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Abstract. Present development of digital registration and methods of
recorded voice processing are useful in detection of most pathologies and
diseases of a human vocal tract. The recognition of the voice condition
requires the creation of a model which is comprised of different acoustic
parameters of speech signal. In this study a vector consisting of 31 param-
eters for analysing the speech signal was created. The speech parameters
were extracted from time, frequency and cepstral domains. Using Prin-
cipal Components Analysis the number of the parameters was reduced
to 17. In order to validate the detection of the pathological voice signal,
a tenfold cross-validation and confusion matrix were used. The goal and
novelty of this work was the analysis of applicability of the parameters
selectively used to assess the pathology.

Keywords: acoustics analysis, cepstral analysis, pathology detection,
dysphonia, principal component analysis, cross validation.

1 Introduction

Currently, European standards emphasize the need for a comprehensive assess-
ment of voice disorders with regard to objective methods. The value of acoustic
analysis is increasingly appreciated as a diagnostic test for non-invasive and ob-
jective examination. In the broad sense of laryngeal and phoniatric diagnosis of
voice and speech disorders acoustic analysis provides supporting and comple-
mentary studies. The value of these studies increased significantly throughout
the last years with the introduction of high-speed digital voice analyzers. The
detection accuracy of voice and speech disorders located in the larynx and in
voice channel increases.

Acoustical analysis allows us to make physical description of the waveforms
generated and emitted by the organ of the human voice and correlates well
with the phoniatric state of proper and pathological voice. There are two meth-
ods to conduct voice analysis: classic, based on subjective assessment of voice
examination and modern, based on objective acoustic analysis, spectrographic
images, sonographic or time recording speech signal. The physical characteristics
of the voice are determined to use the latest digital technology in the acoustic
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analysis and a detailed statistical analysis of the results. Fidelity recording and
processing the digital audio signal, which is a stochastic process, promotes the
development of a growing number of measurable characteristics (characteristic
for the different subjective characteristics) of human voices and allows good ac-
curacy, objective assessment of discrete, unobtrusive overflow method, voice and
speech disorders [1].

Currently, the best measurement methodology models, algorithms and dif-
ferent approaches for classification that could discriminate between normal and
pathological voices are still being sought [2]. The performance of these systems is
not perfect, but they are useful as an additional source of information for other
laryngoscopial examinations [3,5].

In this work, the articulation in speech and its pathological deformation was
examined. This includes tools and techniques used to detect deformations in the
voice signal vocalised by an ill person and a healthy one. The aim was to select
and describe those signal parameters that contain the most valuable information
and show the highest sensitivity to speech deformations.

2 Material

The Saarbruecken Voice Database has been published online by Institute of Pho-
netics of the University of the Saarland [4]. It is a collection of voice recordings
collected from more than 2000 people. Each of the recording sessions contains
recordings of the vowels /a/, /i/, /u/ produced at normal, high, low, low-high-
low pitch.

The length of the recordings with sustained vowels amounts to 1 – 4 seconds.
All the recordings are sampled at 50 000 Hz with a resolution of 16-bit. The
database contains 71 different well defined pathologies. In our work we used the
recordings of the vowel /a/ of 850 women, of which 425 were healthy and 425
suffered from different voice disorders (167 suffered from hyperfunctional dyspho-
nia,139 had vocal cord paresis, 119 suffered from other pathologies listed in the
database) and 510 men, of which 255 were healthy and 255 were diagnosed with
different pathologies, of which 46 men suffered from hyperfunctional dysphonia,
74 suffered from vocal cord paresis, 83 experienced laryngitis of which some also
had leukoplakia. The rest of the men who underwent this examination suffered
from other pathologies listed in the database. Recordings that were missing or
damaged were excluded from the dataset. Only for women the analysis of the
vowel /a/ was extended to include all intonations – low and high pitch. Because
of the intrinsic differences in voice behaviour between men and women (and
because the number of male and female speakers was not equal in all groups),
parameters were statistically analysed for males and females separately.

3 Method

This study was carried out to assess the suitability of several methods for map-
ping speech signals in diagnostics of pathological speech. Each method was used



Quantification of Linear and Non-linear Acoustic Analysis. . . 357

with reference to both correct and pathological speech samples. Firstly, the fo-
cus of examination was put on preliminary transformation of speech waveforms
into a set of parameters whose values represented a basis for a diagnosis of the
patient’s disease.

The attention was drawn to the fact that the acoustic signal processing for a
set of features whose values are so called parameters, is the basis for a description
of the object’s state in terms of diagnosis. Registration itself and its preliminary
signal processing does not make it fully useful to the process of identifying and
assessing changes in deformation and pathology. Therefore, it becomes necessary
to develop and describe recorded phonetic tests using a set of parameters, which
then, sorted out in the corresponding structure - a feature vector will be used to
develop models of speech deformation. Such models can be the foundation of the
recognition process, assessment of pathological changes or rehabilitation process.
Analysis of the speech signals (Fig. 1) was performed with 31 parameters: root

Fig. 1. Block diagram of conducted acoustic analysis

mean square value (RMS), fundamental frequency, jitter (J) and shimmer (S)
coefficients, mean value of the signal, energy, average power, zero-order, first-
order, second-order and third order moments, kurtosis, power factor, 1st, 2nd,
3rd formant’s amplitude, 1st, 2nd, 3rd formant’s frequency, maximum and min-
imum value of the signal and 10 mel-frequency cepstrum coefficients (MFCC).
MFCC coefficients are widely used in speech recognition because they reflect
well the auditory sensations by enhancing the audible frequency and are less
sensitive to noise [6,7,8,9]. MFCC are designed to reflect the natural response of
the auditory system to stimulation of the auditory speech sound.

A root-mean-square (RMS) value of the signal is used to estimate its loudness.
In the first step of the analysis we proceeded with the normalisation where the
aim was to bring the average amplitude to a target level. The normalisation was
done for all signals so that their RMS value of each signal was the same.

Cepstral analysis was performed using the Fourier transformation of the sound
to calculate the fundamental frequency. In order to facilitate the extraction of
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spectral components before converting from time domain to the frequency do-
main, the signal was subjected to a windowing operation using a Hamming
window. In order to improve the performance of this calculation and further pu-
rification of the spectrum the non-maximum elements were removed. The loca-
tion of the maximum of the spectrum corresponds to the fundamental frequency
[10]. Therefore, knowing the position of the maximum, we could determine the
fundamental frequency of the analysed sample using the formula:

f0 =
lsz

wm
(1)

where ls – is the number of elements of the spectrum, z – is the audio sample
rate,w – is the width of analysed window (number of samples),m – is the position
of maximum cepstrum. The jitter coefficients (J) was calculated as an average
deviation of the fundamental frequency from frequency f0 in consecutive cycles.
The jitter coefficient is presented in equation 2:

J =

√
1

2N−1

∑2N−1
i=1 (fi − fi−1)2

1
2N

∑2N−1
i=1 fi

100% (2)

where fi - the frequency in the i-th cycle. The shimmer coefficient (S) defines
the variations of the fundamental tone amplitude from the average amplitude
Ai in consecutive cycles, and is described by:

S =

√
1

2N−1

∑2N−1
i=1 (Ai −Ai−1)2

1
2N

∑2N−1
i=1 Ai

100% (3)

where the average amplitude is defined as:

A0 =
1

N

N∑

i=1

Ai (4)

By integrating the square of the signal the variable Ex is formed, which is a
measure of the energy carried by the signal x:

Ex =

∫ t2

t1

x2(t)dt (5)

where t1 and t2 are the beginning and the end of the sustained signal. The average
power of the signal is defined as the average time derivative of the energy.

Px =

∫ t2
t1
(x2(t))2dt

t2 − t1
(6)

A large number of details, which are carried by a spectral analysis make it
difficult to interpret and recognise the relevant information contained in the
signal. Therefore, we determined from the frequency spectrum those features
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that are useful in the analysis. Having defined signal time-frequency domain
G(t, f) parameters describing its shape can be determined. The first parameter
describing the shape of the spectrum is the zero-order spectral moment which
takes the form of:

M0(t) =

∞∑

i=0

G(t, fi) (7)

The zero-order moment is used to normalise the higher-order moments. The
first-order moment can be interpreted as the centre of gravity of the spectrum
(frequency-weighted average). This moment is used in the formulas for the cal-
culation of higher-order central moments.

M1(t) =

∑∞
i=0G(t, fi)fi
M0(t)

(8)

Second-order moment is interpreted as the square of the spectrum width.

M2(t) =

∑∞
i=0G(t, fi)[fi −M1(t)]

2

M0(t)
(9)

The third-order moment can be interpreted as the asymmetry of the spectrum –
skewness. Standardised higher-order spectral moments are less suitable because
they are correlated with each other.

M3(t) =

∑∞
i=0G(t, fi)[fi −M1(t)]

3

M0(t)
(10)

Another parameter in the analysis was kurtosis, defined as flattening the spec-
trum measurement:

kurtosis =
M4(t)

M2(t)2
. (11)

Further calculation was done to get power factor characterised as the ratio of
the relative power of the signal in the desired frequency f0 wide-band <fd, fg>
to signal power across the bandwidth <f0, f∞>, and is shown in eq. 12.

Wm(t) =

∑tg
t=tb

∑fg2
f=fd2

G(t, fi)
∑tg
t=tb

∑fg1
f=fd1

G(t, fi)
(12)

where fg1, fd1- are the lower and upper frequency of the power wide-band, fg2,
fd2 – are the upper and lower frequency range of the selected frequency wide-
band, tb, tg – are the beginning and the end of the recorded voice sample. The
band selection followed the formants structure of the vowels calculated using
the set of vowels recorded from the patients involved in this examination. The
power coefficient was calculated only for the 1st power signal. The next com-
puted parameters were the formants. Formant level can be defined from the
envelope which can be drawn to enclose smoothly the harmonics within the
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spectral maximum, i.e. the sound pressure level in dB of the envelope peak [5,9].
The frequency of the formant is measured as the frequency position of the en-
velope maximum (sequentially designated as F1, F2, F3... etc). Currently, a
classical spectral analysis of voice signals methods is often supplemented with
methods such as linear predictive analysis, wavelet analysis or homomorphic in
the field of so-called cepstrum [6,9,11,12]. Cepstrum is determined as the in-
verse Fourier Transform of the logarithm of the signal spectrum giving a better
picture of the structure of harmonic signal and allowing for the separation of
existing noise in the transformed signal of the harmonic components in the same
signal [7,13]. Many authors emphasize the importance of the cepstral factors in
the diagnostic evaluation of pathological changes in the glottis [14,15]. In the
present work the process of determination of the cepstral coefficients was ex-
tended to a so-called Melow filtration, which consists of an additional non-linear
frequency scale signal spectrum transformation, yielding MFCC coefficients (Mel
Frequency Cepstral Coefficients). Obtaining the MFCC coefficients required tak-
ing a few steps. Firstly the signal was divided into frames, the amplitude was
obtained from each frame and the log was taken of these spectrums. Afterwards
the results were converted into the Mel scale and the Discrete Cosine Transform
(DCT) was applied. Mel filtering was applied using triangular band pass filters
corresponding to the Mel scale. The number of filters was set to 10.

4 Feature Selection

All the parameters discussed above had different results. Statistically, much of
this data is redundant and it is therefore useful to identify the method that
can extract most significant information from the collected data. While sorting
features according to their discriminant capacity it is necessary to get a stable
and consistent result, which is reflected in the overall performance of the system
[18]. For feature selection we used a method called Principal Component Analysis
(PCA). Essentially, PCA transforms data orthonormally so that the variance of
the data remains constant, but is concentrated in the lower dimensions [8]. The
matrix of data being transformed consisted of all calculated parameters for every
voice sample in this examination. Thus, there was a single matrix of data with
all parameters. The covariance matrix of the data was created. PCA for the data
set was calculated to determine the eigenvectors, which are necessary for PCA
[16]. As a result, a set of principal components was obtained, with the variance
order from the highest to the lowest, which means that the most important data
was extracted with minimum disruption to the original data collection. Once
the data had been reduced and the principal components values extracted, we
took 17 out of 31 parameters that covered up to 90% variance of the initial
parameters.

5 Validation

The next step in the implementation of this study was the evaluation of
the operator classification quality using cross-validation [19,20]. The operator
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classification represents the result of the analysis of individual principal compo-
nents taken into further analysis. For validation, we used a tenfold cross valida-
tion in which we randomly selected roughly 90% of the data, which represented
the set of learners and then we used the remaining 10% of cases to test for
classification. We iterated this procedure 10 times. To classify the data a K-
means function was used. Cross validation was done separately using recordings
of vowel /a/ at normal pitch for female and male recordings with healthy and
pathology state and for female /a/ vowel at high and low pitch. As a result of
the cross-validation a confusion matrix was constructed. A confusion matrix is
a tool used to analyse the operation of the classifier, here parameters (Table 1).

Table 1. An example of confusion matrix used in the analysis

Results from classification
healthy pathology

D
ia
gn

os
ed

h
ea

lt
hy

True Positive
(TP)

False Positive
(FP)

Precision
Positive

predictive value

= TP/(TP+FP)

p
at

h
ol
og

y

False Negative
(FN)

True Negative
(TN)

Precision
Negative

predictive value

= TN/(FN+TN)

Sensitivity Specificity
=TP/(TP+FN) =TN/(TN+FP)

In order to make a qualitative assessment, the accuracy, precision, sensitivity
and specificity were calculated (Table 2). The accuracy of the classifier deter-
mines what percentage of parameters from the test set were correctly assigned to
their respective classes and obtained at the stage of testing. The precision meant
the ratio of the number of cases actually correct, which have been classified by
the system as correct to all classified by the system as correct. The sensitivity
relates to the test’s ability to indentify positive results, whereas the specificity
relates to identifying negative results.

Due to unsatisfactory results for female data set, the test was repeated for
the vowel /a/ at a high and low pitch. The results are shown in Table 3.

Comparing the calculated characteristics in the confusion matrix for the vowel
/a/ using PCA with different intonations, we came to the conclusion that the
analysis of the vowel /a/ at a high pitch gave the most accurate indications of
the patient’s healthy condition and the pathological one – the accuracy of 77.5%,
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Table 2. Results obtained from the confusion matrix using 31 primary parameters and
PCA for healthy(H) and pathological(P) voice samples

vowel /a/
normal pitch

31 param PCA 31 param PCA

female male
H P H P H P H P

accuracy [%] 81.4 74.8 100.0 100.0

precision [%] 74.6 88.0 80.4 69.1 100.0 100.0 100.0 100.0

sensitivity [%] 86.0 – 72.2 – 100.0 – 100.0 –

specificity [%] – 78.0 – 78.0 – 100.0 – 100.0

Table 3. Results obtained from the confusion matrix for healthy and pathological
female voices with different intonations

female
vowel /a/

high pitch low pitch

healthy pathology healthy pathology

accuracy [%] 77.5 73.3

precision [%] 83.7 71.3 79.0 67.5

sensitivity [%] 73.4 – 72.1 –

specificity [%] – 79.9 – 78.6

precision of almost 84% for the healthy females and 71 pointing the pathology
ones. The same dependence showed the sensitivity and specificity that were
around 1% higher for a high pitch than normal one. Results from the vowel /a/
with a low pitch showed slightly lower results than a normal pitch, expect for
the specificity that was slightly higher, but at the same time it was still lower
than the one associated with a high pitch. There was no need to repeat the
test for male recordings due to 100% correct classification Results based on 31
original parameters for female recordings show higher accuracy and sensitivity
than PCA. While analysing PCA the precision for healthy women was higher
than the one for all original parameters, pathology precision at the same time
was still lower. The specificity for both methods for normal pitch was the same.

6 Conclusion

The open and free database available online has been used in the context of
pathology detection. The substantial amount and various types of recordings
included in this database made it possible to conduct different and interesting
tests. Based on the conducted studies it was shown that the use of the calculated
parameters and their subsequent reduction significantly differentiated between
acoustic characteristics of the pathological speech and those of the healthy one.
An integrated acoustical analysis of deformed pathological speech was discussed
in this paper. The analysis employed among groups of patients showed that
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speech pathology caused by various laryngeal diseases can be computed using
acoustical methods. In order to expedite and simplify the calculations the Prin-
cipal Components Analysis was conducted and led to obtaining 17 out of 31
parameters. The final analysis included just these factors. Analysis of the 17
parameters analysed for women showed lower accuracy and sensitivity than 31
original parameters at normal pitch when determining whether the patient was
healthy or ill. The precision of pathology detection was higher when PCA was
used. The specificity did not change.

According to the statistical accuracy of the pathological voice diagnosis ob-
tained satisfactory results showing 100% compatibility classification obtained for
the male voices analysing original vector of parameters and PCA, whereas for
the female ones it proved more complicated.

The best results were achieved with high intonation for the female recordings
giving an approximately 3% higher result of accuracy than normal intonation
and almost 4% higher than low intonation. Other calculations like precision,
specificity and sensitivity showed an upward trend. The reason might be that
for the same vowel spoken at different pitches the relationship between the sec-
ond harmonic and the first formant can change, causing the amplitude of this
harmonic to be artificially amplified or attenuated [21]. The results show that
the techniques discussed here could be used for detecting pathological voices.
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