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Abstract. The paper presents an advanced method of recognition of
patient’s intention to move of multijoint hand prosthesis during the
grasping and manipulating objects in a dexterous manner. The proposed
method is based on a two-level multiclassifier system (MCS) with hetero-
geneous and homogeneous base classifiers dedicated to EMG and MMG
biosignals and with combining mechanism using a dynamic ensemble se-
lection scheme and probabilistic competence function. The performances
of two MCSs with the proposed competence function and combining
procedure were experimetally compared against three benchmark MCSs
using real data concerning the recognition of six types of grasping move-
ments. The systems developed achieved the highest classification accu-
racies demonstrating the potential of multiple classifier systems with
multimodal biosignals for the control of bioprosthetic hand.

Keywords: Multiclassifier system, Competence measure, Hand grasping
movements.

1 Introduction

Nowadays, many researchers focus on Multiple Classifier Systems (MCS) be-
cause this approach has been shown to outperform single classifiers for a wide
range of classification problems. Two main approaches used for the combination
of classifiers in the ensemble, are classifier fusion and classifier selection [7]. In
the first approach, all classifiers in the ensemble contribute to the decision of
the MCS, e.g. through sum or majority voting. In the second approach, a single
classifier is selected from the ensemble for each test example and its decision is
used as the decision of the MCS. The selection of a classifier can be either static
or dynamic. In static classifier selection, a region of competence in the feature
space is assigned for each classifier during the training phase and classification
is made by the classifier assigned to the competence region that contains the
test example. In dynamic classifier selection, competences of classifiers are cal-
culated during the classification phase, i.e. at the time when the test example
is presented. The classifier with the highest value of competence is used for the
classification of the test example.
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Recently, dynamic ensemble selection (DES) methods are intensively devel-
oped as an effective approach to the construction of multiple classifier systems
([12,23,24]). In these methods, first an ensemble of base classifiers is dynamically
selected and then the selected classifiers are combined by majority voting. The
most DES schemes use the concept of classifier competence on a defined neigh-
bourhood or region, such as the local accuracy estimation, Bayes confidence
measure, multiple classifier behaviour or probabilistic model, among others.

In this study the multiclassifier system was applied to the recognition of hand
grasping movements, which is a fundamental problem in the control of the dex-
terous bioprosthetic hand [16]. The proposed method is based on a two-level
multiclassifier system (MCS) with heterogeneous and homogeneous base classi-
fiers dedicated to EMG and MMG biosignals and with combining mechanism
using a dynamic ensemble selection scheme and original probabilistic compe-
tence function. This paper is a sequel to the authors’ earlier publications [8,9,10]
and it provides an extension of the results included therein.

The paper arrangement is as follows. Chapter 2 includes the concept of pros-
thesis control system based on the recognition of patient intent and provides an
insight into steps of the whole recognition procedure. Chapter 3 presents the
key recognition algorithm based on the multiclassifier system with the dynamic
ensemble classifier selection strategy. Chapter 4 presents experimental results
confirming adopted solution and chapter 5 concludes the paper.

2 Recognition of Hand Movements as a Tool for
Bioprosthesis Decison Control

Existing active prostheses of hand are generally controlled on myoelectric way
– they react to electrical signals that accompany the muscle activity (called
electromyography signals – EMG signals). The control is feasible since after the
amputation of the hand, there remain a significant number of the muscles in
the arm stump that normally controlled the finger action. The tensing of these
muscles still depends on the patient will and may express her/his intentions as
to the workings of her/his prosthesis [13,26].

Nevertheless, reliable recognition of intended movement using only the EMG
signals analysis is a hard problem. A recognition error increases along with the
cardinality of movement repertoire (i.e. with prosthesis dexterity). A natural
solution to overcome this error and increasing the efficiency of the recognition
stage may be achieved through the following activities:

1. by introducing the concept of simultaneous analysis of two different types of
biosignals, which are the carrier of information about the performed hand
movement – authors studied the fusion of EMG signals and the mechanomyo-
graphy signals (MMG signals)[9];

2. through improving the recognition method – authors proposed to use the
multiclassifier system with heterogeneous and homogeneous base classifiers
dedicated to particular registered biosignals;
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3. by the appropriate choice of feature extraction methods (biosignals param-
eterization) justified by the experimental results of comparative analysis.

The above analysis shows, that – according to authors’ proposition – the
bioprosthesis control is performed by recognizing its intended movement on the
base of classification of EMG and MMG signals from the user arm stump. This
requires the development of three stages:

1. acquisition of signals;
2. reduction of dimensionality of their representation;
3. classification of signals.

The acquisition must take into account the nature of the measured signals and
their measurement conditions. A quality of the obtaining information depends
essentially on the ratio of the measured signal power to the interfering signal
power, defined as SNR (Signal to Noise Ratio). For the non-invasive methods of
measurements carried out on the surface of the patient’s body, it is difficult to
obtain a satisfactory SNR [2]. The noise amplitude usually exceeds many times
the amplitude of the measured signal. For the EMG signals the amplitude of
voltages induced on the patient body as a result of the influence of external
electric fields, may exceed more than 1000 times, the value of useful signals.
To overcome this difficulty a differential measurement system was applied. The
system encompasses two signal electrodes placed above the examined muscle and
an reference electrode placed as far as possible above electrically neutral tissue
(above a bone or a joint). Signals obtained from signal electrodes are subtracted
from each other and amplified. The common components, including surrounding
noise, are thus excluded and the useful signal is amplified.

The MMG signals are mechanical vibrations propagating in the limb tissue
as the muscle contracts. They have low frequency (up to 200 Hz) and small
amplitude and can be registered as a "muscle sound" on the surface of the
skin using microphones [14,20]. This sound carries essential information about
individual muscle group excitation. The basic problem when designing the MMG
sensor is to isolate the microphone from the external sound sources along with
the best acquisition of the sound propagating in the patient’s tissue.

After the acquisition stage, the recorded signals have the form of strings of
discrete samples. Their size is the product of measurement time and sampling
frequency. For a typical motion, that gives a record of size between 3 and 5
thousand of samples (time of the order of 3-5 s, and the sampling of the order
of 1 kHz). This “primary” representation of the signals hinders the effective
classification and requires the reduction of dimensionality. This reduction leads
to a representation in the form of a signal feature vector. To determine the
algorithm of features extraction, the database records were analyzed in time
and frequency using Short Time Fourier Transform (STFT). Fig. 1 shows the
exemplary results.

As we can see, the MMG histogram has two amplitude peaks: at the beginning
and at the end of the movement, and relatively low amplitude in the middle
while the EMG histogram shows a peak in the middle of the movement time
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Fig. 1. Exemplary histograms for EMG signal (left) and for MMG signal (right)

span. The analyses of histograms for the tested movements allowed selecting the
localization of the best signal features (the best points in time and frequency)
securing the best differentiation of the movements.

The resulting algorithm has the following form:

Step 1. Extract from the recorded signal, the signal segments representing the
specified movements (using video information). Each extracted segment has new
time span (t ∈ [0, T ]);
Step 2. Apply the STFT to each segment;
Step 3. Choose as signal features the values from the STFT product corre-
sponding to the k (most representative) time slices;
Step 4. Repeat steps 2 and 3 for every channel;
Step 5. Use all the obtained (in steps 2 and 3) values as elements of the feature
vector representing the analyzed signal segment.

This procedure allows creating input vectors with an adjustable size. The
structure of this feature vector used as an input in the classifier is given by:

(ACHi
t1 , ACHi

t2 , . . . , ACHi
tk

)i=1,2,...,n, (1)

where k is the number of time slices and n denotes the number of signal channels.
Although different methodological paradigms can be used as a classifier con-

struction, we suggest using multiclassifier systems (MCS) with base classifier
dedicated to particular registered biosignals and with the dynamic ensemble se-
lection method using original procedure of fusion/selection based on competence
measure.

3 Multiclassifier System

3.1 Preliminaries

In the multiclassifier (MC) system we assume that a set of trained classifiers
Ψ = {ψ1, ψ2, . . . , ψL} called base classifiers is given. A classifier ψl is a function
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ψl : X → M from a feature space to a set of class labels M = {1, 2, . . . ,M}.
Classification is made according to the maximum rule

ψl(x) = i ⇔ dli(x) = max
j∈M

dlj(x), (2)

where [dl1(x), dl2(x), . . . , dlM (x)] is a vector of class supports (classifying func-
tion) produced by ψl. Without loss of generality we assume that dlj(x) ≥ 0 and∑

j dlj(x) = 1.
The ensemble Ψ is used for classification through a combination function

which, for example, can select a single classifier or a subset of classifiers from
the ensemble, it can be independent or dependent on the feature vector x (in
the latter case the function is said to be dynamic), and it can be non-trainable
or trainable [7]. The proposed multiclassifier system uses dynamic ensemble se-
lection (DES) strategy with trainable selection/fusion algorithm. The basis for
dynamic selection of classifiers from the pool is a competence measure c(ψl|x) of
each base classifier (l = 1, 2, . . . , L), which evaluates the competence of classifier
ψl, i.e. its capability to correct activity (correct classification) at a point x ∈ X .
For the training of competence it is assumed that a validation set

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M (3)

containing pairs of feature vectors and their corresponding class labels is available.
The construction of the competence measure consists of the two following

steps. In the first step, a hypothetical classifier called a randomized reference
classifier (RRC) is constructed. The RRC can be considered to be equivalent
to the classifier ψl and its probability of correct classification Pc(RRC)(xk) can
be used as the competence C(ψl|xk) of that classifier. In the second step, the
competences C(ψl|xk), xk ∈ V are used to construct the competence function
c(ψl|x). The construction is based on extending (generalizing) the competences
C(ψl|xk) to the entire feature space X . The next two subsections describe the
steps of the method in detail.

3.2 Randomized Reference Classifier

The RRC is a stochastic classifier and therefore it is defined using a probability
distribution over the set of class labelsM or, assuming the canonical model of clas-
sification, over the product of class supports [0, 1]M . In other words, the RRC uses
the maximum rule and a vector of class supports [δ1(x), δ2(x), . . . , δM (x)] for the
classification of the feature vector x, where the j-th support is a realization of a
random variable (rv) Δj(x). The probability distributions of the rvs are chosen in
such a way that the following conditions are satisfied (throughout this description,
the index l of the classifier ψl and its class supports is dropped for clarity):

(1) Δj(x) ∈ [0, 1];
(2) E[Δj(x)] = dj(x), j = 1, 2, . . . ,M ;
(3)

∑
j=1,2,...,M Δj(x) = 1,
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where E is the expected value operator. The above definition denotes that the
RRC can be considered to be equivalent to the classifier ψ for the feature vector
x since it produces, on average, the same vector of class supports as the modeled
classifier.

Since the RRC performs classification in a stochastic manner, it is possible to
calculate the probability of classification of an object x to the i-th class:

P (RRC)(i|x) = Pr[∀k=1,...,M, k �=i Δi(x) > Δk(x)]. (4)

In particular, if the object x belongs to the i-th class, from (4) we simply get
the conditional probability of correct classification Pc(RRC)(x).

The key element in the modeling presented above is the choice of probability
distributions for the rvs Δj(x), j ∈ M so that the conditions 1-3 are satisfied. In
this paper beta probability distributions are used with the parameters αj(x) and
βj(x) (j ∈ M). The justification of the choice of the beta distribution, resulting
from the theory of order statistics, can be found in [23].

Applying the RRC to a validation point xk and putting in (4) i = jk, we get
the probability of correct classification of RRC at a point xk ∈ V :

Pc(RRC)(x) =

∫ 1

0

b(u, α1(xk), β1(xk))

[
M∏

j=2

B(u, α1(xk), β1(xk))]du, (5)

where B()̇ is a beta cumulative distribution function. The MATLAB code
for calculating probabilities (5) was developed and it is freely available for
download [25].

3.3 Measure of Classifier Competence

Since the RRC can be considered equivalent to the modeled base classifier ψl ∈ Ψ ,
it is justified to use the probability (5) as the competence of the classifier ψl at
the learning point xk ∈ S, i.e.

C(ψl|xk) = Pc(RRC)(xk). (6)

The competence values for the validation objects xk ∈ V can be then extended
to the entire feature space X . To this purpose the following normalized Gaussian
potential function model was used ([22]):

c(ψl|x) =
∑

xk∈V C(ψl|xk)exp(−dist(x, xk)
2)

maxx∈X
∑

xk∈V C(ψl|xk)exp(−dist(x, xk)2)
, (7)

where dist(x, y) is the Euclidean distance between two objects x and y.
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3.4 Dynamic Ensemble Selection System

Since recognition of the patient’s intent is made on the basis of analysis of two
different biosignals (EMG and MMG), the multiple classifier system – according
to the proposed concept of the recognition method – consisits of two submulti-
classifiers, each of them dedicated to particular types of data. It leads to the two
level structure of MC system presented in Fig. 2, in which the DES method is
realized at the first level, whereas the combining procedure at the second level
is consistent with the continuous-valued dynamic fusion scheme.

Combiner
(selection & fusion)

Multiclassifier 1

. . . . . .
Features of
EMG signal

Combiner
(selection & fusion)

Multiclassifier 2

. . . . . .
Features of
MMG signal

Fuser Recognized class
of hand action

Fig. 2. Block diagram of the proposed multiclassifier system

DES Systems at the First Level. Let Ψ1 and Ψ2 denote sets (ensembles) of
base classifiers dedicated to the EMG and MMG signals, respectively. The DES
system for the ensemble Ψi (i = 1, 2) is constructed using the developed measure
of competence and classifies the feature vector x(i) (x(1) and x(2) denote the
vector of features obtained from the EMG and MMG signal, respectively) in the
following manner.

First, the competence function c(ψ
(i)
k |x) (k = 1, 2, ..., Li) are constructed for

each classifier in the ensemble. Then, a subset Ψ∗
i (x) of base classifiers with the

competences greater than the probability of random classification is selected.
This step eliminates inaccurate classifiers and keeps the ensemble relatively di-
verse [11]. The selected classifiers are combined on the continuous-valued level
[7], i.e. class suports are calculated as the weighted sum of supports given by
base classifiers from Ψ∗

i (x),viz.

d
(i)
j (x) =

∑

ψ
(i)
k ∈Ψ∗

i (x)

c(ψ
(i)
k |x)d(i)k,j(x). (8)

Fusion Procedure at the Second Level. At the second level of MC, supports
(8) are combined by the weighted sum:

dj(x) =
∑

i=1,2

c(i)(x)d
(i)
j (x), (9)
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where weight coefficients (i = 1, 2)

c(i)(x) =
1

|Ψ∗
i (x)|

∑

ψ
(i)
k ∈Ψ∗

i (x)

c(ψ
(i)
k |x). (10)

denote mean competence of base classifiers from Ψ∗
i (x).

Finally, the MC system classifies x = (x(1), x(2), x(3)) using the maximum
rule:

ψMC(x) = i ⇔ di(x) = max
j∈M

dj(x). (11)

4 Experiments

4.1 Experimental Setup

In order to study the performance of the proposed method of EMG and MMG sig-
nals recognition, some computer experiments were made. The experiments were
conducted in MATLAB using PRTools 4.1 [5] and Signal Processing Toolbox. In
the recognition process of grasping movements, 6 types of objects (a pen, a credit
card (standing in a container), a computer mouse, a cell phone (laying on the ta-
ble), a kettle and a tube (standing on the table)) were considered. Our choice is
deliberate and results from the fact that the control functions of simple biopros-
thesis are hand closing/opening and wrist pronantion/supination, however for the
dexterous hand these functions differ depending on grasped object [16].

MMG microphones 

EMG electrodes 
Reference electrode 

Fig. 3. The layout of the EMG electrodes and the MMG microphones on the forearm

The dataset used to test the proposed classification methods consisted of 400
measurements, i.e. pairs “EMG and MMG signals segment/movement class”.
Each measurement lasted 6 s and was preceded by a 10-second break. The values
from the STFT product (1) corresponding to the k = 3, 4, 5 most representative
time slices were considered as feature vector. Consequently, we got 3 datasets
each containing 400 objects desribed by a different number of features.
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The training and testing sets were extracted from each dataset using two-fold
cross-validation. One half of the objects from the training dataset was used as
a validation dataset and the other half was used for the training of base clas-
sifiers. Three experiments were performed which differed in the biosignals used
for classification (EMG signals, MMG signals, both EMG and MMG signals).

The experiments were conducted using two types of ensembles Ψ1 and Ψ2:
homogeneous and heterogeneous. The homogeneous ensemble consisted of 20
feed-forward backpropagation neural network classifiers with one hidden layer
(containing 10 neurons) and the number of learning epochs set to 100. The het-
erogeneous ensemble consisted of the following 10 classifiers [4]: (1, 2) linear
(quadratic) classifier based on normal distributions with the same (different)
covariance matrix for each class, (3) nearest mean classifier, (4 – 6) k-nearest
neighbours classifiers with k = 1, 5, 15, (7, 8) Parzen density based classifier
with the Gaussian kernel and the optimal smoothing parameter hopt (and the
smoothing parameter hopt/2), (9) pruned decision tree classifier with Gini split-
ting criterion, (10) support vector machine classifier with radial basis kernel
function. For both ensemble types, classifiers were trained using bootstrapping
of the training set.

The performances of the systems constructed (MCHetero and MCHomo (with
hetero-and homogeneous base classifiers,respectively) were compared against the
following three multiple classifier systems: (SB) – The single best classifier in the
ensemble [7]; (MV) – Majority voting (MV) of all classifiers in the ensemble [7];
(LA) – DCS-local accuracy (LA) system: this system classifies x using selected
classifier with the highest local competence (the competence is estimated using
k nearest neighbours of x taken from the validation set [15].

4.2 Results and Discussion

Classification accuracies (i.e. the percentage of correctly classified objects) for
methods tested are listed in Table 1 (k denotes the number of time slices per
signal channel). The accuracies are average values obtained over 10 runs (5
replications of two-fold cross validation). Statistical differences between the per-
formances of the MCHetero and MCHomo systems and the three MCS’s were
evaluated using Dietterich’s 5x2cv test [3]. The level of p < 0.05 was considered
statistically significant. In Table 1, statistically significant differences are given
under the classification accuracies as indices of the method evaluated, e.g. for the
dataset with k = 3 and EMG signals the MCHomo system produced statistically
different classification accuracies from the SB and MV methods.

These results imply the following conclusions:

1. The both MCHetero and MCHomo systems produced statistically significant
higher scores in 37 out of 54 cases (9 datasets × 3 classifiers × 2 systems
developed);

2. There are no statistically significant differences between scores of MCHetero

and MCHomo systems.
3. The multiclassifier systems using both EMG and MMG signals achieved the

highest classification accuracy for all datasets.
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Table 1. Classification accuracies of MSCs compared in the experiment (description
in the text). The best score for each dataset is highlighted

Classifier / Mean (SD) accuracy [%]
k SB MV LA MCHetero MCHomo

(1) (2) (3) (4) (5)
EMG signals

3 77.2/2.3 74.5/1.5 78.3/1.6 78.5/2.3 78.7/1.9
1,2 1,2

4 85.7/1.9 83.2/1.3 85.1/1.8 85.4/2.5 85.1/1.9
2 2

5 90.5/2.2 92.6/1.8 91.8/1.7 93.1/2.3 93.5/1.6
1,3 1,2,3

MMG signals
3 47.8/1.1 43.5/1.5 46.8/1.6 45.9/1.3 44.8/1.1

2 2

4 52.4/1.3 51.2/1.2 50.6/0.8 54.2/0.9 53.8/1.2
1,2,3 1,2,3

5 65.8/1.1 63.9/0.7 65.4/0.9 67.2/1.3 66.8/0.9
1,2,3 2,3

MMG and EMG signals
3 82.5/2.1 81.8/1.5 83.1/1.6 84.3/1.5 83.9/1.8

1,2 1,2

4 92.7/1.7 92.1/1.3 91.9/2.0 93.8/2.1 93.0/1.5
2,3 2,3

5 95.9/1.3 95.1/0.7 94.7/0.9 96.8/1.1 97.0/1.2
2,3 1,2,3

5 Conclusion

Experimental results indicate that the proposed methods of grasping movement
recognition based on the dynamic ensemble selection with probabilistic model
of competence function, produced – regardless of the type of base classifiers –
accurate and reliable decisions, especially in the cases with features coming from
both the EMG and MMG biosignals.

The problem of deliberate human impact on the mechanical device using
natural biological signals generated in the body can be considered generally as
a matter of "human – machine interface". The results presented in this paper
significantly affect the development of this field and the overall discipline of
biosignal recognition, thereby contributing to the comprehensive development
of biocybernetics and bioengineering. But more importantly, these results will
also find practical application in designing a dexterous prosthetic hand – in
the synthesis of control algorithms for these devices, as well as development
of computer systems for learning motor coordination, dedicated to individuals
preparing for a prosthesis or waiting for hand transplantation [21].
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