, e.g., image segmentation [9], feature matching [3]. In
order to find the good modes of graphs, Pavan et al. [16] converted the problem
of mode seeking into the problem of discovering dense subgraphs, and proposed
a constrained optimization function for this purpose. Liu et al. [14] proposed
another method, namely graph shift. It generalized the idea of non-parametric
data points shift paradigms (i.e., Mean Shift [4] and Medoid Shift [17,18,19] to
graph shift for graph mode seeking). An iterative method is developed to get
the local maximizers, of a constrained objective function, as the good modes of
graphs. While the graph (vertices) shift paradigm may deliver good results in
many cases for graph mode seeking, we observe the following limits. Firstly, the
graph modes generated based on shifting vertices only involve the information
of pair-wise edges between vertices. As a result, the generated graphs modes
may not always be able to precisely capture the overall semantics of objects.
Secondly, the graph shift algorithm is still not strongly robust to the existence
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Fig. 1. Comparison between graph shift and hypergraph shift on saliency detection,
from left to right: input image, ground truth, graph shift, hypergraph shift

of a large number of outliers. Besides, no theoretical studies are conducted to
show the convergence of iteration of shifting.

Our Approach: Observing the above limits, we propose a novel paradigm,
namely hypergraph shift, aimed at generating graph modes with high order in-
formation. Different from graph shift paradigms that only shift vertices of graphs
based on pair-wise edges, our technique shifts high order edges (hyperedges in
hypergraphs). Our technique consists of three key phases, 1) mode seeking (sec-
tion 4.1) on subhypergraphs, 2) probabilistic voting (section 4.2) to determine
a set of hyperedges to be expanded in mode seeking, and 3) iteratively perform
the above two stages until convergence.

By these three phases, our approach may accurately capture the overall se-
mantics of objects. Fig. 1 illustrates an example where the result of our approach
for hypergraph shift can precisely capture the the scene of a person riding on
a bicycle. Nevertheless, the result performed by graph shift method in [14] fails
to capture the whole scene; instead, by only focusing on the requirement of
self-cohesiveness, three graph modes are generated.

Contributions: To the best of our knowledge, this is the first work based on
shifting hyperedges to conduct graph mode seeking. Our contributions may be
summarized as follows. (1) We specify the similarities on hyperedges, followed
by an objective function for mode seeking on hypergraphs. (2) An effective hy-
pergraph shift paradigm is proposed. Theoretical analysis for hypergraph shift is
also provided to guarantee its convergence. The proposed algorithm is naturally
robust to outliers by expanding modes via the probabilistic voting strategy. (3)
Extensive experiments are conducted to verify the effectiveness of our techniques
over both synthetic and real-world datasets.

Roadmap: We structure our paper as follows: The preliminaries regarding hy-
pergraph are introduced in section 2, followed by our technique for hypergraph
shift in sections 3 and 4. Experimental studies are performed in section 5, and
we conclude this paper in section 6.

2 Probabilistic Hypergraph Notations

Different from simple graph, each edge of hypergraph (known as hyperedge) can
connect more than two vertices. Formally, we denote a weighted hypergraph
as G = (V , E ,W), with vertex set as V = {v1, v2, . . . , v|V|}, hyperedge set as
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E = {e1, e2, . . . , e|E|}, and W = {w(e1), w(e2), · · ·, w(e|E|)}, where w(ei) is the
weight of ei. The relationship between the hyperedges and vertices is defined by
incidence matrix H ∈ R|V|×|E|. Instead of assigning a vertex vi to a hyperedge ej
with a binary decision, we establish the values probabilistically [5,8]. Specifically,
we define the entry hvi,ej of H as Eq. (1).

hvi,ej =

{
p(vi|ej), if vi ∈ ej;
0, otherwise.

(1)

where p(vi|ej) describes the likelihood that a vertex vi is connected to hyperedge
ej . Then we define a diagonal matrix De regarding the degree of all hyperedges,
with De(i, i) = λ(ei) =

∑
v∈V hv,ei , and a diagonal matrix Dv regarding the

degree of all vertices, with Dv(i, i) =
∑

e∈E hvi,ew(e). Based on that, to describe
the similarity between hyperedges, we define a novel hyperedge-adjacency
matrix M ∈ R|E|×|E| in the context of hypergraph. Specifically, we have

M(i, j) =

{
w(ei)

|ei∩ej |
δ(ei)

+ w(ej)
|ei∩ej |
δ(ej)

i �= j

0, otherwise
(2)

Example 1. Consider the case in Fig.2, for e2 and e3, the only common vertex
is v2, then, we have |e2 ∩ e3|=1, and the affinity value between e2 and e3 is

M(2, 3) = w(e2) · 1
2 + w(e3) · 1

2 = w(e2)+w(e3)
2 .

Now, we describe the modes of hypergraph.

3 Modes of Hypergraph

We consider the mode of a hypergraph as a dense subhypergraph consisting of
hyperedges with high self-compactness. We first define the hypergraph den-
sity, then formulate the modes of a hypergraph, which leads to our hypergraph
shift algorithm in section 4.

e00v 1v

3v 2v

4v

5v

e2

e1 e3

e4

e0 e1 e2 e3 e4

v0 h(v0,e0) h(v0 ,e1)

v1 h(v1 ,e3) h(v1 ,e4)

v2 h(v2 ,e1) h(v2 ,e2) h(v2 ,e3)

v3 h(v3 ,e1) h(v3 ,e2)

v4 h(v4 ,e4)

v5 h(v5 ,e4)

Fig. 2. A toy example on hypergraph. Left: a hypergraph. Right: The incidence matrix
of hypergraph.
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Hypergraph Density. We describe hypergraph G with n hyperedges by prob-
abilistic coordinates fashion as p ∈ Δn, where Δn = {p|p ≥ 0, |p|1 = 1}, |p|1
is the L1 norm of vector p, and p = {p1,p2, . . . ,pn}. Specifically, pi indicates
the probability of ei contained by the probabilistic cluster of G. Then the affin-
ity value between any pair-wise x ∈ Δn and y ∈ Δn is defined as m(x,y) =∑

i,j M(i, j)xiyj = xTMy. The hypergraph density or self-cohesiveness of
G, is defined as Eq. (3).

F(p) = pTMp. (3)

Intuitively, hypergraph density can be interpreted by the following principle.
Suppose hyperedge set E is mapped to I = {im|m = 1, . . . , |E|}, which is the
representation in a specific feature space regarding all hyperedges in E , where we
define a kernel function K : I× I → R. Specifically, K(im, in) = M(m,n). Thus,
the probabilistic coordinate p can be interpreted to be a probability distribution,
that is, the probability of im occurring in a specific subhypergraph is pm. Assume
that the distribution is sampled N times, then the number of data im is Npm.

For im, the density is d(im) =
∑

n NpmK(m,n)

N , then we have the average density
of the data set:

d =

∑
m Npmd(im)

N =
∑
m�=n

pmK(im, in)pn = pTMp (4)

Definition 1. (Hypergraph Mode) The mode of a hypergraph G is repre-
sented as a dense subhypergraph that locally maximizes the Eq. (3).

Given a vector p ∈ Δn, the support of p is defined as the set of indices
corresponding to its nonzero components: ε(p) = {i ∈ |E| : pi �= 0}. Thus, its
corresponding subhypergraph is Gϕ(p), composed of all vertices whose indices
are in ε(p). If p∗ is a local maximizer i.e., the mode of F(p), then Gϕ(p∗) is a
dense subhypergraph. Hence, the problem of mode seeking on a hypergraph is
equivalent to maximizing the density measure function F(p), which is taken as
the criterion to evaluate the goodness of any subhypergraph.

To find the modes, i.e., the local maximizers of Eq. (3), we classify it into the
standard quadratic program (StQP) [16,1]:

maxF(p), s.t.p ∈ Δn, (5)

According to [16,1], a local maximizer p∗ meets the Karush-Kuhn-Tucker(KKT)
condition. In particular, there exist n + 1 real Lagrange multipliers μi � 0(1 ≤
i ≤ n) and ∂, such that:

(Mp)i − ∂+ μi = 0 (6)

for all i = 1, . . . , n, and
∑n
i=1 p

∗
iμi = 0. Since p∗ and μi are nonnegative,

it indicates that i ∈ ε(p∗) implies μi = 0. Thus, the KKT condition can be
rewritten as:

(Mp∗)i

{
= ∂, i ∈ ε(p∗);
� ∂, otherwise.

(7)

where (Mp∗)i is the affinity value between p∗ and ei.
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4 Hypergraph Shift Algorithm

Commonly the hypergraph can be very large, a natural question is how to per-
form modes seeking on a large hypergraph? To answer this question, we perform
mode seeking on subhypergraph, and determine whether it is the mode of the
hypergraph. If not, we shift to a new subhypergraph by expanding the neighbor
hyperedges of the current mode to perform mode seeking. Prior to that, we study
the circumstances that determine whether the mode of a subhypergraph is the
mode of that hypergraph.

Assume p∗
S is the mode of subhypergraph S containing m = |ε(p∗

S)| hyper-
edges, then we expand the m dimensional p∗

S to |E| dimensional p∗ by filling
zeros into the components, whose indices are in the set of G−S. Based on that,
Theorem 1 is presented to determine whether p∗

S is the mode of hypergraph G.

Theorem 1. A mode p∗
S of the subgraph S is also the mode of hypergraph G

if and only if for all hyperedge ej, m(p∗, Ij) � F(p∗) = FS(p
∗
S), j ∈ G − S,

where p∗ is computed from p∗
S by filling zeros to the elements whose indices are

in G−S and Ij is the vector containing only hyperedge ei where its i-th element
is 1 with others 0.
Proof. Straightforwardly, ε(p∗) = ε(p∗

S), F(p∗) = FS(p
∗
S). Due to m(p∗, Ij) �

F(p∗) = FS(p
∗
S) = ∂, ∀j ∈ G− S, p∗ is the mode of hypergraph G. Otherwise

if m(p∗, Ij) > F(p∗) = ∂, which indicates that p∗ violates the KKT condition,
thus it is not the mode of G. �

Next, we introduce our hypergraph shift algorithm, which consists of two
steps: The first step performs mode seeking on an initial subhypergraph. If the
mode obtained in the first step is not the mode of that hypergraph, it shifts
to a larger subhypergraph by expanding the support of the current mode to
its neighbor hyperedges using the technique, namely probabilistic voting. The
above steps alternatively proceed until the mode of hypergraph is obtained.

4.1 Higher-Order Mode Seeking

Given an initialization of p(0), we find solutions of Eq. (5) by using the replicator
dynamics, which is a class of continuous and discrete-time dynamical systems
arising in evolutionary game theory [20]. In our setting, we use the following
form:

pi(t+ 1) = pi(t)
(M · p(t))i
p(t)TMp(t)

, i = 1, . . . , |E| (8)

It can be seen that the simplex Δn is invariant under these dynamics, which
means that every trajectory starting in Δn will remain in Δn for all future
times. Furthermore, according to [20], the objective function of Eq. (3) strictly
increases along any nonconstant trajectory of Eq. (8), and its asymptotically
stable points are in one-to-one with local solutions of Eq. (5).
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Fig. 3. Probabilistic voting strategy. The hyperedge e3 is selected to be the dominant
seed because of its higher closeness, as measured by Eq. (12). We start the expansion
from e3 and then include its nearest neighbor e4 into the mode.

4.2 Probabilistic Voting

We propose to find the dominant seeds of the subhypergraph, from which
we perform hypergraph shift algorithm. Before presenting the formal defini-
tion of dominant seeds, we start with the intuitive idea that the assignment of
hyperedge-weights induces an assignment of weights on the hyperedges. There-
fore, the average weighted degree of a hyperedge ek from subhypergraph S is
defined as:

gS(ek) =
1

|S|
∑
ej∈S

M(k, j) (9)

Note that gek(ek) = 0 for any ek ∈ S. Moreover, if ej � S, we have:

φS(ei, ej) = M(i, j)− gS(ei) (10)

Intuitively, φS(ei, ej) measures the relative closeness between ej and ei with
respect to the average closeness between ei and its neighbors in S.

Let S ⊆ E be a nonempty subset of hyperedges, and ei ∈ S. The weight of ei
is given as

wS(ei) =

{
1, if |S| =1;∑

ej∈S−{ei}
φS−{ei}(ej , ei)wS−{ei}(ej), otherwise. (11)

wS(ei) measures the overall closeness between hyperedge ei and other hyperedges
of S −{ei}. Moreover, the total weight of S is defined as W (S) =

∑
ei∈S wS(ei).

Finally, we formally define the dominant seed of subhypergraph S as follows.

Definition 2. (Dominant Seed) The dominant seed of a subhypergraph S is
the subset of hyperedges with higher closeness than others.

Besides, the closeness of the dominant seed is evaluated as follows:

p(ei|S) =
{

wS(ei)
W (S) , if ei ∈ S
0, otherwise.

(12)

We utilize dominat seeds to expand the current subhypergraph, which is named
probabilistic voting that works by the following priciple. To expand S to a
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new subhypergraph, we decrease the possibility of the hyperedges in the current
mode, while increase the possibility of hyperegdes with large rewards not be-
longing to the current mode. As a result, the possibility of hyperedges that are
neighborhoods of the hyperedges in S with the large value of p(ei|S) is increased.
We present an example in Fig.3 to illustrate that.

Particularly, we calculate the shifting vector Δp, such that F(p∗ + Δp) >
F(p∗). According to Theorem 1, there exist some hyperedges ei, such that
m(p∗, Ii) > F(p∗), i ∈ G − S. We define a direction vector h as hi = p∗

i − 1
if i ∈ ε(p∗), otherwise, hi = max{

∑
ej∩ei �=∅ p(ej|S)(m(p∗, Ii)−F(p∗)), 0}. The

above definition of hi for i ∈ ε(p∗), decreases the possibility of ei in the current
mode. However, we try to preserve the dominant seeds with a larger value of
p∗
i − 1, and increase the possibility of the hyperedges ej ∈ G − S that are the

neighborhoods of dominant seeds of the current mode.
Assume F(h) = ϕ, then we have:

Q(c) = F(p∗ + ch)−F(p∗) (13)

= ϕc2 + 2c(p∗)TMh

We want to maximize Eq. (13), which is the quadratic function of c. Since Δ =

4(p∗Mh)2 > 0, if ϕ < 0, then we have c = p∗Mh
ψ . Otherwise, for i ∈ ε(p∗), we

have p∗
i+c(p

∗
i−1) ≥ 0, then c ≤ mini{ p∗i

1−p∗i
}. Thus, cλ = min{ p

∗Mh
ψ ,mini{ p∗i

1−p∗i
},

and Δp = cλh, which is the expansion vector.
We summarize the procedure of hypergraph shift in Algorithm 1.

Algorithm 1. Hypergraph Shift Algorithm.

Input: The hyperedge-adjacency matrix M of hypergraph G, the start vector p
(a cluster of hyperedges).

Output: The mode of hypergraph G.
while p is not the mode of G do

Evolve p towards the mode of subhypergraph Gθ(p) by Eq. (8);
if p is not the mode of hypergrah G then

Expand p by using expansion vector Δp;
Update p by mode seeking;

else
return;

One may wonder whether Algorithm 1 converges, we answer this question in
theorem 2.

Theorem 2. Algorithm 1 is convergent.
Proof. The mode sequence set {(p∗)(t)}∞t=1 ⊂ U generated by Algorithm 1
is compact. We construct −F(p), which is a continuous and strict decreasing
function over the trajactory of sequence set. Assume the solution set is η , then
the mode sequence generated by Algorithm 1 is closed on U−η . The above three
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conclusions are identical to the convergence conditions of Zangwill convergence
theorem [21]. �

5 Experimental Evaluations

In this section, we conduct extensive experiments to evaluate the performance
of hypergraph shift. Specific experimental setting are elaborated in each experi-
ment.

Competitors.We compare our algorithm against a few closely related methods,
which are introduced as follows.

For clustering evaluations, we consider the following competitors:

– The method proposed by Liu et al. in [13], denote by Liu et al. in follows.
– The approach presented by Bulo et al. in [2], denote by Bulo et al. in follows.
– Efficient hypergraph clustering [12] (EHC) aims to handle the higher-order

relationships among data points and seek clusters by iteratively updating the
cluster membership for all nodes in parallel, and converges relatively fast.

For graph matching, we compare our method to the state-of-the-arts below:

– Graph shift (GS).
– Two hypergraph matching methods (TM) [6] and (PM) [22].
– SC+IPFP. The algorithm of spectral clustering [10] (SC), enhanced by the

technique of integer projected fixed point [11], namely SC+IPFP is an effec-
tive method in graph matching. Thus, it is suitable to compare our method
against SC+IPFP in terms of graph matching.

5.1 Clustering Analysis

Consider that hypergraph shift is a natural clustering tool, and all the hyperedges
shifting towards the same mode should belong to a cluster. To evaluate the
clustering performance, we compare HS against Liu et al. , Bulo et al. and EHC
over the data set of five crescents, as shown in Fig.4.

We performed extensive tests including clustering accuracy and noise robust-
ness on five crescents gradually decreasing sampling density from 1200 pts to
100 pts. We used the standard clustering metric, normalized mutual information
(NMI). The NMI accuracy are computed for each method in Fig.5 (a), with
respect to decreasing sample points and increasing outliers. It shows that hyper-
graph shift has the best performance even in sparse data, whereas EHC quickly
degenerates from 600 pts. The accuracies of methods in Liu et al. and Bulo et
al. are inferior to EHC, which is consistent to the results in [12]. To test the
robustness against noises, we add Gaussian noise ψ, such that ψ ∼ N (0, 4), in
accordance with [14], to the five crescents samples, and re-compute the NMI val-
ues. As illustrated in Fig.5 (b), the three baselines of Liu et al. , Bulo et al. and
EHC drop faster than hypergraph shift. This is because the eigenvectors required
by Liu et al. are affected by all weights, no matter they are deteriorated or not;
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Fig. 4. “Five crescents” examples with decreasing sample points from 600 pts in (a)
to 300 pts in (b) and 200 pts in (c)
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Fig. 5. Clustering comparisons on different sample sizes. We illustrate the averaged
NMI with respect to the number of sample points and the ratio of outlier addition in
(a) and (b), respectively.

EHC is better than Liu et al. and Bulo et al. , however, it performs clustering by
only considering the strength of affinity relationship within a hyperedge, which
is not as robust against noises as the mode with high-order constraints; Hyper-
graph shift, in contrast, can find a dense high-order subhypergraph, which is
more robust to noises.

We are interested in another important aspect: speed of convergence, under
varying number of data points. In Fig.6, we present the evaluation of the com-
putational cost of the four methods with varying number of data points. Fig.6
(a) shows the average computational time per iteration of each method against
the number of samples. We can see that the computation time per step for each
method varies almost linearly with the number of data points. As expected, the
least expensive method per step is Liu et al. , which performs update in se-
quence. And our method proceeds with expansion and dropping strategy, in the
expense of more time. However, the drawback of Liu et al. is its large iterations
to convergence. In contrast, both ours and EHC are relatively stable w.r.t. the
number of samples. Our method converges very fast, requiring on average 10
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Fig. 6. The computational cost as a function of the sample size. (a) The running time
against increasing number of sample points. (b) The number of steps to convergence
against increasing number of sample points.

iterations. This figure experimentally show that our method, by taking larger
steps towards a maximum, has significantly better speed of convergence with
slightly better accuracy.

5.2 Graph Matching

In this part, we present some experiments on graph matching problems. We
will show that this graph matching problem is identical to mode seeking on
a graph with certain amount of noises and outliers. Following the experiment
setup of [14], the equivalence of graph matching problem to mode seeking can be
described as follows. Suppose there are two sets of feature points, P and Q, from
two images. For each point p ∈ P , we can find some similar points q ∈ Q, based
on local features. Each pair of (p, q) is a possible correspondence and all such
pairs form the correspondence set C = {(p, q)|p ∈ P, q ∈ Q}. Then a graph G
is constructed based on C with each vertex of G representing a pair in C. Edge
e(vi, vj) connecting vi and vj reflects the relation between correspondence ci and
cj . Due to space limitations, we refer the interested readers to [14] for details.
Afterwards, the hyperedge construction and weight calculation are conducted
according to our technique section. We use the PASCAL 2012 [7] database as
benchmark in this evaluation. The experiments are difficult due to the large
number of outliers, that are, large amount of vertices and most of them represent
incorrect correspondence, and also due to the large intra-category variations in
shape present in PASCAL 2012 itself. Under each category, we randomly select
two images as a pair and calculate the matching rate by each method. We run
50 times on each category and the averaged results are report in Table 1. The
final matching rate is averaged over rate values of all categories.
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Fig. 7. Examples from shape matching database

Table 1. Average matching rates for the experiments on PASCAL 2012 database

SC+IPFP GS TM PM HS
Car 62.5% 60.1% 60.7% 59.2% 66.4%

Motorbike 62.3% 60.1% 63.5 % 62.7% 67.3%
Person 57.6% 55.7% 54.2% 48.7% 53.1%
Animal 46.7% 49.2% 44.9% 40.3% 54.3%
Indoor 30.6% 28.5% 26.6% 24.3% 36.9%

All-averaged 51.8% 50.7% 50.1% 47.0% 55.8%

We also conducted shape matching [15] on the affinity data on the database
from ShapeMatcher1, which contains 21 objects with 128 views for each object.
A few examples of dog’s shape are shown in Fig.7. For each shape, we compute
the matching score as the affinity value using the shape matching method [15],
thus obtain a 2688×2688 affinity matrix. We compare our method with EHC and
GS. The results are shown in Table 2. Both GS and HS can specify the number
of objects, however, HS outperforms GS in terms of precision due to the fact
that HS considers high-order relationship among vertices rather than pair-wise
relation.

Table 2. Precision results for EHC, GS and HS on the shape matching affinity data

EHC GS HS
Objects recognized 18 21 21

Precision 72.7% 83.5% 89.82 %

1http://www.cs.toronto.edu/~dmac/ShapeMatcher/index.html

http://www.cs.toronto.edu/~dmac/ShapeMatcher/index.html
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6 Conclusion

In this paper, we propose a novel hypergraph shift algorithm aimed at finding
the robust graph modes by probabilistic voting strategy, which are semanti-
cally sound besides the self-cohesiveness. Experimental studies show that our
paradigm outperforms the state-of-the-art clustering and matching approaches
observed from both synthetic and real-world data sets.

Acknowledgment. Xuemin Lin’s research is supported by ARC DP0987557,
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Abstract. This paper describes new extensions to the state-of-the-art
regression random forests Quantile Regression Forests (QRF) for appli-
cations to high-dimensional data with thousands of features. We propose
a new subspace sampling method that randomly samples a subset of fea-
tures from two separate feature sets, one containing important features
and the other one containing less important features. The two feature
sets partition the input data based on the importance measures of fea-
tures. The partition is generated by using feature permutation to produce
raw importance feature scores first and then applying p-value assessment
to separate important features from the less important ones. The new
subspace sampling method enables to generate trees from bagged sample
data with smaller regression errors. For point regression, we choose the
prediction value of Y from the range between two quantiles Q0.05 and
Q0.95 instead of the conditional mean used in regression random forests.
Our experiment results have shown that random forests with these ex-
tensions outperformed regression random forests and quantile regression
forests in reduction of root mean square residuals.

Keywords: Regression Random Forests, Quantile Regression Forests,
Data Mining, High-dimensional Data.

1 Introduction

Regression is a task of learning a function f(X) = E(Y |X) from a training data
L = {(X, Y ) = (X1, Y1), ..., (XN, YN )}, where N is the number of objects in L,
X ∈ RM are predictor variables or features and Y ∈ R1 is a response variable
or feature. The regression model has the form

Y = E(Y |X) + ψ (1)

where error ψ ∼ N(0, α2).
A parametric method assumes that a formula for conditional mean E(Y |X)

is known, for instance, linear equation Y = ω0 + ω1X1, . . . , ωMXM . The linear
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regression model is solved by estimating parameters ω0, ω1, . . . , ωM from L with
least squares method to minimize the sum of square residuals. A nonparametric
method does not require that a model form be known. Instead, a model structure
is specified, such as a neural network and L is used to learn the model. Linear
regression models do not perform on nonlinear domains and suffer the problem
of curse of dimensionality. Neural networks are not scalable to big data.

Decision tree is a nonparametric regression model that works on nonlinear
situations. A decision tree model partitions the training data L into subsets of
leaf nodes and the prediction value in each leaf node is taken as the mean of Y
values of the objects in that leaf node. Decision tree model is unstable in high-
dimensional data because of the large prediction variance. This problem can be
remedied by using an ensemble of decision trees or random forests [3] built from
the bagged samples of L [2]. Regression random forests takes the average of
multiple decision tree predictions to reduce the prediction variance and increase
the accuracy of prediction.

Quantile regression forests (QRF) represents the state-of-the-art technique for
nonparametric regression [7]. Instead of modeling Y = E(Y |X), QRF models
F (y|X = x) = P (Y < y|X = x), i.e., the conditional distribution function.
Given a continuous distribution function and a probability θ, the θ-quantile
Qω(x) can be computed as

P (Y < Qω(x)|X = x) = θ (2)

where 0 < θ < 1. Given two quantile probabilities θl and θh, QRF enables
to predict the range [Qωl

(x), Qωh
(x)] of Y with a given probability τ that

P (Qωl
(x) < Y < Qωh

(x)|X = x) = τ . Besides the range prediction, quantile re-
gression forests can perform well in situations where the conditional distribution
function is not in normal distribution.

Both regression random forests and quantile regression forests suffer perfor-
mance problems in high-dimensional data with thousands of features. The main
cause is that in the process of growing a tree from the bagged sample data,
the subspace of features randomly sampled from the thousands of features in L

to split a node of the tree is often dominated by less important features, and
the tree grown from such randomly sampled subspace features will have a low
accuracy in prediction which affects the final prediction of the random forests.

In this paper, we propose a new subspace feature sampling method to grow
trees for regression random forests. Given a training data set L, we first use
feature permutation method to measure the importance of features and produce
raw feature importance scores. Then, we apply p-value assessment to separate
important features from the less important ones and partition the set of fea-
tures in L into two subsets, one containing important features and one con-
taining less important features. We independently sample features from the two
subsets and put them together as the subspace features for splitting the data
at a node. Since the subspace always contains important features which can
guarantee a better split at the node, this subspace feature sampling method en-
ables to generate trees from bagged sample data with smaller regression errors.
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For point regression, we choose the prediction value of Y from the range between
two quantiles Q0.05 and Q0.95 instead of the conditional mean used in regression
random forests. Our experiment results have shown that random forests with
these extensions outperformed regression random forests and quantile regression
forests in reduction of root mean square residuals (RMSR).

2 Random Forests for Regression

2.1 Regression Random Forests

Given a training data L = {(X1, Y1), ..., (XN, YN )}, where N is the number of
objects in L, a regression random forests model is built as follows.

– Step 1: Draw a bagged sample Lk from L.
– Step 2: Grow a regression tree Tk from Lk. At each node t, the split is deter-

mined by the decrease in impurity that is defined as
∑
xi∈t(Yi − Ȳt)/N(t),

where N(t) is the number of objects and Ȳt is the mean value of all Yi at
node t. At each leaf node, Ȳt is assigned as the prediction value of the node.

– Step 3: Let Ŷ k be the prediction of tree Tk given input X . The prediction
of regression random forests with K trees is

Ŷ =
1

K

K∑
k=1

Ŷ k

Since each tree is grown from a bagged sample, it is grown with only two-
third of objects in L. About one-third of objects are left out and these objects
are called out-of-bag (OOB) samples which are used to estimate the prediction
errors.

2.2 Quantile Regression Forests

Quantile Regression Forests (QRF) uses the same method as described above to
grow trees [7]. However, at each leaf node, it retains all Y values instead of only
the mean of Y values. Therefore, QRF keeps the raw distribution of Y values at
leaf node.

To describe QRF with notation by Breiman [3], we compute a positive weight
wi(x, εk) by each tree for each case Xi ∈ L, where εk indicates the kth tree for
a new given x. Let l(x, εk) be a leaf node t. All Xi ∈ l(x, εk) are assigned to an
equal weight wi(x, εk) = 1/N(t) and Xi /∈ l(x, εk) are assigned to 0 otherwise,
where N(t) is the number of objects in l(x, εk). For single tree prediction, given
X = x, the prediction value is

Ŷ k =

N∑
i=1

wi(x, εk)Yi =
∑

x,Xi∈l(x,ϕk)
wi(x, εk)Yi =

1

N(t)

∑
x,Xi∈l(x,ϕk)

Yi (3)
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The weight wi(x) assigned by random forests is the average of weights by all
trees, that is

wi(x) =
1

K

K∑
k=1

wi(x, εk) (4)

The prediction of regression random forests is

Ŷ =

N∑
i=1

wi(x)Yi (5)

We note that Ŷ is the average of conditional mean values of all trees in the
regression random forests.

Given an input X , we can find the leaf node lk(x, εk) from all trees and the
set of Yi in these leaf nodes. Given all Yi and the corresponding weights w(i),
we can estimate the conditional distribution function of Y given X as

F̂ (y|X = x) =

N∑
i=1

wi(x)I(Yi ≤ y) (6)

where I(·) is the indicator function that is equal to 1 if Yi ≤ y and 0 if Yi > y.
Given a probability θ, we can estimate the quantile Qω(X) as

Q̂ω(X = x) = inf{y : F̂ (y|X = x) ≥ θ}. (7)

For range prediction, we have

[Qωl
(X), Qωh

(X)] = [inf{y : F̂ (y|X = x) ≥ θl}, inf{y : F̂ (y|X = x) ≥ θh}]
(8)

where θl < θh and (θh − θl) = τ . Here, τ is the probability that prediction Y
will fall in the range of [Qωl

(X), Qωh
(X)].

For point regression, the prediction can choose a value in a range such as
the mean or median of Yi values. The median surpasses the mean in robustness
towards extreme values/outliers. We use the median of Y values in the range of
two quantiles as the prediction of Y given input X = x.

3 Feature Weighting Subspace Selection

3.1 Importance Measure of Features by Permutation

Given a training data set L and a regression random forests model RF , Breiman
[3] described a permutation method to measure the importance of features in
the prediction. The procedure for computing the importance scores of features
consists of the following steps.

1. Let Loobk be the out-of-bag samples of the kth tree. Given Xi ∈ Loobk , use the

tree Tk to predict Ŷ k
i , denoted as f̂ki (Xi).
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2. Choose a predictor feature j and randomly permute the value of feature j
in Xi with another case in Loobk . Use tree Tk to obtain the new prediction on

the permuted Xi as f̂
k,p,j
i (Xi). Repeat the permutation process P times.

3. For Mi trees grown without Xi, compute the out-of-bag prediction by RF
in the pth permutation of the jth predictor feature as

f̂p,ji (Xi) =
1

Mi

∑
Xi∈Loob

k

f̂k,p,ji (Xi)

.
4. Compute the two mean square residuals (MSR) with and without permuta-

tions of predictor feature j on Xi as MSRi =
1
Mi

∑
k∈Mi

(f̂ki (Xi)− Yi)
2 and

MSRji =
1
P

∑P
p=1(f̂

p,j
i (Xi)− Yi)

2, respectively.

5. Let ΔMSRji = max(0,MSRji − MSRi). The importance of feature j is

IMPj =
1
N

∑
i∈LΔMSRji . To normalize the importance measures, we have

the raw importance score as

V Ij =
IMPj∑
l IMPl

(9)

With the raw importance scores by (9) we can rank the features on the impor-
tance.

3.2 p-Value Feature Assessment

Permutation method only gives the importance ranking of features. We need to
identify important features from less important ones. To do so, we use Welch’s
two-sample t-test that compares the importance score of a feature with the max-
imum importance scores of generated noisy features called shadows. The shadow
features do not have prediction power to the response feature. Therefore, any
feature whose importance score is smaller than the maximum importance score
of noisy features, it is less important. Otherwise, it is considered as important.
This idea was introduced by Stoppiglia et al. [10], and were further developed
in [5], [11].

Table 1. The importance scores matrix of all real features and shadows with R repli-
cates

Iteration V IX1 V IX2 . . . V IXM V IAM+1 V IAM+2 . . . V IA2M

1 V Ix1,1 V Ix1,2 . . . V Ix1,M V Ia1,(M+1)
V Ia1,(M+2)

. . . V Ia1,2M

2 V Ix2,1 V Ix2,2 . . . V Ix2,M V Ia2,(M+1)
V Ia2,(M+2)

. . . V Ia2,2M

...
...

...
R V IxR,1 V IxR,2 . . . V IxR,M V IaR,(M+1)

V IaR,(M+2)
. . . V IaR,2M
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We build a random forests model RF from this extended data set. Following
the importance measure by permutation procedure, we use RF to compute 2M
importance scores for 2M features. We repeat the same process R times to
compute R replicates. Table 1 shows the importance measure of M features in
input data and M shadow features generated by permutating the values of the
corresponding feature in data.

From the replicates of shadow features, we extract the maximum value from
each row and put it into the comparison sample V ∗ = max{Ari}, (r = 1, ..R; i =
M + 1, ..2M). For each data feature Xi, we compute t-statistic as:

ti =
X i − V

∗√
(s21 + s22)/R

(10)

where s21 and s22 are the unbiased estimators of the variances of the two samples.
For significance test, the distribution of ti in (10) is approximated as an ordinary
Student’s distribution with the degrees of freedom df calculated as

df =
(s21/n1 + s22/n2)

2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
(11)

where n1 = n2 = R.
Having computed the t statistic and df , we can compute the p-value for the

feature and perform hypothesis test on Xi > V
∗
. Given a statistical significance

level, we can identify important features. This test confirms that if a feature is
important, it consistently scores higher than the shadow over multiple permuta-
tions.

3.3 Feature Partition and Subspace Selection

The p-value of a feature indicates the importance of the feature in prediction.
The smaller the p-value of a feature, the more correlated the predictor feature
to the response feature, and the more powerful the feature in prediction.

Given all p values for all features, we set a significance level as the threshold
∂ for instance ∂ = 0.05. Any feature whose p-value is smaller than ∂ is added to
the important feature subset Xhigh, and it is added to the less important feature
subset Xlow otherwise. The two subsets partitions the set of features in data.
Given Xhigh and Xlow, at each node, we randomly select some features from
Xhigh and some from Xlow to form the feature subspace for splitting the node.
Given a subspace size, we can form the subspace with 80% of features sampled
from Xhigh and 20% sampled from Xlow.

4 A New Quantile Regression Forests Algorithm

Now we can extend the quantile regression forests with the new feature subspace
sampling method to generate splits at the nodes of decision trees and select
prediction value of Y from the range of low and high quantiles with a high
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probability. The new quantile regression forests algorithm eQRF is summarized
as follows.

1. Given L, generate the extended data set Le in 2M dimensions by permutat-
ing the corresponding predictor feature values for shadow features.

2. Build a regression random forests model RF e from Le and compute R repli-
cates of raw importance scores of all predictor features and shadows with
RF e. Extract the maximum importance score of each replicate to form the
comparison sample V ∗ of R elements.

3. For each predictor feature, take R importance scores and compute t statistic
as (10).

4. Compute the degree of freedom df as (11).

5. Given t statistic and df , compute all p-values for all predictor features.

6. Given a significance level threshold ∂, separate important features from less
important features in two feature subsets Xlow and Xhigh.

7. Sample the training set L with replacement to generate bagged samples
L1,L2, ..,LK .

8. For each sample Lk, grow a regression tree Tk as follows:

(a) At each node, select a subspace ofm = �
√
M�(m > 1) features randomly

and separately from Xlow and Xhigh and use the subspace features as
candidates for splitting the node.

(b) Each tree is grown nondeterministically, without pruning until the min-
imum node size nmin is reached. At each leaf node, all Y values of the
objects in the leaf node are kept.

(c) Compute the weights of each Xi by individual trees and the forests with
out-of-bag samples.

9. Given a probability τ , θl and θh for θh−θl = τ , compute the corresponding
quantile Qωl

and Qωh
with (8) (We set default values [θl = 0.05, θh = 0.95]

and τ = 0.9).

10. Given a X, estimate the prediction value from a value in the quantile range
of Qωl

and Qωh
such as mean or median.

5 Simulation Analysis

5.1 Simulation Data

We used three models as listed in Table 2 to generate synthetic data for sim-
ulation analysis. Each model has 5 predictor variables or features. With each
model, we first created 200 objects in 5 dimensions plus a response feature. Af-
ter this, we expanded the data set with different numbers of noisy features and
obtained 5 data sets named as {LM5, LM50, LM500, LM2000, LM5000} where
the number in the data name indicates dimensions of the data set. Similarly, we
generated extra 5 data sets with 1000 objects from each model as test data sets
named {HM5, HM50, HM500, HM2000, HM5000}.
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Table 2. Three simulation models for synthetic data generation. Each model uses 5 iid
predictor features from U(0, 1) and Σ from Exp(1) (exponential mean 1) distribution.

Model Error Distribution Simulation models

1 Exp(1) Y = 10(X1 +X2 +X3 +X4 +X5 − 2.5)2 + Σ
2 Exp(1) Y = 10sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + Σ

3 Exp(1) Y = 0.1e4X1 + 4/[1 + e−20(X2−0.5)] + 3X3 + 2X4 +X5 + Σ

5.2 Evaluation Measure

The performance of a model was evaluated on test data with the root mean of
square residuals (RMSR) computed as

RMSR =

√
1

‖H‖
∑

Xi∈H

[f̂H(Xi)− Yi]2. (12)

where f̂H(Xi) is the prediction given Xi, H is a test data set and ‖H‖ is the
number of objects in test data H.

(a) Model 1 (b) Model 2 (c) Model 3

Fig. 1. Comparisons of three regression forests algorithms on 5 test data sets generated
with the simulation models in Table 2

5.3 Evaluation Results

We used regression random forests RF, quantile regression forests QRF and our
algorithm eQRF to build regression models from the training data sets and used
evaluation measure (12) to evaluate the models with the test data sets. We used
the latest RF and QRF packages randomForest, quantregForest in R in these
experiments [6], [8]. For each training data set, we built 100 regression models,
each with 500 trees and tested the 100 models with the corresponding test data.
Then, the result was evaluated with (12) and the average of 100 models was
computed.
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Figure 1 shows the evaluation results of three random forests regression meth-
ods in RMSR measures. Each random forests method produced 5 test results on
5 simulation data sets from the left to right as {HM5, HM50, HM500, HM2000,
HM5000}. We can see that the more noisy features in the data, the lower accu-
racy in the prediction model. Clearly, in all simulated data generated by the three
models in Table 2, eQRF performed the best and its RMSR was significantly
lower than those of QRF and RF.

6 Experiments on Real Datasets

6.1 Real-World Data

Five real-world data sets were used to evaluate the performance of our new
regression random forests algorithm. The general characteristics of these data
sets are presented in Table 3.

The computed tomography (CT) data was taken from the UCI1 which was
used to build a regression model to calculate the relative locations of CT slices
on the axial axis. The data set was generated from 53,500 images taken from
74 patients (43 males and 31 females). Each CT slice was described by two
histograms in a polar space. The first histogram describes the location of bone
structures in the image and the second represents the location of air inclusions
inside of the body. Both histograms are concatenated to form the feature vector.

TFIDF-2006 2 is a text data set containing financial reports. Each document
is associated with an empirical measure of financial risk. These measures are log
transformed volatilities of stock returns.

The Microarray data ”Diffuse Large B-cell Lymphoma” (DLBCL) was col-
lected from Rosenwald et al. [9]. The DLBCL data consisted of measurements of
7399 genes from 240 patients with diffuse large B-cell lymphoma. The outcome
was survival time, which was either observed or censored. We used observed
survival time as the response feature because censored data only indicates two
states, dead or alive. A detailed description can be found in [9].

”Leukemia” and ”Lung cancer” are two gene data sets taken from NCBI 3.
Each of those data sets contains two classes. We changed one class label to 1
and another label to 0. We treat 0 and 1 as continuous values and consider this
problem as a regression problem. We built a regression random forests model to
estimate the outcome and used a defined threshold to divide the outcomes into
two classes.

6.2 Experiments and Results

For each real-world data set, we used two-third of data for training and one-third
for testing. We generated 10 models from each training data and each model

1 The data are available at http://archive.ics.uci.edu/
2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
3 http://www.ncbi.nlm.nih.gov

http://archive.ics.uci.edu/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.ncbi.nlm.nih.gov
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Table 3. Description of the real data sets sorted by the number of features and RMSR
performance of three regression algorithms

Dataset Name #training #testing #features eQRF RF QRF

1 CT Data 35,700 17,800 385 0.29 1.33 2.09
2 Leukemia 48 24 7,129 0.17 0.22 0.24
3 DLBCL Data 160 80 7,399 3.77 4.28 4.55
4 Lung cancer 114 58 54,675 0.21 0.32 0.36
5 TFIDF-2006 16,087 3,308 150,361 0.41 0.68 0.69

contained 200 trees. We computed the average of RMSRs of the 10 models with
(12). The average RMSRs of three regression random forests models on five real-
world data sets are shown in Table 3 on the right. We can see that eQRF had
the lowest average RMSR. RF performed better than QRF.

(a) RF (b) eQRF

Fig. 2. Plots of predicted response values against the true values of CT test data. (a)
Result of RF. (b) Result of eQRF.

Figure 2 plots the predicted values by RF and eQRF against the true values
of the response feature in CT test data. We can see from Figure 2 (a) that there
are some regions that RF predicted higher than the true value, for instance [25
cm, 35 cm], and some regions that RF predicted lower than the true value, for
instance > 70 cm. These are the prediction error regions including shoulder [20-
30cm] and abdomen [60-75cm]. On the contrast, the predicted values of eQRF
were more close to the true values as shown in Figure 2 (b) and the prediction
results are consistent and more stable in all regions of human body.

Figure 3 shows the average RMSR box plots of three regression models from
the real-world data sets. Figure 3 (a) is the result of CT data and Figure 3 (b)
is the result of DLBCL data. We can see that eQRF produced less RMSR than
QRF and RF and the variance is also small.
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(a) CT Data (b) DLBCL Data

Fig. 3. Boxplots of RMSR of three models RF, QRF and eQRF. (a) Result of CT test
data. (b) Result of DLBCL test data.

(a) CT Data (b) DLBCL Data

Fig. 4. .Plots of computational time of three algorithms against the number of objects
in data. The experiments were conducted on a computer with 2.13 Ghz Intel Core 2
Quad processor and 24GB RAM. (a) Result of CT data. (b) Result of DLBCL data.

Figure 4 shows the computational time of three regression models on the two
data sets. We can see that the computational time of the three models linearly
increases as the number of objects increases if the size is small, such as DLBCL
data. However, for data set with a large number of objects as CT data, the
computational times of RF and QRF increase exponentially as shown in Figure
4 (a) but eQRF still maintains a linear increase as shown in Figure 4 (b).
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7 Conclusions

We have presented a new regression random forests algorithm for high-
dimensional data with thousands of features. In this algorithm, we have made
two extensions to the quantile regression forests. One is the subspace sampling
method to select the set of features for splitting a node in growing trees. The
other is to use the median of Y values in the range of two quantile as the predic-
tion of Y given an input X . The first extension increases the prediction accuracy
of decision trees. The second extension reduces the effect of outliers and reduces
the variance of random forests regression. Experiment results have demonstrated
the improvement in reduction of RMSR in comparison with regression random
forests and quantile regression forests.

Acknowledgment. This research is supported in part by NSFC under Grant
No.61203294, Shenzhen New Industry Development Fund under Grant No.JC201
005270342A, No.JCYJ20120617120716224, the National High-tech Research and
Development Program(No. 2012AA040912), and Guangdong-CAS project(No.
2011B090300025).

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.: Classification and Regression
Trees. Wadsworth International, Belmont (1984)

2. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
3. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
4. Ho, T.: The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
5. Kursa, M.B., Rudnicki, W.R.: Feature Selection with the Boruta Package. Journal

of Statistical Software 36(11) (2010)
6. Liaw, A., Wiener, M.: randomForest 4.6-7. R package (2012),

http://cran.r-project.org

7. Meinshausen, N.: Quantile Random Forests. Journal Machine Learning Research,
983–999 (2006)

8. Meinshausen, N.: quantregForest 0.2-3. R package (2012),
http://cran.r-project.org

9. Rosenwald, A., et al.: The use of molecular profiling to predict survival after
chemotherapy for diffuse large-b-cell lymphoma. N. Engl. J. Med. 346, 1937–1947
(2002)

10. Stoppiglia, H., Dreyfus, G.: Ranking a random feature for variable and feature
selection. The Journal of Machine Learning Research 3, 1399–1414 (2003)

11. Tuv, E., Borisov, A., Runger, G., Torkkola, K.: Feature selection with ensembles,
artificial variables, and redundancy elimination. The Journal of Machine Learning
Research 10, 1341–1366 (2009)

http://cran.r-project.org
http://cran.r-project.org


Inducing Controlled Error over Variable Length
Ranked Lists

Laurence A.F. Park and Glenn Stone

School of Computing, Engineering and Mathematics,
University of Western Sydney, Australia

{l.park,g.stone}@uws.edu.au
http://www.scem.uws.edu.au/~lapark

Abstract. When examining the robustness of systems that take ranked
lists as input, we can induce noise, measured in terms of Kendall’s tau
rank correlation, by applying a set number of random adjacent trans-
positions. The set number of random transpositions ensures that any
ranked lists, induced with this noise, has a specific expected Kendall’s
tau. However, if we have ranked lists of varying length, it is not clear how
many random transpositions we must apply to each list to ensure that we
obtain a consistent expected Kendall’s tau across the collection. In this
article we investigate how to compute the number of random adjacent
transpositions required to obtain an expected Kendall’s tau for a given
list length, and find that it is infeasible to compute for lists of length
more than 9. We also investigate an alternate and more efficient method
of inducing noise in ranked lists called Gaussian Perturbation. We show
that using this method, we can compute the parameters required to in-
duce a consistent level of noise for lists of length 107 in just over six
minutes. We also provide an approximate solution to provide results in
less than 10−5 seconds.

1 Introduction

The robustness of a modeling or prediction system is defined as the system’s
ability to handle noise or error applied to its input, and operate within certain
limits. For example, if we have a classification system that predicts a state, given
a set of observations, we can measure its accuracy by examining how many of
its predictions are correct. We can then measure the robustness of the system by
applying a specified level of random noise to the observations, and then examine
its change in accuracy. Of course, if we increased the level of the added noise, we
would expect the accuracy of the system to decrease, but a more robust system
would provide a slower decrease.

To determine the robustness level of a system, we must often perform a sim-
ulation experiment, where we can control the noise. Noise is usually randomly
sampled from a predefined distribution with carefully chosen parameters to en-
sure the noise is consistent for the experiment. For example, if our observations
are elements of the real number set, we may generate noise using a Normal dis-
tribution with zero mean and variance of one. If our observations are frequency
values, we may generate noise using a Poisson distribution with mean 1. Fur-
ther experiments can then be performed by adjusting the variance of the noise
distribution and measuring the change in accuracy.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 259–270, 2014.
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Many systems, such as collaborative filtering systems, meta search engines,
query expansion systems, and rank aggregation systems require a set of ranked
items as input.

Therefore, to measure the robustness of such systems, we can randomly per-
mute the lists to obtain a given expected Kendall’s τ between the permuted
and unpermuted lists. We can achieve this by performing a set number of ran-
domly chosen adjacent transpositions, as long as all of the list lengths are the
same. If the lists lengths are not the same, it is not clear how many adjacent
transpositions we should apply to obtain a given expected Kendall’s τ across all
lists.

In this article, we investigate how to compute the number of random adjacent
transposition required to obtain a given expected τ for a given list length. We find
that this is a very computationally expensive task. We also propose an alternate
method of inducing error in ranked lists called Gaussian Perturbation. We show
that its parameter is a function of the rank correlation reduction caused by the
error, and therefore can be used to induce controlled noise in ranked lists. We
provide the following contributions:

– An analysis of the relationship between the expected Kendall’s τ , the number
of random adjacent transpositions and the list length (Section 3.1),

– A novel ranked list noise induction method called Gaussian Perturbation
that can be computed for larger lists in reasonable time, (Section 3.2),

– An approximate version of Gaussian Perturbation to compute the required
parameters in minimum time (Section 3.3).

The article will proceed as follows: Section 2 reviews how we measure the ro-
bustness of a system, and examines the form of Kendall’s τ . Section 3 examines
the noise induced using random adjacent transpositions, introduces and anal-
yses Gaussian Perturbation, and provides a faster approximation to Gaussian
Perturbation.

2 Robustness Using Ranked Lists

To assess the robustness of a prediction system using simulation, we must define
a method of inducing controlled noise into the observation space. In this section,
we will examine how to measure robustness, given a noise distribution. We will
then examine how to use Kendall’s τ rank correlation to measure the induced
noise.

2.1 Measuring System Robustness

A robust system is one that can function within a set of predefined limits in a
noisy (error prone) environment. Therefore a robust classification system would
be able to provide a certain level of accuracy, when making predictions based on
observations, with a given level of noise. For example, if our observation space
is the one dimensional real line R, we might define an unknown true value as
a ∈ R, and an observation with added noise as â = a + ψ where ψ ∼ N(0, α), a
sample from a Normal distribution, with mean 0 and standard deviation α.
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In this situation the level of noise is controlled by the parameter α. As the dif-
ference between the noisy and noise free observations increase, we would expect
the system prediction accuracy to change, but we would expect a more robust
system’s behaviour to change less.

Analysis of robust system behaviour has provided us with strategies that
allow prediction models to provide good accuracy using a wide range of observa-
tion input data. Some well known general strategies are to use cross validation
when training a model [12] and including a regularisation term in the optimisa-
tion function (used in SVMs [13] and Lasso/Ridge regression [7]). Such systems
introduce bias into the optimisation, in order to reduce the variance of the clas-
sification, and hence increase the robustness.

Similar methods can be used in clustering and dimension reduction. Com-
pressive sampling has been used in image analysis [2], clustering [11] and outlier
detection [1]. Each of these methods use l1 regularisation to obtain sparse so-
lutions to the dimension reduction, clustering, and outlier detection problems.
These methods have also been applied to Principal Component Analysis [3], to
obtain biased, but more robust principal components.

Now consider the observation space as the set of all ranked lists of multiple
lengths. There are many systems that have an observation space of ranked lists,
therefore it is important that we provide a method of measuring the robustness
of this space. Systems using Collaborative filtering [9] use an observation space
of ranked lists. These systems obtain ranked responses from the user community
and aggregate them to assist in the decision making process. Query expansion [4]
also requires ranked lists, where ranked documents are used to extract potential
query terms. Meta search over multiple databases [8,6] obtain ranked results from
various databases (e.g. airline travel prices, book prices, Web search results) and
combines them to form a single result. Also, Rank aggregation systems [5,10] are
used to combine multiple ranked lists into a single ranked list (e.g. results from
tennis competitions to form an overall player ranking).

To test the robustness of methods applied in such systems, we need a method
to induce noise into ranked lists. Furthermore, we must be able to control the
amount of noise induced. Ranked lists contain ordinal numbers, therefore the
error term ψ would be the application of a random permutation of the list ele-
ments (clearly, simply adding an error variate to the true ranking will not be
appropriate for ordinal numbers).

2.2 Measuring Error in Ranked Lists

The ranking of n items can be identified with an ordering of the integers 1, . . . , n.
Thus the sample space for ranked lists can be considered Sn, the set of permu-
tations of the integers 1 to n. We will talk about elements x = (x1, . . . , xn) of
Sn, where xi is the rank of item i. Note that we cannot induce error on lists of
length n = 1, therefore, we will only consider n > 1 in this article.

Given two rankings x and y ∈ Sn, one way to measure the similarity of the
two rankings is using Kendall’s τ rank correlation. Kendall’s τ is defined as:

τ(x,y) =

∑
1≤i<j≤n cij − dij

n(n− 1)/2
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where the sum is over the set of all possible pairs of items being ranked, and

cij =

{
1, if ((xi < xj) and (yi < yj)) or ((xi > xj) and (yi > yj))
0, otherwise

and dij = 1 − cij . A pair of items are concordant (cij = 1) if their ordering
in each of the two lists matches, otherwise they are discordant (dij = 1). We
can see that τ = 1 if and only if x = y (all items are concordant), implying
perfect correlation. Also τ = −1 if and only if x = reverse(y) (all items are
discordant), implying perfect anti-correlation. The result of τ = 0 implies no
correlation between x and y. Therefore, Kendall’s τ can be simplified to:

τ(x,y) =
2
∑

1≤i<j≤n cij

n(n− 1)/2
− 1

since
∑

1≤i<j≤n cij + dij = n(n− 1)/2.
We can use Kendall’s τ to measure the noise induced in a ranked list. Given

ranked lists x,y ∈ Sn, the level of noise between x and y is measured using
τ(x,y). The greater the value of τ , the lower the amount of noise.

Since Kendall’s τ is a measure of correlation, it is comparable across lists of
different lengths. This means that if we induce noise on a list of length n1 and on
another of length n2, where the measure of noise using Kendall’s τ is the same
for both, then we have induced the same level of noise for both lists.

3 Inducing Controlled Noise in Ranked Lists

To examine the robustness of a system, we must examine how it performs when
noise is introduced. If the system takes a set of ranked lists as input, we must
induce controlled noise in the ranked lists. We showed that error in ranked
lists can be measured using Kendall’s τ , which is a function of the permutation
required to remove error from the erroneous ranked list. Therefore, to induce
controlled noise, we must perform controlled permutations.

Ideally, supposing the truth to be x ∈ Sn, we would weight all elements y ∈ Sn
such that the expected τ is as desired. We can then sample from the set Sn with
probability proportional to the assigned weights. However, there are n! elements
in Sn and enumeration rapidly becomes impractical.

In this section, we examine two methods of sampling from Sn to obtain an
expected τ ; one controlled by the number of transpositions t, the other controlled
by the standard deviation α.

3.1 Using Adjacent Transpositions to Induce Controlled Noise

When measuring error using Kendall’s τ , an obvious choice of inducing error
is to perform adjacent transpositions. The set of adjacent transpositions is a
generating set for the symmetric group, therefore we can obtain every possible
ranking of n items using a finite sequence of adjacent transpositions.



Inducing Controlled Error over Variable Length Ranked Lists 263

To induce error in a ranked list x of length n, we randomly select xi, where
i ∈ {1, 2, . . . , n−1} and transpose it with the adjacent item xi+1. By performing
t random adjacent transpositions, we obtain a permuted list y, which when com-
pared to the original list x, gives a value of τ . If we repeat this random process
many times, we find that we obtain a distribution over τ , that is dependent on
n and t.

To compute the expected Kendall’s τ after t random adjacent transpositions,
we first construct the probability transition matrix containing the probability
of moving from one state to another in one adjacent transposition. The state of
the list is the order of the items in the list. Therefore, if there are n items in
the list, there are n! possible states. The probability transition matrix will be
of size n!× n!, but each column will contain only n− 1 nonzero elements (since
for any list of n items, we can only move to n − 1 other states using a single
adjacent transposition). This gives us a probability transition matrix containing
n!× (n− 1) nonzero elements.

For example, if n = 3, we have the n! = 6 possible states x1 = (1, 2, 3),
x2 = (1, 3, 2), x3 = (3, 1, 2), x4 = (3, 2, 1), x5 = (2, 3, 1) and x6 = (2, 1, 3)
giving a probability transition matrix T with n!(n− 1) = 12 nonzero values:

T =

⎡⎢⎢⎢⎢⎢⎣
0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

⎤⎥⎥⎥⎥⎥⎦ (1)

where ti,j , the elements of T , contain the probability of moving from state j to
state i. If we begin in state 1: x1 = (1, 2, 3), our initial state probability vector is
p0 = [ 1 0 0 0 0 0 ]′. By taking a random walk of length 1, we compute our new
state probability as p1 = Tp0 = [ 0 0.5 0 0 0 0.5 ]′. A random walk of length 2
is computed as p1 = Tp1 = T 2p0 = [ 0.5 0 0.25 0 0.25 0 ]′. A random walk of
length n gives us the state distribution T np0. Once we have the probability of
each state after t random adjacent transpositions, we can compute the expected
Kendall’s τ using:

E[τ ] =
n!∑
i=1

pt,iτ(xi,x1) (2)

where pt,i is the ith element of pt. If we perform two random transpositions (a
random walk of length 2), on a list of length n = 3, we can obtain a Kendall’s τ
of 0 or −1/3, but the expected Kendall’s τ is:

E[τ ] = 0.5× 1 + 0× 1/3 + 0.25× (−1/3)

+ 0× (−1) + 0.25× (−1/3) + 0× 1/3 = 1/3

By representing the problem as a random walk on an undirected graph, we ob-
tain additional information about its stationary distribution, being proportional
to the degree of each vertex over an undirected graph. The degree of each vertex
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Table 1. The number of nonzero elements (Nonzero) in the adjacent transposition ad-
jacency matrix and the computation time required (Time) to compute the 50 expected
values

List length 2 3 4 5 6 7 8 9

Nonzero 2 12 72 480 3600 30240 282240 2903040
Time (sec) 0.055 0.099 0.311 1.322 7.628 56.034 9.78 min 10.38 hr

over the set of permutations is equal (n − 1), therefore the stationary distribu-
tion is the Uniform. This implies that as the number of adjacent transpositions
approaches infinity, each state is equally likely. Kendall’s τ is symmetric about
0 over all permutation states, therefore the expected Kendall’s τ approaches 0
as t approaches infinity for all lists of length n > 1.

Given the task of randomly sampling ranked lists of length n with a given
expected τ error, it is not obvious how we should choose t. In fact there is no
way to directly compute t, other than trial and error (set t and n and examine
the associated expected τ). To achieve this task, we have provided Table 2 con-
taining the computed expected τ values of lists of length 2 to 9, using 1 to 50
random adjacent transpositions. So given E[τ ] = 0.5952, the table shows that
we are required to perform 13 random adjacent transpositions for n = 8. If we
induce error in lists of length 7 and 9, we find that 9 and 18 random adjacent
transpositions will provide the wanted E[τ ] respectively.

We have also provided the computation time for each of the lists in Table 1.
It is interesting to note how fast the number of nonzero elements and computa-
tion time grows as n increases. Based on the trend, we found that the time is
increasing double exponentially, meaning that the expected τ for n = 10 would
take approximately 100 days to compute. Clearly, it is not feasible to compute
the expected τ using this method for lists of length 10 or more.

3.2 Using Gaussian Perturbation to Induce Controlled Noise

Rather than performing adjacent transpositions, controlled noise can be induced
in ranked lists by perturbing the rank of the elements. Perturbation requires
the introduction of a latent value for each item i as a sample from a Normal
distribution Xi ∼ N(μ = xi, α), with mean equal to its rank xi and constant
standard deviation α.

Once we have sampled a value for each item, we generate the new rank, by
ordering the latent values. An example of this process is shown in Figure 1. We
can see in this example four items (1, 2, 3, 4), each having a Normal distribution
with equal standard deviation, centred on its rank. A sample from these four
distributions gives (1.2, 3.1, 2.7, 4.4), providing us with the noise induced ranked
list (1, 3, 2, 4). Using this method of noise induction, it is more likely that each
item moves a smaller number of ranks than one item move a large number, which
is the typical form of error seen in ranked lists.
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Table 2. The expected Kendall’s τ after t transpositions over lists is length 2 to 9

t
List length

2 3 4 5 6 7 8 9

1 -1.0000 0.3333 0.6667 0.8000 0.8667 0.9048 0.9286 0.9444
2 1.0000 0.3333 0.5556 0.7000 0.7867 0.8413 0.8776 0.9028
3 -1.0000 0.0000 0.4198 0.6125 0.7216 0.7901 0.8361 0.8685
4 1.0000 0.1667 0.3580 0.5469 0.6681 0.7469 0.8007 0.8389
5 -1.0000 -0.0833 0.2716 0.4883 0.6216 0.7091 0.7695 0.8127
6 1.0000 0.1250 0.2318 0.4395 0.5807 0.6754 0.7414 0.7890
7 -1.0000 -0.1042 0.1759 0.3955 0.5440 0.6449 0.7158 0.7673
8 1.0000 0.1146 0.1501 0.3571 0.5107 0.6170 0.6922 0.7472
9 -1.0000 -0.1094 0.1139 0.3223 0.4803 0.5911 0.6703 0.7285
10 1.0000 0.1120 0.0972 0.2913 0.4523 0.5672 0.6498 0.7109
11 -1.0000 -0.1107 0.0738 0.2633 0.4264 0.5447 0.6306 0.6943
12 1.0000 0.1113 0.0630 0.2381 0.4023 0.5237 0.6124 0.6786
13 -1.0000 -0.1110 0.0478 0.2153 0.3798 0.5038 0.5952 0.6637
14 1.0000 0.1112 0.0408 0.1947 0.3587 0.4850 0.5789 0.6494
15 -1.0000 -0.1111 0.0309 0.1761 0.3390 0.4672 0.5633 0.6358
16 1.0000 0.1111 0.0264 0.1593 0.3205 0.4503 0.5483 0.6227
17 -1.0000 -0.1111 0.0200 0.1441 0.3030 0.4342 0.5341 0.6102
18 1.0000 0.1111 0.0171 0.1303 0.2865 0.4188 0.5204 0.5981
19 -1.0000 -0.1111 0.0130 0.1179 0.2710 0.4041 0.5072 0.5864
20 1.0000 0.1111 0.0111 0.1066 0.2564 0.3900 0.4945 0.5752
21 -1.0000 -0.1111 0.0084 0.0964 0.2426 0.3765 0.4823 0.5643
22 1.0000 0.1111 0.0072 0.0872 0.2295 0.3636 0.4705 0.5538
23 -1.0000 -0.1111 0.0054 0.0789 0.2171 0.3511 0.4591 0.5436
24 1.0000 0.1111 0.0046 0.0714 0.2055 0.3391 0.4481 0.5337
25 -1.0000 -0.1111 0.0035 0.0645 0.1944 0.3276 0.4374 0.5241
26 1.0000 0.1111 0.0030 0.0584 0.1840 0.3166 0.4271 0.5148
27 -1.0000 -0.1111 0.0023 0.0528 0.1741 0.3059 0.4171 0.5057
28 1.0000 0.1111 0.0019 0.0478 0.1648 0.2956 0.4074 0.4968
29 -1.0000 -0.1111 0.0015 0.0432 0.1559 0.2857 0.3979 0.4882
30 1.0000 0.1111 0.0013 0.0391 0.1476 0.2761 0.3887 0.4798
31 -1.0000 -0.1111 0.0010 0.0353 0.1397 0.2669 0.3798 0.4716
32 1.0000 0.1111 0.0008 0.0320 0.1322 0.2580 0.3711 0.4636
33 -1.0000 -0.1111 0.0006 0.0289 0.1251 0.2494 0.3627 0.4558
34 1.0000 0.1111 0.0005 0.0262 0.1184 0.2411 0.3545 0.4482
35 -1.0000 -0.1111 0.0004 0.0237 0.1120 0.2331 0.3465 0.4407
36 1.0000 0.1111 0.0003 0.0214 0.1060 0.2254 0.3387 0.4335
37 -1.0000 -0.1111 0.0003 0.0194 0.1003 0.2179 0.3311 0.4263
38 1.0000 0.1111 0.0002 0.0175 0.0950 0.2106 0.3236 0.4193
39 -1.0000 -0.1111 0.0002 0.0158 0.0899 0.2037 0.3164 0.4125
40 1.0000 0.1111 0.0001 0.0143 0.0851 0.1969 0.3094 0.4058
41 -1.0000 -0.1111 0.0001 0.0130 0.0805 0.1904 0.3025 0.3993
42 1.0000 0.1111 0.0001 0.0117 0.0762 0.1841 0.2958 0.3928
43 -1.0000 -0.1111 0.0001 0.0106 0.0721 0.1780 0.2892 0.3865
44 1.0000 0.1111 0.0001 0.0096 0.0682 0.1721 0.2828 0.3804
45 -1.0000 -0.1111 0.0000 0.0087 0.0646 0.1664 0.2766 0.3743
46 1.0000 0.1111 0.0000 0.0078 0.0611 0.1609 0.2705 0.3684
47 -1.0000 -0.1111 0.0000 0.0071 0.0578 0.1556 0.2645 0.3626
48 1.0000 0.1111 0.0000 0.0064 0.0547 0.1505 0.2587 0.3568
49 -1.0000 -0.1111 0.0000 0.0058 0.0518 0.1455 0.2530 0.3512
50 1.0000 0.1111 0.0000 0.0053 0.0490 0.1407 0.2474 0.3457
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Fig. 1. Inducing error in ranked list x containing four items, using Gaussian Pertur-
bation. Each item is treated as a Normal distribution with mean equal to its rank
and constant standard deviation (in this case, σ = 1). A ranked list with error y is
obtained by sampling from the Normal distributions (to obtain the latent values ỹ),
then ordering by the sample value. We can see that a value of 3.1 was sampled from
the Normal distribution with mean 2, and 2.7 was sampled from the distribution with
mean 3, pushing item 3 to the 2nd rank and item 2 to the 3rd rank.

Using Gaussian Perturbation, we can compute the expected τ as a function
of n and α. The expected value of τ is given as:

E[τ ] = E

[
2
∑

1≤i<j≤n cij

n(n− 1)/2
− 1

]
=

2
∑

1≤i<j≤n E [cij ]

n(n− 1)/2
− 1 (3)

showing that it is dependent on the expected concordance of each pair of items.
Let us consider x the ranked list of length n, and the permuted list y, based
on latent values ỹ, which are realisations of Normal random variables Ỹ . Given
two items i and j, where xi < xj in ranked list x, then the pair is concordant if
yi < yj which happens if and only if ỹi < ỹj . Now;

E [cij ] = 1× P (cij = 1) + 0× P (cij = 0)

= P (ỹi < ỹj)

= P (ỹi − ỹj < 0)

and ỹi is a sample from a distribution N(μ = xi, α). Therefore, ỹi−ỹj is a sample

from a Normal distribution with mean μ = xi−xj , and standard deviation
√
2α.

After standardising, we obtain:

E [cij ] = P

(
Z <

xj − xi√
2α

)
(4)
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Table 3. The computation time to compute σ when given E[τ ] and n for Gaussian
Perturbation for lists of length 101 to 106

List Length 101 102 103 104 105 106

Computation Time (sec) 0.002 0.020 0.254 3.083 34.259 379.931

where Z ∼ N(0, 1) is the standard Normal distribution. Substituting equation 4
back into 3 gives:

E[τ ] =
∑

1≤i<j≤n
P

(
Z <

xj − xi√
2α

)
4

n(n− 1)
− 1

By noticing that xj − xi is an integer from 1 to n − 1, and the sum involves
several copies of each such integer, we can simplify the equation further:

E[τ |n, α] =
n−1∑
k=1

P

(
Z <

k√
2α

)
4(n− k)

n(n− 1)
− 1 (5)

Since α > 0 and n > 1, each term of the sum in equation 5 is non-negative,
showing that E[τ |n, α] ≥ 0. E[τ |n, α] can only be zero when all terms of the sum
are zero, implying that E[τ |n, α] → 0 if and only if α →∞.

Using equation 5, we can compute the value of α for a given E[τ ] and n using a
one-dimensional optimisation function. For example, if we want to induce noise
so that E[τ ] = 0.6, we find that we must assign α = 22.46, 44.48 and 110.54 for
n = 100, 200 and 500 respectively.

Table 3 provides us with the computation time to perform the one-dimensional
optimisation to compute α. The table shows us that the time to compute α
increases linearly with n. When comparing this to Table 1, we see that Gaussian
Perturbation has benefit over the Adjacent Transposition sampling method in
terms of the parameter computation time.

3.3 Estimating σ for Gaussian Perturbation

In the previous section, we derived the equation for E[τ ], dependant on n and α,
and stated that we had to run a one dimensional optimisation over the function
to compute α when given E[τ ] and n. The computation of α would be faster if we
had a formula that gives the appropriate α in terms of n and E[τ ]. Unfortunately,
α is embedded in the Normal cumulative density function (CDF) and summed
n− 1 times.

To allow inversion of equation 5 we have made use of the Shah piece-wise
approximation [14] to the Standard Normal CDF:

P (Z < x) =

⎧⎨⎩x(4.4− x)/10 + 1/2 if x ≤ 2.2
0.99 if 2.2 < x < 2.6
1 if x ≥ 2.6

(6)
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Fig. 2. The Cumulative Standard Normal function and the Shah piece-wise approxi-
mation

for x ≥ 0. The similarity of the Shah approximation to the Standard Normal
CDF is shown in Figure 2.

If we assume that (n − 1)/(
√
2α) ≤ 2.2, we can substitute P (Z < x) with

the first piece of the Shah approximation x(4.4 − x)/10 + 1/2. By making this
substitution into equation 5 and simplifying, we obtain the expected τ approxi-
mation:

E[τ |n, α] ≈ 4.4
√
2(n+ 1)

30α
− (n+ 1)n

60α2

which is a quadratic equation in terms of 1/α. By solving for α, we obtain:

α ≈ n

4.4
√
2±

√
2× 4.42 − 60E[β ]n

n+1

(7)

providing a solution under the condition E[τ ] < 4.42 n+1
n /30, meaning that we

can compute an approximate α for all values of n when 0 < E[τ ] < 0.6453, and
greater values of E[τ ] as n decreases. Also note that α → ∞ as E[τ ] → 0, as
shown in equation 5.

Of the two solutions, the negative form provides accurate estimates for most of
the τ, n combinations, but the positive form provides poor estimates. To examine
the estimate’s accuracy, we chose a desired value of E[τ ], used equation 7 to
compute the approximate α, then used equation 5 to compute the obtained E[τ ].
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Fig. 3. The absolute difference when comparing the desired expected Kendall’s τ , to
the obtained expected Kendall’s τ , when using the approximate σ computed from
equation 7. The difference is computed for varying number if items (n) and desired
expected Kendall’s τ (E[τ ]).

Figure 3 shows the absolute difference in desired E[τ ] compared to the obtained
E[τ ], when using an approximate α. We can see that that the α estimate is a
good estimate since most of the error is smaller than 0.01.

When using equation 7 to compute α the computation time is less that 10−5

seconds for all n.

4 Conclusion

To examine the robustness of systems that take ranked lists as input, we can
induce noise by applying a set number of random adjacent transpositions, where
the error is measured using Kendall’s τ rank correlation. For a fixed list length
n, we can ensure a fixed expected τ by keeping the number a random adjacent
transpositions constant, allowing a consistent level of noise to be applied to
all lists. If the lists are of varying length, it is not clear how many adjacent
transposition should be applied to each list to obtain a consistent expected τ
over all lists.

In this article, we examined the relationship between the expected τ , the list
length n and the number of random adjacent transpositions t. We found that it
is possible to compute the expected τ , given n and t, but the computation time
rapidly increases with n, making the computation infeasible for n > 9.
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We also proposed a new method of inducing noise in ranked lists called Gaus-
sian Perturbation, which allows us to derive an equation for the expected τ when
given n and its parameter α. The parameter α can be computed in reasonable
time for large lists (just over six minutes for lists of length 106), allowing us to
compute α for various list lengths while keeping the expected τ constant over
all lists.

We also provided an approximate solution for α that requires less that 10−5

seconds of computation time for all n.
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Abstract. Given a large network, changing over time, how can we find
patterns and anomalies? We propose Com2, a novel and fast, incremen-
tal tensor analysis approach, which can discover both transient and pe-
riodic/repeating communities. The method is (a) scalable, being linear
on the input size (b) general, (c) needs no user-defined parameters and
(d) effective, returning results that agree with intuition.

We apply our method on real datasets, including a phone-call network
and a computer-traffic network. The phone call network consists of 4
million mobile users, with 51 million edges (phonecalls), over 14 days.
Com2 spots intuitive patterns, that is, temporal communities (comet
communities).

We report our findings, which include large ’star’-like patterns, near-
bipartite-cores, as well as tiny groups (5 users), calling each other hun-
dreds of times within a few days.

Keywords: community detection, temporal data, tensor decomposition.

1 Introduction

Given a large time-evolving network, how can we find patterns and communities?
How do the communities change over time? One would expect to see strongly
connected communities (say, groups of people, calling each other) with near-
stable behavior—possibly a weekly periodicity. Is this true? Are there other
types of patterns we should expect to see, like stars? How do they evolve over
time? Is the central node fixed with different leaves every day or are they fixed
over time? Perhaps the star appears on some days but not others?

Here we focus on exactly this problem: how to find time-varying communi-
ties, in a scalable way without user-defined parameters. We analyze a large,
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million-node graph, from an anonymous (and anonymized) dataset of mobile
customers of a large population and a bipartite computer network with hun-
dreds of thousands of connections, available to the public. We shall refer to
time-varying communities as comet communities, because they (may) come and
go, like comets.

Spotting communities and understanding how they evolve are crucial for fore-
casting, provisioning and anomaly detection. The contributions of our method,
Com2, are the following:

– Scalability: Com2 is linear on the input size, thanks to a careful, incremen-
tal tensor-analysis method, based on fast, iterated rank-1 decompositions.

– No User-Defined Parameters: Com2 utilizes a novel Minimum Descrip-
tion Length (MDL) based formulation of the problem, to automatically guide
the community discovery process.

– Effectiveness: We applied Com2 on real and synthetic data, discovering
time-varying communities that agree with intuition.

– Generality: Com2 can be easily extended to handle higher-mode tensors.

2 Background and Related Work

In this section, we summarize related work on graph patterns, tensor decompo-
sition methods, and general anomaly detection algorithms for graphs.

Tensor Decomposition. An n-mode tensor is a generalization of the concept
of matrices: a 2-mode tensor is just a matrix, a 3-mode tensor looks like a
data-cube, and a 1-mode tensor is a vector. Among the several flavors of ten-
sor decompositions (see [1]), the most intuitive one is the so called Canonical
Polyadic (CP) or PARAFAC decomposition [2]. PARAFAC is the generalization
of SVD (Singular Value Decomposition) in higher modes.

Tensors have been used for anomaly detection in computer networks [3] and
Facebook interactions [4] and for clustering of web pages [5].

Static Community Detection. Static community detection methods are
closely related to graph partitioning and clustering problems. Using a more alge-
braic approach, community detection can also be seen as a feature identification
problem in the adjacency matrix of a graph and several algorithms based on
spectral clustering have been developed. Santo Fortunato wrote a detailed re-
port on community detection [6].

Time Evolving Graphs. Graph evolution has been a topic of interest for some
time, particularly in the context of web data [7,8]. MDL-based approaches for
detecting overlapping communities in static graphs [9] as well as non-overlapping
communities in time-evolving graphs [10] have been previously proposed. How-
ever, the former cannot be easily generalized to time-evolving graphs, whereas
the latter focuses on incremental, streaming community discovery, imposing seg-
mentation constraints over time, rather than on discovering comet communities.
Other work, e.g. [11], studies the problem of detecting changing communities,
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but requires selection of a small number of parameters. Furthermore, broadly
related work uses tensor-based methods for analysis and prediction of time-
evolving “multi-aspect” structures, e.g., [12].

Table 1 compares some of the most common static and temporal community
detection methods.

Table 1. Comparison of common (temporal) community detection methods
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Com2 � � � � �
Graphscope[10] � � × � �
CP × � � × ×
SDP + Rounding[13] × � � × �
Eigenspokes[14] � × N/A � �
METIS[15] � × N/A × �
∗ Temporal communities do not need to be contiguous.
† No user-defined parameter.
‡ Results are easy to interpret; elements of the community can be identified easily.

3 Proposed Method

In this section, we formalize our problem, present the proposed method and
analyze it. We first describe our MDL-based formalization which guides the
community discovery process. Next, we describe a novel, fast, and efficient search
strategy, based on iterated rank-1 tensor decompositions which can discover time
varying communities in a fast and effective manner.

3.1 Formal Objective

We are given a temporal directed network consisting of sources S, destinations
D, and time stamps T . We represent this network via a 3-mode tensor X ∈
{0, 1}|S|×|D|×|T | where Xi,j,t = 1 if source i is connected to destination j at
time t. As abbreviations we use N = |S|, M = |D|, and K = |T |. The goal is to
automatically detect communities:

Definition 1. Community
A community is a triplet C = (S,D, T ) with S ⊆ S, D ⊆ D, and T ⊆ T such
that each triplet describes an ‘important’ time-varying aspect.

We propose to measure the ‘importance’ of a community via the principle
of compression, i.e. by the community’s ability to help us compress the 3-mode
tensor: if most of the sources are connected to most of the destinations during
most of the indicated times, then we can compress this ’comet-community’ easily.
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By finding the set of communities leading to the best compression of the tensor,
we get the overall most important communities.

More specifically, we use MDL (Minimum Description Length) [16]. That is,
we aim to minimize the number of bits required to encode the detected patterns
(i.e. the model) and to describe the data given these patterns (corresponding to
the effects of the data which are not captured by the model). Thus, the overall
description cost automatically trades off the model’s complexity and its goodness
of fit. In the following, we provide more details about the description cost:

Description cost. The first part of the description cost accounts for encoding
the detected patterns C = {C1, . . . , Cl} (where l is part of the optimization and
not a priori given). Each pattern Ci = (Si, Di, Ti) can completely be described by
the cardinalities of the three included sets and by the information which vertices
and time stamps belong to these sets. Thus, the coding cost for a pattern Ci is

L1(Ci) = log∗ |Si|+ log∗ |Di|+ log∗ |Ti|+ |Si| · logN + |Di| · logM + |Ti| · logK

The first three terms encode the cardinalities of the sets via the function log∗

using the universal code length for integers [17]1. The last three terms encode the
actual membership information of the sets: e.g., since the original graph contains
N sources, each source included in the pattern can be encoded by logN bits,
which overall leads to |Si|·logN bits to encode all sources included in the pattern.

Correspondingly, a set of patterns C = {C1, . . . , Cl} can be encoded by the
following number of bits:

L2(C) = log∗ |C|+
∑
C∈C

L1(C)

That is, we encode the number of patterns and sum up the bits required to
encode each individual pattern.

The second part of the description cost encodes the data given the model. That
is, we have to provide a lossless reconstruction of the data based on the detected
patterns. Since in real world data we expect to find overlapping communities, our
model should not be restricted to disjoint patterns. But how to reconstruct the
data based on overlapping patterns? As an approach, we refer to the principle
of Boolean algebra: multiple patterns are combined by a logical disjunction.
That is, if an edge occurs in at least one of the patterns, it is also present in
the reconstructed data. This idea related to the paradigm of Boolean tensor
factorization. More formally, the reconstructed tensor is given by:

Definition 2. Tensor reconstruction
Given a pattern C = (S,D, T ). We define the indicator tensor IC ∈ {0, 1}N×M×K

to be the 3-mode tensor with ICi,j,k = 1 ⇔ i ∈ S ∧ j ∈ D ∧ k ∈ T .

Given a set of patterns C, the reconstructed tensor XC is defined as XC =∨
C∈C I

C where ∨ denotes element-wise disjunction.

1 Not to be confused with the iterated logarithm (logα). log∗ is defined as log∗ x =
log x+ log log x+ ..., where only the positive terms are included in the sum.
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The tensor XC might not perfectly reconstruct the data. Since MDL, however,
requires a lossless compression, a complete description of the data has to encode
the ’errors’ made by the model. Here, an error might either be an edge appearing
in X but not in XC , or vice versa. Since we consider a binary tensor, the number
of errors can be computed based on the squared Frobenius norm of the residual

tensor, i.e.
∥∥X−XC∥∥2

F
.

Since each ’error’ corresponds to one triplet (source, destination, time stamp),
the description cost of the data can now be computed as

L3(X|C) = log∗
∥∥X−XC∥∥2

F
+
∥∥X−XC∥∥2

F
· (logN + logM + logK)

Technically, we also have to encode the cardinalities of the set S, D, and T (i.e.
the size of the original tensor). Given a specific dataset, however, these values
are constant and thus do not influence the detection of the optimal solution.

Overall model. Given the functions L2 and L3, we are now able to define the
communities that minimize the overall number of bits required to describe the
model and the data:

Definition 3. Finding comet communities
Given a tensor X ∈ {0, 1}|S|×|D|×|T |. The problem of finding comet communities
is defined as finding a set of patterns C∗ ⊆ (P(S)× P(D)× P(T )) such that

C∗ = argmin
C

[L2(C) + L3(X|C)]

Again, it is worth mentioning that the patterns detected based on this definition
are not necessarily disjoint, thus better representing the properties of real data.

Obviously, computing the optimal solution to the above problem is infeasi-
ble as it is NP-hard. In the following, we present an approximate but scalable
solution based on an iterative processing scheme.

3.2 Algorithmic Solution

We approximate the optimal solution via an iterative algorithm, i.e., we sequen-
tially detect important communities. However, given the extremely large search
space of the patterns (with most of the patterns leading to only low compres-
sion), the question is how to spot the ’good’ communities?

Our idea is to exploit the paradigm of tensor decomposition [2]. Tensor de-
composition provides us with a principled solution to detect patterns in a tensor
while simultaneously considering the global characteristics of the data. It is worth
mentioning that tensor decomposition cannot directly be used to solve our prob-
lem: (1) Tensor decomposition methods usually require the specification of the
number of components in advance, while we are interested in a parameter-free so-
lution. (2) Traditional tensor decomposition does not support the idea of Boolean
disjunctions as proposed in our method, and Boolean tensor factorization meth-
ods [18] are still limited and a new field to explore. (3) Tensor decomposition
does not scale to large datasets if the number of components is large as many
local maxima exist. In our case, we expect to find many communities in the data.

Thus, in this work, we propose a novel, incremental tensor analysis for the
detection of temporal communities. The outline of our method is as follows:
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– Step 1: Candidate ‘comet’ community: We spot candidates by using
an efficient rank-1 tensor decomposition. This step provides 3 vectors that
represent the score of each source, destination and time stamp.

– Step 2: Ordering and community construction: The scores from step 1
are used to guide the search for important communities. We order the can-
didates and use MDL to determine the correct community size.

– Step 3: Tensor deflation: Based on the communities already detected, we
deflate the tensor so that the rank-1 approximation is steered to find novel
communities in later iterations.

In the following, we discuss each step of the method.

Candidate Generation. As explained, exhaustive search of all candidate com-
munities is not possible. We propose to find a good initial candidate community
using a fast implementation of rank-1 tensor decomposition. We aim at finding
vectors a ∈ RN , b ∈ RM , and c ∈ RK providing a low rank approximation of
the community. Intuitively, sources connected to highly-connected destinations
at highly active times get a higher score in the vector a and similarly for the
other two vectors. Specifically, to find these vectors, a scalable extension of the
matrix-power-method only needs to iterate over the equations:

ai ←
M,K∑

j=1,k=1

Xi,j,kbjck , bj ←
N,K∑

i=1,k=1

Xi,j,kaick , ck ←
N,M∑

i=1,j=1

Xi,j,kaibj

(1)
where ai, bj and ck are the scores of source i, destination j and time k. These
vectors are then normalized and the process is repeated until convergence.

Lemma 1. ALS [19] reduces to Equation 1, when we ask for rank-1 results.

Proof. Substituting vectors a, b, c, instead of matrices (A,B,C), and carefully
handling the Khatri-Rao products, we obtain the result.

Notice that the complexity is linear in the size of the input tensor: Let E be
the number of non zeros in the tensor, we can easily show that each iteration
has complexity O(E) as we only need to consider the non zero Xi,j,k values.
In practice, we select an ψ and compare two consecutive iterations in order to
stop the method when convergence is achieved. In our experimental analysis in
Section 4 (using networks with millions of nodes) we saw that a relatively small
number of iterations (about 10) is sufficient to provide reasonable convergence.

We can now use the score vectors a, b and c as a heuristic to guide our
community construction.

Community Construction Using MDL. Since the tensor decomposition pro-
vides numerical values for each node/time stamp, its result cannot be directly
used to specify the communities. Additionally, there might be no clear threshold
to distinguish between the nodes/time stamps belonging to the community and
the rest. Our goal is to find a single community C′ ∈ (P(S)×P(D)×P(T )) lead-
ing to the best compression, based on a local (i.e. community-wise) evaluation
based on MDL (see Definition 3).
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The definition of L3(X|C) can be adapted to represent the MDL of this single

community. By using the Hadamard product (X ◦ IC′
), we restrict the tensor to

the edges of the pattern:

L̂3(X|C′) = log∗
∥∥∥X ◦ IC

′
− IC

′∥∥∥2

F
+

∥∥∥X ◦ IC
′
− IC

′∥∥∥2

F
· (log |S|+ log |D|+ log |T |)

+ log∗
∥∥∥X−X ◦ IC

′∥∥∥2

F
+

∥∥∥X−X ◦ IC
′∥∥∥2

F
· (logN + logM + logK)

Even though we now only have to find a single community, minimizing this
equation is still hard. Therefore, we exploit the result of the tensor decomposition
to design a good search strategy.

We first sort the sources, destination, and time stamps according to the scores
provided by the tensor decomposition. Let S ′=(s1, . . . , sN), D′=(d1, . . . , dM ) and
T ′=(t1, . . . , tK) denote the lists storing the sorted elements. We start construct-
ing the community by selecting the most promising triplet first, i.e., we form the
community using the most promising edge and we evaluate its description cost.

Given the current community, we incrementally let the community grow. For
each mode, we randomly select an element that is not currently part of the
community using the score vectors as sampling bias. For each of these elements,
we calculate the description length considering that we would add it to the
community. The lowest description length is then selected, and the corresponding
element is added to the community. If none of these elements decreases the overall
description length, we reject them, proceed with the old community and repeat
this process. If we observe l consecutive rejections, the method stops. It can be
shown that the probability that an element that should have been included in
the community was not included decreases exponentially as a function of l and
of its initial score, thus a relatively small value of l is sufficient to identify a
vast majority of the elements in the community. In our experimental analysis,
a default value of l = 20 was seen to be enough, i.e. larger values have not
led to the addition of further elements even when considering communities with
thousands of elements. Therefore, we consider this parameter to be general and
it does not need to be defined by the user of the algorithm.

Tensor Deflation. The output of the previous two steps is a single community.
To detect multiple communities, multiple iterations are performed. The chal-
lenge of such an iterative processing is to avoid generating the same community
repeatedly: we have to explore different regions of the search space.

As a solution, we propose the principle of tensor deflation. Informally, we
remove the previously detected communities from the tensor, to steer the tensor
decomposition to different regions. More formally: Let X(1) = X be the original
tensor. In iteration i of our method we analyze the tensor X(i) leading to the
community Ci. The tensor used in iteration i+ 1 is recursively computed as

X(i+1) = X(i) − ICi ◦X(i)

where ◦ is once again the Hadamard product. This deflated tensor might either
be used in both the candidate generation and community construction stages,
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in case we want to penalize overlapping communities, or in the candidate gen-
eration stage alone if overlapping communities are not to be penalized.

The method might terminate when the tensor is fully deflated (if possible),
or when a specific number of communities has been found, or when some other
measure of community quality was not achieved in the most recent communities
(e.g. community size).

Complexity Analysis

Lemma 2. Our algorithm has a runtime complexity of O(M ·(k ·E+N ·logN)),
where M is the number of communities we obtain, E is the number of non-zeros
of the tensor, N is the length of the biggest mode, and k the number of iterations
to obtain convergence. Thus, our method scales linearly w.r.t. the input E.

Proof. Omitted for brevity.

4 Experiments

We tested our method on a variety of synthetic tensors to assess it’s quality and
scalability. We also applied Com2 on two realworld datasets: a large phone call
network and a public computer communications network, demonstrating that
it can find interesting patterns in challenging, real-world scenarios. This section
details the experiments on the datasets summarized in Table 2.

Table 2. Networks used: Two small, synthetic networks; two large real networks

Abbr Nodes #Non zeros Time Description

OLB 10-20 1000-2000 100 Overlapping blocks.
DJB 1 000 50000 500 Disjoint blocks.

LBNL 1 647 + 13 782 113 030 30 Bipartite Internet traces from LBNL.
PHONE 3952 632 51 119 177 14 Phone call network.

4.1 Quality of the Solutions

The characterization of the temporal communities identified by the method is
important. In particular we want to answer the following questions: How are
“overlapping blocks” identified? How “dense” are the communities found?

Impact of overlap. A tensor with two disjoint communities was constructed
and, iteratively, elements from each of the modes of one of the communities were
replaced with elements of the other. Our tests show that the communities are
reported as independent until there is an overlap of about 70% of the elements
in each mode, in which case they start being reported as a single community.
This corresponds to an overlapping of slightly over 20% of the non-zero values
of the two communities and the global community formed has 63% of non-zeros.
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This clearly demonstrates that Com2 has high discriminative power: it can de-
tect the existence of communities that share some of their members and it is able
to report them independently, regardless of their size (the method is scale-free).

Impact of block density. We also performed experiments to determine how
density impacts the number of communities found. Fifty disjoint communities
were created in a tensor and non-zeros were sampled without repetition from
each community with different probabilities and random noise was then added.
We analyzed the number of non-zeros in the first fifty communities reported by
our method in order to calculate its accuracy. As we show in Figure 1a, Com2
has high discriminative power even with respect to varying density.
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Fig. 1. Experiments on synthetic data

4.2 Scalability

As detailed before, Com2’s running time is linear on the number of communities
and in the number of non-zero values in the tensor. We constructed a tensor of
size 10 000× 10 000× 10 000 and randomly created connections between sources
and destinations at different timesteps. Figure 1b shows the runtime versus the
number of non-zeros in the tensor when calculating the first 200 communities of
the tensor. We consider random insertion to be a good worst-case scenario for
many real-life applications, as the lack of pre-defined structure will force many
small communities to be found, effectively penalizing the running time of Com2.

In addition to its almost linear runtime, Com2 is also easily parallelizable.
By selecting different random seeds in the tensor decomposition step, different
communities can be found in parallel.

4.3 Discoveries on Real Data

We applied Com2 to a dataset from a european mobile carrier, to charac-
terize the communities found in real phone call data. We considered the net-
work formed by calls between clients of this company over a period of 14 days.
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During this period, 3 952 632 unique clients made 210 237 095 phone calls,
51 119 177 of which formed unique (caller, callee, day) triplets. The tensor is
very sparse, with density in the order of 10−7. We extracted 900 communities
using Com2. These communities contain a total of 229 287 unique non-zeros.
293 unique callers and 97 677 unique callees are represented, so the first observa-
tion is that the temporal communities are usually heavy on one side with large
outgoing stars.

We also applied Com2 to a public computer network dataset captured in
1993, made available by the Lawrence Berkeley National Laboratory. 30 days of
TCP connections between 1 647 IP addresses inside the laboratory and 13 782
external IP addresses were recorded. This tensor was totally deflated and a total
of 19 046 communities were found (1 930 of them having at least 10 non-zeros).

In both, fairly different, realworld scenarios, Com2 uses the default parame-
ters (cf. Sec. 3), showing it can be applied without any user-defined parameters.

Observation 1. The biggest communities are more active during weekdays.

Figure 2 shows the number of active communities per day of the week on both
datasets and we can see that most communities are significantly more active
during weekdays. In the phone call data, we are led to believe that these are
mostly companies with reduced activity during weekends, while the reduced
activity during the weekends in the research laboratory is to be expected.
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Fig. 2. Weekly periodicity: number of active communities vs time. Notice the week-
end dives on a) days 4, 5 and 11, 12 and b) days 3, 4, 10, 11, 17, 18, 24, 25

Observation 2. A typical pattern is the “Flickering stars”.

When analyzing a phone call network, a pattern to be expected is the marketeer
pattern in which a number calls many others a very small number of times (1 or
2). Surprisingly, the stars reported by Com2 were not of this type. Two callers
stand out in an analysis of the communities reported: one participated in 78 279
(source, destination, time) triplets as a caller but only in 10 triplets as a receiver,
while the other participated in 8 909 triplets as a caller and in none as a receiver.
These two nodes are centers of two distinct outgoing stars and were detected
by the algorithm. However, the time component of these stars was not a single
day but rather spanned almost all the weekdays. This behavior does not seem
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typical of a marketeer, so we hypothesize that it is a big company communicating
with employees. Many of the reported communities are stars of this type: a caller
calling a few hundred people in a subset of the weekdays - we call them flickering
because there is still some activity during the rest of the weekdays, only reduced
so that those days are not considered part of the community.

In the LBNL dataset, one star was particularly surprising. It received connec-
tions from over 750 different IP addresses inside the laboratory but only on a
single day. One of the other big stars corresponded to 40 connections on a single
day to an IP address attributed to the Stanford Research Institute, which is not
surprising given the geographical proximity.

We define Flickering stars as a common temporal-community that has a vary-
ing number of receivers. These communities are active on different days, not nec-
essarily consecutive. Stars active on many days (e.g. every weekday) are more
common than single day stars.

Observation 3. A typical pattern is the “Temporal Bipartite Cores”.
Several near-bipartite cores were detected as communities in the phone call
dataset. These are communities with about 5 callers and receivers that are active
on nearly each day under analysis. These communities represent between 75 and
150 of the non-zeros of the original tensor, with a block density of around 40%.

An example of such communities can also be shown for the LBNL data. 7
machines of the laboratory communicated with 6 external IP addresses on every
weekday of the month. After analyzing the IP addresses, the outside machines
were found to be part of the Stanford National Accelerator Laboratory, the
University of California in San Francisco, the UC Davis, the John Hopkins Uni-
versity, and the U.S. Dept. of Energy. Com2 was able to detect this research
group (possibly in particle physics) using communications data alone.

5 Conclusions

We focused on deriving patterns from time-evolving graphs, and specifically on
spotting comet communities, that come and go (possibly periodically). The main
contributions are the following:

– Scalability: Our method, Com2, is linear on the input size; instead of rely-
ing on a complete tensor factorization, we carefully leverage rank-1 decom-
positions to incrementally guide the search process for community detection.

– No user-defined parameters: In addition to the above, efficient, incre-
mental search process, we also proposed a novel MDL-based stopping crite-
rion, which finds such comet communities in a parameter-free fashion.

– Effectiveness: We applied Com2 on real and synthetic data, where it dis-
covered communities that agree with intuition.

– Generality: Com2 can be easily extended to handle higher-mode tensors.

Com2 can also be applied on edge-labeled graphs, by considering the labels
as the third mode of the tensor. Future work could focus on exploiting side
information, like node-attributes (for example, demographic data for each node).
Com2 is available at http://cs.cmu.edu/∼maraujo/publications.html.
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Abstract. The Minority Game (MG) is a simple game theory model
for the collective behavior of agents in an idealized situation where they
compete for some finite resource. In this paper, we assume that collective
behavior is determined by the aggregation of individual actions of agents.
This causal relation between collective behavior and individual actions
is investigated. A graphical model is proposed to model the generative
process of collective behavior using a group of agents whose actions are
modeled by minority games. In this model, we can infer the individ-
ual behavior of the agents by training on the global information, and
then make predictions about the future collective behavior. Experimen-
tal results on a set of stock indexes from the Chinese market and foreign
exchange (FX) rates show that the new proposed model can effectively
capture the rises and falls of market and be significantly better than
a random predictor. This framework also provides a new data mining
paradigm for analyzing collective data by modeling micro-level actions
of agents using game theory models.

Keywords: Collective Intelligence, Minority Game, Probabilistic Graph-
ical Models.

1 Introduction

Collective intelligence is a shared or group intelligence that emerges from the in-
teractions (both collaborative and competitive) of many individuals and appears
in consensus decision making of agents. Collective behaviors can be modeled by
agent-based games where each individual agent follows its own local rules. Agent-
based experimental games have attracted much attention in different research
areas, such as psychology [1], economics [2,3], financial market modeling [4,5]
and market mechanism designs [6,7]. Agent-based models (ABM) of complex
adaptive systems (CAS) provide invaluable insight into the highly non-trivial
collective behavior of a population of competing agents. These systems are uni-
versal and researchers aim to model the systems where involving agents with
similar capability are competing for a limited resource. Agents may share global
information and learn from past experience. In such a complex system, if we
assume that every agent in the market knows the history data, the key problem
is how to decide to act based on this global information.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 284–295, 2014.
c© Springer International Publishing Switzerland 2014
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The minority game [8] is a simple ABM originating from the El-Farol Bar
[9] problem. An odd number of agents compete with each other to be in the
minority by making one of two choices; the players who end up in the minority
side win the game. The collective recognizable patterns generated by the minority
game are due to the interaction of many individual agents. There are two main
features for the minority game: first, the minority rule, which makes complete
steady state in the population impossible and secondly, every agent has its own
way of perceiving the available global information about the game and using
it into its own strategy. Each agent is aware of the global information and can
use this information to make decisions based on its own unique strategy, as it
is unrealistic that all agents follow the same deterministic strategy [10]. Due to
its simplicity and attractive properties, the minority game model has attracted
much attention in different research communities [11].

In [12] the authors purpose that collective behaviors of MG can be decom-
posed into several micro-level behaviors from different group of agents and they
use Genetic Algorithm (GA) to optimize the agent behavior parameters in order
to get the best guess of the original system. Also, different game theory model
can be used to model the individual behavior. More accurate a model is for
individual behavior, more accurate collective behavior we can obtain [13]. Un-
certainty is present in all real-world scenarios, especially when it comes to the
task of predicting the outcomes of aggregated actions. Probabilistic graphical
models (PGM) [14] have the capability to deal with uncertainty by incorporat-
ing prior beliefs about the domain and updating these beliefs as new evidence is
obtained. Using PGMs we can construct richly structured models to understand
hidden relations.

In this paper, we propose a novel generative probabilistic graphical model for
modeling the process of generation of the collective behavior from the individual
behavior. We use the proposed PGM to infer the behavior of individual agents
from the available global information and use the learned agent behavior to pre-
dict the future collective behavior. The main contribution of our work is four
fold: (1) We use a game theory model, the minority game, to model individual
behavior. It also has the flexibility of using any appropriate game theories to
model individual behavior; (2) A PGM is used to model generative process of
collective data from a group of individual actions. We can infer the individual
strategy from the observable collective data, and this can be used for predict-
ing future collective data; (3) We use this novel framework to show how it can
be applied to time-series data mining of financial market data; (4) Comprehen-
sive experiments on real world stock market data and foreign exchange rates
demonstrate the effectiveness of the new model.

2 Behavior Modeling Using Minority Game

In a MG, there are an odd number of players and each player must independently
choose one of two options at each round of the game, the players who end up at
the minority side are winners and the choice of the minority players is referred
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to as the winning choice r. There is no prior communication among players; the
only global information available is numbers of players corresponding to the two
choices from the previous rounds.

2.1 Terminology

We begin by first introducing the notation and the terminology used in this
paper: Agent : A player of the game is referred to as an “agent” and it is the
entity that makes decisions based on its “strategy”. The number of agents that
participate in the MG is N , which is an odd number. Agent is indexed by an
integer A where A ∈ {1, 2, . . . , N}.

Choice: An action made by an agent. Choice C has two possible values:
C ∈ {0, 1}. The total number of choices are N .

Game: Every run of the MG will be referred to as a “game”. In every game
the choices are represented as a vector of N elements of binary value {0, 1}. It
can also be viewed as a sequence of choices C1, C2, . . . , CN where Cn is the nth

agent’s choice in the game. The total number of games is denoted by G.
Minority Choice: For every game the choice of the agents on the minority

side is the winning outcome and is called the “minority choice”. Formally, let t
denote the current game, then the minority choice in game t is defined by:

r(t) =

{
0 If

∑N
n=1 Cn(t) >

N
2

1 Otherwise
(1)

Memory and History: In the minority game we assume that the agent’s
actions are governed by its strategy and previous minority choices of the game.
If the agents have an m-bit memory which means that the agent will take into
the information (minority choices) in the previousm rounds. The minority choice
for the last m round of games is defined as the “history” H ∈ {1, 2, 3, . . . ,K}
and K = 2m, where K is the maximum value of history. History is normally
a binary string of the past m minority choices, but without loss of generality,
for the representational convenience of our model we have defined history as a
decimal number. For example if the agents have a 3-bit memory then the history
belongs to the set H = {1, 2, 3, . . . , 8}.

Strategy: We assume that each agent’s action is governed by a strategy
which can be regarded as a set of rules or functions taking the previous minority
choices as inputs. Given a history, the agent makes its decision based on its own
predefined rules named “strategy” S [8,15,16]. The strategy is a mapping from
each possible m-bit memory(each possible history) to a corresponding choice
of making choice-0 or choice-1. Therefore, there are 22

m

possible strategies in
the strategy space and we assume that at one time each agent has exactly one
strategy. A strategy can be regarded as a particular set of decisions on all the
permutations of previous history of minority choices. Fo r example, the first 3
rows of Table 1 show the 3-bit memory, history and a sample strategy.

Probabilistic Strategy: For each agent, “probabilistic strategy (PS)” is a
strategy that maps the history to a probability distribution over the two choices
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Table 1. Sample strategy and PS of one agent for 3-bit memory and history

Memory (000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2
History 1 2 3 4 5 6 7 8

Strategy 1 0 1 1 0 0 0 1

PS PB(0.1) PB(0.8) PB(0.3) PB(0.1) PB(0.6) PB(0.8) PB(0.6) PB(0.3)

instead of mapping directly to one choice only. We use a Bernoulli distribution to
represent probabilistic strategy. The bottom row of Table 1 shows a sample PS
where PB(p) represents a Bernoulli distribution, p is the probability of making
choice-0 and q = 1 − p is the probability of making choice-1.The advantage of
using such a strategy is that it is able to incorporate uncertainty in the learning
process of the PS via PGMs, because for the next game this PS provide a prior
to the PGM.

2.2 Probabilistic Graphical Model for Collective Behavior Learning

Previous works show that collective behavior can be decomposed into the ag-
gregation of individual agents’ actions [12,13]. In this paper we assume that the
collective behavior is generated by agents with probabilistic strategies. Our task
is two fold: first, to decompose the collective behavior by inferring individual
agent behaviors, and the second, to use these learned individual behaviors to
predict the future collective behavior. PGMs provide us the ability to deal with
uncertainty and incorporate prior knowledge. Moreover, the proposed PGM will
provide a unified framework for both the inference of individual behaviors and
the prediction of the global behavior.

With this premise,the motivation behind our purposed PGM is to model the
procedure of an agent making a choice. We first start by drawing a distribution
over agents from a Dirichlet prior, then we randomly select an agent from this
agent distribution to make a choice. After selecting this agent we observe the
history for the present game. Then the agent’s choice, corresponding to the
observed history, is sampled from its PS. This is repeated N times to generate
all the choices of a game. Formally this generative process can be outlined as:

– For each agent and each history:
• Draw a vector of distribution over the two choices δn,k ∼ Dir2 (ω) from
a Dirichlet prior.

– Observe the history H for the current game.
– For each choice

• Draw a vector of agent distribution from a Dirichlet prior i.e. φn ∼
DirN (θ).

• Draw an agent index An ∼ Mult(φn) , An ∈ {1, . . . , N}.
• Draw a choice Cn ∼ Bernoulli(δAn,H), Cn ∈ {0, 1}.

where θ and ω are scalars that parameterize the symmetric prior Dirichlet dis-
tributions, Dir2 (ω) denotes a 2-dimensional Dirichlet with the scalar parameter
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ω and DirN (θ) denotes an N dimensional Dirichlet parameterized by θ. A sym-
metric Dirichlet is a Dirichlet distribution where every component of the param-
eter is equal to the same scalar value. The Dirichlet distribution is a distribution
over discrete distributions and it is conjugate to the Multinomial distribution;
each component in the sampled random vector is the probability of drawing the
item associated with that component. Mult(.) denotes a discrete Multinomial
distribution.

The “choice distribution” δn,k is a 2-dimensional random vector that corre-
sponds to the probability of making choice-0 or choice-1 for agent n and history
k. For a single agent n, the set of these distributions for all values of history
corresponds to that agent’s PS i.e. {δn,m=1,...,K} is the PS of agent n. The dis-
tribution φn is the “agent distribution” and is a N -dimensional random vector
where each component gives the probability of selecting the agent index associ-
ated with that component. The corresponding directed graphical model is shown

Fig. 1. Graphical model representation

in Figure 1. It is worth mentioning here that the choices that are observed are
unordered choices: the N choices for every game are provided as a string of 0’s
followed by 1’s. If the actual choices made by the N=5 agents were [1,0,1,0,0]
in one game and [0,1,1,0,0] in the other game then in both cases the observed
choices would be [0,0,0,1,1]. These unordered choices are referred to as choices
throughout the paper.

The joint distribution corresponding to the PGM in Figure 1 is:

p(φ1:N , A1:N , δ1:N,1:K , C1:N , H |θ, ω,H) =

N∏
i=1

K∏
k=1

p(δi,k|ω)

p(H)

[
N∏
n=1

p(φn|θ)p(An|φn)p(Cn|An, δ1:N,1:K , H)

]
(2)

Notice that since H is observed and does not depend on another variable. It
is a deterministic variable and p(H) can be omitted from the joint of Eq. (2).
The model specifies a number of dependencies between random variables: the
agent index An depends on agent distribution φn, the choices Cn depends on the
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agent index An , history H and all of the choice distributions δ1:N,1:K . Here the
notation δ1:N,1:K denotes the set of distributions {δn,k|0 < n ≤ N , 0 < k ≤ K}.
This is equivalent to saying that p(Cn|An, δ1:N,1:K , H) = δAn,H i.e. from the PS
of the agent denoted by An we find the choice distribution corresponding to the
observed history H . From Figure 1 we can also see that once choices are ob-
served the agent distributions φn and choice distributions δn,k are conditionally
dependent according to d-separation.

3 Inference and Prediction

In generative probabilistic modeling, we treat our data as arising from a genera-
tive process that includes hidden and observed variables. This generative process
defines a joint probability distribution over both the observed and latent random
variables. We perform data analysis by using that joint distribution to compute
the conditional distribution of the latent variables given the observed variables.
The decomposition of collective behavior to individual behavior corresponds to
observing the choices and history and inferring the posterior distribution of the
hidden variables. The choices and the history are the global behavior and the
posterior of the agent distributions p(φ1:N |C1:N , H) and choice distributions
p(δ1:N,1:K |C1:N , H) are the local behaviors. Here the notation φ1:N denotes the
set of distributions {φn|0 < n ≤ N} = {φ1, φ2, . . . , φN}. The posterior distribu-
tion can be written as:

p(φ1:N , A1:N , δ1:N,1:K |C1:N , H, θ, ω) =
p(φ1:N , A1:N , δ1:N,1:K , C1:N , H |θ, ω)

p(C1:N |θ, ω)
(3)

where the numerator of Eq. (3) is defined in Eq. (2). In order to normalize this
posterior distribution we need to marginalize over the latent variables to give
the denominator as shown in Eq. (4):

p(C1:N |θ, ω) =
N∏
i=1

K∏
k=1

∫ N∏
n=1

∫
p(φn|θ)

∑
An

p(An|φn)

p(Cn|An, δ1:N,1:K , H)dφnp(δi,k|ω)dδi,k (4)

Posterior inference of our model is done using approximate message passing
algorithm [17], specifically we are using Variational Message Passing algorithm
(VMP) [18] in the Infer.Net [19] package. VMP is deterministic approximate
inference algorithm that is guaranteed to converge to some solutions and it works
by using only local message passing operations. Our goal is to infer the individual
behaviors, then use these individual behaviors to predict the choices for the next
game and calculate our accuracy of prediction. This procedure is explained in
the Algorithm 1. Here Cn(t + 1) denotes the actual choices of the next game.
PCn(t+1) denote predicted choices of the next game and the predicted minority
choice of the next game r̂(t+ 1) is defined as:

r̂(t+ 1) =

{
0 If

∑N
n=1 PCn(t+ 1) > N

2

1 Otherwise
(5)
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Algorithm 1. Model Inference and Prediction

Parameters: α, β, Number of Agents N , History size K, Number of games G
1: Construct Bayesian inference engine E using Variational Message Passing:
2: for t = 1 → G do
3: if t = 1 then
4: Assign symmetric Dirichlet priors i.e. ψ1:N ∼ DirN (α) and φ1:N,1:K ∼

Dir2(β).
5: else
6: Assign posterior distributions from the last game as the current prior i.e.

p(ψ1:N (t)) = p(ψ1:N (t−1)|C1:N(t−1),H(t−1)) and p(φ1:N,1:K(t)) = p(φ1:N,1:K(t−
1)|C1:N (t− 1),H(t− 1))

7: end if
8: Observe the global data of the current game (choices C1:N (t) and history H(t))

and input them to E.
9: Execute E and calculate the posterior distributions i.e. p(ψ1:N(t)|C1:N(t),H(t))

and p(φ1:N,1:K(t)|C1:N(t),H(t))
10: Given the posteriors inferred in Line 9 and history of next game H(t + 1),

execute the engine E to infer Bernoulli distributions of the predicted choices of
the next game PC1:N(t+ 1) i.e.

p(PC1:N(t+ 1)|ψ1:N (t), A1:N(t+ 1), φ1:N,1:K(t),H(t+ 1)) ∼ PB(φA1:N (t+1),H(t+1))

11: To get the predicted choices of the next game, sample from the distributions
inferred in Line 10 i.e. PC1:N(t+ 1) ∼ PB(φA1:N (t+1),H(t+1)), PC1:N ∈ {0, 1}

12: Predict the minority choice of the next game r̂(t+ 1) from Eq. (5)
13: Calculate the prediction accuracy from Eq. (6)
14: end for

Then the prediction accuracy Acc(t) after observing the game t is defined as:

Acc(t) = #(r̂(t+1)=r(t+1))
#(r̂(t+1)=r(t+1))+#(r̂(t+1) �=r(t+1)) (6)

where the #(.) is an incremental counter, initialized with 0 at t = 1, that incre-
ments by 1 each time its argument (.) is true.

4 Experimental Studies

4.1 Test on Artificial Data

To test the validity of our model we performed experiments on an artificial
dataset generated according to the assumptions of the MG and used our model
to learn the individual behavior and then make predictions. To make our ex-
periment more realistic we assumed that some agents follow a random strategy
because in the real-world there are always certain trends in the data that can-
not be either modeled or captured. The random agent makes random choices
between 0 and 1 following a uniform distribution. We further assume that some
agents are adaptive agents and they might divert from their original strategy
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during the experiment. Every adaptive agent maintains its loosing probability
for every history; if this loosing probability is greater than a threshold (0.6 in
our experiments) then the agent changes its strategy (by random picking another
strategy from the strategy space, e.g. [10]). Moreover, the change in strategy can
only occur after every 200 games. We set θ = 0.25, ω = 0.25, m = 3, N = 31
and use our framework of Algorithm 1 to make predictions on this data. Figure
2 shows the prediction accuracy and error bars for 1000 games with 31 agents,
10% random and 20% adaptive agents, along with the prediction accuracy for
the case of 10% random and no adaptive agents. To obtain averaged results,
the experiment is repeated 10 times. Strategies of adaptive agents change every
200 games resulting in a dip in prediction accuracy and after 1000 games the
accuracy is around 67% with adaptive agents and 84% without adaptive agents.
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Fig. 2. Experimental results on artificial data

4.2 Experiments on Real-World Market Data

The minority game is related to many real-world complex scenarios [5,20,8] in-
cluding financial markets. In the following experiments, stock market index data
and the foreign exchange (FX) rate of U.S. Dollar (USD) against Renminbi
(RMB) and Japanese Yen (JPY) against RMB are tested (Table 2). On the
macro-level, the global behavior of these real-world market data appear ran-
dom and unpredictable, but in our experiments we assume the global behavior
of these markets as being generated according to the minority game and then
use the PGM to infer local behaviors to predict possible future trends of these
markets. This framework provides a new way of understanding the relationship
between macro-trends and micro-trends; the combination of these individual be-
havior have the potential of generating very complex and apparently random
global behaviors.

In our experiments we predict whether a stock market index or FX rate will
rise or fall the next day. Thus, rise and fall are the two values corresponding to
the two possible minority choices (choice-0 and choice-1) and one trading day
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Fig. 3. Experimental results on FX rates and stocks from the Chinese market

corresponds to one game. Formally, for a stock market index (or a FX rate), let
the opening price of that trading day be denoted by Po(t) and the closing price
for that trading day be denoted by Pc(t), then the stock market fluctuation for
that day can be encoded to the minority choice by:

r(t) =

{
1 If Pc(t) ≥ Po(t)

0 Otherwise
(7)

The proposed PGM has two observed variables for the history and choices,
respectively. To obtain the choices from the market data, we first need to give
an appropriate number of agents. Given the market data, the number of agents
making choice-1, denoted by #C1, is obtained according to:

#C1 ∝ Po(t)− Pc(t) (8)

Based on the training data, the value of #C1 is scaled appropriately. The quan-
tity Po(t) − Pc(t) is not always positive and is roughly centered around zero,
so we shift it appropriately to make #C1 non-negative. This shifting factor is
greater than the magnitude of its minimum or maximum value and it becomes
the new mean. We then set N equal to twice the shifting factor. Then the choices
are obtained by forming a string of [N −#C1] zeros followed by #C1 ones.

4.3 Experimental Results

The parameters for the PGM used in our experiments are the following: the
hyper-parameters θ and ω governing the prior Dircihlet distribution of agent



A Graphical Model for Collective Behavior Learning Using Minority Games 293

Table 2. Descriptions of the real market data

Name Stock index Test date Acc after 1000 games (# Agents) N

USD–RMB Exchange Rate - 12/04/00-12/02/04 60.78% 21

JPY–RMB Exchange Rate - 12/04/00-12/02/04 51.28% 29

CITIC Securities Co. 600030 08/11/08-01/09/13 54.82% 31

Shandong Bohui Paper Industrial Co. 600966 06/08/04-04/10/08 58.79% 31

China Minsheng Banking Co. 600016 12/19/00-10/21/04 52.21% 21

Kweichou Moutai Co. 600519 08/27/01-06/29/05 55.76% 31

distributions φ1:N and of choice distributions φ1:N,1:K, respectively, were both
set to 0.25 as from our multiple experiments we found that these values work
well for most real markets, moreover, the history was assumed to be generated
by agents having a memory length of 3 i.e. m = 3.

In order to get stable and unbiased results we ran the algorithm (described in
Algorithm 1) 10 times for each data set and then calculated the corresponding
error bars. We tested the proposed PGM on 6 datasets, 4 are from real sock
markets and 2 datasets are for RMB exchange rate (shown in Table 2). All the
data was downloadable by searching for each company by its stock index1 and
the exchange rate data is also available online2. Figure 3 shows the prediction
accuracy defined in Eq. (6) for each of the data sets for 1000 games. It also shows
another dashed curve for each dataset that corresponds to random prediction,
based on discrete uniform distribution over [0, 1], for the future trends of the
real datasets. This dashed curve represents the base line as it corresponds to
no learning and just randomly predicting r̂(t + 1) ∼ U(0, 1). Therefore as long
as our prediction accuracy can be above this curve we can consider that our
proposed inference and prediction technique has learned some local behaviors
that can predict the future trends with more than random accuracy.

The accuracy of USD-RMB exchange rate after 1000 games is around 60.78%
which is high compared to the accuracy obtained for other real-world data sets.
This may suggest that this exchange rate data has some prominent patterns
and these findings are consistent with the findings of [12]. Conversely, for JPY
the exchange rate against RMB for the same time period was analyzed and
the result show that our algorithm does not perform much better than random
prediction. In fact for the first 700 games the random prediction works better
than our proposed algorithm, however after that our algorithm performs slightly
better with an accuracy of 51.28% after 1000 games. For the other markets
the accuracy is between 52% and 58%. The prediction accuracy on Shandong
Bohui Paper Industrial Co. and CITIC Securities Co. datasets is above random
prediction but for China Minsheng Banking Co. random prediction performs
better for the first 350 games, after that the proposed algorithm performs better
on average although the the error bars overlap suggesting that on some occasions
the performance of the proposed technique is comparable to random prediction.
The prediction accuracy for Kweichow Moutai increases to around 60% in the

1 http://finance.yahoo.com/
2 http://bbs.jjxj.org/thread-69632-1-7.html
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first 130 games after which it drops indicating a change in the trend for this
market, then after game 280 the accuracy begins to increase again indicating
another major change in the trend, but the increase in accuracy suggests that
the new trend is similar to the trend previously observed by the model.

Table 2 provides the details of the data sets we used in experiments and the
number of agents that were set for each data set based on Eq. (8). For our
simulations we used C# along with Matlab on a 32-bit computer with 3GB of
RAM and two 2.93GHz processors. And for one iteration of Algorithm 1 it takes
around 1.1 sec if the number of agents N is 31. Therefore the total duration for
10 iterations of Algorith 1 for 1000 games is around 3 hours.

5 Conclusions and Future Work

In this paper we modeled the process of generation of the collective behavior of
the minority game with a PGM and showed that we can use the proposed PGM
to decompose the collective behavior by inferring individual agent behavior and
then use them to predict the future trends of real world market data. We first
performed experiments on artificial data to validate our model and then tested
it on the real-world market data. Although finding patterns of real-world market
data has always been a controversial topic as it violates the efficient-market hy-
pothesis (EMH) [21], however, based on our empirical studies, we indeed found
statistical significant patterns by training the new proposed model on history
data. Especially for the USD-RMB exchange rate, we present quantitative ev-
idence that there are some stronger patterns comparing to other FX rate and
stock index. Our future work will focus on applying the framework of Bayesian
learning to learn the hyper-parameters θ and ω instead of setting them by ex-
perimental evaluation and also to test our framework on more real-world data
but not limited to stock market indexes and FX rates.
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Abstract. Latent Dirichlet allocation (LDA) is a popular probabilis-
tic topic modeling paradigm. In practice, LDA users usually face two
problems. First, the common and stop words tend to occupy all topics
leading to bad topic interpretability. Second, there is little guidance on
how to improve the low-dimensional topic features for a better cluster-
ing or classification performance. To find better topics, we re-examine
LDA from three perspectives: continuous features, asymmetric Dirich-
let priors and sparseness constraints, using variants of belief propagation
(BP) inference algorithms. We show that continuous features can remove
the common and stop words from topics effectively. Asymmetric Dirich-
let priors have substantial advantages over symmetric priors. Sparseness
constraints do not improve the overall performance very much.

Keywords: Latent Dirichlet allocation, belief propagation, continuous
features, asymmetric Dirichlet priors, sparseness constraints.

1 Introduction

Latent Dirichlet allocation (LDA) [1] is a widely-used probabilistic topic model-
ing paradigm, which has found many important applications in natural language
processing and computer vision areas. LDA represents documents as mixtures
over latent topics, where each topic is a distribution over a fixed vocabulary.
Using approximate inference techniques like variational Bayes (VB) [1], Gibbs
sampling (GS) [2] or belief propagation (BP) [3], LDA automatically learns the
topic-word and document-topic distributions from a large collection of docu-
ments. In practice, LDA users usually encounter two problems. First, the com-
mon and stop words tend to occupy all topics. For example, if we use LDA
to extract topics from a machine learning corpus like NIPS, we find that the
common words “learning” and “model” dominate (having very high likelihood)
almost all topic-word distributions. This phenomenon makes the interpretability
of topics undesirable [4]. Second, there is relatively little guidance on how to im-
prove the lower-dimensional topic features for a better retrieval, clustering and
classification performance. Therefore, we explore LDA from three perspectives:
continuous features, asymmetric Dirichlet priors and sparseness constraints to
find better topics.
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LDA has long been used for discrete features such as word tokens and counts.
Continuous features or term weighting schemes have been rarely discussed such
as term frequency-inverse document frequency (TF-IDF) [5] and LTC [6]. One
major concern is that LDA cannot generate continuous observations in its prob-
abilistic modeling process. So, in practice users have to manually remove stop
words having little contribution to the meaning of the text [7]. But, removing
common words requires contextual knowledge of the entire corpus, which is often
a big challenge to users without prior knowledge. Recently, continuous features
for LDA have gained intensive research interests. A simple term-frequency fea-
ture scheme [8] has been used for tagged document within the framework of
LDA. Point-wise mutual information (PMI) features [9] have been incorporated
into the GS inference algorithm referred to as pmiGS. The PMI feature gives
common and stop words some lower weights. Then, pmiGS infers topic-word
distributions from weighted word counts. The results show that the PMI fea-
ture not only lowers the likelihood of common and stop words in the topic-word
distribution, but also gains a no-trivial improvement in cross-language retrieval
tasks. This line of research inspires us to consider continuous features for LDA
to improve the topic interpretability.

Most LDA algorithms [2, 3, 7] consider fixed symmetric Dirichlet priors over
document-topic and topic-word distributions for simplicity. Although it is possi-
ble to automatically learn Dirichlet hyperparameters from training data accord-
ing to the maxumum-likelihood criterion [10], the extensive empirical studies [11]
confirm that the inferred symmetric priors do not significantly improve the topic
modeling performance than the fixed ones. However, asymmetric Dirichlet priors
over document-topic and symmetric Dirichlet priors over topic-word distribu-
tions have substantial advantages on removing the common words and choosing
the number of topics [12]. The asymmetric prior over document-topic distri-
bution can guide common or stop words to be grouped into a few topics with
higher likelihoods because these words often occupy the larger proportion of each
document. So, asymmetric priors are also effective in finding better topics.

If we can control the sparseness of document-topic and topic-word distribu-
tions, we can possibly control the quality and interpretability of lower-dimensional
topic features. Sparse topic coding (STC) [13] can directly control the sparsity of
the inferred representations by relaxing the normalization constraint, which can
be integrated with any convex loss function. STC identifies sparse topic meanings
of words and improves time efficiency and classification accuracy.Also, sparse cod-
ing can be directly combined with LDA’s extensions [14] for computer vision ap-
plications. In sparse coding, each document or word only has a few salient topical
meanings or senses. Sparse distributions carry salient information for a better in-
terpretability, so that the low-dimensional sparse topic features may be more dis-
tinguishable. Therefore, we will consider adding sparse constrains [15] on LDA’s
document-topic and topic-word distributions.

Although continuous features, asymmetric priors and sparseness constraints
for LDA have been studied either by GS [2] or by VB [1] inference algorithms, we
re-examine these three perspectives within the novel BP inference framework [3],
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which is very competitive in both speed and accuracy. As a result, we incoporate
continuous features, asymmetric Dirichlet priors and sparseness constraints into
BP algorithms to find better topics than traditional GS and VB algorithms.
Besides, most of previous studies focus only on one of three aspects, and lack
a comprehensive comparison in terms of generalization performance, document
clustering/classification and topic interpretability. Here, we compare these three
aspects on different data sets, and provide evidence on which one can produce
high-quality topics.

2 Background

We begin by reviewing batch BP algorithms for learning collapsed LDA [3,16,17].
The probabilistic topic modeling task can be interpreted as a labeling problem, in
which the objective is to assign a set of thematic topic labels, zW×D = {zkw,d},
to explain the observed elements in document-word matrix, xW×D = {xw,d}.
The notations 1 ≤ w ≤ W and 1 ≤ d ≤ D are the word index in vocabulary
and the document index in corpus. The notation 1 ≤ k ≤ K is the topic index.
The nonzero element xw,d �= 0 denotes the number of word counts at the index
{w, d}. For each word token xw,d,i = {0, 1}, 1 ≤ i ≤ xw,d, there is a topic label

zkw,d,i = {0, 1},
∑K
k=1 z

k
w,d,i = 1, 1 ≤ i ≤ xw,d, so that the soft topic label for the

word index {w, d} is zkw,d =
∑xw,d

i=1 zkw,d,i/xw,d.
The collapsed LDA [18] has joint probability p(x, z|θvk, ωuw), where the

Dirichlet hyperparameters {θvk, ωuw},
∑
k vk = 1,

∑
w uw = 1, θ, ω > 0. In prac-

tice, we may use the fixed symmetric hyperparameters {vk = 1/K, uw = 1/W}
and the concentration parameters {θ, ω} are provided by users for simplicity [2].
To maximize the joint probability in terms of z, the BP algorithm [3] computes
the posterior probability, μw,d(k) = p(zkw,d,i = 1|zk−(w,d,i),x), called message,

which can be normalized by local computation, i.e.,
∑K

k=1 μw,d(k) = 1. The
approximate message update equation is

μw,d(k) ∝
[ε̂−w,d(k) + θvk]× [δ̂w,−d(k) + ωuw]

[
∑

w xw,d + θ]× [δ̂−(w,d)(k) + ω]
, (1)

where the sufficient statistics for LDA model are

ε̂−w,d(k) =
∑
−w

xw,dμw,d(k), (2)

δ̂w,−d(k) =
∑
−d

xw,dμw,d(k), (3)

where −w and −d denote all word indices except w and all document indices
except d. Obviously, the message update equation (1) depends on all other neigh-
boring messages μ−(w,d) excluding the current message μw,d. Two multinomial
parameters, the document-topic distribution ε and the topic-word distribution
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Fig. 1. (A)Generative graphical representation of LDA based on continuous features,
asymmetric Dirichlet priors and sparseness constraints, (B)Factor graph and message
passing

δ, can be calculated from sufficient statistics ε̂d(k) and δ̂w(k) by normaliza-
tion. Message passing process will iterate Eqs. (1), (2) and (3) until all messages
converge to a local stationary point [3].

As mentioned in Section 1, LDA users often use the document-topic distribu-
tion in (2) as the lower-dimensional features for document retrieval, clustering
and classification. The word-topic distribution in (3) is used to find the hot words
in each topic. Usually, users will inspect the hot words with higher likelihood in
each topic to understand the topic’s semantic meaning. Observing (2) and (3),
we find that these two distributions are determined by three factors:

1. The features or observations: the word counts xw,d.
2. The Dirichlet priors or hyperparameters: the base vectors {vk, uw} and the

concentration parameters {θ, ω} in Eq. (1).
3. The message: the K-tuple vector μw,d(k) for the topic likelihood at index

{w, d}.

In this paper, we will regulate these three factors to find better topics including
document-topic (2) and topic-word distributions (3).

3 Finding Better Topics

The major reason that the common and stop words occupy almost all topics is
that LDA uses word counts as features. The bigger the word counts, the higher
the influence to the topic distributions. In Eqs. (2) and (3), the normalized mes-
sage μw,d(k) is multiplied by the nonzero word count xw,d. Thus, xw,d can be
regarded as the weight of μw,d(k) in estimating document-topic and topic-word
distributions. In this way, the topics may be dominated by those high-frequent
common and stop words. We see that the bigger word count xw,d corresponds
to the greater influence of the estimated distributions in (2) and (3). This phe-
nomenon motivates us to use the continuous features such as TF-IDF or LTC
to lower the weights of common and stop words during message passing.
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As far as Dirichlet priors are concerned, if we use the symmetric priors {vk =
1/K, uw = 1/W}, the common and stop words have equal likelihoods to be
assigned to all topics in Eq. (1). However, if we use the asymmetric priors, words
will have higher likelihood to be assigned to the topic with higher priors. In this
way, most common and stop words may be assigned to a few topic groups with
higher priors [12]. This phenomenon motivates us to incorporate the asymmetric
Dirichlet prior learning into the message passing process (1), (2) and (3).

The message μw,d(k) represents the topic likelihood for each word token xw,d,i.
If the message is not sparse, the word token may have multiple topic meanings
leading to unclear explanations. So, we encourage passing those sparse messages
by adding a weight proportional to the sparseness of the message. This weighted
message passing strategy can strengthen the sparseness of document-topic and
topic-word distributions in (2) and (3). According to [13] and [14], the sparseness
will make the lower-dimensional topic features more distinguishable for clustering
or classification purposes. This motivates us to add sparseness constraints on
messages during their passing process.

Fig. 1(A) shows the continuous features, asymmetric Dirichlet priors and
sparseness constraints denoted by red colors in the generative graphical represen-
tation of LDA. The asymmetric Dirichlet priors are divided into the connection
parameters {θ, ω} and the base measure vectors {v,u}, and mw,d is the sparse-
ness constraints for the message μw,d(k) ∼ zkw,d. Note that if xw,d =

∑
i xw,d,i

becomes continuous observations like TF-IDF, the generative model in Fig. 1(A)
cannot generate such observations. However, the factor graph representation of
the collapsed LDA [3] shows that it is possible to describe the continuous fea-
tures using the undirected factor graph, which does not need to encode the
generative relations between variables. In this way, we may think that the factor
graph is a close approximation to LDA [3]. Fig. 1(B) shows the factor graph
representation and the message passing process based on continuous features,
asymmetric Dirichlet priors and sparseness constraints. We see that the mes-
sage μw,d(k) ∼ zkw,d can be inferred by its neighboring messages including

{(x−w,d, z
k
−w,d,m−w,d), θvk} and {(xw,−d, zkw,−d,mw,−d), ωuw} via factor nodes

εd and δw , respectively. We group the variables (xw,d, z
k
w,d,mw,d) together be-

cause they work together to influence the neighboring messages according to (1).
From the message passing over factor graphs, we can derive the similar message
update equation to (1) that considers continuous features, asymmetric priors
and sparseness constraints within the unified BP framework.

3.1 Continuous Features

In linguistics, the high frequent stop words like “the, and, of” which occur in
most of the documents do not contribute to the topic formation. To avoid stop
words dominating every topic, we have to remove stop words before running
LDA according to a corpus-specific stop word list. However, even if the stop
words have been removed, there still are many common words such as “model,
learning, data” in the machine learning corpus. In such cases, we may use the
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continuous features such as TF-IDF [5] and LTC [6] that give the lower weights
to the “common word” messages in (1). Let xw,d/

∑
w xw,d be the frequency of

word w in document d, and
∑
d xw,d be the total number of times that the word

w occurs in all documents. We get the continuous TF-IDF feature as

xtfidfw,d =
xw,d∑
w xw,d

× log

(
D∑
d xw,d

)
, (4)

and the LTC feature as

xltcw,d =

log(
xw,d∑
w xw,d

+ 1)× log

(
D∑

d xw,d

)
√∑D

d=1

[
log(

xw,d∑
w xw,d

+ 1)× log

(
D∑

d xw,d

)]2 . (5)

The difference between (5) and (4) is that (5) uses the logarithm of word fre-
quency and is normalized by the geometric mean of the numerator. This nor-
malization makes LTC features more distinguishable than TF-IDF features.

We simply replace the discrete word count feature xw,d by the continuous

features xtfidfw,d and xltcw,d in Eqs. (2), (3) and (1). Without loss of generality,
we focus on LTC features for topic modeling. We refer to the message passing
algorithms for LTC feature as ltcBP. Obviously in (2) and (3), the higher TF-IDF
and LTC values will have the bigger influence to the topic formation. Generally,
the stop and common words have lower TF-IDF and LTC weights, so that they
will be automatically removed from hot word list in each topic during the message
passing process.

3.2 Asymmetric Priors

There are several approaches to learn Dirichlet priors from training data. Here,
we choose to place Gamma priors on the hyperparameters θ ∼ G[C, S], where C
and S are shape and scale parameters of Gamma distribution. Generally, these
parameters are fixed by users during learning Dirichlet priors. We adopt the
improved method of Minka’s fixed point iteration [10,12]. However, this method
is based on discrete counts on topic labels rather than messages in BP (1). To
solve this problem, we sample the topic label zkw,d,i for each word token xw,d,i
from the conditional probability μw,d(k). From the sampled [zkw,d,i = 1], we get
two topic count matrices

σd(k) =

W∑
w=1

xw,d∑
i=1

[zkw,d,i = 1], (6)

ϕw(k) =
D∑
d=1

xw,d∑
i=1

[zkw,d,i = 1]. (7)
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input : xW×D,K,T, αv, βu,C,S.
output: θd,φw.
μ1

w,d(k)←−initialization and normalization;1

θ̂1
−w,d(k) ←

∑

−w xw,dμ1
w,d(k);2

φ̂1
w,−d(k) ←

∑

−d xw,dμ1
w,d(k);3

α ← 50, vk ← 50/K, βuw ← 0.01, C ← 1.001, S ← 1;4
for t ← 1 to T do5

μt+1
w,d (k) ∝

[θ̂t
−w,d(k)+αvt

k]×[φ̂t
w,−d(k)+βut

w]

[
∑

w xw,d+αt]×[φ̂t
−(w,d)(k)+βt]

;
6

θ̂t+1
−w,d(k) ←

∑

−w xw,dμt+1
w,d (k);7

φ̂t+1
w,−d(k) ←

∑

−d xw,dμt+1
w,d (k);8

sampling z from μt+1
w,d (k);9

γd(k) ←
∑W

w=1

∑xw,d

i=1 zk
w,d,i;10

ηw(k) ← ∑D
d=1

∑xw,d

i=1 zk
w,d,i;11

αvt+1
k ← αvt

k

∑b1
n=1 In,k

∑n
f=1

1
f−1+αvt

k

+C

∑b2
n=1 In

∑n
f=1

1
f−1+αt − 1

S

;
12

using ηw(k) to learn symmetric βt+1;13

βut+1
w ← βt+1/W ;14

end15

θd(k) ← θ̂d(k)+αvk
∑

k θ̂d(k)+α
;φw(k) ← φ̂w(k)+βuw

∑

w φ̂w(k)+β
.16

Fig. 2. The asBP algorithm for LDA

Based on these two count matrices, we can directly use the Minka’s fixed point
iteration

θvk ← θvk

∑b1
n=1 In,k

∑n
f=1

1
f−1+ωvk

+ C∑b2
n=1 In

∑n
f=1

1
f−1+ω − 1

S

, (8)

where

In,k =

D∑
d=1

λ(σd(k)− n), (9)

In =

D∑
d=1

λ(len(d)− n), (10)

where b1 = maxd σd(k), b2 = maxd len(d), and len(d) is the total number of
observations in document d, and n and f are positive integers. The value θvk
acts as an initial set for the topic k in all documents. In,k is the number of
documents in which the topic k has been seen exactly n times. In is the number
of documents that contain a total of n observations. In(·) =

∑K
k=1 In,k is the

total number of documents whose topics (1, . . . ,K) has been seen exactly n
times. For the symmetric Dirichlet priors, the base measure is fixed as vk = 1/K
and the concentration parameter θ is updated as

θvk ←
θ

K
×
∑b3

n=1 In(·)
∑n

f=1
1

f−1+ω/K∑b2
n=1 In

∑n
f=1

1
f−1+ω

, (11)

where b3 = maxd,kσd(k). It is the same way to learn asymmetric or symmetric
ωuw according to the count matrix ϕw(k) .
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Symmetric and asymmetric Dirichlet priors over {ε, δ} play different roles in
topic modeling. Similar to [12], we implement an asymmetric prior over ε and a
symmetric prior over δ, which is referred to as the asBP algorithm. In practice,
this implementation performs the best than other combinations of priors [12].
Fig. 2 summaries the asBP algorithm for learning LDA, where T is the total
number of learning iterations. The asymmetric prior θvk can be learned by
Eqs. (9), (10), (8). At the first t ≤ 100 iterations, asBP is the same with the batch
BP which updates and normalizes all messages for all topics. For t > 100, we
learn the asymmetric prior θvk and the symmetric prior ωuw every 20 iterations.

3.3 Sparseness Constraints

In addition to the continuous features and asymmetric Dirichlet priors, sparse-
ness constraints over messages also has an effect on the topic interpretability. In
this paper, we adopt a sparseness measure based on the L1 norm and the L2

norm [15],

mw,d =

√
K − (

∑
k |μw,d(k)|)/

√∑
k[μw,d(k)]

2

√
K − 1

, (12)

whereK is the number of topics and the dimensionality of μw,d(k). The quantity
mw,d is the sparseness of μw,d. Usually, the messages of stop and common words
have relatively lower sparseness because they often occupy many topics for a
lower interpretability. For example, when the number of topics is 10 in CORA
data set, the meaningful words such as “reinforcement”, “Bayesian” have rela-
tively higher sparseness values 0.9999 and 0.9615 than 0.8663 and 0.8417 of the
common words such as “learning” and “model”. Our intuition is that we need to
encourage passing those messages with higher sparseness values, so we use the
sparseness value (12) as the weight of message during message update (1). More
specifically, we simply use the weighted sum mw,dxw,dμw,d(k) in Eqs. (2), (3)
and (1). Such a weighted message passing strategy will encourage sparse mes-
sages with higher weights in topic formation. We refer this message passing
algorithm as conBP. If all sparseness constraints mw,d = 1, conBP will become
the standard BP algorithm for learning LDA [3].

4 Experiments

In this section, we evaluate the effectiveness of the proposed ltcBP, asBP, and
conBP algorithms on six publicly available data sets. Table 1 summarizes the
statistics of six data sets, where D is the total number of documents, Nd the
average document length, N the total number of tokens, W the vocabulary size,
and “stop” indicates whether there are stop words. All algorithms are evaluated
by five performance metrics. Lower perplexity [3,11] indicates better generaliza-
tion performance. The lower-dimensional document-topic distributions can be
fed into standard SVM classifiers for document classification. The higher classifi-
cation accuracy implies the more distinguishable ability of the lower-dimensional
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Table 1. Data set statistics

Data sets D Nd N W STOP

CORA 2410 57 136394 2961 no
WEK 2785 127 352647 7061 no
NIPS 1740 1323 2301375 13649 no
20NEWS 2000 200 399669 36863 no
NIPS (STOP) 1740 2939 5114634 70629 yes
20NEWS (STOP) 2000 372 743180 37370 yes

Algorithm NIPS(STOP) 20NEWS(STOP)

pmiGS

training set the and test performance error class classification on you jpeg if file gif image it from on this
network neural networks the recurrent control output to systems of comp windows edu ibm os sys misc ms mac hardware
learning the in a on reinforcement task learn to control space gov nasa sci at au access digex jpl on
the of in cells cell and cortex direction neurons cortical edu rutgers christian not are religion may all who mit

asGS

data and error prediction set training model validation regression selection jpeg image you file gif files images color bit format
the network input output networks neural a i is to comp graphics x video sys mac monitor hardware card screen
state a and learning q policy reinforcement the value for space sci dec launch shuttle nasa mission toronto henry orbit
and in model of cells cell j neurons system c rutgers christian edu god he of religion geneva jesus church
the of in a to is by are this with the is to a of in and that it this

BP

the of a and in for to is learning r with generalization the image is it jpeg to graphics of a from
the network of neural a input networks to output is windows comp os ms edu i to the misc a
the a of and to learning state in is for q s reinforcement the space nasa gov to and of sci s on
the of and in to a model cells by is rutgers edu of the christian in god to that is

ltcBP

classifier classifiers classification nearest classes neighbor classify class classified classifying graphics x comp file windows code image program files motif
associative memory capacity hopfield memories neuron stored neurons recall retrieval windows os ms comp de dos nl tu apps win
robot controller arm control trajectory plant motor trajectories controllers robotics nasa space jpl gov elroy sci alaska launch orbit moon
cortex receptive orientation cortical cells visual selectivity tuning dominance spatial god jesus christians faith bible his christ he paul religion
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classification training class classifier the set data performance classes classifiers image jpeg file graphics images color files gif format bit
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learning state q action s value reinforcement policy optimal time space nasa sci launch shuttle venus gov station mission orbit
visual motion cells direction field spatial model receptive orientation response rutgers christian god geneva religion athos church jesus soc may
the of a and is in i for to we the of in to and a on for was by

conBP

the of and classification training class classifier to for in image jpeg file you it from graphics images the files
the network units of to input hidden output layer unit windows comp os ms edu i misc cs for dos
the of and control to in model is motor trajectory edu gov com nasa apr stratus usenet indiana ucs jpl
the to learning and is robot s goal environment task rutgers edu christian of in that god we religion i

Fig. 3. Top ten words of four topics when K = 50. Blue and black colors denote stop
and common words, respectively. Red color denotes meaningful key words in each topic.

topic features. We can also use the document-topic distribution as the soft doc-
ument clustering results. Normalized mutual information (NMI) [19] evaluates
the performance of clustering by comparing predicted clusters with true class
labels of a corpus. When displaying topics to users, each topic is generally rep-
resented as a list of the most probable words (for example, top ten hot words in
each topic). Topic “coherence” [20] evaluates the topic quality. Point-wise mu-
tual information (PMI) [21] is very similar to coherence. The higher coherence
and PMI values correspond to the better topic interpretability.

For a fair comparison, we implement all algorithms using the MATLAB
C/C++MEX platform publicly available at [22] and run experiments on the Sun
fire X4270 M2 server. The initial hyperparameters is set as θ = 50/K, ω = 0.01,
where K is the number of topics. We use the same T = 1000 training itera-
tions for all algorithms. We compare our algorithms with the four benchmark
topic modeling algorithms such as BP [3], asGS [12], pmiGS [9] and STC [13].
Since STC outputs the word-topic distribution containing negative values, we
only compare our algorithms with STC in terms of document clustering and
classification tasks.

Fig. 3 shows the top ten words of four topics when K = 50. The meaningful
key words of each topic are highlighted with the red color, and the stop and



Finding Better Topics: Features, Priors and Constraints 305

50 75 100
0

200

400

600

800
Tr

ai
ni

ng
 P

er
pl

ex
ity

 

 

BP
asGS
asBP
conBP

50 75 100
0

200

400

600

800

50 75 100
0

500

1000

1500

 

 

50 75 100
0

500

1000

1500

2000

Number of topics

CORA WEK NIPS 20NEWS

Fig. 4. Training perplexity as a function of the number of topics
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common words are highlighted with blue and black colors, respectively. We use
the subjective “word intrusion” [4] to evaluate the topic interpretability, i.e., the
number of conflict stop and common words in each topic. It is easy to see that
ltcBP performs the best to remove almost all stop and common words in each
topic, which demonstrates the effectiveness of the continuous LTC features in
topic modeling. Note that asBP can also remove the most stop words by cluster-
ing them such as “the of a and is in i for we” in a separate topic on both NIPS
(STOP) and 20NEWS (STOP). This result shows that the asymmetric prior has
an effect on allocating the most frequent stop words to a specific topic with a
higher prior value vk. But asBP still has difficulty in handling some common
words like “learning” and “model”. Note that asGS can also cluster stop words
in one topic, but some topics contain more common words than those of asBP.
BP performs the worst since its extracted topics are influenced by those high-
frequent stop and common words. Although pmiGS uses the continuous PMI
feature in topic modeling, it performs significantly worse than ltcBP because
it cannot remove most stop and common words in each topic. The underlying
reason is that LTC features are more effective in lowering the weights of stop
and common words in topic modeling. We see that using sparseness constraints
cannot effectively remove stop and common words from each topic. The conBP is
only slightly better than BP, but significantly worse than both asBP and ltcBP.
So, to find more interpretable topic-word distributions, the continuous features
and asymmetric priors provide the best performance.
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Fig. 4 shows the training perplexity as a function of the number of topics
on CORA, WEK, NIPS and 20NEWS for K = {50, 75, 100}. Note that ltcBP,
pmiGS and STC do not describe how to generate word tokens, so that they can-
not be measured by the perplexity metric. Except on NIPS, asGS yields a lower
perplexity value than BP. We see that conBP has almost the same perplexity of
BP, which implies that sparseness constraints do not improve the likelihood of
word generation. On all data sets, we see that the training perplexity of asBP
is the lowest, showing the highest topic modeling accuracy. The result shows
that learning asymmetric Dirichlet prior of θvk and the symmetric prior ωuw
can improve the topic modeling accuracy. The training perplexity has a smaller
difference on the NIPS data set. One possible reason is that each document in
NIPS contains more word tokens, so that the prior has a smaller impact on
the message update (1). To summarize, learning an asymmetric Dirichlet prior
over the document-topic distributions and an symmetric Dirichlet prior over
the topic-word distributions still has substantial advantages on improving the
document-topi and topic-word distributions to generate word tokens.

Fig. 5 shows the document classification accuracy as a function of the number
of topics on CORA, WEK, NIPS and 20NEWS for K = {50, 75, 100}. In our
experiments, we randomly divide each data set into half as training and test sets.
Then, we use the standard linear SVM classifier to classify the lower-dimensional
document-topic features produced by the topic modeling algorithms. As far as
STC is concerned, it can directly output the class predictions. Also, we can
use STC to generate lower-dimensional topic features and use SVM to do the
classification.
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Table 2. Performance on CORA, WEK, NIPS and 20NEWS datasets when K = 100

Datasets CORA WEK

Perplexity Accuracy NMI PMI Coherence Perplexity Accuracy NMI PMI Coherence

ltcBP − 74.58 0.3168 −1536.1 −781.42 − 79.51 0.2251 −1458.8 −620.45

asBP 352.29 75.42 0.3150 −1447.6 −609.72 462.66 83.32 0.2469 −1380.6 −426.72

conBP 496.16 75.00 0.3107 −1466.7 −673.98 541.94 84.46 0.2347 −1381.4 −428.86

BP 491.31 75.33 0.3069 −1444.5 −631.86 539.41 80.45 0.2297 −1370.9 −403.68

pmiGS − 69.68 0.2161 −1788.9 −1075.10 − 77.21 0.2015 −1418.9 −553.56

asGS 393.79 73.92 0.2852 −1485.5 −677.81 497.56 82.82 0.2532 −1425.0 −526.96

STC − 67.94 0.1981 − − − 81.38 0.2027 − −

Datasets NIPS 20NEWS

Perplexity Accuracy NMI PMI Coherence Perplexity Accuracy NMI PMI Coherence

ltcBP − 13.84 0.1365 −1254.1 −415.10 − 56.30 0.5511 −1837.3 −1461.1

asBP 1215.72 14.07 0.1632 −1357.2 −227.49 1039.56 69.50 0.4386 −1549.2 −793.0

conBP 1230.30 13.38 0.1577 −1357.5 −225.55 1222.99 69.40 0.4498 −1386.9 −474.63

BP 1226.43 13.73 0.1626 −1358.3 −226.54 1219.04 66.70 0.4511 −1374.8 −411.8

pmiGS − 13.38 0.0785 −1389.7 −279.01 − 58.90 0.3242 −1518.1 −772.23

asGS 1288.02 13.84 0.1489 −1349.9 −249.15 1096.89 66.80 0.4079 −1604.7 −906.59

STC − 14.99 0.1449 − − − 57.20 0.3785 − −

We see that BP and asBP performs comparably, and outperform other meth-
ods. Their classification performance is relatively stable as the number of topics
changes. Although ltcBP can effectively remove stop and common words, it
does not perform the best in document classification. On possible reason is that
the distributions of stop and common words also provide useful information for
classification. Surprisingly, STC cannot predict the class label very well when
compared with other methods. But STC works well on the lower-dimensional
topic features. As we see, conBP works slightly better than BP on classification
when K = 100, which implies that sparseness constraints do not provide useful
information in this task. Overall, asBP performs the best in document clas-
sification. For example, asBP outperforms BP and asGS by around 0.6% and
3.7% on CORA for K = 50, and by around 4.0% and 3.9% on 20NEWS data
set for K = 100 in terms of classification accuracy. This result shows that the
asymmetric priors play an important role in regulating document-topic features
for classification. When the dimensionality of latent space is small, learning an
asymmetric Dirichlet prior over the document-topic distributions and symmetric
Dirichlet prior over the topic-word distributions is worse than heuristically set
symmetric Dirichlet priors on NIPS. One reason is that the Dirichlet prior have
more effects on shorter documents than longer documents.
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Fig. 6 shows the document clustering results measured by NMI. This result
confirms that STC and pmiGS often predict the wrong clusters of documents on
all data sets. All BP-based algorithms perform equally well but conBP performs
slightly better when K = 100. It is interesting to see that the performance of
document clustering is not consistent with that of document classification in
Fig. 5. One possible reason is the unknown number of clusters in the clustering
task.

Fig. 7 shows the coherence on all data sets when K = 100. Because STC has
no topic-word distributions, it cannot be measured by the coherence metric. The
plot produces a separate box for K = 100 coherence values of each algorithm.
On each box, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually by the black dot sign.
We see that asBP and conBP have higher coherence median values with smaller
variances. BP also yields a stable coherence value. However, ltcBP and pmiGS
have lower coherence values. The major reason is that they remove most common
words, which contribute much to the coherence metric.

Fig. 8 shows the PMI values of all algorithms when K = 100. Because STC
has no topic-word distributions, it cannot be measured by the PMI metric. The
plot produces a separate box for K = 100 PMI values of each algorithm. On each
box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually by the black dot sign. We see that
most results are consistent with those of Fig. 7. For example, asBP, conBP and
BP have relatively smaller variances and median values, while ltcBP and pmiGS
have relatively bigger variances and median values. Both Fig. 7 and 8 confirm
that asBP provide more coherent and related word groups. Note that asBP
clusters stop and common words in a separate topic, which enhances coherence
and PMI when compared with ltcBP.

Table 2 summarizes the overall performance of all algorithms on four data
sets when K = 100. We mark the best performance by the bold face. We see
that asBP wins 8/20 columns and all variants of BP win around 18/20 columns.
This result confirms that BP and its variants find better document-topic and
topic-word distributions. As far as perplexity is concerned, asBP is always the
best method, which means that it is very likely to recover the observed words
from the document-topic and topic-word distributions. We see that ltcBP and
asBP learns better document-topic distributions for soft document clustering
with relatively higher NMI values. Moreover, both ltcBP and asBP can ef-
fectively remove stop and common words as shown in Fig. 3. Although STC
uses sparse coding for document classification, it performs relatively worse than
conBP partly because conBP incorporates the sparseness constraints naturally.
Note that conBP often provides a stable clustering and classification perfor-
mances though it is not the best. On CORA and 20NEWS, conBP outperforms
BP with a large margin, which reflects that sparseness constraints can improve
clustering and classification performance. When compared with pmiGS, ltcBP
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wins all columns, confirming the effectiveness of LTC features for topic modeling
as well as BP framework for learning LDA. Form Table 2, we suggest continuous
features and asymmetric priors for topic modeling because sparseness constraints
do not provide significant improvement. The underlying reason is that the esti-
mated document-topic and topic-word distributions are already very sparse so
that any sparseness constraints can give only marginal improvement.

5 Conclusions

In this paper, we extensively explore three factors to find better topics: contin-
uous features, asymmetric priors, and sparseness constraints within the unified
BP framework. We develop several novel BP-based algorithms to study the three
perspectives. Through extensive experiments, we advocate asymmetric priors for
topic modeling because they can enhance the overall performance in terms of
several metrics. Also, the continuous features can improve the interpretability
of topic-word distributions by effectively remove almost all stop and common
words. Finally, we find that sparseness constraints do not improve the topic mod-
eling performance very much, partly because the sparse nature of document-topic
and topic-word distributions of LDA.
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Abstract. High dimensionality poses two challenges for clustering algo-
rithms: features may be noisy and data may be sparse. To address these
challenges, subspace clustering seeks to project the data onto simple yet
informative subspaces. The projection process should be fast and the pro-
jected subspaces should be well-clusterable. In this paper, we describe a
numerical one-dimensional subspace approach for high dimensional data.
First, we show that the numerical one-dimensional subspaces can be con-
structed efficiently by controlling the correlation structure. Next, we pro-
pose two strategies to aggregate the representatives from each numerical
one-dimensional subspace into the final projected space, where the clus-
tering problem becomes tractable. Finally, the experiments on real-world
document data sets demonstrate that, compared to competing methods,
our approach can find more clusterable subspaces which align better with
the true class labels.

Keywords: numerical one-dimension, clusterable subspace, subspace
learning.

1 Introduction

People often face a dilemma when analyzing high dimensional data. On one
hand, more features imply more information available for the learning task.
On the other hand, irrelevant/contradicting features introduce noise and may
mislead the learning algorithms. This difficulty has been studied extensively in
the literature from different perspectives including dimension reduction, feature
selection, model ensembling, etc.

Among them, multiple subspace learning is a promising paradigm to address
the high dimensional difficulty. In this approach, we construct multiple simple
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yet informative subspaces of the original high dimensional data. For example,
principle component analysis (PCA) chooses the subspaces that best preserve
the variance of the data. Then we can either build learning models in the ag-
gregated space, or build models collaboratively in each of the subspaces. This
paradigm brings several desirable advantages. First, we can construct the sub-
spaces by grouping related features together and separating contradicting fea-
tures simultaneously. This is superior to simple feature reduction which may
lose information carried by contradicting features. Second, such collaborative
learning mode in the aggregated space is superior to separately learning one
submodel at a time and finally combining them. In fact, this mode share some
spirit with multi-source learning [3] in the literature. In the language of multi-
source learning, directly learning the original high dimensional data is actually
the early-source-combination based approach, which might be too difficult for a
single model. At the other extreme, directly assembling the separately learned
submodels is actually the late-source-combination based approach, which might
make very limited or even no information to be shared among different submod-
els. The aggregated/collaborative learning mode is actually the intermediate-
source-combination approach, which can balance between the learning difficulty
of too many features for individual models and the ensemble difficulty of many
too isolated and non-cooperative models.

Along this line, in this paper, we focus on the task of subspace learning for
clustering high dimensional data. Specifically, we first construct numerical one-
dimensional subspaces consisting of highly related features. In theory, such sub-
spaces can substantially alleviate the unstable difficulties often encountered by
clustering algorithms such as K-means. In practice, we show such subspaces
can be efficiently constructed by leveraging correlation coefficients. Next, by fur-
ther exploiting the one-dimension nature, we propose strategies to aggregate
the representatives from the numerical one-dimensional subspaces into the final
projected space. Finally, we use real-world document data sets to compare our
approach with several competing methods in terms of performance lift and clus-
tering separability. The experimental results demonstrate that our approach can
find more clusterable subspaces which align better with the true class labels.

The rest of the paper is organized as follows. Section 2 summarizes recent
works related to subspace learning. In Section 3, we show the numerical one-
dimensional subspaces can be constructed by controlling the correlation struc-
ture. In Section 4, we propose strategies to build the final projected subspace by
aggregating the representatives from the numerical one-dimensional subspaces.
Section 5 validates the effectiveness of our idea on real-world document data
sets. Section 6 concludes this paper with some remarks on future work.

2 Related Work

Our work can be categorized as dimension reduction for clustering. Although
there have been extensive studies of dimension reduction techniques in the lit-
erature, few of them are designed specially for the general clustering problems.
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In [10], the idea of grouping correlated features was exploited for the regression of
the DNA microarray data. Specifically, the authors defined the “supergenes” by
averaging the genes within the correlated feature subspaces and then used them
to fit the regression models. In our case of unsupervised clustering, however, we
do not have response for learning, which was used in [10] to analyze the accuracy
improvement of the regression with the averaged features. Instead, we show that
the subspaces of correlated features are actually of numerical one-dimension,
which speaks to the improved clustering stability. Furthermore, empirical stud-
ies on real-world data sets suggest that they enjoy higher clustering separability
which aligns better with the true class labels. In [1], another approach of dimen-
sion reduction, random projection, was exploited for the clustering problems. It
is shown that any set of N points in D dimensions can be projected into O(K/ψ2)
dimensions, for ψ ∈ (0, 1/3), where optimal K-means can be preserved. In the
later experiments, we will compare our methods with this baseline approach.

Another category of related work includes the validation measures of the clus-
tering results. [17] gave an organized study of the external validation measures.
Normalization solutions and major properties of several measures were provided.
Later, [9] investigated more widely used internal clustering validation measures.
Recently, [5] studied the effectiveness of the validation measures with respect to
different distance metrics. It is shown that the validation measures might bias-
edly prefer some distance metrics. Thus, we should be careful with the choice of
validation measures involving distance computation.

3 Numerical 1-Dimensional Subspace Construction

In this section, we first use the simpleness of 1-dimensional clustering to intro-
duce the motivation of our work. Then we show how to construct numerical
1-dimensional subspaces by controlling the correlation structure of the features.

3.1 1-Dimensional Clustering

The clustering problem can be formulated as:

Problem 1. Given a set of observations X, and the number of clusters K, the
optimal clustering solution C = {C1, · · · , CK} minimizes the so-called within-
cluster sum of squares (WCSS):

WCSS(X|C) =

K∑
k=1

∑
x∈X∩Ck

‖x− μk‖2

where μk is the centroid of cluster Ck.

The most common solver for this problem, K-means [18], can only achieve local
optima, which are not stable. Indeed, we might have more than one solutions,
which are often inconsistent with one another. However, there is a special place
where K-means yields more stable clustering results: 1-dimensional space.
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Proposition 1. For any two K-means clustering solutions on a 1-dimensional
data set, C1 = {C1

1 , C
1
2 , · · · } and C2 = {C2

1 , C
2
2 , · · · }, with cluster centers cji ∈

Cji where cj1 < cj2 < · · · for j = 1, 2, there are no data points x1 and x2 such
that x1 ∈ C1

1 , x2 ∈ C1
2 but x1 ∈ C2

2 , x2 ∈ C2
1 .

The proof is straightforward and is omitted due to space limit. In other words,
K-means clustering is very simple in 1-dimensional space, which is equivalent to
finding the cut points. This can also be intuitively visualized in the clustergram
[12], as we will see later in Figure 1. In short, the clustergram examines how
data points in each cluster are assigned to new clusters in the next round as
the number of clusters increase. When Proposition 1 holds, it is expected that
there are few cross lines connecting the consecutive solutions. However, few data
are so perfectly “1-dimensional” in reality. Hence, in the following, we seek 1-
dimension-like subspaces, where Proposition 1 can be preserved approximately.

3.2 Numerical 1-Dimensional Subspace

In 1-dimension-like subspaces (subset of features), it is observed that, if most of
the variation of the data can be captured by the first principle component, then
K-means is roughly equivalent to clustering in 1-dimensional space (along the
first principle direction). In this case, Proposition 1 will still hold under the mild
assumption that all cluster centers can be roughly connected by a line parallel
to the first principle direction. Specifically, note that, if data point x is closer
to cluster center c, its projection 〈x, v〉 is also closer to c on the axis of the
first principle direction v. Formally, this notion is captured by the numerical
1-dimensional space define below [11, 7]:

Definition 1. A data set X is numerical 1-dimensional with error ψ, if and only
if α2 ≤ ψα1, where α1 ≥ α2 ≥ · · · are singular values of X (standardized to be of
zero-mean and unit-variance along each feature).

At first glance, we need to perform singular value decomposition many times to
find such subspaces, which is expensive in high dimensional space. Nevertheless,
as we will show below, the error ψ is bounded with a term of correlation among
features, which can be leveraged to construct the desired subspaces efficiently.

Theorem 1. If the average correlation of different features in the d-dimensional
data set X is β > 0, then X is numerical 1-dimensional with error

ψ ≤

√
(1− β)d− 1 + β

βd+ 1− β
<

√
1− β

β
.

Proof. Suppose matrixX ∈ RN×d is already standardized to be of zero-mean and
unit-variance along each feature (column). Then the feature correlations ofX can
be expressed by C = 1

NX′X where the diagonal coefficients are all 1. With the
singular value decomposition (SVD) X = UπV ′ where U, V are unitary matrices
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and the diagonal coefficients of π are α1, α2, · · · , we have C = 1
N V π′πV ′ where

π′π = diag(α2
1 , α

2
2 , · · · ). It follows that

1

N
(α2

1 + α2
2) ≤ tr(C) = d.

Let J be the column vector with 1 as all coefficients, then on one hand we have

NJ ′CJ = (V ′J)′π′π(V ′J) =
∑
i

(
∑
j

vji)
2α2
i

≤ α2
1

∑
i

(
∑
j

vji)
2 = α2

1(V
′J)′(V ′J) = α2

1J
′J = dα2

1 .

On the other hand, with the average of non-diagonal coefficients in C, β, we
have J ′CJ =

∑
i,j cij ≥ (d2 − d)β+ d. Hence, it follows that

1

N
α2
1 ≥ βd+ 1− β

1

N
α2
2 ≤ (1 − β)d− 1 + β

and this concludes our proof.

Theorem 1 suggests that, with a proper threshold of average correlation, the
agglomerative hierarchical clustering over the feature set with average linkage
can unambiguously group the original space into numerical 1-dimensional sub-
spaces with error lower than the desired level. The standard Euclidean distance
between features can be used as the linkage when the data matrix is of zero-mean
and unit-variance along each feature. In the general case, the computational com-
plexity of the agglomerative average linkage algorithm for D-dimensional data
is O(D3), which is not efficient for big data applications. However, we note that
Theorem 1 still holds if we denote β as the minimal correlation between fea-
tures. This leads to the complete linkage clustering for which the computational
complexity can be reduced to roughly O(D2). We will use this procedure in our
experiments and denote it by F = N1dSpaces(X, ψ) in the following discussions,
where X is the data matrix, ψ is the maximal error of numerical 1-dimensional
subspaces, and F is the constructed subspaces.

The effectiveness of the subspace construction algorithm can be visualized in
Figure 1, as mentioned earlier. Specifically, for a given high dimensional data set
X, we can produce a clusgtergram by directly applying a clustering algorithm,
such as K-means with increasing number of clusters. Then we can construct the
numerical 1-dimensional subspaces F , and produce the same clusgergram in
each subspace S in F . The results show that, in the subspaces, there are few
cross lines connecting the consecutive solutions.

4 Collaborative Ensemble of Subspaces

Now we have constructed subspaces where the clustering problem can be ap-
proached stably. However, clustering algorithms directly applied to the isolated
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Fig. 1. Comparison of clustergram, where cluster means of consecutive cluster solu-
tions are connected with parallelograms whose widths are proportional to the size of
data assigned from the previous clusters. The top figure shows the clustergram of the
high dimensional space. The bottom figures show the clustergram of two numerical
1-dimensional subspaces.

subspaces might produce degenerated solutions, since no information is shared
between the subspaces. On the other hand, since each subspace S is numer-
ically only of 1 dimension, it can be approximated by a few observation fea-
tures. A natural way to this end is to investigate the SVD S = UπV′, where
π = diag(α1, · · · , αs) is a diagonal matrix consisting of s positive singular values
of S: α1 ≥ · · · ≥ αs. In general, we can transform S to SV by the principal direc-
tions in V. Then, guaranteed by Theorem 1, we can use only the first principal
component Sv where v is the first principal direction in V corresponding to α1.
Note that, this is often computationally more efficient, since we only need the
first singular vector and it is not necessary to fully decompose S. Also, when the
number of features are small in S, the computation can be further boosted by
decomposing S′S as in Theorem 1. This collaborative strategy of subspace en-
semble is detailed in Algorithm 1, where mSpace(F) denotes the combination of
the projected components of the multiple subspaces in F , and mCluster denotes
the clustering problem solver applied to mSpace(F).

In addition to the above strategy of aggregating projected components, we can
also progressively approximate the subspaces in the light of [8]. Specifically, sup-

pose we have the approximation Ŝd for the first d subspaces S1,S2, · · · ,Sd. To
approximate the next new subspace Sd+1, we compute the SVD S = UπV′,
where S = (Ŝd,Sd+1) is concatenation of Ŝd and Sd+1. Then the new ap-

proximation Ŝd+1 = SP where P are the top d + 1 principal directions in V.
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Algorithm 1. The multiple subspaces clustering algorithm

Signature: C = mCluster(X,K, α)
Input: The data matrix X; The number of clusters K; The maximal error of numerical

1-dimensional subspaces α.
Output: The clustering C.

1. Construct subspaces F ← N1dSpaces(X, α).
2. for Each subspace S ∈ F do
3. Compute the first singular vector v of S.
4. Replace S in F by Sv.
5. end for
6. Construct X̂ = mSpace(F) by combining the approximated subspaces in F .

7. Solve Problem 1 in the space X̂ with the parameter K, e.g., compute the Kmeans
clustering C ← kmeans(X̂, K).

Table 1. The characteristics of data sets

data fbis k1a la1 re0 re1 wap

#doc 2463 2340 3204 1504 1657 1560

#term 2000 4707 6188 2886 3758 8460

#class 17 20 6 13 25 20

MinClass 38 9 273 11 10 5

MaxClass 506 494 943 608 371 341

Min/Max 0.075 0.018 0.290 0.018 0.027 0.015

The details are given in Algorithm 2, where pSpace(F) denotes the approxima-
tion described above for the subspaces in F , and pCluster denotes the clustering
problem solver applied to pSpace(F).

5 Experimental Evaluation

5.1 Experimental Data Sets

For evaluation, we used six real data sets from different domains, all of which
are available at the website of CLUTO [4]. Some characteristics of these data
sets are shown in Table 1. One can see diverse characteristics in terms of size
(#doc), dimension (#term), number of clusters (#class) and cluster balance are
covered by the investigated data sets. The cluster balance is measured by the
ratio MinClass/MaxClass, where MinClass and MaxClass are the sizes of the
smallest class and the largest class, respectively.

5.2 Comparison of Performance Lift

To see how much improvements can be achieved by the subspaces, regardless
which solver of Problem 1 is used, we compute the performance lift [14, 5] in
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Algorithm 2. The progressive subspaces clustering algorithm

Signature: C = pCluster(X,K, α)
Input: The data matrix X; The number of clusters K; The maximal error of numerical

1-dimensional subspaces α.
Output: The clustering C.

1. Construct subspaces F = {S1,S2, · · · } ← N1dSpaces(X, α).
2. Order subspaces in F by the descending order of numerical 1-dimensional error.
3. Initialize the pSpace(F) as X̂ ← (), i.e., empty space.
4. d ← 0.
5. repeat
6. d ← d+ 1.
7. S ← (X̂,Sd).
8. Compute the first d singular vectors P of S.
9. X̂ ← SP.
10. until d reaches the number of subspaces in F
11. Solve Problem 1 in the space X̂ with the parameter K, e.g., compute the Kmeans

clustering C ← kmeans(X̂, K).

the approximated subspaces. Specifically, the performance lift can be defined

by the expectation: lift(X|Y ) = E[WCSS(X|C)
WCSS(X|Y ) ] where C is a random clustering

assignments for the data set X and Y is the true class labels. The performance
lift actually represents the difference between the ground truth of the clustering
structure and the random clustering solution. The higher the lift is, the easier it
will be for the solver of Problem 1 to find the optimal solutions. Thus, we can
use this lift to see which subspaces help most. To estimate the lift(X|Y ), we can
generate T (e.g., 10) random clustering assignments {C1, · · · , CT }, and compute

the average: 1
T

∑T
t=1

WCSS(X|Ct)
WCSS(X|Y ) . In Figure 2, we show the performance lifts in

different approximated subspaces for all the data sets.
Specifically, we generate T = 10 random clustering assignments to estimate

the performance lift. By controlling the error ψ used in F = N1dSpaces(X, ψ),
we can construct approximation mSpace(F) and pSpace(F) with different di-
mensions, e.g., d = 100, 200, · · · , 1000. For comparison, we also compute the per-
formance lifts with top d principal components constructed by simple PCA, as
denoted by “PC” in Figure 2. The line denoted by “RP” stands for Random Pro-
jection [1], which constructs the low dimensional approximation of X ∈ RN×D

by XΩ where Ω ∈ RD×d is random matrix with entries +1/
√
d or −1/

√
d with

equal probability. We can see that mSpace, pSpace, and PC are all effective to
boost the performance lift. Also, while mSpace and pSpace outperform others
consistently, mSpace achieves significantly higher lift of performance.
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Fig. 2. The performance lift in different subspaces
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5.3 Comparison of Clustering Separability

Table 2. The clustering separability in 500 dimensional subspaces constructed with
different methods on ‘la1’

Cluster ID Cluster Label mSpace pSpace PC RP

1 Entertainment 1.1596 1.2010 1.1482 1.0328

2 Financial 1.0628 1.0287 1.0372 1.0299

3 Foreign 1.0160 1.0176 1.0223 1.0355

4 Metro 1.0287 1.0442 1.0395 1.0136

5 National 1.0225 1.0418 1.0347 1.0191

6 Sports 1.1200 1.0410 1.0440 1.0390

Average 1.0684 1.0624 1.0543 1.0283

Adopted in [4, 5], one can investigate the data separability for the unsuper-
vised clustering problem. Specifically, for each cluster Ci in the clustering solu-

tion {C1, · · · , CK}, we can compute the ratio EDis(Ci)
IDis(Ci)

of the average external

distance, EDis(Ci), over the average internal distance, IDis(Ci). The average
internal distance IDis(Ci) is the average distance between the instances in Ci,
and the average external distance EDis(Ci) is the average distance between the
instances in Ci and the instances in the rest of the clusters Cj where j �= i. The
higher the ratio is for a cluster, the more compact and isolated the cluster will
be, which, in turn, makes it easier for a clustering solver to identify the cluster.
The ratio results of data set ‘la1’ are listed in Table 2, which clearly indicates
that mSpace and pSpace provide better clustering separability. The last row
also reports the average separability for the 6 clusters, where mSpace performs
best. Besides, Figure 3 shows the average cluster separability for all of the six
data sets. One can see that mSpace performs best on all data sets with few
exceptions where pSpace performs better.

5.4 Analysis of Computational Cost

To reduce the dimensionality of the data matrix X ∈ RN×D to d, our meth-
ods first construct the numerical 1-dimensional spaces. In the general case, the
complexity of this step is O(D2), as we discussed in Section 3. To construct
mSpace, we need to perform SVD further d times in the subspaces, each of O(N)
time, since most of the subspaces are of very low dimensions and we only need
the first principal component. Thus the total computational cost for mSpace is
O(D2 + dN). For pSpace, the computational complexity of the progressive SVD
is costly O(d2N) and the total cost is O(D2+d3N). For PCA, we have the com-
putational cost ofO(N2D) whenN ≤ D or O(ND2) whenD ≤ N . In our experi-
ments, since most of the data sets are very high dimensional, we have the order of
computational cost for the evaluated methods: RP < PC < mSpace < pSpace,
which aligns with the order of performance.
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6 Concluding Remarks

In this paper, we proposed a numerical one-dimension approach to high di-
mensional data clustering. An efficient correlation-based method was provided
to construct the numerical one-dimensional subspace, which is well-clusterable
and thus makes the clustering stable. Also, we discussed two strategies to col-
laboratively aggregate them into the final projected space. The experiments on
real-world data sets demonstrated that such transformed data aligns better with
the true class labels with respect to clustering.

This paper focused on the collaborative ensembling of the one-dimensional
subspaces. For the future work, we plan to investigate collaboratively building
clustering submodels directly in each of these one-dimensional subspaces. In the
literature, this is related to the areas of multiple clustering [19, 6], clustering
kernel [16] and clustering ensembles [13, 2, 15], where there are still many open
problems to be answered.
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Abstract. This article proposes an elitist evolutionary approach to de-
termine the optimal number of clusters for clustering data sets. The
proposed method is based on the cluster number optimization and in
the same time, finds the potential clusters seeds. This method can be
used as an initialization of k-means algorithm or directly as a clustering
algorithm without prior knowledge of the clusters number. In this ap-
proach, elitist population is composed of the individuals with potential
clusters seeds. We introduce a new mutation strategy according to the
neighborhood search and new evaluation criteria. This strategy allows us
to find the global optimal solution or near-optimal solution for clustering
tasks, precisely finding the optimal clusters seeds. The experimental re-
sults show that our algorithm performs well on multi-class and large-size
data sets.

Keywords: Elitist approach, Evolutionary algorithm, Clustering, Op-
timal number of clusters, Cluster seed initialization.

1 Introduction

Clustering is a challenging research area in data mining. A common form of clus-
tering is partitioning the data set into homogeneous clusters such that members
of the same cluster are similar and members of distinct clusters are dissimilar.
Determining the optimal clusters number is one of the most difficult issues in
clustering data. In this work, we deal with the clustering problem without prior
knowledge on the appropriate clusters number and we try to propose the global
optimal or near-optimal cluster seeds. Clustering algorithms can be broadly clas-
sified into two groups: hierarchical and partitional [1]. Hierarchical algorithms
recursively find nested clusters either in a divisive or agglomerative method. In
contrast, partitional algorithms find all the clusters simultaneously as a partition
of the data and do not impose a hierarchical structure. Common formulation of
the clustering problem is assuming S is the given data set include n data points:
S = {x1, x2, ..., xn} where xi (i = 1, ..., n) is a real vector d−dimensions and an
integer k. The goal of clustering is to determine a set of k clusters C1, C2, ..., Ck
such that the points belonging to the same cluster are similar, while the points
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belonging to different clusters are dissimilar in the sense of the given metric. The
problem of finding an optimal solution to the partition of n data into k clusters
is NP − complete, and heuristic methods are widely effective on NP − complete
global optimization problems and they can provide good sub-optimal solutions in
reasonable time. We propose a clustering algorithm that can detect compact and
hyperspherical clusters that are well separated using an Euclidean distance. To
detect hyperellipsoidal clusters, we can use a more general distance function such
as the Mahalanobis distance for example [2]. Some recent research has shown
that the problem of searching efficient initialization methods for k-means clus-
tering algorithm is a great challenge. Numerous initialization methods have been
proposed to address this problem. Celebi and al. [3] present an overview of these
methods with an emphasis on their computational efficiency. In their study, they
investigate some of the most popular initialization methods developed for the
k-means algorithm. They describe and compare initialization methods that can
be used to initialize other partitional clustering algorithms such as fuzzy c-means
and its variants and expectation maximization, and they conclude that most of
these methods can be used independently of k-means as standalone clustering
algorithms. Some others methods are proposed, based on metaheuristics such as
simulated annealing [4] and genetic algorithms [5]. These algorithms start from a
random initial configuration (population) and use k-means to evaluate their so-
lutions in each iteration (generation). There are two main drawbacks associated
with these methods. First, they involve numerous parameters that are difficult
to tune [6]. Second, due to the large search space, they often require a large
number of iterations, which renders them computationally prohibitive for most
of the data sets. This paper presents a method that proposes, in the same time,
the optimal cluster number with the initial clusters seeds. We don’t use k-means
to evaluate our solution because it depends on several parameters itself (k, ini-
tial seeds, . . . ), or any other clustering algorithm, so, our method can be used
as standalone clustering algorithms without a prior knowledge of cluster num-
ber. Generally metaheuristics approaches involve numerous parameters that are
difficult to tune, to deal with this problem, we propose an Elitist Evolutionary
Approach that involves numerous evolutionary algorithms (EAs). The difference
between them is implemented by the parameters and we select only the best
concurrent solution. The remainder of this paper is organized as follows: Section
2 describes the related work on initialization and elitist methods. Section 3 gives
the details of the new proposed algorithm, including the algorithm description,
motivation of population initialization, as well as the mutation process based
on neighborhood search. Section 4 shows the experimental results on data sets
clustering. Finally, we draw the conclusions.

2 Related Work

In this section, we briefly review some of the commonly used initialization meth-
ods and elitist methods.
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2.1 Initialization Methods

Celebi and al. [3] investigate some of the most popular initialization methods
developed for the k-means algorithm. Their motivation is threefold. First, a large
number of initialization methods have been proposed in the literature. Second,
these initialization methods can be used to initialize other partitional clustering
algorithms such as fuzzy c-means and its variants and expectation maximiza-
tion. Third, most of these initialization methods can be used independently of
k-means as standalone clustering algorithms. They review some of the com-
monly used initialization methods with an emphasis on their time complexity.
They conclude that the super linear methods often have more elaborate designs
when compared to linear ones. An interesting feature of the super linear methods
is that they are often deterministic, which can be considered as an advantage
especially when dealing with large data sets. In contrast, linear methods are of-
ten non-deterministic and/or order-sensitive. A frequently cited advantage of the
more elaborate methods is that they often lead to faster k-means convergence,
i.e. require fewer iterations, and as a result the time gained during the cluster-
ing phase can offset the time lost during the initialization phase. This may be
true when a standard implementation of k-means is used. However, convergence
speed may not be as important when a fast k-means variant is used as such
methods often require significantly less time compared to a standard k-means
implementation. Some other initialization methods such as the binary-splitting
method [7] takes the mean of data as the first center. In iteration t, each of the
existing 2t−1 centers is split into two new centers by subtracting and adding a
fixed perturbation vector. These 2t new centers are then refined using k-means.
There are two main disadvantages associated with this method. First, there is no
guidance on the selection of a proper value for the vector, which determines the
direction of the split [8]. Second, the method is computationally demanding since
after each iteration k-means has to be run for the entire data set. Some other
methods based on metaheuristics such as simulated annealing [4] and genetic
algorithms [5]. These algorithms start from a random initial configuration and
use classical algorithm such as k-means to evaluate their solutions in each itera-
tion. There are two main disadvantages associated to these methods. First, they
involve numerous parameters that are difficult to tune (initial temperature, cool-
ing schedule, population size, crossover/mutation probability, etc.) [6]. Second,
due to the large search space, they often require a large number of iterations,
which renders them computationally prohibitive for all but the smallest datasets.
Interestingly, with the recent developments in combinatorial optimization algo-
rithms, it is now feasible to obtain globally minimum clusterings solution for
small data sets without resorting to metaheuristics [9].

2.2 Elitist Methods

Prevent promising individuals from being eliminated from the population during
the application of genetic operators is a very important task. To ensure that the
best chromosome is preserved, elitist methods copy the best individual found
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so far into the new population. Different EAs variants achieve this goal of pre-
serving the best solution in different ways. However, elitist strategies tend to
make the search more exploitative rather than explorative and may not work for
problems in which one is required to find multiple optimal solutions [10]. Elitist
methods are widely applied on different domains, Qasem and Shamsuddin [11]
developed a Mimetic Elitist Pareto Differential Evolution algorithm, in order to
deal with the hybrid learning problem (unsupervised and supervised learning),
they use the multi-elitist approach to help the learning algorithm to get out
of local minimum, therefore improving the accuracy of the proposed learning
model. Das and al. [12] proposed a method based on a modified version of classi-
cal Particle Swarm Optimization algorithm, known as the Multi-Elitist Particle
Swarm Optimization model. The proposed algorithm has been shown to meet or
beat the other state of the art clustering algorithms in a statistically meaningful
way over several benchmark datasets. The unique disadvantage of this algorithm
is choosing the best suited parameters to find optimal solution. Gou and al. [13]
apply Multi Elitist approach on quantum clustering problems. They use these
methods to avoid getting stuck in local extremes. They used the mechanism of
cluster center updating with a property of k-means clustering, that can influ-
ence the clustering results. This is one of disadvantages of this method, adding
parameters that the method is based on. According to elitist strategy that work
for problems in which one is required to find multiple optimal solutions, we in-
troduce a new approach where multi evolutionary algorithms run together at
the same time to compare their proposed solutions, and we select only the best
one which is the optimal or nearest optimal solution.

3 Proposed Approach

We propose an Elitist Evolutionary Clustering Algorithm (EECA) (figure 1)
that combine different techniques such as evolutionary algorithm with elitist
approach and local search approach. This approach allows us to determine the
optimal cluster number as well as finding cluster seeds.

3.1 Evolutionary Algorithm

In this section, we try to explain succinctly the evolutionary algorithm which is
shown in right of the figure 1.

Gene Representation. A potential solution of our problem is a combination of
potential optimal seeds, we try to find optimal number of these seeds. According
to this, we consider a genetic individual (chromosome) as a combination of kmax
potential optimal seeds, kmax being parameter of the algorithm. Each gene in
genetic individual is an integer number, which takes values from {1, 2, .., n}. This
value indicates the data point identification. The gene with value 0 indicates that
there is no point selected as center. The number of genes in the optimal solution
different from 0 represents the optimal cluster number. Each data point is a
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Fig. 1. EECA schema

d − dimensions vector containing the d real values. We want to diversify the
population, for this, we associate a frequency rate at each data point, each new
genetic individual will be composed by the data point had not been used before,
that have frequencies equal or close to zero.

Population Initialization. The population initialization is created by nbpop
genetic individuals with nbpop given before. Each gene in the genetic individual
is selected randomly on : {0, 1, 2, ..., n} data set identification. Each genetic in-
dividual corresponds to a specific clustering solution in terms of cluster seeds.
We impose in the genetic individual to have a different gene to obtain specific
and different clusters seeds. We also impose to have an initial population with-
out redundant genetic individuals. Studying individual is applied in each genetic
individual which is created. And then, we verify that is no identical genetic
individual, in the population which has the same gene. At this step, the first
population is ready. Once the population is evaluated and sorted according to
the fitness function we operate the genetic operator described bellow.

Genetic Operators. The crossover operation produces new offspring genetic
individuals from parent individual. Two new genetic individuals are created by
exchanging genes from two parent chromosomes. This exchange may start from
one or several positions in the chromosomes called cut point. We can use two
types of crossover: a randomly determined cut point or an optimized cut point.
In the latter case, we determine the best point before the cut, this implies an
evaluation of each possible cut for the individual. For our case, we first use a ran-
domly chosen cut point which is modified to obtain optimized cut point, which
implies evaluation of each new created individual. The first child resulting from
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by repeated randomly crossover which is better than initial child will determine
the optimal cut point. The mutation makes gene inversion in the genetic indi-
vidual. This genetic operator is used to avoid the degeneration of the population
in order to prevent a too fast convergence of the genetic algorithm. If imple-
mented appropriately, the operator can make the algorithm able to leave from
local optimum. The mutation is usually applied with a small probability (probm,
algorithm parameter). The mutated gene is chosen according to neighborhood
search (section 3.2), we should verify if a new gene value is not in neighborhood
of other genes composing the genetic individual. It is evident that we study the
composition of each creation of new individual to have a different gene in a
specific genetic individual.

Evaluation Criteria. The first objective is to find the optimal number of clus-
ters, where clusters are compact and separated between them. Several measures
have been proposed, Milligan and Cooper [14] presented a survey and compari-
son of 30 internal validity indexes for clustering algorithms and out-perform that
CH(k) [15] is one of the best solutions.

This index represents a ratio of the sum of between-cluster and the sum of
within-cluster, which is expressed as follows:

CH(k) :=
[traceB/(k − 1)]

[traceW/(n− k)]

Where n is the number of data points, k is clusters number.

traceB :=

k∑
i=1

|Ci| ‖Ci − x‖2

traceW :=
k∑
i=1

∑
j∈Ci

‖xj − Ci‖2

With |Ci| is the number of assigned objects to the cluster Ci (i = 1, . . . , k); Ci is

a center of class Ci and x = 1
n

n∑
i=1

xi is the global center of all data points. The

optimal clusters number is found by maximizing Calinski and Harabasz index
(CH − index).

The second objective is to find clusters that are compact and separate, so
we introduce a measure that minimizes the overlapping between clusters, this
criteria is defined by :

OP =

k∑
i�=j

Card(Ci ∩ Cj)

We compare our method with two fitness functions, first test series focus on
maximizing CH(k) in each EAi and in the elite population, where second test
series focus on minimizing OP in each EAi and sort the elite population with
CH(k).
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3.2 Neighborhood Search

When we operate the mutation we should firstly verify if all genes are different;
secondly, according to the obtained potential clusters seeds, we introduce a new
verification process where we impose that a new gene must not be in the neigh-
borhood of others genes composing the genetic individual. For this, we introduce
an automatic method to detect the limit of the cluster.

Cluster limit detection. In order to obtain the neighborhood seed, we search the
data points contained in the cluster, we select the ones close enough to the seed.
We choose the threshold Σ (algorithm parameter) by computing the distance
between all the data points and the cluster seed and ordering them from the
closest object to the farthest. We then try to find an abrupt increasing of distance
that will indicate the cluster limit. We choose to use the peak detection method
presented by Palshikar [16] applied on differential distances. Other cluster limit
detection might be used, but this one is fast and gives the algorithm a complexity
of O(n × d × (p + g)), where n is the number of data points, d the number of
dimensions, p the population size and g the number of generations.

Then, we operate mutation by changing gene value by new value which is not
in the neighborhood of other genes composing the genetic individual, and if we
don’t find this new gene, we change the value by 0 (no center selected).

3.3 Elite Population

Generally, the goal of the adaptive elitist-population search method is to adap-
tively adjust the population size according to the features of our technique to
achieve, firstly, a single elitist individual searching for each solution; and sec-
ondly, all the individuals in the population searching for different solutions in
parallel. For satisfying multi modal optimization search, we define the elitist in-
dividuals in the population as the individual with the best fitness on different
solutions of the multiple domain. These elitist individuals define the elite popu-
lation. Then we propose the elitist genetic operators that can maintain and even
improve the diversity of the population and performing different evolutionary al-
gorithms. A major advantage of using EAs over traditional learning algorithms
is the ability to escape from local minimum using genetic operators [17]. The
evolutionary algorithm depend on 4 parameters : nbpop, probm, nbiter and Σ. We
perform as much as possible many evolutionary algorithms according to different
values of these parameters and then we select the best solution, which compose
elite population, without focusing on setting parameters. From this elite popu-
lation we select the best solution (elite individual), which is the optimal solution
for our problem.

4 Experimental Results

To evaluate the performance of the proposed method, we proceed several ex-
periments on data sets from University of California at Irvine (UCI) machine
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Table 1. Datasets description

Dataset No. Points No. Attributes No. Clusters

Iris 150 4 3
Vehicule 846 18 4
Haberman 306 3 2
Synthetic 500 2 5
Wine 178 13 3
Blood Tranfusion 748 4 2
Seed 210 7 3
Ecoli 336 7 8

learning benchmark repository [18]. Data sets information are summarized in
Table 1.

In our experiments, we perform an Elitist Algorithm with varying different
parameters values in each Evolutionary Algorithm. We vary Evolutionary Algo-
rithm parameters nbpop, probm, nbiter and Σ as follow :

– nbpop ∈ {50, 100, 150}
– probm ∈ {0.1, 0.2, 0.3}
– nbiter ∈ {200, 300, 500}
– Σ ∈ {1, 2, 3}

For each data set we perform the elitist algorithm with 18 EAs and kmax = 10.
The results of finding optimal k are illustrated in table 2. We compare our
method with the two fitness functions presented before. First test series focus
on maximizing CH(k) in each EAi and in the elite population (EACH corre-
sponding column in table 2). The second test series focus on minimizing OP
in each EAi and sort the elite population with CH(k) (EECA corresponding
column in table 2).

Table 2. Results description

Dataset k-real EACH EECA

Iris 3 2 3
Vehicule 4 2 4
Haberman 2 2 2
Synthetic 5 5 5
Wine 3 2 3
Blood Tranfusion 2 2 2
Seed 3 2 3
Ecoli 8 7 8

As we can see in the table 2, we find exactly the same number of clusters
as in real data sets using overlapping fitness function combined with CH(k)
index. When only CH(k) index is used, we always find k = 2, (except for 2
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data sets, Ecoli and Synthetic data sets). This result can be explained by the
formula of CH(k) index, when we try to maximize only this index, we converge
to small number of clusters. To find the data set partitions, we use a cluster
limit detection method based on hyperspherical cluster forms. For Synthetic
data set which presents prefect hyperspherical clusters, the two fitness functions
performs perfectly. But in other data sets it seems important to consider the
overlapping fitness in the first, and then to select the better solution according
to the CH(k) index. To confirm our results, we visualize some data sets using
scatter plot methods [19] which represent all 2D projection of the data set. The
figure 2 represents the projection of iris data set, and the figure 3 represents the
projection of Haberman data set, as we can see in the figures the data points
colors (different forms) represent the real clusters, and in red (square form) we
can see the clusters seeds that are detected by our method. We can note that
each of them corresponds to the real clusters, and can be considered as the center
of the different clusters or as initial seed for any clustering algorithm.

These results and the visualizations showed the effectiveness of our methods
on data sets that have compactness clusters structures. As we can see in the figure
4, that represent a synthetic data set, composed by five clusters, with Gaussian
distribution. We can easily adapt our method with changing and adapting dis-
tance measures to extract other cluster structures. In fact, for this we need to

Fig. 2. Scatter plot visualization of Iris data set with detected seeds
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Fig. 3. Haberman data set with detected seeds

build a good benchmark data bases. We can also improve our method with al-
lowing an overlapping degree between different extracted clusters. This approach
allows us to apply our method on more different data sets structures that can
be added on the benchmark.

5 Conclusion

This article proposes a new method that finds at the same time the optimal clus-
ter number and proposes the initial clusters seeds without a prior knowledge of
cluster number. We don’t use any other clustering algorithm to evaluate our solu-
tion, so, our method can be used as standalone clustering algorithms dealing with
hyperspherical clusters. Unlike other algorithms such as k-means, our approach
do not need to fix a priori the clusters number. We propose a new mutation pro-
cess using neighborhood search and we use, for this, an automatic cluster limit
detection method. We also introduce a new combined fitness function to evaluate
our solution. To deal with the problem of involving numerous parameters, we
propose an Elitist Evolutionary Approach that involve numerous evolutionary
algorithms (EAs). The difference between them is implemented through param-
eters and we select only the best concurrent solution. This proposition can also
address the problem of exploration of large search space. The initial popula-
tion of numerous evolutionary algorithms (EAs) is substantially different, so, we
can deal with the large data sets in few number of iterations. First results are
encouraging, as meaningful clusters seeds have been found from different data
sets. Results showed the effectiveness of our methods on data sets that have
compactness clusters structures. We can easily adapt our method with changing
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Fig. 4. Synthetic data set with detected seeds

and adapting distance measures to extract other cluster structure. Concerning
further work, we plan to test our approach to different benchmark data bases
to detect hyperellipsoidal clusters or other data sets structures and we think
improving our methods with allowing an overlapping degree between different
extracted clusters. This approach allows us to apply our method on more dif-
ferent data sets structures that can be added on the benchmark. We want also
to apply our approach on different subspaces, we think that the optimal cluster-
ing can be different according to the subspace data projection. And then, our
method can be applied on multiview clustering or on subspace clustering.
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Abstract. Crowdsourcing is a promising solution to problems that are difficult
for computers, but relatively easy for humans. One of the biggest challenges in
crowdsourcing is quality control, since high quality results cannot be expected
from crowdworkers who are not necessarily very capable or motivated. Sev-
eral statistical crowdsourcing quality control methods for binary and multinomial
questions have been proposed. In this paper, we consider tasks where crowd-
workers are asked to arrange multiple items in the correct order. We propose a
probabilistic generative model of crowd answers by extending a distance-based
order model to incorporate worker ability, and propose an efficient estimation al-
gorithm. Experiments using real crowdsourced datasets show the advantage of
the proposed method over a baseline method.

1 Introduction

Crowdsourcing offers online marketplaces where specific tasks can be outsourced to a
large group of people. With the recent expansion of the use of crowdsourcing platforms,
such as Amazon Mechanical Turk, various professional and non-professional tasks, in-
cluding audio transcription, article writing, language translation, program coding, and
graphic designing, can now easily be outsourced. The popularity of crowdsourcing is
increasing exponentially in computer science as well, and researchers exploit it as an
efficient and inexpensive way to process a large number of tasks that humans can per-
form much more easily than computers, such as image annotation and web content
categorization. Crowdsourcing has been successfully applied to such fields as natural
language processing, computer vision, and human computer interaction [1–4].

One of the most challenging problems in crowdsourcing research is achieving quality
control to ensure the quality of crowdsourcing results, because there is no guarantee
that the ability of all workers is sufficient to complete the offered tasks at a satisfactory
level of quality. Moreover, it is known that some untrustworthy workers try to receive
remuneration while expending as little effort as possible, which results in outputs of no
value. Most crowdsourcing platforms allow requesters to check the submitted results
and to reject low-quality results; however, if their volume is large, realistically, they
cannot all be checked manually.

One popular approach to the quality control problem is to use tasks with known cor-
rect answers to evaluate the ability of each worker. This approach has been implemented

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 336–347, 2014.
c© Springer International Publishing Switzerland 2014



Crowdordering 337

B

A

E

D

C

Task1 Worker answers

H

G

J

G

I

Estimated
true ordering

E
stim

ation

A

B

C

D

E

A

E

C

D

A

C

E

B

D

B

A

C

D

E

F

G

H

I

J

H

F

G

B

J

I

H

G

J

F

I

H

F

J

G

I

Task2

items

Fig. 1. Overview of quality control problem for item ordering tasks in crowdsourcing. The ob-
jective is to estimate true ordering of given items from crowd-generated answers for each item
ordering task.

on several commercial crowdsourcing platforms such as CrowdFlower; however, its us-
age is limited because of the high cost of preparing the correct answers or the difficulty
of determining one unique answer. Another promising approach is to introduce redun-
dancy. A single task is assigned to multiple workers, and their responses are aggregated
by majority voting [5] or more sophisticated statistical aggregation techniques that con-
sider the characteristics of each worker or task, such as the ability of each worker and
the difficulty of each task [6–8].

In most existing approaches, it is assumed that the tasks are binary questions to which
binary answers (e.g., “yes” or “no”) are expected, or multiple-choice questions. Only
a few methods have been proposed that extend the applicability of the aggregation-
based quality control approach to more general crowdsourcing tasks [9]. Following the
the same line, we consider item ordering tasks, where workers are asked to arrange
multiple items in the correct order. Item ordering tasks, typical examples of which are
the ranking of web search results and ordering of items in a to-do list in according to
their dependencies [10], are frequently posted on crowdsourcing sites.

In this paper, we propose an aggregation-based statistical quality control method
for item ordering tasks. We model the generative process of a worker response (i.e.,
an ordering of items) using a distance-based probabilistic ordering model [11]. The
ability of each worker is naturally incorporated into the concentration parameter of
the distance-based model. We also present an effective algorithm for estimating the true
ordering, which is particularly efficient because the Spearman distance [12] is employed
as the distance measure between two different orderings of items.
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Word Ordering

Please arrange the words from (A) to (E) in the 
correct order so that the sentence makes sense.

Don't be so (A) to (B) naive (C) everything (D) 
believe (E) as the politicians say.

1st word

2nd word

3rd word

4th word

5th word

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

Fig. 2. Example of a word ordering task. The correct answer is (B)(E)(A)(D)(C).

It should be noted that Chen et al. also proposed a quality control method for item
ordering tasks [13] based on a pairwise ranking model; however, their method focuses
on finding the correct ordering of a single (large) set of items, whereas our method
focuses on solving multiple different (relatively small) ordering tasks simultaneously.
Additionally, since their method is based on pairwise comparisons, it is not always
suitable for tasks where more than two items are needed to determine their correct
order. Fig. 2 shows an example of such a task.

We describe our experiments in which word and sentence ordering tasks were posted
on a commercial crowdsourcing marketplace. We compare our quality control method
to an aggregation method that does not consider the abilities of workers. The experi-
mental results show that our method achieves answers that are more accurate than those
of baseline method.

In summary, this paper makes three main contributions:

1. We address the quality control problem for a set of item ordering tasks (Section 2).
2. We propose a generative model of worker responses to item ordering tasks that

extend a distance-based probabilistic ordering model to incorporate the ability of
each worker (Section 3).

3. We introduce an efficient algorithm to estimate the true ordering from multiple
worker responses (Section 4).

2 Crowdsourcing Quality Control for Item Ordering Tasks

We first define the crowdsourcing quality control problem related to item ordering tasks,
where each ordering task requires crowdworkers to place given items in the correct
order. We then present a model for aggregating the answers collected from multiple
workers to obtain answers that are more accurate.

Let us assume I ordering tasks, whose i-th task has Mi items to be ordered. The
true order is represented as a rank vector πi = (πi,1, πi,2, . . . , πi,Mi), where πi,j
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indicates the position of item j of task i in the true order of the items of Mi [11]. For
example, for a task with five items indexed as 1, 2, 3, 4, and 5, whose true order is given
as (2, 4, 1, 3, 5), the true rank vector is (3, 1, 4, 2, 5). Note that πi is a permutation of
(1, 2, . . . ,Mi).

We resort to crowdsourcing to obtain estimates for the true rank vectors. It is assumed
that a total of K crowdworkers is employed. In the following, I(k) denotes the indices
of tasks on which the k-th worker works, and Ki denotes the indices of the workers who
work on the i-th task. π(k)

i = (π
(k)
i,1 , π

(k)
i,2 , . . . , π

(k)
i,Mi

) denotes the rank vector that the
k-th worker gives to the i-th item ordering task.

Our goal is to estimate the true rank vectors {πi}i∈{1,2,...,I} given the (unreliable)

rank vectors {π(k)
i }k∈{1,2,...,K},i∈I(k) collected using crowdsourcing.

3 Model

To resolve the issue of the aggregation problem of the crowd-generated answers to
item ordering tasks, we present a statistical model of the generative process of worker
responses, so that we apply statistical inference to estimate the true order from the
observed responses.

3.1 Distance-Based Model for Orders

We first review the probabilistic ordering model on which our generative model of
crowdworker responses is based. We chose a distance-based model [11] from several
variations of the ordering models. A distance-based model gives the probability of a
rank vector π̃, given a modal order π and a concentration parameter ∂, namely,

Pr[π̃ | π, ∂] = 1

Z(∂)
exp (−∂d(π̃,π)) ,

where d(·, ·) denotes a distance between two rank vectors, and Z(∂) is a normalizing
constant given as

Z(∂) =
∑
π̃

exp (−∂d(π̃,π)) .

Specifically, we employ the Euclidean distance (also referred to as the Spearman dis-
tance in the ranking model literature) due to its convenience for deriving an effective
parameter estimation method, which will be described later. The distance-based model
in which the Spearman distance is applied is called the Mallows ε model [12].

3.2 Extension of the Distance-Based Model for the Crowdsourcing Setting

In crowdsourcing, some workers may have sufficient abilities to provide accurate or-
ders, while some are unskilled and often submit wrong orders. To capture such worker
characteristics, we incorporate the worker dependent concentration parameters into the
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distance-based ordering model. Namely, it is assumed that the k-th worker has his/her
own personal concentration parameter ∂(k), and the generative model for the worker is
then given as

Pr[π̃ | π, ∂(k)] =
1

Z(∂(k))
exp

(
−∂(k)d(π̃,π)

)
.

In this model, the answer of a worker who has a high concentration parameter ∂(k) is
likely to be an accurate order whose distance from the true order (i.e., the modal order
π) is small. Therefore, we can interpret the personal concentration parameter ∂(k) as
the ability parameter of the k-th worker.

4 Estimation

Based on the distance-based crowd-ordering model introduced in the previous section,
we introduce a maximum likelihood estimation method to obtain estimates for the true
rank vectors as well as the worker ability parameters. Our strategy for optimization is
to repeat two optimization steps: optimizing the true rank vector and optimizing the
worker ability.

4.1 Objective Function

We apply the maximum likelihood estimation to estimate the true rank vector {πi}i
and the worker ability parameters {∂(k)}k, given the crowd-generated rank vectors

{π(k)
i }i,k. The objective function for the maximization problem is the log-likelihood

function L, given as

L({∂(k)}k, {πi}i) =
∑
k

∑
i∈I(k)

log
1

Z(∂(k))
exp

(
−∂(k)d(π

(k)
i ,πi)

)
= −

∑
k

∑
i∈I(k)

{
∂(k)d(π

(k)
i ,πi) + log

∑
π̃

exp
(
−∂(k)d(π̃,πi)

)}
. (1)

4.2 Optimization

Our strategy for optimizing the objective function (1) w.r.t. {∂(k)}k and {πi}i is to
repeat the two optimization steps, that w.r.t. {∂(k)}k and that w.r.t. {πi}i. Since L is not
a convex function, and therefore, its solution depends on the initial parameters, we start
with the solution assuming all workers have equal abilities, specifically, ∂(k) = ∂(∂) for
an arbitrary pair of k and γ.

One major virtue of our model is that the optimization problem is decomposable
with respect to each worker and task, that is, each small optimization problem solved at
each iteration step depends always on one single variable (a worker ability or a mode
order), so that the computational cost linearly is dependent on the numbers of workers
and tasks.
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Optimization w.r.t. True Rank Vectors. Given that all the worker ability parameters
{∂(k)}k are fixed, the true rank vectors {πi}i are obtained by maximizing the first term
of the objective function (1). Optimization with respect to {πi}i is a combinatorial op-
timization problem that is often computationally hard to solve; however, we are able to
solve it efficiently by employing the Spearman distance as the distance measure d(·, ·).

The optimal true rank vector πi for task i is given as follows1. First, for each item
m(= 1, . . . ,Mi), we calculate a weighted rank wi,m, which is a weighted mean of the
ranks given by workers weighted by the worker abilities,

wi,m =
1

|Ki|
∑
k∈Ki

∂(k)π
(k)
i,m.

The maximum likelihood estimator of the true item ordering is given by sorting the
items by wi,1, wi,2, . . . , wi,Mi in ascending order. It should be noted that each {πi}i is
obtained independently of the others.

Optimization w.r.t. Worker Ability Parameters. Optimization with respect to the
worker ability parameters ∂(k) with fixed true rank vectors {πi}i is performed by nu-
merical optimization. The objective function (1) is represented as the sum of the differ-
ent objective functions {J (k)}k, where J (k) for each k is defined as

J (k)(∂(k)) = ∂(k)d(π
(k)
i ,πi) + log

∑
π̃

exp
(
−∂(k)d(π̃,πi)

)
.

Noting that J (k)(∂(k)) depends only on ∂(k), we can considerK independent optimiza-
tion problem with only one variable.

Since only a single variable function J (k)(∂(k)) needs to be considered to optimize
∂(k), the optimization is easily performed by applying a standard optimization method.
In the experiments, we employed a simple gradient descent method.

5 Experiments

We collected two crowdsourced datasets, one for word ordering tasks, and the other for
sentence ordering tasks. We experimentally evaluated the advantages of our model as
compared to a baseline method.

5.1 Datasets

We collected two datasets using Lancers2, which is a general purpose crowdsourcing
marketplace. Table 1 gives the general statistics of the datasets.

Word Ordering. Word ordering is a task whose objective is to order given English
words into a grammatically correct sentence. The word ordering problem can be a

1 Due to the space limitation, we omit the proof of the optimality.
2 http://lancers.jp

http://lancers.jp
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Table 1. Statistics about the datasets

#tasks #workers
Avg. #items Reward for #all obtained

per task each task orderings

Word ordering 20 15 5.2 $0.05 300
Sentence ordering 13 15 5.1 $0.07 195

subproblem of machine translation between languages with different grammatical word
ordering, such as English to Japanese translation. Although several methods have been
proposed to solve this ordering problem [14], computer programs still cannot easily per-
form this task. However, humans, especially the native speakers of the target language,
can skillfully perform the word ordering tasks. The workers were given an English sen-
tence with five or six randomly shuffled words, and asked to correct the order of the
words. An example of the task is given in Fig. 2. Since we had the correct order of each
sentence as the ground truth, we could evaluate the accuracies of our estimation results.

Sentence Ordering. Sentence ordering is a task in which given sentences are ordered
such that the aligned texts logically make sense. It emulates several tasks that we pre-
sume are posted in crowdsourcing marketplaces, for example, to revise a piece of writ-
ing such that its focal point is emphasized more clearly ,or ordering items in a to-do
list by their dependencies [10]. In each sentence ordering task, a paragraph consisting
of five or six sentences whose order was permuted was presented to the workers, and
they were requested to arrange the sentences correctly. Fig. 3 shows an example of the
sentence ordering task.

5.2 Results

We applied our method to the two crowd-generated datasets, and calculated the Spear-
man distance (i.e., the squared error) between each estimated rank vector and the ground
truth rank vector. We also tested a baseline method that does not consider the workers’
ability. Concretely, we fixed the worker ability parameter ∂(k) = 1 for all workers k,
and then optimized the objective function (1) with respect only to {πi}i. It should be
noted that our proposed method uses the solution of this baseline method as the initial
parameters.

The number of workers involved in each task directly affects the monetary cost of
posting tasks to an actual crowdsourcing marketplace. In order to investigate the im-
pact on the estimation accuracy engendered by the number of workers assigned to each
task, we randomly selected n (ranging from 3 to 15) workers from the all workers for
each task, and only used the responses of the selected workers for the estimation. We
examined the averaged estimation errors of 50 trials. The results are shown in Fig. 4.

In the word ordering task, our proposed method drastically reduced the estimation er-
ror of the baseline method when the number of workers assigned to each task was more
than four. It is worth mentioning that the averaged squared error of our method was
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Sentence Ordering

Please arrange the following five sentences so that 
the whole passage makes sense.

A. It's not outsourcing.

B. Hobbyists, part-timers, and dabblers suddenly 
have a market for their efforts, as smart companies in 
industries as disparate as pharmaceuticals and 
television discover ways to tap the latent talent of the 
crowd.

C. The labor isn’ t always free, but it costs a lot less 
than paying traditional employees. 

D. Technological advances in everything from product 
design software to digital video cameras are breaking 
down the cost barriers that once separated amateurs 
from professionals. 

E. It's crowdsourcing.

1st sentence

2nd sentence

3rd sentence

4th sentence

5th sentence

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

Fig. 3. Example of a sentence ordering task. The passage in this example is from The Rise of
Crowdsourcing by Jeff Howe. The correct answer is (D)(B)(C)(A)(E).

only 0.902 when all the collected responses were used, while the squared error easily
reached 2. When the order of a pair of items that were adjacent in the correct order
were incorrectly estimated, the squared error was 2. For example, a rank vector was
estimated as (2, 1, 3, 4, 5), when the correct one was (1, 2, 3, 4, 5). This result implies
that our method reduces the number of such errors by approximately half.

Our method outperformed the baseline method in the sentence ordering task as well,
when the number of workers assigned to each task was more than five. Since the sen-
tence ordering task is generally more difficult than the word ordering task, the averaged
estimation errors of both the proposed and baseline methods in the sentence order-
ing task increased as compared with those in the word ordering task. The best result
achieved by our method was a squared error of 4.25, which is relatively large; however,
considering the expected squared errors when using random guessing is 21.2, it can be
said the result is acceptable. In addition to the Spearman distance, we compared our
method and the baseline method in three different measures shown in Table 2. The re-
sults in all the measures demonstrated the performance improvement of our method in
both the word ordering and sentence ordering tasks.
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Fig. 4. Accuracy evaluation of estimated orders comparing the proposed method and the baseline
method. Averaged squared errors between estimated orders and ground truth orders along with
the number of workers per task are shown. In both the word ordering and sentence ordering tasks,
the proposed method outperforms the baseline method in most cases.

Fig. 5 shows the relations between the estimated worker ability parameters {∂(k)}k
and the averaged squared errors of each worker (against the ground truths). These re-
sults show that the true worker ability (i.e., the worker error versus the ground truths)
certainly varies from person to person, and that the proposed method gives higher
weights to superior workers, which explains its improved performance. In fact, the
estimated worker abilities and the worker errors showed strong negative correlations
of −0.853 and −0.695 for the word ordering tasks and the sentence ordering tasks,
respectively.

Finally, we mention the scalability of our proposed method. Generally, estimated
orders show convergence after five to ten iterations. The ability parameters for good
workers require more iterations than those for inferior workers. As discussed before, the
complexity of each iteration depends linearly on the numbers of workers and
tasks.

In summary, we verified that the proposed method shows clear advantages as com-
pared to the baseline method for estimating the correct orders in both the word ordering
and sentence ordering tasks. We also confirmed that the proposed method precisely
estimates worker ability.

6 Related Work

One of the fundamental challenges in crowdsourcing is controlling the quality of the
obtained data. Crowdworkers are rarely trained and they do not necessarily have ade-
quate ability to complete the tasks [3]. There also exist large differences between the
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Table 2. Evaluation of estimated orders in several measures. Error rate is the fraction of tasks
where the estimated order did not exactly match with the ground truth order, Hamming distance
counts the number of items whose position is different from the ground truth, and Kendall dis-
tance counts the number of item pairs who are in the opposite order of the ground truth. Average
Hamming distance and Kendall distance of task are shown. Number of workers per task is fixed
to 15. The results in all of these measures clearly indicate that the proposed method is superior to
the baseline in both the word ordering and sentence ordering tasks.

Task Method Error rate
Avg. Avg.

Hamming distance Kendall distance

Word ordering
Baseline 0.350 0.800 0.600
Ours 0.200 0.500 0.350

Sentence ordering
Baseline 0.769 2.231 1.692
Ours 0.615 1.923 1.385

skills of individual workers. Moreover, a number of malicious workers participate in
crowdsourcing [15]. They are motivated by financial rewards and try to complete the
tasks as quickly as possible with the minimum effort by providing illogical submissions.

A widely used approach is to obtain multiple submissions from different workers
and aggregate them by applying a majority vote [5] or other rules. Dawid and Skene ad-
dressed the problem of aggregating the medical diagnoses of multiple doctors to achieve
more accurate decisions [6]. Smyth et al. applied the method to the problem of inferring
the true labels of images from multiple noisy labels [16]. Whitehill et al. explicitly mod-
eled the difficulty of each task [7], and Welinder et al. introduced the difficulty of each
task for each worker [8]. The usage of these methods is limited to the tasks that consti-
tute binary or multiple-choice questions; however, the tasks in crowdsourcing comprise
varied types of questions. A few methods have been proposed to extend the applicabil-
ity of the aggregation-based quality control approach to more general crowdsourcing
tasks [9].

Although the probabilistic models for ranking have been widely studied [11], only a
few studies in the literature focused on item ordering tasks in the context of crowdsourc-
ing. Chen et al. proposed a quality control method for item ordering tasks [13] based
on a pairwise ranking model; however, their method aims to find the correct ordering
of a single, large set of items, while our method focuses on solving multiple differ-
ent (relatively small) ordering tasks simultaneously. Additionally, since their method is
based on pairwise comparisons, it is not always suitable for tasks where more than two
items are needed to decide their correct positions. Wu et al. also employed the general
distance-based model in the context of learning to rank from multiple annotators [17],
while our approach employs a more specific distance measure, i.e., Spearman distance,
so that the inference is more simple and efficient.
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Fig. 5. Accuracy evaluation of estimated worker abilities. Relations between averaged squared
error of each worker’s responses to ground truths and estimated worker ability are shown. Strong
negative correlations (−0.853 and −0.695 for the word ordering tasks and the sentence ordering
tasks, respectively) are confirmed.

7 Conclusion

We addressed the problem of quality control for item ordering tasks in crowdsourc-
ing, where multiple workers are asked to perform each task, which consists of posi-
tioning given items in the correct order. By extending a distance-based probabilistic
ordering model to incorporate the ability of each worker, we built our proposed method
for aggregating the collected orders to obtain more accurate orders in a setting where
variability in the workers’ abilities exists. We also introduced an efficient algorithm to
estimate the true orders that employs the Spearman distance as the distance measure
in a distance-based ordering model. Experimental results on two kinds of crowdsourc-
ing tasks, word ordering tasks and sentence ordering tasks, showed that our method
successfully achieved more accurate orders than the baseline method, which does not
consider the worker’s ability.

Acknowledgments. Y. Baba was supported by the Funding Program for World-Leading
Innovative R&D on Science and Technology (FIRST Program).

References

1. Bernstein, M., Little, G., Miller, R., Hartmann, B., Ackerman, M., Karger, D., Crowell, D.,
Panovich, K.: Soylent: A word processor with a crowd inside. In: Proceedings of the 23rd
Annual ACM Symposium on User Interface Software and Technology, UIST (2010)

2. Bigham, J., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R., Miller, R., Tatarowicz, A.,
White, B., White, S., et al.: VizWiz: Nearly real-time answers to visual questions. In: Pro-
ceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology,
UIST (2010)



Crowdordering 347

3. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast – but is it good? evaluating
non-expert annotations for natural language tasks. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP (2008)

4. Sorokin, A., Forsyth, D.: Utility data annotation with Amazon Mechanical Turk. In: Pro-
ceedings of the 1st IEEE Workshop on Internet Vision (2008)

5. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? improving data quality and data
mining using multiple, noisy labelers. In: Proceeding of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD (2008)

6. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using
the em algorithm. Journal of the Royal Statistical Society. Series C (Applied Statics) 28(1),
20–28 (1979)

7. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose vote should count more:
Optimal integration of labels from labelers of unknown expertise. In: Advances in Neural
Information Processing Systems, vol. 22 (2009)

8. Welinder, P., Branson, S., Belongie, S., Perona, P.: The multidimensional wisdom of crowds.
In: Advances in Neural Information Processing Systems, vol. 23 (2010)

9. Lin, C., Mausam, M., Weld, D.: Crowdsourcing control: Moving beyond multiple choice. In:
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, UAI (2012)

10. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., Horvitz, E.: Human computation tasks
with global constraints. In: Proceedings of the 2012 ACM Annual Conference on Human
Factors in Computing Systems, CHI (2012)

11. Marden, J.I.: Analyzing and Modeling Rank Data, vol. 64. CRC Press (1995)
12. Mallows, C.L.: Non-null ranking models. I. Biometrika 44, 114–130 (1957)
13. Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking aggregation in

a crowdsourced setting. In: Proceedings of the 6th ACM International Conference on Web
Search and Data Mining, WSDM (2013)

14. Chang, P.C., Toutanova, K.: A discriminative syntactic word order model for machine trans-
lation. In: Proceedings of the 47th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, ACL (2007)

15. Eickhoff, C., de Vries, A.: How crowdsourcable is your task? In: Proceedings of the Work-
shop on Crowdsourcing for Search and Data Mining, CSDM (2011)

16. Smyth, P., Fayyad, U., Burl, M., Perona, P., Baldi, P.: Inferring ground truth from subjective
labelling of venus images. In: Advances in Neural Information Processing Systems, vol. 7
(1995)

17. Wu, O., Hu, W., Gao, J.: Learning to rank under multiple annotators. In: Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 1571–1576 (2011)



 

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 348–359, 2014. 
© Springer International Publishing Switzerland 2014 

Document Clustering with an Augmented Nonnegative 
Matrix Factorization Model 

Zunyan Xiong, Yizhou Zang, Xingpeng Jiang, and Xiaohua Hu 

College of Computing and Informatics, Drexel University, Philadelphia, USA 

{zunyan.xiong,yizhou.zang,xingpeng.jiang, 
xiaohua.hu}@drexel.edu 

Abstract. In this paper, we propose an augmented NMF model to investigate 
the latent features of documents. The augmented NMF model incorporates the 
original nonnegative matrix factorization and the local invariance assumption 
on the document clustering. In our experiment, first we compare our model to 
baseline algorithms with several benchmark datasets. Then the effectiveness of 
the proposed model is evaluated using datasets from CiteULike. The clustering 
results are compared against the subject categories from Web of Science for the 
CiteULike dataset. Experiments of clustering on both benchmark data sets and 
CiteULike datasets outperforms many state of the art clustering methods. 

Keywords: nonnegative matrix factorization, graph Laplacian, regularization, 
clustering, social tagging. 

1 Introduction 

Document clustering is an unsupervised machine learning technique aims to discover 
the classification of documents according to their similarities. So far many document 
clustering methods have been proposed, such as k-means [1], spectral clustering [2], 
non-negative matrix factorization (NMF) [3][4], and Probabilistic Latent Semantic 
Analysis (PLSA) [5] etc.  

Besides, traditional clustering methods mostly apply linear dimensional reduction 
to extract features of the data set. However, recent research has shown that most data 
structures are nonlinear. To deal with this problem, researchers referred to the idea of 
manifold learning. Manifold learning [6] is a nonlinear matrix dimensionality 
reduction approach that tries to discover the low dimensional structure for the data in 
the high dimension. There are several popular manifold learning methods, such as 
Isomap [7][8][9], Locally Linear Embedding [10], and Laplacian Eigenmaps [11] etc. 
In [12], Cai et al. proposed a graph regularized non-negative matrix factorization 
(GNMF). GNMF embedded manifold learning into nonnegative matrix factorization 
by means of local invariance assumption. Experiments proved that the manifold 
learning can significantly improve the clustering results. 

One defect of the aforementioned clustering methods is that they only focus on one 
dimension of the data. However, to better study the cluster dataset, it’s important to 
explore the data structure from two dimensions, because the geometrical structures of 
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vectors in two dimensions of the matrix are independent to each other. For example, 
in a document-term matrix, the similarities of the document vectors are independent 
of the term vectors.  

Motivated by addressing this problem, we propose a novel model named 
augmented nonnegative matrix factorization (ANMF), which incorporates both matrix 
factorization and manifold learning on both dimensions of the data matrix. Then, we 
applied the method in a social tagging system, CiteULike. One of the biggest 
challenges here is how to establish a reliable clustering evaluation method. Since most 
contents of the social tagging systems are created by users, rarely any criterion exists 
to classify the contents, not to mention a gold standard for evaluation. In this paper, 
the dataset applied for the experiment is from CiteULike. In this paper, we solve the 
problem by using the subject classification from Web of Science for the CiteULike 
dataset. The classification provides an objective and reliable standard to test the 
effectiveness of algorithms.  

2 Related Work 

2.1 NMF 

Nonnegative Matrix Factorization (NMF)[3][4][13] is widely applied in recent years 
and proved to be efficient and robust in various situations. NMF decomposes the 
original matrix to the product of two nonnegative matrices consisting of latent 
vectors. The factorized matrices consist of nonnegative components, which is 
convenient for data analysis. The relationship between the data points can be regarded 
as their distance of similarity on the graph.    

Given a data matrix , … , , the goal of nonnegative matrix 
factorization is to find two low-rank nonnegative matrices  and  whose product 
can best approximate the original matrix : 

 

Xu et al. apply NMF method in document clustering, and the experiment results 
indicate that NMF method outperforms the latent semantic indexing and the spectral 
clustering methods in document clustering accuracies [14]. However, one defect of 
NMF is that it does not preserve the relational structure of the data during the 
factorization process. Two documents that are originally similar in their learned latent 
represents maybe dissimilar after factorization. 

2.2 GNMF 

In[12], Cai et al. introduced Graph Regularized Nonnegative Matrix Factorization 
(GNMF) model, which is an extension of Nonnegative Matrix Factorization (NMF). 
The two nonnegative matrices represent the latent factors of the original matrix from 
the two dimensions respectively. GNMF model applies the local invariance assumption 
on the one of the two nonnegative matrices, which results in a regularization term to  
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the NMF objective function. The main idea of the local invariance assumption is that if 
two data points are close to each other in the original geometry, they should still be 
close in the new representation after factorized [12]. This is formulated as follows: ( ) 

where (·) denotes the trace of a matrix.  is a Laplacian matrix, which is 
defined by  [15].  is a diagonal matrix and its diagonal entries are the 
sum of columns or rows of the weight matrix  (for  is a symmetric matrix), i.e., ∑ .  

In the experiment, two image data sets and one document corpus were selected for 
clustering and showed GNMF outperforms NMF model, k-means and SVD methods. 
A flaw of this model is that it only considers the local invariance assumption from one 
dimension of the data.  

2.3 Document Clustering on the Web 

Many document clustering methods including the aforementioned ones are developed 
on the relation between documents and terms [14][5][12]. However, for web 
applications other than textual resources, it’s difficult to get direct content 
information. Sometimes even the textual documents are no longer available due to the 
instability of webpages. Therefore, it is necessary to exploit other information sources 
to improve the clustering effectiveness. Moreover, studies in [1] and [2] proved that 
compared to textual contents or keywords of Web pages, social tag information is 
more reliable for clustering. Besides, most traditional content-based clustering 
algorithms such as k-means and NMF ignore the semantic relations among terms. As 
a result, two documents with no common terms will be regarded as dissimilar even 
though they have many synonymic or semantically related terms. Therefore, it’s 
natural to incorporate other useful information to benefit the document clustering 
research. 

Ramage and Heymann proposed two methods in Web clustering that include both 
term and tag information [16]. One applied k-means in an extended vector that 
includes both term and tag information; the other used the term and tag information in 
a generative clustering algorithm based on latent Dirichlet Allocation. Their study 
shows that including tagging data can significantly improve the clustering quality.  

Lu et al. exploited the tripartite information, i.e. resources, users and tags, for 
webpage clustering [17]. The authors integrated the tripartite information together for 
better clustering performance. Three different methods are proposed in the paper. The 
first method applies the structure of the tripartite network to cluster Web pages;  
the second method uses the tripartite information in k-means by combining two  
or three different vectors together; the third method utilizes the Link k-means 
algorithm in the tripartite information. Results indicated that all clustering methods 
incorporating tagging information significantly outperform the content-based 
clustering. Furthermore, compared to the other two methods, the tripartite network 
has better performance.  
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3 Augmented Nonnegative Matrix Factorization Model 

In this section, we first propose the augmented nonnegative matrix factorization 
model, which simultaneously incorporates the geometric structures of both the data 
manifold and the feature manifold. Then, we introduce the model and its iterative 
algorithm in detail. 

The objective function of the ANMF model is: ( ) ( ) 

3.1 Notations and Problem Formalization 

Before describing the model, some useful definitions are introduced. Given a data set, , , … , , and , , … ,  be the set of data features. Their 
relational matrix is denoted by ( ) , where  denotes the weighting of 
the data feature  for the data point .  

For convenience, the meaning of notations used in the paper is summarized in 
Table 1. 

Table 1. Important notation used in this paper 

Notations Description Notations Description 
 data set data feature set 
 number of data points number of features 
 data matrix of size   data point in the matrix 
 data partition of size   feature partition of size 

 
 th column of  th column of  

 data graph Laplacian data degree matrix 
 feature adjacency matrix data adjacency matrix 
 a cell in the feature 

adjacency matrix 
 a cell in the data 

adjacency matrix 
 the number of latent 

component 
  

To analyze the similarities between the data points and the features respectively, 
the nonnegative matrix factorization can be applied to decompose the matrix  

 , 
such that the matrix U and V consists of the latent vectors associated to data points 

and features, i.e. the row vectors of U and V represent the latent vectors for the data  
and feature  respectively. In this approach, the latent vectors are supposed to represent 
the factorized meaningful parts (or topic) of the data set and their features. In order to 
quantize the similarities of data and features, we next use the idea of local invariance 
assumption to obtain two regularization terms, Regularizer I and Regularizer II.  
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3.2 Local Invariance Assumption 

The local invariance assumption is a general principle that can be interpreted in this 
context as following. If the data are close in some sense, after the NMF 
decomposition, they should still be close in the latent space. To measure the 
similarities between points of the original data, we construct two adjacency matrix  
and  from  for both feature and data vectors. The metric of the adjacency 
(closeness) between the vectors  (or ) can be defined in different ways, such 
as 0-1 weighting, heat kernel weighting and dot-product weighting, the definitions of 
the three weighting modes can be referenced in [18]. For each data point, only the  
nearest neighbors are considered. 

In the NMF decomposition, let  be the number of latent component, and 
M, . The data and features are mapped to points in a lower  dimensional Euclidean space. From a geometric point of view, their similarity can 

be easily compared by Euclidean distance.  
Consider the matrix ( ) , let  be the th column vector, i.e.   , , … . Then  can be regarded as the coordinates of feature  in the 

standard basis. Under the matrix decomposition, 

 , 
Let the th column vector of U be ( ) ( )| 1, 2, … , | | . Then the 

original vector  is approximated by the linear combination of vectors ’s: 

 ∑  (1) 

In this expression, now 's can be regarded as new basis vectors for the latent 
space, and the new coordinates for feature  hence are ( ) ( )|1, 2, … , | | . According to the local invariance assumption, if feature vector  and 

 are close in the original coordinates, they should still be close in the new 
coordinates. To quantize this information, we use the Euclidean distance in the latent 
space , weighted by their original closeness . As stated previously, 

 can be calculated by 0-1 weighting, heat kernel weighting or dot-product 
weighting. Also as in [12], we define the Regularizer I as 

 ∑ ,  
It can be seen heuristically that for  bounded, if  is large, meaning 

features ,  are close in the adjacency, the Euclidean distance is forced to be small, 
which implies the factored feature ,  are close. For computational convenience, 
we simplify the regularizer as following. 

 ∑ ,  
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,  

( ) ( ) ( ), 
where (·) denotes the trace of a matrix.  is a diagonal matrix and its diagonal 

entries are the sum of columns or rows of  (for  is a symmetric matrix), i.e., ∑ . The Laplacian matrix  is defined by  [15]. 
Incorporating this information to the NMF model, the objective function now 

becomes 

 ( ) (2) 

Here  is a regularization parameter that balances the effects of local invariance. This 
is the model considered in [1], called the graph regularized NMF method (GNMF). 

At this point, it is important to notice that for our problem, the local invariance 
assumption applies to the other piece of data, the features.  

To reflect the local invariance of the data, a second regularization term is added: 

 ∑ ,  

,  

   

where  is the adjacency matrix for the data and . Now the final cost 
function can be defined as 

 ( ) ( ) (3) 

We call this new model the augmented NMF (ANMF). Here the two regularization 
parameters  and  are positive numbers to be chosen later. They balance the 
effects of local invariance and the original NMF. Heuristically, the larger the 
parameters, the stronger will the local invariance be reflected in the results.  The 
optimal solution is obtained by minimizing  over all non-negative matrices  and . We will discuss the algorithms in next section. 

3.3 Iterative Algorithm 

As in the original matrix factorization model [19] or the GNMF model [12], the cost 
function  is not convex in  and  jointly. Thus it is not possible to find global 
minima. However, it is convex in  for fixed  and vice versa. In fact, the Lagrange 
multiplier method used in [2] is also applicable here to give an iterative algorithm. 
However the updating rules could only be expected converge to a local (not global) 
minima. 
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The cost function can be rewritten as ( )( ) ( )  ( ) 2 ( ) ( ) ( )+  

Here the basic properties ( )   ( ) and ( )   ( ) are used for 
any matrices  and . Next let  be the Lagrange multiplier for the condition 0 , and  be the multiplier for the condition 0 . The augmented 
Lagrangian is 

 ( ) 2 ( ) ( ) ( )(ΨU) (Φ )                                                (4) 

where Ψ ( )  and Φ ( ) . The partial derivatives are 

 2 2 2 Ψ (5) 

 2 2 2 Φ (6) 

The derivatives vanish at local minima. Using the Karush-Kuhn-Tucker (KKT) 
condition, 0, 0. The equations (5) and (6) become 

 ( ) ( ) 0 (7) 

 ( ) ( ) ( ) 0 (8) 

These equations give the following updating rules 

 ( )( )  (9) 

  (10) 

The updating rules of our model actually lead to convergence sequences, which are 
justified by Theorem 1 and its proof below. 

Theorem 1. Under the updating rules (9) and (10), the objective function (3) is non-
increasing. 

As in [12] and [18], the proof of Theorem 1 is essentially based on the existence of 
a proper auxiliary function for the ANMF. We give a simple proof on the ground of 
the following results from [12]. 

Lemma 2. Under the updating rule 

  (11) 
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The cost function  in GNMF, i.e. 

 ( ) (12) 

is non-increasing. 

Proof of Theorem 1. Consider the objective function  under the updating of  by 
(11). Then the last term  in  will not change. It suffices to prove 

 is non-increasing, which is exactly given by Lemma 2. 
Next consider  under the updating of . Since  is not changed, it suffices to 
consider ( )  

 

Now interchange ,  and replace  by ,  by  in Lemma 2,  is not 
increasing under the updating of  by (9).                                

One problem of the objective function of ANMF is that the solutions  and  
are not unique. If  and  are the solutions, then  and  can also be the 
solutions of the objective function. To obtain unique solutions, we refer to the 
approach from [12] that enforces the Euclidean distance of the column vectors in 
matrix  as one. This approach can be achieved by 

∑          (13) 

∑  (34) 

Table 2 shows the simple algorithm of ANMF model.  

Table 2. Algorithm of ANMF 

Input: the data matrix , regularization parameter  and . 
Output: the data-topic matrix , and the topic-feature matrix . 
Method: 
Construct weighting matrix  and , compute the diagonal matrix  and ; 
Random initialize U and V; 
Repeat (9) and (10) until convergence; 
Normalize U and V using (13) and (14). 

3.4 Complexity Analysis 

In this section, the computational cost of NMF, GNMF and ANMF algorithms are 
discussed. Supposing the algorithm stops after  iterations, the overall cost for NMF 
is ( ). For GNMF, the adjacency matrix needs ( ) to construct, so the 
overall cost for GNMF is ( ). As ANMF adds one more adjacency 
matrix on the other dimension, so the overall cost for ANMF is (). 
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4 Experiments 

4.1 Data Sets and Evaluation Metrics 

Before applying CiteULike data set, four data sets were chosen as the benchmark, 
which were Coil20, ORL, TDT2, and Reuters-21578. Two of them are image data and 
the other two are text data.  

The results of our experiments were evaluated by Clustering Accuracy [20] and 
normalized mutual information (NMI) [21]. Both of the evaluation metrics range from 
zero to one, and a high value indicates better clustering result. 

4.2 Parameter Settings 

In this section, we compared our proposed method with the following methods, K-
means [22], NMF [4], and GNMF [12]. For both GNMF and ANMF, we normalized 
the vectors on columns of  and .  

To fairly compare algorithms, each algorithm was run under different parameter 
settings, and the best results were selected to compare with each other. The number of 
clusters was set equal to the true number of standard categories for all the data sets 
and clustering algorithms.  

The 0-1 weighting was applied in GNMF and ANMF algorithms for convenience. 
Here we set the nearest neighborhood  as 7 for both the algorithms. The value of  

 determines the construction of the adjacency matrix for both GNMF and ANMF, 
which lies on the assumption that the neighboring data points share the same topic. So 
the performance of GNMF and ANMF are supposed to decrease as  increases, 
which was verified by [12] for GNMF. There is only one regularization parameter in 
GNMF, the parameter was set by the grid 10 , 10 , 10 , 1, 10, 10 , 10 , 10 . 
For ANMF algorithm, there are two regularization parameters  and . Both of 
them were set by the grid 10 , 10 , 10 , 1, 10, 10 , 10 , 10 .  

The aforementioned algorithms were repeated 20 times for each parameter setting, 
the average results were computed. The best average results are shown in Table 3 and 
Table 4. 

4.3 Clustering Results 

Table 3 and 4 display the Accuracy and NMI of all algorithms on the four data sets 
respectively. We can see that overall both GNMF and ANMF performed much better 
than K-means and NMF algorithms. Note that both GNMF and ANMF consider the 
geometrical structure of the data through the local invariance assumption, the results 
imply the importance of the geometrical structure in mining the latent features of the 
data. Besides, ANMF shows the best performance in all the four data sets, which 
indicates that by adding the geometrical structure for the two dimensions of the data, 
the algorithm can achieve better performance. 
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Table 3. Clustering Accuracy (%) 

 

Table 4. Normalized Mutual Information (%) 

 

5 Study on the CiteULike Data Set 

5.1 Data Processing 

CiteULike is a social bookmarking platform that allows researchers to share scientific 
references, so nearly all the bookmarks in CiteULike are academic papers. The 
CiteULike data was crawled during January-December 2008. We extracted the article 
id, journal name of the articles, user id and tag information from the original data. The 
journal name of the articles was used for setting evaluation standard. Before 
processing the dataset, we unified the format of the tags. Tags such as “data_mining”, 
“data-mining”, “data.mining”, “datamining”, etc. were all considered as the same one. 
Here we excluded the articles, users and tags with less than four bookmarks. To 
evaluate the CiteULike dataset, we utilized the subject categories in Web of Science 
[23]. There are a total of 176 top-level subject categories for science journals. Under 
each subject category, they display a list of the afflicted journals. By overlapping the 
journals of all articles from CiteULike with the journals under the categories in Web 
of Science, we could discover the subject categories of the articles in CiteULike 
dataset. Under the 176 subject categories, we only kept the 44 biggest subject 
categories with the largest articles numbers. Finally, we had 3,296 bookmarks with 
2406 articles, 1220 users and 4593 tags. 

5.2 Clustering Results 

We construct two matrices for CiteULike data set, article-user matrix and article-tag 
matrix. Besides, in order to test if combining the article vectors from article-user and 
article-tag vectors can get a better performance, we also construct a new matrix that 
consists of the linear combination of the article-user vectors and article-tag vectors. 
Just as the experiments in section 4, we compare the clustering results of ANMF with 
GNMF, NMF and k-means based on the Clustering Accuracy and NMI. The settings 
for the parameters and the value of the nearest neighborhood  are all the same as in 
section 4. 

Data Sets -means NMF GNMF ANMF 

Coil20 95.56% 95.90% 97.80% 97.82%

ORL 96.40% 96.01% 96.61% 97.19%

TDT2 90.92% 90.11% 95.09% 95.35%

Reuters-21578  74.04% 73.68% 74.68% 75.13%

Data Sets -means NMF GNMF ANMF 

Coil20 73.86% 74.36% 89.17% 90.14%

ORL 71.82% 66.80% 72.01% 75.24%

TDT2 64.54% 58.75% 83.49% 84.65%

Reuters-21578  33.90% 29.98% 34.41% 36.31%
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Table 5. The Evaluation Results for CiteULike Data Set 

 

Table 5 displays the evaluation scores of the four algorithms with CiteULike 
dataset. The experiments reveal several interesting points: 

• ANMF still performs the best among the four algorithms. Specifically, the 
improvement is significant in NMI results. This shows that ANMF is efficient not 
only in image and text data, but also in the data from social tagging systems, which 
suggests the potential of ANMF in collaborative filtering area. 

• The evaluation results of the combination matrix are rather poor for k-means and 
NMF algorithms for the article-user matrix and article-tag matrix. For GNMF and 
ANMF, their NMI scores are better than the other two matrices, while the 
Clustering Accuracy scores are a little lower. 

6 Conclusion 

In this paper, we have explored a graph regularized nonnegative matrix factorization 
model for document clustering. First, we applied our algorithm in four benchmark 
data sets, and compared it with three canonical algorithms to evaluate its performance 
in clustering. Then the algorithm was used in CiteULike dataset by applying user and 
tag information for analysis. The experiment results demonstrate that our algorithm 
outperforms GNMF, NMF and k-means models in both benchmark data sets and 
CiteULike data set. 

References 

1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 
CSUR 31(3), 264–323 (1999) 

2. Guy, I., Carmel, D.: Social recommender systems. In: Proceedings of the 20th 
International Conference Companion on World Wide Web, pp. 283–284 (2011) 

3. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. 
Nature 401(6755), 788–791 (1999) 

4. Seung, D., Lee, L.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. 
Process. Syst. 13, 556–562 (2001) 

Data Sets -means NMF GNMF ANMF 
Clustering Accuracy (%)

article-user matrix 30.04% 44.22% 86.57% 87.17% 

article -tag matrix 73.42% 76.24% 88.46% 88.43% 

the combination matrix 68.65% 68.94% 85.48% 87.60% 

Normalized Mutual Information (%)

article -user matrix 10.83% 19.03% 27.24% 28.55% 

article -tag matrix 25.00% 27.72% 32.07% 36.85% 

the combination matrix 26.24% 23.85% 36.91% 42.35% 



 Document Clustering with an Augmented Nonnegative Matrix Factorization Model 359 

 

5. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual 
International ACM SIGIR Conference on Research and Development in Information 
Retrieval, pp. 50–57 (1999) 

6. Law, M.H., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold 
learning. Pattern Anal. Mach. Intell. IEEE Trans. 28(3), 377–391 (2006) 

7. Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological stability. 
Science 295(5552), 7–7 (2002) 

8. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-
sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. Adv. Neural 
Inf. Process. Syst. 16, 177–184 (2004) 

9. Samko, O., Marshall, A.D., Rosin, P.L.: Selection of the optimal parameter value for the 
Isomap algorithm. Pattern Recognit. Lett. 27(9), 968–979 (2006) 

10. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for 
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000) 

11. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data 
representation. Neural Comput. 15(6), 1373–1396 (2003) 

12. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization 
for data representation. Pattern Anal. Mach. Intell. IEEE Trans. 33(8), 1548–1560 (2011) 

13. Gaussier, E., Goutte, C.: Relation between PLSA and NMF and implications. In: 
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pp. 601–602 (2005) 

14. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix 
factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on 
Research and Development in Informaion Retrieval, pp. 267–273 (2003) 

15. Chung, F.R.: Spectral graph theory, vol. 92. AMS Bookstore (1997) 
16. Ramage, D., Heymann, P., Manning, C.D., Garcia-Molina, H.: Clustering the tagged web. 

In: Proceedings of the Second ACM International Conference on Web Search and Data 
Mining, pp. 54–63 (2009) 

17. Lu, C., Hu, X., Park, J.: Exploiting the social tagging network for Web clustering. Syst. 
Man Cybern. Part Syst. Humans IEEE Trans. 41(5), 840–852 (2011) 

18. Matlab Codes and Datasets for Feature Learning, 
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html (accessed: 
September 18, 2013) 

19. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender 
systems. Computer 42(8), 30–37 (2009) 

20. Gu, Q., Zhou, J.: Co-clustering on manifolds. In: Proceedings of the 15th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, pp. 359–368 (2009) 

21. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining 
multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003) 

22. MacQueen, J.: Some methods for classification and analysis of multivariate observations. 
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and 
Probability, vol. 1, p. 14 (1967) 

23. Journal Search - IP & Science - Thomson Reuters, 
http://www.thomsonscientific.com/cgi-bin/jrnlst/ 
jlsubcatg.cgi?PC=D (accessed: October 01, 2013) 



 

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 360–372, 2014. 
© Springer International Publishing Switzerland 2014 

Visualization of PICO Elements for Information Needs 
Clarification and Query Refinement 

Wan-Tze Vong and Patrick Hang Hui Then 
Faculty of Engineering, Computing and Science, Swinburne University of Technology,  

Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia 
{wvong,pthen}@swinburne.edu.my 

Abstract. The UMLS semantic types and natural language processing tech-
niques were collectively utilized to extract PICO elements from the titles and 
abstracts of 114 MEDLINE articles. 24 sets of PICO elements were generated 
from the articles based on the derivation of, and the tokenization methods and 
weighting schemes applied to the elements. The similarity of the I and C ele-
ments (called jointly the “Interventions”) between pairs of documents was cal-
culated using 42 similarity/distance measures. Similar interventions were 
grouped together using complete-/average-/ward-link hierarchical clustering. 
The similarity measure, Yule, performed significantly better than other meas-
ures in identifying paired interventions derived from the titles and which had 
been pre-processed into single term and weighted by binary term-occurrence. 
The clustering algorithm, complete-link, provides the most appropriate structure 
for the visualization of interventions. Similarity-based clustering gave a higher 
mean average precision than random-baseline clustering (MAP = 0.4298 vs. 
0.2364) over the 25 queries evaluated.  

Keywords: Hierarchical Clustering, PICO Element, Query Refinement, Simi-
larity Measure, Distance Measure. 

1 Introduction 

A focused, well-defined question warrants a high quality answer. The quality of an-
swers returned by a question-answering (QA) system depends on the quality of ques-
tions posed by users. Doctors have difficulty in generating high quality questions that 
unambiguously and comprehensively defined their information needs [1]. The use of 
PICO (an acronym for Problem/Population, Intervention, Comparison and Outcome) 
framework has been widely accepted for the formulation of answerable clinical ques-
tions. However, a study by [2] reported that not all clinical questions have all four 
PICO elements present. Two examples of questions maintained by the National Li-
brary of Medicine (NLM) [3] are “What is the best treatment for external otitis?” 
(Question 1) and “I have a lady with graves’ disease (33 years old). She was trying to 
get pregnant when she was diagnosed with graves. So the question is, what is the best 
treatment for graves in someone who is trying to get pregnant, and if we use radioac-
tive iodine, how long does she need to wait?” (Question 2). Both of the questions are 
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categorized under “Treatment and Prevention”. Question 1 represents a definitional 
question that contains only the P element (“external otitis”). Question 2 is described 
in paragraph format and contains both the P (“graves’ disease”, “lady”) and I (“ra-
dioactive iodine”) elements. An alternative intervention to the clinical condition and 
the expected treatment outcome, which denote the C and O elements respectively, are 
not stated in both Questions 1 and 2. As reported in [4], questions with the I/C and O 
elements are unlikely to go unanswered. Therefore, the visualization of PICO ele-
ments in documents relevant to a user’s input query has the potential to assist the user 
in refining his/her information needs.  

The paper presents a case study of utilizing similarity-based clustering to aid the 
visualization and exploration of interventions (i.e. the I and C elements) for the re-
finement of questions relating to treatments and drugs. The proposed user interface is 
illustrated in Fig. 1. As shown in the figure, the natural language (NL) question en-
tered by the user contains only the P element (“breast cancer”). To assist the user in 
refining or clarifying his/her information needs, the user is allowed to explore a  
particular subject domain by browsing through the interventions which have been pre-
clustered into a hierarchical structure. Simultaneously, the user can identify the inter-
ventions encompassed in each cluster and discover the relationships between the  
interventions. The most potent sets of PICO queries are produced by returning the 
interventions selected by the user (circled by black line in Fig. 1), accompanied by  
the P and O elements identified from the titles or abstracts. It is expected that through 
this process, a user can understand his/her information needs and obtain a more com-
prehensive knowledge about the domain of interest. An ambiguous query can also be 
refined by selecting the PICO query that best described the information needs. 

 

Fig. 1. The proposed user interface 

2 Methodology 

2.1 Collection of MEDLINE Documents 

The processing of the NL question in Fig. 1 as described in Section 2.3 returns the 
medical concepts: “breast cancer” and “breast neoplasms”. The concepts were used as 
the main search terms and the following filters were activated to retrieve relevant doc-
uments from the MEDLINE database: randomized controlled trial, abstract available, 
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publication date from 2002/10/01 to 2012/10/04, humans and English. The documents 
were limited to those published in 7 core journals: N Engl J Med, JAMA, Ann Inter 
Med, Lancet, Br Med J, BMJ and BMJ (Clin Res Ed). The titles and abstracts of the 
documents were collected for the extraction of PICO elements.  

2.2 Generation of PICO Sentences  

Based on previous studies, the position of a sentence within an abstract is useful in 
determining the PICO elements that the sentence carries [5,6]. Two types of abstracts 
were identified: structured abstracts with internal section headings such as 
METHODS and RESULTS, and unstructured abstracts written in paragraph format 
without the headings. Both structured and unstructured abstracts were cut into three 
segments respectively based on the headings and the position of the sentences in the 
abstracts (Table 1). The extracted sentences were called in the remainder of this paper 
the “PICO sentences”. 

Table 1. Derivation of PICO sentences 

Representation Internal Section Heading Position of Sentence 
P Introduction, Background, Objective First 3 sentences 
I/C Method Sentences in between the first and the  

last 3 sentences 
O Result, Conclusion Last 3 sentences 

2.3 Generation of PICO Elements 

NL questions, titles and PICO sentences were processed by the MetaMap Transfer 
(MMTx) program [7] to semantically identify medical concepts as PICO elements. 
The program tokenizes the questions, titles and sentences into phrases, and returns a 
list of best matching concept candidates together with their associated semantic types 
from the Unified Medical Language System (UMLS) Metathesaurus. Each of the 
candidates was labeled with a concept unique identifier (CUI) number.  

The concept candidates were post-processed using Rapidminer 5.2 [8] to identify 
the best matching candidates. Candidates with semantic types listed in Table 2 were 
recognized as PICO elements whereas those with other semantic types were deleted. 
Duplicate terms, synonyms and stopwords were removed by identifying their CUI 
numbers. For instance, “blood sugar” and “blood glucose” are synonyms with the 
same CUI number (i.e. C0005802). Examples of stopwords are “find”, “release”, 
“peer support”, “still”, “little” and “inform”. If candidate terms of different lengths 
were identified at the same location in a document, candidates with the highest num-
ber of words were selected. For example, the processing of the phrase “management 
of orbital cellulitis” returns the concept candidates “orbital”, “cellulitis” and “orbital 
cellulitis”. “Orbital cellulitis” is selected and the rest are removed. For each docu-
ment, a list of best matching medical concepts was collected respectively from the 
titles and the abstracts as PICO elements.  
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Table 2. Identification of PICO elements by semantic types (adapted from [6]) 

Representation Semantic Type 
P/O Age group, Family group, Group, Human, Patient or disabled group, Population 

group, Acquired abnormality, Anatomical abnormality, Cell or molecular dysfunction, 
Congenital abnormality, Disease or syndrome, Experimental model of disease, Find-
ing, Injury or poisoning, Mental or behavioral dysfunction, Neoplastic process, Patho-
logic function, Sign or symptom. 

I/C Daily or recreational activity, Amino acid, peptide, or protein, Antibiotic, Clinical 
drug, Eicosanoid, Enzyme, Hormone, Inorganic chemical, Lipid, Neuroreactive 
substance or biogenic amine, Nucleic acid, nucleoside, or nucleotide, Organic chemi-
cal, Organophosphorus compound, Pharmacologic substance, Receptor, Steroid, 
Vitamin, Diagnostic procedure, Therapeutic or preventive procedure.  

2.4 Preprocessing of PICO Elements 

The preprocessing involves three steps: (1) the I and C elements, i.e. the “interven-
tions”, were collected from titles, abstracts or a combination from both sections  
(“Tile + Abstract”), (2) the interventions were tokenized using “Loose” (LO) or 
“Strict” (ST) method, and (3) the interventions were weighted using normalized term 
frequency (TF), binary term occurrence (BI), term occurrence (TO) or term frequen-
cy-inverse document frequency (TF-IDF). The tokenization methods and weighting 
schemes are detailed as follow: 

─ LO: The interventions were tokenized into single term. For instance, the phrase 
“ascorbic acid” is tokenized into “ascorbic” and “acid”; ST: The interventions were 
not tokenized. For example, the phrase “breast radiotherapy” remains unchanged. 

─ TF: The ratio of the frequency of a term to the maximum term frequency of any 
term in a document, producing a numerical value between 0 and 1; BI: The occur-
rence of a term in a document with a binary value of 0 or 1; TO: A nominal value 
obtained by calculating the number of times a term occurs in a document; TF-IDF: 
A numerical value calculated by multiplying the frequency of a term in a document 
to the inverse of the number of documents in a collection that contains the term.  

The three steps described above were achieved using Rapidminer 5.2 [8]. 24 sets of 
baseline data were generated based on the derivation of, and the tokenization methods 
and weighting schemes applied to the interventions.  

2.5 Inter-document Similarity Tests 

The baseline data were assembled into pairs of interventions. The similarity between 
each pair of interventions was computed using the “dist” and “simil” functions avail-
able in the R package “proxy” [9]. A total of 42 similarity/distance measures  
(Table 3) were utilized to compute the similarity or distance between the pairs of 
interventions. A distance measure was converted to a similarity measure using (1). 
The similarity values were normalized to a scale of 0 to 1. The normalized similarity 
value of each pair of interventions Si was calculated using (2).   is the minimum 
similarity value and  is the maximum similarity value among all pairs of inter-
ventions. 
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Random-baseline clusterings were constructed to evaluate the information retrieval 
performance of similarity-based clusterings. A random-baseline clustering was 
created by randomly assigning the interventions into a clustering that has the same 
number of clusters and the same number of documents in each cluster of a similarity-
based clustering. An example is given in Fig. 2. The P, R and mean average precision 
(MAP) over 25 topics were computed using the TREC_EVAL program [10]. 

 
Fig. 2. (a) Similarity-based clustering and (b) random-baseline clustering. Doc = number of 
documents 

3 Results 

3.1 The Inter-document Similarity Tests 

42 types of similarity/distance measures were employed to calculate the similarities 
between pairs of interventions. A value close to 1 indicates strong similarity whereas 
a value close to 0 means low similarity. The MD was calculated to indicate the differ-
ence between the mean of paired and the mean of unpaired similarities. The larger the 
MD, the greater the differentiation and the less overlap between the distributions of 
paired and unpaired similarities. Table 4 summarizes the measures that produced the 
highest MD over the 24 sets of baseline data. The table revealed that: (1) BI is better 
than other weighting schemes, (2) the tokenization method, LO, is superior to ST, (3) 
interventions derived from title are better than those derived from abstract or “title + 
abstract”, and (4) Yule gives the highest MD compared to other measures. 

One of the most popular distance measures between two document vectors is the 
Cosine similarity. Fig. 3a compares the MD of Yule to the MD of Cosine with an 
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increase in number of pairs of interventions. The figure shows that the number of 
pairs has little influence on the performance of Yule and Cosine. The MD of Yule 
(average MD = 0.86 ± 0.04) is evidently higher than the MD of Cosine (average MD 
= 0.50 ± 0.02 and 0.40 ± 0.02 respectively when tokenized by TF and TF-IDF). For 
both measures, a significant difference in similarity values between paired and un-
paired interventions was found (p < 0.005). 

Table 4. Similarity/distance measures that produced the highest mean difference (MD) 

Weighting 
Scheme 

Tokenization 
Method 

Derivation of Interventions 
Title (MD) Abstract (MD) Title + Abstract  

(MD) 
TF LO eJaccard (0.53) Cosine (0.34) Cosine (0.45) 

ST eJaccard (0.44) Cosine (0.28) Cosine (0.36) 
TF-IDF LO eJaccard (0.43) Cosine (0.24) Cosine (0.31) 

ST eJaccard (0.36) Cosine (0.20) Cosine (0.27) 
BI LO Yule (0.86) Yule (0.67) Yule (0.74) 

ST Yule (0.66) Yule (0.53) Yule (0.63) 
TO LO Pearson (0.57) Pearson (0.34) Pearson (0.53) 

ST Pearson (0.49) Pearson (0.31) Pearson (0.43) 

Histograms and boxplots (Fig. 3b) were plotted to investigate the frequency distri-
bution of similarity values of 450 paired and 450 unpaired interventions. As shown in 
the figure, the less overlap between the two histograms, the greater the separation 
between the two distributions. The paired histogram for BI-Yule combination skewed 
significantly to the right, showing that most of the paired interventions has a similari-
ty value close or equal to 1. In contrast, the paired histograms for the two Cosine 
combinations are relatively flat with similarity values range between 0 and 1 (as indi-
cated also by the whiskers and outliers in boxplots). The degree of overlap for the 
three combinations looks apparently the same. In terms of classifiability, Yule gave a 
more clear-cut separation of paired and unpaired similarities in histograms and box-
plots than Cosine. 

In summary, the similarity measure, Yule, performed better than other measures at 
identifying paired interventions or at differentiating between paired and unpaired 
interventions derived from titles and which had been weighted and tokenized respec-
tively using BI and the LO method. 

3.2 The Clustering Tests 

The similarities between the interventions that occurred in a collection of 114  
documents were calculated using the BI-LO-Title-Yule combination. Hierarchical 
clusterings were computed using AL, CL and WL algorithms. As shown in Fig. 4a (1st 
column), the structure of AL and CL clusterings are wide with many branches at the 
top of the hierarchies, whereas for WL clustering, branches are located mainly at the 
bottom of the hierarchy. The CL algorithm produced a structure with lower number of 
levels (the highest number of levels = 5 compared to 10 for WL and 15 for AL). A 
comparison of the structures obtained by calculating the similarities using the TF-LO-
Title-Cosine combination (Fig. 4a, 2nd column) revealed a higher number of levels in 
the clusterings (the highest number of levels = 7 for CL, compared to 13 for WL and 
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18 for AL). The higher the number of levels, the longer it takes for a user to browse 
and search for a topic in a hierarchy. The Yule-based CL clustering, compared to 
other clusterings, provides a better structure in terms of the number of levels that a 
user needs to explore to reach a topic of interest. 

 

Fig. 3. (a) Mean difference against number of pairs of interventions; (b) Histograms and box-
plots of the distribution of paired and unpaired similarities. Derivation of interventions: title, 
tokenization method: LO 

The clusters that best represent 33 topics that covered in the 114 documents were 
identified by computing the P, R and F of each cluster in a hierarchy. Table 5 shows 
the level of the clustering hierarchy (Lev), the number of documents (Doc), the num-
ber of relevant documents (Rel) and the P, R and F values of a cluster in a Yule-based 
CL clustering. A good cluster is supposed to contain as many relevant documents as 
possible with high P and high R. The F-measure quantifies the balance between P and 
R. The higher the F value, the higher the quality of a cluster. It can be seen from  
Table 5 that: (1) relevant documents are grouped in one (e.g. Level 1 of Topic 1,  
R = 1.0) or two clusters (e.g. Level 1 of Topic 2, R = 0.5 and 0.5 respectively), (2) the 
best clusters appear at the top of the structure with high P, R and F for Topics 1, 2 and 
4, (3) the best clusters occur at the bottom of the structure with high P, R and F for 
Topic 3, (4) Topic 4 can be identified without exploring the structure (Level = 0), and 
(5) some of the relevant documents are grouped in different clusters with irrelevant 
documents (e.g. Level 1 of Topic 3, P = 0.6 and 0.3 respectively). The results indicate 
that the best clusters located at different levels of the structure.  

Table 6 shows the average number of levels that a user needs to explore to discover 
the best clusters for the 33 topics. The Yule-based CL clustering provides the  
best hierarchical structure for the exploration of different topics, followed by the  
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Cosine-based CL clustering (Average No. of Level = 1.70 ± 1.10 and 2.33 ± 1.95  
respectively). The findings suggest that the best clusters appear on average at the top 
two levels of a CL clustering. This was evaluated by identifying the clusters with the 
highest F-measure (FMax) from the top two levels. The percentages of relevant docu-
ments covered by the clusters were then calculated and are shown in Table 7. On 
average over the 33 topics, the clusters from the top two levels contain approximately 
81% and 79% of the relevant documents respectively for Yule-based and Cosine-
based CL clusterings. This suggests that only a small number of clusters that will need 
to be further explored to obtain all the relevant documents from the clusterings. 

 

Fig. 4. (a) A comparison of clusterings by similarity measures and clustering methods; (b) The 
precision-recall performance of similarity-based and random-baseline CL clusterings 

The effectiveness of similarity-based clusterings in grouping similar interventions 
to the same or small number of clusters were evaluated by comparing with random-
baseline clusterings. Interventions were grouped into different clusters without  
similarity constraint to produce a random-baseline clustering. A total of 25 topics 
were created for the evaluation. Each topic was treated as a query. Similarity-based 
clusterings outperform random-baseline clusterings in terms of mean average preci-
sion (MAP = 0.43 vs. 0.24 and 0.48 vs. 0.25 respectively for Yule-based and Cosine-
based CL clusterings). This is further indicated in the P-R curves shown in Fig. 4b.  
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The overall clustering results indicate that the top two levels of a Yule-based CL 
clustering provide the most appropriate hierarchical clustering for the exploration and 
visualization of interventions.  

 
Table 5. Examples of the distribution of the 
best cluster in a Yule-based CL clustering 

Topic Lev Doc Rel P R F 
1 1 10 10 1.0 1.0 1.0 

2 2 2 1.0 0.2 0.3 
2 2 8 1.0 0.8 0.9 
3 3 7 1.0 0.7 0.8 

2 1 15 4 0.3 0.5 0.4 
 1 4 4 1.0 0.5 0.7 
 

… … … … … …

 4 3 1 0.3 0.1 0.2 
3 1 6 1 0.6 0.3 0.2 
 1 11 3 0.3 0.8 0.4 
 2 2 1 0.5 0.3 0.3 
 2 10 3 0.3 0.8 0.4 
 3 3 3 1.0 0.8 0.9 
4 0 1 1 1.0 0.5 0.5 
 0 1 1 1.0 0.5 0.5

Table 6. Location of the best cluster by the 
average number of level over 33 topics 

Clustering 
Method 

Similarity 
Measure 

Average ± SD 
No. of Level 

CL Cosine 2.33 ± 1.95 
CL Yule 1.70 ± 1.10 
AL Cosine 10.12 ± 4.84 
AL Yule 8.21 ± 3.56 
WL Cosine 7.67 ± 3.91 
WL Yule 5.97 ± 2.49 

 

 

 

 

 

Table 7. Percentages of relevant documents in top clusters in CL clusterings 

Cosine_CL Yule_CL 
Topic FMax Doc Rel % FMax Doc Rel % 
Q1 0.6 8 11 73 0.6 8 11 73 
Q2 0.1 1 2 50 0.2 1 2 50 … … … … … … … … …

Q33 0.6 2 2 100 0.6 2 2 100 
Mean ± SD    79 ± 23    81 ± 23 

4 Discussion and Conclusions 

What types of clinical information do doctors need? Where do they search for informa-
tion? An early study by [11] reported that approximately 33% of information needs re-
lated to treatment of specific conditions, 25% to diagnosis and 14% to drugs. Similar 
findings were reported in [12] that the top categories of information needs were treat-
ment/therapy (38%), diagnosis (24%) and drug therapy/ information (11%). Studies by 
[13,14] further supported that one of the doctors’ greatest information needs is for infor-
mation about treatments and drugs. The primary electronic resource used by doctors for 
evidence-based clinical decision making is MEDLINE [15,16]. Junior doctors accessed 
MEDLINE (44%), UpToDate (42%), internet search engines (5%), MDCONSULT (3%) 
and the Cochrane Library (2%) for clinical information [17]. The findings support the use 
of MEDLINE in this study as the preferred information source for PICO elements. 

The Use of PICO Framework for Query Refinement. One of the obstacles that pre-
vents physicians from answering patient-care question is the tendency to formulate 
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unanswerable question [1]. To formulate an answerable question, physicians are rec-
ommended to change their search strategies by rephrasing their questions [17]. Other 
studies recommended the use of question frameworks such as PICO, PICOT, PICOS 
and PESICO for the formulation of clinical question [18,19,20,21]. A study evaluat-
ing the use of PICO as a knowledge representation reported that the framework is 
primarily centered on therapy question [2]. This supports the focus of the present 
study on refining questions relating to treatments and drugs. An earlier study by [4] 
found that questions that contain a proposed intervention and a relevant outcome were 
unlikely to go unanswered. It is recommended by [22] that at least 3 of the PICO ele-
ments are needed to formulate an answerable question. In summary, the completeness 
of PICO elements determines whether a clinical question is likely to be answered.   

 
Visualization of Interventions Using Similarity-Based Clustering. Current medical QA 
(MedQA) systems focus on providing direct and precise answers to doctors’  
questions. A recent review by [23] concluded that current MedQA systems have limi-
tations in terms of the types and formats of questions that they can process. The Info-
Bot [24] and the EpoCare [25] systems can only handle structured queries in PICO 
format but not in NL. An example of PICO query is “Atrial Fibrillation AND Warfa-
rin AND Aspirin AND Secondary Stroke”. The use of the system may be limited by 
the ability of users to apply Boolean operators (e.g. AND and OR) and by the lack of 
vocabulary due to limited knowledge of a particular domain. The AskHermes system 
[26,27], on the other hand, accepts both well-structured and ill-formed NL questions. 
For example, “What is the best treatment for a needle stick injury after a human im-
munodeficiency virus exposure?” A poorly formulated question cannot be refined. 
This can in turn lead to the discovery of irrelevant documents. Current MedQA  
systems assume that users are aware of their knowledge deficit. Little research has 
focused on assisting users in formulating high quality questions, supporting them in 
exploring a problem domain and clarifying their information needs.  

The present study adopted the concept of system-mediated information access, intro-
duced by [28], to assist users in refining an ill-defined question. It is expected that users 
can clarify or refine their information needs through browsing and searching interven-
tions which have been pre-clustered into a hierarchical structure. The inter-document 
similarity and cluster structure analysis revealed that the combination of BI-LO-Title-
Yule-CL produced the most appropriate hierarchical clustering for the visualization of 
interventions. The Yule measure appeared to be slightly better than the Cosine measure 
at contributing to the identification of similar interventions. The Cosine similarity, which 
measures the cosine of the angle between two vectors, has been applied to both document 
clustering [29] and short text clustering [30]. The Yule similarity calculates the strength 
of association between binary variables. Though not as well studied as the Cosine simi-
larity, [31] reported an improvement in clustering performance using the Yule measure. 
The cluster structure analysis revealed that documents with similar interventions are 
likely to be grouped into the same cluster. The top two levels of a CL clustering provide 
the most appropriate structure for the exploration of different topics. Previous work by 
[32] reported that AL produces a more effective clustering than CL for information  
retrieval. However, in the present study, the AL clustering requires users to explore a 
higher number of levels to discover a problem domain. Doctors often have very tight  
schedules. When seeking information for patient care, they are more likely to look for 
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information that can be accessed quickly with minimal effort [11]. Therefore, it is argued 
that CL provides a quicker and more appropriate clustering than AL for the visualization 
and exploration of interventions. 

 
Limitations. The study was conducted only on MEDLINE articles relevant to a single 
question. The single source of documents may restrict the applicability of the findings 
from this study to documents from other resources such as the Cochrane Library and 
UpToDate. The question tested was posed with only the P element. Further analysis 
should be undertaken with higher number of questions addressed with different combina-
tions of PICO elements. Compared to the titles, a higher number of interventions were 
collected from the abstracts. The case study however shows that the title-based approach 
superior to the abstract-based approach. The study can be improved by evaluating the 
effectiveness of the methodologies used for PICO extraction and the effects of different 
numbers of interventions between two documents on the measurement of similarity. 
Despite of the limitations, the experimental results show that the similarity-based cluster-
ing approach has the potential to aid the visualization and exploration of interventions for 
the applications of clinical information needs clarification and query refinement.  
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Abstract. Drug development is time-consuming, costly, and risky. Approx-
imate 80% to 90% of drug development projects fail before they ever get into 
clinical trials. To reduce the high risk of failure for drug development, pharma-
ceutical companies are exploring the drug repositioning approach for drug de-
velopment. Previous studies have shown the feasibility of using computational 
methods to help extract plausible drug repositioning candidates, but they all en-
countered some limitations. In this study, we propose a novel drug-
repositioning discovery method that takes into account multiple information 
sources, including more than 18,000,000 biomedical research articles and some 
existing ontologies that cover detailed relations between drugs, proteins and 
diseases. We design two experiments to evaluate our proposed drug reposition-
ing discovery method. Overall, our evaluation results demonstrate the capability 
and superiority of our proposed drug repositioning method for discovering po-
tential, novel drug-disease relationships. 

Keywords: Drug repositioning, Drug repurposing, Literature-based discovery, 
Medical literature mining. 

1 Introduction 

Drug development is time-consuming, costly, and risky. The development process to 
bring a new drug to market requires about 10-15 years and costs between 500 million 
and 2 billion U.S. dollars [1]. However, as the U.S. National Institutes of Health re-
ported, 80 to 90 percent of drug development projects fail before they ever get tested 
in human [2]. To reduce the high risk of failure for de novo drug development,  
pharmaceutical companies have been evaluating alternative paradigms for drug de-
velopment, e.g., drug repositioning. The goal of drug repositioning is to find new 
indications (i.e., treatment for diseases) for existing drugs. Because existing drugs 
already have their preclinical properties and established safety profiles, many experi-
ments, analyses and tests can therefore be bypassed [3]. Thus, drug repositioning can 
reduce significant time and cost in the discovering and preclinical stage. Moreover, 
drug repositioning helps a company exploit its intellectual property portfolio by  
extending its old or expiring patents, or getting new method-of-use patents [3]. 

One notable example of repositioned drug is Thalidomide. It was originally mar-
keted as a sedative and antiemetic for pregnant women to treat morning sickness,  
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but was completely withdrawn from the market after the drug was found responsible 
for severe birth defects [4]. After Celgene Corporation’s repositioning works, FDA 
approved Thalidomide for use in the treatment of Erythema Nodosum Leprosum 
(ENL) in 1998 [5]. The company further discovered that Thalidomide is also effective 
against several other diseases, including multiple myeloma. Accordingly, Celgene 
gets several utility patents for the repositioned Thalidomide, and it brings in over 300 
million U.S. dollars in revenue annually since 2004 [6-8]. 

Several computational drug repositioning approaches have been developed to help 
medical researchers sift the most plausible drug-disease pairs from a wide range of 
combinations. Dudley et al. [9] summarized several computational drug repositioning 
methods and categorized them as either drug-based, where discovery from the chemi-
cal or pharmaceutical perspective, or disease-based, where discovery from the pers-
pective of disease management, symptomatology, or pathology. Another excellent 
review in [10] highlights computational techniques for systematic analysis of tran-
scriptomics, side effects and genetics data to generate new hypotheses for additional 
indications. Several network based approaches use various heterogeneous data re-
sources to discovery drug repositioning opportunity [11, 12]. Moreover, Wu et al. 
[13] summarized 26 different sources of databases related to disease, genes, proteins, 
and drugs for drug repositioning. In summary, existing drug-repositioning methods 
can broadly be classified into two approaches: literature-based and ontology-based. 
The literature-based approach assumes that if a drug frequently co-occurs with some 
biomedical concepts (such as enzymes, genes, pathological effects, and proteins) and 
many of these concepts also frequently co-occur with a disease in biomedical litera-
ture (e.g., MEDLINE), it is likely that the disease is a new indication for the focal 
drug [14]. In contrast, the ontology-based approach relies on existing ontologies (or 
knowledge bases) to discover hidden relationships between drugs and diseases. These 
existing methods have shown their feasibility for drug repositioning. However, most 
existing methods rely only on single information source, i.e., literature or ontologies. 

In this study, we propose a drug repositioning method that exploits multiple  
information sources to discover hidden relationships between drugs and diseases. Spe-
cifically, a comprehensive network of biomedical concepts is first constructed by com-
bining and integrating relations of biomedical concepts extracted from literature and 
existing ontologies. Subsequently, we follow Swanson’s ABC model [14] to obtain 
links between a focal drug (A) and intermediate terms (Bs) and then between Bs and 
diseases (Cs) from the comprehensive concept network. A novel link weighting me-
thod and two target term ranking measures are proposed to effectively rank candidate 
diseases that are likely to be new indications of the focal drug A. To evaluate the  
proposed method, we collect the literature from MEDLINE and three ontologies (i.e., 
DrugBank [15], Online Mendelian Inheritance in Man (OMIM) [16], and Comparative 
Toxicogenomics Database (CTD) [17]), and follow the evaluation procedure proposed 
in [18] to conduct a series of experiments. According to our empirical evaluation re-
sults, our proposed method outperforms the existing method for drug repositioning. 

The remainder of this paper is organized as follows: Section 2 reviews existing  
methods related to this study, and discuss their limitations to justify our research  
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motivation. In Section 3, we describe the design of our proposed drug repositioning 
discovery method. Section 4 reports on our evaluation of our proposed method.  
Finally, we conclude our study in Section 5. 

2 Related Work 

In this section, we review existing drug repositioning methods, which can be classi-
fied into two major approaches: literature-based and ontology-based. 

2.1 Literature-Based Approach 

Swanson [19] first introduced the idea of discovering hidden relationships from bio-
medical literatures in the mid-1980s. He examined across disjoint literatures, manual-
ly identified plausible new connections, and found fish oil might be beneficial to the 
treatment of Raynaud’s syndrome [19]. Furthermore, Swanson and Smalheiser devel-
oped a computational model, namely “ABC model” or “undiscovered public know-
ledge (UPK) model” [14]. The basic assumption of ABC model is that if a biomedical 
concept A relates to intermediate concept B and intermediate concept B relates to 
another concept C, there is a logically plausible relation between A and C. The ABC 
model generally consists of three major phases: term selection to extract textual terms 
(concepts) from the literature, link weighting to assess the link strength between two 
concepts, and target term ranking to rank target terms by assigning a score to each 
target term on the basis of the connections and link weights between the starting  
term and the target term. This approach is often referred to as the literature-based 
discovery. 

Weeber et al. [20] followed Swanson’s idea of co-occurrence analysis and mapped 
words from titles and abstracts extracted from MEDLINE articles to Unified Medical 
Language System (UMLS) concepts to filter link candidates with the help of semantic 
information. Similarly, Wren et al. [21] mapped full text from articles into OMIM 
concepts. They measured link weights between concepts by mutual information. Lee 
et al. [22] further combined multiple thesauruses to better translate text into biomedi-
cal concepts. These studies employed the full text for concept extraction with the help 
of thesauri. On the other hand, some other studies used Medical Subject Headings 
(MeSH) as keywords to annotate each article in MEDLINE [18] [23-24]. They ap-
plied tf-idf, association rule, and z-score as the measurement of link weights. All of 
them reported the metadata-only approach is feasible, though Hristovski et al. [24] 
noted some shortcoming of using MeSH such as insufficient information of involving 
genes. Based on the ABC model, several drug repositioning methods [20-21] [25-26] 
were proposed to find undiscovered relations between drugs and diseases through 
selecting different semantic groups of intermediate terms such as adverse effects, 
genes, and proteins. 

For evaluating the performance of the literature-based approach, Yetisgen-Yildiz 
and Pratt [18] developed an evaluation methodology. They used two literature sets 
collected from separated time spans, and trained systems by using the older set to  
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predict novel relations in the newer set. They compared the effectiveness of various 
link weighting methods. According to their study, association rule appears to achieve 
the best performance over tf-idf, mutual information measure, and z-score. They also 
compared different target term ranking algorithms and suggested that the use of link 
term count with average minimum weight can achieve the best effectiveness. 

2.2 Ontology-Based Approach 

Campillos et al. [27] constructed a network of side-effect driven drug-drug relations 
from UMLS ontology by measuring side-effect similarity between drugs. Assuming 
that similar side effects of unrelated drugs may be caused by common targets, they 
can be used to predict new drug-target interactions. They also experimentally vali-
dated their results, and thus reported the feasibility of using phenotypic information to 
infer unexpected biomedical relations. Yang and Agarwal [28] also based on side 
effect likelihood between drugs, but they constructed Naïve Bayes models to make 
predictions. They took PharmGKB and SIDER knowledge bases, rather than pheno-
type database, as their information sources. Cheng et al. [29] built a bipartite network 
by extracting known drug-target interaction data from DrugBank, and used the net-
work similarity to predict new targets of drugs. Li and Lu [30] built a network similar 
to Cheng et al.’s work, but added the similarity of drug chemical structure into con-
sideration. 

Qu et al. [31] and Lee et al. [26] both attempted to increase the size and scope of 
semantic data by constructing integrated network or database of ontologies. However, 
to our best knowledge, few prior studies, if any, take both ontologies and literature 
into account, which may be a good way to acquire deeper and broader biomedical 
knowledge for making predictions of drug-disease relations. Li et al. [32] tried to 
incorporate more knowledge by using protein-protein interactions extracted from 
Online Predicted Human Interaction Database (OPHID) to expand disease-related 
proteins, and built disease-specific drug-protein connectivity maps based on literature 
mining. His work inspires us to build a network over multiple information sources. 

3 The Proposed Method 

We propose a drug repositioning discovery method that is based on Swanson’s ABC 
model [14] but takes both biomedical literature and existing ontologies into account. 
Fig. 1 illustrates our proposed method, which consists of four main phases: compre-
hensive concept network construction, related concept retrieval, link weighting, and 
target term ranking. 

3.1 Phase 1: Comprehensive Concept Network Construction 

The goal of this phase is to construct a literature-based concept network from the 
biomedical literature and an ontology-based concept network from existing ontologies 
(i.e., DrugBank, OMIM, and CTD in this study) and, subsequently, integrate them 
into a comprehensive concept network. 
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For the literature-based concept network construction, we collect the biomedical li-
terature from MEDLINE 2011 baseline. U.S. National Library of Medicine (NLM) 
indexes the publication type for each article. We follow Yetisgen-Yildiz’s preprocess-
ing procedure [18] to remove 18 irrelevant types (e.g., address, bibliography, com-
ment, etc.) from the 61 publication types in MEDLINE 2011 baseline. NLM also 
indexes several MeSH terms for each biomedical article. As a result, our literature 
database consists of 18,712,338 biomedical articles. The number of MeSH terms per 
article ranges from 1 to 97, and its average is 9.44. We further select several MeSH 
subcategories related to drug repositioning, as shown in Table 1. Next, association 
rule mining is applied on the collected literature where biomedical articles and MeSH 
terms are considered as transactions and items, respectively. We follow Yetisgen-
Yildiz and Pratt’s experiment [18] by setting the minimum support threshold to 2.6 
and the minimum confidence threshold to 0.0055 in this study. After filtering, we 
extract 12,278 MeSH terms and 2,623,222 relations to construct a literature-based 
concept network. 

 

 

Fig. 1. Overall Process of the Proposed Drug Repositioning Discovery Method 

For the ontology-based concept network construction, the ontologies we use in  
this study include DrugBank [15], OMIM [16], and CTD [17]. DrugBank 
(http://www.drugbank.ca/) is a richly annotated database which provides extensive 
information about targets, pathways, indications, adverse effects, and related proteins 
of various drugs, whereas OMIM (http://www.omim.org/) is a comprehensive and  
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Table 1. Selected MeSH Subcategories 

Semantic Group MeSH Subcategories 

Drugs D01-D05, D09, D10, D20, D26, D27 

Genes, Proteins, and Enzymes D06, D08, D12, D13, D23 

Pathological Effects G03-G16 

Diseases C01-C23 

authoritative knowledge base of human genes and genetic phenotypes. CTD 
(http://ctdbase.org/) is a database that integrates data from scientific literature to de-
scribe chemical interactions with genes and proteins, and diseases and genes/proteins, 
and others. The collected information includes various types of relations, such as 
drug-target, gene-disease, gene-gene, protein-protein, chemical-gene, gene-disease 
relations, etc. And, we also try to translate those terms to MeSH term and select only 
MeSH subcategories shown in Table 1. The summary of these collected ontology-
based relations is shown in Table 2. 

Table 2. Summary of Extracted Ontology-based Relations 

Data Source Number of Selected Relations 
DrugBank 7,808 drug-target interactions 
OMIM 2,404 gene-disease relations 
CTD 195,033 chemical-gene interactions and 27,397 gene-disease associ-

ations with direct evidences 

3.2 Phase 2: Related Concept Retrieval 

Given a user-specified focal drug, the goal of this phase is to retrieve related relations 
from the comprehensive concept network and to construct a subgraph for the focal 
drug. In other words, given a focal drug, we retrieve concepts related to the given 
drug in the network as intermediate terms. These intermediate terms may be gene, 
protein, disease, etc. Then, we extract the disease concepts that related to these inter-
mediate terms but not related to the given drug. 

3.3 Phase 3: Link Weighting 

Given the extracted subgraph for the user-specified drug, the goal of this phase is to 
weight each link in the subgraph according to different weighting strategies for litera-
ture-based links and ontology-based links. We propose a link weighting method, 
namely Extended Normalized MEDLINE Similarity (ExtNMS), based on the Norma-
lized Google Distance (NGD) [33] to calculate similarity between MeSH term A and 
B as follows: 

 ( , ) | |, | | | || |, | | , NMD 1 if NMD 1, (1) 

 ( , ) 1 ( , ), (2) 
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 E ( , ) ( , ), ( , )  1, ( , )                  , (3) 

where DA is the set of articles including MeSH term A, and M denotes the total num-
ber of articles in MEDLINE. This weighting measure ranges from 0 to 1, in which 0 
being completely unrelated and 1 being credibly related. If link (A,B) is from the lite-
rature-based concept network and is not found in the ontology-based concept net-
work, we weight it by calculating its Normalized MEDLINE Distance (NMD) and 
subtracting from 1, called Normalized MEDLINE Similarity (NMS); otherwise, if the 
link appears in the ontology-based concept network, we assign its weight as 1 since 
this relation should have been validated. 

3.4 Phase 4: Target Term Ranking 

Yetisgen-Yildiz & Pratt [18] suggested that using Link Term Count with Average 
Minimum Weight (LTC-AMW) can achieve the best effectiveness for target term 
ranking. LTC-AMW takes the number of intermediate terms between starting term 
and target term as the primary ranking criteria, i.e. the number of paths. The average 
minimum weight of paths is used only when two target terms are identical in their 
number of paths. In this study, we propose two target term ranking measures, Summa-
tion of Minimum Weight (SumMW) and Summation of Average Weight (SumAW), as 
follows: 

 S ( , ) ∑ min ( , ), ( , )( ) ( ) , (4) 

 S ( , ) ∑ ( , ) ( , )( ) ( ) , (5) 

where N(A) denotes the neighbor concepts of term A, and Wt(A,B) is the weight of 
link between term A and B. The above measures differentiate the importance of each 
path according to their minimum or average weight of constituent links, and assign an 
importance score to each target term according to the cumulative information of all 
paths between the starting term and the target term. We then order target terms ac-
cording to their importance scores. 

4 Evaluation and Results 

In this study, we conduct two experiments to evaluate our proposed method for drug 
repositioning. The first experiment is to evaluate our proposed comprehensive con-
cept network and link weighting measure (i.e., ExtNMS). The second experiment is to 
evaluate our proposed target term ranking measure. 

4.1 Evaluation Design 

We follow the evaluation procedure proposed by Yetisgen-Yildiz and Pratt [18]. Spe-
cifically, we describe our experiment procedure step by step in the following. 
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Given a starting term A (i.e., drug): 

1. We set cut-off date as January 1, 2000 and divide MEDLINE 2011 baseline into 
two datasets: 
(a) Pre-cut-off set (St1) includes the documents prior to 1/1/2000. 
(b) Post-cut-off set (St2) includes the documents on and after 1/1/2000. 

2. The documents in the pre-cut-off set are used along with ontologies as the input to 
construct the comprehensive concept network. 

3. We define a gold-standard set GA, which contains terms that satisfy the following 
rules: 
(a) Terms are within our specified target semantic group, i.e., disease. 
(b) Terms co-occur with term A in the post-cut-off set, but do not co-occur with 

term A in the pre-cut-off set. In other words, these terms co-occur with term A 
in literature only after the cut-off date (i.e., 1/1/2000). 

(c) Terms are not related to term A in the ontology-based concept network. 
4. The discovery effectiveness is estimated by using the information retrieval metrics 

as follows: 
(a) Precision:  

 
| || | , (6) 

(b) Recall: 

 
| || | , (7) 

where TA is the set of target terms generated by our discovery method. 

Table 3 shows the list of semantic groups used in our experiments. In this study, 
we randomly select 100 terms from the semantic group of drugs as the starting terms, 
i.e., the focal drugs. 

Table 3. Selected Semantic Groups for Our Experiments 

Selected Intermediate Terms Selected Target Terms 

Drugs 
Genes, Proteins, and Enzymes 
Pathological Effects 
Diseases 

Diseases 

4.2 Exp. 1: Evaluation of the Comprehensive Concept Network and Link 
Weighting Method 

The performance benchmark is the original ABC model over only the literature which 
uses association rules as link weighting algorithm [14]. We evaluate three versions of 
our discovery method, i.e., one is over only the literature-based concept network,  
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another one is over only the ontology-based concept network, and the third one is 
over the comprehensive concept network. All methods (including the benchmark) 
under investigation apply LTC-AMW as the target term ranking measure. Table 4 
shows the evaluation results, and the Area Under Curve of Precision and Recall 
(AUC-PR) represents the overall performance. A higher AUC-PR value represents a 
greater effectiveness. As Table 4 illustrates, our proposed ExtNMS measure outper-
forms the benchmark link weighting measure (i.e., association rules) when the infor-
mation source is the literature only or the integrated information sources (i.e., the 
comprehensive concept network that contains literature and ontologies). Moreover, 
using both literature and ontologies as information sources improves the overall per-
formance, especially precisions on higher ranks. This would better help researchers 
sift plausible drug-disease relations for the purpose of drug repositioning. 

Table 4. Comparative Evaluation Results of the Link Weighting Measures Under Different 
Concept Networks 

Recall 
Precision 

Association Rules 
(Literature) 

ExtNMS 
(Literature) 

ExtNMS 
(Ontology) 

ExtNMS (Comprehensive 
Concept Network) 

0% 62.61% 57.72% 39.01% 59.33% 

10% 29.72% 29.93% 20.16% 30.54% 

20% 22.07% 23.75% 15.96% 23.89% 

30% 17.80% 18.95% 14.22% 19.01% 

40% 15.13% 16.27% 12.58% 16.26% 

50% 11.73% 13.80% 12.25% 13.62% 

60% 9.52% 11.69% 13.77% 11.53% 

70% 7.61% 9.66% 0% 9.61% 

80% 7.17% 7.76% 0% 7.69% 

90% 2.31% 6.01% 0% 5.97% 

100% 0.60% 3.80% 0% 3.84% 

AUC-PR 15.47% 16.86% 10.84% 16.97% 

4.3 Exp. 2: Evaluation of Target Term Ranking Measure 

In this experiment, we evaluate the proposed target term ranking measures, Summa-
tion of Minimum Weight (SumMW) and Summation of Average Weight (SumAW). 
Based on the experiment 1, we apply ExtNMS as the link weighting measure in this 
experiment. In this experiment, LTC-AMW is used as the benchmark ranking meas-
ure. Table 8 shows the comparative evaluation results of the three target term ranking 
measures using the comprehensive concept network as the information sources. Both 
SumMW and SumAW outperform the benchmark measure, LTC-AMW. These re-
sults show that our link weighting measure, ExtNMS, is a more effective measure to 
weight links, and considering both the number and weights of paths between the start-
ing term and target terms can improve the discovery effectiveness. 
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Table 5. Comparative Evaluation Results of Target Term Ranking Measures (Using the 
Comprehensive Concept Network) 

Recall 
Precision 

LTC-AMW SumMW SumAW 

0% 59.33% 59.14% 61.70% 

10% 30.54% 33.46% 33.16% 

20% 23.89% 24.86% 24.52% 

30% 19.01% 20.91% 20.69% 

40% 16.26% 17.32% 17.01% 

50% 13.62% 14.74% 14.56% 

60% 11.53% 12.42% 12.17% 

70% 9.61% 10.50% 10.29% 

80% 7.69% 8.41% 8.22% 

90% 5.97% 6.35% 6.22% 

100% 3.84% 3.84% 3.84% 

AUC-PR 16.97% 18.05% 17.96% 

5 Conclusions 

In this study, we develop a drug repositioning discovery method that uses both bio-
medical literature and ontologies as information sources for constructing a compre-
hensive network of biomedical concepts. We also develop a link weighting method 
(i.e., ExtNMS) and two target term ranking measures. We experimentally evaluate our 
proposed method and show that taking both literature and ontologies into account and 
using our ExtNMS measure can improve the effectiveness of predicting novel drug-
disease relationships. Besides, our proposed target term ranking measures can better 
infer plausible drug-disease relations. Overall, our proposed drug repositioning dis-
covery method can help researchers sift most plausible unknown drug-disease rela-
tionships, i.e., potential drug repositioning candidates. 
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Abstract. To investigate how an infectious disease spreads, it is most
desirable to discover the underlying disease transmission networks based
on surveillance data. Existing studies have provided some methods for
inferring information diffusion networks, where nodes correspond to indi-
vidual persons. However, in the case of disease transmission, to effectively
develop intervention strategies, it would be more realistic and reasonable
for policy makers to study the diffusion patterns at the metapopulation
level, that is, to consider disease transmission networks where nodes rep-
resent subpopulations, and links indicate their interrelationships. Such
networks are useful to: (i) investigate hidden factors that influence epi-
demic dynamics, (ii) reveal possible sources of epidemic outbreaks, and
(iii) practically develop and improve strategies for disease control. There-
fore, based on such a real-world motivation, we aim to address the prob-
lem of inferring disease transmission networks at the metapopulation
level. Specifically, we propose an inference method called NetEpi (Net-
work Epidemic), and evaluate the method by utilizing synthetic and
real-world datasets. The experiments show that NetEpi can recover most
of the ground-truth disease transmission networks based only on the
surveillance data. Moreover, it can help detect and interpret patterns
and transmission pathways from the real-world data.

Keywords: Network inference, disease transmission networks, metapop-
ulation, Bayesian learning, partial correlation networks.

1 Introduction

Infectious disease transmission has been studied with a network based approach
and at an individual level [1]. However, existing studies often assume network
structures are given in advance (e.g., air travels for the spread of H1N1 [2]),
suggesting that it is possible to know which individual could be infected next. In
reality, what is possible to observe is only the spatiotemporal surveillance data,
containing infection times and locations of reported infection cases. This data
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provides no knowledge of the hidden transmission pathways that denote the
routes of disease propagation among geographical locations. This real-world sit-
uation directly poses a significant challenge to the policy makers in applying
intervention strategies at appropriate times and locations. In this regard, infer-
ring disease transmission networks (DTNs) becomes an important and urgent
research problem in epidemiological studies, which is our key objective.

The network inference problem has been widely studied in the information
diffusion domain and is usually conducted at an individual level. Based on em-
pirical time-series data of when people get informed, the static network inference
is transformed into a combinatorial optimization problem [3]. Formulating it as
a MAX-k -COVER problem, Rodriguez et al. have proven that selecting the top
k edges that maximize the likelihood of the static information diffusion net-
work (IDN) structure is NP-hard. They introduced a greedy algorithm based on
the submodularity properties to approximate the optimal solution. Myers and
Leskovec formulated a similar problem with heterogeneous edge weights into a
convex optimization problem, and proposed a maximum likelihood method to
solve it [4]. In addition, having noticed that the structure of a social network is
sparse, they introduced penalty functions into the objective function to improve
the accuracy. In a recently published study on inferring DTNs at the individual
level [5], Teunis and Heijne used a pairwise kernel likelihood function to incor-
porate disease related information, and trained and applied the model using a
real-world dataset collected from a university hospital.

The above work has provided insights into solving network inference problems
at an individual level. However, inferring DTNs is more meaningful and prac-
tical at a metapopulation level, where nodes and edges represent patches with
subpopulations (e.g., cities) and transmission pathways among them (e.g., trans-
portation) rather than individual persons and their pairwise connections (e.g.,
social contacts). This is due to the considerations of: (i) the appropriateness of
simulating disease transmission in both spatial and temporal scales [6], (ii) diffi-
culties in simulating complicated human behaviors and collecting a huge amount
of personal information [1], and (iii) the practice of controlling disease transmis-
sion from the view point of policy makers [7]. However, this treatment leads
to two additional challenges: (i) nodes within metapopulation based DTNs can
in addition connect to themselves, indicating susceptible people get infected by
infected people within the same subpopulation, and (ii) metapopulation based
disease transmission follows Directed Cyclic Graphs (DCGs) rather than Di-
rected Acyclic Graphs (DAGs) as in information diffusion or individual based
DTNs. Even if a large proportion of a certain subpopulation is infected, the
remaining susceptible persons that have not been temporally infected will still
have chances of being infected later.

Inferring metapopulation based DTNs is not only desirable but also challeng-
ing. As far as we know, there has not been such work done before. In this paper,
we will address this problem, and more specifically, make three contributions:
(i) to build a generalized linear disease transmission model that considers all
possible transmission pathways at the metapopulation level, (ii) to develop an
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inference method, called NetEpi, that infers hidden DTNs based only on the spa-
tiotemporal surveillance data, and (iii) to solve the network inference problem
over DCGs rather than DAGs. We believe such work is also practically mean-
ingful since it helps computationally predict large-scale infectious disease spread
and provide policy makers with insights into optimizing intervention strategies.

The paper is organized as follows. The metapopulation based DTN inference
problem is formulated in Section 2. A two-step inference method (NetEpi) is
introduced in Section 3. NetEpi is evaluated by using both synthetic and real-
world datasets in Section 4. Finally, we make conclusions in Section 5.

2 Problem Statement

A ground-truth DTN is defined asG = <V,E>, where the set of nodes is denoted
as V = {vi | i = 0, 1, 2, ..., N}. i is the index of a specific node. v0 represents
the external source node for the imported cases that would potentially cause
local epidemics [8] (Imported cases are the laboratory-confirmed infection cases
where people have traveled to disease endemic regions within days before the
onset of the disease [8]). vi (i = 1, 2, ..., N) correspond to the rest of nodes
within the target region. E = {ei | i = 1, 2, ..., N} denotes the set of edges with
weights W = {wi | i = 1, 2, ..., N}. ei is the set of incoming links for node i, and
wi is the corresponding weight vector. Source node v0 has no incoming links.
The physical meanings of these edges that have non-zero weights describe the
generalized transmission pathways that temporally correlate subpopulations in
terms of their infection observations. In reality, G cannot be directly obtained.
What is often collected is surveillance data, which can be represented as D =
{<vi, ici, ti> | i = 0, 1, 2, ..., N, t ∈ T } after aggregating infection cases based
on locations and infection times. vi corresponds to a geographical location (e.g.,
a city, or a township), ici is the aggregated number of infection cases, and ti
indicates a time step. T is the considered time period of disease transmission.

We refer to the estimated DTN as G∗, and consider three types of transmis-
sion pathways: (i) internal transmission component (ITC), which indicates that
infected people, directly (e.g., in the air-borne disease of influenza) or indirectly
(e.g., in the vector-borne disease of malaria), infect susceptible people within the
same subpopulation, (ii) neighborhood transmission component (NTC), where
disease transmits, through physically connected highways, adjacent borders, etc.,
among several subpopulations (it signifies the interactions happening between
infected people in different subpopulations), and (iii) external influence compo-
nent (EIC), which represents the source of imported cases from distant endemic
regions or countries. In G, it is an external node connected to all the other nodes.

To characterize a disease transmission process over G, we integrate both of
the internal transmission component and the external influence component with
the neighborhood transmission component. The total number of infection cases
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can be written as a linear combination of the above three components plus an
error term Ω that captures the unpredicted biases, as follows:

ici
t =itci

t + ntci
t + eici

t + Ω

=wii × ici
t−1 +

Ni∑
j

wji × icj
t−1 + w0i × ic0

t−1 + Ω
(1)

where itci
t, ntci

t, and eici
t refer to the numbers of infection cases from ITC,

NTC, and EIC to node i (i �= 0) at time step t, respectively. Ni is the number of
the neighbors of node i. The error term Ω follows a zero-mean normal distribution,
Ω ∼ N(0, ω). Eq. 1 characterizes the temporal dynamics of infection cases at
each location. To be noticed, in the real world, once a patient is diagnosed to
be infected, treatments and interventions (e.g., medication and isolation) would
be taken by the physicians or hospitals. Thus, the infection cases at the current
time step would be set to be isolated in the following time steps.

Given an observed surveillance datasetD = {<vi, ici, ti> | i = 0, 1, 2, ..., N, t ∈
T }, we intend to infer E of G and their corresponding weightsW . The likelihood
function for a specific node i based on Eq. 1 is:

L(wi, ω|ici) =
T∏
t=1

1

(2πω)(1/2)
e
− 1

2β (icti−wii×ict−1
i −

N∗
i∑
j

wji×icjt−1−w0i×ic0t−1)

(2)

where N∗
i indicates the number of the estimated neighbors of node i within G∗.

This set of neighbors can be written as V ∗
i = {vj | j = 0, 1, 2, ..., N and wji �= 0}.

ω is the variance of the normal distribution for Ω. Therefore, we transform the
network inference problem into an optimization problem, which is to find an
optimal combination of neighbors with accurate weights for a specific node i.
Specifically, to infer network G∗, we aim to maximize the likelihood function,
given as:

L(W,ω|D) =

N∏
i=1

L(wi, ω|ici) (3)

3 The Proposed Network Inference Method

3.1 Partial Correlation Network Construction

Given D, we first hope to construct an approximate network structure. It will
reduce the trivial computations for our second step as well as filter out a propor-
tion of false positive edges. Using the pearson correlation to build such networks
is intuitive but not workable in the case of disease transmission. As shown in
Fig. 1(a), disease transmission may follow a path from i to k, then to j. Even
though i and j are not directly connected, they may still be correlated. Therefore,
in the approximate network structure, denoted as Gp, they may be connected
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(a) (b) (c)

Fig. 1. Possible transmission relationships among three nodes [9]. Blue nodes are the
targets of correlation analysis. The red one is the intermediate node. (a) shows that
there is no directed edge between nodes i and j. Disease transmission follows a path
from node i to k, then to j. (b) shows node k transmits to nodes i and j simultaneously
and independently. (c) shows the pearson correlation results for (a) and (b).

as illustrated in Fig. 1(c). The same problem also exists in the case of Fig. 1(b),
where i and j are the children of k considering the disease transmission dynamics.

To avoid such situations, we carry out first-order partial correlation analysis,
which measures the dependence between two variables, while removing or fixing
a third variable. In this regard, to compute it between nodes i and j, we remove
or fix the impact of another node k, where k = 0, 1, 2, ..., N and k �= i, j. From the
results, we choose coefficients that indicate strong correlations with significant
p-values. It should be mentioned that partial correlation usually does not provide
edge directions [10]. Therefore, to infer directed edges, we analyze the time-series
data with a time lag (e.g., one day or one week). Then, the direction is from
the node using the previous time-series data to the node using the current one.
The partial correlation coefficient between nodes i and j after fixing the variable

of node k is βij.k = (βij − βikβjk)(
√

1− β2ik

√
1− β2jk), where βij , βik, and βjk

are the covariances. This method removes many false positive edges as well as
generates an approximate partial correlation network (PCN), Gp.

3.2 Back-Tracking Bayesian Learning

It should be noted that some edges in Gp still do not exist in G. A possible
solution is to set the weights of these false positive edges with values of zero
during the inference process. This is similar to the removal of irrelevant basis
components as in basis pursuit for dimensionality reduction [11]. In our proposed
inference method, we base our second step on the Sparse Bayesian Learning
(SBL) framework [12]. To be noticed, if two components are similar, SBL only
chooses one of them in order to compress the relevant information. However, in
our case, even two nodes are similar, we aim to find both of them.

For node i, we divide preprocessed surveillance dataset D into two subsets: an
M ×1 vector of y = {<vi, ici, ti> | ti = 2, 3, ...,M +1,M ∈ T } and an M ×|Np|
matrix of x = {<vj , icj , tj> | j ∈ Np, tj = 1, 2, ...,M,M ∈ T − 1}. M is the
size of output variable y and input variable x. Np represents the indices of the
possible neighbors that node i has based on Gp. T−1 is the previously considered
time period of disease transmission. For the sake of presentation, in the following,
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we omit the index i for y, x, and other parameters. If not specifically stated, all
the parameters are formulated for node i. Here, we use a time lag of 1 between
y and x. The relationship between y and x can be formulated based on the
generalized linear transmission model introduced in Section 2 as follows:

y = xwT + Ω (4)

where w = {wj | j ∈ Np} is a vector indicating all possible incoming links
estimated based on Gp. Ω is an error term. Under the framework of SBL, both
w and Ω follow a zero-mean Gaussian distribution with variances of α and ω,

respectively. They are defined respectively as: p(w|α) =
∏Np

j=1 N(wi|0, θ−1
j ) and

p(Ω) = N(0, ω). Because we have no prior knowledge about w and Ω, it is reason-
able to set them with non-informative prior distributions (e.g., Gamma distri-
bution). α and ω are assumed to have the same hyperparameters for all nodes.

Given the observation data of y and the prior distribution of α and ω, the
posterior distribution of w is:

p(w|y,α, ω) = likelihood× prior

normalize factor
=

p(y|w, ω)p(w|α)

p(y|α, ω) (5)

which is a Gaussian distribution N(μ,Σ) with μ = ω−1ΣxTy, Σ = (Λ +
ω−1xTx)−1 where Λ = diag(θ1, θ2, ..., θNp). “type-II maximization likelihood”
maximization combined with a maximum a posteriori probability (MAP) esti-
mate transforms the whole problem into that of maximizing the marginal likeli-
hood function of:

p(y|α, ω) =
∫

p(y|w, ω)p(w|α)dw (6)

Writing Eq. 6 into a logarithm form L(α), we have:

L(α) = log p(y|α, ω) = log

∫
p(y|w, ω)p(w|α)dw

= −1

2
[M log 2π + log |C|+ yTC−1y]

(7)

with C = ωI + xΛ−1xT . The derivatives with respect to θj and ω are [13]:

ΘL(α)

Θ logθj
=

1

2
(1− θjπjj − θjμ

2
j) (8)

ΘL(α)

Θ log ω
=

1

2
[
M

ω
− ‖y − xμ‖2 − trace(ΣxTx)] (9)

Setting Eqs. 8 and 9 to zero, the estimations of θj and ω become:

θnewj =
1− θjπjj

μ2
j

(10)

ωnew =
M −

∑
j=1(1− θjπjj)

‖y − xμ‖2
(11)
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The above iterative estimation procedure is solved by using the Expectation-
Maximization algorithm. In each iteration, we estimate the contributions to the
marginal likelihood function for all nodes in Gp. The one with maximum con-
tribution is selected as the candidate neighbor. Then, its corresponding weight
is computed. As to be noted, in G, we only have positive links. However, the
prior distribution may cause w to become negative. To avoid this, a constraint
of limiting w to be positive is introduced. To incorporate this constraint, we
use a back-tracking technique. During the EM learning procedure, the update of
marginal likelihood function and other parameters proceeds sequentially. Con-
sequently, each time μ, Σ, θj , and ω are updated, we select those θj that fail
the constraint, and put their corresponding indices into a blacklist. The program
is rolled back to the previous step and proceeds by selecting nodes that do not
exist in the blacklist. The algorithm is shown in Alg. 1.

Algorithm 1. Back-Tracking Bayesian Learning

Require: D: Preprocessed surveillance dataset; Gp: Partial correlation network;
Ensure: G∗: Inferred disease transmission network;

1. Divide D into two subsets with time lag of one time unit;
2. for all node i = 1, 2, ..., N do
3. Initialize parameters for prior distributions;
4. Construct marginal likelihood function pi(y|α, ∂) (shown in Eq. 6);
5. while not reaching stopping criteria do
6. for all node j ∈ Np, and i �= j do
7. Compute contributions to pi(y|α, ∂);
8. end for
9. Select node with maximum contribution;
10. Re-estimate all weights of current neighbors of node i;
11. if all weights are not less than zero then
12. Update neighborhood list;
13. else
14. Remove neighbors with weights less than zero, and put them into blacklist;

15. Roll back pi(y|α, ∂);
16. end if
17. end while
18. end for
19. Combine all neighborhood lists to construct G∗;
20. return G∗;

3.3 Discussions

As stated in [3], it is not trivial nor practical to find all the edges within G,
or the exact time required to stop the inference program. Thus, once the pro-
gram iterates to the maximum permitted iteration steps, or the update of the
marginal likelihood function converges to a small value, we will stop the learning
procedure. To compute the PCN, the time complexity is O(N3). To speed up this
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process, we use dynamic programming to recursively compute the first-order par-
tial correlation based on the result of zeroth-order partial correlation. As for the
back-tracking Bayesian learning, the complexity of Bayesian learning is mainly
distributed over the computation of parameters of Σ, which requires O(N3). An
efficient incremental algorithm proposed in [12] can optimize this computation.
Besides, the computation based on Gp can also reduce this computational time.
After integrating the back-tracking algorithm, the time complexity becomes ex-
ponential. However, based on our experiments, the algorithm usually converges
fast. That is to say, the algorithm seldom tracks back to the nodes that are
selected at the very beginning. This is caused by the previous Bayesian learning;
it selects those significantly contributing nodes at the very beginning, making
the marginal likelihood function converge to a near optimum solution without
large space to increase, and stable until reaching the stopping criteria.

4 Experiments

4.1 Experiments Based on Synthetic Data

The synthetic data generation proceeds as follows: we first use Kronecker Graphs
model [14] to generate a basic network structure. Then, we link all the nodes
with an external node v0, and generate self-connected edges with predefined
probabilities. We iteratively run the transmission model, as given in Eq. 1, for a
sufficient number of time steps to generate the disease surveillance data.

Experimental Setting. We construct 3 types of network structures: (i) core-
periphery networks (CPNs), which have a cluster of nodes in the core of the
network, (ii) hierarchical community networks (HCNs), where a proportion of
the nodes form several small communities, and (iii) random graphs (RGs), which
have no obvious pattern. Then, for each structure, we generate networks with
different sizes: 64n with 100e, 150e (“n”and “e” are the abbreviations of “nodes”
and “edges”, respectively); 128n with 180e, 200e; 256n with 350e, 400e; 512n with
720e, 800e. For each of them 10 datasets are produced. Specifically within each
generation process, we make sure that the transmission process cover all the
edges in G. In total, there are 3 types of network topologies × 8 different sizes
× 10 independent transmission processes = 240 datasets.

The Baseline Method. To our best knowledge, there have not been much
prior work on inferring network structures over DCGs. Therefore, we utilize a
probability based baseline method. At two adjacent time steps t = n and t = n+
1, all the nodes that have infection cases at t = n will have connections to those
nodes have infection cases at n+1. The edge weight is affected by the number of
infection cases and the number of infected nodes at the previous time step. We
select the top k edges with the highest weights, and form the estimated disease
transmission network G∗ accordingly. The mathematical formula to compute the
baseline edge weight is wij = ici

ticj
t+1/

∑N
i=1 ici

t.
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(a) CPN - 128n, 180e (b) HCN - 128n, 180e (c) RG - 128n, 180e

(d) CPN - 256n, 350e (e) HCN - 256n, 350e (f) RG - 256n, 350e

Fig. 2. The precision-recall curves for synthetic DTNs. It is obvious that NetEpi out-
performs the baseline method in all cases. The average degree for the above six networks
are 1.3876, 1.4496, 1.4651, 1.3619, 1.5175, and 1.5097, respectively, from (a) to (f).

Result Evaluation. To evaluate the inference results, we compute the precision-
recall curves as shown in Fig. 2. For the sake of space, we display only part of our
experimental results here. The precision and recall are defined as “what fraction
of edges in G∗ is also present in G”, and “what fraction of edges of G appears
in G∗”, respectively [3]. For nodes i and j, if both ground-truth edge eij and
inferred edge e∗ij exist, and the difference between the corresponding weights
|wij − w∗

ij | is less than a threshold, then we say the inferred edge is accurate.
In our experiments, NetEpi outperforms the baseline method in all 240

datasets. Specifically, for networks that have the same sizes but different topolo-
gies, NetEpi performs the best on the CPNs. Nodes located in the core re-
gion have more connections as compared with those in the periphery region.
Therefore, to achieve an optimal solution, core-located nodes will have higher
probabilities to possess a more number of combinations of neighbors. In other
words, the probabilities to find a globally optimal solution for a single node
will decrease as the number of its incoming edges increases. The accuracies of
NetEpi over CPNs are consequently biased by the tradeoff between core-located
and periphery-located nodes. In comparison, for HCNs, there is no longer a
single core. In contrast, there are several sub-cores that individually form a sub-
community. This structure makes the average number of combinations for each
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(a) (b)

Fig. 3. (a) As the GTN size increases, the accuracy of NetEpi decreases. The number
of false edges increases as well. (b) NetEpi accurately captures the disease transmission
trend.

node increase and directly affect the inference accuracy. As for RGs, the number
of connections for each node does not have a fixed pattern, and NetEpi achieves
oscillating results. Here, we use an average out-degree distribution to illustrate
the accuracy differences between networks with distinct topologies. It is defined
as davg =

∑N
i=1 di/N where di is the out degree for node i, davg is the average

degree for the whole network. Our analysis results of the 24 synthetic networks
show that the average degrees for CPNs are always smaller than those for HCNs.
And, the average degrees for RGs present oscillating patterns (Fig. 2).

For networks with the same topologies but different sizes, NetEpi achieves
better results on inferring smaller ones as shown in Fig. 2. During the infer-
ence process, the whole Ground-Truth Network (GTN) is treated as a complete
network. Even given the approximate structure Gp, the complexity quadrati-
cally increases as the number of nodes increases. Meanwhile, as the edge number
increases, the number of combinations of neighbors for each node to achieve op-
timal solutions increases as well, which directly interferes the inference results as
in Fig. 3(a). However, the network sizes of metapopulation based DTNs are usu-
ally small at the administrative level. For example, for a global epidemic disease,
WHO publishes statistical reports at the country level. Therefore, a possible so-
lution to infer large-size networks is to perform hierarchical clustering based
on geographical information. NetEpi is conducted from the highest level where
each node represents a cluster of lower-level nodes. Then, within each high-level
node, NetEpi is performed again to infer lower-level transmission networks. This
process is repeatedly and sequentially conduced in order to get a whole picture
of large-size networks. Fig. 3(b) shows an example of the prediction results of
NetEpi. It is obvious that the predicted epidemic trend happening in the GTN
is well captured by the inferred network. This validates that NetEpi converges
to an optimal solution, although this may not be the global one.
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River

RiverBorder

Fig. 4. Townships that form a community in the inferred malaria transmission network

4.2 Experiments Based on a Real-World Dataset

Experimental Setting. The real-world dataset was provided by Chinese Cen-
ter for Disease Control and Prevention. It contains reported malaria cases in
Yunnan province, China. In total, there are 2928 cases reported in 51 townships
in 2005. These townships are distributed along the border between China and
Myanmar (a high malaria-endemic country) and classified into 5 categories based
on the numbers of infection cases: (200,+∞) (red), (150, 200] (purple), (100, 150]
(green), (50, 100] (yellow), and (0, 50] (blue). The dataset is very sparse, with
missing data. Moreover, there is no complete information about the sources
and identifications of imported cases. Thus, a fixed external node cannot be set
up before the inference procedure. Like the periodical pattern of the Internal
Transmission Component, the External Influence Component also presents reg-
ular pattern because of the frequent human mobility motivated by cross-border
trade and business. We consequently merge EIC with ITC, and represent either of
them, or their combination, by self-connected edges. This is reasonable because
it has been recorded that most of these imported cases were due to working,
trading, and/or visiting in/with Myanmar regularly. Therefore, self-connected
edges are able to capture these regular patterns. We are informed that there
exist imported cases, and expect that the inferred malaria transmission network
contain many self-connected edges. It has been widely reported that the incuba-
tion time for Plasmodium vivax is 12 ∼ 17 days [15]. However, studies have also
reported that the incubation time could be longer from several months to sev-
eral years [15]. Therefore, we choose 21 days as the time window when inferring
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(a) Township 4 (b) Township 6 (c) Township 8

(d) Township 14 (e) Township 18 (f) Township 28

Fig. 5. The reported cases for the selected nodes in 2005. In order to present them
clearly, we aggregate the reported cases on an eight-day basis.

the underlying malaria transmission network, so that it compromises both the
reported incubation time and the sensitivity analysis that we have conducted
previously.

Result Interpretation. The inferred network contains two classes of nodes.
Some of them connect to themselves as we expected, while the others form
communities. Self-connected nodes occupy 50.98% of the whole network. This
caters to our previous expectation. These nodes are located adjacent to the
border between China and Myanmar, or connected with the border by highways,
or situated close to rivers, which provide suitable environments for the vectors of
malaria to reproduce. Therefore, the malaria endemic within these self-connected
nodes are possibly caused by EIC, ITC, or their combinations.

As shown in Fig. 4, there is a community found in the inferred network. It
contains most nodes that have severe endemic situations. Many townships are
distributed along two rivers. Besides providing suitable habitat there, rivers also
bring the larva of vectors from the upstream to the downstream. Therefore, the
inferred edges of these nodes possibly represent partial influences from rivers,
and impact of vectors’ movements. In addition, the severest township 6 has con-
nections to all the other second level severity townships (green nodes), indicating
that their disease transmission interactions may be the dominant reason for the
local malaria endemic in the region. Other townships 16, 28, and 30 are connected
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with the others by highways (e.g., S231, S233, S317, and S318), indicating that
their transmission pathways are possibly caused by transportation.

It can readily be noted from Fig. 4 that some inferred edges are thicker than
others, denoting higher transmission influences. For example, e18−6 (the dash in
the index is used for separation) is thicker than e14−6, e4−6, and e28−6. We inter-
pret this based on Fig. 5 (a) - (f) where reported cases are aggregated on an eight-
day basis for clear presentation. As shown, although township 18 (Fig. 5(e)) has
fewer reported cases than other example townships and contains many zero-case
intervals, its temporal trend does not significantly violate the trend of township
6 (Fig. 5(b)). In comparison, the “mountain-valley-mountain” pattern of town-
ship 6 can only be partially matched with other townships (e.g., townships 4
(Fig. 5(a)), 14 (Fig. 5(d)) and 28 (Fig. 5(f))). The influence from township 6 to
4 is much less than that from the reverse direction. This is because the second
highest peak appearing between time steps 20 to 30 in the trend of township 6
cannot contribute to the valley appearing at the same time interval in the trend
of township 4. However, the reverse contribution is reasonable. Intuitively, the
pair of townships 4 and 8 (Fig. 5(c)) and the pair of townships 14 and 28 have
similar trends respectively, but NetEpi only finds edges between townships 14
and 28. This is due to that, for townships 4 and 8, their trends before time step
20 seem to be similar, but those after step 20 present a time lag of around 8*8
days.

There are totally 47 rather than 51 townships contained in the inferred net-
work. The 4 missing nodes have neither self-connected edges nor neighborhood
connected edges. The sum of their infection cases is 81, which is a very small
proportion of all infection cases. Therefore, we think their disease transmission
dynamics are caused by accidentally imported cases. In addition, although some
townships are located very close to each other, and in the positions of the up-
stream or the downstream of the same river, they are not connected in the
inferred network (e.g., townships 10 and 17). We believe this is because their
transmission pathways are not significant or their malaria endemic is mainly af-
fected by imported cases that overtook the impact of other factors. To interpret
them, currently available information about highways, rivers, and geographical
locations may not be fully adequate, because they represent the transmission
pathways that are the comprehensive results of all impact factors. In addition,
the roads that are locally formed and managed are not displayed in the map,
which may also play significant roles in malaria transmission. Missing reports
and data sparsity may affect the results as well. However, our method can still
detect some hidden connections that may draw the attention of policy makers.

5 Conclusion

In this study, based on the need for real-world disease transmission pattern
discovery, we have defined and addressed an inverse network inference prob-
lem. Given only the surveillance data, we have proposed a two-step network
inference algorithm, called NetEpi. Having highlighted the major differences be-
tween the individual based network inference and the metapopulation based
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network inference problems, we defined a linear disease transmission model over
a Directed Cyclic Graph (DCG) containing three types of transmission path-
ways as often found in the real-world situations, namely, internal transmission
component, neighborhood transmission component, and external influence com-
ponent. We performed partial correlation analysis to construct an approximate
network structure for the underlying disease transmission network, and then con-
ducted back-tracking Bayesian learning to iteratively infer edges and estimate
their corresponding weights. We have evaluated the proposed method by using
synthetic data. The experimental results have shown that NetEpi outperforms a
probability based baseline inference method, and performs well over a relatively
small-scale network, which is sufficient for metapopulation based disease trans-
mission network modeling in practice. Meanwhile, NetEpi achieves a reasonable
accuracy over different network topologies. In addition, we have applied NetEpi
to a real-world disease transmission dataset and have discovered certain mean-
ingful community patterns as well as transmission pathways. Our future work
will focus on inferring disease transmission networks in which there exist various
underlying, sometimes dynamically-changing network structures. We will also
consider other impact factors that may be disease-dependent. This work will
further be applied to the real-world situations for policy makers to develop and
implement intervention strategies for controlling disease transmission.

Acknowledgement. The authors would like to acknowledge the funding sup-
port from Hong Kong Research Grants Council (HKBU211212) and from Na-
tional Natural Science Foundation of China (NSFC81273192) for the research
work being presented in this paper.

References

1. Keeling, M.J., Eames, K.T.: Networks and Epidemic Models. J. R. Soc. Interface. 2,
295–307 (2005)

2. Bajardi, P., Poletto, C., Ramasco, J.J., Tizzoni, M., Colizza, V., Vespignani, A.:
Human Mobility Networks, Travel Restrictions, and Global Spread of 2009 H1N1
Pandemic. PLoS ONE 6, e16591 (2011)

3. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring Networks of Diffusion
and Influence. In: 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1019–1028. ACM Press, New York (2010)

4. Myers, S., Leskovec, J.: On the Convexity of Latent Social Network Inference. In:
Advances in Neural Information Processing Systems, pp. 1741–1749 (2010)

5. Teunis, P., Heijne, J.C.M., Sukhrie, F., van Eijkeren, J., Koopmans, M., Kret-
zschmar, M.: Infectious Disease Transmission as a Forensic Problem: Who Infected
Whom? J. R. Soc. Interface 10(81) (2013)

6. Arino, J.: Diseases in Metapopulations. In: Ma, Z., Zhou, Y., Wu, J. (eds.) Modeling
and Dynamics of Infectious Diseases. Series in Contemporary Applied Mathemat-
ics, vol. 11, pp. 65–123. World Scientific (2009)

7. Ndeffo, M.M.L., Gilligan, C.A.: Resource Allocation for Epidemic Control in
Metapopulations. PLoS ONE 6, e24577 (2011)



Inferring Metapopulation Based Disease Transmission Networks 399

8. Shang, C.S., Fang, C.T., Liu, C.M., Wen, T.H., Tsai, K.H., King, C.C.: The Role of
Imported Cases and Favorable Meterorological Conditions in the Onset of Dengue
Epidemics. PLoS Negl. Trop. Dis. 4, e775 (2010)

9. Yuan, Y., Li, C.T., Windraw, O.: Directed Partial Correlation: Inferring Large-
Scale Gene Regulatory Network through Induced Topology Disruptions. PLoS
ONE 6, e16835 (2011)

10. Lasserre, J., Chung, H.R., Vingron, M.: Finding Associations among Histone
Modifications Using Sparse Partial Correlation Networks. PLoS Comput. Biol. 9,
e1003168 (2013)

11. David, P.W., Bhaskar, D.R.: Sparse Bayesian learning for basis selection. IEEE
Trans. Signal Processing. 52(8), 2153–2164 (2004)

12. Tipping, M.E., Faul, A.: Fast Marginal Likelihood Maximization for Sparse
Bayesian Models. In: 9th International Workshop on Artificial Intelligence and
Statistics, pp. 3–6 (2003)

13. Tzikas, D., Likas, C., Galatsanos, N.: Sparse Bayesian Modeling with Adaptive
Kernel Learning. IEEE Trans. Neural Networks. 20(6), 926–937 (2009)

14. Leskovec, J., Faloutsos, C.: Scalable Modeling of Real Graphs using Kronecker
Multiplication. In: 24th International Conference on Machine Learning, pp. 497–
504. ACM Press, New York (2007)

15. Brasil, P., de Pina Costa, A., Pedro, R., da Silveira Bressan, C., da Silva, S., Tauil,
P., Daniel-Ribeiro, C.: Unexpectedly Long Incubation Period of Plasmodium vivax
Malaria, in the Absence of Chemoprophylaxis, in Patients Diagnosed outside the
Transmission Area in Brazil. Malar. J. 10(1), 122 (2011)



A Novel Framework to Improve

siRNA Efficacy Prediction

Bui Thang Ngoc

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi City, Ishikawa, 923-1211 Japan

thangbn@jaist.ac.jp

Abstract. Short interfering RNA sequences (siRNAs) can knockdown
target genes and thus have an immense impact on biology and pharmacy
research. The key question of which siRNAs have high knockdown ability
in siRNA research remains challenging as current known results are still
far from expectation. This work aims to develop a generic framework to
enhance siRNA knockdown efficacy prediction. The key idea is first to
enrich siRNA sequences by incorporating them with rules found for de-
signing effective siRNAs and representing them as transformed matrices,
then to employ the bilinear tensor regression to do prediction on those
matrices. Experiments show that the proposed method achieves results
better than existing models in most cases.

1 Introduction

In 2006, Fire and Mello received their Nobel Prize for their contributions to
research on RNA interference (RNAi) that is the biological process in which
RNA molecules inhibit gene expression, typically by causing the destruction of
specific mRNA molecules. Their work and that of others on discovery of RNAi
have had an immense impact on biomedical research and will most likely lead
to novel medical applications. On RNAi research, designing of siRNAs (short
interfering RNAs) with high efficacy is one of the most crucial RNAi issues.
Highly effective siRNAs can be used to design drugs for viral-mediated diseases
such as Influenza A virus, HIV, Hepatitis B virus, RSV viruses, cancer disease
and so on. As a result, siRNA silencing is considered one of the most promising
techniques in future therapy. Finding highly effective siRNAs among thousands
of potential siRNAs for an mRNA remains a great challenge.

Various siRNA design rules have been found by empirical processes since 1998.
The first rational siRNA design rule was detected by Elibalshir et al. [2]. They
suggested that siRNAs having 19–21 nt (nucleotide) in length with 2 nt over-
hangs at 3’ end can efficiently silence mRNAs. Scherer et al. reported that the
thermodynamic properties (G/C content of siRNA) to target specific mRNAs
are important characteristics [11]. Soon after these works, many rational design
rules for effective siRNAs have been found, typically those in [10], [15], [1], [4],
[7], [14]. For example, Reynolds et al. [10] analyzed 180 siRNAs and found eight
criteria for improving siRNA selection: (1) G/C content 30−52%, (2) at least 3
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As or Us at positions from 15 to 19, (3) absence of internal repeats, (4) an A at
position 19, (5) an A at position 3, (6) a U at position 10, (7) a base other than
G or C at position 19, (8) a base other than G at position 13.

However, most of siRNA design tools using the above-mentioned design rules
have low accuracy, because about 65% of the siRNAs predicted as high effective
was failed when tested experimentally as they were 90% in inhibition and near
20% of them were found to be inactive [9]. One reason is the previous empirical
analyses only based on small datasets and focused on specific genes. Therefore,
each of these rules certainly is poor to individually design effective siRNAs.

Since nearly a decade, machine learning techniques have alternatively been
applied to predict knockdown efficacy of siRNAs. The first predictive model was
proposed by Huesken et al. in which motifs for effective and ineffective siRNA se-
quences were detected basing on the significance of nucleotides by using a neural
network to train 2,182 scoring siRNAs (scores are real numbers in [0, 1], the high
score the higher knockdown efficacy) and test on 249 siRNAs [5]. This data set
was consequently used to build other predictive models [6], [13], [16]. Recently,
Qui et al. used multiple support vector regression with RNA string kernel for
siRNA efficacy prediction [8], and Sciabola et al. applied three dimension struc-
tural information of siRNA to increase predictability of the regression model [12].
However, most of those methods suffer from some drawbacks. Their correlations
between predicted values and experimental values of dependent variable ranging
from 0.60 to 0.68 were considerably decreased when testing on independent data
sets. It may be caused by the fact that the Huesken dataset may not be repre-
sentative of the siRNA population having about 419 siRNAs and the sample size
is small. Besides the scoring siRNA dataset, the labelled siRNA datasets, e.g.
siRecord database [9] with labels such as ‘very high”, ‘high’, ‘medium’, ‘low’ for
the knockdown ability were also exploited by classification methods.

Our work aims to develop a novel framework for better prediction of the
siRNA knockdown ability. The key idea is not only focusing on learning algo-
rithms but also exploiting results of the empirical process to enrich the data. To
this end, we first learn transformation matrices by incorporating existing siRNA
design rules with labelled siRNAs in siRecord database. We then use the trans-
formation matrices to enrich scoring siRNAs as transformed matrices and do
prediction with them by bilinear tensor regression where the Frobenius norm is
appropriately replaced by L2 regularization norm for an effective computation.
Experiments show that the proposed method achieves results better than most
existing models. The contributions of this work are summarized as follows

1. A novel generic framework to predict siRNA efficacy by enriching siRNA
sequences with domain knowledge and appropriately using bilinear tensor
regression.

2. An optimization method to enrich siRNAs using siRNA design rules found
by empirical works.

3. The use of L2 norm instead of Frobenius norm in bilinear tensor regression
that allows effectively learning the set of model parameters.
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2 The Framework to Improve siRNA Efficacy Prediction

The problem of siRNA knockdown efficacy prediction using siRNA design rules
is formulated as follows:

– Given: Two sets of labelled siRNA and scoring siRNA sequences of length n,
and a set of K siRNA design rules.

– Find: A function that assigns a right score to a given siRNA.

The proposed framework consists of four steps in two phases. The first phase
is to encode siRNAs and learn transformation matrices. The second phase is
to use transformation matrices to enrich siRNAs as transformed matrices and
learn model parameters of the bilinear tensor regression to predict the score of
siRNAs using transformed matrices. The steps of the framework are summarized
in Table 1.

Table 1. Framework for siRNA knockdown efficacy prediction

1. To encode each siRNA sequence as an encoding matrix X representing the nu-
cleotides A, C, G, and U at n positions in the sequence. Thus, siRNA sequences
are represented as n× 4 encoding matrices.

2. To learn transformation matrices Tk, k = 1, ..., K, each characterizes the knock-
down ability of nucleotides A, C, G, and U at n positions in the siRNA sequence
regarding the kth design rule. Each Tk is learned from the set of labelled siRNAs
and the kth design rule. This incorporation of each design rule with siRNAs leads
to solve a newly formulated optimization problem.

3. To transform siRNA (encoding matrices) to transformed matrices by K transfor-
mation matrices. The transformed matrices of size K ×n are considered as second
order tensor representations of the siRNA sequences.

4. To build a bilinear tensor regression model that uses transformed matrices of scor-
ing siRNAs to predict the knockdown ability of new siRNAs.

2.1 Encoding siRNA and Transformation Matrix Learning

Step 1 of the framework can be easily done where each siRNA sequence with n
nucleotides in length is encoded as a binary encoding matrix of size n × 4. In
fact, four nucleotides A, C, G, or U are encoded by encoding vectors (1,0,0,0),
(0,1,0,0), (0,0,1,0) and (0,0,0,1), respectively. If a nucleotide from A, C, G, and
U appears at the jth position in a siRNA sequence, j = 1, ..., n, its encoding
vector will be used to encode the jth row of the encoding matrix.

Step 2 is to learn transformation matrices Tk regarding the kth design rule,
k = 1, ...,K. Tk has size of 4 × n where the rows correspond to nucleotides A,
C, G, and U and the columns correspond to n positions on sequences. Tk are
learned one by one from the set of siRNAs and the kth design rule, thus we
use T instead of Tk for simplification. Each cell T [i, j], i = 1, ..., 4, j = 1, ..., n,
represents the knockdown ability of nucleotide i at position j regarding the kth
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Fig. 1. The left table shows an example of encoding matrix, transformation matrix, and
transformed vector (the values 0.5, 0.1 etc. are taken to the transformed vector). The
right table is an example of incorporating the condition of a design rule at position 19
to a transformation matrix T by designing constraints.

design rule. Each cell T [i, j] to be learned have to satisfy a number of constraints.
First, they are basic and normalization constraints on elements of T

T [i, j] ≥ 0, i = 1, ..., 4; j = 1, 2, . . . , n (1)∑4
i=1 T [i, j] = 1, j = 1, . . . , n (2)

The second kind of constraints related to design rules. Each design rule propo-
sitionally describes the occurrence or absence of nucleotides at different positions
of effective siRNA sequences. Therefore, if a design rule shows the occurrence
(absence) of some nucleotides on jth position, then their corresponding values
in the matrix T would be greater (smaller) than other values at column j. For
example, the design rule in the right table in Figure 1 illustrates that at posi-
tion 19, nucleotides A/U are effective and nucleotide C is ineffective. It means
that knockdown ability of nucleotides A/U are bigger than that of nucleotides
G/C and knockdown ability of nucleotide C is smaller than that of the other
nucleotides. Thus, values T [1, 19], T [2, 19], T [3, 19] and T [4, 19] show the knock-
down ability of nucleotides A, C, G and U at position 19, respectively. Therefore,
five constraints at column 19 of T are formed. Generally, we denote the set of R
trick inequality constraints on T by the design rule under consideration by

{gr(T ) < 0}Rr=1 (3)

The third kind of constraints relating to preservation of the siRNA classes after
being transformed by using transformation matrices Tk, it means that siRNAs
belonging to the same class should be more similar to each other than siRNAs
belonging to the other class.

Let vector xl of size 1 × n denote the transformed vector of the lth siRNA
sequence using the transformation matrix T . The jth element of xl is the element
of T at column j and the row corresponds to the jth nucleotide in the siRNA
sequence. To compute xl, new column-wise inner product is defined as follows

xl = T ◦Xl = (〈Xl[1, .], T [., 1]〉, 〈Xl[2, .], T [., 2]〉, . . . , 〈Xl[n, .], T [., n]〉) (4)
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where Xl[j, .] and T [., j] are the jth row vector and the jth column of the matrix
Xl and T , respectively, and 〈x, y〉 denotes the inner product of vectors x and y.

The left table in Figure 1 shows an example of encoding matrix X , trans-
formation matrix T and transformed vector x of the given sequence AUGCU.
The rows of X represent encoding vectors of nucleotides in the sequence. Given
transformation matrix T of size 4× 5. The sequence AUGCU is represented by
the vector x = (T [1, 1], T [4, 1], T [3, 3], T [2, 4], T [4, 5]) = (0.5, 0.1, 0.08, 0.6, 0.1).
Therefore, transformed data can be computed by the column-wise inner product
x = T ◦X .

The problem of transformation matrix learning is now formulated as finding T
under constraints (1), (2) and (3) so that the similarity of transformed vectors xl
in the same class is minimum and the dissimilarity of xl in different classes is
maximum. The learning problem then leads to solve the optimization problem
with the following objective function

Min
∑

p,q∈N1

d2(xp, xq) +
∑

p,q∈N2

d2(xp, xq)−
∑
p∈N1
q∈N2

d2(xp, xq) (5)

Subject to
T [i, j] ≥ 0,

∑4
i=1 T [i, j] = 1, gr(T ) < 0, i = 1, ..., 4; j = 1, ..., n; r = 1, .., R.

In the objective function, the two first components are the sum of similarity
of sequence pairs belonging to the same class and the last one is similarity of
sequence pairs belonging to two different classes; d(x, y) is the similarity measure
between x and y (in this work we use Euclidean distance and L2 norm); N1

and N2 are the two index sets of high and low efficacy siRNAs, respectively.
Constraints gi(T ) can also help to avoid the trivial solution of the objective
function.

This optimization problem is solved by the following Lagrangian form

E =
∑

p,q∈N1

d
2
(xp, xq) +

∑

p,q∈N2

d
2
(xp, xq) −

∑

p∈N1
q∈N2

d
2
(xp, xq) +

n∑

j=1

ψj

(
4∑

i=1

T [i, j] − 1

)
+

R∑

r=1

μrgr(T )

=
∑

p∈N1
q∈N1

‖ xp − xq ‖2
2 +

∑

p∈N2
q∈N2

‖ xp − xq ‖2
2 −

∑

p∈N1
q∈N2

‖ xp − xq ‖2
2 +

n∑

j=1

ψj

(
4∑

i=1

T [i, j] − 1

)
+

R∑

r=1

μrgr(T )

=
∑

p,q∈N1

n∑

j=1

(〈Xp[j, .], T [., j]〉 − 〈Xq [j, .], T [., j]〉)2 +
∑

p,q∈N2

n∑

j=1

(〈Xp[j, .], T [., j]〉 − 〈Xq [j, .], T [., j]〉)2

+
n∑

j=1

ψj

(
4∑

i=1

T [i, j] − 1

)
+

R∑

r=1

μrgr(T ) −
∑

p∈N1
q∈N2

n∑

j=1

(〈Xp[j, .], T [., j]〉 − 〈Xq [j, .], T [., j]〉)2

where μr, r = 1, ..., R and ∂j , j = 1, . . . , n are Lagrangian multipliers. To solve
the minimization problem, an iterative method is applied. For each pair of (i, j),
T [i, j] is solved while keeping the other elements of T . The Karush-Kuhn-Tucker
conditions are

– Stationarity: πE
πT [i,j] = 0, i = 1, ..., 4 and j = 1, . . . , n.

– Primal feasibility: T [i, j] ≥ 0,
∑4
i=1 T [i, j] = 1, gr(T ) < 0, i = 1, ..., 4;

j = 1, ..., n; r = 1, ..., R.
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– Dual feasibility: μr ≥ 0, r = 1, . . . , R.
– Complementary slackness: μrgr(T ) = 0, r = 1, . . . , R.

From the last three conditions, we have μr = 0, r = 1, . . . , R. Therefore, the
stationarity condition can be derived as follows

λE

λT [i, j]
= 2

∑
p,q∈N1

(〈Xp[j, .], T [., j]〉 − 〈Xq[j, .], T [., j]〉)(Xp[j, i]−Xq[j, i])

+2
∑

p,q∈N2

(〈Xp[j, .], T [., j]〉 − 〈Xq [j, .], T [., j]〉)(Xp[j, i]−Xq [j, i])

−2
∑

p∈N1,q∈N2

(〈Xp[j, .], T [., j]〉 − 〈Xq [j, .], T [., j]〉)(Xp[j, i]−Xq [j, i]) + φj = 0

Set Zp,q = (Xp −Xq)
T and Aij is the vector resulting from the column j of

matrix A by removing the element A[i, j]. Therefore, the above formulation is
derived as follows

λE

λT [i, j]
= 2(

∑
p,q∈N1

〈(Zp,q)ij , Tij〉Zp,q[i, j] +
∑

p,q∈N2

〈(Zp,q)ij , Tij〉Zp,q[i, j]

−
∑

p∈N1,q∈N2

〈(Zp,q)ij , Tij〉Zp,q [i, j])

+2T [i, j]

( ∑
p,q∈N1

Z2
p,q [i, j] +

∑
p,q∈N2

Z2
p,q [i, j] −

∑
p∈N1,q∈N2

Z2
p,q [i, j]

)
+ φj = 0

We define the following equations

S(i, j) =
∑

p,q∈N1

Z2
p,q [i, j] +

∑
p,q∈N2

Z2
p,q [i, j]−

∑
p∈N1,q∈N2

Z2
p,q [i, j] (6)

B(i, j) =
∑

p,q∈N1

〈(Zp,q)ij , Tij〉Zp,q[i, j] +
∑

p,q∈N2

〈(Zp,q)ij , Tij〉Zp,q [i, j]

−
∑

p∈N1,q∈N2

〈(Zp,q)ij , Tij〉Zp,q [i, j]. (7)

Substitute (6) and (7) to πE
πT [i,j] , we have

T [i, j] =

−γj

2
−B(i, j)

S(i, j)
(8)

At a column j, T has to satisfy

∑4
i1=1 T (i1, j) = 1 ⇔

4∑
i1=1

−γj

2
−B(i1, j)

S(i1, j)
= 1 ⇒ −φj

2
=

1 +
∑4

i1=1
B(i1,j)
S(i1,j)∑4

i1=1
1

S(i1,j)

(9)

Substitute (9) to (8), equation (8) can be derived as

T [i, j] =

1+
∑4

i1=1
B(i1,j)
S(i1,j)∑4

i1=1
1

S(i1,j)

−B(i,j)

S(i,j) =
1+

∑
i1 �=i

B(i1,j)−B(i,j)

S(i1,j)∑
4
i1=1

S(i,j)
S(i1,j)

(10)
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In this task, K design rules are used to learn K transformation matrices.
The main steps are summarized in Algorithm 1. For each siRNA design rule,
the algorithm will update each element of the transformation matrix according
to equation (10). In each iterative step, the transformation matrix without trick
inequality constraints is updated to reach the global optimal solution. If updated
elements in a column satisfy the trick inequality constraints characterizing the
condition at the corresponding position of the rule, that column will be updated
to the target solution. The transformation matrix is updated until meeting the
convergence criteria. ‖ . ‖Fro is the Frobenious norm of a matrix.

Algorithm 1. Transformation matrices learning

Input: A data set S = {(sl, yl)}N1 where sl are siRNA sequences and yl are their
labels, a set DR of K design rules, the length n of siRNA sequences.
Output: K transformation matrices T1, T2, . . . , TK .
Encoding siRNA sequences in S.
for rulek in DR do

Form the set of constraints Ck based on rulek
Initialize the transformation matrix Tk satisfying Ck.
t = 0 { Iterative step}
repeat

t ← t+ 1
for j = 1 to n do

v = T
(t−1)
k [., j] { A temporary vector}

for i = 1 to 4 do
Compute v[i] using equation (10)

end for
if (v satisfies the constraints at the position j in Ck) then

T
(t)
k [., j] ← v

end if
end for

until (
‖T (t)

k
−T

(t−1)
k

‖Fro

‖T (t−1)
k

‖Fro

≤ α) or (t > tMax)

end for

2.2 Tensor Regression Model Learning

Given a siRNA data set D = {(sl, yl)}N1 where sl is the lth siRNA sequence
of size n and yl ∈ R is the knockdown efficacy score of sl. Let Xl denotes the
encoding matrix of sl. Each encoding matrix X is transformed to K represen-
tations by K transformation matrices, (T1 ◦ X,T2 ◦ X, . . . , TK ◦ X). R(X) =
(T1 ◦X,T2 ◦X, . . . , TK ◦X)T denotes the second order tensor of size K × n.

The regression model can be defined as the following bilinear form

f(x) = θR(X)ω (11)

where θ = (θ1, θ2, . . . , θK) is a weight vector of the K representations of X and
ω = (ω1, ω2, . . . , ωn)

T is a parameter vector of the model, and θR(X) component
is the linear combination of representations T1 ◦ X,T2 ◦X, . . . , TK ◦X . It also
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shows the relationship among elements on each column of the second order tensor
or each dimension of Tk ◦ X, k = 1, 2, . . . ,K. Equation (11) can be derived as
follows

f(X) = τR(X)∂ =
(
∂ ⊗ τT

)T

vec(R(X)) =
(
∂T ⊗ τ

)
vec(R(X)) (12)

where A⊗B is the Kronecker product of two matrices A and B, and vec(A) is
the vectorization of matrix A. The weight vector θ and the parameter vector ω
are learned by minimizing the following regularized risk function

L(τ, ∂) =

N∑
l=1

(yl − τR(Xl)∂)
2 + φ ‖ ∂T ⊗ τ ‖2Fro (13)

where ∂ is the turning parameter to tradeoff between bias and variance, and
‖ ωT ⊗ θ ‖Fro is the Frobenius norm of the first order tensor ωT ⊗ θ. L(θ, ω)
can be derived as follows

L(τ, ∂) =

N∑
l=1

(yl − τR(Xl)∂)
2 + φ

K∑
k=1

n∑
j=1

(τk∂j)
2 =

N∑
l=1

(yl − τR(Xl)∂)
2 + φ

K∑
k=1

τ2
k

n∑
j=1

∂2
j

=

N∑
l=1

(yl − τR(Xl)∂)
2 + φ

K∑
k=1

τ2
k ‖ ∂ ‖22=

N∑
l=1

(yl − τR(Xl)∂)
2 + φ ‖ τ ‖22‖ ∂ ‖22 (14)

The risk function with Frobenius norm is converted to equation (14) with
L2 norm. In order to solve this optimization problem, an alternative iteration
method is used. At each iteration, the parameter vector ω is effectively solved
by keeping the weight vector θ and vice versa.

θL(α,β)
θα

= −2

N∑
l=1

(yl − τR(Xl)∂) (R(Xl)∂)
T + 2φτ ‖ ∂ ‖22= 0

⇔
N∑
l=1

τ (R(Xl)∂) (R(Xl)∂)
T −

N∑
l=1

yl (R(Xl)∂)
T + φτ ‖ ∂ ‖22= 0

⇒ τ =

N∑
l=1

yl (R(Xl)∂)
T

(
N∑
l=1

(R(Xl)∂) (R(Xl)∂)
T + φ ‖ ∂ ‖22 I

)−1

(15)

θL(α,β)
θβ

= −2
N∑
l=1

(yl − τR(Xl)∂) (τR(Xl))
T + 2φ∂ ‖ τ ‖22= 0

⇔
N∑
l=1

τR(Xl)∂ (τR(Xl))
T −

N∑
l=1

yl (τR(Xl))
T + φ∂ ‖ τ ‖22= 0

⇔
N∑
l=1

(
(τR(Xl))

T ⊗ (τR(Xl))
)
∂ −

N∑
l=1

yl (τR(Xl))
T + φ∂ ‖ τ ‖22= 0

⇒ ∂ =

(
N∑
l=1

(
(τR(Xl))

T ⊗ (τR(Xl))
)
+ φ ‖ τ ‖22 I

)−1 N∑
l=1

yl (τR(Xl))
T(16)
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Our proposed tensor regression model learning is summarized in Algorithm 2.
In this algorithm, siRNA sequences are firstly represented as encoding matrices.
The encoding matrices are then transformed to tensors by using K transforma-
tion matrices. After that, the weight vector θ and the coefficient vector ω are
updated until meeting the convergence criteria, where tMax denotes the maxi-
mum iterative step to update θ and ω, and ψ1 and ψ2 are thresholds for vectors
θ and ω.

Algorithm 2. Tensor Regression Model Learning

Input: A data set S = {(si, yi)}N1 where si are scoring siRNA sequences and yi ∈ R.
K transformation matrices R1, R2, . . . , Rk, and the length n of siRNA sequence.
Output: Weight vector τ = (τ1, τ2, . . . , τk) and parameter vector
∂ = (∂1, ∂2, . . . , ∂n) that minimize the regularized risk function

– Represent siRNA sequences in S as enconding matrices.
– Transform encoding matrices to tensors using K transformation matrices.
– Initialize τ and ∂ randomly.
– t = 0 { Iterative step}

repeat
t ← t+ 1
Compute τ(t) using equation (15)
Compute ∂(t) using equation (16)

until (( ‖α
(t)−α(t−1)‖2
‖α(t−1)‖2

≤ α1) and ( ‖β
(t)−β(t−1)‖2
‖β(t−1)‖2

≤ α2)) or (t > tMax)

3 Experimental Evaluation

This section presents experimental evaluation in comparing the proposed method
TRM (stands for ‘tensor regression model’) with the most recent reported meth-
ods for siRNA knockdown efficacy prediction on commonly used datasets. Dis-
cussion on the framework and methods will follow the experiment report.

Comparative Evaluation. The comparison is carried out using four data sets

– The Huesken dataset of 2431 siRNA sequences targeting 34 human and ro-
dent mRNAs, commonly divided into the training set HU train of 2182 siR-
NAs and the testing set HU test of 249 siRNAs [5].

– The Reynolds dataset of 240 siRNAs [10].
– The Vicker dataset of 76 siRNA sequences targeting two genes [17].
– The Harborth dataset of 44 siRNA sequences targeting one gene [3].

TRM is compared to most state-of-the-art methods for siRNA knockdown
efficacy prediction recently reported in the literature. As experiments in those
methods cannot be repeated directly, we employed the results reported in the
literature and carried out experiments on TRM in the same conditions of the
other works. Concretely, the comparative evaluation is done as follows

1. Comparison of TRM with Multiple Kernel Support Vector Machine proposed
by Qui et al. [8]. The author of [8] reported their Pearson correlation coeffi-
cient (R) of 0.62 obtained by 10-fold cross validation on the whole Huesken
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Table 2. The R values of 18 models and TRM on three independent data sets

Algorithm
RReynolds

(244si/7g)
RV icker

(76si/2g)
RHarborth

(44si/1g)
Algorithm

RReynolds

(244si/7g)
RV icker

(76si/2g)
RHarborth

(44si/1g)

GPboot 0.55 0.35 0.43 Stockholm 1 0.05 0.18 0.28
Uitei 0.47 0.58 0.31 Stockholm 2 0.00 0.15 0.41
Amarzguioui 0.45 0.47 0.34 Tree 0.11 0.43 0.06
Hsieh 0.03 0.15 0.17 Luo 0.33 0.27 0.40
Takasaki 0.03 0.25 0.01 i-score 0.54 0.58 0.43
Reynolds 1 0.35 0.47 0.23 Biopredsi 0.53 0.57 0.51
Reynolds 2 0.37 0.44 0.23 DSIR 0.54 0.49 0.51
Schawarz 0.29 0.35 0.01 Katoh 0.40 0.43 0.44
Khvorova 0.15 0.19 0.11 SVM 0.54 0.52 0.54

TRM 0.60 0.58 0.55

dataset. The Pearson correlation coefficient (R) is carefully evaluated by
TRM by 10 times of 10-fold cross validation with the average value of 0.64.

2. Comparison of TRM with four state-of-the-art methods of BIOPREDsi [5],
DSIR [16], Thermocomposition21 [13], SVM [12] by HU train and HU test.
The Pearson correlation coefficients of the four models BIOPREDsi, DSIR,
Thermocomposition21 and SVM are 0.66, 0.67, 0.66 and 0.80, respectively.
The performance of TRM estimated on HU test is 0.68 that is slightly higher
than that of the first three models but lower than that of the last model.

3. Comparison of TRM with 18 methods including BIOPREDsi, DSIR, Ther-
mocomposition21, SVM when training on HU train and testing on three
independent datasets of Reynolds, Vicker and Harborth as reported in the
recent article [12]. As shown in Table 2 (taken from [12] with the added last
row of the TRM result), TRM considerably achieved results higher than all
of 18 methods on the all three independent testing datasets.

In running Algorithm 2, the thresholds for the weight vector θ and the coef-
ficient vector ω are set up as 0.001 and the maximum iterative step is 1000. The
turning parameter ∂ is chosen by minimizing the risk function when testing on
validation dataset. Particularly, we do 10–fold cross validation on the training
set for each ∂ belonging to [0, log 50] and compute the risk function

R(φ) =
1

F

F∑
i=1

⎛⎝ 1

‖ foldi ‖
∑

xj∈foldi

(yj − f(xj))
2

⎞⎠
where foldi is validation set, f(x) is a tensor predictor learnt from training set
except validation set foldi. F is the number of folds to do cross validation on
training set. In our work, we do F-fold cross validation thus F equals to 10.

In the transformation matrices learning task, we use the labelled dataset col-
lected from siRecord database [9]. This data set has 2470 siRNA sequences in
‘very high’ class and 2514 siRNA sequences in ‘low’ and ‘medium’ classes. Each
siRNA sequence has 19 nucleotides. Seven design rules used to learn matrices
are Reynolds rule, Uitei Rule, Amarzguioui rule, Jalag rule, Hsieh rule, Takasaki
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Table 3. The learnt transformation matrix containing characteristics of Reynolds rule

1 2 3 4 10 11 12 19

A 0.29704 0.217977 0.423469 0.266597 . . . 0.363636 0.246021 0.224727 . . . 0.393939

C 0.231159 0.235744 0.255102 0.226922 . . . 0 0.252513 0.267744 . . . 0.0757576

G 0.155341 0.211418 0.0459184 0.237968 . . . 0.229437 0.221336 0.260756 . . . 0.161616

U 0.31646 0.33486 0.27551 0.268513 . . . 0.406926 0.28013 0.246773 . . . 0.368687

rule and Huesken rule. The convergence criteria in Algorithm 1 are set up as
following: threshold ψ for transformation matrices is 2.5E−8 and the maximum
iterative step is 5000.

Discussion. As reported in the experimental comparative evaluation, the pro-
posed TRM achieved higher results than most other methods for prediction of
siRNA knockdown efficacy. There are some reasons of that. First, it is expensive
and hard to analyze the knockdown efficacy of siRNAs, and thus most available
datasets are of relatively small size leading to limited results. Second, TRM has
its advantages by incorporating domain knowledge (siRNA design rules) found
from different datasets in experiments. Third, TRM is generic and can be eas-
ily exploited when new design rules are discovered or more analyzed siRNAs
be obtained. Four, one drawback of TRM is its transformation matrices are
learned using positional features of available design rules, and thus they lack
some characteristics effecting to knockdown efficacy of siRNA sequences such
as GC content, thermodynamic properties, GC stretch, etc. It may be one of
reasons that at this moment TRM cannot get higher performance when testing
on HU test set than the best current model SVM [12].

Table 3 shows the learned transformation matrix capturing positional charac-
teristics of Reynolds rule. One of characteristics is described as “An nucleotide
‘A’ at position 19”. That characteristic means that at column 19, the cell (1,19)
has to be the maximum value. In the matrix, the value at this cell is 0.393939
and is the highest value of this column. In this column, we also know knock-
down efficacy of each nucleotide at position 19. Therefore, nucleotides can be
arranged by the decreasing order of their efficacy: A,U, G, and C. In the order,
nucleotide U has efficacy of 0.368687 that also can be used to design effective
siRNAs. In addition, if a position on siRNAs is not described in characteristics
of the design rules, values at the column corresponding to this position is learned
to satisfy classification assumption and property to get knockdown efficacy of
each nucleotide such as values at columns 1, 2, 4 and so on.

4 Conclusion

In this paper, we have proposed a novel framework to predict knockdown effica-
cies of siRNA sequences by successfully enriching the siRNA sequences into trans-
formedmatrices incorporating the effective siRNA design rules and predicting the
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siRNA knockdown efficacy by bilinear tensor regression. The experimental com-
parative evaluation on commonly used datasets with standard evaluation proce-
dure in different contexts shows that the proposed framework and corresponding
methods achieved better results than most existing methods for doing the same
task. One significant feature of the proposed framework is it can be easily extended
when new design rules are discovered as well as more siRNAs are analyzed by em-
pirical works.
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Abstract. Classification is an important and practical tool which uses
a model built on historical data to predict class labels for new arrival
data. In the last few years, there have been many interesting studies on
classification in data streams. However, most such studies assume that
those data streams are relatively balanced and stable. Actually, skewed
data streams (e.g., few positive but lots of negatives) are very important
and typical, which appear in many real world applications. Concept drifts
and skewed distributions, two common properties of data streams, make
the task of learning in streams particularly difficult and the traditional
data mining algorithms no longer work. In this paper, we propose a
method (Selectively Re-train Approach Based on Clustering) which can
deal with concept-drifting and skewed distribution simultaneously. We
evaluate our algorithm on both synthetic and real data sets simulating
skewed data streams. Empirical results show the proposed method yields
better performance than the previous work.

Keywords: data stream, skewed distribution, concept-drifting, selec-
tively Re-train.

1 Introduction

Data stream classification has been widely studied, and there are many success-
ful algorithms for coping with this problem [6,11]. However, most of these studies
assume that data streams are relatively balanced and stable, which results in a
failure to handle rather skewed distributions. Actually, skewed data streams are
very important in many real-life data stream applications, such as credit-card
fraud detection, diagnosis of rare diseases, network traffic analysis etc. In such
skewed data streams, the probability that we observe positive instances is much
less than the probability that we observe negative ones. For imbalanced data
streams, instances from the minority class are more costly and thus are of more
interest. For example, online credit-card fraud rate of US was just 2 percent in
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2006 [4] which means that in credit card transactions stream, there are a lot
of genuine transactions and very few fraud transactions. Hence, it’s very neces-
sary and important to classify such minority instances from all streams because
classifying an instance of credit-card fraud (positive) as a normal transaction
(negative) is very costly.

Concept-drift occurs in the stream when the underlying concepts of the stream
change over time. It is difficult to predict when and how the concept changes.
When any of concept changes occurs, a decrease in classification accuracy usu-
ally occurs because the training data the model is built on would be carrying
out-of-date concepts. Many of the previous work aimed to effectively update
the classification model when stream data flows in. After some period, those
approaches throw out the out-of-date examples or fade them out by decreas-
ing their weights as time elapses. Skewed distribution and concept-drifting are
two challenges for traditional classification algorithms. Classification algorithms
are required to deal with data streams with skewed distributions, at the same
time, when concept-drifting occurs, classification algorithms should be conver-
gent to the up-to-date concept with high accuracy and speed. This method will
be described in detail in section 3.

The rest of the paper is organized as follows. Section 2 gives the introduction
on the related works. Section 3 shows our proposed algorithm in detail. In Section
4, we give experimental results by using a synthetic data set and real data sets
which own the properties of skewed data streams. Section 5 summarizes our work
and introduces the future work.

2 Related Work

Though there are many stream classification algorithms available, most of them
assume that the streams have relatively balanced distribution of classes. In re-
cent years, there have been several algorithms proposed for coping with skewed
data stream classification. In these algorithms, data set usually are balanced by
sampling, which is the most common method [7].

The basic sampling methods for dealing with the skewed data streams in-
clude under-sampling, over-sampling and clustering-sampling [12]. Drummond
et al. [1] concluded that under-sampling outperforms over-sampling through
detailed experiments. However, under-sampling may lead to loss of useful in-
formation. In order to use more majority class data to reduce information loss,
clustering-sampling is preferred. This is because clustering can maintain more
useful information, which may be thrown away by under-sampling.

Wang et al.[12] proposed an clustering-sampling based ensemble algorithm for
classifying data streams with skewed distribution. Empirical results show that
clustering-sampling outperforms under-sampling. Particularly in the case of en-
semble model, the proposed ensemble based algorithm gives better performance.
However, this method can not handle the problem of concept-drifting.

Nguyen et al.[9] proposed a new method for online learning from imbalanced
data streams. In this method, a small training set T used to initialize a clas-
sification model is first collected. The classification model includes several base
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models. It is gradually updated by new training instance arriving one by one.
If the class of the new training instance is positive, all the base models are
updated. If the incoming instance is in negative class, these base models are
updated with a certain probability. This approach also can not deal with the
problem of concept-drifting.

Gao et al.[3] proposed a framework which employs both sampling and ensem-
ble methods to classify skewed data streams. This paper analyzes the source of
concept drifts, classification model selection reason and why ensemble methods
reduce classification errors. In the sampling phase, it randomly under-samples
the negative instances from the most up-to-date chunk Qm, at the same time,
it collects all the positive instances from data chunk Q1, Q2, · · · , Qm and keeps
them in the training set. Though the training set is balanced through sampling,
all collected positive examples may not be consistent with the current concept
and affect classification results if regarded as positive instances.

A variety of techniques have also been proposed in the literature for address-
ing concept-drifting in data stream classification. Wang et al.[11] proposed a
general framework for mining concept-drifting data streams using weighted en-
semble classifiers. The classifiers in the ensemble are judiciously weighted based
on their expected classification accuracy on the test data under the time-evolving
environment. Thus, the ensemble approach improves both the efficiency in learn-
ing the model and the accuracy in performing classification.

Kolter et al.[13] proposed AddExp algorithm, which is similar to expert pre-
diction algorithms, for discrete classes and continuous classes, respectively. This
algorithm bounds its performance over changing concepts, not relative to the
performance of any abstract expert, but relative to the actual performance of an
online learner trained on each concept individually. During the online learning
process, new experts can be added.

Although data stream classification algorithms coping with imbalanced distri-
bution problem and concept-drifting problem respectively have been researched
for several years, dealing with the two problems in a system framework is still
challenging. In this paper, we propose the SeRt framework to address the non-
stationary stream data with skewed distribution and concept-drifting.

Many available algorithms for classifying data streams measure their perfor-
mance by considering overall classification accuracy. However, such assessment
metric is not suitable for assessing the performance of those algorithms which
classify data streams with skewed distributions. This is because that, in such
case, the overall accuracy is dominated by the majority class. Even if the classi-
fication model performs well only for negative instances (eg. majority examples),
the overall classification accuracy may also be high. For example, if 98% of the
data is from the majority class and only 2% from the minority class, a classifi-
cation model classifies every instance as majority, and thus the overall accuracy
reaches up to 98% at the cost of no minority class instances correctly classi-
fied. Those literatures [2] [10] [5] gives some measurements, like AUROC and
G−Mean, to evaluate the performance of algorithms for classifying skewed data
streams.
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3 Classifying Data Streams with Skewed Distributions
and Concept-Drifting

Imbalanced learning problem and concept drifting phenomenon are quite pop-
ular in recent years with a increased number of reports on the difficulties in
many practical applications. When concept drifting occurs or class distribution
changes, it definitely leads to a sudden drop of classification accuracy if we still
use the classifier trained on old data points to classify new instances.

3.1 Basic Idea and Main Framework

The basic idea of our method is that when there is no concept-drifting occurring
in data streams with unbalanced distribution, we use the most up-to-date chunk
to train a base classifier and use it to update the ensemble classifier. This may
improve the accuracy of ensemble classifier, because the most up-to-date chunk
contains information about the current target concepts. When concept drifting
occurs, we use these data points which consist with the current target concepts
to re-train those base classifiers in the previous ensemble classifier Ej−1. This
way can make the algorithm converge to target concepts with high accuracy
efficiently.

When concept-drifting occurs, for each base classifier Ci in the classifier en-
semble E, we inject those data points which can represent the up-to-data target
concepts into the training set T i with the injection probability p. Here T i is
the training set corresponds to the base classifier Ci . But the value of p has
relationship with the overall accuracy and the accuracy of each base classifier.
It is obvious that for greater p, more training instances are given in the model
which may produce more error reduction. So, when p = 1, we may have max-
imum reduction in prediction error for a single model. However, if the same
set of instances are injected in all models, the correlation among them may in-
crease, which reduces the accurate prediction rate of the ensemble. So, we have
to choose a value of p to balance the overall accuracy and the accuracy of each
classification model [8]. Then we update the classification model Ci.

In stream applications, the training data are read in consecutive data chunks.
Suppose the incoming data stream is partitioned into sequential chunks of equal
size S1, S2, · · · , Sj , · · ·, where Sj is the most up-to-date data chunk. Each data
chunk is considered as a conventional imbalanced data set, which makes it easy
to apply sampling methods to balance those skewed data chunks. In order to
deal with skewed data streams, most of the available algorithms have either
used oversampling or under-sampling approach for ensemble of classifiers. In our
algorithm, we use clustering-sampling to balance the skewed distribution and
selectively re-train approach to solve the problem of concept-drifting. Figure 1
shows the framework of our proposed algorithm.
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Fig. 1. The system framework of our method

3.2 How to Choose Data Point for Re-training

We illustrate the idea of re-training through a simple hyperplane example in
Figure 2. Figure 2(a) shows two true models of the evolving hyperplane at dif-
ferent time. A instance is positive (+) if it is above the hyperplane, otherwise
it is negative (−). We assume that hyperplane1 is the previous concept and
hyperplane2 is the current concept, C1 and C2 stand for their true models re-
spectively. In Figure 2(b) we draw the optimal model E1(ensemble classifier)
for hyperplane1, which are interpolated by straight lines. In Figure 2(c), those
data points in the shaded areas can be used to re-train those base classifiers in
previous ensemble classifier E1.

Fig. 2. How to choose data points for re-trainning

3.3 Sampling Skewed Data Streams

The basic sampling methods often used are under-sampling and over-sampling.
Although the study result shows that these two sampling methods can somehow
address the problem of skewed distribution, they have several drawbacks[1].

In our method, we employ K − Means clustering algorithm, for selecting
negative examples to represent majority class, to balance the skewed distribution.
Algorithm 1 [12] gives clustering-sampling algorithm for sampling imbalanced
data streams. In this algorithm, we set the number of clusters k to the number
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of positive instances in the current data chunk Sj . After sampling, the negative
examples in the current chunk are clustered into k clusters, and the centroid of
each cluster is used as negative instance to represent majority class.

Algorithm 1. Clustering-sampling algorithm for sampling imbalanced data
streams
Input : a data chunk Sj from the skewed data streams, Sj =
{(X1, y1), (X2, y2), · · · , (Xn, yn)}.
Output : balanced training set T j corresponding to Sj .
begin

split the current training chunk Sj into Pj and Nj containing positive and negative
examples respectively.
1. k = |Pj | ;
2. Cluster = Kmeans(Nj , k);
3. NEGj = {centroid(c)|c ∈ Cluster};
4. obtain balanced training set T j corresponding to Sj , T j = Pj ∪NEGj ;

3.4 Selectively Re-train Algorithm Based on Clustering

The pseudo code of our method for learning from imbalanced data streams is
formulated in Algorithm 2. After receiving a data chunk Sj , we firstly balance
it using clustering-sampling method, thus we get the corresponding balanced
training set T j. Then we train a base classifier Cj , by an arbitrary successful bi-
nary learner from the training set Tj . Before updating the classification ensemble
Ej−1, we first check if concept-drifting has occurred by checking if Ej−1(Xi) �= yi
holds. If the inequation holds, it means concept-drifting has occurred, or vice
verse. If the concept-drift has occurred, we inject those data points which can
represent the up-to-date target concepts into training set T i with a certain prob-
ability, where T i corresponds to the base classifier Ci(Ci ∈ Ej−1). The AUROC
value is employed as the metric to evaluate the base classifier. Finally, we use the
classification ensemble to predict the class label for test instances with weighted
majority voting.

In Algorithm2, Learn(Ti) is an arbitrary learning algorithm; class(Xi) re-
turns the class label of instance X i; AUC(Ci) returns the AUROC value of
base classifier Ci; NormalizeWeight(Ej, Ci) returns the normalized weight of
base classifier Ci, which satisfies Ci ∈ Ej ; GetRandomNumber() returns a ran-
dom number in [0, 1]; numBaseClassifier is the number of the base classifier
in Ensemble-classifier; and balanceRatio is a parameter that is used to judge
whether the training set T h needed to be balanced again.

4 Experiments

In our experiment, we evaluate our proposed algorithm which can be abbreviated
to SeRt and compare it with the approach proposed in [3]which is denoted as
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Algorithm 2. Selectively Re-train algorithm Based on Clustering towards
Concept-drifting Data streams with Skewed Distribution

Input : skewed data streams S1, S2, · · · , Sj , · · ·;
the ensemble of classifiers trained on previous data chunks, Ej−1;
the maximum size of classifier ensemble, M .

Output : the classifier ensemble, Ej .
begin

read a data chunk Sj from the skewed data streams, Sj = {(X1, y1), · · · , (Xn, yn)}.
1. Tj = Sampling(Sj);
2. built a new base classifier Cj = Learn(Tj);
3. for i from 1 to n do

if Ej−1(Xi) �= yi then for h from 1 to numBaseClassifier do
if class(Xi) = majority && GetRandomNumber() < injection probability

put data point (Xi, yi) into NEGh; |NEGh|++;
else put data point (Xi, yi) into T h;|Ph|++;

4. for each T h(h from 1 to numBaseClassifier)

if ( |Ph|
|NEGh| > θ) where θ ∈ [balanceRatio, 1] then following step 1 to 4;

5. if |Ej−1| < M then Cj .weight = 1;Ej = Ej−1 ∪ {Cj};
else h = argmin(AUC(Ch)) where Ch ∈ Ej−1;

if AUC(Ch) < AUC(Cj) then Ej = Ej−1 ∪ {Cj} − {Ch};
for each Ch ∈ Ej do Ch.weight = AUC(Ch);
for each Ch ∈ Ej do Ch.weight = NormalizeWeight(Ej, Ch);

end

SE in the simulation results on both synthetic and real data sets. To simulate
data streams, we partitioned these data sets into several chunks.

4.1 Data Sets

Synthetic Data Set. We create synthetic data sets with drifting concepts based
on a rotating hyperplane by reprogramming the softwareMOA Task Launcher.

The rotating hyperplane is widely used for experiments [6,11, ?? ] . A hyperplane
in a d-dimensional space is the set of data instance which is denoted by the
equation:

d∑
i=1

aixi = a0 (1)

Here, xi is the i − th coordinate of instance x. We label instances with∑d
i=1 aixi � a0 as positive instances, and instances with

∑d
i=1 aixi < a0 as

negative instances. Weights ai(1 < i < d) in (1) are initialized randomly in the
range of [0, 1]. Hyperplanes have been used to simulate time-changing concepts
because the orientation and the position of the hyperplane can be changed in
a smooth manner by changing the magnitude of the weights[6]. We choose the
value of a0 so that the hyperplane cuts the multi-dimensional space into two
parts of the different volume, eg. a0 = r

∑d
i=1 ai where r is the skewness ratio.
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when r = 1
2 , the hyperplane cuts the multidimensional space into two parts of

the same volume. In our experiment, r �= 1
2 .

In our study, we simulate the phenomenon of concept drifting through a series
of parameters. Parameter n(n ∈ N) specifies the number of examples in each
batch, and parameter k(k ∈ N) specifies the number of dimensions whose weights
are involved in concept drifting. Parameter t(t ∈ R) indicates the magnitude of
the changing of weights a1, a2, · · · , ak and si ∈ {−1, 1} (1 ≤ i ≤ k) indicates the
direction of change for each weight ai. Weight ai(1 ≤ i ≤ k) is adjusted by si · t
after each instance is generated.

Real Data Set. We use the data set Optical Recognition of Handwritten
Digits from the University of California, Irvine’s Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets.html). Although this data set doesn’t
correspond directly to skewed data mining problem, we can convert it into skewed
distribution problem by taking one small class as the minority class and the re-
maining records as the majority class. So, from the original data sets, we can
get 10 skewed data sets and average the results over these data sets.

4.2 Evaluation Metrics

Traditionally, overall accuracy is the most commonly used measure for evaluating
the performance of classifier. However, for classification with skewed distribution,
overall accuracy is no longer proper since the minority class has very little impact
on it as compared to the majority class. This measurement is meaningless to
some applications where the learning target is to identity the rare instances.
For any classifier, there is always a trade-off between true positive rate (TPR)
and true negative rate (TNR). For this end, some evaluation metrics associated
with confusion matrix are used to validate the effectiveness of those algorithms
dealing with class imbalance problem. Table 2 illustrates a confusion matrix of
a two-class problem.

TP and TN denote the number of positive and negative instances that are
classified correctly , while FP and FN denote the number of examples which are
misclassified respectively.

– Overall Accuracy (OA):

OA =
TP + TN

TP + FP + TN + FN
(2)

– TPR (ACC+):

ACC+ =
TP

TP + FN
(3)

– TNR (ACC−):

ACC− =
TN

TN + FP
(4)
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– G-mean:

G−mean =

√
TP

TP + FN
× TN

TN + FP
(5)

– Mean Squared Error (MSE):

MSE =
1

| T |
∑
xi∈T

(f(xi)− p(+ | xi))
2 (6)

Where T is the set of testing examples, f(xi) is the output of the Ensemble-
Classifier, which is the estimated posterior probability of testing instance xi;
p(+ | xi) is the true posterior probability of xi.

4.3 Experiment Configuration and Results

Experiment Configuration. The synthetic data set (Moving Hyperplane
Data Set) is used to validate the effectiveness and superiority of our proposed
method. In our experiments, the dimensionality of the data stream is set to
be 50. Only two dimensionalities are changing with time and the magnitude of
the change for every example is set to be 0.1. The percentage of probability that
the direction of change is reversed is set to be 10%. At the same time, we set
the balanceRatio to be 0.85 and the method applied to build base classifier is
Naive Bayes.

When concept-drifting occurs, for each base classifier Ci in the classifier en-
semble E, we inject those data points which can represent the up-to-date target
concepts into the training set T i, where T i corresponds to the base classifier
Ci, with the probability p. But the value of p has relationship with the overall
accuracy and the accuracy of each base classifier. If the same set of instances
are injected in all the models, then the correlation among them may increase,
resulting in reduced prediction accuracy of the ensemble. So, we have to choose
a value of p to balance the overall accuracy and the accuracy of each model
[8]. In order to find the relationship between p and the performance of our ap-
proach, the number of chunks in the data stream is set to be 101, each of which
carries 1000 examples and the last chunk contains the testing instances. In the
data stream, there are 98064 negative instances and 2936 positive instances. 956
negative examples and 44 positive examples are used for testing.

Figure 3 shows the relationship between p and TPR, TNR, G −mean and
MSE, where NS denotes selectively re-train approach based on No-Sampling,
US denotes selectively re-train approach based on Under-Sampling and CS de-
notes selectively re-train approach based on Clustering-Sampling (eg.our pro-
posed method SeRt). Through experiments, we get that, when p is between 0.5
and 0.75,TPR, TNR, G − mean and MSE are near optimal. And the point
where p = 0.75 is the turning point, so we set p = 0.75.

Experiment Results. After experiment configuration, we can conduct exper-
iments based on it. The following are the experiment results.
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(a) Changes of TPR with differ-
ent p

(b) Changes of TNR with different
p

(c) Changes of G-mean with dif-
ferent p

(d) Changes of MSE with different
p

Fig. 3. The relationship between p and TPR, TNR, G Mean and MSE

– The performance comparison with different sampling methods

In order to solve the problem of imbalanced distribution of data stream, we
should balance it by using sampling method. We compare the performance of
different sampling methods, as shows Figure 4, where CS represents Clustering-
sampling, US represents Under-sampling, and NS represents that we do not use
any sampling method. From this figure, it is obvious that CS outperforms NS
and US in TPR and G −Mean. Though CS is slightly lower than other two
methods in the case of TNR, the results are very competitive, because the cost
of misclassifying a positive instance is much larger than the cost of misclassifying
a negative instance .

Fig. 4. The performance comparison with
different sampling methods

Fig. 5. The average performance of SeRt
and SE on real data set
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– The comparison between our method and the methode which was proposed
in [3] based on real dataset just with skewed distribution

Except for synthetic data set, we also employ the real data setOptical Recognition
of Handwritten Digits to compare our algorithm with the approach proposed in
[3] which is denoted as SE in the results. Figure 5 gives the average result of these
10 skewed data streams. From Figure 5, we find that SeRt can get higher TPR
and G −Mean with the cost of TNR and MSE than SE. But it is worth, be-
cause in the case of skewed distribution, minority class is the most significant one,
and the cost of misclassifying of a positive example is more huge than the cost of
misclassifying a negative example.

– The comparison between our method and the methode which was proposed in
[3] based on synthetic dataset with concept-drifting and skewed distribution

We also use synthetic data set with concept-drifting to validate the performance
of SeRt and SE, as follows Figure 6. The data set contains 101000 instances
in total, 99817 negative examples and 1183 positive examples respectively. We
partition the data set into 34 chunks to simulate data stream. The last chunk for
testing contains 2000 examples, and the rest of each chunk for training contains
3000 examples. There are 1929 majority instances and 71 minority instances in
the testing set. From Figure 6, we know that when the data stream is changing
with time continuously, it is obvious that our proposed algorithm SeRt outper-
forms SE.

Fig. 6. The comparison between SeRt and SE on synthetic data set with concept-
drifting

5 Conclusion and Future Work

In this paper, we propose a new algorithm for mining data streams with skewed
distribution, which can also tackle the problem of concept drifting.

The proposed algorithm could only deal with binary classification tasks. How-
ever, many real-life applications, such as network intrusion detection, are charac-
terized as multi-class classification tasks. In the future, we will study the problem
of classifying multi-class with skewed data streams.
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Recurring and Novel Class Detection

in Concept-Drifting Data Streams
Using Class-Based Ensemble
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Abstract. Over the recent years concept-evolution has received a lot
of attention because of its importance in the context of mining data
streams. Mining data stream has become an important task due to its
wide range of applications such as network intrusion detection,
credit card fraud protection, identifying trends in the social networks etc.
Concept-evolution means introduction of novel class in the data stream.
Many recent works address this phenomenon. In addition, a class may
appear in the stream, disappears for a while and then reemerges. This
scenario is known as recurring classes and remained unaddressed in most
of the cases. As a result, generally where a novel class detection system
is present, any recurring class is falsely detected as novel class. This re-
sults in unnecessary waste of human and computational resources. In this
paper, we have proposed a class-based ensemble of classification model
addressing the issues of recurring and novel class in the presence of con-
cept drift and noise. Our approach has shown impressive performance
compared to the state-of-art methods in the literature.

Keywords: Novel Class, Recurring Class, Concept Evolution, Stream
Classification.

1 Introduction

The problem of data stream classification has been studied among the research
community over the recent years. One of the major characteristics of data stream
mining is that, the classification is a continuous process thus the size of the
training data can be considered infinite. So it is almost impossible to store all the
examples to train the classifiers. Some methods regarding incremental learning
are proposed in [4,9] to address this problem. Moreover, it is a common scenario
that, the underlying concept may changes overtime; a characteristic known as
concept-drift.

However, another significant phenomenon of the data stream is concept-
evolution, which is considered as the emergence of novel classes in the stream.
For example, a new topic may appear in social network or a new type of intru-
sion may be identified in the network. If the number of classes in the classifiers
is fixed and no novel class detection system is present, then the novel class is
falsely identified as existing class. Concept Evolution has become a new research
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direction for the researchers recently because of its practical importance. For ex-
ample, if a new type of attack occurs in the network, it is imperative to identify
it and take actions as soon as possible. Several approaches regarding this issue
have been studied in the literature [5, 7].

A special case of concept-evolution is recurring class where a class reemerges
after its long disappearance from the stream. For example, a popular topic may
appear in a social network at a particular time of the year (i.e. festivals or
elections). This result in a change of topics in the discussion on the social network
over the time period and then when the event ends the topic disappears again.
A recurring class creates several discrepancies if not properly handled. If it is
not properly identified, then it is erroneously considered as a novel class or an
existing one. As a result, a significant amount of human resources is wasted to
detect its reappearance. Some studies regarding the problem of recurring class
are present in [1, 6].

The classification model for data stream can be constructed by ensemble of
classifiers. In an ensemble approach, multiple base classifiers learn the decision
boundary on the learning patterns and their decisions on test example ares fused
to reach the final verdict. The ensemble approach is more popular among the
research community because of their higher accuracy, efficiency and flexibility [5].

The contributions of this paper are as follows. In this paper, we propose a
new technique to generate ensemble of classifiers to detect novel and recurring
class in the data stream which reduces overall classification errors. Moreover, we
have observed the phenomenon that, if the class boundary between two classes is
very close, then it is possible to get a false prediction if the instances falls closely
to boundary region. In our approach, we have employed several strategies to
mitigate this problem. Finally, we have also used the falsely predicted instances
to update our model. Our proposed method has outperformed the state-of-the-
art techniques in the literature.

The rest of the paper is organized as follows. In Section 2, we discuss the
previous works regarding data stream classification in the literature. We present
our approach in Section 3. We discuss the experimental results in Section 4. We
briefly conclude in Section 5.

2 Previous Works

Several studies are present in the literature on data stream classification [1–4,6,
8–10]. Due to page limitation we have highlighted studies only related to novel
and recurring class detection. It has been observed that, existing approaches can
be divided into two categories. First one is single model approach where one
classification model is used and periodically updated for new data. On the other
hand, batch-incremental method constructs each model using batch learning.
When older model can no longer give satisfactory results, it is replaced by newer
models [9]. The advantage of ensemble model is that, updating the classification
model is much simpler in this case. However, these techniques generally do not
include novel or recurring class detection.
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An approach to identify recurring class is presented in [6]. Here in addition
to primary ensemble model, an auxiliary ensemble of classifiers is present. The
auxiliary ensemble model is responsible for storing all the classes even after they
disappear from the data stream. When an instance is detected as outlier in the
primary ensemble, but falls within the decision boundary of auxiliary ensemble,
the instances is identified as recurrent class. Any test data outside the decision
boundary of both ensembles are analyzed for novel class.

The approaches described in [6] are considered as chunk-based method. A
class-based ensemble approach is presented in [1]. Here an ensemble model is
constructed for each class C of the data stream. Each ensemble has K micro-
classifiers. Initially, micro-classifiers are trained from the data chunk. When a
latest labeled chunk of data arrives, a separate micro-classifier is trained for
each class. Then the newly trained micro-classifier replaces the one with highest
prediction error of the respective class. An instance falls outside the decision
boundary of all the micro-classifiers of all the classes is considered as an outlier
and saved in a buffer. The buffer is checked periodically to detect novel class.
Authors of [1] have shown theoretically and experimentally that, class-based
approach is better than the chunk-based technique.

In this paper, we propose a more sophisticated approach to construct a class-
based ensemble of classifiers. We have also present a better way to update and
maintain the ensemble model. Moreover, we propose two types of outliers to up-
date the classifiers and novel class detection and also take the wrongly predicted
data into account to modify the classifiers. Experiments show the effectiveness
of our methods compared to other techniques.

3 Our Approach

First, we discuss the fundamental concept of data stream classification. Then we
describe our approach for stream classification subsequently.

3.1 Preliminaries

Each data in the stream arrives in the following format:

D1 =< x1, .....xS >,
D2 =< xS+1, .....x2S >,

...........
DΓ =< x(Γ−1)S+1, .....xΓS >

where xi is the i
th instance in the stream and S is the size of the stream. Di is

the ith data chunk and Dσ is the latest data chunk. The problem is to predict
the class of each data point. Let li and l̂i be the actual and predicted label of
instance xi. If li = l̂i then the prediction is correct otherwise it is incorrect. The
goal is to minimize the prediction error.

Stream classification can be used in various applications such as labeling mes-
sage in social network or identify intrusion in the network traffic. For example,
in credit card fraud detection system, each transaction can be considered as an
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instance or data point and can be predicted either as authentic or fraud by any
classification technique. If the transaction is predicted as fraud, then immedi-
ate action can be taken to withhold the transaction. Sometimes, the predicted
decision can be wrong (authentic transaction predicted as fraud or vice versa).
This can be verified from the cardholder later. The feedback can be considered
as “labeling” the instance and used to refine the classification model.

The major task in the data stream classification is to keep the classification
model up-to-date by modifying it periodically with the most recent concept. The
overview of our proposed approach is shown in Figure 1(a). The major parts of
the algorithm will be described step-by-step.

(a) Overall Approach (b) Partial Structure of the Ensemble
Model

Fig. 1. Overall approach and structure of the classification model

3.2 Ensemble Construction and Training

Now, we present the approach for generating the ensemble model. We will refer
our model as Recurring and Novel Class Detector Ensemble (RNCDE).

Initially, the data chunk is partitioned into C disjoint groups (G1,G2,...,GC)
according to the true class labels, where C is number of classes in the chunk.
Therefore, each group contains the instances of one class only. Then an ensemble
of size L is constructed for each class i using Gi. Each ensemble Eil , i ∈ C, l ∈ L is
composed of a sub-classifier Sil . Each sub-classifier Sil is trained on the instance of
class i (Gi). We apply K-means clustering to generate K clusters on the instances
of each class i. For each cluster Hilj of ensemble l of class i, where j ∈ K we keep
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a summary of the cluster i.e. μ, the centroid, r, the cluster radius (distance
between centroid and the farthest data point of the cluster) and ϕ, the number
of points belonging to the cluster. This way we do not need every data point
of the cluster. Therefore, each sub-classifier Sil is composed of all the clusters

built from the instances of class i (Sil =
⋃K

j=1 H
i
lj
). This process for generating

sub-classifiers Sil is repeated L times to construct the ensemble model Ei for class
i (Ei =

⋃L

l=1 S
i
l). Finally, the overall model is the union of all the ensemble built

for each class i (E =
⋃C

i=1 E
i). For visual purpose, the partial structure of the

ensemble model is shown in hierarchical form in Figure 1(b). It should be noted
that, each ensemble for class i has only one sub-classifier.

Note that, each sub-classifier Sil of an ensemble Ei is trained on the same data
Gi. We vary the seed parameters (σ1, σ2, ...σL) of K-means clustering to diversify
the sub-classifier. We have shown our method using a hypothetical example in
Figure 2. In Figure 2(a), the instances of the same class are shown. The K-
means clustering is applied to construct sub-classifier 1 using seed parameter σ1
(Figure 2(b)), where K = 3. Then again sub-classifier 2 is constructed by K-
means clustering initialized by the seed parameter σ2 shown in Figure 2(c). We
can see that, identical instances belong to different clusters at each sub-classifier.
This process is repeated L times to construct L alternating sub-classifiers Si1....S

i
L

for class i which is shown in Figure 2(d).

(a) Instance in fea-
ture space

(b) Sub-classifier 1 (c) Sub-classifier 2 (d) Sub-classifier 1
and 2 superimposed

Fig. 2. A hypothetical example of layer for 2-dimensional search space

The advantages of K-means clustering is that, its lower time complexity will
allow to built classifiers in reduced time which is a critical requirements for data
stream mining. Another benefit is that, after construction of the clusters, it is
easy to modify them compared to other types of classifiers.

3.3 Classification

Here we describe our classification procedure and outlier detection. Each data
point in the most recently arrived chunk is first checked for whether it is an
outlier. We have maintained two types of outlier i.e. class-outlier (C-outlier) and
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universal-outlier (U-outlier). If any instance is outside the decision-boundary

of all the sub-classifiers of all the ensembles(
⋃C

i=1 E
i), then it considered as a

U-outlier. If a data point is a U-outlier, then it is saved in buffer to analyze it
further. If an instance xi is not a U-outlier then, it is inside the decision boundary
of any class. It is possible that, xi may be inside of more than one class due to
noise and the curse of dimensionality. Let Exi be the set of such classes. We
decide which class xi belongs to by computing a coefficient (m-value). We called
this coefficient membership coefficient. The m-value (τ ilj ) for cluster H

i
lj
, where

i ∈ Exi , l ∈ L and j ∈ K can be computed using the equation below,

τ ilj =

⎛⎝ ϕilj
max

m∈Exi
,n∈L,o∈K

ϕmno

⎞⎠ /

⎛⎝ dilj
max

m∈Exi
,n∈L,o∈K

dmno

⎞⎠θ

, (1)

where dilj is the Euclidean distance between the instance xi and the centroid of

cluster Hilj where ϕilj is the size of the cluster. Here ω is the relative importance
of the inverse of distance over the size of the classifier. We refer this constant
as Φ-coefficient. The max size and max distance is used for normalization. After
computing m-value for each cluster of all the sub-classifiers, the class label for
instance xi is computed using the equation below,

c = arg max
i∈Exi

,l∈L,j∈K

τ ilj (2)

The reason behind introducing the cluster size in the classification process is
depicted in Figure 3(a). Here a hypothetical scenario is shown where two different
clusters of different classes are present. Boundary of one of the clusters (cluster
1) is shown in continuous line (Class 1) and the other (cluster 2) is in dashed
line (Class 2). We have also shown the data points of the clusters (i.e. dots and
crosses). Now consider an instance shown by “O” in the figure. It is inside the
boundary of both class. If we only consider only the Euclidean distance then it
belongs to Class 2. However, from the figure it is evident that, it is more prone to
the centroid of cluster 1 than cluster 2. Since size of cluster for Class 1 is larger,
the decision boundary of cluster 1 is more expanded. Considering only the nearest
neighbor to label the instance may result in erroneous prediction. However, if
we make the assumption that, all the data points of a cluster are uniformly
distributed, then the number of points in the overlapped region (common region
between two clusters) will be greater for cluster 1 than cluster 2. In this case,
the test instance will be labeled as Class 1. Therefore, a more sophisticated
measurement can be possible if we take account the size of the cluster in the
classification process.

3.4 Ensemble Update

When the labels for data points of a chunk are available (labeled by human
expert), the incorrectly predicted data (W) by the ensemble model is identi-
fied. Then the wrongly predicted data are separated according to their correct
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(a) Hypothetical decision boundary of 2
clusters of two different classes

H
i
j

Ci -Outlier

(b) A scenario for cluster merging

Fig. 3. K vs ERR

label. As a result, the all the inaccurately predicted data are partitioned into
disjoint sets (W1,W2, ....WC). Then the data in W i are clustered using K-means
clustering. The number of clusters K is computed using the following equation:

K =
|Dσ |

ChunkSize
·K (3)

Here ChunkSize is a constant which can be initialized manually. These newly
formed clusters can be called Ci-outlier clusters where i ∈ C. The union of Ci-
outlier is the C-outlier. After the formation of Ci-outlier clusters, the Euclidean
distance from each Ci-outlier clusters to each Hilj is computed. Now based on the
distance among the clusters we make two types of modifications. One is cluster
merge and the other is cluster replacement.

If the distance between a Ci-outlier clusters and one of the clusters (Hilj ) in the

ensemble is less than the radius of Hilj (rilj ), then the two clusters are merged.
Recall that, the data points of Ci-outlier are actually the wrongly predicted
instances clustered according to the actual class label i. So it is normal that,
any cluster from Ci-outlier will tend to very remain very close to the Hilj in
the ensemble model. A possible scenario depicting the condition for merging the
clusters is shown in Figure 3(b). Here the distance between Ci-oulier cluster and
the centroid of Hilj is less than the radius of Hilj (rilj ).

Now to merge the cluster, we have to calculate the new centroid, the cluster
size and the radius. To calculate the position of new centroid we have used the
the equation below:

μilj =
ϕilj · μ

i
lj
+ ϕCi−outlier · μCi−outlier

ϕilj + μCi−outlier
, (4)

where ϕC−outlier and μC−outlier are the size and centroid of the Ci-outlier. Since
two clusters are merged, size is addition of the size of two clusters. The radius is
computed by combining the radii of two clusters with the distance between the
centroids.
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After the merging of clusters the remaining Ci-outlier clusters are replaced
with the clusters from the sub-classifier. The replacement policy is as follows.
We keep a count of error Ωilj for each cluster Hilj for each ensemble model. Recall
that, classification is computed by the m-value of the cluster. If prediction is
wrong then count of error is increased by 1 for the cluster with max τ ilj , because it
falsely identified the class as i. Now we replace the remaining un-merged clusters
with clusters with highest Ωilj values accordingly. This way, the sub-classier can
get rid of the obsolete clusters and the issue of concept-drift is resolved. Since
we replace the older clusters with the cluster constructed with the most recent
data points, the ensemble model remains up-to-date with the latest concept.

3.5 Novel Class Detection

We have extended and generalized the idea of novel class detection in [1]. The
primary assumption behind the novel class detection in [1] was, data points of the
same class should be closer to each other (cohesion) and farther apart from the
other classes (separation). However, first assumption (i.e. cohesion) may prove
different in some complex cases. It may be possible that, data points of the same
class may be clustered together in various groups where these groups may be
scattered through the feature space.

If the data points of a novel class emerge in the stream, we can assume that,
the instances belonging to novel class will be far from the decision boundary of
existing classes. Since data points of U-outlier are outside the decision boundary
of all the existing classes, these data are analyzed for novel classes. Recall that,
the U-outliers are stored in a buffer, if the size of the buffer reaches a threshold
then they are analyzed for novel class. We have modified the metric called q-
NSC authors of [1] used and called it q-mNSC. In this method, another metric
called q,c-neighborhood is used. We modify the definition of q,c-neighborhood
also, which we called q,h-neighborhood. We define it as follows:

q,h-neighborhood: The q,h-neighborhood (q,h(x) in short) of an U-outlier x
is the set of q clusters that are nearest to x. (q-nearest cluster h neighbor of
instance x).

Here q is a user defined parameter which can be initialized at the beginning. In
summary, we compute the nearest q number of clusters from instance x regardless
of the class the clusters belong to.

Now suppose, D̄hout,q(x) be the mean distance of a U-outlier instance x to its
q nearest U-outlier neighbors. Moreover, let D̄h,q(x) be the mean distance from
x to its q, h(x) and D̄hmin,q(x) be the minimum value among all D̄h,q(x). Here,
h is the set of clusters from the existing classes. Then the q-mNSC of x can be
computed according our definition:

q−mNSC(x) =
D̄hmin,q(x)− D̄hout,q(x)

max(D̄hmin,q(x), D̄hout,q(x))
(5)
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The value of q-mNSC(x) ranges between -1 to +1. When the value is positive
x is closer to U-outlier instances and away from the existing classes resulting
more cohesion and vice versa.

Now we explain how we can utilize the metric to detect novel class. First, we
apply K-means clustering on U-outliers to partition the data to K0 number of

clusters, whereK0 = K· |buffer|
ChunkSize . The reason for applying clustering is to reduce

time complexity(reduces from O(n2) to O(K2
0), where n is the total number of

data points in U-outlier). For each U-cluster we compute q nearest cluster hn for
all the sub-classifiers of all the class. After that, for each U-cluster we compute
q-nearest neighbor cluster of that U-cluster. Then we apply the Equation 5 to
compute the q-mNSC for each U-cluster. This way we get a q-mNSC value for
each U-cluster in the ensemble. If the positive value of q-mNSC is greater than a
fixed number (qω) than we can conclude a novel class has emerged at the stream.

4 Experimental Findings

First we discuss about the data set and then the parameter settings. Later, we
describe the results and our remarks.

We apply the procedure described in [5] to generate synthetic datasets with
concept evolution and drift. We generate three types of datasets as described
in [5]. Each dataset contain 2.5× 105 instances with 40 real value attribute. We
refer each set as SynNCX having X classes (i.e. SynNC10 where total 10 classes
are present).

We have also taken the real-life dataset Forest from UCI database and the 10
percent version of KDD CUP 1999 intrusion detection challenge. First dataset
contains 581000 instances with 7 classes and 54 numeric attributes while the sec-
ond datasets have 490000 instances having 23 classes and 34 numeric attributes.
We randomly permutate the instances and construct 10 sequences and report
the average results. We have made adjustments to have novel instances in the
sequences.

We have compared our approach (RNCDE) with class-based approach (CL)
[1], ECSMiner (EM) [5], the clustered-based method presented in [8] (OW) and
chunk-based approach (SC) described in [6].

4.1 Parameter Settings

We have set the size of the ensemble L = 3, number of clusters per sub-classifier
K = 20. The minimum number of instances to detect novel class qω = 20.
Moreover, Φ is varied between 3 to 8 and size of the buffer is set to the 20% of
the size of the chunk. These parameters are set either according to the parameters
of the previous works or by running preliminary experiments.

4.2 Evaluation

We have used the following evaluation criteria for performance measurements.
Mnew = % of novel class instances misclassified as existing class, Fnew = % of
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existing class instances misclassified as novel class, OTH = % of existing class
instances misclassified as another existing class and ERR = average misclassfi-
cation error (average of three types of error).

Initially, we construct the ensemble model from first three data chunks. Then
we begin our performance evaluation from the chunk four. Table 1 summarizes
the results from all the methods. We have taken the summary results on other
methods from [1] and compared with our approach. OTH can be calculated
from the other errors, so we do not show it. From the table, we can see that,
OW has the highest error rate, because it can not detect majority of the novel
class instances. Therefore, the Fnew rate is also high in case of OW.

EM can identify novel class but it can not detect recurring class. As a result,
recurring classes are detected as novel class and it has a high Fnew rate also. SC
maintains an auxiliary ensemble model which contains classifiers for all the class
including recurring class. Therefore, it has comparatively lower Fnew rate than
EM. CL uses class- based ensemble to detect novel and recurring class and it has
a lower error rate than the approaches above. Our proposed method RNCDE
also have shown comparatively lower error rate than other methods. In Forest
dataset, the ERR is slightly higher than CL, but in other case RNCDE shows
better performance than other approaches.

Table 1. Summary results on all the datasets

Performance
Criteria

Methods SynNC10 SynNC20 SynNC40 Forest KDD

Fnew

OW 0.9 1.0 1.4 0.0 0.0
EM 24.0 23.0 20.9 5.8 16.4
SC 14.6 13.6 11.8 3.1 12.6
CL 0.01 0.05 0.13 2.3 5.0

RNCDE 0.01 0.03 0.03 5.8 4.8

Mnew

OW 3.3 5.0 7.1 89.5 100
EM 0.0 0.0 0.0 34.5 63.0
SC 0.0 0.0 0.0 30.1 61.4
CL 0.0 0.0 0.0 17.5 59.5

RNCDE 0.0 0.0 0.0 14.4 60.1

ERR

OW 7.5 7.7 8.0 30.3 37.6
EM 8.2 7.9 7.2 13.7 28
SC 5.1 4.8 4.3 11.5 26.7
CL 0.01 0.02 0.05 7.3 26.0

RNCDE 0.019 0.02 0.02 10.57 24.76

In Figure 4, ERR rates for both Synthetic and Real Data are shown. In each
case X axis represents number of data points and Y axis represents the ERR. For
example from the Figure 4(a) and 4(b), we can see that, ERR rates after 300000
data points are 20% for forest, 10% in KDD. For synthetic data ERR remains
almost constant. In case of KDD we can see at the beginning ERR fluctuates,
but the ERR decreases afterwards. This occurs because the at first the class
boundary among classes are not accurately drawn so misclassification among
existing classes (OTH) raises ERR. When the concept is learned comprehensively
then ERR decreases. On the other hand, in forest ERR rises gradually. This is
because Mnew increases continuously when more data points arrive.
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(a) Forest (b) KDD (c) SynNC20 (d) SynNC40

Fig. 4. ERR for Datasets

4.3 Parameter Sensitiveness

We have observed the effect of a number of parameters on our algorithm. Due
to page limitation we describe only one parameter number of clusters per sub-
classifier K. The K is varied between 10 to 50. The impact of varying K for
synthetic dataset is shown in Figure 5. We can see from the figure that, ERR
decreases, if the number of cluster K increases. The reason behind this is when
the number of clusters increases more accurate decision boundary can be drawn
among the classes. When the value of K is increased, more clusters will be formed
on the same instances. Therefore, the size of the clusters will be comparatively
lower and each cluster will learn the small portion of the total concept. If the
boundary between two classes is noisy then more and smaller clusters will per-
form better than fewer and larger clusters. In other words, the boundary of the
class will be more accurate constructed if an increased number clusters is formed.
That is why ERR deceases if K is increased. However, it should be noted that,
if the value of K is high, then it would result in high space requirements and
increased time complexity, which has a detrimental effect on the performance
of the model. So the value of K should be adjusted to balance between the
performance and accuracy.

K

(a) SynNC20

K

(b) SynNC40

Fig. 5. K vs ERR
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5 Conclusion

In this paper, we have proposed a new ensemble model for detecting novel and
recurring class in continuous data stream (RNCDE) which can be considered as
a class-based approach as opposed to the chunk-based approach. Our algorithm
have shown good performance against state-of-the-art methods in the literature.
We have built our initial ensemble model for each class and updated and modified
it periodically to learn the most recent concept. Each ensemble model has a sub-
classifier which is composed of a number of clusters. The union of the cluster
constitutes the concept of class. Our method has been proven very effective in
data stream mining. Inspired by the promising results, we will concentrate on
more efficient techniques for data stream classification. We are also planning to
experiment our method on other real life data.
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Abstract. Current drift detection techniques in data streams focus on
finding changes in streams with labeled data intended for supervised
machine learning methods. Up to now there has been no research that
considers drift detection on item based data streams with unlabeled data
intended for unsupervised association rule mining. In this paper we ad-
dress and discuss the current issues in performing drift detection of rare
patterns in data streams and present a working approach that enables
the detection of rare pattern changes. We propose a novel measure, called
theM measure, that facilitates pattern change detection and through our
experiments we show that this measure can be used to detect changes in
rare patterns in data streams efficiently and accurately.

Keywords: Data Stream, Drift Detection, Rare Pattern.

1 Introduction

Mining data streams for knowledge discovery, using techniques such as clus-
tering, classification, and frequent pattern discovery, has become increasingly
important. A data stream is an ordered sequence of instances that arrive at a
high rate. This characteristic imposes additional constraints on the mining al-
gorithms to be efficient enough to keep up with the fast rate of arrival and also
requires an efficient memory usage as not all data instances can be stored in
memory. Many techniques that find frequent patterns from data streams have
been proposed, such as CPS-Tree [17] and FPStream [6]. Frequent patterns have
been widely considered to be informative and useful but in some domains and
scenarios rare patterns may be more interesting. Rare patterns are patterns that
do not occur frequently and can sometimes be considered as exceptions. Rare
patterns often represent irregular behaviors such as frauds. The detection of rare
patterns can benefit a wide range of domains such as fraud detection in credit
card transactions and auctions. The mining of rare patterns from data streams
has been considered in some previous research, such as SRP-Tree [9].

An important characteristic of data streams is that changes in the underly-
ing distribution can signal important changes in the data stream. Many drift
detection techniques have been proposed to detect these changes. However,
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these techniques are designed with the focus of detecting drift in data streams
that contain class labels which are intended for supervised machine learning
methods such as classification. These drift detection techniques (e.g. ADWIN2
[3]) take in binary inputs that are derived from the error rates of a classifier
run on the labeled data stream. Because these techniques are designed for use
in labeled data streams, they cannot be applied directly onto unlabeled data
streams that frequent and rare pattern mining techniques take in as input.

A naive method for detecting changes in patterns would be to mine the stream
for a set of patterns at given intervals and then compare the sets of patterns.
This is not the suitable approach, especially in the case of rare patterns, where
it is often harder and more costly to discover rare patterns from data streams. A
more enlightened scheme would be to apply drift detection techniques at an item
level. Therefore, instead of running one instance of the drift detection technique
(e.g. ADWIN2) on the stream, multiple instances of the technique is run on
each separate item (or a subset of the items) found in the unlabeled stream.
The binary inputs into ADWIN2 can be derived from the presence or absence
of the item in a series of transactions where the binary input 1 would represent
that the item occurs in the transaction and the binary 0 would represent the
item did not occur in the transaction. For example, consider three transactions:
T1 : {a, b, c}, T2 : {a}, T3 : {a, b}. The binary inputs used for item a would be
{111} as item a appears in all three transactions and the input for item b would
be {101} as it does not occur in transaction T2. Essentially this monitors the
support change of the individual items in the stream and a detected change in
this case would represent that the item is either occurring in more transactions
or occurring in fewer transactions than it did previously. The issue with this
method is that only pattern changes caused by support variations in items will
be detected. If there is a change in pattern, but without an accompanying change
in support of items, the change will not be detected. For example, consider 4
items {a, b, c, d} where {a, b} always occur together forming a pattern and {c, d}
always occur together forming another pattern. If the support of these items do
not change but now item a occurs with item c and item b occurs with item d,
then this change will not be picked up by simply monitoring the support of items
using current drift detection techniques. In this paper, we describe this form of
pattern change as a change in item association.

Motivated by the difficulties and the lack of methods for detecting rare pattern
changes from unlabeled data streams, the aim of this paper is to address this
problem by proposing a novel approach that enables such detection. We propose
a novelM measure that enable the detection of both rare pattern changes caused
by support change and item association change. The M measure consolidates
the state of association of items into one numerical value and in our approach,
instead of monitoring the supprot of items as described earlier, we monitor the
M measure. Through our evaluations, we demonstrate that this overall approach
is capable of detecting rare pattern changes.

There are several scenarios where detecting a change in item associations
can be useful. For example, consider a stream of data for recording a series of
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traceroutes where an item represents a host in the route. Through monitoring
a subset of the items (hosts), the user can identify whether there are changes
in the relationship of the hosts. A change in the relationship of the hosts could
represent a major change in the routing behavior of the network and signal a
possible congestion in the network. The prompt identification of these changes
can allow the user to quickly respond to these situations.

The major contributions of this paper are as follows:

1. We present a new approach that enables the detection of rare pattern changes
from unlabeled data streams. To the best of our knowledge there has been
no previous work on this topic.

2. We propose a novel M measure that is a consolidated numerical measure
and represents the state of item associations for an item at any point in the
stream. Through monitoring this measure using techniques like the Page-
Hinkley Test, changes in rare patterns can be detected in an efficient manner.
The M measure enables the discovery of pattern changes relating to changes
in item associations that was previously not possible.

The rest of the paper is as follows: in Section 2 we detail the current state
of research in the areas of drift detection and pattern mining in data streams.
Section 3 describes the preliminaries and definitions of the problem we address.
In Section 4 we introduce our overall framework for solving the problem of drift
detection of rare patterns and introduce our novel M measure. In Section 5 we
present the experimental evaluations and analysis of our algorithm and lastly
Section 6 concludes the paper.

2 Related Work

There has been intense research in the area of rare pattern mining. Most of
the research was designed for a static database environment and can generally
be divided into level-wise exploration or tree based approaches. Level-wise ap-
proaches are similar to the Apriori algorithm [2] developed by Agrawal. In the
Apriori algorithm, k-itemsets (itemsets of cardinality k) are used to generate
k+1-itemsets. These new k+1-itemsets are pruned using the downward closure
property, which states that the superset of a non-frequent itemset cannot be fre-
quent. Apriori terminates when there are no new k+1-itemsets remaining after
pruning. MS-Apriori [13], ARIMA [16], AfRIM [1] and Apriori-Inverse [12] are
algorithms that detect rare itemsets. They all use level-wise exploration similar
to Apriori, which have candidate generation and pruning steps. The RP-Tree
algorithm was proposed by Tsang et al. [18] as a tree based approach. RP-Tree
avoids the expensive itemset generation and pruning steps of Apriori and uses
a tree structure, based on FP-Tree [7], to find rare patterns. Both the Apriori
and tree based approaches find rare patterns in static database environments.
Recently the SRP-Tree algorithm [9], an adaptation of the RP-Tree algorithm,
was developed to enable the capturing of rare patterns in a stream environment.
There is currently no relevant work in rare pattern mining that also considers
drifts in data streams.
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Sebastiao and Gama [15] present a concise survey on drift detection methods.
They point out that methods used fall into four basic categories: Statistical
Process Control (SPC), Adaptive Windowing [5], Fixed Cumulative Windowing
Schemes [10] and finally other classic statistical drift detection methods such as
the Martingale frameworks [8], the Page-Hinkley Test [14], and support vector
machines [11]. Gama et al. [5] adapted the SPC approach. They proposed the
Drift Detection Method (DDM) based on the fact, that in each iteration an
online classifier predicts the decision class of an example. That prediction can
be either true or false, thus forming the binary input for the method. More
recently Bifet et al. [3] proposed an adaptive windowing scheme called ADWIN
that is based on the use of the Hoeffding bound to detect concept change. The
ADWIN algorithm was shown to outperform the SPC approach and has the
attractive property of providing rigorous guarantees on false positive and false
negative rates. ADWIN maintains a window (W ) of instances at a given time and
compares the mean difference of any two subwindows (W0 of older instances and
W1 of recent instances) fromW . If the mean difference is statistically significant,
then ADWIN removes all instances ofW0 considered to represent the old concept
and only carries W1 forward to the next test.

In addition, ADWIN has also been used in the IncTreeNat algorithm [4] that
performs mining of frequent closed trees using streaming data which finds fre-
quent closure patterns in closed trees. Currently there is no research that specif-
ically looks at finding changes in rare patterns from data streams.

3 Preliminaries

In this section we present the preliminaries of drift detection in Section 3.1 and
formally define rare patterns and itemsets in Section 3.2.

3.1 Drift Detection

Let us frame the problem of drift detection and analysis more formally. Let
S1 = (x1, x2, ..., xm) and S2 = (xm+1, ..., xn) with 0 < m < n represent two
samples of instances from a stream with population means μ1 and μ2 respectively.
The drift detection problem can be expressed as testing the null hypothesis H0

that μ1 = μ2, i.e. the two samples are drawn from the same distribution against
the alternate hypothesis H1 that they are drawn from different distributions
with μ1 �= μ2. In practice the underlying data distribution is unknown and
a test statistic based on sample means is constructed by the drift detector.
A false negative occurs if the null hypothesis is accepted incorrectly when a
change has occurred. On the other hand if the drift detector accepts H1 when
no change has occurred in the data distribution then a false positive is said
to have occurred. Since the population mean of the underlying distribution is
unknown, sample means need to be used to perform the above hypothesis tests.
The hypothesis tests can be restated as the following. We accept hypothesis H1

whenever Pr(|μ̂1 − μ̂2|) ≥ ψ) > λ, where λ ∈ (0, 1) and is a parameter that
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controls the maximum allowable false positive rate, while ψ is a function of λ and
is the test statistic used to model the difference between the sample means.

In all drift detection algorithms, a detection delay is inevitable but should be
minimized. A detection delay can be expressed as the distance between ĉ and n

′
,

where ĉ is the true drift point and n
′
is the instance at which change is actually

detected. Thus detection delay is determined by
(
n

′ − (ĉ+ 1)
)
. Detection delay

is used as one of our evaluation measures in this research.

3.2 Rare Patterns and Itemsets

Let I = {i1, i2, . . . , in} be a set of literals, called items. A set X = {il, . . . , im} ⊆
I and l,m ∈ [1, n], is called an itemset, or a k-itemset if it contains k items. A
transaction t = (tid, Y ) is a tuple where tid is an identifier and Y is a pattern. An
association rule is an implication X → Y such that X ∪ Y ⊆ I and X ∩ Y = ∅.
X is the antecedent and Y is the consequent of the rule. The support of X → Y
is the proportion of transactions that contain X ∪ Y . The confidence of X → Y
is the proportion of transactions containing X that also contain Y .

We adopt the rare itemsets concept from Tsang et al. [18]. We consider an
itemset to be rare when its support is below a threshold, the minimum frequent
support (minFreqSupp) threshold. We also define a noise filter threshold to prune
out the noise called the minimum rare support (minRareSupp) threshold.

Definition 1. An itemset X is a rare itemset in a window W iff

supW(X) ≤ minFreqSupp and supW(X) > minRareSupp

However not all rare itemsets that fulfill these properties are interesting so we
only consider rare-item itemsets in this paper.

Rare item itemsets refer to itemsets which are a combination of only rare
items and itemsets that consist of both rare and frequent items.

Definition 2. An itemset X is a rare-item itemset iff X is a rare itemset and

∃x ∈ X, supW(x) ≤ minFreqSupp and supW(x) > minRareSupp

4 Our Algorithm

In this section we discuss our RPDD (Rare Pattern Drift Detector) algorithm for
detecting changes in rare patterns. This approach is designed to find rare pattern
changes from unlabeled transactional data streams intended for unsupervised
association rule mining. Overall the framework has two components. One of the
components is the processing of stream data and we detail it in Section 4.1.
In Section 4.2 we detail the actual drift detection component of the algorithm.
Here we introduce our novel M measure, a consolidated numerical measure that
represents the state of item associations, and discuss drift detection techniques
used in this paper that monitors the M measure to detect changes.
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4.1 Stream Processing and Item Selection

As transactions from the stream are fed into the algorithm, they are processed
and maintained using a sliding window W of size |W |. A list of item frequencies
is recorded while the stream is processed. We use the minFreqSupp and min-
RareSupp defined in the preliminaries to identify the rare items. A rare item
is an item with a support value between the minFreqSupp and minRareSupp.
All the rare items found are forwarded to the drift detection component where
individual item tracking is performed.

An example is given Table 1. We set minFreqSupp = 3 and minRareSupp =
1. Based on the thresholds, items b and c are selected as rare items for tracking
from this window of transactions. Although the selection of items for tracking in
this example is based on the measures of support, this does not have to be the
case. The user can specify other ways of selecting items to be tracked or use a
specific list of items that are of interest based on domain knowledge.

4.2 Drift Detection Using M Measure

The selected rare items from the stream processing component will be individu-
ally tracked and monitored. Essentially, each selected item will have a separate
process that monitors the item associations it has with other items in the stream
using our M measure.

For each selected item, a separate local item frequency list is maintained that
keeps track of the frequency of occurrence of other items with the selected item.
For example, consider the previous example reproduced below:

Table 1. Transactions

tid transaction

1 a b c
2 a b
3 a c
4 a h j

Table 2. Global Freq List

item freq

a 4
b 2
c 2
h 1
j 1

Table 3. Local Freq List
for item c

item freq

a 2
b 1

Since items b and c were selected as tracking items, in this phase, these two
items are separately monitored. For each monitored item, a local frequency list is
maintained that consists of item associations of the monitored item with other
items in the stream. For example, for item c, the local frequency list would
consist of the items that occur with item c in the same transaction and their
respective co-occurrence frequencies. The local frequency list for item c is shown
in Table 3. These local frequency lists for each item will be used by our novel
M measure to detect changes in item associations.

The M measure is based on the absolute percentage difference in support of
an item. The M measure is a consolidated measure that represents the level of
change in the item associations in an item at a given time t.
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The M measure for an item x at time t is given by the following formula:

M(x)t =
1

|X | ×
|X|∑
i∈X

|Supp(i)t − Supp(i)t−1|
Supp(i)t−1 + c

where X is the set of items that occurs with item x, Supp(i) is the support of i
in the local frequency list, and c is the Laplacian coefficient.

The Laplacian coefficient c should be set at a low value such as 0.01 and is
introduced to avoid cases of undefined values. In most cases c can be set equal
to the minimum rare support threshold specified by the user earlier. The lower
bound of the M measure is 0 and is reached when Supp(i)t−Supp(i)t−1 is equal
to 0 for all i ∈ X . The upper bound of the M measure is 1/c and is reached
when Supp(i)t = 1 and Supp(i)t−1 = 0 for all i ∈ X .

The M measure is calculated for each transaction and for each tracked item
individually. Then, we monitor theM measures across time t by applying existing
drift detection methods. A fluctuation in the M measure for an item would
represent a rare pattern change.

The usage of the M measure is crucial in achieving the goal of detecting
changes in item associations and patterns because if users choose to monitor only
the support of items, then pattern changes related to change in item associations
would not be detected. The M measure is specifically useful for finding rare
item association changes because of its property of using percentage difference in
support. Since we consider rare items and rare items are characterized by having
a lower support value, a small fluctuation in support of these values would result
in a much higher percentage difference. For example, if a rare item changes
in support from 0.1 to 0.05, the percentage difference is 100%, whereas, if a
frequent item goes through the same support change 0.90 to 0.85, the percentage
difference is then 6%. The M measure, based on percentage difference, allows us
to monitor the changes in rare items more closely and enables the detection of
drifts that results from a smaller magnitude of change that would otherwise be
missed using pure support based strategies.

In this paper we use two different drift detection techniques to monitor our M
measure and find changes in the item associations: the Page-Hinkley Test and
the Hoeffding bound with Fixed Size Flushing Window. These two techniques
operate on numerical inputs as required by our M measure. We cannot use
ADWIN2 as the drift detection technique here because ADWIN2 takes in binary
input values and our M measure is not a binary measure.

Page-Hinkley Test. As described by Sebastiao in [15], the Page-Hinkley Test
is a sequential analysis technique and designed to detect change in the average of
a Gaussian signal. The test monitors a cumulative variable UT which represents
the cumulative difference between observed values and the cumulative mean
of the samples. UT is given by the formula: UT =

∑T
t=1 (xt − μT − λ) where

μT =
∑T

t=1 xt× 1
T , the cumulative mean at T , and λ is the magnitude threshold.

To detect drifts, it calculates the minimum value of Ut, mT = min(Ut, t =
1 . . . T ) and the difference between UT and mT is monitored at each time t.
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A change is signaled when UT −mT > ∂ where ∂ is the detection threshold.
The detection threshold, ∂, controls the balance between false positives, true
positive rates and detection delay of the test. Setting a high ∂ value will lower
false positives but will increase detection delay and might miss drifts, whereas
setting a low ∂ value will increase false positives but will decrease detection delay
and increase true positive rates. In practice it is often difficult to find the optimal
∂ value as the setting of the threshold can vary widely depending on the input.

Hoeffding Bound with Fixed Size FlushingWindow. As the Page-Hinkley
Test requires the setting of thresholds that can sometimes require an extensive
amount of trial and error experimentation, we also use the statistical Hoeffd-
ing bound which requires only the setting of one λ parameter while providing
statistical guarantees on error bounds. The Hoeffding bound provides an upper
bound on the probability that the sum of the random variables deviates from
its expected value. The Hoeffding bound states that, with probability 1− λ, the
true mean of a random variable r is at least r̄ − ψ when the mean is estimated
over t samples, where R is the range of r.

ψ =

√
R2 ln(1/λ)

2t

The Hoeffding bound is applied with a Fixed Size Flushing Window (FSFW)
in order to perform drift detection. The FSFW consists of a window W with size
|W |. W is split into two separate blocks of equal size (BL and BR). The window
is filled as sample values arrive at each time t. When the window is full, the oldest
instance is dropped as new instances arrive. At each time t, Hoeffding bound is
applied to check for the difference in the mean between the two blocks within
the window W . If |μBL −μBR | > ψ then a drift is signaled and samples in BL are
flushed and replaced with the samples in BR. For the purpose of optimization,
the FSFW is coded with a circular array to eliminate the cost of shifting items
from BR to BL. The window size |W | in this case should be set to a reasonably
large value to allow a statistically sound comparison of two samples (e.g. 1000).

5 Experimental Evaluation

In this section we present the experimental results and evaluations we performed
on our RPDD algorithm for finding changes in rare patterns from data streams.
Specifically we compare the results of using our M measure in drift detection
monitored by the Page-Hinkley Test (PHT) against using M measure in the
Hoeffding Bound with Fixed Size Flushing Window. The performance measures
used are: True Positives, False Positives, Detection Delay, Execution Time, and
Memory. The algorithms are coded in Java and run on an Intel Core i5-2400
CPU @ 3.10 GHz with 8GB of RAM running Windows 7 x64. The execution
time reported excludes I/O costs.

In the first experiment we compare the number of false positives obtained by
applying the M measure with PHT and Hoeffding bound based drift detection
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methods. The experiment is set up by generating item transaction streams using
a modified IBM Quest Market Basket Data Generator. We control one rare
item in the stream by forcing it to undergo a pattern drift at mid-point of the
stream (e.g. If R is the rare item then an example of the pattern drift can be:
{A,B,C,R} to {X,Y, Z,R}). The controlled item has varying support values
(0.05 - 0.2) across the stream and the stream size is 1M. All experiments are run
100 times and the results shown are average values across the 100 runs.

The results for the average number of false positives found are shown in Ta-
ble 4. For the Page-Hinkley Test experiments we used a constant λ threshold of
0.001 while varying the ∂ threshold. The Laplacian coefficient c is set at 0.01 for
all experiments. The Hoeffding bound is tested using λ values of 0.05, 0.1, and
0.3. The window size |W | is set at 1000 for all experiments.

Overall we observe that PHT produces more false positives than Hoeffding
bound. The number of false positives for PHT decreases as ∂ increases, as ex-
pected. The number of false positives for ∂ = 200 is extremely high showing that
the ∂ value is too low and that the technique is raising most points as drifts.
As we increase the ∂ value, we see that the number of false positives decreases
significantly reaching a more acceptable state. The number of false positives for
Hoeffding bound slightly increases as λ increases, also as expected.

Table 4. False positives

PHT Hoeffding Bound
Support ψ = 200 ψ = 400 ψ = 600 ψ = 800 ψ = 1000 δ = 0.05 δ = 0.1 δ = 0.3
0.05 977.58 36.98 13.13 10.2 8.64 2.29 2.64 3.20
0.1 1884.42 58.38 13.57 10.51 8.95 2.26 2.70 3.38
0.15 2803.16 84.91 13.99 10.74 9.11 2.36 2.75 3.34
0.2 3760.67 116.01 14.15 10.73 9.14 2.34 2.60 3.30

In the second experiment we compare the true positive rates of the techniques.
The experiment is set up similar to the false positives experiments except instead
of varying the support level of the controlled item, in the true positive experiment
we varied the percentage of pattern change. In these experiments the support of
the controlled item is set at 0.1. The percentage of pattern change represents the
magnitude of pattern change with 0% representing no pattern change and 100%
representing a complete pattern change in the controlled item. The percentage
of pattern change can be viewed as the change in the items that the controlled
item is associated with. It is distinctly different from a change where there is an
increase or decrease in the support value of the patterns.

Overall the true positive rates of both techniques at detecting the drift is
1.00 with the exception of Hoeffding bound with the conditions of 25% pattern
change and λ = 0.05. This is likely due to the compounded effects of a smaller
magnitude of drift produced by the 25% pattern change and a smaller λ value
which produces a tighter bound.

In the third experiment we experiment on the detection delay of the two
techniques. The experiment is set up exactly the same as the true positive ex-
periments. The detection delay is the distance between ĉ and n′, where ĉ is the
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Table 5. True positive rates

PHT Hoeffding Bound
% Change ψ = 200 ψ = 400 ψ = 600 ψ = 800 ψ = 1000 δ = 0.05 δ = 0.1 δ = 0.3

25% 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
50% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6. PHT: Detection delay

% Change ψ = 200 ψ = 400 ψ = 600 ψ = 800 ψ = 1000
25% 186.26±(100.86) 626.61±(427.56) 1159.79±(453.03) 1429.05±(508.83) 1693.81±(551.30)
50% 160.83±(89.44) 477.29±(341.77) 949.30±(407.01) 1214.16±(442.61) 1412.18±(506.27)
75% 152.27±(76.47) 398.64±(276.37) 844.03±(315.43) 1109.62±(370.61) 1303.90±(434.68)
100% 122.95±(70.69) 367.04±(292.02) 785.38±(321.16) 1025.64±(377.68) 1294.21±(430.63)

Table 7. Hoeffding Bound: Detection delay

% Change δ = 0.05 δ = 0.1 δ = 0.3
25% 3338.80±(459.53) 3028.56±(427.60) 2396.52±(346.82)
50% 3083.74±(471.49) 2765.02±(422.96) 2137.10±(338.95)
75% 2897.53±(412.59) 2585.15±(365.43) 1963.74±(282.92)
100% 2863.67±(388.49) 2548.06±(352.91) 1915.35±(279.10)

true drift point and n′ is the instance at which change is signaled. Thus, delay

is determined by
(
n

′ − (ĉ+ 1)
)
as described in Section 3.

We observe that as the % change of the pattern is increased, the delay is
reduced. This observation meets expectation as a higher % change represents
a higher magnitude of change and would result in an earlier detection. PHT
generally has a lower detection delay but this is at the cost of a higher false rate.

In the last set of experiments we experiment on the execution time and mem-
ory use of tracking a various number of items for drift detection. Since the
execution time and memory use is heavily reliant on the number of items se-
lected for tracking and the compounded effects of tracking multiple items, we
experimented with a varying number of tracked items. Table 8 shows the results.
The execution time is reported in ms and the memory is reported in bytes.

We observe that the execution time and memory use of the algorithm for both
PHT and Hoeffding bound increases in a linear fashion as the number of tracked

Table 8. Execution Time and Memory Use

PHT Hoeffding Bound
# Items Time (ms) Memory (bytes) Time (ms) Memory (bytes)

1 9115±(3758) 586459±(13044) 11618±(5279) 595867±(13014)
2 14780±(6991) 636018±(14317) 21151±(10664) 654649±(14318)
3 20130±(9803) 685151±(15978) 29584±(15102) 712996±(15978)
4 25703±(12312) 733791±(18547) 36870±(18235) 770836±(18548)
5 32209±(14533) 783120±(20315) 47386±(22117) 829373±(20317)
10 61859±(24527) 1026566±(29311) 92722±(37962) 1118854±(29317)
25 130840±(34240) 1751869±(50487) 198476±(51754) 1982639±(50508)
50 250506±(37330) 2936653±(66849) 417208±(64545) 3398090±(66880)
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items increase. Overall PHT executes faster and uses less memory due to the
extra costs of maintaining the window in the Hoeffding bound technique with
Fixed Size Flushing Window. The standard costs of processing and maintain-
ing a sliding window in the stream processing component constitutes the base
execution time and memory cost across the two techniques.

6 Conclusion and Future Work

In this paper we proposed a new approach that deals with the problem of detect-
ing rare pattern changes in unlabeled data streams. Our approach uses a novel
measure, theM measure, that is a consolidated numerical value which represents
the status of item associations in a stream for a given item at a given time. Our
experimentation showed that the use of the M measure in conjunction with drift
detection techniques enabled the detection of changes in rare patterns that are
otherwise undetectable using standard support based detection approaches.

Our future work includes developing a drift detection technique that is opti-
mized with the aim of detecting rare patterns drifts. Even though drift detection
techniques such as the Page-Hinkley test works relatively well in this scenario,
it requires the setting of the ∂ parameter and the overall detection scheme is not
optimized to the proposed M measure. We also want to adapt the M measure
to detect drift in frequent patterns and investigate the possibility of combining
and adapting other frequent pattern mining mechanisms such as the CPS-Tree
with M measure.
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Abstract. Entity resolution is the process of identifying records in one
or multiple data sources that represent the same real-world entity. This
process needs to deal with noisy data that contain for example wrong pro-
nunciation or spelling errors. Many real world applications require rapid
responses for entity queries on dynamic datasets. This brings challenges
to existing approaches which are mainly aimed at the batch matching of
records in static data. Locality sensitive hashing (LSH) is an approximate
blocking approach that hashes objects within a certain distance into the
same block with high probability. How to make approximate blocking ap-
proaches scalable to large datasets and effective for entity resolution in
real-time remains an open question. Targeting this problem, we propose
a noise-tolerant approximate blocking approach to index records based
on their distance ranges using LSH and sorting trees within large sized
hash blocks. Experiments conducted on both synthetic and real-world
datasets show the effectiveness of the proposed approach.

Keywords: Entity Resolution, Real-time, Locality Sensitive Hashing,
Indexing.

1 Introduction

The purpose of entity resolution is to find records in one or several databases
that belong to the same real-world entity. Such an entity can for example be a
person (e.g. customer, patient, or student), a consumer product, a business, or
any other object that exists in the real world. Entity resolution is widely used
in various applications such as identity crime detection (e.g. credit card fraud
detection) and estimation of census population statistics [1].

Currently, most available entity resolution techniques conduct the resolution
process in offline or batch mode with static databases. However, in real-world
scenarios, many applications require real-time responses. This requires entity
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resolution on query records that need to be matched within sub-seconds with
databases that contain (a possibly large number of) known entities [1]. For ex-
ample, online entity resolution based on personal identifying details can help a
bank to identify fraudulent credit card applications [2], while law enforcement
officers need to identify suspect individuals within seconds when they conduct
an identity check [1]. Moreover, real-world databases are often dynamic. The re-
quirement of dealing with large-scale dynamic data with quick responses brings
challenges to current entity resolution techniques. Only limited research has so
far focused on using entity resolution at query time [3,4] or in real-time [5,6].

Typically, pair-wise comparisons between records are used to identify the
records that belong to the same entity. The number of record comparisons in-
creases dramatically as the size of a database grows. Indexing techniques such
as blocking or canopy formation can help to significantly decrease the number of
comparisons [1]. Often phonetic encoding functions, such as Soundex or Double
Metaphone, are used to overcome differences in attribute values.

Locality sensitive hashing (LSH) [7] is an approximate blocking approach that
uses l length k hash functions to map records within a certain distance range into
the same block with a given probability. This approach [8] can filter out records
with low similarities, thus decreasing the number of comparisons. However, the
tuning of the required parameters k and l is not easy [9]. This is especially
true for large-scale dynamic datasets. For some query records, one may need to
investigate records with low similarities, while for other query records one only
needs to investigate those records with high similarities with the query record.
Moreover, entity resolution needs to deal with noise such as pronunciation or
spelling errors. Although some LSH approaches such as multi-probe [10] are to
decrease the number of hash functions needed, the question of how to make
blocking approaches become more noise-tolerant and scalable remains open.

In this paper, we propose a noise-tolerant approximate blocking approach
to conduct real-time entity resolution. To deal with noise, an n-gram based
approach [1] is employed where attribute values are converted into sets of n-
grams (i.e, substring sets of length n). Then, LSH is used to group records into
blocks with various distance ranges based on the Jaccard similarity of their n-
grams. To be scalable, for blocks that are large (i.e., contains more than a certain
number of records), we propose to build dynamic sorting trees inside these blocks
and return a small set of nearest neighbor records for a given query record.

2 Related Work

Indexing techniques can help to scale-up the entity resolution process [1]. Com-
monly used indexing approaches include standard blocking based on inverted
indexing and phonetic encoding, n-gram indexing, suffix array based indexing,
sorted neighborhood, multi-dimensional mapping, and canopy clustering. Some
recent work has proposed automatic blocking mechanisms [11]. Only a small
number of approaches have addressed real-time entity resolution. Christen et
al. [5] and Ramadan et al. [6] proposed a similarity-aware indexing approach for
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real-time entity resolution. However, this approach fails to work well for large
datasets, as the number of similarity comparisons for new attribute values in-
creases significantly when the size of each encoding block grows.

Approximate blocking techniques such as LSH and tree based indexing [9] are
widely used in nearest neighbour similarity search in applications such as recom-
mender systems [12] and entity resolution [8]. In LSH techniques, the collision
probability of a LSH family is used as a proxy for a given distance or similarity
measure function. Popularly used LSH families include the minHash family for
Jaccard distance, the random hyperplane family for Cosine Distance, and the
p-stable distribution family for Euclidean Distance [13].

Recently, Gan et al. [14] proposed to use a hash function base with n basic
length 1 signatures rather than using fixed l length k signatures or a forest [9]
to represent a data point. The data points that are frequently colliding with
the query record across all the signatures are selected as the approximate sim-
ilarity search results. However, as k=1 usually leads to large sized blocks, this
approach needs to scan all the data points in the blocks to get the frequently
colliding records each time. This makes it difficulty to retrieve results quickly
for large-scale datasets. Some approaches such as multi-probe [10] have been
used to decrease the number of hash functions needed. However, how to explore
LSH blocks in a fast way and decrease the retrieval time to facilitate real-time
approximate similarity search for large scale datasets still needs to be explored.

3 Problem Definition

To describe the proposed approach, we first define some key concepts.

– Record Set: R = {r1, r2, . . . , r|R|} contains all existing records in a dataset.
Each record corresponds to an entity, such as a person. Let U denote the
universe of all possible records, R ⊆ U .

– Element: An element is an n-gram of an attribute value. Elements may
overlap but do not cross attribute boundaries. A record contains 1 . . .m
elements, denoted as ri = {vi1, vij , . . . , vim}.

– Query Record: A query record qi ∈ U is a record that has the same
attribute schema as the records in R. After query processing and matching,
qi will be inserted into R as a new record r|R|+1.

– Query Stream: Q = {q1, q2, . . . , q|Q|} is a set of query records.
– Entity Set: E = {e1, e2, . . . , e|E|} contains all unique entities in U .

For a given record ri ∈ R, the decision process of linking ri with the corre-
spondent entity ej ∈ E is denoted as ri → ej, and ej = l(ri), where l(ri) denotes
the function of finding the entity of record ri. The problem of real-time entity
resolution is defined as: for each query record qi in a query stream Q, let ej be
the entity of qi, ej = l(qi), find all the records in R that belong to the same
entity as the query record in sub-second time. Let Lqi denote the records in R
that belong to ej , Lqi = {rk | rk → l(qi), rk ∈ R}, Lqi ⊆ R, qi ∈ Q.
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Record Entity First Family City Zip
ID ID Name Name Code

r1 e1 Tony Hua Sydney 4329
r2 e2 Emily Hu Perth 1433
r3 e3 Yong Wan Perth 4320

r4 e1 Tonny Hue Syndey 4456

(a) An example record dataset

Record 2-grams (n=2)
ID

r1 to, on, ny, hu, ua, sy, yd,
dn, ne, ey, 43, 32, 29

r2 em, mi, il, ly, hu, pe,
er, rt, th, 14, 43, 33

r3 yo, on, ng, wa, an, pe,
er, rt, th, 43, 22, 20

r4 to, on, nn, ny, hu, ue, sy,
yn, nd, de, ey, 43, 35, 56

(b) The elements(2-grams) for the ex-
ample records

Fig. 1. An example dataset and the elements(2-grams) of each record

[Example 1] Figure 1(a) shows example records r1, r2, r3, and r4. They
belong to three entities e1, e2, and e3. Assume r4 is a query record, the entity
resolution process for r4 is to find Lr4 = {r1} based on the four attribute values.

4 Proposed Approximate Blocking Approach

A blocking schema [15] is an approach to map a set of records into a set of
blocks. Blocking schemes generate signatures for records. A blocking scheme
can be a LSH function, a canopy clustering function, or a phonetic encoding
function [1]. Those records with the same signature will be allocated together in
the same block. To make a LSH blocking scheme scalable for large-scale dynamic
datasets, we propose to build a dynamic sorting tree to sort the records of
large-sized LSH blocks and return a window of nearest neighbors for a query
record. Through controlling the window size, we can select nearest neighbors with
various approximate similarity ranges for the purpose of being noise-tolerant.
Thus, the proposed approach includes two parts: LSH and dynamic sorting tree,
which will be discussed in Section 4.1 and 4.2. Then, the discussion of conducting
entity resolution based on the proposed blocking approach will be in Section 4.3.

4.1 Locality Sensitive Hashing

LSH can help to find approximate results for a query record for high dimensional
data. Let h denote a basic approximate blocking scheme for a given distance
measure D, Pr(i) denote the probability of an event i, and p1 and p2 are two
probability values, p1 > p2, 0 ≤ p1, p2 ≤ 1. h is called (d1, d2, p1, p2)-sensitive for
D, if for any records rx, ry ∈ R, the following conditions hold:

1. if D(rx, ry) ≤ d1 then Pr(h(rx) = h(ry)) ≥ p1
2. if D(rx, ry) > d2 then Pr(h(rx) = h(ry)) ≤ p2
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Fig. 2. Example hash values, LSH family, and generated blocks and a dynamic sorting
tree for the example dataset in Figure 1, r4 is a query record

Minwise hashing (minHash) is a popular LSH approach that estimates the
Jaccard similarity [7]. Let J(rx, ry) denote the Jaccard similarity for any two
records rx and ry. This hashing method applies a random permutation κ on the
elements of any two records rx and ry and utilizes

Pr(min(κ(rx)) = min(κ(ry))) = J(rx, ry) =
|rx

⋂
ry |

|rx
⋃
ry |

(1)

to estimate the Jaccard similarity of rx and ry , where min(κ(rx)) denotes the
minimum value of the random permutation of the elements of record rx. p denotes
the hash collision probability Pr(min(κ(rx)) = min(κ(ry))). It represents the
ratio of the size of the intersection of the elements of the two records to that of
the union of the elements of the two records. A minHash function can generate
a basic signature for a given record. The basic signature is called a length 1
signature and the hash function is called a length 1 hash function.

In order to allocate records that have higher similarities with each other into
the same block, k length 1 hash functions can be combined to form a length k
(k > 1) compound blocking scheme to get the intersection records of the basic
length 1 blocking schemes. Let hc denote a compound LSH blocking scheme that
is the AND -construction (conjunction) of k basic LSH blocking schemes hi, hc =
∧ki=1hi. Let pc denote the collision probability of a length k compound blocking
scheme. It can be calculated based on the product of the collision probabilities
of its basic length 1 blocking schemes, denoted as pc = pk. To increase the
collision probability, each record is hashed l times to conduct OR-construction
(disjunction) and form l hash tables (i.e., l length k signatures), n = k · l. Let
Hk,l denote a LSH family that has l length k hashing blocking schemes, the
collision probability of Hk,l can be estimated with pk,l = 1− (1− pk)l.

[Example 2] (LSH blocking scheme and blocks) Figure 2 (a) shows the ex-
ample length 1 minHash signatures of the example records in Figure 1. Figure 2
(b) shows an example LSH blocking scheme H2,2 and the generated LSH blocks.
H2,2 = {h1 ∧ h2, h3 ∧ h4}, k = 2 and l = 2. The records are allocated into
different blocks based on the given blocking scheme, shown in Figure 2 (b). For
example, the length 2 blocking scheme h1 ∧ h2 generated block signatures 3 2
and 3 5. Records r1, r3 and r4 are allocated in block 3 2 while r2 is in block 3 5.
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4.2 Dynamic Sorting Tree

Based on a given LSH FamilyHk,l, we can allocate records with certain similarity
into the same LSH block and filter out those records that have lower similarities.
Using a large value of k will result in smaller sized blocks and decrease the
number of pair-wise comparisons, but it may result in low recall because a large
value for k may filter out some true matched records that have low similarities.
A small value for k usually can get higher recall values but may result in large-
sized blocks. As scanning the records in large-sized blocks to conduct pair-wise
comparisons is usually time-consuming, how to quickly identify a small set of
nearest neighbors in a large sized LSH block is very important.

If we sort the records in a LSH block and only return a small set of similar
records for each query record, then the exploration of the whole large-sized block
can be avoided. B+ trees are commonly used to sort the data points for dynamic
data in one dimension [9]. We build a B+ tree to sort the records inside each
large sized LSH block. As forming sub-blocks for those small sized blocks is
not necessary, we set up a threshold for building sorting trees in a block. Let σ
(σ > 1)denote this threshold, if the size of a block Bi is greater than σ, then
we build a B+ tree for Bi, otherwise, no sorting tree will be formed. To build a
sorting tree, we firstly discuss how to select a sorting key.

Selecting a Sorting Key Adaptively. Typically, the sorting key can be as-
signed by a domain expert [16,17]. For example, for the example dataset, we
can select ’First Name’ as the sorting key. As the LSH blocks are formed by the
random permutation of elements, the common elements of the records in block
Bi may be different from those in another block Bj . Using a predefined fixed
sorting key may result in a whole block being returned as query results, which
will fail to return a sub-set of records in a block. On the other hand, we can
select the sorting key adaptively for each LSH block Bi individually.

One or several attributes can be selected as sorting key. For a block Bi, a
good sorting key should divide the records into small sub-blocks. Thus, we can
select those attributes that have a greater number of unique values in σ records.
Moreover, if the attribute value occurrences are uniformly distributed, we can get
sub-blocks with the same or similar sizes. Thus, for an attribute aj , we calculate
a sorting key selection weight wj , which consists of the linear combination of
two components: attribute cardinality weight and distribution weight:

wj = θ · nj
σ

+ (1 − θ) · αj (2)

Where 0 ≤ θ ≤ 1, and nj is the number of unique values of attribute aj
in block Bi.

nj

γ measures the attribute cardinality weight, 0 ≤ nj

γ ≤ 1. αj
measures the distribution of occurrences of each unique value of aj, calculated
as the standard deviation of the occurrences of the value of aj . Let ojc denote
the occurrence of attribute value vjc in σ records, ma denote the maximum
occurrence, ma = maxb∈[1,K](ojb),where K is the number of unique attribute
values of attribute j in σ records, mi denotes the minimum occurrence, mi =
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minb∈[1,K]. To get a normalized weight between 0 and 1, we set njc =
ojc−mi

ma−mi
,

thus, αj = 1
K

√
πK
c=1(njc − μ)2), where μ is the average value of njc for aj ,

μ =
ΣK

c=1ojc
K .

The attribute aj that has the largest wj will be selected as the sorting key.
Let sk denote a selected sorting key for Bi, then the B+ tree is built by sorting
the records in Bi on key sk. For text records, we can sort them lexically by the
alphabetic order of the sorting key. One advantage of sorting by alphabetic order
is that such an ordering is a global unique order for all the attribute values of the
sorting key in Bi. The distance of any two attribute values of the sorting key can
be measured by the distance of their alphabetic order. Thus, for a query record,
a set of nearest neighbors can be obtained through measuring their alphabetic
order distance. Each unique sorting key value denoted as vsk is one node of the
B+ tree. Each node is an inverted index that points to the records that have
the same vsk, denoted as dti = (vsk, I(vsk)), where vsk is an attribute value of
sk, and I(vsk) is the set of records that have the same vsk. Let |Bi| denote the
number of records in a block Bi, the time complexity of searching, insertion and
deletion of B+ tree is O(log |Bi|), which is quicker than scanning all the records
in a block, O(log |Bi|) < O(|Bi|), for large blocks.

Selecting Nearest Neighbors. Every record in a block Bi can be selected as
a candidate record for query record qi. However, for those blocks that have a
large number of records, we can select a set of nearest neighbors as candidate
records to reduce the query time. For a given query record qi, we firstly insert
it into the B+ tree of a LSH block based on the alphabetic order of the block’s
sorting key sk. Then the nearest neighbor nodes of the B+ tree will be selected
as the candidate records for this query record. Let vi,sk denote the sorting key
value of query record qi, we choose zr nodes that are greater than vi,sk and zl
nodes that are smaller than vi,sk to form the nearest neighbor nodes of vi,sk,
0 ≤ zl + zr ≤ |Bi|. How to set the zl and zr value is important.

If we set zl and zr=0, then only those records with the exact same value as
the query record will be selected. If zl or zr = |Bi|, then all the records of Bi
will be selected. As the distance of two nodes in a sorting B+ tree reflects the
distance of two records, we set a distance threshold ε of two nodes. Let vi,sk
denote the attribute value of sorting key sk for query record qi. For a node vj,sk
of a given B+ tree, let D(vi,sk, vj,sk) denote the distance of vi,sk and vj,sk for a
given distance measure D (e.g., edit distance [1]). If the distance of two nodes
is less than ε, then we increase the window size to include node vj,sk inside the
window. Thus, we firstly set zl and zr = 0. The window size expansion is along
both directions [16] (i.e., greater than or smaller than the query record node i)
of the B+ tree. For each direction, we expand the window size (i.e., zl or zr)
and include neighbor node j, if D(vi,sk, vj,sk) < ε, with 0 ≤ ε ≤ 1.

To further decrease the number of candidate records and select a smaller set
of nearest neighbors, we count the collision number of each record of the neigh-
boring nodes inside the window of the sorting tree in all l LSH blocks to rank the
records that are attached to the selected neighboring nodes. This is because the
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co-occurrence of a record rx that appears together with qi in the LSH blocks re-
flects the similarity of the two records [14]. The higher the co-occurrence is, the
more similar the two records are. We set a threshold ρ to select those records that
appear at least ρ times with the query record qi together in LSH blocks. Let gix
denote the co-occurrence of record rx and query record qi. Let Nvi,sk denote the
nearest neighbor record set of query record qi in blockBi. For each record rx of the
neighbor node j inside the window of the sorting tree DSTi(i.e., rx ∈ I(vj,sk)),
we add rx to Nvi,sk if gix > ρ, 0 ≤ ρ ≤l.

[Example 3] (Dynamic sorting tree) Figure 2(c) shows the dynamic sorting
tree DST3 2 for block 3 2. DST3 2 is sorted by attribute ’First Name’. Through
setting window size parameters, we can get a set of nearest neighbor records
for a query record. For example, if we set zr = 0, no records will be selected as
candidate records, and only the records with node value ’Tonny’ will be selected.
Assume ε = 0.6, ρ = 1, the Jaccard similarity of the bi-grams of ’Tony’ and
’Tonny’ is 0.75 and that of the bi-grams of ’Tonny’ and ’Yong’ is 0.167. Thus,
we can set zl = 0 and zr = 1 for DST3 2. Record r1 appears twice together with
query record r4 in blocks 3 2 and 1 6, thus r1 is selected.

4.3 Real-Time Entity Resolution

For a query record qi, we can obtain the nearest neighbor records that are being
allocated in the same block with qi as the candidate records. Then, we can
conduct pair-wise comparisons for all candidate records with the query record qi.
We use the Jaccard similarity of the n-grams of a candidate record and the query
record, or other appropriate approximate distance/similarity measures to rank
their similarity [1]. Let Cqi denote the candidate record set, for each candidate
record rj ∈ Cqi and query record qi ∈ Q, the similarity can be calculated with
sim(qi, rj) = J(qi, rj). The top N candidate records will be returned as the
query results Lqi . The algorithm is shown as Algorithm 1.

5 Experiments and Results

5.1 Data Preparation

To evaluate the proposed approach, we conducted experiments on the following
two datasets.

1) Australian Telephone Directory. [5] (named OZ dataset). It contains
first name, last name, suburb, and postcode, and is sourced from an Australian
telephone directory from 2002 (Australia On Disc). This dataset was modified by
introducing various typographical and other variations to simulate real ‘noisy’
data. To allow us to evaluate scalability, we generated three sub-sets of this
dataset. The smallest dataset (named OZ-Small) has 34,596 records, the medium
sized dataset (OZ-Median) has 345,996 records, and the largest dataset (OZ-
Large) has 3,458,758 records. All three datasets have the same features including
similarity distribution, duplicate percentages (i.e., 25%) and modification types.
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Algorithm 1: Query(qi,Hk,l, N)
Input:
- qi ∈ Q is a given query record
- Hk,l is a given LSH blocking schema
- N is a given number of returned results
Output:
- Lqi

is the ranked list of retrieved records

1: Lqi
← {}, Cqi

← {} // Initialization, Cqi
is the candidate records set

2: Bqi
← Hk,l(gram(qi, n) // Conduct LSH blocking for the n-grams of qi

3: For each block Bbid ∈ Bqi
:

4: If |Bbid| < γ:
5: Cqi

← Cqi

⋃
Bbid // Get all records in Bbid as candidate records

6: If |Bbid| = γ: // Build sorting tree and select nearest neighbor records. See Section 4.2.
7: Get sorting key sk
8: Build dynamic sorting tree DSTbid

9: Get nearest neighbours Nvi,sk

10: Cqi
← Cqi

⋃
Nvi,sk

11: If |Bbid| > γ: // Select nearest neighbor records. See Section 4.2.
12: Insert qi to DSTbid

13: Get nearest neighbours Nvi,sk

14: Cqi
← Cqi

⋃
Nvi,sk

15: For each candidate record rj ∈ Cqi
, rj �= qi:

16: Get sim(qi, rj) // Conduct pair-wise similarity comparisons
17: Lqi

← max{Cqi
, N} // Return top N ranked results

2) North Carolina Voter Registration Dataset. (i.e., NC dataset). This
dataset is a large real-world voter registration database from North Carolina
(NC) in the USA [18]. We downloaded this database every two months since Oc-
tober 2011. The attributes used in our experiments are: first name, last name,
city, and zip code. The entity identification is the unique voter registration num-
ber. This data set contains 2,567,642 records. There are 263,974 individuals
(identified by their voter registration numbers) with two records, 15,093 with
three records, and 662 with four records.

5.2 Evaluation Approaches

In the experiments, we employ the commonly used Recall, Memory Cost and
Query Time to measure the effectiveness and efficiency of real-time top N entity
resolution approach [1]. We divided each dataset into a training (i.e., building)
and a test (i.e., query) set. Each test dataset contains 50% of the whole dataset.
For each test query record, the entity resolution approach will generate a list of
ordered result records. The top N records (with the highest rank scores) will be
selected as the query results. If a record in the results list has the same entity
identification as the test query record, then this record is counted as a hit (i.e.,
an estimated true match). The Recall value is calculated as the ratio of the
total number of hits of all the test queries to the total number of true matches
in the test query set. We conducted comparison experiments with three other
state-of-the-art methods as described below. All methods were implemented in
Python, and the experiments were conducted on a server with 128 GBytes of
main memory and two 6-core Intel Xeon CPUs running at 2.4 GHz.
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Fig. 3. The similarity distribution of vari-
ous n values, and the collision probability
of various k values with l=30 for OZ-Large

Fig. 4. TopN=10 results of NAB with var-
ious ω values for the OZ-Large, with the
x-axis showing values for ω

– NAB : This is the proposed noise-tolerant approximate blocking approach
that includes LSH and dynamic sorting trees.

– DCC : This is a locality sensitive hashing approach that uses dynamic colli-
sion counting [14] approach. It uses a base of length 1 basic hash functions.

– LSH : This is the basic LSH approach. It scans the data points in each block
and conducts pair-wise comparison for all the records inside the blocks.

– SAI : This approach pre-calculates the similarity of attribute values to de-
crease the number of comparisons at query time [5,6].

5.3 Parameter Setting

We firstly discuss the parameter setting for the OZ datasets. To set the parame-
ters k and l, we calculated the Jaccard similarity distribution of the exact values
and n-grams with n=2, 3, 4 of the true matched records of the training sets.
The similarity distribution is shown in Figure 3. The Jaccard similarity of 90%
of the exact values of the true matched records is zero. This means that it would
be very difficult to find true matched records if we use the exact value of the
records. Also, the similarity range of the majority (i.e., 95%) of the 2-grams of
the true matched records is between 0.3 and 0.7. Thus, using an n-gram based
approach can help to find those true matched records that contain small varia-
tions or errors. n is therefore set to 2 in the experiments. Figure 3 also shows
the collision probability of various k values with l=30. We set k=4 and l=30
for the NAB approach to let most true matched records have a higher collision
probability. To get a similar collision probability, we set k=4 and l=30 for the
LSH approach, and k=1 and l=20 for the DCC approach. The settings of the
other parameters of the NAB approach are θ=0.5, ε=2, ρ=0.1.

Figure 4 shows the top N=10 evaluation of NAB for the OZ-Large dataset
with various σ value. With various σ value, recall remains stable while average
query time is increasing, with the increase of σ. This shows that building dynamic
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(a) Recall (b) Time (sec) (c) Memory Usage (MB)

Fig. 5. The top N=10 Recall, Average Query Time and Memory Usage results

sorting trees inside LSH blocks can help to decrease the query time through
selecting a small number of nearest neighbor records as candidate records. A
small σ value (e.g., σ=20) will not necessarily decrease the average query time,
as the building of trees also takes time and space. When σ is set to a large value
(e.g., σ=500), the average query time increases because scanning and comparing
a large number of candidate records is time consuming. We set σ=200. For the
NC dataset, we set n=3, k=2, l=20 for LSH and NAB, and k=1, l=10 for DCC.
The other parameters for NAB are the same as with the OZ datasets.

5.4 Comparison with Baseline Models

The performances of the compared approaches are shown in Figure 5. To elimi-
nate the influence of random permutation, the LSH based approaches LSH, DCC
and NAB were run three times. The average query time and memory usage are
shown on a logarithmic scale. From Figure 5 we can see that SAI achieved good
recall value for OZ-Small and NC data but low recall for OZ-Large. The LSH
based approaches (LSH, DCC and NAB) had higher recall than SAI. This can
be explained that these approaches can capture the common elements (i.e., n-
grams) of the attribute values to deal with the noise of the data. Moreover,
through controlling the k and l value, these approaches can filter out the records
that have lower similarities with the query record. DCC had very low memory
usage but high average query time. NAB had slightly lower recall and higher
memory usage than that of LSH, but with the help of dynamic sorting trees, the
average query time (e.g., 8 msec for OZ-Large) is much lower than LSH (e.g., 0.1
sec for OZ-Large). Thus, NAB can be effectively and efficiently used for large
scale real-time entity resolution, especially for noisy data.

6 Conclusions

We discussed a noise-tolerant approximate blocking approach to facilitate real-
time large scaled entity resolution. To deal with noise, we use an LSH approach
to group records into blocks with various distance ranges based on the Jaccard
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similarity of their n-grams. Moreover, we propose to build dynamic sorting trees
inside large-sized LSH blocks. Through controlling the window size, we select a
small set of nearest neighbors with various approximate similarity ranges to be
noise-tolerant. Experiments conducted on both synthetic and real-world large
scaled datasets demonstrates the effectiveness of the proposed approach. Our
future work will focus on how to conduct adaptive real-time entity resolution.

Acknowledgements. The authors would like to thank the great help of Pro-
fessor David Hawking.

References

1. Christen, P.: Data Matching. Data-Centric Systems and Appl. Springer (2012)
2. Christen, P., Gayler, R.W.: Adaptive temporal entity resolution on dynamic

databases. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD
2013, Part II. LNCS, vol. 7819, pp. 558–569. Springer, Heidelberg (2013)

3. Lange, D., Naumann, F.: Cost-aware query planning for similarity search. Infor-
mation Systems, 455–469 (2012)

4. Bhattacharya, I., Getoor, L., Licamele, L.: Query-time entity resolution. In:
SIGKDD, pp. 529–534 (2006)

5. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: CIKM, pp. 1565–1568 (2009)

6. Ramadan, B., Christen, P., Liang, H., Gayler, R.W., Hawking, D.: Dynamic
similarity-aware inverted indexing for real-time entity resolution. In: Li, J., Cao, L.,
Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013 Workshops.
LNCS (LNAI), vol. 7867, pp. 47–58. Springer, Heidelberg (2013)

7. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. In: VLDB, pp. 518–529 (1999)

8. Kim, H.S., Lee, D.: HARRA: Fast iterative hashed record linkage for large-scale
data collections. In: EDBT, pp. 525–536 (2010)

9. Bawa, M., Condie, T., Ganesan, P.: LSH forest: Self-tuning indexes for similarity
search. In: WWW, pp. 651–660 (2005)

10. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: Efficient
indexing for high-dimensional similarity search. In: VLDB, pp. 950–961 (2007)

11. Das Sarma, A., Jain, A., Machanavajjhala, A., Bohannon, P.: An automatic block-
ing mechanism for large-scale de-duplication tasks. In: CIKM, pp. 1055–1064 (2012)

12. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: A scalable two-stage
personalized news recommendation system. In: SIGIR, pp. 125–134 (2011)

13. Anand, R., Ullman, J.D.: Mining of massive datasets. Cambridge University Press
(2011)

14. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: SIGMOD, pp. 541–552 (2012)

15. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
AAAI, pp. 440–445 (2006)

16. Yan, S., Lee, D., Kan, M.Y., Giles, L.C.: Adaptive sorted neighborhood methods
for efficient record linkage. In: DL, pp. 185–194 (2007)

17. Draisbach, U., Naumann, F., Szott, S., Wonneberg, O.: Adaptive windows for du-
plicate detection. In: ICDE, pp. 1073–1083 (2012)

18. Christen, P.: Preparation of a real voter data set for record linkage and duplicate
detection research. Technical report, Australian National University (2013)



A Relevance Weighted Ensemble Model

for Anomaly Detection in Switching Data Streams

Mahsa Salehi1, Christopher A. Leckie1,
Masud Moshtaghi2, and Tharshan Vaithianathan3

1 National ICT Australia, Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

msalehi@student.unimelb.edu.au, caleckie@unimelb.edu.au
2 Faculty of Information Technology,

Monash University, Victoria 3145, Australia
masud.moshtaghi@monash.edu

3 National ICT Australia, Department of Electrical and Electronic Engineering,
The University of Melbourne, Victoria 3010, Australia

tharshan@nicta.com.au

Abstract. Anomaly detection in data streams plays a vital role in on-
line data mining applications. A major challenge for anomaly detection is
the dynamically changing nature of many monitoring environments. This
causes a problem for traditional anomaly detection techniques in data
streams, which assume a relatively static monitoring environment. In an
environment that is intermittently changing (known as switching data
streams), static approaches can yield a high error rate in terms of false
positives. To cope with dynamic environments, we require an approach
that can learn from the history of normal behaviour in data streams,
while accounting for the fact that not all time periods in the past are
equally relevant. Consequently, we have proposed a relevance-weighted
ensemble model for learning normal behaviour, which forms the basis of
our anomaly detection scheme. The advantage of this approach is that
it can improve the accuracy of detection by using relevant history, while
remaining computationally efficient. Our solution provides a novel contri-
bution through the use of ensemble techniques for anomaly detection in
switching data streams. Our empirical results on real and synthetic data
streams show that we can achieve substantial improvements compared
to a recent anomaly detection algorithm for data streams.

Keywords: Anomaly detection, Ensemble models, Data streams.

1 Introduction

Anomaly detection (also known as novelty or outlier detection) is an important
component of many data stream mining applications. For example, in network
intrusion detection, anomaly detection is used to detect suspicious behaviour
that deviates from normal network usage. Similarly, in environmental monitor-
ing, anomaly detection is used to detect interesting events in the monitored
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environment, as well as to detect faulty sensors that can cause contamination of
the collected data. A major challenge for anomaly detection in applications such
as these is the presence of nonstationary behaviour in the underlying distribution
of normal observations. In addition, the high rate of incoming data in such ap-
plications adds another challenge to anomaly detection, as the anomalous data
points should be detected in a computationally efficient way with high accuracy.
Many anomaly detection techniques are based on an assumption of stationar-
ity. However, such an assumption can result in low detection accuracy when
the underlying data stream exhibits nonstationarity. In this paper, we present a
novel method for robust anomaly detection for a special class of nonstationarity,
known as switching data streams.

Many environments are intermittently changing, and thus exhibit piecewise
stationarity. For example, sensors in an office environment may collect observa-
tions with different underlying statistical distributions between day-time and
night-time. We refer to the data from such environments as switching data
streams. In addition to large-scale switching behaviour, there can also be finer-
scale variation in the distribution of observations, e.g., variation during day-
time observations. To address these challenges, we propose a novel approach to
anomaly detection that can selectively learn from previous time periods in order
to construct a model of normal behaviour that is relevant to the current time
window. This is achieved by maintaining a cluster model of normal behaviour in
each previous time period, and then constructing an ensemble model of normal
behaviour for the current period, based on the relevance of the cluster models
from previous time periods to the current time period. This relevance-weighted
ensemble model of normal behaviour can then provide a more robust model of
normality in switching data streams.

While ensemble methods have been widely used in supervised learning [1,2],
their use for unsupervised anomaly detection in data streams is still an open
research challenge. A key advantage of our approach is that it can improve the
accuracy of anomaly detection in switching data streams. We have evaluated the
effectiveness of our approach on large-scale synthetic and real sensor network
data sets, and demonstrated its ability to adapt to the intermittent changes in
switching data streams. We show that our approach achieves greater accuracy
compared to a state-of-the-art anomaly detection approach for data streams.

2 Related Work

A number of surveys [3,4] have categorized various techniques for anomaly de-
tection. Most focus only on static environments and do not consider dynamic
behaviour. In dynamic environments an unknown volume of data (data streams)
are produced. Hence the major challenge is how to detect anomalies in such en-
vironments in the presence of dynamics in the distribution of the data stream.
Based on existing surveys of anomaly detection in data streams [5,6], we cate-
gorize these methods into Model based and Distance based approaches.
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Model based approaches build a model over the data set and update it as
data evolves with each incoming data point. In this category, some authors learn
a probabilistic model. This requires a priori knowledge about the underlying
distribution of data, which is not appropriate if the distribution is not known
[7,8]. Other approaches use clustering algorithms to build a model for normal
behaviour in data streams. However, they are not really designed for anomaly
detection [9,10]. An exception is [11], in which a segment based approach is pro-
posed. It uses k-means as a base model and provides guidelines regarding how
to use the proposed approach for anomaly detection. As a result, it assumes the
number of clusters is known, which may not be the case in changing environ-
ments (since the number of clusters may change over time). In addition, while
these clustering techniques work for gradually evolving data streams, they are
not applicable in switching environments, which is our focus in this paper.

Distance based approaches are the second category of anomaly detection tech-
niques in data streams. We have two types of distance-based outliers: ‘global’
and ‘local’. Distance-based ‘global’ outliers are first introduced by [12], where a
data point x is a distance-based outlier if less than k data points are within a
distance R from it. In [13] and [14], a sliding window is used to detect such global
outliers. Since parameter R is fixed for all portions of the data, these approaches
fail to detect anomalies in non-homogenous densities. In contrast, distance-based
‘local’ outliers are data points that are outliers with respect to their k nearest
neighbours without considering any distance R. Local outliers are first intro-
duced in [15] and a measure of being an outlier - the Local Outlier Factor(LOF)
- is assigned to each data point in a static environment. Later, in [16] and [6] two
similar approaches are proposed to find local outliers in data streams. While the
former made an assumption about the underlying distribution of data, the latter
(Incremental LOF) extended [15], and could detect outliers in data streams by
assigning the LOF to incoming data points and updating the k nearest neighbors.
However, there are still some limitations with this approach in the presence of
switching data streams: 1) It has problems with detecting dense drift regions in
data streams, which results in false negatives. 2) In switching data streams, the
distribution of normal data can change suddenly. Since incremental LOF keeps
all of the history of the data points, it could not differentiate between different
states, which again results in false negatives (e.g., a data point is an anomaly
in one state while it is not an anomaly in another). 3) It is hard to choose the
parameter value k in the presence of changing distribution environments. We
propose to address these open problems for anomaly detection in switching data
streams by using an ensemble approach.

Ensemble approaches have been shown to have benefits over using a single
classifier, particularly in dynamic environments. So far, several ensemble learn-
ing methods have been proposed for data stream classification [1,2]. In contrast,
there is little work done on anomaly detection using ensemble techniques [17]. In
a recent comprehensive survey paper [18], a categorization of outlier detection en-
semble techniques is based on the constituent components (data/model) in these
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techniques. Nevertheless, none of these approaches are aimed at handling switch-
ing data streams or even streaming data.

Since incremental LOF (iLOF) is the only anomaly detection technique in
streaming data which handles different densities and is reported to detect changes
in data distributions, we use it as a baseline to evaluate our proposed approach.

3 Our Methodology

In this section, we formally define our problem and proposed algorithm.

3.1 Problem Definition

We begin by describing our notation for switching data streams. We consider the
problem of anomaly detection in a switching data stream, where the underlying
distribution of observations is only piecewise stationary. That is, the monitored
environment switches between a number of “normal” states, such as day vs night
in an episodic manner. Let the state of the system be a random variable over
the domain of possible states S = {s1, ..., sD}, where the system has D normal
states. The distribution of an observation X in state sd is drawn from a mixture
of Kd components. For example, each component of the mixture distribution of
state sd could be a multivariate Gaussian distribution with different means and
covariance. Let Θ = {εd,i, i = 1, ..,Kd} denote the parameters corresponding
to the Kd components of state sd, e.g., εd,1 = {μd,1, πd,1} for a multivariate
Gaussian distribution. Further, let Φ = {δd,i, i = 1, ..,Kd} denote the mixture
weights of the Kd components of state sd, i.e., the prior probability that a ran-
dom observation in state sd comes from component i is δd,i.

We observe a stream of observations, where X(1 : T ) denotes the sequence
of observation vectors collected over the time period [t1, ..., tT ]. At time t, we
receive a vector of observations X(t) = [x1(t), .., xP (t)]

T corresponding to P
different types of observation variables, e.g., temperature, pressure, humidity,
etc, where X(t) ∈ !P . If the environment is in state sd at time t, then X(t) is
sampled from one of the Kd component distributions in Θd of state sd.

The monitored environment is initially in some random state s(1) ∈ S at time
t1, and remains in that state until a later time tc1 when it switches to a different
state s(2) ∈ S\s(1). It then remains in state s(2) until a later time tc2 when it
switches again to s(3) ∈ S\s(2), and so on. Our aim is to detect anomalies in this
data stream X . In order to detect anomalies, we require a model of “normal”
behaviour for the environment, given that the number of possible states, the
number and mixture of components in each state, and the parameters of each
component in each state are unknown a priori.

In order to learn our model of normal behaviour, we could estimate all of
the different component parameters for all states by keeping all data X(1 : t).
However, this is impractical due to the memory requirements and it would mix
all the states together when building the normal model. Alternatively we can
learn only from the window of the w most recent observations X(t− w + 1 : t).
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While this is more computationally efficient, it only provides a limited sample
of measurements from the current state. If the window size w is small, then this
might yield a noisy estimate of the component distribution parameters.

The problem we address is how to find a balance between these two extremes,
by maintaining multiple models of normal behaviour based on previous data
windows. Our expectation is that this will provide us with a balance between
minimising the memory requirements for our anomaly detection scheme while
maximising accuracy. However, the key challenge in achieving this balance is
that not all previous windows will be relevant to the current window of observa-
tions, due to the switching nature of the data stream. Consequently, we require a
method to take into consideration the relevance of previous windows, so that we
can construct a model of normal behaviour based on the current and previous
windows. In particular, we need a way to weight the influence of previous win-
dows on data in the current window, based on the degree of relevance of those
previous windows. We consider different kinds of anomalies in the system: either
localized in time, i.e., a burst of noise or a drift in the data stream, or uniformly
distributed over the data stream.

3.2 Our Ensemble-Based Algorithm

We now describe the main steps of our algorithm for ensemble anomaly detection
in switching data streams. Algorithm 1 shows the pseudo code of the ensemble
algorithm, comprising three main steps: Windowing, Weighting and Ensemble
formation. We assume the previous data streams have already been clustered
based on windows of w observations and the problem is how to detect anomalies
in the most recent (current) window of w observations.

1.Windowing Step: In general, in applications that generate data steams, the ob-
servations arrives sequentially. We consider a data stream that switches between
different states, where each state comprises different component distributions.
By breaking the whole data stream of observations into windows of size w, we
can extract the different underlying distributions of the data streams.

In this step, we cluster the current w observations by using an appropri-
ate clustering algorithm, in order to find out the current underlying component
distributions. We chose the HyCARCE clustering algorithm [19], which is a com-
putationally efficient density-based hyperellipsoidal clustering algorithm that au-
tomatically detects the number of clusters, and only requires an initial setting for
one input parameter, i.e., the grid-cell size. In addition, it has a lower computa-
tional complexity in comparison to existing methods. Hence, it is an appropriate
clustering algorithm for our data stream analysis problem in which time is a
vital issue and the number of clusters is unknown. Interested readers can find
a detailed description and pseudo code for the HyCARCE algorithm in [19]. At
the end of this step a clustering model is built that comprises a set of cluster
boundaries, Cτ = {cτ,1, ..., cτ,|Cκ|}. In this paper we use the boundaries of the
ellipsoidal clusters as our decision boundaries.
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Input : Wκ = {X(t− w + 1), ..., X(t)}: most recent window of w observations
from the data stream
E = {C1, C2, ..., Cκ−1}: set of clusterings corresponding to previous
windows {W1, ...,Wk−1}, where a clustering Cj = {cj,1, ..., cj,|Cj |}

Output: Aκ = {a1, ..., aw}: set of anomaly scores in most recent window Wκ

1 Cκ ←− Cluster(Wκ); // cluster Wκ using the HyCARCE clustering [19]

2 R ←− {}; // compute relevance of previous clustering to current one

3 foreach clustering Cj ∈ E do
4 R ←− R ∪ {Relevance(Cκ, Cj)}; // Algorithm 2

5 end
6 R ←− R ∪ {max(R)}; // R = {r1, ..., rκ}
7 E ←− E ∪ {Cκ};

// test each observation in Wκ to check if it is an anomaly

8 foreach Xn ∈ Wκ do
// test if X belongs to any cluster in each clustering Cj

// belongs is defined in Definition 1 using Equation 1 and 2

9 foreach Cj ∈ E do
10 if ∃cj,i ∈ Cj — belongs (X, cj,i) then
11 bj = 0; // X is normal in clustering Cj

12 else
13 bj = 1; // X is anomalous in clustering Cj

14 end

15 end

16 an =

∑κ
j=1 bjrj∑κ
j=1 rj

; [1]

17 A ←− A ∪ {an};
18 end
19 return A;

Algorithm 1. Ensemble Anomaly Detection

2. Weighting Step: According to our windowing step, all of the previous w sized
observation windows have already been clustered. The history is used to better
estimate the underlying distribution of the current window. However, not all of
the previous clusterings have the same level of importance, and some of them
might be more relevant to the current window, as the data stream switches be-
tween different states. Our solution, which is called the Weighting step, is to
assign weights to previous clustering models based on the similarity between the
current and previous clustering models.

In this step, the distance between each previous clustering model (Cj) and the
current clustering model (Cτ) is computed. As time complexity is a major issue
for anomaly detection on data streams, a greedy approach is proposed to com-
pute this distance. In this approach, the distance between each pair of cluster
boundaries in Cτ and Cj is computed based on their focal distance [20]. Focal
distance is a measure of the distance between two hyperellipsoids considering
their shapes, orientations and locations. According to a recent work [20], this
measure works well for computing the similarity between hyperellipsoids.
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Input : Cj = {cj,1, ..., cj,|Cj |}: previous clustering
Cκ = {cκ,1, ..., cκ,|Cκ|}: current clustering

Output: rj : the similarity between Cj and Cκ

// φ and ω are smallest/equal and largest clustering respectively

1 if |Cj | ≤ |Cκ| then
2 φ ←− j; ω ←− β;
3 else
4 φ ←− β; ω ←− j;
5 end
6 D ←− {}; // compute distance between every pair of hyperellipsoids

7 foreach cγ,r ∈ Cγ do
8 foreach cτ,c ∈ Cτ do
9 dr,c ←− FocalDistance(cγ,r, cτ,c); // Focal Distance[20]

// D = {D1, ..., D|Cλ|} and Di = {di,1, ..., di,|Cγ |}
10 end

11 end
12 dist = 0; // compute minimum distance based on a Greedy approach

13 while D �= ∅ do
14 dmin

r,c ←− find minimum element in D;

15 dist ←− dist+ dmin
r,c

16 foreach Di ∈ D do
17 Di ←− Di − {di,c}; // removing relevant assigned clusters

18 end
19 D ←− D − {Dr};
20 end

21 rj =
1

dist
; return rj ;

Algorithm 2. Relevance Function

After determining the focal distance, the algorithm finds the minimum dis-
tance among all computed distances, and assigns the relevant cluster boundaries
as a matching pair. It continues this process, until all of the clusters in at least
one of the two clustering models are each matched to a corresponding cluster in
the other model. The sum of the found minimum distances is used as the dis-
tance between two clustering models. Obviously, if the models are less distant,
they would be more similar. Therefore, the distances are reversed at the end of
the algorithm to show the similarity. The relevant pseudo code is described in
Algorithm 2. Finally, in order to use the current clustering model in the ensemble
step, the maximum assigned similarity among all previous clusterings is assigned
to the current clustering. In this way, we can find a balance between the current
window and previous windows for anomaly detection.
3. Ensemble Step: In this step, anomaly detection is performed based on the
current and previous clusterings. As discussed in the previous subsection, not
all historical models are useful, due to the changing environment. Hence, for
each current observation, we check if it belongs to a hyperellipsoid in each of the
clustering models according to the following definition:
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Definition 1. The observation X belongs to hyperellipsoid cj,i, if the Maha-
lanobis distance between them is less than a threshold t2, where the Mahalanobis
distance is:

M(X, cj,i) = (X − μ̂j,i)
T π̂−1

j,i (X − μ̂j,i) (1)

where μ̂j,i and π̂j,i are the mean and covariance of hyperellipsoid cj,i respectively,
and the threshold is:

t2 = (χ2
P )

−1
ρ (2)

where t2 is the inverse of chi-square statistic, β is the percentage of data covered
by the ellipsoid, and P is the dimensionality of the observations.

Thereafter, the probability of being outlier is computed for the current obser-
vation according to the formula in Algorithm 1 (line 16). The formula is based on
a relevance voting. The algorithm computes this probability for all data points
X in the current window.

3.3 Time Complexity

The total number of observations (data points) N is divided into κ windows
of size w. Let l be the average of number of ellipsoids in each Cj . Therefore l
is a function of Kd, d = {1, .., D} and Kd � N . The time complexity for the
Windowing Step is O(N) as the complexity of HyCARCE is near linear with
respect to the number of data points. The Weighting Step can be computed in

O(
N

w
l3), considering the ‘Relevance’ can be computed in O(l3) in the worst case.

In the last step of the algorithm, ‘belongs’ can be computed in O(l) so the time
complexity of the Ensemble Step is O(wκl). As a result, the time complexity of

Algorithm 1 is O(N(
l3

w
+ l)), which is near linear with respect to the number

of data points. Hence, our ensemble approach is computationally efficient. Time
complexity of iLOF is also near to linear depending on the parameter k.

4 Evaluation

In this section we aim to compare the accuracy, sensitivity and specificity of our
ensemble model with the iLOF algorithm on several dynamic environments.

4.1 Data Sets

We use three different data sets to evaluate our approach.

Synthetic Data Set: In order to generate synthetic data sets, we consider a
state machine that can simulate a switching data stream from a changing envi-
ronment. We assume there are only two different states (S1, S2) and changing
from one state to the other occurs periodically. The first state (s1) has three un-
derlying component distributions ε1,1, ε1,2 and ε1,3 with corresponding mixture
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weights δ1,1, δ1,2 and δ1,3. The second state (s2) has two underlying component
distributions ε2,1 and ε2,2 with mixture weights δ2,1 and δ2,2. Altogether the
environment consists of five component distributions. The states are changing
periodically based on a constant rate (every m = 100 samples). In addition, the
distributions are hyperellipsoids and the initial mean and covariance is chosen
randomly. As discussed earlier, from one instance of a state to the other, for
the same state, we have some perturbations in the mean and covariance of the
underlying distribution, i.e.,the parameters of εd,i can be slightly perturbed be-
tween different occurrences of state sd. By using this state machine, we have
generated 50,000 2-dimensional records. We generated 10 different data sets and
averaged the final results. The inserted noise was 2%.

Real Data Sets: In order to evaluate our algorithm over a real data set, we used
two public available data sets. These data sets contain periodic measurements
over day (state s1) and night (state s1). The first is the IBRL (Intel Berkeley
Research Lab) data set1. A group of 54 sensors were deployed to monitor an of-
fice environment, from Feb. 28th until Apr. 5th, 2004. Moreover, by visualising
the data collected by all the sensors, we observed that sensor number 45 stopped
working in the last two days causing a drift which is labeled as anomalies (4%).
The sensors were collecting weather information. We chose two features, humid-
ity and temperature. The measurements were taken every 31 seconds and there
are about 50,000 records.

The second real data set is from the TAO (Tropical Atmosphere Ocean)
project2, by the Pacific Marine Environmental Lab of the U.S. National Oceanic
and Atmospheric Administration. This monitors the atmosphere in the tropical
Pacific ocean. We have used the period of time from Jan. 1st until Sep. 1st,
2006 which is used in [13]. We chose three features, precipitation, relative hu-
midity and sea surface temperature. Among the different monitoring sites, we
chose site:(2 ◦N,165 ◦E), since this site has all three features available for the
mentioned period of time. The measurements were taken every 10 minutes and
there are about 37,000 records. This data set has some labels on the quality of
measurements and we have used them for our evaluation. After visualization of
the low quality data points (2%) and good quality ones, we find that in this data
set the noise is a dense separate region from the normal observations.

4.2 Performance Measures

In order to evaluate our algorithm in comparison to iLOF, we have used three
performance measures: (1) Area under the ROC curve (AUC). (2) The accu-

racy (
TP + TN

P +N
) of the ROC curve’s optimal point, where P is the number of

positives (anomalies) in the data set,N is the number of negatives (normal obser-
vations), TP is the number of true positives (correctly reported anomalies) and
TN is the number of true negatives (correctly reported normal observations).

1 http://db.lcs.mit.edu/labdata/labdata.html
2 www.pmel.noaa.gov/tao

http://db.lcs.mit.edu/labdata/labdata.html
www.pmel.noaa.gov/tao
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The optimal point on a ROC curve is the point with the maximum distance

from diagonal line using the Youden Index (maxi
SEi + SPi − 1√

2
), where SEi

is the sensitivity for the ith threshold and SPi is the specificity for the ith

threshold. (3) The ratio of correctively detected anomalies sensitivity (
TP

P
) and

correctly detected normal observations specificity (
TN

N
) for the ROC curve’s

optimal points.

4.3 Results and Discussion

We have compared our ensemble approach with iLOF on the three test data sets.
For iLOF we have used the implementation provided in ELKI[21]. All measure-
ments were normalized based on min-max normalization and we set β = 0.99 in
Equation 2 [19]. Moreover, we have studied how the performance of our approach
varies over different window sizes. The window size w is initially set to 100 ob-
servations, and then it is increased by increments of 500 observations until w is
1
3 of the whole data set length (because we need at least two window sizes for
voting). We also studied the effect of changing the number of nearest neighbours
k in the iLOF algorithm, where k ∈ {3, 5, 10, .., 200}. Since the computational
time of the iLOF algorithm increases with k, we set the upper bound to 200 to
obtain a reasonable runtime.

We have computed the ROC curves for different window sizes w and number
of neighbours k. Figure 1 depicts only the best ROC curves (thicker graph)
and worst ones (thinner graphs) for simplicity for both approaches over three
different data sets. The results show that in the two real data sets with dense
outliers, our approach is better than iLOF by a large margin for both the best
and worst curves (Figure 1a and 1b). In addition in Figure 1b our worst curve is
even better than iLOF’s best curve. However, in the synthetic data set in which
the outliers are uniformly distributed over the data stream, both approaches
have approximately the same best curves, and our approach has better AUC
in comparison to iLOF in the worst case (Figure 1c). In order to make a more
detailed comparison, we computed the optimal points of different ROC curves
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Fig. 1. ROC curves for three data sets: Ensemble (Ens) in red, iLOF in blue
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Table 1. Optimal Point Comparison: Our Ensemble Method vs iLOF

Data Set Algorithm Accuracy Specificity Sensitivity
Max Avg Min Max Avg Min Max Avg Min

Ensemble 98.23 90.62 74.90 98.18 90.22 73.60 100 98.39 55.45
IBRL

iLOF 93.68 76.46 07.73 98.06 78.36 03.30 95.81 39.74 03.28

Ensemble 90.81 86.57 74.62 90.73 86.45 74.40 100 100 100
TAO

iLOF 88.42 84.98 53.38 88.92 76.09 53.37 54.72 39.89 26.06

Ensemble 98.17 97.80 94.42 98.87 98.27 94.56 87.06 72.61 48.66
Synthetic

iLOF 94.49 90.82 84.74 94.64 91.04 85.51 88.98 79.09 21.82

as we described in Section 4.2. The results of the optimal point’s accuracy,
sensitivity and specificity are shown in Table 1.

The accuracy and specificity of the optimal points in our approach are higher
than iLOF in all data sets. This means that iLOF produces more false negatives.
In the IBRL and TAO data sets which are the real data sets, we have dense out-
liers (either drift or a separate distribution) which yields the false negatives. As
can be seen the minimum specificity of iLOF in both real data sets is extremely
low. Moreover, since in all three data sets we have switching states our ensemble
algorithm can perform better in terms of specificity, whereas iLOF keeps all the
history of the data points, and it could not differentiate between different states,
which again results in false negatives. The last three columns of the table show
the optimal point’s sensitivity. The results show that we have much higher sensi-
tivity in comparison to iLOF in the IBRL and TAO data sets and iLOF fails to
detect anomalies with a considerably lower rate. However, in the synthetic data set
with uniformly distributed anomalies, iLOF performs better in terms of finding
anomalies in the average and maximum cases. However, the difference is small,
and our ensemble method performs better in terms of overall accuracy. Finally,
considering the max, average and min in all measures in Table 1, our method per-
forms more consistently, which shows the results are less dependent on choosing
the window size w. Also, for iLOF the range between the max and min cases is
larger, indicating that it is sensitive to the choice of the parameter k.

In summary, our approach outperforms iLOF on the two real data sets with
dense anomalies. Moreover, it is better than iLOF in accuracy and specificity on
the synthetic data set, while iLOF only performs better in terms of sensitivity
in the synthetic data set with uniformly distributed anomalies.

5 Conclusion

In this paper we proposed a novel approach to the problem of anomaly detection
in data streams where the environment changes intermittently. We introduce an
ensemble based approach to construct a robust model of normal behaviour in
switching data streams. Although there have been many supervised techniques
based on ensemble models for outlier detection in data streams, to the best of our
knowledge there is no similar work that tackles the problem of using ensemble
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techniques for anomaly detection in data streams. The empirical results show the
strength of our approach in terms of accuracy. This highlights several interesting
directions for future research. First, we can explore alternatives to our greedy
approach for comparing clusterings. Second, we will investigate approaches to
minimize memory consumption. Third, we will investigate different methods for
selecting appropriate window boundaries.

Acknowledgments. The authors would like to thank National ICT Australia
(NICTA) for providing funds and support.
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Abstract. Methods for finding anomalous behaviors are attracting
much attention, especially for very large datasets with several attributes
with tens of thousands of categorical values. For example, security en-
gineers try to find anomalous behaviors, i.e., remarkable attacks which
greatly differ from the day’s trend of attacks, on the basis of intrusion
detection system logs with source IPs, destination IPs, port numbers,
and additional information. However, there are large amount of abnor-
mal records caused by noise, which can be repeated more abnormally
than those caused by anomalous behaviors, and they are hard to be
distinguished from each other. To tackle these difficulties, we propose
a two-step anomaly detection. First, we detect abnormal records as in-
dividual anomalies by using a statistical anomaly detection, which can
be improved by Poisson Tensor Factorization. Next, we gather the in-
dividual anomalies into groups of records with similar attribute values,
which can be implemented by CANDECOMP/PARAFAC (CP) Decom-
position. We conduct experiments using datasets added with synthesized
anomalies and prove that our method can spot anomalous behaviors
effectively. Moreover, our method can spot interesting patterns within
some real world datasets such as IDS logs and web-access logs.

Keywords: anomaly detection, tensor decomposition.

1 Introduction

Our work is motivated by anomaly detection in datasets that have several at-
tributes with tens of thousands of categorical values. We want to know the exis-
tence of anomalous behavior by finding abnormal records, i.e., records strangely
repeated or strangely less than expected. For example, an intrusion detection
system (IDS) monitors network traffic for suspicious activity, and each record in
IDS logs has attributes such as srcIP, dstIP, port, and type as shown in Table 1.
A serious problem for analysts in charge of a company’s security system is that
IDS logs contain too many records to investigate all of them precisely. Therefore,
it is important not only to determine ordinary behaviors, i.e., the day’s trend of
attacks which changes rapidly day-to-day, but also to spot anomalous behaviors,
i.e., remarkable attacks which greatly differ from ordinary behaviors of the day,
which are worth investigating. We can build a model of records caused by ordi-
nary behavior under the assumption that the majority of records are caused by
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Table 1. Example of a dataset. (a.a.a.a, b.b.b.b, 80, type X) were repeated two times.

source IP (srcIP) destination IP (dstIP) port number (port) possible attack type (type)
a.a.a.a b.b.b.b 80 type X (DOS attack)
a.a.a.a b.b.b.b 80 type X (DOS attack)
c.c.c.c d.d.d.d 12345 type Y (port scan)

ordinary behavior, and distinguish anomalous behaviors from them. One possi-
ble model is to assume the probability of an ordinary record which contains two
attribute sets A and B as P (A)P (B), i.e., statistically independent, and to de-
clare a record anomalous if their joint appearance P (A,B) is much higher than
P (A)P (B). This is an intuition based on suspicious coincidence [1]. However,
there are large amount of abnormal records caused by noise, e.g., false positives
in IDS logs [2], and they can be repeated more abnormally than those caused
by anomalous behaviors, and they are hard to be distinguished. We can assume
that an anomalous behavior can affect a group of records with similar attribute
values, and can be distinguished from noise by gathering abnormal records into
such a group. For example, many abnormal records with similar srcIP, dstIP,
port, and type can be caused by a common remarkable attack, instead of false
positives. However, a problem is that it becomes harder to detect abnormal
records in such a group as the size of the group grow, because they become more
likely to be ordinary behaviors, e.g., P (A)P (B) gets closer to P (A,B).

To tackle these difficulties, we propose a two-step anomaly detection. In the
first step, we detect abnormal records as individual anomalies with a statistical
anomaly detection that models the distribution of the numbers of records caused
by ordinary behaviors as Poisson distribution. By making a stronger assumption
of the distribution for ordinary behaviors, we try to detect abnormal records
in larger groups more effectively. This step can be improved by using Poisson
Tensor Factorization (PTF) [3]. In the second step, we gather the individual
anomalies into groups of records with similar attribute values. This step can be
implemented by using CANDECOMP/PARAFAC (CP) Decomposition [4].

Ourmain contributions are: (1)We propose a novel frameworkMultiAspectSpot-
ting combining statistical anomaly detection with spotting groups of abnormal
records. (2) By using datasets added with synthesized anomalies, we show our
method can spot anomalous behaviors effectively. (3) We show our method can
spot interesting patterns in real world datasets like IDS logs and web-access logs.

The remainder of this paper is organized as follows. We describe the related
literature in Section 2 and introduce our method in Section 3. We describe
the accuracy and scalability of our method in Section 4 and the experimental
evaluation on real data in Section 5. In Section 6 we summarize our conclusions.

2 Related Work

2.1 Anomaly Detection in Categorical Datasets

Anomaly detection has attracted wide interest in many applications such as se-
curity, risk assessment, and fraud analysis [5]. Das et al. [6] proposed an anomaly
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pattern detection in noisy categorical datasets based on a rule-based anomaly
detection [7]. They searched through all possible one or two component rules and
detected anomalies whose counts were significantly differed from the expected
counts determined by the training dataset. They used the conditional anomaly
detection [8,6] as a definition of anomalies which is an alternative of suspicious
coincidence proposed by Barlow [1]. However, they tried to find groups of ab-
normal records which significantly differed from the training dataset, whereas
our problem is to spot groups of abnormal records which are most remarkable
among all records in the dataset.

2.2 Tensor Decomposition

Tensor decomposition is a basic technique that has been widely studied and ap-
plied to a wide range of disciplines and scenarios. CP Decomposition and Tucker
Decomposition are two well-known approaches [4], and has been applied to study
tensor streams [9]. Non-negative tensor factorizations have been proposed to re-
tain the nonnegative characteristics of the original data [10], as natural expan-
sions of non-negative matrix factorizations[11]. PTF is one such technique, that
models sparse count data by describing the random variation via a Poisson dis-
tribution [3]. Our work is also related to the Boolean Tensor Factorization [12],
which uses Boolean arithmetic, i.e., defining that 1 + 1 = 1. The problems of
Boolean Tensor Factorization were proved to be NP-hard, and heuristics for
these problems were presented [12]. Some implementations of tensor decompo-
sition algorithms have been made publicly available, such as MATLAB Tensor
Toolbox [13]. We combine some of these tensor decompositions effectively to
spot anomalous behaviors. Moreover, some works detected outliers in a low-
dimensional space obtained by tensor decompositions [14], but outliers caused
by anomalous behaviors were not distinguished from those caused by noise.

3 Proposed Method

3.1 Notation

A tensor can be represented as a multi-dimensional array of scalars, and we
call each scalar an entry. Its order is the dimensionality of the array, while each
dimension is known as one mode. A tensor is rank one if it can be written as
the outer product of vectors. The rank of a tensor is defined as the smallest
number of rank-one tensors that can generate the tensor as their sum, and we
refer to each rank-one tensor as a component. Throughout, scalars are denoted
by lowercase letters (a), vectors by boldface lowercase letters (v), matrices by
boldface capital letters (A), and higher-order tensors by boldface Euler script
letters (X ). The jth column of a matrix A is denoted by aj , and ith entry of
a vector v is denoted by vi. We use multi-index notation so that a boldface
i represents the index (i1...iM ) of a tensor of order M . The size of nth mode
is denoted as In. The notation ‖ · ‖ refers to the square root of the sum of
the squares of the entries, analogous to the matrix Frobenius norm. The outer
product is denoted by ◦, and the inner product is denoted by 〈·, ·〉.
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3.2 Problem Setting

Our problem can be defined as follows: Given a dataset in which each record i
has M categorical attributes and repeated xi times, how can we detect abnormal
records repeated strangely more than or less than expected, caused by anomalous
behaviors as distinguished from those caused by noise?

We make two assumptions. (1) The majority of records are caused by ordinary
behavior, and we can build a model with minimal harm caused by anomalous
behaviors and noise. (2) A group of abnormal records with similar attribute
values is likely to be caused by a common anomalous behavior.

3.3 MultiAspectSpotting Framework

In this paper, we focus on statistical anomaly detection based on the assumption
“Normal data instances occur in high probability regions of a stochastic model,
while anomalies occur in the low probability regions of the stochastic model” [5].
However, a simple statistical anomaly detection is insufficient to spot interesting
anomalies effectively because we cannot distinguish abnormal records caused
by anomalous behaviors from those caused by noise. To tackle this difficulty,
we propose a novel framework MultiAspectSpotting that can spot anomalous
behaviors by conducting two-step different tensor decompositions (Fig. 1):

1. Create a tensor X in which mth mode corresponds to mth attribute of a
dataset and entries of X indicating the numbers of corresponding records.
Then calculate anomaly score of each record by conducting PTF, and pick up
records with larger anomaly scores than a threshold t as individual anoma-
lies. We make a strong assumption that the distribution of the number of
records caused by ordinary behaviors is a mixture of R Poisson distributions,
to detect individual anomalies in larger groups effectively (see Section 3.4).

2. Create a binary tensor B in which 1s indicate individual anomalies, and spot
groups of individual anomalies of the maximum number of S as anomalous
behaviors by conducting CP Decomposition (see Section 3.5).

Deciding threshold t to pick up individual anomalies in the first step is very
important. Our strategy is to set the ratio of noise records Z, and to decide
threshold t so that the ratio Z of distinct records is picked up as individual
anomalies. We assume that a specific ratio of records are caused by noise, and
that the number of records caused by anomalous behavior is relatively small. If
no groups are spotted in the second step, we conclude that the dataset is not
affected by anomalous behaviors.

Now we do not have a clear strategy of the parameter settings of R, S, and Z,
and there is a big room for improvement of our framework. However, in Section 4
we show we can achieve better results by using R > 1 or S > 0 than using R = 1
(assuming a single Poisson distribution) or S = 0 (without the second step).
Moreover, we show the selection of Z does not dramatically affect the results of
spotting anomalous behaviors.
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Fig. 1. The MultiAspectSpotting framework. Step 1: Conduct Poisson Tensor Fac-
torization. Step 2: Create binary tensor indicating individual anomalies and conduct
additional tensor decomposition.

3.4 A Statistical Anomaly Detection Approach

We describe details of the first step. The probability of the number of records of
i to be xi in a fixed interval of time can be modeled as the Poisson distribution
in which the cumulative probability function is

F (xi, μi) =

xi∑
k=0

μki
k!

e−μi , (1)

where μi is the Poisson parameter equal to the expected number of the records
of i caused by ordinary behaviors. Anomaly score is calculated as

anomaly score(xi, μi) =

{
(−1) ∗ log(F (xi, μi)) (xi ≤ μi),

(−1) ∗ log(1− F (xi, μi)) (xi > μi).
(2)

We consider a distinct record of i to be an individual anomaly if the anomaly
score is higher than a threshold t. Also, F (xi, μi) can be easily computed with
the incomplete gamma function. As μi is the expected number of records of i,
we can estimate μi as

μi = ∂p
(1)
i1

· · · p(M)
iM

, (3)

where ∂ is total number of records and p
(m)
im

is the probability of mth value to

be im, under the assumption of independence among the attributes. p
(m)
im

can be

estimated as p
(m)
im

= N
(m)
im

/∂, where N
(m)
im

is the number of records of which mth
value is im. Alternatively, we can assume the distribution as the mixture of R
Poisson distributions. The Poisson parameters can be estimated as

μi =
R∑
r=1

∂rp
(1)
ri1

· · · p(M)
riM

, (4)

under the assumption of independence among the distributions, where ∂r is the

expected total number of records emerged from rth distribution and p
(m)
rim

is the
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probability of mth value to be im in rth distribution. We can estimate ∂r and

p
(m)
rim

for all i and r by conducting PTF, which calculates each parameter so as to
minimize the generalized Kullback-Leibler divergence, i.e.,

∑
i μi − xilogμi [3].

The details of PTF are outside the scope of this paper. Note that PTF of R = 1
is equivalent to calculating the parameters of equation (3).

3.5 Spotting Anomalous Behaviors by Tensor Decomposition

In the second step, we try to find S product sets Ds = {(i1, . . . , iM )|im ∈
d
(m)
s ∀m = 1, . . . ,M} where d

(m)
s is sth set of values of mth attribute (s =

1, . . . , S), such that each product set contains as many individual anomalies as
possible. We proposeDenseSpot, a tensor decomposition approach (Algorithm 1).
DenseSpot construct a binary tensor B of order M in which an entry bi is

bi =

{
1 (anomaly score(xi, μi) > t),

0 (otherwise).
(5)

The aim of DenseSpot is to obtain a rank-S tensor

C =

S∑
s=1

c(1)s ◦ ... ◦ c(M)
s (6)

which minimize ‖B−C‖, where c(m)
s are binary vectors. However, the decision ver-

sion of this problem is a NP-hard problem similar to Boolean Tensor Factoriza-

tion [12]. Thus, DenseSpot first obtains a rank-S tensor Ĉ =
∑S

s=1 ĉ
(1)
s ◦ ...◦ ĉ(M)

s

which minimize ‖B − Ĉ‖, where ĉ
(m)
s are real-value vectors. This is a relaxation

problem of the above problem, and we can obtain a solution by conducting CP
Decomposition [4]. After that, DenseSpot checks entries in sth component of Ĉ
corresponding to individual anomalies (i1, . . . , iM ) and puts 1 on imth element

of c
(m)
s if the entries are greater than a threshold h. Finally, DenseSpot selects

h, which minimizes ‖B − C‖ and returns those C calculated by the h. We can

easily calculate ‖B−C‖2 as ‖B‖2− 2〈B, C〉+ ‖C‖2. A set d
(m)
s can be created by

selecting value 1 entries of c
(m)
s .

Also, Boolean Tensor Factorization [12] might be a good solution for this.
Even though this could improve the efficiency of our method, we explain how
our simple heuristics can perform better than baseline methods in Section 4.

4 Evaluation of Accuracy and Scalability

In this section, we present experimental results on the accuracy and scalability of
our methods. The running example in this section comes from network traffic logs
that consist of packet traces in an enterprise network (LBNL/ICSI Enterprise
Tracing Project 1). We abbreviate them as LBNL logs. Each trace in the logs is a

1 http://www.icir.org/enterprise-tracing/

http://www.icir.org/enterprise-tracing/
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Algorithm 1. DenseSpot

Input: A binary tensor B
Input: Maximum number S of anomalies to spot
Input: A set of thresholds H = {h1, ..., hd}
Output: Rank-S tensor C =

∑S
s=1 c

(1)
s ◦ ... ◦ c(M)

s where c
(m)
s are binary vectors

1 Ĉ ←
∑S

s=1 ĉ
(1)
s ◦ ... ◦ ĉ(M)

s s.t. minimize ‖B − Ĉ‖ �CP Decomposition

2 for j = 1 to d do

3 C(j) ←
∑S

s=1 c
(1)
s ◦ ... ◦ c(M)

s where c
(m)
s are Im-length vectors of all 0

4 forall the (i1...iM ) of 1 entries in B do
5 for s = 1 to S do

6 if ĉ
(1)
si1

...ĉ
(M)
siM

≥ hj then c
(1)
si1

← 1, ..., c
(M)
siM

← 1

7 end

8 end

9 end

10 jmin ← arg min
j

‖B − C(j)‖

11 return C(jmin)

triplet of {source IPs (srcIP), destination IPs (dstIP), and port number (port)},
which can be represented as a 3-mode tensor. First, we evaluate the accuracy
of spotting anomalous behaviors by using 10 largest LBNL logs added with
synthesized anomalies. Then we evaluate the scalability by using many LBNL
logs of various numbers of records.

MultiAspectSpotting is implemented in the MATLAB language, and we use
implementations of PTF (cp apr) and CP Decomposition (cp als), publicly avail-
able in MATLAB Tensor Toolbox [13]. All the experiments are performed on a
64-bit Windows XP machine with four 2.8GHz cores and 8GB of memory.

4.1 Putting Synthesized Anomalies on Datasets

We create some synthesized anomalies and add into 10 largest LBNL logs, and
evaluate how effectively our method can spot these anomalies. These LBNL
logs have about 900, 000 to 9, 000, 000 records and 15, 000 to 50, 000 distinct
records, with 1, 400 to 4, 500 srcIPs, 1, 400 to 4, 800 dstIPs and 5, 400 to 24, 000
ports. Each distinct record is repeated about 50 to 350 times in average, and the
standard deviation is about 1, 000 to 22, 000.

Given parameters of volume V , density D and maximum number P , we create
N groups of abnormal records as follows: (1) For each group, we randomly select
three values s,d,p between 0 and 1, and decide the number of srcIPs and dstIPs
and ports in accordance with the ratio of three selected values, so that sdp is
not lower than V , e.g., the number of srcIPs is "s(V/(sdp))1/3# where "·# is the
ceiling function. (2) "V D# distinct records are randomly selected for each group,
and (3) the number of each record is decided randomly between 1 and P . We
test for V = 50, D = 0.1, 0.3, 0.5, 0.7, 0.9, P = 500, and N = 10.
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4.2 Methods Compared

We compare the accuracies in spotting synthesized anomalies among the follow-
ing methods:

MASP-Multi MultiAspectSpotting with R = 10 and S = 20.
MASP-Single MultiAspectSpotting with R = 1 and S = 20, which is equiva-

lent to modeling the probabilities of the numbers of the records caused by
ordinary behaviors as a single Poisson distribution.

DS-Only Conducting just DenseSpot of S = 20 by picking up all distinct
records as individual anomalies.

SC-DS Using a measure of suspicious coincidence proposed by Barlow [1]. For
each record, we calculate the ratio r = P (A,B)/(P (A)P (B)) where P (A)
and P (B) are probabilities of a record having attribute sets A and B (e.g.,
{srcIP}, {dstIP, port}), and P (A,B) is the joint probability. The anomaly
score of the record is defined as the minimum value of r among those of
all possible combinations of A and B. We pick up individual anomalies and
conduct DenseSpot as the same as MultiAspectSpotting.

Note that we have tried several methods similar to SC-DS, such as those
using the maximum value of r, or those considering records with lower r as
anomalous, or those using the ratio r = P (A,B,C)/(P (A)P (B)P (C)) where
P (A),P (B),P (C) and P (A,B,C) correspond to attributes A, B and C, but
these variations have obtained far worse results than SC-DS (not shown).

4.3 Accuracy of Spotting Synthesized Anomalies

We apply the above methods to LBNL logs added with synthesized anomalies
and compare a group of records spotted by each method with a group of syn-
thesized anomalies. We conduct chi-square tests of independence, which assess
whether these two groups are independent of each other. In short, given these
two group, we calculate χ2 = n(a(n−e−g+a)−(e−a)(g−a))2/(e(n−e)g(n−g))
where n is the total number of distinct records, a is the number of common dis-
tinct records between two groups, e and g are the numbers of distinct records of
two groups. If χ2 is greater than a value of p-value at 0.05 of the chi-squared dis-
tribution for 1 degree of freedom, we conclude that the method has successfully
spotted the synthesized anomalous group.

Fig. 2 is the number of groups spotted by each method. MASP-Multi and
MASP-Single can spot many more groups than DS-Only, which suggests the
statistical anomaly detection in the first step works efficiently. However, SC-DS
is worse than DS-Only, which suggests the measure of suspicious coincidence
is not good at detecting the anomalies we consider in this paper. Moreover,
MASP-Multi is better thanMASP-Single, which indicates we can model ordinary
behaviors better by using a mixture of Poisson distributions. Overall, the more
density grows, the better MASP-Multi and MASP-Single can spot than DS-
Only and SC-DS. Moreover, the results of MASP-Multi and MASP-Single do
not dramatically differ between Z = 0.01 (Fig. 2 left) and Z = 0.1 (Fig. 2 right),
especially for higher density such as P = 0.7, 0.9.
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Fig. 2. Vertical axis: average number of spotted groups. Horizontal axis: density of
groups of synthesized anomalies. (left) Z = 0.01. (right) Z = 0.1.

4.4 Details of Accuracy

We detail the effectiveness of each step. For the first step, we show the area
under the ROC curve (AUC) of each method in detecting distinct synthesized
anomalies out of all distinct records at various settings of Z (Fig. 3 left). Overall,
AUCs of MASP-Multi and MASP-Single are better than those of SC-DS, and
do not become much worse as density grow, whereas AUCs of SC-DS become
much worse. These indicate that this statistical anomaly detection is a better
strategy at least in detecting anomalies described here. There are no signifi-
cant differences between MASP-Multi and MASP-Single in view of AUCs. For
the second step, we select as many records with the highest anomaly scores as
the total number of individual anomalies DenseSpot has detected, which we call
TopRecords. We compare the precision of detecting synthesized anomalies out
of individual anomalies between DenseSpot and TopRecords. The precision of
DenseSpot and TopRecords are calculated as p/k and q/k, where p is the total
number of distinct synthesized anomalies that DenseSpot has detected, q is the
number of those TopRecords has selected, and k is the total number of indi-
vidual anomalies that DenseSpot has detected. Fig. 3 (right) shows precisions
on each method (Z = 0.01). The precisions of DenseSpot are much better than
those of TopRecords on MASP-Multi and MASP-Single for higher density. This
means the synthesized anomalies do not have very high anomaly scores among
individual anomalies, whereas DenseSpot can pick up these synthesized anoma-
lies, especially for higher density. Additionally, the precisions of DenseSpot on
MASP-Multi are better than those on MASP-Single, which indicates that the
difference in the number of Poisson distributions in the first step strongly affects
the second step, even though differences in AUCs are very small. In addition, the
precisions of DenseSpot are worse than those of TopRecords on SC-DS, possibly
due to the poor accuracy of the suspicious coincidence in the first step.

4.5 Scalability

We conduct experiments for scalability on 123 different LBNL logs with various
numbers of records, from less than 100 to more than 9, 000, 000. As shown in
Fig. 4, computation time of PTF (left) and DenseSpot (right) increases linearly



MultiAspectSpotting: Spotting Anomalous Behavior 483

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1.0

density

AU
C

 

 

MASP-Multi
MASP-Single
SC-DS

0.1 0.3 0.5 0.7 0.9
0.0

0.1

0.2

0.3

0.4

0.5

density

pr
ec
isi
on

 

 

MASP-Multi
MASP-Single
SC-DS

Fig. 3. (left) Average AUC of each method. Vertical axis: average AUC. Horizontal
axis: density of groups of anomalous records. (right) The precision of DenseSpot (solid
lines) and TopRecords (dotted lines) as described in Section 4 (Z = 0.01). Vertical axis:
average of the precision. Horizontal axis: density of groups of anomalous records.
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Fig. 4. Computation time have high correlation with NNZ × Iapr on PTF of R = 10
(left) and N1 × Ials on DenseSpot of S = 20 (right), where NNZ is the number of
non-zeros (NNZ) in X , Iapr is the number of inner iterations of cp apr, N1 is the
number of 1s in B, and Ials is number of iterations of cp als. Vertical axis: computation
time (s). Horizontal axis: NNZ × Iapr (left), N1× Ials (right).

along with the number of non-zero entries in the tensor (entries of 1 for Dens-
eSpot) multiplied by the number of iterations of cp apr and cp als. These results
are consistent with these alternating optimization algorithms implemented for
sparse tensor [4,3] and suggest that these two steps of our framework scale lin-
early along with the number of distinct records in the dataset.

5 Empirical Results on Real Data

We present our experimental results on two sets of real world data: intrusion
detection system logs and web-access logs (R = 20, S = 20, and Z = 0.1). We
cannot mention the names of the companies from whom we have obtained these
datasets because of the business relationship. Table 2 summarizes these datasets.

5.1 Intrusion Detection System Logs

We apply our method to IDS logs of a crowd system of an IT company. We
analyze inbound logs on Dec 2011, that is, suspicious packets sent from outside
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Table 2. Summary of Datasets

mode#1 mode#2 mode#3 mode#4 # of records
IDS logs 22,733 srcIPs 3,171 dstIPs 11,310 ports 362 types 228,852
web-access logs 24 hours 462 IPs 40,465 URLs 51,960 UserIDs 462,271

Table 3. Summary of the groups of individual anomalies spotted by MultiAspectSpot-
ting. We show the unique number of values of each attribute along with the total
number of distinct records (#records), the average of repeated times of each distinct
record (ave. num.), the average of Poisson parameters (eve. exp.), and description.

(a) IDS logs
No. #srcIP #dstIP #port #type #records ave. num. ave. exp. description

1 1 60 1 1 60 22.52 2.65 FingerPrint
2 53 1 1 1 53 5.26 0.00 FTP Login Fail
3 1 1 45 1 45 1.00 0.00 Malicious Javascript
4 1 34 1 1 34 20.41 2.17 TCP Invalid flags
5 5 1 1 7 33 262.42 41.23 Scanning to Web Server

(b) web-access logs
No. #hour #IP #URL #UserID #records ave. num. eve. exp. description

1 5 1 3 1 15 4.07 0.00 weather-checking
2 2 1 5 2 13 43.23 1.85 point-gathering
3 1 13 1 1 13 7.92 0.02 photo-uploading
4 6 2 1 1 12 408.83 66.48 photo-uploading
5 1 1 1 12 12 6.08 0.04 advertisement-viewing

the crowd system. Each record represents a report which has attributes of {source
IP (srcIP), destination IP (dstIP), port number (port), and attack type (type)}.

Table 3(a) summarizes the five largest groups of anomalous records spotted
by our method. The descriptions are characteristics of these groups guessed by
a specialist knowledgeable about the IDS of this crowd system. These include
several kinds of attacks: attacks from many srcIPs including suspicious FTP
login trials(#2), attacks on many dstIPs (#1,#4), attacks on many port numbers
(#3), and attacks from several srcIPs of various attack types (#5). For example,
the group #3 indicates that an outside IP has attacked many port numbers of
an inside IP with a specific attack type, and that these attacks are remarkable
because they are very rare events. Moreover, it is hard for analysts to notice the
existence of this group of attacks because the number of records of this group is
almost 0.02% of the total number of records within this dataset.

5.2 Web Access Logs

We also apply our method to web-access logs of a web-service company on Jan 10,
2013. Each record has attributes of {hour, IP, URL, and UserID} which means
an access on the URL by the UserID from the IP at the hour of a day. The
engineers at this company want to find any strange accesses within web-access
logs and surprising or illegal usage of their web pages.

Table 3(b) summarizes the five largest groups of anomalous records spotted
by our method, with descriptions of characteristics of these groups guessed by
a specialist knowldgeable about the web site. For example, the group #2 is a
point-gathering group, in which two users have strangely accessed a set of URLs
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many times from a IP continuously from 16 pm to 17 pm of this day. By accessing
these URLs, users can obtain points that can be exchanged for some gifts, so the
user who accesses just for gathering points illegally is suspicious.

6 Conclusion

We proposed a novel framework MultiAspectSpotting that can effectively spot
anomalous behaviors by leveraging a two-step approach of a different kind of
tensor decomposition. Experimental results of synthesized anomalies show our
method can spot groups of individual anomalies more effectively than some base-
line methods and can be improved by using PTF. The effectiveness of our method
is achieved thanks to the combination of the accuracy of statistical anomaly de-
tection in the first step and the ability of gathering individual anomalies in
the second step, even though it might become harder for our method to model
ordinary behaviors as the number of the attributes grows, i.e., the dataset be-
comes sparser. Moreover, experimental results on real world data proved that
our method could spot interesting patterns within IDS logs and web-access logs.
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Abstract. We propose a novel method for detecting outliers based on
the leave-one-out density. The leave-one-out density of a datum is defined
as a ratio of the number of data inside a region to the volume of the region
after the datum is removed from an original data set. We propose an
efficient algorithm that evaluates the leave-one-out density of each datum
on a set of regions around the datum by using binary decision diagrams.
The time complexity of the proposed method is near linear with respect
to the size of a data set, while the outlier detection accuracy is still
comparable to other methods. Experimental results show the usefulness
of the proposed method.

Keywords: Outlier detection, binary decision diagram.

1 Introduction

In this paper, we propose a novel and efficient method for outlier detection, which
is an important task in data mining and has been applied to many problems such
as fraud detection, intrusion detection, data cleaning and so on [7]. The goal of
outlier detection is to find an unusual datum (outlier) from a given data set.
Although many kinds of notion have been proposed to define an outlier, we
consider a datum as an outlier if the leave-one-out density is lower than a given
threshold for a set of regions around the datum. The leave-one-out density is a
ratio of the number of data inside a region to the volume of the region, in which
the focused datum is removed from the original data set. Generally, a leave-
one-out like method is time consuming because a learning procedure is repeated
N -times, where N is the cardinality of a data set. However, the proposed method
enables us to evaluate the leave-one-out density efficiently without repeating a
learning procedure N -times.

We employ the initial region method proposed in [10], in which a data set is
encoded into a Boolean formula and represented as a binary decision diagram.
Although a one-class classifier is proposed based on the initial region method
in [10], it is not applicable to outlier detection, because the classifier is estimated
as an over-approximation of the data set and never classify a datum in the data
set as an outlier. We extend the work of [10] to outlier detection by introduc-
ing the notion of leave-one-out density and developing an efficient algorithm to
evaluate it.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 486–497, 2014.
c© Springer International Publishing Switzerland 2014
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The proposed method is compared to other well-known outlier detection meth-
ods, the one-class support vector machine [13] and the local outlier factor [4],
with both synthetic data sets and realistic data sets. The experimental results
indicate that the computation time of the proposed method is shorter than those
of the other methods, keeping the outlier detection accuracy comparable to the
other methods.

The outlier detection problem addressed in this paper is formally defined in
Sect. 2. We review the initial region method in Sect. 3. In Sect. 4, the outline of
the proposed method is first stated, and then, its efficient implementation based
on binary decision diagrams is proposed. Section 5 shows experimental results.
In Sect. 6, we conclude this paper by discussing limitations and future work.

1.1 Related Work

Kutsuna [10] proposed a one-class classifier that over-approximates a training
data set. The approximation is done quite efficiently by manipulating a binary
decision diagram that is obtained by encoding the training data set. The situ-
ation considered in [10] is that both a training data set and a test data set are
given: A classifier is first learned from the training dataset, then the test data
set is classified by the classifier. It may seem that we can detect outliers within a
data set by using the data set as both the training data set and the test data set
simultaneously. However, no datum is detected as an outlier in such a setting,
because the classifier is estimated as an over-approximation of the training data
set. Therefore, the method in [10] cannot be applied to outlier detection directly.

Schölkopf et al. [13] extended the support vector machine (SVM) to outlier
detection, which was originally invented for binary classification. Their method
estimates a hyperplane that separates the origin and a data set with maximum
margin, in which the hyperplane can be nonlinear by introducing kernel func-
tions. The data that are classified to the origin side are detected as outliers.
The SVM has an advantage that various nonlinear hyperplanes are estimated
by changing kernel parameters. Some heuristics are proposed to tune kernel pa-
rameters, such as [6].

Breunig et al. [4] proposed the local outlier factor (LOF) that is calculated
based on the distance to the k-nearest neighbor of each datum and has an ad-
vantage that it can detect local outliers, that is, data that are outlying relative
to their local neighborhoods. The LOF has been shown to perform very well
in realistic problems [12]. An efficient calculation of the k-nearest neighbors is
essential in the LOF. Some techniques are proposed to accelerate the k-nearest
neighbors calculation, such as [2].

2 Problem Setting

Let D be a data set that includes N data. The i-th datum in D is denoted
by x(i) ∈ Ru (i = 1, . . . , N). We assume that there is no missing value in D and
all the data in D are unlabeled. In this paper, we regard a datum as an outlier
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if the leave-one-out density is lower than a threshold for a set of regions around
the datum. The leave-one-out density βLOO of the i-th datum is defined as:

βLOO (i,D) =
#
({
x(j)

∣∣ x(j) ∈ D, j = 1, . . . , N, j �= i
})

vol (D)

where D is a u-dimensional region such that x(i) ∈ D, #(·) is the cardinality of a
set and vol (·) is the volume of the region. The outlier score S of the i-th datum
is defined as:

S (i) = max
D∈D̃(i)

βLOO (i,D)

where D̃ (i) is a set of regions around x(i) defined as:

D̃ (i) =
{
u-dimensional region D

∣∣ x(i) ∈ D
}
.

A datum is detected as an outlier if the outlier score of the datum is less than a
given threshold. Note that D̃ (i) is not the set of all possible regions, but rather
a fixed family, which is defined in Sect. 4.1. In the following sections, we propose
an efficient algorithm that enables us to evaluate the outlier score in near linear
time with respect to N .

3 Preliminaries

In this section, we briefly review the initial region method [10] and define nota-
tions. LetH be a u-dimensional hypercube defined asH = [0, 2m)u, wherem is an
arbitrary positive integer. And let α be an example normalizer such that α(x(i)) ∈
H for every x(i) inD. An example of α is given in [10] as a simple scaling function.
The neighborhood function ν, which is defined as ν(z) := [�z1�, �z1�+ 1) × . . .×
[�zu�, �zu�+ 1), returns a u-dimensional unit hypercube that subsumes z = α(x),
where �·� is the floor function. The initial region G is a u-dimensional region in-
side H that subsumes all the projected data, which is defined as:

G =
⋃

j=1,...,N

ν
(
z(j)

)
.

For example, we consider a data set in R2. We set m = 3, then the data set is
projected into H = [0, 23)2 by α. The projected data z are shown as x-marks
and the initial region G is shown as the gray region in Fig. 1(a).

The initial region G is expressed as a Boolean function by using the coding
function CodeZ. CodeZ first truncates each element of z to an integer, and then,
code them into a logical formula in the manner of an unsigned-integer-type
coding. The set of Boolean variables B := {bij |i = 1, . . . , u; j = 1, . . . ,m} is
used to code z, where bi1 and bim represent the most and the least significant
bit of the i-th element of z, respectively. The initial Boolean function F is given
as a disjunction of logical formulas such as:

F =
∨

i=1,...,N

CodeZ(z(i)).
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Fig. 1. X-marks mean a normalized data set and the gray region is the initial re-
gion G (left). A BDD that represents the initial Boolean function F (right).

It is shown that the initial Boolean function F is informational equivalent of the
initial region G [11]. Let R be a function that decodes a Boolean function defined
on B into the corresponding u-dimensional region. In particular, R(1) = H and
R(F ) = G. Binary decision diagrams (BDDs) [5] are used to efficiently construct
and represent the initial Boolean function F . The order of Boolean variables is
set to hold [b11, . . . , bu1] ≺ · · · ≺ [b1m, . . . , bum] , where the variables inside the
square brackets can be in arbitrary order, on constructing F as a BDD. For
example, Fig. 1(b) shows a BDD that represents the initial Boolean formula F
that is obtained from the data set in Fig. 1(a). In Fig. 1(b), square nodes,
ellipsoidal nodes and double-squared nodes are referred to as terminal nodes,
variable nodes and function nodes, respectively. Boolean variables that variable
nodes represent are on the left side. Solid lines, dashed lines and dotted lines
are true edges, false edges and complement edges, respectively. A path from a
function node to the terminal 1 corresponds to a conjunction of literals. If the
path contains an even number of complement edges, the conjunction is included
in the function.

4 Proposed Method

4.1 Outline

In the proposed method, we calculate the leave-one-out density based on the
normalized data z(i) = α

(
x(i)

)
as follows:

βLOO (i, C) =
#
({
z(j)

∣∣ z(j) ∈ C, j = 1, . . . , N, j �= i
})

vol (C) (1)

where C is a region such that z(i) ∈ C. The outlier score is given as:

S (i) = max
C∈C̃(i)

βLOO (i, C) (2)
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where C̃(i) is a set of hypercubes defined as:

C̃ (i) = {R (Ll(i)) | l = 0, . . . ,m},
L0(i) = 1, Ll(i) =

∧
i′=1,...,u

∧
j′=1,...,l

b̃i′j′ (l = 1, . . . ,m) (3)

where b̃i′j′ are assignments of Boolean variables that is obtained by coding z(i)

with CodeZ. For example, the datum in the region [5, 6) × [2, 3) in Fig. 1(a) is
coded as (b̃11, b̃21, b̃12, b̃22, b̃13, b̃23) = (1, 0, 0, 1, 1, 0). From (3), the set C̃(i) for
this datum is derived as

C̃(i) = {[0, 8)× [0, 8), [4, 8)× [0, 4), [4, 6)× [2, 4), [5, 6)× [2, 3)}

which are shown as bold squares in Fig. 2.

z2

z1

z2

z1

z2

z1

z2

z1

Fig. 2. Bold squares show C̃(i) for the data shown as the x-mark. The leave-one-out
density θLOO of the datum are 18

64
, 6

16
, 1

4
and 0

1
for each hypercube. The outlier score

of the datum is evaluated as max
(
18
64
, 6
16
, 1
4
, 0
1

)
≈ 0.38.

We assume that there is no duplicate inD, that is, at least one of the attributes
has a different value for x(i) and x(j) if i �= j. Then, we can construct the initial
region G so that each datum in D is allocated in a distinct unit hypercube by
setting m large enough and using an appropriate example normalizer. In this
case, the number of data inside a region can be calculated as the volume of
the region unless the boundary of the region goes across a unit hypercube in
which a datum exists. Therefore, the leave-one-out density defined as (1) can be
calculated based on the initial region as follows for C ∈ C̃(i):

βLOO (i, C) = vol (GLOO (i) ∩ C)
vol (C) (4)

where GLOO is the leave-one-out region defined as:

GLOO (i) = G \ ν
(
z(i)

)
. (5)

For example, Fig. 2 illustrates the calculation of the leave-one-out density for
the datum shown as the x-mark.
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4.2 BDD Based Implementation

The Number of Minterms Calculation. A minterm is a conjunction of
Boolean variables in which each Boolean variable in the domain appears once.
Let #A be a function that returns the number of minterms of a Boolean function
on the assumption that the domain of the function is A. For example, #a(1) = 2
and #{a,b}(1) = 4 where a and b are Boolean variables.

Lemma 1. For a Boolean formula A that is defined on B, it holds that:

vol (R (A)) = #B (A) .

Proof. Since a minterm represents a unit hypercube in the initial region method,
the number of minterms equals to the volume of the region that A represents.

Let N+
ω be a Boolean function that node θ in a BDD represents being con-

nected with a non-complement edge. Also, let N−
ω be a Boolean function being

connected with a complement edge. Both of N+
ω and N−

ω represent regions in-
side H. For example, Fig. 3 shows R

(
N−

E

)
and R

(
N+

G

)
where E and G are

nodes in Fig. 1(b). It is possible to efficiently calculate the number of minterms
of N+

ω and N−
ω for each node θ in a BDD in a depth-first manner [15]. For

example, Table 1 shows the number of minterms of N+
ω and N−

ω for each node
in Fig. 1(b). We can see that #B

(
N−

E

)
and #B

(
N+

G

)
are equal to the volumes

of regions which are shown in Fig. 3.

b23b22b21 z2

b13
b12
b11

z1

b23b21b22 z2

b13
b11
b12

z1

Fig. 3. Examples of regions that BDD nodes represent: R
(
N−

E

)
(left) and R

(
N+

G

)
(right) where E and G are nodes in Fig. 1(b)

The Leave-One-Out Density Calculation. Because of the fact that ν
(
z(i)

)
⊆

G and ν
(
z(i)

)
⊆ C ∈ C̃(i), it is derived from (4) and (5) that the following equa-

tion holds for C ∈ C̃(i):

βLOO (i, C) = vol (G ∩ C)− 1

vol (C) . (6)
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Table 1. The number of minterms of N+
α and N−

α for each node τ in Fig. 1(b)

τ A B C D E F G H I J K L M N O P Q R S 1

#B

(
N+

α

)
45 44 46 52 36 44 16 40 48 56 24 32 24 8 32 48 32 16 32 64

#B

(
N−

α

)
19 20 18 12 28 20 48 24 16 8 40 32 40 56 32 16 32 48 32 0

By replacing C in (6) with R (Ll (i)), the following equation is derived.

βLOO (i, R (Ll (i))) =
vol (G ∩R (Ll (i)))− 1

vol (R (Ll (i)))
=

vol (R (F ∧ Ll (i)))− 1

vol (R (Ll (i)))
(7)

From Lemma 1, (7) is transformed as follows:

βLOO (i, R (Ll (i))) =
#B (F ∧ Ll (i))− 1

#B (Ll (i))
=

#B (F ∧ Ll (i))− 1

2(m−l)u (8)

Lemma 2. In a BDD that represents F , let θi,l be the node that can be reached
from the function node through the path defined by Ll (i). Let c be the number
of complement edges on the path. Then, it holds that:

#B (F ∧ Ll (i)) =

⎧⎨⎩#B

(
N+
ωi,l

)
/2lu if c is even,

#B

(
N−
ωi,l

)
/2lu if c is odd.

Proof. F ∧ Ll (i) means that l × u Boolean variables that appear in Ll (i) are
fixed to specific values in F . On the other hand, N+

ωi,l
(N−

ωi,l
) means F with l×u

Boolean variables in Ll (i) smoothed1 if c is even (odd). Therefore, the number
of minterms of N+

ωi,l
(N−

ωi,l
) is 2lu times larger than that of F ∧ Ll (i).

Theorem 1. The leave-one-out density βLOO is evaluated based on a BDD that
represents the initial Boolean function F as follows:

βLOO (i, R (Ll (i))) =

⎧⎨⎩
(
#B

(
N+
ωi,l

)
− 2lu

)
/2mu if c is even,(

#B

(
N−
ωi,l

)
− 2lu

)
/2mu if c is odd.

Proof. It follows from (8) and Lemma 2 immediately.

It is worth mentioning that we can evaluate the leave-one-out density from the
initial Boolean function F straightforwardly without any leave-one-out opera-
tion by using Theorem 1. For example, we consider a data set in Fig. 1(a) and
the datum in [5, 6)× [2, 3). The path of the datum is F •A ◦B ◦E ◦K ◦Q ◦ S • 1
in Fig. 1(b), where ◦ and • mean non-complement and complement edges, re-
spectively. The leave-one-out density of the datum is calculated from Theorem 1
and Table 1 as follows:(

#B

(
N−

A

)
− 20

)
/26 = 18/64,

(
#B

(
N−

E

)
− 22

)
/26 = 6/16,(

#B

(
N−

Q

)
− 24

)
/26 = 1/4,

(
#B

(
N+

1

)
− 26

)
/26 = 0.

We can see that these values are equal to those in Fig. 2.

1 Smoothing a Boolean function f with respect to x means (f ∧ x) ∨ (f ∧ x).
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4.3 The Proposed Algorithm and Computational Complexity

We propose Algorithm 1 that calculates the outlier score of each datum in D.In
Algorithm 1, the time complexity of constructing the initial Boolean function F
is approximately O(MN), where M is the number of nodes of the created BDD,
because logical operations between BDDs are practically almost linear to the size
of the BDDs [3]. The size of the created BDD depends on the characteristics of
the data set and can be exponentially large in the worst case, but, it is compact
for realistic data sets used in our experiments. The time complexity of calculating
the number of minterms is O(M) as mentioned in Sect. 4.2. The time complexity
of calculating the outlier score is O(muN) because the depth of the BDD is mu.
Consequently, the time complexity of Algorithm 1 is O((M +mu)N). Therefore,
the proposed method can deal with a large data set efficiently unless the number
of Boolean variables and the created BDD are intractably huge.

Algorithm 1: The outlier score calculation.

Input: A data set D.
Output: The outlier score S of each datum in D.

1 Construct the initial Boolean function F as a BDD.;
2 Calculate the number of minterms of each node of the BDD.;
3 for i ← 1 to N do

4 Search the path that CodeZ(z(i)) represents in the BDD and
evaluate θLOO (i, R (Ll (i))) for l = 0, . . . ,m by using Theorem 1.;

5 S (i) ← maxl=0,...,m θLOO (i, R (Ll (i)));

4.4 Dealing with Categorical Attributes

The proposed method can be extended in order to deal with a data set that
consists of both continuous attributes and categorical attributes. Let y(i) be a
vector of categorical attributes of the i-th datum. We extend the leave-one-out
density defined as (1) as follows:

βLOO (i, C) =
#
({
z(j)

∣∣ z(j) ∈ C, y(j) = y(i), j = 1, . . . , N, j �= i
})

vol (C)

Then, the outlier score defined as (2) can be evaluated very efficiently in the
same manner as mentioned in the previous sections. The details are skipped
because of the page limit.

5 Experimental Results

We compare the proposed method with existing methods, the one-class support
vector machine (OCSVM) and the local outlier factor (LOF). The proposed
method is referred to as ODBDD. We implemented ODBDD as a C program
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with the help of CUDD [14]. The ksvm function in the kernlab package [9] is
used for OCSVM and the lofactor function in the DMwR package [16] is used
for LOF. The parameter m that defines the size of the hypercube H is fixed
to m = 16 in ODBDD. In OCSVM, the Gaussian kernel is used and the kernel
parameter σ is set to one of the 10%, 50% and 90% quantiles of the distance
between samples [6], which are referred to as σ0.1, σ0.5 and σ0.9, respectively. The
parameter ν is fixed to ν = 0.1 in OCSVM. In LOF, the number of neighbors
is set to either k = 10 or k = 50. In OCSVM and LOF, continuous attributes
are scaled and categorical attributes are coded by using dummy variables. The
accuracy is evaluated in terms of the area under an ROC curve (AUC) [8]. The
experiment was performed on a Microsoft Windows 7 machine with an Intel
Core i7 CPU (3.20 GHz) and 64 GB RAM.

5.1 Evaluation with Synthetic Data Sets

Ten data set is a synthetic data set that consists of two continuous attributes
and no categorical attribute. The 95 % data of Ten data set distributes inside
the shape “10” randomly. The remaining 5 % data distributes outside randomly,
which are regarded as outliers. The number of data is set to 103, 104, 105 or 106.
An example of Ten-103 data set is shown in the left side of Fig. 4.
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0
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Fig. 4. An example of Ten-103 data set in which true outliers are shown as cross-
marks (left). X-marks mean outliers detected by the proposed method (right).

Table 2 shows the mean and the standard deviation of computation time over
10 random trials for Ten data set. We can see that the computation time of the
proposed method increases moderately compared to the other methods.

Table 3 shows the mean and the standard deviation of AUC values over 10
random trials for Ten data set. From Table 3, the accuracy of the proposed
method is comparable to those of the other methods. For example, the outliers
detected by ODBDD is shown in the right side of Fig. 4, in which the top 5 %
of the data are detected as outliers based on the outlier score of ODBDD.
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Table 2. The mean and the std. dev. of comp. time for Ten data set (sec)

OCSVM (σ = 0.1) LOF
Data set ODBDD ω = ω0.1 ω = ω0.5 ω = ω0.9 k = 10 k = 50

Ten-103 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.4 (0.0) 0.5 (0.0)
Ten-104 0.3 (0.0) 3.0 (0.1) 2.7 (0.1) 2.6 (0.1) 22.6 (0.1) 24.8 (0.3)
Ten-105 2.3 (0.0) 294.5 (5.7) 267.3 (4.0) 250.6 (4.0) 2942.0 (38.4) 3052.1 (34.3)
Ten-106 30.1 (0.9) timeout timeout timeout timeout timeout

The timeout limit is 3600 seconds.

Table 3. The mean and the std. dev. of AUC values for Ten data set

OCSVM (σ = 0.1) LOF
Data set ODBDD ω = ω0.1 ω = ω0.5 ω = ω0.9 k = 10 k = 50

Ten-103 0.97 (0.02) 0.79 (0.02) 0.80 (0.03) 0.95 (0.01) 0.99 (0.01) 0.97 (0.02)
Ten-104 0.99 (0.00) 0.80 (0.02) 0.82 (0.02) 0.97 (0.00) 0.82 (0.02) 1.00 (0.00)
Ten-105 0.99 (0.00) 0.80 (0.00) 0.82 (0.00) 0.97 (0.00) 0.60 (0.01) 0.77 (0.01)
Ten-106 1.00 (0.00) timeout timeout timeout timeout timeout

5.2 Evaluation with Realistic Data Sets

We use seven data sets from UCI machine learning repository [1] as shown in
Table 4, where Na is the size of the original data set. All of these data sets are
originally arranged for the classification task. In order to apply these data sets
to the evaluation of outlier detection algorithms, we randomly picked out data
from each data set to generate a new data set as follows: 1) Pick out all the data
whose class are Cm where Cm is the class of the maximum data size. Let Nm be
the number of data that belong to class Cm. 2) Pick out No = round(0.01Nm)
data randomly from the remaining data set, which are regarded as outliers.

Table 4. An overview of UCI data sets used in the experiment

Data set Na Nm No # of cate. attr. # of cont. attr.

abalone 4177 689 7 1 7
adult 32561 24720 248 8 6
bank 45211 39922 400 9 7
ionosphere 351 225 3 0 34
magic 19020 12332 124 0 10
shuttle 43500 34108 342 0 8
yeast 1484 463 5 0 8

Table 5 shows the mean and the standard deviation of computation time over
10 random trials for UCI data sets. The computation time varies drastically
depending on the size of the data set in both OCSVM and LOF. On the other
hand, ODBDD works quite fast for all of the data sets.
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Table 5. The mean and the std. dev. of comp. time for UCI data sets (sec)

OCSVM (σ = 0.1) LOF
Data set ODBDD ω = ω0.1 ω = ω0.5 ω = ω0.9 k = 10 k = 50

abalone 0.2 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.3 (0.0) 0.4 (0.0)
adult 3.1 (0.1) 26.5 (0.2) 24.5 (0.1) 24.2 (0.1) 2688.9 (320.0) 2935.3 (459.5)
bank 6.0 (0.0) 66.2 (0.4) 61.5 (0.5) 60.0 (0.3) 2784.8 (672.6) 2328.6 (155.7)
ionosphere 0.2 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 0.1 (0.0)
magic 2.4 (0.0) 4.6 (0.1) 4.1 (0.1) 4.0 (0.1) 52.3 (0.7) 56.6 (0.1)
shuttle 2.9 (0.1) 35.6 (0.4) 32.3 (0.3) 31.0 (0.3) 398.4 (10.9) 424.4 (12.5)
yeast 0.2 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.2 (0.0) 0.2 (0.0)

Table 6 shows the mean and the standard deviation of AUC values over 10
random trials. Although some results of ODBDD are not as good as the best
result of the other methods, ODBDD achieves similar accuracy to the others.

Table 6. The mean and the std. dev. of AUC values for UCI data sets

OCSVM (σ = 0.1) LOF
Data set ODBDD ω = ω0.1 ω = ω0.5 ω = ω0.9 k = 10 k = 50

abalone 0.59 (0.13) 0.59 (0.08) 0.57 (0.08) 0.58 (0.08) 0.61 (0.11) 0.66 (0.15)
adult 0.59 (0.02) 0.62 (0.01) 0.62 (0.01) 0.61 (0.01) 0.46 (0.02) 0.52 (0.03)
bank 0.61 (0.02) 0.62 (0.01) 0.62 (0.01) 0.62 (0.01) 0.62 (0.01) 0.69 (0.01)
ionosphere 0.87 (0.12) 0.79 (0.08) 0.87 (0.09) 0.64 (0.13) 0.94 (0.07) 0.95 (0.08)
magic 0.79 (0.02) 0.64 (0.03) 0.67 (0.03) 0.71 (0.03) 0.85 (0.03) 0.83 (0.03)
shuttle 0.93 (0.01) 0.78 (0.01) 0.89 (0.01) 0.93 (0.00) 0.44 (0.02) 0.69 (0.03)
yeast 0.65 (0.15) 0.66 (0.11) 0.64 (0.10) 0.55 (0.06) 0.69 (0.15) 0.73 (0.12)

6 Conclusions

In this work, we proposed a novel approach for outlier detection. A score of
being an outlier is defined based on the leave-one-out density, which is evaluated
very efficiently by processing a binary decision diagram that represents a data
set in a logical formula. The proposed method can deal with a large data set
efficiently, because the time complexity is near linear unless the created BDD
gets intractably huge.

This work can be extended in several ways. First, the region set D̃(i) is en-
riched by using various normalizers. Then, the accuracy of outlier detection is
expected to improve. A simple approach to generate various normalizers is to
incorporate a random rotation into a normalizer. Another extension is to em-
ploy nonlinear normalizers. If we use nonlinear normalizers, a hypercube in a
projected space corresponds to a nonlinear region in the original space, which
may lead to more precise outlier detection.

The proposed method may suffer from the curse of dimensionality when a
data set has many attributes and the number of data is not enough, because the
leave-one-out density is zero in almost every subregion of the whole hypercube
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in such a situation. A simple solution is to embed some dimension reduction
method into a normalizer.

Although we have conducted experiments with several data sets mainly to
compare the proposed method to other methods, it is necessary to apply the
proposed method to other real world problems in order to examine the practical
usefulness of the proposed method and reveal problems to tackle in future.
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Abstract. Rare category detection (RCD) aims at finding out at least one data
example of each rare category in an unlabeled data set with the help of a labeling
oracle to prove the existence of such a rare category. Various approaches have
been proposed for RCD with quadratic or even cubic time complexity. In this
paper, by using histogram density estimation and wavelet analysis, we propose
FRED algorithm and its prior-free version iFRED algorithm for RCD, both of
which achieve linear time complexity w.r.t. either the data set size N or the data
dimension d. Theoretical analysis guarantees its effectiveness, and comprehen-
sive experiments on both synthetic and real data sets verify the effectiveness and
efficiency of our algorithms.

Keywords: Rare category detection, wavelet analysis, linear time complexity.

1 Introduction

Emerging from anomaly detection, rare category detection (in short as RCD hence-
force) [8,9,15] is proposed to figure out which rare categories exist in an unlabeled data
set with the help of a labeling oracle. Different from imbalanced clustering or classi-
fication [3], RCD verifies the existence of a rare category by finding out at least one
data example of this category. This work has a wealth of potential applications such as
network intrusion detection [13], financial security [2], and scientific experiments [15].

Generally, RCD is carried out by two phases [11], i.e., (1) analyzing characteristics
of data examples in a data set and picking out candidate examples with rare category
characteristics such as compactness [4, 5, 7, 11, 12, 17] and isolation [11, 17], followed
by (2) querying the category labels of these candidate examples to a labeling oracle
(e.g., a human expert). The first phase involves processing a big amount of data, facing
an efficiency challenge which aims to achieve low time complexity; while the second
phase involves limited labeling budget, leading to a query challenge which aims to find
out at least one data example for each rare category with as less queries as possible.

Most of the existing approaches (e.g., see [4, 12, 15, 17]) focus on query challenge
without addressing too much of efficiency challenge with a time complexity not less
than O(dN2− 1

d ). To address both query and efficiency challenges simultaneously, we
propose FRED (Fast Rare catEgory Detection) algorithm and its prior-free version

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 498–509, 2014.
c© Springer International Publishing Switzerland 2014
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Table 1. Algorithms’ Time Complexity and Used Prior Information

Algorithm Complexity Category Prior Info Used
Interleave O(dN2) Prior Dependent m

NNDM O(dN2− 1
d ) Prior Dependent m, p1, p2, ..., pr

SEDER O(d2N2) Prior Free –
GRADE O(dN3) Prior Dependent m, p1, p2, ..., pr

GRADE-LI O(dN3) Prior Dependent pmax

RADAR O(dN2) Prior Dependent m, p1, p2, ..., pr
CLOVER O(dN2− 1

d ) Prior Free –
HMS γ(dN2) Prior Free –

iFRED algorithm on O(dN) time complexity which is linear w.r.t. either d or N . This
is done by utilizing Histogram Density Estimation (HDE) to estimate local data den-
sity and identifying candidate data examples of rare categories through the abrupt den-
sity changes via wavelet analysis. On the other hand, the existing RCD approaches
[11, 15, 17] are often based on the assumptions of isolation and compactness of rare
category examples; in contrast, our algorithms do not require rare categories being iso-
lated from majority categories, and relax the compactness assumption to that every rare
category may only be compact on partial dimensions.

2 Related Work

The existing paradigms for RCD can be classified into three groups, namely (1) the
mixture model-based [15], (2) the data distribution change-based [4, 5, 7, 8, 11, 12] and
(3) the hierarchical clustering-based [17]. A brief review on some representatives of
these approaches in terms of time complexity and required prior information about a
given data set is shown in Table 1. Note that throughout the paper m stands for the
number of all categories, r the number of rare categories, and pi (where 1 � i � r) the
proportion of data examples of rare category Ri out of all data examples in a data set.

Mixture model-based algorithms assume that data examples are generated by a mix-
ture data model and need to iteratively update the model, the computation cost is usu-
ally substantial. For example, Interleave algorithm [15] takes O(dN2) time to update
the covariance for each mixture Gaussian.

Data distribution change-based algorithms select data examples with maximal data
distribution changes as candidate examples of rare categories. According to the mea-
surements for the data distribution changes, these algorithms can be classified into two
sub-groups, namely (1) local density-based, such as SEDER [5], GRADE [7], GRADE-
LI [7], and NNDM [4]; and (2) nearest neighborhood-based, such as RADAR [12] and
CLOVER [11]. Their time complexities are nearly quadratic or even cubic.

Hierarchical clustering-based algorithms investigate rare category characteristics of
clusters on various levels. HMS [17] as a representative uses Mean Shift with increasing
bandwidths to create a cluster hierarchy, and adopts Compactness and Isolation criteria
to measure rare category characteristics. Its overall time complexity is Σ(dN2).

Besides time complexity, the prior information needed on a given data set leads to
the existing algorithms falling into two classes, namely prior-dependent and prior-free.
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3 Problem Statement and Assumptions

Adhering to the problem definition by He et al. [4, 5, 7] and Huang et al. [11, 12], we
formally define the problem of rare category detection as follows.

Given: (1) An unlabeled data set S = {x1, x2, . . . , xN} containing m categories; (2)
a labeling oracle which is able to give category label for any data example.

Find: At least one data example for each category.
For the data distribution of majority categories, we have the following assumption

which is commonly used in the existing work [4,5,7,11,12,15] explicitly or implicitly.

Assumption 1. Data distribution of each majority category is locally smooth on each
dimension.

Gaussian, Poisson, t-, uniform distribution and many other distributions well satisfy
this assumption. Thus this assumption can be satisfied by most applications.

For data distribution of rare categories, the exiting work [4–7, 10–12, 15] assumes
that each rare category forms a compact cluster in the whole feature space, i.e., data
examples from a rare category are similar to each other on every dimension. We relax
this assumption to that every rare category may only be compact on partial dimensions.

Assumption 2. Each rare category forms a compact cluster on partial dimensions or
on the whole feature space.

This assumption is more realistic because in many applications, data examples from
a rare category are different from those from a majority category on partial dimensions.
For example, panda subspecies are different from giant panda only in fur color and
tooth size. According to this assumption, data examples of each rare category should
show cohesiveness and form a compact cluster on at least partial dimensions.

Let DRi be the dimensions such that on each dimension j ∈ DRi rare category Ri
forms a compact cluster. According to the assumptions, we have following observations.

Observation 1. In the areas without clusters of rare category examples, data distribu-
tion is smooth on each dimension.

According to Assumption 1, data distribution of each majority category is smooth on
each dimension. Due to the additivity of continuous functions, even in the overlapped
areas of different majority categories, data distribution is smooth on each dimension.
Thus for simplicity, we can assume that there is one majority category R0 in S.

Observation 2. Any abrupt change of local data density on each dimension j ∈ DRi

indicates the presence of rare category Ri.

According to Assumption 2, data examples of Ri form a compact cluster on dimen-
sion j ∈ DRi , thus the local data density of Ri on dimension j is significant. This
significant data density, combining with overlaps of data examples from majority cate-
gory R0, brings an abrupt change in local data distribution, which is distinct from the
smooth distribution ofR0. Therefore, abrupt changes of local data density on dimension
j ∈ DRi indicate the presence of rare category Ri.
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4 RCD Algorithm via Local Density Change

Based on the observations, we present FRED algorithm for RCD by exploring these
abrupt local density changes via three steps. (1) On each dimension of a data set, FRED
tabulates data examples into bins of appropriate bandwidth, and estimates the local
density of each bin by Histogram Density Estimation (HDE) [16]. (2) By conducting
wavelet analysis on estimated density function, FRED locates abrupt changes of lo-
cal data density and quantitatively evaluates the change rates via our proposed DCR
criterion. (3) After summing up each data examples’ weighted DCR scores on all di-
mensions, FRED keeps selecting data examples with maximalDCR scores for labeling
until at least one data example is discovered for each category.

4.1 Histogram Density Estimation

To find abrupt changes of local data density, a crucial step is to estimate local data
density. We adopt HDE [16] for this goal due to its accuracy and time efficiency.

HDE firstly tabulates the feature space of a single dimension within interval [s1, s2]
into w non-overlapped bins B1, B2, . . . , Bw, which have the same bandwidth h, and
uses the number of data examples in each bin to estimate the local data density.

Let υk be the number of data examples in the kth bin Bk and f̂(k) be the estimated
local data density at bin k. Then we have

f̂(k) =
υk

N ∗ h, k = 1, 2, ..., w (1)

The structure of the histogram is completely determined by two parameters, band-
width h and bin origin t0. Well established theories (e.g., [16], [18]) show that band-
width h has dominant effect and bin origin t0 is negligible for sufficiently large sample
sizes. A very small bandwidth results in a jagged histogram with each distinct obser-
vation lying in a separate bin (under-smoothed histogram); and a very large bandwidth
results in a histogram with a single bin (over-smoothed histogram) [18]. We propose a
criterion on h selection for detecting rare category Ri as

|avg(υk)− Ci| � Ω, k = 1, 2, ..., w (2)

where Ci is the number of data examples of Ri and Ω a relaxation factor. This criterion
guarantees that the average bin count is approximate to Ci, which makes the abrupt
density change caused by Ri more significant to be detected.

4.2 Wavelet Analysis

After estimating local density, we perform wavelet analysis on the estimated density
function to find abrupt density changes, which is the key to detecting rare categories.

First, we provide a brief review of main concepts on wavelet analysis. We define
a mother wavelet as a square integrable function φ(x) that satisfies (1) φ(x) has a
compact support, i.e., φ(x) has values in a small range and zeros otherwise; (2) φ(x) is
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normalized, i.e.,
∫ +∞
−∞ φ(x)φ∗(x)dx = 1, where * denotes complex conjugate; and (3)

φ(x) is zero mean, i.e.,
∫ +∞
−∞ φ(x)dx = 0.

A wavelet family can be obtained by translating and scaling the mother wavelet.
Mathematically, they are φa,b(x) = 1√

a
φ
(
x−b
a

)
for a, b ∈ R and a > 0 where a is the

scale, which is inversely proportional to the frequency, and b represents the translation,
which indicates the point of location where we concern [14].

Given these, we define the wavelet analysis of a quadratic integrable function f(x)
with real-valued wavelet φ as

WTf(a, b) =

∫ +∞

−∞
f(x)φa,b(x)dx. (3)

Note that (1) wavelet analysis maps a 1-D signal to a 2-D domain of scale (frequency)
variable a and location variable b, which allow for location-frequency analysis. (2) For
a fixed scale a0 and translation b0, φa0,b0(x) is the wavelet chosen, and WTf(a0, b0)
is called the wavelet coefficient, which represents the resemblance index of f(x) on
neighborhood of b0 to φa0,b0(x), where large coefficients correspond to strong resem-
blance [14]. Once an appropriate wavelet is chosen, WTf (a0, b0) reflects the amplitude
of density change at the point of location b0. As mentioned above, identifying local
density changes is the key to detecting rare categories, thus this amplitude can help us
fast locate the location of rare categories.

4.3 Data Distribution Change Rate

To quantify local density change rate for bins, we propose a new criterion defined as

Definition 1 (Data distribution change rate (DCR)). Given bin density function f̂ ,
wavelet basis φ, scale a, the central point b0 of bin B, DCR of bin B is defined as

DCR(B) =
1√
a

∫ +∞

−∞
f̂(x)φ(

x− b0
a

)dx (4)

DCR of each bin is calculated by wavelet analysis on f̂ . In practice, either Mexican
hat or Reverse biorthogonal 2.2 (in short as Rbio2.2) wavelet can be chosen as wavelet
basis φ because they are similar in shape as cusps of density function brought by rare
categories and have a compact support. Scale a in Eq. (4) is usually set to a positive
value smaller than 1, which is the result of balancing the bandwidth of local region and
computing cost.

Given DCR definition for bins, DCR of each data example on dimension j can be
calculated by four steps. (1) Calculate the optimal bandwidth h by Eq. (2). (2) Divide
the feature space of dimension j into bins and calculate bin density function by Eq. (1).
(3) Compute DCR score of each bin by Definition 1, negative DCR scores are set to
0 because negative scores indicate drop of local data density and are of no interests to
us here. (4) Perform K-means clustering on each bin with K = v as a parameter. Let
x1, x2, . . . , xK be the central data examples of K clusters in bin B, then DCR scores
of x1, x2, . . . , xK are set to the DCR score of B, DCR scores of other data examples
in bin B are set to zero.
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Algorithm 1. Fast Rare Category Detection Algorithm (FRED)

Input: S = {xk|1 � k � N}, proportions of rare categories p1, p2, . . . , pr, dimension of
data examples d, number of categories m

Output: The set Q of queried data examples and the set L of their labels
1 Initialize Q = ∅, L = ∅;
2 for i = 1 : m do
3 if category i is a majority category then
4 Ci = N ∗max(pl), 1 � l � r;

5 else
6 Ci = N ∗ pi;
7 Set DCR of ∀xk ∈ S (denoted as DCR(xk)) to 0;
8 for j = 1 : d do
9 Calculate DCR of ∀xk ∈ S on dimension j (denoted as DCRj(xk)) by running

the four steps introduced in Sec. 4.3;

10 calculate DCR of ∀xk ∈ S, namely DCR(xk) =
∑d

j=1 WjDCRj(xk);
11 Set the DCR of ∀q ∈ Q to −∞;
12 while maxxk∈S(DCR(xk)) > 0 do
13 Query s = argmaxxk∈S(DCR(xk)) for its category label η;
14 Q = Q ∪ s, L = L ∪ η;
15 if s belong to an undiscovered category then
16 break;

17 Set the DCR of s to −∞;

4.4 FRED Algorithm

Algorithm 1 presents FRED algorithm which works as follows. Given proportions of
rare categories, data dimension d, and the number of categories m, we first initialize
hints set Q and their label set L to empty (line 1). Then for each rare category, (1) we
compute the count of data examplesCi (lines 3–6), which will be used in the h selection
step of DCR score calculation. (2) Then we calculate DCR score of ∀xk ∈ S on each
dimension (lines 8–9). (3) For ∀xk ∈ S, we sum up its weighed DCR score on each
dimension as its final DCR score (line 10). It is recommended that W1,W2, . . ., and
Wk have the same value, whereas users with domain knowledge can modify them. (4)
Next, we keep proposing the data example with maximal DCR score to the labeling
oracle until a new category is found (lines 12–17). Note that DCR scores of selected
data examples are set to −∞ (lines 11 & 17) to prevent them from being chosen twice.

The time complexity of FRED consists of two parts, (1) DCR score computation
and (2) sampling. (1) In DCR computation on each dimension, the most time consum-
ing step is K-means clustering, which takes O(N) time complexity. Note that on each
dimension the time complexity of HDE is O(N) and the time complexity of wavelet
analysis is O(w), where w is the number of bins and w < N . So the overall time com-
plexity of DCR score computation is O(dN). (2) Since one data example will never
be selected twice according to Algorithm 1, the time complexity of sampling is O(N).
Thus the time complexity of FRED is O(dN) which is linear w.r.t. either d or N .
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Algorithm 2. Prior-free Rare Category Detection Algorithm (iFRED)

Input: S = {xk|1 � k � N}, sample size u, parameter ∂, α
Output: The set Q of queried instances and the set L of their labels

1 Initialize Q = ∅, L = ∅;
2 scale = 1;
3 for j = 1 : d do
4 Find bandwidth hj on dimension j by Cross Validation;

5 while labeling budget is not exhausted and scale > α do
6 Set DCR of ∀xk ∈ S to 0;
7 for j = 1 : d do
8 Calculate DCR of ∀xk ∈ S on dimension j (denoted as DCRj(xk)) with

bandwidth hj ;

9 calculate DCR of ∀xk ∈ S, namely DCR(xk) =
∑d

j=1 WjDCRj(xk);

10 Set the DCR of ∀q ∈ Q to −∞;
11 while maxxk∈S(DCR(xk)) > 0 and labeling budget is not exhausted do
12 Query u data examples (denoted as set U ) that have the maximum DCR scores

for their category labels LU ;
13 Q = Q ∪ U,L = L ∪ LU ;
14 if U all belong to discovered categories then
15 hj = hj ∗ ∂, 1 � j � d ;
16 scale = scale ∗ ∂;
17 break;

18 Set the DCR of each data example in U to −∞;

5 iFRED Algorithm

We propose iFRED algorithm as a prior-free version of FRED for scenarios where no
prior knowledge about the given data set is available.

The difference between iFRED and FRED is twofold. (1) For bandwidth h selection,
iFRED algorithm cannot follow the criterion introduced in Eq. (2) because the number
of data examples Ci in each rare category is not available. Instead, it uses Cross Val-
idation [16] to find the original bandwidth h. Furthermore, if current h is not efficient
in finding rare categories, iFRED reduces h by setting h = h ∗ ω, 0 < ω < 1. (2)
In sampling phase, iFRED does not choose one data example each time for labeling,
instead, each time it picks up u (u ∈ N∗) data examples to measure the efficiency of
current h in detecting rare categories. If at least one of the u data examples belongs to
a new category, then current h is efficient; otherwise it sets h = h ∗ ω, 0 < ω < 1.

Algorithm 2 presents iFRED algorithm which works as follows. (1) The initializa-
tion phase (lines 1–4) initializes hints set Q and their label set L to empty, scale is
initialized to 1 and bandwidth on each dimension is initialized by Cross Validation.
(2) The computation phase (lines 6–9) calculates DCR of each data example. (3) The
sampling phase (lines 10–18) chooses each time u data examples of maximum DCR
for labeling. If at least one of the u selected data examples belongs to a new category,
we continue the sampling loop; otherwise we break out from the sampling loop, update
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hj (1 � j � d) by setting hj = hj ∗ ω and then continue the loop of computation
and sampling phase until the labeling budget is exhausted or scale is too small (line 5,
where ψ is the threshold).

Time complexity of iFRED consists of two parts, (1) DCR score computation and
(2) sampling. (1) In DCR computation, since the time complexity of Cross Validation
on each dimension is O(N) and the other three steps of DCR computation on each
dimension takes O(N) time complexity as analyzed in Sec. 4.4, the time complexity of
DCR score computation is O(dN). (2) Since one data example will never be selected
twice according to Algorithm 2, the time complexity of sampling is O(N). Thus the
overall time complexity of iFRED is O(dN) which is linear w.r.t. either d or N .

6 Effectiveness Analysis

In this section, we prove that if Assumptions 1 & 2 are fulfilled, our algorithms will sam-
ple repeatedly in the region where rare category examples occur with high probability.
Without loss of generality, assume that we are searching for rare categoryRi, 1 � i � r.
Let BRi be the bins where data examples of Ri cluster together, DRi the dimensions
that on each dimension j ∈ DRi rare category Ri forms a compact cluster.

Claim 1. According to the bandwidth selection criterion of FRED and iFRED, a
cusp of bin density function will appear in BRi on each dimension j where j ∈ DRi .

Proof. Since f̂(k) = αk

N∗h (see Eq. (1)), a sharp cusp of bin density function is equiv-
alent to a cusp of bin count function. We prove from the following three points that a
cusp of bin count function will appear in BRi on dimension j ∈ DRi .

(1) On dimension j ∈ DRi , the compact rare category examples of Ri will cluster
together in the same bin or Q adjacent bins where Q is a small integer.

(2) Let σ1 be the data distribution of majority categories at BRi and σ2 be the data
distribution of Ri at BRi . Then the bin count of BRi should be σ1 + σ2; whereas nearby
bins without rare category examples have bin count of σ1 ± Φ. By Assumption 2, σ2
is significant. Note that Φ is very small because data distribution of majority categories
changes slowly according to Assumption 1, thus σ2 % Φ.

(3) Let Ci be the number of data examples of Ri. For FRED, according to the h
selection criterion (see Eq. (2)), avg(υk) ≈ Ci, thus σ1 will not be too large than σ2;
for iFRED, the bandwidth h will keep reducing, resulting in smaller and smaller bins
where σ1 will not be too large than σ2.

Therefore, bins with rare categories will have significantly higher bin counts than
nearby bins without rare categories. Claim 1 is proven. �

Claim 2. According to DCR criterion, bins with cusp will get significantly high
DCR scores while bins without cusp will get low DCR scores approximate to 0.

Proof. Here we use Mexican hat wavelet (denoted by φ̂(x)) as an example wavelet
to prove Claim 2 (wavelet Rbio2.2 can also be used in the same way). The shape of
φ̂a,b(x) = 1√

a
φ̂
(
x−b
a

)
is shown in Fig. 1(a). Since the support interval of φ̂(x) is

[−5, 5], thus the support interval of φ̂a,b(x) is [−5a + b, 5a + b], outside which the
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Fig. 1. Wavelet Analysis

value of φ̂a,b(x) is zero. Thus wavelet analysis of f(x) by φ̂a,b(x) is WTf(a, b) =∫ 5a+b

−5a+b
f(x)φ̂a,b(x)dx.

Since FRED and iFRED use a positive fixed small scale a to detect local density
changes, the integral interval [−5a + b, 5a + b] is very narrow, which means that the
data distribution change of majority categories is trivial. Fig. 1(b) shows the bin density
function on the interval without cusps, and Fig. 1(c) shows the bin density function on
the interval with one cusp. As shown in Fig. 1, wavelet analysis of f(x) by φ̂a,b(x) is

WTf (a, b) =

∫
A+B+C

f(x)φ̂a,b(x)dx (5)

For local areas without cusp, the bin density change on this interval is trivial. Thus

WTf (a, b) ≈ 0 (6)

For local areas with cusps, Eq. (5) has a significant value because
∫
B f(x)φ̂a,b(x)dx

dominates the integration and has a significant value as shown in Fig. 1. Combining this
conclusion with Eq. (6), we know that bins with cusps of bin density function will get a
significantly high coefficients and bins without cusps will get coefficients approximate
to zero. Therefore, Claim 2 is proven. �
Claim 3. In FRED and iFRED, representative data examples of rare category Ri
where 1 � i � r will get significantly high DCR scores, whereas data examples with
locally smooth data density will get low DCR scores approximate to 0 .

Proof. From Claims 1 & 2, we know that BRi will get significantly high DCR score
on each dimension j where j ∈ DRi . The significantly high dimensional DCR score
of BRi will pass to representative data examples of Ri in the K-means clustering steps
of FRED and iFRED. Since the DCR score of each data example is the sum of its
weighted DCR scores on each dimension, representative data examples of Ri will have
significantly highDCR scores; whereas according to Claim 2, bins with locally smooth
data density will get low DCR scores approximate to 0, these low DCR scores will
pass to representative data examples of these bins. Claim 3 is proven. �

According to Assumption 1, the pdf of majority data examples is locally smooth.
Combining this conclusion with Claim 3, we know that representative data examples of
rare categories have significantly higher probabilities to be selected for labeling.

7 Experimental Evaluation

In this section, we conduct experiments to verify the efficiency and effectiveness of
FRED and iFRED algorithms from two aspects, namely (1) time efficiency and scal-
ability on data size N and dimension d, and (2) number of queries required for rare
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Fig. 2. Time Scalability Over N and d

Table 2. Properties of Real Data Sets

Data set N d m Largest Smallest
class (%) class (%)

Iris 106 4 3 47.17 5.66

Vertebral 310 6 3 48.39 19.35

Wine Quality 1589 11 5 42.86 1.13

Pen Digits 7143 16 10 10.92 5.15

Letter 19500 16 26 4.17 1.20

Shuttle 43494 9 6 78.42 0.03

category discovery. All algorithms are implemented with MATLAB 7.11 and running
on a server computer with Intel Core 4 2.4GHz CPU and 20GB RAM.

7.1 Scalability

In this experiment, we compare our methods with NNDM, SEDER, and CLOVER on
a synthetic data set where the pdf of majority categories is Gaussian and the pdf of rare
categories is uniform within a small region. The synthetic data set satisfies that (1) the
data size N ranges from 10000 to 40000 , (2) rare category R1 forms a compact cluster
in the densest area of the data set and has 395 data examples, (3) rare categoryR2 forms
a compact cluster in the moderate dense area and has 100 data examples, and (4) rare
category R3 forms a compact cluster in the low dense area and has 157 data examples.

(1) We set data dimension to 10 and vary the data size from 10000 to 40000 with
incremental 10000. Fig. 2(a) shows the comparison results which agrees well with
the time complexities shown in Table 1; i.e., the SEDER curve raises steeply due to
its O(d2N2) time complexity, followed by the curves of NNDM and CLOVER with
O(dN2− 1

d ) complexity, and lastly the curves of FRED and iFRED with linear com-
plexity w.r.t. N .

(2) We set the size of the data set to 10000 and vary the data dimension from 5 to 20
with incremental 5. Fig. 2(b) shows that (1) iFRED, NNDM and CLOVER consumes
much less time than SEDER; (2) time consumption by FRED, iFRED, NNDM and
CLOVER grows linearly with data dimension.

(3) Our algorithms are much more efficient than other tested algorithms, e.g., on the
data set with data size 40000, the runtime of CLOVER in seconds is 1884, NNDM
2153, SEDER 3499, whereas FRED only needs 5 seconds and iFRED 114 seconds.
Experiments on real data sets such as Shuttle and Letter [1] have similar observations.

7.2 Efficiency

In RCD, the efficiency of an algorithm is evaluated by the number of queries needed to
discover all categories in a data set. Usually these queries involve expensive human ex-
perts’ work, thus our goal is to discover each category with minimal number of queries.

This experiment compares our algorithms with other algorithms on six real data sets
from the UCI data repository [1], as detailed in Table 2. Specifically, categories with too
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Fig. 3. Performance Comparisons on Real Data Sets

few (� 10) data examples are removed in order to satisfy compactness characteristic of
rare categories, and sets Iris, Pen Digits and Letter are sub-sampled to create skewed
data sets. Parameter v is set to either 1 or 2 for both FRED and iFRED.

Fig. 3 illustrates the comparison results on six data sets. From the figure, we have
the following observations. (1) On all six data sets, FRED requires the least queries
to discover all categories among all tested algorithms and performs significantly better
than other algorithms. For example, on Shuttle set (Fig. 3(f)), FRED needs 42 labeling
queries, iFRED 197, CLOVER 254, SEDER 575, and NNDM 884. (2) On all six data
sets, iFRED takes up the second place right after FRED, especially on Vertebral, Pen
Digits and Letter sets, its query number is almost as less as that of FRED. (3) A steeper
curve means that the algorithm can discover new categories with fewer labeling queries.
The curves of FRED and iFRED are much steeper than those of others, meaning that
they need much less queries to discover a new category.

8 Conclusion

In this paper, we have proposed FRED and iFRED algorithms for RCD which have
achieved O(dN) time complexity and required least labeling queries. After using HDE
to estimate local data density, they have been able to effectively identify candidate ex-
amples of rare categories through the abrupt density changes via wavelet analysis. The-
oretical analysis has proven the effectiveness of our algorithms, and comprehensive
experiments have further verified the efficiency and effectiveness.

For the next stage of study, a promising direction is to investigate new methods for
the estimation of local data density. Another suggestion for future study is to work on
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sub-space selection which may bring with breakthroughs on this topic since in many
scenarios rare categories are distinct on only a few dimensions.
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Abstract. iForest uses a collection of isolation trees to detect anoma-
lies. While it is effective in detecting global anomalies, it fails to detect
local anomalies in data sets having multiple clusters of normal instances
because the local anomalies are masked by normal clusters of similar
density and they become less susceptible to isolation. In this paper, we
propose a very simple but effective solution to overcome this limitation
by replacing the global ranking measure based on path length with a local
ranking measure based on relative mass that takes local data distribu-
tion into consideration. We demonstrate the utility of relative mass by
improving the task specific performance of iForest in anomaly detection
and information retrieval tasks.

Keywords: Relative mass, iForest, ReFeat, anomaly detection.

1 Introduction

Data mining tasks such as Anomaly Detection (AD) and Information Retrieval
(IR) require a ranking measure in order to rank data instances. Distance or
density based methods are widely used to rank instances in these tasks. The
main problem of these methods is that they are computationally expensive in
large data sets because of their high time complexities.

Isolation Forest (iForest) [1] is an anomaly detector that does not use distance
or density measure. It performs an operation to isolate each instance from the
rest of instances in a given data set. Because anomalies have characteristics of
being ‘few and different’, they are more susceptible to isolation in a tree structure
than normal instances. Therefore, anomalies have shorter average path lengths
than those of normal instances over a collection of isolation trees (iTrees).

Though iForest has been shown to perform well [1], we have identified its
weakness in detecting local anomalies in data sets having multiple clusters of
normal instances because the local anomalies are masked by normal clusters
of similar density; thus they become less susceptible to isolation using iTrees.
In other words, iForest can not detect local anomalies because the path length
measures the degree of anomaly globally. It does not consider how isolated an
instance is from its local neighbourhood.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 510–521, 2014.
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iForest has its foundation in mass estimation [2]. Ting et al [2] have shown
that the path length is a proxy to mass in a tree-based implementation. From
this basis, we analyse that iForest’s inability to detect local anomalies can be
overcome by replacing the global ranking measure based on path length with a
local ranking measure based on relative mass using the same iTrees. In general,
relative mass of an instance is a ratio of data mass in two regions covering the
instance, where one region is a subset of the other. The relative mass measures
the degree of anomaly locally by considering the data distribution in the local
regions (superset and subset) covering an instance.

In addition to AD, we show the generality of relative mass in IR that over-
comes the limitation of a recent IR system called ReFeat [3] that uses iForest as a
core ranking model. Even though ReFeat performs well in content-based multi-
media information retrieval (CBMIR) [3], the ranking scheme based on path
length does not guarantee that two instances having a similar ranking score are
in the same local neighbourhood. The new ranking scheme based on relative
mass provides such a guarantee.

The contributions of this paper are as follows:

1. Introduce relative mass as a ranking measure.
2. Propose ways to apply relative mass, instead of path length (which is a proxy

to mass) to overcome the weaknesses of iForest in AD and IR.
3. Demonstrate the utility of relative mass in AD and IR by improving the

task specific performance of iForest and ReFeat using exactly the same im-
plementation of iTrees as employed in iForest.

The rest of the paper is organised as follows. Section 2 introduces the notion
of relative mass and proposes ways to apply to AD and IR. Section 3 provides
the empirical evaluation followed by conclusions in the last section.

2 Relative Mass: A Mass-Based Local Ranking Measure

Rather than using the global ranking measure based on path length in iForest,
an instance can be ranked using a local ranking measure based on relative mass
w.r.t its local neighbourhood. In a tree structure, the relative mass of an instance
is computed as a ratio of mass in two nodes along the path the instance traverses
from the root to a leaf node. The two nodes used in the calculation of relative
mass depend on the task specific requirement.

• In AD, we are interested in the relative mass of x w.r.t its local neigh-
bourhood. Hence, the relative mass is computed as the ratio of mass in the
immediate parent node and the leaf node where x falls.

• In IR, we are interested in the relative mass of x w.r.t to a query q. Hence,
the relative mass is computed as the ratio of mass of the leaf node where q
falls and the lowest node where x and q shared along the path q traverses.

We convert iForest [1] and ReFeat [3] using the relative mass, and named
the resultant relative mass versions, ReMass-iForest and ReMass-ReFeat, re-
spectively. We describe iForest and ReMass-iForest in AD in Section 2.1; and
ReFeat and ReMass-ReFeat in IR in Section 2.2.
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2.1 Anomaly Detection: iForest and ReMass-iForest

In this subsection, we first discuss iForest and its weakness in detecting local
anomalies and introduce the new anomaly detector, ReMass-iForest, based on
the relative mass to overcome the weakness.

iForest

Given a d-variate database of n instances (D = {x(1),x(2), · · · ,x(n)}), iForest [1]
constructs t iTrees (T1, T2, · · · , Tt). Each Ti is constructed from a small random
sub-sample (Di ⊂ D, |Di| = φ < n) by recursively dividing it into two non-
empty nodes through a randomly selected attribute and split point. A branch
stops splitting when the height reaches the maximum (Hmax) or the number of
instances in the node is less than MinPts. The default values used in iForest
are Hmax = log2(φ) and MinPts = 1. The anomaly score is estimated as the
average path length over t iTrees as follows:

L(x) =
1

t

t∑
i=1

γi(x) (1)

where γi(x) is the path length of x in Ti
As anomalies are likely to be isolated early, they have shorter average path

lengths. Once all instances in the given data set have been scored, the instances
are sorted in ascending order of their scores. The instances at the top of the list
are reported as anomalies.

iForest runs very fast because it does not require distance calculation and
each iTree is constructed from a small random sub-sample of data.

iForest is effective in detecting global anomalies (e.g., a1 and a2 in Figures 1a
and 1b) because they are more susceptible to isolation in iTrees. But it fails to
detect local anomalies (e.g., a1 and a2 in Figure 1c) as they are less susceptible
to isolation in iTrees. This is because the local anomalies and the normal cluster
C3 have about the same density. Some fringe instances in the normal cluster C3

will have shorter average path lengths than those for a1 and a2.

ReMass-iForest

In each iTree Ti, the anomaly score of an instance x w.r.t its local neighbourhood,
si(x), can be estimated as the ratio of data mass as follows:

si(x) =
m(T̆i(x))

m(Ti(x))× φ
(2)

where Ti(x) is the leaf node in Ti in which x falls, T̆i(x) is the immediate parent
of Ti(x), and m(·) is the data mass of a tree node. φ is a normalisation term
which is the training data size used to generate Ti.

si(·) is in (0, 1]. The higher the score the higher the likelihood of x being an
anomaly. Unlike γi(x) in iForest, si(x) measures the degree of anomaly locally.
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Fig. 1. Global and Local anomalies. Note that both anomalies a1 and a2 are exactly
the same instances in Figures (a), (b) and (c). In Fig.(a) and Fig.(b), a1 and a2 have
low density than that in the normal clusters C1 and C2. In Fig.(c), a1, a2 and the
normal cluster C3 have the same density but a1 and a2 are anomalies relative to the
normal cluster C1 with a higher density.

The final anomaly score can be estimated as the average of local anomaly
scores over t iTrees as follows:

S(x) =
1

t

t∑
i=1

si(x) (3)

Once every instance in the given data set has been scored, instances can be
ranked in descending order of their anomaly scores. The instances at the top of
the list are reported as anomalies.

Relation to LOF and DEMass-LOF

The idea of relative mass in ReMass-iForest has some relation to the idea of rel-
ative density in Local Outlier Factor (LOF) [4]. LOF uses k nearest neighbours

to estimate density f̄k(x) =
|N(x, k)|

n
∑

x′∈N(x,k) distance(x,x
′)

where N(x, k) is the

set of k nearest neighbours of x. It estimates its anomaly score as the ratio of the
average density of x’s k nearest neighbours to f̄k(x). In LOF, the local neigh-
bourhood is defined by k nearest neighbours which requires distance calculation.
In contrast, in ReMass-iForest, the local neighbourhood is the immediate parent
in iTrees. It does not require distance calculation.

DEMass-LOF [5] computes the same anomaly score as LOF from trees, with-
out distance calculation. The idea of relative density of parent and leaf nodes
was used in DEMass-LOF. It constructs a forest of t balanced binary trees where
the height of each tree is b × d (b is a parameter that determines the level of
division on each attribute and d is the number of attributes). It estimates its
anomaly score as the ratio of average density of the parent node to the average
density of the leaf node where x falls. The density of a node is estimated as the
ratio of mass to volume. It uses mass to estimate density and ranks instances
based on the density ratio. Like iForest, it is fast because no distance calcula-
tion is involved. But, it has limitation in dealing problems with even a moderate
number of dimensions because each tree has 2(b×d) leaf nodes.
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Table 1. Ranking measure and complexities (time and space) of ReMass-iForest, iFor-
est, DEMass-LOF and LOF

ReMass- DEMass
iForest iForest -LOF LOF

Ranking
1

tρ

t∑
i=1

m(T̆i(x))

m(Ti(x))

1

t

t∑
i=1

ηi(x)

∑t
i=1

m(T̆i(x))
v̆i∑t

i=1
m(Ti(x))

vi

∑
x′∈N(x,k)

f̄k(x
′)

|N(x,k)|

f̄k(x)
Measure

Time
O(t(n+ ρ) logρ) O(t(n+ ρ) logρ) O(t(n+ ρ)bd) O(dn2)

Complexity

Space
O(tρ) O(tρ) O(tdρ) O(dn)

Complexity

v̆i and vi are the volumes of nodes T̆i(x) and Ti(x), respectively.

In contrast to LOF and DEMass-LOF, ReMass-iForest does not require den-
sity estimation, it uses relative mass directly in order to estimate the local
anomaly score from each iTree.

The ranking measure and complexities (time and space) of ReMass-iForest,
iForest, DEMass-LOF and LOF are provided in Table 1.

2.2 Information Retrieval: ReFeat and ReMass-ReFeat

In this subsection, we first describe how ReFeat uses iForest in IR and its weak-
ness. Then, we introduce a new IR system, ReMass-ReFeat, based on the relative
mass to overcome the weakness.

ReFeat

Given a query instance q, ReFeat [3] assigns a weight wi(q) =
∂i(q)
c − 1 (where c

is a normalisation constant) to each Ti. The relevance feedback process [6] allows
user to refine the retrieved result by providing some ‘relevant’ and ‘irrelevant’
examples for the query. Let Q = P∪N is a set of feedback instances to the query
q where P and N are the sets of positive and negative feedbacks, respectively.
Note that P includes q. In a relevance feedback round, ReFeat assigns a weight to

Ti using positive and negative feedback instances as: wi(Q) =
1

|P|
∑

y+∈P
wi(y

+)−

σ
1

|N |
∑

y−∈N
wi(y

−), where 0 ≤ σ ≤ 1 is a trade-off parameter for the relative

contribution of positive and negative feedbacks. The relevance of x w.r.t Q is
estimated as the weighted average of its path lengths over t iTrees as follows:

RReFeat(x|Q) =
1

t

t∑
i=1

(wi(Q)× γi(x)) (4)

Even though ReFeat has been shown to have superior retrieval performance
over other existing methods in CBMIR, the ranking scheme does not guarantee
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that two instances having similar ranking scores are in the same local neighbour-
hood. Two instances can have similar score if they have equal path lengths in an
iTree even though they lie in two different branches which shares few common
nodes. This effect will degrade the performance of ReFeat especially when the
tree height (h) is increased. Hence, ReFeat must use a low h (2 or 3) in order to
reduce this weakness. The superior performance of ReFeat is mainly due to its
large ensemble size (t = 1000). We will discuss the effect of h and t in ReFeat in
Section 3.2. In a nutshell, ReFeat does not consider the positions of instances in
the feature space as it computes the path length in iTrees.

ReMass-ReFeat

In each iTree Ti, the relevance of x w.r.t. q, ri(x|q), is estimated using relative
mass as follows:

ri(x|q) =
m(Ti(q))

m(Ti(x,q))
(5)

where Ti(x,q) is the smallest region in Ti where x and q appear together.
In equation 5, the numerator corresponds with wi(q) in ReFeat. The denom-

inator term measures how relevant x is to q. In contrast, ReFeat’s γi(x) is inde-
pendent of q (it does not examine whether x and q are in the same locality [3]);
whereasm(Ti(x,q)) measures how close x and q are in the feature space. In each
Ti, ri(x|q) is in the range of (0, 1]. The higher the score the more relevance of x
w.r.t q. If x and q lie in the same leaf node in Ti, ri(x|q) is 1. This relevance mea-
sure gives a high score to an instance which lies deeper in the branch where q lies.

The final relevance score of x w.r.t q, R(x|q), is the average over t iTrees:

R(x|q) = 1

t

t∑
i=1

ri(x|q) (6)

Once the relevance score of each instance is estimated, the scores can be sorted
in descending order. The instances at the top of the list are regarded as the most
relevant instances to q.

ReMass-ReFeat estimates the relevance score with relevance feedback as fol-
lows:

R(x|Q) =
1

|P|
∑

y+∈P
R(x|y+)− σ

1

|N |
∑

y−∈N
R(x|y−) (7)

Note that equations 5 and 6 do not make use of any distance or similarity
measure, and R(x|q) is not a metric as it does not satisfy all metric axioms. It
has the following characteristics. For x,y ∈ D,

i. 0 < R(x|y) ≤ 1 (Non-negativity)
ii. R(x|x) = R(y|y) = 1 (Equal self-similarity; maximal similarity)
iii. R(x|y) �= R(y|x) (Asymmetric)

Note that ReMass-ReFeat and ReFeat have the same time complexities. If
indices of data instances falling in each node are recorded in the modelling
stage, the joint mass of q and every x ∈ D can be estimated in one search from
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Table 2. Time and space complexities of ReMass-ReFeat and ReFeat

ReMass-ReFeat ReFeat

Time O(t(n+ ρ) logρ) (Model building) O(t(n+ ρ) logρ) (Model building)
Complexity O(t(n+ logρ)) (On-line query) O(t(n+ logρ)) (On-line query)

Space
O(t(n+ ρ)) O(n+ tρ)

Complexity

the root to Ti(q) in each tree. But, it will increase the space complexity as it
requires to store n indices in each iTree. The time and space complexities of
ReMass-ReFeat and ReFeat are provided in Table 2.

3 Empirical Evaluation

In this section, we evaluate the utility of relative mass in AD and CBMIR tasks.
In AD, we compared ReMass-iForest with iForest [1], DEMass-LOF [5] and LOF
[4]. In CBMIR, we compared ReMass-ReFeat with ReFeat [3] and the other ex-
isting CBMIR systems: MRBIR [7], InstRank [8] and Qsim [9]. Both the AD
and CBMIR experiments were conducted in unsupervised learning settings. The
labels of instances were not used in the model building process. They were used
as the ground truth in the evaluation stage. The AD results were measured in
terms of the area under ROC curve (AUC). In CBMIR, the precision at the
top 50 retrieved results (P@50) [3] was used as the performance measure. The
presented result was the average over 20 runs for all randomised algorithms. A
two-standard-error significance test was conducted to check whether the differ-
ence in performance of two methods was significant.

We used the same MATLAB implementation of iForest provided by the au-
thors of ReFeat [3], the JAVA implementation of DEMass-LOF in the WEKA
[10] platform, and the JAVA implementation of LOF in the ELKI [11] platform.

We present the empirical evaluation results in the following two subsections.

3.1 Anomaly Detection: ReMass-iForest versus iForest

In the first experiment, we used a synthetic data set to demonstrate the strength
of ReMass-iForest over iForest to detect local anomalies. The data set has 263
normal instances in three clusters and 12 anomalies representing global, local
and clustered anomalies. The data distribution is shown in Figure 2a. Instances
a1, a2 and a3 are global anomalies; four instances in A4 and two instances in A5

are clustered anomalies; and a6, a7 and a8 are local anomalies; C1, C2 and C3

are normal instances in three clusters of varying densities.
Figures 2b-2d show the anomaly scores of all data instances obtained from

iForest and ReMass-iForest.With iForest, local anomalies a6, a7 and a8 had lower
anomaly scores than some normal instances in C3; and it produced AUC of 0.98.
In contrast, ReMass-iForest had ranked local anomalies a6, a7, a8 higher than any
instances in normal clusters C1, C2 and C3 along with global anomalies a1, a2
and a3. But, ReMass-iForest with MinPts = 1 had some problem in ranking
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Fig. 2. Anomaly scores by iForest and ReMass-iForest using t = 100, ρ = 256. Note
that in anomaly score plots, instances are represented by their values on x1 dimension.
Anomalies are represented by black lines and normal instances are represented by gray
lines. The height of lines represents the anomaly scores. In order to differentiate the scores
of normal and anomaly instances, the maximum score for normal instances is subtracted
from the anomaly scores so that all normal instances have score of zero or less.

clustered anomalies in A4 and produced AUC of 0.99. One fringe instance in
the cluster C3 was ranked higher than two clustered anomalies in A4. This is
because cluster anomalies have similar mass ratio w.r.t their parents as that for
the instances in sparse normal cluster C3. Clustered anomalies were correctly
ranked and AUC of 1.0 was achieved when MinPts was increased to 5. The
performance of iForest did not improve when MinPts was increased to any
values in the range (2, 3, 4, 5 and 10).

In the second experiment, we used the ten benchmark data sets previously
employed by Liu et al (2008) [1]. In ReMass-iForest, iForest and DEMass-LOF,
the parameter t was set to 100 as default and the best value for the sub-sample
size φ was searched from 8, 16, 32, 64, 128 to 256. In ReMass-iForest, MinPts
was set to 5 as default. iForest uses the default settings as specified in [1], i.e,
MinPts = 1. The level of subdivision (b) for each attribute in DEMass-LOF
was searched from 1, 2, 3, 4, 5, and 6. In LOF, the best k was searched between
5 and 4000 (or to n

4 for small data sets), with steps from 5, 10, 20, 40, 60, 80,
150, 250, 300, 500, 1000, 2000, 3000 to 4000. The best results were reported.
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Table 3. AUC and runtime (seconds) of ReMass-iForest (RM), iForest (IF), DEMass-
LOF (DM), and LOF in benchmark datasets

AUC Runtime
Data set n d RM IF DM LOF RM IF DM LOF

Http 567K 3 1.00 1.00 0.99 1.00 71 99 19 19965
ForestCover 286K 10 0.96 0.88 0.87 0.94 42 56 4 2918

Mulcross 262K 4 1.00 1.00 0.99 1.00 20 23 16 2169
Smtp 95K 3 0.88 0.88 0.78 0.95 10 12 16 373

Shuttle 49K 9 1.00 1.00 0.95 0.98 4 9 7 656
Mammography 11K 6 0.86 0.86 0.86 0.68 1 1 5 127

Satellite 6K 36 0.71 0.70 0.55 0.79 1 4 0.6 24
Breastw 683 9 0.99 0.99 0.98 0.96 0.1 0.4 0.3 0.4

Arrhythmia 452 274 0.80 0.81 0.52 0.80 0.3 0.5 5 1
Ionosphere 351 32 0.89 0.85 0.85 0.90 2 3 0.5 0.3

The characteristics of the data sets, AUC and runtime (seconds) of ReMass-
iForest, iForest, DEMass-LOF and LOF are presented in Table 3.

In terms of AUC, ReMass-iForest had better or at least similar results to
iForest. Based on the two-standard-error significance test, it produced better
results than iForest in the ForestCover and Ionosphere data sets. Most of these
datasets do not have local anomalies. So, both methods had similar AUC in
eight data sets. Note that iForest did not improve AUC when MinPts was
set to 5. ReMass-iForest had produced significantly better AUC than DEMass-
LOF in relatively high dimensional data sets (Arrhythmia - 274, Satellite - 36,
Ionosphere - 32, ForestCover - 10, Shuttle - 9). These results show that DEMass-
LOF has problem in handling data sets with a moderate number of dimensions
(9 or 10). ReMass-iForest was competitive to LOF. It was better than LOF in
the Mammography data set, worse in the Smtp and Satellite data sets, and equal
performance in the other seven data sets.

As shown in Table 3, the runtime of ReMass-iForest, iForest and DEMass-
LOF were of the same order of magnitude whereas LOF was upto three order of
magnitude slower in large data sets. Note that we can not conduct a head-to-head
comparison of runtime of ReMass-iForest and iForest with DEMass-LOF and
LOF because they were implemented in different platforms (MATLAB versus
JAVA). The results are included here just to provide an idea about the order of
magnitude of runtime. The difference in runtime of ReMass-iForest and iForest
was due to the difference in φ and MinPts. MinPts = 5 results in smaller size
iTrees in ReMass-iForest than those in iForest (MinPts = 1). Hence, ReMass-
iForest runs faster than iForest even though the same φ is used.

3.2 CBMIR: ReMass-ReFeat versus ReFeat

The performance of ReMass-ReFeat was evaluated against that of ReFeat in
music and image retrieval tasks with GTZAN music data set [12] and COREL
image data set [13], respectively. GTZAN is a data set of 1000 songs uniformly
distributed in 10 genres. Each song is represented by 230 features. COREL is a
data set of 10,000 images uniformly distributed over 100 categories. Each image
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Fig. 3. Precision at top 50 returned results (P@50)

is represented by 67 features. These are the same data sets used in [3] to evaluate
the performance of ReFeat. The results of the existing CBMIR systems InstRank,
Qsim and MRBIR were taken from [3].

We conducted our experiments using the same experimental design as in [3].
Initially five queries were chosen randomly from each class. For each query, in-
stances from the same class were regarded as relevant and the other classes were
irrelevant. At each round of feedback, two relevant (instances from the same
class) and two irrelevant (instances from the other classes) instances were pro-
vided. Upto five rounds of feedback were conducted for each query. The instance
was not used in ranking if it was used as a feedback instance. The feedback
process was repeated five times with different relevant and irrelevant feedbacks.
The above process was repeated 20 times and average P@50 was reported.

In ReMass-ReFeat, the parameters φ and MinPts were set as default to 256
and 1, respectively. In ReFeat, φ was set to 4 for GTZAN and 8 for COREL as
reported in [3]. Other settings of φ in ReFeat were found to perform worse than
these settings. In order to show how their retrieval performance varies when
ensemble size was increased, we used two settings for t: ReMass-ReFeat and
ReFeat with (i) t = 100 (RM-100 and RF-100) and (ii) t = 1000 (RM-1000 and
RF-1000). The feedback parameter σ was set as default to 0.5 in ReMass-ReFeat
and 0.25 in ReFeat (as used in [3]).

P@50 of ReMass-ReFeat (RM-100 and RM-1000), ReFeat (RF-100 and RF-
1000), InstRank, MRBIR and Qsim in the GTZAN and COREL data sets are
shown in Figure 3. P@50 curves in both the data sets show that ReMass-ReFeat
(RM-1000) has better retrieval performance than all contenders, especially in
feedback rounds. In round 1 or no feedback (query only), ReMass-ReFeat (RM-
1000) and ReFeat (RF-1000) produced similar retrieval performance but in latter
feedback rounds, RM-1000 produced better results than RF-1000.

It is interesting to note that the performance of RF-100 was worse than that of
RM-100 in all feedback rounds including query only (no feedback). In GTZAN,
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RF-100 had worst performance than all contenders. The increase in P@50 from
RF-100 to RF-1000 was a lot larger than that of RM-100 to RM-1000. This
result shows that the retrieval performance of ReFeat is mainly due to the large
ensemble size of 1000. The difference in P@50 of RM-100 and RF-1000 was
decreasing in subsequent feedback rounds. This indicates that ReMass-ReFeat
produces better result than ReFeat even with a smaller ensemble size if more
feedback instances are available.

In terms of runtime, ReMass-ReFeat had slightly higher runtime than ReFeat
because of the higher φ that allows trees to grow deeper (256 vs. 4 in GTZAN
and 8 in COREL). The model building time of RM-1000 was 21 seconds (vs. 4
seconds of RF-1000) in COREL and 20 seconds (vs. 2 seconds of RF-1000) in
GTZAN. The on-line retrieval time for one query of RM-1000 was 0.9 seconds
(vs. 0.3 seconds of RF-1000) in COREL and 0.2 seconds (vs. 0.2 seconds of
RF-1000) in GTZAN.
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Fig. 4. P@50 at feedback round 5 with
varying sample size (ρ) in the GTZAN data
set

Figure 4 shows the effect of φ
on the P@50 of ReMass-ReFeat and
ReFeat at feedback round 5 (one run)
in the GTZAN data set. In ReFeat,
when φ was increased above 4, the
retrieval performance degraded. This
is due to the increase in the height
of iTrees (h = log2(φ)) and instances
falling in two distinct branches hav-
ing similar relevance score based on
the same path lengths. In contrast,
ReMass-ReFeat improved its retrieval
performance up to 64 and then re-
mained almost flat beyond that. Sim-
ilar effect was observed in the COREL data set where the performance of ReFeat
degraded when φ was set above 8.

4 Conclusions

While the relative mass was motivated to overcome the weakness of iForest in
detecting local anomalies, we have shown that the idea has a wider application.
In information retrieval, we apply it to overcome the weakness of a state-of-the-
art system called ReFeat. Our empirical evaluations show that ReMass-iForest
and ReMass-ReFeat perform better than iForest and ReFeat, respectively, in
terms of task-specific performance. In comparison with other state-of-the-art
systems in both tasks, ReMass-iForest and ReMass-ReFeat are found to be either
competitive or better.

The idea of relative mass in ReMass-iForest is similar to that of relative den-
sity in LOF and our empirical results show that ReMass-iForest and LOF have
similar anomaly detection performance. However, ReMass-iForest runs signifi-
cantly faster than LOF in large data sets because it does not require distance or
density calculations.
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Abstract. The common assumption that training and testing samples
share the same distribution is often violated in practice. When this hap-
pens, traditional learning models may not generalize well. To solve this
problem, domain adaptation and transfer learning try to employ training
data from other related source domains. We propose a multiple sources
regularization framework for this problem. The framework extends clas-
sification model with regularization by adding a special regularization
term, which penalizes the target classifier far from the convex combina-
tion of source classifiers. Then this framework guarantees the target clas-
sifier minimizes the empirical risk in target domain and the distance from
the convex combination of source classifier simultaneously. By the way,
the weights of the convex combination of source classifiers are embed-
ded into the learning model as parameters, and will be learned through
optimization algorithm automatically, which means our framework can
identify similar or related domains adaptively. We apply our framework
to SVM classification model and develop an optimization algorithm to
solve this problem in iterative manner. Empirical study demonstrates the
proposed algorithm outperforms some state-of-art related algorithms on
real-world datasets, such as text categorization and optical recognition.

Keywords: domain adaptation, multiple sources regularization.

1 Introduction

The common assumption that training and testing samples share the same dis-
tribution is often violated in practice. When this happens, traditional learning
models may not generalize well even with abundant training samples. Domain
Adaptation is one of these situations where little labeled data is provided from
target domain, but large amount of labeled data from source domains are avail-
able. Domain adaptation methods [1,2] learn robust decision function by lever-
aging labeled data both from target and source domains which usually don’t
share the same distributions. This problem involves in many real world applica-
tion such as natural language processing[3], text categorization[4], video concept
detection[5], WiFi localization[4], remote sensor network[2], etc.
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Most of domain adaptation methods can be classified into two classes accord-
ing to their strategies of adapting source information: either with sources labeled
data or with sources classifier. The former strategy selects source labeled sam-
ples that match target distribution to overcome distribution discrepancy. For
example, [6] predicts unlabel samples via an ensemble method in local region
including labeled samples of sources. [7] iteratively draws sources labeled sam-
ples that are in the same cluster with target labeled data in projected subspace.
Alternately, the latter strategy try to get the final target classifier by weighted
sum of target classifier fT trained from target domain data and multiple source
classifiers {fS1 , fS2 , . . . , fSm} trained from source domain data. [8] seeks a con-
vex combination of fT and 1

m

∑
k fSk

by cross validation. [9] proposes Adaptive
Support Vector Machine (ASVM) to learn fT by incorporating the weighted sum
of source classifiers

∑
k ∂kfSk

into the objective function of SVM, where ∂k is
evaluated by a meta-learning procedure. [10] obtains the final fT by maximizing
output consensus of source classifiers. [11] modifies fT and penalizes the output
difference between fT and each fSk

on unlabeled data.
We focus on the strategy of adapting source classifiers in this paer. Based on

the related works, it can be summarized one of the simplest methods to adapt
source classifiers is treating their weighted sum as a single classifier. However,
performance of this strategy is dependent on the weights for target and sources
classifiers. It would be appropriate to assign higher weights to sources that are
more similar with target domain. To our best of knowledge, although a few
works have been addressed on domain weights assignment, little of them try to
learn the appropriate weights automatically. [8] weights each source equally. [9]
evaluates weights by meta-learning algorithm which is not promising since fea-
tures of meta-learning are only dependent on the output of source classifiers. [11]
determines domain weights by estimating the distribution similarity by MMD.

In this paper, we propose a novel way of adapting source classifiers by con-
sidering multiple source classifiers as prior information. Instead of learning the
combination weights of target and source classifiers explicitly, we learn the tar-
get classifier directly from target domain data while keeping the target classifier
approximates a convex combination of source classifiers as closely as possible,
and the convex combination weights of source classifiers will be learned jointly
with the learning of target classifier through optimization methods.

To illuminate the motivation of our paper, let us consider an example in Fig-
ure 1. Because of the rareness of labeled data in target domain, it is hard to
learn a good target classifier directly. For example, in Figure 1 (a), only one la-
beled sample of each class is provided, denoted by 	/∗ respectively. There exists
a very large classifier space in which every classifier can separate the training
samples well with high uncertainty on test samples however. As depicted in Fig-
ure 1(a), the horizontal hyperplane (solid line with circle) generalizes best based
on the real classes distribution indicated by different colors. But we will get a
bad hyperplane (dotted line with triangular) by large margin principle[12]. How-
ever, by the introduction of some useful prior information contained in related
source domains, we can improve the target classifier performance on test samples.
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We can restrict the target classifier approximates the convex combination of
source classifiers, because we think the convex combination of the source clas-
sifiers is a compact version of the source classifiers. In this way, we can exploit
every source classifier with high confidence. Further, when we add the convex
combination of the source classifiers as a regularization term to object function,
it will shrink the search space of target classifier greatly and provide a good way
to optimize it. For example, Figure 1(b) presents two source classifiers (dotted
line with diamond), and a gray region which represents the convex combination
space of the two source classifiers. It is clear that if the target classifier is in
or near to the convex combination space of source classifiers, the target classi-
fier (dotted line with triangular in Figure 1 (b)) will have better generalization
performance than the one learned by large margin principle.

Therefore, we propose a multiple sources regularization framework based on
the above motivation. The framework extends general classification model with
regularization by adding a special regularization term, which penalizes the tar-
get classifier far from the convex combination of source classifiers. Then this
framework make sure the target classifier minimizes the empirical risk in target
domain and the distance from the convex combination of source classifier simul-
taneously. By the way, the weights of the convex combination of source classifiers
are embedded into the learning model as parameters, and will be learned through
optimization algorithm automatically, which means our framework can identify
similar or related domains adaptively. we propose an iterative algorithms to solve
this optimization problem efficiently.
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Fig. 1. Intuitive example about multiple sources regularization

2 Multiple Sources Regularization Framework

To solve multiple sources domain adaptation problem, we propose a multi-
ple sources regularization framework. Supposed there exist m source domain
data sets, denoted by S = {S1, S2, . . . , Sm}. We assume that all the samples
in source data sets are labeled, etc. Sk = {Xsk , ysk} and |Xsk | = |ysk | for
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all k ∈ {1, . . . ,m}. ysk is output variable, which can be either continuous or
discrete. Correspondingly, target domain is unique and is divided into labeled
training set and unlabel testing set, etc. T = {(XL, yL), XU}. A multiple sources
domain adaptation problem can be summarized as: (a) each source domain has a
different but similar distribution with target domain, PrSk

(X,Y ) �= PrT (X,Y ).
(b) scale of training set of target domain is much smaller than that of test set,
|XL| � |XU |. (c) source and target domain share the same output variable. (d)
the objective of multiple sources domain adaptation is to utilize source data S to
improve learning performance of target domain T . We firstly discuss our regu-
larization framework under general linear form. Then the framework is extended
to RKHS (Reproducing Kernel Hilbert Space) with SVM hinge loss function for
classification problem. Thirdly, an iterative optimization algorithm is proposed
to efficiently solve multiple sources regularization SVM.

2.1 Multiple Sources Regularization Framework

In this section, multiple source regularization (MSR) framework is introduced
for classification. We start from the linear classification model. Linear model is
more intuitive and geometrically interpretable. Denote linear predictive function
f(x) = wTx + b, where w is feature weights and b is bias term of separating
hyperplane. Learning algorithms seek to find optimum w and b that minimize
structural risk, such as hinge loss. Generally, structural risk trade off between
empirical risk and regularization:

min
w,b

l∑
i=1

L(xi, yi;w, b) + ∂Φ(w) (1)

L(·) is loss function while Φ(·) is regularization term. Φ(·) penalizes function com-
plexity to avoid overfitting. When labeled data number l is large enough, Eq(1) is
a tight upper bound of expected risk. However, under domain adaptation setting,
training samples of T would be scarce. Therefore, structural risk will be too loose
to be used as upper bound under supervised learning setting. As we know, loose
bound created by Eq(1) will be tightened by introducing unlabeled data which is
referred as semi-supervised learning. Alternately, our framework alleviates this
problem by including multiple source classifiers trained from source domain la-
beled data. To do this, we modify Eq(1) by adding an extra regularization term
as following:

min
w,b,θ

l∑
i=1

L(xi, yi;w, b) + ∂Φ(w) + β‖w−Wsω‖22

s.t.

m∑
k=1

ωk = 1, ω ≥ 0 (2)
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where Ws = [ws1, ws2, . . . , wsm] ∈ Rd×m. wsk is a feature weight vector learned
from the k-th source domain Sk. Learning model of each source domain should
be consistent with that of target domain in order to maintain homogeneity of
model coefficients. The last regularization term of Eq(2) penalizes w far away
from the convex combination of m source classifiers. β > 0 trade off between
structural risk and multiple source regularization. Moreover, β ∈ Δ denotes
the weight vector that determines convex combination of source classifiers. Δ
represents the m dimensional simplex: Δ = {β :

∑m
k=1 ωk = 1, ωk ≥ 0}. Our

method of determining β also differs from other state-of-art multiple source
domain adaptation methods: other than manual setting, meta learning or model
selection, our framework embedded the auxiliary domain weights vector β into
model Eq(2) as a parameter, then β can be learned by optimization method
automatically. When m = 1, Eq(2) degenerate to a simple situation. β is fixed
to be 1 which make Eq(2) much similar to Eq(1) from optimization aspect.
Therefore, we only focus on the situation where m > 1 in Eq(2) in our paper.

2.2 Multiple Sources Regularization SVM (MSRSVM)

Loss function L in Eq(2) varies according to different models. It is easy to realize
that our framework can be adapted to a wide variety of models including SVM,
logistic regression, ridge regression and so on. SVM hinge loss is discussed in
detail in the following. We choose SVM for discussion with the following reasons:
(a) It is convenient to transform Eq(2) to its dual problem, extending linear
model to kernel form.(b) SVM fits for problems with very little training samples
which is consistent with the setting of domain adaptation.

Firstly, with hinge loss, Eq(2) can be reformulated as:

min
w,b,ξ,θ

l∑
i=1

Φi + ∂Φ(w) + β‖w−Wsβ‖22 (3)

s.t. yi(w
Tx+ b) ≥ 1− Φi, Φi ≥ 0, i ∈ L

m∑
k=1

ωk = 1, ω ≥ 0

where ξ is the slack variable. From the viewpoint of optimization, Eq(3) is a QP
problem. While Eq(3) is QP, it can be solved by numeric optimization package
directly.

However, we transform Eq(3) to dual form instead of optimizing the prime
problem directly for two reasons: a) variable dimension of Eq(3) is d+n+m+1
while dual problem shrinks to n + m. Optimizing the dual problem reduces
the problem complexity. b) the dual problem can generalize the linear model
to nonlinear case in RHKS (Reproduced Hilbert Kernel Space). It is worth to
note that we do not transform all variables to dual problem. β remains fixed in
prime form. This is because Eq(3) can be transform to an optimization whose
structure is very closed to regular SVM dual problem without β. Then the
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Lagrange function of Eq(3) can be formulated as:

L(w, b, ξ,α,μ) = C
∑
i∈L

Φi +
1

2
‖w‖2 + ‖w −Wsβ‖2

−
∑
i∈L

θi
(
yiw

Tδ(xi) + b− 1 + Φi
)

+
∑
i∈L

μiΦi

Setting derivative of Lagrange function with (w, b, Φ) to zero and adding other
constraints under KKT condition, we obtain the dual problem:

max
β

min
α

θT e− 1

2(1 + β)

(
βωTπsω − θTY KY θ

)
−βωTΣθ

s.t. θT y = 0

0 ≤ θ ≤ C
m∑
k=1

ωk = 1, ω ≥ 0 (4)

Where πs ∈ Rm×m is a symmetric matrix representing correlation of feature
weight among multiple source domains, analogous to covariance matrix of Gaus-
sian distribution. Moreover, Σθ is a vector related to the correlation of feature
weight between target domain and source domain. πs and Σ can be evaluated
using definition of its element in kernel space:

πs =

⎛⎜⎝θTs1Ks1,s1θs1 θ
T
s1Ks1,s2θs2 . . .

θTs2Ks2,s1θs1 θ
T
s2Ks2,s2θs2 . . .

...
...

. . .

⎞⎟⎠
Σ =

⎛⎜⎝ θTs1Ks1,t

...
θTsmKsm,t

⎞⎟⎠Y (5)

Where α and Y = diag(y) denote dual variable and output diagonal matrix
respectively. K are the kernel matrix constructed by input patterns from either
source or target domains. We need to note that θsk is optimized SVM dual
variable training only on Sk.

Eq(4) appears to be more complicated than Eq(3). Actually, Eq(4) is a saddle-
point minmax problem, which can be regard as a zero sum game between two
players. In section 2.3, we develop a two stage iterative optimization algorithm to
solve Eq(4) in a general framework. This problem is similar to the optimization
problem referred in DIFFRC[13], SimpleNPKL[14] and SimpleMKL[15].
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2.3 Iterative Optimization Algorithm for MSRSVM

The special structure of Eq (4) indicates that MSRSVM needs a customized
optimization algorithm. Fortunately, many optimization algorithms have been
proposed to solve similar min-max problems. The main idea of such algorithms
is to separately optimize part of variables while keep others fixed. It turns out
that Eq (4) can be decomposed into two subproblems.

The main steps of our optimization algorithm for MSRSVM is described as
following. Denote J(θ, ω) as the objective function of Eq (4) and θ∗ and ω∗ as
the optimal solution of model variables. The complicated min-max problem of
Eq (4) can be decomposed into two simple optimization problems: minimizing
J(θ, ω̃) as well as maximizing J(θ̃, ω) where θ̃ and ω̃ are fixed values. Therefore,
after initialization of α and β, the algorithm will loop over two steps until stop
condition is met:

– Step 1: solve subproblem min0≤ω≤C,ωT y=0 J(θ, ω̃) under fixed ω̃.
– Step 2: solve subproblem max∑

k θk=1,θ≥0 J(θ̃, ω) under fixed θ̃.

The optimization problem in Step 1 shares similar problem structure with
common SVM. They differ only on the first order term of objective functions.
The first order term of common SVM’s objective function is all one vector e
while Eq (4) has an extra negative term βωTΣ. Fast algorithms such as SMO or
SVMlight could be adapted to solve this subproblem of MSRSVM without many
modifications. Thus we optimize subproblem of Step 1 using a modified version
of regular SVM algorithms. Without referring any specific implementation of
SVM algorithm, we use SVMSolver (K, f, y) to define a general solver for SVM
optimization whereK, f, y denote kernel matrix, first order term and label vector
respectively.

The subproblem of Step 2 is a classical QP problem. Since dimension of β
is m and m is not large usually, Newton method is appropriate to optimize β.
However, as stated in section 2.1, Eq (4) is a saddle point minmax problem. If
both optimization steps are taken to local optimum point, fluctuation happens
and progress towards global optimum slows down. Therefore, as an alternately
strategy we update β by taking one gradient step at each iteration. Regular
gradient update formula can not be used here because the simplex constraint
exists, and gradient method is for unconstrained optimization generally. In this
paper, reduced gradient method is introduced to handle this simplex constraint
optimization problem [15]. This method evaluates ascent gradient firstly, then
projects the gradient into simplex using the formula stated below:

D =

⎧⎪⎪⎨⎪⎪⎩
0 if ωk = 0, πJα̃

πθk
− πJα̃

πθμ
> 0

−πJα̃

πθk
+ πJα̃

πθμ
if ωk = 0, k �= μ∑

θν>0

(
πJα̃

πθμ
− πJα̃

πθν

)
for k = μ

(6)

Where πJα̃

πθk
and πJα̃

πθμ
are the gradients of objective function with fixed θ̃, k

and μ are vector indexes. Then we update β by using: ωt+1 = ωt + ϕD. ϕ



Domain Transfer via Multiple Sources Regularization 529

denotes the step length. Boyed [16] showed that when ϕ is small enough at each
iteration, global convergence could be guaranteed. ϕ is choosen to be O(1t ). We
use objective gap as convergence criterion.Objective gap represents absolute
difference between the objective value after Step 1 and Step 2 within the same
iteration. Algorithm 1 summarizes the whole iterative optimization algorithm.

Algorithm 1. Iterative optimization algorithm for MSRSVM

1. Input: target training data (Xt, yt), m source data sets
{(Xs1 , ys1), (Xs2 , ys2), . . . , (Xsm , ysm )};

2. Output: optimized variable τ∗ and ∂∗;
3. initialize τ0 = 0 and ∂0 = 1

m
e;

4. for i=1 to m do
5. construct kernel matrix Ksi using Xsi , Ksi,t using Xsi and Xt;
6. optimize corresponding dual variable τsi = SVMSolver (Ksi , e, ysi);
7. for j=1 to m do
8. construct kernel matrix Ksi,sj using Xsi and Xsj ;
9. end for
10. end for
11. calculate Σs and γ by Eq (5) with Ksi,sj and Ksi,t for i, j ∈ {1, . . . ,m};
12. while convergence criterion is not met do
13. solve modified SVM subproblem, τt = SVMslover (Kt, (1 + θ)(e− θ∂T

t γ), yt);
14. calculate D using Eq (6), then ∂t and update β: ∂t+1 = ∂t + ηD, and η = 1

t
;

15. end while

3 Experiment

To demonstrate the effectiveness of our proposed framework MSRSVM, we per-
form experiments on multiple transfer learning data sets. They are real world
data sets that frequently used in the context of transfer learning or multitask
learning. Performance of MSRSVM are compared with some other state-of-art
algorithms that can handle multiple source domains.

3.1 Data Sets and Experiment Setup

Three data collections are used in our experiment study, they are Reuters-
21578[17], 20-Newsgroups[18] and Letters. Among them, Reuters-21578 and 20-
Newsgroups are benchmark of text categorization for transfer learning. Letters
is optical recognition dataset that is preprocessed for multitask learning.

Data Sets. All data sets that have been used in our experiment study are binary
classification tasks. Reuters-21578 and 20-Newsgroups are both text categoriza-
tion data collections with hierarchical class structure. For each dataset, we need
to construct both target and source domain dataset. Target and source domain
datasets are sampled from different subcategories of the same top categories.
For example, for dataset ”comp vs rec”, its source task dataset is sampled from
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subcategories ”comp.windows.x” and ”rec.autos”, while target task dataset is
sampled from subcategories ”comp.graphics” and ”rec.motocycles”. Therefore,
source and target domain datasets share the same feature space but different
words distribution. But in our multiple source adaptation setting, we need more
than one source domain datasets for one target domain prediction task. To solve
this problem, all the source domain datasets are grouped and shared as source do-
main datasets. For example, in 20-Newsgroups task, the source domain datasets
of ”comp vs sci”, ”rec vs talk”, ”rec vs sci”, ”sci vs talk”, ”comp vs rec” and
”comp vs talk” constitute of the multiple source domains. While keeping the
6 source domains fixed, we can construct different multiple source adaptation
problems with different target domain datasets.

For Letters dataset without hierarchical class structure, we build different
learning tasks by randomly sampling from two different handwritten digit letters
that are difficult to be distinguished. For example, ”c/e” denotes a prediction
task that ”c” is the positive class while ”e” is the negative class. Each task is
treated as target task and all the other tasks as source tasks. For example, if
”c/e” is target task, then task ”g/y”, ”m/n”, ”a/g”, ”i/j”, ”a/o”, ”f/t” and
”h/n” form the 7 source domain tasks.

Baseline. We compare the performance of MSRSVM with other SVM based
learning algorithms which can cope with multiple sources adaptation problems.
They are ASVM[9], FR[19], MCCSVM[8]and regular SVM without any transfer.
ASVM can be obtained online, which is based on LibSVM and programmed in
C++. Others including MSRSVM are implemented in matlab basing on SMO.
ASVM combines source classifiers with weights by an independent meta learning
algorithm. SVM classification parameter C is fixed to 10. Other related parame-
ter are set to default values. Moreover, RBF kernel k(x, y) = e−κ‖x−y‖

2

is chosen
as kernel function, where α is set to 0.0001 for text data and 0.01 for optical
recognition. For MSRSVM, model parameter β is set to 1.

3.2 Performance Study

We adopt classification accuracy as evaluation metric to compare MSRSVM with
other four state-of-art methods. All of the accuracy results in this paper are the
average results of 10 experiments. The accuracy comparison results are summa-
rized in Table 1 and Table 2 for text and Letters dataset respectively. Training
ratio are fixed to 20% for text datasets, and 30 points are randomly selected as
training set for Letters dataset. Note that the best results are highlighted in bold
in the Table 1 and Table 2. On Reuters-21578 dataset, MSRSVM performs better
than all of the baseline algorithms on all of the 3 tasks. For example, MSRSVM
get the accuracy of 60.81% on Pe vs PI dataset, while ASVM get the accuracy
of 59.27%, which is the best one of baseline methods. On 20-Newsgroup dataset,
MSRSVM improves the accuracies significantly in most of time, comparing with
the baseline methods. MSRSVM performs at least 3% better than regular SVM
on 4 of 6 data sets. Meanwhile, MSRSVM outperforms other methods on all data
sets except Comp Vs Talk where MCCSVM achieves highest accuracy, slightly
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Table 1. Accuracy comparison on text data sets(%)

Method
Reuters 20-Newsgroup

O vs Pe O vs Pl Pe vs Pl C vs S T vs R R vs S S vs T C vs R C vs T

SVM 61.25 57.25 58.91 83.22 86.19 93.76 88.01 90.37 86.94
MCCSVM 60.73 55.63 58.46 84.37 87.80 89.27 89.66 88.06 90.76

FR 53.17 55.28 48.26 65.87 75.99 52.80 57.54 53.07 66.91
ASVM 57.28 56.68 59.27 83.00 64.80 76.43 50.23 51.12 65.26

MSRSVM 62.50 59.40 60.81 85.92 91.40 94.76 93.02 93.38 89.27

better than MSRSVM (less than 2%). Moreover, ASVM performs surprisingly
poor on some tasks of 20-Newsgroup such as Sci vs Talk and Comp vs Rec,
while MSRSVM behaves stable on all of the text datasets. Similar conclusions
can be reached according to Letters dataset. MSRSVM achieves the highest ac-
curacy on 5 of 8 datasets, and MCCSVM achieves on 3 of 8. And the performance
of MSRSVM is still more stable than the others. Thus on the whole, MSRSVM
significantly improves the accuracy most of the time.

Table 2. Accuracy comparison on Letters dataset(%)

Method c vs e g vs y m vs n a vs g i vs j a vs o f vs t h vs n

SVM 84.89 67.98 81.02 83.59 67.15 82.49 80.79 81.87
MCCSVM 84.07 68.99 87.58 89.79 94.49 88.25 78.14 90.14

FR 50.00 50.68 50.26 82.50 47.18 53.91 54.42 46.17
ASVM 78.11 50.00 50.38 60.64 37.60 50.32 52.21 62.71

MSRSVM 89.48 71.52 87.59 87.73 90.07 86.86 83.20 91.10

Performance of classifier may be dependent on the number of training data.
When we refer training data here, it means training data of target domain. As
mention before, samples of sources domains are fixed and all labeled. Figure 2
depicts the performance of MSRSVM, regular SVM and MCCSVM, with respect
to different ratio or number of training data in target domain. Training data of
target domain is assumed to be sparse in domain adaptation problem. Thus
the ratio of training data varies from 0.05 to 0.3 for text datasets, and number
of training data for Letters datasets varies from 18 to 38(1∼2% of the whole
sample set) in the experiments. MSRSVM is compared with regular SVM and
MCCSVM because they are more sensitive to the size of training data. Two
important conclusions can be reached based on Figure 2. Firstly, performance of
the three algorithms improve with the increase of the size of training data most
of time. This is because the target classifier can get more information about
target domain with more and more labeled data coming from target domain.
Secondly, MSRSVM outperforms regular SVM and MCCSVM steadily most of
time, especially when the size of training data are small. For example, MSRSVM
wins on nearly all 20-Newsgroup data sets with only 5% of training data except
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for Rec vs Sci. Similar phenomena happens for Letters datasets. The accuracy
gap between MSRSVM and MCCSVM is maximum when the number of training
data is about 18-22. The curves also demonstrate MSRSVM can utilize the
information of source domains more effectively than MCCSVM.
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Fig. 2. Accuracy wrt ration or number of training data

4 Conclusion

We address multiple source domain adaptation problem in this paper. There
exist more than one similar or related source domains whose distributions are not
identical with the target domain. To adaptively utilize the information of sources
domains and improve the performance of target classifier, we propose a simple
framework named Multiple Source Regularization framework. This framework
regularizes target classifier and make it approximate the convex combination of
sources’ classifier, while the combination weights will be learned adaptively. Our
idea is that the sources information in regularization function acts as a prior to
target domain. By substituting SVM’s loss function into MSR framework, we
propose a Multiple Source Regularization SVM (MSRSVM) model, and develop
an optimization algorithm to solve this model in iterative manner. Experiments
on both text and optical recognition datasets verify that MSRSVM outperforms
many other state-of-art domain adaptation algorithms.
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Abstract. This paper studies the problem of mining diversified sets of
shared decision trees (SDTs). Given two datasets representing two appli-
cation domains, an SDT is a decision tree that can perform classification
on both datasets and it captures class-based population-structure simi-
larity between the two datasets. Previous studies considered mining just
one SDT. The present paper considers mining a small diversified set of
SDTs having two properties: (1) each SDT in the set has high qual-
ity with regard to “shared” accuracy and population-structure similarity
and (2) different SDTs in the set are very different from each other. A
diversified set of SDTs can serve as a concise representative of the huge
space of possible cross-domain similarities, thus offering an effective way
for users to examine/select informative SDTs from that huge space. The
diversity of an SDT set is measured in terms of the difference of the at-
tribute usage among the SDTs. The paper provides effective algorithms
to mine diversified sets of SDTs. Experimental results show that the al-
gorithms are effective and can find diversified sets of high quality SDTs.

Keywords: Knowledge transfer oriented data mining, research by anal-
ogy, shared decision trees, cross dataset similarity, shared accuracy sim-
ilarity, matching data distribution similarity, tree set diversity.

1 Introduction

Shared knowledge structures across multiple domains play an essential role in
assisting users to transfer understanding between applications and to perform
analogy based reasoning and creative thinking [3,6,9,8,10], in supporting users
to perform research by analogy [4], and in assessing similarities between datasets
in order to avoid negative learning transfer [16]. Motivated by the above, Dong
and Han [5] studied the problem of mining knowledge structures shared by two
datasets, with a focus on mining a single shared decision tree. However, pro-
viding only one shared decision tree may present only a limited view of shared
knowledge structures that exist across multiple domains and does not offer users
a concise representative of the space of possible shared knowledge structures.
Moreover, computing all possible shared decision trees is infeasible. The purpose
of this paper is to overcome the above limitations by studying the problem of
mining diversified sets of shared decision trees across two application domains.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 534–547, 2014.
c© Springer International Publishing Switzerland 2014
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In a diversified set of shared decision trees, each individual tree is a high
quality shared decision tree in the sense that (a) the tree has high accuracy
in classifying data for each dataset and the tree has high cross-domain class-
distribution similarity at all tree nodes, and (b) different trees are structurally
highly different from each other in the sense that they use very different sets
of attributes. The requirements in (a) will ensure that each shared decision
tree captures high quality shared knowledge structure between the two given
datasets, providing the benefit that each root-to-leaf path in the tree corresponds
to a similar rule (having similar support and confidence) for the two datasets
and the benefit that the tree nodes describe similar data populations in the two
datasets connected by similar multi-node population relationships.

Fig. 1. Diversified Representatives
of SDT Space

Presenting too many shared decision trees
to human users will imply that users will
need to spend a lot of time to understand
those trees in order to select the ones most
appropriate for their application. Efficient
algorithms solving the problem of mining di-
versified sets of shared decision trees meet-
ing the requirements in (b) can offer a small
representative set of high quality shared de-
cision trees that can be understood without
spending a lot of time, hence allowing users
to more effectively select the tree most ap-
propriate for their situation. Figure 1 illustrates the points given above, with
the six stars as the diversified representatives of all shared decision trees.

The main contributions of this paper include the following: (1) The paper
motivates and formulates the diversified shared decision tree set problem. (2)
It presents two effective algorithms to construct diversified high quality shared
decision tree sets. (3) It reports an extensive experimental evaluation on the
diversified shared decision tree set mining algorithms. (4) The shared decision
trees reported in the experiments are mined from high dimensional microarray
datasets for cancers, which can be useful to medical researchers.

The rest of the paper is organized as follows. Section 2 summarizes related
work. Section 3 formally introduces the diversified shared decision tree set prob-
lem and associated concepts. Sections 4 presents our algorithms for mining di-
versified shared decision tree sets. Section 5 reports our experimental evaluation.
Section 6 summarizes the results and discusses several future research problems.

2 Related Work

Limited by space, we focus on previous studies in four highly related areas.

Importance of Similarity/Analogy from Psychology and Cognitive
Science: Psychology/cognitive science studies indicate that analogy plays a vital
role in human thinking and reasoning, including creative thinking. For example,
Fauconnier [6] states that “Our conceptual networks are intricately structured by
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analogical and metaphorical mappings, which play a key role in the synchronic
construction of meaning ...”. Gentner and Colhoun [9] state that “Much of hu-
mankind’s remarkable mental aptitude can be attributed to analogical ability.”
Gentner and Markman [10] suggest “that both similarity and analogy involve a
process of structural alignment and mapping.” Christie and Gentner [3] suggest,
based on psychological experiments, that “structural alignment processes are
crucial in developing new relational abstractions” and forming new hypothesis.

Learning Transfer: In learning transfer [16], it is typical to use available struc-
ture/knowledge of an auxiliary application domain to help build better classi-
fiers/clusters for a target domain where there is a lack of data with class label
or other domain knowledge. The constructed classifiers are not intended to cap-
ture cross-domain similarities. In contrast, our work focuses on mining (shared)
knowledge structures to capture cross domain similarity; this is a key difference
between learning transfer and our work. One of the intended uses of our mining
results is for direct human consumption. Our mining results can also be used
to assess cross domain similarity, to help avoid negative transfer where learning
transfer actually leads to poorer results, since learning transfer is a process that
is based on utilizing cross domain similarities that exist.

Shared Knowledge Structure Mining: Reference [4] defined the cross do-
main similarity mining (CDSM) problem, and motivated CDSM with several
potential applications. CDSM has big potential in (1) supporting understand-
ing transfer and (2) supporting research by analogy, since similarity is vital to
understanding/meaning and to identifying analogy, and since analogy is a fun-
damental approach frequently used in hypothesis generation and in research.
CDSM also has big potential in (3) advancing learning transfer since cross do-
main similarities can shed light on how to best adapt classifiers/clusterings across
given domains and how to avoid negative transfer. CDSM can also be useful for
(4) solving the schema/ontology matching problem. Reference [5] motivated and
studied the shared decision tree mining problem, but that paper focused on min-
ing just one shared decision tree. Several concepts of this paper were borrowed
from [5], including shared accuracy, data distribution similarity, weight vector
pool (for two factors), and information gain for two datasets. We enhance that
paper by considering mining diversified sets of shared decision trees.

Ensemble Diversity: Much has been done on using ensemble diversity among
member classifiers [14] to improve ensemble accuracy, including data based di-
versity approaches such as Bagging [2] and Boosting [7]. However, most previ-
ous studies in this area focused on classification behavior diversity, in the sense
that different classifiers make highly different classification predictions. Several
studies used attribute usage diversity to optimize ensemble accuracy, in a less
systematic manner, including the random subspace method [13] and the distinct
tree root method [15]. Our work focuses on attribute usage diversity aimed at
providing diversified set of shared knowledge structures between datasets. The
concept of attribute usage diversity was previously used in [12], to improve clas-
sifier ensemble diversity and classification accuracy for just one dataset.
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3 Problem Definition

In this section, we introduce the problem of mining diversified sets of shared
decision trees. To that end, we also need to define a quality measure on diversified
sets of shared decision trees, which is based on the quality of individual shared
decision trees and on the diversity measure for sets of shared decision trees.

As mentioned earlier, a shared decision tree (SDT) for a given dataset pair
(D1 : D2) is a decision tree that can classify both data in D1 and data in D2.

We assume thatD1 andD2 are datasets with (1) an identical set of class names
and (2) an identical set1 of attributes. Our aim is to mine a small diversified set
of high quality SDTs with these properties: (a) each tree in the set (1) is highly
accurate in each Di and (2) has highly similar data distribution in D1 and D2,
and (b) different trees in the set are highly different from each other.

3.1 Shared Accuracy and Data Distribution Similarity of SDT Set

The shared accuracy and data distribution similarity measures for shared deci-
sion tree (SDT) sets are based on similar measures defined for individual SDTs
[5], which we will review below. Let T be an SDT for a dataset pair (D1 : D2),
and let AccDi(T ) denote T ’s accuracy

2 on Di.

Definition 1. The shared accuracy of T (denoted by SA(T )) is defined as the
minimum of T ’s accuracies on D1 and D2: SA(T ) = min(AccD1(T ), AccD2(T )).

The data distribution similarity of T reflects population-structure (or class
distribution) similarity between the two datasets across the nodes of T . The
class distribution vector of Di at a tree node V is defined by

CDVi(V ) = (Cnt(C1, SD(Di, V )), Cnt(C2, SD(Di, V ))),

where Cnt(Cj , SD(Di, V )) = |{t ∈ SD(Di, V ) | t’s class is Cj}|, and SD(Di, V )
is the subset of Di for V (satisfying the conditions on the root-to-V path). The

distribution similarity (DSN) at V is defined asDSN(V ) = CDV 1(V )·CDV 2(V )
‖CDV 1(V )‖·‖CDV 2(V )‖ .

Definition 2. The data distribution similarity of an SDT T over (D1 : D2) is
defined as DS(T ) = avgVDSN(V ), where V ranges over nodes of T .

We can now define SA and DS for shared decision tree sets.

Definition 3. Let TS be a set of SDTs over dataset pair (D1 : D2). The shared
classification accuracy of TS is defined as SA(TS) = avgT∈TSSA(T ), and the
data distribution similarity of TS is defined as DS(TS) = avgT∈TSDS(T ).

1 If D1 and D2 do not have identical classes and attributes, one will need to identify
an 1-to-1 mapping between the classes of the two datasets, and an 1-to-1 mapping
between the attributes of the two datasets. The 1-to-1 mappings can be real or
hypothetical (for “what-if” analysis) equivalence relations on the classes/attributes.

2 When Di is small, one may estimate AccDi(T ) directly using Di. Holdout testing
can be used when the datasets are large.
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3.2 Diversity of SDT Set

To define the diversity of SDT sets, we need to define tree-pair difference, and
we need a way to combine the tree-pair differences for all possible SDT pairs.3

We measure the difference between two SDTs in terms of their attribute us-
age summary (AUS). Let A1, A2, . . . , An be a fixed list enumerating all shared
attributes of D1 and D2.

Definition 4. The level-normalized-count AUS (AUSLNC) of an SDT T over
(D1 : D2) is defined as

AUSLNC(T ) = (
CntT (A1)

avgLvlT (A1)
, . . . ,

CntT (An)

avgLvlT (An)
),

where CntT (Ai) denotes the number of occurrences of attribute Ai in T , and
avgLvlT (Ai) denotes the average level of A′

is occurrences in T .

The root is at level 1, the children of the root are at level 2, and so on. In the
AUSLNC measure, nodes near the root have high impact since those nodes have
small level number and attributes used at those nodes often have small avgLvlT .

One can also use the level-listed count (AUSLLC) approach for AUS. Here we
use a matrix in which each row represents the attribute usage in one tree level:
Given an SDT T with L levels, for all attributes Ai and integers l satisfying 1 ≤
l ≤ L, the (l, i) component of AUSLLC has the value CntT (l, Ai) (the occurrence
frequency count for attribute Ai in the lth level of T ).
Remark: AUSLNC pays more attention to nodes near the root, while AUSLLC gives
more emphasis to levels near the leaves (there are many nodes at those levels).

Definition 5. Given an attribute usage summary measure AUSμ, the tree pair
difference (TPD) for two SDTs T1 and T2 is defined as

TPDμ(T1, T2) = 1− AUSμ(T1) · AUSμ(T2)

‖AUSμ(T1)‖ · ‖AUSμ(T2)‖
.

We can now define the SDT set diversity concept.

Definition 6. Given an SDT set TS and an AUS measure AUSμ, the diversity
of TS is defined as TDμ(TS) = avg{TPDμ(Ti, Tj) | Ti, Tj ∈ TS, and i �= j}.

3.3 Diversified Shared Decision Tree Set Mining Problem

To mine desirable diversified SDT sets, we need an objective function. This
section defines our objective function, which combines the quality of the SDTs
and the diversity among the SDTs.

Definition 7. Given an attribute usage summary method AUSμ, the quality
score of an SDT set TS is defined as:

SDTSQμ(TS) = min(SA(TS),DS(TS),TDμ(TS)) ∗ avg(SA(TS),DS(TS),TDμ(TS)).

3 We borrow the diversity concepts from [12], which considered mining diversified
decision tree ensembles for one dataset.
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We also considered other definitions using e.g. average, weighted average, and
the harmonic mean of the three factors. They were not selected, since they give
smaller separation of quality scores or require parameters from users. The above
formula is chosen since it allows each of SA, DS, and TD to play a role, it is
simple to compute, and it does not require any parameters from users.

We now turn to defining the diversified SDT set mining problem.

Definition 8 (Diversified Shared Decision Tree Set Mining Problem).
Given a dataset pair (D1:D2) and a positive integer k, the diversified shared
decision tree set mining problem (KSDT) is to mine a diversified set of k SDTs
with high SDTSQ from the dataset pair.

An example SDT set mined from two cancer datasets will be given in § 5.

4 KSDT-Miner

This section presents two KSDT mining algorithms, for mining diversified high
quality SDT sets. One is the parallel KSDT-Miner (PKSDT-Miner), which builds
a tree set concurrently and splits one-node-per-tree in a round-robin fashion; the
other one is the sequential KSDT-Miner (SKSDT-Miner), which mines a tree set
by building one complete tree after another.

In comparison, PKSDT-Miner gives all SDTs almost equal opportunity4 in
selecting desirable attributes for use in high impact nodes near the roots of SDTs,
whereas SKSDT-Miner gives SDTs built earlier more possibilities in selecting
desirable attributes (even for use at low impact nodes near the leaves), which
deprives the chance of later SDTs in using those attributes at high impact nodes.

Limited by space and due to the similarity in most ideas except the node split
order, we present PKSDT-Miner and omit the details of SKSDT-Miner.

4.1 Overview of PKSDT-Miner

PKSDT-Miner builds a set of SDTs in parallel, in a node-based round-robin
manner. In each of the round-robin loop, the trees are processed in an ordered
manner; for each tree, one node is selected and spilt. Figure 2 illustrates with
two consecutive states in such a loop: 2(a) gives three (partial) trees (blank
rectangles are nodes to be split), and 2(b) gives those trees after splitting node
V2 of T2. Here, PKSDT-Miner splits node V2 in T2 even though V1 in T1 can be
split. PKSDT-Miner will select a node in T3 to split next.

4.2 Aggregate Tree Difference

To build highly diversified tree sets, the aggregate tree difference (ATD) is used
to measure the differences between a new/modified tree T and the set of other
trees TS. One promising approach is to define ATD as the average of γ smallest

4 An attribute may be highly desirable in more than one tree.
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(a) State p (b) State p+1

Fig. 2. PKSDT-Miner Builds Trees in Round-robin Manner

TPDμ(T, T
′) values (T ′ ∈ TS). We define a new aggregation function called

avgmin∂, where avgmin∂(S) is the average of the γ smallest values in a set S
of numbers. (In experiments our best choice for γ was 3.) Then the μ-γ-minimal
aggregate tree difference (ATDμ,avgmin∂) is defined as the average TPDμ between
T and the γ most similar trees in TS:

ATDμ,avgmin∂(T, TS) = a vgmin∂({TPDμ(T, T ′)|T ′ ∈ TS}).

PKSDT-Miner selects an attribute and a value to split a tree node by maximiz-
ing an objective function IDT that combines information gain (to be denoted
by IG and defined below) and data distribution similarity (DS) on two datasets,
and aggregate tree difference (ATD) between the current tree and the other trees.
To tradeoff the three factors, they are combined using a weighted sum based on a
weight vector w = (wIG, wDS , wATD) whose three weights are required to satisfy
0 < wIG, wDS , wATD < 1 and wIG + wDS + wATD = 1.

Given an AUS measure μ, an aggregation method θ ∈ {avg,min, avgmin∂},
a tree T and a tree set TS, the μ-θ aggregate tree difference is defined as

ATDμ,ω(T, TS) = θ({TPDμ(T, T ′) | T ′ ∈ TS}).

For example, ATDμ,min(T, TS) = minT ′∈TS(TPDμ(T, T
′)) when θ is min. Each

variant of ATD can be used in our two SDT set mining algorithms, resulting a
number of variant algorithms. For instance, the standard version of the PKSDT-
Miner algorithm can be written as PKSDT-Miner(LNC,avgminγ) and we can
replace LNC by LLC to get PKSDT-Miner(LLC,avgminγ).

4.3 IG for Two Datasets

This paper uses the union-based definition of IG for two datasets of [5]. ([5]
discussed other choices and the union-based way was shown to be the best by
experiments.) For each attribute A and split value a, and dataset pair (D′

1 : D′
2)

(associated with a given tree node), the union-based information gain is defined
as IG(A, a,D′

1, D
′
2) = IG(A, a, D′

1 ∪ D′
2). (The IG function is overloaded: IG in

the LHS is 4-ary while IG in the RHS is 3-ary.) IG(A, a,D′) is defined in terms
of entropy, as used for decision tree node splitting.
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4.4 The Algorithm

PKSDT-Miner has six inputs: Two datasets D1 and D2, a set AttrSet of candi-
date attributes that can be used in shared trees, a dataset size thresholdMinSize
for node-splitting termination, a weight vector w (wIG on information gain, wDS
on data distribution similarity, wATD on aggregate tree difference), and an in-
teger k for the desired number of trees. PKSDT-Miner calls PKSDT-SplitNode
(Function 1) to split nodes for each tree.

Algorithm 1. PKSDT-Miner
Input: (D1 : D2): Two datasets

AttrSet: Set of candidate attributes that can be used
MinSize: Dataset size threshold for splitting termination
w = (wIG, wDS, wATD): A weight vector on IG, DS, and ATD
k: Desired number of trees

Output: A diversified shared decision tree set TS for (D1 : D2).
Method:
1. Create root node Vp for each tree Tp (1 ≤ p ≤ k);
2. Repeat
3. For p = 1 to k do
4. let node V be the next nodea of tree Tp to split;
5. Call PKSDT-SplitNode(T, V,D1, D2, AttrSet,TS,MinSize, w);

6. Until there are no more trees with nodes that can be splitb;
7. Output the diversified shared decision tree set TS.

a The next node of a tree to split is determined by a tree traversal method, which can
be depth first, breadth first, and so on. We use depth first here.

b No more node to split means that all candidate split nodes satisfy the termination
conditions defined in Function ShouldTerminate.

PKSDT-SplitNode splits the data of a node V of a tree T by picking the
split attribute and split value that optimize the IDT score. Let T be the tree
that we wish to split, and let TS be the other trees that we have built. Let
V be T ’s current node to split, and A and aV be resp. a candidate splitting
attribute/value. Let T (A, aV ) be the tree obtained by splitting V using A and
aV . Then the IDT scoring function is defined by:

IDT (T (A, aV ), TS) = wIG ∗ IG(A, aV )+
wDSN ∗DSN(A, aV ) + wATD ∗ATD(T (A, aV ), TS),

where IG(A, aV ) is the information gain for V when split by A and aV ,
DSN(A, aV ) is the average DSN value of the two children nodes of V .

Function ShouldTerminate determines if nodes splitting should terminate. (Our
algorithms aim to build simple trees and avoid “overfitting”.) It uses two
techniques. (1) When many attribtues are available, we restrict the candidate
attributes to those whose IG is ranked high in both datasets, so avoiding non-
discriminative attributes that are locally discriminative at a given node. (2) We
stop splitting for a given tree node when at least one dataset is small or pure.
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Function 1. PKSDT-SplitNode(T, V,D′
1, D

′
2, AttrSet, TS,MinSize, w)

1. If ShouldTerminate(V,D′
1, D

′
2,MinSize, AttrSet) then assign

the majority class in D′
1 and D′

2 as class label of V and return;
2. Select the attribute B and value bV that maximize IDT , that is

IDT (T (B, bV ), TS)=max{IDT (T (A,aV ), TS) | A ∈ AttrSet, and aV

is a common candidate split value for A at V };
3. Create left child node Vl of V , with “B ≤ bV ” as the corresponding

edge’s label, and let D′
il = {t ∈ D′

i | t satisfies “B ≤ bV ”} for i = 1, 2;
4. Create right child node Vr of V , with “B > bV ” as the corresponding

edge’s label, and let D′
ir = {t ∈ D′

i | t satisfies “B > bV ”} for i = 1, 2.

4.5 Weight Vector Pools

Different dataset pairs have different characteristics concerning IG, DS and ATD.
To mine the best SDT set, we need to treat different characteristics using appro-
priate focus/bias. (It is open if one can determine the characteristics of a dataset
pair without performing SDT set mining.) We solve the problem by using a pool
of weight vectors to help mine (near) optimal SDTs efficiently. Such a pool is a
small representative set of all possible weight vectors.

We consider two possible weight vector pools: WV P1 contains 36 weight
vectors, defined by WV P1 = {x | x is a multiple of 0.1 and 0 < x < 1}.
WV P2={(0.1,0.1,0.8),(0.1,0.3,0.6),(0.1,0.5,0.4),(0.1,0.7,0.2),(0.3,0.1,0.6), (0.3,
0.4, 0.3),(0.3,0.5,0.2),(0.5,0.1,0.4),(0.5,0.3,0.2),(0.7,0.2,0.1)}. So WV P2 contains
10 representative vectors selected from WV P1. For each of the three factors,
each pool contains some vectors where the given factor plays the dominant role.

5 Experimental Evaluation

This section uses experiments to evaluate KSDT-Miner, using real-world and also
(pseudo) synthetic datasets. It reports that (1) PKSDT-Miner tends to build more
diversified high quality SDT sets on average, which confirms the advantages
of PKSDT-Miner analyzed in Section 4, and (2) KSDT-Miner is scalable w.r.t.
number of tuples/attributes/trees. It discusses (3) how KSDT-Miner performs
concerning the use of weight vectors. It also examines (4) how KSDT-Miner
performs when it uses different AUSμ and ATDμ,ω measures. Finally, it reports
that KSDT-Miner outperforms SDT-Miner regarding mining one single SDT.

In the experiments, we set γ = 3, MinSize = 0.02 ∗ min(|D1|, |D2|) and
AttrSet = {A | rank1(A) + rank2(A) is among the smallest 20% of all shared
attributes, where ranki(A) is the position of A when Di’s attributes are listed in
decreasing IG order}. Experiments were conducted on a 2.20 GHz AMD Athlon
with 2 GB memory running Windows XP, with codes implemented in Matlab.
To save space, the tables may list results on subsets of the 15 dataset pairs on
the 6 microarray datasets, although the listed averages are for all 15 pairs.
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5.1 Datasets and Their Preprocessing

Table 1. Number of Shared Attributes
(NSA) between Dataset Pairs

Dataset Pair NSA

(BC:CN), (BC:DH), (BC:LM) 5114
(CN:DH), (CN:LM), (DH:LM) 7129
(CN:LB), (DH:LB), (LB:LM) 5313
(CN:PC), (DH:PC), (LM:PC) 5317
(BC:LB) 8123
(BC:PC) 8124
(LB:PC) 9030

Our experiments used six real-world
microarray gene expression datasets
for cancers.5 ArrayTrack [20] was used
to identify shared (equivalent) at-
tributes. Two genes are shared if they
represent the same gene in different
gene name systems. Table 1 lists the
number of shared attributes for the 15
dataset pairs.

In some dataset pairs the two
datasets have very different class ra-
tios. The class ratio of a dataset is
likely an artifact of the data collection process and may not have practical im-
plications. However, class ratio difference can make it hard to compare quality
values for results mined from different dataset pairs. To address this, we use
sampling with replacement method to replicate tuples so that class ratios for
the two datasets are nearly the same.

5.2 Example Diversified SDT Set Mined from (DH:LM)

We now give6 an example diversified set of two shared decision trees mined from
real (cancer) dataset pair (DH:LM) in Figures 3 and 4. For each tree, data in
two datasets have very similar distributions at tree nodes (the average DSN for
each tree is about 0.977) and the leaf nodes are very pure with average shared
classification accuracy of leaf nodes being about 0.963. For the diversified tree
set {T1, T2}, tree diversity is 1 since these two trees don’t share any splitting
attributes, and the SDTSQ is about 0.944.

5.3 KSDT-Miners Mine Diversified High Quality SDT Sets

Experiments show that KSDT-Miners are able to mine diversified high quality
SDT sets. Table 2 lists the statistics of best SDT sets mined by either PKSDT-
Miner or SKSDT-Miner from each of the 15 dataset pairs in Table 1 (using all
weight vectors). For the 15 dataset pairs, PKSDT-Miner got the best SDT sets
in 9 pairs, and SKSDT-Miner got the best in 6 pairs. We include the result for
(BC: LM) to indicate that it is not possible to always have high quality SDTs
(as expected).

5 References for the datasets: BC (breast cancer) [21], CN (Central Nervous Sys-
tem) [17], DH (DLBCL-Harvard*) [18], LB (Lung Cancer-BAWH) [11], LM (Lung
Cancer-Michigan*) [1], PC (Prostate Cancer) [19].

6 We draw shared decision tree figures as follows: For each node V , we show CDV1(V )
for D1 at V ′s left, show CDV2(V ) for D2 at V ′s right, and show DSN(V ) below V .
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Fig. 3. Shared Decision Tree T1 Fig. 4. Shared Decision Tree T2

Table 2. Stats of Best SDT Sets

Dataset Pair DS SA TD SDTSQ

(BC: CN) 0.98 0.98 0.99 0.96
(BC: DH) 0.98 0.97 1 0.95
(BC: LB) 0.97 0.97 1 0.95
(BC: LM) 0.94 0.74 1 0.67
(BC: PC) 0.97 0.97 1 0.95
(CN: PC) 0.98 0.98 0.99 0.96
Average* 0.96 0.95 0.99 0.92

Table 3. PKSDT(P) vs SKSDT(S)

Dataset TD TD SDTSQ SDTSQ
Pair P S P S

(BC: CN) 0.97 0.97 0.93 0.93
(BC: LB) 0.94 0.91 0.88* 0.85
(BC: LM) 0.92 0.92 0.61 0.63*
(BC: PC) 0.95 0.94 0.89 0.88
(CN: LB) 0.98 0.97 0.93 0.92
(DH: LB) 0.96 0.95 0.91* 0.88
Average* 0.94 0.93 0.86 0.85

5.4 Comparison between PKSDT-Miner and SKSDT-Miner

Experiments show that PKSDT-Miner is better than SKSDT-Miner. Indeed,
PKSDT-Miner gets SDT sets of higher quality values on average, albeit slightly,
and it never gets SDT sets of lower quality values (see Table 3, which gives the
average TD and SDTSQ values for best diversified tree sets mined by PKSDT-
Miner and SKSDT-Miner respectively when using all weight vectors). As noted for
Table 2, PKSDT-Miner got the best SDT sets in 9, whereas SKSDT-Miner got the
best in only 6, out of the 15 dataset pairs. Below we only consider PKSDT-Miner.

5.5 Comparison of AUS and ATD Variants

Experimental results demonstrate that (1) AUSLNC produces better results than
AUSLLC, and (2) ATDμ,avgmin∂ outperforms ATDμ,min (reason: when it is used a
highly similar outlier may give too much influence) and ATDμ,avg (reason: when
it is used the highly dissimilar cases may give big influence). The details are
omitted to save space.

5.6 Weight Vector Issues

We examined the “best” and “worst” (wIG,wDS ,wATD) weight vectors, which
produce the SDT sets with the highest and lowest SDTSQ mined by PKSDT-
Miner(LNC,avgminγ). (1) We observed that the average relative improvement of
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the “best” over the “worst” is an impressive 4.8% and the largest is 20.5%. This
indicates that the choice of weight vector has significant impact on the tree set
quality mined by KSDT-Miner. (2) We also saw that no single weight vector is
the best weight vector for all dataset pairs. This reflects the fact that different
dataset pairs have different characteristics regarding which of IG, DS and ATD
is most important.

Regarding which weight vectors may be better suited for which kinds of
dataset pairs, we observed that there are three cases. (A) For some dataset
pairs (e.g. (LM:PC)), weight vectors with high IG weight (and low DS weight,
low ATD weight) tend to yield SDT sets with high SDTSQ. (B) For some dataset
pairs (e.g. (BC:DH)), weight vectors with high DS weight tend to yield SDT sets
with high SDTSQ. (C) For some dataset pairs (e.g. (BC:CN)), weight vectors
with high ATD weight tend to yield SDT sets with high SDTSQ.

Experiment showed that using multiple weight vectors leads to much better
performance than using a single weight vector. Moreover, SDTSQ scores of best
SDT sets obtained using WV P2 are almost identical to those obtained using
WV P1. Since WV P2 is smaller (having 10 weight vectors) than WV P1 (having
36 weight vectors), WV P2 is preferred since it requires less computation time.

5.7 KSDT-Miner Outperforms SDT-Miner on SDTQ

Both KSDT-Miner and SDT-Miner can be used to mine a single high quality
SDT, by having KSDT-Miner return the best tree in the SDT set it constructs.
Experiments show that KSDT-Miner gives better performance than SDT-Miner.
Indeed, the average relative SDTQ improvement by KSDT-Miner over SDT-Miner
for all dataset pairs is 13.8%. For some dataset pairs, the relative improvement is
about 45.3%. Through more detailed comparison, the average relative improve-
ment on DS by KSDT-Miner over SDT-Miner for all dataset pairs is 3.2%, and
on SA is 5.4%. Clearly, better single SDT can be mined when tree set diversity
is considered.

5.8 Scalability of KSDT-Miner

We experimented to see how KSDT-Miner’s execution time changes when the
number of tuples/attributes/trees increases. Experiments show that execution
time increases roughly linearly. (The figure is omitted to save space.) The experi-
ments used synthetic datasets obtained by replicating tuples with added random
noises up to a bound given by P% of the maximum attribute value magnitude
(in order to get a desired number N of tuples), and by attribute elimination.

5.9 Using Fewer Attributes Leads to Poor SDT Sets

Incidently, we compared the SDTSQ of SDT sets mined from real dataset pairs
using all available attributes against those obtained from projected data using
fewer attributes (e.g. 100). On average, SDTSQ using all attributes is about
34.2% better than SDTSQ using only the first 100 attributes.
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6 Concluding Remarks and Future Directions

In this paper we motivated the diversified shared decision tree set mining prob-
lem, presented two algorithms of KSDT-Miner, and evaluated the algorithms us-
ing real microarray gene expression data for cancers and using synthetic datasets.
Experimental results show that KSDT-Miner can efficiently mine high quality
shared decision trees. Future research directions include mining other types of
shared knowledge structures (including those capturing alignable differences, de-
fined as shared knowledge structures that capture cross-domain similarities and
cross-domain differences within the context of the similarities given elsewhere
in the shared knowledge structures) and utilizing such mined results to solve
various research and development problems in challenging domains.
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Abstract. Semi-supervised clustering on information networks
combines both the labeled and unlabeled data sets with an aim to im-
prove the clustering performance. However, the existing semi-supervised
clustering methods are all designed for homogeneous networks and do
not deal with heterogeneous ones. In this work, we propose a semi-
supervised clustering approach to analyze heterogeneous information
networks, which include multi-typed objects and links and may contain
more useful semantic information. The major challenge in the clustering
task here is how to handle multi-relations and diverse semantic meanings
in heterogeneous networks. In order to deal with this challenge, we intro-
duce the concept of relation-path to measure the similarity between two
data objects of the same type. Thereafter, we make use of the labeled
information to extract different weights for all relation-paths. Finally, we
propose SemiRPClus, a complete framework for semi-supervised learn-
ing in heterogeneous networks. Experimental results demonstrate the
distinct advantages in effectiveness and efficiency of our framework in
comparison with the baseline and some state-of-the-art approaches.

Keywords: Heterogeneous information network, Semi-supervised clus-
tering.

1 Introduction

The real world is interconnected: objects and inter-connections between these ob-
jects constitute various information networks. Clustering methods in information
networks [1] become more and more popular in recent years. One can discover
much interesting knowledge from the information networks by using appropriate
clustering methods, and the clustering result can also be used in many fields
such as information retrieval [2] and recommendation systems [3]. In particular,
the real world information networks are often heterogeneous [4], which means in
these networks objects and links between these objects may belong to different
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types. In order to handle the multi-relational data in heterogeneous networks,
semi-supervised learning methods [5] can be an appropriate tool. In this paper,
we focus on the semi-supervised clustering task in heterogeneous information
networks.

Up till now many semi-supervised clustering algorithms have been proposed
for information networks [6, 7, 8]. Some of these algorithms consider the labeled
information as constraints for clustering tasks [6]. These constraints can guide
the clustering process to achieve better results. Others focus on semi-supervised
learning on graphs [7], which uses a small portion of labeled objects to label all
the other objects in the same network by propagating the labeled information.
The semi-supervised algorithm, proposed in [8], integrates both the constraint-
based learning and distance-function learning methods. All the above-mentioned
link-based clustering methods are specifically designed for homogeneous infor-
mation networks, in which all the links in the network are assumed to be of the
same type [1]. However, most of the real-world networks are heterogeneous ones
[4]. In KDD-2012, Sun et.al proposed PathSelClus [9], a user guided clustering
method in heterogeneous information networks. PathSelClus integrates both the
meta-path selection and clustering processes. The experimental results produced
by PathSelClus also showed that more meaningful results could be obtained by
considering the clustering task on the heterogeneous information networks in-
stead of the homogeneous ones. However, in PathSelCLus, the number of clusters
needs to be pre-specified at the beginning of the algorithm, which is not realistic
in many real-world problems.

In this paper, we will investigate semi-supervised clustering [5] in heteroge-
neous information networks, and intend to develop a clustering algorithm that
does not need to pre-specify the number of clusters. In a heterogeneous infor-
mation network, two objects may be connected via different relation paths or
sequences of relations [9]. These different relation paths have different semantic
meanings. For example, in the academic community network, two authors can
be connected via either the co-author relationship or the co-institution relation-
ship, but these two relations have very different meanings. Sun et.al proposes
the concept of ‘meta-path’ [10] to indicate the relation sequence. In this research
we propose a similar definition —‘relation-path’, which is specifically for our
clustering task. Correspondingly, we also propose a topological measure for our
relation-path, which is different from existing path topological measures [10, 11].
By using a logistic regression approach, we evaluate each weight of the relation-
path. Finally, SemiRPClus, a novel framework for clustering in heterogeneous
information network, is presented. Experiments on DBLP showed the distinct
advantages in effectiveness and efficiency of SemiRPClus in comparison with
some clustering methods on information networks.

The rest of this paper is organized as follows: in Section 2 some important
definitions used in this paper are introduced. The proposed framework, named
SemiRPClus, is described in Section 3. In Section 4, we present a series of exper-
iments on DBLP, which demonstrated the effectiveness and efficiency of SemiR-
PClus. Finally, we conclude our work in Section 5.
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2 Problem Definition

As in [4], we use G = 〈V,E,W 〉 to represent a heterogeneous network, where
V =

⋃m
i=1Xi, and X1 = {x11, ..., x1n1}, ..., Xm = {xm1, ..., xmnm} denote the m

different types of nodes. E is the set of links between any two data objects of V ,
and W is the set of weight values on the links. TG = 〈A,R〉 denotes the network
schema [10], which is a directed graph defined over object types A, with edges
as relations from R. For more details about heterogeneous networks, please refer
[4, 10]. First, the semi-supervised clustering in heterogeneous network is given
below:

Definition 1 (Semi-supervised clustering in heterogeneous informa-
tion network). In a heterogeneous information network G = 〈V,E,W 〉 fol-
lowing a network schema TG = 〈A,R〉, suppose V ′ is a subset of V and V ′ ⊆
V ∈ Xi, where Xi is the target type for clustering, and each data object O in V ′

is labeled with a value σ indicating which cluster O should be in. Given a set of
relation-path (see Definition 2), the learning task is to predict the labels for all
the unlabeled objects V − V ′.

Second, we give the definition of relation-path, which can be considered as a
special case of meta-path [10]:

Definition 2 (Relation-path). Given a network schema TG = 〈A,R〉, a

relation-path RP is in the form of At
R1→ A2

R2→ ...Al−1
Rl−l→ At, which defines

a composite relation RP = R1 ◦ R2 ◦ ... ◦ Rl−1 between two objects in the same
target type At, and ◦ is the composition operator on relations.

Different from the definition of meta-path [10], in relation-path the starting ob-
ject and the end object of the relation-path must belong to the same target type.
From Definition 2 we can see that a relation-path is always a meta-path, but not
vice versa. More importantly, as the relation-path is defined for objects of the
same target type, it will be more suitable for our clustering task. Third, we define
a transform of our relation-path named ‘inverse relation-path’ as follow:

Definition 3 (Inverse Relation-path). Given a relation-path RP : At
R1→

A2
R2→ ...Al−1

Rl−l→ At, RP
−1 is the Inverse Relation-path of RP , if RP−1 is

At
Rl−1

−1

→ Al−1
Rl−2

−1

→ ...A1
Rl→ At, where R−1 is the inverse relation of R.

After defining all the above concepts, we introduce a typical heterogeneous in-
formation network used in the experiments of our research: the DBLP network,
which has been used as test cases in a number of papers [12, 4, 9].

Example 1 (The DBLP bibliographic network). DBLP, computer science bib-
liography database, is a representative of heterogeneous information networks.
The DBLP schema is shown in Figure 1. There are four types of objects in the
schema: Paper, Author, Term, and Conference. Links between Author and Pa-
per are defined by the relation of ”write” and ”written by”, denoted as ”write−1”.
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Relation between Term and Paper is ”mention” and ”mentioned by”, denoted
as ”mention−1”. Relation between Paper and Conference is ”publish” and ”pub-
lished by”, denoted as ”publish−1”. The ”cite” relation exists between the papers
in the schema. In this research we extract the ”cite” relation from the Microsoft
Academic Search API.

Term

Paper

Conf.Author

mention/mention-1

publish/publish-1write/write-1

cite/cite-1

Fig. 1. DBLP schema

3 The SemiRPClus Framework

As mentioned in [4], there are two constraints which determine the clustering
results on heterogeneous information networks: first, the clustering result should
be consistent with the network structure; second, the clustering results should
be consistent with the labeled information pre-assigned for some data objects.
Our semi-supervised clustering process will follow these two constraints.

In this section, we first introduce in detail the proposed framework, SemiRP-
Clus, which includes two components: (1) the linear regression based topological
measure and (2) the relation extraction model. Then we present the overall clus-
tering framework.

3.1 Linear Regression Based Topological Measure

Topological features, also called structural features, are connectivity properties
extracted from a network for some pairs of objects. Many topological features
have been proposed for the homogeneous networks, and see more details in [13].
There are also some topological features proposed for heterogeneous networks,
and we redefine them based on relation-path as below:

- Path Count Measure [12].Given a relation-path, denoted asRP , the Path
Count can be calculated as the number of path instances of RP between two
objects, say xt,i and xt,j , denoted as SPCRP (xt,i, xt,j), where xt,i, xt,j ∈ Xt

and Xt is the target type.
- Random Walk Measure [12]. Random walk measure following a relation-

path RP is defined as SRWRP (xt,i, xt,j) =
SPC
RP (xt,i,xt,j)

SPC
RP (xt,i,:)

. Here, SPCRP (xt,i, :) de-

notes the path count value following RP starting from x(t,i).
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- PathSim Measure [10]. Given a relation-path RP , PathSim between two
objects xt,i, xt,j is defined as :

SPSRP (xt,i, xt,j) =
2∗SPC

RP (xt,i,xt,j)

SPC
RP (xt,i,xt,i)+SPC

RP−1(xt,j ,xt,j)

Here, SPCRP is a path count measure. In the above RP−1 denotes the inverse
path-relation of RP (see Definition 3);

- HeteSim Measure [11]: Given a relation-path RP = R1 ◦R2 ◦ ... ◦Rl (as
in Definition 2), HeteSim [11] is defined as follows:
SHSRP (R1◦R2◦...◦Rl)

(xt,i, xt,j) =

∑|O(xt,i |R1)|
p=1

∑|I(xt,j |Rl)|
q=1 SHS

RP(R2◦R3◦...◦Rl−1)
(Op(xt,i|R1),Iq(xt,j |Rl))

SPC
RP (xt,i,:)+SPC

RP−1 (:,xt,j)

In the above, xt,i, xt,j ∈ Xt, O(xt,i|R1) is the set of out-neighbors of xt,i
based on relation R1, and I(xt,j |Rl) is the set of in-neighbors of xt,j based
on relation Rl.

All the above-described topological measures only focus on the topological
structure of the networks. However, in the semi-supervised clustering process,
different labeled information will lead to different similarity measures and dif-
ferent clustering results [9]. As a result, we propose a linear regression based
measure which considers the small amount of labeled information. We use the
labeled information as guidance, and propose a linearly combined measure, which
is defined as follows:

SLSRP (xt,i, xt,j) =

m∑
d=1

θdsd(xt,i, xt,j) (1)

where SLSRP is the linear regression based measure of xt,i, xt,j ∈ Xt, and
s(xt,i, xt,j) = [s1(xt,i, xt,j), s2(xt,i, xt,j), ..., sm(xt,i, xt,j)]

T is the topological fea-
tures following the given relation-path RP , and each feature is calculated us-
ing one of the formulae introduced at the beginning of this section, and m is
the number of measures used in the framework. For example, s1(xt,i, xt,j) =
SPCRP (xt,i, xt,j), s2 = SRWRP (xt,i, xt,j), s3 = SPSRP (xt,i, xt,j), s4 = SHSRP (xt,i, xt,j).
Here, α = [θ1, θ2, ..., θm]T denotes the weights for all measures. An optimization
algorithm can be used to solve the following approximation problem:

αopt = argminω

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

(R(xt,i, xt,j)−
m∑
d=1

θdsd(xt,i, xt,j))

∥∥∥∥∥∥ (2)

In the above, n denotes the number of labeled objects. Matrix R is obtained
from the pre-labeled information as follow:



Semi-supervised Clustering on Heterogeneous Information Networks 553

R(xt,i, xt,j) =

{
1 xt,i, xt,j are labeled as the same label
0 otherwise

(3)

where xt,i, xt,j ∈ Xt andXt is the target type for clustering. Eq. (2) is actually
a linear regression problem, which can be efficiently solved by many existing
algorithms [14]. In this paper, we use the gradient descent method [14] to solve
this problem.

3.2 Relationship Extraction Model

In our clustering task, given a set of relation-paths, each object within the target
type may be connected via these relation-paths. By using these relation-paths, a
heterogeneous information network can be reduced into a multi-relational net-
work [15], in which the objects correspond to those of the target type in the
original heterogeneous network and the different relations correspond to the
given different relation-paths.

Similar to the model proposed in [15], the basic motivation of our relationship
extraction model is as follows: different relation-paths correspond to different re-
lation graphs1, which can provide different clustering results. By combining these
different clustering results through different weights of corresponding relation-
paths, the final clustering result may be improved [15]. In this paper, logistic
regression method [16] is used to handle the relation extraction problem.

The set of pre-labeled objects of the target type are regarded as the training
set. Each two objects in the labeled set is regarded as a training pair, denoted
as xt,i, xt,j ∈ Xt, and Xt is the target type for clustering. We first extract the
topological features for these objects, and then build an extraction model to
learn the weight values associated with these features. For each training pair
xt,i, xt,j ∈ Xt, all the features are calculated by the linear regression based
measure as in Eq. (1), denoted as F = [f1, f2, ..., fd], where d is the number
of relation-paths between the two objects. Here we denote the training set as
XTrain = [X1, X2, ..., Xn], where X i denotes the i − th training pair, and n is
the number of pairs in the training set. We define yi as a label indicating whether
these two objects are in the same cluster: if these two objects are in the same
cluster, yi = 1, and 0 otherwise, which is denoted as Y Train = [y1, y2, ..., yn],
where yi ∈ {0, 1}. The set of weights for all relation-paths is denoted as Λ =
[∂1, ∂2, ..., ∂d]. We use the Entropy maximization [17] method to calculate Λ:
first, the conditional probability of the two objects in X i belong to the same
cluster can be modeled as:

pΛ(y = yi|X i) =
1

Z(X i)
exp(

d∑
i=1

fi(X
i) ∗ ∂i) (4)

1 A relation graph is a homogeneous network reduced by the heterogeneous network
using a typical relation-path.



554 C. Luo, W. Pang, and Z. Wang

where Z is the normalization term calculated as Z(X i) = 1+exp(
∑d
i=1 fi(X

i)∗
∂i). Second, we use the MLE (Maximum Likelihood Estimation) approach to de-
rive Λ by maximizing the likelihood of all the training pairs:

L(Λ) =

n∏
i

[pΛ(y = yi|X i)]y
i

[pΛ(y = yi|X i)]1−y
i

(5)

Third, Λ = [∂1, ∂2, ..., ∂d] can be obtained as follows:

Λ∗ = argmaxΛ=[ψ1,ψ2,...,ψd]L(Λ) (6)

In this research we use the gradient descent [14] method to calculate Λ∗. Fi-
nally the combined affinity matrixW combine is defined by the following equation:

W combine =

d∑
i=0

∂i ∗Wi (7)

Here Wi is the similarity matrix of i − th homogeneous network reduced by
i − th relation-path. It is noted that the similarity of each two objects in Wi

is calculated by the measure introduced in section 3.1. We can see from the
Eq. (7) that the combined affinity matrix W combine is a linear combination of
different relation graphs. After obtaining W combine, we then perform clustering
on W combine to obtain the finally result.

3.3 The Detailed Steps of SemiRPClus

After presenting the calculation method for each relevant variable, the detailed
steps of SemiRPClus is given as follows:

Step 1 Given a heterogeneous information network G = 〈V,E,W 〉, a set of
relation-paths, the target type Xt for clustering and labeled information Y .

Step 2 Use Eq. (3) to calculate the relation matrix R.
Step 3 Calculation of the linear based similarity measure

Step 3-a Calculate each kind of relation-path measure using the measure
methods introduced in Section 3.1.

Step 3-b Use Eq. (2) to calculate the weight α = [θ1, θ2, ..., θm]T for each
measure.

Step 3-c Calculate the linear based similarity SLSRP using Eq. (1).
Step 4 Use Eq. (6) to obtain the weight of each relation-path: Λ = [∂1, ∂2, ..., ∂d],

then use Eq. (7) to calculate the combine affinity matrix W combine.
Step 5 Cluster the relation matrix W combine to obtain the final clustering re-

sult.

It is pointed out that many useful clustering methods [15, 18] can be used in
Step 5, no matter whether the cluster number is pre-assigned or not.
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3.4 Complexity Analysis

In this section, we consider the time complexity of the SemiRPClus. At the be-
ginning of our framework, all the traditional topological features are calculated,
and the time complexity is O(kpathn

2). Here kpath is the number of relation-paths
selected for the framework, and n is the number of target objects. For the linear
based measure calculation process, the time complexity is O(t1

∑
m |Tm|). Here

t1 is the number of iterations, andm is the dimension of the training dataset. For
the Relationship Selection Model, the time complexity is O(t2

∑
m |Tm|). Here

t2 is the number of iterations of this model. Assuming that the time complexity
of the clustering used in Step 5 is Ocluster , the overall time complexity of our
framework is O(kpathn

2) +O(t1
∑

m |Tm|) +O(t2
∑

m |Tm|) +Ocluster .

4 Experimental Results

In this section, we use the DBLP dataset2 as a test bed to evaluate both the
effectiveness and efficiency of our approach compared with some existing meth-
ods.

4.1 Datasets

The DBLP dataset is used for the performance test. Following [9], we extract
a sub network of DBLP, “four-area dataset”, which contains 20 major confer-
ences in four areas: Data Mining, Database, Information Retrieval and Machine
Learning. Each area contains five top conferences. In this dataset, the term is
extracted from the paper titles, and the paper citation relationship is obtained
by the Microsoft academic search API3. We use the following three datasets for
our experiments.

DataSet-1 top 100 authors in the DBLP within the 20 major conferences, and
the corresponding papers published by these authors after 2007.

DataSet-2 top 500 authors in the DBLP within the 20 major conferences, and
the corresponding papers.

DataSet-3 top 2000 authors in the DBLP within the 20 major conferences, and
the corresponding papers published by them after 2007.

The ground truth used in our experiment is obtained from the “four-area
dataset [9]”. It is pointed out that the labeled information and the true clustering
result are all obtained from the ground truth.

As in [12], we choose 10 types of relation-paths as bellow: author − paper −
author, author → paper → paper − author, author → paper ← paper →
author, author → paper → conference← paper ← author, author → paper ←
author → paper ← author, author → paper → term ← paper ← author,
author → paper → paper → paper ← author, author → paper → paper ←
2 http://www.informatik.uni-trier.de/~ley/db/
3 http://academic.research.microsoft.com/

http://www.informatik.uni-trier.de/~ley/db/
http://academic.research.microsoft.com/
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paper ← author, author → paper ← paper ← paper ← author, author →
paper ← paper → paper ← author. For example, author − paper − author
denotes the co-author relationship, and author → paper ← paper → paper ←
author denotes two authors’ papers are cited in the same paper.

4.2 Case Study on Effectiveness

In this section, we study the effectiveness of our algorithm by comparing it with
several existing methods on the three datasets given in Section 4.1. For the ease
of comparison, we choose the hierarchical-cluster algorithm [19] to cluster the
similarity matrix, and the cluster number is pre-assigned as the input of the
cluster algorithm.

Three clustering methods are used in our experiment for comparison: Path-
SelClus [9], GNetMine [20] and LP [7]. The first two algorithms are proposed for
heterogeneous networks, and they are regarded as the state-of-the-art clustering
algorithms. LP is proposed for homogeneous network, thus we use two homoge-
neous networks reduced by two corresponding relation-paths. The two selected
relation-paths have the highest weight in SemiRPClus.

Two evaluation methods are used for testing the clustering result: Accuracy
[9], which is calculated as the percentage of target objects clustered into the
correct clusters; and Normalized Mutual Information (NMI) [9], which is one
of the most popular evaluation methods to evaluate the quality of clustering
results.

The clustering results are presented in Table 1. In the table, performance
under different percentage of labeled information (5%, 10% and 20%) in each
cluster is tested. All the results are averaged for 10 times. In Table 1, results in
bold indicate the best performance among all algorithms.

From Table 1 we see that the performance of SemiRPClus is comparable with
PathSelClus and GNetMine, and better in some cases. From the result we can
also see that SemiRPClus can have a better result evaluated by NMI in some
cases. NMI considers not only the accuracy, but also the distribution of the
objects within each cluster. From this perspective, SemiRPClus is more effective
than the other three algorithms. The LP algorithm always performs worse than
all other three heterogeneous clustering algorithms. This demonstrates that by
considering the heterogeneous information better results can be obtained. On
the other hand, we can see that mining heterogeneous networks can gain more
useful information than homogeneous ones.

4.3 Case Study on Efficiency

In this section, we study the efficiency of SemiRPClus. We use the same hard-
ware configuration to run SemiRPClus and the other three algorithms. Every
algorithm is run 10 trials and the average performance is calculated. The CPU
execution time for each algorithm is showed in Fig. 2. It is pointed out that we
use LP-RP1 to represent LP algorithm in this section. In Fig. 2, we can see that
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Table 1. Cluster Accuracy and NMI for Three Dataset

Labeled Evaluation SemiRPClus LP-RP14 LP-RP55 PathSelClus GNetMine

Dataset-1
5% NMI .048±.015 .078±.012 .020±.002 .457±.095 .387±.089
5% Accuracy .380±.021 .350±.036 .280±.016 .570±.040 .520±.073
10% NMI .318±.032 .056±.021 .031±.015 .523±.026 .408±.127
10% Accuracy .510±.024 .320±.041 .390±.012 .710±.096 .550±.048
20% NMI .696±.032 .069±.009 .036±.009 .541±.081 .488±.057
20% Accuracy .680±.042 .320±.023 .320±.084 .730±.070 .620±.058

Dataset-2
5% NMI .621±.103 .014±.007 .004±.008 .609±.045 .677±.042
5% Accuracy .720±.087 .306±.085 .272±.052 .786±.116 .884±.034
10% NMI .698±.038 .023±.010 .006±.005 .646±.073 .664±.117
10% Accuracy .736±.085 .316±.034 .284±.094 .830±.042 .664±.042
20% NMI .774±.034 .026±.006 .013±.024 .718±.049 .702±.039
20% Accuracy .862±.046 .356±.088 .282±.044 .854±.0350 .900±.028

Dataset-3
5% NMI .798±.046 .001±.006 .007±.002 .652±.089 .621±.045
5% Accuracy .750±.048 .254±.012 .207±.034 .872±.015 .862±.065
10% NMI .759±.095 .003±.014 .004±.002 .664±.015 .632±.015
10% Accuracy .784±.014 .254±.074 .271±.045 .880±.034 .868±.034
20% NMI .868±.015 .002±.001 .004±.002 .697±.095 .676±.024
20% Accuracy .800±.031 .261±.049 .275±.041 .897±.012 .889±.025

SemiRPClus is more efficient than PathSelClus and GNetMine: it is three to
four orders of magnitude faster than PathSelClus in all experiments.

4.4 Case Study on Relation Path Weight

In this section, we study the learned weights for different relation-paths obtained
by SemiRPClus compared with PathSelClus. As the ranking of the relation-paths
showed in Table 2, the ranking learned by SemiRPClus is fundamentally the same
as the ranking learned by the PathSelClus.

From the result we can see the relation-path author− paper− author always
has a more trusted weight than other relation paths. This is consistent with
human intuition: two authors having the co-author relationship means that they
are very likely to have a very similar research interest. On the other hand, the
relation-path author → paper → term ← paper ← author has the lowest weight
in both algorithms. This is consistent with real-world scenarios: it is not rare
that two papers from different areas can have the same term. For example, the
words “optimization” and “method” appear in many papers from different areas.

4 author − paper− author.
5 author → paper ← author → paper ← author.
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(b) Efficiency in DataSet-2
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Fig. 2. Running time of SemiRPClus compared with the other three algorithms

Table 2. Relation-Paths Weight Comparison

Rank PathSelClus PathSelClus

1 A− P − A6 A− P −A
2 A → P ← A → P ← A A → P ← A → P ← A
3 A → P ← P ← P ← A A → P ← P → P ← A
4 A → P → P − A A → P ← P → A
5 A → P ← P → A A → P → T ← P ← A
6 A → P → P → P ← A A → P → P − A
7 A → P → T ← P ← A A → P → P → P ← A
8 A → P ← P → P ← A A → P → C ← P ← A
9 A → P → C ← P ← A A → P ← P ← P ← A
10 A → P → T ← P ← A A → P → T ← P ← A

5 Conclusions and Future Work

In this work, we explore the semi-supervised clustering analysis in heterogeneous
information networks. Firstly, a similarity measure, which is more suitable for the
semi-supervised clustering task, is proposed for measuring the similarity between
objects in heterogeneous information networks. Secondly, a logistic regression
model is used for extracting the relations. At last, an overall computational
framework is proposed to perform semi-supervised clustering in heterogeneous
information networks. Experimental results on the DBLP dataset demonstrate
the effectiveness and efficiency of SemiRPClus.

In the future, we intend to apply SemiRPClus to more real-world clustering
problems. In addition, another direction of our future research is to explore the
potential of SemiRPClus on big data problems, such as massive social media
and bioinformatics problems.
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F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS (LNAI),
vol. 6321, pp. 570–586. Springer, Heidelberg (2010)



 

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 560–571, 2014. 
© Springer International Publishing Switzerland 2014 

A Content-Based Matrix Factorization Model  
for Recipe Recommendation 

Chia-Jen Lin, Tsung-Ting Kuo, and Shou-De Lin 

Department of Computer Science and Information Engineering, 
National Taiwan University, Taipei, Taiwan 

heartherlin@gmail.com, {d97944007,sdlin}@csie.ntu.edu.tw  

Abstract. This paper aims at bringing recommendation to the culinary domain 
in recipe recommendation. Recipe recommendation possesses certain unique 
characteristics unlike conventional item recommendation, as a recipe provides 
detailed heterogeneous information about ingredients and cooking procedure. 
Thus, we propose to treat recipes as an aggregation of features, which are ex-
tracted from ingredients, categories, preparation directions, and nutrition facts. 
We then propose a content-driven matrix factorization approach to model the 
latent dimension of recipes, users, and features. We also propose novel bias 
terms to incorporate time-dependent features. The recipe dataset is available at 
http://mslab.csie.ntu.edu.tw/~tim/recipe.zip 

Keywords: Recipe recommendation, content-based recommendation, matrix 
factorization. 

1 Introduction 

With the prevalence of the Internet, people share huge amounts of recipes online, be a 
family recipe passed down through generations or one bright idea put into action in 
one afternoon. Currently there are over 10,000 cooking websites [1] providing various 
forms of information (e.g., texts, dish photos, cooking videos), as well as useful  
functions for searching and filtering by certain criteria. Conceivably, discovering 
appropriate recipes from such overwhelming database can be time-consuming.  
A recommendation system for recipes offers a desirable solution. 

The task of recommending recipes does present several unique challenges. First, 
each recipe can be considered as a combination of several ingredients together with 
some contextual information such as cooking process and nutrition facts, or even 
certain meta-information such as its order in a course meal, type of cuisine, etc. As  
a result, a suitable recommendation system should take such profound and heteroge-
neous information into consideration. Second, there is no limit on the number of in-
gredients that can be used in a recipe, and generally recipes are not rated by as many 
viewers as movie or music does, we are facing a serious sparse rating and cold start 
problem. As shown in Table 1, the density of a recipe rating matrix is much lower 
than that of a movie rating. Such challenges can bring serious problems for traditional 
collaborative filtering models as these models rely heavily on the correlation among 
ratings to identify the latent connection between users and items. 
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Table 1. Statistics of Netflix and FOOD.COM 

Data Netflix FOOD.COM 
User 480189 24741 
Item 17770 (movies) 226025 (recipes) 

Rating 100480507 956826 
Sparsity 1.18% 0.02% 

Average rating/per user 5654.50 4.23 
Average rating/per item 209.25 38.67 

Taking advantage of content information can be a solution to address the data spar-
sity and cold start problems. Unfortunately, such approach also has its own limitation 
in recipe recommendation since it fails to model the relationship among different 
features (e.g., different ingredients). An example is that the opinion of a user for an 
ingredient can be dramatically different depending on the type of dish to be prepared. 

For instance, raw fish is a signature Japanese cuisine called Sashimi, but does not 
fit well with fries in traditional British fish and chips recipe. Therefore we cannot 
simply determine the usefulness of an ingredient without considering its correlation 
with other ingredients or preparation methods. This imposes a serious challenge for a 
content-based recommender. 

In this paper, we propose a collaborative filtering approach called content-driven 
temporal-regularized matrix factorization (CTRMF), which aims at integrating hete-
rogeneous content information into a Matrix Factorization (MF) model for a recipe 
recommendation system. The reason to choose an MF-based model is two-fold. First, 
MF-based models have been proven empirically as one of the most effective ap-
proaches for recommendation systems [2] [3]. Second, MF-based models allow us to 
exploit the latent correlation among objects, which is critical for recipes which in-
clude set of ingredients, preparation methods, and other meta-information. To incor-
porate the heterogeneous information of a recipe into an MF model, we propose to 
work on the feature-matrix instead of the original user-rating matrix. Feature matrix 
encodes the latent information about ingredients, categories, preparation directions, 
nutrition facts, and authors.  We introduce several temporal biases into our model, 
including a novel idea to exploit the concept of Recency-Frequency-Monetary in dif-
ferent context. 
 
1. We propose a content-driven MF-based model that incorporates the heterogeneous 

information of a recipe, including ingredients, dietary facts, preparation methods, 
serving order, cuisine type, and occasion. To our knowledge, this is the first pro-
posal on using heterogeneous content information to perform recipe recommenda-
tion. Our experiments demonstrate decent improvement over the state-of-the-art 
models. 

 
2. We propose a set of novel bias terms using the concept of Recency-Frequency-

Monetary in different context. Such bias terms can potentially be applied to design 
recommendation systems in other domains. 
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3. Several works have been proposed on recipe recommendation. However, no 
benchmark test has been conducted to compare the performance of the proposed 
model with that of other competitors.  This paper extracts real-life data from 
FOOD.COM to compare our model with two competitors to establish the perfor-
mance benchmark on recipe recommendation. 

2 Related Work 

Personalized recommendation is important in consumer industry with huge variety of 
applications. Two common set of approaches are exploited for recommendation. (1) 
Content-based filtering is a paradigm that has been used mainly in the context of re-
commending items, for which informative content descriptors exist.  Standard ma-
chine learning methods (e.g., SVM) have been used in this context. (2) Collaborative 
filtering exploits correlations between ratings across a population of users by finding 
users most similar to the active user and forming a weighted vote over these neigh-
bors to predict unobserved ratings [11]. 

Recipe recommendation tasks have only been tackled by a small amount of re-
searchers. Svensson et al. [4] propose a recipe recommendation system based on a 
user’s explicit and implicit feedbacks through social interactions. Sobecki et al.  
[5] present a hybrid recommendation system, using fuzzy reasoning to recommend 
recipes. The above methods treat a recipe as a whole item, and require the social net-
work between users for recommendation. In contrast, we break a recipe down into 
individual features, and need only the ratings but not social information to make rec-
ommendations. 

There are also some recipe recommendation systems using content based tech-
niques. Zhang et al. [6] construct a learning model using knowledge sources  
(e.g., WordNet) and a classifier (kNN) to make recommendations by finding similar 
recipes. Wang et al. [7] utilize NLP technique to parse preparation directions of reci-
pes, and represent the recipes as cooking graphs consist of ingredients and cooking 
directions. They demonstrate that graph representations can be used to characterize 
Chinese dishes, by modeling the flow of cooking steps and the sequence of added 
ingredients. However, their work models the occurrence of ingredients and cooking 
methods but fails to take into account the relationships between ingredients. Neither 
do they consider users’ preferences on specific recipes or ingredients. The main 
drawback of such language-dependent methods lies in the limited generality to non-
Chinese recipes. 

Freyne et al [8] proposes an Intelligent Food Planning (IFP) system, which breaks 
a recipe into core ingredients and gives each ingredient a weight. Then, IFP uses the 
weights of the ingredients to predict the rating of a new recipe. However, IFP does not 
take other information such as cooking style into account.  

Forbes et al [9] propose content-boosted matrix factorization (CBMF), which is an 
extension of the matrix factorization model, to model hidden factors between users 
and ingredients. 
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Table 2. Statistics of ingredient features in FOOD.COM data after data cleaning 

Statistics Value 
Total ingredients counts in all recipes 2,131,207 

Maximum ingredients number in a recipe 82 
Minimum ingredients number in a recipe 1 
Average ingredients number in a recipe 9 

Maximum appearance of an ingredient on recipes 91,560 
Minimum appearance of an ingredient on recipes 3 
Average appearance of an ingredient on recipes 419 

Table 3. Statistics of other features in FOOD.COM data 

Statistics Value 
Positive features count in all recipes 3,087,494 

Maximum number of features in a recipe 67 
Minimum number of features in a recipe 3 
Average number of features in a recipe 14 

Maximum used times of a feature 220,775 
Minimum used times of a feature 3 

Average frequency for a feature being used 6,366 

3.2 Features 

We try to extract diverse features for each recipe. Originally, the dataset consists of 
576,292 distinct ingredients, which requires certain level of data cleaning.  We first 
correct some typos, and then merge ingredients of similar constituent, usually with 
different modifiers. For instance, “big red potato” and “small white potato” are both 
changed to “potato”. We then remove ingredients used no more than 3 times to obtain 
5,365 binary ingredients features. Those features cover about 99.8% of all the ingre-
dients used in the recipes. Table 2 shows the statistics of ingredient features. 

Besides ingredients, we extract features from categories, preparation directions, and 
nutrition facts to create the profile of a recipe. We group these features into 6 groups: 
 
• Main Ingredient: Ingredient with maximum weight in recipe, excluding wa-

ter/stock/bouillon. 
• Dietary: Based on the FDA reference daily intake (RDI) [100], healthy terms 

such as low-fat (i.e., Recipes only contains 2% of fat), high fiber (i.e., 20% or 
more for fiber) are defined as binary features. 

• Preparation: Describe the preparation process of a recipe, such as ways of cook-
ing (stir-fry, oven bake, etc.). Note that we only choose terms with sufficiently 
high TFIDF values as binary features. 

• Courses: describe the order of the dish being served in a coursed meal. For in-
stance, appetizers, main dish, or desserts.  

• Cuisines: describe style of food in terms of countries, such as Italian, Asian, etc. 
• Occasion: describe the situation of food being served (e.g., brunch, dinner party) 
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Table 4. Top 10 features in six groups 

Main 
Ingredients 

Courses Preparation Cuisines Occasion Dietary 

Meat Main dish Time to make North U.S. Taste/mood Low fat 
Vegetables Dessert Easy U.S. Dinner party Low sodium 

Fruit Side dishes Equipment European Holiday/event Healthy 
Eggs/dairy Lunch/snacks < 60 minutes Asian Comfort food Low carb 
Pasta, rice 
& grains 

Appetizers 
Number of 

servings 
Italian Seasonal 

Low 
cholesterol 

Poultry 
One dish 

meal 
< 30 minutes Southern U.S. To go Low calorie 

Chicken Salads < 4 hours Mexican Weeknight Vegetarian 
Beef Breads < 15 minutes Canadian Brunch Low protein 

Cheese Breakfast 3 steps or less 
South west 

pacific 
Potluck Low sat. fat 

Seafood 
Cookies and 

brownies 
5 ingredients 

or less 
Southwestern 

U.S. 
Summer Kid friendly 

 

 

Fig. 2. Flowchart of our methodology 

Here we obtain 485 additional features (not counting the original 5,635 ingredients) 
from FOOD.COM. Finally we merge highly similar features and remove extremely fre-
quent, indiscriminative features such as salt and sugar. Finally we choose 5,538 features, 
5,073 ingredients and 465 additional features. The statistics of those features are shown 
in Table 3. We list top 10 most frequent features in each group in Table 4. 

4 Methodology 

Figure 2 shows the flow chart of our proposed framework for recommendation. The 
heart of this system is the CTRMF engine, which will be described in section 4.1 and 
4.2. As have been suggested by several researchers [2] [3] that the ensemble of  

Testing Set

CTRMF

IFP
Model

Temporal-Regularized Bias

Time
Dependent

Bias

RFM
Bias

Content
-Driven

MF

MF
Model

Training Set

Linear 
Regression 
Ensemble

Predictions



566 C.-J. Lin, T.-T. Kuo, and S.-D. Lin 

models usually leads to the better results, we then linearly combine results from 
CTRMF with two diverse models, MF and IFP, to show that CTRMF can further 
improve the performance. 

 

Fig. 3. Traditional MF and CTRMF 

4.1 Content-Driven Matrix Factorization 

We first define some notations: 

S: training set ru,r: rating from user u to recipe r μ: average rating in S 

bu: user bias nr: total number of recipes nu : number of users 

br: recipe bias nf: total number of features nh: size of the hidden vector 

P: a user-hidden matrix of dimension nu * nh, where each column represents a 
hidden vector of eash user 

F: a hidden-feature matrix of dimension nh * nf, where each row represents a hidden 
vector of each feature 

R: a recipe-feature matrix of dimension nr * nf, where each element is 1 if the recipe 
contains the corresponding feature, 0 otherwise 

 

Traditional MF tries to model hidden factors by decomposing the original user-
item matrix into two low-dimensional matrices as below: 

r̂(u,r ) = pu
T qr  
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It models the interaction between latent user feature vector and item feature vector. 
That is, if a user likes a specific latent factor and an item has that factor, we conjec-
ture that the user likes the item. 

However, such model does not consider other useful information. Here we assume 
that recipes of common latent features are favored by certain group of users having 
similar latent features. Therefore our model predicts the rating using the following 
equation: 

r̂
(u,r )

= p
u
T q

r
T R  

Here p is a user-latent matrix, q represents latent-feature information, and R is the 
feature-recipe mapping. Note that p and q are learned from data and R is a matrix that 
encodes the heterogeneous information of each recipe. Figure 3 compares MF and 
CTRMF. Different from CBMF which does not include bias terms, here we add user 
bias and item bias; both are proven to be effective in our experiments.  The objective 
function can then be defined as follows: 
 

min
p*,b*,S

(ru,r − μ − bu − br − pu
T FT Rr )

(u,i)

 2
+ λ( pu

2 + F
2 + bu

2 − br
2 )

 

The update function used in training can be derived as the follows: 
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μ η λ

η λ η λ

η λ
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∈

= − − − − ← + −

← + − ← + −

← + −



  

4.2 Temporal-Regularized Bias 

Bell et al. [2] have discovered from the Netflix data that there generally are some 
temporal patterns among ratings that can be exploited for better prediction accuracy. 
We also find similar patterns among the most active users in the FOOD.COM dataset. 
As shown in Figure 4, during the early days of the website, more than 30% of the 
ratings are relatively low (1, 2 and 3 in a five-star rating system). As the website be-
comes more mature, the percentage of low rates decreases to about 10%.  Based on 
such observation, we add a time-aware bias to both users and recipes. We further 
propose to use the idea of Recency-Frequency-Monetary (RFM) Bias into our model. 
RFM is a concept proposed for analyzing customer behavior in customer relationship 
management (CRM). It is commonly used in database marketing and has received 
high attention in retail domain. The three main components of RFM are: 
 
1. Recency:  whether the customer purchased something recently? 
2. Frequency: whether the customer purchased something frequently? 
3. Monetary: whether the customer spends lots of money on something? 
 



568 C.-J. Lin, T.-T. Kuo, and S.-D. Lin 

 

Fig. 4. Rating percentage distribution by week 

We adopted the concept of RFM to incorporate more temporal biases into our 
model. For a certain user, R, F, and M become three binary variables indicating a 
user’s Recent, Frequent, and Monetary rating behaviors. These three binary values 
then categorize the users into 8 different groups, and we assign each group a bias 
value to be learned. Similarly, items and authors are also divided into 8 groups, each 
correspond to a bias term. For each group, we try to learn a different bias value.  
Below we define the meaning of each group for users, recipes and authors. 

4.2.1   User 
First, from users’ perspective, RFM of a user u can be defined as: 
 
1. Recency: whether u rates a recipe more recently than u’s average rating recency 

in the past? 
2. Frequency: whether u rates a recipe more frequently than u’s average rating fre-

quency in the past? 
3. Monetary: whether the most recent rating u provided rates higher than u’s aver-

age rating? 
 

Figure 5 is an example showing that u had provided a rating of 3 on May 1st, 3 on 
May 8th, 4 on May 15, and 5 on May 19. In this example, the current Recency value is 
21-19=2, lower than the average past Recency ((8–1) + (15–8) + (19–15)) / 3=6.  
Similarly, the current Frequency 5/21 (rated 5 times in 21 days) is higher than the 
average of user u’s past Frequency, 4/19 (rated 4 times in 19 days). For Monetary 
term, the last rating provided, a score of 5, is higher than user u’s past average rating, 
(3+3+4) / 3=3.3. 
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Fig. 5. Example of RFM in user side 

 

Fig. 6. Example of RFM in author side 

Therefore, this user is assigned to group {R=0, F=1, M=1} and the corresponding 
bias terms is imposed. Such grouping allows us distinguish hot users from cold users. 

4.2.2   Recipe 
Similarly, from recipes’ perspective, the RFM of a recipe r can be defined as: 
 
1. Recency: whether r is rated more recently than its average recency of rating? 
2. Frequency: whether r is rated more frequently than average frequency of rating? 
3. Monetary: whether the most recent rating of r is higher than its average rating? 
 
Similar to users, the recipes can now be divided into eight groups and each group is 
assigned a bias value to be learned. Such bias helps us distinguish hot recipes from 
cold recipes. 

4.2.3   Author 
From authors’ perspective, RFM of an author a can be defined as: 
 
1. Recency: does a create new recipe more recently than a’s average recency? 
2. Frequency: does a create new recipe more frequently than a’s average frequency? 
3. Monetary: does a’s last recipe received higher rating than a’s average rating re-

ceived? 
 
Note that the definition of Monetary here is slightly different from those of users and 
recipes. Figure 6 is an example showing that author a created the first recipe A on 
May 1st, second recipe B on May 8th, and recipe C on May 10th. 
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Table 5. RMSE results of baseline, our method, and ensemble 

Method RMSE Method RMSE 
IFP 0.6186 CTRMF (without RFM) 0.5931 
MF 0.6015 CTRMF (with RFM) 0.5901 

CBMF 0.6233 Linearly Regression 
Ensemble 0.5813 

Content-Driven MF 0.6013 

In this example, the current recency is 2, lower than the average past recency, 7 / 
1=7. Similarly, the current frequency 3/10 is higher than the average frequency of 
author a, 2/8. The last recipe created received an average rating of 5 which is higher 
than the average ratings received by recipes posted by author a, (3+3+4) / 3=3.3. Each 
author is assigned to one of the eight groups with its associated bias term. This bias 
helps us distinguish hot authors and cold authors. 

Combining the three perspectives identified from FOOD.COM dataset, our final 
objective function is defined as follows: 
 

* *
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Note that brfm term is the multiplication of three terms, user, recipe, and author biases, 
defined above. And, the update functions are as follows: 
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Here we train our model using stochastic gradient decent (SGD). We set λ to 0.01, η 
to 0.001, and the number of hidden factors to 100. 

5 Experiments 

We randomly select 4/5 of data from the users’ ratings as training data, and use the 
rest as testing data. We compare our model (CTRMF) with IFP, standard MF, and 
CBMF models. The results showing in Table 5 reveal that the content-driven MF 
(introduced in Section 4.1) is better than CBMF, proving that the bias terms are use-
ful. CTRMF has significant improvement over the existing methods with better 
RMSE. Also, adding RFM bias terms can improve CTRMF. Then we use linear re-
gression to create an ensemble of IFP, MF, and our method. We divide the training 
data into training and validation to learn the parameters (i.e., the testing data remains 
unseen during ensemble). The ensemble RMSE can be further boosted to 0.5813. 
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6 Conclusion 

This paper, to our knowledge, is the first ever attempt that incorporates 6 different 
types of content information, main ingredient, dietary, preparation, course order, cui-
sine type, and occasion, with user ratings for recipe recommendation. Such data will 
be released and become the only benchmark data so far for recipe recommendation. 
We also proposed the CTRMF model which is the first recommendation model that 
adopts the concept of RFM-based bias for recommendation, which can be potentially 
applied to domains other than recipe recommendation. Finally, this paper is the first to 
provide empirical comparison on different state-of-the-art models. For the future, we 
intent to extend the recommendation into a set of courses, such as appetizer, main 
dish, soup, dessert, and so on. 
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Abstract. We propose a Bayesian probabilistic modeling of the seman-
tic structures of HTML documents. We assume that HTML documents
have logically hierarchical structures and model them as links between
blocks. These links or dependency structures are estimated by sampling
methods. We use hierarchical Bayesian modeling where each block is
given labels such as “heading” or “contents”, and words and layout fea-
tures (i.e., symbols and HTML tags) are generated simultaneously, based
on these labels.

Keywords: Hierarchical Bayesian modeling, Web document analysis,
Gibbs sampling.

1 Introduction

In this study, we propose a new model for HTML documents that can extract
document structures from them. Document structures are hierarchical structures
of documents that decompose documents into smaller parts recursively. For ex-
ample, scientific papers typically consist of several sections, each of which can
be decomposed into subsections. In addition, titles, abstracts, and so on, are
included in the document structure.

Web document analysis is a challenge to extract such document structures
from HTML documents. Web documents can be decomposed into subdocuments,
typically with their headings representing titles of each subdocuments. Figure
1 shows an example of subdocuments found in the web page shown in Figure
2, where each subdocument is presented as a heading. For example, in this
document, “Age: 25” is a subdocument with the heading “Age” and content
“25”. Our purpose is to extract such lists of subdocuments such that those in
the same list have parallel relations (such as “TEL:...” and “FAX:...” in Figure
1.) Note that there are “nested” lists – the element starting with “Contact:”
contains another list “TEL:...” and “FAX:...”.

We assume generative models for documents. The most basic way to col-
lect parallel subdocuments is to use clustering algorithms such as K-means.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 572–583, 2014.
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John Smith’s Page

Age: 25

Sex: Male

Research Interest: Data Mining

Contact:

TEL: +01-234-5678

FAX: +02-345-6789

+ Age: …

+ Sex: …

+ Research Interest: …

+ Contact: …

List 1

+ TEL: …

+ FAX: …

List 2

Fig. 1. Example Document and Its Repeated Tuples

The model we propose in this study is somewhat similar; however, it uses a hier-
archical Bayesian framework to not only model similarities of visual effects, but
also model

– hierarchical structures by using dependency trees as constraints to prior
probabilities, and,

– simultaneously model local tag similarity and general visual effect usage, by
using the hierarchical Bayesian model.

2 Related Work

Research on extracting repeated patterns from Web documents has a long his-
tory. The most popular approach is to make DOM trees and find frequency
patterns on them[1, 2]. The problem with this approach is that it does not work
for repeated patterns indicated by non-DOM patterns including patterns with
symbols as shown in Figure 2.

Several studies have addressed the problem of extracting logical structures
from general HTML pages without labeled training examples. One of these stud-
ies used domain-specific knowledge to extract information used to organize log-
ical structures [3]. However, the approach in these studies cannot be applied
to domains without any knowledge. Another study employed algorithms to de-
tect repeated patterns in a list of HTML tags and texts [4, 5] or more struc-
tured forms [6–8] such as DOM trees. This approach might be useful for certain
types of Web documents, particularly those with highly regular formats such
as www.yahoo.com and www.amazon.com. However, there are also many cases
in which HTML tag usage does not have significant regularity, or the HTML
tag patterns do not reflect semantic structures (whereas symbol patterns do.)
Therefore, this type of algorithm may be inadequate for the task of heading ex-
traction from arbitrary Web documents. Nguyen [9] proposed a method for web
document analysis using supervised machine learning. However, our proposal is
to use probabilistic modeling for Web documents to obtain their structures in
an unsupervised manner.

Some studies on extracting titles or headlines have been reported in [10,
11]. Our task differs from these, in that their methods focus only on titles
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John Smith’s Page

Age: 25

Sex: Male

Research Interest: Data Mining

Contact:

TEL: +01-234-5678

FAX: +02-345-6789

Row 1HEAD

HEAD CONT

Row 2

Row 3

John Smith’s Page

HEAD CONT

Age

</h1>

: 25

Sex : Male

<br>

<br>

Fig. 2. Conversion from HTML Document to Dependency Structure. HEAD represents
“heading” and CONT represents “contents”.

(and headlines) and ignore the other parts of Web documents, while our al-
gorithm handles all parts of the Web documents and provides a tree structure of
the entire document; this algorithm enables the system to extract various types
of heading other than titles and headlines, such as attributes. In particular, our
approach has the advantage that it can handle symbols as well as HTML tags,
making the system applicable to many private (less formal) Web documents.

Cai et al. [12] proposed VIPS that can extract content structure without
DOM trees. Their algorithm depends on several heuristic rules for visual repre-
sentation of each block in Web documents. However, we propose unsupervised
analysis based on a Bayesian probabilistic model for Web document structures.
This has several advantages, including easy adaptation to some specific docu-
ment layouts, easiness of tuning its parameters (because we only have to change
hyperparameters), and ability of obtaining probabilities for words and symbols
that may be used for other type of documents such as text files.

Weninger et al.[13] compared several list extraction algorithm. One of the
contributions of this study is that we propose a model for nested structures of
lists, which has not been tried in most previous studies.

3 Preliminaries

3.1 Problem Setting and Terms Definition

We model an HTML document as a list of rows. Each row ri is a list of blocks,
i.e, ri =< bi1 , ..., bi|ri| >. Here |ri| is the size of row ri, which is the number of
blocks in the row. A block bj is a pair (wj , sj) of the representative word and
symbol list s =< sj1 , ..., sj|sj | >.

Because our experiments currently use Japanese documents, which do not
contain word breaking symbols, it is not a trivial task to extract the representa-
tive word for each document. In our current system, we extract the predefined
length of suffix from each block1 and call them representative words. We did

1 Length changes according to character types such as “trigrams for alphabets and
numbers”, “unigrams for Kanji characters”, etc.
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Row 1

Row 4

Row 3

Row 2

Fig. 3. Prohibited Dependency Relations

not use word breaker tools, partly because they are not for short strings such
as those that frequently appear in Web documents, partly because we do not
need human-comprehensive features (because our purpose is not information ex-
traction but document structure recognition), and partly because simple suffix
extraction rules contribute to stability of extraction results.

We assume several hidden variables associated with the above observed vari-
ables. First, each block bj is labeled with label lj , which can have one of two
values {H,C}. Here, H means heading and C means contents. Headings are ti-
tles of subdocuments, and we assume that the heading is presented in the first
few blocks of the subdocument, followed by other blocks that we call content
blocks. (See Figure 2.) Blocks labeled with H are called heading blocks, and
blocks labeled with C are called content blocks. Heading rows are the rows that
contain one or more heading blocks, while content rows are the rows that con-
tain no heading blocks. In addition a hidden variable pk is associated with each
symbol sk. It indicates whether the symbol is a linefeed-related one, used in the
Gibbs sampling step described later.

Next, we assume the dependency structures in documents. Here a dependency
relation between two rows means that one row is modified by another. In Figure
2, the row “Age: 25” (depending row) depends on the row “John Smith” (de-
pended row). We assume that a pair of hidden variables (depi, boundi) for the
i-th row. (We also write dep(ri) = j if depi = j.) Here, depi is the row id that the
i-th row depends on. Note that the structure is augmented with an additional
variable boundi, which denotes the position of the boundary between heading
blocks and content blocks in the i-th row. If boundi = 0, it means that there is
no heading block in the row (and depi = −1 in this case), and if boundi = |ri|,
it means that there is no content block in the line. The sisters of row ri de-
note the list of all the rows ri1, ri2, ... depending on the same row as ri (i.e.,
dep(ri1) = dep(ri2) = ... = dep(i)).

Dependency Structures. Our definition of dependency structures in this study
is slightly different from that used in natural language processing communities.
One main difference is that it allows isolated rows that do not depend on any
other rows. We consider that isolated rows link to a special row called the null
row, indicated by the id number −1. We consider that two dependency structures
are different if at least one row has different links. Note that we prohibit crossings
in the dependency structures, and their probability is set to 0 (See Figure 3).
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[1] R_nolink -> CL (1.0)

[2] [2.1] R_haslink -> HL CL (p4) | [2.2] HL (p5)

[3] [3.1] HL -> H HL (p6) | [3.2] H (p7)

[4] [4.1] CL -> C CL (0.5) | [4.2] C (0.5)

[5] H -> word1 | word2 | ...

[6] C -> word1 | word2 | ...

Fig. 4. PCFG Rules

Dependency structures with no crossing links are called possible dependency
structures.

4 Probability Model and Estimation

We define the probability of generating the whole document as P (d, T ) =
Pprior(T ) · Pblock(d|T ), where T is the assignment of (dep, bound) for all rows
in document d.

Our idea is to divide the process of generating blocks into vertical and horizon-
tal generation processes. The former generates rows under the constraints of row
dependency structures. Currently, the probability of row dependency structures
is defined as uniform distribution among all possible dependency structures. Af-
ter each row is generated, all blocks in the row are generated horizontally with
probabilities induced by CFG rules. Dividing the generation process in this way
reduces the size of the search space. One of the merits of using CFG for prior
probability calculation is that it can naturally model the ratio of headings and
contents in each row, regardless of how many blocks are in the line. For example,
if we directly model the probability of the value of boundi, different lengths of
rows require different models, which makes the model complicated. Instead, in
our model, the ratio can be modeled by generation probabilities of a few of rules.

Figure 4 shows our PCFG rules used in our model. H means headings and C

means contents. HL and CL mean heading list and contents list, which generates
a list of heading blocks and content blocks, respectively. R means rows, which
consist of one heading list, optionally followed by a content list. Here R_nolink

is a nonterminal that indicates content (isolated) rows, and R_haslink is a non-
terminal for heading rows. Note that this model prohibits headings from starting
in the middle of each row.

Then, probabilities are calculated on the basis of the resulting CFG tree struc-
tures, using the PCFG rules shown in Figure 4.

Probability for Heading Rows. A heading row needs a probability of p4 or p5

before generating its heading and content lists. However, content rows do not
need such probability (because they generate content lists with a probability of
1 by rule [1].)
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Probability by Heading Blocks. As rule [3] shows, for each heading row, the
last heading block needs a probability of p7, and other heading blocks need a
probability of p6, to be generated. We define heading probability of the row as
Ph(r) = p6nh(r)−1 · p7, where nh(r) is the number of heading blocks in row r.

Probability by Content Blocks. From rule [4], it is easily shown that each content
block needs a probability of 0.5 to be generated. We define content probability of
the row as Pc = 0.5nc , where nc is the number of content blocks in the document.

4.1 Block Probability

The remaining part of the probability is the probability for blocks Pblock(D|T ).
First, note that each block is labeled H or C, according to the CFG tree in the
horizontal generation. Each word in the block is generated from a distribution
selected according to this label. We assign one of the labels {B,N,E, L} to
each symbol in the document using the following rules. Intuitively, B denotes
boundary between heading and contents, N denotes non-boundary, E denotes
end of subdocuments, and L denotes line symbols that are used in most of the
linefeeds, which are not likely to have any semantic meaning, such as heading-
associated tags such as <h1>.

– If the separator sik is in the last block of row ri, and the value of pik is 1,
then it is labeled L.

– If the separator sik is in the last block of row ri, the value of pik is 0, and
boundi �= ik, then it is labeled E.

– Otherwise, if boundi = ik, separators in block bik are labeled B.
– Otherwise, separators are labeled N .

Based on these labels, Pblock(d|T ) is defined as a multinomial distribution of
the bag of words: Pblock(d, T ) = P (wH) · P (wC) · P (sB) · P (sN ) · P (sE) · P (sL)
where wH is a list of words labeled H , wC is a list of words labeled C, sB is
a list of symbols labeled B, sN is a list of symbols labeled N , sL is a list of
symbols labeled E, sL is a list of symbols labeled L, in document d.

Our word/symbol generation model is a hierarchical Bayesian model. We as-
sume the following generative process for words assigned nonterminal H .

1. Each word w in a document labeled H (i.e, w ∈ wH) is drawn from the
distribution Hd: w ∼ Hd.

2. Hd, the heading distribution for document d, is drawn from the Dirichlet
distribution with base distribution Hbase and concentration parameter θH :
Hd ∼ Dir(θHHbase).

3. The base distribution Hbase is drawn from the Dirichlet distribution with
measure B: Hbase ∼ Dir(B).

Words labeled C, and separators labeled N , E, or L are distributed in the
same manner. Base distributions and concentration parameters for them are
denoted by Cbase, Nbase, Ebase, and Lbase, and θC , θN , θE , θL, respectively.
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Sampling from B is slightly different, because distributions are generated not
for each document, but for each sister. Here sisters are a group of rows that
depends on the same row.

1. Each separator s in the class labeled B (i.e., s ∈ sB) is drawn from Bi:
s ∼ Bi.

2. Bi, the bound distribution for sisters class i, is drawn from the Dirichlet
distribution with base distribution Bbase and concentration parameter θB :
Bi ∼ Dir(θBBbase).

3. The base distribution Bbase is drawn from the Dirichlet distribution with
measure BB: Bbase ∼ Dir(BB).

Parallel subdocuments tend to have similar layouts, and such similarity typ-
ically appears in the boundary between headings and contents. We intend to
model similar layouts by modeling boundary separators in the same list as that
drawn from the same distribution.

We collapse the distribution for each document drawn from base distributions.
For example, assume that w1, w2, ..., andwn−1 have been drawn from Hd. Then,
distribution for wn is obtained by integrating out the multinomial distribution
Hd, which results in the following equation.

P (w) =
nw

θH + n.
+

θ

θH + n.
Hbase(w) (1)

where nw is the number of times w occurs, and n. is the number of all word
occurrences, in the list w1, ..., wn−1. This equation can be obtained using the
one for Pitman-Yor process [14] by assigning the discount parameter to be zero.
By using this backoff-smoothing style equation, we can model the locality of the
usage of words/separators by the first term, which corresponds to the number
of occurrences of w in the same context, and global usage by the second term.

4.2 Sampling of Dependency Relations

Gibbs sampling is executed by looking at each row ri and sampling the pair
(depi, boundi) for the row according to the probability P ((depi, boundi)|d−i).
Here d−i means the document without current row ri. We calculate the relative
probability of the document for all possible values for (depi, boundi) by taking
all possible values for (depi, boundi), calculating the probability P (d, T ) for each
dependency value, and normalizing them by the sum of all calculated values.

4.3 Sampling of Base Distributions

Another important part of our Gibbs sampling is sampling distributions given
the document structures, which model the general tendency of usage of words
and symbols. We use the fast sampling scheme described in [14] which omit
time-consuming “bookkeeping” operations for sampling base distributions. First,
the parameter m, which indicates “how many times each word w was drawn
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from the second term of the equation 1, is drawn from the following distribu-

tion. p(mw = m|z,m−w, ω) = γ(ωθw)
γ(ωθw+nw)s(nw,m)(θωw)

m where s(n,m) are

unsigned Stirling numbers of the first kind. (Note that the factor k in Teh’s
representation corresponds to word w in our representation.) After drawing
m, the base parameter ω is drawn from the following Dirichlet distribution:
(ω1, ..., ωK) ∼ Dir(m1 + θ′σ1, ...,mK + θ′σK) where θ and σ are the strength
parameter and the base distribution for the distribution for drawing H , respec-
tively.

The following base distributions are sampled by using this scheme: Hbase is
sampled from wH , Cbase is sampled from wC , Nbase is sampled from sN , Bbase
is sampled from sN , and Lbase is sampled from sL.

5 Implementation Issues

5.1 Sentence Row Finder

In HTML layout structure detection, sentence blocks are critical performance
bottlenecks. For example, it is relatively easy to detect the suffixes of the rows
that indicate sentences. However, it is difficult to decide whether the row starts
with headings, especially when the sentences are decorated with HTML tags or
symbols. (e.g., “Hobby: I like to hear music!”)

Our idea is to use prefixes to decide whether the row contains headings. We
assume that rows starting with sentences contain no headers, and the algorithm
finds sentences by using the ratio of obvious sentences in all rows, starting with
the prefix. The obvious sentences are detected by using simple heuristics that “if
symbols in the row are only commas and periods, then the row surely consists of
only sentences.” Currently, if the ratio exceeds the threshold value 0.3, the row
is determined as a sentence. Note that the sentence row finder is also applied to
the baseline algorithm described later.

5.2 Hyperparameter Settings

We assume a Dirichlet prior for each rule of probability where Dirichlet hyper-
parameters are set θ1 = θ2 = 5.0 for rules [2.1] and [2.2], and (θ1, θ2) =
(10.0, 90.0) for rules [3.1] and [3.2] heuristically. The latter parameters sug-
gest that our observation that the length of heading lists is not so large, giving
high-probability values to short heading lists. This sampling of parameters helps
to stabilize sampled dependency relations.

5.3 Parallelization

Parallelization of the above Gibbs sampling is straightforward because each sam-
pling of tuples (dep, rel, bound) only uses the state of other tuples in the same
document, along with the base distributions such as Hbase and Bbase, which are
not changed in tuple sampling. The task of sampling tuples is therefore divided
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into several groups as each group consists of one or more whole documents, and
the sampling of tuples for each group is executed in parallel. (Sampling base
distributions is not easily parallelized.)

5.4 Dependency Structure Estimation

Gibbs sampling can be used as a scheme for sampling the latent variables; how-
ever, it is not obvious how to extract highly probable states using this sampling
scheme. Plausible base distributions can be obtained by taking several samples
and averaging them. However, dependency structures are so complicated that it
is almost impossible to see the same sample of structure two times or more. We
thus use the following heuristic steps to obtain highly probable structures.

– Run the Gibbs sampling for some burn-in period.
– Take several samples for base distributions, and average them as an estima-

tion for the base distribution and PCFG rule probabilities (these parameters
are fixed thereafter.)

– Initialize the latent categorical variables.
– Run the Gibbs sampling again, but only for categorical variables for some

burn-in period and calculate the marginal likelihood of the selected struc-
tures in each time.

– Take the structures with the maximum marginal likelihood so far.
– Greedy finalization: for each line, fix the state to the one with the highest

probability. This step is executed over all rows sequentially, and repeated
several times.

6 Experiments

Our corpus consists of 1,012 personal web pages found in the Japanese web
site @nifty. We randomly selected 50 Web documents from them. We excluded
10 documents that contain <table> tags because table structures need special
treatment for proper analysis and including them into the corpus harms the
reliability of the evaluation. We extracted all repeated subdocuments in the
remaining 40 documents manually. Among them, 14 documents contained no
repeated subdocuments. For each algorithm, we extracted each set of sisters
from dependency structures and regarded them as resulting sets of lists. We
used purity, inverse purity, and their f-measure for evaluation, which is a popular
measure for clustering evaluation.

6.1 Evaluation Measure

To evaluate the quality of extracted lists, we use purity and inverse purity
measures[15], which are popular for cluster evaluation. We regard each extracted
list as a cluster of subdocuments and represent it with the pair (i, j), where
i is the start position and the j is the end position of the subdocuments.
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The end position is set just before the start position of the next subdocument
in the list.2 Subdocument extraction is evaluated by comparing this cluster to
manually constructed subdocument clusters.

Assume that Ci is a cluster in the algorithm results, and Li is a cluster in the

manual annotation. Purity is computed by P =
∑

i
|Ci|
N maxj Precision(Ci, Lj)

where Precision(Ci, Lj) =
|Ci∩Lj|

|Ci| and N =
∑

i |Ci|. Inverse purity is defined

asIP =
∑
i
|Li|
N maxj Precision(Li, Cj) where N =

∑
i |Li|.

Quality of the output lists is evaluated by the F-measure, which is the har-
monic mean of purity and inverse purity: F = 1

1/P+1/IP .

We did not used B-cubed evaluation measures[16] because B-cubed is an
element-wise definition, which calculates correctness of all rows in the corpus, in-
dicating that we would have to consider rows that have no headings, for which no
clusters are generated. B-cubed measures are developed as a metric that works
for soft-clustering, whereas our task can be regarded as hard clustering, in which
P-IP measures work well.

We usedmicro-averaged andmacro-averaged f-measures for cluster evaluation.
Macro-averaged f-measure compute f-value for each document that has any re-
peated patterns (i.e., 26 documents in the test set) and average all the f-values.
However, micro-averaged f-measures regard all 40 documents in the test set as
one document, and calculate P, IP, and F on this one large document. Thus, we
can evaluate how each method does not extract unnecessary lists from documents
with no repeated lists by using a micro-averaged f-measure.

6.2 Baseline

We use the baseline algorithm that uses some heuristic rules to extract sub-
documents. We test several configurations (e.g., what header tags are used for
extraction, whether rows with |r| = 1 are extracted as headings, etc.) and select
the one that performed the best on the test set. This baseline algorithm selects
heading rows among all rows (except the ones discarded by the sentence row
finder) using following heuristic rules.

First, it uses “header tag heuristics”. For example, if the row is in an <h2>

tag, we assume that the row is a heading that modifies the following blocks until
the next <h2> or larger headers (<h1> in this case) appear. Header tags <h1>,
<h2>, <h3>, and <h4> are used in this heuristics.3

Second, it uses the block number heuristics which showed good performance
in our preliminary experiments. Assume that |r| is the number of blocks in the
row |r|. If |r| ≥ 2, the algorithms regard r as heading row (we assume that this
row is bracketed by <h8>, which is smaller than all other h tags.) If |r| = 1 and r
is not a sentence row, we assume r is bracketed by <h7>, which indicates that it
will be the heading of the next rows (if the next row has more than one blocks.)

2 It is set to the end position of the document for the last subdocument in the list.
3 We also used <h7> and <h8> generated by the block number heuristics described
below.
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Table 1. Averaged F-measure (%) for Each Method

Method w/o no-repeat (26 docs.) w/ no-repeat (40 docs.)

micro-averaged

Proposed 50.23 47.68

Baseline 46.93 42.42

macro-averaged

Proposed 49.63 —

Baseline 42.05 —

Note that this simple heuristics can extract many sub-documents in Figure 2
including “Age:25” and “TEL:+01-234-5678”.

6.3 Results

We run our Gibbs sampling with 1000 initial iterations and 500 final iterations.
Values of parameters (θB , θE , θL, θN ) were set to (10, 100, 100, 1000) heuristi-
cally. We use the uniform distribution for each base distribution. Results were
obtained by running Gibbs sampling 5 times and averaging all the averaged
f-measure values.

Table 1 shows the results. Our algorithm outperformed the baseline algo-
rithm by about 3.3 – 7.6 points. The performance gain of our algorithm in
micro-averaged f-measure increased from 3.3 to 5.3 by using 14 “no-repeat” doc-
uments. This result suggests that our method works well in detecting “no-repeat”
documents to avoid incorrect repeated lists.

Performance gain was mainly obtained by detection of heading blocks that
could not be found by the baseline algorithm and detection of content blocks that
could not be found by sentence row finder heuristics. However, the performance
of our algorithm for documents with heading blocks that were easily detected by
the baseline algorithm tended to be lower. We need an algorithm that takes the
strength of both our method and the baseline method for better performance.

7 Conclusion

In this study, we proposed a probabilistic model for document structures for
HTML documents that uses Bayesian hierarchical modeling. Our model can si-
multaneously manage both local coherence and global tendencies of layout usage,
thanks to hierarchical modeling and cache effects obtained by integrating out of
distributions. Experimental results showed that document structures obtained
by our model were better than those obtained by the heuristic baseline method.
For future study, we are keen to improve the performance of our method by, for
example, using larger data sets to obtain more reliable knowledge about layout
usage, or using more sophisticated methods to obtain maximum-likelihood states
for our model.
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Abstract. Online reviews that manifest user feedback have become an available 
resource for eliciting requirements to design future releases. However, due to 
complex and diverse opinion expressions, it is challenging to utilize automated 
analysis for deriving constructive feedback from these reviews. What’s more, 
determining important changes in requirements based on user feedback is also 
challenging. To address these two problems, this paper proposes a systematic 
approach for transforming online reviews to evolutionary requirements. Ac-
cording to the characteristics of reviews, we first adapt opinion mining tech-
niques to automatically extract opinion expressions about common software 
features. To provide meaningful feedback, we then present an optimized me-
thod of clustering opinion expressions in terms of a macro network topology. 
Based on this feedback, we finally combine user satisfaction analysis with the 
inherent economic attributes associated with the software’s revenue to deter-
mine evolutionary requirements. Experimental results show that our approach 
achieves good performance for obtaining constructive feedback even with large 
amounts of review data, and furthermore discovers the evolutionary require-
ments that tend to be ignored by developers from a technology perspective. 

Keywords: Software evolution, requirements elicitation, online reviews, opi-
nion mining, user satisfaction analysis. 

1 Introduction 

Successful software systems are always able to evolve as stakeholder requirements 
and environments where the deployed systems operate [1]. In today’s competitive 
market, meeting changing user demands1 is a critical driving factor of software evo-
lution. The software system should adapt to the social environment where users form 
opinions based on their experience with it [3]. Therefore, systematically and effective-
ly eliciting evolutionary requirements is critical for the software to adapt and improve. 
                                                           
1 In economics, demand is an economic principle that describes a consumer's desire, willing-

ness and ability to pay a price for a specific good or service. 
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User feedback provides useful information that can help to improve software quali-
ty and identify missing features [4]. However, with software delivered via the Inter-
net, the scopes and types of users are uncertain before delivering software systems, 
since there are differences of space and time between users and developers. Fortunate-
ly, user generated content is becoming mainstream in web platforms, and consumers 
are willing to publish online reviews to express their opinions about software systems. 
These reviews that manifest user demands in real contexts of use have become an 
available feedback resource for eliciting requirements to design future software re-
leases. Moreover, the reviews that come from large quantities of disparate users con-
tain abundant data and its expressions [5]. For example, the Apple App Store has 
more than five hundred million active registered users and billions of online reviews. 

Current software engineering research and practice favor requirements elicitation 
derived from online reviews. Several approaches have been developed, regarding the 
techniques and processes to consolidate, analyze and determine requirements in ac-
cordance with online feedback [6-7]. However, these approaches mostly rely on ma-
nual content analysis and as such, are not efficient for dealing with large amounts of 
online reviews in order to shorten time-to-market. Obviously, automated techniques, 
such as text mining, information retrieval, and machine learning can be effective tools 
for identifying software features and associated opinions mentioned in user comments 
[8-9]. However, due to complex and diverse opinion expressions, it is challenging to 
utilize automated analysis for accurately deriving constructive feedback from the 
reviews of software systems. What’s more, assisting developers with determining 
evolutionary requirements based on user feedback is also challenging.  

In this paper, we present a systematic approach for the transformation of online re-
views to evolutionary requirements. For the first problem of automated text analysis 
we analyze the characteristics of online software reviews and then adapt the syntactic 
relation-based propagation approach (SRPA) to automatically identify opinion ex-
pressions about common software features. In order to provide meaningful feedback, 
we present a method S-GN for clustering opinion expressions from a network pers-
pective, which uses the Girvan-Newman algorithm with the Explicit Semantic Analy-
sis similarity. To address the second problem of assisting developers, we consider an 
economic impact to analyze user satisfaction based on this feedback and then deter-
mine important changes for requirements. 

The contributions of our research are as follows:  

• SRPA+, an expanded version of SRPA, is more suitable for mining complete opi-
nion expressions from software reviews.  

• The proposed method S-GN optimizes the clusters of opinion expressions by con-
sidering a macro network topology. 

• We combine user satisfaction analysis with the inherent economic attributes asso-
ciated with the software revenue to determine the evolutionary requirements.  

• We show experimentally that our approach achieves good performance for deriv-
ing constructive feedback even with large amounts of review data, and furthermore 
discovers the evolutionary requirements that tend to be ignored by developers. 

The remainder of this paper is organized as follows. Section 2 elaborates our 
approach. Section 3 describes the experiment and analyzes the results. Section 4 
introduces related work and Section 5 discusses conclusions and future work.  
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2 Systematic Approach of Requirements Elicitation 

In our approach, we first extract opinions about software features from large amounts 
of online reviews and determine whether opinions are positive or negative. Then, we 
categorize opinions and select corresponding review sentences to represent the feed-
back on software features. Finally, we generate a document of evolutionary require-
ments from an economic perspective.  

2.1 Extracting Targets and Sentiment Words 

A user opinion mentioned in a review is defined as a target-sentiment pair. The target 
is a topic on the software feature that is a prominent or distinctive user-visible aspect, 
quality, or characteristic of the system [10]. The sentiment is the user evaluation of its 
target. Sentiment words and targets are often related syntactically and their relations 
can be modeled using the dependency grammar [11]. There have been many methods 
used to model sentiment words, targets and their dependency relationships [21-23]. 
We adapt the syntactic relation-based propagation approach (SRPA) due to its model-
ing naturally for the opinion mining task. SRPA extracts targets and sentiment words 
iteratively using known and extracted words through the identification of syntactic 
relations [12]. The bootstrapping process starts with a seed sentiment lexicon. 

The key of SRPA is the propagation rules based on syntactic relations. As targets 
and sentiment words are usually nouns/noun phrases and adjectives respectively [13], 
SRPA only defines the relations between nouns and adjectives, between adjectives, 
and between nouns. However, software systems have the dynamic features of compu-
ting and processing. Users may comment on the software’s behavior and impact on 
the application environment using opinion expressions that depend on the relations 
between verbs and adverbs. In addition, sentiment verbs such as love can also express 
opinions. Accordingly, we define new propagation rules based on Stanford POS tag-
ger2 and syntactic parser3, as shown in Table 1.  

Table 1. New propagation rules 

ID Description Output Example 

R11 S→S-Dep→T s.t. S∈{S}, POS(T)∈{VB}, S-Dep∈{MR} t=T The software updates quickly. 

R12 S→S-Dep→T s.t. T∈{T}, POS(S)∈{RB}, S-Dep∈{MR} s=S This software operates well with Firefox. 
R2 Ti(j)→Ti(j)-Dep→Tj(i) s.t. Tj(i)∈{T}, POS(Ti(j))∈{VB}, Ti(j)-Dep∈{CONJ} t=Ti(j) It is easy to download and update the software. 
R3 Si(j)→Si(j)-Dep→Sj(i) s.t. Sj(i)∈{S}, POS(Si(j))∈{RB}, Si(j)-Dep∈{CONJ} s=Si(j) Norton runs smoothly and quietly. 
R4 S→S-Dep→T s.t. S∈{S}, POS(T)∈{NN}, S-Dep∈{OBJ} t=T Installation destabilizes the correct operation. 
R5 S→S-Dep→T s.t. S∈{S}, POS(T)∈{VB}, S-Dep∈{COMP} t=T I love to use Kaspersky. 

*S (or T) is the sentiment word (or target). {S} (or {T}) is the set of known sentiment words (or the set of targets). POS(S) (or POS(T)) represents 
the POS tag of the sentiment word (or target). {RB}: RB, RBR, RBS; {VB}: VB, VBD, VBG, VBN, VBP, VBZ; {NN}: NN, NNS, NNP. S-Dep (or T-
Dep) represents the dependency relation of the word S (or T). {MR}: advmod; {CONJ}: conj; {OBJ}: dobj, pobj; {COMP}: xcomp. 

2.2 Identifying Complete Expressions of Opinions 

Since the targets extracted in the previous step are individual words, we need to iden-
tify the complete target expressions. Generally, a sentence clause contains only one 
target-sentiment pair unless there are conjunctions [12]. However, in the sentence 
                                                           
2 http://nlp.stanford.edu/software/tagger.shtml 
3 http://nlp.stanford.edu/software/lex-parser.shtml 
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Kaspersky didn’t update to a correct version quickly, there are two target-sentiment 
expressions, namely Kaspersky update quickly and a correct version. Therefore, we 
further merge the opinion expressions on the same software feature, and remove the 
noisy ones caused by unconstrained propagation rules. 

The target words consist of nouns and verbs. For noun target expressions, we ex-
ploit the phrase-structure trees to identify the noun phrases that contain the extracted 
target words. There are two cases of verb target expressions. If the target words are 
verbs with direct objects or prepositional objects, the verb phrases in the phrase-
structure trees serve as the target expressions. Note that the parser doesn’t distinguish 
prepositional objects and adverb prepositional phrases. We check the compound 
phrases of verbs and prepositions through the online dictionary4. If the target words 
are verbs without objects, the verbs and their subjects compose the target expressions. 

Based on the identified target expressions, we employ the following two rules to 
merge the opinion expressions in the same sentence. Rule 1: if the opinion expressions 
share some words, they must describe the same software feature. Rule 2: if the words in 
opinion expressions have direct dependency relations, they are likely to represent the 
same software feature.  

We prune noisy opinion expressions according to word frequency. The sentiment 
words, negations, and stop words are removed from the merged opinion expressions 
and then the scores of processed expressions are calculated as follows: 

 ( ) i i ie e e
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α β γ− = ∗ + ∗ + ∗  (1) 

where ei is a processed expression; E is the set of processed expressions; Wx is the 
number of words in x; Nei is the number of processed expressions that contain the 
words in ei; NE is the number of processed expressions in E; Fx is the number of 
frequent words in x; α, β, and γ are weights. For a sentence, we only choose the 
opinion expession with the highest score unless there are conjunctions.  

2.3 Assigning Sentiment Polarities to Opinion Expressions 

We propose a two-stage method for assigning polarities to opinions. In the first stage, 
the polarities for the newly extracted sentiment words are inferred through the rules in 
[12]. The extracted words are assigned with the same polarities as the known words in 
the current review. The polarity changes when there are an odd number of negations 
or contrary words between the extracted word and the known word. The polarity val-
ue of the sentiment word that has either no or multiple polarities is computed as the 
sum of polarity values of known sentiment words in the current review. 

In the second stage, the polarity score of a complete opinion expression is 
estimated by the following ordered weighted averaging (OWA) aggregation [14] of 
the contained sentiment words.  
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4 http://thesaurus.com/ 
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where si is the polarity of a sentiment word in the opinion expression; Nsi is the num-
ber of sentiment words that have the same type with si; wsi is the OWA weight of si. 
The types of sentiment words consis of verbs (v), adjectives (adj), and adverbs (adv). 
As verbs are the core of sentences whereas adjectives and adverbs are modifiers, the 
types of sentiment words are ranked as (v, adv, adj) from big to small according to 
their importance. The value of wsi is concerned with the position of the type of si. The 
OWA operators aggregate both the polarities of sentiment words and the importance 
of their types. If the polarity score of an opinion expression is greater than 0, its polar-
ity is positive, and otherwise negative. The polarity changes if there are an odd num-
ber of negations associated with sentiment words in the opinion expression. 

2.4 Organizing Opinions into Structured Feedback  

In order to provide meaningful feedback, we first group similar opinion expressions 
about software features. Each category represents a unique overall, functional or qual-
ity requirement. Then we produced the structured feedback classified by software 
features, including several corresponding sentences.  

The opinion expressions and the semantic associations between them construct an 
undirected graph G = (V, E), where V is the set of vertices for the opinion expressions 
and E is the set of edges for the semantic links between any two vertices. There is a 
semantic link between two opinion expressions if their semantic similarity is greater 
than a certain threshold λ. We rely on the Explicit Semantic Analysis (ESA) algo-
rithm to compute the semantic similarity between opinion expressions. ESA first 
builds an inverted index for all Wikipedia concepts, then represents any text as a 
weighted vector of Wikipedia concepts by retrieving its terms from the inverted index 
and finally assesses the relatedness in concept space using conventional metrics [15].  

Based on the graph G, we adopt the Girvan-Newman (GN) algorithm to cluster the 
opinion expressions. The GN algorithm is a typical method for detecting network 
communities. Without the prior information for determining the centers of communi-
ties, the GN algorithm constructs communities by progressively removing edges from 
the original graph [16].  Each community represents a feature category. 

For describing the feedback of each feature category, we select 3-5 sentences in 
which the opinion expressions are nearest to the center of the category. Finally, we 
manually label the names of feature categories in accordance with the corresponding 
sentences and then merge the feature categories with the same name. 

2.5 Generating Document of Evolutionary Requirements 

The feedback for each feature category implies an overall, function or quality re-
quirement of the software system. However, it is critical to assess the priority and 
importance of feedback for software evolution. Because user satisfaction is the best 
indicator of a company’s future profits [17], it is the direct driving factor of software 
evolution. From an economic perspective, our decision to determine evolutionary 
requirements depends on the user satisfaction indexes evaluated by the feedback for 
software features. The satisfaction score of a software feature is defined as follows:  
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where np and nn are the numbers of positive and negative opinion expressions about 
the software feature f; Pi(f) and Ni(f) are the positive and negative polarity value of an 
opinion expression about the software feature f; Ed is the price elasticity of demand, 
which is a measure used in economics to show the responsiveness, or elasticity, of the 
quantity demanded of a good or service to a change in its price5. Formulated as [18], 
Ed indicates the substitutability and importance of the software in customer purchases. 
Introducing Ed to user satisfaction evaluation emphasizes user acceptance of the tech-
nological level in the market environment. If Ed is greater, even a few negative opi-
nions may result in so massive loss of users to reduce the software revenue.  

According to Equation (3), if the user satisfaction score of a software feature is 
greater than 0, the corresponding requirement is reusable or added, and changed oth-
erwise. We compute the user satisfaction score for high frequent features mentioned 
in the reviews and then manually generate the document of evolutionary requirements 
in the light of those review sentences for each software features. Those evolutionary 
requirements that drive more economic gain are prioritized systematically. 

3 Experiment 

To demonstrate the practicality of our approach in eliciting evolutionary requirements 
even with large amounts of online reviews, we first introduce the data sets and set-
tings. Then, we evaluate the opinion mining techniques including the identification 
and classification of opinions. Finally, we analyze the usefulness of the evolutionary 
requirements document for developers. 

3.1 Data Sets and Settings 

As can be seen in Table 2, we used two data sets of online reviews: the packaged 
software of Kaspersky Internet Security 2011 3-Users (KIS 2011) from Amazon.com 
and the mobile application of TuneIn Radio Pro V3.6 (TuneIn 3.6) from the Apple 
App Store. For each testing data set, we manually labeled the potential software fea-
tures, opinions and their polarities mentioned in the reviews, and then classified the 
review sentences according to the semantics of related opinions. 

Table 2. Statistics of the data sets of online reviews 

Data set #Reviews #Sentences #Words #Sentence per review #Words per sentence 

KIS 2011 380 3392 52682 8.9 15.5 

TuneIn 3.6 461 1211 12711 2.6 10.5 

 
The Stanford POS Tagger and parser are respectively used to tag and parse the data 

sets. The seed sentiment lexicon is provided by Liu’s sentiment words6. The Wikipedia 
                                                           
5 http://en.wikipedia.org/wiki/Price_elasticity_of_demand 
6 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 
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version on Sep. 1, 2011 is adopted for computing the ESA semantic similarity. α=0.5, 
β=0.3, γ=0.2, and λ=0.4 are experimentally set for our approach. 

As the exact quantity demanded for determining Ed is not available, we modified 
the evaluation model of user satisfaction in Section 2.5 by replacing Ed with the price 
elasticity of sales rank Er. The sales rank implies the demand for a software product/ 
application relative to other competitors. Since it is observed that the association be-
tween sales rank and demand approximately conforms to a Pareto distribution, the 
formula of Er is similar with -Ed. 

3.2 Evaluation of Opinion Identification 

As shown in Table 3, our method for opinion identification, SRPA+, outperforms 
SRPA in all conditions. Significantly higher recall, especially for KIS 2011 indicates 
that the new propagation rules work well. The improvement in precision implies that 
merging opinion expressions avoids one-sided identification. Note that the results of 
TuneIn 3.6 produced by SRPA+ are basically lower than those of KIS 2011. This is 
because the decreased performance of natural language processing techniques for 
dealing with more phrases and incomplete sentences in the reviews of TuneIn 3.6. 

Table 3. The comparison results of opinion identification 

Data set 
Recall Precision F-score 

SRPA SRPA+ SRPA SRPA+ SRPA SRPA+ 

KIS 2011 0.67 0.83 0.74 0.78 0.70 0.80 
TuneIn 3.6 0.69 0.81 0.71 0.73 0.70 0.77 

Table 4 illustrates the results of polarity assignment using SRPA+. Clearly, the 
good recall reveals that the propagation performs well in discovering new sentiment 
words. We can observe that the precision of opinion expressions is significantly high-
er than that of new sentiment words. There are two main reasons for relatively worse 
performance of new sentiment words in precision. First, the review data sets often 
have errors of spelling and grammatical structure or non-standard sentences so that 
automatic tagging and parsing don’t always work correctly. Second, the propagation 
rules have only the constraints of POS tags so that more ordinary words are intro-
duced with the increase of the review data sets. In spite of this, our methods of merg-
ing and pruning opinion expressions reduce the effect of noisy sentiment words.  

Table 4. The results of polarity assignment 

Data set 
Recall Precision F-score 

New words Words Expressions New words Words Expressions New words Words Expressions 

KIS 2011 0.71 0.73 0.76 0.62 0.67 0.72 0.66 0.70 0.73 
TuneIn 3.6 0.68 0.71 0.72 0.63 0.65 0.70 0.65 0.68 0.71 

3.3 Evaluation of Opinion Classification 

The proposed method for opinion classification is called S-GN. The baseline methods 
include J-Kmeans and S-Kmeans. Both are k-means clustering algorithms based on 
the Jaccard coefficient and the ESA similarity respectively. S-GN produces k clusters 
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automatically. The inputs of J-Kmeans and S-Kmeans are set as the same number of 
clusters produced by S-GN.  

Table 5 shows the results of opinion classification in recall, precision and F-score. S-
GN and S-Kmeans significantly outperform J-Kmeans in all conditions. S-GN has better 
results than S-Kmeans especially in precision. Such results imply that the ESA similarity 
is better than the Jaccard coefficient. The Jaccard coefficient is essentially a keyword-
based similarity measurement. As ESA enhances the semantic representations of texts 
using expanded Wikipedia concepts, it alleviates the clusters of duplicated categories. In 
addition, the k-means algorithm requires a priori number of clusters. It is difficult to op-
timize k seeds for avoiding poor clusters. The GN algorithm produces the optimized 
number of clusters considering the global network topology so that it reduces the clusters 
containing mixed categories.  

Table 5. The comparison results of opinion classification 

Data set 
Recall Precision F-score 

J-Kmeans S-Kmeans S-GN J-Kmeans S-Kmeans S-GN J-Kmeans S-Kmeans S-GN 

KIS 2011 0.58 0.68 0.71 0.63 0.72 0.76 0.60 0.70 0.73 
TuneIn 3.6 0.55 0.66 0.67 0.60 0.71 0.74 0.57 0.68 0.70 

3.4 Evaluation of Generated Evolutionary Requirements Document 

We organized a human subjective study to evaluate the usefulness of the generated 
evolutionary requirements document. 50 participants that have over three years expe-
rience in software development were required to report the evolutionary requirements 
for TuneIn 3.6. We compared the generated document with participants’ reports to 
validate that our approach can discover requirements that were ignored by developers. 

In the first stage, the participants make decisions about requirements evolution based 
on their experience with TuneIn 3.6. Table 6 indicates the common results designed by 
developers, with which more than 30% of the participants agreed. Table 7 shows the 
results generated by our approach. For functional requirements, developers paid more 
attention to key, special and value-added features while users were more concerned with 
the features relative to user habits. As TuneIn 3.6 is one of the best sellers in the music 
category, its main functional features are implicitly desirable by the mass market. Such 
features should be improved or changed only when there are significant issues and bugs, 
for example “pause”. However, developers have difficulty predicting user preferences for 
these features in the real world, such as “favorites”, “schedule” and “streaming”. In terms 
of quality requirements, developers assessed the objective features for Internet Radio 
applications as “connection”, “reliability”, and “efficiency” whereas users revealed sub-
jective features like “operability”. Consequently, user feedback can assist in determining 
evolutionary requirements that developers sometimes overlook. 

Table 6. Evolutionary requirements of TuneIn 3.6 designed by developers 

ID Type Requirements Feature #Participants 

1 
functionality 

Fix issues that are causing playback or stream errors record 15 
2 Fix issue that is causing skipping to the current radio after pausing pause 21 

3 
quality 

Make connection smoother and more stable connection 32 
4 Fix issues that are causing crashing, freezing, and restarting reliability 48 
5 Improve the speed for connecting stations and favorites in personal account efficiency 26 
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Table 7. Evolutionary requirements of TuneIn 3.6 generated by our approach 

ID Type Requirements Feature Frequency E-score 

1 

functionality 

Improve reliability during pausing and the quality after pausing pause 17 -0.263 
2 Keep the schedule of stations schedule 16 -0.789 
3 Keep the local favorites favorites 19 -0.413 
4 Provide high quality streaming and allow users to choose streaming quality streaming 39 -0.193 

5 
quality 

Work in the background operability 16 -0.678 
6 Make connection smoother and more stable connection 18 -0.392 
7 Reduce the crash, freezing, reboot and skipping during listening to radios reliability 35 -0.432 

In the second stage, we provided the structured feedback derived from mining the 
reviews of TuneIn 3.6 for the participants to revise their presented evolutionary re-
quirements. The most common strategy used by 76% participants is to decide the 
priority of feedback on each software feature by the frequency of its occurrence and 
its user satisfaction. The features revised by the participants contains “user interface” 
in addition to those in Table 7. The ordinary satisfaction score and economic satisfac-
tion score of the feature are -0.0714 and 0.0489. Intuitively, it is difficult to determine 
evolving “user interface” because its ordinary satisfaction is only slightly negative. 
However, the economic satisfaction indicates the acceptance of a feature compared 
with the overall technical level in the market. Although the negative ordinary satisfac-
tion score implies that “user interface” implemented in TuneIn 3.6 is lower than 
common user expectation with it, the positive economic satisfaction score suggests 
that the same is true for other competitors in the market. Even if users are not satisfied 
with TuneIn 3.6, they have no other better alternatives. In other words, improving 
“user interface” cannot significantly have positive impact on the revenue of TuneIn 
3.6. Thereby, our approach argues even though a feature of the software product or 
application has poor ordinary satisfaction, it does not have to be changed until its 
economic satisfaction is negative. Determining evolutionary requirements based on 
economic satisfaction manifests that software evolution does not blindly pursue user 
interests, but rather balances the interests of users and developers.  

In addition, “user interface” is a feature relative to specific contexts of use. As Tu-
neIn 3.6 is an application for the public, the requirements for “user interface” are 
diverse in terms of specific user habits. To reduce the potential risk, this type of fea-
tures should only be improved when it has significantly low user satisfaction.  

4 Related Work 

In other research, there are techniques developed for eliciting requirements from on-
line user feedback. Gebauer et al. use content analysis of user reviews to identify 
functional and non-functional requirements of mobile devices through finding the 
factors that are significantly related to overall user evaluation [6]. Lee et al. elicit 
customer requirements using their opinions gathered from social network services [7]. 
Such works capture changing requirements without limited range of users and insuffi-
cient expressions. However, these approaches mostly rely on manual content analysis.  

Cleland-Huang et al. adopt a classification algorithm to detect non-functional re-
quirements (NFRs) from freeform documents including stakeholder comments [19]. 
One problem is that limited documents hinder identifying changing NFRs in a timely 
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manner. Hao et al. utilize machine learning techniques to extract the aspects of service 
quality from Web reviews for conducting automatic service quality evaluation [8]. 
Carreño et al. adapt information retrieval techniques including topic modeling for 
exploring the rich user comments of mobile applications to extract new/changed re-
quirements for future releases [9]. Li et al. compare the changes in user satisfaction 
before and after software evolution to provide instructive information for designing 
future systems [20]. Although these approaches initially access the validity of using 
automated techniques to discover software requirements, they lack the deep analysis 
about how user feedback influences changes in requirements. 

Our research is inspired by opinion mining techniques that make it possible to au-
tomatically elicit requirements from huge volumes of user feedback data. The main-
stream approaches are divided into two categories. One is to identify opinions based 
on word co-occurrence and grammatical structures [21-23]. Such approaches have 
good performance for extracting fine-grained features as well as opinions. However, 
the integrity of extraction rules/templates and domain knowledge have an obvious 
impact on their accuracy. The other one is to identify and group opinion pairs using 
topic modeling [24-26]. While it is not hard for topic models to find those very gener-
al and frequent features from a large document collection, it is not easy to find those 
locally frequent but globally not so frequent features [2]. 

5 Conclusions 

This paper presented a novel approach for eliciting evolutionary requirements through 
analysis of online review data by integrating various techniques of SRPA+, S-GN and 
user satisfaction analysis including economic factors. To conduct our research, we 
first accessed a broad spectrum of review data with complex and diverse opinion ex-
pressions and then evaluated the performance of automated techniques for consolidat-
ing, analyzing and structuring feedback information. Furthermore, the proposed me-
thod of user satisfaction analysis assisted developers with finding a set of evolutio-
nary requirements associated with the software revenue. We reported a human subjec-
tive study with fifty developers, evaluating the usefulness of the evolutionary re-
quirements document generated by our approach. As a result, the generated document 
could help developers understand why and what to evolve for future software releas-
es. In particular, they were led to focus on the improvements in specific functions and 
quality in use that they had previously ignored. 

Future work will refine our opinion mining method to improve the performance of 
automated requirements elicitation in the big data era. In addition, we will further 
evaluate our approach using a broader data set from different domains. 

Acknowledgments. The work in this paper was partially fund by National Natural 
Science Foundation of China under Grant No. 61170087 and State Key Laboratory of 
Software Development Environment of China under Grant No. SKLSDE-2012ZX-13. 
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Abstract. Micro-blogging, which has greatly influenced people’s life, is expe-
riencing fantastic success in the worldwide. However, during its rapid develop-
ment, it has encountered the problem of content pollution. Various pollution in the
micro-blogging platforms has hurt the credibility of micro-blogging and caused
significantly negative effect. In this paper, we mainly focus on detecting fake fol-
lowers which may lead to a problematic situation on social media networks. By
extracting major features of fake followers in Sina Weibo, we propose a binary
classifier to distinguish fake followers from the legitimate users. The experiments
show that all the proposed features are important and our method greatly out-
performs to detect fake followers. We also present an elaborate analysis on the
phenomenon of fake followers, infer the supported algorithms and principles be-
hind them, and finally provide several suggestions for micro-blogging systems
and ordinary users to deal with the fake followers.

Keywords: Micro-blogging, Fake followers, Classification, Feature extraction.

1 Introduction

Due to its simplicity and rapid velocity, micro-blogging is experiencing tremendous
success. However, the micro-blogging services have also encountered several serious
troubles during their booming development, one of which is the fake followers prob-
lem. The phenomenon of fake followers emerges soon after the birth of micro-blogging
systems and now has flooded in the mainstream micro-blogging services such as Twit-
ter[twitter.com] and Sina Weibo[weibo.com]. According to Yahoo reports1, a consider-
able part of the followers of celebrities on Twitter are fake, and the proportion may be
as high as over 50%. Despite both Twitter and Sina Weibo have made much effort on
struggling with the fake accounts, nevertheless, the effect is not very significant.

Generally speaking, people purchase fake followers mainly for two motivates ac-
cording to the investigation from Theweek2. The first one is that people purchase fol-
lowers just to achieve fame and feed their vanity. They misunderstand that, the more
∂ This research was supported by NSFC Grant No.61202408 and CAS 125 Informatization

Project XXH12503.
1 http://news.yahoo.com/blogs/prot-minded/10-people-won-t-
believe-fake-followers-twitter-215539518.html

2 http://theweek.com/article/index/243357/how-celebrities-buy-
twitter-followings-mdash-and-how-you-can-too

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 596–607, 2014.
© Springer International Publishing Switzerland 2014
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the followers, the greater their influence. The second, some merchants or brands seek
a huge number of followers so as to push Ads. The follower merchants take advantage
of algorithms and softwares to produce a mass of fake accounts automatically. These
accounts act as real followers to meet the needs of their customers. There are already
some websites for trading fake twitter followers in public, such as [intertwitter.com] and
[fakefollowerstwitter.com]. The prices for 1K fake followers provided by these online
merchants are around 5-20$. A recent report from NYTimes pointed out that the fake
Twitter followers have become a multimillion-dollar business.

The fake followers are so epidemic in the micro-blogging systems, which have caused
plenty of hazards, such as making noise on personalized recommendation and user in-
fluence analysis, risking privacy to unknown people, receiving valueless Ads. There-
fore, it is very significant to present an effective method to distinguish the fake followers
from the legitimate users in micro-blogging systems. Researchers have developed effec-
tive tools3 based on the inactive characteristic and spam-related features to detect fake
followers of Twitter. However, the fake followers are distinguished to traditional spam-
mers. The spammers mainly utilize the freedom and rapid nature of micro-blogging
platforms to push unsolicited advertisements or malicious information[1], while fake
followers aim to follow the users who are urgent to be popular users. Therefore, in many
cases, fake followers do not send spam to others, and pretend to be legitimate users. At
the same time, fake followers in Sina Weibo seem to be more sophisticated than Twit-
ter’s. For they not only appear as active as the legitimate users, but also almost have no
spam in their posts. We have checked the tweets of the followers purchased from the
four markets (1000 followers each) manually. An account will be labeled as a spammer
once there is any spam appear in the most recent 20 tweets of its timeline. Finally, we
found about 62% of these fake Twitter followers are belong to spammers. We define the
accounts which have less than 10 posts or 10 followers as inactive accounts. In general,
57% of the fake followers for Twitter are inactive. However, according our statistic on
fake followers for Sina Weibo, the spammer-ratio and inactive-ratio are just 8% and 6%
respectively. As a result, we aim to address the issue of detecting the fake followers
for Sina Weibo in this paper. Considering that there are no related public datasets for
validating the effects of the proposed method, we just purchased a considerable number
of fake followers from different merchants as our datasets.

We frame our contributions as follows:

(1) We examine a number of properties of fake followers in Sina Weibo, and present
an effective strategy for automatic detection of fake followers.

(2) We give an in-depth analysis of the profile-evolution of fake followers, and try to
understand the principles and algorithms for fake followers’ generation.

(3) We provide several suggestions for both the micro-blogging systems and legiti-
mate users on how to deal with fake followers.

The rest of this paper is organized as follows. After a brief review of the related work
in Section 2, we introduce datasets used in this paper in Section 3. Next, we analyze the
features of fake followers and propose a voting classier for detecting the fake followers

3 http://www.socialbakers.com/twitter/fakefollowercheck/
methodology/

http://www.socialbakers.com/twitter/fakefollowercheck/methodology/
http://www.socialbakers.com/twitter/fakefollowercheck/methodology/
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automatically in Section 4. Then, we present our experiments in Section 5. Section 6
gives the analysis on the results and the discussion. Finally, we conclude the paper in
Section 7 with future work.

2 Related Work

Due to its dual role of social network and news media[2], micro-blogging has become
an important platform for people to access information. However, with its rapid devel-
opment, micro-blogging is plagued by various credibility problems for a long time. The
information on micro-blogging systems has been polluted heavily by the rumors [3][4]
and the spams [5][6]. As fake followers usually accompany with illusive following-
actions, they will also pollute the social connections in the micro-blogging systems.

There are two main methods for the follower merchants to provide fake followers
to their customers. One way is to utilize some third-party applications to defraud the
authorizations from some legitimate users, then manipulate these compromised users to
follow the customers so as to promote their follower-count[7] [8]. Another method is
to utilize specific softwares to batch produce a mass of fake accounts that disguised as
real users.

The compromised users have a fatal weakness, that is their loyalty to the customers
is very low[9]. Since the compromised users are real users, once they discover strangers
appeared in their followee-list or receive valueless posts from the customers, they may
initiatively remove the customers from their followee-list. In contrast, the fake accounts
act as followers are very stable. Moreover, the fake followers have been very tricky,
especially in Sina Weibo. As a result, we mainly focus on how to automatically detect
the fake followers created by the follower merchants in this paper.

As the spammers in social networks are also created by certain bots [10]. Therefore,
the detection of spammers in social networks is related to our work. Thomas et al.
[11] analyzed the profiles of suspended spammers list provided by Twitter, then got
some significant key points about the techniques of the spammers. [12] presented graph-
based methods to analyze the network structure of the spammers. In [13] [14] [15], the
researchers proposed feature-based systems to address the spammer-detection problem.
All of these works have provided meaningful investigation on the characteristics of the
forged accounts in social networks.

Our work is quite different from the works mentioned above, and presented as the
first effort on detecting fake followers as far as we know. First, according to our real
dataset, only a small part of fake followers in Sina Weibo belong to spammers, and
thus the traditional methods for detecting the spammers in social networks are proved
not appropriate to identify fake followers. Secondly, previous approaches did not take
account of the evolution of fake accounts. We extract several evolutionary features for
our detection task, which are proved significantly important to promote detection per-
formance.

3 Data Collection

We notice that fake followers have two kinds of following-behaviors: following the
customers who have purchased their service, and randomly following other users so
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as to disguise themselves. To investigate these two behaviors respectively, we collect
two different datasets. We buy 20,000 fake followers in Sina Weibo from 4 different
follower merchants, and use these followers on 4 new-created accounts4.

We keep monitoring these fake accounts for about 4 months(02/03/2013-30/06/2013),
and only 17 of them are suspended by Sina Weibo during this period. It means these
fake followers are very deceptive and seem to be good at disguising themselves. The re-
maining fake followers are made as our dataset(DATASET1) for the proposed method,
which contains 19,146 records after removing the duplicated ones.

20 new Sina Weibo accounts are registered and used as baits to attract randomly fol-
lowing from fake followers. We keep these baits no actions (no posts and no following
behaviors) for a long period(10/03/2013-15/06/2013), and recognize their followers as
fake follows since legitimate users only follow the users they are really interested in.
Totally, 724 accounts are captured by our baits and used as DATASET2.

In order to compare with fake followers, a dataset of legitimate users is also nec-
essary. 114 volunteers are invited to identify the accounts of their acquaintances from
their respective followee-list on Sina Weibo. In this way, 14,873 different accounts of
real users are obtained. We also crawl the accounts of 6,472 celebrities whose identity
have been officially verified by Sina Weibo(”Big V”). After merging these two parts
of datasets, a legitimate dataset(DATASET3) contains 20,211 users. Finally, we utilize
Sina Weibo API5 to access the profiles of all users in DATASET1, DATASET2 and
DATASET3 for further research.

4 Proposed Method for Detecting Fake Followers

In this section, we mainly present our approach of detecting fake followers in Sina
Weibo. The fake followers detection issue can be considered as a binary classification
task. Through comprehensive analysis of the datasets, we extract numerous features
with great discrimination between legitimate followers and fake followers to build the
classifier. These features can be divided into three types: the post-related features, the
user relationship features and the evolutionary features. We randomly sample 2,000
items from DATASET1 and DATASET3 respectively, depict their differences on various
features, and provide a voting-SVM classifier.

4.1 The User Relationship Features

The Ratio of Followee Count and Follower Count (RFF). RFF of fake followers
is surprisingly high due to their large number of followees and very few followers.
According to our statistics, for a typical legitimate user, this ratio is usually within a
range of [0.5,3]. Since some celebrities have a huge number of followers, their RFF
are often close to zero. RFF is shrunk with a logarithmic function as follows:

4 All these four merchants do not have public website. We get in touch with them via searching
in Sina Weibo with the keyword ”add followers”. The prices of them are all around ¥ 60-80
per 1K followers.

5 http://open.weibo.com

http://open.weibo.com
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RFF (U) = lg
FolloweeCount+ 1

FollowerCount+ 1
(1)

Figure 1(a) shows the cumulative distribution function(CDF) of RFF for fake fol-
lowers and legitimate users. It is very clear that RFF is able to discriminate the two
types of users distinctly.
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The Percentage of Bidirectional Friends (PBF). PBF is calculated with Equation
(2). In real scenarios, people have their own social communities, and often the legiti-
mate users belong to the same community always follow each other in micro-blogging
systems. Certainly, fake followers have no friends, no classmates and no colleagues,
therefore, their PBF should be lower than legitimate users’. The CDF curves of PBF
in Figure 1(b) have proven this assumption.

PBF (U) =
CountOf(Followee

⋂
Follower) + 1

FolloweeCount+ 1
(2)

4.2 The Post-related Features

Average Repost Frequency of the Posts (ARF). ARF can reflect the influence of the
user[16]. The ARF of a fake follower is usually very low for two reasons. One reason
is that a fake follower has hardly any high quality followers. The other is that its post
behavior is manipulated by softwares, as a result, their posts are meaningless for others
in most cases. According to our datasets, the average ARF of normal users is much
higher than fake accounts. The CDF in Figure 1(c) shows that the ARF of most normal
users is over 0, which means the posts from normal users will be reposted at least once
in average. In contrast, it is obvious that over 80% of the fake followers have a low
ARF between [-2,-1].

ARF (U) = lg

∑
P∈Posts(U) RepostCount(P )

TotalPostsCount(U) + 1
(3)

Ratio of the Original Posts (ROP). We find the vast majority of posts from fake
followers are belong to repost. In Figure 1(d), we find that ROP for almost all fake
followers are less than 20%, while ROP for legitimate users are in the range of(20%-
60%).

ROP (U) =
OriginalPostsCount+ 1

TotalPostsCount+ 1
(4)

Proportion of Nighttime Posts (PNP). We make a comparison of the post-timestamp
distributions of users in DATASET1 and DATASET3. We notice that legitimate users
rarely publish posts during the nighttime. However, the timestamp distribution of fake
followers obeys an approximative uniform distribution, which is contrary to the com-
mon sense since we all know that people need to sleep and with a very low probability
to publish posts in the middle of the night. Consequently, we suspect that the post-
creation behavior of fake followers is controlled by a periodic creation algorithm. As
the distributions in Figure 1(e) have shown a remarkable discrimination between fake
followers and legitimate users, we are confident to employ the proportion of nighttime
(1:00am-7:00am) posts as an indicator for classification.

PNP (U) =
NightPostsCount+ 1

TotalPostsCount+ 1
(5)
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Topic Diversity. We apply author topic model[17] to mine the themes of the accounts
in DATASET1 and DATASET3. Normally, a legitimate user usually has countable in-
terests of topics, while the fake followers usually present variable interests since they
repost from others randomly. As a result, we assume that the topics of fake followers
should be more diverse than legitimate users. We use topic entropy [18] to measure
the topic diversity as Equation 6. Correspondingly, fake followers present higher topic
entropy than legitimate users’.

H(u) = −
K∑
i=1

P (zi|u) log2 P (zi|u) (6)

Where zi denotes the topics generated by author topic model. K is the count of
topics.

We notice that there is a step appears in the beginning of the CDF curve of fake
followers as shown in Figure 1(f). This is because a small part of fake followers publish
spams frequently, which causes their lower topic entropy.

4.3 The Evolutionary Features

As we observed, the fake followers always evolve when time changes. To better capture
the pattern of their evolution, we keep tracking the accounts in DATASET1 for a period
of 60 days (07/04/2013-06/06/2013), and several important parameters(i.e. the count of
posts, followees, followers) have been recorded every day. We then display the evolution
model of typical fake accounts in Figure 2 comparing with legitimate users6.

We can find that the evolution of post-count of fake followers is consistent with
gradient trend every day, which means they share the same post-frequency. This also
implies that they are manipulated by the same algorithm. The evolutionary curves of
post-count from legitimate users in Figure 2(b) are flatter than fake followers’. This is
because most of legitimate users publish fewer posts than fake followers and are with
low probability of mutation.

Because people rarely remove excessive amount of users from their followee-lists
during a short time[19], their followee count will tend to increase in general, whereas
the followee-count of five fake followers fluctuate violently for many times as shown in
Figure 2(c). According to this surprising investigation, we are more confident to confirm
that the fake followers are manipulated by software. In Sina Weibo, an account can only
follows 2,000 users at most, the software has to make the fake followers to remove some
followees who do not purchase their service in order to release the room for their new
customers.

The Figure 2(e) and Figure 2(f) demonstrate that follower-count of both fake follow-
ers and legitimate users maintain a relatively stable trend. However, the fake followers
seem to decrease more frequently.

Base on the analysis above, we extract 6 features to model the evolutionary
characteristics:

6 Due to the space limitation, we just plot 15-day evolution(23/05/2013-06/06/2013) in Figure 2.
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(1) the standard deviation of post-count(αpost).
(2) the general slope of post-count(gpost).
(3) the standard deviation of followee-count(αfollowee).
(4) the decrease frequency of followee-count(DFfollowee).
(5) the standard deviation of follower-count (αfollower).
(6) the decrease frequency of followee-count(DFfollower).

The following Equations give the calculation of these features.

α =

√√√√ 1

N

N∑
i=1

(Xi − μ)2 (7)

DF =

∑N
i=2 sigmoid(Xi −Xi−1)

N
(8)

gpost =
(XN −X1)

N
(9)

Among these features, the three standard deviations are used to model the degree of
fluctuation. The decrease frequency can capture the exceptions of followee-count and
follower-count. In addition, gpost is able to reflect the rate of increase of posts during
a period of time. We believe that these evolutionary features are also significant for the
classification task. For each account, we calculate these features above based on the
profiles in the latest 30 days, and integrate them into our classifier.

4.4 Classifier for Detecting Fake Followers

Due to its prominent fame on solving multidimensional classification problem, we uti-
lize Support Vector Machine(SVM) as our basic classifier. We exploit LibSVM[20] to
implement a SVM classifier with RBF (Radial Basis Function) kernel function. Since
we do not know the actual proportion of fake followers in Sina Weibo, the classi-
fier directly trained from the original dataset may be biased. To this end, we adopt
”bagging”[21] strategy to overcome this problem. DATASET1 and DATASET3 are
merged as the final dataset(DATASET4), therefore, it contains 13,873 fake followers
and 20,211 legitimate users. 3,400 accounts in DATASET4 are stochastically selected
as test dataset, and the left is used as training dataset. We randomly sample 2,000 ac-
counts from DATASET4 for 15 times, then use 15 subsets to train a SVM classifier
respectively. Finally, the category for an account in test dataset will be determined by
the voting results of these 15 SVM classifiers. A 10-fold cross validation on DATASET4
shows that our voting classifier works well. The average accuracy is about 98.7%, and
the average false positive rate is very close to 0%.

5 Experiments

In this section, we first make a comparison between our voting-SVM classifier to several
baselines. Next, we utilize our proposed classifier to evaluate the accounts in DATASET2
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Fig. 2. The evolution of typical fake followers and legitimate users

which are attracted by our baits. Finally, we adopt our voting-SVM classifier to detect
fake followers in the wild.

To examine the importance of evolutionary features, we implement a version of
voting-SVM classifier with no evolutionary features. A normal SVM classifier is em-
ployed as a baseline to validate the improvement of the ”bagging” strategy. We also
implement the spammer classifier introduced in [13] as another baseline. Our voting-
SVM outperforms others with all the metrics as shown in Table 1. The evolutionary
features and the ”bagging” strategy both play an important role in the final results. The
accuracy of spammer classifier is much lower than others’. It is because most fake fol-
lowers in Sina Weibo do not have obvious spam-related characteristics.

As we observed, the suspicious accounts attracted by our baits in DATASET2 are
very similar to fake followers in DATASET1 in many aspects(i.e. the features
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Table 1. The percentage of fake followers for different groups

Classifier Accuracy False Positive Rate F1
Spammer Classifier 63.4% 0.7% 0.712
SVM(no evolution) 91.3% 3.8% 0.834

SVM 95.1% 1.2% 0.933
Voting-SVM(no evolution) 93.9% 3.5% 0.917

Voting-SVM 98.7% 0.4% 0.964

discussed above), we guess that they have a great probability to be fake followers.
To prove our conjecture, we apply our trained voting-SVM classifier to classify the
accounts in DATASET2. Up to 95.6% account in DATASET2 are judged as fake fol-
lowers, which indicates that the accounts in DATASET1 and DATASET2 are extremely
homogeneous. Therefore, we confirm that most followers of our baits are indeed caused
by randomly following from fake followers.

In order to understand the global state in the whole Sina Weibo system, we pick up
100 legitimate users. Among the sampled accounts, 50 of them are registered by ordi-
nary people with different occupations. Another half are those celebrities in different
fields. We exploit our classifier to analyze the quality of their followers, and the average
percentage of fake followers is about 37.2%. As listed in Table 2, the celebrity accounts
contain more fake followers than ordinary users. We guess that most celebrities have
the suspects on purchasing fake followers.

Table 2. The percentage of fake followers for different groups

Ordinary Users Celebrity Users Fake Followers Baits Average
14.4% 42.3% 94.1% 95.6% 37.2%

6 Discussion

6.1 The Principle Behind Fake Followers

Based on all analysis mentioned above, we give an investigation on the behaviors and
characteristics of fake followers, which helps to find several key points of principal
control algorithms behind fake followers in Sina Weibo:

(1) The fake follower merchants exploit certain register tools to produce massive
accounts in Sina Weibo.

(2) Then they make fresh fake accounts to follow each other, as a result, both the
followee-count and the follower-count will increase rapidly within a short time.

(3) Next, the fake accounts will send random following-action to many legitimate
users. On the one hand, this operation may attract some back-following from legitimate
users, which can improve their level of camouflage; for the other hand, the fake accounts
would get the source of the reposts.

(4) Since it is very complicated to automatically generate diverse posts with high
quality, so reposting the posts from legitimate users is a conservative method, especially
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for those Chinese posts. The control algorithm manages fake accounts to repost many
posts every day, which not only ensures the quality of post-content, but also makes fake
followers appear to be much more realistic.

(5) When someone has purchased the fake-follow service, the merchants will manip-
ulate fake accounts to follow this customer, so as to make he/she appears to have many
followers.

(6) Once the followee-count of a fake follower is close to the limit(2,000 in Sina
Weibo), the control software will remove some legitimate users or other fake accounts
from the followee-list of fake followers.

6.2 How to Struggle with Fake Followers

It is a comprehensively difficult work for micro-blogging systems to identify fake fol-
lowers. The micro-blogging services should make crucial measure to deal with fake
followers in a fair and just manner. We believe that our work provides quite good sug-
gestions for micro-blogging systems. As normal users, we need to be cautious to follow
others in micro-blogging systems, or we may receive many valueless reposts from fake
followers. We discover that fake followers prefer to choose to follow some novice users.
Due to their less experience, many novice users tend to follow back when they are fol-
lowed by fake followers. Also it is easy for a user to utilize the features above to judge
whether a follower is fake manually through PNP , RFF and OPR, since these fea-
tures of an account are public.

In fact, the count of followers alone means very little about the influence of a user[16].
As a result, it’s unnecessary for us to purchase followers. We should share this fact with
the customers of fake followers, so as to fundamentally undermine the follower market.

7 Conclusion

The fake followers have severely hurt the credibility of micro-blogging systems. In this
paper, we mainly focus on automatic detection of fake followers in Sina Weibo. We
extract many discriminative features especially several evolutionary features to build
a classifier detecting fake followers. The proposed classifier performs satisfactorily on
the standard metrics for classification. We also summarize several principles behind
fake followers. Finally, we give suggestions for combating with fake followers.

Still there is much work to do in the future. We believe that the camouflage algo-
rithm of fake followers has huge space for improvement. The manipulator can adjust
the characteristics of fake followers to evade our detection algorithm. The race between
the detection algorithms and the camouflage strategies will exist for a long time. As a
result, it is necessary for us to keep tracking the evolution of fake followers and con-
stantly sum up new features to deal with them.
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Abstract. Since microblog service became information provider on web scale,
research on microblog has begun to focus more on its content mining. Most
research on microblog context is often based on topic models, such as: Latent
Dirichlet Allocation(LDA) and its variations. However,there are some challenges
in previous research. On one hand, the number of topics is fixed as a priori, but
in real world, it is input by the users. On the other hand, it ignores the hierar-
chical information of topics and cannot grow structurally as more data are ob-
served. In this paper, we propose a semi-supervised hierarchical topic model,
which aims to explore more reasonable topics in the data space by incorporating
some constraints into the modeling process that are extracted automatically. The
new method is denoted as constrained hierarchical Latent Dirichlet Allocation
(constrained-hLDA). We conduct experiments on Sina microblog, and evaluate
the performance in terms of clustering and empirical likelihood. The experimen-
tal results show that constrained-hLDA has a significant improvement on the in-
terpretability, and its predictive ability is also better than that of hLDA.

Keywords: Hierarchical Topic Model, Constrained-hLDA, Topic Discovery.

1 Introduction

In the information explosion era, social network not only contains relationships, but
also much unstructured information such as context. Furthermore, how to effectively
dig out latent topics and internal semantic structures from social network is an im-
portant research issue. Early work on microblogs mainly focused on user relationship
and community structure. [1] studied the topological and geographical properties of
Twitter. Others work such as [2] studied user behaviors and geographic growth pat-
terns of Twitter. Only little research on content analysis of microblog was proposed
recently. [3] was mainly based on traditional text mining algorithms. [4] proposed MB-
LDA by overall considering contactor relevance relation and document relevance re-
lation of microblogs. In this paper, we propose a novel probabilistic generative model
based on hLDA, called constrained-hLDA, which focuses on both text content and topic
hierarchy.

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 608–619, 2014.
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Previous work on microblog text was mainly based on LDA. To our best knowledge,
there was little research on the topic hierarchy on microblog text. However, hierarchical
topic modeling is able to obtain the relations between topics. [5] proposed an unsuper-
vised hierarchical topic model, called hierarchical Latent Dirichlet Allocation (hLDA),
to detect automatically new topics in the data space after fixing the level. Based on the
stick-breaking process, [6] proposed the fully nonparametric hLDA without fixing the
level. After that, some modifications of hLDA were proposed [7–9]. Given a parameter
L indicating the depth of the hierarchy, hLDA makes use of nested Chinese Restau-
rant Process(nCRP) to automatically find useful sets of topics and learn to organize the
topics according to a hierarchy in which more abstract topics are near the root of the
hierarchy and more concrete topics are near the leaves. However, the traditional hLDA
is an unsupervised learning which does not incorporate any prior knowledge. In this pa-
per, we attempt to extract some prior knowledge and incorporate them to the sampling
process.

The rest of the paper is organized as follows. Section 2 introduces the previous work
related to this paper. Section 3 describes the hLDA briefly. Section 4 introduces the
novel model constrained-hLDA. The experiment is introduced in Section 5, which is
followed by the conclusion in Section 6.

2 Related Work

There have been many variations of probabilistic topic models, which was first in-
troduced by [10]. The probabilistic topic model is based on the idea that documents
are generated by mixtures of topics which is a multinomial distribution over words.
One limitation of Hofmann’s model is that it is not clear how the mixing proportions
for topics in a document are generated. To overcome this limitation, [11] propose La-
tent Dirichlet Allocation(LDA). In LDA, the topic proportion of every document is a
K-dimensional hidden variable randomly drawn from the same Dirichlet distribution,
where K is the number of topics. Thus, generative semantics of LDA are complete,
and LDA is regarded as the most popular approach for building topic models in recent
years[12–16].

LDA is a useful algorithm for topic modeling, but it fails to draw the relationship
between one topic and another and fails to indicate the level of abstract for a topic. To
address this problem, many models have been proposed to build the relations, such as
hierarchical LDA(hLDA) [5, 6], Hierarchical Dirichlet processes(HDP) [17], Pachinko
Allocation Model(PAM) [18] and Hierarchical PAM(HPAM) [19] etc. These models
extend the ”flat” topic models into hierarchical versions for extracting hierarchies of
topics from text collections. [6] proposed the most up-to-date hLDA model, which is
a fully nonparametric model. It simultaneously learns the structure of a topic hierar-
chy and the topics that are contained within that hierarchy. Furthermore, it can also
learn the most appropriate levels and hyper-parameters although it is time-consuming.
In recent years, some modifications of hLDA has also been proposed. [7] proposed a
supervised hierarchical topic model, called hierarchical Labeled Latent Dirichlet Al-
location(hLLDA), which uses hierarchical labels to automatically build correspond-
ing topic for each label. [8] propose an unsupervised hierarchical topic model, called
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Semi-Supervised Hierarchical Latent Dirichlet Allocation (SSHLDA), which can not
only make use of the information from the hierarchy of observed labels, but also can
explore new latent topics in the data space. Although our work has some slight resem-
blance with their work, there still exist several important differences:

1. Our constrained-hLDA mainly focuses on the text of microblogs or reviews without
observed labels.

2. The prior knowledge is extracted automatically from the corpus instead of first-
hand observation.

3. The constraints are alterable by different parameters.

3 Preliminaries

The nested Chinese restaurant process (nCRP) is a distribution over hierarchical
partitions[5, 6]. It generalizes the Chinese restaurant process (CRP), which is a sin-
gle parameter distribution over partitions of integers. It has been used to represent the
uncertainty over the number of components in a mixture model. The generative process
is as follow:

1. There are N customers entering the restaurant in sequence, which is labeled with
the integers {1, ..., N}.

2. First customer sits at the first table.
3. The nth customer sit at:

(a) Table i with probability ni

γ+n−1 , where ni is the number of customers currently
sitting at table i, which has been occupied.

(b) A new table with probability γ
γ+n−1 .

4. After N customers have sat down, their seating plan describes a partition of N
items.

In the nested CRP, suppose there are an infinite number of infinite-table Chinese restau-
rants in a city. One restaurant is identified as the root restaurant and its every table has
a card with the name that refers to another restaurant. This structure repeats infinitely
many times, thus, the restaurants in the city are organized into an infinitely branched,
infinitely-deep tree. When a tourist arrives at the city, he selects a table, which is as-
sociated with a restaurant at next level, using the CRP distribution at each level. After
M tourists have visited in this city, the path collection, which they selected, describes a
random subtree of the infinite tree.

Based on identifying documents with the paths generated by the nCRP, the hierar-
chical topic model, which consists of an infinite tree, is defined. Each node in the tree is
associated with a topic, which is a probability distribution across words. Each document
is assumed to be generated by a mixture of topics on a path from the root to a leaf. For
each token in the document, one picks a topic randomly according to the distribution,
and draws a word from the multinomial distribution of that topic. To infer the topic hi-
erarchy, the per-document paths cd and the per-word level allocation to topics in those
paths zd,n must be sampled. Then we will introduce the process briefly.
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For the path sampling, the path associated with each document conditioned on all
other paths and the observed words need to be sampled. Assume the depth is finite and
let T denotes it, the posterior distribution of path cd is as denote:

p(cd|w, c−d, z, ϕ, σ) ∝ p(cd|c−d, σ)p(wd|c,w−d, z, ϕ) (1)

In Equation 1, two factors influence the probability that a document belongs to a path.
The first factor is the prior on paths implied by the nested CRP. The second factor is
the probability of observing the words in the document given a particular choice of path
with equation organized as follows:

p(wd|c,w−d, z, ϕ) =

T∏
t=1

η (n
(·)
cd,t,−d + V ϕ)∏

w η (n
(w)
cd,t,−d + ϕ))

∏
w η (n

(w)
cd,t,−d + n

(w)
cd,t,d

+ ϕ))

η (n
(·)
cd,t,−d + n

(·)
cd,t,d

+ V ϕ)
(2)

where n(w)
cd,t,−d is the number of word w that have been allocated to the topic indexed

by cd,t, not including those in the current document, V denotes the total vocabulary
size, and η (·) is the standard gamma function. When c contains a previously unvisited

restaurant, n(w)
cd,t,−d is zero.

After selecting the current path assignments, the level allocation variable zd,n for
word n in document d conditioned on the current values of all other variables need to
be sampled as:

p(zd,n|z−(d,n), c,w,m, π, ϕ) ∝ p(wd,n|z, c,w−(d,n), ϕ)p(zd,n|zd,−n,m, π) (3)

where z−(d,n) and w−(d,n) are the vectors of level allocations and observed words
leaving out zd,n and wd,n, zd,−n denotes the level allocations in document d , leaving
out zd,n.

4 Constrained-hLDA

In this section, we will introduce a constrained hierarchical topic model, i.e., the con-
strained herarchical Latent Dirichlet Allocation(constrained-hLDA).As we have known,
similar to LDA, the original hLDA is a purely unsupervised model without consider-
ing any pre-existing knowledge. However, in semi-supervised clustering framework, the
prior knowledge can help clustering algorithm produce more meaningful clusters. In our
algorithm, the extracted prior knowledge can help to pre-establish a part of the infinite
tree structure. In this section, we will give an introduction to the constraint extraction
and the proposed constrained-hLDA which can use pre-existing knowledge expressed
as constraints.

4.1 Path Constraints Extraction

To construct constrained hierarchical topic model, we adopt hLDA and incorporate the
constraints from the pre-existing knowledge. Compared with hLDA, constrained-hLDA
has one more input for improving path sampling. The input is a set of constrained indi-
cators, which is in the form of {{w1,1, w1,2, . . .}, . . . , {wN,1, wN,2, . . .}}. Each subset



612 W. Wang et al.

{wi,1, wi,2, . . .}, which corresponds to a node in constrained-hLDA, consists of several
high correlation words. In our work, these words, which can indicate the correlation of
a path and a document, are called constrained indicators. These corresponding nodes,
which are pre-allocated several constrained indicators, are called constrained nodes.

The intuition of above idea is very simple and easy to follow. In this paper, we just
attempt to solve it based on a correlation approach, more novel and efficient method will
be further explored in the future. Algorithm 1 summarizes the main steps of constraints
extraction. First, the FP-tree algorithm is adopted to extract the one-dimension frequent
items according to the minimum support and maximum support(Line 1). The maximum
support is used to filter some common words in order to make sure that the occurrences
of each candidate are close, therefore, there will not be hierarchical relationship of these
frequent items. Next, for each fisi, it is added to an empty collection CSi first, and then
the correlation of fisi with other items is computed. If the correlation of fisi and fisj
is greater than the given threshold, it is assumed that fisi and fisj should constitute a
must-link and fisj is appended to CSi (Line 2 - Line 9). In this work, the correlation
is calculated by overlap as follows:

overlap(A,B) =
PA&B

min(PA, PB)
(4)

where PA&B is the co-occurrence of word A and word B, PA is the occurrence of word
A, and PB is the occurrence of word B. The range of equation 4 is between [0, 1.0], so
the threshold can be easily given for different corpora. In the end, we delete the same
set only retaining one from CS (Line 10 - Line 14). Based on Algorithm 1, the prior set
CS, each of which contains several high correlation indicators, can be acquired. In this
paper, the threshold of overlap is set as 0.4, the maximum support is set as five times as
minimum support, all these parameters are estimated number. Additionally, we attempt
to utilize different minimum supports to obtain different set so that different experiment
results can be made for sure.

Algorithm 1. Constraints extraction

1. Frequent Item Set FIS ← FP-tree (D,min sup,max sup)
2. for each fisi in FIS do
3. CSi ← fisi
4. for each fisj|j!=i in FIS do
5. if correlation(fisi, fisj) > threshold then
6. CSi ← fisj
7. end if
8. end for
9. end for

10. for each CSi in Constraint Set CS do
11. if there exists CSj == CSi then
12. delete CSi from CS
13. end if
14. end for
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4.2 Path Constraints Incorporation

To integrate constrained indicators into hLDA, we extend the nCRP to a more realistic
situation. Suppose the root restaurant has infinite tables, some tables have a menu con-
taining some special dishes. Suppose N tourists arrive at the city, some of them have a
list of special dishes that they want to taste. When a tourist enters into the root restau-
rant, if he has a list, he will select a table whose menu contains the special dishes of his
list. Otherwise, according to his willingness to taste the special dishes, he will use CRP
equation to select a table among those tables without menus. To keep it simple in this
paper, we assume only the root restaurant has menus.

In constrained-hLDA model, each constrained set CSi corresponds to a menu and
each constrained indicator corresponds to a special dish. Then the documents in a cor-
pus are assumed drawn from the following generative process:

1. For each table k ∈ T in the infinite tree
(a) Draw a topic ωk ∼ Dir(ϕ)

2. For each document,d ∈ {1, 2, . . . , D}
(a) Let c1 be the root node.
(b) For level l = 2:

i. If d contains the constrained indicators {id,1, id,2, . . .}, select a table c2

with probability
nid,i

+γ∑
(nid,i

+γ) , where nid,i is the number of table which con-

tains id,i.
ii. Otherwise, draw a table c2 amongCnm,2 from restaurant using CRP, where

Cnm,2 is the set of tables which have no menus on root restaurant.
(c) For each level l ∈ {3, . . . , L}

i. Draw a table cl from restaurant using CRP.
(d) Draw a distribution over levels in the tree, εd|{m,π} ∼ GEM(m,π)
(e) For each word n ∈ {1, 2, . . . , N}

i. Choose level z|εd ∼ Discrete(εd).
ii. Choose word w|{z, c, ω} ∼ Discrete(ωcz), which is parameterized by

the topic associated with restaurant cz .

Fig. 1. One illustration of constrained-hLDA. The tree has 3 levels. The shaded nodes are con-
strained topics, which is pre-defined. The circled nodes are latent topics. After learning, each
node in this tree is a topic, which is a corresponding probability distribution over words.
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As the example shown in Figure 1, we assume that the height of the desired tree is L =
3, and the constrained-topics extracted are {A2, A3}. The constrained topics amount to
the tables containing menu, each of which is pre-defined as the constrained indicators
coming from a CSi, and the constrained indicators amount to special dishes. In our
work, because microblogs are mainly short texts, the maximum level is truncated to 3.
Furthermore, it is notable that the constraints can be extended to the deeper level. For
example, the constrained set can be extracted again from the documents which pass by
the node A2, and then the constrained indicators set corresponding to A2 can be drawn
from these documents.

In constrained-hLDA, the idea of incorporating prior knowledge derives from [20],
and the most important process is incorporating the constraints to the path sampling
process according to the probabilities calculated using Equation 5:

p(cd|w, c−d, z, ϕ, σ) ∝ (ϕ′λ(wd, cd) + 1− ϕ′)p(cd|cd, σ)p(wd|c,w−d, z, ϕ) (5)

where λ(wd, cd) is an indicator function, which indicates whether the nodes from cd
contain the same constrained indicator with that of wd: If wd contains such node,
λ(wd, cd) = 1, otherwise, λ(wd, cd) = 0. The hard constraint indicator can be re-
laxed by ϕ′, Let 0 ≤ ϕ′ ≤ 1 be the strength of our constraint, where ϕ′ = 1 recovers
a hard constraint, ϕ′ = 0 recovers unconstrained sampling and 0 < ϕ′ < 1 recovers a
soft constraint sampling.

4.3 Level Constraints Extraction and Incorporation

After revising the path sampling process and selecting a particular path, some prior
knowledge can also integrate into level sampling process. As we have known, hLDA
can discover the function words in root topic, furthermore, these words have no effect
on the document interpretability and often appear in many documents. Therefore, we
hope to improve level sampling process by pre-discriminating some function words and
non-function words. In our work, the function words are discriminated according to the
Part-Of-Speech(POS) and the term frequency in each document. Algorithm 2 describes
our purpose, where RDw denotes the ratio of the documents containing the word w
in the current corpus. For each word, if its RDw is greater than the given threshold

Algorithm 2 Constraints extraction

1. for each wi in current document do
2. if RDw > thresholdupper AND POSw /∈ SPOS then
3. samleLevelw ← 0
4. else if RDw < thresholdbelow AND POSw ∈ SPOS then
5. samleLevelw ← 1, . . . ,K
6. else
7. samleLevelw ← 0, . . . ,K
8. end if
9. sample the level according samleLevelw

10. end for
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thresholdupper and it does not belong to the pre-defined POS set SPOS , it would be
likely to be a function word that is allocated to root node directly(Line 2 - Line 3). If its
RDw is less than the given threshold thresholdbelow and it belongs to the pre-defined
POS set SPOS at the same time, it would be likely to be a non-function word without
being allocated to root node(Line 4 - Line 5). Finally, we sample the level according to
these prior knowledge (Line 9). In this paper, thresholdupper and thresholdbelow are
set to 0.02 and 0.005, and the pre-defined POS set SPOS is set as noun, adjective and
verb.

5 Experiment

5.1 Data Sets

Due to the lack of standard data set for this kind of research yet, we collected the
experiment data from sina microblog1 by ourselves. It is generally known that Ya’an
Earthquake2 on 20th, April, 2013 was a catastrophe shocking everyone, which is exactly
an ideal hot issue for research. We crawled 19811 microblog users all coming from
Ya’an, and also crawled their posted microblogs from 8am 20th April 2013 to 8am
25th April 2013. There are 58476 original microblogs released by these users, each
of which contains several sentences. As time passed by, people’s concern level on this
issue would decline gradually, therefore, we use the data on a daily level for further
analysis. Table 1 depicts the data sets for evaluation. The designed experiments and
sampling results can also be referred in [6]. For hLDA and constrained-hLDA, there is
a restriction that documents can only follow a single path in the tree. In order to make
each sentence of a document can follow different paths, we split texts into sentences,
such a change can get a remarkable improvement for hLDA and constrained-hLDA
in the corpus of microblogs. In our experiment, hLDA algorithm is completed with
Java codes by ourselves according to [6]. In our constrained-hLDA, the stick-breaking
procedures are truncated at three levels to facilitate visualization of results. The topic
Dirichlet hyper-parameters are fixed at ϕ = {1.0, 1.0, 1.0} , The nested CRP parameter
σ is fixed at 0.5, the GEM parameters are fixed at π = 100 and m = 0.25.

Table 1. Experiment data

Time Token Number of microblogs Number of sentences

20-21 T1 19709 50631
21-22 T2 11678 32311
22-23 T3 9779 28215
23-24 T4 9308 27213
24-25 T5 8002 23159

1 http://weibo.com/
2 http://en.wikipedia.org/wiki/2013_Lushan_earthquake

http://weibo.com/
http://en.wikipedia.org/wiki/2013_Lushan_earthquake
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5.2 Hierarchy Topic Discovery

Figure 2 depicts the hierarchical structure of cluster results. It is natural to conclude
that the constrained-hLDA can well discover the underlying hierarchical structure of the
content of micorblogs, and each topic and its child node mainly relate to pre-allocated
the constrained indicator, which is the underlined word. For example, there are three
sub-topic of Ya’an, the first sub-topic relates to blessing, the second talks about the sit-
uations of Ya’an, the third talks about relief of Ya’an. Furthermore, as we can find, the
latent topic of second level is a meaningless topic, which is hard to summarize the inter-
pretability of these topics. This phenomenon illustrates that the irrelevant information
in microblog context that can be filtered well by our algorithm.

5.3 Comparison with hLDA

In this section, we compare the experimental results with hLDA, and the per-document
distribution over levels is truncated at three levels. In order to evaluate our model, we
use predictive held-out likelihood as a measure of performance to compare the two
approaches quantitatively. The procedure is to divide the corpus into D1 observed doc-
uments and D2 held-out documents, and approximate the conditional probability of the
held-out set given the training set:

p(wheld−out
1 , . . . ,wheld−out

D2
|wobs

1 , . . . ,wobs
D1

) (6)

For this evaluation method, more details can be found in [6].
Figure 3 depicts the performance of constrained-HLDA on several data sets by dif-

ferent minimum support. Table 2 depicts the best performance of different constraints
on several data sets. According to these experimental results, we can conclude that:
(1) Both path sampling constraints and level sampling constraints can improve hLDA.
(2) The smaller minimum support can obtain more constrained indicators so that it can
achieve better log likelihood. (3) The likelihood of constrained-hLDA is better than the
likelihood of hLDA, but for different corpus, the degree of improvement is different.
When the topic of corpus is more concentrated, the improvement seems to be better.

Table 2. The Best Results of Different Prior Constraints(800 samplers)

Data set token hLDA hLDA + level constrains hLDA + path constraints constrained-hLDA

T1 -233776.355 -226566.45 -225814.798 -218583.987
T2 -169646.036 -164147.048 -162871.358 -158950.632
T3 -137735.633 -133976.967 -134931.846 -130895.533
T4 -130254.675 -127269.889 -128493.374 -124552.455
T5 -106223.172 -104269.033 -104670.728 -100796.114

In order to avoid interference from the values of hyperparameters, as with [6]’work,
we also interleave Metropolis-Hastings (MH) steps between iterations of the Gibbs
sampler to obtain new values of m,π,σ and ϕ. Table 3 present the results by sampling
the hyperparameters in the same case, from which we can see that constrained-hLDA
still performs better than hLDA.
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Fig. 2. A portion of the hierarchy learned from T1 Data. The shaded nodes are constrained topics,
the bold and underlining words are the constrained indicators extracted by Algorithm 1.

Table 3. The Results by sampling the hyperparameters (800 samplers)

Data set token hLDA constrained-hLDA

T1 -210794.652 -195034.999
T2 -151989.286 -140812.547
T3 -123816.852 -115215.844
T4 -117760.271 -110516.351
T5 -94291.395 -90791.294
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Fig. 3. The Results of Constrained-hLDA

6 Conclusions

This paper improves the popular topic modeling method hLDA by considering existing
knowledge in the form of path sampling constraints and level sampling constraints. In
the experiment, the proposed constrained-hLDA outperforms hLDA by a large margin,
showing that constraints as prior knowledge can help unsupervised topic modeling.
Moreover, this paper also proposes the extraction method for two types of constraints
automatically. Experimental results show that their qualities are relatively higher than
that of unsupervised one.
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