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Abstract The efficacy of the planetary gear transmissions is strongly conditioned
by the leveling of the load sharing achieved among the different planet paths. There
are two main causes accepted as the most important sources of uneven load sharing,
which are the errors in the positioning of the planets and the eccentricity of the
gears. Several solutions have been implemented in these mechanical systems in
order to improve the load sharing among planets, such as configurations with a
floating member or the use of a flexible ring. In this work a dynamic planetary
transmission model is presented, which has been developed by the authors and
successfully used to simulate the effect of cracking and pitting on various variables
in ordinary gear transmissions. This model has been extended in order to allow
internal gearing, extending the simulating platform to include the static modeling
capability of the planetary transmission behavior, including the presence of defects
in gear positioning. The planetary transmission model presented in this work is an
evolution of the previous one, and it allows now for the study of the planetary
transmission behavior in dynamic regime. This model has been applied to the study
of the load sharing in the presence of eccentricity errors in the planets. An
assessment of the results is performed, and a comparison between the positioning
and eccentricity errors in terms of their effects is also presented.
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1 Introduction

Compactness is one of the most important advantages of planetary gear transmis-
sions with respect to the alternatives. For high torque levels, instead of increasing
the size and width of gears, a better solution consists on dividing the load among
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several paths. Thus, the load per tooth width remains constant, but the total
transmitted torque can be multiplied.

Moreover, planetary gear transmissions present axial symmetry, and planets are
usually equally angular-spaced.These two factors lead to a very lowvalue (almost zero)
of the radial forces in the supporting elements, or in any case considerably lower than in
ordinary gear transmissions. This is because the meshing forces in the central elements
(sun, planets and ring) sum zero due to the system symmetry. Thus, radial support is no
longer needed for the sun, which can befloating around its nominal position, fact which
helps to compensate manufacturing errors and defects on the transmission.

Planetary gears failure is commonly associated with fatigue (due to bending) at
the teeth, but also in the ring, especially when the latter is designed with low
stiffness. Failure can also occur due to pitting and bearings defects [1]. These
problems can be aggravated because usually the design of planetary systems is made
following ordinary gears criteria. This neglects the special dynamic conditions that
planetary gears must face with. This is the reason why a deeper research must be
done in this particular transmission type, following two main lines of action:
experimental vibration measurements [2] and developing of computer models to
foreseen the behavior of the system [3], in absence of experimental data. The last one
enables to increase the reliability and decrease the time and cost of the design phase.

Ideally, each path supports the same load. However, real planetary gear trans-
missions present some deviations, due to manufacture errors and tolerances, which
lead to a different load sharing ratio (LSR) among each path. This causes dynamic
malfunction and reliability problems because the nominal load per teeth width may
be surpassed. The LSR has been studied previously from both experimental [4, 5]
and computational modeling approaches. This last approach includes models that
go from simple analytical [6] to complex hybrid models that combine analytical and
finite element methods [7].

Defects in planetary gear transmissions are also a recurrent topic that can be found
in the literature. Causes and defects that produce an uneven LSR have been recently
studied, and solutions to avoid it have also been proposed [6]. The two main reasons
that produce an uneven LSR are: (i) errors in planets position and (ii) gears
eccentricity. It is generally accepted that a three-planet configuration is the best
option to deal with deviation, manufacturing and assembly errors, decreasing the
divergence in the LSR. The authors developed a planetary model for the quasi-static
study of the LSR on a transmission affected by planet positioning errors [8]. In this
paper the planetary transmission model is extended to allow for dynamic simulation,
and is applied to the study of the planet eccentricity error effect on the LSR.

2 Planetary Gear Transmission Model

The detailed model of the planetary gear transmission is thoroughly described in
[9], where also a validation study in terms of the meshing stiffness is presented.
This is the reason why only a brief description is presented next, mainly the key
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issues on gear modeling, namely, profile definition, potential contact points’
localization and computation of contact forces.

The profile definition of the external gears is made by cutting tools, following
the vectorial approach described by Litvin and Fuentes [10]. This is a realistic
procedure of defining the tooth profile, because is the one used during its manu-
facture. Besides, the analytical definition implies a great adaptability of the model,
allowing shifted gears, but also undercutting conditions. A tip rounding arc is also
added to the top of the teeth, following Vedmar procedure [11], in order to avoid
singularities in the contact at that points.

As the profile definition has been described in an analytical way, it is also
possible to compute potential contact points and distances analytically as well. To
this end, contact over the line of action (LOA) is defined and the geometrical
overlapping between profiles is computed for each potential contact point. Thus,
numerical procedures which may incur in a rise of the computational effort are
avoided and the accuracy is increased.

Finally, contact forces are computed using its relation with deformations. By
solving a non-linear constrained system of equations, contact forces are computed
for a specific position. The relation between contact forces and deformations is
obtained using a modification of Andersson procedure [12]. This method computes
contact efforts by following a similar approach to the one applied by Vijayakar [13].
The deformations are obtained as a combination of two terms: global (also called
structural) and local. The structural term is due to linear deformation in the region
far from the contact point, representing the deformation (shearing and bending) of
the tooth and the whole gear body. On the other hand, the local term is used to
describe the non-linear deformation in the region where the contact is taking place.
Thus, the three problems described in Fig. 1 are combined, taking into account
Saint-Venant theory for statically-equivalent loads: far away from the application
point, differences among their effects can be neglected.

Therefore, a boundary is established at a distance h in order to consider both
structural and local deformations. Structural deformation is then computed using
Finite Element Method (FEM), loading a single-point load on the potential contact
point (Fig. 1a). These deformations are valid only for regions far away from the
contact point. Consequently, a correction is needed for regions closed to the contact
point, where the deformation is going to be computed via Weber-Banashek for-
mulation. Thus, a subtraction is applied near the contact point (depth < h), as it can
be seen in Fig. 1b. Total structural deformation is then obtained as a combination of
a and b in Fig. 1. Then, local deformation is applied to the region close to the
contact point (Fig. 1c), computed by means of a non-linear analytical, which is
dependent on depth h and length of contact zone L, functions shown next. Total
deformation can be described as

uTj ¼ uG1Local fj
� �þ uG2Local fj

� �þ uG1Struc;j f1:Nð Þ þ uG2Struc;j f1:Nð Þ ð1Þ
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With the local non-linear analytical formulation defined as:
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Computation of contact forces using this approach presents some advantages.
Usually, contact zone is two orders of magnitude smaller than teeth size. This
means that using FE, a very fine mesh would be needed in the contact region. Also,
as the contact zone changes during motion, a remesh is needed for each position.
With the hybrid approach used in this work, a much less fine mesh is accepted
because is needed only for computing structural deformations and no remesh is
required. This reduces considerably the computational effort.

As it has been stated previously, total deformation depends on both deflections
of teeth and the whole gear. This means also that deformation coupling between
adjacent teeth is taken into account. However, in planetary gear transmissions this
deformation coupling implies an extra difficulty. This is because one single gear
meshes with more than one wheel: each planet meshes with both sun and ring; and
sun and ring mesh with all the planets at once. Consequently, the deformation of the
gear bodies will result not only in coupling among the N potential contact points in
one mesh, but also between meshes. Figure 2 shows the flexibility coupling
between each mesh pair βPi(R−S) by the planet deformation itself as well as βR(i−i+1)
y βS(i−i+1) for coupling due to deformations of ring and sun.

Structural deformation

FEM

(a)

Local def.  (FEM)

(b)

Local def.                             

(Weber-Banashek)        

(c)

2L

h h

Fig. 1 Combination of structural and local deformations
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3 Dynamic Model

A planar dynamic model of lumped masses is presented in this section. Taking as a
starting point the quasi-static model, the dynamic model must also include the
dissipative phenomena, such as friction and damping. It is difficult to find in the
literature a systematic modeling of these kind of efforts for gear transmissions,
specially for its dynamic implementation. They can be classified by means of their
dependency on losses by friction, rolling and deformation (dependent) and losses
due to movement of fluid mass (independent). According to Höhn [14], friction is
the most important loss component if we compare it with rolling. Moreover, from
the point of view of the system excitation, the importance of the friction force is
even greater, not only because it acts out of the line of action, but due to its
direction change at the pitch point.

In this work, friction forces and damping forces due to solid deformation and
lubricant effect have been taken into account. Friction forces are implemented using
a Coulomb model, where the contact forces are multiplied by the friction coeffi-
cient. The definition of the friction coefficient takes into account its zero value at the
pitch point, but also lubricant effects, such as sliding velocity, viscosity, load
amplitude and rugosity.

Contact forces in bearings are described in detail in [10]. These, together with
meshing forces (including contact, damping due to lubricant and friction) have been
implemented in MATLAB® and integrated in SIMULINK®. Equations of motion
are shown next

q
:: ¼ M�1 fext tð Þ � C _q� fbearings qð Þ � fmesh q; _qð Þ� � ð3Þ

A block diagram which represents Eq. (3) is shown in Fig. 3.

Fig. 2 Deformation coupling
among multiple gears
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4 Dynamic Behavior: LSR

LSR has been studied paying particular attention to the influence of position errors
and run-out of the planets. Run-out is produced when there are a displacement
between the geometrical center of the wheel and the rotation center. This eccen-
tricity (run-out) error, from a kinematic point of view, is a position error which
varies harmonically with respect to the angular position of the gear. Thus, the
harmonic variation affects to both radial and tangential components of the gear
position.

The planetary transmission modeled in this work has one stage, and it is based
on an real planetary gear transmission for agricultural machines. In Table 1 some of
the most significant parameters are presented. The three planets are equally spaced,
and the meshing phase difference between planets is 2π/3 radians.

The LSR has been defined as the ratio between the sun torque due to its meshing
with each planet and the total input torque through the sun. Hence, three LSR are
defined, one for each planet, as

LSRi ¼
Tmesh Pi�Sð Þ

Tinput
ð4Þ

Two different cases have been studied, namely, constrained system and floating
system. The first one does not allow translational displacements of the central
elements. The second one allows translational displacements in the sun.

Fig. 3 Block diagram of the model for SIMULINK® implementation
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4.1 Constrained System

Figure 4a displays the LSR for the three planets with a run-out error of 20 μm for
planet 1 in a constrained system. It can be noted the harmonic variation of the LSR,
with a maximum amplitude deviation due to the tangential component of the
position error. This corresponds well with the findings explained in [8], where the
great influence of the tangential positioning error in the LSR is shown. The mini-
mum amplitude deviation of the LSR, where the three planets carry similar values

Table 1 Planetary gear transmission parameters

Sun Planet Ring

Teeth 16 24 65

Modulus m (mm) 4.23 4.23 4.23

Width (mm) 25 25 25

Pressure angle (cut tool) 25° 25° 25°

Addendum (cut tool) 1.35 m 1.35 m –

Deddendum (cut tool) 1.15 m 1.25 m –

Tip round (cut tool) 0.05 m 0.05 m –

Base rounding – – 0.05 m

Teeth tip round 0.05 m 0.05 m 0.05 m

Axis radius 20 mm 20 mm 156.4 mm

Elastic modulus 207 Gpa

Poisson coefficient 0.3

Sun Planet Ring Carrier

Mass (kg) 1.19 1.23 28.10 3.64

Inertia (kg m2) 9.92 × 10−4 24 × 10−4 68.2 × 10−2 20.4 × 10−3

Rugosity 0.8 μm

Viscosity lub. 50 mPas

(a) (b)

Fig. 4 Run-out = 20 μm, fixed sun, torque = −600 Nm; a LSR; b Transmission error
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of load can be found where the run-out only presents a radial component of
positioning error. The radial effect over the LSR has been found 40 times smaller
than the one caused by the tangential component.

Figure 4b shows the transmission error measured at the sun. Different areas can
be distinguished and identified over the cycle: central part is due to radial com-
ponent of the run-out and lower and upper deviations are due to negative and
positive tangential error, respectively. Again, the harmonic variation of the
eccentricity through its components can be appreciated.

4.2 Floating System

LSR in a floating planetary gear transmission with run-out errors stay very close to
the ideal situation (without errors), as it can be seen in Fig. 5, with the exception of
the contacts that take place out of the line of action. These contacts correspond to
involute-tip rounding arc contacts, where the pressure angle does not remain
constant. This means that there is no symmetry in the forces balance, and as a
consequence a change in the LSR is produced. The sun describes an orbit around its
nominal position, which allows to compensate the position deviations of the planet,
but cannot absorb the out of line of contact effect.

Fig. 5 LSR with floating sun. Run-out = 20 μm, torque = −600 Nm
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Figure 6 shows the dynamic orbit described by the sun in presence of a defected
planet with a run out error. The main difference in terms of sun orbit between a
system with a planet incorrectly positioned (by means of a tangential positioning
error) and a system with an eccentric planet is the shape of this orbit. In the first
case the orbit is circular, whereas in the second one it presents a lobular shape, due
to the negligible contribution of the radial component.

5 Conclusions

This work presents an upgraded planar dynamic model for planetary spur gear
transmissions. This model is especially designed for the detailed study of the LSR
in different situations, including position errors and run-out. Load forces are
computed following a hybrid procedure which includes FEM and analytical for-
mulation, taking into account also the coupling between different gear meshes.

In the constrained configuration, the LSR shows a strong harmonic variation
caused by the different component (radial or tangential) affected at each angular
position of the gears. This effect can also be appreciated in the transmission error
measured in the sun gear. Tangential component of run-out has a great influence on
the LSR in constrained systems. This might even cause the complete loss of contact
of one or several loading paths, depending on the external torque and on amplitude
of run-out. Run-out also affects the transmission error of the whole system, where
the specific effects of both components can also be seen.

In the floating configuration, the LSR remains almost constant and close to the
ideal ratio, with the exception of the contacts out of the line of action, where a
maximum variation of 0.1 % with respect to the ideal ratio is reached. In this

Fig. 6 Dynamic orbit of the
sun with run-out = 20 μm
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configuration, the sun describes an orbit, absorbing the run out error. Thus, the
order of magnitude of the orbit radius is similar to the run-out in the planet. This
orbit presents a lobular shape, again due to the different components and its effect
over the LSR.
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