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Abstract This work illustrates the application of general-purpose multibody for-
mulations to the analysis of rotating systems dynamics. Various benchmark prob-
lems encompassing multiple deformable components are presented and analyzed.
The suitability of the approach is assessed and conclusions are drawn on the basis
of correlating the numerical simulations with analogous examples from the open
literature.
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1 Introduction

Multibody dynamics is a viable technology for the analysis of complex multidis-
ciplinary mechanisms. Rotating systems represent a special class of mechanisms,
characterized by the non-negligible angular motion they are subjected to.
Traditionally, systems of this kind have been analyzed by dedicated formulations
and software tools that intrinsically take into account the reference rotation motion
of the system. Such approaches may be extremely efficient and effective, but may
suffer from lack of generality. For example, in the field of helicopter aeromechanics,
so-called “comprehensive tools” have been developed (e.g. CAMRAD JA, [1, 2]).
Such formulations are specifically tailored for most of the needs in the analysis of
helicopter rotor aeroelasticity, posing several restrictions on the topology of the
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problem and on the type of analysis. Later, the need to consider rather general
configurations and non-standard analysis pushed for the incorporation of features
that are typical of multibody dynamics (e.g. CAMRAD II, [3]).

Nowadays, rather general multibody formulations are used to model and analyze
the dynamics of a variety of systems. MBDyn1 [4] and Chrono::Engine2 [5, 6] are
noteworthy examples of original formulations implemented in freely distributed
software originating from the academia. This work illustrates the application of
general-purpose multibody formulations to the analysis of flexible rotating systems
dynamics, and presents benchmarks that demonstrate the suitability of this
approach.

The need to simulate flexible parts with large rotations within a multibody
dynamics framework calls for advanced formulations, mostly rooted in finite ele-
ment approximations of structural components; see for example [7–9].

The three dimensional beam is one of the most used models for this class of
problems. The case of large rotations poses difficulties that researchers tried to
overcome in different ways. A recent approach is based on the absolute nodal
coordinate formulation, see for instance [10], whereas other approaches are based
on the so-called corotational formulation, as in [11–13].

In this paper we will present benchmarks based on public data available at [14]
and recently discussed in [15] within a joint effort for flexible multibody formu-
lations and software benchmarking, using software rooted on two different
approaches. MBDyn adopts the geometrically-exact beam formulation (GEBF)
described in [16] and [17], whereas Chrono::Engine uses the element-independent
corotational formulation presented in [18], with some modifications. Both use an
incremental approach for the time integration of large rotations. Whenever avail-
able, equivalent results obtained with Dymore are also presented. Dymore is based
on the GEBF, and uses the Wiener-Milenković parameters to represent finite
rotations. For the sake of completeness, we succinctly present the corotational
formulation implemented in Chrono::Engine, whereas for the GEBF implemented
in MBDyn we refer to the above mentioned literature.

2 Corotational Formulation

Corotational formulations foster the reuse of finite element algorithms and theories
whose behavior in the linear field are already well known and tested.

Figure 1 shows the concept of the corotational formulation in Chrono::Engine. A
floating coordinate system F follows the deformed element, thus the overall gross
motion into the deformed state CD can be seen as the superposition of a large rigid
body motion from the reference configuration C0 to the so called floating or shadow

1http://www.mbdyn.org/.
2http://www.projectchrono.org/.
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configuration CS, plus a local small-strain deformation from CS to CD. In this work,
underlined symbols will represent variables expressed in the basis of the floating
reference F.

The rationale of the corotational approach is a procedure to compute a global
tangent stiffness Ke and a global force f e for each element e, given its local K, its
local f and the rigid body motion of the frame F in C0 to F in CS.

Whenever the element moves, the position and rotation of F is updated. In
literature there are many options to this end; to avoid dependence on connectivity
[19], in our implementation we decided to put the origin of F in the midpoint of the
AB segment, as xF ¼ 1

2 ðxB � xAÞ, and we align its X axis with xB � xA. The
remaining Y and Z axes of F are obtained with a Gram-Schmidt orthogonalization,
enforcing Y to bisect the Y axes of A and B when projected on the plane orthogonal
to X. This is important in case of torsion.

The rotation matrix of F is RF 2 SO3; it is parametrized with the unit quaternion
qF 2 H1. Similarly, quaternions are used to store the rotations of the two nodes,
with qA and qB. Hence the state of the system is s ¼ ½q; t� with q ¼ ½x1; q1; x2;
q2; . . .; xn; qn� 2 R

ð3þ4Þn and t ¼ ½t1;x1; t2;x2; . . .; tn;xn� 2 R
ð3þ3Þn. Note that,

because of some algorithmic optimizations, we consider xi to be expressed in the
local basis of the ith node unlike xi; qi; ti that are considered in the global basis.

For each element, given the global positions and rotations of the two end nodes,
stored in the s state at indexes iA and iB, it is possible to compute the actual
displacement part of d as dA ¼ xA � xA0

¼ Rt
F0
ðxA0 � xF0Þ � Rt

FðxA � xFÞ and
dB ¼ xB � xB0

¼ Rt
F0
ðxB0 � xF0Þ � Rt

FðxB � xFÞ.

Fig. 1 A schematic
representation of the
corotational concept
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The rotation part, however, introduces a complication, owing to the fact that
finite rotations do not compose as vectors and must be dealt with special algebraic
tools. First, one must compute the local rotation of nodes respect to the F floating
reference with RA ¼ Rt

FRARt
AD

and RB ¼ Rt
FRBRt

BD
. Equivalently, one can use

quaternion products to write: q
A
¼ qtFqAq

t
AD

and q
B
¼ qtFqBq

t
BD
. Here the optional

term qtAD
(or Rt

AD
) represents the initial rotation of node A respect to F0.

Then, the finite rotation pseudovectors hA and hB are obtained in the following
way. It is known that, for an element R in Lie group SO(3Þ and an element H in the
corresponding Lie algebra soð3Þ, one has H ¼ skewðhÞ where h is also an element
of the Lie group Spinð3Þ, double cover of SOð3Þ. Vice versa, one can extract the h
vector from the H spinor by computing h ¼ axialðHÞ. Also, it holds R ¼ expðHÞ
and H ¼ LogðRÞ, where expð�Þ builds the rotation matrix using an exponential; for
details on this exponential and the implementation of skewð�Þ, axialð�Þ, Logð�Þ, see
for example [20].

In the work of other Authors, the theory above is used to compute hA ¼
axialðLogðRAÞÞ, but in our case the adoption of quaternions lead to an alternative,
more straightforward expression. In fact it is known that for a unit quaternion
q 2 H1 it holds q ¼ ½cosðh=2Þ; u sinðh=2Þ�, with rotation angle h ¼ jhj about
rotation unit vector u ¼ h=h. Therefore it is possible to compute hA and hB as: hA ¼
2 arccosð<ðq

A
ÞÞ, uA ¼ 1

sinðhA=2Þ =ðqAÞ, and hA ¼ hAuA (the same for the B node).

Once d ¼ ½dA; hA; dB; hB� has been computed, well-known theories are available
to compute the stiffness matrix K ¼ KðdÞ. in this work we compute K using the
Eulero-Bernoulli theory, and in general we set f

in
¼ Kd.

The local data K and f
in
must be mapped to the global reference: to this end we

use the corotational approach expressed in [13], where the adoption of projectors
that filter rigid body motion is used to improve the consistency and the convergence
of the method. Such formulation requires the introduction of various matrices, in
the following we succinctly report them, along with modifications that we use in
our method.

• the KðhÞ ¼ @h
@w matrix, whose analytic expression is KðhÞ ¼ I3�3 � 1

2 skewðhÞ þ
fskewðhÞ2 with f ¼ 1� 1

2 hcotanð12 hÞ
� �

=h2,
• the H transformation matrix:

H ¼ HnðhAÞ 06�6

I6�6 HnðhBÞ
� �

; HnðhÞ ¼ I3�3 03�3

03�3 KðhÞ
� �

ð1Þ

that tends to a unit matrix I12�12 for h # 0,
• the P projector matrix: P ¼ I12�12 � SDG where SD is the so called spin lever

matrix, built with xA and xB, the positions of the end nodes respect to the center
F of the beam, expressed in F basis:
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SD ¼
�skewðxAÞ

I3�3

�skewðxBÞ
I3�3

0
BB@

1
CCA ð2Þ

and where G is the so called spin fitter matrix, that takes into account the change
of orientation of the F frame as the end nodes change position or rotation. For
the two nodes beam, it is G ¼ @xF=@xA; @xF=@xA; . . .½ �, and for our custom
choice of orientation and position of F, described at the beginning of this
section, we have

G ¼
0 0 0
0 0 1=L
0 �1=L 0

������
1=2 0 0
0 0 0
0 0 0

������
0 0 0
0 0 �1=L
0 1=L 0

������
1=2 0 0
0 0 0
0 0 0

2
4

3
5 ð3Þ

Note that this expression is different from the one reported in [18] because they
put the F frame at the beginning of the beam whereas we put it in the middle,
moreover it rotates a bit differently,

• the R} rotation-transformation matrix:

R} ¼
RF

Rt
ARF

RF

Rt
BRF

0
BB@

1
CCA ð4Þ

Note that R} is different from the one often reported in literature, ex. in [18] or
[13], because we update the rotation of nodes with rotation pseudovectors
expressed in node local coordinates (hence the Rt

A and Rt
B transformation),

coherently with what we said about angular velocities being expressed in local
references and not in global reference, in our state s.

Given the matrices above, one can compute the global version of internal forces:

f in ¼ R}PtHtf
in

ð5Þ

For the computation of the global tangent stiffness, one needs two additional
matrices. First, we split the last part of Eq. (5) in four three-dimensional vectors:
PtHtf

in
¼ ½nA;mA; nB;mB�, then we build the Fnm and Fn matrices:

Analysis of Rotating Systems Using General-Purpose … 1693



Fnm ¼
skewðnAÞ
skewðmAÞ
skewðnBÞ
skewðmBÞ

0
BB@

1
CCA; Fn ¼

skewðnAÞ
03�3

skewðnBÞ
03�3

0
BB@

1
CCA ð6Þ

Finally one can compute the tangent stiffness matrix of the element in global
coordinates, also accounting for geometric stiffening:

K ¼ R} PtHtKHP� FnmG� GtFt
nPþ PtLHP

� �
Rt
} ð7Þ

K ¼ R} KM � KGR � KGP þ KGHð ÞRt
} ð8Þ

We remark the following notes:

• the three terms KGR (related to change in rotation of the F frame), KGP (related
to changes in projectors), KGH (related to changes in H) are responsible of the so
called geometric stiffness,

• the KGH term is not used in our formulation since we found no major benefits in
computing it; see [13] for details on LH ,

• the KM , which represents the so called material stiffness, is always symmetric (at
least with Eulero-Bernoulli beams), but the terms for geometric stiffness intro-
duce asymmetry,

• some Authors [21] show that, under mild assumptions, neglecting the asym-
metric part does not hampers the convergence of Newton-Raphson iterations;

hence the variant: Ksymm ¼ R} PtHtKHP� FsyG� GtFt
syP

� �
Rt
} where

Fsy ¼ 1
2 ðFnm þ FnÞ.

3 Benchmark: Princeton Beam Experiment

This benchmark aims at the validation of the finite element implementations in a
static problem with geometric nonlinearity. A thin cantilevered beam, constrained
in O, is subject to large deformations and large rotations because of a tip load in E;
for different angles h one obtains out-of-plane displacements even if the load is
vertical, and the beam is subject to a twisting action.

Experimental results, for a beam made with 7075 aluminium, are available in
[22, 23] and are used for comparison.

We list the main properties, with reference to Fig. 2: beam length L ¼ 0:508 m,
section thickness T ¼ 3:2024 mm, section height H ¼ 12:77 mm, Young modulus

E ¼ 71:7 GPa, m ¼ 0:31, G ¼ E ð1þmÞ
2 ¼ 27:37 GPa.

Three loading conditions are tested: P1 ¼ 4:448 N, P2 ¼ 8:896 N, and P3 ¼
13:345 N, for increasing values of the h angle in the ½0�; 90�� range.
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Results in Figs. 3, 4 and 5 show a good agreement between the present coro-
tational beam formulation and the geometrically-exact beam formulations presented
in [16] for Dymore and in [17] for MBDyn, as well as an agreement with the
experimental results in [22, 23], which was recently discussed in [15].

Fig. 2 Setup of the
benchmark for the Princeton
beam experiment

0 15 30 45 60 75 90
0

1

2

3

4

5

Loading angle θ [deg]

T
w

is
t a

ng
le

 [
de

g]

P=13.34 [N]

P=8.89 [N]

P=4.45 [N]

Experimental
Dymore, MBDyn
C::E Euler-Bernoulli

Fig. 3 Twist rotation of the
beam for the Princeton
experiment
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Fig. 4 Flapwise
displacement at the beam tip
versus loading angle for three
loading conditions
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We remark that, because of the geometric nonlinearity, the solver has to perform
few Newton-Raphson steps before obtaining a zero residual. For very large non-
linearities, a continuation strategy might help the convergence of the Newton-
Raphson solver.

4 Benchmark: Lateral Buckling

This benchmark tests nonlinear effects in a dynamic context. A beam is bent in its
plane of greatest flexural rigidity, up to the point that triggers lateral buckling. In a
quasi-static non-linear analysis, results are visible in Fig. 7. In the context of
dynamics, when buckling occurs, the beam snaps laterally and twists, inducing
highly oscillatory motions. The corotational approach can capture the nonlinear
nature of this phenomena.

As shown in Fig. 6, the RC beam is clamped at point R, its length is L ¼ 1 m,
and its rectangular section has size H ¼ 100 mm and B ¼ 10 mm (Fig. 7).

To induce the snapping, a tip load at C is imposed by mean of a rotating crank
GB and a vertical rod TB, with a spherical joint in C and a revolute joint in B. An
initial imperfection is simulated by displacing the vertical bar and the crank by an
offset d ¼ 0:1 mm in the off-plane direction i2. The crank has length Lc ¼ 0:05 m
and a circular section with diameter Dr ¼ 24 mm, while the vertical rod has a
length Lr ¼ 0:25 m and a circular section with diameter Dr ¼ 48 mm. The rotation
of the crank is initially enforced by a prescribed motion function
/cðtÞ ¼ pð1� cosðpt=TcÞÞ=2, with Tc ¼ 0:4 s, then for t[ Tc it is /cðtÞ ¼ p.

All parts are made of aluminum, hence with Young modulus E ¼ 73 GPa and
Poisson ratio m ¼ 0:3. Given the above mentioned sections, their inertia values Izz
and Iyy and their torsion constants J are computed using formulas available in
classical textbooks.

In the Chrono::Engine test, the RC beam is modeled with 12 finite elements,
whereas the crank and the rod are modeled with 3 elements each. Results in
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Fig. 5 Chordwise
displacement at the beam tip
versus loading angle for three
loading conditions
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Figs. 8 and 9 show that the lateral buckling is triggered exactly at the same moment
for all the formulations, although the Chrono::Engine integral is more damped. The
numerical damping is a consequence of the fact that the Chrono::Engine default
integrator is a timestepper for DVI non-smooth problems [24, 25]. This, in the case
of no frictional contacts, boils down to a linearly-implicit first-order scheme, hence
it shows the same damping effect of an implicit Euler method. Other integrals are
obtained with higher order methods and are affected by numerical damping to a
much lower degree.
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Fig. 7 Static displacement of
the beam along i2, at the mid
point

Fig. 6 Setup of the
benchmark for lateral
buckling dynamics
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5 Benchmark: Unbalanced Rotating Shaft

This benchmark explores the reliability of the numerical method in the analysis of a
flexible system rotating at finite angular velocity. A rotating unbalanced shaft of
length L = 6 m is integrated in time. A rigid disk is connected to the shaft at mid-
span, above the reference shaft axis by an offset d = 0.05 m. The shaft is made of
steel (density ρ = 7800 kg/m3, Young’s modulus E = 210 GPa, Poisson’s ratio
ν = 0.3). The cross section is annular (ri = 0.045 m, ro = 0.05 m). The mass of the
disk is md = 70.573 kg, the radius is rd = 0.24 m, and the thickness is td = 0.05 m.
The system is subjected to gravity (g = 9.81 m/s2) directed transversely. The end
‘R’ of the shaft is connected to the ground by a cylindrical joint (displacement along
and rotation about the shaft’s axis are permitted). The end ‘T’ is supported by a
revolute joint; the relative angular velocity about the shaft axis is prescribed as a
function of time,
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Fig. 8 Displacement of the
beam along i2, at the mid
point
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XðtÞ ¼
A1xð1� cosðpt=T1ÞÞ=2 0� t� T1
A1x T1\t� T2
A1xþ ðA2 � A1Þxð1� cosðpðt � T2Þ=ðT3 � T2ÞÞÞ=2 T2\t� T3
A2x T3\t

8>><
>>:

with A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s, T3 = 1.25 s, and ω = 60 rad/s, close to
the first natural frequency of the system. The shaft accelerates from zero and passes
from sub-critical to super-critical regime; when passing through the first natural
bending frequency of the system, lateral oscillations occur and significant forces
take place, as predicted by the linear theory of unbalanced rotors (Figs. 10 and 11).

Fig. 10 Setup of the
unbalanced rotating shaft
benchmark
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Fig. 11 Mid-point transverse displacement of unbalanced rotating shaft
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6 Conclusions

Benchmarks show that the presented multibody software frameworks can accom-
modate flexible elements of beam type that can match the requirements of rotor
dynamics, yet keeping the benefits of general-purpose multibody tools, such as
unlimited number of constraints, actuators and rigid parts.
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