

T.V. Do et al. (eds.), Advanced Computational Methods for Knowledge Engineering,
Advances in Intelligent Systems and Computing 282,

157

DOI: 10.1007/978-3-319-06569-4_12, © Springer International Publishing Switzerland 2014

Problems of Mutation Testing and Higher Order
Mutation Testing

Quang Vu Nguyen and Lech Madeyski

Institute of Informatics, Wroclaw University of Technology, WybrzezeWyspianskiego 27,
50370 Wroclaw, Poland

{quang.vu.nguyen,Lech.Madeyski}@pwr.wroc.pl

Abstract. Since Mutation Testing was proposed in the 1970s, it has been consi-
dered as an effective technique of software testing process for evaluating the
quality of the test data. In other words, Mutation Testing is used to evaluate the
fault detection capability of the test data by inserting errors into the original
program to generate mutations, and after then check whether tests are good
enough to detect them. However, the problems of mutation testing such as a
large number of generated mutants or the existence of equivalent mutants, are
really big barriers for applying mutation testing. A lot of solutions have been
proposed to solve that problems. A new form of Mutation Testing, Higher Or-
der Mutation Testing, was first proposed by Harman and Jia in 2009 and is one
of the most promising solutions. In this paper, we consider the main limitations
of Mutation Testing and previous proposed solutions to solve that problems.
This paper also refers to the development of Higher Order Mutation Testing and
reviews the methods for finding the good Higher Order Mutants.

Keywords: Mutation Testing, Higher Order Mutation, Higher Order Mutants.

1 Introduction

According to IEEE Std 829-1983 (IEEE Standard Glossary of Software Engineering
Terminology), software testing is the process of analyzing a software item to detect
the differences between existing and required conditions and to evaluate the features
of the software items. In other words, software testing is execution a program using
artificial data and evaluating software by observing its execution in order to find
faults or failures. It is worth mentioning that “testing can only show the presence of
errors, not their absence” which is often referred as Dijkstra’s law. Where, according
to IEEE Std 829-1983, error is a human action that produces an incorrect result, fault
is an incorrect step, process, or data definition in a computer program and failure is
the inability of a system or component to perform its required functions within speci-
fied performance requirements.

Software testing is always one of the important activities in order to evaluate the
software quality. However, the quality of the set of testcases is a problem to be dis-
cussed. In addition, there are many cases that testers have not mentioned in the set of

158 Q. Vu Nguyen and L. Madeyski

testcases. Mutation Testing has been introduced as a technique to assess the quality of
the testcases.

Mutation Testing (MT), a technique that has been developed using two basic ideas:
Competent Programmer Hypothesis (“programmers write programs that are reasona-
bly close to the desired program”) and Coupling Effect Hypothesis (“detecting simple
faults will lead to the detection of more complex faults”), was originally proposed in
1970s by DeMillo et al.[1] and Hamlet[2]. While other software testing techniques
focus on the correct functionality of the programs by finding error, MT focuses on test
cases used to test the programs. In other words, the purpose of software testing is to
find all the faults in a particular program whilst the purpose of MT is to create good
sets of testcases. A good set of testcases is a set which is able to discover all the
faults. With MT, mutants of a program are the different versions of the program. More
specifically, each of which is generated by inserting only one semantic fault into origi-
nal program (Table 1 gives an example to mutant). That generation is called mutation
and that semantic fault is called mutation operator. It is a rule that is applied to a pro-
gram to create mutants, for example modify expressions by replacing operators and
inserting new operators. Mutation operators depend on programming languages, but
there are traditional mutation operators: deletion of a statement; replacement of boo-
lean expressions; replacement of arithmetic; replacement of a variable.

Table 1. An example of mutant (First Order Mutant)

Program P Mutant P’
...

while (hi<50) {

system.out.print(hi);

 hi = lo +hi;

lo = hi –lo;

 }

...

...

while (hi>50) {

system.out.print(hi);

 hi = lo +hi;

lo = hi –lo;

 }

...

The process of MT can be explained simply in following steps:

1. Suppose we have a program P and a set of testcases T
2. Produce mutant P1 from P by inserting only one semantic fault into P
3. Execute T on P and P1 and save results as R and R1
4. Compare R1 with R:
 4.1 If R1 ≠ R: T can detect the fault inserted and has killed the mutant.
 4.2 If R1=R: There could be 2 reasons:
 + T can’t detect the fault, so have to improve T.
 + The mutant has the same semantic meaning as the original program. It’s

equivalent mutant (an example of equivalent mutant is showed in Table 2).

 Problems of Mutation Testing and Higher Order Mutation Testing 159

MT evaluates a set of testcases T by Mutation Score (MS), will be between 0 and
1, which is calculated by the following formula:

 mutants Equivalent– mutants Total

mutants killed ofNumber =MS

A low score means that the majority of faults cannot be detected accurately by the
test set. A higher score indicates that most of the faults have been identified with this
particular test set. A good test set will have a mutation score close to 100%. When
MS = 0, have no any testcase that can kill the mutants and when MS=1, we say that
mutants are very easy to kill.

Table 2.An example of equivalent mutant

Program P Mutant P’
…

int a =2;

if (b==2) {

System.out.print(b);

 b = a + b;}

…

…

int a =2;

if (b==2) {

System.out.print(b);

 b = a * b;}

…

In the next section, we summarize main limitations of mutation testing. Section 3

shows the previous proposed solutions for solving the limitations of mutation testing.
Section 4 presents Higher Order Mutation Testing and its effectiveness. Section5
presents techniques to find good Higher Order Mutants. Section 6 presents conclu-
sions and future work.

2 Main Limitations of Mutation Testing

Although MT is a high automation and effective technique for evaluating the quality
of the test data, Mutation Testing has three main problems in our view.

The first limitation of mutation testing is a large number of mutants, because
program may have a fault in many possible places and with only one inserted seman-
tic fault we will have one mutant. Thus, a large number of mutants will be generated
in the mutant generation phase of mutation testing. Typically, this is a large number
for even small program. For example, a simple program with just a sentence such as
return a+b (where a, b are integers) may be mutated into many different ways: a−b,
a*b, a/b, a+b++, −a+b, a+−b, 0+b, a+0, etc. This problem leads to a very high execu-
tion cost because the test cases are executed on not only original program but also
each mutants. For example, assume that we have a program under test with 150 mu-
tants and 200 testcases, it requires (1+150)*200 = 30200 executions with their corres-
ponding results.

The second limitation of mutation testing is realism. Mutations are generated by
single and simple syntactic changes, hence they do not denote realistic faults. While

160 Q. Vu Nguyen and L. Madeyski

according to Langdon et al.[9], 90 percent of real faults are complex. In addition, it is
not sure that we have found a large proportion of real faults present even if we have
killed all the killable mutants[4].This is one of big limitations for applying mutation
testing.

The third limitation of mutation testing is equivalent mutant problem[68]. In
fact, many mutation operators can produce equivalent mutants which have the same
behavior as original program. In this case, there is no testcase which could “kill” that
mutants and the detection of equivalent mutants often involves additional human ef-
fort. Madeyski et al.[68] manually classified 1000 mutants as equivalent or non-
equivalent and confirmed the finding by Schuller and Zeller[89] that it takes about12
minutes to assess one single mutation for equivalence. Therefore, there is often a need
to ignore equivalent mutants, which would mean that we are ready to accept the lower
bound on mutation score named mutation score indicator MSI [98][99][100][101].

3 Solutions Proposed to Solve Problems of Mutation Testing

In order to collect a complete set of all the techniques to solve the problems of MT
since the 1970s (after MT was proposed by DeMillo et al. [1] and Hamlet [2]) and
sort them in chronologic order, with search terms which have either “mutation test-
ing”, “mutation analysis”, “mutants + testing”, “mutants + methods”, “mutants +
techniques”, “mutants + problems”, “mutation testing + improve”, “equivalent mu-
tants”, “mutants*”, “higher order mutants”, we searched papers that were published in
IEEE Explore, ACM Portal, Springer Online Library, Wiley Online Library, Cite-
seerx and journals or conference proceedings as IST (Information and Software
Technology), JSS (Journal of Systems and Software), TSE (IEEE Transactions on
Software Engineering), IET Software. After then, we continued to look at the refer-
ences of each paper to find other articles related to our purpose. In addition, we also
searched for Master and PhD theses that have contents related to “mutation testing”.
Figure 1 shows number of publications proposing techniques to solve the problems of
Mutation Testing.

Fig. 1. Number of publications proposing techniques to solve the problems of MT

0

10

20

30

40

1970s 1980s 1990s 2000s From 2010

 Problems of Mutation Testing and Higher Order Mutation Testing 161

We searched and listed techniques to solve the problems of MT as reduce the num-
ber of mutants and execution cost, solve the realism problem and solve the equivalent
mutant problem in chronologic order as follows:

3.1 Mutant and Execution Cost Reduction Techniques

Mutant Sampling approach[14-20] was first proposed by Acree[14] and Budd[15] in
1980. In this approach, a small subset of mutants are randomly selected from the
entire set. Some studies implied that Mutant Sampling is valid with a x% value higher
than 10% (x% is % of mutants were selected randomly).

Reduction number of mutation operators will leads reduction number of mutants.
This is idea of Agrawal et al.[23] and Mathur[24] and it was called Selective Mutation
by Offutt et al.[18][25]. This approach suggested finding a small operators set that
generate a subset of all possible mutants without losing test effectiveness. There are
many authors have been applied this approach to effectively reduce generated mu-
tants[20][26-32].

Instead of selecting mutants randomly, Husain[21] in 2008 used clustering algo-
rithms to choose a subset of mutants. There is a empirical study of this approach in
the work of Li et al.[22].

Second Order Mutation Testing[68][76][83][84[97] in particular and Higher Order
Mutation Testing[3][4][9][10][35] in general are the most promising solutions to re-
duce number of mutants. Basic idea of this approach is improvement of MT by insert-
ing two or more faults into original program to generate its mutants. For example, by
combining two First Order Mutants to generate Second Order Mutant[68][83][84[97]
or by using Subsuming Higher Order Mutants algorithms[3][4], the number of gener-
ated mutants can be reduced to about 50%.

Weak Mutation[36-42][93][94] was first proposed by Howden[36] in 1982 pro-
posed. This is the first technique to optimize the execution of Traditional Mutation
Testing (called Strong Mutation). Suppose that a program P is constructed from a set
of components C= {c1,..,cn}. And mutant m is made by changing cm,. So, we need
only compare immediately the result of mutant m with the result of cm execution to
say m be killed or not (immediately check after mutated component be executed).

In order to improve quality of Strong Mutation and Weak Mutation, Woodward et
al. [43][44] suggested an approach named Firm Mutation in 1988. This approach
provides a continuum of intermediate possibilities to overcome the disadvantages of
weak and strong mutation. In firm mutation, components may be groups of statements
and partial program executions may be considered rather than each separate compo-
nent execution as in weak mutation or the complete program execution as in strong
mutation. It combines the reduced execution cost of weak mutation with the greater
transparency of strong mutation.

In group of Run-time Optimization techniques, there are 6 techniques have been
proposed. Interpreter-Based technique was first proposed in 1987 by Offutt and
King[45][18] to reduce execution cost with idea: the original program is translated
into an intermediate form, and then mutants are generated from this intermediate
code. With Compiler-Based technique[46-48], each mutant is first compiled into an

162 Q. Vu Nguyen and L. Madeyski

executable program, and then execute testcases on the compiled mutant. It is faster
because execution of compiled binary code takes less time than code interpretation.
Whilst main idea of Compiler-Intergrated[49][50] is designing an instrumented com-
piler to generate and compile mutants instead of compiling each mutant individually
in the Compiler-Based technique. In order to improve the Interpreter-Based tech-
nique, Mutant Schema Generation[51-54][95] approach has been proposed. All mu-
tants are encoded into a metaprogram, then the metaprogram is compiled and run with
faster speed, basically, compared to compile and execute each individual mutation.
Another technique is Bytecode Translation Technique[55-58] which was first pro-
posed by Ma et al.[56] in 2005 to reduce execution cost of MT by using bytecode
translation. Instead of from source code, mutants are generated from the compiled
bytecode of original program and that generated mutants can be executed directly
without compilation[55-58]. The last technique of this group is Aspect-Oriented Mu-
tation which has been proposed by Bogacki and Walter[59][60]. In this approach, do
not need to compile each mutant. An aspect patch is generated and each aspect will
run programs twice: First for the original program and then for mutants.

There are also some techniques to improve computational cost base on computer
architectures as SIMD (Single Instruction Multiple Data)[61-63], MIMD (Multiple
Instruction Multiple Data)[64][65] and Parallel[66][67].

In 2013, Lisherness et al.[96] suggested a new approach by using coverage dis-
counting for mutation analysis can reveal which functions are changed in the mutant,
and in turn what is not being adequately tested if the mutation is undetected.

3.2 Techniques to Solve the Realism Problem

There are many works have been demonstrated that the majority of real faults are
complex faults. E.g. in [34][35], it is known that 90%. Base on that suggestion,
Second Order Mutation Testing[68][77][84][85[97] in particular and Higher Order
Mutation Testing[3][4][9][10] in general have been considered as the most promising
solutions to solve the realism problem. That approaches have been suggested using
more complex faults to generate mutants by inserting two or more faults into original
program. In addition, Langdon et al.[9][35] introduced a new form of mutation test-
ing: Multi Objective Higher Order Mutation Testing (with Genetic Programming)[35]
in order to find higher order mutants that more realistic complex faults.

3.3 Techniques to Solve the Equivalent Mutant Problem

According to Madeyski et al.[68], the techniques to solve the equivalent mutant prob-
lem can be classified into 3 groups:

- Applying techniques to detect equivalent mutants such as Compiler Optimiza-
tion[69][70], Mathematical Constraints[71][90],Program Slicing[72], Semantic dif-
ferences in terms of running profile[73],Margrave’s change-impact analysis[74] and
Lesar model-checker[75].

- Applying techniques to avoid (or reduce) generating the equivalent mutants in the
process of mutants generation such as Selective mutation[77], Program dependence

 Problems of Mutation Testing and Higher Order Mutation Testing 163

analysis[78], Co-evolutionary[79], Equivalency conditions[80], Fault hierarchy[81],
Semantic exception hierarchy[82], Higher order mutation testing[3], [83], [84], [68].

- Applying techniques in order to suggest the equivalent mutants such as Using
Bayesian-learning based guidelines[85], Examining the impact of equivalent mutants
on coverage [86], Using the impact of dynamic invariants [87], Examining changes
in coverage[88][89].

4 Higher Order Mutation Testing and Its Effectiveness

Second Order Mutation Testing in particular and Higher Order Mutation Testing in
general is an approach for generating mutants by applying mutation operators more
than once. The idea about Second Order Mutation Testing was first mentioned by
Offut[76] in 1992. After then, Polo et al. [100] in 2008, Kintis et al. [83] and M. Pa-
padakis and N. Mlevris [84] in 2010, and L. Madeyski et al.[68] in 2013 further
studied to suggest their algorithms to combine First Order Mutants to generate Second
Order Mutants (SOMs). With this approach, not only at least 50% mutants were re-
duced without loss of effectiveness of testing, but also the number of equivalent mu-
tants can be reduced (the reduction in the mean percentage of equivalent mutants
passes from about 18.66% to about 5%) and generated second order mutants can be
harder to kill [97][84][85][68].

In 2009, Higher Order Mutation Testing (HOM Testing) was first proposed by Jia,
Harman and Langdon[3][4]. According to them, mutants can be classified into two
types: First Oder Mutants (FOMs – used in Traditional Mutation Testing) - are gener-
ated by applying mutation operators only once - and Higher Oder Mutants (HOMs-
used in Higher Order Mutation Testing) – are constructed by inserting two or more
faults. A simple example is presented as Table 3:

Table 3. An example of higher order mutant

Program P FOM1
…

while ((hi < 50) && (hi>lo)){

System.out.print(hi);

 hi = lo + hi;

 lo = hi - lo; }

…

…

while ((hi > 50) && (hi>lo)){

System.out.print(hi);

 hi = lo + hi;

 lo = hi - lo; }

…

FOM2 HOM (Createdfrom FOM1 and
FOM2)

…

while ((hi < 50) && (hi<lo)){

System.out.print(hi);

 hi = lo + hi;

 lo = hi - lo; }

…

…

while ((hi > 50) && (hi<lo)){

System.out.print(hi);

 hi = lo + hi;

 lo = hi - lo; }

…

164 Q. Vu Nguyen and L. Madeyski

The same as Second Order Mutants, the combination of faults of higher order mu-
tation testing can reduces the number of generated mutants and limits the number of
mutants and those generated mutants are harder to kill than any of the individual con-
stituent faults. E.g. in case of subsuming Higher Order Mutants [3][4].A subsuming
HOM was constructed from constituent FOMs and so that HOM is only killed by
subset of the intersection of testcases which kill each constituent FOMs. Therefore,
the quality of testcases will be better but the number of testcases will be reduced.
Fewer number mutants and fewer number of test cases lead to a fewer execution cost.
In addition, with the combination of faults, we also limit unrealistic and avoid gene-
rating equivalent mutants [3][68][76][83-84].

To be more clearly, let’s consider the example given in Table 3. In this case, we
have only one HOM created from FOM1 and FOM2 instead of FOMs. And there are
TWO test cases which kill FOM1: {hi<50 && hi>lo} and {hi>50 && hi>lo}, TWO
test cases which kill FOM2: {hi<50 && hi>lo} and {hi<50 && hi<lo}. But we need
ONLY ONE test case which kills HOM: {hi<50 && hi>lo} and this test case also
kills both FOM1 and FOM2. But the reverse is not true, the test case {hi>50 &&
hi>lo} does not kill HOM and the test case {hi<50 && hi<lo} also does not kill
HOM. And so, with HOM, we can reduce number mutants generated and number of
test cases without leading to loss of effectiveness during testing. Similarly, the com-
bination of two or more errors to generate mutants will cause limited number of gen-
erated equivalent mutants and number of “easy to kill” mutants.

Unlike some other techniques presented in part 3 that only solve individual prob-
lems of traditional mutation testing, higher order mutation testing could help us to
deal with three main problems of the traditional mutation testing at the same time.
That is why we choose higher order mutation testing to study. In the next part, we will
present more detail on this issue.

5 Finding the Good HOMs

5.1 Second Order Mutants (SOMs)

In 2008, with the results of their study, Polo et al.[97] believed that “mutant combina-
tion does not decrease the quality of the test suite”. They suggested[97] 3 algorithms
to generate second order mutants (mutants containing two simple faults are called
second order mutants). With the LastToFirst algorithm, assume that we have the list
of n mutants of First Order Mutants (FOMs), SOMs were generated by combining the
first FOM with the FOM number n, the second-FOM with the FOM number (n-1),
and so on. In the second one, DifferentOperators algorithm, SOMs were generated by
combining two FOMs generated by different mutation operators. And the last algo-
rithm, RandomMix, combines any two FOMs to generate SOMs. In their study, after
FOMs were generated from 6 programs under test (Bisect with 31 LOC-Line of Code,
Bub-54, Find-79, Fourballs-47, Mid-59 and TriTyp-61), the three combination algo-
rithms were used to generate SOMs. Number of test cases corresponding to each pro-
gram are 25, 256, 135, 96, 125, 216 were passed to the FOMs and the SOMs. Results
showed that the number of SOMs decreased about 50% compared with FOMs, and

 Problems of Mutation Testing and Higher Order Mutation Testing 165

the mean percentage of equivalent SOMs is only about 5% compared with 18,66% of
equivalent FOMs [97].

Based on the algorithms of the Polo et al.[97], M. Papadakis and N. Malevris stu-
died and proposed five new strategies to combine FOMs: First2Last , SameNode,
SameUnit , SU_F2Last and SU_DiffOp[84]. They executed both of First Order Mu-
tation Testing strategies (Strong Mutation, Rand 10%, Rand 20%, Rand 30%, Rand
40%, Rand 50%, Rand 60%) and Second Order Mutation Testing strategies (Ran-
domMix, DifferentOperators, First2Last, SameNode, SameUnit, SU_F2Last and-
SU_DiffOp) with the same test programs[84]. With their empirical study[84], the
mean number of equivalent mutants with the First Order Mutation Testing strategies
is about 6237, and with the Second Order Mutation Testing strategies is about 2727.
Meanwhile, Second Order Mutation Testing strategies reduced the number of gener-
ated SOMs by about 50%, because of SOMs also were generated combining two
FOMs, and of course will lead to reduced execution cost.

In 2010, Kintis et al.[83] suggested two categories of Second Order Mutation Test-
ing strategies: The Second Order Strategies category includes RDomF and SDomF
strategy; The Hybrid Strategies category includes HDom(20%) and HDom(50%)
strategy. The results of their study indicates that the number of generated equivalent
mutants of Weak Mutation, RDomF, SDomF, HDom(20%) and HDom(50%) strate-
gies reduced about 73%, 85.4%, 86.8%,81.4% and 65.5% in turn compared with the
number of generated equivalent mutants of Strong Mutation. Meanwhile the Muta-
tion Scores are 99.94%, 99.99%, 99.91%, 99.91% for the RDomF, SDomF,
HDom(20%) and HDom(50%) strategies respectively. That mutation socres are high-
er than Mutation Score of Weak Mutation strategy (96.90%).

Most recently, in 2013, Madeyski et al.[68] introduced the JudyDiffOp algorithm
and NeighPair algorithm. JudyDiffOp algorithm is a modification of the DifferentO-
peratorsalgorithm[100] with the idea that “both constituent FOMs were used only
once for producing a SOM”. And NeighPair algorithm was introduced with idea
“generate SOM by combining FOMs which are as close to each other as possible”.
They experimented[68] 4 algorithms RandomMix, Last2First[97] and JudyDiffOp,
NeighPair[68] on programs under test Barbecue (7.413 LOC – Line of Code), Com-
mons IO (16.283 LOC), Commons Lang (48.507 LOC) and Commons Math (80.023
LOC) with the number of test cases are 21,43,88,221 respectively. That algorithms
reduce the number of generated SOMs at least by half compared with generated
FOMs, especially JudyDiffOp algorithms over 60%. The mean reductions of equiva-
lent mutants number are about 47%, 58.5%, 66% for the RandomMix, Last2First
and JudyDiffOp in turn. And the NeighPair algorithm is not good in terms of equiva-
lent mutant reduction. However, “In most of the cases mutation score estimations
were higher for the SOM strategies than for FOM”[68].

5.2 Subsuming HOMs

In 2009, Jia and Harman[3] introduced the term “Subsuming HOMs” as follows: The
HOM is named “Subsuming HOM” if it is harder to kill than their constituent FOMs.
And then they suggested some approaches to find the Subsuming HOMs by using

166 Q. Vu Nguyen and L. Madeyski

some meta-heuristic algorithms[3]: Greedy Algorithm, Genetic Algorithm and Hill-
Climbing Algorithm. In order to find the Subsuming HOMs more effectively, they
introduced two definitions[3]: Fragility value, a value for measuring the ability of a
FOM or HOM can be killed and Fitness Function is the ratio of the fragility of a
HOM to the fragility of the constituent FOMs. In their approach, they used this Fit-
ness Function to evaluate the fitness of HOMs. They experimented with 10 bench-
mark C programs under test (14850 LoC and 35473 test cases in total) and the results
indicate that genetic algorithm is the most efficient algorithm for finding those sub-
suming HOMs, while the greedy algorithm and hill climbing algorithm can also be
used to improve the quality of the results[3].

5.3 Multi-object Genetic Programming

In order to find higher order mutants that are hard to kill and more realistic complex
faults, Langdon et al.[9][35] introduced a new form of mutation testing: Multi Objec-
tive Higher Order Mutation Testing (with Genetic Programming)[35]. They believed
that although there are a lot of number of FOMs was generated but most are simply
and do not denote realistic faults. So they suggested inserting faults that are semanti-
cally close to the original program instead of inserting faults that are syntactically
close to the original program in order to find higher order mutants that are syntactical-
ly similar to the original program under test. With this, multi objective Pareto optimal
genetic programming approach, the number of mutants grows exponentially with
order but the number of equivalent mutants fall rapidly with number of changes made
[35]. For example, with the chosen set of the C comparison operations (<,<=, ==, !=,
>=, >), and the program under test that contains 17 comparison operators (i.e. the
Triangle benchmark Triangle.c), there are 85 1st order mutants (17×5 programs with
one change), 3400 2nd order mutants (17×5×16×5/2 with two changes), 85000 3rd
order mutants(17×5×16×5×15×5/6 with three changes), and 1487500 4th order mu-
tants (17×5×16×5×15×5×14×5/24 with four changes),whilst respectively only 8, 28,
56, 70 equivalent mutants that pass all test cases and 7, 55, 189, 371 mutants that fail
just one test[35].

6 Conclusion and Future Work

Since was proposed in 1970s by DeMillo et al.[1] and Hamlet[2], Mutation Testing
has been considered as a powerful technique for evaluating the quality of the test
cases. Basically, there is still work to be done to improve the quality of mutation test-
ing. This paper reviewed a range of strategies that were proposed to solve three main
problems of mutation testing: a vast number of mutants (and also high execution
cost), realism of faults and equivalent mutant problem. Each technique has its own
advantages and disadvantages and we focus on Higher Order Mutation testing be-
cause this is not only a newest method but also a promising solution of three main
problems of the traditional mutation testing at the same time. However, the number of
mutants grows exponentially with order. So, in the future, we will research to improve

 Problems of Mutation Testing and Higher Order Mutation Testing 167

and solve that problem for finding good HOMs by applying Multi-Object optimiza-
tion algorithm. Specifically we are going to:

- Use Java language programming and Judy mutation testing tool for Java
(http://madeyski.e-informatyka.pl/tools/judy/)[68][98].

- Search for strongly subsuming HOMs applying multi-objective optimization.
- Assess results, according to the criteria of solving the problems of traditional mu-

tation testing (reduce the number of mutants and execution cost, realism and the
equivalent mutant problem), and compare that results with the results of algorithms
that have been proposed previously.

References

1. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the
practicing programmer. IEEE Computer 11(4), 34–41 (1978)

2. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions on Soft-
ware Engineering SE-3(4), 279–290 (1977)

3. Jia, Y., Harman, M.: Higher order mutation testing. Information and Software Technolo-
gy 51, 1379–1393 (2009)

4. Harman, M., Jia, Y., Langdon, W.B.: A Manifesto for Higher Order Mutation Testing.
In: Third International Conf. on Software Testing, Verification, and Validation Work-
shops (2010)

5. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-
functional system properties. Information and Software Technology 51(6), 957–976
(2009)

6. Harman, M.: The current state and future of search based software engineering. In:
Briand, L., Wolf, A. (eds.) Future of Software Engineering 2007, pp. 342–357. IEEE
Computer Society Press, Los Alamitos (2007)

7. Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: A compre-
hensive analysis and review of trends techniques and applications. Technical Report TR-
09-03, Department of Computer Science, King’s College London (2009)

8. Raiha, O.: A survey on search based software design. Technical Report Technical Report
D-2009-1, Department of Computer Sciences, University of Tamper (2009)

9. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order mutation
testing with genetic programming. The Journal of Systems and Software 83 (2010)

10. Jia, Y., Harman, M.: Constructing Subtle Faults Using Higher Order Mutation Testing.
In: Proc. Eighth Int’l Working Conf. Source Code Analysis and Manipulation (2008)

11. Jia, Y., Harman, M.: MILU: A Customizable, Runtime-Optimized Higher Order Muta-
tion Testing Tool for the Full C Language. In: Proceedings of the 3rd Testing: Academic
and Industrial Conference Practice and Research Techniques (TAIC PART 2008), pp.
94–98. IEEE Computer Society, Windsor (2008)

12. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Transactions on
Software Engineering and Methodology 1(1), 5–20 (1992)

13. Adamopoulos, K., Harman, M., Hierons, R.M.: How to Overcome the Equivalent Mu-
tant Problem and Achieve Tailored Selective Mutation Using Co-evolution. In: Deb, K.,
Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1338–1349. Springer, Heidelberg
(2004)

14. Acree, A.T.: On Mutation. PhD thesis, Georgia Inst. of Technology (1980)

168 Q. Vu Nguyen and L. Madeyski

15. Budd, T.A.: Mutation Analysis of Program Test Data. PhD thesis, Yale Univ. (1980)
16. DeMillo, R.A., Guindi, D.S., King, K.N., McCracken, W.M., Offutt, A.J.: An Extended

Overview of the Mothra Software Testing Environment. In: Proceedings of the Second
Workshop on Software Testing, Verification, and Analysis, pp. 142–151 (1988)

17. Sahinoglu, M., Spafford, E.H.: A Bayes Sequential Statistical Procedure for Approving
Software Products. In: Proc. IFIP Conf. Approving Software Products, pp. 43–56 (1990)

18. King, K.N., Offutt, A.J.: A Fortran Language System for Mutation-Based Software Test-
ing. Software: Practice and Experience 21(7), 685–718 (1991)

19. Mathur, A.P., Wong, W.E.: An Empirical Comparison of Mutation and Data Flow Based
Test Adequacy Criteria. Technical Report, Purdue Univ. (1993)

20. Wong, W.E.: On Mutation and Data Flow. PhD thesis, Purdue Univ. (1993)
21. Hussain, S.: Mutation Clustering. Master’s thesis, King’s College London (2008)
22. Ji, C., Chen, Z., Xu, B., Zhao, Z.: A Novel Method of Mutation Clustering Based on

Domain Analysis. In: Proc. 21st Int’l Conf. Software Eng. and Knowledge Eng. (2009)
23. Agrawal, H., DeMillo, R.A., Hathaway, B., Hsu, W., Krauser, E.W., Martin, R.J., Ma-

thur, A.P., Spafford, E.: Design of Mutant Operators for the C Programming Language.
Technical Report SERC-TR-41-P, Purdue Univ. (1989)

24. Mathur, A.P.: Performance, Effectiveness, and Reliability Issues in Software Testing. In:
Proc. Fifth Int’l Computer Software and Applications Conf., pp. 604–605 (1991)

25. Offutt, A.J., Rothermel, G., Zapf, C.: An Experimental Evaluation of Selective Mutation.
In: Proc. 15th Int’l Conf. Software Eng., pp. 100–107 (1993)

26. Wong, W.E., Mathur, A.P.: Reducing the Cost of Mutation Testing: An Empirical Study.
J. Systems and Software 31(3), 185–196 (1995)

27. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An Experimental Determina-
tion of Sufficient Mutant Operators. ACM Trans. Soft. Eng. and Methodology (1996)

28. Mresa, E.S., Bottaci, L.: Efficiency of Mutation Operators and Selective Mutation Strat-
egies: An Empirical Study. Software Testing, Verification, and Reliability 9(4), 205–232
(1999)

29. Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.: Toward the Determination of Suffi-
cient Mutant Operators for C. Software Testing, Verification, and Reliability 11(2), 113–
136 (2001)

30. Namin, A.S., Andrews, J.H.: Finding Sufficient Mutation Operators via Variable Reduc-
tion. In: Proc. Second Workshop Mutation Analysis, p. 5 (2006)

31. Namin, A.S., Andrews, J.H.: On Sufficiency of Mutants. In: Proc. 29th Int’l Conf. Soft-
ware Eng., pp. 73–74 (2007)

32. Namin, A.S., Andrews, J.H., Murdoch, D.J.: Sufficient Mutation Operators for Measur-
ing Test Effectiveness. In: Proc. 30th Int’l Conf. Software Eng., pp. 351–360 (2008)

33. Polo, M., Piattini, M., Garcia-Rodriguez, I.: Decreasing the Cost of Mutation Testing
with Second-Order Mutants. Software Testing, Verification, and Reliability 19(2), 111–
131 (2008)

34. Purushothaman, R., Perry, D.E.: Toward Understanding the Rhetoric of small source
code changes. IEEE Transactions on Software Engineering 31(6) (2005)

35. Langdon, W.B., Harman, M., Jia, Y.: Multi Objective Higher Order Mutation Testing
with Genetic Programming. In: Proc. Fourth Testing: Academic and Industrial Conf.
Practice and Research (2009)

36. Howden, W.E.: Weak Mutation Testing and Completeness of Test Sets. IEEE Trans.
Soft. Eng. 8(4), 371–379 (1982)

 Problems of Mutation Testing and Higher Order Mutation Testing 169

37. Girgis, M.R., Woodward, M.R.: An Integrated System for Program Testing Using
WeakMutation and Data Flow Analysis. In: Proc. Eighth Int’l Conf. Software Eng.
(1985)

38. Horgan, J.R., Mathur, A.P.: Weak Mutation is Probably Strong Mutation. Technical Re-
port SERC-TR-83-P, Purdue Univ. (1990)

39. Woodward, M.R.: Mutation Testing-An Evolving Technique. In: Proc. IEE Colloquium
on Software Testing for Critical Systems, pp. 3/1–3/6 (1990)

40. Marick, B.: The Weak Mutation Hypothesis. In: Proc. Fourth Symp. Software Testing,
Analysis and Verification, pp. 190–199 (1991)

41. Offutt, A.J., Lee, S.D.: How Strong is Weak Mutation. In: Proc. Fourth Symp. Software
Testing, Analysis and Verification, pp. 200–213 (1991)

42. Offutt, A.J., Lee, S.D.: An Empirical Evaluation of Weak Mutation. IEEE Trans. Soft-
ware Eng. 20(5), 337–344 (1994)

43. Woodward, M.R., Halewood, K.: From Weak to Strong Dead or Alive? An Analysis of
Some Mutationtesting Issues. In: Proc. Second Workshop on Software Testing, Verifica-
tion, and Analysis, pp. 152–158 (1988)

44. Jackson, D., Woodward, M.R.: Parallel Firm Mutation of Java Programs. In: Proc. First
Workshop on Mutation Analysis, pp. 55–61 (2000)

45. Offutt, A.J., King, K.N.: A Fortran 77 Interpreter for Mutation Analysis. ACM
SIGPLAN Notices 22(7), 177–188 (1987)

46. Choi, B., Mathur, A.P.: High-Performance Mutation Testing. J. Systems and Soft-
ware 20(2), 135–152 (1993)

47. Delamaro, M.E.: Proteum-A Mutation Analysis Based Testing Environment. Master’s
thesis, Univ. of Sao Paulo (1993)

48. Delamaro, M.E., Maldonado, J.C.: Proteum: A Tool for the Assessment of Test Adequa-
cy for C Programs. In: Proc. Conf. Performability in Computing Systems (1996)

49. DeMillo, R.A., Krauser, E.W., Mathur, A.P.: Compiler-Integrated Program Mutation. In:
Proc. Fifth Ann. Computer Software and Applications Conf., pp. 351–356 (1991)

50. Krauser, E.W.: Compiler-Integrated Software Testing. PhD thesis, Purdue Univ. (1991)
51. Untch, R.H.: Mutation-Based Software Testing Using Program Schemata. In: Proc. 30th

Ann. Southeast Regional Conf., pp. 285–291 (1992)
52. Mathur, A.P.: CS 406 Software Engineering I. Course Project Handout (1992)
53. Untch, R.H., Offutt, A.J., Harrold, M.J.: Mutation Analysis Using Mutant Schemata. In:

Proc. Int’l Symp. Software Testing and Analysis, pp. 139–148 (1993)
54. Untch, R.H.: Schema-Based Mutation Analysis: A New Test Data Adequacy Assessment

Method. PhD thesis, Clemson Univ. (1995)
55. Offutt, A.J., Ma, Y.S., Kwon, Y.R.: An Experimental Mutation System for Java. ACM

SIGSOFT Software Eng. Notes 29(5), 1–4 (2004)
56. Ma, Y.S., Offutt, A.J., Kwon, Y.R.: MuJava: An Automated Class Mutation System.

Software Testing, Verification, and Reliability 15(2), 97–133 (2005)
57. Ma, Y.S., Offutt, A.J., Kwon, Y.R.: MuJava: A Mutation System for Java. In: Proc. 28th

Int’l Conf. Software Eng., pp. 827–830 (2006)
58. Schuler, D., Dallmeier, V., Zeller, A.: Efficient Mutation Testing by Checking Invariant

Violations. In: Proc. Int’l Symp. Software Testing and Analysis (2009)
59. Bogacki, B., Walter, B.: Evaluation of Test Code Quality with Aspect-Oriented Muta-

tions. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044,
pp. 202–204. Springer, Heidelberg (2006)

170 Q. Vu Nguyen and L. Madeyski

60. Bogacki, B., Walter, B.: Aspect-Oriented Response Injection: An Alternative to Classic-
al Mutation Testing. In: Sacha, K. (ed.) Soft. Eng. Techniques: Design for Quality. IFIP,
pp. 273–282. Springer, Boston (2007)

61. Mathur, A.P., Krauser, E.W.: Mutant Unification for Improved Vectorization. Technical
Report SERC-TR-14-P, Purdue Univ. (1988)

62. Krauser, E.W., Mathur, A.P., Rego, V.J.: High Performance Software Testing on SIMD
Machines. In: Proc. Second Workshop on Software Testing, Verification and Analysis
(1988)

63. Krauser, E.W., Mathur, A.P., Rego, V.J.: High Performance Software Testing on SIMD
Machines. IEEE Trans. Software Eng. 17(5), 403–423 (1991)

64. Offutt, A.J., Pargas, R.P., Fichter, S.V., Khambekar, P.K.: Mutation Testing of Software
Using a MIMD Computer. In: Proc. Int’l Conf. Parallel Processing, pp. 255–266 (1992)

65. Zapf, C.N.: A Distributed Interpreter for the Mothra Mutation Testing System. Master’s
thesis, Clemson Univ. (1993)

66. Weiss, S.N., Fleyshgakker, V.N.: Improved Serial Algorithms for Mutation Analysis.
ACM SIGSOFT Software Eng. Notes 18(3), 149–158 (1993)

67. Fleyshgakker, V.N., Weiss, S.N.: Efficient Mutation Analysis: A New Approach. In:
Proc. Int’l Symp. Software Testing and Analysis, pp. 185–195 (1994)

68. Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M.: Overcoming the Equivalent Mutant
Problem: A Systematic Literature Review and a Comparative Experiment of Second Or-
der Mutation. IEEE Transactions on Software Engineering (2013),

 http://dx.doi.org/10.1109/TSE.2013.44 (accepted)
69. Baldwin, D., Sayward, F.G.: Heuristics for determin-ing equivalence of program muta-

tions. Yale University, New Haven, Connecticut, Tech. Report 276 (1979)
70. Offutt, A.J., Craft, W.M.: Using compiler optimization techniques to detect equivalent

mutants. Software Testing, Verification and Reliability 4(3), 131–154 (1994)
71. Offutt, A.J., Pan, J.: Detecting equivalent mutants and the feasible path problem. In:

Proc. Eleventh Annual Conf. ‘Systems Integrity Computer Assurance COMPASS 1996
Software Safety. Process Security’, pp. 224–236 (1996)

72. Hierons, R., Harman, M., Danicic, S.: Using program slicing to assist in the detection of
equivalent mutants. Software Testing, Verification and Reliability (1999)

73. Ellims, M., Ince, D., Petre, M.: The Csaw C mutation tool: Initial results. In: Proceedings
of the Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION, pp. 185–192. IEEE Computer Society Press, Washington, DC (2007)

74. Martin, E., Xie, T.: A fault model and mutation testing of access control policies. In:
Proceedings of the 16th International Conference on World Wide Web. WWW 2007, pp.
667–676. ACM Press, New York (2007)

75. DuBousquet, L., Delaunay, M.: Towards mutation analysis for Lustre programs. Elec-
tronic Notes in Theoretical Computer Science 203(4), 35–48 (2008)

76. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Transactions on
Software Engineering Methodology 1, 5–20 (1992)

77. Mresa, E.S., Bottaci, L.: Efficiency of mutation operators and selective mutation strate-
gies: An empirical study. Software Testing, Verification and Reliability (1999)

78. Harman, M., Hierons, R., Danicic, S.: The relationship between program dependence
and mutation analysis. In: Wong, W.E. (ed.) Mutation Testing for the New Century, pp.
5–13. Kluwer Academic Publishers, Norwell (2001)

79. Adamopoulos, K., Harman, M., Hierons, R.M.: How to overcome the equivalent mutant
problem and achieve tailored selective mutation using co-evolution. In: Deb, K., Tari, Z.
(eds.) GECCO 2004. LNCS, vol. 3103, pp. 1338–1349. Springer, Heidelberg (2004)

 Problems of Mutation Testing and Higher Order Mutation Testing 171

80. Offutt, A.J., Ma, Y.S., Kwon, Y.R.: The class-level mutants of MuJava. In: Proceedings
of the 2006 International Workshop on Automation of Software Test - AST 2006. AST
2006, pp. 78–84. ACM Press, New York (2006)

81. Kaminski, G., Ammann, P.: Using a fault hierarchy to improve the efficiency of DNF
logic mutation testing. In: Proc. Int. Conf. Software Testing Verification and Validation,
ICST 2009, pp. 386–395 (2009)

82. Ji, C., Chen, Z., Xu, B., Wang, Z.: A new mutation analysis method for testing Java ex-
ception handling. In: Proc. 33rd Annual IEEE Int. Computer Software and Applications
Conf., COMPSAC 2009, vol. 2, pp. 556–561 (2009)

83. Kintis, M., Papadakis, M., Malevris, N.: Evaluating mutation testing alternatives: A col-
lateral experiment. In: Proc. 17th Asia Pacific Soft. Eng. Conf. (APSEC) (2010)

84. Papadakis, M., Malevris, N.: An empirical evaluation of the first and second order muta-
tion testing strategies. In: Proceedings of the 2010 Third International Conference on
Software Testing, Verification, and Validation Workshops. ICSTW 2010, pp. 90–99.
IEEE Computer Society (2010)

85. Vincenzi, A.M.R., Nakagawa, E.Y., Maldonado, J.C., Delamaro, M.E., Romero, R.A.F.:
Bayesian-learning based guide-lines to determine equivalent mutants. International Jour-
nal of Soft. Eng. and Knowledge Engineering 12(6), 675–690 (2002)

86. Grün, B.J.M., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Proceedings
of the IEEE International Conference on Software Testing, Verification, and Validation
Workshops, pp. 192–199. IEEE Computer Society, Denver (2009)

87. Schuler, D., Dallmeier, V., Zeller, A.: Efficient mutation testing by checking invariant
violations. In: Proceedings of the Eighteenth International Symposium on Software Test-
ing and Analysis. ISSTA 2009. ACM Press, New York (2009)

88. Schuler, D., Zeller, A.: (Un-)covering equivalent mutants. In: Proceedings of the 3rd In-
ternational Conference on Software Testing Verification and Validation (ICST 2010),
Paris, France, pp. 45–54 (2010)

89. Schuler, D., Zeller, A.: Covering and uncovering equivalent mutants. Software Testing,
Verification and Reliability 23(5), 353–374 (2012)

90. Offutt, A.J., Pan, J.: Automatically Detecting Equivalent Mutants and Infeasible Paths.
Software Testing, Verification and Reliability 7(3), 165–192 (1997)

91. Clark, J.A., Dan, H., Hierons, R.M.: Semantic Mutation Testing. In: Third International
Conf. on Software Testing, Verification and Validation Workshops (2010)

92. Dan, H., Hierons, R.M.: Semantic Mutation Analysis of Floating-point Comparison. In:
IEEE Fifth International Conference on Software Testing, Verification and Validation
(2012)

93. Boonyakulsrirung, P., Suwannasare, T.: A Weak Mutation Testing Framework for WS-
BPEL. In: Eighth International Joint Conf. on Computer Science and Soft. Engineering
(2011)

94. Durelli, V.H.S., Offutt, A.J., Delamaro, M.E.: Toward Harnessing High-level Language
Virtual Machines for Further Speeding up Weak Mutation Testing. In: IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation (2012)

95. Mateo, P.R., Usaola, M.P.: Mutant Execution Cost Reduction Through MUSIC (MUtant
Schema Improved with extra Code). In: IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation (2012)

96. Lisherness, P., Lesperance, N., Cheng, K.T.: Mutation Analysis with Coverage Dis-
counting. In: Design, Automation and Test in Europe Conference and Exhibition (2013)

172 Q. Vu Nguyen and L. Madeyski

97. Polo, M., Piattini, M., Garcia-Rodriguez, I.: Decreasing the Cost of Mutation Testing
with Second-Order Mutants. Software Testing, Verification, and Reliability 19(2), 111–
131 (2008)

98. Madeyski, L., Radyk, N.: Judy - a mutation testing tool for Java. IET Software 4(1), 32–
42 (2010),

 http://madeyski.e-informatyka.pl/download/Madeyski10b.pdf
99. Madeyski, L.: On the effects of pair programming on thoroughness and fault-finding ef-

fectiveness of unit tests. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS,
vol. 4589, pp. 207–221. Springer, Heidelberg (2007),

 http://madeyski.e-informatyka.pl/download/Madeyski07.pdf
100. Madeyski, L.: Impact of pair programming on thoroughness and fault detection effec-

tiveness of unit test suites. Software Process: Improvement and Practice 13(3), 281–295
(2008),

 http://madeyski.e-informatyka.pl/download/Madeyski08.pdf
101. Madeyski, L.: The impact of test-first programming on branch coverage and mutation

score indicator of unit tests: An experiment. Information and Software Technology 52,
169–184 (2010),

 http://madeyski.e-informatyka.pl/download/Madeyski10c.pdf

	Problems of Mutation Testing and Higher Order Mutation Testing
	1 Introduction
	2 Main Limitations of Mutation Testing
	3 Solutions Proposed to Solve Problems of Mutation Testing
	3.1 Mutant and Execution Cost Reduction Techniques
	3.2 Techniques to Solve the Realism Problem
	3.3 Techniques to Solve the Equivalent Mutant Problem

	4 Higher Order Mutation Testing and Its Effectiveness
	5 Finding the Good HOMs
	5.1 Second Order Mutants (SOMs)
	5.2 Subsuming HOMs
	5.3 Multi-object Genetic Programming

	6 Conclusion and Future Work
	References

