
Thermal Effects in Hydrodynamic
Cylindrical Bearings

Diogo Stuani Alves, Gregory Bregion Daniel
and Katia Lucchesi Cavalca

Abstract It’s known that a rotating machine, when in operation, is susceptible to
vibrations, which occurs due to external excitations or to vibrations inherent from
the machine operation, as the residual mass unbalanced excitations. If the rotating
machine is supported by bearings with hydrodynamic lubrication, those are, con-
sequently, susceptible to sub-syncronous vibrations due to a fluid-induced insta-
bility. The sub-syncronous vibrations, known as oil whirl/whip, can cause critical
failures in the system, and consequent sudden stops and irreversible damages in the
bearings. Through characterization of the oil film, by linearized stiffness and
damping coefficients, it is possible to obtain an approximation to the threshold of
instability. The hydrodynamic lubrication’s classical theory applies the constant
viscosity condition to calculate the dynamic coefficients. Nevertheless, when the
bearing is under operation, viscous fluid shear occurs, resulting in the increasing of
the lubricant temperature, influencing the dynamic behavior of the entire rotational
system. This paper presents a comparative analysis of the dynamic behavior,
regarding the threshold of instability, considering the Lund critical mass and the
logarithmic decrement theories for the classical hydrodynamic model and the
thermohydrodynamic model.
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1 Introduction

The hydrodynamic bearings are critical components of rotating machines, espe-
cially those that require high fatigue life. The forces generated in the fluid film acts
on the rotor in radial and tangential directions, which can lead it to an undesirable
auto-excited behavior, known as fluid induced instability (oil whirl/whip).

The first phenomenon, oil whirl, is easily identified, because its amplitude is
related to the precession movement of the shaft and its frequency is approximately
0.5 times the rotational speed. The second phenomenon, oil whip, occurs at a
rotation velocity associated to the vibration frequency of the first bending mode of
the rotor. In this case, the rotor movement suddenly becomes unstable, generating
high precession amplitudes, which no longer depend on the rotation speed of the
shaft.

The phenomenon of fluid-induced instability in rotating machinery was firstly
observed by Newkirk [1]. Afterwards, many authors directed their efforts to study
this problem, especially for obtaining the threshold of instability, since it may give
the operation limit for the rotating systems supported by hydrodynamic bearings.

Lund [2] proposed a method to evaluate the dynamic coefficients of the fluid film
in the bearings, including direct and cross-coupled coefficients, still in use for the
most of the rotor dynamic problems. Later, Lund [3] also presented a formal way to
obtain the threshold of stability developing the critical mass theory. In the 70’s, the
same author used the damped critical speed concept to find the instability threshold
in flexible rotors supported by fluid-film bearings [4], and this method is still used
as can be seen in the works of Cloud [5] and Pettinato [6].

However, the lubrication problem is usually solved by the classical Reynolds’
equation, basically considering isothermal condition in the bearings. On the other
hand, is well known that the viscosity is highly dependent on the temperature,
which in turn can significantly change with the rotation velocity of the rotor shaft
and along the bearing wall. Hence, a thermodynamic model of the fluid-film can
affect the equivalent coefficients of stiffness and damping and, consequently, the
threshold of instability. Dowson [7] introduced a generalized Reynolds’ equation to
model the variation of relevant quantities, not only viscosity but density, both
through and along the oil film. This equation was derived from hydrodynamic’s
fundamental equations with minimal restrictive assumptions. Thereafter, Dowson
and March [8] accomplished a series of experimental analysis as well as Lund and
Hansen [9], and later Khonsari et al. [10] accomplished many simulations and
experiments to create charts for rapid screening of the temperature influence on the
behavior of the bearing.

Hence, this paper aims to apply both methods of critical mass and logarithm
decrement to identify of the fluid induced instability threshold, comparing the HD
and THD models for the bearings with focus on the impact on the rotor stability
prediction.
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2 Methodology

The hydrodynamic lubrication depends on the pressure distribution in the lubricant
film to create the hydrodynamic forces able to support the load of the rotor. The
equation that describes the dynamics of the oil film is the Reynolds Equation to
incompressible fluid. When the Reynolds’ Equation is applied in a thermohydro-
dynamic analyses (THD), its general form is given by Eq. (1):
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where x ¼ r � h is the circumferential coordinate, z is the axial coordinate, y is the
radial coordinate, h is the thickness of the oil film, p is the pressure in the oil film,
U is tangential velocity of the fluid, and the viscosity integrals F0 ¼R h
0

dy
l ; F1 ¼

R h
0

y
l dy; F

0
2 ¼

R h
0

y
l � y� F1

F0

� �
dy.

The solution of the thermohydrodynamic lubrication problem requires the
simultaneous solution of the the Energy Equation to evaluate the viscosity
dependence with the temperature, as presented in Eq. (2):
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is the viscous dissipation term, ρ is the fluid density, Cp

is specific heat, T is the temperature and u, v and z are the circumferential, radial and
axial velocities, respectively.

The viscosity is the common term in Reynolds Equation and Energy Equation.
The viscosity dependence with temperature is given by Petroff expression in
Eq. (3):

l Tð Þ ¼ 0:2023
1� 0:0468 � T þ 0:0029 � T2 ð3Þ

As described by Lund [2, 3], the hydrodynamic forces can be expanded in
Taylor Series of first order and linearized as in Eq. (4):

Fx ¼ Fx0 þ Kxx � Dxþ Kxy � Dyþ Bxx � D _xþ Bxy � D _y

Fy ¼ Fy0 þ Kyx � Dxþ Kyy � Dyþ Byx � D _xþ Byy � D _y
ð4Þ

The stiffness and damping coefficients are the partial derivatives evaluated at the
equilibrium position:
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The terms Kxx and Kyy, just as Bxx and Byy, are direct coefficients of stiffness and
damping respectively, while the terms Kxy and Kyx; Bxy and Byx, are the cross
coupled coefficients of stiffness and damping respectively.

According to Lund [4], the stability analysis can be obtained from the equation
of motion of the bearing, considering a generic mass M:

M � D x
::þBxx � D _xþ Kxx � Dxþ Bxy � D _yþ Kxy � Dy ¼ 0

M � D y
::þByy � D _yþ Kyy � Dyþ Byx � D _xþ Kyx � Dx ¼ 0

�
ð6Þ

Assuming a solution in the form est to Dx and Dy, being s ¼ kþ i � x, and
bearing in mind that if the real part of the solution is positive the system is stable,
and if the real part is negative the solution is instable, the threshold of instability
occurs when k ¼ 0. In this case, Eq. (6) can be written in matrix form and the
solution of the eigenvalue problem gives both following expressions:

M � x2 ¼ Kxx � Byy þ Kyy � Bxx � Kxy � Byx � Kyx � Bxy

Bxx þ Byy
¼ k0 ð7Þ

x2 ¼ Kxx � k0ð Þ � Kyy � k0
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Bxx � Byy � Bxy � Byx
ð8Þ

Equations (7) and (8) give critical mass Mcrit and the precession frequency of the
fluid film x0. Solving Eq. (6), instead, considering the portion of the rotor mass
applied on the bearing, the eigenvalue problem gives a total impedance of the rotor-
bearing system:

Z ¼ Zxx þ Zyy
2
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where: Zxx ¼ Kxx þ i � x � Bxx is the mechanical impedance of the bearing for the
direct coefficients in the x direction, and analogously for y and cross-coupled
directions. From Eq. (9), the maximum and minimum bearing impedance can be
obtained.

Zmax ¼ Kmax þ j � x � Bmax

Zmin ¼ Kmin þ j � x � Bmin

�
ð10Þ

If Bmin is positive the bearing is stable. However, there is a frequency x0 in which
Bmin ¼ 0 and Kmin ¼ k0, namely, the threshold of instability. The previous condition
happens when the precession frequency x0 reaches the natural frequency of the
mass-spring system ω and, consequently, the rotor-bearing system becomes instable.

1126 D.S. Alves et al.



Another method to analyze the rotor-bearing stability is the logarithm decrement.
This analysis depends on the overall dynamic behavior of the rotating system since it
is derived from the modal damping factor. In this case, according to Cloud [5], the
stability analysis considers the rate of decay of the free oscillation to determine the
amount of damping present in the system. Hence, the free vibration can be written as:

x tð Þ ¼ xj j � ekt � cos xdt þ /ð Þ ¼ Re x1 þ j � x2ð Þestf g ð11Þ

Being xj j the vibration amplitude, / the phase angle, xd the damped frequency,
n the damping factor and s the complex eigenvalue, given by:

s ¼ k� j � xd ¼ �n � x� j � x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð12Þ

In this case, if k is negative the system is damped and the free vibration vanishes
with time, i.e., the system is stable. However, if k is positive the amplitude increases
with time turning the system unstable. However, it is usual to observe the logarithm
decrement instead of the magnitude of k, as given in Eq. (13):

d ¼ ln
x tð Þ

x t þ sð Þ
� �

¼ � 2 � p � k
xd

¼ 2 � p � nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ð13Þ

According to Eq. (13), the threshold of instability is given when the logarithm
decrement becomes negative.

3 Results

In order to obtain the dynamic behavior of the system and verify the natural
frequencies and the threshold of instability, a rigid rotor (Fig. 1) was modeled by
finite elements method, represented by the matrices of mass, gyroscopic effect,
stiffness and damping. The model has 15 beam elements of circular cross-section
and 3 rigid disk elements (Fig. 1). The dimensions of each element are given in
Table 1.

Fig. 1 Discrete model by finite elements used in the numerical simulation
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Regarding Fig. 1, the residual mass unbalance is represented by a mass of
0.0001 kg and an eccentricity of 0.001 m, located in nodes 3 and 13, respectively.
Also, the hydrodynamic bearings are located in node 5 (first bearing) and node 11
(second bearing). Cylindrical radial bearings are considered in the numerical sim-
ulation. Figure 2 shows the geometric scheme of the bearings and Table 2 presents
the operational conditions applied for the simulations. In the numerical model, the
fluid film in contact with the shaft has the same tangential velocity, while the
lubricant in contact with the bearing surface is static. In the THD model, however,
the fluid shearing occurs and heats the oil, decreasing its viscosity. The viscosity
drop changes the bearing behavior since the journal finds a new static equilibrium
position to generate the same forces at the same rotation velocity. The new equi-
librium position can influence the bearing stiffness and damping coefficients.
Consequently, the HD and THD models give different results in the evaluation of
the equivalent dynamic coefficients, due to different static equilibrium position

Table 1 Dimensions of the finite elements

Elements Type Diameter (mm)
(ext/int)

Length
(mm)

Elements Type Diameter (mm)
(ext/int)

Length
(mm)

1 Beam 63.00 32.20 10 Beam 47.70 28.35
2 Beam 110.25 56.70 11 Beam 50.00 21.40
3 Disk 157.5/50 28.40 12 Beam 50.00 21.40
4 Beam 50.00 46.60 13 Disk 56.70/47.30 9.50
5 Beam 50.00 21.40 14 Beam 47.30 35.30
6 Beam 50.00 21.40 15 Disk 157.50/47.30 31.50
7 Beam 47.70 28.35 16 Beam 110.30 47.30
8 Beam 47.70 28.35 17 Beam 78.80 31.50
9 Beam 47.70 28.35 18 Beam 44.10 41.60

Fig. 2 Radial bearing
geometry
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found by those models at each rotational speed. As noticed in Fig. 3, the cross-
coupled stiffness coefficients obtained by the THD model is lower than the one
obtained by the HD model, while the direct ones are slightly higher. In the case
studied here, the damping coefficients are not significantly modified by the viscosity
change into the simulated frequency range. The THD model brings the cross-
coupled and the direct coefficients closer than the HD model, and consequently,
diminishes the bearings anisotropy, enlarging the stability range, as seen in Figs. 4
and 5.

Lund [3] critical mass theory takes into account only bearing coefficients to
predict the threshold of instability and it is formally developed for rigid and
symmetrical rotors. The rotor-bearing system is considered as a mass-spring system
where the spring equivalent stiffness is given by k0 (Eq. (7)). So, when the oil whirl
frequency reaches the natural frequency of the mass-spring system (rotor-bearing
system), it becomes instable.

Analyzing the system instability by this theory (Fig. 4), the different models
changed the instability threshold, shifting it from 85 Hz in the HD model to 92 Hz
in the THD model, making a wider stable range.

Table 2 Operational
conditions

Bearing diameter D = 50 mm

Bearing length L = 42.8 mm

Radial clearance C = 210 µm

Bearing load W = 111.7 N

Lubricant density ρ = 860 kg/m

Lubricant thermal conductivity k = 0.13 W/m °C

Reference viscosity ηi = 0.069412 Pa s

Inlet temperature Ti = 35 °C

Shaft temperature Te = 50 °C

Inlet pressure Ps ¼ 0 Pa
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Fig. 3 Equivalent dynamic coefficients of the bearings: a stiffness; b damping
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The same tendency is observed when the instability threshold is obtained by the
logarithmic decrement method, i.e., the THD model makes the system more stable.
In this case, the damping ratio method uses the entire rotor-bearing system to
analyze the stability. In this case, the rotor is modeled by FEM to obtain the
complete equation of motion of the system and the dynamic coefficients of stiffness
and damping of the bearings are inserted in the matrices at the respective nodes
corresponding to the bearings location. Then, the bearing anisotropy plays a fun-
damental role on the system stability, and since the THD model generates less
anisotropic bearings, for this case, the threshold of instability occurs later than in the
HD model.

Using the logarithm decrement diagram, Figs. 5, 6 and 7 show that the instability
thresholds occur at 47 Hz for the HD model and 51 Hz for the THD model, since
the damping ratio decay related to one of the bearings modes becomes zero.
However, a second decay crossing the zero damping ratio occurs, also related to a
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Fig. 4 Instability analyses by Lund critical mass theory: a natural and whirl frequencies. b Natural
and whirl frequency detail

Fig. 5 System instability by logarithm decrement. a HD model. b THD model
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bearing mode. However, it takes place at different rotation speeds in both models
(HD: 85 Hz and THD: 92 Hz). Taking a closer look at the frequencies of the second
crossing over the zero, it is possible to identify that the frequencies are the same
obtained by the Critical Mass method presented by Lund. As the Critical Mass
method considers the rotor-bearing as simplified mass-spring system, the only mode
that can be excited is the translational (cylindrical) rigid mode, while in logarithmic
decrement method the pivoted (conical) rigid mode can be excited as well. So, it’s
understood that the instability, for the case studied here, is occurring for the pivoted
mode and the corresponding instability threshold is lower than the translational
mode (Fig. 8).
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Fig. 6 Bearing orbits for HD model: a 46 Hz. b 48 Hz
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4 Conclusion

The use of more complete lubrication models, as the THD model, for bearings
analysis is sometimes necessary to better characterize the entire rotating system.
Due to the changes in the fluid film viscosity, the hydrodynamic forces are modified
and also the dynamic coefficients of stiffness and damping, that plays a major role
on the instability analysis of rotating machines. Two different methods to analyze
rotor-bearing system stability were investigated. The Critical Mass method depends
only of bearing dynamic coefficients and is restricted for symmetrical and rigid
rotors. The logarithmic decrement is based on the modal damping ratio of the entire
system and is widely used in stability analysis. For the case studied, the Critical
Mass gives a larger stability frequency range for the rotor when compared with the
logarithmic decrement. The fact that Lund’s method can only predict instability for
the translational rigid mode indicates that the threshold of instability pointed by the
damping ratio is related to the pivoted rigid mode (HD: 47 Hz, THD: 51 Hz).
Nevertheless, the threshold of instability was changed in both methods when the
THD model was applied, because the anisotropy of the bearing is reduced in the
THD model, indicating the importance of temperature effects mainly in high
rotational speed machinery.
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