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Abstract. A tour cover of an edge-weighted graph is a set of edges
which forms a closed walk and covers every other edge in the graph. The
minimum tour cover problem is to find a minimum weight tour cover.
This problem is introduced by Arkin, Halldórsson and Hassin (Infor-
mation Processing Letters 47:275-282, 1993) where the author prove the
NP -hardness of the problem and give a combinatorial 5.5-approximation
algorithm. Later Könemann, Konjevod, Parekh, and Sinha [7] improve
the approximation factor to 3 by using a linear program of exponential
size. The solution of this program involves the ellipsoid method with a
separation oracle. In this paper, we present a new approximation algo-
rithm achieving a slightly weaker approximation factor of 3.5 but only
dealing with a compact linear program.

1 Introduction

Let G = (V,E) be an undirected graph with a (nonnegative) weight function
c : E ⇒ Q+ defined on the edges. A tour cover of G is a subgraph T = (U, F )
such that

1. for every e ∈ E, either e ∈ F or F contains an edge f adjacent to e, i.e.
F ∩N(e) �= ∅ where N(e) is the set of the edges adjacent to e.

2. T is a closed walk.

A tour cover is hence actually a tour over a vertex cover of G. The minimum
tour cover problem consists in finding a tour cover of minimum total weight :

min
∑

e∈F

ce,

over subgraphs H = (U, F ) which form a tour cover of G.
The minimum tour cover problem were introduced by Arkin, Haldórsson and

Hassin [1]. The motivation for their study comes from the close relation of the
tour cover problem to vertex cover, watchman route and traveling purchaser
problems. They prove that the problem is NP -hard and provide a fast combi-
natorial algorithm achieving an approximation factor of 5.5.

Improved approximations came from Könemann, Konjevod, Parekh, and Sinha
[7] where they use an integer formulation and its linear programming relaxation
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to design a 3-approximation algorithm. However, as the linear programming re-
laxation is of exponential size, their algorithm needs an ellipsoid method and a
separation oracle to solve it.

Several problems are closely related to the minimum tour cover problem.
First, if instead of a tour, we need a tree then this is the minimum tree cover
problem. Second, if we need just a edge subset over a vertex cover then this
is the minimum edge dominating set problem. These two problems are all NP -
hard. Approximation algorithms [1],[7],[5] has been designed for the minimum
tree cover problem and the current best approximation factor is 2 [5]. Similarly,
approximation algorithms for the minimum edge dominating set problem have
been discussed in [2], [6] and the current best approximation factor is also 2 [6].
Another related problem is the well known minimum edge cover problem which
consists in finding a minimum weight edge subset which covers every vertex of G.
This problem can be solved in polynomial time and we know a complete linear
programming for it [4].

In this paper, we present a new approximation algorithm achieving a factor
3.5 which is slightly weaker than the factor 3 obtained by Könemann et al. but
our algorithm needs only to solve a compact linear program. Precisely, we use a
compact linear relaxation of the formulation in [7]. From an optimal solution of
this relaxation, we determine a vertex cover subset and use a reduction to the
edge cover problem to find a forest F spanning it. Finally, to obtain a tour cover,
we apply the Christofides heuristic [3] to find a tour connecting the connected
components of F and eventually duplicate edges in each connected component
of F . We prove that the weight of such a tour cover is at most 3.5 times the
weight of the minimum tour cover.

The idea of reduction to the edge cover problem is first given by Carr et al. [2]
in the context of the minimum edge dominating set problem. We borrow their
idea here to apply to the minimum tour cover problem.

Let us introduce the notations which will be used in the paper. For a subset
of vertices S ⊆ V , we write δ(S) for the set of edges with exactly one endpoint
inside S et E(S) for the set of edges with both endpoints inside S. If x ∈ R|E|

is a vector indexed by the edges of a graph G = (V,E) and F ⊆ E is a subset of
edges, we use x(F ) to denote the sum of values of x on the edges in the set F ,
x(F ) =

∑
e∈F xe.

The paper is organized as follows. First, we present the first three steps of
the algorithm and we explain the idea of the reduction to the edge cover prob-
lem. Second and lastly, we describe the last step and we give a proof for the
approximation factor of 3.5.

2 A 3.5-Approximation Algorithm

2.1 First Three Steps of the Algorithm

Let x be a vector in RE which is an incidence vector of a tour cover C ofG. Let e =
uv be an edge of G. We can see that e can belong or not to C, but in the two cases,
there must be at least two edges in δ({u, v}) belonging to C, i.e. |δ({u, v})∩C| ≥ 2.
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Hence, the vector x satisfies the following constraint: x(δ({u, v})) ≥ 2. The
following linear program which consists of all these constraints applying for every
edge in G :

min
∑

e∈E

cexe

s.t. x(δ({u, v})) ≥ 2 for all edge uv ∈ G, (1)

0 ≤ xe ≤ 2 for all e ∈ E.

This linear program (1) is thus a linear programming relaxation of the tour
cover problem. We can see that this is a compact linear program, its size is
even linear since the number of constraints is in O(|E|). Note that the linear
programming relaxation used in [7] has, in addition of the box constraints 0 ≤
xe ≤ 2 for all e ∈ E,

x(δ(S)) ≥ 2 for all S ⊂ V s.t. E(S) �= ∅, (2)

as constraints and then is clearly of exponential size and the set of the inequal-
ities(1) is the subset of the inequalities in (2) having |S| = 2.
Now let us consider the following

min
∑

e∈E

cexe

s.t. x(δ({u, v})) ≥ 1 for all edge uv ∈ G, (3)

0 ≤ xe ≤ 1 for all e ∈ E.

It is clear that an optimal solution of (1) is two times a optimal solution of (3)
and a solution of (3) is a half of a optimal solution of (1).
Let x∗ be an optimal solution of (3) found by usual linear programming tech-
niques. Consequently 2x∗ is an optimal solution of (1). Let V+ ⊆ V = {u ∈
V |x∗(δ(u)) ≥ 1/2} and let V− = V \V+. It is not difficult to prove the following
lemma.

Lemma 1. The set V+ is a vertex cover of G.

Hence, a tour inG containing all vertices of V+ is thus a tour cover. Our algorithm
will build such a tour by building first an edge subset D+ ⊆ E covering V+

(i.e. V+ is a subset of the set of the end vertices of the edges in D+) with
weight not greater than 2

∑
e∈E cex

∗
e and after finding a tour connecting the

connected components of D+ by Christofides algorithm. The idea of build the
edge set D+ is borrowed from [2] where the authors apply it for designing an
2 1
10 -approximation algorithm for the minimum edge dominating problem. Let

us examine it in details.
Let V ′− be a copy of V− where v ∈ V− corresponds to v′ ∈ V ′− and E′ be the

set of zero-weight edges, one between each v ∈ V− and its copy v′ ∈ V ′
−. We

construct then the graph Ḡ = (V̄ = V ∪ V ′
, Ē = E ∪ E′). We have the following

lemma.
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Lemma 2. There is a one-to-one weight preserving correspondence between the
edge subsets which cover V+ in G and the edge cover subsets (that cover V̄ ) of
Ḡ.

Proof. If D− is an edge cover of Ḡ, then D+ = D− ∩ E must be an edge set
of equal weight covering all the vertices in V+. Conversely, if D+ is an edge set
covering all the vertices in V+, then D+ ∪ E′ is an edge cover of Ḡ of equal
weight, since the edges in E′ cost nothing.

We can now describe the first three steps of the algorithm which can be stated
as follows:

Step 1. Compute an optimal solution x∗ of (3).

Step 2. Compute V+.
Step 3. Build the graph Ḡ. As the minimum edge cover problem can be solved

in polynomial time [4], compute a minimum-weight edge cover D− in Ḡ and
set D+ = D− ∩ E.

2.2 Analysis on the Quality of D+

It is known that the minimum edge cover problem in Ḡ can be formulated by
the following linear program [4]:

min
∑

e∈E

cexe,

EC(Ḡ) s.t.

x(δ(u)) ≥ 1 u ∈ V̄ , (4)

x(E(S)) + x(δ(S)) ≥ |S|+ 1

2
S ⊆ V̄ , |S| ≥ 3 odd, (5)

0 ≤ xe ≤ 1 e ∈ Ē.

Theorem 1. Le point 2x∗ which is an optimal solution of (1) is feasible pour
EC(Ḡ).

Proof. Let y∗ = 2x∗. Suppose u is a vertex in V̄ . If u ∈ V+, we have x
∗(δ(u)) ≥ 1

2 ,
otherwise u ∈ V− ∪ V ′

−, and we have x∗
e = 1 for all e ∈ E′, so in either case

y∗(δ(u)) ≥ 1, (6)

So y satisfies the constraints (4). As x∗ is a solution of (3), hence y∗ satisfies

y∗(δ(u)) + y∗(δ(v)) ≥ 2 + 2y∗uv. (7)
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Suppose that S is a subset of V̄ of odd cardinality; let s = |S|. When s = 1, the
constraints (4) are trivially satisfied by y∗, so suppose that s ≥ 3. By combining
(6) and (7) we see

y∗(δ(u)) + y∗(δ(v)) ≥
{
2 + 2y∗uv if uv ∈ Ē,

2 otherwise.

Summing the approriate inequality above for each pair {u, v} in S × S, where
u �= v, we get

(s− 1)y∗(δ(S)) + 2(s− 1)y∗(Ē(S)) = (s− 1)
∑

u∈S

y∗(δ(u))

=
∑

{uv∈S×S|u�=v}
y∗(δ(u)) + y∗(δ(v))

≥ s(s− 1) + 2y∗(Ē(S)).

Isolating the desired left hand side yields

y∗(δ(S)) + y∗(Ē(S)) ≥ s(s−1)+(s−3)y∗(δ(S))
2s−4 ≥ s(s−1)

2s−4 , for s ≥ 3.

We can see that for s ≥ 3, s(s− 1) > (s+ 1)(s− 2), thus

s(s− 1)

2(s− 2)
>

(s+ 1)(s− 2)

2(s− 2)
>

s+ 1

2
.

Hence y∗ satisfies (5).

Corollary 1. The weight of D+ is a lower bound for the weight of an optimal
solution of (1).

2.3 Last Step

We can see that D+ forms a forest.

Step 4. The last step of the algorithm consists of shrinking the connected com-
ponnents of D+ along its edges into vertices to obtain a contracted graph
G′. The contraction of a graph G along a set of edge D+ produces a graph
G′ = (V ′, E′) and a set of vertices S ⊆ V ′ defined as follows: For each edge
in D+, merge its two endpoints into a single vertex, whose adjacency list
is the union of the two adjacency lists. If parallel edges occur, retain the
edge with smaller weight. The resulting graph is G′. The set S consists of
the vertices formed by edge contraction (i.e., the nodes in V ′ \ V ). We now
proceed to find an approximation of the optimal tour T ′ going through all
the vertices of S in G′ with distances modified (if necessary) to the shortest
paths distances. This can be done by using Christofides heuristic [3]. Map
this solution back to a partial tour T of G. For each component formed by
the edges in D+, form an Eulerian walk from the entry point to the exit
point of Q in the component by duplicate some of its edges. Output the tour
Q formed by T and the Eulerian walk.
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Let APX be the weight of Q and OPT be the weight of an optimal tour cover
in G.

Theorem 2. APX ≤ 3.5× OPT.

Proof. We can see in the worst case, Q contains the tour T and 2 times the edge
set D+. Any tour cover in G should take visit to all the connected component of
D+, hence as the weight of T can not be worse than 1.5×OPT [3]. By Corollary
1, the weight of D+ is less than OPT, then 2 times the edge set D+ is of weight
at most 2×OPT. Thus, overall APX ≤ 1.5×OPT +2×OPT = 3.5× OPT.
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