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Abstract Conducted analyses of rotors with cracked shafts show that the stability
of such systems deteriorates with an increasing crack depth. Instability areas near
parametric resonances enhance as a result of increasing periodic stiffness changes
due to a breathing mechanism of a developing shaft crack. However, some recent
studies on the dynamics of linear structures with periodically altered stiffness
present an interesting phenomenon of an increase in damping. It has been dem-
onstrated that under certain conditions a parametrically excited mechanical structure
can increase its stability. When the structure falls into the parametric anti-resonant
area, its vibration amplitudes quickly decay. For a long time these anti-resonant
zones seemed to be not interesting, yet they can introduce additional artificial
damping into the system, improving its stability and leading to further studies of
their possible applications. The present paper analyzes the possibility of the
appearance of such a phenomenon (the increase in damping of the parametrically
excited system) in a rotor with a cracked shaft. The approach is demonstrated with a
mathematical model of the machine. The breathing crack is modeled using the rigid
finite element method that has previously proven its robustness and efficiency in
similar applications. The stability analysis is conducted numerically by the
Floquet’s technique. The conditions required for the appearance of parametric anti-
resonances for different crack depths are provided. Finally, a possible application of
the additional damping introduced by parametric excitation for rotor crack detection
is analyzed.
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1 Introduction

Parametrically excited vibrations can be explained by periodical variation of one or
more coefficients of the differential equation of motion. If at least one system
parameter is varied close to a parametric excitation frequency gn then a parametric
resonance may appear. The parametric excitation frequency is defined as follows
[2–7]

gn ¼
jXk � Xlj

n
; k; l ¼ 1; 2; . . . ð1Þ

where Xk and Xl are the kth and lth natural frequency of the undamped system with
constant coefficients, and n is the order of the parametric resonance. For k ¼ l
frequency gn is called a principal parametric resonance, and for k 6¼ l—it is a
parametric combination resonance. Usually, only first order resonances for n ¼ 1
are considered.

It has been shown [2, 17] that, principal parametric resonances (for k ¼ l and the
plus “+” sign in Eq. (1)) and parametric combination resonances of the summation-
type (for k 6¼ l and the plus “+” sign) always destabilize the system. However,
difference-type combination resonances (for k 6¼ l and the minus “–” sign) for
parametric excitations leading to symmetric system matrices have a unique property
to suppress vibrations. The specific difference-type combination excitations that
stabilize an otherwise unstable system are called parametric anti-resonances.

Tondl was the first who demonstrated [17] that an unstable self-excited system
can be stabilized by introducing periodic stiffness changes at a specific parametric
anti-resonance frequency. Since then, parametric anti-resonances have been
observed and studied only in combination with self-excitation. However, the pio-
neering works of Dohnal [2–4] showed that the properly chosen parametric anti-
resonance not only stabilizes an already unstable system, but it can also increase the
existing damping in a stable system. Thus, the phenomenon known as the damping
by parametric excitation has been identified and explained as the coupling of
eigenvalues of the underlying system. This stabilizing effect may be interesting for
its probable ability to indicate a shaft crack.

The shaft crack, if occurs, is one of the most dangerous malfunctions of rotating
machines [8, 9, 12–16]. Resulting from cyclic loading, thermal stresses, creep,
corrosion and/or other mechanisms to which rotating shafts are subjected to, the
transverse crack can propagate quickly to the relevant depth at which a sudden
destruction of the shaft occurs. This usually leads to a catastrophic failure of the
machine and that is why an early detection of shaft cracks is so important.

Shaft cracks are usually modeled with local periodic stiffness changes resulting
from the breathing mechanism, i.e. from the constant opening and closing of the
crack faces during the rotation [1, 12, 13, 15]. These stiffness changes transform the
linear time-invariant rotor-bearing system into the parametrically excited one,
described by linear motion equations with time-variant coefficients. This way, the
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possible appearance and applications of the effect of damping by parametric
excitation in rotor systems with cracked shafts can be identified and analyzed.

Similar problems have already been studied for different rotors excited para-
metrically. Ecker [5–7] presented numerical results for a Jeffcott rotor with time-
varying stiffness and demonstrated the increase in damping as a result of axial
excitations at the first anti-resonant frequency. In [5] the author obtained similar
results for a rotor with periodically varied radial stiffness applied in different
locations along the shaft axis. Dohnal [3, 4] conducted numerical and experimental
studies of a flexible rotor supported by active magnetic bearings (AMBs) con-
firming the increase in damping by stiffness changes in the bearings.

Numerical stability analyzes of cracked rotors based on the Floquet’s theory and
focusing on parametric resonances are presented in several papers, including the
most recent by Ricci and Pennacchi [14], Guo et al. [8] and Han and Chu [9].

The present paper analyzes possibility of the appearance of the damping by
parametric excitation in a rotor with a cracked shaft. The approach is demonstrated
with a mathematical model of the cracked rotor. The breathing crack is modeled
using the rigid finite element method and the stability analysis is conducted
numerically by the Floquet’s technique. The conditions required for the appearance
of parametric anti-resonances for different crack depths are provided. Finally, a
possible application of the additional damping introduced by parametric excitation
for rotor crack detection is analyzed.

2 Rotor Model

The rotor shown in Fig. 1a is a part of an experimental test rig utilized at Bialystok
University of Technology. A slender, flexible rotor shaft is driven by a variable-
speed motor. Two rigid disks are attached to the shaft, supported by two radial ball
bearings. Main dimensions and the schematic diagram of the rotor are presented in
Fig. 1b.

The mathematical model of the rotor is formulated using the rigid finite element
method [11, 12]. The rotor is divided into 31 undeformable bodies called rigid finite
elements (RFEs) connected with 30 massless spring-damping elements (SDEs).
Global and local coordinate systems of RFEs and SDEs are shown in Fig. 1c. The
bearings are modeled using two additional SDEs connecting the basis (numbered as
0) with the 3rd and 28th RFEs. For the present study the RFEs with only 4° of
freedom are used (two displacements and two rotations along/about xr;2, xr;3 axes).

Applying the Lagrange approach, the equations of motion take the following
form

Mq
:: þðDd þ XDGÞ _qþK½qðtÞ�q ¼ pu þ w ð2Þ

where M, Dd, DG and K are m� m mass, damping, gyroscopic and stiffness
matrices, respectively; pu, w are m� 1 vectors of unbalance and gravity forces; q is

Damping in a Parametrically Excited Cracked Rotor 337



a m� 1 vector of generalized coordinates of the mass centers of subsequent RFEs;
X is rotor spin speed, m ¼ 4nr, and nr ¼ 31 is the number of RFEs. The stiffness
matrix K depends on vector q, which is in turn time-dependant. This is due to the
varying stiffness of the shaft resulting from the breathing mechanism of the crack.
Matrices M, DG and K are assembled using blocks of mass Kr, gyroscopic DG;r and
stiffness Kk coefficients defined in [11, 12]. The damping matrix Dd is calculated
from the Rayleigh’s formula, as Dd ¼ adMþ bdK.

The crack is located between the 15th and 16th RFEs and is modeled using
several SDEs connecting these RFEs. Figure 1d shows the cross-section of the shaft
at the crack location. The relative depth l of the crack is defined as l ¼ a=2R,
where a is the location of the crack edge line, and R is the radius of the shaft cross-
section. The large SDE numbered as 15 is pinned at the geometrical center of the
uncracked area and it simulates the stiffness of the uncracked portion of the shaft

Fig. 1 Tested rotor: a photo, b RFE model, c coordinate systems: global n, g, f and local xr;1, xr;2,
xr;3 (for RFEs), yk;1, yk;2, yk;3 (for SDEs), d shaft cross-section at the crack location
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cross-section. The block of stiffness coefficients K15 for this SDE is constant and
proportional to the relative crack depth l

K15 ¼ ð1� lÞK15;u ð3Þ

where K15;u is the block of stiffness coefficients of the SDE, which connects the two
RFEs in case of the uncracked shaft. The small SDEs simulate the stiffness of the
cracked portion of the shaft cross-section. The sum of their stiffness coefficient
blocks Kk is expressed as

X33þnc

k¼33

Kk ¼ lK15;u ð4Þ

where nc is the number of small SDEs. During crack breathing stiffnesses of
individual small SDEs are varied based on their deformations Dwk;1. For the fully
open crack stiffness blocks of all small SDEs are assumed as zero (Kk ¼ 0). For the
fully closed crack stiffness blocks are nonzero (Kk 6¼ 0).

3 Numerical Stability Analysis

For numerical stability analysis Eq. (2) is modified to the following form

Mq
:: þDd _qþ ½K0 þKc cosðgtÞ�q ¼ 0 ð5Þ

where

K0 ¼ K�Kc;Kc ¼ DK
2

;DK ¼ K�K1 ð6Þ

and K, K1 are stiffness matrices of the healthy rotor, and the rotor with the fully
open crack, respectively. Equation (5) describes the linear system, with time-variant
coefficient matrix Kc cos gs, where g is the frequency of parametric excitation. In
this numerical study the gyroscopic matrix DG has been neglected to better dem-
onstrate the influence of the damping by parametric excitation effect. Thus, the rotor
is not rotating and the stiffness changes due to the crack are not driven by its
rotational motion but by some external loading applied to the shaft.

In order to apply the Floquet’s theory Eq. (5) is transformed to the following
form [2, 6, 7, 10]

_x ¼ AðtÞx ð7Þ

with the 2m� 1 state vector x and the 2m� 2m periodic matrix AðtÞ with period
T ¼ 2p=g, where
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AðtÞ ¼ 0 I
ð�M�1K0 �M�1Kc cos gtÞ �M�1Dd

� �
ð8Þ

The stability of the periodic system given by Eq. (7) can be determined from the
eigenvalues of the monodromy matrix UðT; 0Þ [2, 6, 10]

UðT ; 0Þ ¼ x1ðTÞ x2ðTÞ . . . x2mðTÞ½ � ð9Þ

where x1ðTÞ; x2ðTÞ; . . .; x2mðTÞ is a set of 2 m solutions of Eq. (7) over one period
T for a set of linearly independent initial conditions having the following form

Uðt0; t0Þ ¼ x1ðt0Þ x2ðt0Þ . . . x2mðt0Þ½ � ¼ I ð10Þ

where I is the identity matrix. The eigenvalues k of the monodromy matrix

k ¼ eig½UðT; 0Þ� ð11Þ

are called the Floquet’s multipliers and they determine the stability of the system.
The system is asymptotically stable if and only if the magnitude of all its Floquet’s
multipliers is less than one, i.e. if max½jkj�\1.

The monodromy matrix can be calculated using the precise Hsu’s method [10].
For this purpose, the period T is divided into K intervals denoted by tk,
0\t0\t1\ � � �\tk ¼ T , where the size of the kth interval is Dk ¼ tk � tk�1, and
K is has been assumed as K ¼ 50. The monodromy matrix is obtained as [10]

UðT; 0Þ ¼
YK
k¼1

Uk ¼ Iþ Sa;K ð12Þ

where matrices Uk are evaluated as

Uk ¼ exp Ak
Dk

n

� �� �p
¼ Iþ Ta;k;ðNþ1Þ ð13Þ

where p ¼ 2N and N is usually assumed as N ¼ 20 [10]. Matrix Ta;k;ðNþ1Þ is cal-
culated recursively as

Ta;k;ðNþ1Þ ¼ 2Ta;k;N þ Ta;k;NTa;k;N ð14Þ

starting with

Ta;k;1 ¼
XNj

j¼1

ðAkDk=nÞ j
j!

ð15Þ

where Nj is usually assumed as Nj ¼ 4 [10].
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Matrices Sa;K in Eq. (12) are calculated recursively as [10]

Sa;K ¼ Sa;K�1 þ Ta;K;ðNþ1Þ þ Sa;K�1Ta;K;ðNþ1Þ ð16Þ

starting with

Sa;1 ¼ Ta;1;ðNþ1Þ þ Ta;2;ðNþ1Þ þ Ta;1;ðNþ1ÞTa;2;ðNþ1Þ ð17Þ

4 Experimental Verification

The RFE model of the rotor has been verified by comparing the frequency response
functions of the uncracked, free-free rotor with no supporting bearings (Fig. 2)
obtained experimentally (continuous line) and from the RFE model (dashed line).
During the experiment the rotor suspended on a light thin string was striked with
the impact hammer near the center of the 21st RFE and its vibrations were mea-
sured at the center of the 15th RFE.

Calculations were conducted for the rotor made of steel with Young’s modulus
E ¼ 2:08� 1011 Pa, Poisson ratio m ¼ 0:3, and density q ¼ 7850 kg/m3 supported
by ball bearings of radial stiffness kB ¼ 3:4� 107 N/m, and damping dB ¼ 10 Ns/
m. Coefficients for the proportional damping matrix Dd were assumed, as ad ¼ 0 1/
s and bd ¼ 10�6 s.

Very good agreement between the experimental and numerical data is observed.
The values of the first two natural frequencies agree very well (100.8 and 100 Hz
for the first natural frequency, and 209.8 and 209 Hz for the second natural fre-
quency). Due to additional stiffness, natural frequencies of the uncracked rotor
supported by ball bearings are as follows: X1 ¼ 36 Hz, X2 ¼ 135 Hz,
X3 ¼ 404 Hz, X4 ¼ 748 Hz, and X5 ¼ 882 Hz.

Fig. 2 Frequency transfer function of the free-free rotor (continuous line) and its RFE model
(dashed line)
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5 Results of the Numerical Stability Analysis

Stability analysis was performed as a function of various crack depths, from
l ¼ 1 % to l ¼ 90 %, and parametric excitation frequency from g ¼ 1 Hz to
g ¼ 400 Hz. A stability surface obtained numerically is presented in Fig. 3, and its
two slices for the selected crack depths (l ¼ 10 % and l ¼ 65 %) in Fig. 4. As
predicted by Eq. (1), the main areas of instability (max½jKj� � 1) are located near
principal and combination parametric resonances (Fig. 4b): at gn ¼ jX1 þ X1j=1
¼ 72Hz, at gn ¼ jX1 þ X1j=2 ¼ 36Hz, at gn ¼ jX3 þ X4j=8 � 144Hz, and at
gn ¼ jX3 þ X5j=6 � 216Hz. Anti-resonant combination frequencies (max½jKj�\1)
are located: at gn ¼ jX3 � X1j=1 ¼ 368Hz and at gn ¼ jX3 � X1j=2 ¼ 184Hz.
These results confirm the previous observations outlined in the Introduction. Note,
that for the increasing crack depth the new areas of stability/instability appear and
extend as shown in Fig. 3.

The smaller values of the stability parameter max½jKj� at anti-resonant fre-
quencies in Figs. 3 and 4 indicate the enhanced stability of the system. By

Fig. 3 Stability parameter max½jkj� as the function of the parametric excitation frequency g and
crack depth l

Fig. 4 Stability parameter max½jkj� as the function of the parametric excitation frequency g
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parametric excitation near these frequencies the increase in damping can be
observed. This effect is shown in Fig. 5 where the vertical vibration of the rotor at
the middle of the 15th RFE is presented. The stiffness of the rotor is varied har-
monically by Kc with the frequency of gn ¼ 368 Hz according to Eq. (1). The rotor
vibrates after an initial deflection resulting from the constant vertical force of 200 N
applied at t ¼ 0 at the 15th RFE. For shallow cracks Kc is almost zero, meaning
that the influence of the parametric excitation is low. In this case, the vibrations
decay very slowly (Fig. 5a) due to rather a low damping in the system. However,
for deeper cracks Kc is different than zero, resulting in an increased influence of the
parametric excitation. In this case the vibrations decay faster (Fig. 5b), though the
increase in the decay rate is rather low. To compare the results quantitatively, the
logarithmic decrement d, defined as

d ¼ 1
m
ln

x2;15;ð1Þ
x2;15;ðmÞ

� �
ð18Þ

has been evaluated for m peaks of the rotor response, where x2;15;ð1Þ and x2;15;ðmÞ
denote the 1st and the mth peak amplitude of the vertical displacement of the 15th
RFE. For the shallow crack d ¼ 7:07� 10�4, while for the deeper crack
d ¼ 10:61� 10�4.

For the excitation frequency of gn ¼ 184 Hz similar results are obtained, con-
firming an increase in damping of the cracked rotor excited parametrically.

During the simulations it was observed that gyroscopic effects disturb the pre-
sented above results. Anti-resonant frequencies are shifted from their locations
calculated according to Eq. (1) and a very small increase in damping by parametric
excitation is observed. Similar effects are present if the increase in the system
damping matrix Dd is introduced (by increasing the parameter bd). In this case the
effect of damping by parametric excitation reduces, as explained by Dohnal [2].

Fig. 5 Time series of the vibration signal x15;2 at the center of the 15th RFE after an initial
disturbance: a 1 % deep crack, b 65 % deep crack
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6 Conclusions

In this numerical study the effect of the increase in damping of the rotor system with
a cracked shaft excited parametrically has been demonstrated. Parametric excitation
has been introduced by harmonic stiffness changes at the location of the crack,
simulating the breathing behavior of the crack. Numerical analysis has been con-
ducted with the precise Hsu’s modification of the Floquet’s method. Gyroscopic
effects have been neglected, as they disturb the obtained results.

It has been shown that the effect of the increased damping occurs only in the
presence of the crack with the properly selected parametric frequency, and if the
initial overall damping in the system is low. This parametric frequency can be
calculated as a difference-type combination frequency from the simple formula
obtained in other papers. The increase in damping is not large, yet it clearly indi-
cates the presence of crack.

The practical implementation of the presented method would involve the design
of a device that would introduce parametric excitation to the non-rotating rotor’s
shaft and measure the decay rate of its vibration response up to initial deflection of
the shaft.
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