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Abstract Detuning of gas turbine blades in order to avoid high cycle fatigue
failure due to large resonant stresses is often unfeasible. A possible solution is to
add an external source of damping, in the form of dry friction devices such as the
under-platform damper. The relative movement between the blades causes possible
slip between damper and blade surfaces. Due to the nonlinear nature of dry friction,
dynamic analysis of structures constrained through frictional contacts is difficult,
commercial finite element codes using time step integration are not suitable given
the large computation times. For this reason, ad hoc numerical codes have been
developed in the frequency domain. Some authors Yang and Menq (J Eng Gas
Turbine Power 120:410–417, 1998) [1], Sanliturk et al. (J Eng Gas Turbine Power
123:919–929, 2001) [2], Csaba (Proceeding of ASME Gas turbine and aeroengine
congress and exhibition) [3], Panning et al. (Int J Rotating Mach 9:219–228, 2003)
[4] prefer a separate routine in order to compute contact forces as a function of input
displacements, others Cigeroglu et al. (J Eng Gas Turbine Power 131:022505,
2009) [5], Firrone et al. (Modelling a friction damper: analysis of the experimental
data and comparison with numerical results, 2006) [6], Firrone and Zucca
(Numerical analysis—theory and application, 2011) [7] include the damper in the
FE model of the bladed array. The available numerical models of dampers require a
description of the contact conditions, both in the normal and in the tangential
directions. The approach proposed here differs from those available in the literature
in that the tangential force-displacement behaviour is described by arrays of springs
in parallel, but, unlike pre-existing models, it introduces a variable sharing of
normal force according to the approach along the normal. It thus modulates the
tangential stick-slip capabilities according to normal force and approach and is
capable to reproduce the analytical contact description as originally proposed by
Cattaneo (Accademia dei Lincei 6:P I; 342–348, P II; 434–436, P III; 474–478,
1938) [8] and Mindlin and Deresiewicz (J Appl Mech 20:327–344, 1953) [9].
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The paper shows how the model can be described and tuned in reference to the
analytical Cattaneo and Mindlin’s benchmark for a spherical contact. It is proved
that parameters tuned for a certain normal load will correctly simulate the tangential
behaviour at any other lower normal load and finally that the transitions between
cycles at different normal loads is correctly described. The paper further shows an
application to a cylindrical contact where the tangential characteristics are derived
from purposely taken experimental measurements.

1 Introduction

In the frame of damper design the main object in the literature is the development of
a calculation procedure that integrates blades FE model, rigid body model of the
damper and contact model in order to predict the damper performance through
the solution of the nonlinear dynamic response of the system. In technical literature,
the problem of modeling periodical contact forces at friction contacts has been
addressed by several authors, leading to different contact models.

The first macroslip model used in friction dampers was proposed by Griffin [10]
in 1980. It consists of a Coulomb point contact in series with a tangential spring,
and yields a simple bilinear hysteresis loop. In 1998 Yang [1] introduced normal
load variation and an associated normal contact stiffness. The model was then
extended to include 2D motion on the contact plane [11]. The greatest advantage of
the macroslip model is the low number of parameters required for its tuning,
however microslip effects have to be taken into account in case of small relative
displacements or large normal loads.

An important contribution to friction interfaces modeling was given in 1938 by
Cattaneo [8], who starting from Hertz [12] theory of normal contact of ellipsoids,
extended it to a case of two elastic spheres in contact under the action of a constant
normal force and a constant tangential force less than that of (Coulomb) limiting
friction. Cattaneo showed that the effect of a tangential force smaller than the
limiting friction force is to cause small relative motion, referred to as “microslip”
over a part of the interface, while the rest of the contact surface deforms without
relative motion, a condition referred to as “stick”. This microslip contact problem
was further explored by Mindlin [9], who extended it to the case of periodically
applied tangential loads. Experimental studies that support the theory have been
reported by Mindlin [13], Johnson [14], and Goodman and Brown [15].

Menq et al. [16] in 1986 presented a simple 1D microslip model in which an
elastic bar having a uniform normal load is in contact with the rigid ground by
means of a layer of springs. Sanliturk et al. [2] presented a microslip contact model
constituted by an array of macroslip elements without normal contact stiffness and
applied it to a wedge damper. The model is tuned against experimentally observed
hysteresis loops however, given its lack of normal contact stiffness, presents no
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direct connection with the damper kinematics and excludes any relation between
normal force and number of macroslip elements in contact.

A different approach to model microslip requires instead the discretization of the
contact area. Csaba [3], used a discretized version of the Winkler elastic foundation
model, within the assumption of local friction law, to model a curved damper. The
contact area is discretized and each portion is assigned a uniform normal and a
tangential stiffness with equal unloaded length and different gap vectors depending
on the contact area’s geometry. Discretization of the contact area to model cylin-
drical and wedge-shaped dampers was proposed by Panning et al. [4]. In both cases
the total normal and tangential stiffnesses are nonlinearly dependent on the normal
relative displacements due to an increasing percentage contact area with higher
normal forces. This approach has the advantage of being adaptable to any contact
surface, however it introduces the simplification which sees each spring, corre-
sponding to one point of the contact area, as decoupled from the other points. It is
therefore impossible to mimic, at the same time, the same contact area and the same
maximum pressure as the Hertzian solution [3].

In order to model the microslip behavior of friction contacts in FE numerical
simulations of frictionally damped structures, other authors [5, 7], instead of using a
separate routine to calculate the hysteresis loop, integrate the algorithm into the FE
code by dividing the contact area as a grid made of several contact elements. The
contact parameters (tangential and normal contact stiffness) are evaluated for the
whole contact by using simplified test arrangements and their value is evenly
distributed among the contact nodes. It is important to notice how this method
allows for the slipping area to grow inward, even if with a different pattern from the
one predicted by Cattaneo and Mindlin [7].

The model proposed in this paper is a point contact model, therefore no
assumption on the contact area and subsequent discretization is performed. A
parallel array of macro-slip elements with normal and tangential stiffness is used to
simulate microslip. Each macroslip element is assigned its own set of contact
stiffness values and normal gap vector in order to ensure a variable distribution of
normal load as well as a progressive slipping. The model is at first, tuned against the
analytical normal and tangential characteristic curves for a sphere pressed against a
plane [8, 9] to show its robustness and internal coherence. It will be shown how the
model, tuned against a hysteresis curve for a given normal load, is capable of
correctly reproducing the corresponding hysteresis curves at different normal loads
and the transition between them.

The model will then be tuned in the case of a cylinder pressed against a plane,
this time taking as a reference experimental hysteresis curves. The cylindrical
specimen has the same material and geometrical properties as the cylindrical por-
tion of the damper tested in [17]. This will be the preferred choice whenever a
reliable closed-form solution for the normal-tangential contact is not available and
opens the way to the integration of the microslip model in the numerical model of
the damper presented in [17].
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2 Benchmark: Sphere Pressed Against a Plane

The microslip model presented in this paper is based on a parallel array of mac-
roslip contact elements shown in Fig. 1. The tuning of the value of the springs is
performed against two fundamental curves, both available in a closed form for the
case of a sphere pressed against a plane: (•) the tangential displacement—tangential
force hysteresis curve at constant normal load; (•) the normal displacement—nor-
mal force curve.

The chosen benchmark case explores the behaviour of a sphere (d = 10 mm)
pressed against a plane. Both are made of steel (E = 200 MPa, m ¼ 0:3) and a
friction coefficient l ¼ 0:4 is assumed. In Sects. 2 and 3 the curves coming from
Hertz-Cattaneo-Mindlin’s theory shall be denoted as “Continuous”, the simulated
ones as “Discrete”.

2.1 Selecting the Values of the Tangential Contact Stiffness

Using the continuous backbone ascending microslip curve, a series of J points is
selected (see green markers in Fig. 2a). The same procedure could be performed on
a branch of a steady hysteresis loop since Masing rules apply to the model (and this
will be the case in the cylinder’s characterization in Sect. 3). The tuning will ensure
the resulting simulated curve to pass through the above mentioned points on the
original curve. It is also essential for the last point T4 to coincide with the value
T� ¼ l � Ntot, which corresponds to the value for which the model enters gross-
slip. The number of points selected on the curve corresponds to the number of
macroslip elements of the array: therefore it is reasonable to select an hysteresis

Fig. 1 Schematic view of a macroslip array of elements used to simulate microslip with variable
normal load. n and t refer to the normal and tangential motion of the two bodies, while s is the
motion of the slider of each macroslip element
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curve taken at a relatively high level of normal load (the highest that the model will
reasonably encounter, in this case referred to as Ntot).

Once the points on the continuous curve have been selected, it is possible to
compute the values of the tangential contact stiffness that allow the discrete curve to
pass through the selected points. It is assumed that the ith element enters macroslip
at tangential displacement ti. If the tangential load is T1 ¼ Tðt1Þ none of the contact
elements has entered macroslip, therefore it holds:

T1 ¼
XJ

i¼1

kti � t1 ð1Þ

While, at point i = j (with j > 1), j-1 elements are in slip, while J-j + 1 are still in
stick:

Tj ¼
Xj�1

i¼1

ktJþ1�i � ti þ
XJ

i¼j

ktJþ1�i � tj ð2Þ

In other words, referring to Fig. 2a at point ðt3; T3Þ, 2 springs (kt4 and kt3) are
already slipping, while kt2 and kt1 are still in stick (with kt2 on the point of entering
gross slip). In this way it is possible to obtain a linear system of J equations with J
unknowns (contact stiffness). Below an example with J = 4 is reported:

T1
T2
T3
T4

0
BB@

1
CCA ¼

t1 t1 t1 t1
t2 t2 t2 t1
t3 t3 t2 t1
t4 t3 t2 t1

2
664

3
775 �

kt1
kt2
kt3
kt4

0
BB@

1
CCA ð3Þ

Fig. 2 a Ascending backbone microslip hysteresis curves for a sphere pressed against a plane with
a normal force N ¼ 37:5 N, b n� N curves for a sphere pressed against a plane
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Once the tangential stiffness values have been calculated the normal load Ntot is
distributed on the different elements so that the j-th element bears a fraction of
normal load equal to

aj � l � Ntot ¼ ktj � tJþ1�j ð4Þ

therefore it holds

aj ¼ ktj � tJþ1�j

l � Ntot
ð5Þ

where aj are the coefficients that divide the total normal load Ntot on the different
contact elements that compose the array. They have been scaled so that the jth
contact element enters macroslip at tJþ1�j. The sum of the coefficients

PJ
i¼1 ai ¼ 1,

provided that T4 ¼ l � Ntot, therefore the sum of the normal loads acting on the
contact elements equals the total load Ntot.

2.2 Selecting the Values of the Normal Contact Stiffness

The calculation above only offered a repartition of load for a constant value of Ntot,
but it does not provide a link between the approach along the normal (or normal
approach) n and the normal load Ntot. In order to assign the normal contact stiffness
the appropriate values, the normal characteristic curve n − N coming from Hertz’s
theory is used.

Once again a number of points equal to the number of contact elements has to be
selected under the assumption that at each point one of the contact elements comes
into contact, therefore that its normal stiffness starts contributing to the n − N curve.
Two sets of quantities has to be determined:

• the values of the normal contact stiffness (kni);
• the gap vector which determines for what value of normal approach each contact

element comes into contact (ni).

There are two sets of conditions that the normal contact stiffness values have to
accomplish:

• ensure that, for n ¼ ntot each contact element has the predefined share of normal
load for the element i to slip at the right ti. The total normal load Ntot can be
written as (referring to Fig. 2b):

Ntot ¼ kn1 � ðntot � n1Þ þ kn2 � ðntot � n2Þ þ kn3 � ðntot � n3Þ þ kn4 � ðntot � n4Þ ð6Þ
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where n1 ¼ 0. The normal load bearing on the i� th element when n ¼ ntot is

Ntot � ai ¼ kni � ðntot � niÞ ð7Þ

Therefore the normal contact stiffness can be written as

kni ¼ ai � Ntot

ðntot � niÞ ð8Þ

• ensure the simulated n� N curve to mimic the continuous curve:

N2 ¼ kn1 � ðn2 � n1Þ
N3 ¼ kn1 � ðn3 � n1Þ þ kn2 � ðn3 � n2Þ
N4 ¼ kn1 � ðn4 � n1Þ þ kn2 � ðn4 � n2Þ þ kn3 � ðn4 � n3Þ

ð9Þ

2.3 Validation

A preliminary check can be performed by observing the behaviour of the contact
model when performing a complete hysteresis loop (see Fig. 3a) and when having
to simulate hysteresis curves produced at normal loads different from the one the
model was tuned on (see Fig. 3b). In both cases the model closely reproduces the
continuous curves. The slopes are simulated with remarkable similarity, while the
difference between continuous and discrete slip load is always below 8 %. This

Fig. 3 a Continuous and discrete complete hysteresis loop at a normal load of 37.5 N and
l ¼ 0:4. The green boxes indicate the points used during the tuning procedure. b Continuous and
discrete hysteresis curves at various normal loads and l ¼ 0:4:
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difference is due to the discrete nature of the model and is greater for lower normal
loads where, in an extreme case, only one macroslip element is used to simulate the
hysteresis curve.

The model will now be tested for dynamic variations of both N and T. After an
initial state has been reached (point A in Fig. 4a) by applying a normal force N and
a tangential force T, N is to increase of DN while T keeps increasing at an arbitrary
relative rate. Mindlin [9] was able to compute the displacement expression by
passing through equilibrium states.

The same trend (see Fig. 4a) can be reproduced by giving to the contact model
the tangential and normal displacement (t and n) thus obtained. The two levels of
normal approach have been obtained by using the Hertz formula for two spheres in
contact with the two values of normal load (N and N + DN).

At point A the normal load increases by DN and the springs corresponding to the
area which comes into contact start acting at that moment. It is worth noting that
from A until element no 4 starts slipping the overall stiffness is equal to the initial
stiffness of the curve corresponding to a normal load N + DN. Element 1 comes into
contact (see zoom box in Fig. 4b) and the elements which had already begun
slipping (2 and 3) are brought back to a stick condition by the increased normal load
(see Fig. 4b).

Furthermore, as Mindlin pointed out, once the increment of tangential load has
reached a critical value (DT ¼ TB � TA ¼ lDN) the curve becomes the one that
would have been obtained if the normal load had been N þ DN all along (point B in
Fig. 4).

Fig. 4 a Continuous and discrete hysteresis curve for increasing N and T. b Dashed lines
behaviour of each tangential spring for increasing T and a constant normal load N þ DN,
corresponding to curve “O-B-C” in Fig. 4a (behaviour of all springs together). Solid Lines
behaviour of tangential springs in case of increasing N and T, corresponding to curve “O-A-B-C”
in Fig. 4a. The color code is consistent with Fig. 2a
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3 Experimental Characterization of a Cylinder Pressed
Against a Plane

While for spherical contacts the hysteresis and normal characteristic curves are
available in closed form, cylindrical contacts require experimental investigation.

The normal displacement-normal force curve has been obtained from interpo-
lations of experimental data [18], later confirmed by Brändlein’s theoretical
investigations [19]. The hysteresis curve for a cylinder pressed against a plane has
been measured using the already existing high-precision, high-temperature resis-
tance flat-on-flat fretting test apparatus designed and set up by the AERMEC
laboratory [20] originally dedicated to contact parameters measurement during wear
process. The rig was modified to accomodate a cylindrical specimen (part C in
Fig. 5c) and to avoid any relative rotation between flat and cylindrical specimens.

The cylindrical specimen (C) is connected to a fixed support (A) by means of a
“seat” (B). This part has a double function, it offers a flat surface on which to point
the laser measuring system and it allows to test on the same support A different
cylinder geometries (different radii) by redesigning the seat. The flat specimen (D)
is fixed to a mobile support, excited by a shaker.

The tangential force is measured by means of a load cell connected to support A,
while the relative tangential displacement is measured by means of a laser doppler
vibrometer. The tests have been operated at room temperature, at various fre-
quencies (10–80 Hz) and increasing normal loads (16.4–36.6 N). The frequency

Fig. 5 Hysteresis measurement test rig: a general, b detailed view, c samples and samples’
supports expanded view
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had negligible effects on the hysteresis loops. The tuning of the microslip model,
presented in Fig. 6a and c, has been performed, according to Sect. 2, for the highest
available normal load (this time on a branch of the steady hysteresis which gives the
same information as the initial loading curve since Masing’s rules apply). The
cylindrical specimen had the same radii of the laboratory damper investigated in
[17], and was built using the same steel. It should be noted how the measured
friction coefficient (l � 0:4� 0:45) matches the one experimentally measured and
used in the simulations in [17].

4 Conclusions

A novel microslip model capable of reproducing both the tangential microslip
hysteresis loop and the normal force-normal displacement curve has been descri-
bed. The presence of properly tuned normal contact stiffness and gap vectors
guarantees a variable sharing of normal force according to normal approach. The
practical evidence of the soundness of this model is that the model tuned for one
value of normal load is capable to correctly reproduce the hysteresis loops produced
at lower values of normal load. This has been proved both for a case where half
space theory applies (spherical contact) and for an experimental one (cylindrical
contact).

These features make this model fit to be integrated in a routine which studies the
behaviour of under-platform dampers, characterized by double contact interfaces
and severe normal load variations [17]. The effect of the introduction of a microslip
contact model on the simulation of dynamic and kinematic behaviour of under-
platform dampers is now being assessed by the authors.

Fig. 6 a, b Hysteresis loops under different normal loads. The colored loops represent the
macroslip cycles performed by each contact element, the slopes of the stick portions represent the
stiffness values of each tangential spring. c Experimental, theoretical and simulated n� N curve
for a cylinder (l ¼ d ¼ 10 mm) pressed against a plane with a friction coefficient l � 0:4. The
colored lines represent the normal springs of each contact element
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