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Abstract Snubbing has been proposed as a possible mechanism to reduce blade
vibration of turbo machinery in resonant condition. It consists in physically limiting
the vibration amplitude on the blade tip, leaving a small gap between the shrouds of
adjacent blades. When the relative displacement between adjacent blades exceeds
the gap, a contact occurs between the shrouds, the relative motion is restricted and
energy is dissipated by friction and impact during the contact. Whilst effectiveness
of snubbing has been proven in the practice on test benches and theoretical models
have been developed to simulate bladed disk response in presence of snubbing, the
explanation of its actual effectiveness is by intuition. In this paper, the authors
propose an explanation of snubbing effectiveness to reduce blade vibrations in
resonant condition, by investigating the relationship between vibration reduction
and chaos onset using a suitable chaos metrics.

Keywords Blade vibration � Snubbing mechanism � Chaos metric � Fractal
dimension

1 Introduction

Blade failure in turbo machinery for power generation could be fostered by
excessive vibration level of the blade itself, owing to the overcoming of fatigue
limit. In the last decades, fatigue crack development and consequent blade failures
affected high performance turbo machinery.
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Blade vibrations are generally excited by the fluid flow and may become dan-
gerous in case of resonance. Resonant conditions cannot always be avoided; there-
fore, suitable devices are needed to reduce vibration amplitudes in these conditions.

There are different technologies for mounting blades on the shaft. Blades may be
slightly forced against each other in correspondence of the shrouds: this should
allow the continuity of the contact without clearances also at rated speed and full
load. In this case, the blades are called pre-twisted. In other cases, a small gap is left
between the shrouds of adjacent blades.

A possible way to reduce blade vibration is energy dissipation, owing to micro
slipping friction in blade roots, by means of underplatform dampers [1, 2] or
friction rings [3], or in blade connecting wires. These devices are applicable
independently from the technology for mounting blades.

Another possibility is to exploit a contact related phenomenon, when a small gap
is left: a contact may occur between the blade tips [4] in the vibration modes of the
bladed disk, in which the relative displacement between adjacent blades exceeds the
gap. During the contact, some energy is dissipated, because the shock is not purely
elastic and because there is friction between the contacting surfaces. The relative
vibration amplitude between adjacent blades is restricted and, therefore the absolute
vibration amplitude is reduced with respect to the vibration amplitude for free-
standing blades (without contact). This mechanism is called snubbing.

In this paper, the relationship between vibration reduction due to the snubbing
mechanism and chaotic behaviour onset is investigated numerically, by using an
improved, multi-degrees of freedom, model. Vibration reduction is evaluated in
some different cases and typical chaos measurement indexes are used. It is finally
shown that the optimal selection of the gap between the blades can be defined,
based on chaos measurement index value.

2 Improved Model for the Snubbing Mechanism

A simplified model, suitable to analyze the effect of the snubbing mechanism, has
been introduced by the authors in [5]. Its capability to reproduce the actual snub-
bing mechanism has been proven by exploiting experimental results obtained on a
test rig. In this paper, the model is largely improved, by considering two aspects,
which have influence on the snubbing mechanism:

1. the mistuning of the blades;
2. the relationship between the inter-shroud stiffness and the displacement of two

adjacent blades has been more realistically considered, on the basis of the
analyses performed by using accurate finite element models, reported in [6].

The simplified model does not require huge computational time and resources,
which are on the contrary necessary if 3D nonlinear calculations are performed,
even with these improvements. This allowed a large number of different random

130 S. Chatterton et al.



mistuned distributions to be simulated, in order to have statistical significance of the
results obtained. A brief description of the model is reported hereafter.

The bladed disk is modelled by means of a lumped parameter cyclic system as
shown in Fig. 1. The number of the blades is z, they are ordered so that blade 1
follows blade z and precedes blade 2, owing to the radial symmetry of the system.
Each blade j is connected to its root rj and both have a degree of freedom repre-
sented respectively by the generalized displacements xj and yj. Lumped masses mj

and mrj are attributed to each blade and root respectively. By considering the
mistuning, it is assumed that the mass of the blades and coefficients kj and cj,
representing the blade modal stiffness and damping, have a normal distribution:

mj �Nðlm; rmÞ; kj �Nðlk; rkÞ; cj �Nðlc; rcÞ ð1Þ

The inter-root stiffness and damping are represented by coefficients krjðjþ1Þ and
crjðjþ1Þ ; they take into account the continuity of the roots on the disk and other effects,
like friction, in the connection between the root and the blade.

These assumptions correspond to:

• use a modal approach for the mistuned blade, that is acceptable because the
snubbing effect modelled here occurs when the blades are excited close to
resonant condition; mj is the modal mass of the blades, kj its modal stiffness and
cj its modal damping;

• consider the roots as very, but not infinitely, rigid because stiffnesses krjðjþ1Þ are
much greater than kj.

Root masses and coefficients are not normally distributed, because it is considered
that mistuning effects can be sufficiently reproduced by the variations of blade mass
and stiffness and damping coefficients.

Fig. 1 Lumped parameter model for studying the snubbing mechanism
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Finally, the inter-shroud stiffness ksjðjþ1Þ ¼ f ðxj � xjþ1Þ and damping csjðjþ1Þ
coefficients are different from zero only when two subsequent shrouds of blade
j and jþ 1 are in contact. This condition is verified when xj � xjþ1 [ gjðjþ1Þ, i.e.
when the difference between the displacements of blades j and jþ 1 is greater than
the nominal assembling gap gjðjþ1Þ between them. Since machining and assembling
errors may occur in the bladed disk, also the assembling gaps are not considered as
constant, but they follow a normal distribution, so that gjðjþ1Þ �Nðlg; rgÞ.

The actual value of the inter-shroud stiffness depends on the displacement of the
two adjacent blades xj � xjþ1. The function ksjðjþ1Þ ¼ f ðxj � xjþ1Þ is shown in Fig. 1.
There is a transition between zeroing of the gap and the value n of interference, set
as linear up to a threshold value, which is equal to the stiffness value �ks of the
bladed disk with continuous shrouding. The evaluation of the transition value n and
the definition of the linear relationship have been made by using the model
developed in [6].

Lagrange’s equation approach is used to define the analytical model of the
system. The first step is to define the set of values for the index i 2 I ¼
1; 2; . . .; z; 1f g used for inter-root and inter-shroud coefficients. The cardinality of

I is zþ 1. This reflects the cyclicity of the considered system.
Kinetic energy of the system is equal to:

T ¼ 1
2

Xz

j¼ 1

mj _x
2
j þ

1
2

Xz

j¼ 1

mrj _y
2
j ð2Þ

Linear elastic potential energy is:

V ¼ 1
2

Xz

j¼ 1

kj xj � yj
� �2 þ 1

2

Xz

j¼ 1

krIjIjþ1
yIj � yIjþ1

� �2 ð3Þ

Similarly, the linear damping function is:

R ¼ 1
2

Xz

j¼ 1

cj _xj � _yj
� �2 þ 1

2

Xz

j¼ 1

crIjIjþ1
_yIj � _yIjþ1

� �2 ð4Þ

Apart from external forcing Fj acting on each blade, which will be discussed in
the following, a nonlinear inter-shroud force is defined as:

FsIjIjþ1
¼ gIjIjþ1

�ksIjIjþ1
xIj � xIjþ1 � gIjIjþ1

� �� csIjIjþ1
_xIj � _xIjþ1

� �h i
; j 2 1; z½ � ð5Þ

where gIjIjþ1
is a Boolean variable, used to take into consideration whether the

contact between the shrouds exists, and is defined as:
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gIjIjþ1
¼ 1; xIj � xIjþ1 [ gIjIjþ1

0; xIj � xIjþ1 � gIjIjþ1

;

�
j 2 1; z½ � contact

no contact
ð6Þ

and the value of ksIjIjþ1
is determined on the basis of:

ksIjIjþ1
¼

�ks; xIj � xIjþ1 [ gIjIjþ1 þ n
�k
�
n xIj � xIjþ1 � gIjIjþ1

� �
; gIjIjþ1\ xIj � xIjþ1 � gIjIjþ1 þ n;

0; xIj � xIjþ1 � gIjIjþ1

j 2 1; z½ �
8<
:

ð7Þ

The virtual work of the forces is:

dU ¼
Xz

j¼ 1

Fj dxj þ
Xz

j¼1

FsIjIjþ1
d xIj � xIjþ1 � gIjIjþ1

� � ð8Þ

Then, the degrees of freedom are grouped and ordered in vector q as follows:

q ¼ x1 y1 x2 y2 . . . xz yzf gT ð9Þ

and the system of equations can be written in the canonical form as:

M½ � q:: þ C½ � þ Cr½ � þ CsðqÞ½ �ð Þ _qþ K½ � þ Kr½ � þ KsðqÞ½ �ð Þq ¼ FðsÞ
s ðqÞ þ F ð10Þ

A complete discussion about fluid flow excitation is reported in [5]. Turbulent
flow is considered for the simulations presented in this paper. Bearing in mind that
the harmonic order number coincides with the number of the nodal diameters of the
mode, owing to the cyclicity of the system, the nth harmonic component results on
blade j equal to:

F jð ÞðtÞ ¼ DFn sin nXt þ n
2p
z

j� 1ð Þ
� �

sinxtt ð11Þ

These last forces can excite natural modes of the row only if xt � nX corre-
sponds to the circular natural frequency of the nth mode, where xt is the turbulence
circular frequency and X the rotational speed.

Owing to the presence of the terms CsðqÞ½ �, KsðqÞ½ � and FðsÞ
s ðqÞ that depend on

occurrence of the contacts on the shrouds, Eq. (10) represents a nonlinear system.
Its integration in the time domain is performed by means of Newmark’s implicit
method, in which the values of gIjIjþ1

and ksIjIjþ1
are determined at each time step by

means of Eqs. (6) and (7).
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3 Chaotic Behaviour of the Bladed Disk Owing to Snubbing

It has been shown in [5] that snubbing is effective to reduce the vibration with
respect to free-standing blades, when the excitation frequency is close to the
eigenfrequency of a certain mode; thus, when the system is close to the resonant
condition. Otherwise, snubbing may cause vibration amplification with respect to
free-standing blades. These different behaviours are analyzed under the point of
view of chaos in this section.

The bladed disk considered is the same of [5], with 120 side entry 7.5″–
190.5 mm blades, and the first simulation set is relative to a case with n ¼ 6. In
order to have statistical significance, 100 runs of simulation have been performed,
with different seed for the normal distributions of the parameters. Each simulation
has the duration of 1 s, starting with null initial condition. The mistuning selected
for the simulations is such as standard deviations are equal to 10 % of the con-
sidered normal distributions for blade parameters. The excitation frequency is equal
to the first natural frequency of a single blade, i.e. fb ¼ 390:9Hz, and very close to
the eigenfrequency of the mode with 6 nodal diameters, without mistuning.
Snubbing is effective to reduce vibrations and Fig. 2a shows the comparison
between vibration amplitudes for blade #2 with and without the snubbing on the
shrouds for a simulation run. The case without snubbing corresponds actually to the
case of free-standing blades. The Poincaré maps corresponding to blade #2 with
snubbing for all the simulation runs are shown in Fig. 3a, in a layered 3D view. The
analysis of any single Poincaré map, corresponding to any simulation run, and of
the resulting “Poincaré tube”, for all the runs, suggests the presence of chaos.
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Fig. 2 Time response of blade #2; a n = 6; b n = 2
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In order to confirm this hypothesis, the time series that represent the solution of
Eq. (10), for all the 120 blades of the disk and for all the simulation runs, have been
analyzed by means of the statistical test described in [7].

The test, applied to this case, provides that a H0 hypothesis of chaos, at sig-
nificance level 0.05, is not rejected. This happens for all the blades and simulation
runs. A further confirmation is given by the probability pi of observing the given
result by chance given that the null hypothesis is true. Small values of pi cast doubt
on the validity of the null hypothesis of chaos. The calculated probabilities pi for all
the blade responses are shown in Fig. 3b top, for a simulation run, and chaos
hypothesis is further proven. Similar results have been obtained for the other
simulation runs, which are not shown for the sake of brevity.

By shifting now to analyze the results of the estimation of Lyapunov exponents,
the dominant one k1 is positive for all the blade responses (as shown in Fig. 3b
middle), while the sum

P
i ki is negative (as shown in Fig. 3b bottom). These two

conditions:

k1 [ 0 and
X

i
ki\0 ð12Þ

indicate that chaos is present and that the dynamic system, represented by each
blade, has an attractor. The same results have been obtained for the other simulation
runs, the attractor has a “ring-shape” and this explains the “tube-shape” of the
layered Poincaré maps in Fig. 3a.
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Fig. 3 a Poincaré maps corresponding to blade #2, n = 6 (for the case with snubbing); b Top
probability of observing the given result by chance given that the null hypothesis is true; Middle
dominant Lyapunov exponent; Bottom sum of Lyapunov exponents for each blade. Case n = 6 and
for a simulation run
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The second simulation set considers a case with n ¼ 2. The excitation frequency
is equal to the first natural frequency of a single blade, i.e. fb ¼ 390:9Hz, which is
not close to eigenfrequency of 374.2 Hz associated to 2 nodal diameters without
mistuning, thus the system is not close to the resonant condition.

Snubbing is not effective to reduce vibrations, as shown in Fig. 2b for a simu-
lation run and blade #2. However, the corresponding Poincaré map (see Fig. 4a),
and of the resulting “Poincaré cloud”, for all the runs, suggests the presence of
chaos.

The testing of H0 hypothesis of chaos, at significance level 0.05, is not rejected
either in this case, for all the blades and simulation runs, while pi for all the blade
responses and a simulation run support H0, as shown in Fig. 4b top.

Similar results, with respect to the previous example, are obtained by con-
sidering the estimation of Lyapunov exponents: the dominant one k1 is positive,
while the sum

P
i ki is negative for all the blade responses (as shown respectively

in Fig. 4b middle and bottom). Other simulation runs have obtained similar
results.

Also in this case chaos is present, but the dynamical system, represented by each
blade has the attractor with a “cloud-shape” in the Poincaré layered maps of Fig. 4a.
Attractor shape is a first remarkable difference of the dynamical behaviour of the
bladed disk, whether snubbing is effective or not.
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Fig. 4 a Poincaré map corresponding to blade #2, n = 2 (for the case with snubbing). b Top
probability of observing the given result by chance given that the null hypothesis is true; Middle
dominant Lyapunov exponent; Bottom sum of Lyapunov exponents for each blade. Case n = 2 and
for a simulation run
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4 Analysis of the Fractal Dimension of the Time Series
Resulted from Dynamical Simulations

Previous section introduced the idea to analyze the nature of the chaotic dynamical
behaviour of the bladed disk response, in order to find out correlations between
snubbing effectiveness. Now, a further idea is investigated: to evaluate if a chaos
metric can be correlated to snubbing effectiveness.

The metric here used is Higuchi’s fractal dimension (HFD), introduced in [8].
HFD, like other measurements of fractal dimension [9], has been introduced as an
index for describing the irregularity of a time series /ðtÞ in place of the power law
of its power spectrum Pðf Þ / f�a. The more irregular the time series, the higher its
fractal dimension. Under a different point of view, high fractal dimension corre-
sponds to a power spectrum in which the power of the signal is distributed over a
wide frequency range. This consequence allows an interesting interpretation of the
effectiveness of snubbing mechanism, as it will be discussed in this section. HFD is
applied to the time series, resulted from the dynamical simulation sets using the
mistuned model presented before, by considering the change of system parameters,
namely the damping, the frequency of the excitation acting on the bladed disk, or
the nominal assembling gap.

4.1 Effect of Damping Change

The first case study is relative to the change of the damping between the shrouds
during the contact. Bearing in mind that the response of Fig. 2a was calculated
using the nominal and experimental system parameters, as described in [5], Fig. 5a,
b show, respectively, the results a simulation run for the same blade #2 with lower
and higher damping than the nominal one, compared to the response of the free-
standing blade #2 to the same excitation. The time response of a further case with
even higher damping is not shown for the sake of brevity.

Even without calculating the RMS ratio of the vibration amplitude in case of
snubbing and in case of free-standing blades, it is rather easy to observe from Fig. 5
that the higher the inter-shroud damping, the more effective the snubbing to reduce
vibrations. This is confirmed also for the case with very high damping not shown
for brevity. Similar results have been obtained for the other simulation runs of these
cases, with different normally distributed blade parameters.

Nevertheless, this qualitative remark has a quantitative correspondence if the
HFDs of the time response are considered for all the blades. The results are shown
in Fig. 6, where it is evident that HFD is obviously greater than 1 in every case, but,
once a blade number is given, the HFD increases in biunique way with the damping
and, consequently, with the effectiveness of the snubbing. This indicates also that
the higher the chaos in the response, the more effective the snubbing.
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4.2 Effect of Different Frequency of the Blade Excitation

The last remark of previous section is confirmed if another case study is considered.
Different excitation frequencies are considered, from 380 to 400 Hz with 1 Hz step,
by using the same mistuned model previously introduced and ceteris paribus. Both
the free-standing blade response x and that of the blades with snubbing xs change in

Fig. 6 Higuchi’s fractal dimension comparison, case n = 6
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Fig. 5 Time response of blade 2, n = 6. a Low damping; b High damping
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this case. In order to allow an easy comparison between all the simulation runs for
all the blades, the average RMS values of the vibration amplitude are calculated in
case of snubbing and in case of free-standing blades; Fig. 7a shows the percentage
average vibration reduction defined as:

DRMS ¼ xRMS
s � xRMS

� ��
xRMS ð13Þ

Snubbing is most effective when the excitation frequency is equal to 389 Hz (as
said before close to the eigenfrequency of the system with n ¼ 6) and decreases its
effectiveness by shifting towards the boundaries of the sweep interval.

The snubbing effectiveness versus the excitation frequency has a quantitative
correspondence with the HFDs of the time response, which are considered for all
the blades. The results are shown in Fig. 7b, where it is evident that average HFD,
for all the simulation runs, is obviously greater than 1 in every case, but, once a
blade number is given, the highest value of average HFD is in correspondence of
the excitation frequency of 389 Hz. Average HFD decreases as well as snubbing
effectiveness, by shifting toward the boundaries of the excitation frequency interval.

It is confirmed also in this case that the higher the chaos of the response, the
more effective the snubbing.

This evidence suggests an interesting physical interpretation of the snubbing
effectiveness, when the meaning of the HFD is reconsidered. If HFD is high, like in
case of snubbing effectiveness, then the power of the signal, i.e. of the vibration
response, is “spread” over a wide frequency range. This fact happens especially in
resonant conditions and the presence of snubbing does not let system response to
synchronize with the resonant excitation frequency. Therefore, it results that
snubbing boosts the effect of mistuning.
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Fig. 7 a Percentage reduction of average RMS vibration amplitude as a function of the excitation
frequency, case n = 6. b Average Higuchi’s fractal dimension comparison as a function of
excitation frequency, case n = 6
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4.3 Effect of Different Gap Between the Blades and Assembly
Gap Selection

The last analysis presented is relative to change of the assembly gap between the
shrouds. The excitation frequency is equal to the first natural frequency of a single
blade, i.e. fb ¼ 390:9Hz, and very close to the eigenfrequency of the mode with 6
nodal diameters, without mistuning. The nominal gap ranges from 10 to 100 μm
with 10 μm step, by using the same mistuned model previously introduced and
ceteris paribus.

A comprehensive analysis of nominal gap variation can be done by considering
Fig. 8a, where the percentage average vibration reduction DRMS is shown. Snubbing
is more effective in an interval of nominal gap values between 20 and 30 μm and
less effective for small and big values of the gap. Snubbing lack of effectiveness for
big gaps can be explained in a rather intuitive way, because relatively large blade
displacements are permitted before shroud contacts. On the contrary, the ineffec-
tiveness for small gap may appear unexpected and physically inexplicable, but the
reason can be understood by considering HFD average distribution, as a function of
the gap, shown in Fig. 8b.

Higher values of HFD are obtained on average in the interval of nominal gap
values between 20 and 30 μm, which is also the optimal for vibration reduction.
HFD is smaller for smaller values of the gap, indicating that the response is
chaotic, i.e. shrouds come in contact and snubbing takes place, but its metric is
smaller, i.e. the power of the vibration response is not “spread” over a wide
frequency range.
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Fig. 8 a Percentage reduction of average RMS vibration amplitude as a function of the nominal
assembly gap, case n = 6. b Average Higuchi’s fractal dimension comparison as a function of the
nominal assembly gap, case n = 6
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5 Conclusions

The relationship between chaos and snubbing effect in bladed disks has been
analyzed in this paper. An improved version of a simple modal model, already
developed by the authors, is presented. It includes blade mistuning and nonlinear
contact stiffness on the shrouds. It has been proven that snubbing causes a chaotic
response of the bladed disk.

Higuchi’s fractal dimension has been used as the metrics for chaotic response of
the bladed disk. The higher snubbing effectiveness to reduce blade vibrations, the
higher the fractal dimension of the system response, i.e. its irregularity. This gives
an insight for physically explain the snubbing effectiveness: snubbing does not let
system response to synchronize with the excitation frequency in resonant conditions
and “spread” system response over a wide frequency range.
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