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Abstract. Classification of prokaryotes is mainly based on molecular
data, since next-generation sequencing platforms provide fast and effec-
tive way to capture prokaryotes’ characteristics. However, two different
bacterial strains of the same genus can differ in the specific parts of their
genomes due to copious amounts of repetitive and transposable parts.
Thus, finding an ideal segment of genome for comparison is difficult.
Conventional character-based methods rely on multiple sequence align-
ment, rendering them extremely computationally demanding. Only small
parts of genomes can be compared in reasonable time. In this paper, we
present a novel algorithm based on the conversion of the whole genome
sequences to cumulative phase signals. Dyadic wavelet transform (DWT)
is used for lossy compression of phase signals by eliminating redundant
frequency bands. Signal classification is then performed as cluster anal-
ysis using Euclidean metrics where sequence alignment is replaced by
dynamic time warping (DTW).

Keywords: prokaryotes, genomic signal, cumulated phase, compression,
classification, dwt, dtw.

1 Introduction

The classification of organisms is one of the fundamental questions in biology. It
is based mainly on molecular characters since DNA is the carrier of heredity [1].
However, new sequencing techniques allow cheap assembly of the entire genomes,
particularly prokaryotic genomes formed by single circular chromosomes, since
the classical methods of comparison are still unable to process whole chromo-
somes. This is caused by multiple sequence alignment that is computationally
too demanding, even impossible for sequences of length of several Mbp. Only
small parts of chromosomes, e.g. single genes, can be processed. Unfortunately,
various genes are evolving at different rates, which may not reflect the evolution-
ary development rate of the whole organism. On the other hand, the conversion
from character sequence to numeric signal brings the possibility of using digital
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signal processing techniques for lossy compression. Despite lossy compression, we
are able to preserve reasonable amounts of information and significantly reduce
the computational demands, so that whole genomes can be compared in a very
short time. Several digital signal processing techniques can be used for compres-
sion. Here, we present an approach using dyadic wavelet transform (DWT) [2]
for its speed and effectiveness.

Other disadvantage of sequence alignment is the necessity of using scoring ma-
trices. Comparison of several sequences based on various scoring matrices leads
to a number of different results. This is caused by presumptions concerning the
specific speed of evolution of an organism, which is unknown. Multiple sequence
alignment can be replaced by dynamic time warping (DTW). It is an algorithm
of dynamic programming used for signal alignment. Unlike the multiple sequence
alignment, DTW is not dependent on substitution matrix and works with in-
dividual nucleotides changes. The previous utilization of DTW in DNA signals
alignment can be found in [3].

2 Materials and Methods

A set of several bacterial whole genome sequences was used for comparing
our approach with the classical character processing method performed on 16S
rRNA, which are the most commonly used short barcode sequences for prokary-
otes’ identification [4]. Later study shows that using only short sequences can
brings many imprecisions [5]. Sequences were obtained from GenBank database
at NCBI (http://www.ncbi.nlm.nih.gov/genbank/). The characterization of
sequences used for analysis is summarized in Table 1.

2.1 Sequence Conversion

A number of techniques for for converting DNA sequences to genomic signals
have been published [6], though not all of them can be used for whole genome
classification. The preservation of all biological properties is the essential condi-
tion during conversion. Thus, we chose cumulated phase signal representation [7].
In this representation each of the nucleotides A, C, G, T occurring in the DNA is
reflected in the complex plane in manner such that appropriate complex numbers
maintain information on the nucleotides’ chemical similarities, see Figure 1(a).
Every character along a sequence is replaced by its complex number during
transformation: A [1,j]; C [-1,-j]; G [-1,j];T [1,-j].

By the definition, the complex number phase have values (-π,+π〉. Using
trigonometric functions, we can easily calculate the phase of our four numbers:

{ϕA, ϕC , ϕG, ϕT } =

{
π

4
,−3π

4
,
3π

4
,−π
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}
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http://www.ncbi.nlm.nih.gov/genbank/
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Table 1. The specifications of sequences from seven organisms

Organism Chr accession Chr length (bp) 16S length (bp)
Escherichia coli str. K-12 NC_000913.2 4639675 1403
Lactobacillus casei NC_008526.1 2895264 1568
Lactobacillus crispatus NC_014106.1 2043161 1552
Lactobacillus gasseri NC_008530.1 1894360 1579
Salmonella bongori NC_015761.1 4460105 1542
Salmonella enterica CT18 NC_003198.1 4809037 1542
Salmonella enterica LT12 NC_003197.1 4857432 1542
Thermococcus ga. EJ3 NC_012804.1 2045438 1539
Thermococcus sp. 4557 NC_015865.1 2011320 1496
Pyroccocus fu. COM1 CP_003685.1 1909827 1519
Bibersteinia trehalosi NC_020515.1 2407846 1528
Proteus mirabilis HI4320 NC_010554.1 4063606 1542
Bordetella per. Tohama I NC_002929.2 4086189 1992
Acidovorax ebreus TPSY NC_011992.1 3796573 1971
Thauera sp. MZ1T NC_011662.2 4496212 1985

The actual signal is gained using cumulating phase numbers (1) of appropriate
nucleotides along the sequence or it can be computed directly from character
sequence by:

θcum =
π

4
[3 (nG − nC) + (nA − nT )], (2)

where nX is number of nucleotide X in the sequence, from the first to the current
location.

The representation of the DNA sequence by cumulated phase keeps the po-
sitional information, which enables the mutual comparison of two sequences.
Also it maintains the chemical and structural information about the original
sequence [7, 8]. The main reason for choosing cumulated phase signals is their
large scale feature [9]. The shape of prokaryotic whole genome cumulated phase
signal is typical for each organism. Moreover, signals of related organisms are
more alike than the signals of evolutionary farther ones. Although in a negligible
number of cases, two different strains of genomes of the same genus can be more
dissimilar due to horizontal transfer of genetic information, which is common in
prokaryotes [10]. The downsampled cumulated phase signals of seven organisms
are shown in Figure 1(b).

The shape of a signal is mainly formed by the ratio of purines and pyrimidines,
especially by those with strong bonds. Almost linear purines-rich subsequences
alternating linear pyrimidines-rich subsequences along the DNA are evident.
Signals usually end with the phase close to zero because of the second Chargaff’s
rule [11]. Due to these features, signals are suitable for massive downsampling.
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Fig. 1. (a) Complex representation of nucleotides, (b) Downsampled cumulated phase
of DNA sequences of seven different organisms

2.2 Analysis of Signals

Genomic signals are discrete signals with progression along the DNA sequence;
thus, they can be processed using any discrete transformation [12]:

〈f(n), ψ(n)〉 =
+∞∑
−∞

f(n)ψ(n), (3)

where f(n) represents sequence of signal samples and ψ(n) belongs to the basis
functions that determine the type of transformation.

Unlike other biological signals e.g. ECG, where sampling rate fs is given
by resolution of the sensing device, the sampling frequency of genomic signal
is equal to the length of the DNA sequence. This makes it many times higher
than fs of other biological signals and massive downsampling is needed. Spectral
analysis provided by discrete Fourier transform (DFT ) can show possibilities of
downsampling. To be able to perform DFT , the signal has to be periodic. The
cumulated phase is defined at interval 〈1, N〉, where N is number of nucleotides
in the sequence, which could be taken as one period of signal on (−∞,+∞).
Consequently, the frequency axis can be divided into N equal units Ω = 2π/NT
and DFT can assign to signal f(n) new coefficients of discrete spectrum series
F (k) in the frequency domain, having the same length:

DFT {f(n)} = F (k) =
N∑
n=1

f(n) e−jkΩnT . (4)

The spectrum of Escherichia Coli in the Figure 2 had to be zoomed in due to
the fact that the peripheral spectral lines are more than 1010 high making other
lines unable to be observed. In the zoomed spectrum, only up to 105 other lines
can be observed. These higher frequency components show changes to adjacent
nucleotides and form only a noisy background of the genome. This information
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Fig. 2. Limited Fourier spectrum for E. Coli

is redundant, for comparison useless because these components are very sim-
ilar to all genomes. On the contrary, low frequencies carry information about
large scale features of signal, e.g. upward parts of signals formed by purines-rich
subsequences or downward parts made of pyrimidines-rich subsequences. These
components are species-specific. Thus, we are able to reduce a significant part of
the spectrum by removing higher frequency components without compromising
large scale information. Removing part of the spectrum allows us to downsample
the signal, avoiding aliasing. Theoretically, simple lowpass filter could preprocess
the signal for downsampling. Very long impulse response of the filter would be
needed since the signal sampling frequency is equal to its length.

2.3 Signal Downsampling

We avoided the necessity of very long filter impulse response by using another
transformation for discrete signals - discrete time wavelet transform (DTWT ).
For our purpose, the special case of wavelet transform - dyadic DTWT , was
employed. This technique is characterized by utilizing parameters that are power
of two. Using the relation between correlation and convolution, we can define
dyadic wavelet transform for genomic signal as discrete convolution:

ym(n) =

+∞∑
i=−∞

x(i)hm(2mn− i) =

+∞∑
i=−∞

hm(i)x(2mn− i), (5)

as a signal decomposition by bank of discrete octave filters with impulse re-
sponses hm(n). Then the sampling frequency of signal ym(n) on output of mth

filter is 2m times lower than the sampling rate fs of the input signal x(n).
There are two parameters that we had to set, the shape of the wavelet and

the extent of the degree of decomposition. To reduce the organism comparison
analysis time, we tested several simple wavelets. The best results were obtained
using the basic Haar wavelet [13]. The shape of this wavelet is rectangular, thus
computation of the transform is extremely fast. We found more complex wavelets
as unsuitable because they can change the shape of the signal inappropriately
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and the computation is more demanding. The Haar wavelet stands for two simple
filters with impulse responses:

hh(n) = {−0.7071; 0.7071} (6)
hd(n) = {0.7071; 0.7071}. (7)

To determine the maximum possible downsampling factor, we used percentage
root-mean-square difference (PRD) between the original signal and the down-
sampled signal by dyadic wavelet decomposition, that was resampled to the
initial sampling rate:

PRD =

√∑n
i=1(x0(i)− xr(i))2∑n
i=1(x0(i)− x̄0)2

· 100%, (8)

where x0 stands for original signal and xr for resampled signal, both of length
n.

PRD dependency of tested signals on the degree of decomposition with error
bars along the curve is shown in Figure 3. Up to level 14 of the decomposi-
tion, the dependency shows a linear trend with reasonable values of percentage
root-mean-square difference and its standard deviations. From level 15 of the
decomposition, the dependency changes to a quadratic trend with high values
of PRD and its standard deviations. As optimum, we selected decomposition
degree of 14. Further analysis with higher level of decomposition leads to unsat-
isfactory results due to the loss of too much information. On the contrary, lower
level of decomposition takes more computational time without any benefits.
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Fig. 3. Percentage root-mean-square difference as a function of degree of decomposition
for 7 tested organisms

Of course the same degree of decomposition has to be used for all analyzed
signals in order to maintain the ratio of lengths among the signals. Figure 1(b)
shows the batch of our downsampled signals that were used for PRD analysis.
The length of signals is only about 300 samples, unlike the original length of
sequences in milions of bases.

2.4 Signal Alignment

Signals have to be aligned prior to conducting genome comparison. Since the
lengths of various genomes can vary, multialignment of more signals would bring
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about the incorporation of high number of gaps. Therefore, we decided to use
pairwise alignment of every signal pair instead. This leads to maximum preser-
vation of the genetic information for each comparison. We utilized dynamic time
warping algorithm (DTW ) [3, 14], which is similar to Needleman-Wunsch [15]
or Smith-Waterman [16] algorithms for character sequence alignment. DTW is
based on minimizing the distance between the pair of signals to be aligned.
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Fig. 4. (a) Alignment of E. coli and S. bongori signals of similar length, (b) Alignment
of E. coli and L. casei signals of different lengths

When both signals are approximately of the same length, DTW is similar
to global alignment as shown in Figure 4(a), where complete information from
both signals were used. When the signals of different lengths are aligned, DTW is
similar to local alignment where corresponding purines-rich and pyrimidines-rich
subsequences are aligned and other parts of the longer signal are eliminated as
shown in Figure 4(b). In both cases, maximum signal information is maintained.

2.5 Organism Comparison

The aligned pair of signals has the same length n. Their distance can be com-
puted using the Euclidean metric:

d =

√√√√ n∑
i=1

[x(i) − y(i)]2, (9)

where x(n) and y(n) are aligned signals.
From the distances of each pair of signals we were able to construct the dis-

tance matrix and process it by cluster analysis. We used the unweighted pair
group method with arithmetic mean (UPGMA) for achieving the best distinc-
tion of clusters [17]. The entire method was compared to the standard analysis
based on multialignment of 16S rRNA sequences processed by the same cluster-
ing method. To prove that the parameters of the proposed method are correct
and applicable in general, we added the rest of organisms from Table 1 to cluster
analysis.
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Table 2. Taxonomical classes of tested organisms

Class Assigned number
Betaproteobacteria 1
Thermococci 2
Bacilli 3
Gammaproteobacteria 4

Selected organisms belong to four different taxonomical classes. Each class is
assigned a number according to Table 2. These numbers are used for describing
the organisms in cluster analysis shown in Figure 5.

Figure 5(a) representing the results of the proposed method. Four clusters cor-
respond to real taxonomical classes. The results show that two different strains of
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Salmonella enterica have quite diverse genomes, but they are still assigned to the
Gammaproteobacteria cluster. The method is not dependent on the length of a
genome but rather on information it contains. It assigns Bibersteinia trehalosi to
the cluster of related organism despite its genome having half the length beside
other Gammaproteobacteria. This is probably caused by two possible behavior
of DTW, which can be similar to global or local alignment according to the spe-
cific situation. The result of the classical character processing method is shown
in Figure 5(b). This approach cannot distinguish between the various strains of
bacteria because 16S rRNA sequences are very commonly the same for different
strains of the same genus. It splits Gammaproteobacteria into two very distant
clusters. Also Thermococci cluster is split in an inappropriate way.

Whole genome comparison is significantly more robust. Redundant informa-
tion that can be the source of bias was filtered out during signal downsampling.
Only two signals are compared at a time, which leads to maximum utilization of
the relevant information. Short 16S rRNA sequences should contain similar in-
formation across all genomes; however, multiple sequence alignment brings much
imprecision to the analysis because of its high complexity.

3 Conclusion

In this paper, we present a novel method for classifying whole genome DNA
sequences. Due to the use of sequences conversion to cumulated phase signals
and massive downsampling, the method has low computational requirements in
comparison to traditional methods. Thus, extremely long sequences with lengths
of millions pair of bases, like whole genomes, can be processed. The method was
tested on complete genome sequences records of prokaryotic organisms obtained
from the GenBank database at NCBI.

Current bioinformatics does not provide an adequate technique for prepro-
cessing whole genome signals; the proposed approach can be used as a new
standard for this purpose. Although the genomic signal processing is a relatively
new scientific field, it provides a high number of conversion techniques for ob-
taining genomic signal from character sequence. The cumulated phase signal
representation was chosen for its specific properties suitable for downsampling.
The low frequency band, formed by purines/pyrimidines ratio, carries the main
information about the genome. The results of whole genome signals spectral
analysis were used for designing appropriate downsampling technique, which al-
lows downsampling of extremely large signals like whole prokaryotic genomes by
more than ten thousand times. The dyadic wavelet transform was chosen for its
ability to easily downsample signals with very high sampling rate. The level 14 of
decomposition by DWT was set according to the percentage root-mean-square
difference analysis of the selected signals; the percentage losses of original signals
information do not exceed 1 percent.

Sequence multiple alignment, one of the most problematic issues in tradi-
tional DNA classification methods, was replaced by modification of dynamic
time warping for genomic signals. The principal utilization of DTW does not
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provide faster or less computationally demanding result, the calculation speed
up is given only by the previous signal decimation step. However, the alignment
of genomes in signal form using DTW offers another advantage; it is not neces-
sary to choose specific parameters for sequence alignment like scoring matrix or
gap penalization based on DNA biological properties. The genomic signal carries
biological and chemical properties in a specific shape of signal, further biological
adaptation of the alignment process is not necessary.

The results of the proposed method were compared to the traditional charac-
ter processing technique based on multiple alignment of short parts of sequences
represented by common phylogenetic marker 16S rRNA genes. Our approach re-
produced the real taxonomical division with higher success than the traditional
method and due to the independence on the genome length, it is now possi-
ble to conduct an extensive comparative analysis that would, otherwise, not be
realizable by conventional techniques.
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