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Abstract. The paper describes the robust weighted averaging method
applied to averaging of auditory brainstem responses. This type of signals
is characterized with extremely low signal-to-noise ratio. Suppression of
noise that contaminates this type of signals can be achieved with the
use of the averaging technique. The auditory evoked potentials are time-
aligned and then the average template is determined. The weighted aver-
aging operation can be regarded as special case of clustering. In this work
the averaging process is formulated as the problem of certain criterion
function minimization. The maximum likelihood estimator of location
based on the generalized Cauchy distribution is used as the measure of
dissimilarity function. The proposed methods performance is experimen-
tally evaluated and compared to the reference methods in the presence
of the artificial noise and in the case of real signals. The experiments
show usefulness of the proposed method for robust weighted averaging
of periodic signals, for instance the evoked potentials.

Keywords: auditory brainstem response, robust weighted averaging,
General Cauchy distribution.

1 Introduction

Sensory evoked potentials (EPs) are time-aligned changes of the electrical ac-
tivity of the brain recorded from the human scalp. These potentials represent
aggregated electrical activity from a large number of temporally and spatially
aligned neurons of the brain and arise as the response to a variety of controlled
external stimuli [3,9]. The clinical utility of EPs is based on their ability to show
abnormal sensory system conduction, to discover asymptomatic engagement of
a sensory system, to help define the anatomic distribution of a disease process
and monitor changes in a patient’s neurological status [19]. In clinical practice
the auditory (AEPs), visual (VEPs) and somatosensory (SEPs) are tested most
frequently and they can be recorded in patients who are anaesthetised or co-
matose [3,19]. In general, the electroencephalogram (EEG) is extensively used
within neurophysiology, cognitive neuroscience, cognitive psychology, and brain-
computer interfacing [9].

The peak amplitudes and the latencies are commonly used for quantitative
evaluation of EPs which last for a few hundreds of milliseconds, with it various
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features categorized into early, middle and late components [3,19]. Early com-
ponents of AEPs are auditory brainstem responses (ABRs) and auditory steady
state response arising within 0-10 ms [3]. AEPs are much smaller than the EEG
and early and middle components typically have a signal-to-noise ratio (SNR) in
the range from -30 to -20 dB [3]. The most common method to isolate the AEP
from background EEG is averaging the EEG responses to multiple identical au-
ditory stimulations. The ABR can be regarded as the deterministic component
for all stimuli (because it is time-locked) while the background noise (including
spontaneous EEG) will vary and thus be reduced by averaging [17]. The assump-
tions for realize the averaging are the following: (i) the signal remains constant
from trial to trial, (ii) the noise on any trial is uncorrelated with the noise on
other trials, and (iii) the noise statistics remain stationary from trial to trial [5,7].
But if the noise varies from one trial to the next, averaging is less effective. The
random phenomena, sudden transients as well as non-stationarities in the signals
(caused both by a physiological adaptation process to the series of stimuli or by
possible pathological evidences), do cause that the obtained average, in most
of the cases, is only a very general information about a mean behaviour of the
system under study.

From another point of view, the averaging methods are similar to the fuzzy
robust clustering methods [2,6]. The averaging process can be regarded as a spe-
cial case of clustering with only one prototype. The clustering method should
be robust for data corrupted by outliers or heavy-tailed distributed noise. The
influence of outliers on the averaged signal can be reduced by choosing a me-
dian as the aggregation operation. However the median averaging does not only
remove the outliers but also the rest of data [11,13]. The alternative approach
is based on the trimmed mean method [13]. The possibility of using the myriad
cost function to develop a procedure for robust weighted averaging is presented
in [15]. The approach based on Lp-norm is presented in [16]. An application of
Vapnik ε-insensitive function allows to increase the robustness of the weighted
averaging is presented in [11].

The goal of this paper is to show the novel approach to robust weighted aver-
aging applied to processing of ABRs. This paper presents a robust cost function
based on Generalized Cauchy probability distribution which plays role of the
dissimilarity function in the weighted averaging method based on the minimiz-
ing of certain criterion function. The paper is divided into four sections. Section
2 presents the idea of the weighted averaging method based on the minimization
of the scalar criterion function and introduces the proposed method. Section 3
describes the proposed experiments. Section 4 presents the obtained results and
discussion. Finally, the conclusions are given in Section 5.

2 Methods

2.1 Weighted Averaging

Let us consider N sweeps of ABR potentials where xi = [xi1, xi2, . . . , xiM ]
T is the

ith sweep which consists of M samples and 1 ≤ i ≤ N . Let y = [y1, y2, . . . , yM ]
T
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is the averaged signal and w = [w1, w2, . . . , wN ]T is the weight vector that
satisfies the following conditions:

∀
1≤i≤N

wi ∈ [0, 1],

N∑

i=1

wi = 1. (1)

Each of the xi sweep is the sum of a deterministic component and the noise
xi = s + νi. The noise νi is a random component with zero mean and variance
σ2
i . The weighted average of N sweep waveforms is given by:

y =
N∑

i=1

wixi. (2)

The general idea of weighted averaging rests on the assumption that each signal
xi affects the resulting averaged signal y in the manner specified by the value of
weight wi. The simplest case of weighted averaging is the arithmetic averaging,
where all weights are the same, equal to N−1. Estimation of the weights values
is a crucial for the process of averaging. The easy mathematical consideration
shows that, given the variance σ2

i of each individual sweep, the weights are the
following [10]:

wi = σ−2
i

⎛

⎝
N∑

j=1

σ−2
j

⎞

⎠

−1

. (3)

This method is one of the reference methods and is denoted as the WA (the
weighted averaging) method. There are different methods to estimate the noise
variances or to estimate the optimal weights without direct knowledge of the
noise variance. One of such approach is presented below.

2.2 Criterion Function Minimization

The WACFM (weighted averaging method based on criterion function minimiza-
tion) is based on minimization the following scalar function [2,11]:

Im(w,y) =
N∑

i=1

M∑

j=1

(wi)
mρ(zij), (4)

where zij = xij − yj , m ∈ (1,∞) is the assumed weighting exponent and ρ(·) is
a measure of dissimilarity for the vector argument. The eq. (4) can be rewritten
as:

Im(w,y) =
N∑

i=1

(wi)
m

⎛

⎝
M∑

j=1

ρ(zij)

⎞

⎠ , (5)

where
∑M

i=1 ρ(zij) = ρ(zi) and then zi = xi − y. The ρ(·) function is a measure
of dissimilarity for a vector argument [11]. It plays a similar role to the cost
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function in the robust M-estimator [2]. The task of searching for an optimal an
optimal weight vector w∗ and optimal averaged signal y∗, can be formulated as
follows:

Im(w∗,y∗) = min
w,y

Im(w,y). (6)

The problem of Im minimization is considered as the constrained optimiza-
tion problem and the method of Lagrange multipliers is applied [11] to find the
optimal weights vector w which are given in the following way:

∀
1≤i≤N

wi =
ρ (zi)

1/(1−m)

∑N
j=1 [ρ(zj)]

1/(1−m)
. (7)

The robustness of the weighted averaging depends strictly on the function ρ(z)
which should be symmetric positive-definite function [2,11]. The weights wi cor-
responds to membership (belonging) of xi to the prototype (the averaged sig-
nal) [2].

If we assume that y is fixed, the next step of the algorithm consists in estima-
tion of the y averaged signal. From the theory of M-estimators, the derivative of
ρ(z) is called the influence function ψ(z) = dρ(z)

dz
, while the weighted function is

defined as �(z) = ψ(z)
z [12]. Then, for given data set x = [x1, x2, ..., xN ], using

the weighted function of the dissimilarity function, the averaged signal y can be
found by applying the fixed-point search algorithm which can be written as [16]:

y(k+1) =

∑N
i=1(wi)

m ·�(xi − y(k)) · xi
∑N

i=1(wi)m ·�(xi − y(k))
, (8)

where the superscript (k) denotes the iteration number. The algorithm is re-
garded as convergent when ||w(k+1) −w(k)|| < ε, ε is a small positive value (e.g.
ε = 10−6).

2.3 Generalized Cauchy Distribution-Based Cost Function

The family of Generalized Cauchy Distribution (GCD) has the feature that its
pdf has the closed form for the whole family and also has algebraic tails which
makes it suitable to model many impulsive process in real world of signals (the
Cauchy distribution is the special case of the α-stable distribution for α = 1 [8]).
The pdf of the GCD has the following form [1]:

f(z) = aσ(σp + |z|p)(−2/p) (9)

with a = pΓ (2/p)/2(Γ (1/p))2; σ is the scale parameter and p is the tail constant.
The family of GCD contains the Meridian [1] (p = 1) and Cauchy (p = 2) dis-
tributions as special cases. The adjustable and closed-form feature of the GCD
makes it useful for robust estimation and filtering techniques [1]. Equation (9)
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is the basis for determination of the maximum likelihood estimators of location;
the cost function has the following form:

ρ(z) = log (σp + |z|p) , (10)

where σ > 0 and 0 < p ≤ 2. Using (5) and (10), the scalar criterion function can
be rewritten as:

Im(w,y) =
N∑

i=1

(wi)
m

M∑

l=1

log

(
1 +

(
|xil − yl|

σ

)p)
. (11)

According to (7) the weights wi are given by:

∀
1≤i≤N

wi =

[∑M
l=1 log

(
1 +

(
|xil−yl|

σ

)p)]1/(1−m)

∑N
j=1

[∑M
l=1 log

(
1 +

(
|xjl−yl|

σ

)p)]1/(1−m)
. (12)

The influence function of (10) has the form ψ(z) =
p|z|p−1sgn(z)

σp+|z|p and the corre-
sponding weighted function is given by:

�(z) =

(
1

p
|z|2−p (σp + |z|p)

)−1

. (13)

The averaged signal y is obtained with using formulas (8) and (13) in the fol-
lowing form:

y(k+1) =

∑N
i=1(wi)

mxi

[
∑M

l=1
|xil−y

(k)
l |2−p

p

(
σp + |xil − y

(k)
l |p

)]−1

∑N
i=1(wi)m

[
∑M

l=1
|xil−y

(k)
l |2−p

p

(
σp + |xil − y

(k)
l |p

)]−1 . (14)

Finally, using (12) and (14) the algorithm of the weighted averaging with crite-
rion function minimization with the GCD cost function (WACFMGC) can be
described as follows, where ε is a preset parameter:

1o fix m = 2, σ and p, initialize y(0) = 0, set the iteration index k = 1,
2o calculate w

(k)
i for the kth iteration using the formula (12),

3o update the averaged signal for the kth iteration y(k) using the formula (14),
and w(k)

4o if ||w(k+1) − w(k)|| > ε then k ← k + 1 and go to 2o.

3 Experiments

The real ABR data was recorded with the participation of a young healthy
man (24 years old) with a properly functioning sense of hearing. He sat in a
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chair in a acoustically shielded room. Recordings were obtained using standard
acquisition and stimulus parameters setup. The auditory stimulus was delivered
as a rarefaction ’click stimulus’ with a 0.1 ms pulsewidth from the standard
TDH-49p supra-aural Telephonics headphones. The evoked ABRs were recorded
with a bioamplifier at sampling frequency 48 kHz and bandpass filtered within
100-3000 Hz. Amplifier gain was 1000, A/D converter had 12 bits (providing the
resolution of 0.084 μV/bit), amplitude range 5.5 mV. The example of the noisy
ABR sweep and the averaged ABR are presented in Figure 1.
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Fig. 1. (a) Examples of four raw ABRs waves, (b) the ABR wave after arithmetic
averaging of 1800 sweeps at 40 dB normal hearing level. Stimulus is presented at zero
time point

The simulated reference signal used in this study is based on ABR and consists
of typical waves. The three sinc functions represent prominent ABR waves I, III
and V [3]:

s(t) = 0.4sinc [0.13π(4t− 6 + l)] + 0.4sinc [0.13π(4t− 14 + l)] (15)
−sinc [0.13π(4t− 24 + l)] ,

where l determines the latency variation and in this work l = 0. The artificial
reference signal is shown in Figure 2.

In order to simulate the real conditions of data recordings the symmetric
α-stable (SαS) distribution [8] is applied to model the noise. The level of impul-
siveness is controlled with the characteristic exponent α. The case of α = 2.0
corresponds to the Gaussian probability distribution and α = 1.0 corresponds
to the Cauchy distribution. Figure 3 presents histogram of the characteristic
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Fig. 2. Ideal artificial reference ABR wave

exponent α over 1000 sweeps of ABR. In this study α is calculated applying
method presented in [14]. As can be seen, a certain part of sweeps are disturbed
noise that has an impulsive nature. For that reason in this work α varies from
1.8 to 2.0 with the step 0.05.
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Fig. 3. Histogram of the characteristic exponent α calculated for 1000 ABRs sweeps

The class of the symmetric α-stable distributions does not have finite moments
of the second or higher order. It means that the use of variance in the standard
definition of the signal-to-noise ratio is meaningless [18]. For that reason the
Geometric-SNR (GSNR) is applied [4]:

GSNR =
1

2Cg

(
A

S0

)2

, (16)

where Cg = eCe ≈ 1.78 is the exponential of the Euler constant, A is the am-
plitude of a modulated signal in an additive-noise channel with noise geometric
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power S0. The normalization constant 2Cg is used to ensure that the definition of
the GSNR corresponds to that of the standard SNR if the channel noise is Gaus-
sian. The geometric power definition is the following S0 = exp

(
1
N

∑N
i=1 |xi|

)
[4].

A series of 1000 ABRs sweeps are generated with the same deterministic com-
ponent (given with eq. (15)) disturbed by the artificial noise, according to the
two predefined simulation patterns — for the 1st, the 2nd, the 3rd, the 4th and
the 5th part of ABR sweeps (each part containing 200 cycles), the GSNR values
are equal to:

P1: -30, -20, -10, -15, -25 dB, respectively.
P2: -30, -30, -15, -30, -30 dB, respectively.

These two simulation patterns allow to test the efficiency and quality of the
proposed methods of weighted averaging in the presence of artificial impulsive
noise as well as real noise. The P1 and P2 patterns represent the case of lower
and greater power noise variations.

4 Results and Discussion

The averaging process should not deform the signal. For that reason, the pre-
sented methods are evaluated using the root mean-square error (RMSE) between
the deterministic component and the averaged signal. Subtraction of the deter-
ministic component from the averaged signal gives the residual noise. The second
index used to evaluate the quality of the tested methods, is the maximal absolute
difference between the deterministic component and the averaged signal (MAX).
The methods based on minimization of scalar criterion function are initialized
with zero vector y and m = 2. The proposed methods performance is compared
to that of the arithmetic mean (AM), the trimmed mean (TM) and the classi-
cal weighted averaging (WA) method. All experiments were done in MATLAB
environment.

4.1 Selection of p

Selection of the optimal values for the p and σ parameters of the WACFMGC
method is important but there is a concern that it will be attuned to the anal-
ysed signal only. In [1] the multiparameter estimation algorithm is presented
that tries to solve this problem. This solution is suitable in the case of robust
filtering [1], but in the case of cycles averaging it would require additional op-
timization of p and σ, leading to an increase of the computational complexity
without the warranty to achieve the parameters optimal values. The influence of
p on RMSE value obtained with the WACFMGC method is presented in Figure
4. The smallest values of RMSE are obtained for small p for both experiments
and for further research will be used p = 0.01 as well as σ = 1.0.
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Fig. 4. Comparison of RMSE of the averaged 1000 ABRs using different p value

4.2 Efficacy of Averaging

The results of averaging are presented in Tables 1 and 2. The purpose of these
experiments are to investigate the proposed method in the presence of the Gaus-
sian noise (α = 2) and nearly-Gaussian noise (1.8 ≤ α < 2). The smallest value
of RMSE allows to achieve the highest signal-to-noise improvement.

Table 1. RMSE for averaged signals with artificial noise (P1 experiment)

α AM TM WA WACFMGC
25% σ = 1, p = 0.01

RMSE [nV]

1.80 47.87 20.57 14.60 13.92
1.85 56.95 22.54 13.57 12.64
1.90 37.38 21.79 13.08 12.57
1.95 51.44 21.33 12.42 11.68
2.00 31.53 21.20 11.69 10.96

MAX [nV]

1.80 241.54 74.27 41.72 41.81
1.85 462.99 75.30 40.34 34.22
1.90 139.02 63.53 35.81 36.38
1.95 1034.48 70.96 46.48 40.13
2.00 92.53 78.26 33.03 30.14

In the case of the P1 experiment, the RMSE value of the residual noise for the
investigated methods are presented in first part of Table 1. The worst results (the
highest value of RMSE) are achieved by a method of arithmetic averaging. The
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performance of AM improves a little for higher value of the characteristic expo-
nent α. To the slightly better results leads the trimmed mean method; RMSE
values for all α remain more or less stable. The WA method allows to achieve
significantly better performance then the methods of equal weights (AM and
TM methods). But the best results are obtained with the proposed WACFMGC
method. Both methods WACFMGC and WA reach lower values of MAX in
comparison to reference methods. However, the WACFMGC method achieves
the smallest value of MAX for α ≥ 1.9.

The P2 experiment is more difficult to the weighted averaging methods for
two reasons. The first is the extremely low GSNR level and the second reason
is the nearly the same level of GSNR. In this case, the weighted averaging may
have a problem estimating the proper weight values. However, the results are
similar to those of the P1 experiment to the benefit of the WACFMGC method.
Only for α = 1.8 the WA and WACFMGC methods have the same RMSE but
the WACFMGC has the smallest MAX error. If α ≥ 1.85 the performance of
WACFMGC is better than the WA method. The advantage from the use of this
method is the ability to work with other types of noise than the Gaussian but it
requires extra computational burden (at given ε, 3-4 iterations are performed).

Table 2. RMSE for averaged signals with artificial noise (P2 experiment)

α AM TM WA WACFMGC
25% σ = 1, p = 0.01

RMSE [nV]

1.80 160.03 48.75 28.50 28.50
1.85 77.11 48.92 26.24 26.16
1.90 63.82 51.01 25.08 24.70
1.95 59.71 49.49 23.44 23.15
2.00 49.64 48.26 21.12 21.00

MAX [nV]

1.80 3501.36 171.18 115.52 111.38
1.85 466.88 139.75 85.37 82.76
1.90 217.85 151.73 91.22 91.75
1.95 463.62 130.81 83.11 76.75
2.00 149.89 132.65 76.94 74.17

The results of ABR averaging of real signals are shown in Figure 5. Sig-
nal (a) was obtained using the arithmetic mean (equally weights), (b) using the
weighted averaging method, (c) using the weighted averaging with criterion func-
tion minimization with the dissimilarity function based on the General Cauchy
distribution with p = 0.01 and σ = 1, and (d) using the trimmed mean method.
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Fig. 5. Results of ABRs averaging for 1800 real sweeps: (a) AM method, (b) WA
method, (c) WACFMGC method, (d) TM method. For better presentation signals (b),
(c) and (d) are shifted by -0.2, -0.4 and -0.6 μV respectively

5 Conclusion

A new method of robust weighted averaging of periodic signals is presented in
this work. It is applied to auditory brainstem responses averaging. The proposed
method operation is based on minimization of scalar criterion function. The
robust dissimilarity functions derived from the generalized Cauchy are applied.
The special cases of the proposed method are obtained with use of the myriad
and the meridian cost functions, respectively. The robustness of the proposed
methods can be controlled either with the two parameters. Two patterns of
simulation experiments were proposed to evaluate the respective methods. The
methods were tested with the artificial signals and the real ABRs. The best
capability of the noise suppression (the smallest value of RMSE which means
the highest signal-to-noise improvement) in majority of cases had the method
based on the generalized Cauchy distribution cost function. The obtained results
show the usefulness of the presented WACFMGC weighted averaging method
for ABRs processing. The presented methods can help to improve averaging of
evoked potentials like ABRs or other biomedical signal cycles when the data are
highly non-stationary and the signals are disturbed by the impulsive noise.
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