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Preface

In clinical application we deal with problems that have to be solved in a fast and
objective way. However, human observation is influenced by internal (coming
form the observer) as well as external (often independent from the observer) im-
pacts. The objectivity of classification is restricted by the receptivity of human
senses which are influenced by the experiences or level of training, psycholog-
ical conditions (tiredness, haste, etc.), as well as external conditions (lighting,
destructive noise, etc.) A failure in perception questions the entire recognition
process. The recognition process itself, influenced also by the above mentioned
conditions, may cause a slowdown and/or lead to a false diagnosis.

New computerized approaches to various problems have become critically
important in healthcare. Computer assisted diagnosis has been extended to-
wards a support of the clinical treatment. Mathematical information analysis,
computer applications together with medical equipment and instruments have
become standard tools underpinning the current rapid progress with developing
Computational Intelligence. We are witnessing a radical change as technologies
have been integrated into systems that address the core of medicine, including
patient care in ambulatory and in-patient setting, disease prevention, health pro-
motion, rehabilitation and home care. A computerized support in the analysis
of patient information and implementation of a computer aided diagnosis and
treatment systems, increases the objectivity of the analysis and speeds up the
response to pathological changes.

This book aims to present a variety of state-of-the-art information technology
and its applications to the networked environment to allow robust computerized
approaches to be introduced throughout the healthcare enterprise. Image and
signal analysis are the traditional parts that deal with the problem of data pro-
cessing, recognition and classification. Bioinformatics has become a dynamically
developed field of computer assisted biological data analysis. Patients’ safety and
shortening of the rehabilitation time requires a more rapid development of min-
imally invasive surgery supported by image navigation techniques. Home care,
remote rehabilitation assistance, safety of the elderly require new areas to be
explored in telemedicine and telegeriatrics.

This book set is a continuation of a book series. This set contains two volumes.
Information Technologies in Biomedicine, Volume 3 discusses Image analysis
techniques and their applications in healthcare, as well as some Bioinformatics
issues. Information Technologies in Biomedicine, Volume 4 consists of six parts
including Computer Aided Surgery, Telemedicine, Telegeriatrics,

We would like to express our gratitude to the authors who contributed their
original research papers as well as the reviewers for their valuable comments.

Ewa Pietka
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Part I

Image Analysis and
Applications



Applications of Ray-Casting in Medical Imaging

Maciej Borzęcki1, Adam Skurski1, Marek Kamiński1, Andrzej Napieralski1,
Jarosław Kasprzak2, and Piotr Lipiec2

1 Department of Microelectronics and Computer Science, Lodz University
of Technology, Łódź, Poland

mborzecki@dmcs.pl
2 Department of Cardiology, Medical University of Lodz, Łódź, Poland

Abstract. The authors present applications of ray casting as segmen-
tation and analysis method for processing of medical imaging data. The
first application features ray casting based image segmentation for ex-
traction of a region enclosing heart structures from a series of CT scans.
Proposed method yields significant gains in reduction of the data set size,
that are of importance in applications such as Transesophageal USG sim-
ulations on mobile devices or web platforms.

Another application, utilizes ray casting determining location of char-
acteristic points of left ventricle (LV). The points are used as reference
during automatic fusion of ECHO Automated Function Imaging output
with a 3D model of LV.

Keywords: ray casting, image segmentation, computed tomography.

1 Introduction

Ray casting is a method that has seen wide use in a plethora of applications
in different fields. Object picking within a 3D scene or collision detection are
examples of traditional uses of ray casting [1, 2]. The method has also been suc-
cessfully applied in the field of image processing for segmentation and extraction
purpose. Example applications as described in [3, 4], indicate a level of success
when method is applied for segmentation of medical imaging.

The core idea behind use of ray casting in image segmentation or feature
location is largely unchanged from the typical approach. Virtual rays are emit-
ted in a number of directions from a single origin point. For each iteration, a
boundary condition is evaluated, indicating whether for the current location of
the tip of the ray, the propagation can continue. In case of image segmentation,
the boundary condition is typically a function testing if given point is within the
desired data set. The concept is briefly visualized in Fig. 1.

Once the points where the ray propagation has ceased are established further
steps are taken in order to create a mask or an outline of the identified structure.
Typically employed methods are neighbor contour tracing [5] or construction of
polygon by connecting the end points.

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 3
Volume 3, Advances in Intelligent Systems and Computing 283,
DOI: 10.1007/978-3-319-06593-9_1, c© Springer International Publishing Switzerland 2014



4 M. Borzęcki et al.

Fig. 1. Ray casting for image segmentation

Fig. 2. Ray casting within a convex shape

Ray casting as a method is a subject to a number of problems that need to
tackled with. The first problem is the shape of the object under consideration.
As shown in Fig. 2, convex shapes usually yield good results.

For concave shapes, such as one shown in Fig. 3, location of ray origin point
poses a problem. Misplaced origin will amplify the shadowing, the effect of which
needs to be taken into consideration.

If the structure being extracted is relatively large, one needs to consider how
many rays need to cast in order to obtain a reasonably good set of points for
analysis. The problem is caused by the fact that only a certain number of rays
is practical for most applications. In case of image segmentation, too few points
may negatively affect the process of establishing object contour.

In the following sections the authors discuss ray casting as a method for
processing medical imaging data, where Section 2 describes application in im-
age segmentation, and Section 3 covers automated location of features in a 3D
model.
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Fig. 3. Ray casting origin location for concave shapes

2 Heart Region Extraction for USG Simulations

The problem of ultrasound simulation has gained wide interest starting from fun-
damental work based on physical models [6], towards medical applications such
as [7, 8]. With advent of cheap, multi-core processing the simulation algorithms
have been successfully applied for GPGPU as in [9] and [10]. At the same time
new simplified, but effective, processing algorithm such as [11] were proposed.
Applications such as [12, 13] conform to the trend of utilizing simulations as a
training tool in medicine that right now is considered a necessity [14, 15].

Simulation of Transesophageal Echocardiography commonly makes use of
medical imaging collected during patient examination. A TEE simulator applies
online algorithms transforming an input data set obtained in CT examination
into a simulated USG image. This section discussed a ray casting based input
data preprocessing method that provides a significant size reduction of the input
data.

Given the physical properties of the USG imaging, the input needs to con-
tain only the heart image and the position of the esophagus. Neighboring organs
can be discarded without losing the educational value of the program. A raw
data set of size 1-2GB is common for CT scans of a chest. Inclusion of temporal
information, so that depiction of heat’s cycle is possible, increases it’s size sig-
nificantly. Reduction of the input set size enables latency and processing limited
applications to gain wider use.
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The authors propose a ray-casting based method for segmentation of CT
scan image and Region of Interest (ROI) extraction for the purpose of TEE
simulation [16]. The method is based on generation of ROI mask for each of the
relevant images in the input data set. The next step is superpositioning of all the
masks, so that an aggregate mask enclosing all identified ROIs is obtained. The
aggregation step allows for generating a 3D volume that is effectively encloses
only the data that is relevant for the simulation process. The process is shown
in Fig. 4.

Fig. 4. Processing pipeline - segmentation of CT scan series, preparation of aggregate
mask, ROI volume extraction

The concept for heart image segmentation is presented in Fig. 5. The thresh-
old condition for ray propagation is set such that the ray should stop at the
pericardium.

Fig. 5. Heart muscle outline using ray casting

A simple heuristic is used for selection of the origin point based on locating the
center of mass of the image. Presence of contrast agent results in areas filled by
blood exhibiting higher pixel values in CT images. Heart structures - ventricles,
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atria, muscle tissue are thus well visible. Given that, the center of mass will be
found inside the area enclosed by heart. The resulting position for 2 samples is
shown in Fig. 6.

Fig. 6. Ray origin positioning

The threshold value for attenuation was empirically found to be 20HU and
roughly corresponds to the values expected for area occupied muscle tissue. The
value was confirmed by examining a number of data sets, however all images were
obtained using the same CT device. The authors strongly suggest to perform
additional verification and examine data collected using a particular CT scanner.
The Hounsfield value is converted to pixel brightness based on metadata stored
in DICOM [17, 18]. Lower values indicate lower measured attenuation, most
likely the ray has entered pericardial cavity or lungs.

The result of ray casting is shown in Figure 7(b). One can clearly observe that
at the sides, most of the rays stopped at pericardium, mainly due to the large
difference in pixel intensity, and thus attenuation, between lungs and heart.
However in anterior and posterior regions, the rays propagated farther than
desired.

The boundary condition may not be met as the intensity level at the position
where the ray propagation should cease is higher than expected. This may be
caused by too large ray increase step, amplified by deficiency of the imaging
method or existence tissue with similar properties in direct neighborhood. This
problem of mask leakage can be limited by post processing ray casting points.

The heart can be considered to have a smooth surface, hence any abrupt
changes in ray length are improbable and indicate mask leakage. The problem is
displayed in Fig. 8. Significant change in ray length is visible both at the center
and at the edges of the graph correspond to rays propagating towards ribs at the
top and towards aorta at the bottom in Fig. 7(b). Application of a median filter
with empirically selected window length alleviates the problem. The resulting
ray lengths are shown in Fig. 8 using dashed line. The final shape of the mask
obtained in segmentation process is displayed in Fig. 7(c).

Evaluation has been performed by verifying if the resulting masks completely
enclose outlines of most significant heart regions (ventricles, atria, pericardium).
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(a) Original image (b) Ray casting

(c) Mask after ray filtering (d) Masked input image

Fig. 7. Segmentation using ray casting
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Fig. 8. Consecutive ray lengths from Fig. 7(b) (starting at bottom center, counter-
clockwise), before and after filtering
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For this purpose a test data with an outline of heart muscle was prepared.
The obtained segmentation masks, were then verified to completely contain the
reference regions. The graph showing comparison of the obtained mask to the
reference area is shown in Fig. 9.

0 50 100 150 200 250 300 350 400
0.00

0.05

0.10

0.15

0.20

0.25

Single mask

Aggregate mask

Fig. 9. Measured reference area not included in the mask, relative to mask size

There is a clear difference between the results for individual mask and an
aggregate mask. Clearly, single masks have disadvantage in case the ray casting
process failed to perform segmentation correctly. However, as assumed previ-
ously, the effect is compensated by use of aggregate mask. For all of reference
samples, the missing area is below 5% of the mask size. Further analysis revealed
that the missing area is at the edge of pericardium and does not impede the fi-
nal outcome of the segmentation process. It may be expected that inclusion of
a dilation step will yield an improvement and cover the missing regions.

After compression the original data set size has been reduced by factor of 18.
Further steps that employed ray casting for image segmentation and extraction
of the region of interest resulted in another size reduction by a factor of 2.5. Thus
a single slice stored in 16-bit PNG format has been downsized to 50kB of data.
At the same time the region that needs to be processed during the simulation
pass has been marked and reduced significantly, as the relative area occupied by
the heart is at most, less than 40% of a single horizontal slice.

3 Automated Identification of Left Ventricle
Characteristic Points

Fusion of medical data is a widely regarded practice that aims at improving the
diagnostic value individual imaging methods by providing a combined interpre-
tation, thereby revealing indirectly visible aspects of the medical data.
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Fusion of morphological data obtained in CT and functional information from
SPECT (perfusion at rest and stress) allows for comprehensive evaluation of lo-
cation and severity of ischemia, thereby increasing the diagnostic and prognostic
value of noninvasive imaging techniques [19, 20].

Another application of ray casting plays a significant step in a fusion of ECHO
AFI (Automated Function Imaging) [21] output with a 3D model of LV[22].
Combination of a bull’s-eye representation of LV [23] stretched on a 3D mesh
extracted from a series of CTA (CT Angiography) scans is vital from diagnostic
point of view. The method may lower the need for performing classical, invasive
angiography or can augment the analysis and interpretation of unclear CTA
results. The result of the fusion process is presented in a single view, where the
measured LV function is correlated spatially with a 3D model of LV [22].

Successful fusion requires knowledge of characteristic points on the left ven-
tricle that allow for proper positioning of the bull’s-eye diagram as a texture.
Given the spatial reference of bull’s-eye diagram, at least three distinct points
need to be found on a 3D mesh. Apex and two additional points at the base of
LV, near interventricular septum, were identified as sufficient, see Figure 10.

Fig. 10. Characteristic points of left ventricle: apex, two points at the base, near in-
terventricular septum

A 3D mesh, automatically extracted by CT software does not directly contain
the required information. The authors propose a ray-casting based method for
location of two characteristic points at the base of LV, both points marked in
Figure 10 with blue and green markers.

Each of the points if found by evaluating the conditions that refer to the
locality of certain features in the 3D mesh.

The blue marker is found by iteratively casting rays, while rotating towards
the back of the heart, and measuring distance between pericardium and LV wall.
With each iteration, the distance is compared with previous value. Conducted
analysis showed that at least 25% increase in distance is a sufficient estimate.
Once, the condition has been met, the characteristic point is known to be located
at the previous ray position.
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The green marker is found using a similar approach. However, the distance
is measured between the wall of LV and aortic sinus. The point of interest is
located on the ray for which distance measurement was the smallest.

The concept is visualized in Figure 11.

Fig. 11. Locating points of interest (marked with dashed circle) using ray casting

Presented implementations of modified ray-casting method for tracking LV
anatomical points of interest provide the opportunity to define a constellation
of markers essential for the images fusion performance, presented on Fig. 12.

Fig. 12. Fusion of 3D model of LV with ECHO

4 Improvements

While ray casting as algorithm do not provide room for improvement, the respec-
tive implementations can be enhanced for greater performance. The algorithm
may be easily extended to support a multi-threaded implementation. An inher-
ent data level parallelism allows for work partitioning at the input image level.
Lack of dependency between respective rays, allow an approach like in Fig. 13.
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The profiling analysis revealed that a large portion of execution time is spent in
the process of ray casting, with only little time allocated to ray length filtering,
which is a sequential process. Thus, according to Amdahl’s law [24, 25], split-
ting of ray casting task between a number of threads should yield a considerable
speedup.

Fig. 13. Parallel ray casting implementation

Another improvement that is possible to apply is to exploit the aliasing effect
of the ray propagation near the origin. The input image, as indicated in the
introductory section, has a limited resolution. If a large number of rays is used,
each ray will, at least for a certain length, starting from the origin, trace the same
path as it’s neighbors. The authors propose a use of a look-up table, addressed
by coordinates of each pixel. The table would hold a binary flag indicating if a
pixel was already claimed by a ray. Since all rays are checked against the same
boundary condition, the flag allows for pixels that were already tested to be
skipped.

5 Conclusions

The authors have presented two successful applications of ray casting for pro-
cessing of medical imaging data. Although the core method is well known, it’s
application and enhancements proposed by authors bring a deal of novelty.

Application of ray casting in the segmentation process, although already pro-
viding good results, still needs some improvement. It has been observed that for
certain samples, not all of the reference area is included within the segmentation
mask. Especially at points where transition between pericardium to lungs ap-
pears, the segmentation process may partially fail, with ray not propagating far
enough. It is expected that the problem can be easily addressed with a dilation
step, however this would result in unnecessary increase of the whole mask.
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Ray casting implementation for locating characteristic points of LV is a part
of software package for supporting CAD (coronary artery disease) diagnosis.
Purpose of presented algorithm is to prepare mapping for final texturing step
in a fully automated manner. Should the algorithm fail or yield inadequate re-
sults, the operator has a possibility to move the markers freely, using the found
positions as starting points. Tests in clinical environment using non-pathologic
samples are in progress and show promising results. Still the authors have not
yet verified the performance of the algorithm in case the input data set contains
anomalies such as hypertrophy of the left ventricular wall.
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Abstract. Nowadays, vascular diseases are the most challenging health
problems in developed countries. Despite the fast development of modern
contrast-enhanced Computed Tomography (CT), providing complex 3D
datasets, the tremendous amount of problems still remain unsolved. The
vascular segmentation as well as registration techniques are the topics
of past and on-going research activities. In this work we focus on an ab-
dominal aortic aneurysm registration technique. The developed approach
makes it possible to match all voxels belonging to the aorta from pre-
and post-operative CT data. The presented technique is based on aorta
lumen segmentation and graph matching method. To segment the lumen
area a hybrid level-set active contour approach is used. The matching
step is performed based on a path similarity skeleton graph matching
procedure. The registration results have been tested on the database of
8 patients, for which two different contrast-enhanced CT series were ac-
quired. All registration results achieved with our system and verified by
an expert prove the efficiency of the approach and encourage to further
develop this method.

Keywords: Hybrid Level-Set Active Contour, Graph Matching, Image
Registration, Skeletonization.

1 Introduction

Nowadays, vascular diseases belong to the most challenging health problems in
developed countries. An abdominal aortic aneurysm (AAA), addressed in our
approach, is a dilated and weakened segment of the abdominal aorta. It is an
abnormal ballooning of the abdominal portion of the aorta, that occurs as a
consequence of aortic medial degeneration and can break open causing death.
An AAA can develop in anyone, however it is mostly seen in males over 60, hav-
ing one or more risk factors. During last 30 years, the occurrence of AAA has
increased threefold. To prevent from rupturing, interventional radiologists offer

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 15
Volume 3, Advances in Intelligent Systems and Computing 283,
DOI: 10.1007/978-3-319-06593-9_2, c© Springer International Publishing Switzerland 2014



16 J. Czajkowska et al.

minimally invasive treatment for abdominal aortic aneurysm, which is specially
important when it reaches 5 centimeters in diameter. Currently, there are dif-
ferent AAA treatment options. The open surgical repair by a vascular surgeon
is the most commonly used for a large, unruptured aneurysm. The less invasive
and relatively new technique, eliminating the need for a large abdominal incision,
is placing a graft within the aneurysm. It redirects blood flow and stops direct
pressure from being exerted on the weak aortic wall [2, 1]. An exemplary 3D
volume rendering of CTA series of pre- and post-operative study created using
Osirix software is shown in Fig. 1.

Fig. 1. 3D volume rendering of CTA series of pre- (left) and post-operative (right)
study of aortic aneurysm provided by Osirix software

The AAA is mostly diagnosed by a physical examination as a soft mass in the
abdomen. For more accurate and efficient diagnosis the development of imaging
techniques provides numerous tools used to examine vessels and display their
details. A contrast-enhanced CT angiography (CTA), which replaced a conven-
tional angiogram, is an imaging technique commonly used in vascular diagnosis.
Despite the fast development of modern contrast-enhanced Computed Tomogra-
phy (CT), providing complex 3D datasets, the tremendous amount of problems
still remain unsolved. The vascular segmentation [3] and registration techniques
are the topics of past as well as on-going research activities.

From the medical background of AAA, two region of interests: aorta lumen
and thrombus, can be defined. An exemplary manual segmentation results of
both of them in a CT scan are shown in Fig. 2. The newest approaches in AAA
segmentation [3, 5, 6] address either both of the problems or only a chosen one.
An automated method for the segmentation of thrombus in abdominal aortic
aneurysms from CTA data is presented in [5]. The Active Shape Model (ASM)
fitting is performed in sequential slices. As the starting point for the analysis
the results obtained for the adjacent slice are used. The full 3D segmentation
technique in CTA is reported in [6]. The system analyses both global features,
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incorporating a priori knowledge of the intensity, volume, and shape of the aorta
and other structures, and the local information like voxel location, intensity,
and texture information. All of them are used for training and driving a sup-
port vector machine classifier. As reported in [3] the current state of the art in
AAA segmentation is modelling, feature analysis or their combination, and in all
these areas different efficient techniques can be found. However, the authors also
claim, that there are some problems, which still remain unsolved. There is no
standardly accepted databases and validation criteria for most vascular segmen-
tation applications and the direct performance comparisons of the segmentation
results have not been performed yet.

Fig. 2. An example of an contrast-enhanced CT scan of an abdominal aortic aneurysm
with segmented thrombus (outer green contour) and lumen (inner red contour)

Despite the fact that the segmentation of vascular structures is valuable for
diagnosis assistance, treatment and surgery planning the currently developed
computer aided diagnosis (CAD) software target in efficient image registration. It
does not only allow measurements of lumen or thrombus volume, but combining
different image information is also useful for treatment planning and monitoring.
Thanks to it, the comparative analysis of consecutive (pre- and post-operative)
CTA studies as well as matching of different image modalities is possible.

Depending on the application, various registration techniques have been re-
ported [7–11]. The registration methods, which address the problem of simul-
taneous analysis of different image modalities are given in [7–10], whereas the
pre- and post-operative CTA sequence matching algorithm is presented in [11].
The authors of [9] propose a registration technique based on the overlaying the
preoperative 3D model of the aorta onto the intraoperative 2D X-ray images.
The presented technique utilizes two X-ray images showing the abdominal aorta
from different angles in an integrated way. They developed a hierarchical registra-
tion scheme deployed by a sensible partition of the registration parameter space
based on the image acquisition protocol and the patients motion constraint.

The 2D/3D registration technique is also addressed in [7]. The non-rigid
method enables information from the CT to be overlaid onto the fluoroscopy
images during the implantation procedure. The authors have investigated the
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use of manually picked landmarks and the thin plate spline algorithm to de-
form the CT surface so it more accurately represents the interventional scene.
The automatic movement compensation in 2D/3D registration of fluoroscopy
and preoperative volumetric data is presented in [10]. The paper proposes a
pelvis boundary detection method that enables real time monitoring of patient
movement and an automatic 2D/3D re-registration algorithm that compensates
for it.

The idea of a graph-based approach in this context is presented in [8]. The
introduced 2D/3D registration method is there formulated on a 3D graph and
applied for AAA interventions. As an input, the algorithm takes the 3D graph
generated from a segmentation of the CT volume and the 2D distance map
calculated from the 2D X-ray image. For computing the graph similarity, different
measures are then used in a length preservation and a smoothness regularization
term.

In this work we focus on 3D abdominal aortic aneurysm registration technique.
The developed approach makes it possible to match the aorta segmented in pre-
and post-operative CTA data. The presented technique is based on an aorta
lumen segmentation and graph matching technique. In the segmentation step a
hybrid level-set active contour approach is employed. The applied hybrid medical
image segmentation method in the level-set framework [12] uses the object’s
boundary as well as region information. In this approach a boundary gives the
information concerning object location, whereas the region features help to avoid
the boundary leakage. The matching step is performed based on a path similarity
skeleton graph matching procedure introduced in [21].

In the following section, a short introduction to the hybrid active contour
approach [12] applied for AAA lumen segmentation is given. In Section 3, the
3D skeletonization algorithm for graph extraction is described. Section 4 intro-
duces the graph matching technique and Section 5 presents the experiments and
the obtained results. Then, the last section (Section 6) concludes the work and
outlines plans for the future.

2 Abdominal Aortic Aneurysm Segmentation Method

The active contour model for image segmentation was originally developed by
Kass at. all [13] and the energy minimization techniques in image segmentation
have attracted researches in the last two decades. The basic idea of the snake
method [13] is to iteratively evolve the initial contour towards the regions de-
scribed by some certain features. The movement of the energy minimizing-spline
is guided by the geometry of the evolving curve (internal force) and influenced
by image features (external force). The image information pull the contour into
the lines, edges or terminations. Local minima of the contour energy correspond
to desired image properties. Since the classical implementation of the snake
method [13] was introduced, different modifications and improvements dictated
by its new applications were incorporated. Active contour model expanded by
gradient vector flow is presented in [14]. This efficient algorithm remains limited
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to the segmentation of structures with well defined contours. Geodesic active
contour model [15] and Chan-Vese approach [16] are two most important tech-
niques improving this segmentation technique standing out for boundary-based
and region-based methods.

In all the cases mentioned above, the image segmentation methods are based
on minimizing a predefined energy functionals. To solve the curve evolution
partial differential equations (PDEs) different numerical methods are applied. In
a classical approach the finite set of contour points approximates the parametric
contour Ψ(s) = (x(s), y(s)), s ∈ [0, 1] and the contour changes in time Ψ(s, t) =
(x(s, t), y(s, t)), s ∈ [0, 1], t = R+ ∪ {0} - the contour evolves with the points
movement. Geodesic [15], Chan-Vese [16] and the hybrid active contour [12]
used in this paper belong to the models developed in a level-set framework.
In the implementation [15] the solution of the particular energy snakes model
is given by a geodesic curve in a Riemannian space, being induced form the
image. The Chan-Vese active contour model [16] is based on the mean curvature
motion. The curve C is implicitly represented via a Lipschitz function φ and
by mathitC = {(x, y)|φ(x, y) = 0}. The initial contour is defined by the set
{(x, y)|φ0(x, y) = 0} and the evolution of the curve is given by the zero-level
curve at time t of the function φ(t, x, y). To solve the PDE the curve C evolves
in normal directions with the speed F [16]

∂φ

∂t
= |∇φ|F, φ(0, x, y) = φ0(x, y). (1)

2.1 Hybrid Level-Set Method

The same as in the active contour given in [16] in the hybrid technique [12],
employed in our work, the active contour C is represented by the zero set of em-
bedding function φ, such that C = {x|φ(x) = 0}. The points inside and outside
the contour have positive and negative φ values, respectively. The minimized
functional in image I domain Ω is defined as

E (φ) = −α

∫
Ω

(I − μ)H (φ)dΩ + β

∫
Ω

g|∇H(φ)|dΩ, (2)

where g = g(|∇I|) is a boundary feature map related to the image gradient.
The parameters α and β balance the two terms of (2), and μ indicates the lower
bound of the gray-level of the target object. Thanks to it, the curve evolves to
enclose the regions greater than μ. The PDE of the functional (2) is derived from
the Gateaux derivative gradient flow [12]

φt = |∇φ|
[
α(I − μ) + βdiv

(
g
∇φ

|∇φ|
)]

, (3)

and the explicit curve evolution PDE is represented by [12]

Ct = α(I − μ)
−→
N − β〈∇g · −→N 〉−→N + βgκ

−→
N. (4)
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The direction of the curve normal
−→
N is defined to point outward the curve and−→

N = − ∇φ
|∇φ| . The curvature κ is given by κ = div

(
∇φ
|∇φ|

)
. The used iterative

curve evolution algorithm, based on additive operator splitting (AOS) approach
is in detail described in [12]. Some preprocessing steps and parameter set up are
described in Sections 2.2 and 5, respectively.

2.2 Preprocessing and Initial Surface Selection

The analysed CTA series are affected by artefacts and noise, which can influence
the final segmentation results. Therefore, as a preprocessing step a 3D adap-
tive filtering procedure was employed. The selected filtering technique based on
anisotropic diffusion [18] increases the Signal-to-Noise Ratio (SNR) and preserves
the edges.

In the hybrid level-set implementation applied to volumetric CT data, the
authors of [12] used a sphere as an initial surface. The results presented by them
show that it successfully converges to the target object. However, the performed
experiments proved, that the time to converge the hybrid level-set algorithm [12]
strongly depends on this surface. In our work, the size of the analysed AAA
CTA data (512× 512×n, where n ∈ [220, 680]) determined the clustering-based
initial surface selection procedure. For this, we used a weighted fuzzy c-means
clustering procedure introduced in [17]. The initial surface was then created by
all the voxels belonging to the cluster with the highest mean gray intensity value.

Thanks to this two preprocessing techniques the hybrid level-set algorithm
enables fast and robust AAA segmentation. An exemplary final 3D segmentation
results of abdominal aorta lumen in CT series are shown in Fig. 3.

Fig. 3. An example of 3D abdominal aorta lumen segmentation results in an image
view (left) and volume rendering (right)



Aortic Aneurysm CT 21

3 Skeletonization

The CTA volume matching procedure being an overall goal of our work is based
on graph matching step described in the next section. For this a 3D skeletoniza-
tion step is incorporated. The 3D skeleton is obtained using the method de-
scribed in [19]. This automatic algorithm computes subvoxel precise skeleton of
volumetric data based on subvoxel precise distance field. The advantage of the
subvoxel approach over a voxel precise skeleton is, that it computes an accurate,
more precise and centered skeleton also for objects that are less than a single
voxel thick. The authors of [19] have proven, that it is a proper solution for the
accurate measurements of the object, such as vessel cross section or volume.

The input for the skeletonization method described in [19] is a subvoxel precise
distance field. To obtain this field the authors suggest a two steps preprocessing
technique. First, a level set time-crossing map calculation followed by a distance
field computation is performed. Then, a sampled level set time-crossing map
with the embedded zero-crossing isosurface is estimated. In our approach, the
isosurface required for this, which yields the object’s true boundary is created
based on the previously obtained segmentation results. Having a implicit repre-
sentation of the boundary, we estimate the subvoxel precise Euclidean distance
transform for n-dimensional data [20].

The Euclidean distance field is then used to find the point with the largest
distance from the boundary and to determine a speed image used as an input
for the fast matching propagation step. The speed image being a function of the
distance field (d - distance value and D - maximum distance value)

v =

(
d

D

)2

(5)

is used to determine the curve evolution velocity for each pixel. The point at the
global maximum distance from the objects boundary is calculated in a single
pass through the distance field. The first one encountered in scanline order is
used in the situation, if no unique maximum point exists. It is a start point for a
fast marching propagation algorithm, in which the obtained speed image is used.
The fast marching propagation is augmented to calculate the geodesic distance
(Manhattan distance) inside the object starting at the global maximum point
of the distance field. Based on the obtained results the branch points are then
estimated. The furthest point of the model from the global maximum distance
point is used as the start point of the branch. The remaining points of the branch
are determined by performing a gradient descent, back-tracking procedure on the
fast marching time-crossing map. This process is repeated for each branch of the
created skeleton [20]. The exemplary results of application of this method to
AAA data are shown in Fig. 4.

4 Graph Matching

The previously obtained aorta skeletons are now matched to properly register the
two analysed 3D CTA series for each examination. The registration procedure
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Fig. 4. An exemplary result of applying 3D skeletonization procedure (right) to an
abdominal aorta surface (left)

we used is based on the algorithm presented in [21]. In contrast to existing
approaches to skeleton similarity, the main idea of this approach is to match
the skeleton graphs by comparing the geodesic paths between their endpoints.
Therefore, the authors do not explicitly consider the topological structure of the
skeleton trees or graphs.

According to the definition given in [21] the so called skeleton path is ”a short-
est path between a pair of end nodes on a skeleton graph”. Based on the pre-
viously obtained segmentation and skeletonization results, and using a distance
transform DT (t) we are able to approximate the radius Rm,n(t) of the maximum
disk at each skeleton point with index t in a skeleton path p(vm, vn) connecting
the end nodes vm and vn. Therefore, the path is sampled by K equidistantly
distributed points. Due to the fact, that the CTA series also differ in the voxel
size, the normalization term proposed in [21] making the method invariant to
the scale is also required.

To define the similarity/dissimilarity between two skeleton paths R and R′

the authors of [21] suggest a path distance measure as

pd(p(u, v), p(u
′, v′)) =

M∑
i=1

(ri − r′i)
2

ri + r′i
+ α

(l − l′)2

l + l′
, (6)

where l and l′ are the lengths of paths p(u, v) and p(u′, v′) and α is a weighting
factor.

Let the two CTA series be described by two ordered graphs G and G′ with
K+1 and N+1 nodes (K ≤ N) respectively. The matching cost c(vi, v′j) between
end nodes vi and v′j is estimated based on the paths to all other vertices in G and
G′ that emanate from vi and v′j . The dissimilarity value between the end nodes
is estimated using the optimal subsequence bijection (OSB) method introduced
in [24]. The advantage of the OSB algorithm is, that it finds a subsequence a′ in
sequence a that best matches b′ in b skipping possible outlier elements. To prevent
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from skipping too many elements of sequence a the authors of [21] suggest a
penalty term b∞, being an additional element of b. The distance function d
computes the dissimilarity between a and b, that is, d(ai, bj) is given for all
(i, j) ∈ {1, . . . ,m}× {1, . . . , n,∞}, where m and n stand for the length of a and
b, respectively. As distance function d the path distance pd, defined in (6), is
used. The distance to the additional element d(ai, b∞) is a constant for all i ∈
{1, . . . ,m} determining the cost of skipping any given element on the sequence
a. The so called ”jumpcost” jc is computed as

jc = μ+

√
1

m
min

j=1,...,n
(d(ai, bj)− μ)2, μ =

m∑
i=1

1

m
min

j=1,...,n
(d(ai, bj)). (7)

Then, for any given correspondence, the distance between two sequences is de-
fined in [21]

d(a, b, f) =
1

m

m∑
i=1

(d(ai), bf(i))
2. (8)

Therefore, an optimal correspondence f̂ of elements in the sequence a to elements
in the sequence b over all possible correspondences f is defined as

f̂ = argmin{d(a, b, f)}. (9)

The optimal correspondence is found with the shortest path algorithm on a
directed acyclic graph (DAG), in detail described in [21].

The already described OSB is applied to the matrix of the path distances
between the two sequences vi0, vi1, . . . , viK in G (vi = vi0) and vj0, vj1, . . . , vjN
in G′ (vj = vj0). For the two analysed graphs G and G′ all the dissimilarity
costs between their end nodes are estimated and stored in a matrix C(G,G′).
The total dissimilarity c(G,G′) between G and G′ computed in [21] with the
Hungarian algorithm on C(G,G′) is here replaced by the algorithm proposed
in [23]. The authors presented there Maximum Weight Subgraphs (MWS) which
can be expressed as an integer quadratic problem:

max g(x) = xTAx subject to xTMx = 0, x ∈ [0, 1]n, (10)

where A is a symmetric n× n affinity matrix with ∀i, j = 1 . . . , n : Ai,j ≥ 0 and
M ∈ {0, 1}n×n represents a symmetric mutex matrix. The size of A corresponds
to the number of feature points that have been detected and the diagonal of A is
created using the output values obtained by the OSB. Since A expects similarity
data, the OSB cost values have to be converted. For this, a Gaussian function
with μ = 0.2 and σ = 10 is used. To populate the non-diagonal elements of A, a
pairwise distance consistency value is generated between two assignments.

A(u, v) = exp(
(d(i, j)− d(i′, j′))2

2σ2
), (11)

where u = (i, i′) and v = (j, j′) are the two assignments, the Euclidean distance
d(i, j) is calculated.

The exemplary results of matching two CTA series, or more accurately their
skeletons is shown in Fig. 5.
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Fig. 5. The exemplary results of matching two AAA skeletons

5 Results

The presented segmentation/registration framework was tested on the database
provided by the SOVAmed GmbH1. It consists of 8 pairs of of CTA series to be
segmented and matched. The examinations contain pre- as well as post-operative
data with the resolution of (512× 512) and the number of slices in the volume
varying form 220 to 680. In the preprocessing step, anisotropic diffusion filtering
with a conduction coefficient function q(x, y, z, t) = 1

1+(∇I
ν

2)
proposed by Perona

and Malik in [18] is used. The ν is the gradient modulus threshold that controls
the conduction experimentally set to 70. Based on the normalized CTA data
the number of clusters used in initial surface construction was set to 5. In the
employed hybrid level-set segmentation technique [12], a boundary feature map
related to the image gradient is a decreasing function g such as g = 1

1−c|∇I|2 ,
with the constant c controlling the slope set to 5. The parameters required for
(2) are set to α = 0.5 and β = 0.2, respectively. The proposed set-up makes it
possible to efficiently segment the aorta in all 16 analysed series. The obtained
segmentation results were then used in a matching/registration step.

For all the analysed pairs of volumetric data the skeletonization procedure
and matching algorithm were used. The proper skeletons were obtained for all
the 8 pairs. All of them were then matched and the matching results were ver-
ified by an expert. As matching results, a labelled skeleton points on both the
series were marked, so that the expert was able to verify them. In 4 for 8 anal-
ysed examinations the registration was correct. 4 of them required some manual
improvements. However, the analysis was performed on a real dataset, not pre-
pared for the analysis in any special way. The the difficulties in matching step
were caused by a different resolution of the series as well as their different length.
In all the cases, the series did not show exactly the same part of a patient body.
However, the need of the manual intervention will be reduced in a future work.
For this, we plan to incorporate a DICOM positioning information and modify
the matching algorithm so that it will be invariant to the resolution and the
length.
1 www.sovamed.com/en

www.sovamed.com/en
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6 Conclusions and Future Work

The paper presents a preliminary study in a 3D registration of abdominal aor-
tic aneurysm in CTA. The developed method consists of 3D segmentation part
and graph based registration procedure. The promising results obtained for 8
examinations consisting of 2 CTA series each encourage to further develop this
technique. In our work we plan to improve the segmentation as well as registra-
tion results incorporating a DICOM positioning information. One of the ideas
is to use an algorithm for automatic understanding medical images presented
in [22]. For future work an extended database is also considered.
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Abstract. In this paper various multiscale transformations, such as con-
tourlets, curvelets, tensor and complex wavelets, were examined in terms
of the precise representation of texture directionality in medical images.
In particular, subtle radiating and spiculated structures in mammograms
were modeled with sparse vectors of the image linear expansions. Impor-
tant properties of angular resolution, angular selectivity and shift in-
variance have been evaluated with simple phantoms. According to the
experimental results, the complex wavelets have been proved to be the
most effective tool in mammogram preprocessing to extract and uniquely
represent relevant spicular symptoms for accurate diagnosis.

Keywords: angular resolution and selectivity, shift (rotate) invariant,
multiscale transform, spiculed structures enhancement.

1 Introduction

Effective and of good quality imaging is important for further medical decision
making. Radiologist interprets medical images, describing the physical compo-
nents of potential visualized findings, such as shape, growth, and density tissue.
Precise characteristic of observed structures or some objects in the background
of imaged tissue tends to be significant issue to make an early and correct di-
agnosis by both radiologists and computer-aided systems. In the case of some
pathological findings, for example architectural distortion in mammography, di-
rectionality of their structures (commonly called spicules) is one of the main
important features to determine these pathology, observed on mammograms.

1.1 Mammographic Spicules

Architectural distortion is a breast lesion in which the normal structure of the
breast parenchyma is distorted as if being pulled into a central point, without a
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visible central density [3]. Briefly and clearly saying, it is a group of spicules radi-
ating from a certain area – not the visible mass. In contrast to other pathological
lesions in mammography, i.e. microcalcifications, oval or spiculated masses, ar-
chitectural distortions are not well-defined [5]. Moreover, interpretation process
of mammograms is significantly affected by image quality, conditioning of con-
tent assessment, individual radiologist knowledge and experience etc. affecting
cognitive errors. Therefore, architectural distortions as a subtle ambiguous direc-
tional findings are commonly misdiagnosed even by the most experienced radiol-
ogists [21]. The only typical feature of this type of pathology in mammography
is radiating spicules, but orientation distribution of these subtle mammographic
structures is often not clearly defined.

From the viewpoint of image processing, a model of architectural distortion
can be assumed piecewise lines propagated in different directions. Such an ap-
proach is used in many research studies on automatic recognition of this type of
abnormalities on mammograms. In order to extract spicules, the analysis of lo-
cal oriented edges [14, 15], statistical analysis of a map of pixel orientations [13],
skeleton analysis [16] or top-hat partial reconstruction [10–12] were conducted.
Moreover, the Dixon and Taylor line enhancement algorithm with a line strength
map (as their result) indicated the potential presence of oriented lines [23], es-
timation of a mean curvature sign and the concentration index [17, 18], Gabor
filtering and phase portrait [4, 20] or a curvilinear structure (CLS) ridge detec-
tion [6] were used.

Additionally, conducting image structure analysis our attention should be paid
to image noise. Therefore, it is worth noting that noise of digital mammogram
can be model as spatially correlated Poisson noise [1, 2, 22] and the noise power
is closely related to breast tissue (glandular to adipose tissue) [19].

1.2 Spicule Representation in Adjusted Transform Domain

Because of redundancy and limited quality of source image domain, the ap-
propriate spicule representation requires an optimally adjusted image transform
domain that allows precise extraction of piecewise structures of different orien-
tations in analyzed image. Therefore, an angular resolution and selectivity, shift
(rotation) invariance seem to be decisive to identify the effective image trans-
formation. Moreover, low transform-domain redundancy and low computational
complexity play also a significant role in design of useful numerical descriptors of
subtle mammographic structures with differentiated directionality. The above-
mentioned three major properties can be interpreted for our research as follows:

– angular resolution – the number of possible to distinguish directions in image,
– angular selectivity – the ability to distinguish between closely located objects

in image (so-called angular separation),
– shift (rotation) invariant – the same image (spectrum) in transform domain

independent of small shift (rotation) of objects in input image.
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There are many various methods for global image analysis of texture direc-
tionality. It is possible to capture dominant orientations in a whole image using
these global transformations, but it sometimes affects a noticeable number of
false positives in image processing (in case of architectural distortions). Such
approach associated with global directional characteristics, for instance based
on 2D polar FFT, could be applied at one initial stage of recognition process
to select the regions of interests (ROIs) with increased sensitivity of detection
procedures [7]. However, it is realized at the expense of permissible false pos-
itives reduced at next stages based on more precise analysis of local structure
directionality.

Local multiscale analysis of image texture could be adjusted to specific fea-
tures of selected ROIs providing better results of spicule detection [8]. However,
certain conditions should be fulfilled. First, local analysis should be matched to
the scale range of real informative structures in order to enhance only image
structures of interests and consequently to avoid false positives in detection pro-
cess. Second, too high computational complexity, which is often accompanied
by local image texture analysis (e.g. using Gabor filters [7]) as well as too high
domain redundancy of complex data correlation limit achieved performance.

The main goal of research presented in this paper is to investigate the suitabil-
ity of some local multiscale transformations for extraction of relevant directional
structures in mammograms. For this purpose, the selected bases/frames of tensor
wavelets, complex wavelets, contourlets and curvelets have been experimentally
studied and verified according to criteria of representation clarity of proposed
modeled multidirectional spicules.

Our attention has been paid to directional precision in determining of piece-
wise linear structure orientations due to improve of distributed spicule descrip-
tion and consequently increase of its recognition efficiency. The structures were
modeled in domains of four selected multiscale image transformations which have
been found to be useful for multiscale analysis of many advantageous applica-
tions. In particular, an influence of the size of clearly represented line structures,
possible to distinguish the distance of close-lying structures, and the target sen-
sitivity due to the rotation of line structures have been tested. To facilitate
correct interpretation information compaction in as sparse as possible object
representation in multiscale domain has been investigated.

2 Experimental Test of Angular Resolution

The angular resolution of new image domain should be matched to real needs, i.e.
the size of analyzed spicules, and the relation between these spicules (signal) and
surrounding background (noise). The size of example spicules in mammograms
was experimentally established in previous studies [9]. Thus, two phantoms con-
taining two closely-lying line structures (Fig. 1 - left) were tested. The sample
line width of 9 pixels and the line length of 89 or 189 pixels were adopted. To
provide adequate (relative to mammographic image) relationship between line
structures and background, Gaussian white noise of mean = 0.1 and variance =
3 was added (Fig. 1 – in the middle).
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Fig. 1. Two simple phantoms containing: a) two short lines of width 9 pixels and length
89 pixels, b) two longer line structures of width 9 pixels and length 189 pixels. Left to
right: phantom of closely-lying lines (rotation angle equals 45 degree), phantom with
added noise, and inefficient result of line detector for noisy phantom.

2.1 Angular Resolution versus Structure Rotation

It is commonly known that only some image transformations are shift (rotate)
invariant. To verify this aspect, important in line structure recognition process,
a simple test was carried out – the line structures on the created phantom were
rotated by 20, 50, 90 degrees, respectively. To compare the effectiveness of se-
lected multiscale transformations appropriate MATLAB toolboxes were used.
The achieved results presented in Fig. 2 confirm that complex wavelets tend to
be the least susceptible to rotation – the image of reconstructed lines are regard-
less of the rotation angle. In case of complex wavelets there are visible relatively
small blur at the ends of the lines on reconstructed images. The accuracy of phan-
tom reconstruction appears to be definitely lower for wavelets, contourlets, and
curvelets than complex wavelets. Using wavelets, additional undesirable shadows
appear around the reconstructed lines. There is a similar but less visible effect
for contourlet transform. However, the curvelets proved to be the least effective
tool to enhance the input signal with a small number of coefficients. Curvelets
identify and restore lines by isolated "dots", even if a large number coefficients is
used. Thus, it is almost impossible to achieve continuous-lines. It is worth noting
that the above-mentioned effects will be far more important in interpretation of
mammogram contents due to the degree of noise.

2.2 Angular Resolution versus Structure Size

Next, an influence of the number of transformation coefficients on angular resolu-
tion was investigated. It has been observed that angular resolution and selectivity
is significantly correlated with the number of transformation coefficients. How-
ever, it is worth mentioning that the number of coefficients, required to effective
line structure reconstruction, depends on several factors. Firstly, it depends on
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Fig. 2. The phantom of two closely-lying lines of 189 length and four reconstructed
images using only 100 significant coefficients of wavelets, contourlets, curvelets, and
complex wavelets (left to right). The rotation angle of lines θ = 0, 20, 50, 90 is tested.

the size of analyzed object in image. Secondly, the distance between objects is
not meaningless. Therefore, the noisy phantom with lines of d = 89, 189, 289 pix-
els length and the distance between them equal Δ = 5 or 10 pixels, respectively,
has been tested. The exemplary results are presented graphically in Fig. 3(a)
and Fig. 3(b) – for only N = 60 of significant coefficients, and in Fig. 4(a) and
Fig. 4(b) – for a much larger number of coefficients, i.e. for N = 500.

Comparing the reconstructed image containing lines with different distance
(Fig. 3(a) with Fig. 3(b) and Fig. 4(a) with Fig. 4(b)) it appears that line distance
is not as significant as length of line. Therefore, further discussion will focus on
correlation between the length of different oriented lines and the possibility of
their identification.

In order to objectively assess whether two lines are detected in the recon-
structed images, the Matlab function Demirel Edge Detector was used. Two
required parameters were determined experimentally: T = 0.5 – a threshold be-
tween 0 - 1, and t = 8 – the thickness of the line to indicate the edge (the t is
1 pixel smaller than the width of the phantom line due to slightly smaller size
of lines in the reconstructed image). The miserable effect of line detector for noisy
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(a) N = 60, Δ = 5 (b) N = 60, Δ = 10

Fig. 3. Visual representation of the impact of line length (from top to bottom:
d = 89, 189, 289 pixels, respectively) for reconstruction using only N = 60 significant
coefficients of wavelets, contourlets, curvelets, and complex wavelets (left to right). The
rotation angle of line θ = 30, the line distance Δ = 5 or 10 pixels.

(a) N = 500, Δ = 5 (b) N = 500, Δ = 10

Fig. 4. Visual representation of the impact of line length (from top to bottom:
d = 89, 189, 289 pixels, respectively) for reconstruction using only N = 500 significant
coefficients of wavelets, contourlets, curvelets, and complex wavelets (left to right). The
rotation angle of line θ = 30, the line distance Δ = 5 or 10 pixels.

phantom of closely-lying lines with distance between them Δ = 5 pixels can be
seen in Fig. 1 - right. The noise dominates the signal (line structures). However,
the detection of these lines is possible in a situation when the detector is used
on the reconstructed images obtained after the removal of a certain number
of coefficients. The results for noisy phantom with 189-pixels lines rotated by
θ = 30 degree are shown in Fig. 6.

Based on achieved results, it is noteworthy that input signal enhancement,
without unnecessary noise, is enabled only using the small number of complex
wavelet coefficients (about N = 60−100). This is also confirmed by the graph in
Fig. 5, obtained by use of four multiscale transformations of the noisy phantom
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Fig. 5. A sample graph showing a dependence of the number of transformation coeffi-
cients Ncoeff on the rotation angle θ for wavelets, contourlets, curvelets, and complex
wavelets, accordingly. This result is achieved for phantom with lines of length d = 189
pixels and distance between them Δ = 5.

with 189-pixels lines rotated by angle θ = 0− 90 degrees. However, it should be
mentioned that the number of transformation coefficients required for effective
line reconstruction seems to be independent on the length of analyzed structures.

Interpreting the results achieved for wavelets, it is apparent that using the
similar to the case of complex wavelets number of coefficients (see in Fig. 6,
N = 400 and 1000) the reconstruction of two closely-lying lines is also possible,
but simultaneously extra noise (constituting useless informations) is extracted.
In addition, only for θ = 0, 45, 90 closely-lying lines are quite accurately recon-
structed. For other value of θ these line structures connect locally (e.g. for θ = 30
in Fig. 6).

Furthermore, using increasing number of contourlets coefficients to distinguish
two closely-lying lines of different rotation angles is impossible. In this situation
the energy coefficients focuses not only on the signal but also the noise. Thus,
the number of coefficients, useful for the line reconstruction, is limited (see in
Fig. 6, N = 400 and 1000).

In the case of curvelet transform coefficients failed to keep the continuity of the
reconstructed lines (Fig. 3(a), Fig. 4(a), and Fig. 6). Therefore, it is suspected
that reconstructed structures tend to be discontinuous even using significantly
number of the curvelet transform coefficients.

Summarizing, it is undoubtedly that complex wavelets tend to be very useful
tool to investigate image texture directionality due to structure rotate and size
invariant. For the same number of the complex wavelet coefficients both the short
and long line structures can be enhanced on reconstructed images. Additionally,
to reconstruct the input signal without noise the smallest number of the complex
wavelet coefficients is sufficient (in comparison to other transformations).
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Fig. 6. Noisy phantom of two closely-lying lines (d = 89, Δ = 5 pixels) and four
reconstructed images using respectively N = 60, 400, 1000 significant coefficients of
wavelets, contourlets, curvelets, and complex wavelets (from left). Additionally, the
effect of line detector was presented. The rotation angle of line Θ = 30 is shown for
example.



Angular Resolution Study 35

3 Conclusions

Based on the performed experiment, it can be concluded that complex wavelets
tend to have appropriate angular resolution and angular selectivity needed to
extract radiating spicules from the noisy image, such as mammogram. Moreover,
it appears that it is possible to capture diagnostically significant image content
using a small number of transformation coefficients. However, there are two main
problems in determining the angular resolution of image transformations. First,
an approximation of the directional domain is used – converting Cartesian coor-
dinates to polar coordinates is inaccurate. Therefore, the precise determination
of image texture orientation is difficult. Another problem lies in the proposal
of some measures to clearly assess both the angular resolution and selectivity
of multiscale transformations which are characterized by considerably different
transform-domain redundancy.
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Abstract. This paper describes a practical application of our novel
method for detecting the boundaries between areas of different brightness
to microcalcifications detection. We focus on microcalcifications detec-
tion step, whereas their classification, next important stage, is out of the
scope of this paper. Microcalcifications are tiny specks of calcium, which
may be an early sign of cancer. Because of that, their analysis based on
mammographic examination is very important. Segments of boundaries
are described by the coordinates of the start and the end point. Such
representation of the boundary simplify further analysis of their shape.
Some results of microcalcifications detection are presented. Parameters
influence on results is shown.

Keywords: medical imaging, mammograms, breast cancer, computer-
aided diagnosis, image processing, object detection.

1 Introduction

Image analysis, pattern detection and pattern recognition play an important role
in our lives, making them easier and safer. Vision systems are widely used in
security systems, transport, medicine and much more domains. They provide
information, based on image analysis, which may support human decisions. The
area on which we focused on in this paper is medical imaging.

Analysis of medical images is a subject of CAD systems (computer-aided de-
tection and computer-aided diagnosis). There are several types of images which
may be analysed, e.g. X-ray images, CT (computer tomography), MRI (magnetic
resonance imaging), PET (positron emission tomography), USG (ultrasonogra-
phy). They differ in methods of examination and in consequence in result images.
Thus, analysis of them requires the application of various methods.

Mammography is an example of X-ray examination, which is commonly used
for examination of breast (MLO, CC views). The aim of this examination is anal-
ysis of breast structure and detection of early signs of disease [3, 4]. Early and
precise diagnosis increases the chances of recovery [5]. The types of abnormalities
may be divided in two groups - masses and calcifications (microcalcifications),
each of them may be benign or malignant. Signs of the benign or malignant
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abnormalities are reflected in their appearance in mammograms. Due to differ-
ent characteristics of masses and calcifications, their analysis is usually applied
separately [5].

Microcalcifications (tiny specks of calcium) are regarded to be the very im-
portant signs in early breast cancer. The problem of their analysis is divided in
two subproblems - detection and classification (as benign or malignant). Clas-
sification is out of the scope of this paper. Malignancy of microcalcifications is
determined by their shape and distribution. Detailed classification is described
by BI-RADS scale.

Difficulty in detection of microcalcifications is caused by their non a priori
known shape. On the other hand their are relatively bright in opposite to rest of
breast. It is caused by different density of tissue. Analysis of microcalcifications
and mammograms in general is addressed by many authors, as a challenging and
useful area of research. Bellow some of the existing approaches are outlined.

One of the most common approaches to abnormalities is founded on the pixel-
based methods [5], the main idea of which is to analyse the mammogram pixel
by pixel. By doing so, one can determine if the pixel is suspicious, i.e. whether it
belongs to the abnormality area (e.g. mass, calcification) or not. Another popular
approach makes use of the region-based methods. The latter are founded on the
extraction of the regions of interest and their classification. The target regions
are classified into two classes - suspicious or normal [5].

Detection of microcalcifications requires different methods which are devel-
oped by researchers focused on analysis of such abnormalities in mammographic
images. Among variety of methods used to solve this problem, there are for exam-
ple active contours [19, 20], morphological operations (e.g. reconstruction) [17,
18], multiresolutional analysis [21], fuzzy logic techniques [22, 23], machine learn-
ing algorithms [14–16], histogram or wavelet analysis [9–13]. These solutions are
conceptually different from method presented in this paper.

The paper is organized as follows. Section 2 briefly describes the boundary line
segments detection method, which was also described in [8]. Section 3 describes
microcalcifications specificity and their role in breast cancer diagnosis. Section 4
presents how the method can be applied to microcalcifications analysis. This is
followed by the discussion of the possibilities of the approach. We conclude in
Section 5.

2 Boundary Line Segments Detection Method

In this section, the idea of our method is described. The method is used to
detect the edge between two areas of different brightness, where the boundary
between these areas is not clearly visible. The lack of boundary is caused by
the tonal transition from one area to another. Our method solves this problem
by separating areas of different brightness and gives coordinates of boundary
segments in one step — in a contrast to edges which are extracted by filters
like Sobel filter or Canny filter. Furthermore, obtained boundaries are very thin,
what is important in the next steps of analysis, which will be introduced in the
next stage of research.
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Let us analyse the images shown in Figs. 1 and 2. In Fig. 1, the boundaries
between two areas are clearly visible, as opposed to the boundaries depicted in
Fig. 2. It is easy to notice that there are no straight boundaries which separate
those two areas. The edges are ragged and the areas are not homogeneous, but
when we look at these images from distance, such details are no more visible.
We can see only two areas, a darker one and a brighter one, and a boundary
between them. This observation has given rise to the idea of a method which
can give the possibility to define this boundary.

Fig. 1. Clearly visible boundaries between two areas, where (a) the boundary from the
left upper corner to the right bottom corner, (b) the boundary from the left bottom
corner to the right upper corner, (c) the horizontal boundary, in the middle of the
image

Fig. 2. Unclearly visible boundaries between two areas, where (a) the boundary from
the left upper corner to the right bottom corner, (b) the boundary from the left bottom
corner to the right upper corner, (c) the horizontal boundary, in the middle of the image

The above observations have led us to formulate an inverse task – not to find
boundaries on the image but to create artificial boundaries and check if they
are correct. Let us imagine that the images shown in Figs. 1 and 2 have four
artificial, predefined boundaries. These boundaries define the areas. On the basis
of calculations and analysis, we decide which boundary is correct.
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Let e1, e2, e3 and e4 be the boundaries, which are defined as follows (where
the given coordinates represent the coordinates of the start and the end point
of the boundary, respectively) and presented on the image in Fig. 3:

– e1 → ((x0, y0), (x2, y2)),
– e2 → ((x0, y2), (x2, y0)),
– e3 → ((x1, y0), (x1, y2)),
– e4 → ((x0, y1), (x2, y1)).

e1

e2

e3

e4

x0, y0 x1, y0 x2, y0

x2, y1

x2, y2x1, y2x0, y2

x0, y1

Fig. 3. Mask with artificial boundaries

Boundaries belong to one of the two types - horizontal and vertical boundaries
(type 1.) or diagonal boundaries (type 2.). Boundaries of each of the types have
to be analysed in pairs – e1 with e2 and e3 with e4. Such boundaries are opposites
to each other, they are mutually exclusive. If one of them exists, second does
not. For each pair, the calculation of average brightness for the area above and
below the boundaries is done:

– an1 – average brightness above boundary n1,
– bn1 – average brightness below boundary n1,
– an2 – average brightness above boundary n2,
– bn2 – average brightness below boundary n2

where n1 and n2 are the analysed pair of boundaries, so there are two cases:

– n1 = e1, n2 = e2
– n1 = e3, n2 = e4

Values an1 , bn1 , an2 , bn2 are used to calculate dn1 and dn2 . These coefficients are
needed to decide if and which boundary exists.

dn1 = |an1 − bn1 | (1)
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dn2 = |an2 − bn2 | (2)

dn1

dn2

≥ α, where dn2 > 0 (3)

dn2

dn1

≥ α, where dn1 > 0 (4)

|dn1 − dn2 | > β (5)

Where:

– dn1 is the absolute value of the difference between average brightness above
boundary n1 and average brightness below boundary n1,

– dn2 is the absolute value of the difference between average brightness above
boundary n2 and average brightness below boundary n2.

If conditions Eq. 3 and Eq. 5 are fulfilled, boundary n1 exists; else if conditions
Eq. 4 and Eq. 5 are fulfilled, boundary n2 exists; else neither boundary n1 nor
boundary n2 exists. Parameters α and β are defined experimentally – α = 3 and
β = 15. Choice was based on correctness of boundaries detection from prepared
training set.

3 Microcalcifications Specificity and Their Role in Breast
Cancer Diagnosis

As it was mentioned in the Introduction, microcalcifications may be in various
shapes and have different spatial distributions. These features indicate the level
of malignancy from 0 to 6, according to BI-RADS classification.

Benign microcalcifications are relatively large, homogeneous in shape and size,
rounded, small in number, diffusely distributed. Malignant microcalcifications
are small, irregular, heterogeneous in shape and size, clustered. More detailed
characteristics of both of the types of microcalicifications are presented in tables
below — Tab. 1 and 2.

Usual steps of microcalcifications detections are as follows:

– detection of ROIs (regions of interests),
– segmentation,
– classification.

We focused on detection of microcalcification boundaries, because of the cru-
cial meaning of their shape in microcalcification classification. Classification is
out of the scope of this paper, but this step will be introduced in the future
research. Our initial solution is presented in the next Section.
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Table 1. Calcifications morphology [24]

Benign Intermediate concern Malignant
skin amorphous fine linear

vascular coarse heterogeneous branching
popcorn pleomorphic

plasmacell mastitis
fat necrosis

milk of calcium
dystrophic

eggshell
suture

Table 2. Calcifications distribution [24]

Benign Intermediate concern Malignant
diffuse clustered linear

regional segmented

4 Method Application to Microcalcifications Detection

Since the meaning of microcalcification shape is crucial, we tried to adopt our
method described in [8] and Section 2 to this task. This method connects three
advantages - it deals with tonal transitions between microcalcifications and rest
of tissue, is local and provides boundary segments (with coordinates of the start
and the end point) which are useful for shape analysis.

Similarly to the our approach described in [8] the process of detection is
performed using a mask with defined dimensions a × a. The mask is moved
over the image with step δ. For each area below the mask, calculations based
on equations from Eq. 3 to Eq. 5 are done and boundaries are created. The
parameters a and δ can be freely changed. The value of parameter a reflects in
length of detected boundary segment.

Bellow some of results are presented, different values of parameters a and δ
have been used. The analysed mammograms belong to the MIAS dataset [1],
which contains set of digitised mammograms with information of localization
and type of abnormality for each image.

As can be seen on Figs. 6, 7, 8, 10, 4 each or almost each microcalcifica-
tion has been found. The boundaries of them are represented by groups of line
segments in four possible directions. Such representation simplify shape analysis
which will be provided in next steps of the solution.

Precise evaluation is impossible at the current stage of the research. Reference
datasets contain information of localization of the whole group of microcalcifica-
tions but there are not information of expected and proper segmentation of single
microcalcifications. Because of that, expert knowledge (radiologist) is needed to
assess results.
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Fig. 4. Detected microcalcifications, parameters — a = 5, δ = 3

Fig. 5. Example of microcalcifications (mdb148 from MIAS dataset)
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Fig. 6. Detected microcalcifications (Fig. 5), parameters — a = 5, δ = 3

Fig. 7. Detected microcalcifications (Fig. 5), parameters — a = 4, δ = 2
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Fig. 8. Detected microcalcifications (Fig. 5), parameters — a = 3, δ = 1

Fig. 9. Example of microcalcifications (mdb147 from MIAS dataset)
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Fig. 10. Detected microcalcifications (Fig. 9), parameters — a = 4, δ = 3

5 Conclusions and Future Research

In this paper, we have outlined the problem of microcalcifications detection.
Afterwards our solution of the problem was presented. Concept of method is
based on our previous research – the method for detecting the boundaries be-
tween areas of different brightness. Method has been modified for detection of
very small and varied in shape objects. Than it was tested on several images, on
which different types of microcalcifications were visible. Achieved results lead us
to conclusion that this method may be useful for detection of microcalcifications
and analysis of their shape, due to classification.

As we mentioned in the Introduction, classification of microcalcifications is out
of the scope of this paper, since that is an important stage we plan to introduce
it in aim to provide complete solution. To sum up, the further research will
focus on microcalcifications shape analysis, classification and results evaluation
by radiologists.
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Abstract. Today, in the age of computerization, experts not only strive
to perfect methods of ultrasonographic (US) imaging of tissue structure,
but also intensively develop transmission methods, focusing especially on
ultrasound transmission tomography (UTT) (analogous to X-ray com-
puted tomography - CT) and ultrasound reflection tomography (URT)
based on synthetic aperture method used in radar imaging. The follow-
ing paper presents and analyses the results of ultrasound transmission
tomography of the internal structure of a biopsy CIRS Model 052A breast
phantom. The imaging was performed with an internally designed ultra-
sound computer tomography research system. The obtained results were
compared to the imaging results from dual energy CT, MR mammogra-
phy and traditional US.

Keywords: ultrasound computer tomography (UCT), ultrasonography
(US), ultrasound transmission tomography (UTT), computed tomog-
raphy (CT), magnetic resonance (MR) mammography, breast biopsy
phantom.

1 Introduction

The most common diagnostic tests used for early detection of malignant breast
lesions include palpation (manual), X-ray mammography, traditional ultrasonog-
raphy (US) and magnetic resonance (MR) mammography [1]. If a suspicion of
breast malignancy is raised then cytological or histopathological tests of biopsy-
obtained specimens are performed. There are also other diagnostic methods that
can be used for preventive breast examinations, such as [2]: elastography (USE),
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thermography, electrical impedance tomography (EIT), single photon emission
computed tomography (SPECT) and positron emission tomography (PET). It
became clear that ultrasound transmission (UTT) and reflection tomography
(URT) can also be used for imaging and early detection of malignant lesions in
women’s breasts [2–7]. Several research centres around the world (including the
Faculty of Electronics at Wroclaw University of Technology) are currently work-
ing to construct a prototype of an ultrasound computer tomograph dedicated
for women’s breast examination [2–7].

The paper we present discusses and analyses the results of ultrasound trans-
mission tomography imaging of the internal structure of a biopsy CIRS Model
052A breast phantom used for ultrasonography assisted biopsy training. The
scans were performed using an ultrasound computer tomography research sys-
tem that was designed with the assistance of a private investor. The obtained
results were compared with scans obtained using dual energy CT, MR mam-
mography and traditional US.

2 Materials and Methods

2.1 Measurement Setup

Block diagram of the designed ultrasound computer tomography research sys-
tem is presented in Fig. 1. Ultrasound computer tomography research system’s
main element is a circular array of piezoelectric transducers [8] with the internal
diameter of 260 mm. 1024 piezoceramic sending-receiving transducers with di-
mensions of 0.5 x 18 mm, located evenly 0.2 mm apart on the internal side of the

Fig. 1. Block diagram of the designed ultrasound computer tomography research
system
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Fig. 2. A method of tomographic scanning of a section structure of the measured object
in divergent projection geometry

mounting ring of the array, are driven during transmission by short rectangular
pulse signals with the length of 5 cycles, frequency of 2 MHz and amplitude of
60 Vpp, using a voltage amplifier system and a demultiplexer system. Pulse gen-
erator is controlled via a GPIB connection from a computer. The signals passing
through the studied biological medium (submerged in distilled water and located
inside the array’s ring) are received by means of a multiplexer and a low noise
amplifier. The received signals are recorded by a computer using a digital card
for acquisition of signals. Tomographic, transmission images of the sections of
the internal structure of the studied biological medium are reconstructed using
a suitable software with implemented algorithms for measurement of acoustic
parameters of ultrasonic pulse [2, 7] (esp. its runtime [9]). One transmitting
transducer and several hundred (usually half of the available amount) receiv-
ing transducers operate during one of the 1024 measurement cycles (Fig. 2). A
computer controls the switching of transmitting and receiving transducers via
an USB port. The measurements are performed in distilled water that fills the
inside of a circular ultrasonic array, using a base, which allows precise verti-
cal movement of the studied object. A complete measurement of one section of
the object’s structure (for a selected vertical base position) performed using the
ultrasound computer tomography research system takes about 10 minutes. In
the currently developed device prototype, the total measurement time for one
cross-section will be reduced to below one second. This will be achieved due to
parallel acquisition and processing of received signals and the use of fast FPGA
circuits. Time of reconstruction of transmission images of a single cross-section
of the studied object should not exceed a few milliseconds.
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2.2 Breast Biopsy Phantom

The biopsy CIRS Model 052A breast phantom, selected for ultrasound tomo-
graphic study, imitates average values of acoustic parameters of tissues occurring
in woman’s breast for the purpose of training in thin-needle biopsy, assisted by
real-time ultrasonography. The size (150:120:70 mm, volume: 600 cm3 and shape
of the phantom mimics female breast in supine body position. The phantom is
made of ZerdineTM gel, which imitates tissue and contains liquid and solid in-
clusions that mimic pathological lesions in the form of cysts and solid lesions
(compact masses), respectively. According to the manufacturer’s specifications,
ultrasonic wave propagation velocity in ZerdineTM gel is about 1500 ÷ 1540 m/s
depending on temperature. The CIRS Model 052A phantom has 6 amorphous
(not spherical in shape) 8 ÷ 15 mm green inclusions that imitate cysts and 6
amorphous 6 ÷ 12 mm black inclusions that imitate solid lumps. The position of
the inclusions in the phantom is random. One of the advantages of the phantom,
in relation to its use for tomographic studies in water, is its smooth surface,
which minimizes attenuation of oblique incident ultrasonic wave.

2.3 Ultrasound Tomography Imaging Conditions

Average velocity of ultrasound in distilled water during the phantom tests was
c ≈ 1491.63 m/s (t ≈ 23.13 ◦C, temperature fluctuation Δt ≈ ±0.38 ◦C).

28 cross-sections of the phantom were measured in coronal planes (the base
of the phantom was perpendicular to the surface of the array’s transducers),
with a 2 mm vertical step, in the range of 54 mm from the base of the ob-
ject (Fig. 3). 511 circular array receiving transducers positioned symmetrically
opposite a transmitting one were used for each of the 1024 sequences of the
successively activated transmitting transducers (Fig. 2). The diameter of the
reconstructed area is 182.4 mm. UTT images were reconstructed using an algo-
rithm of filtered backprojection with Hamming filter, and rectilinear propaga-
tion of ultrasonic waves from the source to the detector was assumed [10, 11].
The resolution of the obtained UTT images is 457 x 457 pixels with the size of
0.4 mm.

Fig. 3. The measured coronal cross-sections of the CIRS Model 052A phantom
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3 Alternative Imaging Methods

For the purpose of comparison, the internal structure of the studied phantom was
visualized using standard techniques utilised in breast diagnostics: MR mammog-
raphy and US. Dual energy CT was used as a high resolution reference imaging.

CT and MRI examinations of the phantom were performed in the Department
of General Radiology, Interventional Radiology and Neuroradiology of the Wro-
claw Medical University Hospital, using Discovery CT 750HD (GE Healthcare)
and MR Signa HDxt 1.5T (GE Healthcare) scanners, respectively.

The CT phantom examination was performed using a dual-energy protocol (80
keV and 140 keV in single acquisition). Then, dedicated software (GSI Viewer,
GE Healthcare) was used to obtain secondary reconstruction of images for 75 keV
energy. The phantom was positioned so that its base was parallel to the surface
of the gantry hole and perpendicular to the axis of the bed surface (Fig. 4(a)).
CT acquisition parameters were as follows: slice thickness 0.625 mm, field of
view (FOV) 266 mm, acquisition matrix was 512 x 512 pixels with the size of
0.52 x 0.52 x 0.625 mm.

For the MRI examination the T2 FSE sequence was used with the following
parameters: repetition time Tr = 5000 ms and echo time Te = 86.968 ms. The
phantom was examined using an 8ch HD Breast Array (8-channel coil dedicated
for breast imaging). The phantom was positioned in a special breast grip, with
the side parallel to the gantry hole (Fig. 4(b)). MRI acquisition parameters were
as follows: slice thickness 5 mm, FOV 195 mm, acquisition matrix 512 x 512
resulting in pixel dimension of 0.38 x 0.38 x 5 mm.

(a) (b)

Fig. 4. The method of imaging the structure of breast phantom using: (a) CT, (b)
MRI

In the traditional US method, the sections of the phantom were imaged using
a 3.5 MHz ultrasonic linear probe (operating with a Picker LS2400 apparatus),
that was submerged in distilled water and moved along the phantom on a special
base (Fig. 5) with 5 mm step.
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Fig. 5. The method of imaging the structure of breast phantom using US

4 Results

Images reflecting the distributions of local ultrasound velocity values were recon-
structed (in greyscale, form black to white) from the digitally determined values
of runtime of ultrasonic pulses, recorded using the designed ultrasound com-
puter tomography research system (Fig. 1) in individual coronal cross-sections
of the CIRS Model 052A breast phantom (Fig. 3), in divergent geometry setup
(Fig. 2). Selected results of UTT examinations for two coronal cross-sections of
the studied phantom (in the form of cross-section images and distributions of
pixel values along dashed lines marked on the images) are presented in Fig. 6.

Two images for the cross-sections measured using the UTT method were se-
lected from the set of CT images of the CIRS Model 052A breast phantom cross-
sections reconstructed in coronal planes, based on measurements performed on
a Discovery CT 750HD device (Fig. 4(a)). They are shown in Fig. 7.

MRI images of the sections of the CIRS Model 052A breast phantom in sagit-
tal planes were reconstructed based on measurements performed on a MR Signa
HDxt 1.5T device (Fig. 4(b)). Layered images in coronal planes that were ob-
tained using multiplanar reconstruction (MPR) were used to acquire images in
sagittal planes. Two of those images representing cross-sections measured using
UTT and CT are presented in Fig. 8.

Examples of US images of sections of the CIRS Model 052A breast phantom
(range of distance between the linear probe axis from the edge of the tank: 4.5
÷ 9 cm) obtained using a Picker LS2400 device, are presented in Fig. 9.



Breast Phantom Imaging Results 55

Fig. 6. Tomographic images of distribution of local values of ultrasound velocity for
two coronal cross-sections of the CIRS Model 052A breast phantom, reconstructed
based on runtime measurements

Fig. 7. CT images of two coronal cross-sections of the CIRS Model 052A breast phan-
tom for the cross-sections measured using UTT method

Fig. 8. MRI images of two coronal cross-sections of the CIRS Model 052A breast
phantom for the cross-sections measured using UTT and CT
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Fig. 9. Examples of US images of sections of the CIRS Model 052A breast phantom
for various distances of the linear probe axis from the edge of the tank (based on the
position of inclusions)

5 Comparative Analysis

The following section includes comparative analysis of images of the examined
breast phantom acquired using various methods and a discussion concerning
spatial and contrast resolutions. The authors did not use objective descriptors
to compare image pixel values, because they are not diagnostically useful in
this case. The visualised values, e.g. around a heterogeneity are distorted and
every quantitative parameter for the analysis of correspondence with a reference
sample of average pixel values of the compared images in the selected areas
shows significant discrepancies. This, however, does not mean that the structures
and their sizes are not detected correctly. Additionally, the examined phantom
(made of soft gel) was measured in various positions (similarly as in the case
of in vivo breast examinations), in various conditions (air, water). Therefore,
it is impossible to assure ideal positioning of the examined structures – there
are slight variations in the position resulting from deformation of the soft gel
structure.

In this paper, the CT method was selected in order to obtain high resolution
reference images of the structure of the studied phantom. The CT method is
characterised by soft tissue contrast resolution of about 0.2 %. Possible spatial
resolutions achievable in CT systems are about 0.2 ÷ 0.3 mm [12]. Radiological
density (the level of X-ray opacity) and Hounsfield scale (based on radiodensity),
which is a linear transformation of the original linear attenuation coefficient mea-
surement for X-rays are the differentiating parameters. Radiodensity of distilled
water in standard temperature and pressure is defined as zero on Hounsfield
scale (HU – Hounsfield units), while air density in typical conditions is -1000
HU [12]. In dual-energy CT imaging the value of beam’s linear attenuation co-
efficient for two different energies is simultaneously tested. Then, based on the
coefficient value, HU values of the tested material are calculated for specific
energy. It needs to be highlighted, that CT technique is not used for women’s
breast examination, because of radiation beam rigidity (typically 120 kV). As a
result the differences in radiation attenuation in tissues are too low. The imaged
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inclusions (Fig. 7) have sharply delineated margins but are hardly distinguish-
able form the background (phantom gel).

The reconstructed UTT images of distribution of local values of ultrasound
velocity in the cross-sections of the studied phantom (Fig. 6) are quantitative
images, which make it possible to identify heterogeneities from the background
(the difference in ultrasound velocity is a single [m/s]). Average ultrasound veloc-
ity in gel varied in the range 1503 ÷ 1507 m/s. The range of ultrasound velocity
variability Δc ≈ 4 m/s in gel, results predominantly from changing measurement
conditions (e.g. temperature differences). It is also possible to visualise both con-
tinuous and stepped changes (Figure 6 shows water penetrating the edges of the
phantom gel as lower velocity values). One disadvantage of this imaging modality
is fuzzy edges, associated with errors in evaluation of the size of small inclusions
and distorted ultrasound velocity values in small heterogeneous areas caused by
multipath effect during ultrasonic wave propagation in a heterogeneous structure
[13]. The most significant distortions occur near the heterogeneity borders due
to loss and dropout of the transmitted signal and refraction of ultrasonic wave
beam (Fig. 6). The structure of the phantom on the cross-sections visualised in
the UTT images is very similar to the structure shown on reference CT images
– the same inclusions are visible (compare Fig. 6 and Fig. 7). Lateral resolution
of the UTT method (horizontal plane scanning density) primarily depends on
the resolution of the ultrasonic array (the number, width and spacing of the el-
ementary transducers). In case of the 1024-element probe, used in this research,
the lateral resolution can be estimated to be about 0.4 mm. If the longitudinal
resolution of an UTT image (axial, along the path of the wave beam) is assumed
to be half of the wavelength, the obtained value will also be around 0.4 mm.
Horizontal resolution (height) primarily depends on horizontal scanning density
(layer thickness), with a limitation resulting from the transducer’s height, and in
this case is about 5 mm. This can, however, be improved by horizontal focusing
(mechanical or electronic) of ultrasonic wave beam. As a result of such a low
vertical resolution, structures located above and below the examination plane
appear on UTT images (compare Fig. 6 and Fig. 7–9). UTT contrast resolution
is considerably dependent on the examined structure. Calculations show that if
the total precision of determining projection values of ultrasound velocity is 0.01
m/s (disregarding the measurement uncertainty, which can be much greater), it
will be possible to distinguish, in an UTT image, heterogeneous areas that differ
from the surrounding tissue in the value of ultrasound velocity: 1 m/s with the
size of > 2.3 mm, 2 m/s with the size of > 1.2 mm, 5 m/s with the size of > 460
μm, 10 m/s with the size of > 240 μm, 15 m/s with the size of > 160 μm, 20
m/s with the size of 120 mathrmμm [9]. Figure 10 shows the relation of the
relative resolution of UTT imaging of the distribution of local values of ultra-
sound velocity inside a structure to its dimensions, against the average velocity
of 1540 m/s in soft tissue.

MR mammography is a method that makes it possible to detect even small
focal breast lesions that with high probability can be identified as early-stage
malignancy. However, it usually requires contrast medium to be injected into
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Fig. 10. The relation of the relative resolution of UTT imaging of the distribution
of local values of ultrasound velocity inside a structure to its dimensions, against the
average velocity of 1540 m/s in soft tissue

patient’s body, which cannot be safely performed in case of patients with renal
failure or allergy to contrast agents [12]. Additionally, MRI examination exposes
patients to strong magnetic field and is contraindicated in patients with metal
instruments or implants. Magnetic resonance tomography reflects concentration
of nuclei of hydrogen atoms (protons) [12], which results in observable changes
of signals of resonance emission, caused by hydrogen atoms present in water
molecules in tissues. As a result MRI is the optimal technique for detecting con-
ditions associated with increased amount of fluid in areas of pathological lesions
(i.a. some tumours, infections and inflammations). Resolution of MR images de-
pends on the number of water protons, both free and as part of macromolecules,
in a medium. The resolution of magnetic resonance imaging can be as high as
about 0.4 ÷ 1 mm. The contrast resolution of MRI images is significantly af-
fected by the specifications of the measurement equipment (level of magnet’s
induction, gradient force, receiving system, the coil used, etc.) and parameters
of the scanning sequence [12] selected by the operator. Seemingly unimportant
changes in the basic imaging parameters can result in obtaining slightly different
data, which enable various diagnostic interpretations. Despite significantly lower
resolution, in comparison to CT images, MRI visualisations of the examined
breast phantom clearly demonstrate the same inclusions in its structure. Inclu-
sion borders are slightly fuzzy. Another problem was related to the examination
method (similar to one faced in in vivo breast examination). The phantom was
positioned in a special breast grip, at an angle, with the side parallel to the gantry
hole (Fig. 4(b)). As a result it was difficult to match and compare sections with
other imaging types. Additionally, the resolution of scanning of sections of the
phantom was just 5 mm.

Ultrasonography (US) is a method of diagnostic imaging of breasts that is
routinely used as the primary or complementary test in relation to X-ray mam-
mography [1]. This method allows, for example, to distinguish cysts from solid
lesions (lumps) and is useful for precise localisation of a lesion, especially before a
planned thin-needle biopsy and in young and middle-aged female patients, whose
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breast tissue is usually to dense for diagnostically reliable X-ray mammography.
The additional use of Doppler-US allows for lesion vascularity to be assessed.
This method, however, does not make it possible to unequivocally distinguish
malignant lesions from benign ones. Reflections of ultrasonic wave pulses from
microcalcifications (the sizes of which start from a few μm) mean that signals
received by the US-scanner can be obtained. This, however, does not mean that
such signals will always be distinguished in an US image from many other sig-
nals received from the border of the adipose, fibrous, glandular tissue and their
heterogeneities (tissue noise) [14]. US imaging produces limited viewing area, is
subjective (depends on the examining person’s assessment) and generates results
that are an effect of a compromise between ultrasonic wave penetration depth
and image resolution. The probability of early breast cancer detection using US
is estimated to be about 50 % [15]. Looking at the US images of the studied
breast phantom cross-sections, it is possible to identify heterogeneity of the ob-
ject’s structure and distinguish cysts from lumps. Acoustic impedance is the
differentiating parameter in this case. US is a qualitative type of imaging and
visualises heterogeneity borders but does not provide data on their quantitative
characteristics.

6 Conclusions

The obtained UTT, CT, MRI and US images of the CIRS Model 052A breast
phantom structure show comparable (in the context of size and location) hetero-
geneities inside the object. They are hardly distinguishable from the background
on CT images and slightly more visible on MRI images, but have more fuzzy
edges. The UTT images of distribution of ultrasound velocity clearly demon-
strate continuous and stepped changes of density. The edges of small inclusions
are slightly fuzzy. UTT image is a quantitative type, because of high precision of
digital determination of runtime. As a result it is potentially possible to identify
the character of a breast lesion (benign vs. malignant) based on pixel values in
the lesion area in relation to the background. These are valuable diagnostic data.

The obtained results show that, after the scanning process is accelerated mak-
ing it possible to perform in vivo examinations, the developed UTT method can
successfully be used to detect and diagnose focal lesions in women’s breasts.
Lesions that cannot be visualised using the traditional ultrasonography can be
imaged thanks to the UTT method. It combines the advantages of US (no X-rays
and contrast media used, no contraindications in case of ferromagnetic implants)
with transmission technology used in CT, making it an innovative, sensitive and
potentially powerful diagnostic method.

Acknowledgments. The authors would like to thank DRAMIŃSKI Medical
Instruments Company for financing the research as part of a process of intro-
ducing an ultrasonic transmission tomograph for examining women’s breasts to
the market.



60 K.J. Opieliński et al.

References

1. Basset, L.W., Jackson, V.P., Fu, K.L., Fu, Y.S.: Diagnosis of Diseases of the Breast.
Elsevier Saunders, Philadelphia (2005)

2. Opielinski, K.J.: Application of transmission waves for characterization and imag-
ing of biological media structures. Printing House of Wroclaw University of Tech-
nology, Wroclaw (2011) (in Polish)

3. Opielinski, K.J.: Ultrasonic Tomographic Imaging of Soft Tissue. In: Leniowska,
L., Branski, A. (eds.) Progress of Acoustics, pp. 23–52. Polish Acoustical Society,
Rzeszow Department, Rzeszow (2013) (in Polish)

4. Duric, N., Littrup, P., Poulo, L., Babkin, A., Pevzner, R., Holsapple, E., Rama,
O., Glide, C.: Detection of breast cancer with ultrasound tomography: First re-
sults with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med.
Phys. 34(2), 773–785 (2007)

5. Ruiter, N.V., Schwarzenberg, G.F., Zapf, M., Gemmeke, H.: Conclusions from an
Experimental 3D Ultrasound Computer Tomograph. In: IEEE Nuclear Science
Symposium Conference Record, pp. 4502–4509. IEEE Press, New York (2008)

6. Wiskin, J., Borup, D., Johnson, S., Andre, M., Greenleaf, J., Parisky, Y., Klock,
J.: Three-dimensional nonlinear inverse scattering: Quantitative transmission al-
gorithms, refraction corrected reflection, scanner design and clinical results.
POMA 19, 075001 (2013)

7. Opielinski, K.J., Pruchnicki, P., Gudra, T., Podgorski, P., Krasnicki, T., Kurcz,
J., Sasiadek, M.: Ultrasound Transmission Tomography Imaging of Structure of
Breast Elastography Phantom Compared to US, CT and MRI. Arch. Acoust. 38(3),
321–334 (2013)

8. Gudra, T., Opielinski, K.J.: The ultrasonic probe for the investigating of internal
object structure by ultrasound transmission tomography. Ultrasonics 44, e679–e683
(2006)

9. Opielinski, K.J., Gudra, T.: Multi-parameter ultrasound transmission tomography
of biological media. Ultrasonics 44(1-4), e295–e302 (2006)

10. Opielinski, K.J., Gudra, T.: Ultrasonic Transmission Tomography. In: Sikora, J.,
Wojtowicz, S. (eds.) Industrial and Biological Tomography, pp. 263–338. Book
Publishing of Institute of Electrotechnics, Warsaw (2010)

11. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE
Press, New York (1988)

12. Pruszynski, B.: Radiology, RTG, CT, USG, MRI Image Diagnostics and Radioiso-
topes. PZWL, Warsaw (2000) (in Polish)

13. Crawford, C.R., Kak, A.C.: Multipath artifact corrections in ultrasonic transmis-
sion tomography. Ultrasonic Imaging 4, 234–266 (1982)

14. Filipczynski, L.: Detect ability of calcifications in breast tissues by means of ultra-
sonic echo method. Arch. Acoust. 18(3), 223–240 (1983) (in Polish)

15. Wronkowski, Z., Zwierno, M.: Brest cancer – practical information – interview,
diagnostics, classification of changes. Health Service 24-26, 2917–2919 (2000) (in
Polish)



Adaptive Preprocessing of X-ray Hand Images

Marzena Bielecka and Adam Piórkowski

Department of Geoinfomatics and Applied Computer Science, AGH University of
Science and Technology, A. Mickiewicza 30 Av., 30059 Cracow, Poland

pioro@agh.edu.pl
http://www.geoinf.agh.edu.pl

Abstract. In this paper an algorithm based on gradient methods and
binarization threshold selection is proposed. The finger bones contouri-
sation, the finger joints localization, the fingers segmentation and the
noise elimination are the considered tasks. The introduced method gives
promising results.

Keywords: image preprocessing, radiograms, X-ray hand images.

1 Introduction

X-ray imaging is one of the most important diagnostic tools in contemporary
medicine [8, 9, 13, 21–23]. In comparison with other methods of medical imaging,
such as computer tomography or magnetic resonance, X-ray pictures remain pop-
ular due to low cost and simplicity. The application of computers to automatic
image analysis makes X-ray imaging even more attractive. In a such approach,
however, good preprocessing of the radiograms is required [5, 19].The existing al-
gorithms of medical X-ray images preprocessing do not give satisfactory results.
In the field of rheumatology there are several diseases detectable by using X-ray
pictures, especially in palm region [23]. Several methods of preprocessing have
been proposed on various levels [5, 7, 12]. The preprocessed image is analyzed
on account of interesting features, like contour or joints detection [3, 7, 11, 14].
Detection of pathological changes in joint spaces and bone contours are done as
well [1, 2, 4, 6, 18, 19, 21]. Further research employs pattern recognition and im-
age understanding [17, 24] in order to create computer-aided medical diagnostic
system [15]. Processing of X-ray pictures is more difficult than pictures taken in
visible spectrum for various reasons: high noise level, low contrast between soft
tissue and background and high variability in the level of gray. Differences in
tissue thickness between the finger area and the wrist area are the main issues
associated with X-ray pictures. The hand extraction from the raw picture is the
main goal of the preprocessing of the hand radiograms. Low contrast between
soft tissue and background and high variability in luminance cause problems
with binarization. Moreover, high noise level causes failing of direct application
of visible spectrum pictures preprocessing algorithm to X-ray images. Due to the
aforementioned problems, the satisfied algorithm of the medical X-ray images
preprocessing has not been worked out so far. The adaptive preprocessing of the
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palm radiograms is the topic of this paper. The finger bones contourisation, the
finger joints localization, the finger segmentation and the noise elimination are
the considered tasks. This paper is a continuation of studies described in [5, 16].

2 Input Data

Sixty pairs of left and right hand radiograms, made since 2006 until 2010, are
processed images. Both the images quality and their sizes are different. There-
fore, it is crucial to work out adaptive algorithm effective for all data set. The
radiograms are digital data in DICOM format. As it has been mentioned, the
size of images are different and varies from [1301×2320] to [2311×3480] pixels.
Therefore, algorithms which use relative metrics should be used. A range of pic-
tures brightness, corresponding to X − ray absorption varies from [0-1018] to
[0-4095]. Differences occur even between pictures of left and right hand in images
made for the same patient at the same day - see Fig. 1.

l)  r)  

Fig. 1. An example of different ranges of brightness of hand images of the same patient
(left and right)

Although in fields bit stored and bit allocated the 16 bit brightness resolu-
tion was declared it seems that the used AC converter had 12 bit brightness
resolution. Therefore the brightness range [0-4095] was assumed. According to
differences in brightness the applied algorithms should check difference between
brightness levels instead of ascribing the meaning of the brightness levels. Hands
are presented in vertical positions. The higher brightness of the picture, the lower
X-rays absorption in the examined tissue. A 3D surface plot for a hand image is
presented in Fig. 2. It should be stressed that it is not a 3D reconstruction. The
following conclusion can be reached on the basis of Fig. 2 :

– The X-rays absorption varies depending on the picture region - brightness
of bones at the tip of fingers is the same as the brightness of muscles at the
wrist region. Therefore analysis based only on the brightness levels cannot
be effective.
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– Finger joints are hinged ones (ginglymus). In such joints one bone is rotund
whereas the second one is a bowl which absorbs X-rays in a specific way. At
radiograms it causes a characteristic descending slopes of brightness.

Fig. 2. A 3D surface plot for a hand image; this is not a 3D reconstruction

2.1 The Structure Identification on the Basis of Brightness Levels

The brightness range of images is a starting point of the analysis. In the case of
the hand radiograms the brightness range which correspond to bones or muscles
is often disparate among different images. Thus, the analysis of horizontal profile
is proposed - see Fig. 3. In a such case, it should be possible to distinguish bones,
muscles and skin by using the given profile. The following conclusion can be
reached on the basis on Fig. 3:

– It is needed to distinguish bones, muscles and skin for each finger.
– The brightness range for both sides of the given finger is not the same what

make hard to determine thresholds separating bones and muscles.
– The brightness profile of bones does not determine univocally the place of

bones.

Therefore, this method is not accurate enough.

3 The Algorithm of Outlining the Joint Spaces in the
X-Ray Pictures

Taking into consideration the results from the previous section the following
steps of finding of joint spaces is proposed:

– Application of a directional differential mask A in order to finding a steep
descending slope of phalange.
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Fig. 3. The horizontal profile of hand image

– Application of a directional mask B detecting of valleys in order to finding
places corresponding to joint spaces.

In the process of finding of joint spaces two images are received as a result of
application of the mask A and B – see Fig. 4. Next, for a given binarization
threshold, determined separately for each mask, the binary images are created.
The descending slopes and outlines of valleys are distinguished in the images.
In the preprocessing image joint spaces constitute clear valleys surrounded by
descending slopes in vertical direction. Therefore, they can be detected by using
the mask B. Some effects of filtration by using the mask A covers with the result
of filtration by using the mask B. Finally, the joint space is outlined as a result
of filtration by using the mask B where the result of filtration by using the mask
A is adjoined to it from up side - see Fig. 8. The depicted joint space can be used
both to analysis of degenerated joints and to segmentation of hand phalange.
The scheme of the proposed algorithm is presented in Fig. 5.

-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
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(b)

Fig. 4. Mask A and B for detecting of joint outlines

3.1 Noise Filtering

The proposed algorithm does not require noise removing. However, the number
of objects disturbing the correct outline of joint spaces decrease by application of
a median mask 3× 3 and averaging filtration by using mask 7× 7 with elements
equal to 1 according to the pattern of a rhomb.
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Fig. 5. The scheme of the proposed algorithm

3.2 Threshold Binarization

The algorithm of finding the proper threshold binarization consists in constant
increasing of the value of the threshold binarization. If the number of elements
outside of join spaces is below 20, then the threshold value is proper. The dis-
turbing elements constitute small dense groups of pixels in shape of square or
rectangle. They do not have elongated shape, i.e. such shape that the width
is at least five times greater than the height, what makes easy to distinguish
them from the joint spaces. The setting of proper binarization threshold value is
important. Too low threshold value makes the number of places being possibly
outlines of joints increases. Too high threshold value leads to lose information
about a joint like for an example shortening of its outline or loss of information
about pathological deformation. In Fig. 6 there are shown results for two images
of left (L) and right (R) hand for the same patient (TE) differ in quality. Each
input image (with (p) and without preprocessing (n)) has different the optimal
threshold binarization.

The same was done for the more patients and depicted in Fig. 7.
On the basis of the two above figures the following conclusions are obtained:

– Preliminary filtration by using the proposed filters precipitated determina-
tion of the proper binarization threshold. The mentioned filtration allowed
us to group radiograms whereas lack of regularity of brightness variability
was observed when filtration had not been used.



66 M. Bielecka and A. Piórkowski

0

5000

10000

15000

20000

25000

30000

50
0

15
00

25
00

35
00

45
00

55
00

65
00

75
00

85
00

95
00

N
U

M
B

E
R

 O
F

 O
B

JE
C

T
S

BINARIZATION TRESHOLD

TE L n

TE L p

TE R n

TE R p

Fig. 6. The results for images without preprocessing (n) and with preprocessing (p)
for two different pictures of left hand (L) and right hand (R) for the same patient (TE)
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Fig. 7. The results for images without preprocessing (n) and with preprocessing (p)
for two different pictures of left hand (L) and right hand (R) for more patients

– If preliminary filtration was used, then the adjusting threshold value was
approximately the same for the left and right hand for the same patients.

The number of objects detected on the radiograms as a function of the threshold
value has a clear maximum. Below this maximum detected objects joints into one
big structure whereas for threshold values greater than this maximum diminished
small objects, which is, in general, positive. Therefore, the optimal threshold
value should be searched above the mentioned maximum. On the basis of the
algorithm application for the whole data set it was found that the threshold
for which 200-500 objects were detected in the hand radiograms allowed us find
the joints effectively and additional detected objects that are meaningless, are
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significantly smaller than the detected joints and separated clearly, so they can
be removed easily.

3.3 The Algorithm Application

An example of the algorithm application is presented in Fig. 8. Structures de-
tected by using the mask A are marked in blue colour whereas in yellow are
marked valleys detected by using the mask B. The common region, i.e. the re-
gion detected by both the mask A and B, is marked in green. The region detected
by the mask B - yellow and blue regions in Fig. 8 - is the finish result.

Fig. 8. An example of joint contours detecting, dark blue - mask A, yellow - mask B,
green - intersection: original (left), without preprocessing (middle), with preprocessing
(right)

4 Fingers Segmentation

Fingers segmentation was done by using analysis of differences in brightness.
The maximum of results obtained from four directional filters was selected. The
similar approach is presented in [20]. The masks depicted in Fig. 10 were applied
in order to obtain bones edges. Threshold binarization is the next step of the
algorithm. The threshold value should be selected in such a way that large struc-
tures, such as bones, palm contour, preserve their spatial continuity and small
isolated object that are a noise, are removed. After binarization, the detected
joins are removed from the picture in order to separate clearly finger bones.
Then, the indexation is done in order to select finger structures and filter small,
meaningless objects. Edges thinning, in order to obtain clear contours, is the
finish step of the algorithm. The effects of the sequence of the algorithm steps
is presented in Fig. 9 where the joint region between distal and intermediate
phalanges is put as an example.
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Fig. 9. An example of finger bones extraction and countourization. From left to right
and top-bottom: original, after edge detection, after binarization, after finger bones
separating and indexation, after small object filtration, after thinning.
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Fig. 10. Directional filters for edges of a hand detecting

5 Concluding Remarks

As it has been aforementioned, radiograms preprocessing algorithms are far from
satisfactory ones. Therefore, not only already applied methods are tried to be
improved but also new approaches are looked for. According to the results de-
scribed in this paper, it seems that the proposed method gives promising re-
sults. It should be emphasized, however, that preprocessing done by humans,



Adaptive Preprocessing of X-ray Hand Images 69

i.e. localization of joints and bones contours is far more effective than the exist-
ing algorithms. The human preprocessing is based on the predefined knowledge -
an expert knows where bones contours, joint spaces and other characteristic
anatomic structures should exist and he estimates the radiograms in the frame
of this knowledge. Therefore, it seems that preprocessing algorithm based on
the anatomic knowledge, encoded as a type of artificial intelligence system as it
was proposed in [1, 2, 17, 24], is a promising approach to medical radiograms
preprocessing.
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Abstract. The main aim of this research is the feature vector of the
cruciate ligaments finding. This feature vector has to clearly define the
ligaments structure and make easier diagnose their. The feature vector
finding is based on the successive steps in extraction process of both ante-
rior and posterior cruciate ligaments. In the first stage a region of interest
including cruciate ligaments (CL) is outlined. The automatic method of
location of the CL on the T1-weighted (T1W) MRI knee images is based
on fuzzy C-means (FCM) algorithm with median modification. The next
step of that process is an extraction of the cruciate ligament structure
using the fuzzy connectedness approach. In the last stage the feature
vector is built.

Keywords: feature vector of the cruciate ligaments, cruciate ligaments,
fuzzy c-means, fuzzy connectedness.

1 Introduction

Cruciate ligaments (Anterior Cruciate Ligament - ACL and Posterior Cruciate
Ligament - PCL) are a very important anatomical structure of the knee joint.
They are main stabilizers of the knee joint in the sagittal plane. Together with
the shape of articular surface and muscles ensure proper arthrokinematics. They
play a very important role during the passive and active motion. During passive
motion of the knee joint cruciates help to change rolling into sliding movements.
and during active motion resist translations and reduce shear forces. It is worth
remembering that cruciate ligaments with collateral ligaments ensure rotational
stability of the extended knee joint [1].

Although, the first surgical reconstruction of the cruciate ligament has been
executed about one hundred years ago (Mayo Robson, General Infirmary in
Leeds, 1895), the dispute over the appropriate treatment method of the instabil-
ity of the knee joint ended in a general disagreement [2]. The success of cruciate
ligaments reconstructive procedure depends on many factors, mainly an accurate
diagnosis based on the location, segmentation and 3-dimensional visualization
of the anatomical structures. Construction of a vector containing an appropriate
set of features can improve the diagnosis yet.
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Fig. 1. T1W MRI series - signal from data base clinical hospital with 2-dimensional
region of interest including the ACL and PCL

Magnetic resonance imaging (MRI) is today the primary method for the di-
agnostics of the knee joint cruciate ligaments lesions. However conventional ra-
diography is an irreplaceable method in evaluation of the bone injuries. In case
of soft tissue injuries, especially intra knee joint structures, MRI is the method
of choice. Therefore in this paper, computer analysis of the cruciate ligaments is
shown on the example of MRI of the knee joint (Fig. 1).

In this paper the methodology finding 2-dimensional region of interest includ-
ing cruciate ligaments (ACL and PCL), the extraction process of the cruciate
ligaments structure from T1W MRI series are not widely described. The ex-
haustive description can be found in [3, 4]. This article discusses the selection of
the feature vector and their impact on the diagnostics of the cruciate ligaments
lesions.

2 Methodology

In order to lower of the computational complexity and to increase of the effi-
ciency an automatical procedure of the extracting 2-dimensional region of inter-
est (ROI) that include the anterior and posterior cruciate ligaments structures
has been implemented (Fig. 1). This procedure has been based on the analysis of
the T1-weighted MRI slices in a sagittal series (the resolution of the T1-weighted
MRI slices of the knee joint is usually 256× 256 pixels) and the processed area
has been reduced meanly three times (the average length of the ACL and PCL
2D ROI is about 100×100 pixels). The 3-dimensional ROI including the anterior
and posterior cruciate ligaments of the knee joint is obtained by mapping the
2D ROI on all of the T1-weighted MRI slices of the knee joint. The 3D ROI is
presented in Fig. 2.
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Fig. 2. The 3-dimensional ROI including the ACL and PCL

In this study the location procedure of the ACL and PCL on the T1-weighted
MRI slices of the knee joint based on the entropy and energy measures of fuzzi-
ness and Fuzzy C-Means (FCM) algorithm with median modification is imple-
mented. This procedure has been widely described in [3, 4].

The segmentation process of the ACL and PCL structures based on a fuzzy
connectedness concept is described in Section 3 and results are presented in
Section 4.

The block diagram of the presented methodology providing the major outline
of the overall algorithm is given in Fig. 3.

3 ACL and PCL Structures Segmentation

In this paper the segmentation process of the anterior and posterior cruciate
ligaments structures used a fuzzy connectedness concept. In the literature can
find the generalized definition of fuzzy connectedness [5]. This definition is based
on the fuzzy affinity relation and introduces an iterative method, permitting the
fuzzy connectedness to be determined with respect to the chosen image pixel -
seed point. This paper is based on the simplified graph-based view for Z2 [6],
using a digital topology approach. Let zi = (zi1; zi2) denote an image pixel,
and f(zi) its signal intensity. Let all the image pixels zi constitute the nodes
of a graph. In the practical approach, within the graph, each pixel is connected
with all its spatially adjacent pixels. The adjacency may be defined in terms
of a 2D fuzzy relation, but usually an intuitive [6] crisp relation of 9- or 25-
connectedness is used. Every direct link zi − zj in the graph has the strength
(assigned to it) equal to the value of the reflexive and symmetric fuzzy affinity
relations for two connected nodes mfκυ(zi; zj). The fuzzy affinity relation models
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Fig. 3. Block diagram

the similarity of adjacent pixels. Within the graph, for each two pixels zk and
zl, a path consisting of zero or more links can be found. The set of all existing
paths from zk to zl is denoted as Pzkzl . The strength mfN (p) is assigned to each
path p from Pzkzl , as the strength of its weakest link, i.e. the lowest value of
affinity for two constituting nodes ([0, 1]). The fuzzy connectedness can then be
defined as a fuzzy relation

∀zk, zl : mfκ(zk, zl) = max
p∈Pzkzl

[mfN (p)]. (1)
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The object segmentation is possible by thresholding the fuzzy connectedness
relation (FC-based labelling and object extraction) or by comparing the fuzzy
connectedness determined with respect to the given segmentation seed points
belonging to the object and background (relative FC approach) [7]. In both
direct, and relative FC-based segmentation tasks, the fuzzy affinity mfκυ is used
to model the notion of similarity of adjacent pixels within the extracted object.
Usually [5] a membership function is employed, depending on the signal level of
compared pixels, the local signal gradient and the properties of the extracted
object (defined in terms of mean and standard deviation parameters)

mfκ(zk, zl) =

⎧⎪⎪⎨
⎪⎪⎩

1 if zk = zl
ω ·G1(zk, zl) + (1− ω) ·G2(zk, zl)

if zk 
= zl and adjacent
0 otherwise

, (2)

where ω ∈ [0; 1] and G1, G2 are selected from

g1(zk, zl) = exp

(
(−1) · 1

2s21

(
f(zk) + f(zl)

2
−m1

)2)
, (3)

g2(zk, zl) = exp
(
(−1) · 1

2s22
(|f(zk)− f(zl)| −m2)

2
)
, (4)

g3(zk, zl) = 1− g1(zk, zl), (5)

g4(zk, zl) = 1− g2(zk, zl). (6)

Functions f(zk) and f(zl) denote the signal levels of zk and zl [7] and the
affinity parameters m1, s1, m2 and s2 correspond to the intensity average and
standard deviation, respectively.

4 Numerical Results

The researches have been tested on 68 clinical T1-weighted MRI studies. This
group consists of 56 healthy (e.g. Fig. 2) and 12 pathological (e.g. Fig. 6) cases of
the anterior and posterior cruciate ligaments. On the basis of the testing studies
it can be prove the following elements. On the basis of comparing the original
T1-weighted MRI slices of the knee joint with the segmented ACL structures the
radiologists stated that in 63 (92%) cases the proposed anterior cruciate ligament
segmentation and extraction method yielded correct results (e.g. Fig. 4c). The
evaluation has been performed by two radiologists and in 63 studies (92%) the
ACL segmentation has pasted the test. Quite similar results were obtained for
the PCL structures. The radiologists stated that in 62 (91%) cases the proposed
posterior cruciate ligament segmentation and extraction method yielded correct
results (e.g. Fig. 5c).
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(a) (b) (c) (d) (e)

Fig. 4. Stages in the segmentation and extraction process of the ACL: (a) original
image with seed point, (b) result after fuzzy connectedness operation with respect to
the seed point and morphological operations (c) result superimposed onto the original
image (d) skeleton of the ACL structure (e) skeleton superimposed onto the original
image

The incorrect location and lack of capacity to perform the correct segmenta-
tion of the cruciate ligaments has been caused by the following factors: ligament
displaced caused by the broken thighbone (2 cases), a lack alignment of the
thighbone and tibia along the same axis (3 cases) and a location of the knee
joint in the extreme part of the slice (1 case).

The breaking of thighbone structures in the vicinity of the knee joint excludes
the possibility of using the proposed algorithm for finding the 2-dimensional ROI,
which includes the cruciate ligament. This kind of pathology is not a common
case. Its diagnosis is not a difficult problem for radiologists and does not require
from them a time-consuming analysis of the T1-weighted MRI slices of the knee
joint.

The presented methodology does not yield correct results in case of a lack of
thighbone and tibia location along the same axis. The envelop of the family of
selected profiles widely described in [3], allows for a deviation of twenty degrees
between both bones. The deviation of more than twenty degrees was found in
patients with degeneration in the knee joint and causes an incorrect location of
the 2-dimensional ROI.

Ligamentous injuries of the knee are growing both social and medical problems.
Injuries of the cruciate ligaments are diagnosed on the base of MRI study. How-
ever, each medical study can be misinterpreted. The most important criterium
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(a) (b) (c) (d) (e)

Fig. 5. Stages in the segmentation and extraction process of the PCL: (a) original
image with seed point, (b) result after fuzzy connectedness operation with respect to
the seed point and morphological operations (c) result superimposed onto the original
image (d) skeleton of the PCL structure (e) skeleton superimposed onto the original
image

in the cruciate ligaments diagnosis are the surface area and shape cruciate struc-
tures. Therefore the feature vector has to include the surface area and skeleton of
the segmented and extracted structures of the cruciate ligaments (Fig. 4d,e and
Fig. 5d,e).

Comparison of surface area normal and pathological structures of the cruciate
ligaments (for the corresponding slices) gives the following results.

The surface area value for the case of the pathological structures can be much
lower or much higher than the corresponding values for the healthy case. Consid-
erably lower values are obtained for a complete disruption of the CL structures.
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Fig. 6. The 3-dimensional ROI including the pathological ACL and PCL

Then the segmented is just one part completely disrupted the structure of CL.
Much higher values of the surface area are obtained for a incomplete disruption
of the CL structures. This is associated with the case of the partial damage.

The injuries of the anterior cruciate ligaments of the knee joint are much more
often than the injuries of the posterior cruciate ligaments. Its injuries diagnosis
is based upon several criteria dependent on the type of injury and the time

(a) (b) (c) (d) (e)

Fig. 7. Stages in the segmentation and extraction process of the pathological ACL:
(a) original image with seed point, (b) result after fuzzy connectedness operation with
respect to the seed point and morphological operations (c) result superimposed onto
the original image (d) skeleton of the ACL structure (e) skeleton superimposed onto
the original image
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(a) (b) (c) (d) (e)

Fig. 8. Stages in the segmentation and extraction process of the pathological PCL:
(a) original image with seed point, (b) result after fuzzy connectedness operation with
respect to the seed point and morphological operations (c) result superimposed onto
the original image (d) skeleton of the PCL structure (e) skeleton superimposed onto
the original image

elapsed from the ruptured ligament injury. The basic criteria used in the injuries
diagnosis of the ACL and PCL are following: increase the ligament signal in the
entire volume in all of sagittal slices and swelling ligament. Often, an additional
criterion of the PCL injury is S-shape of the ligament. Therefore, the skeleton
of the segmented structure of PCL is another important feature.

Ligament rupture on the type of "shaving brush" in opinion two experts:
radiologist and orthopaedist is the most common injuries of the anterior cruciate
ligament, and also the posterior. It is characterized in the MRI study by massive
swelling and fraying ligament fibers over their entire length.
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Additionally, the partial damage in case of the PCL is characterized by ir-
regular signal of the ligaments in MRI study, swelling and disruption following
structures of the CL [8].

5 Conclusion

The automatic method of location of the CL on the T1W MR knee images, and
segmentation and extraction procedure based on the of the fuzzy connectedness
approach in my opinion seem to be a very effective and promising method in
the 3-dimensional visualization process of that structure. The MRI study is a
gold standard in diagnostics of the cruciate ligaments injuries. However, keep in
mind the consequences of performing this study in the wrong class equipment,
or in the wrong way. Thus, each additional element supporting a diagnosis is
important. Such is the role of the proposed feature vector. This vector is the
next stage in computer aided diagnosis of the knee joint, including the three-
dimensional models of the following structures: bones as well as posterior and
anterior cruciate ligaments.
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Abstract. Assessment of bone histomorphometry allows to determine
the condition of the bones and thus to predict the occurrence, course,
treatment planning and recovery for certain conditions within the skele-
tal system. Noninvasive acquisition of information about the structure of
the bone on the basis of image data makes it possible in a relatively fast
and easy way to determine a number of key parameters describing the
bone. As part of the study, the number of histomorphometric parame-
ters for samples from different patients and various areas of cancellous
bone were determined and compared based on images from X-ray micro-
computed tomography. Samples of cancellous bone, in the form of cubes,
derived from healthy subjects and patients diagnosed with a osteoarthri-
tis and also from the core of the femoral head and from peripheral areas.
The results demonstrate the significant differences in the structure of
trabecular bone tissue derived from different people.

Keywords: trabecular bone, histomorphometry, X-ray microcomputed
tomography.

1 Introduction

The acquisition of all the information, also about human anatomy and physiology
is becoming faster and easier. This is caused by the development of technology
which translates into ever wider and more accurate knowledge of the world. In
the field of orthopaedics the evaluation of structural properties of bone tissue
is carried out for many years in a non-destructive manner by means of medi-
cal imaging [1–4]. In clinical practice in line with WHO recommendations, the
most important indicator of the structure of the bone is a bone mineral density
(BMD), calculated on the basis of image data. Determination of additional bone
histomorphometric parameters including: bone volume/total volume (BV/TV ),
trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), porosity allows for
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comprehensive assessment of bone microarchitecture and thereby to determine
whether it is in the physiological state, whether there is defined within it a
pathology [5–11]. These parameters describe the dimensions of the elements of
the bone structure quantitatively (Tb.Th, Tb.N, BV, TV, connectivity), their
distance apart (Tb.Sp), characterize pores occurring (porosity), determine the
degree of anisotropy of the structure (DA) whereas structure model index in-
dicates the relative prevalence of rods and plates in a 3D structure such as
trabecular bone. Nevertheless, in order to obtain additional information for in-
stance about the mechanical properties of bone a number of histomorphometric
parameters should be the set of input data for the three-dimensional model of
cancellous bone structure followed by mechanical testing analysis using FEA.
From the standpoint of clinical practice, identifying a set of histomorphomet-
ric parameters considerably facilitates the description and characterization of
well-known, as well as the new disorders of the skeletal system. In addition im-
proves the diagnosis, treatment, rehabilitation, and prevention in the field of
orthopaedics also the planning and conducting of many surgical procedures.

Research carried out in the techniques such as Computed tomography (CT)
and X-ray microcomputed tomography (XMT) are the main tool for assessing
the condition as well as characterizing the mechanisms and course of various
diseases of bone tissue [2, 4, 12–14]. Using XMT the images of individual cross-
sections of the tested object are obtained with high spatial resolution which
allows to create three-dimensional models based on surface or volume rendering.
On the basis of 2D and 3D images the parameters of the structure are calculated
with high accuracy corresponding to a given resolution [8, 9, 12, 15–17].

The aim of this study was to investigate the structural properties of human
trabecular bone for samples of different origins determining microstructure ob-
served based on XMT imaging. Evaluation of the structure was based on the
analysis of the histomorphometric parameters describing the spatial structure
and relationships between the components of trabecular bone in details. Range
of histomorphometric parameters of cancellous bone for extreme clinical cases
was calculated in order to determine the dispersion of possible results for differ-
ent samples.

2 Material and Methods

2.1 Sample Preparation

From 57 trabecular bone samples extracted from 14 femoral heads a three with
extremely different origin, both in terms of location as well as the health of the
donor [see Table 1] were selected. Due to the fact that the individual femoral
heads differed from each other in internal structure and the condition of surface,
the number of samples prepared in a further step was different for the various
bones. Eleven femoral heads were taken from patients undergoing total hip re-
placement surgery (Provincial Specialist Hospital No. 5 in Sosnowiec, Poland)
and other three from cadavers (Department of Forensic Medicine, Jagiellonian
University Medical College in Cracow, Poland). The donors were aged 38-77. The
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hip specimens from the hospital were collected by permission of the Bioethics
Committee from the Medical Silesian University in Katowice, Poland.

In the first step of preparation the main trabecular direction (MTD) was iden-
tified and marked on the femoral head using the XMT scout views (Figure 1 a).
All the cubic specimens were cut out from the femoral heads, using a precision
saw machine with a diamond-coated cut-off wheel (STRUERS Secotom – 15,
Willich, Germany, 2200 rpm, f = 0.1 mm/s). The trabecular bone layers, with
the target thickness of the layers of 10 mm, were cut out of the femoral heads
according to MTD. After the MTD was marked on the each layer afresh the
cubic samples were cut out of individual layers (Figure 1 b). Subsequently, the
spatial orientation of the specimens in the femoral heads was also marked on the
surface: a single dot – planes parallel to the anterior-posterior axis, two dots –
planes perpendicular to MTD (Figure 1 c,d).

All the cut out specimens were fixed in 70% ethanol and stored in 4oC.

Table 1. Data concerning selected samples of cancellous bone

Sample The patient’s Sex of Condition Location in
number age the patient of the patient the femur head

1 70 female advanced osteoarthritis, core
hip endoprosthesis

2 74 female osteoarthritis side
3 77 male healthy border region

between core and side

2.2 X-ray Microcomputed Tomography Scanning

All the specimens were scanned using laboratory ex-vivo (also called an in-
dustrial) small size X-ray microtomography scanner (v|tome|x s, GE Sensing
& Inspection Technologies, Phoenix|x-ray, Wunstorf, Germany). The device is
a scanner equipped with both tungsten cathode (filament) and anode (target)
consisting of two open X-ray tubes: transmission nanotube (180kV) and direct
tube (240kV) which was applied in this study. The polychromatic X-ray cone-
beam is used there. The specimens are located on the rotary table in the scanner
chamber. The results of X-ray beam attenuation propagated through the sam-
ple is recorded by the 16” Flat Panel Detector (2.024x2.024 pixels, pixel size
= 200μm2). The Datos 2.0 software provided by the manufacturer was applied
to obtain projection and image reconstruction. The greyscale was stored using
256 gray levels (8 bits per voxel) which resulted in a single set of data volume
of 5.491GB. The image of all samples was reconstructed in cubic grid with di-
mensions 1700x1900x1700 voxels. Identical for all samples the size of the grid
provided repetitive measurement conditions.

In order to obtain the view of the total specimen to identify the main trabec-
ular direction (MTD) the whole femoral heads were preliminary imaged (scout
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Fig. 1. Sample preparation: (a) Scout view of femoral head showing the main trabecular
direction (MTD), the position of layers and the position of A-A cross-section, (b) A-A
cross-section showing the surface of layer A with marked position of specimens: the
area between the dashed lines is classified into the ”core” category, (c) XMT image of
a plane of a cubic specimen, perpendicular to the MTD, (d) XMT image of a plane of
a cubic specimen in the MTD

view). Having the proper orientation of MTD, the cubic samples dissected from
the specimen were tested using higher scanning resolution. The scanning param-
eters were presented in Table 2.

2.3 Histomorphometric Parameters Calculating

Calculation of the histomorphometric parameters describing cancellous bone tis-
sue was performed using the software CT Analyser 1.13.2.1 + (SkyScan, Bel-
gium). In order to obtain the best results of morphometric measurements a num-
ber of tests for eight different sizes ROI’s, that are multiples of three-dimensional
image voxel size (10.247 microns) were performed on a random sample. On the
basis of the results a ROI size of 9499x9499 μm2 was selected to perform the
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Table 2. Scan parameters for femoral heads and the cubic samples

Scanned object
Femur head Cubic sample

Sc
an

pa
ra

m
et

er
s

Magnification 5.985 19.518
Voxel size [μm] 33.416 10.246
Scan time [min] 34 26

Number of images 1000
Image size 2024x2024

Timing [ms] 500
Average 3 2

Skip 1
Voltage [kV] 140 70
Current [μA] 200 140

Filter Cu 0.5 Cu 0.1

calculations for all samples of cancellous bone (Figure 2). The whole ROI is in-
cluded in the sample area with the elimination of peripheral areas, which can
cause undesirable edge effects associated with the machining process at a cut-
ting samples (inequalities, detached pieces). In addition, through the use ROI
size smaller than the dimensions of the sample the surface areas of the samples
contaminated with correction fluid for determining the directions of the forces
acting on the bone was eliminated. As a result elements of the corrector differing
in structure, chemical composition and properties will not be taken into account
during the subsequent research, and thus will not adversely floated on the final
results.

Histomorphometric parameters are calculated by CT-analyser in 3D based
on a volume model. For VOI dimensions of 9499x9499x9499 μm3 (927x927x927
pixels) with the same range of thresholding for all samples (130–190 on a scale of
0 to 255) the following histomorphometric parameters were computed: bone vol-
ume (BV ) [mm3], total volume (TV ) [mm3], BV/TV [%], trabecular thickness
(Tb.Th) [μm], trabecular number (Tb.N ) [μm−1], trabecular separation (Tb.Sp)
[μm], Structure Model Index (SMI ), total porosity [%], Degree of anisotropy
(DA), Connectivity. The 3D volume measurement of BV and TV is based on
the hexahedral marching cubes volume model of: the binarised objects within the
VOI for BV and the whole VOI for TV. BV/TV parameter is the proportion of
the VOI occupied by binarised solid objects. Tb.Th is determined as an average
of the local thickness at each voxel representing bone, Tb.N implies the number
of traversals across a trabecular structure made per unit length on a linear path
through a trabecular bone region, and Tb.Sp is the thickness of the spaces as
defined by binarization within the VOI. SMI indicates the relative prevalence
of rods and plates in a 3D bone structure and also involves a measurement of
surface convexity. Porosity is the area of fully enclosed spaces as a percent of
the total area of binarised objects and isotropy is a measure of 3D symmetry or
the presence or absence of preferential alignment of structures along a particular
directional axis and it’s expressed by DA parameter.
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This set of parameters was selected to answer the following questions: What
is the amount of the bone tissue in the different locations of femoral head? How
the shape and number of trabeculae is changing with the location? How much
the anisotropy of trabecular bone is changing from the core to the peripheral
areas? Getting the answers to the questions above is significant for instance in
accurate prediction of mechanical strength of the trabecular bone and to identify
the pathological conditions.

Fig. 2. The individual steps of preparing a 3D model to determine the histomorpho-
metric parameters in the CT Analyser: (a) the loading of the reconstructed image of
the sample, (b) selecting ROI, (c) binarization within the area, (d) calculations

3 Results

Summary of results of histomorphometric parameters of the selected samples are
presented in Table 3.

The analysis of the results obtained for samples from different patients and
from different places in the femoral heads resulted in the following observations.
The biggest differences in the values of individual histomorphometric parameters
occur between samples 1 and 2, while the results for sample No. 3 are in the
range where lower and upper limits are the results of samples 1 and 2 (the total
volume is the same for all samples due to the identical ROIs).

For the ratio of BV/TV the maximum difference diff BV /TV = 35.562%, max-
imum difference percentage percdiff BV /TV = 292.757%, and the mean value
meanBV /TV = 28.191%. In the case of BV parameter diff BV = 304.804mm3,
percdiff BV = 292.757%, meanBV = 241.626mm3. Results for the Tb.Th are:
diff Tb.Th = 36.227μm, percdiff Tb.Th = 33.806%, meanTb.Th = 125.314μm,
for Tb.N are: diff Tb.N = 0.0022μm−1,percdiff Tb.N = 194.690%, meanTb.N =
0.0021μm−1, and for Tb.Sp: diff Tb.Sp = 568.101μm,percdiff Tb.Sp = 221.381%,
meanTb.Sp = 581.185 μm.

The remaining results: diff SMI = 12.686, percdiff SMI = 1237.619%, mean

SMI = −6.010, diff porosity = 35.562%, percdiff porosity = 68.009%, meanporosity

= 71.808%, diff DA = 0.815, percdiff DA = 59.063%, meanDA = 1.717, and
diff connectivity = 395975, percdiff connectivity = 361.146%, meanconnectivity =
289029.
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Table 3. Histomorphometric parameters for individual samples of cancellous bone

Parameter, Sample number Maximum Maximum The
unit differences differences mean

1 2 3 value percentage value
BV/TV, % 47.709 12.147 24.716 35.562 292.757 28.191
BV, mm3 408.919 104.115 211.846 304.804 292.757 241.626
TV, mm3 857.094 857.094 857.094 - - 857.094
Tb.Th, μm 143.391 107.163 125.387 36.227 33.806 125.314
Tb.N, μm−1 0.00333 0.00113 0.00197 0.0022 194.690 0.0021
Tb.Sp, μm 256.616 824.717 662.222 568.101 221.381 581.185

SMI -13.711 -1.02503 -3.29605 12.686 1237.619 -6.010
Total porosity, % 52.290 87.852 75.283 35.562 68.009 71.808

DA 1.380 2.196 1.576 0.815 59.063 1.717
Connectivity 505619 109644 251824 395975 361.146 289029

4 Discussion

The conducted research indicates a strong relationship between trabecular bone
microstructure and area of sampling as well as the physical condition of the
patient.

The most compact microstructure within the meaning of the spatial was dis-
tinguished sample No. 1. It is characterized by relatively high: BV/TV ratio,
bone volume, trabecular thickness, trabecular number per unit area and connec-
tivity. The values of: trabecular separation, structure model index, total porosity
and degree of anisotropy are lower than the results of samples No. 2 and 3. The
results obtained for this case are affected by the fact that the sample came from
the centre of the femoral head where the greatest loads are transferred. The
patient from whom the sample was taken suffered from advanced osteoarthritis
which also resulted in an increase in trabecular thickness, BV/TV ratio etc.
which is confirmed by the literature [14, 18, 19].

For the sample cut from a peripheral area of the femoral head (No. 2) the
results of BV/TV ratio differed by 292.757% from specimen No. 1. Similarly, in
the case of other parameters the values of which indicate a significantly higher
porosity of the microstructure at the level of 87.852%. Furthermore, trabecular
number per unit area, trabecular thickness and connectivity are lower than for
sample No. 1 and trabecular separation, degree of anisotropy and structure model
index are higher.

Individual parameter values for the sample No. 3 obtained in the studies are
in the range of values obtained for the other two samples. This confirms the
rule that structure parameters are dependent on the location of the sample in
the whole bone. The trabeculae in the middle of the femoral head are more
numerous, thicker and more densely spaced. At the edge of the femoral head
occurs a opposite phenomenon and also a greater anisotropy. Indirectly, this
fact can be observed at the stage of the XMT scanning (see Figure 1 a,b).
Significant impact on the differences between the results for the sample No.
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3 and the samples 1 and 2 is the fact that it comes from a man qualified as
a healthy person. For this specimen there is no an excessive increase in bone
volume or its local weakness characteristic or various stages of osteoarthritis as
demonstrated by samples 1 and 2.

The study is a demonstration of the level of differences in the properties of
trabecular bone depending on the origin and the position of the specimen in the
femoral head. The weakness of the work is small number of the specimens and
for this reason the statistical analysis have not been performed. However, for
demonstration purposes three specimens are sufficient.

The different results for different regions of the femoral head point to strong
connection between microarchitecture of cancellous bone and its location in
femoral head. Significant differences in values are also observed for cases of de-
generated bone in the course of osteoarthritis characterized by changes in bone
structure. The intensity of increasing bone decreases from the core towards the
peripheral areas of bone with the development of osteoarthritis [20, 21]. The
conducted as part of the present study research shows that the scope of his-
tomorphometric parameters emanating from different patients or from various
parts of the body is wide. Therefore, in the research the medical data of patients
and the location of sampling must always be taken into account. The obtained
results suggest that the differences in the properties of trabecular bone may be
high and the quantitative research with more specimens and statistical analysis
should be performed.

The paper presents the results indicating that the range of variation of the
human histomorphometric parameters of cancellous bone is very wide, which
should pay particular attention to conducting research in this area, which is
often neglected by authors of similar works. By accessing to a large number of
patients and thereby the possibility of obtaining a large number of samples those
with extreme values were chosen. Thanks to this a real range of parameter values
for bone conditions from physiological to a pathological was determined. Paying
attention to the significant differences in the histomorphometric parameters in
a direct manner points to the future that the critical point of any study of
bone histomorphometry must be an appropriate choice of research material for
a specific application. The choice of random samples without information about
patients from whom samples were taken can generate significant errors in the
obtained results.
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Abstract. Nowadays, computed tomography and three dimensional vi-
sualization provide anatomic images structures with an impressive rich-
ness of anatomical details. They are ubiquitous used in various fields of
medical knowledge. In addition, X-ray microtomography (XMT) next to
standard quantitative computed tomography (QCT) provide data with
much higher spatial resolution. Use them for three dimensional visual-
ization of the surface of animal tissue for macroscopic and microscopic
analysis of the structure of tissue is a tool of immense possibilities that
successfully is widely use in structural studies of hard tissues. The re-
search article presents the disadvantages and advantages of the creation
and use of three dimensional visualization of images using Drishti open-
source software on the example of growth of sheep bone tissue.

Keywords: Three dimensional visualization, bone tissue, animal stud-
ies, X-ray microtomography.

1 Introduction

Three-dimensional visualization of Computed Tomography (CT) images plays an
important role in medicine and related sciences. In addition, thanks to the de-
velopment of X-ray Microcomputed Tomography (XMT) following the standard
CT it is the ability to obtain three-dimensional images in much higher resolu-
tion, allowing to visualize the smallest details. The basis of 3D visualization is
a multiplanar reconstruction (MPR). MPR is a unique technique for computing
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arbitrarily oriented planar slices from volume imaging data for instance CT data.
By examining arbitrarily oriented slices it is possible to elucidate information
about 3D relationships which is not evident when examining slices oriented in
the acquisition plane [15].

Then, computer programs by volume rendering and MPR model image is
created, which depending on the analysis, more or less corresponds to the ac-
tual image. The practice of medicine and study of biology visualizations help to
understand the relationship between anatomical structures and their biological
functions as well as in the detection and treatment of diseases and injuries which
disturb or threaten normal life processes. Locked within 3D biomedical images
is significant information about the objects and their properties from which the
images are derived [6, 17].

The value of biomedical visualized images depends largely upon the context
from which they are obtained and the medical interest and goals that moti-
vate their production and use. The continuing evolution of visualization imaging
promises even greater capabilities for accurate noninvasive clinical diagnoses and
treatment, as well as for quantitative biological investigations and scientific ex-
ploration, targeted at ever increasing our understanding of the human condition
and how to improve it [17]. Visualization is a special value-added in orthope-
dics where it is used to the 3D imaging musculoskeletal injuries, especially bone
fractures and displacement of the fractured bone fragments. Three dimensional
projections of anatomical structure damages effectively support operational plan-
ning, selecting proper instrumentation, virtual repositioning of broken bones,
choosing the right technique, which incredibly helps the surgeon during the op-
eration, as well as after surgery in control of the process of fixation and bone
healing [9, 18].

The aim of article was to present the advantages and disadvantages of the
creation and use of three dimensional visualization of images using Drishti with
bone tissue surface analysis. As an example of images XMT data of sheep bone
tissue was used for research.

2 X-ray Microtomography

Imaging with high-resolution and accurate study of various structures e.g. bone
tissue is possible by Computed Microtomography (XMT). In recent years, XMT
has been developed rapidly, what is more introduction of commercial scanners
disseminated researches in many centers in the world. In this chapter, the authors
will briefly analyze and describe use of XMT.

The X-ray microtomography was pioneered by Elliot and Dover in 1982 [4].
It is just as computed tomography (CT) non-invasive diagnostic method, which
in contrast to the CT allows to obtain images of structures having much higher
resolution. Until now, the high quality of the data has been used in many fields of
knowledge, for instance in biology [7, 12, 21] paleontology [3], anthropology [14],
physics [20], and above all in the various fields of medicine and biomedical sci-
ence [1, 2, 8].
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XMT is an reliable approach to image and quantify bone tissue in three dimen-
sions. The field was pioneered by Feldkamp et al. [5]. Authors used a microfocus
X-ray tube as a source, an image intensifier as a 2D detector, and cone-wave re-
construction to made a three dimensional object [5]. XMT allows fast and very
precise measurement of trabecular and compact bone in unprocessed biopsies.
What is more XMT imaging might help to investigate the relative importance
of bone architecture, damage accumulation, density, bone strength and mineral-
ization in the characterization of bone quality [1, 2, 11, 13].

Bone studies were performed in laboratory equipped with the GE phoenix
v|tome-|x XMT scanner (GE Measurement & Control, Wunstorf, Germany) with
versatile CT system suitable for a wide range of CT applications. With its 240
kV/320W directional X-ray tube and precision manipulator allows scanning ob-
jects with voxel sizes less than 2 micrometers. Applying three dimensional visu-
alization of the bone samples scanned can gain insight into microscopic structure
of the material which enables an efficient analysis. It is very important in the use
of 3D visualization to the analyze of structural materials is possible to obtain
images in high resolution. This allows to look at the macroscopic structure of
bone samples (Fig. 1a), to distinguish between areas of the revised structure
as well as using magnification to look at the microstructure or the individual
trabecular bone (Fig. 2b).

Fig. 1. Macroscopic structure of sheep bone samples (a), and microstructure of tra-
becular bone (b)



94 M. Stolarz et al.

3 The Materials and Methods

Studies included eight male sheeps, twelve months old, weighing 35 - 40 kg
(Ethics Committee approval 820/2010). The animals were divided into two
groups, each consisting of four animals (four subjects for six weeks, and four
subjects for twelve weeks).

The first stage of research was to perform reconstruction surgery within the
knee joint. The surgery was performed in The National Research Institute of
Animal Production in Krakow-Balice. Prior to ligament reconstruction, the na-
tive anterior cruciate ligament (ACL) was cut and removed from the joint. The
natural ACL insertions served as the footprints to drill the tibial and femoral
bone tunnels. The tunnels were arranged in proximal tibia methaphysis medially
and in distal femur methaphysis laterally. Diameters of bone tunnels were 1 mm
wider than their grafts. The autograft tendon, harvested from the Achilles was
then pulled through the tunnels. The graft’s ends were fixed extracortically to
the femoral and tibial parts with an Endobutton system. All 8 animals were eu-
thanized 6 or 12 weeks after the surgery. Then sheep knee joints were surgically
excised, with the bones within the knee joint. Excision were performed carefully
to keep all parts of bone tunnels.

Knees were tested using an XMT scanner. Acquisition of the X-ray images
was performed using 140kV Voltage, 350 mA current, filter 0.5 Cu and 2000
projections with 2048x2048 pixels stored in 16 bit non-compressed TIFF files.
After reconstruction of the 8 bit cross-sectional images, the spatial resolution
reflected a voxel size equal to 50x50x50 μm. The reconstructed data files were
imported into Drishti software, in which the data were processing and finally
three-dimensional visualization were performed.

4 Drishti Open-Source Volume Exploration and
Presentation Tool

Creating a three dimensional visualization has become very simply and more
popular thanks to dedicated programs, both paid and free to facilitate their
implementation. Commercial, advanced solutions such as: MIMICS [25], Avizo
Fire [24], VG Studio [28], Amira [23], requires extensive knowledge, skills and
costs. These programs are primarily dedicated to medical graphic designers,
and biomedical engineers having advanced structure and number of modules.
For medical visualization are enough free programs - often have comparable or
even superior modules to work then commercial programs [10]. One of the free
programs created by Ajay Limaye from The Australian National University is
Drishti shortly described as open-source Volume Exploration and Presentation
Tool with a powerful visualization tools for a wide variety of applications [10].
Program is written using OpenGL [26] with Qt [27] for the user interface. The
main feature of Drishti is to support a unique mesh generation and coloring
options that are currently not available in any of the commercial or free soft-
ware [10]. The Drishti user interface is shown in Fig. 2. On the left window,
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there is a preview of the three dimensional visualization. Drishti allows very
quick creation of three dimensional preview of hundreds of images for instance
from XMT, which is the essence of improvement in relation to other applications
of this type. On the right side of interface are the sections responsible for the pic-
ture layout, where you can adjust lot of transfer functions (shadows, lightning,
light position etc.).

Fig. 2. Drishti interface; on the left side is display window for volume rendered images;
on the right side is the graphical user interface; display window can be switched to show
entire volume or selected sub volume

5 The Creation of Three Dimensional Visualization

Creating a three dimensional visualization has become very easy and more popu-
lar thanks to special programs. One of the open-source software is Drishti–direct
volume rendering tool. Describes the Drishti workspace, and feature sections
which can be used to modify the resulting three dimensional visualization. This
chapter describes the step by step how to perform a 3D visualization of the
surface of a bone tissue on the example of the sheep bone tissue taken during
ACL reconstruction. At the beginning, the data obtained as a result of the XMT
study were imported into Drishti. Then and automatic segmentation process is
carried out. Three-dimensional model obtained by the segmentation is shown in
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Fig. 2. Presented in the picture interface is intuitive and relatively easy to learn
to use. It does not require complicated instructions, and only requires practi-
cal exercises. After creating the model, it should be fitted to spatial view for
further analysis. View required to further sample analysis can be adjusted with
the mouse. The right mouse button is used to shift the object in model space,
while double-clicking the left button allows its rotation, so that it is possible to
observe the object from all sides. To zoom in or out of the property is made via
a scroll mouse.

Then, using the sculping tools, there is removed unwanted items object in
order to visualize the internal structure, which is then analyzed. Drishti provides
sculpting facility via clipping planes, cropping, blending, dissection, reveal, path
tools and bricks [10]. Fig. 3 shows a 3D model of partially visualized internal
structure obtained by “clip” tools. If the image has too many artifacts in the
form of noise, you can remove unwanted parts by using the “mop”.

Fig. 3. Three dimensional image editing

An important element of visualization is to match the appropriate background
color. A well-chosen background color can effectively expose visualized object.
Drishti has a wide range of colors that can be individually adapted to the model.
An example of the use of light background is shown in Fig. 3, the darker is
shown in Fig. 1. As can be seen in some cases, choosing a darker background
gives more favorable results. An important function is to choose the appropriate
lights position. The angle of incidence of the light may be perpendicular to the
image as well as to fall from one of the sides. This option allows you to fill by
light small holes or curvatures, where visibility is necessary for the final result.

Next step is to choose the appropriate resolution of the image (“Image Qual-
ity”) and enable shadowing that allow you to obtain from the object (Fig. 4a),
the model much better visualizing bone structure (Fig. 4b).
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Fig. 4. Source image imported to Drishti (a) and after implementation of high resolu-
tion and shadowing (b)

The final step in creating a three-dimensional model is giving a real appear-
ance of bone tissue by setting the parameters of Lightening and Shadows. Light-
ening is adjusted by options: ambient, diffuse, specular, hilite size, as well as
shadowing, which is adjusted by options: blurr shadow, shadow buffer size and
shadow contrast. These modifications obtain desired texture of the bone tissue.
It should be noted that the process of selection of these parameters is person-
ally subjective and also depends on the availability of different functions, and
computing power. The final effect of this process of creating a three-dimensional
model of the bone structure of a sheep is shown in Fig. 5 and Fig. 6. Thanks
to the use and the appropriate choice of many parameters, the final image vi-
sualization very well corresponds to the natural bones. Chosen colors correlate
with the original, anatomical colors of bone tissue. It is important for precise
visualize, because mismatched colors can lead to errors in interpretation. Three
dimensional visualization of the strategic projections may be saved in different
formats dependent on user needs. They could be presented as images, showed in
this article, but also as powerful animations. Animations in Drishti are generated
by function “keyframe based animation”. Users choreograph camera moves and
various parameters and saves important frames in an animation sequence. These
saved frames are named “keyframes”. A keyframe saves all important informa-
tion to generate the required image. The animations can be rendered as a set
of images or can be saved in one of movie format [10]. The possibility of movie
imaging of samples and smooth viewing slide by slide subsequent layers of the
sample can well reveal changes of the microstructure occurring in different parts
of the sample.

These data indicate that the three dimensional visualization is incredibly use-
ful tool for the analysis of the structure so that an insight into the micro and
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macrostructure is done without having to invasive (e.g. biopsy) observation of
what is becoming increasingly popular among researchers from different fields of
science [10, 16, 19]. Unfortunately, program is the lack of opportunities for pre-
cise measurement and calculation of parameters such as bone density, porosity,
trabecular thickness etc.

Fig. 5. Three dimensional visualization of bone structure, sheep group after 6 weeks;
femur: the cross-section (a) and longitudinal-section (b), the tibia cross-section (c) and
longitudinal section (d)

6 Results

The final result of implementation of the three dimensional visualization of the
surface of the sheep bone tissue samples are presented in pictures (Fig. 5–7).
Visualization with high resolution allowing to perform an precise visual analysis
of microstructure of trabecular bone. Great advantage of the 3D visualization is
to obtain 3D images which can be viewed from all sides in few seconds. In one
moment it is possible find the microstructure of the desired area, which saves
valuable time.

Analysis of visualized XMT images using Drishti showed microstructure of
bone remodeling at the site of observations on the border between bone tissue
and transplanted ligament. In many cross-sections (Fig. 5–7) there are shown
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Fig. 6. Three dimensional visualization of bone structure, sheep group after 12 weeks;
femur the cross-section (a) and longitudinal-section (b), the tibia cross-section (c) and
longitudinal section (d)

different microstructure of the bone depending on the placement. In relation to
bone tunnel, there is shown layers of bone tissue, with varied density. The layer
directly adjacent to the tunnel presents the highest concentration of trabecular.
It corresponds to the forming callus, as well as the bone remodeling processes. In
addition, visualizations show the entry and exit of the bone tunnel, where bone
tissue has a much greater density, which corresponds with the compact bone
(it occurs in the outer portion of the long bones). Three dimensional images of
bone structure showed in different planes in three-dimensional visualization of
the sheep show in the group after 6 weeks (Fig. 5) process of remodeling in early
phase. Trabecular bone near the bone tunnel start to be treated by osteoclasts
and osteoblasts. In each case in a group after 12 weeks (Fig. 6, Fig. 7) in relation
to the group after 6 weeks (Fig. 5, Fig. 7) the remodeling processes are more
advanced. Comparing the images from the surrounding tunnel bone structure
(Fig. 7) show the increase in bone density, and bone volume as well. It corre-
sponds to forming callus and implantation of fibrous tissue from transplanted
graft. These changes correspond to healing between bone and graft which has
been histologically well described [22]. Implemented features of Drishti as well
as setting the relevant parameters such as ambient, diffuse, specular, hilite size,
shadowing, blurr shadow, shadow buffer size and shadow contrast etc. allowed
accurately show different bone microstructure, and changes over time.



100 M. Stolarz et al.

Fig. 7. Three dimensional visualization of bone ingrowth around bone tunnel; sheep
group after 6 weeks: part of femur (a,b), and tibia (c,d); a comparative group of sheeps
after 12 weeks: part of femur (e,f) and tibia (g,h)

7 Conclusions

– The three dimensional visualization is incredibly powerful and useful tool
for analyzing the structure of materials is gaining more and more popular
among researchers in various field,

– The three dimensional visualization high-resolution allows to precise quan-
titative analyze microstructure sample surface, especially bone tissue struc-
ture,

– Drishti open-source software can perform three dimensional visualization
with impressive colorful and high quality of generated images,

– Drishti software is an advance presentation tool which can be used for three
dimensional visualization of hard tissues especially bone, and ingrowth of
this tissue,

– Drishti program interface is simple and intuitive, which helps in rapid exe-
cution of the intended visualizations,

– The disadvantage of the program is the lack of opportunities for precise
measurement and calculation of parameters such as density.
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Abstract. A fractal texture analysis technique was introduced for as-
sessment of the healing process using Guided Bone Regeneration (GBR)
after bone loss in resected and cystic areas. Fractal dimension may be
used for the characterization of surface topography of medical images.
In this paper we attempted to analyse fractal surface in the irregular
regions of interest (irregular ROI-s) using two methods: Chen’s method
and variogram. In our study a significant change for the values of fractal
dimension was found.

Keywords: fractal texture analysis, irregular region of interests, guided
bone regeneration, xenografts.

1 Introduction

Apicoectomy is the treatment method standing for resection of the root apex
along with inflammatory changes. The periapical surgery with cyst enucleation
is strictly related to enormous bone loss that heals for a long period of time and
moreover does not close up completely. System called Guided Bone Regeneration
is the one recommended in filling bone deficits appearing after root end resec-
tion with total cyst enucleation. Xenografts (of animal origin) are commonly used
materials when introduced into the habitat bone, goes under osseointegration,
shows long-term stability in a living organism and demonstrates osteoinductive
abilities of a new bone creation [1–5]. Radiological investigation is used for as-
sessment of the healing process after bone loss in resected and cystic areas. In
standard radiology, spongy bone properties are identified using indirect symp-
toms such as reduced shadow density in a radiogram. The interpretation of the
image depends on who does it, which causes a large margin of uncertainty. Sub-
jective evaluation of changes observed during the healing process after bone loss,
encourages a search for measurable algorithms.

In the last decades, many researchers have used various texture analysis ap-
proaches. Many of this methods represent the local behavior of the texture [6–
8], structural [9–12] or spectral [13–16] properties of the image. However, these
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methods do not distinguish between the many natural textures, which show non-
periodic structure. Natural textures exhibit random, durable patterns. These in-
clude, for example, images of clouds, smoke, surfaces of the leaves, etc. Fractals
a relatively new tool within mathematics, offer an alternative to these methods.
Benoit Mandelbrot [17] developed this discipline in the 1960s and 70s grasp
the model of complex, chaotic systems occuring naturally. Now, the concept of
fractals has successfully been applied in many areas of science and technology.
The fractal objects are characterized by [18]: a large degree of heterogeneity,
fine structure, irregularity, self-similarity, fractional dimension. The term "irreg-
ularity" means that fractals defy the explanatory tools of traditional geometry.
And the notion "self-similarity" means that small-scale structures of fractal set
resemble large-scale structures.

Many surfaces can be characterized by the fractal dimension (the Hausdorff-
Besicovitch dimension) D [19, 20] that is defined as the exponent:

M ∝ RD (1)

where M is a measure, R is a scale, D is related to fractal dimension. Equation 1
applies to Euclidian objects, for which the exponent D equals 1, 2, or 3, respec-
tively. For different surfaces the values of the fractal dimension are ranging from
2 to 3. When the surface roughness is extremely high the fractal dimension is
about 3. For the smooth surfaces fractal dimension is about 2.

Existing algorithms for computing the fractal dimension are either based on
geometrical or stochastic approach. Geometrical algorithms: planar triangles
method [21, 22], covering blanket method [23], flat structuring element method
[24], box dimension and lacunarity [25, 26], regard the graph of an image as
a three-dimensional object. Stochastical algorithms based on fractal Brownian
function: variogram [27], power spectrum [28, 29], a particular class of fractals
with well defined statistical properties. These algorithms were used in the anal-
ysis of medical images [30–35] in regular region of interest. In this paper we
apply the fractional Brownian motion methods in the irregular region of interest
in radiovisiographic images, because near boundary between different structures
the values of fractal dimensions changed significantly [36, 37].

2 Fractal Dimension Computing Methods

Many methods exist to compute fractal dimension: each method has its own
mathematic basis. This fact requires using different methods for computing frac-
tal dimension for the same feature. Although, the practical algorithms differ, they
can be realized in the three steps:

– measure the quantities of the object using various step sizes,
– plot of measured quantities versus step sizes on the log-log scale and fit

least-square regression line to the data points,
– estimate fractal dimension D as the slope of the regression line.

In this paragraph we present the fractional Brownian motion methods in the
irregular region of interests.
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2.1 The Fractional Brownian Motion

Developed by Mandelbrot [38] fractional Brownian motion (fBm) is the most
common mathematical model for random fractal textures found in nature. Many
properties of fBm have been tested [39], [38], [40]. The grey level intensity medical
image regards naturally occurring rough surface as the end results of random
walks [38]. Therefore, the fBm model can be used for the analysis of radiological
images.

The texture of the intensity image I(x, y) can be modeled by a fractional
Brownian function [18]:

Pr(
I(x2, y2)− I(x1, y1)

(
√

(x2 − x1)2 + (y2 − y1)2)H
< y) = F (y) (2)

where I(·) is the intensity of pixel x, y, F (y) - the cumulative distribution func-
tion and H is called the Hurst coefficient in the range 0 < H < 1. Small values
of H give too many details in fractal surface with a high degree of fragmenta-
tion, whereas high values of H - a smooth undulating surface. There exists a
correlation between fractal dimension D and the Hurst exponent H expressed
as

D = 3−H (3)

Defining
�I�r = |I(x2, y1)− I(x1, y1)| (4)

and
�r =

√
(x2 − x1)2 + (y2 − y1)2 (5)

from (2) we can calculate [41]:

E{(�I�r)
2} = σ2|�r|2H (6)

where E{·} denotes the expected value of the quantity of brackets, σ2 is the
variance of the F (y), | · | denotes the Euclidan distance.

If we take the logarithm of (6), we obtain:

logE{(�I�r)
2} = 2 log σ2 + 2H log |�r| = logC + 2H log |�r| (7)

Because C is a constant, the parameter H can be concluded from the linear
regression to estimate the slope of E{(�I�r)

2} as a function of |�r| by choosing
�rmax and �rmin (Fig. 1).

2.2 Intensity Difference Scaling Methods

Chen et al. introduced intensity difference scaling method [42]. Given on M ×M
image the grey level intensity vector is defined as follows:

MIDV = [id(1), id(2), ..., id(n)] (8)
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Fig. 1. The parameter H is estimated from the linear regression as the slope of
E{(�I�r)

2} as a function of |�r| by choosing �rmax and �rmin

where n is the maximum possible scale, id(i) is the average of the absolute
intensity difference of all pixel pairs with scale i. The realization of estimation
fractal dimension can be defined as:

id(i) =
1

Ni

M−1∑
x1=0

M−1∑
y1=0

M−1∑
x2=0

M−1∑
y2=0

|I(x2, y2)− I(x1, y1)| (9)

where Ni is the number of pairs for scale i with distance ((x2−x1)
2+(y2−y1)

2)
1
2 .

2

1

Fig. 2. 5 × 5 image. There are 14 possible scales. The total number of pixel pairs is
300. Manually drawn irregular region of interest with 8 pixels and 5 possible scales.

Fig. 2 shows 5 × 5 image with manually drawn irregular region of interests
with 8 pixels and 5 possible scales. In calculation only pixels which belong to
the region were used. For 5 × 5 image the number of possible scales is 14 (1,
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√
2, 2,

√
5,

√
8, 3,

√
10,

√
13, 4

√
17,

√
18,

√
20, 5,

√
32), and the total number

of pixel pairs analyzed of these scales is 36, for 63 × 63 image the number of
possible scales is 1529, and the total number of pixel pairs analyzed of these
scales is 31505922. For big region of interest the total number of all scales is
too large. Chen et al. [42] proposed normalized NMIDV vector to reduce the
number of elements of MIDV vector. This vector includes only integer scales
occurring. Non-integer scales were set in integer scale, for example, information
from scales:

√
5,

√
8 (2.2361, 2.8284) were set in scale 2. For fractal surfaces the

relationship between MIDV and scale i is ruled by a power-law:

MIDV = CiH (10)

2.3 Variogram Methods

The variogram method is estimated on the statistical Gaussian modeling of im-
ages. The variogram is defined as

γ(r) = E[(I(x2, y2)− I(x1, y1))
2] (11)

where γ(r) is variogram at distance r, I(·) - the intensity of pixel (x, y) and E·
is the expectation.

Fractal distribution is characterized by a variogram model of following form:

γr = γ0r
2H (12)

where H - Hurst exponent.
The fractal dimension is obtained from the log-log plot of expected differ-

ences in radiance versus distance in terms of number of bands between the point
pairs.

3 Results

Implementation of two methods was done on an Intel I5 Machine workstation.
The code was written in C++ (Borland International) and Visual Basic (Microsoft
.NET Framework 3.5).

3.1 Evaluation of the Algorithms on Synthetic Textured Images

In order to test our implementation of fractal dimension estimation methods,
we applied these methods to a set of synthetic textured images (63 × 63 pixels
in size) with known fractal dimension ranging from 2.05 to 2.95 (2.05, 2.10,
2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80, 2.90, 2.95). The synthetic textured images
were generated by means of Matlab function synth2, that is a part of FracLab
(Fractal Analysis Software [43]). In this software incremental Fourier synthesis
method was implemented. Fig. 3 shows generated surfaces with fractal dimension
ranging from 2.20 to 2.80 and 3-D representation of this texture.
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a) b)

c) d)

Fig. 3. a) Synthetic fractal texture with fractal dimension D = 2.80 with 3-D repre-
sentation of this texture, b) Synthetic fractal texture with fractal dimension D = 2.60
with 3-D representation of this texture, c) Synthetic fractal texture with fractal di-
mension D = 2.40 with 3-D representation of this texture, d) Synthetic fractal texture
with fractal dimension D = 2.20 with 3-D representation of this texture

Results of fractal dimension for synthetic surfaces calculated in irregular re-
gions of interest using intensity difference scaling method and variogram method
are presented in Fig. 4. Fig. 4a) shows that implemented algorithm of Chen’s
method in the irregular region of interest is able to calculate D close to the the-
oretical values. The calculated values increased monotonically as the true values
increased. For the variogram method, calculated values differed from the theo-
retical values, but they increased monotonically. Another problem was to select
the regression points in the range from �rmin to �rmax. To calculate the linear
regression the coefficient of determination RSQ was calculated. The assumed
RSQ value was above 0.97.

3.2 Application of Fractal Dimension to Radiogram Texture
Characterization

Case Study was conducted in the Oral Surgery Department in Bialystok, where
26 patients (18 females, 8 males) aged 18− 53 yr. (average 35.6) were examined
according to the clinical symptoms and radiographic images of the root cysts.
Clinical evaluation was performed 2 weeks before the apical surgery (15 images)
and repeated 12 months after that, hence (26 images). Intraoral images were
taken directly after surgical procedure (14 images) and then 12 months later
(26 images) with the KODAK set RVG 6100 with resolution above 14pl/mm
using collimator narrowing the radiation bundle in a straight angle technique
with a constant exposure time of 0.08s. Images were recorded as MPG graphic
files, then archived and analyzed. All bone loss areas mentioned were filled with
xenogenic BioOss material (spongious bone granulation with gradation of 0.25−
1mm) and then covered with resorbable membrane BioGide. BioOss material
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a)

b)

Fig. 4. Fractal dimension for synthetic surfaces calculated in irregular regions of inter-
est using a) intensity difference scaling method, b) variogram method

[4] introduced to deficit zones is a totally decalcified specimen of natural origin.
Fig. 5 shows radiovisiographic images with marked 4 irregular regions of interest
a) before the apical surgery, b) directly after surgical procedure, c) then 12
months later. For the analysis four regions of interest were taken, because one
large region would result in a long calculation time. In this paper images after
surgical procedure (I group) and 12 months later (II group) were compared.
Images before the apical surgery differ from the post surgical state in a visible
way. Radiological investigation is used for the assessment of the healing process
after bone loss in resected and cystic areas.

a) c)b)

Fig. 5. Radiovisiographic images with marked 4 irregular region of interest a) before
the apical surgery, b) directly after surgical procedure, c) then 12 months later
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Fig. 6 shows results of fractal dimension in irregular ROI-s using Chen’s
method. The mean value of fractal dimension for Igroup was D = 2.5741 ±
0.0585, and for IIgroup was D = 2.4919± 0.0656. Statistical analysis was per-
formed by means of non-parametric Mann-Whitney test (statistically significant
differences p < 0.05, p = 0.0007).

a)

b)

Fig. 6. Results of fractal analysis in irregular region of interest using Chen’s method
a) I group, b) II group

Fig. 7 shows results of fractal dimension in irregular ROI-s using variogram
method. The mean value of fractal dimension for Igroup was D = 2.1747 ±
0.0976, and for IIgroup was D = 2.0469± 0.1056. Statistical analysis was per-
formed by means of non-parametric Mann-Whitney test (statistically significant
differences p < 0.05, p = 0.0010).

Fig. 8 shows results of fractal dimension in irregular ROI-s between images
in the same patients taken after surgical procedure and then 12 months later
using variogram method. The mean value of fractal dimension of Chen’s method
(Fig. 8a)) was D = 2.5741 ± 0.0585 for images after surgical procedure, and
D = 2.4677± 0.0500 for images studied 12 months later. Statistical analysis was
performed by means of paired-sample T-test (statistically significant differences
p < 0.05, p = 0.00000012). The mean value of fractal dimension of variogram
method (Fig. 8b)) was D = 2.1747± 0.0976 for images after surgical procedure,
and D = 2.0436 ± 0.0980 for images studied 12 months later. Statistical anal-
ysis was performed by means of paired-sample T-test (statistically significant
differences p < 0.05, p = 0.0000012).
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a)

b)

Fig. 7. Results of fractal analysis in irregular region of interest using variogram method
a) I group, b) II group

a)

b)

Fig. 8. Results of fractal analysis in irregular region of interest between images taken
after surgical procedure and then images taken 12 months later using a) Chen’s method,
b) variogram method
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4 Conclusion

We presented two methods of calculation fractal dimension in the irregular re-
gion of interest. It is difficult to fit the whole regular region of interest and to
avoid the influence of boundaries and the other body structures. Our methods of
calculating fractal dimension in the irregular region of interests solve these prob-
lems. Implementation of these methods needs extensive adjustments of heuristic
parameters. This was achieved using theoretical surface models generated by
fractional Brownian motion. Results of estimation of fractal dimension using the
intensity difference scaling method were similar to theoretical fractal dimension.
In the case of dental radiographic images the difference between images after
surgical procedure and images taken 12 months later was showed with the latter
surfaces being less complicated. The diagnostic information lies in the texture.
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Abstract. An automatic method for definition of the craniometric
landmarks and soft tissues thickness measurement in these landmarks
is proposed. The method uses MRI data and is based on the non-rigid
registration of the target image to the template. Three MRI templates
for three Body Mass Index ranges were created. Each template has 20
pairs of landmarks on the skull and on the face surface. To validate the
proposed method the soft tissue thickness was measured using data from
the IXI database. These were 18 MRI images obtained in Caucasian adult
females, having the BMI in the range 20-25 [kg/m2]. For each landmark
the mean value, the standard deviation, the minimum and the maxi-
mum values of thickness were estimated. The obtained values are close
to those obtained using the ultrasonic method. The method doesn’t in-
troduce errors resulting from contact with the subject nor from operator
skills.

Keywords: facial soft tissue thickness measurement, craniometric land-
marks, forensic facial reconstruction, non-rigid registration.

1 Introduction

Forensic facial reconstruction is based on the values of the soft tissue thickness
at the craniometric points, called craniometric landmarks, which are located on
the surface of a skull. The reconstruction uses a database of soft tissue thickness
in craniometric points. The completeness and accuracy of such a database affect
strongly the final result of the reconstruction. There is a constant need to enlarge
the soft tissue thickness databases and to improve the accuracy of soft tissue
thickness measurements. Many of the existing data Tables [1–4] contain results of
the soft tissue thickness measurements using “needle thickness probing method”,
radiography and ultrasonography [1, 5]. Needle thickness probing method was
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used on cadavers and suffers from errors resulting from the process of soft tissue
decomposition and from the measurement technique. Pressing the skin with a
needle compresses the soft tissue and results in a decreased thickness values
[2, 5]. Radiography enables a precise measurement of the soft tissue thickness
on the Median Sagittal plane of the skull. However, at all other landmarks the
same precision can not be achieved because in the corresponding positions of the
head the resulting image is distorted. The ionizing radiation presents a hazard
for the patient [1, 6]. Ultrasound method is noninvasive and easy to use [1, 7].
It is a contact method and the results suffer from errors [1].

The Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
are the most frequently used methods to provide data for the soft tissue thickness
measurement nowadays [5]. These are non-contact methods and ensure higher
precision of the measurement [1]. The main disadvantage of the CT is the ionizing
radiation. This limitation does not allow creation of a big database. The MRI
method does not have this drawback and provides better images of the soft tissue.
Major problems of the soft tissue thickness measurement using MRI data are
the possible distortion and difficulties in accurate localization of the craniometric
landmarks on the skull in the most popular sequences.

The craniometric landmarks in MRI and CT images were usually identified
manually. This approach is time-consuming. The next significant disadvantage
of this solution is its dependence on manual skills and experience of the operator.
In order to make the process of craniometric landmarks localization on the skull
surface quicker, to minimize operator influence and to increase the accuracy
of the soft tissue thickness measurement, methods for automatic definition of
craniometric landmarks and face reconstruction were developed.

Within the great number of computerized forensic facial reconstruction meth-
ods the most promising are methods based on non-rigid registration of the target
skull to template [8, 9]. The mesh deformation is carried out using methods such
as the energy minimization, the mass-spring model, the local affine transfor-
mations, the trilinear transformation, the graph and manifold matching, the
octree-splines and the thin-plate spline (TPS) [9]. Methods based on matching
can be also used for automatic definition of the craniometric landmarks and for
the measurement of the soft tissue thickness. In this case the set of the cran-
iometric landmarks on the skull surface and measured soft tissue thickness at
these landmarks will be obtained instead of face surface reconstruction. Below
a new method for soft tissue thickness measurement is presented, which speeds
up and facilitates this measurement. There are numerous methods of automatic
landmarks definition. Examples of them are: non-rigid matching of reference
model to a target model using facial planes [9], significant lines detection and
pattern matching algorithm [10], fitting 3D parametric intensity models [11] and
using expectation window and template-matching algorithm [12]. The novelty
of the method proposed is that it performs the inverse transform on the set of
craniometric points instead of performing it on the surface of a template face
(as it is used in [6] for face reconstruction).
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2 Materials and Methods

A MRI head template, with known parameters and with defined set of the cran-
iometric landmarks on it, is needed as a basis for application of a non-rigid
registration method. A plane which is common for both the template and tar-
get images must be defined. The Anterior Commissure - Posterior Commissure
(AC-PC) plane inside of the brain was used as this reference. This plane is easy
to define in the MRI data and enables orientation of all the MRI images in the
same way.

Data from the public MRI database Information eXtraction from Images (IXI)
were used in this study. This database contains nearly 600 MRI images from
healthy human subjects [13]. Only T1-weighted MR images were used in this
study. Each record of the database is characterized by such parameters as the
race, the sex, the age, the height and the weight. The BMI was calculated in
each case based on last two parameters. To determine which of these parameters
have the greatest influence on the results of the elastic matching, experiments
for different templates were made. The conclusion of these experiments is that
the most important parameter for elastic matching quality is the BMI which
is correlated with weigth and height. In [14] it is stated that the BMI has the
greatest influence on the soft tissue thickness measurement.

The data was divided into classes depending on the BMI value [15]. An anal-
ysis of matching quality of 14 selected subjects to the templates for each class
was carried out. The criterion of matching quality was the sum of the differ-
ences between craniometric landmark, marked manually by the operator in the
analysed MRI image, and landmark obtained as result of elastic matching of the
MRI image to template.

2.1 The Algorithm for MRI Templates Creation Based on BMI
Ranges

The template is created as a product of averaging of a number of MRI images
coming from the same class, according to the BMI value.

1. Selection of initial image.
First (initial) image is an MRI image from IXI database with the smallest
noise according to visual assessment. This data is transformed so that AC-
PC line in MRI image becomes horizontal.

2. Selection of other MRI images from database.
A number of low noise images (visual assessment – images without dental
restoration signals) from the database is selected. These data should have a
uniform signal intensity. These data contain whole head with all dependent
parts (including soft tissues).

3. Denoising of selected data (optional).
The optional denoising may be applied to the all the images selected, using
the Non-Local Means filter [16].
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4. Elastic matching of two images.
Two images are matched. At the first step these are the images from the
database, at further steps – the running template and the next image from
selected ones. As a method for elastic matching the SPM (Statistical Para-
metric Mapping) was used as implemented in PMOD [17], a kind of the spa-
tial normalization which uses mutual information as a cost function. Usually
this method is used for matching brain images of different patients. In this
study this method was used for the whole head.

5. Averaging of the matched MRI images; saving averaged result to a temporary
image variable.
The images matched in the previous step are averaged. The result will be
used as a reference (running template) for the next MRI image from the list.

6. Repeat operations mentioned in points 4 and 5 for remaining MRI images.
The next MRI image is matched to the running template and the product
of their averaging will become the new running template. The number of
averages is set by the operator and amounts from 3 to 5, based on the
assessment of a preliminary matching of the running template and another
image from the database.

7. Smoothing of the template (optional).
Depending on chosen options a template smoothing with Gaussian filter may
be executed (full width at half maximum (FWHM) 3 [mm] in each direction).

8. Mask creation.
Head segmentation based on thresholding and morphological operations was
applied.

When the template creation process was finished, the operator defined cran-
iometric landmarks set, consisting of 20 basic landmarks (see Table 1). There is
a landmark on the face surface corresponding to each craniometric landmark on
the skull surface. As the result a set of 20 pairs of landmarks for each template
was obtained.

2.2 The Algorithm for Automatic Craniometric Landmarks
Definition Along with Soft Tissue Thickness Measurement in
Landmarks

1. Enter parameters.
Parameters for analysed MRI images (race, sex, age, height, weight, BMI)
are entered into the program.

2. Chose template which corresponds to the set of entered parameters.
A template from the previously created templates is chosen on the basis of
data entered in the previous step.

3. Elastic matching of the analyzed MRI image to the template.
The same approach is used for the elastic matching as during the template
creation. Calculation of straight and inverse transformation matrix.

4. Application of the inverse transformation to the template landmark set
(transferring landmarks to the space of analyzed MRI image).
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Table 1. Basic craniometric landmarks used for testing of the algorithm of automatic
craniometric landmarks definition, ∗ – symmetrical (paired) landmarks

Nr Craniometric Short Description [19]landmark name name
1 Glabella g The most anterior midline point on the frontal bone,

usually above the frontonasal suture.
2 Nasion n The midline point where the two nasal bones and the

frontal intersect.
3 Rhinion rhi The midline point at the inferior free end of the in-

ternasal suture.
4 Nasospinale ns the point where a line tangent to the inferiormost

points of the two inferior curves of the anterior nasal
aperture margin crosses the midline.

5 Pogonion pg The most anterior midline point on the chin of the
mandible.

6 Gnathion gn The most inferior midline point on the mandible.
7 Prosthion pr The midline point at the most anterior point on the

alveolar process of the maxillae.
8 Infradentale

superius
ids The midline point at the inferior tip of the bony sep-

tum between the upper central incisors.
9 Incision inc The point at the occlusal surface where the upper

central incisors meet.
10 Infradentale id The midline point at the superior tip of the septum

between the mandibular central incisors.
11 Opisthocranion op An instrumentally determined point at the rear of the

cranium. It is defined as the midline ectocranial point
at the farthest chord length from glabella.

12 Inion i An ectocranial midline point at the base of the exter-
nal occipital protuberance.

13 Alare al* Instrumentally determined as the most lateral point
on the margin of the anterior nasal aperture.

14 Orbitale or* The lowest point on the orbital margin.
15 Supraorbital sor* Centered on eyepupil, just above eyebrow.
16 Zygion zy* The instrumentally determined point of maximum

lateral extent of the lateral surface of the zygomatic
arch.

For transferring the craniometric landmarks set from space of the template
to space of the target data the inverse transformation matrix is applied.

5. Soft tissue thickness measurement at craniometric landmarks.
Soft tissue thickness measurement in craniometric landmark is made using
the Euclidean distance calculation between craniometric landmark on the
skull surface and the corresponding landmark on the face surface.

The basics of the above algorithm described as original in [8] is normally used
for facial reconstruction. In this research it is proposed to perform soft tissue
thickness measurement using the author’s modification of the original algorithm.
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To validate the implemented algorithm the soft tissue thickness was measured
in basic craniometric landmarks (Table 1). From IXI database 18 MRI images
were chosen. These were Caucasian adult females, aged from 18 to 29 years and
having the BMI in the range 20-25 [kg/m2]. For each landmark the following
statistical parameters were estimated:

– Mean – mean value of soft tissue thickness in a landmark, [mm];
– S.D. – standard deviation of soft tissue thickness in a landmark, [mm];
– Min – minimum value of soft tissue thickness in a landmark, [mm];
– Max – maximum value of soft tissue thickness in a landmark, [mm].

The software PMOD version 3.5 was used as a image processing tool to im-
plement and to test the methodology [17]. Program package R was used for
statistical calculations [18].

3 Results

The results of matching quality evaluation are gathered in Table 2 and Table 3.
The age is presented in [years], BMI – in [kg/m2].

Table 2. Evaluation of matching quality of analysed MRI images with low BMI to
templates with boundary values from BMI range SDIF – the sum of the differences in
[mm] between craniometric landmark, marked manually by the operator in the analysed
image, and the landmark received as the result of automatic matching MRI image to
template; MX – Asian or Asian British; EX – White; F – Female; M – Male

Parameters in test group SDIF SDIF
Nr Race Sex Age BMI BMI < 25 30 ≤ BMI < 60

1 MX F 52.53 22.8 93 103
2 EX F 42.15 21.1 101 152
3 EX F 42.22 19.8 76 72
4 MX M 50.4 19.9 94 97
5 EX M 24.88 21.1 98 109
6 EX M 54.69 20.1 97 100
7 EX F 66.86 21.0 108 86

SDIF values from Table 2–3 show that MRI images obtained for low BMI
cases are matched better to the template for low BMI, whereas MRI images
obtained for high BMI cases are better matched to the template with high BMI.
The matching quality depends thus on the template used in the matching pro-
cess. Since the differences in the matching quality criterion are not so big, there
is no need to increase the number of BMI ranges and the number of templates.



A New Method of Automatic Craniometric Landmarks Definition 121

Table 3. Evaluation of matching quality of analysed MRI images with high BMI to
templates with boundary values from BMI range SDIF – the sum of the differences
in [mm] between craniometric landmark, marked manually by the operator and the
landmark obtained from of automatic matching; AN – Black or Black British; EX –
White; F – Female; M – Male

Parameters in test group SDIF SDIF
Nr Race Sex Age BMI BMI < 25 30 ≤ BMI < 60

1 AN F 49.92 30.5 149 81
2 EX F 74.64 31.3 99 111
3 EX F 62.96 35.5 109 83
4 EX F 42.97 39.5 94 56
5 EX F 51.66 43.6 124 91
6 EX M 52.89 36.3 107 85
7 EX M 37.95 35.1 132 103

(a) (b)

(c)

Fig. 1. Templates with different BMI: (a) BMI< 25, (b) 25 ≤ BMI < 30, (c) 30 ≤
BMI < 60
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Based on preliminary experiments 3 templates according to BMI ranges were
created (Fig. 1):

– BMI<25 – normal body constitution;
– 25 ≤ BMI < 30 – overweight;
– 30 ≤ BMI < 60 – obesity class I-III.

Examples of automatically localized craniometric landmarks obtained using
the proposed algorithm is presented in Fig. 2. The red squares present the cranio-
metric landmarks on the skull surface. The green squares present the landmarks
on the face surface corresponding to each craniometric landmark on the skull
surface. Soft tissue thickness is measured as a distance between each pair of
landmarks.

(a) (b)

(c)

Fig. 2. Presentation of automatically localized craniometric landmarks without loca-
tion correction (a) Glabella, (b) Nasion, (c) Rhinion

The statistical parameters obtained for the selected set of 18 MRI images
are presented in the Table 4 and Fig. 3. The measurements are presented in
millimetres and rounded to one fractional digit.

The obtained values of soft tissue thickness in the craniometric landmarks
were compared with data presented in [3], collected for group of subjects selected
using the same criterion.
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Table 4. Soft tissue thicknesses measured for Caucasian females 18 – 29 years and BMI
20 – 25 [kg/m2], xr – landmark located on the right side of the head, xl – landmark
located on the left side of the head

Nr Craniometric
landmark

Mean S.D. Min Max

1 g 5.77 0.48 4.98 6.58
2 n 7.06 0.36 6.5 7.77
3 rhi 4.06 0.17 3.77 4.33
4 ns 10.57 0.43 9.81 11.25
5 pg 11.76 0.61 10.41 12.87
6 gn 7.97 0.52 7.19 9.06
7 pr 13.0 0.53 11.89 13.85
8 ids 12.51 0.56 11.34 13.52
9 inc 4.35 0.21 3.92 4.69
10 id 10.59 0.47 9.61 11.3
11 op 6.18 0.61 5.13 7.35
12 i 7.66 0.8 6.21 8.88
13 alr 10.1 0.48 9.24 11.00
14 all 10.51 0.44 9.62 11.21
15 orr 6.25 0.39 5.64 6.89
16 orl 6.79 0.37 6.15 7.43
17 sorr 6.91 0.47 6.21 7.76
18 sorl 6.99 0.49 6.32 7.9
19 zyr 7.28 0.73 6.36 8.62
20 zyl 6.45 0.63 5.65 7.65

Fig. 3. Box plot shows soft tissue thickness [mm] measured automatically in cranio-
metric landmarks
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Table 5. Comparison of measurement results with published data; DM (18) – measured
soft tissue thicknesses data for 18 patients; DL (149) – soft tissue thicknesses literature
data for 149 patients [3]

DM (18) DL (149)
Nr Craniometric

landmark
Mean S.D. Range Mean S.D. Range

1 g 5.8 0.5 5 – 6.6 5.1 0.8 3.4 – 7.5
2 n 7.1 0.4 6.5 – 7.8 6.3 1.2 4.0 – 9.4
3 rhi 4.1 0.2 3.8 – 4.3 2.6 0.8 1.6 – 9.2
4 pg 11.8 0.6 10.4 – 12.9 9.6 1.7 6.7 – 14.3
5 gn 8.0 0.5 7.2 – 9.1 5.6 1.3 3.3 – 10.2
6 pr 13.0 0.5 11.9 – 13.9 9.8 1.6 2.6 – 13.6
7 ids 12.5 0.6 11.3 – 13.5 10.0 1.7 5.6 – 13.8
8 id 10.6 0.5 9.6 – 11.3 11.0 2.0 6.9 – 15.5
9 alr 10.1 0.5 9.2 – 11.0 9.5 1.3 5.8 – 12.6
10 all 10.5 0.4 9.6 – 11.2 9.7 1.3 5.8 – 12.6
11 orr 6.3 0.4 5.6 – 6.9 9.4 2.1 3.3 – 14.2
12 orl 6.8 0.4 6.2 – 7.4 9.5 2.1 3.3 – 14.2
13 sorr 6.9 0.5 6.2 – 7.8 5.4 1.0 3.8 – 10.9
14 sorl 7.0 0.5 6.3 – 7.9 5.6 1.0 3.8 – 10.9
15 zyr 7.3 0.7 6.4 – 8.6 6.7 1.5 3.6 – 11.3
16 zyl 6.5 0.6 5.7 – 7.7 6.5 1.5 3.6 – 11.3

4 Discussion

The comparison and analysis of own measurement results and literature data
[3] indicates that method proposed here gives close results to those obtained
using the ultrasonic method. However, 75% of measurement results based on
ultrasonography are smaller than the values obtained in the same landmarks
using the method proposed here. The systematic error in such situation most
probably results from the fact, that the ultrasonic measurement requires probe
contact with the skin and this provokes some soft tissue deformation. Because of
this the results based on the ultrasonic method are strongly operator-dependent.
Our method operates on data obtained without any contact with the soft tissue.

43.75% values of our data are within the range mean+/-SD of the literature
data. The remaining 56.25% are within the range mean+/-2SD of literature data.

Important differences in SD values appeared because of quite big soft tissue
thickness spread in particular craniometric landmarks in the literature data.
These data were collected from much bigger quantity of patients [3]. It explains
why they have such a wide range of soft tissue thickness values.

5 Conclusion

An automatic, non-contact method for the definition of the craniometric land-
marks and soft tissue thickness measurement in these landmarks is proposed. The
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method uses the MRI for data collection, is non-invasive and has no counter-
indications in widespread use. The novelty of the method proposed is that it
performs the inverse transform on the set of craniometric points instead of per-
forming it on the surface of a template face.

The full automatization of measurement greatly speeds up the process of soft
tissue measurements and also gives a possibility to acquire results for large pop-
ulation within shorter time. A comparison of own results with literature data
allows to state, that the proposed method on the current stage of development
gives similar results to literature data. Another advantage of the method is the
limited role of the operator during the process of soft tissue thickness measure-
ment as compared to e.g. needle probing or ultrasonic methods. In the proposed
method the operator defines craniometric landmarks only on the template which
will be used in future matching. It is also a weakness of the method, as an er-
roneous definition of the craniometric landmark in the template can make the
error propagate to further MRI images. In order to eliminate this disadvantage
the following step in the development of the algorithm will be the automatic
correction of craniometric landmarks in MRI data. Another task is to propose
and validate an objective measure for the selection of number of averagings when
creating the template.
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Abstract. This paper considers the problem of brain volume assess-
ment in children with craniosynostosis using the algorithms of image
processing and analysis. In particular the postoperative craniosynostosis
is considered. In this case the quantitative assessment of brain volume is
very challenging due to missing fragments of the skull. These are removed
during the corrective surgery and make image segmentation algorithms
fail when applied to the brain extraction. The approach introduced in
this paper overcomes this problem by combining morphological process-
ing with the 3D random walk segmentation. The details of the introduced
approach are explained in the paper contents. The results of the brain
segmentation and brain volume assessment for the postoperative subjects
are presented, analysed and discussed.

Keywords: image segmentation, brain volume assessment, craniosyn-
ostosis, random walker.

1 Introduction

The craniosynostosis is a serious abnormality of infancy and childhood, which
occurs in 1 in 2500 births. It is defined as premature fusion of cranial sutures
resulting in compensatory growth in other areas of the skull [2]. Craniosynostosis
is classified as involving a single suture versus multiple sutures and as either syn-
dromic or nonsyndromic. Unlike the syndromic type, nonsyndromic synostosis is
not associated with other dysmorphisms of the face, trunk or extremities. Fur-
thermore, nonsyndromic craniosynostoses typically involve a single suture, the
most common types being sagittal, unicoronal, bicoronal, metopic and lamb-
doidal [1]. Aims of the surgical correction of these conditions are to counteract
the cosmetic and functional anomalies of the craniofacial skeleton, to restore
the normal spatial relationship between the skull and the contained neural and
vascular structures, to correct the possibly associated abnormalities of the cere-
bral blood flow and cerebrospinal fluid circulation as well as to re-orientate the
deviated growth vectors of the skull base and vault. The types of techniques
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include: strip craniectomy and fronto-orbital advancement with calvarial vault
remodeling [7]. In general, they all are performed by the removal of the deformed
fragments of skull.

The traditional postoperative assessment of the craniosynostosis is most com-
monly performed based on linear measurements of the brain characteristic di-
mensions obtained from CT scans. These measurements are performed manually
by the specialist and as a result are often inaccurate, unrepeatable and sub-
jective. Additionally, they include only the information contained in the most
representative slices what limits the accuracy of the case assessment.

One of the indicators which could be applied to the postoperative assessment
of craniosynostosis is brain volume. However, determination of this parameter
requires the segmentation of intra-cranial region from CT or MRI scans. Manual
segmentation of this region usually involves laborious and time consuming brain
image editing and cannot be applied in everyday clinical routine. Therefore an
automatic brain segmentation algorithm seems to be the best choice to quickly
obtain the brain volume information.

The task of the brain segmentation has been widely discussed over the years
and numerous approaches to this problem have already been proposed. However,
most of the existing approaches require the presence of a continuous skull which
limits the brain region. As a result they cannot be applied for brain segmenta-
tion in the postoperative craniosynostosis, where significant parts of the skull
are missing and its borders remain discontinuous. Therefore there is a need of
developing dedicated brain segmentation algorithms and another algorithms for
further quantitative analysis of this region.

The problem of application of image processing and analysis algorithms for a
quantitative assessment of craniosynostosis is generally new. To the best of our
knowledge only a few research projects in this topic have already been reported.
These regard mostly preoperative cases and consider automatic classification of
the disease type based on skull properties [9, 10, 13]. Research dedicated to
the postoperative cases is mostly concerned with modelling of skull shape after
surgical treatments [3, 4, 12]. There is also work on assessment of brain volume in
the postoperative craniosynostosis [11]. However, the authors consider only MRI
images and do not reveal any details about the image segmentation algorithm
used in the research.

Having in mind the above-mentioned, this paper considers the problem of
brain segmentation and brain volume estimation in the postoperative craniosyn-
ostosis.

The following part of this paper is organized as follows. Firstly, in Section 2
the regarded problem is briefly outlined. This is followed in Section 3 by the
description of medical data used in this research. The more detailed description
of the introduced approach is given in Section 4. The results are presented and
discussed in Section 5. Finally, Section 6 concludes the paper.
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2 Problem Definition

The estimation of brain volume requires separation of the brain region from CT
scans of the whole head using appropriate segmentation algorithm. In the case of
the head with a complete skull this task is rather simple, as borders of the brain
are clearly delineated by the skull. However, in the case of the postoperative
craniosynostosis pieces of the skull are missing as they are removed during the
corrective surgery. This problem is illustrated in Figure 1 which shows exemplary
CT slices and 3D views of a skull in the postoperative craniosynostosis.

Fig. 1. Exemplary CT slices and 3D view of skull in the postoperative craniosynostosis

Due to the discontinuities of the skull the brain segmentation is a challenging
task in the postoperative craniosynostosis. The missing pieces of the skull make
image segmentation algorithms fail, when applied to the extraction of brain
region. In particular, many segmentations with the traditional algorithms [5] are
affected by the phenomenon of brain over-segmentation out of its real space,
known as "leakage". Then the revealed brain region can include the pieces of
skin. This effect is presented in Figure 2, where the "leakages" are indicated by
arrows.

Fig. 2. The segmentation leakages in the postoperative craniosynostosis (indicated by
arrows); a) exemplary slice; b) segmentation result compared to the input slice; c) 3D
view of the extracted brain space
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The over-segmentation falsely increases brain size and thus its volume. It also
deteriorates the real brain shape. All these factors influence further diagnosis
of the disease. Therefore, in the considered problem, the brain segmentation
algorithm must to be robust to skull discontinuity.

Having in mind this requirement, a new approach introduced in this paper
is based on the random walker (RW) approach [6]. One of the most important
properties of the RW method is that it obeys weak and discontinuous borders.

The RW algorithm is dedicated to image segmentation into number of regions
based on seeds provided for each region. Image division is obtained by assigning
each unlabeled node a label which represents one of the output regions. Labels
are assigned with respect to the probability that a random walker released from
each unlabeled pixel will firstly reach one of the seeds. The random walk occurs
on a weighted and undirected pixel adjacency graph. The final segmentation is
obtained by including a pixel into a region for which the greatest probability
exists.

The detailed description of the introduced approach is given in the following
sections.

3 Input Data Windowing

Three dimensional CT brain scans of the postoperative craniosynostosis were
examined. The slices were provided with 16-bit resolution and stored as signed
16-bit monochromatic images of the resolution 512 x 512 pixels and stored in
the DICOM file format. Individual slices of each image were stacked into a 3D
space representing volumetric data set. The number of slices in the dataset varied
between 100 and 200.

Before the main processing, input data i(x) was normalized to the range of
intensities [0, 1]. The normalization, performed in accordance with Equation 1,
highlighted intensities from 0 HU to 150 HU corresponding to the brain tissues
and attenuated intensities below 0 and above 150 HU, corresponding to the
surrounding air and the dense tissues respectively.

j(x) =

⎧⎨
⎩

1 if i(x) ≥ 150
0 if i(x) ≤ 0

i(x)/150 otherwise
(1)

After normalization, the skull is represented by the intensity value equal to
1, while the intensity equal to 0 is assigned to air outside head.

4 The Proposed Approach

The main steps of the introduced approach to the evaluation of brain volume in
the postoperative craniosynostosis are depicted in Figure 3. The method starts
from the preprocessing stage, which aims at the determination of background
and object seeds for the random walk segmentation performed in the following
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step. During the post processing stage the brain surface is smoothed and the
errors of segmentation are corrected using approximation techniques. Finally,
the brain volume is determined based on the segmentation result.

Fig. 3. The consecutive steps of the introduced approach

The consecutive steps are described in details in the following subsections.

4.1 Preprocessing

The introduced brain segmentation algorithm is based on the random walk ap-
proach [6], which requires initialization by object and background seeds. These
seeds are created in the preprocessing step.

The background seeds are identified as pixels belonging to the skull and are
easily determined by a simple thresholding of the image, performed in accordance
with Equation 2.

s(x) =

{
1 if j(x) = 1
0 if j(x) < 1

, (2)

where x = {x1, x2, x3} denotes pixel coordinates, s is the binary image of the
skull and i represents the input CT image after windowing (see Sect. 3).

Object seeds are determined using morphological processing. Firstly, the bi-
nary image is produced as shown in Equation 3.

b1(x) =

{
1 if j(x) = 0 or j(x) = 1
0 otherwise . (3)

The image b1 shows the pixels of intensities different from 0 and 1, i.e. the
pixels which do not belong to the skull or the region surrounding the head.
However, in the image b1 there are pixels corresponding both to the brain space
and other regions adjacent to the brain (e.g. eyes, nose, ears, head skin etc.;
see Fig. 4b,c). Therefore, in the next step image erosion [5] with big structur-
ing element followed by median filtration [5] are performed in accordance with
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Equation 4 in order to disconnect these regions from the brain region and to
smooth its surface respectively.

b2 = median(b1 � se, [n, n, n]), (4)

where se is a large structuring element and n = 5 is a dimension of median filter.
In particular se is a cube of dimensions equal to 0.2Z where Z is a number of
slices in the dataset.

Finally, the largest 3D connected component b3 is selected from the binary im-
age b2 (see Fig. 4d,e). This component contains the pixels belonging to the brain
region and is used as object seeds for the random walk segmentation performed
in the next step.

The exemplary visual results of the consecutive steps of seeds determination
are shown in Figure 4. In particular, an exemplary CT brain slice is shown in
Figure 4a. This is followed in Figures 4b and c by the presentation of pixels with
intensities different from 0 and 1 in the 3D and planar views respectively. The
3D and 2D views of object seeds only are shown in Figures 4d and e. Figure 4f
contains the 3D view of object and background seeds.

Fig. 4. The consecutive steps of seeds determination; a) exemplary CT slice; b) pixels
of intensities different from 0 and 1 - 3D view; c) pixels of intensities different from 0
and 1 - exemplary CT slice; d) object seeds - 3D view; e) object seeds - exemplary CT
slice; f) 3D view of object and background seeds
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4.2 Brain Segmentation

The determination of object and background seeds is followed by the random
walk segmentation. In particular, the procedure is performed slice-by-slice sep-
arately in three orthogonal view-planes i.e. the axial plane, the sagittal plane
and the coronal plane. The results of the segmentation for single slices obtained
in each plane are stacked together into a volumetric space. The volumes formed
independently for every plane are next combined together, in order to perform
the first approximation (coarse segmentation) of the brain region. This idea is
explained in Figure 5. In particular, the consecutive columns of the figure present
the results of the brain image segmentation performed in the axial, sagittal and
coronal directions respectively. In the last column the fusion effect of these par-
tial results is shown. The fusion of binary components means their logical sum
in a three dimensional space according to Equation 5.

b4(x) = ba(x) ∪ bs(x) ∪ bc(x), (5)

where x denotes an image voxel, b4(x) is the fusion result, ba(x), bs(x), bc(x)
represent respectively the axial, sagittal and coronal component images.

Fig. 5. The results of the random walk segmentation performed in the axial, the sagittal
and the coronal directions. The last column shows the fusion of partial results.

Exemplary CT slices with the results of the random walk segmentation applied
to each of the regarded directions are shown in Figure 6. These are shown in
light grey. Additionally, the seeds for the segmentation are visualised in dark
gray.
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Fig. 6. Exemplary CT slices presenting results of the random walk segmentation per-
formed in the axial, sagittal and coronal directions; left column - original images, right
column - segmentation results

4.3 Post Processing

During the post processing the brain surface is smoothed in order to remove arte-
facts caused by the image segmentation performed slice-by-slice in the three or-
thogonal directions. The removal is obtained by applying median filtration. In or-
der to utilize the information contained in all views 3D filtration is applied using
the mask of 5 x 5 x 5 pixels. The size of this mask was adjusted experimentally.

4.4 Brain Volume Evaluation

After the brain region has been segmented, its volume can be easily determined
by counting all of its pixels. In particular, each pixel is regarded as a cuboid
of dimensions equal to dx × dy × dz, where dz is the slice thickness, dx and
dy represent the pixel spacing in X and Y directions respectively. All these
parameters are stored in the header of each DICOM file including a slice of the
CT image. The volume Vp of a single pixel can be determined from Equation 6,
while the volume Vb of the brain is described by Equation 7.

Vp = dxdydz . (6)

Vb = Vp

Z∑
z=1

Y∑
y=1

X∑
x=1

b4(x), (7)

where X and Y are the dimensions of a single slice, Z is the number of slices
and b4 denotes the binary mask image of a brain.
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5 Results and Discussion

Visual results of applying the introduced segmentation approach to 4 exemplary
subjects with the postoperative craniosynostosis are presented in Figure 7. For
every case three randomly selected slices in the axial, the sagittal and the coronal
views are presented. Additionally, 3D views of a brain and a skull are provided.
The case ID is indicated at the beginning of each row. The corresponding brain
volumes determined from the segmentation results are listed in Table 1. Addition-
ally, they are compared with the volumes obtained by the radiological specialist
using a manual method for labelling pixels in the regions of interest. The volume
data are accompanied by the values of the Dice coefficient [8] located in the third
column. It represents one of the known similarity measures between data sets. In
the considered case it can be expressed as in Equation 8.

Dice(RAUTO, RREF ) =
2 |RAUTO

⋂
RREF |

|RAUTO|+ |RREF | , (8)

where | · | is the symbol of set cardinality and RAUTO and RREF denote the
pixel sets of brain regions identified with the automatic or reference method
respectively.

The visual results of brain segmentation presented in Figure 7 clearly show
that the introduced approach was successful in extracting the intracranial region.
Although in the regarded cases significant parts of skulls were missing, the brain
was successfully extracted and the leakages outside the intracranial space were
effectively avoided.

Fig. 7. The results of brain segmentation using the introduced approach; (a) axial
view; (b) sagittal view; (c) coronal view; (d) 3D view of a brain and a skull
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Table 1. The comparison of the brain region volumes determined automatically VAUTO

with the referential ones VREF at the level of region similarity verified by the Dice
coefficients

Case ID VAUTO VREF Dice
[dm3] [dm3] [ % ]

1 0.9797 0.9931 97.3927
2 1.1386 1.2521 93.6140
3 0.9079 0.9965 95.8531
4 1.0777 1.1536 96.5613

The results of volume measurement included in Table 1 show that the volumes
obtained with the automatic method in all considered cases differ less than 10%
from the results of the manual method. In particular, the brain object volumes
obtained by the automated method are slightly and systematically underesti-
mated. The relative error of volume estimation fits in the range [−1.3,−9.1%]
with the average value of −6.5%. Such results obtained by the proposed segmen-
tation can be regarded as good enough keeping in mind that the measurements
refer to the volume of a complex biological structure with partially ambiguous
or disappearing boundaries. The manual method often exploits very complex
expert knowledge to classify the pixels of a brain image, not only grey-levels or
simple texture features. This extra knowledge used in the segmentation process
is difficult to verbalise or translate for programming language. Moreover, the
differences up to 10% in the location of the organ by experts are also acceptable.

Simultaneously both of the methods (i.e. the automatic one and the manual
one) show high similarities of the detected brain regions. This is shown by the
Dice coefficient in Table 1 which is very high. It varies from about 94% to about
97% (i.e. only in the range of 3.8%). This proves that not only the volume but
also the brain shape is properly mapped compared with the manual method. The
sources of mapping error reside both in the human factor of the manual method
and in the approximation of brain boundary mapping by the computer method.
In future research, the authors will try to correct the little of the brain volume,
based on interviews with experts performing the reference manual measurements.

At the end it should be underlined, that the goal of this paper is only to present
the ability to detect the brain region from CT scans using the new method.
For now the algorithm has been temporarily developed in the MATLAB 2012
environment with the support of functions from Image Processing Toolbox. The
method is still under development, therefore the computational complexity of the
algorithm has not been estimated yet. This will be done in the nearest future,
when the algorithm is rebuild in the C++ environment under Windows.

6 Conclusions

The change of brain volume can be regarded as an important indicator applied
to the post surgical assessment of craniosynostosis. In practice this parameter
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is usually unused and often replaced by the linear measurements of brain char-
acteristic dimensions as mentioned in Section 1. This happens because manual
determination of the volume is extremely laborious and time consuming. There-
fore the authors propose an automatic brain CT image segmentation method to
extract the brain space as a serious alternative to the linear measurements or
manual volume labelling by experts. The example results of the volume measure-
ment presented in Section 5 show high compatibility with the results determined
based on the manual segmentation. The proposed method was not developed
yet in the form of a commercial application but its execution for the example
images takes only several minutes, which is still much faster than the manual
method requiring up to half an hour of expert work. After the implementation
of the method in C++ code the authors plan to apply fully three-dimensional
morphological preprocessing of the image and three dimensional random walker
approach, which will probably take more time but may allow better volume
measurement accuracy than the currently achieved.
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Abstract. In the work, a (semi)automatic multi-image texture analysis
is applied to the characterization of prostatic tissues from Magnetic Res-
onance Images (MRI). The method consists in a simultaneous analysis
of several images, each acquired under different conditions, but repre-
senting the same part of the organ. First, the texture of each image is
characterized independently of the others, using the same techniques.
Afterwards, the feature values corresponding to the different acquisi-
tion conditions are combined in one vector, characterizing a multi-image
texture. Thus, in the tissue classification process different tissue prop-
erties are considered simultaneously. We analyzed three MRI sequences:
contrast-enhanced T1-, T2-, and diffusion-weighted one. Two classes of
tissue were recognized: cancerous and healthy. Experiments with several
sets of textural features and four classification methods showed that the
application of multi-image texture analysis could improve the classifica-
tion accuracy in comparison to single-image texture analysis.

Keywords: computer-aided diagnosis, tissue characterization, feature
extraction, multi-image texture, classification.

1 Introduction

According to Global Cancer Statistics [1], prostate cancer is the second most fre-
quently diagnosed cancer worldwide, and the sixth most frequent cause of cancer
death in males. In 2008 it represented 14% of the total new cancer incidences
(903, 500 reported cases) and 6% of the total cancer deaths (258, 400 cases) in
males. In this context, the search for the methods allowing to detect a prostate
pathology as early as possible and to determine its type (benign or malign) is
crucial for reducing prostate cancer-caused mortality rates.

Admittedly, there exist some diagnostic tools for prostate cancers: the PSA
(prostate-specific antigen) serum screening, the needle biopsies, or an ensemble
of the MRI techniques enabling to visualize different prostatic tissue properties.
However, the first two tools have many deficiencies and their use still remains

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 139
Volume 3, Advances in Intelligent Systems and Computing 283,
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under discussion. For example, a 10-year experiment on 76, 693 men conducted
by Andriole et al. [2] revealed that there were no significant benefits of screening
for prostate cancer with PSA serum testing. According to another report, in some
cases prostate cancer screening could lead to over-treatment [3]. Furthermore,
the use of needle biopsy, which is the current standard when discovering high
PSA values, carries a risk of serious complications. Also, a needle may miss an
important tumor case, when it does not hit the right place.

Considering the above facts, a large hope can be placed in a correct interpre-
tation of MR prostate images, especially that their acquisition is not too invasive
or harmful to health. However, the correct recognition of image content may go
beyond the capacity of a non-equipped physician. It is important, therefore, to
develop appropriate tools for computer-aided diagnosis (CAD).

The aim of present study is to validate methods for the texture-based anal-
ysis of MR prostate images and to examine their usefulness in prostatic tissue
classification. In this process, we analyze simultaneously textures corresponding
to different MR image sequences (contrast-enhanced T1-, T2-, and diffusion-
weighted) and referring to the same prostate slice. According to our knowledge,
no one has yet proposed a CAD system designed for prostate tumor recognition
based on multi-image texture analysis from MR images. However, there exist few
works on multi-image texture analysis concerning other organs and other imag-
ing modalities. They have already shown that such an approach is promising in
the process of tissue characterization and recognition.

The next section includes a short overview of existing CAD systems, incor-
porating methods for a simultaneous analysis of several images acquired under
different conditions and representing the same part of an organ. In Sect. 3 our
system for the classification of multi-image textures is presented. Experimen-
tal validation of the proposed methods is described in Sect. 4. Conclusions and
future works follow in the last section.

2 Related Work

The earliest studies on the usefulness of multi-image texture analysis were pre-
sented in [4] and [5]. In both works, triples of CT liver images were analyzed
simultaneously, in order to recognize the normal liver and its two primary ma-
lignant tumors: hepatocellular carcinoma (HCC) and cholangiocarcinoma. The
images in a triple corresponded to the same liver slice. Each of them was acquired
with different concentration of the contrast product injected to the patient. The
first image was taken without the contrast, the next two ones – after its injection
in the arterial and portal phase of its propagation in hepatic vessels. The multi-
image texture was characterized by sets of features corresponding to each ac-
quisition moment and placed all together in one vector. Experiments conducted
separately for each of the three acquisition moments, and for the multi-image
case proved the considerable potential of multi-image texture analysis.
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The latter work, concerning the classification of liver pathologies from CT
images, also showed the high usefulness of the multi-image approach for tissue
characterization. In [6] four moments of contrast product propagation were con-
sidered: a pre-injection phase, and three after-injection phases: arterial, portal,
and late. The CT images were analyzed in quadruples. Five types of liver lesions
(cysts, adenomas, hemangiomas, HCC and metastasis) were recognized. Also
here, a set of four textures was characterized by one vector composed of features
calculated separately for each of the four acquisition moments.

Nagarajan et al. [7] used a multi-image texture analysis for breast lesion clas-
sification from dynamic contrast-enhanced (DCE) MR images. In order to differ-
entiate two types of small lesions (benign and malign) five post-contrast images
were analyzed simultaneously. A multi-image texture was characterized by five
values of the same textural feature, each corresponding to a different moment
of contrast product propagation. The study showed that the characterization of
the lesion enhancement pattern could improve the classification accuracy of the
considered, diagnostically challenging, breast lesions.

Quite different approach to multi-image texture analysis was presented in
[8]. This study introduces the notion of "textural kinetics" that characterizes
texture evolution under contrast product propagation in DCE-MRI. At first,
textural features are calculated at each moment of contrast product propaga-
tion, and the "textural kinetics curve" is created basing on the set of feature
values. Afterwards, a third order polynomial is fitted to such curve in order to
characterize its shape. Four polynomial coefficients constitute the feature vector.
Such a method was applied to the recognition of benign and malignant breast
lesions and proved to be superior to lesion intensity profile dynamics.

Finally, Bhooshan et al. [9] combined textural features from both DCE T1-
and T2-weighted MR images in order to recognize benign and malignant breast
lesions. For the T1-weighted sequences, only the first post-contrast image was
used for texture analysis. In this case, contrast product propagation was charac-
terized by typical kinetic parameters obtained from signal-to-time curves. The
experiments showed, that the combination of texture characteristics, obtained
from both T1-, and T2-weighted images may outperform the conventional anal-
ysis of T1-weighted contrast-enhanced sequences.

To the best of our knowledge, there is no such a CAD system that combines
texture characteristics corresponding to different MRI sequences (like T1-, T2-,
or diffusion-weighted) in order to characterize prostatic tissue in classification
process. There exist a few systems that use information about the propagation
of contrast product based on T1-weighted DCE-MR sequences (e.g. [10]). Nev-
ertheless, they use only pharmacokinetic models, employing the signal-to-time
curves in order to find perfusion parameters. The aim of our work is, therefore,
to assess the utility of multi-image texture analysis in the characterization of
prostatic tissue from MRI. The images belonging to different MRI sequences
will be analyzed simultaneously.



142 D. Duda et al.

Fig. 1. A system for tissue classification based on multi-image texture analysis; the
first stage of work: the construction of classifiers from a database of image n-tuples

Fig. 2. A system for tissue classification based on multi-image texture analysis; the
second stage of work: the application of classifiers to aid diagnosis

3 Methods

Two stages of work of a typical, image-based CAD system can be distinguished
[11]. The first one, called training (or learning), consists in the preparation of
the system for the recognition of several predefined tissue classes. In practice,
this means constructing classifiers from a database of images which represent
only diagnosed cases. The second stage is the application of the system in order
to aid diagnosis.

The system which we are working on also follows the above-described, two-
stage scheme. What distinguishes our system among others, is that the n images
representing the same tissue slice but acquired under different acquisition condi-
tions (e.g. different scanner settings) are combined in the n-tuples and analyzed
simultaneously. The first stage of work of our system is presented in Fig. 1.

After the creation of a database, the n-tuples of images are formed. Depending
on the number of considered image sequences, an n-tuple can comprise two, or
more images. The order of images in each n-tuple is fixed. For example, a triple of
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MRI prostate images might contain the T1-, the T2-, and the diffusion-weighted
image on the first, the second, and the third position respectively.

An optional step here can be image pre-processing. It is used to improve the
contrast, to eliminate the noise or the artifacts, or to equalize ranges of pixel
values corresponding to different studies (which is the case in our database).

The next step is to outline the Regions of Interest (ROIs). A ROI covering the
same part of the organ is outlined on each of the images forming an n-tuple. An
n-tuple of thus obtained ROIs is analyzed simultaneously in order to characterize
the tissue. First, the same set of textural features is calculated for each ROI in
an n-tuple. Next, the features corresponding to different images in the n-tuple
are combined in one "complex" vector characterizing a multi-image texture. In
the simplest case, such a vector is formed by concatenating the sets of features
corresponding to each considered sequence. Its parameters can also be a function
of several feature values obtained with the same method and corresponding to
different sequences. At this point, the doctor-specialist specifies the tissue class
(label) which is attributed to each complex vector of features. The label reflects a
pathology affecting the organ under consideration and is determined on the basis
of a verified diagnosis. Labeled feature vectors form the so-called training (or
learning) set. On the basis of such a set one or more classifiers are constructed.

Another optional step can be feature selection that takes place either before or
during the construction of classifiers. It allows finding the most relevant features
and rejecting redundant or inefficient ones. It also results in the reduction of
memory and computation time required for the following processing steps.

Once the classifiers are constructed, the second stage of system work can take
place: the system can be applied to identify new, yet undiagnosed cases. The key
details of this process are depicted in Fig. 2.

At this stage, an n-tuple of images representing the same part of the organ is
necessary. The order of the sequences from which subsequent images derive is the
same as it was in the first stage of system work. Also the image pre-processing
and the texture feature extraction techniques remain the same. After outlining
the ROI on each of the images composing an n-tuple, the extraction of textural
features for each ROI takes place. Next, a complex vector characterizing a n-
tuple of textures is created. If feature selection was applied in the first stage,
only the selected features are used here. Finally, the classifiers available in the
system are applied and the most probable tissue class is indicated.

4 Experiments

The aim of the experiments was to assess the usefulness of the proposed method
in the characterization of prostatic tissues from MR images. Three image se-
quences (contrast-enhanced T1-, T2-, and diffusion-weighted) were considered
simultaneously in the classification of two tissue types: cancerous and healthy.
Complex feature vectors were created by concatenating the parameters corre-
sponding to the three sequences. For comparison, also pairs of image sequences
were tested, as well as the one-sequence cases.
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4.1 Database Description

The images were gathered in Pontchaillou University Hospital in Rennes, France,
between August 2009 and April 2010. They were derived from 19 patients.
One study per patient was available. The acquisitions were performed on a 3T
Siemens Verio magnetic resonance scanner. The images were recorded in DICOM
format. The T1-weighted sequences were taken after injection of a gadolinium-
based contrast agent, Dotarem R©, in an amount of 13 to 20 ml. 30 different
moments of contrast agent propagation were visualized. The time interval be-
tween consecutive moments was 7 seconds. The fat suppression (FS) method
was applied for the T1 sequences. Slice thickness was the same for all the im-
ages of the same sequence: 3 mm for the T1-, and T2-wighted sequences, 6 mm
for the diffusion-weighted ones. Image size in pixels was: 192× 192 for the T1-
weighted images, 320× 320 (for 16 patients) or 448× 448 (for 3 patients) for the
T2-weighted ones, and 160 times136 for diffusion-weighted. An example of the
three corresponding images of considered sequences is given in the Figure 3.

(a) T1-weighted (b) T2-weighted (c) diffusion-
weighted

Fig. 3. Three MR images of prostate acquired at the same slice position; the propor-
tions between images of each sequence were kept

In total, 180 ROIs were outlined for prostatic tissue, 60 for each of the three
considered image sequences. Due to the fact that image sizes differed between
sequences, the average sizes of ROIs corresponding to different sequences were
also different. They amounted to 91, 456, and 85 pixels respectively.

For most studies, ROIs were outlined only within one of the two available
classes (healthy or tumorous), which resulted in a certain inconvenience. It was
not possible to determine the moment of contrast agent propagation in which
the differences between texture characteristics corresponding to healthy and tu-
morous tissue were the most significant. For this reason, for our analyses, we
always chose the middle image (15th of the available 30) from the T1-weighted
sequences.
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4.2 Image Conversion

An important drawback of our database was that the full range of pixel values
possible to occur in the images (image resolution in pixel values) could not be de-
termined from the DICOM headers. It is known that pixel values describing each
organ fall into a certain part of the full range. Basing on pixel value histograms,
obtained for the ROIs within the prostate, for the entire hips (not affected by
tumor), and for the entire images, we hypothesized that image resolutions in
pixel values might be different for each of the considered studies.

Therefore, in order to equalize the ranges of pixel values corresponding to
different studies (separately for each sequence), the preliminary step of image
processing was image conversion. Due to the fact that the ROIs outlined for the
prostate were very small, and, for most studies, corresponded to only one tissue
class, it would have been difficult to convert images basing only on the pixel
values describing the prostate. Such a conversion was thus conducted in order
to obtain the same range of pixel values (the smallest possible) corresponding to
ROIs covering the hips.

In total, 1601 ROIs covering the hips were considered among which 678, 522,
and 401 ROIs corresponded to T1-, T2-, and diffusion-weighted sequences re-
spectively. Average ROI areas were about 547, 2404, and 412 pixels respectively.
For each study and for each sequence, the range of pixel values was found sepa-
rately. Each time, 5% of the brightest and the darkest pixels were not taken into
account.

For the diffusion-weighted images the ranges of pixel values did not differed
considerably. The widest of them were not even twice wider than the narrowest
ones. The largest differences in ranges of pixel values were observed for T2 se-
quences. The widest range was more than nine times wider than the narrowest
one. For T1 sequences it was above four times wider. The range centers obtained
for different studies and the same series were located in different places.

Finally, the pixel values of the images of the T1-, and T2-weighted sequences
were subjected to a linear transformation with integer coefficients. After the con-
version, the range of gray levels sufficient to characterize all the pixels belonging
to the prostate ROIs did not exceed 256, for each of the considered sequences.
This allowed the images to be processed as if they were in a 8-bit BMP format.

4.3 Feature Extraction

The 30 texture features were calculated separately for each image in a triple.
Six different approaches to texture analysis were used. They based on: autocor-
relation (AC) [12], first order statistics (FO), gradients (GB), fractals (FB) [13],
co-occurrence matrices (COM) [14], and run length matrices (RLM) [15, 16].
The names of features are given in Table 1.

For the COM and RLM methods, the number of gray levels was reduced to 64
and 32 respectively. The co-occurrence matrices were constructed separately for 4
standard directions (0◦, 45◦, 90◦, and 135◦), and for 2 different distances between
the pixel pairs, 1 and 2. The run length matrices considered the 4 aforementioned
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Table 1. Calculated textural features; the name of a feature set is created by adding
the number of features (as a subscript index) to the name of the extraction method

Set Feature Names

AC2 (d)Autocorr, where d = 1, 2 is a pixel distance
FO4 Avg, Var, Skew, Kurt
GB4 GradAvg, GradVar, GradSkew, GradKurt
FB1 FractalDim

COM11 AngSecMom, InvDiffMom, Entropy, Correlation, SumAvg, DiffAvg, Sum-
Var, DiffVar, SumEntropy, DiffEntropy, Contrast

RLM8 ShortEmp, LongEmp, GLNonUni, RLNonUni, Fraction, LowGLREmp,
HighGLREmp, RLEntropy

directions of pixel runs. Features obtained for different pixel distances and/or
for different directions were averaged.

The normalized autocorrelation coefficients (AC method) were also calculated
separately for 4 standard directions, and for 2 different pixel distances: 1, and
2. Only features corresponding to different directions were averaged.

The FB method was based on the fractional Brownian motion model [17] and
also considered only 2 pixel distances, 1 and 2.

In total, 11 different feature sets were tested. Six of them contained features
derived from one extraction method only. Another three sets combined features
derived from several methods: All23 (COM, RLM, and FO), All25 (COM, RLM,
FO, and AC), and All30 (all available features). Moreover, two sets of selected
features were considered: SelF , and SelB. They contained features selected from
the 30·3 possible ones (30 features corresponding to the 3 image sequences), using
two searching directions, respectively Forward, and Backward. The selection of
features was performed with the Weka software [18]. The following selection
settings were applied: the wrapper method (called WrapperSubsetEval in Weka)
– as an evaluator of each tested subset of features, the C4.5 tree [19] (J48 ) – as
a classifier, and the BestFirst searching strategy.

4.4 Classification Results

Several classifiers were used in order to assess the potential of the multi-image
texture analysis, and to compare it to that of one-sequence texture analysis.
Among them were: logistic regression – LR (algorithm called Logistic in Weka),
neural network – NN (MultilayerPerceptron), and support vector machines –
SVM (algorithm SMO). The NN used a backpropagation algorithm and a sig-
moid activation function. It had one hidden layer, wherein the number of neu-
rons was equal to the average value of the number of features and the number
of classes. The SVM used two kernels: the Gaussian kernel (RBFKernel), GK,
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and the polynomial (PolyKernel) one, PK. The classification accuracies were
estimated by 10-fold cross-validation, repeated 10 times.

The Table 2 presents selected results obtained for the classification of simple
textures (when each sequence was considered separately) and multi-image tex-
tures (when three or two sequences were analyzed simultaneously). Each line of
the table contains results obtained by the same classifier, for the same set of fea-
tures, but for different image sequences (T1, T2 or diffusion) or image sequence
combinations (T1 and T2, T1 and diffusion, T2 and diffusion, T1 and T2 and
diffusion). We will always compare the results located in the same row of the
Table 2 – obtained with the same classifier, and for the same set of features.

As for the cases of simple texture analysis, we can conclude that the most
useful piece of information for the process of prostatic tissue classification was
extracted from the T2- and the diffusion-weighted images. The advantage of the
T2-weighted images was certainly that they were the biggest in size. Their draw-
back was the necessity of pre-conversion, as, initially, they showed the largest
differences in the ranges of pixel values. Finally, taking into account the re-
sults obtained with T2-weighted images, we could estimate that the applied
image conversion probably did not affect the classification results (too) nega-
tively. Therefore, pre-conversion could be a good solution when no information
about the full range of image pixel values is available in DICOM headers. In
turn, inferior results obtained for a T1-weighted sequence may indicate the need
to develop a method for choosing the most appropriate moment (in terms of
tissue characterization) of contrast agent propagation.

The best classification results for the simple texture problem were: 94.83%,
95.67%, 93.00%, and 96.17% of correctly classified cases for the LR (with the
SelF feature set), the NN (with COM11), the SVM-GK (with SelF ), and the
SVM-PK (with All25) classifiers respectively. Such results were obtained when
the diffusion-weighted sequences (the case of the first three classifiers) or the
T1-weighted sequences (the case of the last two classifiers) were considered.

Comparing classification results obtained for simple and multi-image textures,
we can notice that there always exists at least one combination of two sequences
that leads to better tissue recognition in comparison with the best possible one
achieved for a single-sequence case. This is observed for each classifier, and for
each feature set. The simultaneous analysis of images in triples almost always
guaranties better results than the analysis of pairs of images. Finally, it is with
the analysis of the three-image textures that the best overall classification result
was achieved: 99.19%, for the combination of the SVM-PK classifier and the
All23 feature set. With other classifiers the results slightly differed from the best
possible one: 98.00%, 97.83%, and 98.00% obtained for the LR (with COM11),
NN (with RLM8), and SVM-GK (with RLM8 feature set) classifiers respectively.

The highest differences between the best results for the multi-image and the
single-image case were observed with RLM8 feature set: 7.00%, 6.33%, 6.50%,
and 4.84% for the LR, the NN, the SVM-GK, and the SVM-PK classifiers
respectively.
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5 Conclusions and Future Work

In the work, a multi-image texture analysis was applied, for the first time, to the
characterization of prostatic tissues from MR images. Images representing the
same prostate slice but corresponding to different acquisition conditions (giving
the T1-, T2-, and diffusion-weighted sequences) were analyzed simultaneously.
Two classes of prostatic tissue were recognized: cancerous and healthy.

Experiments have shown that a simultaneous analysis of two, or three images
can improve the recognition of prostatic tissues, in comparison with single-image
analysis. The best results obtained for multi-image (two-, or three-image) cases
were better than the best corresponding ones achieved for simple-image cases.
The best improvement of classification quality reached 7.00%. The analysis of
three-image textures proved to ensure the best classification result.

We admit that the preliminary experimental results, although promising,
could also be subject to error. This could have been avoided if a key piece
of information had been available in the database to process, namely the full
ranges of image pixel values, apparently different for different studies. In this
case, image conversion based on the analysis of the intervals of pixel values cor-
responding to another organ (in our case the hips) seemed to be the only solution.
Nevertheless, the texture of the hips can also be altered by the presence of var-
ious pathological processes, different for each patient. To avoid this problem in
the future, either image acquisition protocols should be standardized or images
should contain information about the full ranges of pixel values. Furthermore,
when acquiring images, a good idea would be to place a "reference object" in
view. The texture analysis of such an object could be crucial for the purposes of
image conversion aimed at the equalization of pixel value ranges corresponding
to different studies.

Finally, it would be desirable to have two types of ROIs (corresponding to
cancerous and healthy tissue) delineated for each study or patient. Such an in-
formation would allow to analyze changes in texture characteristics under con-
trast product propagation (in T1-weighted sequences) corresponding to the both
types of tissue. Basing on such an analysis one could determine which moment
of contrast product propagation is related to the most significant differences in
texture characteristics obtained for cancerous and healthy tissue.

In the future, we will try to resolve all of the aforementioned problems. It
would be worthwhile to repeat the experiments using a much larger database
and to recognize more than two tissue classes. Other MRI sequences, such as
FLAIR (fluid-attenuated inversion recovery) or proton density-weighted, can also
be considered for multi-image texture analysis. It also seems to be interesting
to find a method for characterizing texture evolution under contrast product
propagation based on the simultaneous analysis of many contrast-enhanced T1-
weighted images related to different concentrations of the contrast product in
prostatic vessels.

Acknowledgement. This work was supported by the grant S/WI/2/2013 from
Bialystok University of Technology.
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Abstract. Presented research was directed to effective signal recovery
problem for computer-aided medical diagnosis. Extracted and visualized
information covered in sensed data of imaging systems supports interpre-
tation according to ”second look” procedure. The integrated framework
of compressive sensing was used to optimize CT acute stroke diagno-
sis. Previously studied nonlinear approximation of the sparse signals in
adjusted dictionaries was extended with variational approach to extract
more precisely the content components. Proposed methodology adjusts
optimized fidelity norms and regularizing priors to semantic question of
image-based diagnosis. Preliminary experimental study was performed
to provide selected proof-of-concept results for designed CT hypodensity
extractors.

Keywords: computer-aided diagnosis, image recovery, compressed sens-
ing, variational image processing.

1 Introduction

Images are naturally compressible in a sense that the sorted magnitudes of the
transformed image coefficients decay quickly to zero according to the power law.
In other words, images are approximately sparse in transform atoms (i.e. elemen-
tary signal-representing templates). Consequently, image and signal processing
predominantly is based on sparse signal model founded on last decade achieve-
ments of harmonic analysis, approximation theory and wavelets. Sparse-Land has
emerged as one of the leading concepts in a wide range of applications: denoising,
restoration, feature extraction, detection, source separation, compression etc. [1].

Moreover, another competing or extending framework, i.e. variational image
processing succeeded in developing an explosively fast speed [2], exploits signal
sparsity as regularization prior. Rather than viewing images as being sparse in
some basis, they are viewed as minimizers to certain energy functionals includ-
ing adequate regularizers. The classic example is restoring a noisy image using
total-variation regularization [3]. Variational image processing treats an image
as a reality function whose sampling or sensing corresponds to the matrix form
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of a given discrete image. It enables use of useful concepts of functions, i.e. ge-
ometry, shapes, edges, smoothness etc., to achieve sub-pixel level accuracy in
high-resolution image processing.

Compressive sensing (CS) integrates sparse signal models with variational
image processing to reliably recover images acquired from just a few linear mea-
surements. In general, CS (sometimes called sparse recovery) exploits the spar-
sity and smoothness/regularity of an unknown signals to be sensed by relatively
small number of incoherent linear measurements selected a priori. Exhaustively
developed theory assures, under respective conditions of high incoherence of mea-
surement matrix, the signal recovery with relatively high resolution and enough
accuracy. Generally, image recovery is optimization procedure (where output is
a minimizer of certain functional constituting convex problem) with relaxation
of important sparsity prior in terms of more computationally tractable norms,
greedy alternatives and adaptively formulated semantic criteria of the accuracy.

Medical image recovery means diagnostic information recovered from data
acquired in medical imaging systems to be clearly percepted by experts making
correct interpretation. Sparse information recovery (generally based on image
acquisition, preprocessing to improve the quality, extraction of imaged content
possibly followed by automatic object/pattern recognition and even image in-
terpretation) assumes images being sparse in some basis/frames to separate and
reconstruct all necessary information to redundant image domain.

1.1 Acute Stroke Diagnosis

To verify presented concept of image content recovery for more effective diag-
nosis, two important applications of computer-aided diagnostic imaging were
considered. Recognition of ischemic stroke symptoms in CT images and detec-
tion of directional breast cancer lesions in mammograms.

Stroke as one of the most frequent and most devastating event among human
diseases is the first cause of permanent disability (over 40 years old) worldwide
and the third most frequent cause of death. The diagnosis of acute stroke it-
self is clinical with assistance from the imaging techniques which determine the
subtypes. The main method of instrumental stroke diagnosis is computed to-
mography (CT) widely applicable because of fast, accessible and inexpensive
examinations. CT differentiates very well hemorrhagic and ischemic forms of
stroke because fresh blood extravasated into brain parenchyma or pericerebral
spaces is visible at once as seen at Figure 1. Moreover, CT remains an invaluable
method for the detection of hemorrhagic complications, the intermediate signs
of necrosis and the emerging threat of uncontrolled intracranial pressure increase
followed by herniation and death.

However, there are serious problems with very early discovery of ischemic
stroke in CT. In the first hours of ischemic stroke image interpretation is often
ambiguous, indirect and not obvious. CT scans (without contrast enhancements;
specificity= 96%) during the first 24 hours after the onset in the most cases with
ischemic stroke is almost normal. Only direct finding enabling ischemia recog-
nition is the extent of hypodense tissue on baseline CT significantly facilitating
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Fig. 1. Ischemic stroke (left) and haemorrhagic stroke (right) manifestation on CT
scans

stroke diagnosis. However, such noticeable lowering of brain attenuation coeffi-
cients is often perceptually hidden because of unstable technological conditions
of image acquisition, distorted linearity, degraded contrast resolution, artifacts,
noise etc. Therefore, acute stroke diagnosis needs computerized support to ex-
tract reliable signs of stroke, first of all hypodensity.

This introductory paper with preliminary results presents carried out research
background as review of CS-based fundamental adjusted to CT stroke recovery
problem. Possible optimization of the image recovery with high enough accuracy
of diagnostic components was considered, according to reliable requirements of
concrete diagnostic imaging. We proposed use of variational approach (VA) to
recover separated components of information improving diagnosis of CT acute
stroke. Following such concept, we designed and verified fundamental principles
of computerized CT stroke diagnosis in order to separate the hypodensity as most
important, direct sign of ischemia. Proposed concepts extends image model of
sparsity in wavelets to variational recovering of hypodensity distribution.

Adaptation of the optimization criteria was directed to local minima of de-
noised image function (functional image model) to approximate a variation of
tissue density in CT brain images. The framework of compressive sensing was
used to verify several concepts of hypodensity extractors.

2 Framework of the Proposed Method

Let’s start from compressive sensing problem to explain fundamentals of pro-
posed method. The essential advantages of CS concept applied for medical image
recovery are as follows:

– reduced sensing cost (mostly radiation dose for CT because of reduced num-
ber of measurements),

– sensing based on sparsifying dictionaries (possible content-dependent adap-
tivity to selected information components),
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– image recovery based on variational approach (possibly content-oriented),
– image processing with the VA to approximate adaptively diagnostic

components.

2.1 Sensing with Sparse Image Models

Sparsity of unknown images is exploited to recover the image information from
relatively small number of linear measurements, significantly fewer than required
by Nyquist-Shannon theorem. Sparsity means that information contained in a
signal/image is much smaller than its effective bandwith. However, in most cases
of natural signals we have transform’s economical signal representation in some
dictionary (base, frame) Φ. Additional necessary condition is incoherence be-
tween sensing matrix (i.e. real imaging modality model) and sparsifying Φ. For
example noiselets Ξ [4] are useful to measure sparse signals because they have
pseudorandom dense representation and the signals compact in the wavelet do-
main are spread out in the noiselet domain.

Long term study has proved sparsity of CT brain images in wavelet or wavelet-
like bases [5]. Selected sparsyfing transforms were applied to optimize sparsity
with satisfactorily fidelity criterion. Further research was directed to other mul-
tiscale and local base/frame with nonseparable kernels in 2D/3D space were
verified to optimize approximately sparse representation as content sparse rep-
resentation. The lineal and nonlinear approximation procedures were used to
extract target function of informative components like nonzeros of highly sparse
representation. Unrepresented noise, artifacts and other uninformative signal
components were excluded from reconstructed image information. Selected re-
sults were presented in Section 4.

2.2 Problem to Be Solved

Ill-posed inverse problem of image recovery refers to noisy (η) sensing with full-
rank measurement matrix A ∈ R

M×N of

y = Ax(r) + η (1)

where compressed (e.g. low resolution or feature-oriented) or degraded measure-
ment vector y of M observations is used to recover x̃ with high enough resolution
N � M as reliable approximation of unknown real x(r) (possibly with infinitive
resolution physically but pragmatically limited to content clarity criteria). The
measurement matrix A is linear operator of underdetermined system having in-
finitely many solutions. In case of noiselet-based sensing of the signals sparse in
wavelet basis, we have A = ΞΦ. In order to estimated unique and well-defined
solution additional criteria are necessary. Moreover, such criteria could be fitted
to content model and specific characteristics of the images.



Adaptive Sparse Recovery 155

2.3 Criteria of the Solution

Inversion of the problem (1) is a variational minimization in the following adap-
tive form

x̃ = argmin
x

κ(x)F (x) + λ(x)P (x) (2)

with κ-weighted criterion of the fidelity F (x) to the observations (usually l2
norm-based) and λ-weighted prior P (x) ∈ R that determines regularity of the
solution. The prior is low for the image features one is interested in.

Important optimization metrics to assess the efficacy of recovering procedures
include: recovery accuracy, computational complexity (possible linear or convex
programing) and convergence speed. Fidelity criteria need to take into account
the highly structured features of natural/medical images and evident properties
of the human visual system (HVS).

Strictly convex minimized function guarantees a unique and computationally
tractable solution, what means that squared Euclidean norm l22 (i.e. measure
of energy) and l1 are preferable. However, highly desired in signal processing
is sparsity of the signals, especially for image recovery. It forces minimization
of pseudo-norm ‖x‖0 = #{i;xi 
= 0} what is classical problem of combinato-
rial search but generally NP-hard. Imposing certain matrix A conditioning, i.e.
incoherence and restricted isometry property (RIP), convex optimization with
l1 or simple greedy algorithms give the sparsest solution of l0-based optimiza-
tion. Other way of problem relaxation is solving lp-minimizing problem where
‖x‖p =

∑
i

(|xi|p
)1/p but every choice 0 < p < 1 gives a concave functional [6]

Fidelity criteria are mostly designed with l2 norm primarily but other norm
are possible as follows

– typically least squares (LS), i.e. squared l2 as ‖y−Ax‖22; integrated with TV
(total variation) prior is preferable for images corrupted by Gaussian noise
with satisfactory edges preserving;

– recursive last squares (RLS) that minimizes weighted linear least squares
cost function assuming deterministic signal model, able e.g. to estimate con-
sistently the sparse signal’s support and its nonzero entries [7];

– mean square error (MSE) or l2 in the constrained form ‖y−Ax‖p ≤ τ [8, 9];
– l1-norm, used with TV prior is useful for removing impulsive noise [10, 11];
– general lp fidelity constraint, i.e. ‖y−Ax‖p ≤ τ where p ≥ 1 and τ is chosen

depending on the noise pth moment E(‖η‖p); for uniform quantization noise,
p = ∞ is good choice [12];

– Dantzig selector [13] that uses indication function of ‖A∗(y −Ax)‖∞ ≤ τ ,
where A∗ is adjoint of A; the Dantzig selector is robust against measurement
errors and more adaptive in a sense of fidelity criteria - with l1 prior can be
recast as a linear program.

Fundamental priors considered to recover medical image are as follows:

– based on derivatives of the image to impose some smoothness on the recov-
ered image:
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• the Sobolev prior which is l2 norm of the gradient approximated with a
finite difference scheme P (x) =

∑
i ‖� xi‖2; it favors uniformly smooth

images;
• the total variation (TV) prior as P (x) =

∑
i ‖ � xi‖1; it assumes that

x ∈ l1(Ω) (Ω is image domain) and favors piecewise constant images
with edge discontinuities of small perimeters [3]; the TV functional is
non-differentiable but still convex and causes sparsity of the solution
[14];

• the weighted TV model (WTV) with certain discretization of TV with
anisotropic weights defined for 5×5 support of 4/8/16 pixel neighborhood
[15];

– sparsity prior while #(supx) ≤ K � M with unknown support distribution;
NP_hard solution requires relaxation
• to convex l1 minimization (i.e. Laplacian prior) with computationally

tractable implementations;
• to lp : 0 < p < 1 minimization;
• in a form of greedy algorithms.

– sparsifying decompositions that produce sparse representation of natural sig-
nals; it is based on a reliable theory of sparse signal models what means that
the signals can be well-approximated as a linear combination of only a few
elements (vectors) from adaptively adjusted basis or dictionary; we have
• orthogonal/biorthogonal bases of tensor wavelets, redundant curvelets

with nonseparable kernels, contourlets, complex wavelets etc.;
• SVD, KLT and others signular/independent vector extractors [16].

2.4 Recovery Algorithms

The l1 minimization is fundamental approach to recover a sparse signal from
limited number of measurements. It provides a useful framework to perform
accurate recovery by means of convex optimization problems. Stable signal re-
covery in noise is possible under a variety of common noise models, e.g. uniformly
bounded noise or Gaussian noise. Both the RIP and coherence are useful to es-
tablish performance guarantees in noise. l1 -based relaxation of l0 pseudonorm
is realized in standard decoder of basis pursuit (BP) with LS fidelity criterion
for noiseless and noisy data (well known realizations of lasso or extended with
fidelity criteria of the Dantzig selector).

Moreover, there is a variety of greedy methods to recover sparse signals.
Greedy algorithms abandons exhaustive search for a series of locally optimal
single-term updates. They rely on iterative approximation of the signal nonze-
ros (i.e. signal support with refined coefficients), either iterative identifying the
support until a convergence criterion is fulfilled or subsequent signal estima-
tion to provide matching to the measured data. Both essential approaches are
applied, greedy pursuits (e.g. Orthogonal Matching Pursuit - OMP with itera-
tively adding new components that are estimated to be nonzeros) and greedy
thresholding algorithms with element pruning steps (nonzero elements are re-
moved iteratively from further analysis, e.g. the Iterative Hard Thresholding -
IHT).
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In greedy pursuit, starting from x(0) = 0 a k-term aproximant x(k) is it-
eratively constructed by providing a set of active columns of A successively
expanded at each next stage. The column selected at successive stage maxi-
mally reduces the residual l2 error in approximating y from the currently active
columns. An important example of such greedy strategy is the OMP, where the
approximation for x is updated by projecting y orthogonally onto the columns
of A representing current support estimate.

The Compressive Sampling Matching Matching Pursuit (CoSaMP) [17] keeps
the nonzero support and either adds and remove alements in each iteration;
new x estimate is restricted to new smaller support. Alternative approach for
recovery of sparse signals is combinatorial algorithms [18].

2.5 Medical Information Recovery

Image edges, ridges and textures of specific ROI (Region of Interests) or denoised
approximation signal (stroke case) tendency play decisive role in content-oriented
medical image recovery. Accurate visual perception of extracted diagnostic in-
formation (lesion symptoms, signatures or any specific features experienced as
direct or indirect sign of pathology) is key condition of correct image inter-
pretation. Thus separation and noticeable extraction of diagnostic components
significantly improves medical image recovery.

Instead of local image filtering or transform coefficient thresholding, one can
use variational processing embedded in optimization procedure of semantic im-
age recovery. Limited number of measurements in CS scheme adequately models
acquisition limitations of real imaging systems with respect to potentially con-
tinues, noiseless image model as reliable function of interests. Random matrices
simulating acquisition process enable modeling of acquisition limitations due
to radiation dose, time and resolution-limits, movement and physical artifacts,
technological noise, unstable detector sensitivity and contrast etc. Weighted pri-
ors of the iterative recovery are important tool to control semantic recovery of
diagnostically improved medical images.

Adaptiveness of the recovery was mainly concentrated on models of sparse,
locally limited signal segments of interests able to cope with the space-varying
context; instead of an access to the whole sensed data to compute the solution,
only local data are used to estimate adaptively and locally sparse solution [19].

3 Proposed Method

Consequently, the design of adaptive image recovery was formulated according
to the following adaptive optimization procedure

x̃ = arg min
x,c(·)

κ(x)‖y −Ax‖p + μ(x)‖Φx‖1 + λ(x)TV (x) (3)

with matrix Φ sparsifying signal x and three signal-dependent criteria of adapted
fidelity with priors of sparsity and smoothness represented by functional vector
c(·) = [κ(·), μ(·), λ(·)].
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The fidelity metric ‖y−Ax‖p should highly correlate to image accuracy for di-
agnostic and clinical procedures. First of all the specificity includes emphasized
regions of interests or selected image components, e.g. high frequency repre-
sentatives (e.g. signatures of breast cancer in mammograms) or local intensity
maxima/minima (stroke case). Image fidelity criterion truncated to extracted
a priori or a posteriori information was considered to be adaptive according to
specific medical imaging problem (formal semantic model).

Furthermore, instead of fixed prior, the regularization could be enhanced by
using a family of weighted prior model P (x)(μ,λ) adapted to l1 and TV speci-
ficity because of image edge, intensity and texture distribution related to con-
tent and diagnostic significance. Weighting parameters should be adapted to the
noise level and reliability of estimated image model. The possible integration of
sparsity estimate (l1-like or greedy iteration) with TV smoothness prior (e.g.
matched to 2D, 3D context models and edge specificity) and adjusted fidelity
of reconstruction to optimize image recovery was studied. Initial results of such
optimization realized in preliminary study were presented.

Adaptive recovery of diagnostic image content is based on two fundamental
assumptions:

a) as accurate as possible basic iterative image reconstruction according to
respectively selected fidelity criterion and priors (a priori adaptation),

b) semantic model of extracted information (a posteriori adaptation).

The following subsections shortly characterized possible realizations of the
above general concept, adjusted to specificity of CT stroke diagnosis.

3.1 General Scheme of Extractors

General scheme of CT stroke extractors proposed in [5] includes: -image pre-
processing to improve the quality, -initial analysis to select regions of interests
susceptible to stroke hypodensity, -approximation of hypodensity image compo-
nent, -optimization of visualized form of pathology extraction. Presented study
concentrates only on approximation of hypodensity component. The following
extractors were realized and compared in exemplar experiments.

Nonlinear Approximation in Sparsifying Dictionaries. Such concept was
realized in our previous study with adjusted bases of orthogonal/biorthogonal
wavelets, Fourier transform (FT) and discrete cosine transform (DCT, and block
version BDCT), and frames of curvelets, contourlets, surflets, shearlets and com-
plex wavelets (CWT). Nonlinear approximation of decaying magnitudes of trans-
form coefficients orders hypodensity among small set of the highest magnitudes.
But the effects significantly depends on the matched dictionary.
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VA-Based Image Approximation. Variational approximation was realized
according to global minimization of anisotropically discretized TV with weighted
fidelity term as follows

x̃ = argmin
x

κ(x)‖x(r) −Ax‖1 + TV (x) (4)

where κ(x) was optimized with combinatorial approach using simple criterion
of maximized change of density variation estimate of ischemic region relate to
normal region.

Basic on algorithms presented in [20], different schemes of fidelity weighting
to strengthen hypodensity extraction was verified. The weights were estimated
as normalized factors of image intensity distribution or thresholded indicator of
significant or insignificant areas.

CS-Based Image Recovery. This hypodensity extractor extends the opti-
mization procedure according to (4) with two elements:

– sparsity prior of minimized ‖Φx‖1 with adjusted wavelet orthogonal base
of coiflets with near symmetric wavelet functions and 12-tap filter banks;
second-order cone program (SOCP) with a generic log-barrier algorithm
(with Newton solver) was used as implementation1;

– possible reduction of sensed data to verify possible measurement procedure
limited to content-oriented sparsity of the images; however the required so-
lution was possible adaptive concentration of the measurements to region (or
component) of interests, only pseudo-random noiselets were verified with 1
to 10 reduction of the number of sensed data.

Therefore, realized concept of the image recovery with approximated hypo-
density was as follows:

a) data sensing with reduced number of measurements M � N ; precisely, we
used M = N/10 in the experiments;

b) initial approximation of sensed data vector with Conjugate Gradients solver
[21] (alternatively, additional fast reconstruction with Dantzig selector or
CoSaMP were verified);

c) image recovery with enhanced hypodensity according to the following proce-
dure: main iterative loop of l1 sparsity prior with Dantzig selector (i.e. ‖ ·‖∞
fidelity term) and recast as linear program (or alternatively log-barrier with
LS fidelity term)
– solving the Newton systems via the Conjugate Gradients;
– embedded VA-based emphasize of hypodensity (4) where κ(x) are nor-

malized intensities of successively recovered image;
d) final VA-based approximation of hypodensity component where κ(x) is a

thresholded vector of recovered intensity distribution; adaptive histogram-
based extraction of hypodense intensity range is required.

1 http://users.ece.gatech.edu/~justin/l1magic/

http://users.ece.gatech.edu/~justin/l1magic/
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Because of weighted fidelity in the variational procedure, sparsity prior was
weighted having regard to energy concentrated on selected image component.
Sparsity adjusted to smoothing pattern controls the weights of fidelity in VA
(we have greedy, integrated feedback in iterated recovery procedure). Final re-
covery was the integration of required component approximation with iterated
reconstruction according to controlled sparsity and fidelity constraints.

4 Preliminary Results

Exemplar, representative CT image with perceptible ischemia in the right hemi-
sphere of the brain was used to characterize essential processing effects for three
proposed hypodensity extractors. The preliminary results are presented on the
following Figures: 2, 3 and 4, respectively.

Fig. 2. Nonlinear approximation applied to exemplar, representative CT image of is-
chemic stroke (original is left image in Fig. 3); first row contains the results of recon-
struction with 10% coefficients of wavelets, FT, DCT, BDCT, contourlets and CWT;
the second row contains the reconstructions with 0.07% coefficients of the same trans-
forms, respectively

Fig. 3. VA-based image approximation applied to exemplar, representative CT image
of ischemic stroke; from left to right the effects of hypodenstity extraction with different
weights of fidelity term
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Fig. 4. CS-based image recovery with iterated VA approximation applied to exemplar,
representative CT image of ischemic stroke (original is left image in Fig. 3); from left
to right the effects of hypodenstity extraction with different combinations of integrated
fidelity, sparsity and smoothness constraints

Presented sample of the effects is representative of the preliminary experi-
ments conducted on a larger group of images. At lower level of the coefficient
reduction (first raw in Figure 2), nonlinear approximation method allows image
denoising (especially for CWT), but the perception enhancement of hypodense
area is relatively insignificant. With very sparse image representation of the
biggest coefficients, the overall characteristics of reconstructed images is erased,
the details are lost. Moreover, distinctly highlighted the area of ischemia (espe-
cially for wavelets, BDCT and contourlets) is strongly distorted, the resulting
image is blurred, artificial, distant from the original.

In the case of the VA-based approximation, the reconstructed images preserve
the details, wherein the enhancement of hypodense area is more significant, with
clearly better perception. But at very strong approximation, only the outlines of
the structures are reconstructed, the details are lost and image is percepted as
artificial. However, smooth shape of ischemic area is reconstructed with a higher
accuracy, more precisely, suggestively.

The concept of CS-based image recovery results in clearly exposed areas of
tissue with reduced density, maintaining their shape with high precision of the
details. Other unimportant components of content disappeared, and the images
seem much better emphasize the hypodense nature of the area located in the
right hemisphere of the brain. The essential features of this area appear to be
significantly enhanced, their perception is definitely the best.

The advantages of the CS-based method was verified in selected several cases
of early stroke. CT scans of early examinations with the lack of stroke symp-
toms and follow-up CT studies with convincing symptoms of hypodensity were
processed and ad hoc visualized - see the examples in Figure 5. The pronounced
extraction of the reduced density tissue was observed in each of the cases. Such
confirmation of stroke occurrence at acute stage of symptom onset is really useful
aid of stroke diagnosis. However, the method requires optimized visualization of
extraction effects. Additionally, initial segmentation that limits effectively the ar-
eas of stroke susceptibility can give more explicit results to provide high enough
specificity of such aided diagnosis.
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Fig. 5. The results of verification tests for CS-based image recovery; the odd rows
contain examples of chosen CT slices – three stroke couples of acute diagnosis and
follow-up with confirmed symptom onset; the even raws show their respective recovery
with clearly extracted hypodensity, asymmetrically distributed around the axis of the
brain, both for imperceptible early symptoms and late confirmations
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5 Conclusions

The advantage of image processing and recovery based on integrated CS frame-
work is possibility of more complex, deeper or ”genetic” signal analysis to pre-
cisely select and reconstruct hidden components of high diagnostic importance.
More degrees of freedom and possible forming of image components step-by-step,
with adjusted adaptive regularization give opportunity to extract the hypoden-
sity even in very difficult cases. However, design and optimization of such flex-
ible model of whole image recovery is neither convex not numerically tractable
problem. Instead of that we have heuristic integration problem of numerically
tractable partial subproblems.

Future research will primarily focus on the specific, fast and convergent im-
plementation of the outlined concepts. Especially, medical image applications
tend toward perfected adaptation of optimization terms according to semantic
models of diagnostic images.
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Abstract. This paper presents a curvelet-based approach on the image
denoising in magnetic resonance imaging (MRI). The method is worth of
examination, because it has not been tested so far in case of MRI. The
results show how the Digital Curvelet Transform method can be used
for the noise reduction. The analysis of the Signal to Noise Ratio (SNR),
Normal to Mean value (NM) and edge detection quality is applied. The
Digital Curvelet Transform application provides additional possibilities
like image compression and image fusion, which could be also useful in
the MRI application.

Keywords: curvelet transform, magnetic resonance imaging, noise re-
duction, edge detection.

1 Introduction

Noise is the unwanted, but integral part of the MRI images, impossible to com-
pletely remove. In case of MRI technique, there are 3 basic types of noise, depend-
ing on the acquisitions, the physical properties of the sample and methodology
for image processing. The image might be noised during its registration and
postprocessing as well.

Exact selection of image acquisition terms is also extremely important because
of the procedure duration (acquisition time). The magnetic field induction value
is one of the most important factors determining the obtained image quality —
the lower this value is, the higher noise is observed. In case of the low-field scan-
ners (magnetic field induction lower than 0.35 T), obtaining images comparable
with images from high-field scanners requires for example larger number of aver-
ages, thicker slices, the smaller size of the matrix, or coil frequency bandwidth.
It results in significantly prolonged acquisition time (even up to an hour for 8
averages) and decreasing image diagnostic value in some cases. Therefore, for
low-field scanners it is so important to select the best noise reducing method,
allowing to obtain images with high quality and short acquisition time as well.

The most reliable and common in use parameter dedicated to noise mea-
surement is Signal to Noise Ratio (SNR). It is relation between average signal
measured in the sample homogeneous region and the standard deviation of the
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background signal [1]. This parameter is also used to evaluate and compare MRI
tomography scanners.

Finding the best way to increase Signal to Noise Ratio in the MRI is a fun-
damental part of the image quality improvement. Its value can be increased not
only by choosing appropriate image acquisition parameters, but also by using
programming methods: from simple averaging algorithms to the modern spatial-
frequency transforms [2]. Among the broad spectrum of postprocessing methods,
the numerical methods seem to be the most useful.

The Digital Curvelet Transform (DCT) is multiresolution method, allowing
sparse representation of signal and images. It was proposed by E. Candes and
D. Donoho [3] and it has never been tested in MRI denoising. However it has a
wide range of applications among others fields of science, like signal and image
processing, seismic surveys, modeling of fluid mechanics or even modeling the
dynamics and the state of the combustion of pulverized coal [4]. Image denoising
was applied for the first time in 2002, by two research teams: J.L. Starck et al. [4]
and E. Candes et al. [7]. Earlier publications about DCT applications reported
encouraging results, therefore its verification in MRI is worth of interest [5].

For the purpose of this paper the method was implemented in the MATLAB
environment, using Curvelab package [11]. The main goal of this publication
is to show and rate the results of the DCT methodology in MRI, taking into
consideration the chosen image quality criteria like: visual evaluation, Signal to
Noise Ratio (SNR), degree of keeping the edges and typical structures, degree
of smoothing the image. Research was performed using fantom and diagnostic
images.

2 Digital Curvelet Transform

There are two algorithms based on idea of the curvelet transformation: Curvelet-
99 (proposed in 1999) and Curvelet-2nd generation (proposed in 2005 and used in
this publication). The method is a development of the discrete wavelet transform
(new additional orientation parameter is introduced), enriched using so called
heterogeneous scaling law which allows better edge representation (contrast and
time-frequency resolution increase) than in case of wavelet transform application.
Because of its very promising results, curvelet transform methodology is still in
development [6].

2.1 Algorithm Description

The idea of the transform is the decomposition (segmentation) of image using
a wavelet transform, then the band analysis using Ridgelet Transform [2]. The
image can be analyzed by parts using frequency windows with different sizes.

DCT method has four basic steps:

1. Subband decomposition
Image is decomposed by application of high-pass and low-pass frequency fil-
tration. Each received band (subimage) contains details image representing
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specific frequencies. All frequencies are stored in form of the transform co-
efficients.

2. Partitioning and smoothing
Information contained in each pixel is divided between all bands (subimages).
The number of coefficients increases.

3. Renormalisation
All subimages are divided into diadic, unit squares.

4. Ridgelet Transform
The algorithm of the edge detection is applied in each square.

Application of Inverse Digital Curvelet Transform (IDCT) based on reversing
these steps yields input image with reduced noise. Figure 1 illustrates consecutive
steps of the DCT algorithm.

Fig. 1. Consecutive steps of the Digital Curvelet Transform algorithm

2.2 Implementation

Curvelab package can be downloaded (for the academic purpose) from the site
http://www.curvelet.org [11]. It is a set of programs and procedures, imple-
mented in CPP for MATLAB environment, allowing signal denoising in 1D, 2D
or even 3D.

http://www.curvelet.org
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There are 2 versions of the noise removal algorithm that differ in the type of
sampling grid :

– wrapping-based method (applied in this publication),
– unequally-spaced Fast Fourier Transform-based (USFFT) method.

In wrapping-based method (standard approach), image is treated as a set of
146 matrices containing transform coefficients. It is possible to consider only the
chosen matrix, representing coefficients of interest.

Each matrix corresponds to different level of resolution (scale parameter) and
orientation (matrix 1 means the lowest level of resolution, 146 - the highest one).
Matrices 2-145 represent the coefficients with different orientation parameter
(horizontal details are described in matrices which are placed near to 0◦ line,
vertical details - near to 90◦ line). Between the lines of 0◦ and 90◦ there are
matrices describing the oblique details (mixed components). All coefficients are
geometrical symmetric relating to the image center (matrix number 1). Figure 2
shows how to encode information using wrapping-based algorithm.

Denoising effect is achieved by the hard thresholding of the curvelet transform
coefficients. The threshold point is set as 3δij (except of the highest scale where
threshold point is 4δij), where 4δij means the standard deviation of the noise level
for the scale orientation i, j, calculated as the norm of each curvelet coefficient.

Fig. 2. Image matrices numbering and arrangement in wrapping-based method
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3 Results

All images were obtained on low-field MR tomography system (Cirrus Open
0.2T) created and installed in AGH-University of Science and Technology. From
the series of 30 images registered with different acquisition parameters, 2 groups
of images were selected [10]:

1. characterized by low SNR value,
2. characterized by strong darkening (low visual quality).

Table 1 contains the results of the noise removing filtration applied to images
with the low SNR value. The greatest improvement was noted for most dark
images, mainly due to a strong decrease of the background standard deviation
(SD).

Table 1. Image denoising effect after DCT implementation for the low SNR images

Image No SNR before DCT filtration SNR after DCT filtration
1 4.344 (± 0.24) 95.449 (± 4.775)
10 15.752 (± 0.798) 79.848 (± 3.902)
12 8.29 (± 0.422) 50.045 (± 2.502)
18 9.589 (± 0.608) 18.604 (± 0.985)
19 25.354 (± 1.27) 41.441 (± 2.072)

The same kind of analysis was applied for the separate group of darkened
images (showed in Table 2), which are difficult to visual evaluation. In all cases,
images were slightly brightened and their background standard deviation was
decreased at the same time (image homogenous was increased, therefore SNR
value increased rapidly as well). All images were also smoothed, which is typical
for most of denoising algorithms.

Table 2. Image denoising effect after DCT applied for the darkened images

Image No SNR before DCT filtration SNR after DCT filtration
9 4.895 (± 0.328) 61.295 (± 3.064)
24 21.047 (± 1.058) 46.999 (± 2.351)
25 27.238 (± 1.365) 63.741 (± 3.187)

3.1 Normal Mean Value

The Normal Mean value (NM) is a very useful parameter for noise reduction
evaluation. It is determined for homogenous image area without any edges. It
defines a relation between the variance value of image background after and
before filtration:

NM =
μfiltr

μoriginal
(1)
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where:

μfiltr - a variance of the background image after the filtration,
μoriginal - a variance of the background original image (before the filtration)

In Table 3 the NM values for chosen images were shown.

Table 3. NM values for chosen filtered images

Image No NM value
1 1.65
2 1.05
3 1.11
7 1.19
8 1.15
9 1.14
10 1.21
11 1.09
12 1.12
19 1.11
24 1.14
25 1.13

In case of NM value greater than 1, it indicates the degree of brightening
the image after filtration. Higher value means the greater image changes. The
highest value was obtained for the NM image with initially the biggest darkening
and the lowest SNR value (image number 1).

3.2 Edge and Line Detection

Detection of edges is extremely important part of image quality improvement
In this procedure some characteristics important for the image diagnostic utility
should be taken into consideration. The most important is the lack of the false
edges, detected because of the presence of noise, which must be reduced. The
image analysis of the keeping the edges after denoising filtration was performed,
using 6 types of filters (Canny, Zero-crossing, Laplacian of Gaussian (LoG),
Prewitt, Roberts, Sobel) [9]. Image analysis after filtration allowed to divide the
filters into 2 groups:

– Methods detecting false edges (due to noise presence), decreasing the read-
ability and usefulness of diagnostic images (Canny, Zero-crossing and Lapla-
cian of Gaussian (LoG) filters),

– Methods do not detection noise-generated, false edges (Prewitt, Roberts and
Sobel filters)

Comparison of the results of selected edge detection filters before and after
DCT filtration is given in Figure 3, 4 and 5. Evaluation of the DCT effectiveness
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was based on preservation of the existing edges and false-ones discrimination.
It is shown that in each case number of false edges was reduced after image
denoising (DCT filtration). Best results were obtained for the zero-crossing and
LoG filters. Although in all cases the results reflect the course of the edges
accurately.

(a) (b)

Fig. 3. Edge detection in fantom image before (a) and after (b) DCT denoising filtra-
tion; Canny edge detection algorithm

(a) (b)

Fig. 4. Edge detection in fantom image before (a) and after (b) DCT denoising filtra-
tion; zero-crossing edge detection algorithm
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(a) (b)

Fig. 5. Edge detection in fantom image before (a) and after (b) DCT denoising filtra-
tion; Laplacian of Gaussian (LoG) edge detection algorithm

3.3 Study of Rabbit Bone Implant

The effectiveness of the method was also tested on noised images presenting
implant assimilation in rabbit femur. From a series of images, 4 was chosen
based on their low visual quality. All images were recorded with the following
acquisition parameters:

– magnetic field induction: 0.2 T,
– 4 averaging,
– slice thickness: 3mm,
– matrix dimension: 192x192,
– FOV: 70x70 (saggital plane), 70x50 (transverse plane).

The results are shown in Table 4. In all cases SNR increased several times.
Visual quality was improved as well, by a strong reduction of the background
signal standard deviation.

Table 4. SNR value comparison before and after image denoising filtering - rabbit
bone implant

Image No SNR before DCT filtration SNR after DCT filtration
1 28.52 (± 1.83) 62.97 (± 3.78)
2 32.09 (± 1.97) 83.96 (± 4.51)
3 44.49 (± 2.27) 89.75 (± 4.72)
4 36.27 (± 2.03) 87.11 (± 4.6)
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4 Summary and Conclusions

Analysis of the Digital Curvelet Transform as the method of image denoising in
MRI based on increasing the SNR and keeping real edges gave very good results.
A major advantage of this method is the low computational complexity and high
contrast of processed images.

Shown methodology has a great application potential in the analysis of images
from low-field MRI systems. The obtained results allow to conclude that the use
of this technique in noise reduction applications is an attractive alternative to
repeating the measurement sequence, and that is why it permits to reduce the
acquisition time while maintaining high-quality images.

The presented results also prove that the application of the DCT method to
improve MRI images is very useful although it needs further studies.

Acknowledgement. The Authors express their gratitude to MSc.B. Proniewski
and MSc. K. Klodowski for the fantom images.
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Abstract. The main goal of this paper is to describe universal software
framework and its improvements to represent region of interest (ROI)
which can be used for precise medical image segmentation. Software reads
different image modalities and later applies registration method to align
two or more datasets. This article also presents extension for basic seg-
mentation enriching it with Rough sets theory and c-means fuzzy logic
application to manage uncertain and vague data. Rough sets method
introduces two region of interest for current segmentation: positive one
where voxels are certainly included in the ROI and boundary region in
which voxels possibly belong to ROI. Such concept description is very
valuable in early medical diagnosis especially in oncological treatment.
Along with Rough sets algorithm c-means fuzzy logic algorithm has been
implemented for clustering data in MRI images.

Keywords: image registration methods, medical image segmentation,
Rough sets theory, fuzzy logic clustering.

1 Medical Imaging

Medical image analysis and segmentation algorithms have evolved in the past
few years. With the advancement of image processing methods and higher de-
vice’s precision medical diagnosis can be significantly supported. In the literature
one can find many examples of medical image applications: from tumor and soft
tissue segmentation in various types to diagnostic tools using pattern recogni-
tion and artificial intelligence. Other domain which has been recently developed
is image-guided surgery systems used for both: virtual planning and surgery
control.

Algorithms described in this article operates on different medical images such
as CT, MRI, PET and many others which have been worked out in the last 50
years. Each of the aforementioned modalities provides different information and
are valuable for specific treatment. Due to these fact it is required to provide
universal framework which can be used in many medical image applications.
Basic binary threshold segmentation method has been enriched with Rough sets
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processing module and c-means fuzzy logic clustering algorithm, which gives
good results comparing to other algorithms.

The organization of this paper is as follows: Section 2 describes main medical
image processing issues which we have to deal with, Section 3 indicates how
Rough sets theory and c-means clustering (two the most promising and very in-
teresting algorithm for medical images) can be used in the image segmentation.
In Section 4 one can find software description developed for testing and evalua-
tion and in 5 example results are shown with discussion. Whole paper is finished
in Section 6 with proposal for future improvements and final conclusions.

2 Medical Imaging Processing Issues

Image registration process is very important in medical imaging. It allows to
compare and align images acquired at different time or very often in different
modalities. One can wonder if this is really required while we can asses images by
looking at them independently. This is crucial part because each image modality
unveils different information. Let’s consider CT and MRI taken from the same
patient. The first one illustrates bone tissues while on the second soft tissue are
better visible. Aligning these datasets especially in oncological imaging provides
valuable information in the comparison mode. Surgeon can asses not only how
cancer affects bone tissue, but additionally how soft tissues are degenerated in
the tumor vicinity. Repeated acquisitions of image data from the same patient
is a common approach and is used to compare pre- and post-treatment changes,
clinical follow-up, evaluation of the treatment, and serial studies [1].

It should be emphasized that image registration procedure is not a trivial
task especially between different modalities. Very often images are acquired at
different time so it is almost impossible that these two datasets will be spatially
aligned due to body movements or different device settings. What it more, images
can differ with image dimension, pixel resolution and intensities. There are many
different registration methods and it is hard to describe all of them. For more de-
tailed and comprehensive description of registration methods review [2–4]. Each
registration algorithm strongly depends on its medical application and require-
ments. The most commonly used registration methods are: manual registration,
external point landmarks registration (skin markers, dental impressions), sur-
face Landmark registration, voxel intensity-based registration and finally hybrid
approach [5, 6].

Apart from the registration aspect, another very important issue to recon-
sider is connected with image interpolation. Due to calculated transformation
(rotation and translation) we have to determine pixel intensity at point c from
a set of pixels surrounding it. It should be noted that depending on the ap-
plication a compromise between time complexity and interpolation accuracy is
crucial. In the volumetric images each pixel coordinate is defined by integer
values: (X,Y, Z), but after transformation pixel’s coordinates can be expressed
as non-integer values (x, y, z) so interpolation is needed to set pixel intensity
in the exact integer position. In the literature one can find many interpolation
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algorithms, but in medical images one of the most commonly used are: nearest
neighbor, bicubic and trilinear interpolation and sinc interpolation [7].

3 Rough Sets and C-Means Fuzzy Logic Algorithms in
Image Segmentation

3.1 Rough Sets Application in Medical Images

Rough sets theory (RST) described by Pawlak in the early 1980’s can be easily
applied to image processing algorithms. This theory is based on the object’s
discernibility and can handle uncertainty which is often phenomenon in medi-
cal images due to noise and poor acquisition quality [8, 9]. Additionally, RST
can reduce feature space by introducing granular knowledge. For example, CT
bone is described by group of pixel intensities so the whole bone class in RST
can be reduced to one, representative pixel intensity. Another important advan-
tage of RST for image processing comes with approximations which can be used
straightforward because whole methodology is directly computed from the input
data without strong a priori reasoning. Using pixel intensity or shapes measure
it is quite easily to define lower and upper approximations of a given concept.
Especially, this approach is very valuable in a direct representation of the region
of interest (ROI), when it is very hard to assign to one concept a whole range of
noisy pixels in an interchangeable manner. Approximations, which can signifi-
cantly reduce pixel intensity variance, are desired in medical image segmentation
because single threshold value will not determine the exact ROI boundary. The
recent applications of RST involves segmentation of the heart on cardiovascu-
lar magnetic resonance [10], distinguishing different picture types of the central
nervous system and color image segmentation [11, 12] to name only the few.

To introduce RST let U be an universe of discourse and X be a given concept
as a subset of U . Over this we can define an equivalence relation R which divides
whole set U into subsets of categories U/R = {X1, X2, . . . , Xn}. Each Xn rep-
resents an equivalence class of R. In RST we introduce R∗-lower and R∗-upper
approximations of X and define it as:

R∗X = ∪{Y ∈ U/R|Y ⊆ X} (1)

R∗X = ∪{Y ∈ U/R|Y ∩X 
= ∅} (2)

RST uses three basic regions: positive, negative and the boundary region [13].
Positive one contains approximations which surely describe given concept X ,
while negative region has values that do not belong to the category X . Finally,
a boundary region has values that can possibly describe concept X . Using (1)
and (2) we can define RST region as follows:

PR(X) = R∗X (3)

NR(X) = R∗X (4)
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BR(X) = R∗X −R∗(X) (5)

Equations (3), (4) and (5) define basic notions in RST and are used in the
algorithm construction prepared in this article to describe segmentation ROI.
But, here arises the question how to decide if a given approximation should be
included in ROI when its value is close to the threshold. For example it could be
assigned in two ways: if an averaged intensity value from this granule is greater
than defined threshold or the number of pixel which intensity is greater than
threshold to other pixels from approximation is greater than one [10]. Another
important advantage of RST is than it can be defined on different features such as
pixel intensity, distance measure, shape or what is more interesting even various
approximations can be combined [14].

3.2 C-Means Fuzzy Logic Application in Medical Images

As described in Section 3.1, RST algorithm requires defining proper threshold
values. For basic tissue structures it is quite simple, but sometimes an additional
expert knowledge is required to find proper thresholds. Clustering algorithm is
something which can deal with this problem. In the past few years c-means fuzzy
logic clustering has been significantly developed. It can be used in many domains
from filtering and noise removal to finding non-overlapping clusters.

Fuzzy logic c-means (FCM) clustering algorithm was firstly implemented by
Dunn in 1973 and later improved by Bezdek in 1981. Since then, many improve-
ments and changes have been proposed [15–17]. In a general approach, FCM
works by minimizing cost function described as:

Jm =
N∑
i=1

C∑
j=1

um
ij ||xi − cj ||2, 1 ≤ m ≤ ∞ (6)

where: m defines the number of clusters, uij determines how pixel i belongs to the
claster j, and cj is a center point for the claster j. Algorithm works in iterations
when in each step coefficients uij , cj are updated according to equations (7), (8):

uij =
1∑c

k=1(
||xi−cj ||
||xi−ck|| )

2
m−1

(7)

cj =

∑N
i=1 u

m
ij · xi∑N

i=1 u
m
ij

(8)

In each iteration every pixel from image is assigned to a given cluster using
membership function from range < 0, 1 > [18]. It should be noted that the
same pixel can belong to few clusters with different values of the membership
coefficient. Additionally, each cluster center from one iteration to the next is
translated through whole image to find pixels with the highest similarity.
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4 Software Description

As a result of project realization an universal framework software was imple-
mented to assist diagnosis using medical images. Program allows to read various
image modalities provided in DICOM format which is a global standard for
medical image storing. Software uses two segmentation algorithms: Rough sets
and c-means fuzzy logic (according to author, two the most promising and very
effective methods). Rough sets theory is used to describe region of interest and
c-means fuzzy logic clustering can be used for finding non-overlapping pixel clus-
ters in the image or determining segmentation thresholds. Fig. 1 shows a general
flow of information in this system. Firstly, as a preprocessing step, Gauss fil-
tering is applied to remove noise and later CLAHE histogram equalization is
performed on each slice. CLAHE algorithm divides the image into regions and
performs histogram equalization independently to each part instead of the whole
image histogram equalization. This approach ensures that hidden features of the
image become more visible. Of course user can alter image display parameters
by changing window level and window width coefficients.

Fig. 1. General scheme of software information flow

4.1 Registration Method

Described application provides different modalities loading so a registration
method was required to compare images and segmentation results. This soft-
ware is strictly dedicated to experienced people having knowledge about med-
ical imaging and after consultations it was decided that fast algorithm with
manual modification is required. For examinations performed at different time
body movements occur making it almost impossible to match images. In such a
situation only a part of image should be registered (for example head without
shoulders from CT image). Due to these restrictions, manual registration was
implemented and whole process is divided into three stages:

1. landmark point definition and correction using 3D model and 2D slice pro-
jections (Axial, Sagittal, Frontal) for two images (example landmark point
selection was shown in Fig. 2),

2. 3D objects modifications by surface rotation and translation,
3. transformation matrix calculation and image generation.
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Fig. 2. Landmark point definition on corresponding image’s slices for CT (left side) and
MRI (right side); after determining landmark position on 3D models, 2D projections
are used for precise correction

In this method the basic assumption is that at least three corresponding points
are collected. Using these points an initial transformation is calculated and 3D
surfaces or 3D volumes are aligned. In the next step, 3D models are used for
final corrections. When 3D transformation is performed then FRE (Fiducial reg-
istration error) between corresponding landmark is calculated to indicate trans-
formation quality. From many performed tests it was noticeable that 5 to 7
characteristics points are sufficient to obtain satisfactory results.

4.2 Interpolation Method for Image Generation

New image can be generated using transformation matrix, but as described in
Section 2 an interpolation method is needed to prepare image without any arti-
facts. Higher order interpolation requires more memory and computational time
so in this paper bicubic interpolation was chosen because it gives consensus
between time and image quality. Actually, it is an implementation of Hermite
interpolation method while it allows to modify parameters and decide how neigh-
boring pixels affect final pixel intensity calculations.

4.3 Segmentation Algorithms Parameter Settings

When designing segmentation algorithms it is crucial to obey time requirements
and ensure that algorithm is easy to understand. Described software provides
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two segmentation methods which according to surgeons are very useful in med-
ical diagnosis. The first one is c-means fuzzy logic which is commonly used for
global segmentation and finding pixel clusters (for example brain matter in MRI
images). The second proposed approach is a Rough sets precise segmentation
showing exact ROI with additional boundary region possibly belonging to it.
Example segmentation result for these two method was presented in Fig. 3.

Fig. 3. Example of CT segmentation using proposed algorithms; image on the left is
processed by RST (red- positive region, green- boundary region); image on the right:
cluster colors and their Hounsfield values

In c-means fuzzy logic clustering method there is always a question how many
initial clusters must be chosen. Some literature sources propose that it should
be a fixed number with clusters locations selected randomly. In this software
two ways are possible: random clusters can be created or a genetic algorithm is
applied to find the optimal number of clusters. The main drawback of the first
solution involves clusters overlaps, so the second solution if preferred because
small clusters are removed by connecting them with greater and similar ones.

Genetic algorithm construction is quite simple and assumes that each allele
in the chromosome encodes an intensity value for a single cluster. Additionally,
new variable ’invalid’ was introduced to indicate that a certain cluster should
be excluded from calculations. At the beginning each chromosome is randomly
initialized with image pixel intensities. Single chromosome proposes clusteriza-
tion which is assessed by (6) with extra scaling factor. This coefficient is used to
prefer solutions with the smallest number of clusters. As a selection for the next
population Roulette Wheel method was chosen, and a single-point cross-over
with determined probability was used. Genetic algorithm parameters are shown
in Table 1.

In the precise Rough sets segmentation two measures were taken for calcu-
lating the final ROI representation: pixel intensity and distance. For the first
one whole intensity pixel range was split into 15 sets. In the second measure
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Table 1. Genetic algorithm parameter settings used in simulations

Population size 20
Representation Bit representation
Mutation 0.2
Mutation type Bit changing
Crossover ratio 0.8

2D image was divided horizontally and vertically into 20 segments creating 400
small grids for 512x512 CT scan image. After performing segmentation using
first measure the second stage is applied by visiting each small grid. From single
location 3 nearest grids falling into positive or boundary region are searched. If
the average distance between current grid and three others is less or equal to the
threshold value then this grid is also added to the ROI description. The second
phase allows to enlarge boundary region and can significantly deal with noisy
places in the image.

5 Results

To test proposed registration and segmentation algorithm 5 CT and 5 MRI real
datasets examinations were used. In this paper only example results are shown
to prove algorithm usefulness.

Each CT dataset was registered with 3, 5, 8 and 10 anatomical points on the
skull. To check registration accuracy FRE measure in mm was calculated from se-
lected landmarks. Additionally, other three points in the corresponding datasets
were chosen to calculate TRE (Target Registration Error) errors. Tests were
performed by medical expert who is able to determine anatomical landmarks
and is experienced in medical imaging area. Example results for two datasets
are collected in Table 2 where an average FRE plus TRE error is presented.
Each landmark point was firstly selected on 3D model and later its location was
adjusted using 2D slices. Apart from the registration accuracy, also time was
measured to check procedure efficiency (time devoted only for selecting exact
landmark position). Performed tests revealed that even exact landmark point
location cannot ensure proper matching matrix. To overcome this problem, user
can change calculated transformation by translating and rotating target 3D ob-
jects in the reference to source 3D model. In every step FRE and TRE errors are
updated to indicate if transformation is proper and gives better results. After
consultations, it was decided that 5-7 points are sufficient to obtain satisfactory
visual results. This is a compromise between time and proper image quality.

C-means fuzzy logic algorithm with genetic modification (G-FCM) was ap-
plied to 5 examinations and its performance was compared with k-Means and
basic FCM algorithm using predefined number of clusters. As a fitness measure
a validity index was used, introduced by Turi in [19]. Initial chromosome length
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Table 2. Registration accuracy and procedure time depending on different number of
landmark points for two examination sets

#Landmarks 3 5 8 10

#1 Accuracy [mm] 5.16 4.02 2.21 1.97
Time [s] 40 70 120 170

#2 Accuracy [mm] 6.19 5.02 2.59 2.46
Time [s] 55 83 154 200

for G-FCM was set to 10. Comparison results are shown in Table 3 where value
in the bracket in the last column indicates final number of clusters reduced from
starting 10 clusters. Table 3 shows 8 randomly chosen scans from 5 examinations.

Table 3. Segmentation results performance using Turi’s validity index for k-means,
basic FCM and genetic FCM algorithm for 8 randomly chosen scans from 5 MRI
examinations

Scan k-means FCM G-FCM
1 0.42 0.14 0.12 (4)
2 0.44 0.02 0.02 (5)
3 0.92 0.08 0.07 (3)
4 0.24 0.04 0.02 (6)
5 0.52 0.17 0.18 (2)
6 0.39 0.12 0.12 (8)
7 0.87 0.23 0.20 (7)
8 0.24 0.09 0.09 (4)

Each G-FCM segmentation result has been consulted with expert who as-
sessed visually each image. Algorithm has obtained satisfactory results and what
is more important it managed to reduce final number of clusters with no overlaps.

The last test checked Rough sets segmentation validity with a simple binary
threshold method. Segmentation surface in cm2 was used as a quality measure.
It should be noted that for Rough sets segmentation a positive and a boundary
region was treated as a ROI representation and used in measurements. Procedure
investigated bone tissue segmentation on CT scan by two algorithms: RST and
binary thresholding and it was done in two stages. The first one measured general
Rough sets performance on the same image versus binary thresholding. For the
second one each scan was filled with 3% Gaussian noise to check how RST
deals with uncertain data. Segmentation results for five CT examinations for 10
randomly chosen scans are presented in Table 4.

Proposed RST algorithm deals quite well with noisy images due to granu-
lar knowledge introduction. Additionally, usage of the second distance measure
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Table 4. Segmentation results obtained by binary threshold method versus Rough sets
segmentation for original images and noisy ones

Original image Noisy image
Scan Binary RST Binary RST

1 1.44 1.48 1.02 1.39
2 6.09 7.02 5.99 6.81
3 34.92 35.91 31.83 33.21
4 21.11 24.82 20.40 21.01
5 138.92 141.02 137.01 138.02
6 59.60 60.48 57.12 57.92
7 12.49 13.02 10.29 12.11
8 7.02 7.03 6.80 7.00
9 80.23 80.89 78.47 78.51
10 17.42 18.00 17.11 17.74

turned out to be a correct research direction because surrounding grids were
taken into account allowing to fill holes in the segmentation area. Even if pixel
intensity criteria is not fulfilled, it is a chance that distance measure will assign
this grid to ROI basing on other grids knowledge.

6 Conclusions

In this paper segmentation framework was described which can be used in medical
treatment and diagnosis. The main goalwas to implement universal application al-
lowing to read different medical images in DICOM format and provide advanced
tool for segmentation. Taking into account the nature of medical images due to
noise and resolution constraints sometimes it is very hard to perform proper seg-
mentation. To overcome this problem Rough sets theory and c-means fuzzy logic
were implemented to describe region of interest. Software was tested on images
(mainly CT and MRI) provided from M. Skłodowska-CurieMemorial Cancer Cen-
ter where proper segmentation region and ability to compare this region with CT
and MRI plays very crucial part in early diagnosis and oncological treatment. ROI
description using Rough sets theory has proved to be a proper direction and gives
satisfactory results, but of course more tests should be performed.

In the future it is assumed to develop registration method to support ap-
plication with non-rigid transformation. What is more, RST algorithm can be
enriched with more sophisticated measures, for example shape factor. In the next
step software will be tested with greater examination database not only basing
on CT and MRI.
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Abstract. We present in this paper the orginally formulated 3D recon-
struction algorithm for spiral cone-beam x-ray tomography. Proposed
here appraoch is based on the fully analytical formulation of the re-
construction problem. Moreover, we take into account the form of noise
present in x-ray measurement system at the formulation of this problem.
Therefore, this method belongs to the class of the statistical reconstruc-
tion methods. Thanks to this fact, this conception significantly improves
quality of the obtained after reconstruction images, what allows in con-
sequence for decreasing the x-ray dose reduction absorbed by a patient
during examination. The analytical roots of the proposed here algorithm
permits to decrease the complexity of the reconstruction problem in com-
parison with approaches based on the algebraic problem formulation. The
carried out computer simulations shown that presented here reconstruc-
tion algorithm outperforms conventional analytical methods regarding
the obtained image quality. The GPU realization of our algorithm shows
that this algorithm can be fully applicable for commercial use in the sense
of the obtained image quality and the time of reconstruction process.

Keywords: Image reconstruction from projections, x-ray computed to-
mography, statistical reconstruction algorithm.

1 Introduction

This paper is concerned with a medical imaging technique called computed to-
mography CT (more precisely, x-ray computed tomography), in particular with
the most important, for development of this technique, problem of the formula-
tion of image reconstruction from projections algorithms. Considering the meth-
ods used in medical computed tomography, it should be taken into account the
destructive influence of radiation used in this imaging technique. In the case of
x-ray CT (transmission tomography), it is x-ray radiation. It is indisputable that
this kind of radiation is harmful to health of the examinated patients, and this
a main reason why the research is undertaken to decrease the dose of radiation
received by these patients. Because the limitation of the intensity of x-ray radia-
tion during examination, and in consequence limitation of x-ray dose absorption)
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implies the deterioration of the obtained images, i.e. the decreasing of the low
contrast resolution parameter (one of the most important parameter describing
the quality of the scanner), this way is wrong. It is caused by a fact, that in this
matter rules the following relationship [1]:

SNR ∝
√
D, (1)

where: D is a dose of x-ray radiation absorbed by a patient.
It is relatively strong relationship beetween dose absorption by patient and

qality of the reconstructed image. It is clear that x-ray dose absorbed by a pa-
tient is proportional to the intensity of the x-ray used during an examination.
It is a barrier for the approach of the direct intensity limitation. And so was a
new idea to decrease this dose limiting used x-ray intensity without degradation
of reconstructed image using only an appropriately formulated reconstruction
algorithm. This kind of approach would allow to improve image quality with
high resolution and/or to decrease the absorbed dose of x-ray radiation by a
patient. Such conception found its exemplification in an idea of the statistical
image reconstruction algorithms, which take into account the probabilistic con-
ditions present in measurement systems in CT scanners, so as limit influence of
this noise on the obtained using carried out measurements images. So far, there
are some developed commercial solutions of such kind algorithms, for example
Adaptive Statistical Iterative Reconstruction (ASIR), Iterative Reconstruction
in Image Space (ARIS), Adaptive Iterative Dose Reduction (AIDR) or iDose
algorithms, which iteratively perform reconstruction processing decreasing noise
from obtained images. Details of those algorithms are not open, but their practi-
cal usefulness was confirmed by many published papers in radiological journals,
for example [2]. Completely different approach, called by authors MBIR (Model-
Based Iterative Reconstruction), is presented in such papers as [3, 4], where in
an analytical way is derived a statistical model of the measurement signals, and
based on its it is formulated an iterative reconstruction algorithm. Generally,
one can say that all most significant existing reconstruction algorithms belong
to two basic approaches, taking into account the methodology of the used in them
signal processing concepts: these are called the analytical methods, and those
are assigned to strategy called the algebraic reconstruction technique (ART).
We can guess that the implementation of the ART in the historical first CT
Haunsfield’s apparatus was caused for lack of alternative at that time. In text
generations of CT systems were used only reconstruction algorithms based on
analytical methodology. It is clear when we take into account the huge sizes of
matrices appeared in the algebraic reconstruction problem, and caused by this
fact the calculation complexity of reconstruction method based on this methodol-
ogy. The analytical methodology simplifies drastically the number of neccessary
calculation and in this way is more appealing. Afterwards, the algebraic ap-
proach was taken into consideration (see e.g. [3, 5]) for design of the statistical
reconstruction algorithms because it allows for accurate modelling of the statis-
tics of projection data and it helps to avoid most of distortion caused by them.
This conception was a background to establish a commercial solution called the



Ultrafast Iterative Model-Based Statistical 3D Reconstruction Algorithm 189

Veo in 2013. Presented in those reconstruction idea is based on the maximum
a posteriori probability (MAP) estimation approach. That application of the
algebraic reconstruction technique has some significant technical difficulties at
practical realization, namely: in the case of algorithms for 3D spiral cone-beam
scanners, it is complicated to establish the coefficients of forward model for ART
at this geometry of scanner [5–7], and that methodology forces simultaneously
calculations for all voxels in range of reconstructed 3D image what makes the
reconstruction problem extremely complex.

We could avoid the mentioned above difficulties connected with using of ART
methodology using an analytical strategy of the reconstructed image processing.
We previously showed how to formulate the analytical reconstruction problem
consistent with the ML method for parallel geometry of scanner [8–10], for fan-
beams [11], and finally we proposed the scheme of reconstruction method for
the spiral cone-beam scanner [12]. In comparison with methods based on alge-
braic methodology, this analytical statistical 3D reconstruction algorithm has
some serious adventages. First of all, reconstruction process is perfored only in
one plane in 2D space, what significantly simplify the problem, and this way
every reconstruction process can be performed for every cross-section image sep-
arately. After this, it is possible to reconstruct whole 3D volume image from set
of the reconstructed before 2D images. Additionally, we use during reconstruc-
tion process the FFT what drastically decreases the time of a iteration during
reconstruction process. In this paper, we present an approach to the analytical
statistical reconstruction using methodlology resembling the very popular and
regarded FDK (Feldkamp) algorithm.

2 3D Reconstruction Algorithm for Spiral Cone-Beam
Scanner

Our algorithm is based on the originally formulated 2D analytical approximate
reconstruction problem for parallel geometry of scanner (see e.g. [9, 10]). This
conception can be incorporated into the Feldkamp-type reconstruction method-
ology for design of 3D reconstruction algorithm for the spiral cone-beam geom-
etry of the scanners. In the following subsections, it will be shown how to adapt
our orginal idea to the 3D reconstruction problem. The general scheme of the
proposed in this paper reconstruction procedure is depicted in Fig. 1.

This iterative statistical reconstruction algorithm operates on projections ob-
tained in a spiral cone-beam scanner. Firstly, a position zp on the z-axis of the
reconstructed cross-section of a body is selected, before the reconstruction of
image at this position is performed.

Practically, the reconstruction algorithm can only make use of projections
obtained at certain angles and measured only at particular points on the partial
cylindrical-shaped screen. In the case of spiral cone-beam scanner, a beam of
x-rays reaches the individual detector row k = 1, 2, . . . ,K, where K is a number
of rows placed on the screen. In every row, selected rays strike the detectors,
each of which is indexed by the variable η = − (H− 1) /2, . . . , 0, . . . , (H− 1) /2,
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Fig. 1. An image reconstruction algorithm for the cone-beam geometry scanner
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where H is an odd number of detectors in each channel of the array. Detectors are
placed on the screen separated by a distance Δk in each row, and by an angular
distance Δη in each channel. Furthermore, only a limited number of projections
are performed, each of which is indexed by the variable θ = 0, . . . ,Θ− 1, where
Θ − 1 is the total number of projections made during the examination. Every
projection is carried out after rotation by Δθ. Summarizing, our reconstruction
algorithm has available the projection values ph

(
βη, α

h
θ , żk

)
, in the ranges: η =

− (H− 1) /2, . . . , 0, . . . , (H− 1) /2; θ = 0, . . . ,Θ− 1; k = 1, 2, . . . ,K.
After acquisition process, all performed in our reconstruction algorithm oper-

ations are the same as in the case of the reconstruction algorithm designed for
parallel-beam scanner. The only defference between 2D and 3D approaches lies
in performance of the back-projejection operation.

2.1 Back-Projection Operation

The first operation of the proposed here reconstruction algorithm is a three-
dimensional back-projection. Every point in the coordinate space is given a value
equal to the sum of all the projection values from all the rays passing through
this point. For the projections ṗh (βij , θ, żij) made at angle θ; θ = 0, . . . ,Θ − 1,
the operation can be written, as follows:

μ̃ (i, j, zp) ∼= Δh
α ·
∑
θ

ṗh (βij , θ, żij) , (2)

Mostly, x-rays do not pass exactly through the particular voxels (i, j, zp) and so
there is no projection value available to the reconstruction algorithm, and it is nec-
essary to use interpolation to obtain the missing projection value based on mea-
surements ph (η, θ, k), using for example the technique of bilinear interpolation:

ṗh (βij , θ, żij) =

4∑
n=1

cn,θ,ijp
h
n,θ,ij (3)

where the coefficients of interpolation cn,θ,ij can be established in the following
way:

cn,θ,ij =

(
1− |Δβ|

Δη

)
·
(
1− |Δż|

Δżk

)
, (4)

where the quantities βij and żij represent the coordinates of the discrete point
(i, j, zp) expressed as parameters of the projection carried out at the angle θ.
Parameters żij are calculated in the following way:

żij (θ) =
Rf · (zp − z0 (θ))

Rf − uij
(5)

where Rf is the radius of the circle described by the focus of the tube, and

z0 (θ) = λ · θΔ
h
α

2π
(6)
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and

uij = iΔxy · sin
(
θΔh

α

)− jΔxy · cos
(
θΔh

α

)
, (7)

where: Δxy is the interval between individual points on the reconstructed image.
The value of βij is easily determined using the following formula:

βij (θ) = arcsin

⎛
⎝ sij√

R2
f + żij − uij

⎞
⎠ , (8)

where

sij = iΔxy · cos
(
θΔh

α

)
+ jΔxy · sin

(
θΔh

α

)
, (9)

and uij has already been determined in equation (7).
Now, it is clear how are chosen these four projections phn,θ,ij used in bilinear

interpolation (3). Namely, they are determined as the nearest neighbours of the
projection ṗh (βij , θ, żij), taking into account the parameters βij (θ) and żij (θ)
(equations (8) and (5), respectively).

2.2 Iterative Reconstruction Procedure

After back-projection operation, it is possible to carry out the iterative recon-
struction procedure. Thanks to the reformulation of the reconstruction peoblem
into the optimization problem we can perform it according to the maximum like-
lihood (ML) methodology of estimation of expected value of image for certain
pixels, holding the analytical scheme of image processing in given reconstruc-
tion algorithm. After deep statistical analysis, we propose the following form of
objective to be optimized during this iterative reconstruction procedure:

μ∗
min = argmin

μ∗

⎛
⎝1

2

I∑
i=1

J∑
j=1

1

σ2
Σ (i, j)

f (e (i, j))

⎞
⎠ , (10)

where:
e (i, j) =

∑
ī

∑
j̄

μ∗ (̄i, j̄) · hΔi,Δj − μ̃ (i, j) , (11)

and (what can be shown)

hΔi,Δj = hi,j = Δα ·
Ψ−1∑
ψ=0

¯int (i cosψΔα + j sinψΔα) , (12)

where ¯int is an interpolation function used in the back-projection operation;
Δi = |i− ī|, Δj = |j − j̄|, Δα = 2Π

Ψ , and

σ2
Σ (i, j) ∼= 1

n0

Ψ−1∑
ψ=0

∑
n

c2n,θ,ije
ph
n,θ,ij , (13)



Ultrafast Iterative Model-Based Statistical 3D Reconstruction Algorithm 193

where n0 is the initial count of x-ray photons. Thus, it will be possible to find
the optimal image μ∗ in the sense of estimation of the expected values of the
reconstructed image μ. Note, that in Eq. (11) μ̃ means an image obtained after
back-projection operation, hΔi,Δj are constant coefficients of the convolution,
f (•) is a penalty function. We propose the following form of the function f (•):

f (e (i, j)) = λ · ln cosh
(
e (i, j)

λ

)
(14)

where: λ is a slope coefficient. It is worth to note that the introduction of this
function instead of the quadratic form for each pixel is not inconsistent with
the main idea of the statistical reconstruction approach – that of matching an
appropriate divergence function with the probabilistic distribution present in the
measured signals. The form of function (14) overlaps with the quadratic form in
the wider neighbourhood of their minimums.

According to the relation (10) it is possible to formulate many solutions to the
image reconstruction from projections problem, consistent with ML methodol-
ogy. Although, there are several methods of searching for the optimal solution,
we propose the simplest gradient descent method. Therefore, the pixels in re-
constructed image will be adjusted, as follows:

μ∗(t+1) (i, j) = μ∗(t) (i, j)− c ·
I∑

ī=1

J∑
j̄=1

1

σ2
Σ (̄i, j̄)

f ′
(
e(t) (̄i, j̄)

)
hΔi,Δj , (15)

where f ′ is a deriviation of the function (14).

3 Experimental Results

In our experiments, we have adapted the well-known FORBILD phantom of the
head (see [13]) for 3D spiral cone-beam projections. Parematers: λ was set to be
2.5, and Rf to be 1200. During the simulations, we fixed H = 1025 measurement
points (detectors) on the screen at virtual parallel projections, and K = 121.
The number of projections was chosen as Θ = 3220 rotation angles, and the
size of the processed image was fixed at I × J = 1024 × 1024 pixels. The coef-
ficients hΔi,Δj were precomputed before we started the reconstruction process
and these coefficients were fixed for the subsequent processing. We started the
actual reconstruction procedure and perform the back-projection operation to
get a blurred image of the x-ray attenuation distribution in a given cross-section
of the investigated object. The image obtained in this way was then subjected
to a process of reconstruction (optimization) using an iterative statistically- tai-
lored procedure. It is worth noting that we can choose the starting point of this
procedure to be a result of using any standard reconstruction method, for exam-
ple a reconstruction Feldcamp-type FBP algorithm. Because the set of possible
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Image Resolution phantom
on the left side

A —–

B

MSE = 39.60 · 10−10

C

MSE = 35.06 · 10−10

Fig. 2. View of the images (window centre C = 1.05 · 10−3, window width W =
0.1 · 10−3) when the signals registered by the detectors are stochastic: original image
(A); reconstructed image using the standard FBP method with Shepp-Logan kernel
(B); reconstructed image using the method described in this paper at t = 1000 (C)
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states of matrix μ∗ is convex and the function from relation (10) is convex, the
optimization process starting from any point of the convex set μ∗ yields a unique
solution. The convolutions in iterative procedure were calculated in frequency
domain to accelerate reconstruction procedure. The whole iterative process was
implemented for GPUs with the NVIDIA CUDA framework and executed on
the GeForce GTX 680 graphics card. In this case, the iterative reconstruction
process (3000 iterations) has taken 53s.

Evaluating a reconstruction procedure based only on a view of the recon-
structed image is very subjective. That is why the quality of the reconstructed
image has been evaluated by an error measure defined as follows

MSE =
1

I2

I∑
i=1

J∑
j=1

(
μ̂∗(t) (i, j)− μ (i, j)

)2
, (16)

where: μ̂∗(t) (i, j) is the reconstructed image after t iterations, μ (i, j) is the orig-
inal image of the FORBILD phantom.

Views of the reconstructed images of the mathematical phantom in the cross-
section after 3000 iterations are presented (Fig. 2C) for stochastic signals. For
comparison, the original phantom image (Fig. 2A) and the image reconstructed
by a standard Feldkamp-type FBP reconstruction method (Fig. 2B) are also
presented.

4 Conclusion

In this paper, it is presented a fully feasible 3D statistical reconstruction algo-
rithm for spiral tomography with cone shaped beams. Incorporation of analytical
scheme of signal processing allows to avoid very serious disadvantages involved
with the algebraic reconstruction techniques, which are particularly evident if
they are applied to reconstruction algorithms for spiral tomographic scanners.
Generally, presented here reconstruction algorithm is very easy and compact. It
is wort to underline that in shown here algorithm, there is not used any addi-
tional geometrical correction of the projection lines in this approach. Coefficients
hΔi,Δj are precalculated according to the Eq. (11), before we start the actual re-
construction procedure and they are the same for all pixels in the reconstructed
image. Some simulations have been carried out, which prove that our recon-
struction method is extremely fast (the whole iterative reconstruction process
with 3000 iterations takes 53s). It is worth noting that we have introduced of
a new form of penalty function which prevents the occurrence of possible in-
stabilities in the reconstruction process. The image of the cross-section of the
mathematical phantom was reconstructed with high accuracy compared with the
standard method (in our experiments the standard Feldkamp-type algorithm),
as measured both in the subjective way and using the objective MSE quality
measure.
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Abstract. X-ray Microtomography (XMT) is frequently used to visu-
alize plant’s internal 3D structure among many different imaging meth-
ods. The obtained data are large volume and difficult to process. Many
software packages were developed for XMT data analysis. Dedicated pro-
grams are also frequently developed. XMT data may vary in many as-
pects and consequence could be different level of analysis difficulties. It
is important to select properly the program for obtained data. One of
aspects is expected analysis effect. Proper software will provides mea-
surable results. This study focus on the comparison of two dedicated to
XMT data analysis software. The comparison is based on 3D reconstruc-
tion of barley root system growing in sand medium and scanned using
XMT.

Keywords: XMT, roots, image analysis.

1 Introduction

Image data analysis plays very important role in almost all science disciplines.
With the development of imaging techniques, this kind research possibilities are
growing [1]. In addition to techniques such as microscopy, which provide mainly
2D image acquisition, there are many techniques dedicated to three-dimensional
(3D) reconstruction of analysed object’s structure. Microscopy gives an oppor-
tunity to carry out an investigations concerning the surface of microscopic slide
(e.g. Light Microscopy) or object (e.g. Scanning Microscopy) [1, 2]. Different
approach should be taken into account, if it is necessary to look inside analysed
object. Among those approaches there is a modification of the traditional light
microscopy, Optical Projection Tomography (OPT), using visible photons [3].
Other methods, such as Positron Emission Tomography (PET) and Magnetic
Resonance Imaging (MRI) are also used to obtain structural data in 3D [4].
XMT (X-ray Microtomography), a non-invasive technique, does not cause a de-
struction of the sample. Initially, this technique was used for medical imaging
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Volume 3, Advances in Intelligent Systems and Computing 283,
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purposes (first use 1971) [5]. Since then, it is still being applied to a broader
range of science disciplines like biology, material and earth science [6, 7]. XMT
in biological science is used for plant [5, 8, 9], animal [10, 11] and cell studies [12].

In addition to imaging method and sample preparing approach, it is neces-
sary to dispose an appropriate computer software in order to obtain satisfactory
results. It is particularly important for high volume data which requires complex
computing operations. Through the years many different applications, dedicated
XMT data analysis purpose, has been developed. Applications like Drishti [13] or
ImageJ [14] are freeware and, by fulfilling hardware requirements, are available
for each user. Advanced applications, with various, targeted modules are also
available. Among many of them Mimics [15], VG StudioMAX [16] or Avizo [17]
are primarily used to XMT data analysis. Dedicated programs are also available
for particular purposes. One of them, RooTrack program, is designed to root
tracing on XMT images [18]. The main aim of the described research was to
check the sandy growth medium influence on the ability to identify root using
XMT images. The studies were conducted on barley 7-days-old seedling growing
in the sand.

The main issue was to compare two software packages dedicated to XMT data
processing and its performance during segmentation of root system from the
growth medium. Some technical aspects of the segmentation process were also
addressed. In each program the best possible procedures of data segmentation
and analysis have been performed.

2 Material and Methods

2.1 Grains

Seed material were barley (Hordeum vulgare) grains, ”Sebastian” variety. The
grains came from field cultivation (Experimental field of Department of Biol-
ogy and Environmental Protection in Boguchwałowice, University of Silesia in
Katowice, Poland).

2.2 Growth Conditions and Growth Medium

Plant growth was conducted in a culture room, under controlled conditions.
The temperature during cultivation was 18 − 20oC. Photoperiod was 16/8 and
light intensity at level 20,000 lux. Relative humidity was maintained at 70-80%.
During the growth, plants were watered by water and nutrient 1

2 MS. Nutrient
solution was prepared according to the proportions developed by Murashige and
Skoog [19]. Barley was cultured in standard plastic (polypropylene), round pot.
Growth medium was sand.

2.3 Scanning

In the 7. day of growth plant was scanned using XMT scanner v|tome|x s
(GE Sensing & Inspection Technologies, phoenix|x-ray, Wunstorf, Germany).
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The scanner is equipped with two X-ray sources: microfocus 240V/320W and
nanofocus 180V/15W. Temperature-stabilized detector DXF 16” provides su-
perior contrast. A rotary table is installed between the X-ray source and the
detector, which enables positioning the tested object along the X-ray beam and
adjusts magnification which reflects the image resolution. Scans were carried out
using microfocus tube and X-ray power lower than voxel size of the data matrix.
Scanning parameters and growth environment are presented below (Tab. 1).

Table 1. Scanning and growth environment parameters

Growth container Pot
Growth medium Sand

Voltage (kV) 200
Current (μA) 130
Power (W) 26

Filter Cu 0.1
Number of projections 2000

Resolution (μm) 47,661
Timming (ms) 200

Average 2
Skip 1

Scan time (min) 23

2.4 Image Analysis Using Mimics Program

In order to get root XMT image analysis, the data set was loaded to the Mim-
ics 15.0 (Materialise, Belgium) using a standard template. Size of the dataset,
resolution and image orientation were defined by the user. Thresholding, Region
Growing andDynamic Region Growing tools were used first. Manual Multiple
Slice Edit or, rather, Slice Edit tool were used if automatic methods turned out
to be unsuccessful in root segmenting from the medium. Moreover, horizontal
axis was chosen for manual tracing. Roots tracing started from shoot selection
on the first layer and processed down, at intervals of 2 or 3 layers. Each root was
traced individually until the end. When the entire root system was successfully
segmented, 3D model have been calculated. This model was then a subjected to
smoothing operation.

2.5 Image Analysis Using Drishti Program

Drishti software [20] is developed to visualize tomography and electron-micros-
copy image data i.e. It is online available, on freeware license [13]. Standard
loading procedure was followed to visualize object in Drishti 2.3.3. Visualization
was processed using various tools, e.g. clip plane (image pruning in different
planes), histogram and color gradient manipulation and morphological opera-
tions (erosion, dilation, skeletonization). Image visualization process depends on
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many factors, such as density in particular image areas, thickness of the layers,
scan resolution and quality. In this case histogram manipulations have been cho-
sen to make the root system visible. Then, the remaining noises were removed
manually using various tools. Firstly MOP (morphological operation) update
off and then MOP carve were used. MOP update off is an operation providing
turning of updates to mask buffer. It allows changes making by MOP carve to be
saved after histogram manipulation. MOP carve tool is an eraser. A user selects
diameter and the depth of the removal area (the number of layer on which tool
erases noises). Those operations allowed to remove most of noises from the image
and to make segmented area more visible.

3 Results

Work in both programs was conducted separately. Obtained results concerned
the same plant. Performed models are independent from each other. It means
that each of them can be obtained in a different way. Results also depends on
skills of the user.

3.1 Outcome from Mimics Program

The first outcome in Mimics program was complete mask of root system ar-
chitecture. The entire root system was marked by manual tracing. Mask was
additionally checked by tracing each root and supplementation eventual gaps in
their continuity (Fig. 1, Fig. 2). Next, 3D model was created to visualize a whole
mask (Fig. 3). This model was smoothed twice, usually with smooth factor 1,0.
Compensate shrinkage option was also selected. This option prevents from sub-
stantial loss of 3D model area during smoothing operation. Final result gives a
general overview on the architecture of analysed plant’s root system.

Fig. 1. Dialog window of Mimics program with analysed plant
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Fig. 2. 3D model of segmented barley root system; it is situated in arrangement created
by the selected points on the displayed planes

Fig. 3. Segmented and smoothed barley’s 7-days-old root system generated from areas
marked on consecutive layers

3.2 Outcome from Drishti Program

Results obtained only by histogram manipulation indicates that it is possible
to visualize root growing in sand medium using this method (Fig. 4). Roots,
surrounded by partially transparent medium, are visible on this visualization.
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Also part of grain and shoot are recognisable. The effect presented on Figure 5
was possible to achieve with the use of Morphological Operations. During seg-
menting process (histogram manipulations) a top part of root system has been
lost and it is not visible on final visualisation.

Fig. 4. Drishti program dialog window with analysed plant visualization.Visualization
obtained after image segmentation with histogram manipulation use, before manual
erasing

Fig. 5. Segmented visualisation of 7-days-old barley’s seedling; most of noises have
been removed
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4 Discussion

Most common tasks in the field of plant image analysis are image segmentation,
motion analysis and tracing. It is also reflected in the literature [21]. Various
programs are used for those purposes. The study has focused on the research
related to two different software applications. These applications were compared
in terms of segmentation ability of barley’s root system growing in the sand
medium. Both are dedicated to image data analysis. First difference between
them is a licence. While Drishti is freeware and open-source, Mimics is software
developed by Materialise [15], especially for medical image processing. Mimics
relies on differences in grey level value between voxels. A histogram of values
corresponding to the differences in density of analysed object is generated. The
program could be also used to segment data derived from CT, MRI, XMT,
CBCT, Ultrasound and Confocal Microscopy. Depending on the available mod-
ules, the program creates a variety of possibilities to work with the data. The
most basic possibilities are segmenting data and creating 3D models from seg-
mented masks. Also measuring angles, distances or volumes are possible. More
advanced modules, like cardiovascular module, allow i.e. to measure vessels or
heart parameters.

Obtaining a visualisation in the Mimics program was time-consuming and
labour-intensive. Due to the fact that none of available automatic segmenting
tools was suitable, all segmenting processes have been made manually. First,
grain position on image has been found. It was a starting point for root tracing
on next slices. All roots have their beginning from one point on a grain. This
fact was one of the most helpful principals during root tracing. The recognised
root was traced along, until the last visible position. The position, shape and
dimension of root was chosen by the user. There is an indication that this choice
may be slightly different comparing to real root parameters. For this reason, the
obtained dimensions cannot be used as fully reliable results for counting root
parameters, such as volume or area. There is still a lot of work to be done in
preparing well-functioning methods for those kind of analysis. A user needed 2
whole workdays (about 16 hours) to segment and prepare complete 3D model of
a whole root system architecture.

Drishti, alike as Mimics, is based on differences in grey level value. This pro-
gram vary from Mimics in using those differences in segmentation process. Drishti
is developed by Ajay Limaye [13]. After downloading it from the website software
is instantly ready to use. It is a graphic hardware-based direct volume rendering
application. A possibility to real-time exploration and presentation of volumetric
data is applicable i.e. in biology, medicine, geoscience and palaeontology. Unlike
the Mimics program, Drishti allows user to create expanded animations and also
render, cut, colour and export processed data. This software enables viewing
large data sets by allowing visualisation of smaller sub-volumes [22].

Visualization using Drishti program took less time than in the Mimics. It
depends mainly on the user’s skills in using the program. To reduce the influence
of noises and make work easier, clip plane tool was used. This tool allows to cut
down the visible analysis area in any plane. In this case it appeared to be helpful



204 J. Śróbka et al.

because root system occupied a small part of the whole analysed sample. MOP
carve was used to remove the remaining noises around the root ball. The upper
parts of roots were invisible in established parameters. The probable reason of
this situation was a substantial amount of noises in this region. A user needs
about half normal work day (4h) to achieve the effect presented on Figure 4.

There are several differences between programs operations. One of the most
essential is different histogram functionality (Fig. 6). In Mimics no manipula-
tions of values presented on histogram are possible. Mask of targeted image part
is generated. This mask is originally based on values resulting from the recon-
structed data. It is a fraction of the analysed object, selected from its grey level
value histogram (Fig. 6(a)). In Drishti Import module histogram is adjusted to
desirable part of images. There is a possibility to enhance values representing
targeted parts of image. Simultaneously, noises and background can be silenced.
This enables easier analysis because unnecessary parts are removed (Fig.6(b)).

(a) (b)

Fig. 6. Difference in histogram based operations : (a) in Mimics (new mask generating),
(b) in Drishti Import (import procedure before loading do Drishti Renderer)

Drishti software is widely used for XMT data analysis. For plant study pur-
pose Mayo et al. [8] used this software to visualize wood of several trees species
and Arabidopsis thaliana stem in micron scale. A satisfactory quality visualisa-
tion has been obtained using this software. Another example is using Drishti to
visualize ultrasonic irrigation (PUI ) of calcium hydroxide (Ca[OH ]2) removal
and to measure the volume and the percentage of Ca(OH)2 remaining in the
root canal system. The material in this study were root canals of 46 extracted
human mandibular molar teeth [23]. Drishti software has been used with suc-
cess also in neurobiology. Research was concerned with the internal structure
of bee’s brains staining by osmium and visualizing using XMT [1]. Drishti was
used by Jones et al. [24] in visualization results of the study about bone ingrowth
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into two different scaffolds with cellular and strut-like architectures. Presented
publication indicates that Drishti is plastic and universal software.

Mimics is mainly used for medical data analysis purpose. However, different
uses of this software are known. In soil research Mimics 6.3 was used by Mooney
et al. in 2002 [25]. The study focused on visualization and quantification of soil
macroporosity and water flow patterns in various soil mediums. CT data were
collected using Picker PQ6000 whole-body, medical x-ray CT-scanner. For med-
ical study purpose, Mimics was used to visualise detailed Computational Fluid
Dynamics (CFD) simulations during expiration [26]. The aim of the study was in-
vestigations the fluid flow in the airway regions. Material for this study has been
obtained from anatomically accurate human upper airway model. The model was
constructed from multiple MRI imaging axial scans. Also Chen et al. [27] used
Mimics software in his work about bone regeneration on nano-fibrous computer-
designed scaffolds. Program was employed to visualise ear reconstruction from
histological sections and human mandible reconstruction from CT scans. Re-
ceived results also indicate the usefulness of a presented software.

XMT is one of a few methods which allows the analysis of the object’s in-
ternal structure. Among other alternative methods OPT should be mentioned.
OPT uses visible photon beam instead of an X-ray. It can be used to visualize
small objects, 1-10 mm only, with special resolution 5 μm [3]. The example of
OPT used is a visualisation of morphology, internal structure and gene expres-
sion in Arabidopsis thaliana [28]. Other non-invasive techniques, such as MRI or
PET are also widely used in plant science [5]. Measuring medium, used in MRI
imaging, provides tomographic reconstructions of cross-sectional images, but at
significantly lower resolution [29]. PET scanning uses short life radioactive trac-
ers (like carbon isotopes). Its distribution is detecting and visualizing [30]. Both
presented techniques are more useful in studies about physiological processes
such as water transport or content (MRI) and C assimilation in plant tissue
(PET) [5].

Analysis methodology presents differently in both programs. In Mimics user’s
interactions relies on choosing a root area on each slice. User manipulations in
analysed image quality was limited to contrast manipulations. Difference be-
tween minimum and maximum value is still the same, only the position of whole
image range of gray level values changes along the histogram. In Mimics, the
whole segmentation process is based on original images. In Drishti, source im-
ages stock is basis for manipulations. In Drishti Renderer module histogram
manipulating is possible. 1D (one dimension) histogram allows thresholding to
make visible particular elements of an image. In 2D (two dimensions) histogram
more advanced operations are possible. Volume visualization with 2D transfer
functions, allows the appearance to be adjusted according to voxel scalar value
or gradient [31]. The segmented data processing is the most essential difference
in both programs operating. While in Mimics user works on source image, with-
out changing it, whole analysis in Drishti is focused on manipulating in image
features. Therefore, results vary between themselves in origin. 3D model gener-
ated using Mimics program, is based on areas which are marked by user on a
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source image. The model is based originally on mask, which is more accuratly
segmented than in Drishti. Drihsti prepares 3D model which is derived from
extract parts of source image.

A comparison analysis of barley root system in those two software indicates
that both are useful in such kind of image processing. The main advantage of
Drishti is saving the time with the possibility to visualize most part of the root
system at the same time. It is still valuable for demonstrative visualization of
root ball growth direction and architecture. The most disturbing disadvantage
is a significant amount of noises which still are present after histogram manip-
ulation. Moreover, also failure to obtain the continuity at the roots basis is an
issue. Furthermore, the lack of possibility to look back on original data is also a
problem. It stems from nature of the program and is a disadvantage only in cer-
tain cases, such as described example. Root surface, obtained even after erasing
operation, is not as smooth as the one obtained the Mimics program.

Figure 7 presents summary of two 3D models obtained in the presented study.
Main differences between them are the quality of generated model and time
necessary to obtain this effect. Mimics software is better to use in order to
obtain more comprehensive results. Although more time is required to prepare
3D model of root system architecture in Mimics, the obtained quality is better.
Still it can not be used to calculate properly all root parameters, however, there
is a possibility to measure some of them (e.g. root diameter) during manual
segmentation. In case of a limited amount of time, to achieve measurable effect,
Drishti software can be used. The presented effect is of a lower quality, but on
the other hand, still gives an overall view of the plant root system architecture.
Described research was focused on qualitative analysis of the performance of two
software packages. The effects of the presented activities, like segmenting three
dimensional shape, can be a subject for further quantitative analysis.

Fig. 7. Comperison of visualisation obtained by (a) Drishti software, (b) Mimics
software
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Abstract. The authors in their research deal with a broad spectrum
of 3D reconstruction problems. In this paper, the authors explore the
correspondence problem between some object details imaged with stereo
vision head. Since the authors are working on a new matching algorithm
based on graph theory, it was decided to test how problematic regions
of images match each other. Problematic regions like edges, corners and
other shapes with a shaded or motley background seem to create different
images for left and right pictures and, in the case of further process,
they may cause serious matching difficulties. Images of such problematic
object details have been explored with several well-known edge detection
methods, which have never been applied to stereovision before.

Keywords: stereo correspondence, stereovision, edge detection.

1 Introduction

Owing to full automation, 3D reconstruction from non-metric images in the vis-
ible band can be used in medicine, namely in the diagnosis of faulty posture,
metabolic diseases, bone or plastic surgery [2, 10, 11]. Prerequisites for admission
of this modern diagnostic method for use in medical practice are, among other
things, immediacy of results, non-invasiveness, high accuracy of reconstructed
geometry, low cost and compactness of the diagnostic installation [13, 1]. The
authors are working on their own 3D reconstruction system that will automati-
cally extract geometrical characteristics which will enable to determine, among
others, the stage of scoliosis or the degree of overweight.

3D reconstruction methods previously used in medicine, based on laser scan-
ning or projection of various geometrical elements [11], did not enable to obtain
sufficient measurement accuracy, reconstruction completeness and automation.

Throughout the previous century, photogrammetry [8] dealt with 3D recon-
struction but finally computer vision allowed to complete the process of full au-
tomation of 3D reconstruction from images [16, 3]. Among other things, owing
to the development of 3D reconstruction algorithms, it was also possible to work
with non-metric cameras (i.e. not having specific, pre-established parameters of
interior orientation [5] and fully eliminated aberrations [4]).

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 209
Volume 3, Advances in Intelligent Systems and Computing 283,
DOI: 10.1007/978-3-319-06593-9_19, c© Springer International Publishing Switzerland 2014
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At a certain level of abstraction, it can be assumed that the 3D reconstruction
process consists of four main stages [8, 15]. First, the intrinsics and aberrations
must be determined. Then the extrinsics must be calculated. In the next step,
the matching process has to be completed followed by the calculation of the
point’s coordinates X,Y,Z.

The third stage is currently in the centre of attention of the paper’s authors.
Detection of points [14] itself brings many challenges as the object must be
covered with a sufficiently dense network of points to provide high accuracy
of shape reconstruction [9]. Till now, the authors have matched images mainly
with the use of variational methods [7]. During the concept creation of the new
matching method based on graph theory, the authors have found that some
image regions may cause more problems during matching than others. These
problematic regions like edges, corners and other shapes with a shaded or motley
background seem to create different images for left and right pictures and, in the
case of further process, they may cause serious matching difficulties. The authors
were unable to find other studies on this topic so it was decided to describe this
problem.

Images of such problematic object details have been explored with well-known
edge detection methods, never before applied to stereovision, as an equivalent of
further processes which may occur during matching stereo images.

Section 2 shortly presents well-known edge detectors, Section 3 describes the
procedure, Section 4 focuses on the obtained results and Section 5 includes a
summary.

2 Edge Detectors

The Sobel operator [12] applied by the authors uses two 3× 3 kernels which are
convolved with the original image to calculate approximations of the derivatives -
one for the horizontal changes, and one for the vertical ones. When A is the source
image and Gx and Gy are two images which at each point contain the horizontal
and vertical derivative approximations, the computations are as follows:

Gx =

⎡
⎣+1 0 −1
+2 0 −2
+1 0 −1

⎤
⎦⊗ A and Gx =

⎡
⎣+1 +2 −1

0 0 0
+1 −2 −1

⎤
⎦⊗A

where ⊗ here denotes a 2-dimensional convolution operation. A different kernel
was developed by Judith M. S. Prewitt [12] where

Gx =

⎡
⎣−1 0 +1
−1 0 +1
−1 0 +1

⎤
⎦ and Gx =

⎡
⎣+1 +1 +1

0 0 0
−1 −1 −1

⎤
⎦

The oldest Roberts operator [12] uses a 2× 2 kernel

Gx =

[
+1 0
0 −1

]
and Gx =

[
0 +1

−1 0

]
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which also gives interesting results.
The Laplacian of Gaussian (log) method [12] finds edges by looking for zero

crossings after filtering an image with a Laplacian of Gaussian filter or with any
specified filter (zc).

The Canny operator [12] uses the calculus of variations to find the function
which optimizes a given functional. For the purposes of this study, approximation
by the first derivative of a Gaussian was applied.

B =
1

159

⎡
⎢⎢⎢⎢⎣

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

⎤
⎥⎥⎥⎥⎦⊗A

3 Test Procedure

In order to investigate the stereo correspondence problem, the authors used three
images from Middlebury Stereo Vision Page i.e. aloe, wood1 and bowling2. Since
these images are widely used for matching purposes in stereovision, the authors
decided to test these samples as well. Although these samples seem to be quite
perfect, the authors also tested their own three images used before in their
research i.e. fern, person and arrangement.

All the images were filtered with edge operators and then problematic areas
were identified. A unified dimension crop window sized 71 × 57 pixels was ap-
plied to all images. The window size was chosen experimentally so that distinct
differences between stereo pairs could be clearly observed at the minimum pos-
sible resolution. The threshold was chosen arbitrarily mainly to keep the edges
visible, but also to keep the edges distinguishable and distanced from a motley
pattern.

Then, using Matlab Image Processing Toolbox, the centroids and length in
pixels were calculated for the stereo pairs for the selected elements, which are in
the centre of attention of the paper’s authors. The edges for which the centroids
and length were determined were marked with a white line in the original images.
Next, the distances between the nearest centroids and the difference in length of
the edges between stereo pairs were calculated. The first analysed sample "aloe"
(Table 1) definitely indicates a difference between images created in the left and
right pictures. The upper edge of the leaf is visible or even distinguishable in
the left image. In the right image, the leaf edge is barely distinguishable or
completely invisible probably due to the motley background.

The next analysed image "wood1" (Table 1) is characteristic due to uniformity
of the foreground and background. The edge is distinguishable quite well in the
original image. The corner in the right image is visible whereas in the left image
it is really difficult to notice.

An edge adjoining another edge can be observed in the "bowling2" sample
(Table 2), where one edge has much better visibility than the other one due
to the colour composition. And again a visible or even distinguishable junction
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Table 1. Result of the edge extraction for the sample "aloe" and "wood1"

aloe wood1
left image right image left image right image

original image

sobel

prewitt

roberts

log

zerocross

canny
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Table 2. Result of the edge extraction for the sample "bowling2" and "fern"

bowling2 fern
left image right image left image right image

original image

sobel

prewitt

roberts

log

zerocross

canny
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Table 3. Result of the edge extraction for the sample "arrangement" and "person"

arrangement person
left image right image left image right image

original image

sobel

prewitt

roberts

log

zerocross

canny
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of both edges is present in the left image. In the other image, there is no edge
junction. In the case of the "fern" sample (Table 2), there is a longitudinal
stripe in the middle of the leaf. The stripe can be easily noticed in the left
image. However, it is not possible to observe any longitudinal stripe in the right
image, probably due to the light reflex.

As for the "arrangement" sample (Table 3), there is a very interesting composi-
tion. The table is covered with a motley pattern, which should cause difficulties in
the pot edge detection. That is why, it is impossible to observe the pot edge in the
left image. In the right image, there is a strong light reflex on the table which makes
the motely pattern invisible and, as a result, the pot edge cannot be observed.

In the "person" sample (Table 3)), there is a shade behind the cupboard. The
shade edge is not sharp even in the original image. In the left image, the shade is
much more visible or distinguishable than in the right image. It definitely results
from the fact that there is much more shade in the original left image.

4 Results

Tables from 4 to 9 present in pixels the coordinates of the centroids and the
edge lengths of the elements. Table 10 shows the distances between the nearest
centroids and the differences in the edge length between stereo pairs of images.

The values in the table for the line "left image - centroids" and "canny" column
show the coordinates of three centroids. Horizontal and vertical coordinates in pix-
els are lowered to a full pixel. The original values calculated as the centre of grav-
ity are real numbers. The edge length in pixels is the total value for all sub-edges
overlapping the test edge. The data in all tables are organised in the same way.

Table 4. Centroid coordinates and pixel lengths for Aloe sample

canny log prewitt roberts sobel zc pix
22 35 34 30 14 43 23 34 9 46 2 54
45 16 32 29 55 8 23 36 19 42
55 7 38 23 32 29 37 27

left image 42 20 38 24 41 25 centroid
46 16 42 20 54 13
56 8 46 16

56 7
95 69 65 111 62 63 length

4 55 42 30 10 51 8 50 11 50 23 44
9 51 21 43 21 42 21 43 51 23
14 48 22 45 48 20 34 31

right image 20 43 42 26 46 24 centroid
49 20 61 10 53 17

66 6 61 10
69 3 68 4

87 56 62 97 58 54 length



216 P. Popielski, Z. Wróbel, and R. Koprowski

Table 5. Centroid coordinates and pixel lengths for Wood1 sample

canny log prewitt roberts sobel zc pix
39 29 10 27 10 28 3 29 10 28 16 26
53 38 25 24 26 24 33 21 26 24 33 23

32 22 33 21 53 23 33 21 41 20
left image 36 21 38 21 53 27 38 21 49 17 centroid

39 21 44 19 55 27 44 19 51 30
43 19 56 35 54 40 55 37 58 35
51 30 54 38 56 53 54 48
54 48 57 43
58 36 58 49

58 49
136 107 121 81 121 123 length

14 26 11 27 5 28 28 21 5 28 13 27
30 25 28 24 16 26 51 30 16 26 27 26
50 31 34 23 22 25 54 38 22 25 50 31

right image 51 39 44 20 28 23 53 50 28 23 38 27 centroid
50 39 51 35 51 34 50 38
56 37

128 109 118 85 119 133 length

Table 6. Centroid coordinates and pixel lengths for Bowling2 sample

canny log prewitt roberts sobel zc pix
13 39 36 36 16 39 13 39 16 39 30 37
33 19 31 24 24 33 24 31 24 33 26 30
37 34 41 9 28 29 30 36 28 29 35 18

left image 45 2 30 25 30 23 30 25 42 9 centroid
58 30 35 18 34 17 34 19 65 30

44 33 38 33 53 31
39 12 38 12 38 13
41 10 41 8 39 10
43 6 41 5 41 10
63 30 43 6 45 5

45 4 47 1
46 1
48 33
52 32
55 31
65 28

118 96 94 124 101 93 length

35 40 36 42 36 41 35 40 36 41 36 42
35 36 45 22 35 39 48 18 35 39 41 29
45 22 56 5 38 37 54 8 45 23 46 21

right image 56 5 45 22 57 3 53 13 57 5 centroid
56 5 56 5

108 94 103 107 106 91 length
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Table 7. Centroid coordinates and pixel lengths for Fern sample

canny log prewitt roberts sobel zc pix
21 25 32 22 1 34 6 32 2 36 3 35
47 15 3 32 12 28 1 38 19 26
58 10 6 30 19 26 5 33 43 17

left image 67 6 10 28 31 21 7 31 60 10 centroid
15 28 45 16 9 31
36 17 53 13 20 26
60 10 59 9 38 19

70 8 57 11
77 63 59 58 60 54 length

3 47 2 55 2 54 2 52 1 54 3 52
12 46 5 54 11 46 5 51 10 47 10 48
16 45 9 49 18 41 8 50 16 42 19 44
24 41 12 47 28 38 12 48 19 42 24 42
34 37 20 44 30 38 14 47 25 39 32 38
37 36 24 42 37 35 15 44 30 38 39 36
43 32 31 38 39 34 23 37 32 37 41 32

right image 57 28 41 33 42 33 28 36 37 35 42 35 centroid
68 26 47 31 49 31 41 30 39 34 45 31

57 27 53 29 46 29 41 33 56 28
67 26 58 28 52 28 45 31 58 25

66 26 55 28 52 29 62 25
71 25 65 26 57 27 68 23

71 26 58 25
62 24
65 24
70 23

44 45 46 22 34 39 length

Table 8. Centroid coordinates and pixel lengths for Arrangement sample

canny log prewitt roberts sobel zc pix
38 9 37 29 37 19 36 28 37 29 37 29
37 22 37 32 37 29 36 31 37 31 39 9
37 25 39 9 37 31 39 8 54 44 56 44

left image 37 28 55 44 40 8 55 44 40 7 centroid
37 30 54 44
53 43
60 48 53 58 50 45 length

47 21 47 25 48 21 47 29 48 21 47 26
right image 59 42 49 4 60 43 48 15 60 43 49 4 centroid

61 42 56 42 60 42
68 44

62 57 65 49 65 58 length
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The number of centroids is substantially different between the left and right
images, which indicates low stereo correspondence of the edges between stereo
pairs.

Coordinates of corresponding centroids for a stereo pair of images should differ
by the value proportional to the value of the shooting base.

Differences in edge lengths between left and right images also prove low cor-
respondence of stereo pair images.

The results of various well-known edge detectors confirm the thesis about
low correspondence of image elements that are in situations crucial for image
analysis.

Table 9. Centroid coordinates and pixel lengths for Person sample

canny log prewitt roberts sobel zc pix
35 28 33 41 36 27 32 24 36 27 33 41
40 41 38 13 33 43 38 13

left image 37 23 centroid
38 10

93 56 68 62 68 56 length

31 28 29 44 26 26 31 34 32 28 29 43
34 42 32 13 32 27 31 56 28 31 32 14

28 31 33 12 28 38
28 38 70 57 28 46

right image 28 41 28 53 centroid
28 45 29 26
28 53
29 26

86 48 92 42 86 53 length

The authors have performed the above analyses also for stereo pairs rotated
by 5 and 15 degrees. The results agree with the ones obtained above.

The distances between centroids and the differences in length shown in (Ta-
ble 10) prove that there exists a problem with correspondence between the el-
ements, in the present case the edges, located in the left and right images in
particularly difficult areas of the scene. The distances between adjacent cen-
troids strongly fluctuate, reaching a maximum value of 57 pixels for the Person
scene and Roberts filter.



Object Detail Correspondence 219

Table 10. Distances between centroids and differences between edge lengths

canny log prewitt roberts sobel zc pix
8 8 9 8 4 4
9 18 14 7 10

Aloe 27 3 Distance
6 8 between
16 11 centroids
10 16

12

8 13 3 14 4 9 Difference be-
tween lengths

10 1 5 5 5 3
2 3 2 4 10 7

Wood1 3 4 2 12 1 Distance
1 5 10 8 between
9 4 8 centroids
2

8 2 3 4 2 10 Difference be-
tween lengths

21 6 23 13 14 8
3 14 11 14 15 13

Bowling2 15 16 25 9 14 13 Distance
11 13 10 11 26 between

13 10 centroids

10 2 9 17 5 2 Difference be-
tween lengths

16 16 20 19 18 17
17 16 20 13 18

Fern 18 16 11 14 14 Distance
20 20 15 16 15 between

19 13 18 centroids
18 15 16
18 19 16

17 16

33 18 13 36 26 15 Difference be-
tween lengths

10 11 11 11 14 10 Distance
Arrangement 6 11 6 20 6 11 between

6 2 4 centroids

2 9 12 9 15 13 Difference be-
tween lengths

4 5 4 10 4 4
Person 6 6 13 6 Distance

12 between
57 centroids

7 8 24 20 18 3 Difference be-
tween lengths
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The obvious reason for this difference is the nature of the shadow cast by the
wardrobe. The natural shade level varies with the shooting place, which is shown
in Fig. 1.

a b

c d

Fig. 1. Probably the most problematic scene with a shade; a, c - stereo images; b, d -
the edge detected with the Roberts filter

5 Conclusions

In stereovision, left and right images are taken from different geometric places,
which results in different images in both pictures. Sometimes even a small imag-
ing base makes images in both pictures different. It leads to later problems with
recognising the same elements present in those pictures.

The background is very important. The more motley the background is, the
more problems there occur with edge extraction of the foreground elements.
A more contrasting background guarantees much easier edge detection of the
foreground elements. But even a motley background can always be neutralised
with proper light focusing.

Also a uniform colour of the background and detected objects may cause
problems with distinguishing the edge lines. How easy it is to detect such edges
depends on the light direction, reflexes and degree of the shade. Also the angle
at which the lens axis points at particular object details is very important. The
situation is quite different with the shade. It is much easier to extract the edge
of a bigger shade in the bright background. It may be assumed that it will be
very difficult to detect corners in shaded areas where in one picture the same
element is located in the shade but in the other one it is outside the shade.
Such a situation can definitely happen when both pictures are taken one after
another.

Taking into account all the above issues, the new stereo correspondence algo-
rithm based on graph theory must be reduced to the problem of inexact graph



Object Detail Correspondence 221

matching in accordingly defined graphs. When a decision is made to apply seg-
mentation to stereo images, the regions should be properly defined to keep small
details still recognisable. The segmentation algorithm must be definitely properly
designed.

The discussed analysis is only one of possible approaches to presenting this
problem. Other methods which are implemented when presenting similar prob-
lems, e.g. [2], may also be applied here.
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Abstract. The study is concerned with putting forth a novel method
of determination the pore size and its distribution for pores of differ-
ent shapes. The identification of irregular and branched pores is associ-
ated with difficulties in their separation, as well as in the quantification
of their size and shape characteristics. Recent developments in digital
image processing provides a relatively new technology that allows visual-
ization of the internal structure of objects. Our research was conducted
using computer-aided tomography, and in turn, statistical techniques.
This seems to be very useful in characterizing the pore volume distribu-
tion and in quantifying the differences in pore structures of the inves-
tigated materials. In this paper, the methodology is illustrated with a
number of soil aggregates which differ in terms of soil fertilization. The
approach is universal, and can be successfully applied for many tasks in
data mining where pore characteristics are needed.

Keywords: image processing, cumulative distribution function, pore
size distribution, pore space, total porosity, statistical methods, soil ag-
gregation.

1 Introduction

The characterization of porous material has been an important topic in the re-
search area. This includes the total porosity, pore size distribution, pore size
and shape or interconnectivity [1, 2]. Pore shape is mainly unknown, but it
could be approximated by one of the basic pore models: “cylindrical” – with
circular cross-section, “ink-bottle” – having a narrow neck and wide body, and
“slit-shaped” – with parallel plates. Unfortunately, pore structures do not have
any regular or well defined shape, and therefore the use of methods assuming
their shape becomes inapplicable. For this reason, some authors have proposed
different computational methods to determine the pore size distribution. These
techniques can be classified based on the pore size, pore type, amount of pores
or nature of measurements. Despite the usefulness of these methods for deter-
mining pore size distribution, a combination of different techniques is needed to
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cover the wide range of characteristics describing the pore structure. However,
conventional techniques, such as mercury porosimetry, or low-temperature gas
adsorption have often been unsatisfactory due to inadequate pore characteris-
tics. Moreover, they are limited in applicably as far as pore size and shape or
preferential flow is concerned.

Computed tomography and digital image processing provide new possibilities
of identifying pores and quantifying their characteristics. The non-destructive
nature of computed tomography scanning allows the same object to be scanned
multiple times and provides an opportunity to investigate its particle at any
location within a sample. In the last few years, studies indicate that X-ray
computer-aided tomography also provides an alternate approach for the non-
destructive observing, measuring, and quantifying of the internal microstructure
of materials [3, 4]. In our research, the use of image analysis has enabled us to
determine pore size distribution.

Classical parametric techniques of density estimation assume that the data
can be drawn from one of a known parametric family of distributions, and de-
termined by a few parameters, for example, mean and variance. The density
underlying the data could then be estimated by finding the parameters using
the data and substituting these estimates into the formula for the chosen den-
sity. Such technique requires performing significant tests, such as Chi-square
goodness-of-fit, Kolmogorov-Smirnov or Shapiro-Wilk test [5, 6]. The null hy-
pothesis states that our data must follow a specific distribution. A not signifi-
cant result denoting that the tested hypothesis is not rejected allows us to use
the estimated model. Moreover, for skewed distributions, a mathematical trans-
formation, for example, logarithmic, tending the data to normal distribution, is
recommended. On the other hand, nonparametric estimation [7–9] assumes that
there is no pre-specified functional form for a density function. Some of these
methods also have the advantages of being very intuitive and relatively simple
to analyze mathematically. Moreover, it is worth noticing that all parameters
appearing in the obtained model can be effectively calculated using convenient
numerical procedures based on optimizing criteria [10, 11].

In this paper, research was conducted to determine porosity and soil pore size
distribution. Pore size distribution is one of the many physical measurements
characterizing soil structure as far as plant growth is concerned. Additionally,
total porosity, defined by the ratio of the volume of void-space, and the total
volume of soil material (including the solid and void components), provides a
more useful physical description of a particular soil, such as compaction or the
maximum space available for water. A number of scientists have reported studies
of employing pore space as a general method for defining soil properties [12].
In this respect, a complete analysis of the soil pore size distribution is used
for predicting the gas diffusivity, water conductivity and water availability to
plants. The investigated material, suitable for collecting information about the
soil porosity, was preprocessed by aggregate preparation, image analysis and
statistical methods. Background and information regarding these operations are
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described in Section 2 and 3. The two packages that were used to conduct and
report research are the Aphelion image analysis package and Statistica software.

2 Materials and Methods

The experiments were conducted on three soil samples differ in terms of fertiliza-
tion (pig manure, mineral fertilization, control group), and were explored at the
Polish Academy of Sciences in Lublin. The investigated material was sampled
from the cultivated soil layer, classified as silty loam (Word References Base for
Soil Resources – Mollic Gleysols). The proportion of each particle size group in
the soil was as follows: sand – 46%, silt – 28%, clay – 26%, pH was: H2O – 5.9,
KCl – 5.4. A long-term fertilization trial was executed on the experimental fields.
The manure treatment was 80 ton per ha of composed pig manure. The min-
eral fertilization was according to plant needs. The control was applied neither
mineral nor manure treatment, there were plant residues only. The adopted crop
rotation was as follows: a cycle of potato – barley – rye from 1955 to 1989, and
sugar – beet – barley – rape – wheat from 1990. Aggregate soil organic matter
was measured by the Multi N/C 3100 Autoanalyser ( Analitic Jena, Germany).
The total organic carbon and total nitrogen contents for three fertilizations (pig
manure, mineral fertilization, control) were respectively: 21.50, 14.89, 13.54 g/kg,
and 2.10, 1.51, 1.35 g/kg. The total organic carbon shows the same tendency as
total nitrogen, i.e. they increase in the same order: the lowest – control, middle
– mineral fertilization, the highest – pig manure.

2.1 Soil Sample Preparation

The soil samples used for porosity analysis were air dried in room conditions, di-
vided into smaller quantities, and gently sieved through 2 and 10 mm sieves. The
remaining at 2 mm sieve soil aggregates of sizes ranging from 2 to 10 mm, were
then detected by means of X-ray computational tomography, using a GE Nan-
otom S device with a molybdenum X-ray source, 230 μA cathode current, 60 kV
voltage and voxel-resolution of 2.5 microns per volume pixel. Three 2D sections
of 3D objects, uniformly located within them, were performed to characterize the
aggregate structure. After this, tomography sections were processed using the
Aphelion 4.0.1 package. Pore size measurements of the aggregate sample were
collected by means of image processing techniques [13, 15, 16].

2.2 Image Processing and Data Analysis

The entire procedure was composed of the following steps. Firstly, grayscale to-
mography sections were preprocessed by removing ring artifacts using the ROI
(region of interest) method. Next, the automatic Otsu binarization method was
employed. After these preprocessing methods were undertaken, a binary mor-
phological closing with increasing size of structuring element SE (starting with
2 × 2 square SE), was processed subsequently. Operation closing, consisting of
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a dilation followed by erosion, was used to fill in holes and small gaps with-
out changing the aggregate size and original boundary shape. In each step, the
source image was subtracted from the target image, and the result volumes were
listed, giving soil aggregate pore distribution. The operation was repeated until
all pores were filled. A direct subtraction of two images: the transformed image
and the original image, gives the total pore volume in the soil sample. A cumu-
lative aggregate porosity P (i) related to a given and smaller structuring element
size can be calculated as:

P (i) =
S(i)− S(0)

S(N)
for i = 2, 3, . . . , N, (1)

where:
S(i) – surface area of solids and filled by pores less than or equals to SE size

i, i ≥ 2,
S(0) – surface area of solid phase,
S(N) – total area, equals to surface area of solids and pores,
N – size related to the biggest pore,
P (N) – total porosity.

Next, the soil pore size distribution can be calculated as:

1

P (N)

dP

dr
=

P (i + 1)− P (i)

P (N)
for i = 2, 3, . . . , N − 1, (2)

where P (N) denotes the total porosity.
Figure 1 shows subsequently obtained aggregate section images related to the

described method.

Fig. 1. Cross section of a typical soil with pore space in black (a), a binary soil aggregate
section image done by ROI and Otsu methods (b), a binary image of all pores detected
by closing operation (c)

The data derived automatically from images was statistically examined using
classical methods. For each fertilization (pig manure, mineral fertilization, con-
trol), a discrete data set consists of cumulative porosities P (i), i = 2, 3, . . . , N
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was explored. Our aim was to present the frequency distribution as a continuous
mathematical equation instead of a discrete set of data. We have fitted to the
observed data, a known theoretical model of probability distribution function.

Finally, the elaborated procedure for determining the porosity and soil pore
size distribution may be explained in the following steps:

The Procedure for Determining the Porosity and Soil Pore Size Dis-
tribution

1. Soil sample preparation.
2. X-ray microtomography of soil aggregates.
3. Digital image processing.

(a) ROI method.
(b) Otsu thresholding method.
(c) Binary morphological closing.

4. Frequency analysis.

3 Results

A cumulative porosity of investigated soil aggregates was determined using the
image processing methods described in paragraph 2. Figure 2 shows exemplary
soil aggregate section images done by ROI and Otsu methods for each type of
aggregate.

Fig. 2. Exemplary binary images of investigated aggregates: pig manure (a), mineral
fertilization (b), control (c)

The total porosity of the investigated aggregates for three fertilizations (pig
manure, mineral fertilization, control) calculated as the average of three sections,
were equal to 33.28%, 22.95%, 14.2% respectively. The total porosity shows the
same tendency as total organic carbon and total nitrogen, i.e. they increase in
the same order: the lowest – control, middle – mineral fertilization, the highest
– pig manure.
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Fig. 3. Cumulative porosity of aggregates treated with pig manure (circle – observed
data, line – estimated curve)

Experimental points (xi, yi), i = 2, 3, . . . , N where xi denotes the size of
structuring element (1px = 2.5 microns), and yi was calculated using formula
(1) and denotes cumulative porosity, are shown in Figure 3 – Figure 5.

The function given by the formula:

Y = k · ILognorm(x,m, s) (3)

where Y denotes the cumulative porosity, x means size of structuring element,
k, m, and s constitute the parameters of the models, and ILognorm(x,m, s) de-
notes the lognormal cumulative distribution function, was fitted to the observed
data using nonlinear estimation [14]. The function was selected by means of the
minimum square error criterion.

Table 1 shows the parameter values of the model given by the rule (3) and the
corresponding coefficients of determination R2 for the investigated aggregates.
The usefulness of such a model is very high, R2 is shown to be greater than 90%
for all the types of fertilization sampled.

The parameter k corresponds to the total porosity of the aggregate, while the
larger parameter m corresponds to the higher total porosity of the aggregate.

Pores have traditionally been divided into micropores, mesopores, and macro-
pores, with the division between them being arbitrary. The use of the estimated
models allowed us to calculate the cumulative porosity for the arbitrarily given
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Fig. 4. Cumulative porosity of aggregates treated with mineral fertilization (circle –
observed data, line – estimated curve)
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Fig. 5. Cumulative porosity of the control group (circle – observed data, line – esti-
mated curve)
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Table 1. The model parameters and the coefficient of determination obtained for the
model Y = k · ILognorm(x,m, s)

Fertilization k m s R2

Pig manure 0.37 2.79 0.89 0.99
Mineral fertilization 0.23 2.16 0.89 0.98

Control 0.14 1.67 1.03 0.95

limits between micropores, mesopores and macropores, equal to 30 microns and
75 microns respectively. This enables to calculate the fractions of micro-, meso-,
and macropores for each type of fertilization. The results are given in Table 2.

Table 2. Fractions of micro-, meso- and macropores

Fertilization Fraction
of micropores of mesopores of macropores

Pig manure 0.12 0.13 0.09
Mineral fertilization 0.14 0.08 0.02

Control 0.12 0.02 0.001

As can be seen, the largest fraction of mesopores occurs in the soil fertilized
with manure, this fraction represents 13% of the total aggregate area. In addition,
this sample shows 12% of the total aggregate area to be micropores and 9% to
be macropores. This creates the most favorable conditions for plant growth.

Within the aggregate, the second largest fraction of mesopores, equaling 8%,
was observed in the soil with mineral fertilization. This soil has a small amount
of macropores, equaling 2%, and a quite large amount of micropores, equaling
14%. This creates less favorable conditions for plant growth.

The soil without fertilization (control group) reveals that 12% of the total
aggregate area are micropores, 2% are mesopores and 0.1% are macropores. The
largest fraction of micropores in comparison with the fractions of meso- and
masropores creates the least favorable conditions for plant growth

Next the methodology described above was used to determine the soil pore
size distribution. Experimental points (xi, yi), i = 2, 3, . . . , N were done, where
xi denotes the size of structuring element, and yi was calculated using formula
(2). The model fitted takes the form:

Y = Lognorm(x,m, s) (4)

where

Lognorm(x,m, s) =
1

x
√
2πs

exp (− (log (x)−m)2

2s2
) (5)

is the probability density function of the lognormal distribution with parameters
m and s, Y denotes the pore size fraction to be modeled, and positive variable
x means the size of structuring element (1px = 2.5 microns).

The results are shown graphically in Figure 6 – Figure 8.
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Fig. 6. Frequency distribution of aggregates treated with pig manure (circle – observed
data, line – estimated curve)
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Fig. 7. Frequency distribution of aggregates treated with mineral fertilization (circle –
observed data, line – estimated curve)
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Fig. 8. Frequency distribution of the control group (circle – observed data, line –
estimated curve)

Table 3 shows the parameter values of the model (4) and the corresponding
coefficients of determination R2 for the investigated aggregates.

Table 3. The model parameters and the coefficient of determination obtained for the
model Y = Lognorm(x,m, s)

Fertilization m s R2

Pig manure 2.83 0.89 0.90
Mineral fertilization 2.17 0.83 0.95

Control 1.59 0.79 0.94

The usefulness of the model is demonstrated to be very high, R2 is greater
than 90% for all the types of sampled fertilization. This indicates that the model
has a very good fit to the data. The larger parameter m corresponds to the
higher total porosity of the aggregate. The values of parameter m range from
1.59 to 2.83, whilst the values of parameter s are smaller than 1.0 and range from
0.79 to 0.89. As having the same role, the values of these parameters are mostly
the same as the corresponding values obtained for the model characterizing the
porosity. However, some differences may arise due to the smaller dispersion of
the data resulting better fitting the model to cumulative porosity.

The obtained function, characterizing the pore size distribution, reveals their
positively skewed and unimodal character. The pore size distribution for pig
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manure fertilization evidences a high amount of large pores, whilst the pore size
distribution for the control group indicates the presence of a high amount of
small pores.

4 Summary

Recently, a notable increase in research in the area of image processing methods,
has shown that, together with computed tomography, these techniques provide
non-destructive tools for studying the internal structures of objects. This seems
very useful in exploring soil aggregates and quantifying their characteristics.

In this paper, a systematic procedure was outlined for using X-ray tomography
and frequency analysis to quantify measurements of void ratio, porosity, and
pore size distribution. The lognormal probability density function was crucial for
description of pore size distributions. The presented algorithm is expected to be
more objective than classical methods, where arbitrary assumptions concerning
the shape of pores are required.

This approach is also motivated by the current rapid growth in computational
power. Hence, improved real-time data processing and algorithm efficiency have
importance due to the concurrent increase in the quantity and complexity of the
data that are being collected.

References

1. Czachor, H., Lipiec, J.: The effects of manure application on soil aggregation.
International Agrophysics 18, 217–223 (2004)

2. Dexter, A.R.: Advances in characterization of soil structure. Soil and Tillage Re-
search 11, 198–238 (1988)

3. Papadopoulos, A., Bird, N.R., Whitmore, A.P., Mooney, S.J.: Investigating the
effects of organic and conventional management on soil aggregate stability using
X-ray computed tomography. European Journal of Soil Science 60, 360–388 (2009)

4. Peth, S., Nellesen, J., Fischer, G., Horn, R.: Non-invasive 3D analysis of local soil
deformation under mechanical and hydraulic stresses by uCT and digital image
correlation. Soil and Tillage Research 111, 3–18 (2010)

5. Nowak, P., Romaniuk, M.: Pricing and simulations of catastrophe bonds. Insurance:
Mathematics and Economics 52, 18–28 (2013)

6. Swanepoel, C.J., Doku, W.O.: New goodness-of-fit tests for the error distribution of
autoregressive time-series models. Computational Statistics and Data Analysis 43,
333–340 (2003)

7. Charytanowicz, M., Kulczycki, P.: Nonparametric Regression for Analyzing Cor-
relation between Medical Parameters. In: Pietka, E., Kawa, J. (eds.) Informa-
tion Technologies in Biomedicine. ASC, vol. 47, pp. 437–444. Springer, Heidelberg
(2008)

8. Kulczycki, P., Charytanowicz, M.: Conditional Parameter Identification with Dif-
ferent Losses of Under- and Overestimation. Applied Mathematical Modelling 37,
2166–2177 (2013)

9. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London (1986)



234 M. Charytanowicz

10. Lange, K.: Numerical Analysis for Statisticians. Statistics and Computing.
Springer, New York (2000)

11. Kincaid, D., Cheney, W.: Numerical Analysis. Brooks/Cole, Pacific Grove (2002)
12. Zdravkov, B., Cermak, J., Sefara, M., Janku, J.: Pore classification in the charac-

terization of porous materials: A perspective. Central European Journal of Chem-
istry 5, 385–395 (2007)

13. Król, A., Niewczas, J., Charytanowicz, M., Gonet, S., Lichner, L., Czachor, H.,
Lamorski, K.: Water-stable and non-stable soil aggregates and their pore size dis-
tributions. In: 20th International Poster Day and Institute of Hydrology Open
Day: Transport of Water, Chemicals and Energy in the Soil – Plant – Atmosphere
System, Bratislava, pp. 870–871 (2012)

14. Draper, N.R., Smith, H.: Applied regression analysis. John Wiley and Sons, New
York (1981)

15. Pratt, W.K.: Digital Image Processing. John Wiley and Sons, New York (2001)
16. Aphelion 4.0.10 user guide: ADCIS S.A. (1997)



Automatic Car Make Recognition in Low-Quality
Images

Paweł Badura and Maria Skotnicka

Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
pawel.badura@polsl.pl

Abstract. This paper presents a robust system for automatic car make
recognition in real-traffic images of car front, featuring low contrast and
compression-based distortions. The system is designed to distinguish and
classify a variety of car makes by means of Scale Invariant Feature Trans-
form pattern recognition and matching over a reference database of car
brand images. The system framework consists of image preprocessing
techniques yielding a car brand region, feature extraction and descrip-
tion, pattern matching procedure and multicriteria decision-making pro-
cess. The knowledge database is opened and easy to extend in order to
cover an increasing number of car makes. Described approach stands for
a part of an expert system for car type, make and color recognition, to
be designed and build for real traffic supervision.

Keywords: car make recognition, feature extraction, Scale Invariant
Feature Transform.

1 Introduction

Automatic systems for detection, recognition and classification of various car
features becomes a more explored research topic nowadays. That concerns not
only licence plate recognition systems (ALPR), which have been widely designed
and applied for years [1]. Number of effective and real-time approaches for vi-
sual analysis of a car appearance in various types of image data significantly
increases. Car type, make, model, color should be mentioned [2]. They are often
collected and closed in a complex expert system designed to provide comprehen-
sive information on the car being inspected [3].

Most of make recognition systems is based on feature extraction and classi-
fication methods (e.g. Support Vector Machines – SVM [4, 5], Bayesian meth-
ods [6, 7], neural networks [8]). Commonly used feature extraction algorithms
are: Canny edge detector [9], square mapped gradients [10], methods based on
contour information [11], Curvelet Transform [5], Speeded-Up Robust Features
(SURF) [3, 12] and Scale Invariant Feature Transform (SIFT) [3, 13].

Main limitation of all systems is the image quality. High efficiency (96%) of
make and model recognition has been reached by applying k-nearest-neighbour
and Naive Bayes classifiers [7]. The dataset, however, consisted of pictures of
parked cars, taken from small distance (1.5-3 m), whilst most systems have to
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manage with poor quality images of moving cars. Another problem is a number
of classes in a database. There is a large number of car models in real traffic
and each system should recognize the majority. In [3] the SURF detector and
SVM have been used for model recognition with the accuracy of 91.7%, yet
with a database of 17 different models. Segmentation precision of 62.53% have
been obtained in [14] using local and global object information, with a database
of only 10 car makes and models. Another car make recognition problem is the
number of car make samples in the database. In [15] the SURF based recognition
has been used yielding 45% efficiency due to the small amount of samples used
for evaluation. The authors suppose, that a larger dataset could improve the
above statistics.

The aim of this study, in reference to the above review, is the design of a sys-
tem for an automatic recognition of a car make in case of low-contrast, JPEG
compressed images of car front. Our system is a component of an expert system
for car type, make and color recognition, to be designed and build for a real
traffic supervision. Foundations of the car make recognition system might be
formulated as follows: (a) since the inspected images feature (by default) low
contrast and compression-based distortions, the system is supposed to be robust
also for multiple types of real-traffic imaging drawbacks: e.g. lighting, dirt, or
weather conditions influence; (b) a wide spectrum of car makes should be recog-
nizable, involving those more or less present on supervised roads; (c) the system
should be easily adaptable and enable appending successive makes to the knowl-
edge base without decrease of distinctiveness; (d) since no model recognition is
required, the appropriate car make classification should be secured among var-
ious models of the same car producer; (e) the system should be fast enough to
be a real-time application.

In order to meet the above requirements a system has been designed, com-
posed of image preprocessing procedures, feature extraction and description,
pattern matching, and classification based on multicriteria decision-making pro-
cess. The image preparation contains licence plate recognition, image rotation,
car mask and brand region of interest (ROI) extraction. The car brand ROI is
subjected to a feature extraction process involving the SIFT paradigms. Then,
the SIFT descriptors are matched to the previously collected reference database
of car make patterns to produce the matching vector. Finally, a decision is made
after a cautious look at the input car brand compared to the reference database
samples.

This paper is organized as follows. Section 2 presents the idea of a system:
image data specification, image preparation techniques, feature extraction and
description, pattern matching, and classification idea. Quantitative verification
of the system is shown and discussed in Section 3. Section 4 concludes the paper.

2 Methodology

The system components include (Fig. 1): image preprocessing, feature extraction,
pattern matching, and classification. They are discussed in the following sections.
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Fig. 2. Image preprocessing scheme

2.1 Image Preprocessing

The image preprocessing procedures are presented in Fig. 2. Before specifying
them in details, first the database of images has to be introduced.

Database. Images used in this study have been acquired by a SmartLPR R©

Speed infrared camera operating in real traffic and used for ALPR. Sample
images are shown in Fig. 3. The image size is 752× 480 pixels with 8-bit JPEG
compression at ca. 0.15 − 0.50 bits per pixel (bpp). In many cases the images
have unsatisfactory contrast due to histogram shift towards low intensities (two
bottom rows in Fig. 3). Our system is designed to overcome such problems
in a reasonable range. Nonetheless, we found the interpretability limitation for
image quality at ca. 0.25 bpp compression. That excludes poor images (bottom
row in Fig. 3) from the recognition process, as they do not offer any valuable
features.

The license plate and lights are sufficiently apparent in database images, there-
fore they might be used to position the car mask and establish further detection
workflow.

License Plate Detection. The license plate detection consists of (Fig. 4):

1. Bernsen dynamic thresholding of the original image I [16] with parameters
r = 5 (window size), l = 48 (minimum window contrast) and a half of
intensity range (128) used for thresholding within low-contrast windows.

2. Morphological corrections employed to eliminate small false positive regions,
cut off all links between license plate and possible parts of the car body, filling
holes in the license plate region and adjust its edges [17].

3. If multiple candidate regions survive previous operations, a simple voting sys-
tem is employed to select the proper region. Several object features are taken
into consideration, namely: texture parameters based on intensity changes
across image rows intersecting the candidate object, region orientation, size
proportions, and spatial relation to the image vertical axis.
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Fig. 3. Sample car images arranged with decreasing contrast/quality

Image Rotation. Cars, in general, are not positioned parallel to the image
horizontal axis, thus the rotation is performed to secure proper position. Rotation
angle αlp results from the license plate orientation relative to the image x-axis
(Fig. 5).

Car Mask ROI Detection. Based on a wide analysis of possible car brand
locations in a car mask, a narrow car mask region of interest has been defined
according to the following rules:

1. The license plate is assumed to be placed in a lower part of a car front,
symmetrical in the horizontal direction. Thus, its middle column determines
the vertical axis of symmetry in the rotated car region.

(a) (b) (c) (d)

Fig. 4. License plate detection (2 cases); (a) original image I and results of: (b) Bernsen
thresholding, (c) morphological corrections, (d) region selection using a voting system
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Fig. 6. Definition of a car mask ROI

2. For most of the car makes, the brand and other useful patterns are located
in a rectangular region above a license plate. It has been defined based on
plate sizes (Fig. 6).

The car mask ROI Icm is cropped from the original image and subjected to a car
brand search.

Car Brand ROI Detection. Determination of the car vertical axis of symme-
try is crucial, because it crosses the brand in practically all car makes. Our recog-
nition technique relies on textural features distinctive for multiple car makes, yet
similar for various models of the same car producer. The car brand seems to be
the best choice, also due to particular problems to be solved in a robust manner:
diverse contrast, reflections and various appearance, possible lack of the entire
car front in an image, etc.

The car brand detection is performed on Icm in the following steps (Fig. 7):

1. Lowpass filtering of Icm using 5× 5 Gaussian kernel.
2. Adaptive contrast enhancement. Primary intensity scale is transformed into

a narrower scale, based on the ROI histogram.
3. Calculation of the horizontal gradient summed across image rows. This is

done iteratively on sub-images enlarged around vertical axis, as the brand
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(a) (b) (c) (d) (e) (f)

Fig. 7. Car brand ROI detection (2 cases); (a) car mask ROI with enhanced contrast,
(b) auxiliary image Jgs, (c) vertical edges from (b), (d) initial and (e) final brand mask,
(f) detected car brand ROI

pattern usually disrupts the symmetry more than other image regions. As
a result, an auxiliary image Jgs is created, that might be compared to an im-
age bent along the y-axis with vertical borders folded together (Fig. 7b).

4. Detection of vertical edges in Jgs in order to obtain rough boundaries of the
car brand (Fig. 7c), grayscale dilation, Otsu thresholding [18], and morpho-
logical closing (Fig. 7d).

5. Since the resulting mask may contain false positive objects (bottom case in
Fig. 7), additional operations are performed, if necessary. Namely: selection
of objects adjacent to the left border (vertical axis in Icm) and simple voting
system based on object features.

The finally chosen object (Fig. 7e) determines the bounding box for a car
brand in the mask ROI. It is adjusted not to exceed minimum/maximum as-
sumed sizes and cropped to produce the final car brand ROI Icb (Fig. 7f). Fig. 8
shows several images extracted using this methodology. A number of already
mentioned concerns arise here: low contrast of the original image related to the
JPEG compression leads to more or less significant distortions. All of them have
to stay in mind while discussing the design and evaluation of the feature extrac-
tion and classification processes.
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Fig. 8. Sample car brand ROI images arranged with decreasing quality

Fig. 9. Sample car brand ROI images with SIFT keypoints; each vector represents
a single vector-like oriented keypoint, with initial point at keypoint location and vector
length corresponding to scale size

2.2 Feature Extraction

The Scale Invariant Feature Transform (SIFT) is an automatic tool provided by
Lowe [19, 20] for extraction of image features and classification by feature-based
matching. It relies on detection and description of keypoints – selected extrema
in the image scale space [21, 22]. Each keypoint is uniquely represented by its
topological location, scale and orientation. Moreover, for each keypoint a feature
vector of descriptors is generated to prepare the background for comparison and
matching. Fig. 9 shows sample car brand images with SIFT keypoints indicated
by vectors.

In this study, we have tested several potential ROI possibilities as a fundament
of a SIFT-based object recognition, in terms of keypoints representativeness and
repeatability, as well as system efficiency: the full image I, various modes and
sizes of a car mask ROI and a car brand ROI, as described in previous section. As
a result, a car brand ROI has been chosen after Gaussian filtering and a contrast
enhancement (note Fig. 7f). Moreover, the ROI resampling is applied by bicubic
interpolation, to preserve the length of the longer image side at 128 pixels. Such
a solution enables a generation of ca. 10-60 keypoints per image, with an average
amount at ca. 20.
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Fig. 10. Pattern matching scheme

2.3 Pattern Matching

The fundamentals of SIFT enable flexible, scale- and rotation-invariant analysis
of correspondence between patterns in images. Two images might be compared
by a distance measure between pairs of keypoints taken from both sources. Eu-
clidean distance between normalized descriptor vectors is used: with keypoint ki
generated by the first image, a single keypoint lj is chosen as a candidate match
from a set of L keypoints describing the second image being the closest neighbour
of ki. To provide a full automation of matching process, a comparative system
has been proposed to verify such candidate ki-lj match [20]: it is approved only
if the ratio of distance measures of the closest and the second-closest keypoints
does not exceed a predefined value of rd. Authors report rd = 0.8 to be the gen-
erally best suited value for object recognition by SIFT analysis. We have tested
our system to adjust the rd value and found 0.65-0.75 to be more profitable.

A set of car brand SIFT patterns have been prepared to stand for a reference
database. It consist of Ng = 25-40 groups of Nppb = 3-5 patterns – representatives
of particular car makes. Engaging multiple patterns per brand makes the system
more robust, but also slows it down.The first step of decision-making process is
shown in Fig. 10. A car brand ROI extracted from the input image is first
subjected to the keypoint extraction and then compared to each SIFT pattern
in the reference database. Each comparison results in a particular measure –
a number of matches obtained for a single pattern. With a distance ratio rd set
to a restrictive value of 0.7, most of the patterns produce zero matches. Only
few of them generate a number of positive responses. At this point, all of them
are collected in a pattern matching vector M and delivered to the classifier.

2.4 Classification

The search for a trade-off between false positive and false negative rates moved
the distance ratio rd into a relatively small, restrictive value. That, however,
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results in a low number of matching keypoints and makes the classification chal-
lenging. Let us consider several rules leading to a final decision:

1. The D1 rule (direct match). If the maximum number of matches in M is
produced by a single pattern, it is accepted as the winner and its car make
becomes the car make assigned to the input image. D1 is quite robust, yet
there are too many cases with multiple patterns producing the maximum
number of matches; thus, no decision is made.

2. The D2 rule (mean brand match). The mean number of matches is
computed within each group Gi of brand patterns and the largest value
determines the decision. D2 requires as uniform distribution of distinctive
keypoints among patterns as possible. Moreover, if a specific car make covers
miscellaneous brand patterns, they should be grouped in separate clusters
to avoid undesirable reduction of the group measure.

3. The D3 rule (top-of-the-list match). Drawbacks of D1 and D2 rules
might be reduced by the following approach. Let us monitor the best match-
ing Nt patterns and collect the total number of matches within groups of
patterns. Group with the largest number of matches is accepted as the win-
ner. D3 shows its best performance, when Nt = kt ·Nppb, with kt ∈ [1, 2].

Each of the above rules has its pros and cons. In many cases (especially for
D1), there is no individual match produced by a decision. The experiments have
shown, that with a balanced reference database, D2 provides best results. Thus,
D2 becomes final, if it is unequivocal. Otherwise, the remaining decisions are
inspected as deep as necessary: if D3 yields the sole winner, then it is the final
one; if not, D1 is checked. If there is no effective rule, the final decision is:
"unrecognized".

3 Results

The system has been evaluated using a dataset of 1225 images. In each experi-
ment it has been divided into the reference database and the testing set. Table 1
shows the total system efficiency as a function of the distance ratio rd and the
number of reference patterns per brand Nppb. The optimum values for these pa-
rameters have been set to 0.7 and 5, respectively. As a result, 796 cases have
been recognized correctly, 249 incorrectly, whilst 23 have been considered "un-
recognized". Therefore, the total efficiency reached 74.53%, with 76.17% for all
definite decisions. Tables 2 and 3 show detailed analysis of the system accuracy
for all classification rules and specific car makes, respectively.

The system fails mainly due to: (a) visual image poorness leading into the
unstable feature extraction; (b) similarities between some car brands at avail-
able image quality (e.g. Nissan-Opel; Ford patterns produce most false positive
hits); (c) small size/poor textural content of the car brand; visual dominance of
non-brand textures leading into unpredictable feature extraction (BMW, Volvo,
Chevrolet); (d) insufficient level of the reference database representativeness.
Since the reference database generation is based on the ROC analysis of all
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Table 1. System efficiency as a function of parameters rd and Nppb; each cell has
a format: recognition efficiency total efficiency hits/misses/unrecognized

Nppb

rd 3 4 5
0.65 71.1% 65.9% 741/301/83 74.7% 71.7% 787/267/43 76.1% 73.6% 787/247/35
0.70 67.4% 64.6% 725/351/47 70.7% 69.2% 757/313/24 76.1% 74.5% 796/249/23

0.75 66.3% 65.0% 729/371/22 71.1% 70.0% 766/312/16 73.8% 73.6% 786/279/3
0.80 64.2% 63.4% 711/397/13 70.2% 69.6% 762/324/9 72.8% 72.6% 776/290/3

Table 2. Efficiency of the classification rules (rd = 0.7, Nppb = 5)

Rule Recognition eff. Total eff. Hits/misses/unrecognized
D1 68.05% 50.84% 543/255/270
D2 80.37% 73.22% 782/191/95

D3 76.00% 69.66% 744/235/89

Final 76.17% 74.53% 796/249/23

Table 3. System efficiency for specific car makes (rd = 0.7, Nppb = 5)

Make Efficiency Make Efficiency
Suzuki 100.0% 100.0% 11/0/0 Ford 67.2% 65.0% 39/19/2
Mitsubishi 100.0% 100.0% 1/0/0 Hyundai 64.3% 64.3% 9/5/0
Seat 91.7% 91.7% 13/1/0 Citroen 71.1% 64.0% 32/13/5
Volkswagen 90.9% 90.3% 159/16/1 Toyota 66.7% 64.0% 32/16/2

Honda 87.5% 87.5% 14/2/0 Kia 75.0% 60.0% 3/1/1
Fiat 87.7% 83.3% 50/7/3 Iveco 38.5% 33.3% 5/8/2
Opel 82.4% 81.2% 108/23/2 Volvo 27.3% 27.3% 3/8/0

Renault 79.6% 78.3% 11/0/0 Nissan 20.0% 20.0% 2/8/0
Mercedes 78.2% 78.2% 68/19/0 BMW 18.8% 17.6% 3/13/1
Peugeot 75.5% 75.5% 37/12/0 Chevrolet 0.0% 0.0% 0/1/0

Audi 75.4% 75.4% 43/14/0 Chrysler 0.0% 0.0% 0/1/0
Skoda 68.0% 67.3% 70/33/1 Dacia 0.0% 0.0% 0/3/1
Mazda 66.7% 66.7% 6/3/0

available samples of a given car make, the recognition is more reliable in case of
strongly represented makes.

The system time consumpion is presented in Table 4, where detailed infor-
mation on mean times for subsequent stages of an algorithm are shown. Evalu-
ation has been performed on workstation with CPU @ 3.40GHz, 16GB RAM,
64-bitWindows 7 OS and Matlab 7.14. (R2012a). Due to the image size and
its reduction during image preprocessing, features are extracted in milliseconds.
Since all operations except pattern matching take less than half a second of to-
tal time, the real-time abilities of a system depend on pattern matching. Mean
time for a single pattern-to-pattern matching is shown in 4th and mean time
for a single pattern-to-database matching – in 5th column of Table 4. The latter
depends directly on the number of patterns in the reference database; both – on
the mean number of keypoints per pattern.
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Table 4. System time consumption analysis. Subscripts of t refer to acronyms of
subsequent stages from Fig. 1; pattern matching is evaluated using 2 measures: pattern-
to-pattern (tPaMa,1) and pattern-to-reference database (tPaMa)

Nppb tImPr tFeEx tPaMa,1 tPaMa tCl ttotal
3 0.361 s 0.059 s 0.006 s 0.520 s 0.001 s 0.941±0.030 s
4 0.362 s 0.056 s 0.006 s 0.690 s 0.001 s 1.108±0.034 s
5 0.363 s 0.056 s 0.006 s 0.837 s 0.001 s 1.256±0.039 s

4 Conclusion

A robust system for automatic car make recognition has been presented. Using
the scale invariant pattern recognition and matching tool, it enables classifica-
tion of various car makes from low contrast images. Simplicity and flexibility
of the system architecture makes it easy to adapt for various types of images,
specifically of a better quality. Each block of a system – image preprocessing
steps, feature extraction, pattern matching, and classification – works indepen-
dently and might be improved separately according to potential requirements.
The multicriteria classification framework provides adaptable inference, based
on various pattern matching conclusions. Its possible adaptability to changing
conditions and image specification might rely on learning techniques, e.g. in the
decision weighting selection.

Currently the system is able to recognize almost 30 different car makes with
75% accuracy. The recognizable car collection corresponds to the cars driving on
Polish roads. Since the system uses a well defined, yet open knowledge database,
clustered into car brand patterns, additional car makes may be recognized without
any changes to the decision-making process. Potential replacements of patterns
into different ones, yielding more distinctive features, is also easy to accomplish.
The study on distinctiveness and repeatability of a reference database and system
recognition abilities remains an open task for future research.
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Abstract. A new method of the OCT (Optical Coherence Tomogra-
phy) image analysis is presented. It concerns eyeball examination in oph-
thalmology. Adaptive noise suppression algorithm, based on anisotropic
diffusion, followed by multistep image analysis approach yield a segmen-
tation and measurement of various layers within the retina structure.
The proposed segmentation approach utilizes different image process-
ing techniques including watershed transform, Fuzzy C-Means and H-
Minima Transform. Both, anatomical and pathological cases have been
subjected to the analysis. The results have been evaluated by an expert.

Keywords: segmentation, OCT, retina, eyeball, retina layers, macular
edema, cysts.

1 Introduction

Optical Coherence Tomography is a relatively novel, non-invasive optical tech-
nique applied in medicine, providing imaging of the internal structure of
semitransparent objects. This technique plays an important role, mainly in oph-
thalmology and dermatology. In ophthalmology it is often employed for the di-
agnosis of pathologies, ocular diseases detection and therapy aiding.

The first laboratory model of the optical tomograph was created in 1993, while
three years later the first commercial apparatus was manufactured. Fast and
efficient progress in the construction of these devices (following the development
of optoelectronics) has been observed for the last ten years. Faster and more
selective lasers have been applied and new image reconstruction techniques have
been used.

The OCT technology acquires high-resolution images of the eyeball structures.
One of the significant drawbacks of the OCT techniques is a high image granu-
larity. Therefore, image quality improvement phase is required before a suitable
image analysis or image segmentation procedure is applied.

The image analysis phase in ophthalmology exams starts with the detection
of the retina layers. The anatomy of retina consists of 12 layers oriented almost
parallel to each other (Fig. 1). However, only 8 of them including full-thickness
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macular hole, central serous chorioretinopathy, macular edema, epiretinal mem-
brane, vitreomacular traction and retinitis pigmentosa and chloroquine retinopa-
thy are important in the medical diagnosis [1]. The most difficult task in the OCT
image analysis is to outline the layers and measure distances between them. The
first stage requires a correct detection of the Internal Limiting Membrane (ILM).
The task is not trivial in healthy patients and becomes much more difficult in
pathological cases. Macular edema that causes cysts (fluid-filled areas) in the
macula serves as an example [2].

Fig. 1. The selected retina layers in OCT scan

Medical studies show that visual prognosis are based on cyst localization and
cystoid fluid volume calculation. This problem induced motivation to develop
a computer aided methodology dedicated to automatic cysts detection.

Already developed image analysis application are performed automatically
[3–5] and semi-automatically [6]. Some authors [3, 6, 7] decompose the retina into
cellular layers. Depending on the needs various number of layers is segmented
using the 2D edge workflow [3], adaptive filtering technique with peak detection
method [6] or active contour approach [4, 5]. A separate analysis of the anterior
and posterior eye segment has also been reported [7]. Roychowdhury et al. [8]
have followed the retina layers segmentation by the detection of the cystoid.
Additionally, some studies [8] undertake the analysis of pathological cases like
vitreomacular traction, drusen, macular holes (cysts) etc.

The paper is organized as follows. Section 2 presents the methodology di-
vided into four parts: (1) image quality improvement, (2) segmentation of ILM
layer and retina thickness measurement, (3) detection of NFL and RPE layers
and (4) automatic cysts detection. Numerical results are discussed in Section 3.
Section 4 concludes the paper.

2 Methodology

The methodology has been divided into several stages (Fig. 2). The image ac-
quisition is followed by the quality improvement applied to every image in order
to reduce the noise and granularity. Then, on the user request, the segmentation
of the most important retina layers and cysts detection is performed.
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Fig. 2. Workflow

2.1 Pre-processing

Among filtering methods a technique preserving edges is required. The retina
layers have to remain unblurred. Adaptive filtering is one of the methods that
fulfils this demand. One of the possibilities is to use the diffusion process based
on the heat equation. In the interior of a segment the nonlinear isotropic diffusion
equation behaves almost like the linear diffusion filter but on the edges the diffu-
sion is inhibited. Therefore, a noise occurring on the edges cannot be successfully
eliminated by this process. To overcome this problem, the desired method should
prefer diffusion along the edges to diffusion perpendicular to them. Anisotropic
models take into account not only the modulus of the edge detector, but also
its direction. Hence, such model behaves really anisotropically, suitably for this
task. This method yields much better results, as the filtering kernel parameters
are calculated separately for each image pixel. In this way impulse or Gaussian
noise and small artefacts in the image can be removed without blurring off the
relevant edges.

A mathematical model for diffusion is based on heat equation often presented
as:

It(x, y, t) = div [c · ∇I (x, y, t)] (1)

where div is a divergence operator, ∇ denotes a gradient operator and c is the
diffusion coefficient. When c is constant (generally equal to 1) an analogous
result as in convolving image I(x, y) with a Gaussian of the standard deviation
σ =

√
2 · t is obtained [9]. This case is known as a linear diffusion.

Using the linear heat equation as a paradigm Perona and Malik [10] have in-
troduced a modification where diffusion coefficient c is a positive, monotonously
decreasing function, which modulates the strength of the diffusion process [11].
Two functions for the diffusion coefficient are employed:
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cPM1 (x, y, t) =
1

1 +
(

|∇I(x,y,t)|
kPM

)2 , (2)

cPM2 (x, y, t) = e

( |∇I(x,y,t)|
kPM

)2

. (3)

In this way nonlinear diffusion reducing the smoothing effect near edges is
obtained.

The filtering model presented above is a isotropic case. However, in some ap-
plications the orientation has to be distinguished. Weickert in [12, 13] suggested
an efficient anisotropic diffusion model. Anisotropic models do not only take
into account the gradient magnitude |∇I(x, y, t)|, but also its direction. For this
purpose the diffusion coefficient should be decomposed into a matrix:

c (x, y, t) =

[
c11 c12
c21 c22

]
. (4)

Additionally, eigenvectors v1 and v2 of the diffusion coefficient c (x, y, t) satisfy
the conditions:

v1||∇Iσ (x, y, t) v2⊥∇Iσ (x, y, t) , (5)

where Iσ (x, y, t) is a Gaussian-smoothed version of I (x, y, t) with kernel Kσ.
Most implementations of diffusion filters are based on finite difference meth-

ods. The partial derivatives are approximated by central difference quotients.
Since the majority of retinal layers are aligned horizontally, this direction should
be amplified during the calculation of partial differences by means of the differen-
tial calculus. Hence, not only the nearest neighbours are taken into consideration,
but also remote neighbours, situated on the same horizontal line.

Benefits of application diffusion filter are clearly visible in figure (Fig. 3)
shows images before and after adaptive filtering stage. Also visible in the figure
image profiles (Fig. 3(c)–(d)) are a good indicator of pre-processing procedure.
Main retina layers are easy to see while noise suppressing and edge locations
preserving.

After the anisotropic diffusion stage, median spatial filtering is suggested as
the final pre-processing operation before the segmentation stage. It is useful to
suppress impulse noise.

2.2 Internal Limiting Membrane Segmentation

The preprocessed image features a sharpen retina region and suppressed back-
ground. At this stage a gradient-based watershed approach has been employed.

The watersheds idea is derived from the topography. It consists of areas split-
ting by finding watershed lines called also dams. These lines indicate the regions
boundaries which are catchment basins for a drop of water falling on the area.
Therefore, lines pass along the highest points of the land.
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(a) (b)

(c) (d)

Fig. 3. Pre-processing based on anisotropic diffusion: (a) original image, (b) image
after diffusion, image profiles of: (c) original image, (d) diffused image

In image processing the intensity value of each pixel stands for the height
at this point. In order to assign the highest values to the edges the gradient
preprocessed image is subjected to the watershed procedure, (Fig. 4).

Unfortunately, as is commonly known that the standard watershed algorithm
generates a huge number of regions. To reduce the effect a modified version –
the Marker-Controlled Watershed Segmentation – has been utilized.

This approach requires an additional image: marker image. Generally, it is a
binary image indicating the regions of possible edge occurrence that can not be

(a) (b) (c)

Fig. 4. Standard watershed algorithm: (a) original image, (b) pre-processed image,
(c) final image
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divided. To obtain a marker image, thresholding and mathematical morphology
tools have been employed. The desirable shape of this binary image should indi-
cate only the coarse of retina. Then, the watershed procedure does not generate
any regions or edges inside the retina, yielding only the essential retina
borders [14].

Additionally, the image gradient has to be modified. Since the gradient is very
sensitive to local noise, the preprocessed image has been enhanced. This process
sharpens clear edges while suppresses weak edges.

A way to obtain the final result of the ILM detection is shown in figure,
(Fig. 5). Comparing images Fig. 4(c) and Fig. 5(c) one can see that the number
of watershed regions is significantly reduced and any regions outside the marker
have not been found. Such proceedings in most medical cases ensures a proper
detection of Inner Limiting Membrane.

(a) (b) (c) (d)

Fig. 5. Detection of Inner Limiting Membrane: (a) modified gradient image, (b) marker
image, (c) Marker-Controlled Watershed Segmentation, (d) final image

2.3 IS/OS and RPE Segmentation

Some of the clearly visible and diagnostically relevant layers are Photoreceptor
Inner/Outer Segment Interface and Retinal Pigment Epithelium Layer. Anatom-
ically both are rather parallel to ILM and are running across the whole retina
visible in the OCT image. When the appearance and position of these layers
are disturbed it reflects pathologies. Thus, the analysis has to start with the
segmentation of IS/OS and RPE.

The proposed segmentation algorithm is based on the Fuzzy C-Means cluster-
ing (FCM) technique. Three classes that define low, medium and high intensity
regions have been extracted, (Fig. 6(c)). The defuzzification is based on the
maximum aggregate operator. As a result, a highlighted background, significant
part of the retina, IS/OS and RPE layers have been separated. The latter re-
gion is the smallest surface area. Therefore, primarily the smallest class is chosen,
(Fig. 6(d)). The shadows caused by blood vessels or a pathology are often the rea-
son of discontinuity of the layer. Correction procedure that merges broken parts
employs mathematical morphology operations. Moreover, the regions belonging
to the same class, located outside segmented layers, are ignored, (Fig. 6(e)).
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Segmentation of IS/OS and RPE layer: (a) original image, (b) pre-processed
image, (c) clustered image (c = 3), binary image (d) before, (e) after correction proce-
dure, (f) final image

2.4 Cysts Detection

The final stage of the proposed methodology is an automatic cyst detection. This
algorithm is processed in several stages. Image obtained after the anisotropic dif-
fusion (Fig. 7(b)) is first subjected to grayscale morphology operations. Since the
cysts resemble black blobs on relatively light background, H-Minima Transform
has been used (Fig. 7(c)). Threshold H has been adjusted experimentally during
the preliminary research performed on several OCT series. Thresholding func-
tion has yielded a binary image. Generally, except cysts other dark structures
are segmented (Fig. 7(d)). To discard redundant regions, correction operations
are employed. These manipulations rely on clearing border elements and deleting
all structures which are located under the RPE layer. That is the brighter and
thicker layer inside the retina that is possible to be detected (see Section 2.3).
The final results are shown in Fig. 7(f).

3 Results

In this preliminary study the results have been evaluated by an expert. The
proposed algorithm has been tested on a data set including anatomical cases
as well as low quality images and pathologies. Among them are shadows from
vasculature, vitreomacular traction, macular holes and cysts etc. The methodol-
ogy has been compared with semi-manual segmentation that utilized Live-Wire
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(a) (b) (c)

(d) (e) (f)

Fig. 7. The algorithm of cyst detection: (a) original image, (b) filtered image, (c) H-
Minima Transform, (d) binary image, (e) segmentation of RPE, (f) final result

(a) (b) (c)

(d) (e)

Fig. 8. Segmentation of ILM, IS/OS and RPE retina layer in anatomical case based
on: (a)–(c) Intelligent Scissors, (d)–(e) proposed algorithm
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(otherwise Intelligent Scissors) with FCM Clustering Algorithm [9]. Due to the
possibility of manual correction of segmented edges, LW-FCM algorithm gener-
ate results accepted by an expert. Therefore, this method may be considered as
a reference. Because each edge segmentation requires at least a pair of points
each of the layers ILM, IS/OS and RPE is individually detected. Whereas in
the proposed algorithm the segmentation of IS/OS and RPE layer proceeds
simultaneously.

The simplest normal case is shown in Fig. 8. Both results obtained by the
semi-automatic (based on Intelligent Scissors) and fully-automatic, proposed in
this paper, algorithm have accepted by the expert.

The segmentation of images with vasculature shadows (Fig. 9) is also accept-
able. However, it can be noticed that the proposed algorithm is more sensitive
to shadows. Under certain conditions they may cause gaps within the layer.

(a) (b) (c)

(d) (e)

Fig. 9. Segmentation of ILM, IS/OS and RPE retina layer accept vasculature shadows
based on: (a)–(c) Intelligent Scissors, (d)–(e) proposed algorithm

The OCT exam showing a macular hole has been segmented and results are
given in Fig. 10. Automatic segmentation of ILM (Fig. 10(d)–(e)) is successful
despite the ILM layer has a strongly complicated shape having sharp corners
and rapid turns.
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(a) (b) (c)

(d) (e)

Fig. 10. Segmentation of ILM, IS/OS and RPE retina layer accept macular hole based
on: (a)– (c) Intelligent-Scissors, (d)–(e) proposed algorithm

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Automatic cyst segmentation: (a)–(d) detection of all cyst, (e)–(h) ILM,
IS/OS, RPE segmentation
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The macula hole also caused some changes in IS/OS and RPE layers. Both
layers are subjected to the analysis. This results in the lack of continuity. Nev-
ertheless, the layers are delineated correctly.

The final test included automatic cysts detection from OCT series with dif-
ferent types, sizes and localization of cysts. As shown in figure (Fig. 11) despite
aforementioned image properties correct cysts segmentation has been obtained.

Additionally, three basic layers ILM, IS/OS and RPE have been subjected to
the segmentation procedure, (Fig. 11(e)–(h)). The results are acceptable to the
expert. The figures (Fig. 11(e), (h)) show minor problems with segmentation
near the image border. In this area the layers behave similarly to vasculature
shadows.

A quantitative analysis on a large data base is being performed and will be
published shortly.

4 Conclusion

Decomposition of the retina into its anatomical layers and detection of the cysts
are medically important and frequently encountered in the literature as an un-
solved problem. The fully automatic algorithm for the segmentation of layers
and cysts presented in this paper follows this trend. The methodology is quite
complex and is carried out in multiple stages, including pre-processing and seg-
mentation of various retina layers.

Performance of the algorithm seems to be effective for OCT image series. The
preliminary results are visually accepted by an expert. The algorithm returns the
correct segmentation in many different medical cases including pathologies and
low quality images. Comparison of the results with those obtained by a semi-
automatic method (Intelligent Scissors), confirms its effectiveness and accuracy.
The main advantage of the proposed algorithm is its automatic performance.

The proposed algorithm is the first step of the overall analysis of OCT scans
of internal eyeball structure.

Acknowledgement. The authors would like to thank OPTOPOL Technology
S.A. Zawiercie, Poland for valuable cooperation and providing the images.
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Abstract. The main interest of the authors was to develop vascular
solid tumour growth model, implement efficient numerical methods for
simulations towards finding a solution of the model and trying to opti-
mise influence of different types of therapies. A system of partial differ-
ential equations was introduced in order to simulate growth of tumour
and normal cells as well as the dynamics of the diffusing nutrient and
anti-angiogenic or chemotherapeutic factors within the tissue. Numerical
simulations of our model were executed toward finding a suboptimal ther-
apy protocol using stable FDTD (finite difference time-domain) method
implementation. Combined therapy protocols has been selected by means
of meta-heuristic algorithms. In this work we have selected genetics al-
gorithms, ant colony algorithms and simulated annealing method. For
those algorithms convergence to suboptimal solution was examined and
compared, as well as average tumour size, average iteration count and
average execution time.

Keywords: tumour growth model, parallel implementation, therapy op-
timisation, heuristic methods.

1 Introduction

Solid tumour progression is inseparably connected with vascular network sur-
rounding its volume [1]. In order to grow, tumour needs oxygen and nutrition
factors that will be delivered by the vascular network. It is crucial to consider
the vascular network as well as its dynamics in a realistic models. In literature
we can find many approaches of solid tumour modelling, among them one can
distinguish models based on cellular automata [2], structured models [3], sin-
gle cell-based models [4], and models based on physical mass and momentum
equations [5]. In the process of carcinogenesis, it is possible to identify different
phases of the (premalignant and malignant) tumour growth. There are many
models which focus on the one particular phase, for example on the hiperplas-
tic growth phase [6], tumour growth in situ [7], invasion [8], angiogenesis [9] or
process of metastasis [10].

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 261
Volume 3, Advances in Intelligent Systems and Computing 283,
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The microvascular network plays crucial role in development of the solid tu-
mours. It constitutes a source of the nutrient for the tumour and enables its per-
manent growth. However, due to fast metabolism of the tumour cells, hypoxic
regions may occur causing creation of necrotic lesions. The phenomenon of hy-
poxia is important because it may lead to the process of angiogenesis and simul-
taneously is a reason of lower efficiency of different therapies. The model taking
into consideration above mentioned processes was developed and it’s numerical
solution has been performed. Independently of the type of mathematical model,
calculation of its solution is always time and resources demanding (computations
time or computer memory) [11]. Presented model of vascular tumour growth is
described by set of partial differential equations. We have implemented FDTD
(finite-difference time-domain) numerical method which was already shown to
produce numerical stable solutions. In order to make calculations in larger space
which include complex three-dimensional structure of capillaries a single pro-
cessor computers are not sufficient. Hence there is need to use more computing
power to obtain the results in a reasonable time. We are comparing the imple-
mentation of the numerical method for multi-computer system (cluster) with
the message passing programming paradigm (MPI) [12] with massively par-
allel computing implementation using graphic computing accelerators (Nvidia
CUDA) [13].

2 Materials and Methods

2.1 Model Simulations Material

Numerical simulations has been done on the basis of syntetic micro environment
created to reflects real environment in the tissue. Except of the normal cells
fraction, tumour cells fraction and ECM (see the model in Sec. 3), vascular net-
work has been allocated, that underlies the distribution pathways for nutritients,
oxygen and therapeutic agents. Parameters of the model has been based on a
literature.

2.2 Numerical and Parallel Computation Methods

In order to find solution of the mathematical model appropriate numerical
methods have been used. Among the explicit numerical methods one-step Lax-
Wendroff method [14] for transport equations was chosen, and standard forward
time centered space for the diffusion equations. Computations have been done
in Mathworks Matlab for testing purposes (finding optimal and stable numer-
ical method, non-parallel implementation), with use of C language for paral-
lel version using MPI (Message Passing Interface) libraries, and CUDA based
implementation.

2.3 Optimisation Methods

Suboptimal therapy protocols have been investigated by means of selected meta-
heuristic algorithms: simulated annealing (SA) [16], genetic algorithm (GA) [18]
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and ant colony (AC) [17]. To compare computation time and the accuracy of
the solution for each studied method selected performance indexes have been
examined: tumour size, iteration count to reach the end of the algorithm and
execution time. We define also the performance index as the measure of efficacy
of the therapy treatment in a finite horizon Tmax as

J =

∫
a(Tmax)dΩ + w1

∫ Tmax

0

dch(t)dt+ w2

∫ Tmax

0

da(t)dt, (1)

where Ω denotes the spatial domain; w1 and w2 denotes coefficients for the total
amount of the delivered chemotherapeutic and antiangiogenic drug, respectively.
The optimisation problem is to minimize the performance index under the addi-
tional constraints. They concern the maximum amounts of the delivered drugs
within the computational time step:

0 ≤ dch ≤ Dch,max, 0 ≤ da ≤ Da,max. (2)

All the calculations were carried out using the computer cluster Ziemowit
(http://www.ziemowit.hpc.polsl.pl) funded by the Silesian BIO-FARMA
project No. POIG.02.01.00-00-166/08 in the Computational Biology and Bioin-
formatics Laboratory of the Biotechnology Centre in the Silesian University of
Technology. Every node used for MPI calculations has 2 six-cores Intel Xeon
CPUs and 36 GB RAM. Computer for CUDA computing was equipped with
Nvidia Tesla C2075 graphic accelerator and Intel Xeon processor.

3 Mathematical Model

A set of partial differential equations was introduced in order to simulate growth
of tumour and normal cells as well as the dynamics of the nutrient, hypoxic
factors, anti-angiogenic and chemotherapeutic particles diffusing within the tis-
sue. Different approaches are used for modelling the solid tumour growth. We
use continuous description of the model, but unlike in [15] we do not distin-
guish proliferative, quiescent and apoptotic cells. Cell behaviour is determined
by the oxygen concentration within the tissue. The equations for the cell dy-
namics originate from the multiphase theory [19, 20]. The main constituents of
the multiphase part of the model are normal cells, tumour cells and extracellular
matrix (ECM). Henceforth variable n denotes volume fraction of normal cells,
a denotes volume fraction of tumour cells, and m denotes volume fraction of
the ECM. Other continuous variables considered as volumeless includes: vari-
able c stands for oxygen concentration, variable da stands for the concentration
of anti-angiogenic treatment agent, variable dch stands for the concentration of
chemical treatment agent, and variable p stands for hypoxic factor, i.e. vascular
endothelial growth factor ( VEGF). Additionally in the model exists discrete
variable e denoting occurrence of blood capillaries in the space (binomial type of
the variable). For the sake of simplicity, volume fraction of ECM is assumed to
be homogeneous and constant. The model, in which the dynamics of the ECM

http://www.ziemowit.hpc.polsl.pl
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is investigated, can be find in work by Psiuk-Maksymowicz [20] (see the content
for more models). The overall volume fraction occupied by the cells spread on
the ECM must satisfy the inequality ψ = n + a +m ≤ 1 to be consistent with
the overall physical meaning. In order to close the model, the porous media as-
sumption is applied [21]. In order to provide true physiological picture – spatial
heterogeneity of concentration of the nutrient, hypoxic factors and xenobiotics
is ensured. Mathematical model consists of six PDE equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
= ∇ · (nK Σ′∇ψ) + nF (c− cP )[αn(1− ψ)− kndch]− γnnF (cA − c),

∂a

∂t
= ∇ · (aK Σ′∇ψ) + aF (c− cP )[αa(1− ψ)− kadch]− γaaF (cA − c),

∂c

∂t
= Dc∇2c− (knP n+ kaP a)F (c− cP )− (knQn+ kaQa)F (cP − c)F (c− cA) + S1(e),

∂p

∂t
= Dp∇2p+ αpF (cA − c)(n+ a)− ρp p e− λpp,

∂da
∂t

= Dda∇2da + S2(e)− kdadae− λdada,

∂dch
∂t

= Ddch∇2dch + S3(e)− kdch(n+ a)F (c− cP )− λdchdch.

(3)
where K is a coefficient related to the permeability of the medium, Σ is a stress
function. Growth of the cells is of logistic type, where αn and αa stands for
growth rate for normal and tumour cells, respectively. Normal and tumour cells
undergo apoptosis with γn and γa rates, respectively. Growth and degradation
of the cells is dependent on the oxygen availability, therefore in both terms sig-
moid function F (·) is present. In growth terms it depends on the proliferation
oxygen concentration cP , and in degradation terms it is dependent on the apop-
totic oxygen concentration cA. Parameters kn and ka specify effectiveness of the
chemotherapy on normal and tumour cells, respectively. Further four reaction-
diffusion equations determine dynamics of volume-less model constituents; Dc,
Dp, Dda, Ddch denote oxygen, VEGF, anti-angiogenic agent and chemotherapeu-
tic agent diffusion coefficients, respectively. Source terms are denoted by Si(·),
i ∈ {1, 2, 3} functions dependent on the position of the blood vessels. VEGF par-
ticles are produced with a rate αp, and decay spontaneously or due to meeting
with an endothelial cell. Similarly the drug particles decay spontaneously or due
to meeting with selected cells (endothelial cells for the anti-angiogenic drug and
proliferating cells for the chemotherapeutical drug).

In described model the velocity of the cells depend on the stress exerted
within the tissue. Different types of stress-volume ratio relations can be taken
into consideration. The simplest function characterising response to the stress
(c.f. [21]) is such, that below the value ψ0 it vanishes, increases for ψ > ψ0, and
tends to infinity as ψ → 1. Such a function can have a form:

Σ(ψ) = E(1 − ψ0)

(
ψ − ψ0

1− ψ

)
+

, (4)

where (f)+ denotes the positive part of f and E is the value of the derivative
inψ = ψ0, a sort of Young’s modulus for moderate compressions.
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4 Results

Example of model result with the drugs acting on healthy and tumour cells can be
seen in pictures collected in Figure 1. The colors correspond to density of the cells
after anti-angiogenic therapy (top row) and after chemotherapy (bottom row).
The cells in the top row develop preferentially around the vessels, whereas in
bottom row cells are situated in distant regions due to action of chemotherapeutic
drug.

Fig. 1. Spatial changes of the cellular density due to anti-angiogenic therapy (top row)
and chemotherapy

4.1 Parallel Implementation Methods Comparison

Main results of our work presents comparison of the speedup of parallel imple-
mentation with the basic Matlab computations (Fig. 2).

We have compared the speedups of MPI implementations with different do-
main calculation sizes (100x100 and 400x400). The speedup is increasing up to
about 12 cores then is slightly lower. This is caused by the architecture – single
computing machine has 12 physical cores and when increasing this number we
are causing that processes needs to communicate through the computer network
which is always slower than shared memory architecture (even for Infiniband
QDR connection). When spatial computational domain was increased 16 times
the speedup increased up to 8 and the absolute computation times ratio increased
maximum to about 10 times. Comparing MPI (with 11 cores) and CUDA (Fig. 4)
we can see that the speedup is higher for smaller domains but when increased
the performance is significantly lower.

4.2 Therapy Protocol Optimisation

In this section we compare the usage of meta-heuristic methods (simulated an-
nealing (SA), genetic algorithm (GA), ant colony (AC)) toward finding a sub-
optimal therapy protocols. One of the examples of the final suboptimal protocol
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Fig. 2. Speedup of the calculations time in dependence with the number of processing
units. Two series are compared - with smaller spatial domain (100x100, boxes) and
with large domain (400x400, circles).

Fig. 3. Time ratio after 16 times increase of the spatial domain (T400/T100) depending
the number of processing units

for chemo and anti-angiogenic therapy is presented in Figure 5. This plot shows
a sequence of two combined therapies (alternation was not observed).

The optimisation algorithms were compared in terms of the number of itera-
tions, the execution time, and the overall tumour size (see Fig. 6).

In Figure 7 all three methods has been compared for how fast they reach a
suboptimal performance index leading to the optimal therapy schedule. In this
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Fig. 4. Speedup of MPI with 11 cores (light grey colour) and CUDA (black) imple-
mentation for different spatial domain sizes (100x100 and 400x400)

Fig. 5. Example of suboptimal solution for chemotherapy (upper) and antiangiogenic
therapy

plots we represents the best protocol and dotted line represents average solution.
As one can notice the GA method reach the best (minimal) performance index.

5 Discussion

For optimisation of the therapy in a finite time horizon we include implementa-
tion of meta-heuristic methods as simulated annealing, genetic algorithms and
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Fig. 6. Comparison of iteration counts (a), execution time (b) and the tumour size (c)
for selected optimisation algorithms (SA, GA, AC)

ant colony optimisation to find the optimal solution. Presented results show that
in spite of the fact that GA algorithm was slightly slower than the remaining
algorithms, it demonstrated the best results in respect to the final tumour size.
GA method has reached minimal performance index with the lowest tumour
size (see Fig. 6). However regarding the protocol solution we couldn’t find any
general pattern for the treatment that would be a clear and simple indication
for clinical use.

These results are inherently connected with multiple model simulation so even
apparently small speedup of execution time multiplicated during optimisation
step will contribute significantly to the overall execution time. Parallelization of
presented numerical simulations serves us not only to study different methods of
parallelization performance but it’s a crucial step toward trying to find optimal
therapeutic protocols of simultaneously implemented chemo- and anti-angiogenic
therapies.
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Fig. 7. Convergence to suboptimal solution, SA (upper), GA (middle) and AC (lower);
dotted line presents mean solution while solid line is the best

Presented parallelization study results have show that when the computing
problem is relatively small using MPI technique and the usage of big cluster
architecture is not the best choice as long as the speedup is figurative, how-
ever using CUDA architecture we can obtain very interesting results. With the
growth of the size of the problem CUDA meets it’s limitations related to mem-
ory bandwidth limits and MPI implementation seems to be reasonable choice.
We could also observe that if the problem can be solved using single multi-core
machine it will give us slightly better performance than using more machines.
While switching the computations of the model to the third spatial dimension
only the MPI technique should be considered.

Acknowledgement. This work was supported by the National Science Centre
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Abstract. There is a great advantage of early detection of bladder can-
cer on the basis of non-invasive voided urine cytological investigations.
However, in spite of diagnostic potential of the method for discovering
malignancy associated changes in cells before they start to form a tu-
mor, the procedure seems to be underestimated by physicians as there is
a common view its sensitivity, especially for early stages of the cancer,
is relatively low. In this paper we are trying to support pathologists in
making such diagnosis more accurate and reliable.

Keywords: cancer, digital cytology, content-based image retrieval.

1 Automated Cytological Investigations

Subjects related to automation and computer-aided support for cytological ex-
amination of biomedical smears are widely present in scientific projects and
literature. In many cases this is the only method for early detection of a disease,
especially cell cancerous transformations [3, 4]. Additionally, cytological screen-
ing is capable of detecting cancerous cells before they start to form a tumor or
even allows identifying subtle precancerous changes of cell morphology known as
dysplasia [2]. Although new technologies, related to biomarkers, emerging from
molecular and cellular biology, turns out promising in identifying early stages
of tumor progression, microscopic examination of smears is going to remain the
standard procedure for grading tumors [1]. Actually, for a wide application of
early detection of dangerous pathological changes, it is necessary to implement
efficient mass screening projects. It is of particular importance when the col-
lection of diagnostic material may be performed by means of a non-invasive
procedure (e.g. blood, saliva, urine) as the cytological screening in such cases
may become a part of a standard, preventive, medical investigation. On the
other hand, the number of qualified cytopathologists will never be sufficient to
manage mass screening tasks manually. Therefore, computers and reliable image
processing software should be explored to support the work.

Computer-aided diagnostic concepts functionally fall into two categories, which
are not mutually exclusive:
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1. INDEPENDENT. Samples are scanned automatically and each of them is
assigned a score basing on the potential for abnormalities as ascertained by the
computer program. Those slides which are assigned a score higher than a pre-
determined threshold are subsequently re-screened by humans. Those which are
assigned a score below the threshold are signed out as NRI (No Review Indi-
cated) without human examination.

2. INTERACTIVE. The slide scanning process is also conducted automatically.
However, after potentially abnormal cells or cell clusters are detected they are
presented on a computer screen. Cytotechnologists and/or pathologists review
these slide “abstracts” and make decision whether manual screening is required
or not. If the decision is not to review a slide it is signed out as negative with
no further follow-up.

The result of using either type of device, independent or interactive, or the
two in combination, is always the same: selection of a group of slides which
are subjected to one or more human screenings and a group of slides which are
signed out as NRI and which are never manually screened by a human for the
presence of cancerous symptoms. Both ideas, independent and interactive, are
studied and implemented in our laboratory. This paper, however, is devoted to
the latter one – an interactive approach. In the next sections you are going to find
several arguments exposing the nature and advantages of interactive solution.

2 Urinary Bladder Cancer

In most leading countries efficacy of cancer diagnosis and therapy is considered
an indicator of civilization progress. On the other hand, experts from the Pol-
ish Union of Oncology alarm that growth of morbidity from tumors in Poland
outstrips increase of population. As bladder cancer is not widely discussed, peo-
ple may believe it is a rare disease. Yet, this form of cancer occurs more often
than one might think. In fact, it is the fourth most common cancer among men
and the ninth most common among women in Poland (as well as in the United
States and European countries). Bladder cancer is also the sixth most common
reason of deaths among men. Fortunately, the majority of bladder tumors do not
grow rapidly. Average period of disease development is evaluated from 10 to 30
or even 40 years [2]. Therefore, growths can be treated without major surgery.
Thus, most patients with bladder tumors are not at risk of developing a cancer
that will spread and become life-threatening if one but crucial condition is met –
it must be recognized in early stage of development. When found and treated in
the early stages, even cancerous bladder tumors are not likely to spread (Fig. 1).

3 Diagnostics – Current State and Perspectives

In lack of efficient mass screening programs it is usually a patient who discovers
first symptoms of pathology. And so, hematuria (blood in urine) is the most
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Fig. 1. A section of the bladder wall showing superficial and invasive bladder cancers;
the superficial cancer is present only in the lining, not entering the other layers of the
bladder wall

important and frequent phenomenon. It is observed in 60% of all bladder tu-
mors. Others may be: dysuria (difficulties and pain while urinating), the need
to urinate more frequently or urgently than usual (decrease of bladder capac-
ity). Any of mentioned signs does not necessarily mean that a bladder tumour
is present. People with kidney stones or urinary tract infections and men with
enlarged prostate glands may experience these symptoms as well. It is therefore
important to find the cause in each particular case. First-step tests in case of
suspicion of bladder cancer may be performed by an urologist without requir-
ing a patient to stay overnight in a hospital or to have anaesthesia. They are:
intravenous pyelogram (IVP), urography or cystography that take advantage of
a special liquid called a "contrast solution". When injected into a vein it passes
quickly into the urine. X-rays of the urinary system, when the contrast solution
is present, allow the urologist to see images of the kidneys, ureters, and bladder.
In cystoscopy, a pencil-thin, telescope-like instrument with a light source and
magnifying lenses (cystoscope) is inserted gently into the urethra and passed
into the bladder to examine its lining. The cystoscope also permits the urologist
to remove a tissue sample for biopsy. Urinary cytology is an important test in
detecting bladder cancer. For this test, urine is examined under a microscope to
search for cancer cells. To complete the review of all today available diagnostic
methods it is necessary to mention techniques used afterward to estimate loca-
tion and size of the growth or to detect metastases. They are: ultrasonography
(USG), computer tomography (CT), magnetic resonance imaging (MRI/NMR),
X-ray imaging of lungs, liver and kidney and radioactive tests of bones. These
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methods are used as second-step approach to identify disease progress. Although
still not widely used in clinical practice, molecular and genetic biomarkers seem
to become the most forceful cancer diagnostic tool in the future. Generally, a
biomarker is any substance or phenomenon that is measured biologically and
associated with a stage or increased risk of disease. Practically, biomarkers are
produced by tumors or they are generated by the human immunological sys-
tem in reaction to cancer. Their occurrence and intensity may be measured in
blood, urine or tissue. Molecular and genetic alterations offer the opportunity
to specifically detect early tumour-related changes in cells and their DNA. This
way, it is possible to detect very first origin of cancer and follow the progress of
applied therapy. Determination of biomarkers level may help in selection of opti-
mal therapy, adjusted to individual patient, and evaluation of the need for more
aggressive treatment in case of high risk of disease progression. Finally, genetic
alterations research achievements reveal another area where they could con-
tribute. It is early and exact risk assessment. Among many biomarkers suitable
for bladder cancer detection, recently special attention is drawn to the following
gens and antigens: p53, p21, Ki67, bcl-2, MDR-1. Some of advanced molecular
and genetic tests enter clinical practice. To name a few: BTA (bladder tumour
antigen test), NMP22 (nuclear matrix protein test), AuraTek FDP (fibrin and
fibrinogen degradation products), Vysis UroVysion FISH (Fluorescence In Situ
Hybridization). Many efforts are undertaken in laboratories to make such tests
cheaper and easier in order to be performed by a patient at home [2].

4 Early Risk Detection – The Essence of Thing

Although a primary tumour can usually be successfully controlled with local
therapy, most cancer deaths are caused by metastatic disease. Therefore, the
goal of screening and early detection is to identify tumors at early stages of
development. Unfortunately, clinically available screening and early detection
modalities detect many tumors at a relatively late stage in their development
because they are applied to patients with some clinical symptoms rather than
patients from mass screening. As already mentioned, new technologies emerging
from molecular and cellular biology, have been shown to identify genetic alter-
ations and antigenic changes during early stages of tumour progression. Some
of these could show promise as markers of pre-malignant lesions but it is hard
to imagine their wide utilization in near future because of their complexity and
price.

As stated earlier, cystoscopy is probably the most frequently applied method
of diagnosing bladder tumors. Physicians use cystoscope to see the inside of the
bladder and urethra. Many cystoscopes have extra tubes to guide other instru-
ments to collect samples of tissue. Cystoscopy is very effective in detecting visible
tumors. On the other hand, the method is invasive and may evoke infections.
Alternative, or better to say, complementary method of initial neoplasia detec-
tion is urine cytology. This kind of investigation is able to identify cancer cells
in the urine on microscopic level. The method shows high specificity (low rate
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of false-positive diagnosis) but sensitivity is still not satisfactory (relatively high
rate of false-negative results), particularly in case of superficial and low grade
tumors. It is also highly subjective test, depending on the knowledge, experience
and condition of pathologist performing visual inspection. Nevertheless, among
all non-invasive methods, urinary cytology promises the best chances of early di-
agnosis since pathological alterations may be detected before visible symptoms
appear. Assuming a model situation, when cancer test would be a part of routine
urine analysis, we can expect great improvement of cancer development preven-
tion. There are two main obstacles in implementing the model. One of them is of
just economical nature and the second is lack of cytologists to perform this enor-
mous work. On the other hand, as we can define the problems, quite reasonable
are efforts to support mass screening programs introducing advanced computer
hardware and software technology.

Fig. 2. Different types of information in interactive system (presentation of suspicious
objects) and independent one (evaluation of entire slide on the basis of statistical
features of the whole cell population)

As a consequence of distinguishing two, mentioned earlier, diagnostic direc-
tions there are two different ideas of realizing computer-aided support in cytology
(Fig. 2). Independent systems are devoted for mass screening projects while in-
teractive ones are dedicated for clinical tests. A simplified illustration of how the
idea is realized in interactive system is shown in Fig. 3.

5 Detecting Malignancy in an Interactive System

The aim of support in interactive system is not to suggest a diagnosis but, af-
ter automatic analysis of microscopic smear, presentation of objects and smear
regions that potentially contain malignancy associated changes (MAC). To get
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Fig. 3. Acquisition, digital processing and presentation of suspicious objects

correct view of procedures and algorithms presented here it is necessary to be
aware of the position of the machine in the entire diagnostic chain. It is a common
view among pathologists that the system should play a role of a quality control
unit. It has to check pre-selection performed by cytotechnician. It means, there
is great need to make a kind of re-screening of all samples classified as negative
(no signs of pathology)[8]. This is because here is the main reason of relatively
low sensitivity of cytological investigations for early cancer stages (Fig. 4). The

Fig. 4. Location of the machine support in the cytodiagnostic chain

place interactive system is located determines the way it operates. Pathologist
expectations and postulates are following:
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1ST POSTULATE: The most important is reduction of false-negative errors
made by human inspector during visual (manual) pre-screening.

2ND POSTULATE: It is not useful to analyse and present in pathological symp-
toms gallery obvious cases. Therefore, do not show me objects of no diagnostic
value (like artefacts – Fig. 5). Also, do not present in gallery pathological symp-
toms that are clearly visible and can not be missed in practice by a cytotechnician
(e.g. nuclear clusters – Fig. 6) or highly irregular shaped nuclei (Fig. 7).

3RD POSTULATE: What I actually expect from a computer support is to help
me in the task which is most difficult for me. This is not to overlook but detect
almost every early cancerous (or even precancerous) changes which are known
to occur in the chromatin structure of quite regular shaped nuclei (circular or
oval – Fig. 8).

Fig. 5. Artifacts found frequently in urine samples

Fig. 6. Easy-to-detect cases – large nuclear clusters

A good illustration of the point of interactive support may be found in Fig. 9.
It is quite natural tendency, during visual inspection, that the supervisor atten-
tion is drawn to some strong pictorial phenomena found in subsequent scenes.
They may be clumps of normal nuclei or even artefacts. Meanwhile, what is really
important for early detection of risk, small changes of the chromatin structure
in a nucleus located on the periphery of the image frame, are usually omitted.
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Fig. 7. Objects of clearly visible suspicious morphology

Fig. 8. Suspicious but easy-to-overlook changes of chromatin structure

Finally, sensitivity of detecting such early symptoms decreases radically. And
here is the place for a machine (computer), making quality control of a human
work by re-screening negative cases. Moreover, computer pays special attention
to objects that are known to be hard cases for a human inspector. It works 24
hour a day, without breaks, without tiredness, all the time applying the same,
objective evaluation criteria.

Fig. 9. The point of low sensitivity of early cancerous changes detection
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6 Detecting Abnormalities with the Help of
Pathomorphological Image Database

Starting the work we apply simple, bimodal classification scheme. A training set
of objects was divided into two groups: NORM vs PATHOLOGY (Fig. 10). The
GLCM (Grey Level Coocurence Matrix) texture descriptors were used to create
feature vectors of each object.

Fig. 10. Initial division of training set: NORM (left) vs PATHOLOGY (right)

However, as the number of images in the training set was increasing, a signifi-
cant decrease of classification specificity was observed. And the reason of this was
quite natural since intra-classes difference was increasing and inter-class distance
was decreasing at the same time. Then, decrease of classification specificity was
the reason of low specificity of resulting gallery of pathological symptoms. The
frequency of finding normal nuclei in the gallery could not be accepted (speci-
ficity 50-60%). Further investigations allowed obtaining increase of specificity
by changing the classification tools. Instead of discriminant analysis the k-NN
algorithm was applied (specificity increased to 70%). However, in contrast to
analytical form of discriminant analysis, this requires an object under study to
be compared with every element (image) of reference (Fig. 11).

And here we come to the fundamental switch in the classification scheme.
We put aside rigid, analytical discrimination procedures and try developing al-
gorithms to measure image similarity, thus approaching CBIR (Content Based
Image Retrieval) and QBE (Query by Example) concepts.
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Fig. 11. Object classification by means of k-NN procedure

As the classification procedure becomes more complicated there is a need to
rethink the role of image database. It can not be just a simple collection of data
used to calculate an analytical classification rule. On the contrary, it starts to
be actively used in the discrimination process. Finally, it is necessary to add to
former postulates a new one:

4TH POSTULATE: Object identification and classification during automatic
screening of a smear should not be realized on the basis of rigid, persistent dis-
crimination rules. It should be performed by the help of pathomorphological
image database. The database is created and may be modified dynamically by
experts (pathologists). The search and exploration procedures should be based
on CBIR/QBE techniques.

As for now, despite the database management is more powerful, the database
itself still remains divided into NORM and PATHOLOGY classes. However,
there are several important reasons that make such an organization not to be
the best solution for the task at hand. Most significant in this context is the
opinion of pathologists. They claim the database bimodal organization may be
only accepted in mass screening systems (as there is a hidden assumption we
deal with a control group and any aberrance is suspicious). On the contrary, in
clinical applications, this is not the case and things become more complicated.
It often happens; cytological investigations in pathological laboratories are car-
ried out to monitor a patient therapy progress. Many of therapeutic techniques
(radiotherapy, immunotherapy, BCG injection etc.) have significant influence on
the image of urine sample. Even an experienced pathologist is not able to give
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reliable diagnosis without information from many external sources. The same
image of urine specimen may be classified suspicious in one case and may be the
effect of different treatments in another one. Thus, having so many different and
important sources of diagnostic information that should be taken into account,
a computer, which knowledge is limited to cytological images only, should not
decide what is normal and what is not. The system is only to supply additional
data to that already in hand, to allow for better diagnosis. However, it is always
a physician (pathologist) who takes full responsibility for a final result. Taking

Fig. 12. The final organization of pathological image database according to experts

all above into consideration it seems necessary to formulate last but very impor-
tant postulate regarding organization and usage of pathomorphological image
database:

5TH POSTULATE: The reference database, created and modified by experts
and used as a basis for classifying cytological objects must not define NORM
or PATHOLOGY a-priori. Let it be divided into different classes containing dif-
ferent, distinctive types of objects (nuclei). Let it be pathologist who decides,
before running the test, what phenomena and types of morphological alterations
are interested and should be included in the gallery of diagnostically significant
symptoms (Fig. 12).

7 Experiments and Implementation

Among conventional texture analysis methods, the best one for our purposes
appeared to be GLCM and it was implemented initially in our study. However,
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still, the search was continuing to find a technique that would be better suited
for particular structures at hand. GLCM, similarly as Fourier spectral methods,
are obviously right choices for regular, periodic textures. Moreover, as an input
data they require rectangular pieces of a texture and our nuclear objects are
not characterized by those features. We know, it is necessary to have a structure
descriptor to preserve information about topology of more and less dense regions
but there is no any periodicity in our case. Then, we analyzed the method known
as SGF (Statistical Geometric Features) [5]. Shortly speaking, it relays on input
image decomposition by thresholding into a stack of binary images (Fig. 13).
From every elementary image several geometric parameters of connected regions
(both dark and bright) are computed. This way we get statistical distribution as
a function of threshold t. Appropriate statistics derived from those distributions
become descriptors of the texture under study. As we get the structure features

Fig. 13. The idea of texture analysis by means of SGF

space it is necessary to select a metric to compute similarity between different
spatial chromatin distributions. Our experiments were carried out with the fol-
lowing distance measures:

1) Manhattan (L1)
2) Euclidian (L2)
3) Mahalanobis
4) Weighted-Mean-Variance (WMW)
5) Chebychev (Linf.)
6) Canberra
7) Bray-Curtis
8) Squared Chord
9) Squared Chi-Squared
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Fig. 14. Specificity of the gallery for different distance measures

Fig. 15. Symptoms of malignancy associated changes in NeoSniffer output gallery

Averaged test results performed for five randomly selected specimens are
shown in Fig. 14. Thanks to the experiments it was possible to select the optimal
solution as the Bray-Curtis metric which is relatively easy to compute and gives
us the best results. In our current model, pathomorphological database of chro-
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matin patterns contains 70 images of nuclei divided into seven classes, 10-items
each: 1) normal nuclei, 2) normal nuclei with highly visible nucleoli, 3) over-
lapping nuclei having overall shape and size similar to a single nucleus image,
4), 5), 6), 7) four different, but characteristic and distinct, types of chromatin
distribution. The algorithms and procedures described above were implemented
in a model of interactive system for computer-aided diagnosing of bladder can-
cer. The look of a final screen containing gallery of possible cancer symptoms is
shown in Fig. 15. For a typical urine smear, containing 10-20 thousand cytologi-
cal objects, some 30-40% of them are going to be analyzed in the system as only
they are single, isolated, circular/oval cell nuclei. Created galleries contain from
dozens to several hundred objects. Of course, you can find artefacts (from diag-
nostic point of view) in output gallery. However, the total number of them is kept
on reasonable level (10-20%). Moreover, there is no risk they influence diagnosis
thanks to the principle of interaction between the system and pathologist.
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Abstract. Recent studies indicates that cellular cancerogenesis is
connected with microRNA (miRNA) expression levels. In particular,
different miRNAs can serve as classification features for distinguishing
different cancer types. This paper provides classification attempt using
miRNA isoforms with 3’-end modification as classification features. mi-
croRNA samples was obtained using next generation sequencing method.
Data was preprocessed using authors algorithm developed in R. Support
Vector Mashines and Partial Least Square methods were used to classify
two types of miRNA samples: Follicular Adenoma and Follicular Thyroid
Cancer. It was observed that only several miRNA modified isoforms were
identified as the most differentiating for analyzed samples. Obtained re-
sults indicate that miRNA 3’-end modifications can be used as cancer
tissue classification features.

Keywords: microRNA, 3’-end modification, detection algorithm, clas-
sification, partial least square.

1 Introduction

Folicular Thyroid Cancer (FTC) constitute about 10% of all cancer diagnosis
and is the second most common cancer type among people [22]. Unfortunately,
distinguishing between FTC and its benign form Follicular Adenoma (FA) is ex-
tremely difficult. Based on histopathological studies only, classification efficiency
varies from 11% to 69%. Large discrepancy is due to discrepancies in the data
provided by various research centers [22].

Based on genetic data, several models for tissue classification between FTC
and FA were developed. For models classifying this type of tissue, in the literature
one can find different performance indicators. These indicators are calculated
only on the basis of a few selected miRNAs, and not all of the sequences present
in the cells. Indicators in question can reach the level of about 80% for the
accuracy [26] or 100% sensitivity and 86% specificity [11], depending on the
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data and feature selection methods. The best classification models differentiating
between FTC and FA, for now, can reach the performance indicators up to 100%
sensitivity and 94% specificity. However, these indicators were calculated basing
on selected genes, not miRNAs [27]. These are highly satisfying results, but only
from a statistical point of view. In fact, a certain number of patients still remains
misdiagnosed.

microRNA (miRNA) are short (15 - 27 base pairs), non-coding nucleotide se-
quences responsible for a number of mechanisms of controlling post–transcriptio-
nal processes in the cell. The study confirmed that miRNAs are involved in al-
most every cellular process. In mammals, they are responsible for about 50%
of genes activity, for which they are specific inhibitors [12]. In case of humans
more than 2 thousand miRNA sequences have been identified and described [19].
They are not only species specific, but tissue specific. miRNA expression levels
determines type of tissue origin and cell cycle stage. Based on miRNA presence
and its expression levels one can identify acquired materials.

Recent three-year studies [12] has shown that miRNAs are not only involved in
post-transcriptional gene processing, but they have its own post-transcriptional
processing path. Specific modifications were detected at the 3 ’end of mature
miRNAs, which consist of up to 3 additional bases [20], with the most frequent
modification is adenine (A) [28, 20, 15]. Additional bases do not come from
unmatures miRNA (hairpin) sequences. Exemplary modified sequences shown
in Tab. 1.

In tested samples specific diversity of modification was detected, which rules
out random base addition [14]. Modification processes are not yet fully under-
stood, but it is known that these processes are biologically regulated [1, 28].

At the moment, there are few reports on the biological function of 3’-end
miRNAs modification. It is supposed, that modifications are stabilizing part of
miRNAs structure, so it is not immediately degraded [12]. Since many researches
confirm species and tissue diversity of 3’-end modifications, it is not possible to
create a global modification pattern [1, 14, 15, 20, 28]. Thanks to this, there
is a possibility that the expression levels of modified miRNAs or characteristic
modifications could constitute set of features allowing tissue classification.

2 Algorithm Overview

Next Generation Sequencing (NGS) provides genomic data of accuracy that
could not be achieved before. Thus NGS data requires advanced processing
algorithms to handle its precision in the most convenient manner. Here we
present algorithm designed to cope with miRNA NGS data, especially to detect
miRNAs 3’end modifications and expression levels of miRNA isoforms. Algo-
rithm allow to indicate origin of each detected sequence and provides miRNA
isoform abundance to be used in the further analysis. Algorithm use R envi-
ronment [7], bowtie2 [13] and cutadapt [17] tools. Link for script download:
http://cellab.polsl.pl/index.php/software.

http://cellab.polsl.pl/index.php/software
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Table 1. Exemplary isoforms table with occurrence number and their percentage share
for miRNA sample (here: hsa-miR-486-5p); modification bases detected in data are
labelled with bold font

Isoform Amount %
miRNA reference TCCTGTACTGAGCTGCCCCGAG

detected in data
miRNA sequences

TCCTGTACTGAGCTGCCCCGAG 1042 51.20
TCCTGTACTGAGCTGCCCCG 15 0.74
TCCTGTACTGAGCTGCCCCGA 217 10.66
TCCTGTACTGAGCTGCCCC 2 0.10

hairpin reference ATCCTGTACTGAGCTGCCCCGAGGCCCT

detected in data
hairpin sequences

TCCTGTACTGAGCTGCCCCGAGG 6 0.29
ATCCTGTACTGAGCTGCCCCGA 1 0.05
ATCCTGTACTGAGCTGCCCCGAG 1 0.05

TCCTGTACTGAGCTGCCCCGAGA 591 29.04
TCCTGTACTGAGCTGCCCCGAGT 124 6.09
TCCTGTACTGAGCTGCCCCGAGAT 9 0.44
TCCTGTACTGAGCTGCCCCGAGGT 2 0.10
TCCTGTACTGAGCTGCCCCGAGGAG 1 0.05
TCCTGTACTGAGCTGCCCCGAGTA 5 0.25
TCCTGTACTGAGCTGCCCCGAGGA 1 0.05
TCCTGTACTGAGCTGCCCCGAGAA 10 0.49
TCCTGTACTGAGCTGCCCCGAGC 1 0.05
TCCTGTACTGAGCTGCCCCGAGTT 1 0.05
TCCTGTACTGAGCTGCCCCGAGAGA 1 0.05
TCCTGTACTGAGCTGCCCCGAGTAA 1 0.05
TCCTGTACTGAGCTGCCCCGAGAG 1 0.05

2.1 Reference Preparation

Algorithm requires three different references to operate properly:

– mature miRNA - miRNA
– hairpin miRNA - hairpin
– recent version of human genome - hg19.

MiRNA and hairpin references were created from the mirBase database en-
tries. Hg19 is available in public and was downloaded from UCSC Genome Bioin-
formatics database.

2.2 Isoforms Recognition

The algorithm performs following steps to recognize isoforms (see Fig. 1):

1. Removal of Illumina adapters using Cutadapt program - selection of se-
quences with length between 15 and 30 bp;

2. Data alignment using Bowtie2 to hairpin reference with --local mode,
--trim3 3 -N 1 and --norc parameters - choosing isoforms which might
derive from hairpin miRNA sequences;
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3. Data alignment using Bowtie2 to miRNA reference from miRBase database
with -end-to-end mode, --score-max C,0 -L 8 -a and --norc param-
eters - choosing none but miRNA isoforms;

4. Data alignment using Bowtie2 to hairpin reference from miRBase database
with -end-to-end mode, --score-max C,0 -L 8 -a and --norc param-
eters - choosing none but hairpin isoforms;

5. Data alignment using Bowtie2 to hg19 reference with -end-to-end mode,
--score-max C,0 -L 8 -a and --norc parameters-choosing other genome
isoforms whiteout mismatches;

6. Data alignment using Bowtie2 to hairpin reference with --local mode,
--trim3 3 -N 1 and --norc parameters - preparing data to next step by
determining sequence references;

7. Data comparison using R script - choosing isoforms without mismatches in
miRNA sequence with additional bases at 3’-end;

8. Data alignment using Bowtie2 to hg19 reference with -end-to-end mode,
-N 1 -L 8 -a and --norc parameters - choosing genome isoforms;

9. Data alignment using Bowtie2 to hairpin reference with --local mode,
--trim3 3 -N 1 and --norc parameters - definition of probable references
for sequences with higher mismatches value;

Fig. 1. Algorithm block diagram representing steps 2 - 9
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2.3 Output Data Tables

MirMod as a final results produces four miRNA isoform tables:

– “ALL_izof.txt” - containing count table for all isoforms in all samples
– “ALL_PROC_izof.txt” - containing percentage table for all isoforms in all

samples
– “ALL_filtr_izof.txt” - containing count table for isoforms with higher num-

ber of occurrences than “threshold” at least in one sample
– “ALL_filtr_PROC_izof.txt”- containing percentage table for isoforms with

higher number of occurrences than “threshold” at least in one sample

To obtain percentage values in both “PROC” files we normalized count table
values dividing each by total number of sequences received from step 2 (see sec-
tion Isoforms recognition) for each sample. Normalized value allows to compare
relative isoform expression level between samples.

MirMod script assigns to each isoform in each sample a miRNA reference
name and one of four different attributes - type of isoform:

– miRNA - means that isoform is an exact miRNA sequence
– hairpin - means that isoform is an exact hairpin sequence
– hairpin+mod - means that isoform is an exact miRNA sequence with addi-

tional modification at 3’-end
– hairpin+N1 - means that isoform is an miRNA or hairpin sequence with

mismatches

MirMod script produces other files with detected miRNA sequences, divided
into different origin classes in each file which may be used for further analyses.

2.4 Exemplary Output Data Table

Tab. 2 shows exemplary output data table for two Illumina sequenced samples.
Each column contains respectively:

– 1st column: miRNA reference sequence name from miRBase database;
– 2nd column: Type of detected sequence origin (see step 3 of isoform recog-

nition);
– 3th column: Detected sequence;
– 4thand 5th: expression levels of detected sequence in the samples (count or

percentage values, depends on file type, see step 3 of isoform recognition)

3 Materials and Methods

The algorithm was tested on miRNAs samples, isolated from thyroid cancer tis-
sues FA (Folicular Adenoma) and FTC (Folicular Thyroid Cancer). The study
used 20 miRNA samples from the FTC and FA tissues obtained by deep sequenc-
ing method (often referred as next generation sequencing - NGS) by Illumina
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Table 2. Exemplary output table for two samples with expression percentage values

miRNA Type Isoform Sample Sample
Reference 1[%] 2[%]

hsa-let-7a-3p miRNA CTATACAATCTACTGTCTTTC 0.008786 0.023931
hsa-let-7b-5p miRNA TGAGGTAGTAGGTTGTGTGGTT 4.62E-05 0.000155
hsa-let-7b-5p miRNA TGAGGTAGTAGGTTGT 0.000348 0.001005
hsa-let-7b-5p hairpin TGAGGTAGTAGGTTGTGTGGTTT 3.30E-05 9.35E-05
hsa-let-7b-5phairpin+mod TGAGGTAGTAGGTTGTGTGGTTA 1.52E-05 3.90E-05
hsa-let-7b-5phairpin+mod TGAGGTAGTAGGTTGTGTGGTTG 6.29E-06 1.17E-05
hsa-let-7b-5p hairpin+N1 TGAGGTAGTAGGTTGTATGGTAA 6.29E-06 1.17E-05
hsa-let-7b-3p hairpin+N1 CTATACCACCTACTGCCTTCCT 1.15E-05 2.73E-05

platform [9]. This technology, from year to year more and more popular, using
fluorescent additives to nucleic acids, allows detection of all available cell genetic
material in a relatively short period of time. In cases when sequences under
test repeat themselves, like RNA sequences, basing on data from NGS one can
specify the levels of expression of these sequences, and thus the approximate
concentrations of proteins present in the tested cells.

Expression levels of individual miRNA isoforms detected in each sample were
used as features set for classification models. Classification models were created
using supervised methods of analysis: Support Vector Machine (SVM) [5, 6,
25, 23, 10], and the Partial Least Squares (PLS) method [21, 8, 24]. For model
validation boostrap632 method (combination of classic bootstrap and resubsti-
tution method) [3, 4] was used and set of 10 differentiating features was selected
from the data using Wilcoxon test. In order to determine the quality of the
classification three most common indicators were used: sensitivity, specificity,
and accuracy. The whole analysis was performed using libraries and R language
scripts.

4 Results

As shown in the Fig. 2 classification based on PLS obtained higher values of
quality indicators than SVM method. For both methods relations between in-
dices are very similar. Sensitivity value is significantly larger than specificity
value, which is caused directly by specifics of classification methods in question
- uncertain sample is put in class number 1. Accuracy index is arithmetic mean
from sensitivity and specificity values. Minor difference between sensitivity and
specificity values allows to conclude that classification process is of high quality.

In analyzed data 424 miRNA isoforms with 3’-end modification were identi-
fied. For purpose of creating models about 50% of them were used.

To create classification models, set of five most often used isoforms were se-
lected. Tab. 3 presents isoforms used for classification and percentage utilization
in models for different validation methods.

In case of bootstrap validation method presented features are those with
the largest percentage of use, but the values are much lower than in case of
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resubstitution method. Because the resubstitution method uses more features
than bootstrap method to build classification model, such model is more com-
plete, and therefore more reliable.

Polinucleotide modified isoforms were the most differentiating features in cre-
ated classification models, despite singlenucleotide modified isoforms have the
highest expression levels in used samples.

Fig. 2. Obtained performance indicators for classification methods used in the paper

Table 3. Most commonly used isoforms in classification models; abbreviations stands
for validation methods: boot – bootstrap method, res – resubstitution method; modi-
fication bases detected in data are labeled with bold font

miRNA
Reference Isoform

Percentage
usage [%]

boot res
hsa-mir-30e-5p TGTAAACATCCTTGACTGGAAGCTT 64 100
hsa-mir-21-5p TAGCTTATCAGACTGATGTTGACC 59 100
hsa-mir-486-5p TCCTGTACTGAGCTGCCCCGAGAG 51 100
hsa-mir-222-3p AGCTACATCTGGCTACTGGGTCTCA 43 100
hsa-mir-28-3p CACTAGATTGTGAGCTCCTGGAAA 37 100

5 Discussion

Based on the results obtained in the work one can conclude that modifications
of 3’-end miRNA work well as a feature classifying the different types of tissues.
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Modified miRNA isoform expression levels differentiates two classes of samples
at a satisfactory level. This confirms thesis cited in the introduction [1, 14, 15,
20, 28] that modifications are tissue-specific.

Modified isoforms detected in data suggest that these modification sequences
are not random. According to what was previously described [15, 20, 28], the
most common modification is Adenine. Not all modified isoform expression levels
have statistically significant differences, what confirms omitting a large part
of them during creating classification models. It is highly possible that those
sequences are characteristic for thyroid tissue or general malignancy indicators.
Comparing obtained results with different set of data from the above mentioned
thyroid tissue, could assist in confirm or overthrow this hypothesis.

In literature several differentiating sequences are described. Among the most
frequently mentioned, there are hsa-mir-21, hsa-mir-192, hsa-mir-197, hsa-mir-
222, hsa-mir-328, hsa-mir-346 [11, 16, 22, 26]. Two of above mentioned miRNA
isoforms (hsa-mir-21, hsa-mir-222) were identified in this paper, as the most
differentiating for analyzed samples (see Table 3).

In this paper one of the simplest and most intuitive feature selection test(non-
parametric Wilcoxon test) was used. There is a possibility to define better classi-
fication model using another more precised method. Another alternative method
of feature selection could base on biological approach. Knowledge of thyroid can-
cer specific miRNA could be good way to select differentiating FA and FTC
isoforms.

6 Conclusions

It is not surprising, that classification models based only on modified isoforms
cannot reach 100% accuracy with thyroid cancer tissues classification. Nonethe-
less, 70-80% efficiency of classification allows to locate the 3’-end miRNA mod-
ification between other markers, such as individual genes and miRNAs. One
classification model created basing on all these features i.e. genes, miRNAs,
modified miRNAs, could improve already existing schemes and provide reliable
classifications.

Classification problem mentioned in this paper was solved basing on twenty
tissue samples. Supposing that satisfactory obtained results are not accidental,
additional amount of data could clarify created models, and thus improve clas-
sification quality.

Significant growth of interest in the 3’end miRNA modification shows up in
growing amount of publications, providing information that could complement
this paper with new facts and probably extend data set required for further
classification problem.

7 Further Work

Based on already created algorithm, it is possible to determine mutations places
and types occurring in miRNA sequences and estimate their expression levels
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in analyzed data. Such analysis would make possible selecting specific sequences
interesting for further study. In further work extending created software to pre-
miRNA analysis is planned.

MiRNA sequences are responsible for a number of mechanisms of controlling
processes in the cell [12]. These sequences mutation could influence its binding
potential with other cellular particles (RNAs, proteins), thus on cell lifecycle.
Basing on sequence analysis described above, further experiments can be de-
signed, which should explain mutation influence on miRNA-particles binding
productivity and other phenomenon in cellular processes.
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Abstract. Separating benign glands, and cancer areas from stroma is
one of the vital steps towards automated grading of prostate cancer in
digital images of H&E preparations. In this work we present a novel tool
that utilizes a supervised classification of histograms of staining compo-
nents in hematoxylin and eosin images to delineate areas of benign and
cancer glands. Using high resolution images of whole slide prostatec-
tomies we compared several image classification schemes which included
intensity histograms, histograms of oriented gradients, and their con-
catenations to the manual annotations of tissues by a pathologist, and
showed that joint intensity histograms of hematoxylin and eosin compo-
nents performed with the highest accuracy.

1 Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer in men in de-
veloped countries despite steadily declining trends of new incidences and deaths
per annum1. Microscopic evaluation of needle biopsies and prostatectomies is
the gold standard for PCa diagnosis, as well as one of the most important cri-
teria in the pathological assessment of prostate cancer and in predicting clinical
outcomes. PCa develops from glands, that are visually evaluated according to
the Gleason grading system which is based on the tumor growth patterns. Mi-
croscopically, normal glands are large and well separated by stroma. As the
PCa develops the glands shrink, cluster and become tightly packed with little
or no intervening stroma. A large variety of geometric configurations of glands
pose significant challenge to a manual grading system [1, 2] which is laborious,
requires extensive experience and is associated with poor inter-observer repro-
ducibility particularly in determining tumors with Gleason 3 (G3) and Gleason
4 (G4) patterns.
1 American Association for Cancer Research Cancer Progress Report 2013:
cancerprogressreport.org/2013/Documents/2013_AACR_CPR_FINAL.pdf.

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 295
Volume 3, Advances in Intelligent Systems and Computing 283,
DOI: 10.1007/978-3-319-06593-9_26, c© Springer International Publishing Switzerland 2014
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Existing approaches to computer-assisted evaluation of histopathological
preparations of the prostate employ gland histomorphometry or context-based
gland quantification to distinguish benign, and low- and high-grade cancer zones
[3–9]. However, in order to perform any quantifications the glands are usually
first separated from stroma. This task is difficult and prone to detection er-
rors due to a large spectrum of gland architectures in benign and cancer areas.
Most if not all of the computer-assisted gland segmentation techniques utilize
the presence of the glandular lumen as a prominent feature that governs more
sophisticated image processing routines. Yet, they usually leave off when the
lumen is obscured or occluded by artifacts such as corpora amylacea (large cir-
cular shapes of thickened secretions with strong eosinophilic staining), when
glands form clusters such as in cribriform G4 and also in G3 areas, or in cases
when the lumen is very small or not present at all such as in non-cribriform G4
carcinoma or in the highest grade tumors.

Towards the development of a pattern recognition-based grading of prostate
cancer we evaluate intensity histograms of hematoxylin and eosin images to
reliably separate stroma from benign and cancer areas. Segmentation results were
quantitatively compared with manual annotations generated by a pathologist.

2 Materials

Radical prostatectomy specimens from 20 patients with a diagnosis of G3 or G4
prostate cancer according to the contemporary grading criteria [1, 2] were re-
trieved from archives in the Pathology Department at our institution. Slides were
digitized by a high resolution whole slide scanner (Leica SCN400F) dedicated
to pathology research. The scanning objective was set to x20. The focusing was
automatically adjusted by the scanner. The output was a color RGB image with
the pixel size of 0.5μm x 0.5μm and 8bit intensity depth for each color channel.
We implemented freely available libraries from OpenSlide.org [10] to import
Leica (.scn) images and select histopathologically important fields of view that
were converted to TIFFs for methods development. Furthermore, the fields of
view were split into smaller images (1200x1200 pixels) manageable for analysis.
Of the total 200 images obtained in this way, three sets including 25 images each
containing stroma (ST) and: a) benign (BN) glands, b) G3 glands, and c) G4
areas were randomly selected by collaborating genitourinary pathologists who
manually delineated all these areas directly on images. The sets were named as
ST-BN, ST-G3 and ST-G4 respectively. In the 75 images obtained in this way
the fraction of image area occupied by BN, G3 or G4 areas versus ST varied
from low percentage of ST in G4 to moderate in G3 and high in BN images.

3 Methods

Hematoxylin and eosin are dyes that differentially stain the DNA, RNA and
proteins in tissues. Hematoxylin binds and stains DNA in purple-blue, and eosin

OpenSlide.org
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binds to proteins in cytoplasm and stains them in pink (Fig. 1(a)). Our method-
ology was developed based on three main observations: a) the density of epithelial
nuclei in BN glands and cancer areas is higher than the density of nuclei in ST,
b) the intensity of eosin is different in ST versus the BN glands and areas of
cancer, and c) hematoxylin and eosine image texture in glands is different from
that seen in stroma. Hence, we propose to utilize the differential information
embedded in the intensity characteristics of eosin and hematoxylin to quickly
classify areas of the prostate tissue and arrive at a mask showing where the BN,
G3 and G4 areas are located.

3.1 Histograms of Hematoxylin and Eosin Components

All 75 images selected for methodology development were subjected to colour
deconvolution [11] to obtain hematoxylin and eosin images (Figure 1). Next, for
a single pixel in the input H&E image one intensity histogram of hematoxylin
component Hist(H) and one intensity histogram of eosin component Hist(E) were
derived from a 64x64 pixel window centred at that pixel. For the same window,
histograms of oriented gradients (HOG) [12] namely: HOG(H) and HOG(E) were
respectively calculated in hematoxylin and eosin images. HOG(.) histograms
were calculated using a freely available code2. Each Hist(.) was sorted into 18,
and each HOG(.) into 9 equally spaced bins. Interestingly, Hist(.) and HOG(.)
are independent features and describe different image characteristics. Histograms
Hist(H), Hist(E), HOG(H), and HOG(E) for an entire image were collected using
a sliding window method.

3.2 Training Set and Classification

Training features were derived from 20 stromal and 20 glandular training win-
dows found in 5 representative images selected from each of the 25 belonging
to ST-BN, ST-G3, and ST-G4 image sets. The remaining 60 images were left
for methods testing. To capture a large variety of intensity and texture charac-
teristics of glands some of the training windows were placed at the boundary
of luminal areas in glands, some at the boundary of gland and background,
and some entirely covered the glands or cancer areas with no lumen. Stromal
windows included: areas between the glands, blood vessels with blood cells,
blood vessel lumen, clusters of immune cells and a nerve. No windows were
selected at the interface of stroma and glands. The histogram collection proce-
dure was carried out until three separate training sets for ST-BN, ST-G3, and
ST-G4 were completed. In total 120 different training windows were selected.
Histograms in respective sets were labelled according to the tissue type (Fig. 2).
Images left for testing were classified by means of several knn classifiers. Prior
to classification both the training features and features derived from testing im-
ages were normalized using means and standard deviations from the training
2 Chris McCormick, Hog Descriptor in MATLAB:
chrisjmccormick.wordpress.com/2013/05/09/hog-descriptor-in-matlab/, vis-
ited 01.2014.

chrisjmccormick.wordpress.com/2013/05/09/hog-descriptor-in-matlab/
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(a) (b)

(c) (d)

Fig. 1. Example H&E image with BN glands and stroma: (a) original H&E image,
(b) pathologist outlines, (c) hematoxylin and (d) eosin images deconvoluted from (a).
64x64 pixel windows superimposed on (a), (c) and (d) indicate example location for
histogram extraction shown in Figure 2. Note the differential staining in glands and
stroma.

sets. To determine whether the texture or intensity-based features yield better
classification, the experiment was separately performed in three steps: a) indi-
vidual histograms: HOG(H), HOG(E), Hist(E), Hist(H), b) combined intensity
histograms - Hist(HE) and combined gradient histograms - HOG(HE), and c)
combined selected intensity and gradient histograms including: HOG(H)Hist(H),
HOG(H)Hist(HE), and HOG(HE)Hist(HE). In a) the length of the feature vec-
tor was 9 for a gradient and 18 for an intensity histogram, in b) the length of
the feature vector was 36 for Hist(HE) and 18 for HOG(HE), and in c) it was
27 for HOG(H)Hist(H), 45 for HOG(H)Hist(HE) and 54 for HOG(HE)Hist(HE)
due concatenations of the respective histograms. The knn classification scheme
was tested for neighbourhood n = 1 : 7 with odd increments.

3.3 Validation

Validation was carried out using measures of agreement that are frequently used
when a computed result (C) is compared to a manual ground truth (G) by
pathologist. Area overlap (Ov), Jaccard similarity coefficient (Ji), and Rand
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2. Example histograms from small windows in hematoxylin and eosin images: (a)-
(d) ST, (e)-(h) BN, (i)-(l) G3, and (m)-(p) G4 tissue components; consecutive columns
(from left to right) represent: Hist(H), Hist(E), HOG(H), and HOG(E) histograms

index (Ri) [13] defined as follows: Ov = |G∩C|/|G|, Ji = |G ∩ C|/|G ∪ C|, and
Ri = (a+ b)/G

nsamples

2 , where: a is the number of pairs of elements that are in
the same set in G and in the same set in C, b is the the number of pairs of
elements that are in different sets in G and in different sets in C, and G

nsamples

2

is the total number of possible unordered pairs in the dataset. The Rand index
is particularly useful in evaluating classification and clustering methods. (Ov),
(Ji), and (Ri) reach 1 for a perfect agreement and 0 for a complete disagreement
between (G) and (C). Background areas including lumens were removed from
(G) and (C) before the validation.

4 Results

Utilizing clinical image data and the newly developed analytical framework we
selected four different intensity and texture features (histograms) and tested their
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ability to discriminate between prostate glands and stroma. Features described
in Sections 3.1 and 3.2 in three separate training sets were used to train knn
classifiers that were subsequently applied to ST-BN, ST-G3, and ST-G4 testing
images.

Since no single measure fully quantifies segmentation performance, we com-
pared our results using three different methods (Table 1). While Ov only reports
true positive gland detection rate, Ji is the number of true positive detections
divided by the sum of true positive, false positive (miss-detections) and false

Table 1. Prostate tissue classification performance (knn, n = 3) for different feature
vectors obtained from individual and concatenated intensity histograms Hist(.) and
histograms of oriented gradient HOG(.); best performances in respective categories are
bolded

Feature
vector Measure Tissue complex Mean performance

ST-BN ST-G3 ST-G4 (all tissue images)

Ov 0.824 0.747 0.806 0.795
Hist(H) Ji 0.671 0.501 0.722 0.624

Ri 0.765 0.610 0.734 0.715

Ov 0.788 0.877 0.757 0.798
Hist(E) Ji 0.445 0.541 0.606 0.542

Ri 0.661 0.610 0.652 0.643

Ov 0.894 0.923 0.825 0.871
Hist(HE) Ji 0.645 0.611 0.736 0.678

Ri 0.803 0.648 0.743 0.732

Ov 0.791 0.836 0.724 0.724
HOG(H) Ji 0.473 0.523 0.633 0.609

Ri 0.697 0.602 0.684 0.664

Ov 0.869 0.863 0.588 0.737
HOG(E) Ji 0.439 0.552 0.513 0.505

Ri 0.669 0.619 0.646 0.644

Ov 0.810 0.774 0.832 0.810
HOG(HE) Ji 0.468 0.528 0.706 0.595

Ri 0.691 0.618 0.714 0.681

Ov 0.783 0.615 0.831 0.758
HOG(H)Hist(H) Ji 0.529 0.459 0.725 0.600

Ri 0.735 0.612 0. 729 0.698

Ov 0.843 0.911 0.732 0.811
HOG(H)Hist(HE) Ji 0.546 0.559 0.648 0.597

Ri 0.738 0.614 0.694 0.683

Ov 0.820 0.824 0.841 0.831
HOG(HE)Hist(HE) Ji 0.514 0.553 0.717 0.619

Ri 0.719 0.626 0.722 0.694
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negative (lack of) detections occurring in stroma. Since both Ji and Ov do not
consider true negative findings, it is advantageous to juxtapose them with Ri
which quantifies accuracy using virtually all positive and negative findings. The
best overall classification performance was yielded by the knn(n = 3) classifier.
Figures: 3-5 and 6 illustrate tissue classifications in example images from vari-
ous tissue complexes. All remaining knn classification schemes resulted in worse
performances.

(a) (b)

(c) (d)

Fig. 3. Example knn-based classification results in BN areas: (a) ground truth, (b)
using Hist(HE) (c) using HOG(H), and (d) using HOG(H)Hist(HE)
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(a) (b)

(c) (d)

Fig. 4. Example knn-classification results in clustered G3 areas: (a) ground truth, (b)
using Hist(HE) (c) using HOG(H), and (d) using HOG(H)Hist(HE)
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(a) (b)

(c) (d)

Fig. 5. Example knn-based classification results in dense cribriform G4 areas: (a)
ground truth, (b) using Hist(HE) (c) using HOG(H), and (d) using HOG(H)Hist(HE)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Example classification results in complex areas: (a), (d), (g) original images,
(b), (e), (h) pathologist outlines, and (c), (f), (i) image classified by means of Hist(HE)
features and knn(n = 3) classifier; individual BN, non-cluster G3 with artifacts and
diverse cribriform G4 areas are shown in first, second and third row respectively

5 Discussion

The main goal of this study was to devise a method that could automatically
pre-process prostate tissue images for a more comprehensive computer-assisted
analysis. The pre-processing is meant to yield a mask covering areas of interest,
so that the digital grading techniques can focus on the glands rather than on the
entire fields of view which may include large patches of stroma that provide no
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vital information in prostate cancer grading. Towards developing a methodology
that distinguishes stroma, and cancer with different Gleason grades we tested
the capacity of several machine learning approaches. Areas of interest were best
separated from stroma by the algorithm that utilized the knn(n = 3) classifier
and Hist(HE) features. Our success was demonstrated by the high average mea-
sures of Ov, Ji, and Ri that reached respectively 0.871, 0.678 and 0.732 across
all images, indicating a high concordance with the manual rater. Ov rates in
ST-BN and ST-G3 areas were above average and higher than in ST-G4 areas.
However, Ji indices in ST-BN and ST-G3 were lower than the average. Although
our new method was tested on a limited set of images, it achieved a Ji index
higher than 0.66 which was reported in [8]. In addition, our method performed
well in different type of glands, a point that was not evaluated in [8].

We attribute the high rates of gland segmentation to the Hist(HE) features
which were able to better discern the specific prostate cancer image charac-
teristics than all HOG(.), Hist(E) and Hist(H) features alone. As illustrated by
histograms in Figure 2, stroma has a lower amount of highly concentrated hema-
toxylin and a higher amount of highly concentrated eosin per unit area compared
to glands. These characteristics allowed to use the high density of nuclei in all
types of glands as a unique feature distinguishing stromal components including
blood vessels, fibroblasts, and immune cells from glands. The classification of
glands and stroma was straightforward in our method. In contrast, [8] required
k-means clustering algorithm in the RGB color space, searching of lumen edges,
recognizing of nuclei to generate lunimal and glandular outlines. Peng’s method
[7] used principal components on color of RGB images, k-means clustering to
identify lumen, cytoplasm, nuclei and stroma and post-processing procedures
with region-growing seed selection to determine the glandular mask.

Another factor contributing to the success of our analytical method was the
selection of training windows in a way that they partially contained areas with
no tissue (gland lumen, blood vessel lumen, or background). Such selection had
a positive impact on the classification performance. As a result, most of the
glands in G3 and BN areas with visible lumen even if occupied by corpora
amylacea were correctly segmented out. Using our new technique; whole, single,
clustred or cribriform glands as well as partial glands can be reliably detected.
Individual results may however depend on the training set which may need
to be optimized for best performances. Results suggest that our technique can
significantly improve gland segmentation including those that have an obscured
or compressed lumen and constitutes a valid alternative to several published
methods [3, 6, 8, 7] which frequently ignore, or fail to segment such glands.

6 Conclusions

We have developed an analytical framework to separate glands and cancer ar-
eas from stroma in high resolution images of radical prostatectomies. The ap-
proach can serve as a first step preceding the quantification and stratification
of anatomic tissue structures by providing a mask of components of interest for
further analysis.
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Abstract. An automated detection and quantification of high-risk
human papillomavirus immunostains in Pap smears can potentially im-
prove the drawbacks of human observes, reduce the number of equivo-
cal or misinterpreted cytologic specimens and increase the throughput
of slide screening. Towards increasing the accuracy and efficacy of Pap
smear screening, we tested a spectral imaging approach to quantify the
dual p16/Ki67 immunoreactivity of epithelial cell nuclei in Pap smears.
We demonstrated that the classification of spectral signatures extracted
from nuclear pixels is helpful in detecting nuclei of cells that are pos-
itive for p16 and Ki67 and distinguishing them from other nuclei that
are positive only for one or negative for both markers. Sensitivity of
the proposed method was 84.4% whereas the specificity was 99.9%. Al-
though our results are preliminary, they suggest that the implementation
of spectral imaging and spectral classifications can potentially offer better
nuclei screening performances than methods utilizing conventional RGB
imaging.

1 Introduction

Cervical cytology, generally known as the Pap test, is the most effective way to
detect precursor lesions, stratify women at risk for cervical cancer, and ultimately
prevent its development [1, 2]. In liquid-based technology cervical cells are first
collected with a cytobrush, then separated from blood, mucus, and debris and
finally transferred onto a slide. After staining, slides are examined by a trained
cytotechnologist or cytopathologist using a transmitted light microscope to de-
termine the presence of abnormal cells. Evaluating the morphology of each cell is
time consuming, labor intensive, subjective, and costly. Intra- and inter-observer
variability in the diagnosis of precursor lesions as well as occasional false positive
and false negative diagnoses of cancer negatively affect the efficacy of manual
screening. Nearly all cervical intraepithelial neoplasias (CIN) and carcinomas
are caused by high-risk human papillomaviruses (hrHPV). Whereas the major-
ity of low-grade HPV lesions spontaneously regress without treatment, persistent
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infection is associated with progression to high-grade precursor lesions and cervi-
cal cancer that warrants treatment. The development of immunochistochemical
biomarkers that are overexpressed in most hrHPV associated cervical carcinomas
and dysplasias has the potential to significantly enhance the capabilities of man-
ual screening [4, 3, 5, 6]. CINtec R©PLUS (MTM laboratories,Westborough, MA),
a dual immunostain that simultaneously detects p16 and Ki67 over-expression,
has been shown to be useful in detecting high-grade CIN and in resolving cyto-
morphological ambiguities for cervical cancer risk stratification. P16 is a cyclin-
dependent kinase inhibitor that is over-expressed in high-grade CIN and invasive
cervical squamous carcinoma, and has also been shown to be useful in the triage
of atypical squamous cells of undetermined significance and low-grade CIN [3].
Ki67 is a nuclear protein that is also over-expressed in high-grade CIN [5]. Nuclei
of cells that overexpress Ki67 have a red color. P16 positive cells have a brown
appearance of the whole cell and nuclei. Cells that stain negative for p16 and
Ki67 exhibit blue counterstaining in the nucleus and a bluish staining in the cy-
toplasm. According to manufacturer’s guidelines the presence of at least one cell
that simultaneously overexpresses both biomarkers constitutes a positive Pap
test result. However, it is difficult for the human eye to: (a) distinguish dual-
stained cells from cells that stain for one of these biomarkers, and (b) interpret
co-localized brown and red tones.

An automated detection and scoring of immunostains in Pap smears can
potentially improve the drawbacks of human observes, reduce the number of
equivocal or misinterpreted cytologic specimens and increase the throughput of
screening [6, 9]. However, the development of tools to detect and classify the dual
p16 and Ki67 positive (p16+/Ki67+) overexpressions in Pap smears is a new
field. So far, the analyses were performed in color (RGB) images and revealed
that colocalization of red and brown colors in the nuclei of cervical epithelial
cells can be detected and quantified. Yet, a reliable detection of the dual over-
expression remains challenging due to presence of areas of low and high staining
intensity of p16 and Ki67 even within one cell.

Multispectral imaging can capture band-separated signals of visible light
transmitted through an object of interest. Separately captured wavelengths rep-
resent responses of the object to the light passing through it, and allow forming
if spectral signatures which uniquely identify object’s colorimetric properties.
Towards increasing the accuracy and efficacy of Pap smear screening, in this
work, we tested a spectral imaging approach to quantify the dual p16/ki67 im-
munoreactivity of cell nuclei in Pap smears. Such studies have not been so far
undertaken. We implemented a set of spectral signatures to classify nuclear pix-
els, and then the entire nucleus with the aim to improve sensitivity and specificity
of the detection of dual positive p16/Ki67 (p16+/Ki67+) cells. Detection per-
formances of the spectral classification were compared with the performances of
RGB classifications previously reported.
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2 Materials

2.1 Specimens and Image Acquisition

The experimental data were obtained from 10 liquid-based (SurePathTM) cer-
vical Pap smears (8 diagnosed with abnormal cells and 2 diagnosed as negative
for malignant and dysplastic cells). The process of specimen staining for p16 and
Ki67 dual overexpression was described in [4, 3]. Slide preparation was followed
by a manual screening performed by experienced cytopathologists who manually
annotated the abnormal cells with the assistance of a conventional compound
microscope.

5 to 20 non-overlapping areas were selected in each slide. Imaging was per-
formed on a whole slide imager platform Vectra 2 (Perkin-Elmer, CA) dedi-
cated for tissue biomarker discovery and validation. The equipment comprised
a spectral image acquisition device, coupled with a scientific-grade CCD cam-
era, and image acquisition software (Nuance). High power 20x objective, 4ms
exposure time and 1x1 pixel binning were set to acquire a single image array
with 1040x1392 pixels (pixel size = 0.5μm x 0.5μm) covering each area. Spectral
range was 420nm to 720 nm with 10nm increments. Each area was represented
by a spectral cube containing 31 images, each representing optical density for
one wavelength from the above range. In total 99 spectral cubes were collected.
Acquired cubes were flat-field corrected using an area with no cells. Each spec-
tral image (a component of the spectral cube representing an optical density
for a wavelength in the spectral range) was exported as a TIFF file. Separately,
RGB images with areas containing dual p16/Ki67 positive cells were acquired to
validate results from our spectral analyses and to perform nuclei segmentation.

2.2 Spectral Signatures

Our main goal was to identify all p16+/Ki67+ cells among other cells that
are positive solely for one marker either for p16 (p16-/Ki67+), or for Ki67
(p16+/Ki67-), or negative for both markers (p16-/Ki67-). Localization of all
p16+/Ki67+ cells was known as they were already identified directly on the slide
by pathologists. Example nuclei are shown in Figure 1. 28 nuclei were singled
out. Each nucleus was marked as either p16+/Ki67+, p16-/Ki67+, p16+/Ki67-,
or p16-/Ki67-, and subjected to manual extraction of signatures from spectral
images. Each signature was represented by an ordered set of averaged optical
densities from all nuclear pixels. Signatures were normalized by dividing each
averaged optical density by the maximal optical density in the signature. The
normalization of spectral signatures is a process frequently preceding a quantita-
tive analysis of tissue samples. It diminishes the difference between amplitudes
of strongly and weakly stained specimens and preserves the shape of signatures.
Signatures of optically dense nuclei had low amplitudes and were scaled up,
whereas signatures of nuclei with low optical density were scaled-down. During
this process the maximal amplitude of all signatures was set to 1. Normalized
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signatures of 28 nuclei (Fig. 2) were labeled according to the p16/Ki67 colori-
metric pattern, and saved as a library of signatures for classification of nuclear
pixels in the subsequent steps of image analysis.

Fig. 1. Example cells with different p16/Ki67 immunoreactivity: a) p16-/Ki67+,
p16+/Ki67-, p16+/Ki67+, and p16-/Ki67- cells

Fig. 2. Spectral signatures of nuclei with different p16/ki67 immunoreactivity

3 Methods

3.1 Workflow

We designed a workflow for the analysis of spectral images of Pap smears (Fig. 3).
It consists of three main steps: a) segmentation of nuclei, b) extraction and
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classification of nuclear pixels, and c) classification of whole nuclei to one of
the four classes: p16+/Ki67-, p16-/Ki67+, p16+/Ki67+, or p16-/Ki67- based
on the pixel-based classification. The output is a colored image representing
classification results in individual nuclei.

Fig. 3. General workflow of Pap smear analysis

3.2 Segmentation of Nuclei

In the first step the RGB color image captured during image acquisition was
loaded up, and nuclei were segmented by means of our previously developed
method [9]. This method utilized a radial symmetry transform followed by an
adaptive thresholding of the symmetry image to delineate nuclear areas in single
cells and cell clumps. The output of the nuclei segmentation is a binary nuclear
mask in which each binary object represents a segmented nucleus (Fig. 4).

Fig. 4. Nuclei segmentation in Pap smears: a) original image, b) binary mask of nuclei
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3.3 Pixel and Whole Nucleus Classifications

In the second step the objects (nuclei) in the binary mask were labeled, and a
spectral cube corresponding to the binary mask was retrieved. Spectral signa-
tures were extracted from the spectral cube for each labeled nucleus. The number
of spectral signatures was equal to the number of pixels in the labeled nucleus.
Next, spectral signatures of all pixels were normalized to perform pixel-based
classifications.

In the third step a knn classifier with a neighbourhood size n=5 and signa-
tures collected in the spectral library were used to classify individual pixels.
The classifier compared each pixel’s signature with all signatures in the library.
During the classification spectral signatures from the library were ordered based
on similarity to the pixel’s spectral signature, and the most frequent p16/Ki67
color pattern of the 5 top ranked signatures was assigned to that pixel. The
classification was carried on until all pixels of all nuclei were processed. In many
nuclei all pixels were uniformly classified to the same class. However, there were
nuclei which ended up with a blend of differently classified pixels. For example,
in some p16+/Ki67+ cells the intensity of red coloring in the nucleus was strong
in one area and weak in another. Several other p16+/Ki67+ cells possessed a
much stronger brown coloring (p16) than a red coloring (Ki67) in the nuclear
area. In some p16+/Ki67- cells the nucleus was partially brown and partially
blue.

The final classification of the nucleus was determined by a series of steps based
off of logic pathways prioritizing the voting for dual p16/Ki67 positive areas. If
there was a single, uniform classification (c=1) for the entire nucleus, then that
given classification was automatically assigned. If the number of unique classifi-
cations were two (c=2) then the majority pixel classification ended up defining
the nucleus. However in the case of a 50% tie, a set of hierarchy was setup.
Essentially, all classifications related to red, brown or both colors were regarded
higher than a negative classification. For example if it is 50% red and 50% neg-
ative then red is the nuclear classification. Additionally if it was 50% brown and
50% red then by definition the nucleus was expressing red-and-brown colors so
it was given a dual nuclear classification. See the Figure 5 for a graphical repre-
sentation. In the case of three unique classifications (c=3) within the nucleus a
unique set of circumstances was followed. The first check was if there were more
than 33% of dual pixels in the nucleus. If there was a majority of dual pixels
then the nucleus was classified as dual. However, if there was a majority of an-
other classification, that particular classification was given precedence. In the
case where the percentage of dual pixels was less than 33% the hierarchy given
when c=2 was used. Everything was given precedence over blue color, however
in this case if there were red and brown pixels within the nucleus, for example
12 red pixels and 15 brown pixels, then the 12 red pixels and 12 of the brown
pixels were automatically changed to dual type pixels. In the end there were 24
new dual pixels, 0 red, and 3 brown pixels. Afterwards the majority of the pixel
count (voting) was taken as the nuclear classification. In the case of four unique
classifications (n=4) within a particular nucleus, the first step was to eliminate
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Fig. 5. Example pixel-based classifications and classified nuclei of cells with different
p16/Ki67 immunoreactivity

at least one of the unique classifications. Red, brown or both were eliminated by
combining them to create dual, much like we did at the end of the c=3 classifica-
tion case. From there we implemented the rest of the c=3 classification logic. In
the above approach we attempted to favour the dual classification over the other
color combination instances. The rationale for this approach was to provide a
unified classification result in case the staining pattern within a nucleus was not
uniform. After all nuclei are analyzed the program returns the pixel-based and
the whole nucleus-based classifications.

4 Results

We have developed a pilot workflow for a spectral quantification of nuclei in Pap
smears stained with two p16 and Ki67 biomarkers which employ red and brown
dyes to indicate biomarker’s overexpression. Spectral signatures of automatically
segmented nuclei were classified through a cascade of pixel-based and whole
nucleus-based classifications. The primary goal of this study was to correctly
identify nuclei with the presence of dual p16+/ Ki67+ coloring in the nucleus.
In order to verify our results we utilized manually annotated p16+/Ki67+ cells
from our previous study [9].

A correct whole-nucleus classification was counted as a true positive (TP)
detection. A true negative (TN) detection occurred in case of nucleus classifi-
cation to either: p16-/Ki67-, p16+/Ki67-, or p16-/Ki67+ which was correct. A
false negative (FN) detection indicated an assignment of a truly p16+/Ki67+
nucleus to either: p16-/Ki67-, or p16+/Ki67-, or p16-/Ki67+ category. A false
positive (FP) detection occurred when a nucleus positive for one of the markers
or negative for both markers was detected with the dual p16+/Ki67+ overexpres-
sion. Implementation of our methods ultimately led to the following statistics:
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(a)

(b)

Fig. 6. Final nuclei classification: a) original image, b) classified nuclei. Yellow color in-
dicates p16+/Ki67+ nuclei, red p16-/Ki67+, brown p16+/Ki67-, and blue p16-/Ki67-
nuclear detections
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TP=67, FN=12, TN=33113, and FP=4. The sensitivity (TP/(TP+FN)) of the
p16+/Ki67+ nuclei detection was 84.81%, and the specificity (TN/(TN+FP ))
was 99.9%. Example classification results for an area containing multiple cells
is shown in Figure 6. In our previously reported method [9] sensitivities mea-
sured against two pathologists were 82.6% and 77.1% respectively, whereas the
specificity was 99.6%.

5 Discussion

Spectral analysis of cytopatholgical specimens has been shown to be potentially
useful as an adjunct tool to manual screening [8, 7]. However, with the advent
of immunochistochemical biomarkers that are overexpressed in most hrHPV as-
sociated cervical carcinomas and dysplasias that also have the potential to sig-
nificantly enhance the capabilities of manual screening, the development of tools
adopted for computerized screening of immunohistochemically stained cytologi-
cal specimens will follow. Computerized analysis of dual positive p16 and Ki67
nuclei in Pap smear images based on the brown and red color of dyes is a challeng-
ing task. The first challenge is detecting the nuclei, and the second is quantifying
the various intensities that arise from the local concentration of two dyes in the
nuclear region. Although the two dyes possessed very different spectral signa-
tures (Fig.2), some signatures resulting from a colocalization of the dyes were
either more similar to the brown (p16+/Ki67-) or the red (p16-/Ki67+) signa-
tures due to a higher concentration of one marker versus the other. However, we
demonstrated that the combined pixel-based classification of spectral signatures
followed by the voting-based analysis of classified groups of pixels implemented
in this study was capable to distinguish the four types of nuclear coloring pat-
terns. Sensitivity of the proposed method was better by as much as 7.7% (4.9%
on average) than the method we proposed in [9] which was based on the RGB
imaging.

6 Conclusions

In this paper a method for spectral quantification of Pap smears stained by
two immunohistochemical biomarkers is presented. We were able to build it
upon the previously implemented and tested nuclei detection and quantification
technique. Our major challenge was to deal with the presence of two markers in
the nucleus area. We so far addressed it by the classification of spectral signatures
derived from the nucleus, to deliver a proof of concept. Although our results
are preliminary, they suggest that the implementation of spectral imaging and
spectral classifications can potentially offer better nuclei screening performances
than methods utilizing conventional RGB imaging.

Acknowledgement. This work was supported by grants from the Department
of Surgery at Cedars-Sinai Medical Center.
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Abstract. Maintaining the integrity of the DNA in the cell is essential
for the proper functioning of the organism. For this purpose detection,
amplification and transduction of the signal about DNA damage to the
effector module is necessary. This results with cell cycle arrest, DNA
repair or apoptosis. In some of the eukaryotic cells, like human, two
modules play roles as DNA damage detectors: ATM (ataxia telangiec-
tasia mutated), which responds to the formation of double DNA strand
breaks and ATR (ataxia telangiectasia mutated and Rad3-related), which
is responsible for detecting single-strand damage. Simulation analysis of
a constructed mathematical model of ATR pathway is a subject of this
study. Our results show that ATR is an effective system for damage de-
tection and amplification of the signal. The activation of this module is
fast: detection takes place within a few seconds after the occurrence of
the damage. The created novel mathematical model explains the mech-
anism of single-strand breaks detection, enables testing of the impact of
modifications of proteins belonging to the ATR-p53 signaling pathway.
Additionally the model explains that the basic activation of p53 protein
signaling pathway observed in cells, may be caused by persistent cellular
stress levels.

Keywords: ATR, DNA, damage, detection, model, SSB.

1 Biological Background

Thousands of DNA lesions are formed daily in each cell in the human organ-
ism. They can be induced either endogenously and exogenously - by physical and
chemical agents from outside of the body. Endogenous factor causing DNA dam-
age can be replication errors, tautomeric shift and replication slippage. Chemi-
cal agents causing DNA lesions are base analogs, deaminating factors, alcylating
factors, intercalating agents, platinum derivatives, polycyclic aromatic hydrocar-
bons and reactive oxygen species. Physical damaging agents are ionizing irradi-
ation (IR), ultraviolet radiation (UV), changing temperature and pH [1, 2].

There are several types of DNA damage, from small chemical modifications
and single-stranded DNA breaks (SSBs) through the photoproducts and adducts
caused by UV irradiation, to the potentially most dangerous double-strand
breaks (DSBs).
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The existence of such a large number of abnormalities in many cells may cause
death of the single cell, but also of the whole organism, after a very short time.
During evolution number of mechanisms that protect cell from damages evolved
to prevent cell death and lesions transformation to future generations. There are
several pathways of DNA repair depending on nature of damage, their review
can be found in [3]. For all of these complex mechanisms of repair, it is necessary
to detect DNA damage just after it arises and spread the information about it
to the proper regulatory units. This process takes place in a manner specific to
the type of lesion. ATR module is activated by presence of single-stranded DNA
areas, which are caused by resection of various types of lesions or by stalled
replication forks. DSBs are detected indirectly by ATM which is linked to the
ATR pathway. Various stages of DNA damage detection by ATR and ATM and
its further amplification are presented in Fig. 1.

Fig. 1. DNA damage detection and signal amplification
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The first step in damage detection by ATR module is joining RPA (replication
protein A) complexes to single-stranded DNA (ssDNA) region. This causes in-
dependent movement of Rad17-RFC2-5, Rad9-Rad1-Hus1 (9-1-1 complex) and
ATR-ATRIP complexes to the damaged site. ATRIP (ATR interacting protein)
acting in ATR-ATRIP complex, is capable of attaching themselves to RPA-
ssDNA, what induces autophosphorylation of ATR. Moreover, to the ss-DNA
fragment binds as well Rad17-RFC2-5 complex, what allows the attachement of
the 9-1-1 complex to the site of damage. Rad9 subunit of the 9-1-1 complex phos-
phorylated by ATR recruits TopBP1 (DNA topoisomerase 2-binding protein 1),
which presence is necessary for full activation of ATR. ATR combined with
TopBP1 phosphorylates many proteins from this pathway, including Rad17, and
mounted by it claspin, which is necessary to recruit cell cycle checkpoint kinase
1 (Chk1). The signal strength of the checkpoint cascade is dependent on the
length of RPA- ssDNA regions and possibility of ATR molecules to locate closely
to each other. Other ATR phosphorylation targets are RPA subunits (RPA70
and RPA32), ATRIP, TopBP1, Chk2, p53 and histone H2AX [4, 5]. ATR mod-
ule function is essential for cell viability and disruptions of ATR signaling cause
genomic instability.

DSBs are detected by repair complexes like Mre11-Rad50-Nbs1 complex
(MRN). MRN binds to DNA damage site and recruits ATM kinase, that after
its autophosphorylation interacts with several proteins in the pathway (Chk1,
Chk2, p53, Mdm) and leads to p53 stabilization. Damage detected by ATM,
after resection may be recognized by ATR module [3].

A major effector for both pathways is tumor suppresor p53, known as “the
guardian of the genome” which is a transcription factor that regulates, e.g. cell
cycle, repair and apoptosis.

2 Methodology

2.1 Mathematical Modeling

In the process of modeling the cellular signaling pathways, we use the basic
laws known from biochemistry: the law of mass action and Michaelis-Menten
kinetics. The kinetic parameters for our model are obtained from the results of
biological experiments known from literature. To estimate relative changes in the
levels of the proteins from the ATR-p53 pathway, we use program [6]. Unknown
parameters are estimated by fitting the model to the known data.

The proposed model is based on Haseltine-Rawlings postulate [7] which binds
deterministic and stochastic approach. Here we use ODE (ordinary differential
equations, Runge-Kutta fourth order method) to simulate fast reactions (e.g.
protein-protein interactions) and direct Gillespie method [8] to simulate slow
reactions (enabling genes and DNA lesions number).

2.2 Model of ATR-p53 Pathway

The presented model is an extension of the model of p53 signaling pathway
developed by K. Puszyński [9]. To our knowledge, ATR-p53 model is innovative
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Fig. 2. DNA damage detection model vizualization; solid lines represent change of pro-
tein form; dashed lines describe the interactions that occur in the path; components of
ATR module are marked

because it introduces expanded path of the UV-induced DNA damage response,
which we do not observe in the models found in the literature. Only in the
model proposed in [10] the authors show simplified interaction between ATR,
p53, Mdm and Wip1. Our model is extended to other interactions which we find
essential in the process of DNA damage detection in real life and during the
simulaion analysis. The big advantage of our model is that it takes into account
the impact of positive loop including PTEN (phosphatase and tensin homolog),
which is responsible for many cancers. In addition, the authors of [10] do not take
into account stochastic elements in their simulations. Stochastic in our models
allows to observe the damage response of the cell population. Authors of [10] do
not perform the analysis of the impact of various modifications in their model,
e.g. impact of mutations in proteins belonging to the pathway.

Lack of similar models was one of the reasons of our interest in modeling this
pathway. Another reason was the fact that this module is highly connected to
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the p53 pathway, on which we were working previously [9], as well as to ATM
module, on which we are working now.

Described model is a simplification of a real signaling pathway existing in the
cell. The model is activated by UV irradiation which results in the occurrence
of DNA SSBs. The output of the model is the level of p53 protein which deter-
mines cell fate: DNA damage repair or cell apoptosis. Spontaneous DNA damage
formation implemented in presented model results in basic ATR-p53 pathway
activation. The core of the model are states of ATR: inactive protein, its phos-
phorylated state, and fully activated form. In this model, there are two feedback
loops: positive, with the participation of PTEN, and negative, containing p53
suppressor called Mdm (Fig. 2). In turn, phosphorylated p53 is a transcription
factor for Mdm. Mdm activated in cytoplasm by Akt protein is transported to
the nucleus where performs ubiquitination of p53, leading to its rapid degrada-
tion in proteasomes. The positive feedback loop blocks the effects of Mdm loop.
P53 induces the production of PTEN which then inactivates PIP3 hydrolyzing
it to PIP2 unable to activate Akt. Consequently, p53 blocks its own inhibitor
Mdm, because without active form of the Akt, Mdm does not penetrate to the
nucleus, and thus can not accelerate degradation of p53. Details about p53 sig-
naling pathway are available in [9].

The model distinguishes the nucleus and cytoplasm. It was assumed that each
gene has two copies. None of them can be active, one of them or both can be
active. For some proteins production and degradation was not modeled directly,
assuming that they are equal and protein only change the form (active to inactive
and vice versa). In presented model, a simplified DNA repair was implementing
depending on the number of p53 tetramers, repair rate and the amount of repair
complexes, which is limited. Apoptosis condition is recognized as a permanently
elevated level of the p53 protein (over 6 hours). Then the cell dies and all of its
elements are degraded, thus further protein levels and the number of lesions are
not taken into account.

3 Results

We examined cell response to different doses of UV radiation during the simula-
tion analysis. We set the threshold of detection and apoptosis, as well as showed
spontaneous activation of the ATR/p53 pathway. Deterministic and stochastic
(for 100 cells) experiments were performed. At time t=24 hours after setting
up the experiment, simulated cells were irradiated by a specific dose of UVC,
and then observed over the next 48 hours. The model was verified based on the
results of biological experiments from the literature.

According to [11] DNA damages caused by radiation dose of 10 J/m2 UVC
are repaired within 15 hours. This dose will cause 150 500 SSBs [12]. Under the
assumption that number of SSBs depends on dose in linear manner, we examined
that 1 J/m2 causes 15 050 SSBs. Our model is based on the above assumption.

In [13] it was presented that 12 hours after irradiation with 20 J/m2 UVC,
the level of total p53 increases threefold. This information allows the estimation
of the increase in number of p53 molecules in response to the damage.
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Fig. 3. Spontaneous DNA damage formation and p53 activation; result of 10 stochastic
simulations

It was observed that two hours after irradiation with dose of 15 J/m2 the
total level of ATR within the cell increases about seven times [5]. As a result of
dose of 50 J/m2 Chk1 level increases eightfold after 1.5 hours [14], and the level
of Chk2 increases sixteen-fold after 2 hours after irradiation [15].

3.1 Basic Activation

According to [16], in every cell of the human organism, daily about 55 000 SSBs
are formed. They are responsible for base activation of the ATR-p53 pathway.
We used this number in the model as an activation parameter of the model
(Fig. 3).

3.2 Damage Detection Threshold

We examined the response of the model (Fig. 4A) to radiation dose causing one
SSB (0.0665 mJ/m2). We can observed that the lesion generated after 24 hour
of experiment is detected by ATR module.

3.3 Apoptotic Death Threshold

Based on the observation of simulation results, the dose of 18 J/m2, in which
more than half of the cell becomes apoptotic, was taken as the threshold for apop-
tosis (Fig. 4B). For comparison, the dose 17 J/m2 causes death of 44/100 cells.
We assumed that apoptosis occurs when the level of p53 is increased by more
than 6 hours (in simulation exceeding the threshold 2.1·105). Further experi-
ments were run for the radiation dose of 18 J/m2.
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Fig. 4. A. Response to one lesion occurrence; B. Apoptotic death threshold; result for
100 stochastic simulations; solid line – median; dashed line – upper and lower quartile
of result

3.4 Disabling Selected Effects

Disabling Phosphorylation of p53. Inhibition of the p53 phosphorylation
caused by Chk1 and Chk2 kinases results in the reduction of apoptotic fraction
size (Fig. 5A: 17/100 cells for the Chk1 and 14/100 cells to Chk2, for which
plot appears almost identical), and a significant prolongation of DNA repair
time. This effect of blocking is difficult to achieve biologically, because Chk1 and
Chk2 phosphorylate mainly the same serine residue (Ser-20) of the p53 protein
and it is difficult to separate their effects.

In the case of the inhibition of the ATR-dependent p53 activation (Fig. 5B),
the apoptotic fraction decline was smaller (size of fraction was 46/100 cells).
The blocking is, however, possible to obtain biologically by mutation of Ser-15
phosphorylated mainly by ATR [17].

Fig. 5. Disabling mediated by Chk1(A.) and ATR (B.) p53 phosphorylation; results for
100 stochastic simulations; solid line – median; dashed line – upper and lower quartile
of results
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Fig. 6. Disabling mediated by Chk1(A.) and ATR (B.) Mdm degradation; results for
100 stochastic simulations; solid line – median; dashed line – upper and lower quartile
of results

Disabling Degradation of Mdm. A stronger effect was obtained excluding
Chk1 (Fig. 6A) and Chk2 dependent degradation of Mdm. None of the cells
entered the state of apoptosis. It is possible to achieve biologically through mod-
ification of a relevant amino-chain residues of Mdmx. In our study we don’t
treat separately Mdm2 and Mdmx, what is complicated to model, but we focus
on their common interaction. Chk1 phosphorylates Mdmx in Ser-342 whereas
the Chk2 phosphorylates Mdmx in Ser-367. Mdmx phosphorylation leads to its
Mdm2-mediated ubiquitination and degradation. Mdmx devoid of Mdm2 is un-
able to effectively bind p53 and can not lead to its degradation [18]. As in the
previous case, less system response change was observed for the ATR (Fig. 6B).
Apoptotic fraction size was 20/100. Biologically this condition may be obtained
by modification of appropriate serine (Ser-407) of Mdm2 protein. Phosphoryla-
tion of Mdm2 in this residue reduces its affinity for HAUSP (deubiquitylating
enzyme) that is a stabilizing factor of Mdm2 and Mdmx level in the absence
of stress factor. Increased degradation of Mdm2 and MdmX results in lack of
inhibition of p53 [18, 19].

Fig. 7. Disabling total kinase activity of Chk1(A.) and Chk2 (B.); results for 100
stochastic simulations; solid line – median; dashed line – upper and lower quartile of
results
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Disabling Total Kinase Activity of Chk1 and Chk2. When total Chk1
(Fig. 7A) or Chk2 (Fig. 7B)protein kinase activity is blocked, none of the cells
reach the state of apoptosis. This effect could be obtained in the case of a muta-
tion in a gene fragment encoding protein kinase domains of Chk1 and Chk2 or
mutation in the amino acid residues which are the target of the ATR-mediated
phosphorylation. Also absence of mediators (e.g., claspin in the case of Chk1)
may cause such an effect.

4 Conclusions

Simulation analysis show the correct functioning of the model stress response
which effect is known from the literature. ATR module is able to detect a single-
strand break caused by UVC appearing in the cell and enhance the signal so as to
cause an increase in p53 protein level. Changes of protein levels observed in the
simulation correspond to these found in the literature. We plan to perform the
laboratory experiments in order to obtain the kinetic parameters for the model
and confirm the results obtained during the simulation.

The threshold of apoptosis in the healthy cell is 18 J/m2. However, if the
pathway is defective, apoptotic threshold shifts. Despite extensive damage, the
cells may not die, but transfer incorrect genetic material to daughter cells (be-
cause DNA damage repair takes a lot longer). This state could potentially be
a cause of cancer and other genetic diseases.

The presented model can be used to study the behavior of cells with specific
mutations without the need for costly and time-consuming experiments in the
laboratory.

We plan to combine the model presented in this study with the model of the
ATM-p53 pathway and to create links between these pathways to make a more
accurate and universal model of DNA damage detection.
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Abstract. Since experimental techniques of protein hotspot prediction
are still financially extremely demanding and time consuming there is a
strain to produce sufficiently reliable computational techniques for this
particular task. We propose an algorithm based on Resonant Recognition
Model relying heavily on signal processing techniques. Processed numer-
ical signal is obtain solely form protein sequence using physical quantity
EIIP. We therefore use no information of protein structure. The key ele-
ment here is a time-frequency analysis tool – S-transform. This allows us
to determine exact residues responsible for majority of performance on
protein’s characteristic frequency. We achieve basic sensitivity of 85 %
and PPV 49 %, while demanding very little computing resources, because
simplicity is one of the biggest advantages of our approach.

Keywords: Protein hotspots prediction, signal processing, electron-ion
interaction potential, resonant recognition model, protein sequence,
S-transform, time-frequency analysis.

1 Introduction

For more than a decade there have been efforts to compose a map of protein-
protein interactions [1–3]. Although these maps are steadily growing and gaining
more and more complexity, all they actually reveal is that particular interaction
takes place at some point of cell’s lifetime. There is no doubt this information is
useful and even crucial for further study, however it still is just a mere observation
of processes of which we have no deeper insight.

To acquire this insight we need to look closer at particular proteins and search
for information on how these proteins actually interact with their partners to
see what the exact mechanisms of each interaction are. Studies indicate that two
interacting proteins align certain areas of their surface called binding sites [4].
These are rather large areas composed of tens of residues [5]. However not each
residue contributes to the bond equally, in fact only a few residues are responsible
for a vast majority of binding free energy [6]. In the past these residues were called
active sites [7] and Rajamani once denoted them as anchor residues [8]. Today
one can rarely find a paper referring to them in any other way than hotspots.
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1.1 Alanine Scanning Mutagenesis

The first attempts to identify these hotspots were conducted in laboratories via
means of daunting wet work. The procedure is known as Alanine Scanning Mu-
tagenesis (ASM) [9]. It relies on mutating protein residues to alanine one at a
time and then measuring change in binding free energy (ΔΔG) produced during
interaction with its counterpart. In the case of the mutated residue producing
significantly less energy than the original wild-type protein, this residue is then
regarded as a hotspot. So far there is no commonly accepted threshold value dif-
ferentiating hotspot residues from non-hotspot residues. Most often researchers
use ΔΔG = 1 kcal/mol as a threshold value, however this is not always the
truth [10]. Anyway, basically all experimental data available on hotspots were
produced via means of this particular procedure and often their authors provided
exact values of observedΔΔG allowing readers to make their own conclusion [11].

As easy as it may sound ASM is in fact no simple task. Each mutated residue
requires creation of whole new strain of bacteria – often Escherichia Coli – to
produce mutated protein in sufficient amount for the change in free energy to
be measurable. In fact this is so demanding that even proteins studied by ASM
are not subjected to it in their full length. Only a few interesting residues are
chosen to be mutated to alanine. In average their number usually lies around ten
percent of protein’s total length. Results of such experiments can be found in
Alanine Scanning Energetics database. The financial and time requirements of
ASM are one of the main reasons for high demand for different means of hotspot
determination [11].

1.2 Existing Computational Methods of Hotspot Prediction

As an answer to these demands several computational techniques of protein
hotspot prediction have emerged. Since even for the most demanding algorithms
computational time is always significantly cheaper than lab work, this remains
to be a trend.

At first there was focus on molecular docking techniques using information
of protein structure. This brought up methods like MAPPIS [12], Hotpoint [13],
Hotsprint [14], pyDockNIP [15] and several others. These approaches generally
yield fairly good efficiency, but they also suffer one significant drawback. Their
core idea requires the availability of protein structural data. Often it is not just
any structural data that are acceptable and only high resolution structural data
are to be used. Since only around 1 % of all known proteins’ structure has been
solved [16], this can be considerably restricting.

Lately we can see new approaches utilizing purely protein sequence, which
gives them an edge over those described above. Although one group of these
algorithms uses machine learning techniques including neural networks [16] and
support vector machines [17], even these techniques did not come up with any
generally applicable hotspot predictor. Another group of methods concentrates
on signal processing techniques like digital filtering [18] and time-frequency anal-
ysis [19]. Furthermore these methods tend to have significantly lower computa-
tional requirements.
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2 Proposed Algorithm

The algorithm we here propose utilizes signal processing techniques, namely
S-transform, which is a time-frequency analysis tool. We therefore need only
protein sequence and any data on protein structure are entirely unnecessary.

2.1 From Sequence to Numerical Signal

To employ any signal processing techniques, the first step inevitably has to be
the conversion of the protein sequence to numerical signal. To do this we use
a physical quantity called electron-ion interaction potential (EIIP). See Table 1
for its distribution among individual residues. EIIP describes average energy of
residues’ valence electrons and is often stated in Rydbergs (1 Ry = 2.18·10−18 J).
Since energy can only be positive, sequence of such values introduces an offset to
the signal. Such an offset needs to be eliminated before further processing takes
place. This is done by subtracting average value of each sequence from itself.

Table 1. Distribution of EIIP among 20 residues encoded in human genome

Residue EIIP [Ry] Residue EIIP [Ry]

Alanine 0.0373 Leucine 0.0000
Arginine 0.0959 Lysine 0.0371
Asparagine 0.0036 Methionine 0.0823
Aspartic acid 0.1263 Phenylalanine 0.0946
Cysteine 0.0829 Proline 0.0198
Glutamic acid 0.0058 Serine 0.0829
Glutamine 0.0761 Threonine 0.0941
Glycine 0.0050 Tryptophan 0.0548
Histidine 0.0242 Tyrosine 0.0516
Isoleucine 0.0000 Valine 0.0057

2.2 Resonant Recognition Model and Characteristic Frequency

The basic idea of our algorithm – together with most of other signal-processing-
based algorithms – is provided by Resonant Recognition Model [20]. This model
claims that proteins sharing common function also share common frequency
component in their Fourier spectra [21]. This common frequency component is
then referred to as characteristic frequency [18]. For sake of simplicity we call
these proteins of common function as related proteins.

So far the only way to obtain value of characteristic frequency is multiplying
spectrum of particular protein with spectra of its related proteins until only one
significant peak is visible in the product spectrum, which is often called consen-
sual spectrum. This calculation can be described by following equation [18]:

S(ejω) = |X1(e
jω) ·X2(e

jω) · · · · ·X1(e
jω)| (1)
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where Xi(e
jω) is Fourier spectrum of i-th related protein and S(ejω) is consensual

spectrum. To ensure equal length of all protein sequences we pad the shorter ones
with zeroes.

There is no way to tell how many of these related proteins’ sequences will be
needed to obtain single significant peak in consensual spectrum and therefore the
characteristic frequency. It can be as few as two, but often this number exceeds
ten. From proteins in our dataset the highest number of related proteins used is
twelve. When we have sufficient number of related proteins’ sequences available,
the consensus spectra may look like one shown in Fig. 1.
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Fig. 1. Consensus spectrum of human growth hormone (3hhr chain A) after 8 multi-
plications with spectra of related proteins; characteristic frequency for this particular
protein is 0.26852

To obtain related proteins’ sequences we use proteins performing the same
function, but found in different organisms. In our example of human growth
hormone, some of its related proteins are rabbit growth hormone, chicken growth
hormone, bull growth hormone and so on.

The way consensual spectrum is calculated highlights that we are in fact
operating with evolutionary information. In protein interactions, hotspots are so
important that the cell rarely survives mutation at their locus without impaired
function. This is the reason why hotspots are highly conservative, which is an
attribute we exploit during consensual spectrum computation [5].

The ability to determine protein’s characteristic frequency is a crucial premise
for successful use of our algorithm. If we cannot guarantee sufficient number of
related sequences and therefore characteristic frequency determination, then any
results we may obtain will be highly questionable and with high probability even
useless.
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2.3 S-Transform

Once we acquire the characteristic frequency, the next task is to determine which
residues are responsible for majority of performance on this frequency. We do this
by employing the S-transform (ST), which is a powerful time-frequency analysis
tool. ST is similar to Short Time Fourier Transform (STFT), but introduces some
very useful advantages. ST provides frequency dependent resolution similar to
wavelet transform, while retaining easy to interpret output. Unlike STFT, ST is
always invertible and thus allows for time-frequency filtering simply by modifying
the ST spectrum.
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Fig. 2. ST spectrum of human growth hormone; white line marks characteristic fre-
quency; area with zero performance on the right hand side is a result of zero padding

Mathematically, ST is defined as follows [22]

S(τ, f) =

∫ ∞

−∞
x(t)ω(τ − t, f)e−j2πftdt (2)

where x(t) is time varying signal as the transformation’s input, S(τ, f) is sample
of the output corresponding to time shift τ and frequency f . Window ω is then
defined as

ω(t, σ) =
1

σ(f)
√
2π

e
t2

2σ2(f) (3)

where σ is window width defined as

σ(f) =
1

|f | (4)
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2.4 Thresholding

The ultimate signal we use for hotspot prediction itself is a slice of the ST
spectrum at characteristic frequency marked by a white line on Fig. 2. Waveform
of this signal is shown in Fig. 3 together with reference data of known hotspot and
non-hotspot residues. This signal is then subjected to thresholding and above
threshold residues are deemed hotspots. Default threshold value is set to match
mean value of ST spectrum slice, it can however be moved up or down to achieve
desired results.
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Fig. 3. Slice of ST spectra at characteristic frequency; crosses denote a priori known
non-hotspot residues, while circles denote a priori known hotspot residues

2.5 Recapitulation

To summarize the course of algorithm: First, we convert amino acid sequence
of examined protein and all its related proteins to numerical signal using EIIP
values for individual residues. Secondly, we pad all these numerical sequences
with zeroes to obtain sequences of equal length. Thirdly, we compute consensual
spectrum to obtain value of characteristic frequency. Failure to accomplish this
step will force us to abort as a result of insufficient number of related proteins’
sequences or their poor choice. Fourthly, we use S-transform to obtain course of
characteristic frequency over individual residues. Finally we apply thresholding
on characteristic frequency waveform obtained in step four. Succession of all
mentioned steps is clearly shown in Fig. 4.
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Convert to
EIIP Pad with zeros Apply

thresholding

Compute
S-transform

Compute
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spectrum

Fig. 4. Block scheme of the proposed algorithm

3 Results

3.1 Dataset

As a basis for our testing set of protein sequences we took a dataset put to-
gether by Nguyen with an aim to introduce representative sample of known
protein families and thus form a reasonable training set for a machine learn-
ing technique published in [23]. It was pieced together from previous works of
Tuncbag [24], Cho [25] and Kortemme [26]. The dataset includes no proteins
achieving more than 35 % of mutual sequence identity. It only takes in account
information obtained via means of ASM which is still the single most authorita-
tive method of hotspot localization. Residues in the dataset marked as hotspots
achieved ΔΔG ≥ 2 kcal/mol, while those marked as non-hotspots ΔΔG < 0.4
kcal/mol [23].

Table 2. Protein sequences in our dataset

PDB ID Chain ID Name

1a22 A Somatotropin
1a4y A RNAse inhibitor
1a4y B Angiogenin
1brs D Barstar
1bxi A Colicin E9 immunity protein
1cbw D Pancreatic trypsin inhibitor
1dan T Soluble tissue factor
1fcc C Streptococcal protein (C2 fragment)
1jrh I Interferon-gamma receptor alpha chain
1jtg B Beta-lactamase inhibitory protein
3hhr A Human growth hormone
3hhr B Human growth hormone receptor

Unfortunately we could only find sufficient number of related proteins for
about half of the proteins in Nguyen’s original set. This means we ended up
with 12 proteins with suitable properties for our algorithm. Proteins composing
this reduced dataset can be found in Table 2.
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3.2 Achieved Efficiency

Table 3 clearly shows achieved efficiency of our algorithm in comparison with
some other published methods. We can see that our algorithm provides the best
value of sensitivity, on the other hand we are falling behind in terms of positive
predictive value (PPV).

Table 3. Achieved efficiency of proposed algorithm compared to some of competitive
approaches

Method Sensitivity [%] PPV [%]

ISIS 15 89
ROBETTA 69 71
MAPPIS 66 63
Hotpoint 59 70
pyDockNIP 43 75
Nguyen 58.9 74.8
ST filtering 83.33 62.5
Proposed 85.32 49.7

We have mentioned before that the actual threshold value can be moved. In
doing so we should always bear in mind that the individual waveform of each
protein’s characteristic frequency can vary significantly. Therefore we have based
the value of threshold offset on standard deviation of characteristic frequency
waveform. The values displayed in Table 3 have been achieved with zero threshold
offset from its default value matching mean value of slice of ST spectrum on
characteristic frequency. By moving it up by 0.9 times of the standard deviation
we can significantly boost achieved PPV value up to 57.57 % at the cost of
sensitivity dropping to 57.86 %. Efficiency values of competing algorithms were
all achieved on different datasets with an exception of Nguyen’s algorithm.

4 Conclusion

We have introduced a protein hotspot prediction method based on theory of
Resonant Recognition Model using S-transform as a time-frequency analysis
tool. Although the proposed method achieves lower PPV than other mentioned
approaches, its main advantage is in its simplicity and low computational re-
quirements which is especially truth in comparison with molecular-docking-
based methods. Another benefit of our approach is no need for structural data,
on the other hand it was shown that even our need for sequences of related
proteins can still prove to be restrictive. Even so, it is a considerably lower
limitation.
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Abstract. The main goal of the study is modelling of radiation induced
bystander effect using evolutionary game theory. A payoff table for three
different phenotypes (game-theoretic strategies) contains: costs/profits of
bystander effect, choice of apoptotic pathway, producing growth factors
and resistance against bystander effect. Games are played on a lattice
and for that purpose two kinds of spatial evolutionary games are pre-
sented and compared. Moreover different polymorphic equilibrium points
dependent on model parameters and cells reproductions are discussed.

Keywords: evolutionary games, biomathematical modelling, carcino-
genesis, cellular automata, polymorphism.

1 Introduction

The game theory has been frequently used as efficient methodology for pro-
cesses simulation and analysis where decision-making is a key factor. The new
viewpoints in such areas as genetics, ecology or etiology of diseases have been
unlocked by evolutionary game theory (EGT) initiated by John Maynard Smith
and George Price [1]. Their ideas link the mathematical tools of game theory
with Darwinian fitting and species evolution. As a result the new approach pro-
vides new understanding of the game and players as well. Individuals, without
any rationality, compete or cooperate with each other to obtain better position
in the population. Payoffs measure a change in the degree of fitness resulting
from interactions of the individuals. A good example for the introduction of
mathematical approaches is fundamental evolutionary model: Hawk and Dove
[2]. To delineate the results of such a game, the concept of Evolutionary Stable
Strategy (ESS) was introduced in [2]. A phenotype, which is ESS, is resistant to
the emergency and impact of the other or even new phenotypes (as a result of
environmental migration or mutation) and also cannot be repressed by them. On
the other hand, the opposite situation is possible, so that whenever ESS arises
within a population then it can coexist stably with other phenotypes or even
dominate the population. In addition ESS is always in Nash equilibrium, but
reverse implication is generally not true [3]. Application of evolutionary game
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theory to mathematical modelling of processes during carcinogenesis is based on
the following assertions:

– in an organism, cells compete for space and nutrients, while cells with dif-
ferent phenotypes are players in the game.

– cooperation and even evolutionary altruism can occur.
– mutation (appearing in tumour cells) occurs in cell division due to various

reasons.
– an advantage of tumour cells over healthy ones is a signature of cancer.
– environmental factors can affect different cells to varying degrees.

To our knowledge the first tumour’s phenomena modelled by evolutionary game
theory are avoidance of apoptosis and production of growth factors presented
by Tomlinson and Bodmer [4]. Within the first model the authors proposed
three kinds of phenotypes: two of them produce a factor to prevent apoptosis
either in paracrine or autocrine fashion and the third one is neutral gaining
benefits from paracrine factors. The second model is an extract of the first one
- there is no phenotype producing factors in autocrine fashion. This paper has
triggered a series of other studies, where evolutionary game theory has been
applied to present different tumour phenomena (see [5, 6] for survey). On the
other hand, game theory models show only single phenomena occurring in a very
complicated process of cancer evolution (results represent quantitative, but not
qualitative description). To track the evolution of different phenotypes in the
population it is feasible to simulate equations for replicator dynamics [7]. They
show how frequencies of different strategies change in time, thereby effecting the
composition of studied population. Results from replicator dynamics and models
used for the simulation are commonly called mean-field models. Another way to
track the phenotypes’ evolution is created by methodology of spatial evolutionary
games which enables study of players’ allocation. A crucial difference between
non-spatial and spatial models is lack of perfect mixing. Due to this feature the
various local structures of cells could have an impact on the course of the game
and the results. Comparison of the results between the mean-field and the spatial
model was done by Bach et al [8]. We followed this line adding new kinds of cells
reproduction and applying spatial games to various, carcinogenesis models (see
[6]) including [9, 10] where we have presented results and discussion for a model
of radiation induced bystander, which is also the main topic of this paper. Using
spatial algorithm from [8] and our previous results of bystander model [10] we
propose an extension by presenting a new way of payoff updating.

2 Spatial Evolutionary Games

The spatial games which we consider follow one global algorithm, which is used
every single interaction among players placed on the lattice forming torus:

– payoff updating – determination of local fitness for players in their neigh-
bourhoods.
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– cell mortality – choosing 10% of the players from the lattice.
– reproduction by competition – defining a new player on the empty place.

The main difference between both kinds of spatial games are definitions of the
player and payoff updating:

– a standard approach – each player follows only one strategy. Local adaptation
is calculated as a sum of payoffs (taken from payoff matrix describing the
game) of interaction between players in the neighbourhood.

– a population game – each player is treated as entire population containing
different strategies (presented as frequency of occurrences). The payoff due
to interaction between two players is calculated as a sum of the interactions
between each strategies multiplied by their frequency of occurrences. Then,
as in the standard game, the local adaptation is the sum of such payoffs.

Taken as an example Hawk and Dove game with two players (two populations
consist of 20% H , 80% D and 40% H , 60%D) the payoff due to interaction
between these two players shall be (p – means the payoff value due to interaction
between individuals):

20%·40%·p(H,H)+20%·60%·p(H,D)+80%·40%·p(D,H)+80%·60%·p(D,D)
(1)

The same calculation as in (1) should be done for rest of the neighbours and
then the sum should be taken to determine final value of local adaptation for the
player. In this paper we are using semi–synchronous updating. This technique
allows for biologically realistic situation for the first game. In case of the second
game more reasonable could be synchronous update (all populations interact
between each other every single iteration), however simulations show that this
way of updating assumes a global controller of the system. Moreover for the
comparison purposes it is better to choose the same way of cell mortality for
both games. Semi–synchronous updating could be treated as a kind of temporal
isolation between populations. Last way of choosing players (asynchronous one
– only one player is chosen during iteration) presented in [8] implies vanishing
of small cell clusters impossible. Yet another discrepancy between spatial games
is that in the standard game a chosen player is removed from the lattice, in
the population game he/she stays alive and takes active part in the game. The
authors [8] have suggested two kinds of reproduction, which in their general
understanding could be applied for both spatial games presented by us:

– deterministic reproduction – in competition of empty place the winner is the
strongest player with highest local adaptation.

– probabilistic reproduction – each player’s local adaptation is divided by the
sum of the local scores among its neighbourhood.

Additionally we introduce [10] two other ways of reproduction: quantitative (as-
sumes cooperation between players with the same strategies) and switching (de-
pending on the size of diversity between scores, quantitative or deterministic
reproduction is chosen). In addition at least three another reproductions could
be determined for the population game:
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– weighted mean of the strongest players – the weighted mean (players’ pay-
offs are the weights) is taken for the players with highest scores (additional
parameter defines number of players).

– weighted mean of the best interval – players are sorted according to their
payoffs, then the range of the local payoff is divided onto intervals (additional
parameter defines number of intervals). At the end the weighted mean is
taken for the players in the strongest interval.

– spreading reproduction – here we introduce small alteration, because the
chosen player instead of being changed affects rather the neighbours. The
weighted mean is taken for the main player and those neighbours (each
separately) whose payoffs are smaller than the main player’s payoff multiplied
by the correcting factor (additional parameter defined in percentage).

Moreover similarly as in the standard approach we can introduce the switching
reproduction, that could be performed between deterministic reproduction and
for instance the weighted mean of the strongest players. For this paper we mainly
concentrate on deterministic and probabilistic reproduction, following the line
of reasoning that it is better for comparison purposes and taking into account
a crucial fact that both spatial games provide vast amount of possible config-
urations. Every competition results giving tie are settled randomly in the case
of the standard game. For the population games the average between frequency
of occurrences of strategies from each population in tie is taken. The difference
between described spatial games occurs also within their graphical representa-
tion. In the standard approach we can assume that one colour corresponds to
one strategy (say the phenotype H is red and D is blue), for the population one
we need to mix the colours. So in case when a player obtains 40% H and 60% D
the resulting colour should be a shade of violet. This entails more results in the
meaning of different spatial structures, however the analysis is more complex.
For the spatial simulations two initial lattices (30 x 30 cells) were generated
randomly, which provides substitute of perfect mixing.

3 Radiation Induced Bystander Effect

Recent studies have shown that cells exposed to ionizing radiation can trig-
ger reactions affecting non-targeted neighbouring cells. Phenomenon known as
radiation based bystander effect has been widely reviewed in literature [11]. Irra-
diated cells release signals which lead to damage in nearby, non–irradiated cells
and reduction in survival of adjacent cells. Moreover the signalling is mutual,
so the irradiated cells can also receive signals from non-irradiated neighbours.
The induced bystander effect in non-irradiated cells can be exposed in couple
ways: reduction of survival, delay of cell’s death, oxidative damage in DNA and
the genomic instability, micronuclei induction, lipid peroxidation and apoptosis.
Besides that those systems are documented, the mechanisms responsible for by-
stander phenomena are still complex and seem to be dependent on many circum-
stances. Intercellular signalling, so important for bystander effect, is correlated
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with reactive oxygen species, nitric oxide, cytokines such as interleukin 8 or TGF-
β. Also significant role is played by gap junction communication and presence of
soluble mediators. The bystander effect can be induced also by chemotherapy,
ultraviolet radiation and photo-chemotherapy. The UV radiation may lead to
skin cancer, basal and squamous-cell carcinoma and to the emergence of malig-
nant melanoma. Oxidative stress, which can also be a result of UVB radiation,
is an important mediator of bystander effect induced by ionizing radiation [12].
The radiation induced bystander may have positive and negative effects, since
the factors issued by irradiated cells may lead to mutation and second neopla-
sia. If healthy cells are damaged then the effect is harmful and could increase
the adverse effect of radiotherapy in the form of actinic complications. Those
positive and negative effect may also be visible in case of radiotherapy. If cancer
cells directly absorbing ionizing radiation energy damages, by their signaling,
the cells in the neighbourhood or initiates differentiation of these cells then this
is the positive and desired effect. However if the healthy cells are damaged (ep-
ithelial and endothelial cells, fibroblasts, leucocytes), then it may be seen as
unfavourable and undesired result of radiotherapy in the guise of different, ra-
diation side effects, complication and secondary neoplasm. Radiation induced
bystander effect occurs especially in the case of very low doses of alpha radi-
ation (mGy and cGy), but also after irradiation of cells by radiation with low
linear energy transfer coefficient (radiation X and gamma) even in the higher,
conventionally used doses. There are a number of different reports showing that
1% of radiated cells with the increase in dose results in death of 30% of the
cells, and then above a certain dose threshold effect disappeared. On the other
hand, other sources indicate that this effect is visible at both low and high doses.
As we have mentioned before, genetic instability is also observable within this
phenomenon, the delayed effect of the changes and the death of cells in dis-
tant generations previously irradiated as well. Furthermore, radiation-induced
cell clones emit cytotoxic agents. Another phenomenon that accompanies the
impact of low radiation doses is adaptive radioresistance, which could increase
the resistance for the next even thousand times higher doses. Unfortunately the
mechanisms of this phenomenon are not sufficiently understood. The irradiation
leads to disruption of the balance between the state of signaling molecules act-
ing prooxidant and antioxidant. One such molecules might be the nitric oxide
(NO). Delayed reproductive death (DRD) is expressed in the lower performance
of cloning, which probably is not caused by the process of apoptosis or necrosis,
although an increase in the percentage of apoptosis is also one of the markers
of radiation induced bystander. DRD is mainly observed in the cells with undis-
turbed repairing mechanism of double strand DNA damage, however does not
occur in cells with not proper mechanisms [14]. Apart from described phenomena
some others could be listed too:

– irradiated cells harm surrounding cells.
– it is possible to increase a count of non–irradiated neighbours.
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– a growth of cells that have received a high dose of radiation through signalling
from cells irradiated by low-dose may appear.

– paracrine fashion of intercellular interaction.

From the modelling point of view some of the conditions and phenomena de-
tected within bystander effect could be covered by Tomlinson’s model of growth
factors [4] and production of cytotoxic substances [13]. The former is a very basic
model showing the bystander effect in a way of paracrine signalling between cells,
incurring losses due to factors productions and some passive group of individuals
that receive benefits from other actions. The latter shows the phenomenon of
cytotoxic substances production, which perfectly illustrates production of free
radicals and immunity induction (also observed in bystander effect studies). In
a similar way of basic and overall modelling fashion we present game theo-
retic model strictly assigned to radiation induced bystander effect. Adding to
this different ways of solving game theoretical models, it allows for observations
of complicated and various responses and results of intercellular signalling and
communication.

4 Model

We consider three different strategies/phenotypes of cells:

– escape to apoptosis – frequency of appearance: X (blue colour)
– production of growth and mutation factors – frequency of appearance: Y

(green colour)
– neutrality – frequency of appearance: Z (red colour)

Table 1. Payoff matrix

X Y Z

X 1− k 1− i+ j − p 1− p
Y 1− k + j 1− i+ j 1 + j
Z 1− k 1− i+ j 1

Parameters of the model:

k – cost of apoptosis/profit from bystander effect
j – profit of cell contact with growth factors
i – cost of producing the growth factors
p – cost/advantage from resistance to bystander effect

Results from the replicator dynamics equations (and the same, from the mean-
field, non-spatial analysis) show that population can reach different states [9].
The resulting trimorphic, dimorphic or monomorphic populations may be in-
dependent from initial frequencies (in case when the equilibrium point is an
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Fig. 1. Replicator dynamics results for parameters i=0.4, j=0.8, k=0.1, p=0.4

attractor), or dependent on them (equilibrium point is a repiler). Within this
paper main aim focuses on comparison between different spatial games, however
some references to replicator dynamics results should be also considered.

First set of parameters leads to dimorphic population with X and Y cells (Z
cells have been repressed) for non-spatial game (Fig. 1). This is a case when
the equilibrium point (X=0.25, Y =0.5, Z=0.25) is a repiler, which means that
final result depends on initial frequencies. In case of spatial simulation, starting
frequencies are equal for all three phenotypes and for all kind of games. Taking
the same initial frequencies and changing them (for instance X , Y to 0.3 and Z
to 0.4) result in dimorphic population consisting of Z and Y cells (Fig. 2). Such
change does not have any simple impact on results of spatial games. First of all,
the change is not so significant for spatial consideration. Such alteration could
affect the results while changing predefined clusters of the phenotypes within
the initial lattice (but not in the case of lattices generated randomly).

Fig. 2. Different initial frequencies. Parameters i=0.4, j=0.8, k=0.1, p=0.4
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Returning to the spatial results, in both games the outcomes are different
than in the mean-field game for the same initial frequencies (Fig. 3 and Fig. 4).
So the most dominant are Z and Y cells, however probabilistic reproduction in
population games allows to set up some clusters of pure X phenotype and in case

Fig. 3. Standard spatial game for parameters i=0.4, j=0.8, k=0.1, p=0.4

Fig. 4. Phenotype spatial game for parameters i=0.4, j=0.8, k=0.1, p=0.4
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of deterministic one the small amount of X also stays alive within population.
The results from the standard game show similar pair of dominating phenotypes.

Mean-weighted reproductions give almost the same result as deterministic
reproduction in population game, but with more frequent phenotype Y (which
disagrees with standard results, where Z-cells are the dominating ones). Yet
another feature of the mean-weighted reproduction is that in most cases the
entire lattice is covered by one kind of population.

The trimorphic population in non-spatial game is feasible for the second set
of parameters. Both probabilistic reproductions give similar result, however the
leadership within the population is swamp (Fig. 5 and Fig. 6). Again it is worth
to mention that in the probabilistic reproduction within the population game
scheme apart from mixed populations there are some structures with mainly one
phenotype. Quite interesting phenomenon is observed among the results of deter-
ministic reproductions. It seems the very beginning is similar (at least from the
frequency of occurrences point of view), but then Z-cells are repressed from the
population in case of standard game. First thought could be that this difference is
a result of semi-synchronous player choosing, which in fact introduces some ran-
domization into the algorithm. However vast amount of simulations have shown
that the results are the same even for different initial lattices. It indicates that
despite of mentioned randomness and even various configurations for some set of
pay-off parameters the behaviour and results are the same every each simulation.
In the same way as for previous set of parameters the mean-weighted reproduc-
tions give the same result as deterministic one (again the players’ structure is
much more variable).

Fig. 5. Classic spatial game for parameters i=0.5, j=0.7, k=-0.1, p=-0.3
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Last set of parameters results in stable dimorphic population with X and Z in
almost all cases. In the mean-field model the frequencies of occurrences for X and
Z are equal, in spatial games Z-cells are the dominating ones, but the advantage
over X is not so great. Within probabilistic reproduction in population game the
difference between these two phenotypes is even smaller and survival of the Y -
cells is possible in small quantities (the frequency of phenotype Y is even greater
for mean-weighted reproductions).

Fig. 6. Phenotype spatial game for parameters i=0.5, j=0.7, k=-0.1, p=-0.3

5 Remarks

We have proposed an extension of the evolutionary spatial games introduced by
Bach et all [8] and enhanced in [10]. The main difference is that each simple player
shall be treated either as entire population (monomorphic or polymorphic) or as
more complex individual containing phenotypes with diverse proportions. The
new way of solving spatial games has inherited two kinds of reproduction from
its ancestors, but also announced some new methods. So called mean-weighted
reproductions use the new interpretation of the players and provide possibility
to simulate mixing between populations, due to their interactions. On the other
hand, within such approach it is unlikely to emergence some stable clusters of
different populations, in contrast to deterministic or probabilistic reproductions
in the standard and the population spatial games as well. Within this paper we
have neglected some chosen sets of parameters like initial lattice, the size of the
neighbourhood or the way of choosing players. Also quantitative and switching
reproductions are not taken into account (the results could be found in [6, 10]).
In fact switching one could provide other new possibilities of reproductions by
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mixing different basic kinds. Despite numerous parameters and possible config-
urations of spatial games other possibilities for different results are provided by
various values within payoff table. We showed three sets of model parameters
which lead to quite similar results, in terms of phenotypes quantities, for stan-
dard and population approach (still a bit different than in mean-field games).
The reason of similarities could be the evolutionary game factor, which in fact
should have the biggest and the most basic impact on the results. So inde-
pendently of different players interpretation and kinds of reproductions if the
phenotypes have got strong evolutionary adjustment then the results shall be
alike. Such analysis of quantitative results is appropriate for making a compari-
son between different spatial games and their mean-field counterparts. One could
find interesting results in dynamics of players’ structure changes on the lattice.
Spatial games show that cooperation and forming common cells clusters are pos-
sible. Moreover, it is feasible, that monomorphic players are able to survive in
population games among the players with mixed phenotypes. New possibilities
of spatial evolutionary games have been presented by using the game theoretic
model of radiation induced bystander effect. The effect mechanisms could be
better understood by spatial factor, the more that some results may be matched
with biological phenomena. Unfortunately till now those results are still quali-
tative, so biological interpretation is possible if such phenomena could appear,
but not exactly on which conditions in quantitative sense. Further studies could
reveal a way to obtain a proper experiments that will allow to estimate the fit-
ness matrix parameters according to the real results. Then the possible more
biologically accurate simulation results could have also quantitative impact on
cancer evolution studies. Nevertheless the spatial evolutionary games seem to
be the next stage (introducing players allocation) in carcinogenesis phenomena
modelling, especially if we remember that various scenarios could be studied
according to different configurations. Other possible extensions could be done
not by modification of spatial algorithms and new parameterization, but by im-
provement of the payoff matrix for instance with time dependent variables or
more complex functions dependent on external parameters and even lattices. For
bystander effect studies it could be dose concentration mentioned at the very be-
ginning of this article. It could be modelled using yet another spatial layer of
the game and linked to the main lattice having at the same time impact on the
game itself. Additionally spatial games could be developed from the computing
point of view by adding new phenotypes, increasing size of the lattice or player’s
neighbourhood.
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Abstract. Eukaryotic cells are exposed continuously to the genotoxic
stresses caused by various sources, such as ionizing radiation (IR) that
generates DNA double-strand breaks (DSBs). In order to maintain ge-
nomic integrity, the DNA damage response is activated. DSBs are de-
tected by ATM protein kinase that stabilizes and activates p53 tumor
suppressor, which target genes are involved in cell cycle arrest, DNA
repair and apoptosis. We propose a preliminary mathematical model
that explains p53 regulation based on ATM-dependent detector system.
We linked the existing p53-Mdm2 pathway model with checkpoint ki-
nase 2 that inhibits p53 degradation, and MRN complex that activates
ATM upon DSBs induction. Moreover, recent works shown that the crit-
ical component of ATM-dependent signaling pathway is played by phos-
phatase Wip1 that regulates dephosphorylation events. Additionally, in
the presented model we included Wip1 transcriptionally dependent on
p53. The preliminary results of simulation analysis show that ATM path-
way is an effective system for DSBs detection with strong amplification
signal for Wip1 and p53 and quick response. Furthermore, we observed
strong dependence of the cellular response to the DNA damage on Wip1,
what leads to the conclusion that it plays a role as a gatekeeper in the
ATM-Mdm2-p53 regulatory loop.

Keywords: ATM, p53, Wip1, double strand breaks, simulation
analysis.

1 Introduction

DNA double strand breaks (DSBs) are known to be one of the most cytotoxic
lesions, caused by exposure to ionizing radiation (IR), clastogenic drugs [1], but
also formed endogenously during DNA replication or as an effect of reactive oxy-
gen species (ROS) [2]. In order to maintain genomic integrity, the DNA damage
response (DDR) is activated. DNA DSBs triggers series of events that determine
cell fate. Incorrect mechanisms of DDR may lead to pathological changes trans-
mitted to daughter cells, uncontrolled proliferation and tumor growth. During
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evolution a number of mechanisms that protect the cell from damages and from
passing them in the form of mutations to future generations was developed.

The tumor suppressor p53 (cellular tumor antigen p53) is a main component
of DDR pathway, which increased production and activation may lead to various
cellular responses to the damage: from cell cycle arrest and DNA repair processes
to cell death, like apoptosis. All of these complex mechanisms have one thing
in common. In order to maintain the proper cellular response, the precise, fast
and error-free damage detection is necessary with the proper signal transduction
inside the cell.

1.1 Double Strand Breaks Detection

The fundamental pathway responsible for the activation of the DDR upon DSBs
induction is ATM-dependent pathway. ATM (ataxia telangiectasia mutated) is
a protein kinase that exists in cell in form of inactive dimmer, which after DSBs
is phosphorylated and degraded into active monomers. The activation is de-
pendent on the detection of DNA breakages through multi-protein complex of
Mre11, Rad50 and Nbs1 (MRN complex) [3]. DNA damages induce ATM au-
tophosphorylation in the position of Ser1981, what leads to the signal amplifi-
cation [3, 4]. Activated ATM phosphorylates the component of MRN complex,
Nbs1, and H2AX histone [5], which binds to MDC1 (mediator of checkpoint
signaling protein 1) and amplificates the DDR signal through the recruitment
of the MRN complexes and ATM monomers [5]. Phosphorylated MDC1 recruits
RNF8 ligase what leads to the degradation of active H2AX and recruitment of
the 53BP1 (p53 binding protein 1), as well as tumor suppressor BRCA1 (breast
cancer type 1 susceptibility protein) [6]. These proteins are phosphorylated by
ATM and are responsible for activation of such processes as repair pathways.

ATM is involved in cell cycle arrest by phosphorylation of checkpoint kinases
1 (Chk1) and 2 (Chk2). The signal of DSB is amplified by autophosphorylation
of Chk2 [6]. Chk1 is involved in the DDR pathway through ATR kinase (ataxia
telangiectasia and Rad3 related protein) that is a detector module of single
stranded DNA (ssDNA) also called DNA single strand breaks (SSBs). The main
function of Chk2 is to stop cell cycle through the inactivation of Cdc25 phos-
phatase or activation of p53 [6, 7]. Moreover, Chk2 regulates the activity of
BRCA1 in the transcriptional level and by phosphorylation [8].

1.2 P53–Dependent Cellular Response

One of the key proteins involved in the DDR pathway is p53 transcription factor,
which regulates hundreds of genes that encode proteins responsible for DNA
repair, apoptosis or ATP synthesis [9]. P53 regulates also transcription of main
p53 inhibitor − Mdm2 (E3 ubiquitin-protein ligase, double minute 2 homolog).
Phosphorylated p53 by ATM and Chk2 kinases activates the transcription of
Mdm2 that in turn ubiquitinates and degrades p53 [10, 11]. At the same time p53
induces expression of PTEN (phosphatase and tensin homolog), which regulates
phosphorylation of Mdm2 by the control of Akt kinase activation [12]. This
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positive feedback loop allows to maintain the high level of p53 protein in stress
condition, what may lead to programmed cell death.

1.3 The Role of Wip1

An essential component in regulation of the DDR pathway is phosphatase Wip1
encoded by PPM1D gene. It functions as a deactivation agent for the key pro-
teins involved in the pathway. Its main role is to regulate the level of activated
proteins, mostly after succeed process of repair. The transcription of Wip1 gene
is induced in a p53-dependent manner, thus the level of Wip1 is much higher
in cancer cells, for example in breast cancer cell lines [13]. The most important
part of cell response to DSBs regulation by Wip1 is associated with inactivation
of ATM detector module [11, 13], cell cycle checkpoints and p53 [13]. More-
over, Wip1 dephosphorylates multi-phosphorylated inactive form of Mdm2 in
the ATM phosphorylation site [13].

2 Theoretical Models of ATM–Dependent Damage
Response

There are few mathematical models concerning ATM-dependent damage re-
sponse pathway including the effects of the damage on p53 regulatory loop [14–
18]. However, to our knowledge, most of the models are simplified. They do
not include macromolecules directly involved in the activation or inactivation
of ATM and p53, such as MRN complex and PTEN feedback loop, as well as
different compartments of such proteins as Mdm2. We found it essential dur-
ing cellular damage response and for simulation analysis of ATM-Mdm2-p53
pathway.

In recent works [15, 16], the authors use ordinary differential equations (ODE)
in order to describe the dynamics occurring in the single cell after the treatment
with IR. Both of the models, as well as the one described in [17], are reduced
and are built using molar concentration equations to describe the dynamics of
the cellular processes. Moreover, the model described in [16] focuses mainly on
G2 phase of cell cycle instead of trying to cover the whole system of cell cycle
with no dependence of the cycle phase.

In [15], the authors present the model divided into two compartments: nucleus
and cytoplasm. However, their work does not include the DDR components
responsible for detection of DSBs, such as H2AX histone or MRN complex, which
are important in the first phase of DSBs detection. Their various levels may lead
to different cellular response to the damage, such as activation of different repair
pathways. The original models based on ATM [18] treats this kinase as a direct
measure of DNA damage, without considering the oscillations of this module.

In our opinion, the molecules omitted in the above mathematical models
provide important delays to the system dynamics.



352 K. Jonak, M. Kurpas, and K. Puszyński

3 ATM–Mdm2–p53 Model Formulation

Mathematical model of ATM-Mdm2-p53 regulatory pathway (Fig. 1) is based on
the mathematical model of p53 signaling pathway described by K. Puszyński [19].
Most of the assumptions, equations and parameters are obtained from two pre-
vious work [19] and [20].

Fig. 1. Schematic of the ATM-Mdm2-p53 model including interactions with Wip1
phosphatase; dotted lines with arrow-heads are positive regulation between compo-
nents, solid lines are transitions between states of the components, deg is degradation
of the protein or transcript, and P is phosphorylated form of the protein; a in ATM
case means fully active form of this kinase; the components of p53 model are colored
in black and the components of ATM are grey
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3.1 Methods

Mathematical model is built using set of equations that allow to simulate the
behavior of cells treated with different doses of IR. The model is presented
as a set of stochastic and deterministic equations according to the Haseltine-
Rawlings postulate. Stochastic description and following Gillespie direct method
based simulation are used for slow reactions, like states of genes change, while
deterministic description based on ODE and following Runge-Kutta fourth order
simulation method are used for description of quick reactions, like activation or
degradation of the proteins.

3.2 Basic Assumptions of the Model

The interactions between components included in the model can be described
shortly. Transcription processes of PTEN, Mdm2 and Wip1 are regulated by p53
transcription factor. The positive feedback loop is between p53 and PTEN. The
negative feedback is between Mdm2 and p53, as well as p53 and Wip1. Wip1
dephosphorylates multi-phosphorylated Mdm2, what leads to the activation of
Mdm2 and increased degradation of p53. The important role in the model is also
played by Chk2, which activates p53 and increases degradation rate of Mdm2.
Moreover, PTEN hydrolyzes PIP3 to its inactive form PIP2. Akt is activated by
PIP3, thus by its inactivation PTEN acts as Akt inhibitor.

The proteins involved on the pathway are presented mainly in two main states:
active (phosphorylated) and inactive (without phosphorylation). ATM is a pro-
tein which can be described in another additional state, as fully active (phos-
phorylation with high level of attachment to the DNA damaged site). Moreover,
most of the proteins considered in the model contain their transcriptional forms
(messanger RNA, mRNA): PTEN, Mdm2, p53 and Wip1. Here, the degradation
rate of the proteins and mRNAs is taken into account. For these components
without the production state (PIP, Akt, TM, Chk2, MRN complex) the degra-
dation process is omitted. It is assumed that the production rate for that type
of components is equal to degradation rate.

In the model, two Mdm family members, Mdm2 and MdmX, are described as
Mdm2 what simplifies model description.

The model includes the compartments of Mdm2: cellular and nuclear.
The model has an assumption that each gene has two copies (allele) and among

them one can be in an active state, both, or none (gene not transcribed). The
transcription and translation rates of p53, PTEN and Mdm2 are set according to
the information from [20], while the transcription rate of Wip1 is set to 0.05/s.

Activation of the model takes place by the application of IR in different doses.
The activation process of the whole system is based on the activation of p53-
NF-κB mathematical model described in [20] without considering the effect of
TNFα (tumor necrosis factor alpha).

The output of the model is p53 level that determinates cell fate: apoptosis or
survival. In this model cell death is recognized as a permanently increase p53
level, then the cell is considered as an apoptotic and its elements are degraded.
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This cell is no longer able to proliferate and to transmit the damages and muta-
tions to next generations. When the level of p53 is lower and oscillations occur
it is assumed that the cell survives with ability to proliferate.

3.3 Model Equations

The equations and parameters for PTEN protein and mRNA form, PIP and Akt,
as well as p53 and Mdm2 mRNA forms were obtained from [19]. We used the
number of substrates instead of molar concentrations assuming that the ratio of
the cytoplasm to nucleus is equal to 5 [19]. The values of the parameters that
were not obtained from [19] and [20] were estimated to receive the typical behav-
ior of the mammalian cell after the treatment with IR known from the literature.

Variables in the ATM-Mdm2-p53 model

– AKTp − active form of cytoplasmic
Akt

– ATMp − phosphorylated form of
nuclear ATM monomers

– ATMa − fully active form of nu-
clear ATM monomers

– CHK2p − phosphorylated active
form of nuclear Chk2

– MDMt − Mdm2 transcript
– MDM − inactive form of cytoplas-

mic Mdm2
– MDMp − phosphorylated active

form of cytoplasmic Mdm2
– MDMnp − phosphorylated active

form of nuclear Mdm2
– MDMn − multi-phosphorylated in-

active form of nuclear Mdm2
– MRNp − active form of nuclear

MRN complex with phosphory-
lated Nbs1 by ATM

– P53t − p53 transcript
– P53 − inactive form of nuclear p53

dimers
– P53p − phosphorylated active form

of nuclear p53
– PTENt − PTEN transcript
– PTEN − cytoplasmic PTEN
– PIP3 − active form of cytoplasmic

PIP
– WIP1t − Wip1 transcript
– WIP1 − nuclear Wip1
– DSB − number of DSBs in one cell
– AF − number of apoptotic factors

in one cell
– GPTEN − state of PTEN gene
– GMDM2 − state of Mdm2 gene
– GP53 − state of P53 gene
– GWIP1 − state of Wip1 gene

Equations

– MDM2:
Cytoplasmic inactive Mdm2, MDM : The first term describes Mdm2 synthe-
sis and inactivation of Mdm2 phosphorylated form, while the second term
describes Mdm2 activation forced by Akt and degradation (spontaneous and
forced by Chk2 kinase)

d

dt
MDM(t) = t0MDMt(t) + c2MDMp(t)− a4AKTp(t)MDM(t)

−(d0 + d1
CHK2p(t)

CHK2p(t) +mm4
)MDM(t). (1)
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Cytoplasmic active Mdm2, MDMp: The first term describes Mdm2 activation
and the second inactivation of Mdm2, import from cytoplasm to nucleus and
degradation of this active form

d

dt
MDMp(t) = a4AKTp(t)MDM(t)− c2MDMp(t)− i0MDMp(t)

−(d0 + d1
CHK2p(t)

CHK2p(t) +mm4
)MDMp(t). (2)

Nuclear active Mdm2, MDMnp: The first term describes Mdm2 import from
the cytoplasm to nucleus and dephosphorylation forced by Wip1, while
the second term describes the degradation and phosphorylation of mono-
phosphorylated Mdm2 forced by ATM

d

dt
MDMnp(t) = i0MDMp(t) + c3WIP1(t)MDMnp

−a1
ATMa(t)

ATMa(t) +m3
MDMn(t)− (d0 + d1

CHK2p(t)

CHK2p(t) +mm4
)MDMnp(t). (3)

Nuclear inactive Mdm2, MDMn: The first term describes the multi-phos-
phorylated Mdm2 inactivation by following phosphorylation and the second
term describes activation and degradation of mono-phosphorylated form

d

dt
MDMn(t) = a1

ATMa(t)

ATMa(t) +m3
MDMn − c3WIP1(t)MDMnp

−(d0 + d1
CHK2p(t)

CHK2p(t) +mm4
)MDMn(t). (4)

– P53:
Nuclear inactive p53, P53 : The first term describes p53 synthesis and its
inactivation, while the second term describes p53 activation forced by Chk2
or ATM, and degradation (spontaneous and forced by Mdm2)

d

dt
P53(t) = t2P53t(t) + (c4 + c5

WIP1(t)

WIP1(t) +m2
)P53p(t)

−ma4(ATMa(t) + CHK2p(t))P53(t)− (d3 + d4MDM2
np(t))P53(t). (5)

Nuclear active p53, P53p: The first term describes p53 activation and the
second inactivation and degradation of the protein

d

dt
P53p(t) = ma4(ATMa(t) + CHK2p(t))P53(t)

−(c4 + c5
WIP1(t)

WIP1(t) +m2
)P53p(t)− (d3 + d4MDM2

np(t))P53p(t). (6)
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– ATM:
Nuclear phosphorylated form of ATM, ATMp: The first term describes ATM
phosphorylation by DSBs induction and inactivation of fully active form
forced by Wip1, while the second term describes activation of ATM in fully
active state by MRN complex and inactivation of phosphorylated form of
ATM in not fully active state

d

dt
ATMp(t) = (ma0

DSB(t)

DSB(t) +mm0
)(ATMtot(t)− ATMp(t)− ATMa(t))

2

+(mc0 +mc2
WIP1(t)

WIP1(t) +mm2
)ATMa(t)−ma1MRNp(t)ATMp(t)

−(mc0
WIP1(t)

WIP1(t) +mm2
)ATMp(t). (7)

Nuclear fully active form of ATM, ATMa: The first term describes activation
of fully active state of ATM by MRN complex and the second inactivation

d

dt
ATMa(t) = ma1MRNp(t)ATMp(t)

−(mc0 +mc2
WIP1(t)

WIP1(t) +mm2
)ATMa(t). (8)

– WIP1:
Nuclear Wip1, WIP1 : The first term describes Wip1 synthesis and the sec-
ond its degradation

d

dt
WIP1(t) = mt0WIP1t(t)−md1WIP1(t). (9)

Wip1 transcript, WIP1t: The first term describes Wip1 transcription (state
of gene) and the second Wip1 mRNA degradation

d

dt
WIP1t(t) = ms0GWIP1(t)−md0WIP1t(t). (10)

– CHK2:
Nuclear active form of Chk2, CHK2p: The first term describes Chk2 activa-
tion by ATM and the second described spontaneous inactivation

d

dt
CHK2p(t) = (ma3

ATMa(t)

ATMa(t) +mm3
)(CHK2tot(t)−CHK2p(t))

−mc3CHK2p(t). (11)
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– MRN complex:
Nuclear active form of MRN complex, MRNp: The first term describes ac-
tivation of MRN complex by phosphorylated form of ATM and the second
describes spontaneous inactivation of MRN complex

d

dt
MDMp(t) = (ma2

ATMp(t)

ATMp(t) +mm1
)(MRNtot(t)−MRNp(t))

−mc2MRNp(t). (12)

Table 1. Parameters of the model equations described in 3.3 Model equations

Parameter Value Parameter Value Parameter Value

a1 1x10−3/s mc1 1x10−3/s mm0 60
a4 7.5x10−9/s mc2 1x10−2/s mm1 5000
ma0 1x10−8/s mc3 1x10−3/s mm2 26
ma1 3x10−6/s d0 4.37x10−5/s mm3 4000
ma2 1x10−4/s d1 2.4x10−4/s mm4 17623
ma3 5x10−4/s d3 1x10−4/s ms0 0.05/s
ma4 3.8x10−6/s d4 1x10−13/s t0 0.5/s
c2 1x10−4/s md0 6.5x10−5/s t2 0.5/s
c3 2.5x10−9/s md1 3.9x10−5/s mt0 0.6/s
c4 2.5x10−9/s i0 5x10−4/s ATMtot 100000
c5 2.5x10−9/s m2 25 CHK2tot 100000
mc0 1x10−2/s m3 4000 MRNtot 100000
DSBInduction 40/Gy DSBRepairSaturation 50

4 Results of Simulation Analysis

Deterministic simulation for the single cell was performed. The applied doses
after 24 hours of simulation were 2 Gy and 5 Gy. Cells were observed for next
48 hours. The preliminary results presented here are number of phosphorylated
p53 molecules in nucleus (P53p), number of active Mdm2 in nucleus (MDMnp),
number of active PIP (PIP3 ) and active Akt (Aktp) in cytoplasm, and number
of Wip1 in nucleus (Wip1 ).

4.1 High Production of Wip1

The simulation was performed for cells irradiated with 2 Gy and 5 Gy. The
production of Wip1 was high. The level of active p53, which depends on number
of Wip1 molecules, reaches about 3x105 molecules for irradiation with 2 Gy
(Fig. 2A), and about 4x105 molecules for irradiation with 5 Gy (Figure 2B).
These are expected results, due to the fact that p53 is stimulated by DSBs
through ATM and Chk2 systems.

The oscillations of Mdm2 and p53 appear after 24 hours when the appropriate
dose of IR is added. These oscillations are the result of the action of the repair
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Fig. 2. The level of active Mdm2 in nucleus (black) and active p53 in nucleus (grey);
A: High level of Wip1 and IR dose of 2 Gy; B: High level of Wip1 and IR dose of 5
Gy; C: Blocked production of Wip1 and IR dose of 2 Gy; D: Blocked production of
Wip1 and IR dose of 5 Gy

processes and interactions with other molecules included in ATM-Mdm2-p53
model. If there are more oscillations of active p53 in a lower level, the cell has
more chance to survive. For higher IR dose the oscillations are extinguishing
faster, however with the presence of highly active Wip1 the level of p53 does not
reach the apoptotic phase.

By comparing the levels of Wip1 in the cell after irradiation with 2 Gy and 5
Gy (Figure 4A and 4B, respectively), the increase of Wip1 level is observed. For
lower dose there are no oscillations when Wip1 reaches the highest level (about
12x106 molecules). If the IR dose is higher, the level of Wip1 is similar, however,
this high state is reached faster.

4.2 Blocked Production of Wip1

For the blocked production of Wip1 the oscillations of p53 and Mdm2 are ex-
tinguishing faster. The cell is driven to the apoptotic pathway when irradiated
with higher dose (here 5 Gy, Figure 2D). P53 just after irradiation reaches 4x105
molecules, which is more than in case of irradiation with high production of
Wip1. For lower dose (Figure 2C), p53 reaches the level of Mdm2 50 hours after
set up the experiment. The maximum level of p53 reaches about 5x105 molecules,
which is more than in case of active Wip1.
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Fig. 3. The level of Mdm2, p53, PIP and Akt for the cell with high production of
Wip1; A: Active Mdm2 (black) and p53 (grey) in nucleus with blocked production
(mRNA) of PTEN; B: Active Mdm2 (black) and p53 (grey) in nucleus with blocked
activation of Chk2 protein; C: Active PIP (black) and Akt (grey) in cytoplasm with
blocked production (mRNA) of PTEN

4.3 Blocked Production of PTEN

With high production of Wip1 and blocked production of PTEN the simulation
was performed. The cell was irradiated after 24 hours of experiment with dose
of 5 Gy. It was observed that both Mdm2 and p53 cannot stabilize when PTEN
is not included in the model (Figure 3A). The maximum level of p53 reaches no
more than 3x105 molecules that is much lower than comparing to the level of
p53 with active PTEN. These results indicate how essential for the prediction of
cell behavior is this positive feedback loop. Moreover, with blocked production
of PTEN the level of active PIP and Akt are stabilizing (Figure 3C).

The level of Wip1 is lower when the production of PTEN is blocked. In Fig-
ure 4C, the oscillations are observed when Wip1 reaches the maximum level. The
oscillations are stabilizing. That is an effect of the lower activation of Mdm2,
what results in higher activation of p53 and then higher production of Wip1.

4.4 Blocked Activation of Chk2

The simulation analysis was performed for the cells with high production of
Wip1 and blocked Chk2 activation (Figure 3B). With blocked Chk2 the response
to the damage is weaker, what results in higher level of Mdm2 (Chk2 increases
degradation rate of Mdm2). The oscillations have very low amplitude. The results
indicate that Chk2 in an active form is essential in the DDR pathway.
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For blocked activation of Chk2 the level of Wip1 reaches maximum level of
2.3x106 molecules (Figure 4D). This level is much lower than with blocked pro-
duction of PTEN. Chk2 interacts directly with p53, therefore, the signal about
inactivation of Chk2 is sending faster to Wip1 than the signal about inactivation
of PTEN. Thus, Wip1 cannot reach the higher level and the amplitude of the
oscillations is decreasing.

Fig. 4. The level Wip1 for the cell with high production of Wip1; A: IR dose of 2 Gy;
B: IR dose of 5 Gy; C: IR dose of 5 Gy and blocked production of PTEN; D: IR dose
of 5 Gy and blocked activation of Chk2

5 Conclusion and Future Work

Simulation analysis of the preliminary ATM-Mdm2-p53 model show the typical
behavior of the mammalian cells after exposure to IR, known from the literature,
what leads to the conclusion that the further work on this pathway is promising.

With the higher dosage of IR more DSBs occur in DNA strands, what leads
to the higher activation of ATM pathway and p53. High level of p53 results in
activation of repair pathways, cell cycle arrest, activation of some of the genes,
such as PPM1D, or apoptosis. The absence of the components of ATM and p53
pathways, as well as Wip1, are very noticeable. With the highly active Wip1 it is
possible for cell to survive. However, using this model we cannot predict if the cell
will survive with repaired DNA damages or if the mutations caused by damages
will be passed to the future generations. Thus, for some of the experiments the
apoptotic way is more preferred.

The future work will be based mainly on the expanding the ATM module
to the interactions between ATM and Chk2 genes. Moreover, the experiments
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will be performed in order to investigate the parameters of the model, such as
degradation rates or transcription rates. The ATM-Mdm2-p53 model will be
connected to existing NF-κB pathway model described in [20], and ATR detec-
tion module. All the data obtained will be analyzed in terms of, e.g. apoptotic
fraction of cells, and verified with biological experiments. The simulations will
be performed also in a stochastic way for at least 1000 cells. The future ATM-
p53-NF-κB model will be used in studies of cells behavior without the need for
costly and time-consuming biological experiments.
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Abstract. There are many applications in pharmacokinetic described
and modelled by linear or non-linear differential equation systems. These
non-linarities can be considered in pharmacokinetic model parameters
and the pharmacokinetics of drug action. The Euler’s- and Taylor’s
expansion methods are applied for numerical solution pharmacokinetic
equations. A fictitious exciting functions method makes possible numer-
ical solution of this DE system with non-stationary matrices. The solu-
tions of warfarin target-mediated drug disposition are presented
as well.

Keywords: non-linear pharmacokinetic models, non-linear equations,
Euler’s and Taylor’s expansion method.

1 Introduction

Models of many biological systems are often described by system of ordinary dif-
ferential equations — ODEs. By the nature of these systems the equations are
usually non-linear. Unfortunately, only a few non-linear systems can be solved
explicitly. Therefore, the solving should be taken on a numerical scheme to ap-
proximate the solution as accurately as possible.

A fictitious exciting functions method makes possible numerical solution of
differ-ential equation system with non-stationary matrices. The paper deals with
Euler’s- and Taylor’s expansion methods applied for numerical solution of phar-
macokinetic — pharmacodynamic of warfarin using Matlab.

A system of differential equations — DEs

dx1

dt − a11x1 − a12x2 = −b11u1
dx2

dt − a21x1 − a22x2 = −b22u2
(1)

can be written in matrix state-space form as follows

d
dt

(
x1

x2

)
=

(
a11 a12
a21 a22

)(
x1

x2

)
+

(
b11 b12
b21 b22

)(
u1

u2

)
→ dx

dt
= Ax̄+ Bū (2)
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where A, B are the system and transition matrices; x̄, ū are state-variables and
exciting vectors. If a11 and a12 elements of A matrix are non-stationary and b12,
b21, b22 and u2 = 0 the formula (2) takes form

d
dt

(
x1

x2

)
=

(
0 0
a21 a22

)(
x1

x2

)
+

(
b11 1 1
0 0 0

)⎛
⎝ u1

a11x1

a12x2

⎞
⎠→ dx

dt
= Afx+Bfuf (3)

where Af , Bf are the modified (fictitious) system and transition matrices; uf is
fictitious exciting vector, and a11x1, a12x2 are fictitious exciting functions.

Using Euler explicit method can the previous system be written

xn+1 = (E+ hAf )xn + hBfufn,

where h is integration step and E is unity matrix. This method is sensitive on
integration step h.

The Euler implicit method yields

xn+1 = (E− hAf )
−1 [xn + hBfufn] ,

where F = (E − hAf )
−1 is fundamental matrix of the system. This method is

for negative real part of eigenvalues absolutely stable (A-stabile) for any positive
step h.

And by applying Taylor’s expansion methods for numerical solution are

F = exp (hA) =

∞∑
n=0

hnAn

n!
,

and similarly

G = h
∞∑

n=0

hnAn

(n+ 1)!
.

Choosing appropriated number of series member gives

xn+1 = Fxn +Gufn.

All discrete equations carried-out by Euler explicit-, implicit- and Taylor ex-
pansion methods are easily solvable by numerical computing because their mod-
ified (fictitious) matrices are stationary ones [3, 11].

2 Pharmacokinetics of Warfarin

Coagulation as an important part of hemostasis, provides a complex process in
which blood forms clots, prevents bleeding and begins repair of the damaged part
on a blood vessel walls. Wide group of diseases and clinical conditions can result
in disor-ders of coagulation which lead to an increased risk of bleeding (hem-
orrhage) or ob-structive clotting (thrombosis). Those leading into thrombosis



Euler’s and Taylor’s Expansion Method 365

require a treatment with anticoagulants. The occurrence of thrombophilic states
can be caused by many factors as chronic lung disease, endoprosthesis, prolonged
immobility or paralysis, prior venous thromboembolism, cancer, surgery (lower
extremities, pelvis or gynecological surgery), varicose veins, congestive heart fail-
ure, estrogen use, obesity and plenty others. Warfarin belongs to most widely
used coumadin anticoagulants applied in case of thromboembolism risk factors,
especially in treatment of atrial fibrillation, hearth valve prosthesis, deep vein
thrombosis or pulmonary embolism. However, usage of warfarin can be poten-
tially harmful due to very narrow therapeutic range and very individual range
of sensitivity to dose. Inappropriate dosage for more sensitive patients can cause
hemorrhagic complication and lead to serious life threating bleeding. In case of
lower than therapeutic concentration is the patient endangered by occurrence
of thrombophilic state. Also age, gender, co-administration with medication and
dietary interaction from food containing vitamin K causes difficulties in proper
dose assessment. Vitamin K takes an opposite action to warfarin in process of
forming coagulation factors [12].

Fig. 1. Warfarin in vitamin K cycle — effect on forming of clothing factors; [12] war-
farin is usually administered as racemic mixture of two enantiomers R and S warfarin;
R-warfarin is metabolized by cytochromes CYP1A1, 2 and CYP3A4, S warfarin is me-
tabolized by CYP2C9; vitamin K epoxide reductase (VKOR) is inhibited by warfarin,
it is the target of warfarin; by inhibition of VKOR enzymatic activity warfarin prevents
the forming of functional clotting factors by means of γ-glutamyl carboxylase (GGCX)
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The anticoagulation effect of warfarin is based on its suppression of synthesis
of the vitamin K-dependent coagulation factors II, VII, IX and X. It acts trough
the interference with vitamin K cycle in the liver, which leads to secretion of
inactive clotting factors and reduction of the coagulation factors synthesis in 30
to 50 with decreasing of its biological activity. Because of the life time of clothing
factors a full effect can be observed within few days (2 to 7), during which are
the coagulation factors gradually eliminated from the circulation [12].

Since lot of commonly used medications and foods interacts with warfarin,
in order to keep the anticoagulation effect of warfarin as stable as possible in
the therapeutic range, the activity of warfarin has to be monitored by blood
testing. Warfarin is usually administered by oral and is completely absorbed.
After, almost all (99%) absorbed warfarin is bounded to plasma proteins (mainly
albumin) and remaining 1% of free warfarin is biologically active in liver where
it inhibits vitamin K epoxide reductase (VKOR). VKOR is a key enzyme system
for regeneration of reduced vitamin K. The shortage of reduced vitamin K in
cycle leads to inhibition in forming of functional clotting factors by means of
γ-glutamyl carboxylase (GGCX).

3 Pharmacokinetic Model

The study of drug disposition in the body focuses on the changes in drug plasma
concentration. The plasma concentration of any drug after its administration
changes over time, depending on the rates of three processes: absorption, distri-
bution, and elimination.

– Absorption of a drug refers to rate of transport into blood plasma from other
tissues; usually strongly depends on the way of administration and physical
characteristic of the drug.

– Distribution of a drug represents the process of a drug transport from the
bloodstream into the target organs and tissues.

– Elimination of a drug from the blood proceeds in two ways: as biotrans-
formation of a drug to its metabolites in tissues (primarily metabolism in
the liver); and as the excretion of the drug or its metabolites (in the kid-
neys).

Physiologically based pharmacokinetic models describe drug disposition, char-
acterize the time behavior of drug concentrations in plasma (blood) and also in
important organs and tissues, usually on a compartment basis. Such model can
provide information about the role of various physiologic perturbations on these
concentrations [11].

Target-mediated drug disposition (TMDD) represents an assumption that a
significant proportion of the drug (relative to dose) is bound with high affinity
to a receptor, enzyme, or transporter [8] and the pharmacokinetic model of drug
disposition in TMDD is shown on Fig. 2.

Central compartment represents free drug by concentration Cp in distribu-
tion volume Vc. The input rate (In (t)) to the free drug compartment Cp can
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Fig. 2. Pharmacokinetic model of TMDD according to [1]; Free drug is represented by
its concentration (Cp); drug binds to free receptors (R) with the rate (kon) and forms
a drug-receptor complex (DR); free drug could be distributed also to a nonspecific
tissue-binding site (AT ); the dose is represented by input rate In (t) to the free drug
compartment; free drug Cp, free receptor R, and drug receptor complex DR are in
μgl−1 concentrations, AT in moles

be realized by IV bolus, zero-order infusion, first-order absorption with rate of
absorption (ka), etc. The drug within first compartment binds with rate kon to
free receptors and forms a drugreceptor complex DR with total binding capacity
Rmax. Amount of free receptors available for binding represents R. Created DR
leaves the compartment in two ways; it can dissociate (rate constant koff or
internalize (rate constant kint). Unbound drug can be eliminated directly from
plasma with rate constant kel or pass to non-specific tissue binding (AT , kpt,
ktp). Such model can be described by following system of differential equations

dAd

dt
= −kaAd (4)

dCp

dt
=

ka
Vc

Ad +
In(t)

Vc
− (kel + kpt)Cp − konRCp + koffDR+ ktp

AT

Vc
(5)

dAT

dt
= kptCpVc − ktpAT (6)

dDR

dt
= konR Cp − (koff + kint)DR (7)

dR
dt

= ksyn − kdegR− konR Cp − koffDR (8)

where ksyn is production constant and kdeg degradation rate of free receptor.
Tissue compartment and internalization kint are in this type of model optional
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and nonspecific tissue binding was not included in model. Because the system is
assumed to be stationary, the production rate is defined as

ksyn = kdegR(0)

where R(0) is initial condition of free receptors, the receptor density in absence
of drug.

Parameters used in model for racemic warfarin adopted from literature [8, 9]
are listed in Table 1.

Value t1/2 represents biological half-life of warfarin which varies in different
sources. We use value 35 hours.

Applying the above mentioned methods and by modification of the pharma-
cokinetic model equations (4) to (8) to the form of formula (3) we obtain system

d
dt

⎛
⎜⎜⎝

Ad

Cp

DR
R

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−ka 0 0 0
ka

Vc
−kel koff 0

0 0 −(koff + kint) 0
0 0 −koff −kdeg

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Ad

Cp

DR
R

⎞
⎟⎟⎠+ (9)

+

⎛
⎜⎜⎝
0 0 0
1 −kon 0
0 kon 0
0 −kon 1

⎞
⎟⎟⎠
⎛
⎝

In(t)
Vc

R Cp

ksyn

⎞
⎠

Initial conditions used in model are for oral administered dose

– Ad(0) = Dose

– Cp(0) = 0

– DR(0) = 0

– DR(0) = Rmax

Table 1. Parameters used in model for racemic warfarin adopted from literature [8, 9]

Parameter Value Unit

ka 1.19 hr−1
kon 0.126 μM−1hr−1

koff 0.0405 μM−1hr−1

kdeg 1 μM−1hr−1

kint 0.1 hr−1

Rmax 0.167 μmoleskg−1

kel ln(2)/t1/2 = ln(2)/35 hr−1
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4 Results

Warfarin belongs to drugs with TMDD which produces complex nonlinear phar-
macokinetic profiles. We present a simulation approach based on the application
of Euler’s explicit, implicit and Taylor’s expansion method for calculation of
drug, free receptor and drug-receptor complex concentration in time.

Model and simulation is performed in Matlab environment. Results of simu-
lation for single dose in 24 hours and all Euler and Taylor methods are shown
on Fig. 3, 4 and 5. Dose amount in μg used in simulations is D1=500, D2=1000,
D3=1500.

All the used expansion methods are showing good agreement in results of the
model.

Fig. 3, 4 and 5 show (a) concentrations of free drug Cp in central compartment,
(b) concentration of free receptors R and (c) concentration of drug-receptor
complex DR in time 24 hours after single dose oral administration.

(a) (b)

(c)

Fig. 3. Concentration of (a) free drug Cp, (b) free receptor R, (c) bounded drug-
receptor complex DR for dose D1
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(a) (b)

(c)

Fig. 4. Concentration of (a) free drug Cp, (b) free receptor R, (c) bounded drug-
receptor complex DR for dose D2
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(a) (b)

(c)

Fig. 5. Concentration of (a) free drug Cp, (b) free receptor R, (c) bounded drug-
receptor complex DR for dose D3

5 Conclusion

Pharmacokinetics model was performed for simulation of single dose warfarin
oral administration using Taylor’s expansion method. The calculated plasma
drug concentration free receptor and receptor-drug complex were shown. Sim-
ulations were per-formed for three values of dose. It is necessary to note that
results of simulations have strictly theoretical character and were not compared
with any clinic data. The solutions of modelling of warfarin concentrations were
presented with using Euler’s explicit, implicit and Taylor’s expansion method
for next numerical solution.
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Abstract. Classification of prokaryotes is mainly based on molecular
data, since next-generation sequencing platforms provide fast and effec-
tive way to capture prokaryotes’ characteristics. However, two different
bacterial strains of the same genus can differ in the specific parts of their
genomes due to copious amounts of repetitive and transposable parts.
Thus, finding an ideal segment of genome for comparison is difficult.
Conventional character-based methods rely on multiple sequence align-
ment, rendering them extremely computationally demanding. Only small
parts of genomes can be compared in reasonable time. In this paper, we
present a novel algorithm based on the conversion of the whole genome
sequences to cumulative phase signals. Dyadic wavelet transform (DWT)
is used for lossy compression of phase signals by eliminating redundant
frequency bands. Signal classification is then performed as cluster anal-
ysis using Euclidean metrics where sequence alignment is replaced by
dynamic time warping (DTW).

Keywords: prokaryotes, genomic signal, cumulated phase, compression,
classification, dwt, dtw.

1 Introduction

The classification of organisms is one of the fundamental questions in biology. It
is based mainly on molecular characters since DNA is the carrier of heredity [1].
However, new sequencing techniques allow cheap assembly of the entire genomes,
particularly prokaryotic genomes formed by single circular chromosomes, since
the classical methods of comparison are still unable to process whole chromo-
somes. This is caused by multiple sequence alignment that is computationally
too demanding, even impossible for sequences of length of several Mbp. Only
small parts of chromosomes, e.g. single genes, can be processed. Unfortunately,
various genes are evolving at different rates, which may not reflect the evolution-
ary development rate of the whole organism. On the other hand, the conversion
from character sequence to numeric signal brings the possibility of using digital
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signal processing techniques for lossy compression. Despite lossy compression, we
are able to preserve reasonable amounts of information and significantly reduce
the computational demands, so that whole genomes can be compared in a very
short time. Several digital signal processing techniques can be used for compres-
sion. Here, we present an approach using dyadic wavelet transform (DWT) [2]
for its speed and effectiveness.

Other disadvantage of sequence alignment is the necessity of using scoring ma-
trices. Comparison of several sequences based on various scoring matrices leads
to a number of different results. This is caused by presumptions concerning the
specific speed of evolution of an organism, which is unknown. Multiple sequence
alignment can be replaced by dynamic time warping (DTW). It is an algorithm
of dynamic programming used for signal alignment. Unlike the multiple sequence
alignment, DTW is not dependent on substitution matrix and works with in-
dividual nucleotides changes. The previous utilization of DTW in DNA signals
alignment can be found in [3].

2 Materials and Methods

A set of several bacterial whole genome sequences was used for comparing
our approach with the classical character processing method performed on 16S
rRNA, which are the most commonly used short barcode sequences for prokary-
otes’ identification [4]. Later study shows that using only short sequences can
brings many imprecisions [5]. Sequences were obtained from GenBank database
at NCBI (http://www.ncbi.nlm.nih.gov/genbank/). The characterization of
sequences used for analysis is summarized in Table 1.

2.1 Sequence Conversion

A number of techniques for for converting DNA sequences to genomic signals
have been published [6], though not all of them can be used for whole genome
classification. The preservation of all biological properties is the essential condi-
tion during conversion. Thus, we chose cumulated phase signal representation [7].
In this representation each of the nucleotides A, C, G, T occurring in the DNA is
reflected in the complex plane in manner such that appropriate complex numbers
maintain information on the nucleotides’ chemical similarities, see Figure 1(a).
Every character along a sequence is replaced by its complex number during
transformation: A [1,j]; C [-1,-j]; G [-1,j];T [1,-j].

By the definition, the complex number phase have values (-π,+π〉. Using
trigonometric functions, we can easily calculate the phase of our four numbers:

{ϕA, ϕC , ϕG, ϕT } =

{
π

4
,−3π

4
,
3π

4
,−π

4

}
. (1)

http://www.ncbi.nlm.nih.gov/genbank/
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Table 1. The specifications of sequences from seven organisms

Organism Chr accession Chr length (bp) 16S length (bp)
Escherichia coli str. K-12 NC_000913.2 4639675 1403
Lactobacillus casei NC_008526.1 2895264 1568
Lactobacillus crispatus NC_014106.1 2043161 1552
Lactobacillus gasseri NC_008530.1 1894360 1579
Salmonella bongori NC_015761.1 4460105 1542
Salmonella enterica CT18 NC_003198.1 4809037 1542
Salmonella enterica LT12 NC_003197.1 4857432 1542
Thermococcus ga. EJ3 NC_012804.1 2045438 1539
Thermococcus sp. 4557 NC_015865.1 2011320 1496
Pyroccocus fu. COM1 CP_003685.1 1909827 1519
Bibersteinia trehalosi NC_020515.1 2407846 1528
Proteus mirabilis HI4320 NC_010554.1 4063606 1542
Bordetella per. Tohama I NC_002929.2 4086189 1992
Acidovorax ebreus TPSY NC_011992.1 3796573 1971
Thauera sp. MZ1T NC_011662.2 4496212 1985

The actual signal is gained using cumulating phase numbers (1) of appropriate
nucleotides along the sequence or it can be computed directly from character
sequence by:

θcum =
π

4
[3 (nG − nC) + (nA − nT )], (2)

where nX is number of nucleotide X in the sequence, from the first to the current
location.

The representation of the DNA sequence by cumulated phase keeps the po-
sitional information, which enables the mutual comparison of two sequences.
Also it maintains the chemical and structural information about the original
sequence [7, 8]. The main reason for choosing cumulated phase signals is their
large scale feature [9]. The shape of prokaryotic whole genome cumulated phase
signal is typical for each organism. Moreover, signals of related organisms are
more alike than the signals of evolutionary farther ones. Although in a negligible
number of cases, two different strains of genomes of the same genus can be more
dissimilar due to horizontal transfer of genetic information, which is common in
prokaryotes [10]. The downsampled cumulated phase signals of seven organisms
are shown in Figure 1(b).

The shape of a signal is mainly formed by the ratio of purines and pyrimidines,
especially by those with strong bonds. Almost linear purines-rich subsequences
alternating linear pyrimidines-rich subsequences along the DNA are evident.
Signals usually end with the phase close to zero because of the second Chargaff’s
rule [11]. Due to these features, signals are suitable for massive downsampling.
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Fig. 1. (a) Complex representation of nucleotides, (b) Downsampled cumulated phase
of DNA sequences of seven different organisms

2.2 Analysis of Signals

Genomic signals are discrete signals with progression along the DNA sequence;
thus, they can be processed using any discrete transformation [12]:

〈f(n), ψ(n)〉 =
+∞∑
−∞

f(n)ψ(n), (3)

where f(n) represents sequence of signal samples and ψ(n) belongs to the basis
functions that determine the type of transformation.

Unlike other biological signals e.g. ECG, where sampling rate fs is given
by resolution of the sensing device, the sampling frequency of genomic signal
is equal to the length of the DNA sequence. This makes it many times higher
than fs of other biological signals and massive downsampling is needed. Spectral
analysis provided by discrete Fourier transform (DFT ) can show possibilities of
downsampling. To be able to perform DFT , the signal has to be periodic. The
cumulated phase is defined at interval 〈1, N〉, where N is number of nucleotides
in the sequence, which could be taken as one period of signal on (−∞,+∞).
Consequently, the frequency axis can be divided into N equal units Ω = 2π/NT
and DFT can assign to signal f(n) new coefficients of discrete spectrum series
F (k) in the frequency domain, having the same length:

DFT {f(n)} = F (k) =
N∑

n=1

f(n) e−jkΩnT . (4)

The spectrum of Escherichia Coli in the Figure 2 had to be zoomed in due to
the fact that the peripheral spectral lines are more than 1010 high making other
lines unable to be observed. In the zoomed spectrum, only up to 105 other lines
can be observed. These higher frequency components show changes to adjacent
nucleotides and form only a noisy background of the genome. This information
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Fig. 2. Limited Fourier spectrum for E. Coli

is redundant, for comparison useless because these components are very sim-
ilar to all genomes. On the contrary, low frequencies carry information about
large scale features of signal, e.g. upward parts of signals formed by purines-rich
subsequences or downward parts made of pyrimidines-rich subsequences. These
components are species-specific. Thus, we are able to reduce a significant part of
the spectrum by removing higher frequency components without compromising
large scale information. Removing part of the spectrum allows us to downsample
the signal, avoiding aliasing. Theoretically, simple lowpass filter could preprocess
the signal for downsampling. Very long impulse response of the filter would be
needed since the signal sampling frequency is equal to its length.

2.3 Signal Downsampling

We avoided the necessity of very long filter impulse response by using another
transformation for discrete signals - discrete time wavelet transform (DTWT ).
For our purpose, the special case of wavelet transform - dyadic DTWT , was
employed. This technique is characterized by utilizing parameters that are power
of two. Using the relation between correlation and convolution, we can define
dyadic wavelet transform for genomic signal as discrete convolution:

ym(n) =

+∞∑
i=−∞

x(i)hm(2mn− i) =

+∞∑
i=−∞

hm(i)x(2mn− i), (5)

as a signal decomposition by bank of discrete octave filters with impulse re-
sponses hm(n). Then the sampling frequency of signal ym(n) on output of mth

filter is 2m times lower than the sampling rate fs of the input signal x(n).
There are two parameters that we had to set, the shape of the wavelet and

the extent of the degree of decomposition. To reduce the organism comparison
analysis time, we tested several simple wavelets. The best results were obtained
using the basic Haar wavelet [13]. The shape of this wavelet is rectangular, thus
computation of the transform is extremely fast. We found more complex wavelets
as unsuitable because they can change the shape of the signal inappropriately
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and the computation is more demanding. The Haar wavelet stands for two simple
filters with impulse responses:

hh(n) = {−0.7071; 0.7071} (6)
hd(n) = {0.7071; 0.7071}. (7)

To determine the maximum possible downsampling factor, we used percentage
root-mean-square difference (PRD) between the original signal and the down-
sampled signal by dyadic wavelet decomposition, that was resampled to the
initial sampling rate:

PRD =

√∑n
i=1(x0(i)− xr(i))2∑n
i=1(x0(i)− x̄0)2

· 100%, (8)

where x0 stands for original signal and xr for resampled signal, both of length
n.

PRD dependency of tested signals on the degree of decomposition with error
bars along the curve is shown in Figure 3. Up to level 14 of the decomposi-
tion, the dependency shows a linear trend with reasonable values of percentage
root-mean-square difference and its standard deviations. From level 15 of the
decomposition, the dependency changes to a quadratic trend with high values
of PRD and its standard deviations. As optimum, we selected decomposition
degree of 14. Further analysis with higher level of decomposition leads to unsat-
isfactory results due to the loss of too much information. On the contrary, lower
level of decomposition takes more computational time without any benefits.
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Fig. 3. Percentage root-mean-square difference as a function of degree of decomposition
for 7 tested organisms

Of course the same degree of decomposition has to be used for all analyzed
signals in order to maintain the ratio of lengths among the signals. Figure 1(b)
shows the batch of our downsampled signals that were used for PRD analysis.
The length of signals is only about 300 samples, unlike the original length of
sequences in milions of bases.

2.4 Signal Alignment

Signals have to be aligned prior to conducting genome comparison. Since the
lengths of various genomes can vary, multialignment of more signals would bring
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about the incorporation of high number of gaps. Therefore, we decided to use
pairwise alignment of every signal pair instead. This leads to maximum preser-
vation of the genetic information for each comparison. We utilized dynamic time
warping algorithm (DTW ) [3, 14], which is similar to Needleman-Wunsch [15]
or Smith-Waterman [16] algorithms for character sequence alignment. DTW is
based on minimizing the distance between the pair of signals to be aligned.
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Fig. 4. (a) Alignment of E. coli and S. bongori signals of similar length, (b) Alignment
of E. coli and L. casei signals of different lengths

When both signals are approximately of the same length, DTW is similar
to global alignment as shown in Figure 4(a), where complete information from
both signals were used. When the signals of different lengths are aligned, DTW is
similar to local alignment where corresponding purines-rich and pyrimidines-rich
subsequences are aligned and other parts of the longer signal are eliminated as
shown in Figure 4(b). In both cases, maximum signal information is maintained.

2.5 Organism Comparison

The aligned pair of signals has the same length n. Their distance can be com-
puted using the Euclidean metric:

d =

√√√√ n∑
i=1

[x(i) − y(i)]2, (9)

where x(n) and y(n) are aligned signals.
From the distances of each pair of signals we were able to construct the dis-

tance matrix and process it by cluster analysis. We used the unweighted pair
group method with arithmetic mean (UPGMA) for achieving the best distinc-
tion of clusters [17]. The entire method was compared to the standard analysis
based on multialignment of 16S rRNA sequences processed by the same cluster-
ing method. To prove that the parameters of the proposed method are correct
and applicable in general, we added the rest of organisms from Table 1 to cluster
analysis.
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Table 2. Taxonomical classes of tested organisms

Class Assigned number
Betaproteobacteria 1
Thermococci 2
Bacilli 3
Gammaproteobacteria 4

Selected organisms belong to four different taxonomical classes. Each class is
assigned a number according to Table 2. These numbers are used for describing
the organisms in cluster analysis shown in Figure 5.

Figure 5(a) representing the results of the proposed method. Four clusters cor-
respond to real taxonomical classes. The results show that two different strains of
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rRNA sequences
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Salmonella enterica have quite diverse genomes, but they are still assigned to the
Gammaproteobacteria cluster. The method is not dependent on the length of a
genome but rather on information it contains. It assigns Bibersteinia trehalosi to
the cluster of related organism despite its genome having half the length beside
other Gammaproteobacteria. This is probably caused by two possible behavior
of DTW, which can be similar to global or local alignment according to the spe-
cific situation. The result of the classical character processing method is shown
in Figure 5(b). This approach cannot distinguish between the various strains of
bacteria because 16S rRNA sequences are very commonly the same for different
strains of the same genus. It splits Gammaproteobacteria into two very distant
clusters. Also Thermococci cluster is split in an inappropriate way.

Whole genome comparison is significantly more robust. Redundant informa-
tion that can be the source of bias was filtered out during signal downsampling.
Only two signals are compared at a time, which leads to maximum utilization of
the relevant information. Short 16S rRNA sequences should contain similar in-
formation across all genomes; however, multiple sequence alignment brings much
imprecision to the analysis because of its high complexity.

3 Conclusion

In this paper, we present a novel method for classifying whole genome DNA
sequences. Due to the use of sequences conversion to cumulated phase signals
and massive downsampling, the method has low computational requirements in
comparison to traditional methods. Thus, extremely long sequences with lengths
of millions pair of bases, like whole genomes, can be processed. The method was
tested on complete genome sequences records of prokaryotic organisms obtained
from the GenBank database at NCBI.

Current bioinformatics does not provide an adequate technique for prepro-
cessing whole genome signals; the proposed approach can be used as a new
standard for this purpose. Although the genomic signal processing is a relatively
new scientific field, it provides a high number of conversion techniques for ob-
taining genomic signal from character sequence. The cumulated phase signal
representation was chosen for its specific properties suitable for downsampling.
The low frequency band, formed by purines/pyrimidines ratio, carries the main
information about the genome. The results of whole genome signals spectral
analysis were used for designing appropriate downsampling technique, which al-
lows downsampling of extremely large signals like whole prokaryotic genomes by
more than ten thousand times. The dyadic wavelet transform was chosen for its
ability to easily downsample signals with very high sampling rate. The level 14 of
decomposition by DWT was set according to the percentage root-mean-square
difference analysis of the selected signals; the percentage losses of original signals
information do not exceed 1 percent.

Sequence multiple alignment, one of the most problematic issues in tradi-
tional DNA classification methods, was replaced by modification of dynamic
time warping for genomic signals. The principal utilization of DTW does not
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provide faster or less computationally demanding result, the calculation speed
up is given only by the previous signal decimation step. However, the alignment
of genomes in signal form using DTW offers another advantage; it is not neces-
sary to choose specific parameters for sequence alignment like scoring matrix or
gap penalization based on DNA biological properties. The genomic signal carries
biological and chemical properties in a specific shape of signal, further biological
adaptation of the alignment process is not necessary.

The results of the proposed method were compared to the traditional charac-
ter processing technique based on multiple alignment of short parts of sequences
represented by common phylogenetic marker 16S rRNA genes. Our approach re-
produced the real taxonomical division with higher success than the traditional
method and due to the independence on the genome length, it is now possi-
ble to conduct an extensive comparative analysis that would, otherwise, not be
realizable by conventional techniques.
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Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and by the grant project
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Abstract. Nowadays, many diagnostic methods based on providing in-
formation about the patient in the form of photographs, projections,
cross-sections. Almost impossible to conduct an effective and efficient
treatment without the use of modern tools to support the process of
medical analysis. The main goal of this work is to develop a tool for
medical diagnosis of colorectal cancer in order to determine the level of
cell growth. As part of the work developed and tested the processing and
analysis algorithms microscopic images of the colon cancer cells, leading
to a quantitative description of the local parameters of the object, in-
clude the quantity, the growth and cell growth over time. The proposed
algorithm has been written in the Matlab.

Keywords: Image processing, algorithms, colon cancer.

1 Introduction

In the era of ubiquitous computerization the diagnostic systems used in medicine
are gaining lot of popularity. Almost impossible is to conduct an effective and
efficient treatment without the use of modern tools to support the process of
medical analysis. Virtually all diagnostic methods are based on providing infor-
mation about the patient in the form of images, projection and cross-section
received from research like X-ray, medical ultrasonography, magnetic resonance
imaging, nuclear medicine, scintigraphy, computed tomography, positron emis-
sion tomography, endoscopy, elastography, tactile imaging, echocardiography.
Through the introduction of computer image analysis for routine and scientific
research in the diagnosis may improve the quality of the investigation results.
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Volume 3, Advances in Intelligent Systems and Computing 283,
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By increasing the accuracy of the measurements is possible to determine the im-
age parameters which are not possible to determine by human in routine medical
investigation [9]. Algorithms for quantitative analysis excludes mistakes that can
make by human due to inattention or fatigue.

Colon cancer arises from uncontrolled cell growth of the colon wall [5, 10]. The
large intestine is the final section of the digestive tract, occupying a large part of it.
It is positioned between the small intestine and the rectum. The vast majority of
colorectal cancer (90%) is colorectal adenocarcinoma [5]. Symptoms and treatment
of various cancers various parts of the large intestine may differ materially. The
main parts of the large intestine are: cecum, ascending colon, transverse colon,
descending colon and rectum. Cancer can occur in any of these parts (mostly occurs
in the rectum) [5]. For the first signs of cancer can include changes to the rhythm
of defecation, usually in the form of constipation, between which there may be
diarrhea. Bleeding from the rectum, observed as the presence of visible blood in
the stool, it should be a warning about the disorder that can be serious [2, 4, 13].
Depending on the location of cancer, the blood can be ”live red” or in the form
of a thrombus (grounds). In less advanced stages of proper treatment of colorectal
cancer is partial or total colectomy, often with a largemargin of surrounding tissue.
Complete excision of the tumor is possible and gives cure, but the patient must be
monitored due to the further possibility of recurrent colorectal cancer [4, 11].

Cancer of the colon is a social problem not only in Europe but also in the
world [10]. In Europe and the US it is the second biggest cause of deaths due
to malignant neoplasms, the world’s third. Worldwide is about 1 230 000 people
who suffer from cancer, of whom die each year 609 000 of them [11]. More than
450 000 citizens in Europe are newly diagnosed every year with the disease
[11]. Annually on colorectal cancer dies 230 000 in Europe, and 52 045 people
in the US [7]. Colorectal cancer is more common in men. Rarely occurs before
the age of 40, mostly above 50 years of age with a peak incidence falls on the
7th decades of life. Approximately 175 million European citizens aged 50 - 69
years of age suffering from colon cancer [6]. Worse, the incidence is increasing
over the years, it is estimated that 2,020 years this growth reaches 9,7% in the
world. Permanent increase in the incidence of colorectal cancer is associated
with a change in eating habits to a more ”lazy”, smoking, obesity, as well as
population growth and the aging of society makes that the colorectal cancer is
becoming a disease of civilization. Despite extensive research into the cause of
formation the cancer, not all aspects are explained. It is known that the etiology
is multifactorial and despite a number of well-known causative agents, still all
the factors affecting its development are not known.The analysis of microscopic
images of cancer cells allows to count and classify objects visible and to determine
their morphological parameters and thus maybe closer to the answer concerning
the formation and development of the disease like neoplasms [8, 11].

As part of the work developed and tested analysis and processing algorithms
microscopic images in order to show level of growth of tumor cells of the colon
in time. For this purpose, determine the quantitative parameters cells, like the
number of cells and pace of their growth in time. Then compared these parameters,
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in respect which better reflects the level of cell growth in time. The results of this
study may help to accelerate research on the pathogenesis of colon cancer, and
improve the process of medical diagnosis.

2 Materials and Experiment

In the study used microscopic images of the colon cancer cell line colorectal
carcinoma cells HCT0020116 ATCC R© CCL-247TM. The cell line of colon can-
cer HCT 116 derived from colony ATCC was cultured in accordance with the
manufacturer’s instructions using the modified McCoy’s medium (PAA Culture
Company) supplemented with 10% bovine serum (FBS, PAA Culture Company).
Cells were cultured in flasks with 25 cm2 surface area (PAA) in a particular en-
vironment with the addition of penicillin at 100 μl/ml, streptomycin 100 μl/ml
and amphotericin B 0.25 μl/ml. A series of microscopic images was performed
in the Department of Pathology, Medical University of Silesia, Katowice, us-
ing compact fluorescent microscope JULI Digital BioTechnology. Images of the
same area of sample were recorded every 10 minutes. The image in digital form
is saved as a bitmap with a resolution of 640x512 pixels — 96 dpi. A series of
140 images were analyzed using a proprietary algorithm written in Matlab.

Fig. 1. The source image of the colon cancer cells
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3 Result

An example of the resulting image source, subjected to the analysis shown in
Figure 1. The focus and lighting of an image on the stage of the acquisition have
a significant impact on the usefulness of the image for further analysis and the
application of image pre-processing. The enlarged portion of the digitized image
acquired for testing does not have many observable artifacts outside blur the
edges of objects. Blur it was probably created as a result of wrong focus.

To increase the efficiency of algorithms of segmentation and identification of
objects in the microscopic images was applied pre-processing of the image [1, 3,
12]. Its purpose is to eliminate the image of irrelevant or interfering elements from
the point of view of the intended aims of analysis. Therefore, the images were cut
to the size of 640x474 pixels in order to remove the information regarding the
date and time the photo was taken. The removal of these data has no significant
effect on the test result. The prepared a series of microscopic images of the colon
cancer cells were subjected by operations which was shown in the schematic of
actions the algorithm — Figure 2.

Fig. 2. The scheme of the algorithm
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Fig. 3. The image after the adaptive binarization

Each of the series of images was divided into 3x3 regions and subjected to
grayscale conversion. In order to obtain information on the level of cell growth in
time was determined the quantitative parameters of image, first surface of area
elements. The surface area is relatively simple to define the parameter and may
be determined with high accuracy. However, for the outcome is highly influenced
by the manner of conducting binarization, preceding the measurement. Even a
small change in the threshold of binarization can have a significant impact on
the resulting surface area, due to the significant reduction in the amount of in-
formation contained in the image [12]. He test images were subjected adaptive
binarization with the local window size (11), additional global threshold (C =
0.03) with the mean. The adaptative binarization is dynamic search local bina-
rization threshold, for better effect resulting image due to poor global threshold.
Image after binarization is shown in Figure 3.

Then, in order to remove the image elements which is not significant to the
result were applied morphological operations. Two basic morphological trans-
formations which are erosion and dilatation have a common drawback — as a
result of their activities the surface of object will change dramatically. The ero-
sion reduces the object surface area, while dilatation increases it. The way to
get rid of this imperfection is the use of these two transformations in tandem to



390 A. Wójcicka et al.

Fig. 4. The image after the application of the morphological operations of opening and
closing

eliminate the above mentioned drawbacks. Using open operation as a consisting
of the erosion and dilation, and closing - dilation and erosion, does not change
the shape of the object’s dimensions. Opening operation removes small objects
and details which are not changing the size of the main part of the elements and
also can detach objects with constrictions. Closing operation fills small voids,
indentations in the object without changing the shape and dimensions of the
object in contrast to the open operation can combine objects which are close to
each other [12]. First for the tested images were performed opening operation,
then closure operation. As a result of the applied morphological operations ob-
tained an image of an important reducing unnecessary elements, but keeping the
original shape and size of objects. Figure 4 shows the objects after morphological
operations.

As a result of the applied morphological operations was obtained images from
which to obtain information regarding surface area occupied by the tumor cells.
The measurement of the surface area is done by counting the pixels belonging to
an interesting object — cancer cells. After administration of the actual distance
corresponding to the distance, in pixels, the measurement result can be obtained
in such units which was required. The result of measurement of surface area is
shown in Figure 5. The table shows sample data for the 20 analyzed images.
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Fig. 5. The result of measurement of surface area

The second quantitative parameter, which will assess the level of cell growth
in time is the analysis of the number of cells. Quantitative analysis of tumor
cells was performed on the images of the original size. For test images were
applied segmentation with template matching with some level of sensitivity.
Segmentation by matching the template is a method that examines the degree of
similarity between the stencil mask — circle for object shape which are searching
in the images. Because the shape of segmented object is known and takes the
form of an ellipse and their assemblies, the method used is appropriate to the
studied images. The result of segmentation is shown in Figure 6.

Figure 7 shows a quantitative analysis of colon cancer cells. The table shows
sample data for the 20 analyzed images. This situations reflect the quantitative
results presented in the figure where the number of objects in consecutive images
may be equal or less than in preview images.

Number of found objects for individual images depends on the arrangement
of the cells and their shape. It often happens that the objects overlap, or their
shape is strongly deviate from the assumed looking stencil. This situations reflect
the quantitative results presented in the Figure 6, where the number of objects
in consecutive images may be equal or less than the previous images. However,
analyzing all possible images, show that a global score shows a significant increase
in the number of examined cells.
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Fig. 6. The result of segmentation
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Fig. 7. A quantitative analysis of colon cancer cells
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4 Conclusions

The study shows that both the quantitative parameters to assess the level of cell
growth show a significant (expected) increase in the surface area occupied by
the tumor cells and increase their numbers. The fact is that number of search
objects is dependent on the arrangement of cells, their overlapping, confluent
with the background and their shape which is sometimes difficult to identify. So
the analysis of the area occupied by the cell searches is a better way to solve the
problem to determine the level of cell growth in time. The analysis shows that
the proposed algorithm can be a useful tool in the study of microscopic images
of cancer cells of the colon. In an automatic manner can be monitored growth of
the cell in time by studying the quantitative parameters of the image. It should
be noted that in clinical research performed by human there is a reasonable
suspicion that a person can make mistakes in counting and recognizing cancer
cells. Moreover, in the case of such images, where the field of view is about 300
object the visual fatigue may cause errors.

Pre-processing of images, and the application of appropriate morphological
operations significantly simplifies the process of analysis. Tests have shown that
the case of the segmentation algorithm is significantly important fit parameters
and the choice of an appropriate method for the detection of objects. The next
step in the analysis examined images will be attempt to assess the ability of cell
migration.

Through the use of such modern tools is possible to perform efficient and ef-
fective treatment. The role of programs to analyze medical image is constantly
growing, allowing for more perfect diagnosis, treatment, rehabilitation and get-
ting better explore the mysteries of the human body, the principles of its op-
eration and treatment. Informatics tools like proposed algorithm may plays an
important role in the pathogenesis of many diseases, including cancer.
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Abstract. Developing sequencing techniques provide understanding the
molecular phylogeny at the whole genome level. The phylogeny derived
from 16S rRNA gene is the universally accepted DNA sequence-based
method today; so far there is no widely accepted approach to infer phylo-
genetic relationships from complete genome data. If the entire genome is
used, the data reflect organismal evolution, not the evolution on a single
gene level. We propose a new method for determination of relationship
of bacteria based on whole genome data. The method compares whole
genomic DNA sequences in frequency domain. The proposed method was
tested on phyla level on 168 bacteria from four phyla and on order level
– 121 bacteria from phylum Proteobacteria, class Gammaproteobacteria
were classified. The classification on both levels was successful in more
than 82%.

Keywords: relationship of bacteria, whole genome comparison, DNA
spectrogram.

1 Introduction

Identification of bacteria plays a key role in medicine to identify the pathogens
isolated from a patient or in food industry for identification of a microbial con-
taminant responsible for food spoilage. Microbial taxonomy is essential for ac-
curate identification of microorganisms, because it organizes huge amounts of
organisms into meaningful groups. Classification is a prerequisite for identifica-
tion [1]. Morphological and metabolic features may be used to infer relationships,
but developing sequencing techniques provide understanding the molecular phy-
logeny at the whole genome level.

Approaches to the classification based on the study of genotypic data, involve
the study of GC content, study of small genetic variations (insertions and dele-
tions) [2] or study the conserved genes. Species phylogenies have traditionally
been constructed by measuring evolutionary divergence in particular proteins.
The most commonly used sequence is small subunit ribosomal RNA (16S rRNA
gene). The phylogeny derived from 16S rRNA gene is the universally accepted
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DNA sequence-based method today [3, 4]. The 16S rRNA genes are found in
all organisms, they are highly conserved among different species and they have
evolved relatively slowly, so it permits to construct phylogenies between distant
organisms. However, bacteria may have multiple copies of this gene and this can
make interpretation difficulties when base pair changes exist among copies. High
levels of sequence variation have been observed, even between strains of the same
species. Further, the 16S rRNA gene sequence does not contain enough discrim-
inating power to delineate species within certain groups and some bacterial taxa
have identical 16S rRNA genes [5].

Several attempts were introduced to infer bacterial phylogeny from complete
genomes. If the entire genome is used, the data reflect organismal evolution,
not the evolution of single genes. It does not make sense to align two complete
genomes since every species has its own gene content and gene order, not to
mention the different sizes of the genomes. Methods which infer whole genome
phylogeny are usually based on study the gene content. The method, based on
the proportion of homolog genes shared between two genomes, is presented in [6].
Method based on the presence and absence of gene families was presented in [7].
Distance between two species can be measured as the number of homologous
genes divided by the total number of genes, or its variants [8]. Then, the genomes
can be compared using gene order. Distance between two species is defined as
the minimum number to get the same order of genes. The breakpoint distance
counts the minimal number of breakage events that are necessary to transform
one genome into another. The inversion distance is the edit distance under the
single allowed event of inversion [9]. Another approach takes into account score
forming by both the gene content measure and gene order measure [10]. The
main disadvantage of mentioned method, which are based on study the gene
content, is the requirement of gene identification and an fact, that searching for
homologous genes is time consuming.

Another method, which infers phylogeny from whole genome sequences, takes
into account the distribution of sequence strings, where frequency of amino acid
K-strings in their complete genomes or proteomes is found [11].

Time consuming multiple alignment of symbolic or numeric sequences in
whole-genome analysis can be treated using specific signal processing techniques.
Dynamic time warping was previously used and validated in dendrogram con-
struction using cluster analysis [12].

Today, the Bergey’s manual of Systematic Bacteriology [13] is considered the
highest authority and the taxa which have been correctly described are reviewed
in. The classification comprises both the genotypic and phenotypic features,
called polyphasic taxonomy. The extensive application of polyphasic taxonomy
has led to marked improvements in the classification of prokaryotes.

So far there are no widely accepted ways to infer phylogenetic relationships
from complete genome data. There is an urgent need to develop new phylogenetic
methods utilizing the increasing amount of molecular data, in particular, the
complete genomes of organisms.
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We propose a new method for determination of relationship of bacteria based
on whole genome data. Our method compares the whole genomic DNA sequences
in frequency domain. DNA spectral analysis was proposed in [14]. In spectro-
grams of biological sequences, we observe some patterns, which are created by
nucleotide repetitions, often related to the sequence function or structure. For
example 3 bp pattern occurs in coding regions; such periodicity is related to
distributions of codons [15]. Biological sequences are often built from tandem
repetitive regions (mostly in noncoding regions), which are clearly visible in
spectrogram. Spectrograms can reveal periodicities related to helical structure,
the periodicity related to folding around nucleosomes is considered the period-
icity around 10 bp [16, 17]. In our method, distance between two organisms is
derived from the similarity of spectrograms. We compared our results to the
taxonomy in Bergey’s manual of Systematic Bacteriology.

2 Methods

2.1 Spectrogram Construction

Spectrograms of DNA sequences give a combined view of the local periodicity
throughout the nucleotide sequence. If we transform the DNA sequence into a se-
quence of numbers, we can compute DNA sequence spectrum. By computing the
spectrum in short windows, sliding in a sequence, we can construct spectrogram
by depicting single spectrum from one window as a one column of spectrogram
image. Depicting many spectra from sliding windows we obtain spectrogram.
Spectrogram can be depicted as RGB image or as non-RGB (classical) spectro-
gram.

In [18], there is suggested to compute spectrum from one sliding window in
4 steps: convert DNA sequence to numerical sequences, Discrete Fourier trans-
form (DFT) of numerical sequence, mapping of DFT values to RGB colors and
normalizing the pixel values.

For conversion of DNA to numerical sequence, the binary representation is
widely used [14, 19]. The symbolic DNA sequence is first converted to four binary
indicator sequences, uA(n), uT (n), uC(n) and uG(n), which indicate the presence
or absence of four nucleotides, A, T, C and G, respectively, at the n-th position.
For example, sequence GTACCATAG is represented by binary vectors:

uA(n) = 001001010

uT (n) = 010000100

uC(n) = 000110000

uG(n) = 100000001

Numerical sequences were transformed to frequency domain using DFT:

U(k) =

N−1∑
n=0

u(n)e−j 2πnk

N
(1)
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where N is the length of signal u(n), n = 0, 1,. . . , N and k is frequency. To
obtain RGB spectrogram, the four spectra were reduced to three:

xR = UT [n] +
1
3UG[n]

xG = UC [n] +
1
3UG[n]

xB = UA[n] +
1
3UG[n]

(2)

The thymine occurrence is registered in red layer of RGB spectrogram, the
cytosine occurrence in green layer of RGB spectrogram, the adenine occurrence
in blue layer of RGB spectrogram and finally, the guanine occurrence in all three
layers of RGB spectrogram. Then every layer was normalized from 0 to 1. For
computing the spectrograms, the length of sliding window was set to 5000 bp.
In Fig. 1, spectrograms for Melissococcus plutonius, Staphylococcus epidermidis
and Mycobacterium bovis are shown.

Fig. 1. RGB spectrograms of a) Melissococcus plutonius (phylum Firmicutes class
Bacilli, order Lactobacillales), b) Staphylococcus epidermidis (phylum Firmicutes, class
Bacilli, order Bacillales) and c) Mycobacterium bovis (phylumActinobacteria, class Acti-
nobacteria, subclass Actinobacteridae, order Actinomycetales); length of sliding window
was set to 5000 bp. (Note: See color version of figure which is available in electronic
version of paper)

2.2 Spectrogram Comparison

Relation between bacteria can be seen from color of RGB spectrograms; for close-
ly related bacteria, RGB spectrograms show similar color properties (Fig. 1 a, b)
unlike for distant bacteria RGB spectrograms are visually different (Fig. 1 a, c).
For evaluation of similarity of two spectrograms we used the spatial distribution
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of colors, which was designed to achieve image and video segment retrieval based
on similarity. The algorithm for color layout descriptor was published in [20].

For every studied genome, DNA spectrogram was computed and every pair
of spectrograms was compared to get a distance matrix. The spectrogram image
is first split to n uniform rows and n uniform columns and every of n*n regions
is described separately. The average RGB color from region is counted and new
image of n rows and n columns is obtained. This RGB image is transformed to
Y CbCr color space, which is defined as:

Y = 0.299R+ 0.587G+ 0.114B
Cb = −0.169R− 0.331G+ 0.5B
Cr = 0.5R− 0.419G− 0.081B

(3)

Each of three matrixes (Y,Cb, Cr) is transformed by Discrete cosine transform
(DCT) using formula:

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Ymncos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
(4)

where M and N are row and column size of Y, respectively. If p=0 then αp =
1√
M

, else αp =
√

2
N . We obtain three sets of DCT coefficients. The set of DCT

coefficients is called color layout descriptor. For every pair of spectrograms, Eu-
clidian distance is counted from the DCT coefficients. By counting distances for
each pair of spectrograms, we obtain the distance matrix. To evaluate the rela-
tionship between bacteria, we constructed a distance tree using Neighbor joining
algorithm.

To determine relationship between bacteria, several parameters can be modi-
fied: number of rows and columns n, the color space of image and the number of
DCT coefficients. Impact of these parameters on determination of relationship
is discussed in next paragraph.

3 Results

3.1 Comparison on Phylum Level

We compared bacteria from four different phyla using proposed method. Chosen
bacteria come from NCBI (National Center for Biotechnology Information) list
of reference bacteria, downloaded from NCBI database [21]. Four phyla with
more than 10 organisms were chosen – Firmicutes (52 organisms), Actinobacteria
(23 organisms), Tenericutes (12 organisms) and Proteobacteria (81 organisms).
Length of the whole genome sequences was between 138927 bp and 10467782
bp. Total sequence length was 547083155 bp. The NCBI taxonomy database
is not a primary source for taxonomic or phylogenetic information because it
attempts to incorporate phylogenetic and taxonomic knowledge from a variety
of sources. We took the taxonomy of bacteria from Bergey’s manual of Systematic
Bacteriology [13].
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We analyzed the classification of bacteria for every pair of studied phyla. In
Fig. 2, a distance tree for Firmicutes and Actinobacteria is shown. Name of each
leaf is created from name of the phylum, NCBI access number and name of the
organism. In Fig. 2, two groups of organisms are shown. Organisms from phyla
Actinobacteria are classed together by upper branch, while organisms from phyla
Firmicutes by lower branch. Four Actinobacteria occur in group of Firmicutes
incorrectly. The success of sorting to two groups were counted as probability
that organism was included in the correct branch. For the distance tree in Fig. 2,
probability that organism from phyla Firmicutes is placed in the correct branch
is 52

52+0 = 1. On the other hand, the probability, that organism from phyla
Actinobacteria is placed in the right branch is 19

19+4 = 0.83. Probabilities for all
pairs of studied phyla are listed in Table 1.

Table 1. Probability of correct separation, if pair of phyla is analyzed

Y CbCr

model,
all DCT
coeffs,
image
10x10

RGB
model,
all DCT
coeffs,
image
10x10

Y CbCr

model,
12 DCT
coeffs,
image
10x10

Y CbCr

model,
all DCT
coeffs,
image
20x20

Phylum 1 Phylum 2 P1 P2 P1 P2 P1 P2 P1 P2

Firmicutes Actinobacteria 1 0.83 1 0.65 1 0.65 1 0.83
Tenericutes Actinobacteria 1 0.83 0.83 1 1 0.83 1 0.83
Tenericutes Firmicutes 0.83 0.88 0.50 1 0.50 1 0.50 1

Proteobacteria Firmicutes 0.57 1 0.57 1 0.57 1 0.57 1
Proteobacteria Actinobacteria 0.43 0.65 0.58 0.65 0.43 0.65 0.43 0.65
Proteobacteria Tenericutes 1 0.83 1 0.83 1 0.83 1 0.83

We compared results for RGB model and Y CbCr color model. Probabilities of
correct classification of bacteria are listed in third and fourth column of Table 1.
Probability of correct separation of Tenericutes from Firmicutes decrease and
overall, three probabilities of correct classification are lower than 0.6 (highlighted
in table). In case of Y CbCr color model, only two probabilities are lower than
0.6. Therefore the Y CbCr color model is considered being more appropriate.

We investigated number of DCT coefficients, which are necessary to determine
the relationship between bacteria. According to [20], the best choice for consid-
ering tradeoff is total 12 coefficients (6 coefficients of Y, 3 for Cb and 3 for Cr).
We found that the best choice for determination of relationship is to consider
all of the DCT coefficients, not only low frequency coefficients as mentioned. In
the fifth and sixth row of Table 1, there are shown the results considering 12
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0 0.2 0.4

’Actinobacteria’ ’NC_002935’ ’Corynebacterium diphtheriae NCTC 13129                      ’
’Actinobacteria’ ’NC_011835’ ’Bifidobacterium animalis subsp. lactis AD011                  ’
’Actinobacteria’ ’NC_017834’ ’Bifidobacterium animalis subsp. animalis ATCC 25527           ’
’Actinobacteria’ ’NC_002945’ ’Mycobacterium bovis AF2122/97                                    ’
’Actinobacteria’ ’NC_000962’ ’Mycobacterium tuberculosis H37Rv                                 ’
’Actinobacteria’ ’NC_013441’ ’Gordonia bronchialis DSM 43247                              ’
’Actinobacteria’ ’NC_013131’ ’Catenulispora acidiphila DSM 44928                          ’
’Actinobacteria’ ’NC_014318’ ’Amycolatopsis mediterranei U32                              ’
’Actinobacteria’ ’NC_013172’ ’Brachybacterium faecium DSM 4810                            ’
’Actinobacteria’ ’NC_013204’ ’Eggerthella lenta DSM 2243                                  ’
’Actinobacteria’ ’NC_014616’ ’Bifidobacterium bifidum S17                                   ’
’Actinobacteria’ ’NC_007164’ ’Corynebacterium jeikeium K411                               ’
’Actinobacteria’ ’NC_004307’ ’Bifidobacterium longum NCC2705                                ’
’Actinobacteria’ ’NC_006085’ ’Propionibacterium acnes KPA171202                            ’
’Actinobacteria’ ’NC_017218’ ’Bifidobacterium breve ACS−071−V−Sch8b                         ’
’Actinobacteria’ ’NC_002677’ ’Mycobacterium leprae TN                                     ’
’Actinobacteria’ ’NC_003450’ ’Corynebacterium glutamicum ATCC 13032                       ’
’Actinobacteria’ ’NC_015683’ ’Corynebacterium ulcerans BR−AD22                            ’
’Actinobacteria’ ’NC_014329’ ’Corynebacterium pseudotuberculosis FRC41                    ’
’Firmicutes’ ’NC_008054’ ’Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842           ’
’Firmicutes’ ’NC_010610’ ’Lactobacillus fermentum IFO 3956                                 ’
’Firmicutes’ NC_007907’ ’Desulfitobacterium hafniense Y51                                ’
’Firmicutes’ ’NC_006449’ ’Streptococcus thermophilus CNRZ1066                              ’
’Firmicutes’ ’NC_012891’ ’Streptococcus dysgalactiae subsp. equisimilis GGS_124            ’
’Firmicutes’ ’NC_010080’ ’Lactobacillus helveticus DPC 4571                                ’
’Firmicutes’ ’NC_014724’ ’Lactobacillus amylovorus GRL 1112                                ’
’Firmicutes’ ’NC_009513’ ’Lactobacillus reuteri DSM 20016                                  ’
’Firmicutes’ ’NC_008531’ ’Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293    ’
’Firmicutes’ ’NC_004368’ ’Streptococcus agalactiae NEM316                                  ’
’Firmicutes’ ’NC_015558’ ’Streptococcus parauberis KCTC 11537                              ’
’Firmicutes’ ’NC_005362’ ’Lactobacillus johnsonii NCC 533                                  ’
’Firmicutes’ ’NC_006814’ ’Lactobacillus acidophilus NCFM                                   ’
’Firmicutes’ ’NC_002745’ ’Staphylococcus aureus subsp. aureus N315                  ’
’Firmicutes’ ’NC_007929’ ’Lactobacillus salivarius UCC118                                  ’
’Firmicutes’ ’NC_002976’ ’Staphylococcus epidermidis RP62A                          ’
’Firmicutes’ ’NC_003030’ ’Clostridium acetobutylicum ATCC 824                             ’
’Firmicutes’ ’NC_003366’ ’Clostridium perfringens str. 13                                 ’
’Firmicutes’ ’NC_009495’ ’Clostridium botulinum A str. ATCC 3502                          ’
’Firmicutes’ ’NC_009089’ ’Clostridium difficile 630                       ’
’Firmicutes’ ’NC_009706’ ’Clostridium kluyveri DSM 555                                    ’
’Firmicutes’ ’NC_015516’ ’Melissococcus plutonius ATCC 35311                              ’
’Firmicutes’ ’NC_013893’ ’Staphylococcus lugdunensis HKU09−01                       ’
’Firmicutes’ ’NC_003997’ ’Bacillus anthracis str. Ames                                     ’
’Firmicutes’ ’NC_004722’ ’Bacillus cereus ATCC 14579                                       ’
’Firmicutes’ ’NC_002662’ ’Lactococcus lactis subsp. lactis Il1403                          ’
’Firmicutes’ ’NC_014925’ ’Staphylococcus pseudintermedius HKU10−03                  ’
’Firmicutes’ ’NC_003212’ ’Listeria innocua Clip11262                                        ’
’Firmicutes’ ’NC_013891’ ’Listeria seeligeri serovar 1/2b str. SLCC3954                     ’
’Firmicutes’ ’NC_003210’ ’Listeria monocytogenes EGD−e                                      ’
’Firmicutes’ ’NC_004668’ ’Enterococcus faecalis V583                                      ’
’Firmicutes’ ’NC_014103’ ’Bacillus megaterium DSM 319                                      ’
’Firmicutes’ ’NC_015930’ ’Lactococcus garvieae ATCC 49156                                  ’
’Firmicutes’ ’NC_013798’ ’Streptococcus gallolyticus UCN34                                 ’
’Firmicutes’ ’NC_004350’ ’Streptococcus mutans UA159                                       ’
’Firmicutes’ ’NC_002737’ ’Streptococcus pyogenes M1 GAS                                    ’
’Firmicutes’ ’NC_003028’ ’Streptococcus pneumoniae TIGR4                                   ’
’Firmicutes’ ’NC_017769’ ’Streptococcus pneumoniae ST556                                   ’
’Firmicutes’ ’NC_012926’ ’Streptococcus suis BM407                                         ’
’Firmicutes’ ’NC_015678’ ’Streptococcus parasanguinis ATCC 15912                           ’
’Firmicutes’ ’NC_009012’ ’Clostridium thermocellum ATCC 27405                             ’
’Actinobacteria’ ’NC_014644’ ’Gardnerella vaginalis ATCC 14019                              ’
’Actinobacteria’ ’NC_013721’ ’Gardnerella vaginalis 409−05                                  ’
’Firmicutes’ ’NC_011134’ ’Streptococcus equi subsp. zooepidemicus MGCS10565                ’
’Firmicutes’ ’NC_012781’ ’Eubacterium rectale ATCC 33656                                  ’
’Firmicutes’ ’NC_000964’ ’Bacillus subtilis subsp. subtilis str. 168                       ’
’Firmicutes’ ’NC_015660’ ’Geobacillus thermoglucosidasius C56−YS93               ’
’Firmicutes’ ’NC_014376’ ’Clostridium saccharolyticum WM1                                 ’
’Firmicutes’ ’NC_004567’ ’Lactobacillus plantarum WCFS1                                    ’
’Firmicutes’ ’NC_013198’ ’Lactobacillus rhamnosus GG                                       ’
’Firmicutes’ ’NC_008526’ ’Lactobacillus casei ATCC 334                                     ’
’Actinobacteria’ ’NC_013203’ ’Atopobium parvulum DSM 20469                                ’
’Actinobacteria’ ’NC_004572’ ’Tropheryma whipplei str. Twist                              ’
’Firmicutes’ ’NC_014483’ ’Paenibacillus polymyxa E681                                 ’
’Firmicutes’ ’NC_014551’ ’Bacillus amyloliquefaciens DSM 7                                 ’
’Firmicutes’ ’NC_015634’ ’Bacillus coagulans 2−6                                           ’

Fig. 2. Distance tree for Firmicutes and Actinobacteria
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DCT coefficients. Results considering all DCT coefficients show better results
for classification of Tenericutes. On the contrary, there are 3 probabilities lower
than 0.6.

We examined the number of regions n*n in which the image is divided. We
compared results for splitting the image into 10 uniform rows and columns and
20 uniform rows and columns. In last two columns of Table 1, there is shown the
probability of correct separation in case of splitting the image into 20x20 regions.
Probability of correct separation of Tenericutes from Firmicutes is lower than
in the method consider splitting the image into 10x10 regions.

Based on these findings, the best results give us the method considering the
Y CbCr color model, splitting the image into 10x10 regions and using all DCT co-
efficients for analysis. Results using these parameters are summarized in Table 2.
Cells show the probability that bacteria from phylum in corresponding column
will be separated from bacteria from phylum in corresponding row. Results pre-
sented in ROC space are shown in Fig. 3 a). Problem arises with separation
of Proteobacteria, which is phenotypically most diverse division among prokary-
otes. The average probability for classification of bacteria from all four phyla
is 0.82.

Table 2. Probability that bacteria from phylum in corresponding column will be sep-
arated from bacteria from phylum in corresponding row

Firmicutes Actinobacteria Tenericutes Proteobacteria

Firmicutes - 0.83 0.83 0.57
Actinobacteria 1 - 1 0.43
Tenericutes 0.88 0.83 - 1

Proteobacteria 1 0.65 0.83 -

3.2 Comparison on Order Level

Proteobacteria is the largest and phenotypically most diverse division among
prokaryotes. This phylum encompasses bacteria with a wide variety of phenotype
and physiological attributes and habitats [22]. Proteobacteria has been classified
based on the homology of 16S ribosomal RNA or by hybridization of ribosomal
DNA with 16S and 23S ribosomal RNA. It has been subdivided in five major
classes: α-, β-, γ-, δ- and ε- [23].

We tried to classified orders of phylum Proteobacteria, class Gammaproteobac-
teria. 8 orders were chosen, Alteromonadales (23 organisms), Enterobacteriales
(38 organisms), Chromatiales (9 organisms), Oceanospirillales (7 organisms),
Pasteurellales (15 organisms), Pseudomonadales (15 organisms), Xanthomon-
adales (9 organisms) and Thiotrichales (5 organisms) using method presented
above. Genomes were chosen from NCBI list of representative bacteria genomes.
Length of the whole genome sequences was between 113685 bp and 7215267 bp.
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Fig. 3. Results of classification presented in ROC space a) Results on phylum level are
shown, pairs of phyla are numbered as follows: 1 - Firmicutes and Actinobacteria, 2 -
Tenericutes and Actinobacteria, 3 - Tenericutes and Firmicutes, 4 - Proteobacteria and
Firmicutes, 5 - Proteobacteria and Actinobacteria, 6 - Proteobacteria and Tenericutes.
b) Results on order level are shown, pairs of orders are numbered as follows: 1 - Ent.
and Alt., 2 - Alt. and Chrom., 3 - Alt. and Ocean., 4 - Alt. and Pas., 5 - Alt. and Pseud.,
6 - Alt. and Thiotr., 7 - Alt. and Xant., 8 - Ent. and Chrom., 9 - Ent. and Ocean., 10
- Ent. and Pas., 11 - Ent. and Pseud., 12 - Ent. and Thiotr., 13 - Ent. and Xant., 14
- Ocean. and Chrom., 15 - Chrom. and Pas., 16 - Chrom. and Pseud., 17 - Chrom.
and Thiotr., 18 - Chrom. and Xant., 19 - Ocean. and Pas., 20 - Ocean. and Pseud.,
21 - Ocean. and Thiotr., 22 - Ocean. and Xant., 23 - Pseud. and Pas., 24 - Pas. and
Thiotr., 25 - Pas. and Xant., 26 - Pseud. and Thiotr., 27 - Pseud. and Xant., 28 - Thiotr.
and Xant. (Alt. = Alteromonadales, Ent. = Enterobacteriales, Chrom. = Chromatiales,
Ocean. = Oceanospirillales, Pas. = Pasteurellales, Pseud. = Pseudomonadales, Thiotr.
= Thiotrichales, Xant. = Xanthomonadales)

Total sequence length was 486687188 bp. For evaluation the success of classi-
fication similar bacteria into one group, we used the method described above.
Table 3 shows results, where probabilities lower than 0.5 are highlighted. Results
presented in ROC space are shown in Fig. 3 b). In [24], comparative genomic
analyses based on concatenated sequences for 13 and 36 universally distributed
proteins and the maximum like hood phylogenetic tree was used and the order
Oceanospirillales and Alteromonadales were not separated clearly. Our method
cannot separate Oceanospirillales from Alteromonadales, neither. Results indi-
cated very similar DNA content for those orders. Results of our method are
not satisfactory for separation of Oceanospirillales from Pasteurellales, Chroma-
tiales from orders Pseudomonadales and Xanthomonadales, Pseudomonadales
from order Xanthomonadales. The closed relationship is shown for Chromatiales
and Xanthomonadales in [24]. But, probability of correct separation for other
group of organisms (52) is 1 or close to 1. The average probability is 0.93.
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Table 3. Probability that bacteria from order in corresponding column will be sep-
arated from bacteria from order in corresponding row (Alt. = Alteromonadales, Ent.
= Enterobacteriales, Chrom. = Chromatiales, Ocean. = Oceanospirillales, Pas. = Pas-
teurellales, Pseud. = Pseudomonadales, Thiotr. = Thiotrichales, Xant. = Xanthomon-
adales)

Alt. Ent. Chrom. Ocean. Pas. Pseud. Thiotr. Xant.

Alteromonadales - 1 1 0.29 1 1 1 1
Enterobacteriales 0.91 - 1 0.71 1 1 1 1

Chromatiales 1 1 - 1 1 1 1 1
Oceanospirillales 0.96 1 1 - 1 1 1 1
Pasteurellales 1 1 1 0.29 - 1 1 1

Pseudomonadales 1 1 0.33 1 1 - 1 1
Thiotrichales 1 1 1 1 1 1 - 1

Xanthomonadales 1 1 0.33 1 1 0.47 1 -

4 Conclusion

We developed a new method for determination of relationship between bacte-
ria based on whole genome information. The method based on spectrogram is
created from whole genomes, which were retrieved from NCBI.

We analyzed the success of classification on level of phyla and order. In the
first case, we classified 168 organisms from 4 phyla. We evaluated the success of
separation of bacteria into groups by counting the probability, that bacteria will
be separated into the correct group, if pair of phyla is analyzed. Problem arises
with separation of Proteobacteria. Some organisms from phyla Proteobacteria
were placed into one branch with bacteria from Firmicutes and Actinobacteria.
No organism from Firmicutes was placed into branch with Proteobacteria. The
average probability of successful classification on phyla level was 0.82.

A total of 121 Gammaproteobacteria from 8 orders were analyzed to assess
the success of the classification in orders level. Most of the bacteria from order
Oceanospirillales were placed incorecctly into one branch with Alteromonadales
and Pasteurellales. Similarly, most of the organisms from order Chromatiales are
assigned to Pseudomonadales and Xanthomonadales. The average probability of
successful classification on order level was 0.93.

The proposed method is suitable for classification of organisms on phyla and
order level. Method does not need to choose subsequences for analysis to the
contrary in gene content comparison based methods or other methods, which
used searching the similar parts of genetic information (e.g. K-strings method).
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Abstract. Dimensionality reduction of attribute set is a common pre-
processing step used in machine learning. This step is especially impor-
tant for high-dimensional data with low-dimensional representation such
as gene expression data. Feature reduction is essential in the case of mi-
croarray data because most of the microarray data attributes are believed
to be unrelated to observed classes. This paper proposes a three-step
feature selection framework based on feature clustering, multi-criteria
assessment (Borda count) and Markov blanket. The proposed frame-
work is a filter method so it can be used with any classification algo-
rithm. Its classification performance and selection stability were assessed.
The experimental studies were performed on 10 microarray data sets.
The experimental evaluation showed that the Markov blanket filter pro-
duces results comparable to state-of-art methods in terms of classification
performance. However it tends to produce unstable solutions.

Keywords: Feature selection, Feature clustering, Feature filtering,
Microarray, Borda count, Markov blanket, Stability.

1 Introduction

In many data mining problems there are data sets with extreme asymmetry be-
tween the high-dimensional data and its low-dimensional representation. Typical
examples of such data are DNA microarrays, or gene chips, which are an im-
portant new technology for genomic research [16]. Analysis of microarray data
is a fundamental process in the characterization of gene functions and detec-
tion of correlated gene expression, which can be useful in the medical decision
strategy, e.g. recognition of tumor types, prediction of the clinical outcome, dis-
ease detection, to name only a few [24, 7]. Usually, the microarray data contain
the expression of thousands of genes (features) and – due to considerable time
and logistic costs – microarray studies are limited to a small number of exper-
iments (patients). It means, that in microarray data the number of features is
much larger than the number of samples, which denotes the problem commonly
known in machine learning as the curse of dimensionality [21].

Although the microarray data contains a large number of genes (features),
only few of them are associated with a medical decision problem under
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consideration [13]. This observation leads to the conclusion that in the anal-
ysis of microarray data feature selection procedures play a crucial role.

Feature selection denotes a process of removing irrelevant features from the
original set of genes so as to retain the most informative genes useful for a further
decision problem. There are many effective methods of feature selection which
have been used in the microarray experiments. A detailed review of the feature
selection techniques used for gene expression data can be found in [8].

In this paper we proposed a novel method of feature selection based on the
three-step scheme described in [21], in which first the data set is clustered, then
features in clusters are evaluated and the top-rated features from each cluster
are gathered, and finally the collected features are subjected to the procedure of
optimal feature selection.

The paper is organized as follows. Section 2 provides an insight into algo-
rithms of feature selection and methods for evaluation of their results. Section 3
describes in detail the procedures applied in the three-step framework of feature
selection. In Section 4 the experiments conducted are shown and the results with
discussion are presented. Section 5 concludes the paper.

2 Feature Selection

2.1 Preliminaries

The data of microarray experiments are summarized in the matrix:

X =

⎛
⎜⎜⎝

x1,1 x1,2 . . . x1,N

x2,1 x2,2 . . . x2,N

. . . . . . . . . . . .
xM,1 xM,2 . . . xM,N

⎞
⎟⎟⎠

where xi,j ∈ � is an expression level of j-th gene in i-th experiment, M is the
number of objects (experiments) and N is the number of features (genes).

Let

Ei = [xi,1, xi,2, . . . , xi,N ] ∈ �N (1)

denotes data coming from the i-th experiment (i = 1, 2, . . . ,M), and

Gj = [x1,j , x2,j , . . . , xM,j ]
T (2)

denotes a vector of observations of j-th gene expression in different experiments
(j = 1, 2, . . . , N). Additionally, we suppose that microarray data set has a form
of training set, i.e. each feature vector Ei is associated with class number (label)
Li ∈ L, where L denotes class number set. Class label may have a different
practical meaning resulting from a given medical problem – for example, it may
be a type of tumor or a disease name.

In feature selection procedure we select (for given number n) the subset of n
features from the entire set of N features so as to minimize (maximize) adopted
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criterion Q(·) or alternatively – for given value of criterion Q(·) we select the
subset of n features so as to minimize the number n.

Feature selection procedures can essentially be divide into filters, wrappers,
embedded methods and hybrid methods.

Filter methods are based on criteria functions calculated from the training set,
so they are independent of the learning methods used in the next stage of the
analysis. The undeniable advantage of the filter approach is its low computational
complexity. Filter methods were used to reduce microarray data sets in [25].
Filter methods can also be employed as one of the processing steps in feature
selection framework [21, 28].

In wrapper methods there is feedback between the applied machine learning
algorithm and the method of attribute reduction. The subset evaluation criterion
is based on the quality of the results obtained by the chosen method of learning.
Wrapper methods generally outperform filters [23]. However, they require more
calculations. Wrapper methods are often criticized as being similar to brute force
methods [8]. They were also proved to be overfitting-prone [23]. An Example use
of the wrapper methods can be found in [21].

Embedded methods select a subset of features during the process of classifier
learning. This approach considerably reduces calculation effort in comparison
to wrapper methods. However, the quality of the results is comparable [23].
It should be noted that embedded methods are built for a specific machine
learning algorithm. One of the best known examples of these methods is the
SVM-RFE [9].

Hybrid methods combine the above mentioned approaches in order to over-
come their drawbacks and enhance their strengths. An example of a hybrid
method was shown in [21].

2.2 Evaluation of Feature Selection Process

In order to compare feature selection methods some evaluation criteria must be
developed. In many cases the feature selection process is preceded by the clas-
sification step, so classification quality can be used as an evaluation criterion.
The classification error criterion allows us to asses the loss of information caused
by the selection process. The classification quality is evaluated experimentally
using the training and test set. In the case of small data sets classification qual-
ity is assessed using the K-fold Cross-validation. Classifier performance can be
assessed using a few criteria. Error rate (3) is one of the frequently used criteria.

Er =
a

a+ b
(3)

Where a and b are the numbers of incorrectly and correctly classified objects,
respectively.

On the other hand, it is crucial to asses stability of selected subset of at-
tributes. Stability means the sensitivity of the selection algorithm used to small,
random changes in the training set. Stability is assessed by examining the vari-
ability of the resulting set for different data sets, generated from the same
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probability distribution [10]. The outcome of stability assessment is the data
distribution results from comparison of all pairs of the reduced sets. These sets
are compared using a given criterion [10]. Stability can be evaluated using several
measures such as Tanimoto measure:

T (A,B) =
|A ∩B|
|A ∪B| . (4)

A and B are reduced subsets and | · | is set cardinality.
The above mentioned evaluation criteria and leave-one-out scheme were used

during experimental study.

3 Methods

Our approach is based on the three-step method described in [21]. The original
concept is described below. In the first step feature clustering using the K-means
algorithm is performed. In the next step attributes in clusters are evaluated using
the SNR(Signal to Noise Ratio) criterion. Then, for each cluster a representa-
tive feature is selected. The representative is the best-assessed attribute of the
cluster. At the final stage, a subset of features is selected using the wrapper
algorithm based on swarm optimization. The aim of using the clustering algo-
rithm is to diverse the selected feature subset. Each cluster contains attributes
similar in terms of a given criterion. The attribute set at the next stage contains
representatives of each cluster. This prevents the set from being dominated by
similar, highly rated attributes. The second step is performed in order to filter
out irrelevant attributes before applying the third step. The filtration is con-
ducted using a ranking search. Each attribute is evaluated individually and then
the best attributes are selected (a detailed comparison of common evaluation
criteria can be found in [15]). Ranking search is based on an implicit assumption
that the used criterion is additive. However, this assumption is not fulfilled in
most cases. The structure of the selection method does not consider the case
when several poorly rated attributes may together have a greater discrimina-
tory power than a highly rated attribute [8]. Moreover, it tends to include many
redundant features in the output set.

The third step, whose computational complexity is the highest of all the steps,
selects the final set of attributes.

Fig. 1. Block diagram of the three-step feature selection framework
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After analyzing the described method we proposed the following modifica-
tions.

– Replacing the clustering algorithm with the hierarchical clustering algorithm.
– Changing the SNR criterion into the multi-criterion based on Borda Count[25].
– Replacing the wrapper method with the Markov blanket [27] based filter.

The abandonment of K-means was motivated by the following flaws. Clusters
obtained by K-means depend strongly on initial solution. Therefore it is neces-
sary to perform many times the clustring and then select the best solution. The
algorithm works well with clusters of the shape similar to a multidimensional
sphere. Therefore, instead of the K-means algorithm we decided to use the hi-
erarchical classification algorithm. We used Ward’s criterion for cluster merging

Dw = arg mini,j∈1,2,··· ,M

⎡
⎣ ∑
l∈Ci∪Cj

∥∥El − VCi∪Cj

∥∥2 −
k=j∑
k=i

∑
l∈Ck

‖El − VCk
‖2
⎤
⎦ .

(5)

Where Ck represents a cluster, El is data point in the cluster and Vk is a centroid
of the cluster. The hierarchical clustering algorithm is a deterministic algorithm.
This makes determining optimal number of clusters less computationally ex-
pensive than in the case of the K-means method. The cluster dendrogram is
computed once, and then the dendrogram is cut at a given level. In order to
choose an appropriate number of clusters a suitable criterion must be chosen. In
this paper the average silhouette index [14] was used.

In the proposed approach the second step was changed. The representative
of the cluster is not an attribute but a set of attributes. The number of the
representatives depends on cluster cardinality and it is proportional to ηN , where
η ∈ (0, 1].

Authors of [25] showed that the above mentioned disadvantages of the filter
approach can be overcome by using several different criteria, and then combining
the results. Therefore, we proposed to use the method called Borda Count [25].
The Borda Count combines several rank-filter approaches in overall ranking. The
attributes are evaluated using given criteria. So m rankings are created. In each
of these rankings the best attribute gets N points, the second one N − 1 points
and so on. The final score is the sum of points scored in all rankings.

A Bayesian network is a model of the relationships between random variables.
It is represented by a Directed Acyclic Graph, in which vertices represent events,
while the arcs represent connections between these events [27]. Let F be the set
of attributes, and L /∈ F be the set of labels, the Markov blanket of a random
variable L is the smallest subset that generates L statistically independent of
the other random variables. Less formally, it is a set of parents, descendants
and other descendants of the parent node in a Bayesian network [4]. It was
proven that the Markov Blanket is an optimal subset of features for the classifi-
cation [26]. However, the computational complexity of Markov blanket induction
is prohibitive in the case of microarray data (detailed review of Markov blanket
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induction algorithms can be found in [5]). Therefore in our approach, Markov
blanket was preceded by two low-computational-complexity filters. Their main
task is to reject the irrelevant attributes.

The scheme of our approach is showed in Fig. 1.

4 Experiments

4.1 Experiment Setup

In order to study the performance of the developed framework, i.e. its stabil-
ity and discriminatory power of the determined feature vector, some computer
experiments were made. The experiments were conducted in the R [18] envi-
ronment. The discriminatory power was assessed using evaluating classification
quality. It was decided to use K-NN (the number of neighbours was set to 5)
and SVM classifiers. The classification quality was assessed using the error rate
criterion (3). Due to a small number of objects in data sets it was decided to
apply the leave-one-out cross-validation scheme.

Stability was assessed using Tanimoto index (4). Bootstrap method was used
to create Br = 100M−element sets. Then we computed the Tanimoto indices for
all pairs of selected subsets. The mean values of the obtained Tanimoto measure
distribution were compared to assess the methods.

The statistical significance of obtained results was assessed using the Friedman
test [3] and the post-hoc Nemenyi test [3]. The significance level was set to
α = 0.05. The critical difference for the Nemenyi test given α test is CDc = 3.320
for classification and CDs = 2.849 for a stability test.

4.2 Databases

The benchmark databases used in the experiments were taken from the Broad
Institute Repository (BIR) [29], Princeton University Collection (PUC) [30] and
some sets from datamicroarray package (DMP) [19]. A brief description of the
databases is given in Table 1. For each data set feature vectors were subjected
to appropriate pre-processing procedures and normalized. Details can be found
in the literature cited in Table 1.

4.3 Methods Used for Comparison

In classification experiment the following methods of feature reduction were used:

1. The ReliefF.
2. The Information Gain filter.
3. Minim Description length (MDL) filter.
4. Borda count filter without previous clustering.
5. The two-step framework.
6. Random selection
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7. The three-step framework.
8. Selection of full attribute set(without selection).

The same methods were used in the experiment with stability criterion except
the selection of full attribute set.

The first method is based on the ReliefF algorithm. The ReliefF is a version
of the Relief algorithm adapted to multi-class problems. Relief based algorithms
were described in [20]. Next ranking method used in framework was a criterion
based on the Normalized Information Gain

NIG(Gi) =
I(L,Gi)

H(L)
, (6)

where I(L,Gi) is mutual information and H(L) is entropy of L. The last criterion
was based on Minimum Description Length (MDL). It was proposed in [12].

4.4 Results and Discussion

Results for classification are presented in Table 2 and Table 3. The results show
that the three-step framework outperforms other methods in the case of the
K-NN classifier. However, there is no significant difference, in terms of classifi-
cation error, between the three-step framework and the other attribute selection
methods.

Based on the obtained results (Table 4) it can be concluded that the stabil-
ity obtained by the three-step framework is the lowest in comparison with the
other examined methods. Moreover, there is no statistically significant differ-
ence between the stability results obtained by the three-level framework and the
result obtained by the random selection. However, for the other methods such
differences exist. On the other hand, distances between other methods, except
Information Gain filter, and the three-step framework are smaller than CDs. Ob-
tained stability profiles are shown in Fig. 2, Fig. 3 confirmed this observations.
In the given profiles (Fig. 3) it can be seen that the three-step framework usually
achieves a similar level of stability, regardless of the number of features provided

Table 1. The databases used in the experiments

Data set Source #Features (Genes) #Objects #Classes
Leukemia [6] BIR 3051 38 2

Carcinoma [16] PUC 3553 36 2
Colon [1] PUC 2000 62 2

Adenoma [16] PUC 3556 8 2
Khan [11] BIR 2308 63 4

Prostate [22] BIR 2135 102 2
Gravier [7] DMP 2905 168 2
Sorlie [24] DMP 456 84 5
Brain [17] BIR 5597 42 5

Christensen [2] DMP 1413 217 3
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Table 2. Classification error for K-NN classifier and η = 0.02 (methods are numbered
as in subsection 4.3)

1 2 3 4 5 6 7 8
Adenoma 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50

Brain 0.36 0.38 0.36 0.38 0.24 0.79 0.48 0.26
Carcinoma 0.08 0.06 0.06 0.03 0.03 0.47 0.03 0.03

Christensen 0.05 0.00 0.04 0.01 0.02 0.66 0.02 0.00
Colon 0.29 0.29 0.29 0.29 0.31 0.48 0.16 0.18

Gravier 0.32 0.34 0.31 0.32 0.31 0.38 0.29 0.36
Khan 0.29 0.32 0.25 0.33 0.29 0.67 0.21 0.06

Leukemia 0.18 0.21 0.18 0.21 0.24 0.58 0.21 0.03
Prostate 0.14 0.25 0.15 0.25 0.18 0.49 0.18 0.13

Sorlie 0.51 0.48 0.51 0.38 0.36 0.72 0.55 0.18
Avg. Rank 4.50 4.75 3.95 4.45 3.90 7.95 3.80 2.70

Table 3. Classification error for SVM classifier and η = 0.02 (methods are numbered
as in subsection 4.3)

1 2 3 4 5 6 7 8
Adenoma 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.12

Brain 0.24 0.24 0.24 0.24 0.19 0.76 0.48 0.12
Carcinoma 0.06 0.06 0.08 0.03 0.06 0.53 0.06 0.03

Christensen 0.06 0.00 0.22 0.01 0.01 0.71 0.02 0.00
Colon 0.16 0.16 0.16 0.16 0.16 0.48 0.19 0.16

Gravier 0.28 0.28 0.24 0.29 0.30 0.35 0.29 0.26
Khan 0.16 0.06 0.16 0.11 0.10 0.60 0.19 0.00

Leukemia 0.05 0.03 0.05 0.03 0.05 0.37 0.21 0.00
Prostate 0.14 0.25 0.18 0.10 0.12 0.46 0.13 0.09

Sorlie 0.42 0.38 0.48 0.42 0.41 0.69 0.47 0.11
Avg. Rank 4.55 3.45 5.00 3.55 3.75 8.00 5.65 2.05

Table 4. Mean values of 1-Tanimoto (lower is better) and average ranks over data sets
for η = 0.02 (methods are numbered as in subsection 4.3)

1 2 3 4 5 6 7
Adenoma 0.10 0.00 0.71 0.57 0.60 0.99 0.75

Brain 0.00 0.00 0.97 0.83 0.83 0.99 0.91
Carcinoma 0.92 0.62 0.89 0.92 0.92 0.99 0.95

Christensen 0.94 0.41 0.88 0.83 0.84 0.99 0.92
Colon 0.00 0.00 0.98 0.84 0.84 0.99 0.94

Gravier 0.95 0.86 0.94 0.94 0.94 0.99 0.97
Khan 0.79 0.02 0.79 0.83 0.83 0.99 0.94

Leukemia 0.07 0.00 0.96 0.81 0.81 0.99 0.92
Prostate 0.61 0.03 0.52 0.79 0.80 0.99 0.92

Sorlie 0.95 0.82 0.91 0.94 0.93 0.99 0.94
Avg. Rank 3.50 1.10 3.70 3.30 3.90 7.00 5.50
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Fig. 2. Stability profile for Adenoma set

Fig. 3. Stability profile for Colon set
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by the first two stages. The only data set for which three-step framework behaves
differently is Adenoma (Fig. 2). It can be concluded that the induction of Markov
blanket is sensitive to changes in the input set. Poor stability can also be caused
by presence of many redundant features in the data sets.

5 Conclusion

In this paper we proposed the tree-steps feature selection framework based on
ranking filters, Borda Count, attribute clustering and Markov blanket. The pro-
posed framework was compared to its components. The classification error and
set stability were assessed using 10 real microarray data sets.

The conducted experiments made it possible to draw the following conclusions:

– The results obtained by the two-step framework are not worse than the
worst result obtained using the base criteria (in terms of overall ranking).
This applies to both the quality of the classification and the stability of the
solution.

– The two-step framework achieves results similar to the Borda Count method
applied to the full feature set (without attribute clustering)

– The number of relevant attributes returned by the three-step framework
is usually lower than the number of attributes returned by the two-step
framework.

The obtained results provide the basis for further research. First, the following
issues should be considered:

– Use of a different clustering algorithm, another method of determining the
optimal number of clusters, and a change in distance measure between at-
tributes should be considered.

– Use of another multi-criteria feature selection method should be considered.
– Due to its instability, the third framework’s step should be modified.
– Due to large discrepancy of the classification results, the three-step frame-

work should be assessed using other classifiers such as the naive Bayes clas-
sifier or an artificial neural network classifier.
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