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Abstract. Since Mutation Testing was proposed in the 1970s, it has been consi-
dered as an effective technique of software testing process for evaluating the 
quality of the test data. In other words, Mutation Testing is used to evaluate the 
fault detection capability of the test data by inserting errors into the original 
program to generate mutations, and after then check whether tests are good 
enough to detect them. However, the problems of mutation testing such as a 
large number of generated mutants or the existence of equivalent mutants, are 
really big barriers for applying mutation testing. A lot of solutions have been 
proposed to solve that problems. A new form of Mutation Testing, Higher Or-
der Mutation Testing, was first proposed by Harman and Jia in 2009 and is one 
of the most promising solutions. In this paper, we consider the main limitations 
of Mutation Testing and previous proposed solutions to solve that problems. 
This paper also refers to the development of Higher Order Mutation Testing and 
reviews the methods for finding the good Higher Order Mutants. 
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1 Introduction 

According to IEEE Std 829-1983 (IEEE Standard Glossary of Software Engineering 
Terminology), software testing is the process of analyzing a software item to detect 
the differences between existing and required conditions and to evaluate the features 
of the software items. In other words, software testing is execution a program using 
artificial data and evaluating software by observing its execution in order to find 
faults or failures. It is worth mentioning that “testing can only show the presence of 
errors, not their absence” which is often referred as Dijkstra’s law.  Where, according 
to IEEE Std 829-1983, error is a human action that produces  an incorrect result, fault 
is an incorrect step, process, or data definition  in a computer program and failure is 
the inability of a system or component to perform its required functions within speci-
fied  performance requirements.  

Software testing is always one of the important activities in order to evaluate the 
software quality. However, the quality of the set of testcases is a problem to be dis-
cussed. In addition, there are many cases that testers have not mentioned in the set of 
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testcases. Mutation Testing has been introduced as a technique to assess the quality of 
the testcases. 

Mutation Testing (MT), a technique that has been developed using two basic ideas: 
Competent Programmer Hypothesis (“programmers write programs that are reasona-
bly close to the desired program”) and Coupling Effect Hypothesis (“detecting simple 
faults will lead to the detection of more complex faults”), was originally proposed in 
1970s by DeMillo et al.[1] and Hamlet[2]. While other software testing techniques 
focus on the correct functionality of the programs by finding error, MT focuses on test 
cases used to test the programs. In other words, the purpose of software testing is to 
find all the faults in a particular program whilst the purpose of MT is to create good 
sets of testcases. A good set of testcases is a set which is able to discover all the 
faults. With MT, mutants of a program are the different versions of the program. More 
specifically, each of which is generated by inserting only one semantic fault into origi-
nal program (Table 1 gives an example to mutant). That generation is called mutation 
and that semantic fault is called mutation operator. It is a rule that is applied to a pro-
gram to create mutants, for example modify expressions by replacing operators and 
inserting new operators. Mutation operators depend on programming languages, but 
there are traditional mutation operators: deletion of a statement; replacement of boo-
lean expressions; replacement of arithmetic; replacement of a variable. 

Table 1. An example of mutant (First Order Mutant) 

Program P Mutant P’ 
... 

while (hi<50) { 

system.out.print(hi); 

        hi = lo +hi; 

lo = hi –lo; 

        } 

... 

... 

while (hi>50) { 

system.out.print(hi); 

        hi = lo +hi; 

lo = hi –lo; 

        } 

... 

The process of  MT can be explained simply in following steps: 

1. Suppose we have a program P and a set of testcases T 
2. Produce mutant P1 from P by inserting only one semantic fault into P 
3. Execute T on P and P1 and save results as R and R1 
4. Compare R1 with R: 
 4.1 If R1 ≠ R: T can detect the fault inserted and has killed the mutant. 
 4.2 If R1=R: There could be 2 reasons: 
 + T can’t detect the fault, so have to improve T. 
 + The mutant has the same semantic meaning as the original program. It’s 

equivalent mutant (an example of equivalent mutant is showed in Table 2). 
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MT evaluates a set of testcases T by Mutation Score (MS), will be between 0 and 
1, which is calculated by the following formula: 

  mutants Equivalent–  mutants Total

mutants killed ofNumber =MS
 

A low score means that the majority of faults cannot be detected accurately by the 
test set. A higher score indicates that most of the faults have been identified with this 
particular test set. A good test set will have a mutation score close to 100%. When 
MS = 0, have no any testcase that can kill the mutants and when MS=1, we say that 
mutants are very easy to kill. 

Table 2.An example of equivalent mutant 

Program P Mutant P’ 
… 

int a =2; 

if (b==2) {      

System.out.print(b);  

 b = a + b;} 

… 

… 

int a =2; 

if (b==2) {      

System.out.print(b);  

 b = a * b;} 

… 

 
In the next section, we summarize main limitations of mutation testing. Section 3 

shows the previous proposed solutions for solving the limitations of mutation testing. 
Section 4 presents Higher Order Mutation Testing and its effectiveness. Section5 
presents techniques to find good Higher Order Mutants. Section 6 presents conclu-
sions and future work. 

2 Main Limitations of Mutation Testing  

Although MT is a high automation and effective technique for evaluating the quality 
of the test data, Mutation Testing has three main problems in our view. 

The first limitation of mutation testing is a large number of mutants, because 
program may have a fault in many possible places and with only one inserted seman-
tic fault we will have one mutant. Thus, a large number of mutants will be generated 
in the mutant generation phase of mutation testing. Typically, this is a large number 
for even small program. For example, a simple program with just a sentence such as 
return a+b (where a, b are integers) may be mutated into many different ways: a−b, 
a*b, a/b, a+b++, −a+b, a+−b, 0+b, a+0, etc. This problem leads to a very high execu-
tion cost because the test cases are executed on not only original program but also 
each mutants. For example, assume that we have a program under test with 150 mu-
tants and 200 testcases, it requires (1+150)*200 = 30200 executions with their corres-
ponding results. 

The second limitation of mutation testing is realism. Mutations are generated by 
single and simple syntactic changes, hence they do not denote realistic faults. While 
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according to Langdon et al.[9], 90 percent of real faults are complex. In addition, it is 
not sure that we have found a large proportion of real faults present even if we have 
killed all the killable mutants[4].This is one of big limitations for applying mutation 
testing. 

The third limitation of mutation testing is equivalent mutant problem[68]. In 
fact, many mutation operators can produce equivalent mutants which have the same 
behavior as original program. In this case, there is no testcase which could “kill” that 
mutants and the detection of equivalent mutants often involves additional human ef-
fort. Madeyski et al.[68] manually classified 1000 mutants as equivalent or non-
equivalent and confirmed the finding by Schuller and Zeller[89] that it takes about12 
minutes to assess one single mutation for equivalence. Therefore, there is often a need 
to ignore equivalent mutants, which would mean that we are ready to accept the lower 
bound on mutation score named mutation score indicator MSI [98][99][100][101]. 

3 Solutions Proposed to Solve Problems of Mutation Testing 

In order to collect a complete set of all the techniques to solve the problems of MT 
since the 1970s (after MT was proposed by DeMillo et al. [1] and Hamlet [2]) and 
sort them in chronologic order, with search terms which have either “mutation test-
ing”, “mutation analysis”, “mutants + testing”, “mutants + methods”, “mutants + 
techniques”, “mutants + problems”, “mutation testing + improve”, “equivalent mu-
tants”, “mutants*”, “higher order mutants”, we searched papers that were published in 
IEEE Explore, ACM Portal, Springer Online Library, Wiley Online Library, Cite-
seerx and journals or conference proceedings as IST (Information and Software  
Technology), JSS (Journal of Systems and Software), TSE (IEEE Transactions on 
Software Engineering), IET Software. After then, we continued to look at the refer-
ences of each paper to find other articles related to our purpose. In addition, we also 
searched for Master and PhD theses that have contents related to “mutation testing”. 
Figure 1 shows number of publications proposing techniques to solve the problems of 
Mutation Testing. 

 

 

Fig. 1. Number of publications proposing techniques to solve the problems of MT 
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We searched and listed techniques to solve the problems of MT as reduce the num-
ber of mutants and execution cost, solve the realism problem and solve the equivalent 
mutant problem in chronologic order as follows: 

3.1 Mutant and Execution Cost Reduction Techniques 

Mutant Sampling approach[14-20] was first proposed by Acree[14] and Budd[15] in 
1980. In this approach, a small subset of mutants are randomly selected from the  
entire set. Some studies implied that Mutant Sampling is valid with a x% value higher 
than 10% (x% is % of mutants were selected randomly). 

Reduction number of mutation operators will leads reduction number of mutants. 
This is idea of Agrawal et al.[23] and Mathur[24] and it was called Selective Mutation 
by Offutt et al.[18][25]. This approach suggested finding a small operators set that 
generate a subset of all possible mutants without losing test effectiveness. There are 
many authors have been applied this approach to effectively reduce generated mu-
tants[20][26-32]. 

Instead of selecting mutants randomly, Husain[21] in 2008 used clustering algo-
rithms to choose a subset of mutants. There is a empirical study of this approach in 
the work of Li et al.[22]. 

Second Order Mutation Testing[68][76][83][84[97] in particular and Higher Order 
Mutation Testing[3][4][9][10][35] in general are the most promising solutions to re-
duce number of mutants. Basic idea of this approach is improvement of MT by insert-
ing two or more faults into original program to generate its mutants. For example, by 
combining two First Order Mutants to generate Second Order Mutant[68][83][84[97] 
or by using Subsuming Higher Order Mutants algorithms[3][4], the number of gener-
ated mutants can be reduced to about 50%. 

Weak Mutation[36-42][93][94] was first proposed by Howden[36] in 1982 pro-
posed. This is the first technique to optimize the execution of Traditional Mutation 
Testing (called Strong Mutation). Suppose that a program P is constructed from a set 
of components C= {c1,..,cn}. And mutant m is made by changing cm,. So, we need 
only compare immediately the result of mutant m with the result of cm execution to 
say m be killed or not (immediately check after mutated component be executed). 

In order to improve quality of Strong Mutation and Weak Mutation, Woodward et 
al. [43][44] suggested an approach named Firm Mutation in 1988. This approach 
provides a continuum of intermediate possibilities to overcome the disadvantages of 
weak and strong mutation. In firm mutation, components may be groups of statements 
and partial program executions may be considered rather than each separate compo-
nent execution as in weak mutation or the complete program execution as in strong 
mutation. It combines the reduced execution cost of weak mutation with the greater 
transparency of strong mutation. 

In group of Run-time Optimization techniques, there are 6 techniques have been 
proposed. Interpreter-Based technique was first proposed in 1987 by Offutt and 
King[45][18] to reduce execution cost with idea: the original program is translated 
into an intermediate form, and then mutants are generated from this intermediate 
code. With Compiler-Based technique[46-48], each mutant is first compiled into an 
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executable program, and then execute testcases on the compiled mutant. It is faster 
because execution of compiled binary code takes less time than code interpretation. 
Whilst main idea of Compiler-Intergrated[49][50] is designing an instrumented com-
piler to generate and compile mutants instead of compiling each mutant  individually 
in the Compiler-Based technique. In order to improve the Interpreter-Based tech-
nique, Mutant Schema Generation[51-54][95] approach has been proposed. All mu-
tants are encoded into a metaprogram, then the metaprogram is compiled and run with 
faster speed, basically, compared to compile and execute each individual mutation. 
Another technique is Bytecode Translation Technique[55-58] which was first pro-
posed by Ma et al.[56] in 2005 to reduce execution cost of MT by using bytecode 
translation. Instead of from source code, mutants are generated from the compiled 
bytecode of original program and that generated mutants can be executed directly 
without compilation[55-58]. The last technique of this group is Aspect-Oriented Mu-
tation which has been proposed by Bogacki and Walter[59][60]. In this approach, do 
not need to compile each mutant. An aspect patch is generated and each aspect will 
run programs twice: First for the original program and then for mutants. 

There are also some techniques to improve computational cost base on computer 
architectures as SIMD (Single Instruction  Multiple Data)[61-63], MIMD (Multiple 
Instruction  Multiple Data)[64][65] and Parallel[66][67]. 

In 2013, Lisherness et al.[96] suggested a new approach by using coverage dis-
counting for mutation analysis can reveal which functions are changed in the mutant, 
and in turn what is not being adequately tested if the mutation is undetected. 

3.2 Techniques to Solve the Realism Problem 

There are many works have been demonstrated that the majority of real faults are 
complex faults. E.g. in [34][35], it is known that 90%. Base on that suggestion, 
Second Order Mutation Testing[68][77][84][85[97] in particular and Higher Order 
Mutation Testing[3][4][9][10] in general have been considered as the most promising 
solutions to solve the realism problem. That approaches have been suggested using 
more complex faults to generate mutants by inserting two or more faults into original 
program. In addition, Langdon et al.[9][35] introduced a new form of mutation test-
ing: Multi Objective Higher Order Mutation Testing (with Genetic Programming)[35] 
in order to find higher order mutants that  more realistic complex faults. 

3.3 Techniques to Solve the Equivalent Mutant Problem 

According to Madeyski et al.[68], the techniques to solve the equivalent mutant prob-
lem can be classified into 3 groups: 

- Applying techniques to detect equivalent mutants such as Compiler Optimiza-
tion[69][70], Mathematical Constraints[71][90],Program Slicing[72], Semantic dif-
ferences in terms of running profile[73],Margrave’s change-impact analysis[74] and 
Lesar model-checker[75]. 

- Applying techniques to avoid (or reduce) generating the equivalent mutants in the 
process of mutants generation such as Selective mutation[77], Program dependence 
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analysis[78], Co-evolutionary[79], Equivalency conditions[80], Fault hierarchy[81], 
Semantic exception hierarchy[82], Higher order mutation testing[3], [83], [84], [68]. 

- Applying techniques in order to suggest the equivalent mutants such as Using 
Bayesian-learning based guidelines[85], Examining the impact of equivalent mutants 
on coverage [86],  Using the impact of dynamic invariants [87], Examining changes 
in coverage[88][89]. 

4 Higher Order Mutation Testing and Its Effectiveness 

Second Order Mutation Testing in particular and Higher Order Mutation Testing in 
general is an approach for generating mutants by applying mutation operators more 
than once. The idea about Second Order Mutation Testing was first mentioned by 
Offut[76] in 1992. After then, Polo et al. [100] in 2008, Kintis et al. [83] and M. Pa-
padakis and N. Mlevris [84] in 2010,  and L. Madeyski et al.[68] in 2013 further 
studied to suggest their algorithms to combine First Order Mutants to generate Second 
Order Mutants (SOMs). With this approach, not only at least 50% mutants were re-
duced without loss of effectiveness of testing, but also the number of equivalent mu-
tants can be reduced (the reduction in the mean percentage of equivalent mutants 
passes from about 18.66% to about 5%) and generated second order mutants can be 
harder to kill [97][84][85][68].  

In 2009, Higher Order Mutation Testing (HOM Testing) was first proposed by Jia, 
Harman and Langdon[3][4]. According to them, mutants can be classified into two 
types: First Oder Mutants (FOMs – used in Traditional Mutation Testing) - are gener-
ated by applying mutation operators only once - and Higher Oder Mutants (HOMs-
used in Higher Order Mutation Testing) – are constructed by inserting two or more 
faults. A simple example is presented as Table 3: 

Table 3. An example of higher order mutant 

Program P FOM1
… 

while ((hi < 50) && (hi>lo)){  

System.out.print(hi);  

 hi = lo + hi; 

   lo = hi - lo; } 

… 

… 

while ((hi > 50) && (hi>lo)){  

System.out.print(hi);  

 hi = lo + hi; 

   lo = hi - lo; } 

… 

FOM2 HOM (Createdfrom FOM1 and 
FOM2)

… 

while ((hi < 50) && (hi<lo)){  

System.out.print(hi);  

 hi = lo + hi; 

   lo = hi - lo; } 

… 

… 

while ((hi > 50) && (hi<lo)){  

System.out.print(hi);  

 hi = lo + hi; 

   lo = hi - lo; } 

…
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The same as Second Order Mutants, the combination of faults of higher order mu-
tation testing can reduces the number of generated mutants and limits the number of 
mutants and those generated mutants are harder to kill than any of the individual con-
stituent faults. E.g. in case of subsuming Higher Order Mutants [3][4].A subsuming 
HOM was constructed from constituent FOMs and so that HOM is only killed by 
subset of the intersection of testcases which kill each constituent FOMs. Therefore, 
the quality of testcases will be better  but the number of testcases will be reduced. 
Fewer number mutants and fewer number of test cases lead to a fewer execution cost. 
In addition, with the combination of faults, we also limit unrealistic and avoid gene-
rating equivalent mutants [3][68][76][83-84]. 

To be more clearly, let’s consider the example given in Table 3. In this case, we 
have only one HOM created from FOM1 and FOM2 instead of FOMs. And there are 
TWO test cases which kill FOM1: {hi<50 && hi>lo} and {hi>50 && hi>lo}, TWO 
test cases which kill FOM2: {hi<50 && hi>lo} and {hi<50 && hi<lo}. But we need 
ONLY ONE test case which kills HOM: {hi<50 && hi>lo} and this test case also 
kills both FOM1 and FOM2. But the reverse is not true, the test case {hi>50 && 
hi>lo} does not kill HOM and the test case {hi<50 && hi<lo} also does not kill 
HOM. And so, with HOM, we can reduce number mutants generated and number of 
test cases without leading to loss of effectiveness during testing. Similarly, the com-
bination of two or more errors to generate mutants will cause limited number of gen-
erated equivalent mutants and number of “easy to kill” mutants. 

Unlike some other techniques presented in part 3 that only solve individual prob-
lems of traditional mutation testing, higher order mutation testing could help us to 
deal with three main problems of the traditional mutation testing at the same time. 
That is why we choose higher order mutation testing to study. In the next part, we will 
present more detail on this issue.  

5 Finding the Good HOMs 

5.1 Second Order Mutants (SOMs) 

In 2008, with the results of their study, Polo et al.[97] believed that “mutant combina-
tion does not decrease the quality of the test suite”. They suggested[97] 3 algorithms 
to generate second order mutants (mutants containing two simple faults are called 
second order mutants). With the LastToFirst algorithm, assume that we have the list 
of n mutants of First Order Mutants (FOMs), SOMs were generated by combining the 
first FOM with the FOM number n, the second-FOM with the FOM number (n-1), 
and so on. In the second one, DifferentOperators algorithm, SOMs were generated by 
combining two FOMs generated by different mutation operators. And the last algo-
rithm, RandomMix, combines any two FOMs to generate SOMs. In their study, after 
FOMs were generated from 6 programs under test (Bisect with 31 LOC-Line of Code, 
Bub-54, Find-79, Fourballs-47, Mid-59 and TriTyp-61), the three combination algo-
rithms were used to generate SOMs. Number of test cases corresponding to each pro-
gram are 25, 256, 135, 96, 125, 216 were passed to the FOMs and the SOMs. Results 
showed that the number of SOMs decreased about 50% compared with FOMs, and 
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the mean percentage of equivalent SOMs is only about 5% compared with 18,66% of 
equivalent FOMs [97]. 

Based on the algorithms of the Polo et al.[97], M. Papadakis and N. Malevris  stu-
died and proposed five new strategies to combine FOMs: First2Last , SameNode, 
SameUnit , SU_F2Last  and SU_DiffOp[84]. They executed both of First Order Mu-
tation Testing strategies (Strong Mutation, Rand 10%, Rand 20%, Rand 30%, Rand 
40%, Rand 50%, Rand 60%) and Second Order Mutation Testing strategies (Ran-
domMix, DifferentOperators, First2Last, SameNode, SameUnit, SU_F2Last  and-
SU_DiffOp) with the same test programs[84]. With their empirical study[84], the 
mean number of equivalent mutants with the First Order Mutation Testing strategies 
is about 6237, and with the Second Order Mutation Testing strategies is about 2727. 
Meanwhile, Second Order Mutation Testing strategies reduced the number of gener-
ated SOMs by about 50%, because of SOMs also were generated combining two 
FOMs, and of course will lead to reduced execution cost. 

In 2010, Kintis et al.[83] suggested two categories of Second Order Mutation Test-
ing strategies: The Second Order Strategies category includes RDomF and SDomF 
strategy; The Hybrid Strategies category includes HDom(20%) and HDom(50%) 
strategy. The results of their study indicates that the number of generated equivalent 
mutants of Weak Mutation, RDomF, SDomF, HDom(20%) and HDom(50%) strate-
gies reduced about 73%, 85.4%, 86.8%,81.4% and 65.5% in turn compared with the 
number of  generated equivalent mutants of Strong Mutation. Meanwhile the Muta-
tion Scores are 99.94%, 99.99%, 99.91%, 99.91% for the RDomF, SDomF, 
HDom(20%) and HDom(50%) strategies respectively. That mutation socres are high-
er than Mutation Score of Weak Mutation strategy (96.90%). 

Most recently, in 2013, Madeyski et al.[68] introduced the JudyDiffOp algorithm 
and NeighPair algorithm. JudyDiffOp algorithm is a modification of the DifferentO-
peratorsalgorithm[100] with the idea that “both constituent FOMs were used only 
once for producing a SOM”. And NeighPair algorithm was introduced with idea 
“generate SOM by combining FOMs which are as close to each other as possible”. 
They experimented[68] 4 algorithms RandomMix, Last2First[97] and JudyDiffOp, 
NeighPair[68] on programs under test Barbecue (7.413 LOC – Line of Code), Com-
mons IO (16.283 LOC), Commons Lang (48.507 LOC) and Commons Math (80.023 
LOC) with the number of test cases are 21,43,88,221 respectively. That algorithms 
reduce the number of generated SOMs at least by half compared with generated 
FOMs, especially JudyDiffOp algorithms over 60%. The mean reductions of equiva-
lent mutants number  are about 47%, 58.5%, 66% for the RandomMix, Last2First 
and JudyDiffOp in turn. And the NeighPair algorithm is not good in terms of equiva-
lent mutant reduction. However, “In most of the cases mutation score estimations 
were higher for the SOM strategies than for FOM”[68]. 

5.2 Subsuming HOMs 

In 2009, Jia and Harman[3] introduced the term “Subsuming HOMs” as follows: The 
HOM is named “Subsuming HOM” if it is harder to kill than their constituent FOMs. 
And then they suggested some approaches to find the Subsuming HOMs by using 
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some meta-heuristic algorithms[3]: Greedy Algorithm, Genetic Algorithm and Hill-
Climbing Algorithm. In order to find the Subsuming HOMs more effectively, they 
introduced two definitions[3]: Fragility value, a value for measuring the ability of a 
FOM or HOM can be killed and Fitness Function is the ratio of the fragility of a 
HOM to the fragility of the constituent FOMs. In their approach, they used this Fit-
ness Function to evaluate the fitness of HOMs. They experimented with 10 bench-
mark C programs under test (14850 LoC and 35473 test cases in total) and the results 
indicate that genetic algorithm is the most efficient algorithm for finding those sub-
suming HOMs, while the greedy algorithm and hill climbing algorithm can also be 
used to improve the quality of the results[3]. 

5.3 Multi-object Genetic Programming 

In order to find higher order mutants that are hard to kill and more realistic complex 
faults, Langdon et al.[9][35] introduced a new form of mutation testing: Multi Objec-
tive Higher Order Mutation Testing (with Genetic Programming)[35]. They believed 
that although there are a lot of number of FOMs was generated but most are simply 
and do not denote realistic faults. So they suggested inserting faults that are semanti-
cally close to the original program instead of inserting faults that are syntactically 
close to the original program in order to find higher order mutants that are syntactical-
ly similar to the original program under test. With this, multi objective Pareto optimal 
genetic programming approach, the number of mutants grows exponentially with 
order but the number of equivalent mutants fall rapidly with number of changes made 
[35]. For example, with the chosen set of the C comparison operations (<,<=, ==, !=, 
>=, >), and the program under test that contains 17 comparison operators (i.e. the 
Triangle benchmark Triangle.c), there are 85 1st order mutants (17×5 programs with 
one change), 3400 2nd order mutants (17×5×16×5/2 with two changes), 85000 3rd 
order mutants(17×5×16×5×15×5/6 with three changes), and 1487500 4th order mu-
tants (17×5×16×5×15×5×14×5/24 with four changes),whilst respectively only 8, 28, 
56, 70 equivalent mutants that pass all test cases and 7, 55, 189, 371 mutants that fail 
just one test[35]. 

6 Conclusion and Future Work 

Since was proposed in 1970s by DeMillo et al.[1] and Hamlet[2], Mutation Testing 
has been considered as a powerful technique for evaluating the quality of the test 
cases. Basically, there is still work to be done to improve the quality of mutation test-
ing. This paper reviewed a range of strategies that were proposed to solve three main 
problems of mutation testing: a vast number of mutants (and also high execution 
cost), realism of faults and equivalent mutant problem. Each technique has its own 
advantages and disadvantages and we focus on Higher Order Mutation testing be-
cause this is not only a newest method but also a promising solution of three main 
problems of the traditional mutation testing at the same time. However, the number of 
mutants grows exponentially with order. So, in the future, we will research to improve 
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and solve that problem for finding good HOMs by applying Multi-Object optimiza-
tion algorithm. Specifically we are going to: 

- Use Java language programming and Judy mutation testing tool for Java 
(http://madeyski.e-informatyka.pl/tools/judy/)[68][98]. 

-  Search for strongly subsuming HOMs applying multi-objective optimization. 
- Assess results, according to the criteria of solving the problems of traditional mu-

tation testing (reduce the number of mutants and execution cost, realism and the 
equivalent mutant problem), and compare that results with the results of algorithms 
that have been proposed previously. 
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