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Abstract This paper aims to study the influence of varying number of balls on
nonlinear dynamic behavior of an unbalanced rotor supported by ball bearings.
Centrifugal force due to rotation of balls is included in the model. An oscillating
spring-mass-damper is considered to formulate the contact between races and
rolling elements. Stiffness for the spring-mass-damper system is calculated using
Hertzian elastic contact deformation theory. The results show appearance of regions
of periodic, sub-harmonic and chaotic behavior on response of the system.
Invariably, the route to chaos is seen to be intermittency mechanism by period
doubling behavior. Poincare maps and frequency responses are used to explain and
to study the system behavior.
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1 Introduction

Rolling element bearing is one of the essential components in rotating equipments.
In present scenario, bearing applications require understanding of nonlinear
dynamic effects. Nonlinearity often arises due to Hertzian force deformation rela-
tionship, the varying compliance nature, the internal clearance, varying number of
balls etc. The behavior of nonlinear system often demonstrates unexpected behavior
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patterns that are extremely sensitive to initial conditions. The excitation due to
unbalance force in rotor bearing system cannot be eliminated completely [1, 2] even
with good balancing of rotor and therefore it is the major parameter to consider for
study. Due to consideration of unbalance force the system is bi-periodically excited.
The amount of unbalanced force changes continuously with operating parameters
and thus changing the dynamic behavior of the whole system. Moreover, when ball
bearing operates at high speed the effect of centrifugal force cannot be neglected.
Jang and Jeong [3] considered the effect of centrifugal force of ball with waviness
on races for balanced rotor. However effect of centrifugal force of ball along with
unbalanced rotor and nonlinear spring-damping model has not been considered so
far.

The aim of present study is to analyze the nonlinear dynamic response of
unbalanced rotor supported on ball bearings considering centrifugal force. Sources
of nonlinearity such as Hertzian contact force, varying compliance frequency are
considered and formulate in Mathematical model. Effect of number of balls is
considered at constant rotational speed.

2 Mathematical Modeling

A rolling element bearing supporting horizontal rotor considering unbalance force
is shown in Fig. 1. To analyze nonlinear dynamic response of ball bearing the
bearing components are modeled as non-linear spring-mass-damper system, in
which the outer race of the bearing is fixed rigidly and inner race, is fixed rigidly
with shaft. A constant radial force is assumed to be acting on the system.

It is assumed that the spring damper model considered here has equally spaced
balls rotating on the surfaces of the inner and outer races. When the rolling element

Fig. 1 Rolling element bearing model considering Mass-spring-damper
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set and the cage rotates with a constant angular velocity (ωcage), a parametrically
excited vibration is generated and transmitted through the outer race.

xcage ¼ xrotor
r

ðRþ rÞ ð1Þ

The characteristic frequency of this vibration is called the varying compliance
frequency (VC) and is given by

xVC ¼ xcage � Nb ð2Þ

where Nb is number of balls.
For the ith ball, local Hertzian contact force and deflection are related as [4]

Phi ¼ k rhið Þ3=2 ð3Þ

where, k is the nonlinear stiffness due to point contact, hi is the angular position ith
ball and rhi is radial displacement of the ith ball which is given by [5]

rhi ¼ x cos hi þ y sin hi ð4Þ

Considering the internal radial clearance, c0, the contact deformation becomes,

rhi ¼ x cos hi þ y sin hi � c0ð Þ ð5Þ

Substituting rhi in the Eq. (3), we get

Phi ¼ k:H x cos hi þ y sin hið Þ � c0ð Þf g3=2 ð6Þ

where, H x cos hi þ y sin hið Þ � c0ð Þf g3=2 is a Heaviside step function.
Total restoring force in x and y direction considering Hetzian contact force Phið Þ

and centrifugal force Pcð Þ is written as

Px ¼
XNb

i¼1

k:H x cos hi þ y sin hið Þ � c0ð Þf g3=2�Pc

h i
cos hi ð7Þ

Py ¼
XNb

i¼1

k k:H x cos hi þ y sin hið Þ � c0ð Þf g3=2�Pc

h i
sin hi ð8Þ

The centrifugal force is given by [6]

Pc ¼ 2:26� 10�11 � D2
b � xcage � Dm ð9Þ

where, Db is ball diameter, xcage is angular velocity of the cage and Dm is pitch
circle diameter of the bearing.
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2.1 Nonlinear Damping Force

A viscous damping model is considered in present formulation in which the dis-
sipative forces are proportional to the time derivate. The resulting equation [7] is
given by

Pdi ¼ c rhið Þ_rqhi ð10Þ

where, cðrhiÞ depends on contact geometry, material properties of elastic bodies,
lubricant property and contact surface velocities.

2.2 Equation of Motion

The equation considering effect of inertia, restoring and damping force and constant
vertical force acting on the inner race are represented as [5]

MR€xþ
XNb

i¼1

Pdi cos hi þ

XNb

i¼1

k:H x cos hi þ y sin hið Þ � c0ð Þf g3=2�Pc

h i
cos hi ¼ Pr þ Pu cos xtð Þ

ð11Þ

MR €yþ
XNb

i¼1

Pdi sin hi þ

XNb

i¼1

k k:H x cos hi þ y sin hið Þ � c0ð Þf g3=2�Pc

h i
sin hi ¼ Pu sin xtð Þ

ð12Þ

where, MR is the rotor mass supported on bearings, Pr is the radial load on bearing
and Pu is force due to unbalance.

The system is defined by Eqs. (11) and (12) which are two coupled non-linear
second order differential equations.

3 Results and Discussion

In present study, ball bearing 6205 is considered whose parameters are shown in
Table 1. Shaft is assumed to be running at 5000 rpm and an unbalance force of
10 % of radial load is considered in the current study. The Runge-Kutta methods of
fourth order are used to solve coupled equations. The time step for the investigation
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is taken as Dt = 10−5 s with the initial displacements as x0 = 10−6 m, y0 = 10−6 m
and initial velocities are assumed to be zero i.e. _x0 ¼ 0m/s; _y0 ¼ 0 m/s. Poincaré
maps and frequency responses are used to illustrate and study the effect of system
diversity.

For number of balls Nb = 6, peak amplitude of vibration for X direction response
appears at rotational speed (X = 83 Hz) as shown in Fig. 2a. Other major peaks
appears at the interaction of varying compliance frequency and rotational speed

Table 1 Parameters of
bearing 6205 (SKF)

S. no. Parameters Value

1 Outer race diameter (D0) 28.262 mm

2 Inner race diameter (Di) 18.738 mm

3 Pitch circle diameter (Dm) 26.725 mm

4 Ball diameter (Db) 4.762 mm

5 Radial load 6 N

6 Radial internal clearance 10 µm

Fig. 2 FFT and poincare map at Nb = 6 a X direction b Y direction
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(X = 83.33 Hz) and their harmonics at VC − X(=116 Hz), 2X, VC + X(= 282 Hz).
Fractal structure is observed through Poincaré map which reveals chaotic nature.
For Y Direction response, peak amplitude appears at rotational speed
(X = 83.33 Hz) and other peak appears at VC − X(=116 Hz), VC(= 199 Hz) shown
in Fig. 2b. The Poincaré map shows fractal structure for Nb = 6 as shown Fig. 2b.

Figures 3, 4 and 5 shows quasi periodic response from Poincaré map for Nb = 7,
8 and 9 respectively. Major peak is obtained corresponding to shaft rotational
frequency (X = 83 Hz) and amplitude decreases as number of balls increases. This is
due to increase in stiffness of the system since number of balls coming in load zone
increases. System further stabilizes when number of balls is changed to 10, which is
shown in Fig. 6. At this moment, systems exhibits multi orbit periodic response
which is clearly indicated in Poincaré map. The results are summarized in Table 2.

Fig. 3 FFT and poincare map at Nb = 7 a X direction b Y direction
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4 Concluding Remarks

This study presents an analytical model to investigate the effects of unbalance and
centrifugal force acting on ball bearing model. Unbalance force corresponding to
10 % magnitude of radial load Prð Þ with internal clearance of 10 µm are considered
in the present study. Number of balls are varied and effect of variation has been
analyzed at constant rotational speed of shaft. Following conclusions can be drawn
from present study.

• Nonlinear dynamic responses are found to be associated with rotational fre-
quency (X) and its super harmonics due to unbalance force.

• Results show interaction of rotational frequency (X) due to unbalance force and
varying compliance frequency (VC) due to parametric excitation.

Fig. 4 FFT and poincare map at Nb = 8 a X direction b Y direction
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• When number of balls are increased peak amplitude decreases implying a stiffer
system and same was reported by Harsha et al. [4] and Kankar et al. [8]. It can
be predicted from the results that increasing number of balls reduces the effect of
frequency modulation.

• For Nb = 5–6, chaotic nature is observed from poincare map. When number of
balls increases to Nb = 7–9, quasi-periodic behavior is observed and further
increase in the number of balls results in entering of system in stable zone. This
can be attributed to increase in stiffness due to increase in number of balls.

• From this analysis an insight is obtained to choose appropriate number of balls
so that system can be operated in stable zone and severe amplitude of vibration
(chaotic) can be avoided.

Fig. 5 FFT and poincare map at Nb = 9 a X direction b Y direction
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Fig. 6 FFT and poincare map at Nb = 10 a X direction b Y direction

Table 2 Influence of number of balls on stability

No. of balls Major peak
appears at
(X direction
response)

Major peak
appears at
(Y direction
response)

Other frequency
peaks in Spectrum
appears (X direction
response)

Other frequency
peaks in spectrum
appears at
(Y direction
response)

Nature of system

6 2X X X, VC − X, 2X, VC,
VC + X

VC − X, VC Chaotic

7 X X 2X, VC VC − X Quasi-periodic

8 X X 2X, VC − X, VC,
VC + X

– Quasi-periodic

9 X X 2X, VC – Quasi-periodic

10 X X 2X, VC − X, VC – Multi-orbit
periodic
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