
Chapter 5
Food-Limited Population Models

If a nonnegative quantity was so small that is smaller than any
given one, then it certainly could not be anything but zero. To
those who ask what the infinity small quantity in mathematics is,
we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed
to be.

Leonhard Euler (1707–1783)

The real end of science is the honor of the human mind.

Gustav J. Jacobi (1804–1851)

Smith [66] reasoned that a food-limited population in its growing stage requires
food for both maintenance and growth, whereas, when the population has reached
saturation level, food is needed for maintenance only. On the basis of these
assumptions, Smith derived a model of the form

dN.t/

dt
D rN.t/

K � N.t/

K C crN.t/
(5.1)

which is called the “food limited” population. Here N , r , and K are the mass
of the population, the rate of increase with unlimited food, and the value of N

at saturation, respectively. The constant 1=c is the rate of replacement of mass in
the population at saturation. Since a realistic model must include some of the past
history of the population, Gopalsamy, Kulenovic and Ladas introduced the delay
in (5.1) and considered the equation

dN.t/

dt
D rN.t/

K � N.t � �/

K C crN.t � �/
;

as the delay “food-limited” population model, where r , K; c, and � are positive
constants.
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216 5 Food-Limited Population Models

In this chapter we discuss autonomous and nonautonomous “food-limited”
population models with delay times.

5.1 Oscillation of Delay Models

Motivated by the model

N 0.t/ D r.t/N.t/
K � N.h.t//

1 C s.t/N.g.t//
; t � 0; (5.2)

in this section we consider

x0.t/ D �r.t/x.h.t//
1 C x.t/

1 C s.t/Œ1 C x.g.t//�
; t � 0; (5.3)

with the following assumptions:

.A1/ r.t/ and s.t/ are Lebesgue measurable locally essentially bounded functions
such that r.t/ � 0 and s.t/ � 0.

.A2/ h; g W Œ0; 1/ ! R are Lebesgue measurable functions such that h.t/ � t;

g.t/ � t; lim
t!1h.t/ D 1, and lim

t!1g.t/ D 1.

Note the oscillation (or nonoscillation) of N about K is equivalent to oscillation
(nonoscillation) of (5.3) about zero (let x D N=K � 1).
One could also consider for each t0 � 0 the problem

x0.t/ D �r.t/x.h.t//
1 C x.t/

1 C s.t/Œ1 C x.g.t//�
; t � t0; (5.4)

with the initial condition

x.t/ D '.t/; t < t0; x.t0/ D x0: (5.5)

We also assume that the following hypothesis holds:
.A3/ ' W .�1; t0/ ! R is a Borel measurable bounded function.

An absolutely continuous function x.W R ! R/ on each interval Œt0; b� is called a
solution of problems (5.4) and (5.5), if it satisfies (5.4) for almost all t 2 Œt0; 1/ and
the equality (5.5) for t � t0. Equation (5.3) has a nonoscillatory solution if it has
an eventually positive or an eventually negative solution. Otherwise, all solutions
of (5.3) are oscillatory. The results in this section can be found in [10]. In the
following, we assume that .A1/–.A3/ hold and we consider only such solutions
of (5.3) for which the following condition holds:

1 C x.t/ > 0: (5.6)

The proof of the following lemma follows a standard argument (see the proof in
Theorem 2.4.1 and see Lemma 2.6.1).
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Lemma 5.1.1. Let .A1/ and .A2/ hold for the equation

x0.t/ C r.t/x.h.t// D 0; t � 0: (5.7)

Then the following hypotheses are equivalent:

.1/ The differential inequality

x0.t/ C r.t/x.h.t// � 0; t � 0 (5.8)

has an eventually positive solution.
.2/ There exists t0 � 0 such that the inequality

u.t/ � r.t/ exp

�Z t

h.t/

u.s/ds

�
; t � t0; u.t/ D 0; t < t0 (5.9)

has a nonnegative locally integrable solution.
.3/ Equation (5.7) has a nonoscillatory solution.

If

lim
t!1 sup

Z t

h.t/

r.s/ds <
1

e
; (5.10)

then (5.7) has a nonoscillatory solution. If

lim
t!1 inf

Z t

h.t/

r.s/ds >
1

e
; (5.11)

then all the solutions of (5.7) are oscillatory.

Lemma 5.1.2. Let x.t/ be a nonoscillatory solution of (5.3) and suppose that
Z 1

0

r.t/

1 C s.t/
dt D 1: (5.12)

Then limt!1 x.t/ D 0.

Proof. Suppose first x.t/ > 0, t � t1. Then there exists t2 � t1 such that

h.t/ � t1; g.t/ � t1, for t � t2: (5.13)

Let

u.t/ D �x0.t/
x.t/

; t � t2: (5.14)

Then u.t/ � 0; t � t2 and

x.t/ D x.t2/ exp

�
�
Z t

t2

u.s/ds

�
; t � t2: (5.15)



218 5 Food-Limited Population Models

Substituting this into (5.3) we obtain

u.t/ D r.t/e

�R t
h.t/ u.s/ds

� h
1 C c exp

n
� R t

t2
u.s/ds

oi
h
1 C s.t/

�
1 C c exp

n
� R g.t/

t2
u.s/ds

o�i ; (5.16)

where h.t/ � t , g.t/ � t , for t � t2, and c D x.t2/ > 0. Hence

u.t/ � r.t/

.1 C c/.1 C s.t//
: (5.17)

From (5.12) we have
R1

t2
u.t/dt D 1.

Now suppose �1 < x.t/ < 0; t � t1. Then there exists t2 � t1 such that (5.13)
holds for t � t2. With u.t/ denoted in (5.14) and c D x.t2/ we have u.t/ � 0 and
�1 < c < 0. Substituting (5.15) into (5.3) and using (5.16), we have

u.t/ � .1 C c/r.t/

.1 C s.t//
: (5.18)

Thus
R1

t2
u.t/dt D 1. Equation (5.15) implies that limt!1 x.t/ D 0. The proof is

complete. �

Theorem 5.1.1. Suppose (5.12) holds and for some " > 0, all solutions of the linear
equation

x0.t/ C .1 � "/
r.t/

1 C s.t/
x.h.t// D 0 (5.19)

are oscillatory. Then all solutions of (5.3) are oscillatory.

Proof. First suppose x.t/ is an eventually positive solution of (5.3). Lemma 5.1.2
implies that there exists t1 � 0 such that 0 < x.t/ < " for t � t1. We suppose (5.13)
holds for t � t2 � t1. For t � t2, we have

Œ1 C s.t/�.1 C x.t//

1 C s.t/Œ1 C x.g.t//�
� .1 C s.t//

1 C s.t/.1 C "/

� .1 C s.t//

.1 C s.t//.1 C "/
D 1

.1 C "/
� 1 � ": (5.20)

Equation (5.3) implies

x0.t/ C .1 � "/
r.t/

1 C s.t/
x.h.t// � 0; t � t2: (5.21)

Lemma 5.1.1 yields that (5.19) has a nonoscillatory solution. We have a
contradiction.
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Now suppose �" < x.t/ < 0 for t � t1 and (5.13) holds for t � t2 � t1. Then
for t � t2

Œ1 C s.t/�.1 C x.t//

1 C s.t//Œ1 C x.g.t//�
� .1 C s.t//.1 � "/

1 C s.t/
D 1 � ": (5.22)

Hence, (5.19) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. �

Corollary 5.1.1. If

lim
t!1 inf

Z t

h.t/

r.�/

1 C s.�/
d� >

1

e
; (5.23)

then all solutions of (5.3) are oscillatory.

Theorem 5.1.2. Suppose for some " > 0 there exists a nonoscillatory solution of
the linear delay differential equation

x0.t/ C .1 C "/
r.t/

1 C s.t/
x.h.t// D 0: (5.24)

Then there exists a nonoscillatory solution of (5.3).

Proof. Lemma 5.1.1 implies that there exists t0 � 0 such that

w0.t/ � 0; for t � t0; and w0.t/ D 0; for t � t0;

and

w0.t/ � .1 C "/
r.t/

1 C s.t/
exp

�Z t

h.t/

w0.s/ds

�
: (5.25)

Suppose 0 < c < " and consider two sequences:

wn.t/ D r.t/ exp

�Z t

h.t/

wn�1.s/ds

�

�
1 C c exp

n
� R t

t0
�n�1.s/ds

o

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
wn�1.s/ds

o�

and

�n.t/ D r.t/ exp

�Z t

h.t/

�n�1.s/ds

�

�
1 C c exp

n
� R t

t0
wm�1.s/ds

o

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
�n�1.s/ds

o� ;
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where w0 is as defined above and �0.t/ � 0. We have

w1.t/ D r.t/

1 C s.t/
exp

�Z t

h.t/

w0.s/ds

�

� .1 C s.t//.1 C c/

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
w0.s/ds

o�

� r.t/

1 C s.t/
exp

�Z t

h.t/

w0.s/ds

�

� .1 C s.t//.1 C "/

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
w0.s/ds

o�

� w0.t/ (5.26)

from (5.25). Clearly �1.t/ � �0.t/ and w0.t/ � �0.t/. Hence by induction

8<
:

0 � wn.t/ � wn�1.t/ � : : : � w0.t/;

�n.t/ � �n�1.t/ � : : : � �0.t/ D 0;

wn.t/ � �n.t/:

(5.27)

There exist pointwise limits of the nonincreasing nonnegative sequence wn.t/ and
of the nondecreasing sequence �n.t/. Let

w.t/ D lim
n!1 wn.t/ and �.t/ D lim

n!1 �.t/:

Then by the Lebesgue Convergence Theorem, we conclude that

w.t/ D r.t/ exp

�Z t

h.t/

w.s/ds

�

�
1 C c exp

n
� R t

t0
�.s/ds

o

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
w.s/ds

o�

and

�.t/ D r.t/ exp

�Z t

h.t/

�.s/ds

�

�
1 C c exp

n
� R t

t0
w.s/ds

o

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
�.s/ds

o� :
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We fix b � t0 and define the operator T W L1Œt0; b� ! L1Œt0; b� by

T .u.t// D e
R t

h.t/ u.s/ds
r.t/

�
1 C c exp

n
� R t

t0
u.s/ds

o�

1 C s.t/
�
1 C c exp

n
� R g.t/

t0
u.s/ds

o� : (5.28)

For every function u from the interval � � u � w, we have � � T u � w. One
can also check that T is a completely continuous operator on the space L1Œt0; b�.
Then by Schauder’s Fixed Point Theorem there exists a nonnegative solution of
equation u D T u. Let

x.t/ D
(

c exp
n
� R t

t0
u.s/ds

o
; if t � t0;

0; if t < t0;
(5.29)

and then x.t/ is a nonoscillatory solution of (5.3) which completes the proof. �

The results in this section apply to (5.2). For example by applying Theorem 5.1.1
we have the following result.

Theorem 5.1.3. Suppose (5.12) holds and for some " > 0, all solutions of the linear
equation

N 0.t/ C .1 � "/
r.t/

1 C s.t/
N.h.t// D 0 (5.30)

are oscillatory. Then all solutions of (5.2) are oscillatory about K.

5.2 Oscillation of Impulsive Delay Models

In this section we consider the impulsive “food-limited” population model
8̂̂
<
ˆ̂:

N 0.t/ D r.t/N.t/
K�N.h.t//

KC
mX

iD1

pi .t/N.gi .t//

; t ¤ tk;

N.tC
k / � N.tk/ D bk.N.tk/ � K/; for k D 1; 2; : : : I

(5.31)

here N.tk/ D N.t�
k /. In this section, we will assume that the following assumptions

hold:

.A1/ 0 � t0 < t1 < t2 < : : : < tk < : : : are fixed points with
limk!1 tk D 1,

.A2/ bk > �1, k D 1; 2; : : :, K is a positive constant,

.A3/ r.t/ and pi ; i D 1; 2; : : : ; m, are Lebesgue measurable locally
essentially bounded functions, in each finite interval Œ0; b�, r.t/ � 0 and
pi .t/ � 0, for i D 1; 2; : : : ; m,

.A4/ h; gi W Œ0; 1/ ! R are Lebesgue measurable functions, h.t/ � t , gi .t/ � t ,
limt!1 h.t/ D 1, limt!1 gi .t/ D 1; i D 1; 2; : : : ; m.
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In this section (motivated by (5.31) with y.t/ D N.t/

K
� 1) we consider the delay

model with impulses

8̂̂
<̂
ˆ̂̂:

y0.t/ D �r.t/
.1 C y.t// y.h.t//

1 C
mX

iD1

pi .t/ Œ1 C y.gi .t//�

; t ¤ tk; t � T0 � 0

y.tC
k / � y.tk/ D bky.tk/; for k D 1; 2; : : : ;

(5.32)

where bk > �1 and r , h, pi for m D 1; 2; : : : are nonnegative real-valued functions.
We consider (5.32) with the initial condition

y.t/ D '.t/ � 0; '.T0/ > 0; t 2 ŒT �; T0�: (5.33)

Here for any T0 � 0, T � D min1�i�m inft�T0.gi .t/; h.t//, and ' W ŒT �; T0� ! RC
is a Lebesgue measurable function.

For any T0 � 0 and '.t/, a function y W ŒT �; 1� ! R is said to be a solution
of (5.32) on ŒT; 1� satisfying the initial value condition (5.33), if the following
conditions are satisfied:

1. y.t/ satisfies (5.33);
2. y.t/ is absolutely continuous in each interval .T0; tk/; .tk; tkC1/; tk > T0; k �

k0; y.tC
k /; y.t�

k / exist and y.t�
k / D y.tk/; k > k0I

3. y.t/ satisfies the former equation of (5.32) in ŒT; 1/nftkg and satisfies the latter
equation for every t D tk; k D 1; 2; : : : .

For any t � 0, consider the nonlinear delay differential equation

x0.t/ D �r.t/

1 C
0
@ Y

T0�tk<t

.1 C bk/

1
A x.t/

1 C ‰.x.gi .t//
�

Y
h.t/�tk<t

.1 C bk/�1x.h.t//; (5.34)

where

‰.x.gi .t// D
mX

iD1

pi .t/

2
41 C .

Y
T0�tk<gi .t/

.1 C bk//x.gi .t//

3
5 :

The results in this section are adapted from [77] (in fact as we see below it is easy
to extend the theory in the nonimpulsive case in Sect. 5.1 to the impulsive case).

Lemma 5.2.1. Assume that .A1/–.A4/ hold. Then the solution N.t/ of (5.31)
oscillates about K if and only if the solution y.t/ of (5.32) oscillates about zero.

The proof (which is elementary and straightforward) of the next lemma can be
found in [81].
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Lemma 5.2.2. Assume that .A1/–.A4/ hold. For any T0 � 0; y.t/ is a solution
of (5.32) on ŒT0; 1/ if and only if

x.t/ D
0
@ Y

T0�tk<t

.1 C bk/

1
A

�1

y.t/ (5.35)

is a solution of the nonimpulsive delay differential equation (5.34).

From Lemmas 5.2.1 and 5.2.2 we see that the solution N.t/ of (5.31) is
oscillatory about K if and only if the solution y.t/ of (5.32) is oscillatory.

We consider only such solutions of (5.32) for which the following condition
holds:

1 C y.t/ > 0; for t � T0; (5.36)

and hence, in view of (5.35),

1 C
0
@ Y

T0�tk<t

.1 C bk/

1
A x.t/ > 0; for t � T0: (5.37)

With y.t/ D N.t/

K
� 1 then from (5.36) and (5.37), we see that

N.t/ D K

0
@1 C

Y
T0�tk<t

.1 C bk/x.t/

1
A > 0; t � T0:

Thus for the initial condition N.t/ D '.t/ W ŒT �; T0� ! RC; '.T0/ > 0, the
solution of (5.31) is positive on ŒT0; 1/.

Lemma 5.2.3. Assume that .A1/–.A4/ hold,

1Z
0

r.t/

 
1 C

mX
iD1

pi .t/

!�1

dt D 1; (5.38)

and

Y
T0�tk<t

.1 C bk/ is bounded and lim
t!1 inf

Y
T0�tk<t

.1 C bk/ > 0: (5.39)

If y.t/ is a nonoscillatory solution of (5.32), then limt!1 y.t/ D 0.

Proof. Suppose first y.t/ > 0 for t � T1 � 0. From (5.35) and .A1/, x.t/ > 0 for
t � T1. Then there exists T2 � T1 such that

h.t/ � T2; gi .t/ � T2; i D 1; 2; : : : ; m; for t � T2: (5.40)
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Let

u.t/ D �x0.t/
x.t/

; for t � T2: (5.41)

Then u.t/ � 0 for t � T2 and

x.t/ D x.T2/ exp

8<
:�

tZ
T2

u.s/ds

9=
; ; for t � T2: (5.42)

Setting c D x.T2/, we have

u.t/ D r.t/

x.t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A x.h.t//

�
1 C .

Y
T0�tk<t

.1 C bk//x.t/

1 C
mX

iD1

pi .t/Œ1 C .
Y

T0�tk<gi .t/

.1 C bk//x.gi .t//�

� r.t/

x.t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A x.t/

� 1

1 C
mX

iD1

pi .t/Œ1 C
Y

T0�tk<gi .t/

.1 C bk/c�

D r.t/

1 C
mX

iD1

pi .t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A

�
1 C

mX
iD1

pi .t/

1 C
mX

iD1

pi .t/Œ1 C
Y

T0�tk<gi .t/

.1 C bk/c�

� r.t/

1 C
mX

iD1

pi .t/

.
Y

h.t/�tk<t

.1 C bk//�1

.1 C
mX

iD1

pi .t/.1 C .
Y

T0�tk<gi .t/

.1 C bk/c//

:
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Then from (5.38) and (5.39),

1Z
T2

u.t/dt D 1.

Now suppose �1 < y.t/ < 0. Hence in view of (5.36),

�1 <
Y

T0�tk<gi .t/

.1 C bk/x.t/ < 0; t � T1:

Then there exists T2 > T1 such that (5.40) holds for t > T2. With u.t/ denoted
in (5.41) and c D x.T2/, then from (5.37) u.t/ � 0; �1 < c < 0, and we obtain

u.t/ D r.t/

x.t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A x.h.t//

�
1 C .

Y
T0�tk<t

.1 C bk//x.t/

1 C
mX

iD1

pi .t/Œ1 C .
Y

T0�tk<gi .t/

.1 C bk//x.gi .t//�

� r.t/

x.h.t//

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A x.h.t//

1 C .
Y

T0�tk<t

.1 C bk//c

1 C
mX

iD1

pi .t/

D
0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A
0
@1 C .

Y
T0�tk<t

.1 C bk//c

1
A

� r.t/

1 C
mX

iD1

pi .t/

:

Then by (5.37)–(5.39), we have

1Z
T2

u.t/dt D 1. Equation (5.42) implies

limt!1 x.t/ D 0. Use (5.35), and then we have limt!1 y.t/ D 0. The proof
is complete. �

Theorem 5.2.1. Assume that .A1/ and .A2/, (5.38) hold and for some � > 0, all
solutions of the linear equation
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x0.t/ C .1 � �/
Y

h.t/�tk<t

.1 C bk/�1 r.t/x.h.t//

1 C
mX

iD1

pi .t/

D 0 (5.43)

are oscillatory. Then all solutions of (5.32) are oscillatory.

Proof. Suppose y.t/ is an eventually positive solution of (5.32). Then x.t/ is an
eventually positive solution of (5.34). Lemma 5.2.3 implies that there exists T1 � 0,
such that

0 < .
Y

T0�tk<t

.1 C bk//x.t/ < �; for t � T1:

We suppose (5.40) holds for t � T2, and we have

.1 C
mX

iD1

pi .t//.1 C .
Y

T0�tk<t

.1 C bk//x.t//

1 C
mX

iD1

pi .t/Œ1 C .
Y

T0�tk<gi .t/

.1 C bk//x.gi .t//�

�
1 C

mX
iD1

pi .t/

1 C
mX

iD1

pi .t/.1 C �/

�
1 C

mX
iD1

pi .t/

.1 C �/.1 C
mX

iD1

pi .t//

D 1

1 C �
� 1 � �: (5.44)

Equation (5.34) implies

x0.t/ C .1 � �/
Y

h.t/�tk<t

.1 C bk/�1 r.t/x.h.t//

1 C
mX

iD1

pi .t/

� 0; t � T2: (5.45)

This implies that the (5.43) has a positive solution, which is a contradiction.
Now, we suppose

�� < .
Y

T0�tk<t

.1 C bk//x.t/ < 0; for t � T1;

and (5.38) holds for t � T2 � T1. Then for t � T2, we also get
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.1 C
mX

iD1

pi .t//.1 C .
Y

T0�tk<t

.1 C bk//x.t//

1 C
mX

iD1

pi .t/Œ1 C .
Y

T0�tk<gi .t/

.1 C bk//x.gi .t//�

�
.1 C

mX
iD1

pi .t//.1 � �/

1 C
mX

iD1

pi .t/

D 1 � �: (5.46)

Thus (5.43) has a nonoscillatory solution and we again obtain a contradiction. The
proof is complete. �

Theorem 5.2.2. Assume that .A1/ and .A2/ hold and

Y
h.t/�tk<t

.1 C bk/ is convergent. (5.47)

Moreover, for some � > 0 if there exists a nonoscillatory solution of the linear delay
differential equation

x0.t/ C .1 C �/
Y

h.t/�tk<t

.1 C bk/�1 r.t/x.h.t//

1 C
mX

iD1

pi .t/

D 0; (5.48)

then there exists a nonoscillatory solution of (5.32).

Proof. Suppose that x.t/ > 0 for t > T0 is a solution of (5.48). Then by (5.34)
there exist T0 � 0 and !0.t/ � 0; t � T0, !0.t/ D 0; T �

0 � t � T0 such that

!0.t/ � .1 C �/r.t/

1 C
mX

iD1

pi .t/

.
Y

h.t/�tk<t

.1 C bk/�1/ exp

8̂<
:̂

tZ
h.t/

!0.s/ds

9>=
>; : (5.49)

Since
Y

T0�tk<gi .t/

.1 C bk/ is convergent, there exists a positive constant c such that

0 < c.
Y

T0�tk<gi .t/

.1 C bk// < �:
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Consider the two sequences:

!n.t/ D r.t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A exp

8̂<
:̂

tZ
h.t/

!n�1.s/ds

9>=
>;

:

1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp

8<
:�

tZ
T0

�n�1.s/ds

9=
;

1 C
mX

iD1

pi .t/.1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp �f
gi .t/Z
T0

!n�1.s/dsg/
;

n D 1; 2; : : : ;

�n.t/ D r.t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A exp

8̂<
:̂

tZ
h.t/

�n�1.s/ds

9>=
>; (5.50)

:

1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp

8<
:�

tZ
T0

!n�1.s/ds

9=
;

1 C
mX

iD1

pi .t/.1 C c

0
@ Y

T0�tk<gi .t/

.1 C bk/

1
A exp �f

gi .t/Z
T0

�n�1.s/dsg/
;

n D 1; 2; : : : ;

where !0 is defined above and �0 � 0. Thus we have

!1.t/ D r.t/

1 C
mX

iD1

pi .t/

0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A exp

8̂<
:̂

tZ
h.t/

!0.s/ds

9>=
>;

�
.1 C

mX
iD1

pi .t//.1 C c.
Y

T0�tk<gi .t/

.1 C bk//

1 C
mX

iD1

pi .t/.1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp �f
gi .t/Z
T0

!0.s/dsg/
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�
r.t/.

Y
h.t/�tk<t

.1 C bk/�1/

1 C
mX

iD1

pi .t/

e

tZ
h.t/

!0.s/ds .1 C
mX

iD1

pi .t//.1 C �/

1 C
mX

iD1

pi .t/

� !0.t/: (5.51)

Clearly �1.t/ � �0.t/; !0.t/ � �0.t/. Hence by induction

8<
:

0 � !n.t/ � !n�1.t/ � : : : � !0.t/;

�n.t/ � �n�1.t/ � : : : � �0.t/ D 0; n D 1; 2; : : : ;

!n.t/ � �n.t/:

There exist pointwise limits of the nonincreasing nonnegative sequence !n.t/ and
of the nondecreasing sequence �n.t/. Let !.t/ D limn!1 !n.t/ and �.t/ D
limn!1 �n.t/. Then by the Lebesgue Convergence Theorem, we deduce that

!.t/ D r.t/

0
@ Y

h.t/�tk<t

.1 C bk/

1
A exp

8̂<
:̂

tZ
h.t/

!.s/ds

9>=
>;

:

1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp

8<
:�

tZ
T0

�.s/ds

9=
;

1 C
mX

iD1

pi .t/.1 C c.
Y

T0�tk<gi .t/

.1 C bk// exp �f
gi .t/Z
T0

!.s/dsg/
;

�.t/ D r.t/

0
@ Y

h.t/�tk<t

.1 C bk/

1
A exp

8̂<
:̂

tZ
h.t/

�.s/ds

9>=
>;

�
1 C c.

Y
T0�tk<gi .t/

.1 C bk// exp

8<
:�

tZ
T0

!.s/ds

9=
;

1 C
mX

iD1

pi .t/.1 C c.
Y

T0�tk<gi .t/

.1 C bk//e

�
gi .t/Z
T0

�.s/ds

/

: (5.52)
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We fix b � T0 and define the operator T W L1ŒT0; b� ! L1ŒT0; b� by the following

.T u/.t/ D r.t/

0
@ Y

h.t/�tk<t

.1 C bk/

1
A exp

8̂<
:̂

tZ
h.t/

u.s/ds

9>=
>;

�
1 C c

Y
T0�tk<gi .t/

.1 C bk/ exp

8<
:�

tZ
T0

u.s/ds

9=
;

1 C
mX

iD1

pi .t/.1 C c
Y

T0�tk<gi .t/

.1 C bk/e

�
gi .t/Z
T0

u.s/ds

/

: (5.53)

For every function u from the interval � � u � !, we have � � T u � !. Also T is
a completely continuous operator on the space L1ŒT0; b�, and then by the Schauder
Fixed Point Theorem there exists a nonnegative solution of the equation u D T u.
Let

x.t/ D
(

c expf� R t

T0
u.s/dsg; t � T0;

c; T � � t � T0:
(5.54)

Then x.t/ is a nonoscillatory solution of (5.34). Thus by Lemma 5.2.1

y.t/ D
0
@ Y

h.t/�tk<t

.1 C bk/�1

1
A x.t/

is a nonoscillatory solution of (5.32) which completes the proof of Theorem 5.2.2.
�

The results in this section apply to (5.31).

5.3 3
2
-Global Stability

In this section we examine the global attractivity of the “food-limited” population
model

N 0.t/ D r.t/N.t/
1 � N.t � �/

1 C c.t/N.t � �/
; t � 0; (5.55)

where

r.t/ 2 C.Œ0; 1/; .0; 1//; c.t/ 2 C.Œ0; 1/; .0; 1//; � > 0:
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We consider solutions of (5.55) which correspond to the initial condition
�

N.t/ D �.t/; t 2 Œ�; 0�;

� 2 C.Œ�; 0�; Œ0; 1//; �.0/ > 0:
(5.56)

Motivated by (5.55) in this section, we will study the global stability of the general
equation

x0.t/ C Œ1 C x.t/�Œ1 � cx.t/�F .t; x.g.t//� D 0; (5.57)

where F.t; '/ is a continuous functional on Œ0; 1/ � Ct , such that F.t; 0/ D 0 for
t � 0 and satisfies a York-type condition

� r.t/

1 C c
Mt .�'/ � F.t; '/ � r.t/

1 C c
Mt .�'/; (5.58)

where g W Œ0; 1/ ! .�1; 1/ is a nondecreasing continuous function with g.t/ <

t for t � 0 and limt!1 g.t/ D 1, Mt .'/ D maxf0; sups2Œg.t/;t � '.s/g, c 2 .0; 1/

and r 2 C.Œ0; 1/; .0; 1//. The class Ct is the set of all continuous functions ' W
Œg.t/; t � ! Œ�1; 1/ with the sup-norm k'kt D sups2Œg.t/;t � j'.s/j.

Let � D �g.0/. We consider solutions of (5.57) which correspond to the initial
condition

�
x.t/ D �.t/; t 2 Œ��; 0�;

� 2 C.Œ��; 0�; Œ�1; 1
c
//; �.0/ > �1:

(5.59)

In the following, we will establish a 3=2-global attractivity condition for (5.57), and
then apply this condition on equation (5.55) to establish a 3=2-global attractivity
condition. The results in this section are adapted from [73]. To prove the results,
we need the following results (whose proofs are standard; for Lemma 5.3.7 see
Lemma 5.7.3 with c D 1).

Lemma 5.3.1. Assume that c 2 .0; 1�. Then for any v 2 Œ0; 1/

.1 � v/ ln
.1 C c/e�cv.1�cv=2/ � 1

c
� �.1 C c/v

�
1 � 1 C c

2
v � 1 � c

6
v2

�
:

Lemma 5.3.2. Assume that c 2 .0; 1�. Then for any u 2 Œ0; 1/

.1 C u/ ln
.1 C c/ecu.1Ccu=2/ � 1

c
� .1 C c/u

�
1 C 1 C c

2
u � 1 � c

6
u2

�
:

Lemma 5.3.3. Assume that c 2 .0; 1� and v 2 .0; 1/. Then for any x 2 Œ0; 1/

ln
1 C Œ.1 C c/e�cv.1�cv=2/ � 1�e�vx

1 C ce�vx
� �cv.1 � cv

2
/ C cv2

1 C c
x:
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Lemma 5.3.4. Assume that c 2 .0; 1�. Then for 0 < v <

�
1� c

2
C
q

2.1�c/

3
C c2

4

	�1

�1

v
ln

.1 C c/e�cv.1�cv=2/ � 1

c
� 3

2
.1 C c/:

Lemma 5.3.5. Assume that c 2 .0; 1�. Then for any x 2 Œ0; 1/

ln
c C ex

1 C c
� x

1 C c
C cx2

2.1 C c/2
� c.1 � c/x3

6.1 C c/3
C c.1 � 4c C c2/x4

24.1 C c/4

�c.1 � 11c C 11c2 � c3/

120.1 C c/5
x5 C c.1 C 14c2 C c4/

720.1 C c/6
x6:

Lemma 5.3.6. Assume that c 2 .0; 1� and

1 � v �
"

1 � c

2
C
r

2.1 � c/

3
C c2

4

#�1

:

Then

81.1 � 11c C 11c2 � c3/

160
v3 � 1 � 19.1 � c/v

6
C 27.1 � 4c C c2/v2

16

C81.1 C 14c2 C c4/

640
v4:

Lemma 5.3.7. The system of inequalities
(

ln 1Cy

1�cy
� .1 C c/



x � 1�c

6
x2
�

;

� ln 1�x
1Ccx

� .1 C c/


y C 1�c

6
y2
�

has only a unique solution xDyD0 in the region f.x; y/ W 0 � x � 1, 0 � y < 1=cg.

Theorem 5.3.1. Assume that (5.58) holds. Then the solution x.t; 0; '/ of (5.57),
(5.59) exists on Œ0; 1/ and satisfies �1 < x.t; 0; '/ < 1=c.

Theorem 5.3.2. Assume that (5.58) holds and there exists a function r� 2
C.Œ0; 1/; .0; 1// such that for each " > 0 there is a � D �."/ > 0 satisfying

inf
s2Œg.t/;t �

'.s/ � " ) F.t; '/ � �r�.t/, F.t; �'/ � ��r�.t/ for t � 0 (5.60)

and Z 1

0

r�.s/ds D 1: (5.61)

Then every nonoscillatory solution of IVP (5.57) and (5.59) tends to zero.
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Theorem 5.3.3. Assume that (5.58), (5.60), and (5.61) hold. If there exists a
constant M such that

Z t

g.t/

r.s/ds � M; (5.62)

then the solutions of (5.57), (5.59) satisfy

�1 C exp
�

M.1�eM /

1CceM

�

1 C c exp
�

M.1�eM

1CceM

� � x.t/ � eM � 1

1 C ceM
: (5.63)

We now prove our main result in this section.

Theorem 5.3.4. Assume that (5.58)–(5.61) hold, and

Z t

g.t/

r.s/ds � 3

2
.1 C c/ for large t: (5.64)

Then every solution of (5.57), (5.59) tends to zero.

Proof. Let x.t/ be a solution of (5.57) and (5.59) (note also Theorem 5.3.1 so �1 <

x.t/ << 1=c, t � 0). By Theorem 5.3.2, we only consider the case when x.t/ is
oscillatory. First assume that 0 < c � 1. Set

u D lim sup
t!1

x.t/ and v D lim inf
t!1 x.t/: (5.65)

By Theorem 5.3.3, 0 � u < 1 and 0 � v < 1. It suffices to prove that u D v D 0.
For any 0 < " < 1 � v, by (5.64) and (5.65) there exists a t0 D t0."/ > g�2.0/ such
that

Z t

g.t/

r.s/ds � ı0 � 3

2
.1 C c/; t � g.t0/; (5.66)

� v1 � �.v C "/ < x.t/ < u C " � u1, t � g.t0/: (5.67)

From (5.57), (5.58), and (5.67), we have

x0.t/
.1 C x.t// .1 � cx.t//

� r.t/v1

1 C c
, t � t0; (5.68)

and

x0.t/
.1 C x.t// .1 � cx.t//

� �r.t/u1

1 C c
, t � t0: (5.69)
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Let flng be an increasing infinite sequence of real numbers such that g.ln/ > t0,
x.ln/ > 0; x0.ln/ D 0, and limn!1 x.ln/ D u. We may assume that ln is a left local
maximum point of x.t/. It is easy to show that there exists 	n 2 Œg.ln/; ln/ such that
x.	n/ D 0 and x.t/ > 0 for t 2 .	n; ln�. By (5.68), we have

x.t/ �
�1 C exp

�
�v1

R 	n

t
r.s/ds

�

1 C c exp
�
�v1

R 	n

t
r.s/ds

� , t0 � t � 	n;

and [see also (5.57) and (5.58)] for 	n � t � ln we have

x0.t/
.1 C x.t// .1 � cx.t//

� r.t/

1 C c

1 � exp
�
�v1

R 	n

g.t/
r.s/ds

�

1 C c exp
�
�v1

R 	n

g.t/
r.s/ds

� ;

which together with (5.68) yields for 	n � t � ln

x0.t/
.1 C x.t// .1 � cx.t//

� min

8<
:

r.t/v1

1 C c
;

r.t/

1 C c

1 � exp
�
�v1

R 	n

g.t/
r.s/ds

�

1 C c exp
�
�v1

R 	n

g.t/
r.s/ds

�
9=
; : (5.70)

There are two cases to consider.

Case 1.
R ln

	n
r.s/ds � � 1

v1
ln .1Cc/e�cv1.1�cv1=2/�1

c
� A

Then by (5.66) and (5.70), we have

ln
1 C x.ln/

1 � cx.ln/
�
Z ln

	n

r.s/ds � 1 C c

cv1

ln
1 C c exp

h
�v1

�
ı0 � R ln

	n
r.s/ds

�i
1 C ce�ı0v1

:

(5.71)

If
R ln

	n
r.s/ds � A � ı0 D 3

2
.1 C c/, then by Lemmas 5.3.1 and 5.3.3

ln
1 C x.ln/

1 � cx.ln/
� A � 1 C c

cv1

ln
1 C ce�v1.ı0�A/

1 C ce�ı0v1
� .1 C c/

�
v1 � 1 � c

6
v2

1

�
:

If
R ln

	n
r.s/ds � ı0 D 3

2
.1 C c/ < A, then

� 1

v1

ln
.1 C c/e�cv1.1�cv1=2/

c
� 1 >

3

2
.1 C c/:

From Lemma 5.3.4 we have that

v1 >

"
1 � c

2
C
r

2.1 � c/

3
C c2

4

#�1

:
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Hence from (5.71), Lemmas 5.3.5 and 5.3.6, we have

ln
1 C x.ln/

1 � cx.ln/
� ı0 � 1 C c

cv1

ln
1 C c

1 C ce�ı0v1
� .1 C c/

�
v1 � 1 � c

6
v2

1

�
:

Case 2. A <
R ln

	n
r.s/ds � ı0

Choose �n 2 .	n; ln/ such that
R ln

�n
r.s/ds D A. Then by (5.66), (5.70), and

Lemma 5.3.1 we have

ln
1 C x.ln/

1 � cx.ln/

� v1

Z �n

	n

r.s/ds C
Z ln

�n

r.t/
h
1 � exp

�
�v1

R 	n

g.t/
r.s/ds

�i

1 C c exp
�
�v1

R 	n

g.t/
r.s/ds

� dt

� �.1 C c/

�
1 � 3 C c

2

�
� 1 � v1

v1

ln
.1 C c/ e�cv1.1�cv1=2/ � 1

c

� .1 C c/

�
v1 � 1 � c

6
v2

1

�
:

Combining the above cases we see that

ln
1 C x.ln/

1 � cx.ln/
� .1 C c/

�
v1 � 1 � c

6
v2

1

�
:

Letting n ! 1 and " ! 0, we have

ln
1 C u

1 � cu
� .1 C c/

�
v � 1 � c

6
v2

�
: (5.72)

Now, we show that

� ln
1 � v

1 C cv
� .1 C c/

�
u C 1 � c

6
u2

�
: (5.73)

Let fsng be an increasing infinite sequence of real numbers such that g.s/ > t0,
x.sn/ < 0; x0.sn/ D 0 and limn!1 x.sn/ D �v. We may assume that sn is a left
local minimum point of x.t/. It is easy to show that there exists �n 2 Œg.sn/; sn/

such that x.�n/ D 0 and x.t/ < 0 for t 2 .�n; sn�. By (5.69), we get

x.t/ � exp


u1

R �n

t
r.s/ds

� � 1

1 C c exp


u1

R �n

t
r.s/ds

� , t0 � t � �n;
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which together with (5.58) yields

� x0.t/
.1 C x.t// .1 � cx.t//

� r.t/

1 C c

exp
�

u1

R �n

g.t/
r.s/ds

�
� 1

1 C c exp
�

u1

R �n

g.t/
r.s/ds

� , �n < t < sn: (5.74)

Note that u1 is bounded and note

1

u1

ln
.1 C c/ecu1.1Ccu1=2/ � 1

c
� 3.1 C c/

2
:

We consider two cases.

Case I.
R sn

�n
r.s/ds <

3.1Cc/

2
� 1

u1
ln .1Cc/ecu1.1Ccu1=2/�1

c
� B .

From (5.69) and Lemma 5.3.2, we have

� ln
1 C x.sn/

.1 � cx.sn//
� u1

Z sn

�n

r.s/ds

� u1

3.1 C c/

2
� ln

.1 C c/ecu1.1Ccu1=2/ � 1

c

� .1 C c/

�
u1 C 1 � c

6
u2

1

�
:

Case II. B <
R sn

�n
r.s/ds <

3.1Cc/

2

Choose hn 2 .�n; sn/ such that
R hn

�n
r.s/ds D B . Then by (5.69) and (5.74) we

have

� ln
1 C x.sn/

.1 � cx.sn//
� u1

Z hn

�n

r.s/ds C
Z sn

hn

r.t/
h
exp

�
u1

R �n

g.t/
r.s/ds

�
� 1

i

1 C c exp
�

u1

R �n

g.t/
r.s/ds

�

� .1 C c/ C .1 C c/.3 C c/

2
u1

�1 C u1

u1

ln
.1 C c/ecu1.1Ccu1=2/ � 1

c

� .1 C c/

�
u1 C 1 � c

6
u2

1

�
:

Combining these two cases we have

� ln
1 C x.sn/

.1 � cx.sn//
� .1 C c/

�
u1 C 1 � c

6
u2

1

�
:
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Letting n ! 1 and " ! 0 we see that (5.73) holds. In view of Lemma 5.3.7, we
see from (5.72) to (5.73) that u D v D 0.

Next assume that c > 1. Set y.t/ D �cx.t/. Then (5.57) reduces to

y0.t/ C Œ1 C y.t/�Œ1 � c�y.t/�F �.t; y.g.t// D 0, t � 0; (5.75)

where c� D 1=c 2 .0; 1/ and F �.t; '/ D �cF.t; � 1
c
'/ satisfies the York-type

condition

� r�.t/

1 C c� Mt .�'/ � F �.t; '/ � r�.t/

1 C c� Mt .�'/: (5.76)

Note for large t that

Z t

g.t/

r�.s/ds � 3

2
.1 C c�/; (5.77)

so we have limt!1 y.t/ D 0, and this implies that limt!1 x.t/ D 0. The proof is
complete. �

Applying Theorem 5.3.4 on (5.55) we have the following result.

Theorem 5.3.5. Assume that
Z 1

0

r.t/

1 C c.t/
dt D 1

and

Z t

t��

r.s/ds � 3

2
.1 C c0/ for large t; (5.78)

where c0 D inffc.t/ W t � 0g. Then every solution of (5.55), (5.56) tends to 1.

5.4 3
2
-Uniform Stability

In this section we discuss the uniform stability of the “food-limited” population
model

N 0.t/ D r.t/N.t/
k � N l.t � �/

k C s.t/N l.t � �/
; t � 0; (5.79)

where r.t/ and s.t/ are positive functions, l; � > 0 are positive constants, and k1=l

is the unique positive equilibrium point of (5.79). The results in this section are
adapted from [67].
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Motivated by (5.79) (let x.t/ D .N.t/=k1=l / � 1) in this section we examine

x0.t/ D r.t/Œ1 C x.t/�
1 � .1 C x.t � �//l

1 C s.t/.1 C x.t � �//l
; t � 0: (5.80)

We consider solutions of (5.80), which correspond to the initial condition for any
t0 � 0

�
x.t/ D '.t/; for t0 � � � t � t0; ' 2 C Œt0 � �; t0�

1 C '.t/ � 0 for t0 � � � t � t0 and 1 C '.t0/ > 0:
(5.81)

The zero solution of (5.80) is said to be uniformly stable if, for " > 0, there exists a
ı."/ such that t0 > 0 and k�k D sups2Œt0��;t0� j'.s/j < ı imply jy.t I t0; '/j < " for
all t � t0 where y.t I t0; '/ is a solution of (5.80) with the initial value ' at t0.

Theorem 5.4.1. If

l

Z t

t��

r.u/

1 C s.u/
du � ˛ <

3

2
; t � �; (5.82)

then the zero solution of (5.80) is uniformly stable.

Proof. Since ˛ < 3
2
, there exist ˛1 > 1 and 0 < p < 1; such that

˛1

.1 C p/ ˛

.1 � p/l
<

3

2
(5.83)

and
ˇ̌
.1 C x/l � 1

ˇ̌ � l˛1 jxj ; for jxj � p:

For 0 < " < p, we choose a ı D ı."/ > 0 sufficiently small so that ı < p,

p1 � .1 C ı/eh1˛ � 1 < "; and p2 � .1 C p1/eh2˛ � 1 < ";

where

h1 � ˛1ı=.1 � ı/l > 0; and h2 � ˛1p1=.1 � p1/l > 0:

Clearly, ı < p1 < p2 < ". Consider a solution x.t/ D x.t I t0; '/ of (5.80) with
initial condition ' at t0, where t0 � 0 and k'k D sups2Œt0��;t0� j'.s/j < ı. We need
to prove that

jx.t/j < "; for all t � t0: (5.84)

For t 2 Œt0; t0 C ��, we have

ˇ̌
Œln.1 C x.t//�0

ˇ̌ � h1

lr.t/

1 C s.t/
;
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since

ˇ̌
1 � .1 C '/l

ˇ̌ � l˛1ı

and

1 C s.t/.1 C '/l � 1 C s.t/.1 � ı/l � .1 C s.t//.1 � ı/l :

Hence
ˇ̌̌
ˇln 1 C x.t/

1 C x.t0/

ˇ̌̌
ˇ � h1l

Z t

t0

r.u/

1 C s.u/
du � h1˛; for t 2 Œt0; t0 C ��:

It follows that

1 � .1 C ı/eh1˛ < .1 � ı/eh1˛ � 1

< x.t/ < .1 C ı/eh1˛ � 1; for t 2 Œt0; t0 C ��

and so

jx.t/j < p1 < "; for t 2 Œt0; t0 C ��:

Repeating the previous argument, we have jx.t/j < p2 < " for all t 2 Œt0C�; t0C2��

and thus

jx.t/j < p2 < "; for t 2 Œt0; t0 C 2��:

There are two cases to consider.

Case 1. x.t/ has no zeros on Œt0 C �; t0 C 2��.
Without loss of generality, we assume that x.t/ > 0 for t 2 Œt0 C �; t0 C 2�� (the

case when x.t/ < 0 is similar). Then by (5.80)

x0.t/ < 0 for t 2 Œt0 C 2�; t0 C 3��:

If x.t/ > 0 for all t � t0 C � , then x0.t/ < 0 for all t � t0 C 2� and

0 < x.t/ � x.t0 C 2�/ < p2 < ", for t � t0 C 2�:

Now let t1 be the smallest zero of x.t/ on .t0 C 2�; 1/. Clearly, 0 < x.t/ < p2

for t 2 Œt0 C 2�; t1/ since x.t/ is decreasing on Œt0 C 2�; t1/. Thus jx.t/j < p2 for
t 2 Œt0; t1�. Assume that (5.84) does not hold. Then there must exist t2 > t1 such that
jx.t2/j D p2 and x.t2/x0.t2/ � 0 and jx.t/j < p2; for t0 � t < t2. By (5.80), we
have that x.t/ has a zero in Œt2 � �; t2�, which we call 
 . Since



240 5 Food-Limited Population Models

ˇ̌
x0.t2/

ˇ̌ � .1 C p2/r.t/
l˛1p2

1 C s.t/.1 � p2/l

� .1 C p2/˛1lp2

.1 � p2/l

r.t/

1 C s.t/
; for t0 � t < t2;

we have for t 2 Œ
; t2� that

j�x.t � �/j � .1 C p2/˛1lp2

.1 � p2/l

Z 


t��

r.u/

1 C s.u/
du;

and so

ˇ̌
x0.t/

ˇ̌ � .1 C p2/
˛1l

.1 � p2/l

r.t/

1 C s.t/
jx.t � �/j

�
�

˛1l.1 C p2/

.1 � p2/l

	2

p2

r.t/

1 C s.t/

Z 


t��

r.u/

1 C s.u/
du:

Thus, we get for t 2 Œ
; t2� that

ˇ̌
x0.t/

ˇ̌ � min

(
.1 C p2/˛1lp2

.1 � p2/l

r.t/

1 C s.t/
; �.t; s/

Z 


t��

r.u/

1 C s.u/
du

)
;

and therefore

jx.t2/j �
Z t2




min

(
.1 C p2/˛1lp2

.1 � p2/l

r.t/

1 C s.t/
; �.t; s/

Z 


t��

r.u/

1 C s.u/
du

)
dt;

where

�.t; s/ WD
�

˛1l.1 C p2/

.1 � p2/l

	2

p2

r.t/

1 C s.t/
:

There are two possibilities.

Case I.

Z t2




r.t/

1 C s.t/
dt

.1 C p2/˛1l

.1 � p2/l
� 1:

Then

jx.t2/j �
�

˛1l.1 C p2/

.1 � p2/l

	2

�p2

Z t2




r.t/

1 C s.t/

Z 


t��

r.u/

1 C s.u/
dudt
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D
�

˛1l.1 C p2/

.1 � p2/l

	2

�p2

�Z t2




r.t/

1 C s.t/

�Z t

t��

r.u/

1 C s.u/
du �

Z t




r.u/

1 C s.u/
du

�
dt

	

<

�
˛1l.1 C p2/

.1 � p2/l

	2

�p2

"
3

2

.1 � p2/l

˛1l.1 C p2/

Z t2




r.t/

1 C s.t/
dt � 1

2

�Z t2




r.t/

1 C s.t/
dt

�2
#

;

since

Z t

t��

r.u/

1 C s.u/
du <

3

2

.1 � p2/l

˛1l.1 C p2/

and

Z t2




r.t/

1 C s.t/

Z t




r.u/

1 C s.u/
dudt

D
Z t2




d

 
1

2

�Z t2




r.u/

1 C s.u/
du

�2
!

D 1

2

�Z t2




r.t/

1 C s.t/
dt

�2

:

Using the fact that 3
2
az � 1

2
z2 (here a > 0) is an increasing function for 0 < z < 3

2
a,

we have

jx.t2/j

<

�
˛1l.1 C p2/

.1 � p2/l

	2

p2

"
3

2

�
.1 � p2/l

.1 C p2/˛1l

�2

� 1

2

�
.1 � p2/l

.1 C p2/˛1l

�2
#

D p2;

which is a contradiction.

Case II.

Z t2




r.t/

1 C s.t/
dt

.1 C p2/˛1l

.1 � p2/l
> 1:

Choose � 2 .
; t2/ such that

Z t2

�

r.t/

1 C s.t/
dt

.1 C p2/˛1l

.1 � p2/l
D 1:
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Then

jx.t2/j

�
Z �




.1 C p2/˛1lp2

.1 � p2/l

r.t/

1 C s.t/

C
Z t2

�

�
˛1l.1 C p2/

.1 � p2/l

	2

p2

r.t/

1 C s.t/

Z 


t��

r.u/

1 C s.u/
dudt

D
�

˛1l.1 C p2/

.1 � p2/l

	2

p2

Z t2

�

r.t/

1 C s.t/
dt

Z �




r.u/

1 C s.u/
dudt

C
�

˛1l.1 C p2/

.1 � p2/l

	2

p2

Z t2

�

r.t/

1 C s.t/

Z 


t��

r.u/

1 C s.u/
dudt

D
�

.1 C p2/˛1l

.1 � p2/l

	2

p2

Z t2

�

r.t/

1 C s.t/
dt

Z �

t��

r.u/

1 C s.u/
dudt

<

�
.1 C p2/˛1l

.1 � p2/l

	2

p2

�Z t2

�

r.t/

1 C s.t/

�
3

2

.1�p2/l

˛1l.1Cp2/
�
Z t

�

r.u/

1Cs.u/
du

�
dt

	

D
�

.1 C p2/˛1l

.1 � p2/l

	2

p2

�
3

2

�
.1�p2/l

˛1l.1Cp2/

�2 � 1

2

�
.1�p2/l

˛1l.1Cp2/

�2
	

D p2;

which is a contradiction.
This shows that if x.t/ has no zero in Œt0 C �; t0 C 2��, then jx.t/j < p2 < " for

all t � t0.

Case 2. x.t/ has a zero t 2 Œt0 C �; t0 C 2��.

We prove that

jx.t/j < p2; for all t � t : (5.85)

In fact, if (5.85) does not hold, then there must be a point t� > t such that jx.t�/j D
p2; x.t�/ x0.t�/ � 0 and jx.t/j < p2 for t 2 Œt0; t�/. Following the reasoning
in Case 1 we derive a similar contradiction. The proof of Theorem 5.4.1 is now
complete. �

Theorem 5.4.2. Assume that
Z 1

0

r.t/

1 C s.t/
dt D 1: (5.86)

If (5.82) holds, then the zero solution of (5.80) is uniformly and asymptotically
stable.
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Proof. In view of Theorem 5.4.1, it suffices to prove that there exists a ı0 > 0 such
that the solution of (5.80) with the initial condition k'k D supt2Œt0��;t0� j'.t/j < ı0

satisfies

lim
t!1x.t/ D lim

t!1x.t I t0; '/ D 0; t0 � 0:

Let ˛1 > 1 and 0 < p < 1 be such that

˛� � max

�
1;

˛˛1

.1 � p/l

�
<

3

2

and
ˇ̌
.1 C x/l � 1

ˇ̌ � l˛1 jxj ; for jxj � p:

Since the zero solution of (5.80) is uniformly stable, it follows that for 0 < " < p,
there exists ı0 > 0 such that

jx.t/j D jx.t I t0; '/j <
"

2
; for t � t0

provided k'k D supt2Œt0��;t0� j'.t/j < ı0. Set

� WD lim sup
t!1

jx.t/j : (5.87)

Clearly 0 � � < ". We prove that � D 0.
If x.t/ is eventually nonnegative, then by (5.80), x.t/ is eventually decreasing

and hence limt!1 x.t/ D �1 exists. Suppose �1 > 0. Then there exists t1 > t0
such that

1

2
�1 < x.t/ < 2�1; for t � t1:

By (5.80), we have for t � t1 C � that

.lnŒ1 C x.t/�/0 D r.t/
1 � .1 C x.t � �//l

1 C s.t/.1 C x.t � �//l

� �Œ.1 C 1
2
�1/l � 1�

.1 C 2�1/l

r.t/

1 C s.t/
:

Using (5.86), we have

lnŒ1 C x.t/� ! �1; as t ! 1;

which contradicts �1 > 0. Hence limt!1 x.t/ D �1 D 0. Similarly, one can show
that if x.t/ is eventually nonpositive then limt!1 x.t/ D 0.
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Now assume that x.t/ is oscillatory. For any 0 < � < "��, by (5.87) there exists
t2 > t0 such that jx.t/j < � C � for t � t2. Let ft�

n g be an increasing sequence such
that t�

n � t2 C 2�; x0.t�
n / D 0; limn!1 jx.t�

n /j D � and t�
n ! 1 as n ! 1.

By (5.80), x.t�
n � �/ D 0. Thus, we have

ˇ̌
.lnŒ1 C x.t/�/0 ˇ̌

� l˛1

.1 � � � �/l

r.t/

1 C s.t/
jx.t � �/j ; for t � t2 C �: (5.88)

This yields

j� ln.1 C x.t � �//j

� l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du; for t 2 Œt�

n � �; t�
n �:

Consequently,

jx.t � �/j � exp

 
l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du

!
� 1;

since jln.1 C z/j � a implies jzj � ea � 1. Thus for t 2 Œt�
n � �; t�

n �

ˇ̌
.lnŒ1 C x.t/�/0 ˇ̌

� l˛1

.1 � � � �/l

r.t/

1 C s.t/

�
"

exp

 
l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du

!
� 1

#
;

which implies for t 2 Œt�
n � �; t�

n � that
ˇ̌
.lnŒ1 C x.t/�/0 ˇ̌ � min fC1; C2g ; (5.89)

where

C1 W D l.� C �/˛1

.1 � � � �/l

r.t/

1 C s.t/
;

C2 W D l˛1

.1 � � � �/l

r.t/

1 C s.t/

"
exp

 
l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du

!
� 1

#
:

There are three cases to consider:

Case I.

l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt � 1:
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Then

jln.1 C x.t�
n //j

� l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/

�
"

exp

 
l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du

!
� 1

#
dt

� l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/

�
"

exp

 
.� C �/

 
˛� � l˛1

.1 � � � �/l

Z t

t�

n ��

r.u/

1 C s.u/
du

!!
� 1

#
dt

D �1

� C �

Z t�

n

t�

n ��

d

"
exp

 
� l˛1.� C �/

.1 � � � �/l

Z t

t�

n ��

r.u/

1 C s.u/
du

!
� 1

#
e.�C�/˛�

� l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt

D 1

� C �
e.�C�/˛�

"
1 � exp

 
� l˛1.� C �/

.1 � � � �/l

Z t

t�

n ��

r.u/

1 C s.u/
du

!#

� l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt

� 1

� C �
e.�C�/˛�

.1 � e.�C�// � 1;

since the function

z ! 1

� C �
e.�C�/˛�

Œ1 � e.�C�/z� � z

is increasing for 0 � z � ˛� and

l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.u/

1 C s.u/
du � 1 � ˛�:

Thus,

jx.t�
n /j � exp

�
1

� C �
e.�C�/˛�

.1 � e.�C�// � 1

�
� 1:
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Case II.

1 <
l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt � ˛� � ln.1 C � C �/

� C �
:

Then

jln.1 C x.t�
n //j � l.� C �/˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt

� ˛�.� C �/ � ln.1 C � C �/

or

jx.t�
n /j � 1

1 C � C �
e.�C�/˛� � 1:

Case III.

˛� � ln.1 C � C �/

� C �
<

l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.t/

1 C s.t/
dt � ˛�:

Choose h 2 .0; �/ such that

l˛1

.1 � � � �/l

Z t�

n �h

t�

n ��

r.t/

1 C s.t/
dt D ˛� � ln.1 C � C �/

� C �
:

Then by (5.89)

jln.1 C x.t�
n //j

�
Z t�

n �h

t�

n ��

r.t/

1 C s.t/
dt

l.� C �/˛1

.1 � � � �/l

C l˛1

.1 � � � �/l

Z t�

n

t�

n �h

r.t/

1 C s.t/

�
"

exp

 
l.� C �/˛1

.1 � � � �/l

Z t�

n ��

t��

r.u/

1 C s.u/
du

!
� 1

#
dt

� .� C �/

�
˛� � ln.1 C � C �/

� C �

�

Ce.�C�/˛�

Z t�

n

t�

n �h

r.t/

1 C s.t/
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� exp

 
� l.� C �/˛1

.1 � � � �/l

Z t

t�

n ��

r.u/

1 C s.u/
du

!
dt

� l˛1

.1 � � � �/l

Z t�

n

t�

n �h

r.t/

1 C s.t/
dt

D .� C �/

�
˛� � ln.1 C � C �/

� C �

�

Ce.�C�/˛�

.� C �/
exp

 
� l˛1.� C �/

.1 � � � �/l

Z t�

n �h

t�

n ��

r.u/

1 C s.u/
du

!

�e.�C�/˛�

.� C �/
exp

 
� l˛1.� C �/

.1 � � � �/l

Z t�

n

t�

n ��

r.u/

1 C s.u/
du

!

� l˛1

.1 � � � �/l

Z t�

n

t�

n �h

r.t/

1 C s.t/
dt

D .� C �/

�
˛� � ln.1 C � C �/

� C �

�

C 1

.� C �/
exp

 
.� C �/

 
˛� � l˛1

.1 � � � �/l

Z t�

n �h

t�

n ��

r.u/

1 C s.u/
du

!!

� 1

.� C �/
exp

 
.� C �/

 
˛� � l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.u/

1 C s.u/
du

!!

� l˛1

.1 � � � �/l

Z t�

n

t�

n �h

r.t/

1 C s.t/
dt; since ex � 1 C x for all x;

� .� C �/

�
˛� � ln.1 C � C �/

� C �

�
C 1 C � C � � 1

.� C �/

�.� C �/

 
˛� � l˛1

.1 � � � �/l

Z t�

n

t�

n ��

r.u/

1 C s.u/
du

!

� l˛1

.1 � � � �/l

Z t�

n

t�

n �h

r.t/

1 C s.t/
dt
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D .� C �/

�
˛� � ln.1 C � C �/

� C �

�

C1 � ˛� C l˛1

.1 � � � �/l

Z t�

n �h

t�

n ��

r.t/

1 C s.t/
dt

D .� C �/

�
˛� � ln.1 C � C �/

� C �

�

C1 � ˛� C ˛� � ln.1 C � C �/

� C �

D 1 C ˛�.� C �/ � .1 C � C �/ ln.1 C � C �/

� C �

and so

jx.t�
n //j � exp

�
1 C ˛�.� C �/ � .1 C � C �/ ln.1 C � C �/

� C �

�
� 1:

Combining all the three cases, we have

jx.t�
n //j � maxfA; B , C g; (5.90)

where

A D exp

�
1

� C �
e.�C�/˛�

.1 � e.�C�// � 1

�
� 1;

B D 1

1 C � C �
e.�C�/˛� � 1,

C D exp

�
1 C ˛�.� C �/ � .1 C � C �/ ln.1 C � C �/

� C �

�
� 1:

Since

lim
z!0

1

z

�
exp

�
1

z
e˛�z.1 � ez/ � 1

�
� 1

�
D ˛� � 1

2
< 1;

lim
z!0

1

z

�
1

z C 1
e˛�z � 1

�
D ˛� � 1 < 1;

and

lim
z!0

1

z

�
exp

�
1 C ˛�z � .1 C z/ ln.1 C z/

z

�
� 1

�
D ˛� � 1

2
< 1
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it follows that there exists ˛0 < 1 such that, for sufficiently small " > 0, we have

exp

�
1

z
e˛�z.1 � e�z/ � 1

�
� 1 < ˛0z;

1

z C 1
e˛�z � 1 < ˛0z;

and

exp

�
1 C ˛�z � .1 C z/ ln.1 C z/

z

�
� 1 < ˛0z; for all 0 < z < ":

Thus by (5.90), we get

jx.t�
n //j < ˛0.� C �/:

Letting n ! 1 and � ! 0, we have

� � ˛0�;

which, together with ˛0 < 1, implies � D 0. The proof is now complete. �

5.5 Models with Periodic Coefficients

The variation of the environment plays an important role in many biological and
ecological dynamical systems. The assumption of periodicity of the parameters in
the system (in a way) incorporates the periodicity of the environment. It is realistic
to assume that the parameters in the models are periodic functions of period !. We
consider the nonautonomous “food-limited” population model

dN.t/

dt
D r.t/N.t/

K.t/ � N.t � m!/

K.t/ C c.t/r.t/N.t � m!/
: (5.91)

In this section we discuss (5.91) when K is a periodic function. The results in this
section are adapted from [28]. We first consider the nondelay case.

Theorem 5.5.1. Suppose r; c, and K are continuous and positive periodic function
of period !. Then there exists a unique !-periodic solution N �.t/ of the periodic
differential equation

dN.t/

dt
D r.t/N.t/

K.t/ � N.t/

K.t/ C c.t/r.t/N.t/
; (5.92)

such that all other positive solutions of (5.92) satisfy

lim
n!1ŒN.t/ � N �.t/� D 0: (5.93)
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Proof. Let N.t; 0; N0/ denote the unique solution of (5.92) through the initial point
.0; N0/. Let

K� D min
0�t�!

K.t/ and K� D max
0�t�!

K.t/:

Then it follows from (5.92) that

N0 2 ŒK�; K�� ) N.t; 0; N0/ 2 ŒK�; K��; for t � 0

and in particular

N! � N.!; 0; N0/ 2 ŒK�; K��:

Define the function

f W ŒK�; K�� ! ŒK�; K��

by

f .N0/ D N!:

As N.t I 0; N0/ depends continuously on N0, it follows that f is a continuous
function mapping ŒK�; K�� into itself. Therefore f has a fixed point N �

0 . In view
of the !-periodic of r; c, and K, it follows that the unique solution N �.t/ �
N.t; 0; N �

0 / of (5.92) through the initial point .0; N �
0 / is positive and !-periodic.

This completes the proof of the existence of a positive and !-periodic solution
N �.t/ of (5.92).

Let N.t/ be an arbitrary positive solution of (5.92). We let

N.t/ D N �.t/ex.t/ (5.94)

and note

dx.t/

dt
D F.N �.t/ex.t// � F.N �.t//; (5.95)

where

F.u/ D r.t/
K.t/ � u

K.t/ C c.t/r.t/u
:

By the mean-value theorem of differential calculus, we can rewrite (5.95) in the
form

dx.t/

dt
D �A.t/Œex.t/ � 1�; (5.96)

where

A.t/ D 1 C r.t/c.t/

ŒK.t/ C r.t/c.t/
.t/�2
r.t/N �.t/K.t/; (5.97)
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and 
.t/ lies between N �.t/ and N �.t/ex.t/. Define a Lyapunov function V

for (5.96) in the form

V.t/ D V.x.t// D Œex.t/ � 1�2:

Calculating the rate of change of V along the solutions of (5.96) we obtain for
x.t/ ¤ 0 that

dV.t/

dt
D �2A.t/Œex.t/ � 1�2ex.t/ < 0: (5.98)

One can easily see that every positive solution of this equation is bounded. Therefore
x.t/ is also bounded. As r; K, and N � are positive functions and 
.t/ lies between
N �.t/ and N �.t/ex.t/, it follows from (5.97) that there exists a positive number �

such that

A.t/ � �; for t � 0:

Thus from (5.98) we have

dV.t/

dt
� �2�ex.t/Œex.t/ � 1�2;

so

V.t/ C 2�

Z t

0

ex.s/Œex.s/ � 1�2ds � V.0/ < 1:

Hence

ex.t/Œex.t/ � 1�2 2 L1.0; 1/:

Since x.t/ and
:
x.t/ are bounded in Œ0; 1/, it follows from Barbalats’ Theorem (see

Sect. 1.4) that

ex.t/Œex.t/ � 1�2 ! 0 as t ! 1:

Thus x.t/ ! 0 as t ! 1 and the result follows from (5.94). This completes the
proof. �

Now we consider the periodic delay differential equation (5.91), namely

N 0.t/ D r.t/N.t/
K.t/ � N.t � m!/

K.t/ C c.t/r.t/N.t � m!/
; (5.99)

together with the initial condition
�

N.t/ D '.t/; for � m! � t � 0;

' 2 C ŒŒ�m!; 0�; RC�; and '.0/ > 0:
(5.100)

Note the unique positive periodic solution N �.t/ of (5.92) is also a periodic solution
of (5.99).
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For convenience, we introduce the notations

r� D maxfr.t/ W t 2 Œ0; !�g; r� D minfr.t/ W t 2 Œ0; !�g;

K� D maxfK.t/ W t 2 Œ0; !�g; K� D minfK.t/ W t 2 Œ0; !�g;

N u D K� expŒK�.
r

K
/avm!�; where .

r

K
/av D 1

m!

Z m!

0

r.s/

K.s/
ds; (5.101)

Nl D K� expŒ
K� � N u

K�
ravm!�; where rav D 1

m!

Z m!

0

r.s/ds: (5.102)

Theorem 5.5.2. If N.t/ is a solution of the initial value problems (5.99) and (5.100)
then there exists a number T D T .'/ such that

Nl � N.t/ � N u; for t � T: (5.103)

Proof. We note that any solution of (5.99) satisfies the differential inequality

N 0.t/ � r.t/N.t/ŒK� � N.t � m!/�

K.t/ C c.t/r.t/N.t � m!/
: (5.104)

Solutions of (5.104) can be either oscillatory or nonoscillatory about K�.
First, suppose that N.t/ is oscillatory about K�. Then there exists a sequence

ftng; tn ! 1 as n ! 1 of zeros of N.t/ � K� such that N.t/ � K� takes both
positive and negative values on .tn; tnC1/ for n D 1; 2; : : :. Let N.t�

n / denote a local
maximum of N.t/ on .tn; tnC1/. Then from (5.104), we obtain

0 D N 0.t�
n / � r.t�

n /N.t�
n /ŒK� � N.t�

n � m!/�

K.t�
n / C c.t�

n /r.t�
n /N.t�

n � m!/
;

which implies that

N.t�
n � m!/ � K�:

This shows that there exists a point 
 2 Œt�
n � m!; t�

n � such that N.
/ D K�.
Integrating (5.104) over Œ
; t�

n � we obtain

ln
N.t�

n /

N.
/
�
Z t�

n




K� r.s/

K.s/
ds � K�

Z t�

n

t�

n �m!

r.s/

K.s/
ds

and

N.t�
n / � K� expŒK�.r=K/avm!�: (5.105)
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Since the right side of (5.105) is independent of tn, we conclude that

N.t/ � K� expŒK�.r=K/avm!� D N u; for t > t1 C 2m!: (5.106)

Next assume that N.t/ is non oscillatory about K�. Then it is easily seen that for
every " > 0 there exists a T1 D T1."/ such that

N.t/ < K� C "; for t > T1:

This and (5.106) imply that there exists a T D T .'/ such that

N.t/ � N u for t > T:

In a similar way we can derive a lower bound for positive solutions of (5.99). In fact
from (5.99) we find

N 0.t/ � r.t/N.t/
K� � N.t � m!/

K.t/ C c.t/r.t/N.t � m!/
: (5.107)

Let N.t/ be an oscillatory solution about K� and let fsng ! 1 as n ! 1 be such
that

N.sn/ � K� D 0; for n D 1; 2; : : : ,

and N.t/ � K� takes both positive and negative values on .tn; tnC1/. Let s�
n be such

that N.s�
n / is a local minimum of N.t/. Then from (5.107), we obtain

0 D N 0.s�
n / � r.s�

n /N.s�
n /

K� � N.s�
n � m!/

K.s�
n / C c.s�

n /r.s�
n /N.s�

n � m!/
;

which implies that

N.s�
n � m!/ � K�:

This show that there exists a point � 2 Œs�
n � m!; s�

n � such that N.�/ D K�.
Integrating (5.107) over Œ�; s�

n � we find

ln
N.s�

n /

K�
�
Z s�

n

�

r.s/.K� � N u/

K�
ds

D K� � N u

K�

Z s�

n

�

r.s/ � K� � N u

K�

Z s�

n

s�

n �m!

r.s/ds

and

N.s�
n / � K� exp

 
K� � N u

K�

Z s�

n

s�

n �m!

r.s/ds

!
D Nl:
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Hence

N.s/ � Nl; for t � t1 C 2m!: (5.108)

Next, assume that N.t/ is nonoscillatory about K�. One can easily show in this case
that for every positive " there exists a T2 D T2."/ such that

N.t/ > K� � "; for t > T2:

This and (5.108) imply that there exists a T2 D T2.'/ such that

N.t/ � Nl � "; for t � T2:

The proof is complete. �

We will derive sufficient conditions for the global attractivity of N �.t/ with
respect to all other positive solutions of (5.99) and (5.100). As before we set

N.t/ � N �.t/ex.t/; (5.109)

in (5.99) and note that

x0.t/ D G.x.t � m!// � G.0/; (5.110)

where

G.u/ D r.t/
K.t/ � N �.t/eu

K.t/ C c.t/r.t/N �.t/eu
: (5.111)

We can rewrite (5.110) in the form

x0.t/ D �B.t/ x.t � m!/; (5.112)

where

B.t/ D K.t/r.t/Œ1 C r.t/c.t/�	.t/

ŒK.t/ C c.t/r.t/	.t/�2
(5.113)

and 	.t/ lies between N �.t/ and N.t � m!/. Clearly

Bl D K�r�.1 C r�c�/Nl

.K� C c�r�N u/2
� B.t/ � K�r�.1 C r�c�/N u

.K� C c�r�Nl/2
D Bu: (5.114)

Theorem 5.5.3. Assume that the positive periodic functions r.t/; K.t/, and c.t/

satisfy the condition

� � K� exp

�
K� � r

K

�
av

m!

	 Z m!

0

Œ1 C r.s/c.s/�
r.s/

K.s/
ds < 1: (5.115)



5.5 Models with Periodic Coefficients 255

Then every solution of (5.99) and (5.100) satisfies

lim
t!1ŒN.t/ � N �.t/� D 0: (5.116)

Proof. It suffices to prove that every solution x of (5.112) and (5.113) satisfies

lim
t!1x.t/ D 0: (5.117)

Consider V.t/ D V.x.t// given by

V.t/ D
�
x.t/ �

Z t

t�m!

B.s C m!/x.s/ds

	2

C
Z t

t�m!

B.s C 2m!/

�Z t

s

B.u C m!/x2.t/du

�
ds; (5.118)

which in view of (5.112) yields

dV.t/

dt
D 2

�
x.t/ �

Z t

t�m!

B.s C m!/x.s/ ds

	
Œ�B.t C m!/x.t/�

CB.t C m!/x2.t/

Z t

t�m!

B.s C 2m!/ds

�B.t C m!/

Z t

t�m!

B.u C m!/x2.u/du: (5.119)

Using the inequality

2x.t/x.s/ � x2.t/ C x2.s/;

and simplifying (5.119) we obtain

dV.t/

dt
� �B.t C m!/x2.t/

�
�
2 �

Z t

t�m!

B.s C m!/ds �
Z t

t�m!

B.s C m!/ds

	

� �B.t C m!/x2.t/.1 � �/: (5.120)

It follows from (5.115) that V is eventually nonincreasing say for t � T . Clearly
all solutions of (5.99) are bounded and so by (5.109) and (5.110), x is uniformly
continuous on Œ0; 1/. Integrating (5.120) over ŒT; t � and taking into account the
inequality (5.115), we get

V.t/ C 2Bl.1 � �/

Z t

T

x2.s/ds � V.T / < 1:
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Hence x2 2 L1.T; 1/ and by Barbalat’s Theorem (see Sect. 1.4)

lim
t!1x2.t/ D 0:

The proof is complete. �

5.6 Global Stability of Models with Impulses

In this section, we are concerned with the global stability of “food-limited”
population models with impulsive effects. We consider the model

8<
:

N 0.t/ D p.t/N.t/
1 � N.t � �/

1 C N.t � �/
; t � 0; t ¤ tk;

N.tC
k / D N.tk/1Cbk ; k 2 N;

(5.121)

where p 2 C Œ0; 1/ with p > 0,  2 .0; 1/, � > 0, bk > �1 for all k 2 N: The
aim in this section is to establish some sufficient conditions which ensure that every
solution of (5.121) tends to 1 as t ! 1. The results in this section are adapted from
[41]. Let the sequence tk.k 2 N/ be fixed and satisfy the condition,

0 < t1 < t2 < : : : < tkC1 ! 1; as k ! 1:

We only consider solutions of (5.121) with initial conditions of the form
�

N.t/ D �.t/; for � � � t � 0;

� 2 C.Œ��; 0�; Œ0; 1//; and �.0/ > 0:
(5.122)

Lemma 5.6.1. Suppose that any � > 0 there exists an integer N such that

nCmY
kDn

.1 C bk/ < 1 C �; for n > N and m � 0: (5.123)

If in addition

C1Z
0

p.s/
Y

0�tk<s

.1 C bk/�1ds D 1; (5.124)

then every non-oscillatory solution of
8<
:x0.t/ D p.t/

1 � ex.t��/

1 C ex.t��/
; t ¤ tk;

x.tC
k / D .1 C bk/x.tk/; k 2 N

(5.125)

tends to zero as t tends to infinity.
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Proof. Without loss of generality, suppose that x.t/ is an eventually positive
solution of (5.125). Then there is a T1 � 0 such that x.t ��/ > 0 for t � T1; t ¤ tk .
Thus (5.125) implies that x.t/ is decreasing in .tk; tkC1� with tk � T1. Let

lim inf
t!C1 x.t/ D ˛:

Then ˛ � 0. First we prove ˛ D 0. Since x.tk/ is a left locally minimum value of
x.t/, there is a subsequence fx.tkj /g such that

lim
j !C1 x.tkj / D ˛:

If ˛ ¤ 0; then ˛ > 0. Choose � > 0 such that ˛ � � > 0. Again there is a
T > T1; T ¤ tk such that x.t � �/ > ˛ � �; for t � T . Hence (5.125) implies

x0.t/ � p.t/
1 � e˛��

1 C e˛��
; t � T; t ¤ tk:

Integrating the above inequality from T to tkj ; we get

Y
T �tk<tkj

.1 C bk/�1x.tkj / � x.T /

� 1 � e˛��

1 C e˛��

tkjZ
T

p.s/
Y

T �tk<s

.1 C bk/�1ds:

Let either

lim sup
j !C1

Y
T �tk<tkj

.1 C bk/ D 0 or lim sup
j !C1

Y
T �tk<tkj

.1 C bk/ ¤ 0;

and it follows that 1 � �1 or �x.T / � �1; a contradiction. Then ˛ D 0.
Now for any t � T; there is a tkj such that tkj � t < tkj C1

. Suppose that
tkj < tkj C1 < : : : < tkj Cl � t . Then

0 < x.t/ < x.tC
kj Cl / D .1 C bkj Cl /x.tkj Cl /

� .1 C bkj Cl /x.tC
kj Cl�1/

D .1 C bkj Cl /.1 C bkj Cl�1/x.tkj Cl�1/

� : : : �
lY

sD0

.1 C bkj Cs/x.tkj /:
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From (5.123), there is a constant A > 0 such that
lY

sD0

.1 C bkj Cs/ � A for any

l and any kj . Thus 0 < x.t/ � Ax.tkj /. Then limt!C1 x.t/ D 0. The proof is
complete. �

Lemma 5.6.2. Suppose that (5.123), (5.124) hold and there is a constant M > 0

such that

tZ
t��

p.s/
Y

s�tk<t

.1 C bk/ds � M; t � 0: (5.126)

Then every oscillatory solution of (5.125) is bounded.

Proof. Let x.t/ be oscillatory solution of (5.125). Equation (5.125) implies

x0.t/ � p.t/; t � 0; t ¤ tk: (5.127)

Choose a sequence fcng such that

x.cn/ D 0; where 0 < c1 < c2 < : : : ; with lim
n!C1 cn D C1;

x.t/ � 0; for t 2 Œc2i�1; c2i �; and x.t/ � 0; for t 2 Œc2i ; c2iC1�:

Let

Oxi D sup
t2Œc2i�1;c2i �

x.t/ and Qxi D inf
t2Œc2i ;c2iC1�

x.t/:

It suffices to prove that f Oxi g and f Qxi g are bounded. First, we prove that f Oxi g is
bounded above. In this step, there are two cases to consider.

Case 1. Oxi is the maximum value of x.t/ in Œc2i�1; c2i �.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0.
Equation (5.125) implies x.t � �/ � 0. Then there is a 
 2 .c � �; c/ such that
x.
/ D 0. Integrating (5.127) from 
 to c, we get

Oxi D x.c/ �
cZ



p.t/
Y

t�tk<c

.1 C bk/dt � M:

Case 2. Oxi is not the maximum value of x.t/ in Œc2i�1; c2i �.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tC
kCl /. We suppose

that

c2i�1 < tkC1 < : : : < tkCl :

There are two cases to consider.
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Subcase 2.1: x.tC
kCj �1/ � x.tkCj /, j D 2; : : : ; l

Then x.t/ has maximum x.c/ in Œc2i�1; tkC1�. By Case 1 we have x.c/ � M .
Hence

Oxi D x.tC
kCl / D .1 C bkCl /x.tkCl / : : : : �

lY
sD1

.1 C bkCs/x.tkC1/

� M

lY
sD1

.1 C bkCs/:

Subcase 2.2: There is an integer j ? 2 f2; : : : ; lg with x.tC
kCj ?�1/ < x.ttCj ?/ and

x.tC
kCj �1/ � x.tkCj /, j D j ? C 1; : : : ; l .

Then x.t/ has maximum x.c/ in ŒtkCj ?�1; tkCj ? �. By Case 1 we have x.c/ � M .
Hence

Oxi D x.tC
kCl / D .1 C bkCl /x.tkCl / � : : : �

lY
sDj ?

.1 C bkCs/x.tkCj ?/

� M

lY
sDj ?

.1 C bkCs/:

From condition (5.123), from Cases 1 and 2, one gets that there is a constant A > 0

such that

Oxi D x.tkCl / � M or Oxi D x.tkCl / � AM: (5.128)

Next, we prove that f Qxi g is bounded below. From (5.128), there is a constant B > 0

such that x.t/ � B , for all t � 0. Equation (5.125) implies

x0.t/ � 1 � eB

1 C eB
p.t/; t � 0; t ¤ tk: (5.129)

Using a method similar to that in Cases 1 and 2, we get

Qxi � 1 � eB

1 C eB
M

or

Qxi � 1 � eB

1 C eB
AM:

This shows that f Qxi g is bounded below. The proof is complete. �
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The following result is well known.

Lemma 5.6.3. The system of inequalities

v � .1 C /
1 � eu

1 C eu
and u � .1 C /

1 � ev

1 C ev

has only a unique solution u D v D 0 in the region �1 < u � 0 � v < C1.

Lemma 5.6.4. Suppose that  2 .0; 1� and (5.123), (5.124) hold. If

lim sup
t!C1

tZ
t��

p.s/
Y

s�tk<t

.1 C bk/ds � 1 C ; (5.130)

then every oscillatory solution of (5.125) tends to zero as t tends to infinity.

Proof. Let x.t/ be an oscillatory solution of (5.125). By Lemma 5.6.2, x.t/ is
bounded. Let

lim inf
t!C1 x.t/ D u and lim sup

t!C1
x.t/ D v:

Then

�1 < u � 0 � v < C1:

For any � > 0; (5.123) implies that there is a N > 0 such that

nCmY
kDn

.1 C bk/ < 1 C �; for n � N and m � 0:

In addition, for this � there is a T > tN such that

tZ
t��

p.s/
Y

s�tk<t

.1 C bk/ds < .1 C /.1 C �/; for all t � T;

and

u1 � u � � < u.t � �/ < v C � � v1:

Then (5.125) implies

x0.t/ � p.t/
1 � eu1

1 C eu1
; t � T; t ¤ tk; (5.131)

and

x0.t/ � p.t/
1 � ev1

1 C ev1
; t � T; t ¤ tk:
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Choose a sequence fcng such that x.cn/ D 0; T < c1 < c2 < : : : ; cn !
C1; x.t/ � 0; for t 2 .c2i�1; c2i / and x.t/ � 0 for t 2 .c2i ; c2iC1/. Let

Oxi D sup
t2.c2i�1;c2i /

x.t/; Qxi D inf
t2.c2i ;c2iC1/

x.t/:

Then

lim
i!1 sup Oxi D v; lim

i!1 inf Qxi D u:

We divide the proof into two steps.

Case 1. Oxi is the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0, and
x.t � �/ � 0. Then there is a 
 2 .c � �; c/ such that x.
/ D 0. Integrating (5.131)
from 
 to c, we get

Oxi D x.c/ � 1 � eu1

1 C eu1

cZ



p.s/
Y

s�tk<c

.1 C bk/ds

� .1 C /.1 C �/
1 � eu1

1 C eu1
:

Case 2. Oxi is not the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tC
kCl /. Suppose

c2i�1 < tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl /

such that x.c/ is a left locally maximum value of x.t/, and we have that there is a
j 2 f1; 2; : : : ; lg such that

Oxi �
lY

sDj

.1 C bkCs/x.c/ �
lY

sDj

.1 C bkCs/.1 C �/.1 C /
1 � eu1

1 C eu1
:

Then by (5.123), we get

Oxi � .1 C �/2.1 C /
1 � eu1

1 C eu1
:

Let i ! C1; � ! 0, and we get

v � .1 C /
1 � eu

1 C eu
: (5.132)

Similarly, we have

u � .1 C /
1 � ev

1 C ev
: (5.133)

From Lemma 5.6.3, we get from (5.132) and (5.133) that u D v D 0. Then
limt!C1 x.t/ D 0. This completes the proof. �
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Lemma 5.6.5. Suppose that  > 1 and (5.123), (5.124), and (5.130) hold. Then
every oscillatory solution of (5.125) tends to zero as t tends to infinity.

Proof. Since  2 .1; C1/; let M.t/ D 1

N.t/
; and (5.121) becomes

M 0.t/ D 1


p.t/M.t/

1 � M.t � �/

1 C 1

M.t � �/

: (5.134)

We note
1


2 .0; 1/. Then by Lemma 5.6.4, we get Lemma 5.6.5. The proof is

complete. �

Lemma 5.6.6. Suppose that  2 .0; 1�; and (5.123), (5.124) holds. If

lim sup
t!C1

tZ
t��

p.s/
Y

t���tk<t

.1 C bk/�1ds � 3

2
.1 C /; (5.135)

then every oscillatory solution of (5.125) tends to zero as t ! C1.

Proof. Let x.t/ be an oscillatory solution of (5.125). By Lemma 5.6.2, x.t/ is
bounded. Let

lim sup
t!C1

x.t/ D v and lim inf
t!C1 x.t/ D u:

Then

�1 < u � 0 � v < C1:

From (5.123), for any � > 0; there is a N such that

nCmY
kDn

.1 C bk/ < 1 C �; n � N; m � 0:

Again for this � > 0, there is a T � tN such that
8̂̂
<̂
ˆ̂̂:

tZ
t��

p.s/Y
t���tk<s

.1Cbk/

ds � 3
2
.1 C /.1 C �/ WD ı.1 C �/; t � T;

u1 � u � � < x.t � �/ < v C � � v1; t � T:

(5.136)

Then (5.125) implies

x0.t/ � 1 � eu1

1 C eu1
p.t/; t � T; t ¤ tk: (5.137)
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Choose a sequence fcng such that x.cn/ D 0; T < c1 < c2 < : : : ; cn ! C1; n !
C1; x.t/ � 0 for t 2 .c2i�1; c2i / and x.t/ � 0 for t 2 .c2i ; c2iC1/. Let

Oxi D sup
t2.c2i�1;c2i /

x.t/; Qxi D inf
t2.c2i ;c2iC1/

x.t/:

Then

lim
i!1 sup Oxi D v; lim

i!1 inf Qxi D u:

We first prove

Oxi � .1 C /

�
A � 1 � 

6
A2

�
.1 C �/ (5.138)

or

Oxi � .1 C /.1 C �/2

�
A � 1 � 

6
A2

�
; where A D 1 � eu1

1 C eu1
: (5.139)

There are two cases to be considered.

Case 1. Oxi is the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0.
By (5.125) we have x.t � �/ � 0. Then there is a 
 2 .c � �; c/ such that x.
/ D 0.
If t 2 Œ
; c�; then t � � � 
 . Integrating (5.137) from t � � to 
 , one gets

�
Y

t���tk<


.1 C bk/x.t � �/ � A


Z
t��

p.s/
Y

s�tk<


.1 C bk/ds: (5.140)

Equation (5.125) implies for t � 0 that

x0.t/ � p.t/

1 � exp.�A


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

1 C  exp.�A


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

: (5.141)

Integrating (5.141) from 
 to c and noting that
1 � ex

1 C ex
is decreasing, we get
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x.c/ �
cZ



p.t/

1 � exp.�A


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

1 C  exp.�A


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

Y
t�tk<c

.1 C bk/dt

�
cZ



p.t/
Y

t�tk<c

.1 C bk/

�
1 � e�Aı exp.A

tZ



p.s/
Y

t���tk<s

.1 C bk/�1ds/

1 C e�Aı exp.A

tZ



p.s/
Y

t���tk<s

.1 C bk/�1ds/

dt

�
cZ



p.t/

1 � e�Aı exp.A

tZ



p.s/
Y

s�tk<c

.1 C bk/ds
Y

t���tk<c

.1 C bk/�1/

1 C e�Aı exp.A

tZ



p.s/
Y

s�tk<c

.1 C bk/ds
Y

t���tk<c

.1 C bk/�1/

�
Y

t�tk<c

.1 C bk/dt

�
cZ



p.t/
Y

t�tk<c

.1 C bk/

1 � e�Aı exp.A.1 C �/�1

tZ



p.s/
Y

s�tk<c

.1 C bk/ds/

1 C e�Aı exp.A.1 C �/�1

tZ



p.s/
Y

s�tk<c

.1 C bk/ds/

dt

D
cZ



p.t/
Y

t�tk<c

.1 C bk/dt � 1 C 

A.1 C �/�1

� ln

1 C e�Aı exp.A.1 C �/�1

cZ



p.s/
Y

s�tk<c

.1 C bk/ds/

1 C e�Aı
dt:
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Subcase 1.1:

cZ



p.t/
Y

t�tk<c

.1 C bk/dt � � 1

A
ln

.1 C /e�A.1� 
A /


.1 C �/

� ˛.1 C �/ � ı.1 C �/:

By the monotone property of the function

x � .1 C /

A.1 C �/�1
ln
�
1 C e�AıCAx.1C�/�1

�
;

and using e�A˛ D .1 C /e�A.1� A
2 / � 1, we get that

x.c/ � .1 C �/

�
˛ � 1 C 

A
ln

1 C e�AıCA˛

1 C e�Aı

�

D .1 C �/.˛ C 1 C 

A
ln

1 C ..1 C /e�A.1� A
2 / � 1/e�AıCA˛

1 C e�AıCA˛
/:

Then Lemma 5.3.3 gives us that

Oxi D x.c/ � .1 C �/

�
˛ C 1 C 

A
.�A.1 � A

2
/ C A2

1 C 
.ı � ˛//

	

D .1 C �/

�
˛ � .1 C /.1 � A

2
/ C Aı � A˛

	

D �.1 C �/.1 C /

�
1 � A

2
� 3

2
A

	

�.1 C �/
1 � A

A
ln

.1 C /e�A.1� A
2 / � 1



D .1 C �/

�
�.1 C /

�
1 � 3 C 

2
A

�
� 1 � A

A
ln .1C/e

�A.1�

A
2 /�1



	
:

Then from Lemma 5.3.1

x.c/ � �.1 C /.1 C �/

�
1 � 3 C 

2
A

�

C.1 C �/
1 C 

A
A

�
1 � 1 C 

2
A � 1 � 

6
A2

�

D .1 C �/.1 C /

�
A � 1 � 

6
A2

�
;
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i.e.,

x.c/ � .1 C �/.1 C /

�
A � 1 � 

6
A2

�
: (5.142)

Subcase 1.2:

cZ



p.t/
Y

t�tk<c

.1 C bk/dt � ı.1 C �/ < ˛.1 C �/:

In this case ˛ > 3
2
.1 C /, i.e.,

� 1

A
ln

.1 C /e�A.1� 
A / � 1


>

3

2
.1 C /:

From Lemma 5.3.4 we have that

A >

 
1 � 

2
C
r

2.1 � /

3
C 2

4

!�1

:

Integrating (5.141) from 
 to c, we get

Oxi D x.c/ � ı.1 C �/ � 1 C 

A.1 C �/�1

� ln
1 C e�Aı exp.A.1 C �/�1ı.1 C �//

1 C e�Aı

D .1 C �/

�
ı � 1 C 

A
ln

1 C 

1 C e�Aı

�

D .1 C �/

�
ı C 1 C 

A

�
ln

 C eAı

1 C 
� Aı

��
:

By a method similar to that in Lemmas 5.3.5 and 5.3.6, we get

Oxi D x.c/ � .1 C �/.1 C /

�A Œ 1 � 1 � 

6
A C 1

8
.1 � 19.1 � /

6
A C 27.1 � 4 C 2/

16
A2

� 81.1 � 11 C 112 � 3/

160
A3 C 81.1 C 142 C 4/

640
A4 / �;

i.e.,

x.c/ � .1 C �/.1 C /

�
A � 1 � 

6
A2

�
: (5.143)
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Subcase 1.3:

ı.1 C �/ �
cZ



p.t/
Y

t�tk<c

.1 C bk/dt > ˛.1 C �/:

Choose � 2 .
; c/ such that

cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt D ˛.1 C �/:

Integrating (5.137) from 
 to �, one gets

x � A

�Z



p.t/
Y

t�tk<�

.1 C bk/dt:

Integrating (5.137) from � to c, we get

x.c/ � x.�/
Y

��tk<c

.1 C bk/

�
cZ
�

p.t/
Y

t�tk<c

.1 C bk/

1�exp

0
BB@�A


Z
t��

p.s/

Y
t���tk <s

.1Cbk/�1ds

1
CCA

1C exp

0
BB@�A


Z
t��

p.s/

Y
t���tk<s

.1Cbk/�1ds

1
CCA

dt:

By deleting x.�/ and noting

e�A˛ D .1 C /e�A.1� A
2 / � 1


;

we have

Oxi D x.c/

� A

�Z



p.t/
Y

t�tk<�

.1 C bk/dt C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/

�
1 C e�Aı exp.A.1 C �/�1

cZ



p.s/
Y

s�tk<c

.1 C bk/ds/

1 C e�Aı exp.A.1 C �/�1

�Z



p.s/
Y

s�tk<c

.1 C bk/ds/

dt
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D A

�Z



p.t/
Y

t�tk<c

.1 C bk/dt C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt

� 1 C 

A.1 C �/�1
ln

1 C e�Aı exp.A.1 C �/�1

cZ



p.s/
Y

s�tk<c

.1 C bk/ds/

1 C e�Aı exp.A.1 C �/�1

�Z



p.s/
Y

s�tk<c

.1 C bk/ds/

:

Using the monotone property of the function

Ax � .1 C /

A.1 C �/�1
ln

1 C e�AıCAx.1C�/�1

1 C e�Aı�A˛CAx.1C�/�1
; on Œ0; ı.1 C �/�

and by Lemma 5.3.1, it follows that

Oxi D x.c/

� .1 C �/

�
Aı C .1 � A/˛ � 1 C 

A
ln

1 C 

1 C e�A˛

�

D .1 C �/

�
Aı C .1 � A/˛ � .1 C /.1 � A

2
/

�

D .1 C �/

�
�.1 C /.1�3 C 

2
A/�1 � A

A
$

�

� .1 C �/.1 C /.A � 1 � 

6
A2/;

where

$ D ln
.1 C /e�A.1� A

2 / � 1


;

i.e.,

x.c/ � .1 C �/.1 C /.A � 1 � 

6
A2/: (5.144)

Case 2. Oxi is not the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tC
kCl /. Suppose

c2i�1 < tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl /

such that x.c/ is a locally maximum value of x.t/, and there is a j 2 f1; 2; : : : ; lg
such that
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Oxi �
lY

sDj

.1 C bkCs/x.c/;

where x.c/ satisfies (5.138). Then by (5.123), we get

Oxi � .1 C �/x.c/ � .1 C �/2.1 C /.A � 1 � 

6
A2/:

Let i ! C1; � ! 0 in (5.138) and (5.139) to obtain

v � .1 C /

 
1 � eu

1 C eu
� 1 � 

6

�
1 � eu

1 C eu

�2
!

: (5.145)

Next we prove

u � .1 C /

 
1 � eu

1 C eu
� 1 � 

6

�
1 � eu

1 C eu

�2
!

: (5.146)

Let B D 1 � ev

1 C ev
. Then by (5.125), we have

x0.t/ � Bp.t/; t � T; t ¤ tk: (5.147)

There are two cases to consider.

Case 1. Qxi is the minimum value of x.t/ in .c2i ; c2iC1/.

In this case, there is a c 2 .c2i ; c2iC1/ such that x.c/ D Qxi < 0; x0.c/ � 0;

and then there is a 
 2 .c � �; c/ such that x.
/ D 0. If t 2 Œ
; c�; then t � � � 
 .
Integrating (5.137) from t � � to c, we get

�
Y

t���tk<


.1 C bk/x.t � �/ � B


Z
t��

p.s/
Y

s�tk<


.1 C bk/ds:

Then, we get for t 2 Œ
; c�; t ¤ tk , that

x0.t/ � p.t/

1 � exp.�B


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

1 C  exp.�B


Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

: (5.148)

We consider two subcases.
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Subcase 1.1:

cZ



p.t/
Y

t�tk<c

.1 C bk/dt � .1 C �/

 
ı C 1

B
ln

.1 C /e�B.1� B
2 / � 1



!
:

In this case, it is easy to see that

� .1 C /B

1 � B

�
1 � 1 C 

2
B � 1 � 

6
B2

�

> � .1 C /B

2

�
1 C 1 � 

3
B

�
:

Then by Lemma 5.3.2, we get

ln
.1 C /e�B.1� B

2 / � 1


>

1 C 

2
.B � 1 � 

3
B2/:

Integrating (5.147) from 
 to c; one gets

Qxi D x.c/ � B

cZ



p.t/
Y

t�tk<c

.1 C bk/dt

�
"

ıB C ln
.1 C /e�B.1� B

2 / � 1



#
.1 C �/

� .1 C /.1 C �/.B � 1 � 

6
B2/:

Then

x.c/ D Qxi � .1 C /.1 C �/.B � 1 � 

6
B2/: (5.149)

Subcase 1.2:

ı.1 C �/ �
cZ



p.t/
Y

t�tk<c

.1 C bk/dt

> .ı C 1

B
ln

.1 C /e�B.1� B
2 / � 1


/.1 C �/:

Choose � 2 .
; c/ such that
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cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt D
"

ı C 1

B
ln

.1 C /e�B.1� B
2 / � 1



#
.1 C �/:

Integrating (5.147) from 
 to �, integrating (5.148) from � to c, and deleting x.�/,
we get

Qxi D x.c/

� B

�Z



p.t/
Y

t�tk<�

.1 C bk/dt C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/

�
1 � exp.�B

�Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

1 C  exp.�B

�Z
t��

p.s/
Y

t���tk<s

.1 C bk/�1ds/

dt

� B

�Z



p.t/
Y

t�tk<�

.1 C bk/dt

C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt

� 1 C 

B.1 C �/�1
ln

1Ce�Bı exp

0
BB@B.1C�/�1

cZ



p.s/

Y
s�tk <c

.1Cbk/ds

1
CCA

1Ce�Bı exp

0
BB@B.1C�/�1

�Z



p.s/

Y
s�tk <c

.1Cbk/ds

1
CCA

D B

�Z



p.t/
Y

t�tk<�

.1 C bk/dt C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt

� 1 C 

B.1 C �/�1
ln

1Ce�B.1C�/�1ı exp

0
BB@B

cZ



p.s/

Y
s�tk <c

.1Cbk/ds

1
CCA

.1C/e
�B.1�

B
2 /
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D �.1 � B/

�Z



p.t/
Y

t�tk<�

.1 C bk/dt

C
cZ
�

p.t/
Y

t�tk<c

.1 C bk/dt � .1 C /.1 C �/.1�B

2
/

� .1 C /.1 C �/

B

� ln

1 C e�Bı exp.B.1 C �/�1

cZ



p.s/
Y

s�tk<c

.1 C bk/ds/

1 C 
:

Using the monotone property of the function

x � .1 C /.1 C �/

B
ln

1 C e�BıeB.1C�/�1x

1 C 
; x 2 Œ0; ı.1 C �/�;

we get

x.c/

� �.1 � B/

�Z



p.t/
Y

t�tk<c

.1 C bk/dt

Cı.1 C �/ � .1 C /.1 C �/.1 � B

2
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D .1 C �/

�
�.1 C / C .1C/.3C/

2
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B
ln .1C/e

�B.1�

B
2 /�1



	
:

By Lemma 5.3.2, we get

Qxi D x.c/ � .1 C �/.1 C /.B � 1 � 

6
B2/: (5.150)

Case 2. Qxi is not the minimum value of x.t/ in .c2i ; c2iC1/.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Qxi D x.tC
kCl /. Suppose c2i <

tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl / such
that x.c/ is a locally minimum value of x.t/, and x.c/ satisfies (5.149) [(5.150)].
Then there is a j 2 f1; 2; : : : ; lg such that

Qxi �
lY

sDj

.1 C bkCs/.1 C �/x.c/:
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By (5.123), we have

Qxi � .1 C �/x.c/ � .1 C �/2.1 C /.B � 1 � 

6
B2/: (5.151)

Let i ! C1; � ! 0 in (5.149) and (5.151) and we get (5.146). Let

1 � eu

1 C eu
D x;

1 � ev

1 C ev
D �y:

Then (5.145) and (5.146) become

8̂<
:̂

ln
1 C y

1 � y
� .1 C /.x � 1 � 

6
x2/;

ln
1 � x

1 C x
� .1 C /.�y � 1 � 

6
y2/:

(5.152)

By Lemma 5.3.7, then x D y D 0. Thus u D v D 0. Then x.t/ tends to zero as t

tends to infinity. The proof is complete. �

Lemma 5.6.7. Suppose that  2 .1; 1/ and (5.123), (5.130) holds. Then every
oscillatory solution of (5.125) tends to zero as t tends to infinity.

Theorem 5.6.1. Assume �1 < bk � 0 for every k 2 N and
P1

kD1 bk D �1. In
addition if

tZ
t��

p.s/
Y

s�tk<t

.1 C bk/ds

is bounded, then every positive solution of (5.121) tends to 1 as t tends to infinity.

Proof. It follows from �1 < bk � 0 and

tZ
t��

p.s/
Y

s�tk<t

.1 C bk/ds is bounded

that (5.123) holds. Let

y.t/ D x.t/
Y

0�tk<t

.1 C bk/�1:

An argument similar to that in the proof of Lemma 5.6.2 yields that y.t/ is bounded.

If �1 < bk � 0; then
1Y

kD1

.1 C bk/ D 0, if and only if
P1

kD1 bk D �1. Hence

x.t/ D y.t/
Y

0�tk<t

.1 C bk/;

and the conditions of this theorem imply that x.t/ tends to zero as t tends to infinity.
This completes the proof. �
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Theorem 5.6.2. Suppose (5.123), (5.124), and (5.135) hold. Then every positive
solution of (5.121) tends to 1 as t tends to infinity.

5.7 Global Stability of Generalized Models

In this section we establish some global attractivity conditions of the generalized
“food-limited” population model

N 0.t/ D r.t/N.t/

�
1 � N.t � �/

1 C .t/N.t � �/

�˛

; t � 0; (5.153)

where

r 2 C.Œ0; 1/; .0; 1//; .t/ 2 C.Œ0; 1/; Œ0; 1//; � > 0;

and ˛ is a ratio of two odd positive integers so that ˛ � 1. The results in this section
are adapted from [39]. We consider solutions of (5.153) under the initial condition

�
N.t/ D �.t/; t 2 Œ��; 0�;

� 2 C.Œ��; 0�; Œ0; 1//; �.0/ > 0:
(5.154)

Lemma 5.7.1. For any v 2 Œ0; 1/;

ln.2e�v.1�v=2/ � 1/ � �2v;

and for any u 2 Œ0; 1/,

ln.2eu.1Cu=2/ � 1/ � 2u:

Proof. Let

f .v/ D 2e�v.1�v=2/ � e�2v and g.v/ D .1 � v/ev.1Cv=2/:

It is easy to see that

g.0/ D 1; g0.v/ D �v2ev.1Cv=2/ � 0

and

f 0.v/ D 2e�2vŒ1 � g.v/� D �2e�2vg0.
/v � 0; for some 
 2 .0; v/:

It follows that f .v/ � f .0/ D 1 for v 2 Œ0; 1/. The other assertion can be similarly
proved. The proof is complete. �
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Lemma 5.7.2. Assume that v 2 .0; 1/. Then for any x 2 Œ0; 1/,

ln
1 C Œ2e�v.1�v=2/ � 1�e�vx

1 C e�vx
� �v

�
1 � v

2

�
C v2

2
x (5.155)

Proof. Set

a WD 2e�v.1�v=2/ � 1

and

f .x/ WD ln..1 C ae�vx/=.1 C e�vx//:

Note

f .0/ D �v.1 � v=2/; f 0.0/ D v

2
Œe�v.1�v=2/ � 1�;

and

f
00

.x/ D
�

a

.a C evx/2
� 1

.1 C evx/2

	
v2evx:

Since ˛ � 1, it follows that f
00

.x/ � 0 for x � 0. By the mean-value theorem and
the fact that

ex.1�x=2/ � 1 C x; for x � 0;

we have

f .x/ � f .0/ C f 0.0/x D �v.1 � v

2
/ C vx

2
Œev.1�v=2/ � 1�

� �v.1 � v

2
/ C v2x

2
:

The proof is complete. �

The following result follows the usual argument in the literature (for complete-
ness we include it here; see also Lemma 5.3.7).

Lemma 5.7.3. The system of inequalities

(
ln 1Cu

1�u � 2v;

� ln 1�v
1Cv � 2u

: (5.156)

has a unique solution .u; v/ D .0; 0/ in the region f.u; v/ W �1 < v � 0 � u < 1g.
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Proof. Set

g.x/ D exp.2.1 � x/=.1 C x//; f .x/ D x � g.g.x//

and

h.x/ D .1 C x/2Œ1 C g.x/�2 � 16g.x/g.g.x//:

Observe that h.1/ D 0,

f 0.x/ D 1 � g0.x/g0.g.x// D 1 � 16g.x/g.g.x//

.1 C x/2Œ1 C g.x/�2
;

and for x > 1

h0.x/ D 2Œ1 C g.x/�Œ.1 C x/.1 C g.x// � 4g.x/�

C 64

.1 C x/2
g.x/g.g.x//

Œ1 � g.x/�2

Œ1 C g.x/�2

> 0:

It follows that h.x/ > h.1/ D 0 for x > 1, and so f 0.x/ > 0 for x > 1. This shows
that f .x/ > f .1/ D 0 for x > 1. From (5.156), we have

g.�/ �  � 1 � � � g./;

where

 D .1 � v/=.1 C v/ and � D .1 C u/=.1 � u/:

If u > 0, then � > 1; and so

� � g./ � g.g.�// < �:

This contradiction implies that u D v D 0. The proof is complete. �

The following result follows the usual argument.

Lemma 5.7.4. Suppose that

C1Z
0

r.t/

Œ1 C .t/�˛
dt D 1: (5.157)

Then every solution of (5.153) and (5.154) that does not oscillate about 1 tends to 1
as t ! 1.
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Lemma 5.7.5. Suppose 0 < .t/ � 1 for t � 0 and

lim sup
t!C1

tZ
t��

r.s/

..s//˛
ds � 3: (5.158)

Let N.t/ D N.t I 0; �/ be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N.t/ is bounded above and is strictly bounded below by 0.

Proof. Let t0 be large enough so that

tZ
t��

r.s/

..t//˛
ds � 4; for all t � t0:

Let t� be a local maximum point of N.t/ for t � t0 C � . Then

N 0.t�/ D 0 and N.t� � �/ D 1:

Integrating (5.153) from t� � � to t� yields

N.t�/ D exp

0
@

t�Z
t���

r.s/N.s/

�
1 � N.s � �/

.s/N.s � �/

	˛

ds

1
A

� exp

0
@

t�Z
t���

r.s/ds

1
A � e4:

Consequently,

lim sup
t!1

N.t/ � e4:

Next, let t� be a local minimum point of N.t/ for t � t0 C3� . Then N 0.t�/ D 0 and
N.t� � �/ D 1. Proceeding as before and using the fact that

1 � N.t � �/

1 C .t/N.t � �/
� 1 � e4

1 C .t/e4
� 1 � e4

.t/.1 C e4/
;

for t � t0 C � , we have

N.t�/ � exp

0
@

t�Z
t
�

��

r.s/

˛.s/

�
1 � e4

.s/.1 C e4/

	˛

ds

1
A

� exp

 
4

�
1 � e4

1 C e4

	˛
!

:
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Hence

lim inf
t!1 N.t/ � exp

 
4

�
1 � e4

1 C e4

	˛
!

> 0:

The proof is complete. �

The proof of next result is similar to the proof of Lemma 5.7.5 and is thus
omitted.

Lemma 5.7.6. Assume that .t/ � 1 for t � 1 and

lim sup
t!C1

tZ
t��

r.s/ds � 3: (5.159)

Let N.t/ D N.t; 0; �/ be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N.t/ is bounded above and strictly bounded below by 0.

Theorem 5.7.1. Suppose 0 < .t/ � 1, for t � 0, and (5.157) holds. If (5.158)
holds, then every solution of (5.153) and (5.154) tends to 1 as t tends to C1.

Proof. Let

u D lim sup
t!1

N.t/ and v D lim inf
t!1 N.t/:

Then by Lemma 5.7.5, 0 < v � 1 and u � 1. It suffices to show that u D v D 1. For
any " 2 .0; v/; choose t0 D t0."/ such that

v1 � v � " < N.t � �/ < u C " � u1; t � t0 (5.160)

and

tZ
t��

r.s/

˛.t/
ds � 3 C "; t � t0 � �: (5.161)

Note that

.1 � x/

.1 C x/
� .1 � x/

..1 C x//
for x � 1

and

.1 � x/

.1 C x/
� .1 � x/

.1 C x/
for x � 1:
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Thus

N 0.t/ � r.t/N.t/

�
1 � v1

1 C .t/v1

�˛

� r.t/N.t/

�
1 � v1

.t/.1 C v1/

�˛

; t � t0;

(5.162)
and

N 0.t/ � r.t/N.t/

�
1 � u1

1 C .t/u1

�˛

� r.t/N.t/

�
1 � u1

.t/.1 C u1/

�˛

; t � t0:

(5.163)
Consequently,

N 0.t/ � r.t/

˛.t/
N.t/

1 � v1

1 C v1

; t � t0; (5.164)

and

N 0.t/ � r.t/

˛.t/
N.t/

1 � u1

1 C u1

; t � t0: (5.165)

Let R.t/ D r.t/=˛.t/. Let fpng be an increasing sequence such that pn � t0 C �

lim
n!1pn D C1; N 0.pn/ D 0 and lim

n!1 N.pn/ D u:

By (5.153), N.pn � �/ D 1. For pn � � � t � pn; by integrating (5.164) from t � �

to pn � � , we get

N.t � �/ � exp

�
� 1 � v1

1 C v1

pn��R
t��

R.s/ds

�
; .pn � �/ � t � pn:

Substituting this into (5.153), if N.t � �/ � 1; we have

N 0.t/ � R.t/N.t/

�
1 � N.t � �/

1 C N.t � �/

	˛

� R.t/N.t/
1 � N.t � �/

1 C N.t � �/

� R.t/N.t/

1 � exp

0
@� 1 � v1

1 C v1

pn��Z
t��

R.s/ds

1
A

1 C exp

0
@� 1 � v1

1 C v1

pn��Z
t��

R.s/ds

1
A

:

If N.t � �/ > 1; by (5.153), N 0.t/ < 0, and thus

N 0.t/ � R.t/N.t/

1 � exp

�
� 1 � v1

1 C v1

pn��R
t��

R.s/ds

�

1 C exp

�
� 1 � v1

1 C v1

pn��R
t��

R.s/ds

� :
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If t 2 .pn � �; pn/; we have

N 0.t/ � min

�
R.t/N.t/

1 � v1

1 C v1

; R.t/N.t/A.t/

�
; (5.166)

where

A.t/ D
1 � exp

�
� 1 � v1

1 C v1

pn��R
t��

R.s/ds

�

1 C exp

�
� 1 � v1

1 C v1

pn��R
t��

R.s/ds

� :

Since

0 < x D .1 � v1/=.1 C v1/ < 1;

it follows from Lemma 5.7.1 that

ln 2e�x.1�x=2/�1 � �2x;

and so

0 < � 1

x
ln.2e�x.1�x=2/ � 1/ � 2:

There are two possibilities.

Case 1.

pnZ
pn��

R.s/ds � � 1

v0

ln.2e�v0.1�v0=2/ � 1/ � A � 3 C ";

where v0 D .1 � v1/=.1 C v1/.

Then

ln N.pn/ �
pnR

pn��

R.t/

�
1 � exp

�
�v0

pn��R
t��

R.s/ds

�	

1 C exp

�
�v0

pn��R
t��

R.s/ds

� dt

D
pnR

pn��

R.t/

"
1 � exp

 
�v0

 
tR

t��

r.s/ds �
tR

pn��

R.s/ds

!!#

1 C exp

 
�v0

 
tR

t��

R.s/ds �
tR

pn��

R.s/ds

!! dt
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�
pnR

pn��

R.t/

"
1 � exp

 
�v0

 
3 C " �

tR
pn��

R.s/ds

!!#

1 C exp

 
�v0

 
3 C " �

tR
pn��

R.s/ds

!! dt

D
pnR

pn��

R.s/ds � 2

v0

ln

1 C exp

0
@�v0

0
@3 C " �

tZ
pn��

R.s/ds

1
A
1
A

1 C e�.3C"/v0
:

Note that the function

f .x/ D x � .2 lnŒ1 C e�v1.3C"�x/�/

v1

is increasing in Œ0; 3 C "� and we have by Lemmas 5.7.1 and 5.7.2, that

ln N.pn/ � A � 2

v0

ln
1 C e�v0.3C"�A/

1 C e�.3C"/v0

D A C 2

v0

ln
1 C Œ2e�v0.1�v0=2/ � 1�e�v0.3C"�A/

1 C e�v0.3C"�A/

� A C 2

v0

�
�v0

�
1 � v0

2

�
C v2

0

2
.3 C " � A/

	

D �2 C .4 C "/v0 � 1 � v0

v0

ln.2e�v0.1�v0=2/ � 1/

� .2 C "/v1:

Case 2.

A <

pnZ
pn��

R.s/ds � 3 C ":

Choose 
n 2 .pn � �; pn/ such that

pnZ

n

R.s/ds � A:
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Then by (5.166) and Lemma 5.7.1,

ln N.pn/ �

nR

pn��

R.s/ds

C
pnZ

n

R.t/

2
41 � exp

0
@�v0

pn��Z
t��

R.s/ds

1
A
3
5

1 C exp

0
@�v0

pn��Z
t��

R.s/ds

1
A

dt

� v0


nR
pn��

R.s/ds

C
pnZ

n

R.t/

2
41 � exp

0
@�v0

0
@3 C " �

tZ
pn��

R.s/ds

1
A
1
A
3
5

1 C exp

 
�v0

 
3 C " �

tR
pn��

R.s/ds

!! dt

D v0


nZ
pn��

R.s/ds

C
pnZ

n

R.s/ds � 2

v0

ln B0

D v0

pnR
pn��

R.s/ds C .1 � v0/A � 2

v0

B0

� .3 C "/v0 C .1 � v0/A � 2

v0

ln
2

1 C e�Av0

D �2 C .4 C "/v0 � 1 � v0

v0

ln.2e�v0.1�v0=2/ � 1/

� .2 C "/v1;
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where

B0 D
1 C exp

0
@�v0

0
@3 C " �

pnZ
pn��

R.s/ds

1
A
1
A

1 C exp

 
�v0

 
3 C " �


nR
pn��

R.s/ds

!!

and we have used the fact that the function

g.x/ D � 2

v1

ln
1 C expŒ�v1 .3 C " � x/�

1 C expŒ�v1 .3 C " C A � x/�
C v1x

is increasing on Œ0; 3 C "�.
In either cases, we have proved that

ln N.pn/ � .2 C "/v1 for n D 1; 2; : : : :

Letting n ! 1 and " ! 0, we have

ln u � 2
1 � v

1 C v
: (5.167)

Next, let fqng be an increasing sequence such that qn � t0 C �; lim
n!1qn D

C1; N 0.qn/ D 0, and limn!1 N.qn/ D �v. By (5.153), N.qn � �/ D 1. For
qn � � � t � pn; integrating (5.165) from t � � to qn � � , we have

N.t � �/ � exp

�
� 1 � u1

1 C u1

pn��R
t��

R.s/ds

�
; qn � � � t � qn:

Substituting this into (5.153), if N.t � �/ � 1; we have

N 0.t/ D r.t/N.t/

�
1 � N.t � �/

1 C .t/N.t � �/

	˛

� R.t/N.t/
1 � N.t � �/

1 C .t/N.t � �/

� R.t/N.t/

1 � exp.�u0

qn��R
t��

R.s/ds/

1 C exp

�
�u0

qn��R
t��

R.s/ds

�

for qn � � � t � qn. If N.t � �/ < 1; then by (5.153), N 0.t/ > 0, and thus
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N 0.t/ � R.t/N.t/

1 � exp

�
�u0

qn��R
t��

R.s/ds

�

1 C exp

�
�u0

qn��R
t��

R.s/ds

� ;

where u0 D .1 � u1/=.1 C u1/. Thus

� N 0.t/ � min

8̂̂
<̂
ˆ̂̂:

�R.t/N.t/u0; �R.t/N.t/

1 � exp

�
�u0

qn��R
t��

R.s/ds

�

1 C exp

�
�u0

qn��R
t��

R.s/ds

�
9>>>=
>>>;

(5.168)

for qn � � � t � qn. Note that 0 < �u0 < 1; and one can easily see that

0 < � 1

u0

ln.2e�u0.1�u0=2/ � 1/ < 3:

There are two cases to consider.

Case 1.

qnZ
qn��

R.s/ds � .3 C "/ C 1

u0

ln.2e�u0.1�u0=2/ � 1/ � B:

By (5.168) and Lemma 5.7.1,

� ln N.qn/ � �u0

qnZ
qn��

R.s/ds � �.3 C "/u0 � ln.2e�u0.1�u0=2/ � 1/

� �.1 C "/u0:

Case 2.

B <

qnZ
qn��

R.s/ds � 3 C ":

We choose �n 2 .qn � �; qn/ such that

B D
�nZ

qn��

R.s/ds:
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Then by (5.155) and Lemma 5.7.1, we have

� ln N.qn/ � �u0

�nR
qn��

R.s/ds C
qnR
�n

R.t/Œexp.�u0

qn��R
t��

R.s/ds/ � 1�

1 C exp.�u0

qn��R
t��

R.s/ds/

dt

� �u0

�nR
qn��

R.s/ds

C
qnZ
�n

R.t/Œexp �u0.3 C " �
tZ

qn��

R.s/ds/� � 1

1 C exp.�u0.3 C " �
tZ

qn��

R.s/ds//

dt

D �u0

�nR
qn��

R.s/ds �
qnR
�n

R.s/ds

� 2

u0

ln

1 C exp.�u0.3 C " �
qnZ

qn��

R.s/ds//

1 C exp.�u0.3 C " �
�nZ

qn��

R.s/ds//

� ln N.qn/

D .1 � u0/B �
qnZ
�n

R.s/ds C 2
�
1 � u0

2

�

C 2

u0

ln

1 C exp.�u0.3 C " �
qnR

qn��

R.s/ds//

2

� 2 � .4 C "/u0 C
�

1 � u0

u0

�
ln


2e�u0.1�u0=2/�1

�

� .2 C "/u0;

where we have used the fact that

h.x/ D �x � 2

u0

ln
1 C exp .�u0 .3 C " � x//

2

is increasing on Œ0; 3 C "�.
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In either cases, we have proved that � ln N.pn/ � �.2 C "/u0 for n D 1; 2; : : :.
Letting n ! 1 and " ! 0, we have

� ln v � �2
1 � u

1 C u
: (5.169)

Let

y D �.1 � u/=.1 C u/

and

x D .1 � v/=.1 C v/;

then in view of (5.167), (5.169), and Lemma 5.7.3, we get x D y D 0. This shows
that u D v D 1. The proof is complete. �

By methods similar to those in the proof of Theorem 5.7.1, and by noting that if
 � 1; then

.1 � x/=.1 C x/ � .1 � x/=.1 C x/; for x � 1;

and

.1 � x/=.1 C x/ � .1 � x/=.1 C x/; for x � 1;

one can prove the next result. The details are omitted.

Theorem 5.7.2. Suppose .t/ � 1 for t � 0, (5.157), and (5.159) hold. Then every
solution of (5.153) and (5.154) tends to 1 as t tends to C1.

5.8 Existence of Periodic Solutions

In this section, we consider the equation

dN.t/

dt
D N.t/

r.t/ � a.t/N.t/ � b.t/N.t � �.t//

k.t/ C c.t/N.t/ C d.t/N.t � �.t//
(5.170)

and establish some sufficient condition which ensures the existence of periodic
solutions. Here a; b; c; d; k; r are continuous !-periodic functions with r > 0,
k > 0, a > 0, b � 0, c � 0, and d � 0. The results in this section are adapted
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from [22]. Considering the biological significance of system (5.170), we always
assume that N.0/ > 0. The main results will be proved by applying Theorem 1.4.11.
To prove the main results we present some useful lemmas.

Let f be a !-periodic function and define

f l D min
t2Œ0;!�

f .t/; f u D max
t2Œ0;!�

f .t/:

Lemma 5.8.1. There exists a unique u� > 0 such that

Z !

0

r.t/ � Œa.t/ C b.t/�u�

k.t/ C Œc.t/ C d.t/�u� dt D 0:

Proof. Let

f .u/ D
!Z
0

r.t/ � Œa.t/ C b.t/�u

k.t/ C Œc.t/ C d.t/�u
dt:

It is clear that

f .0/ D
!Z
0

r.t/

k.t/
dt > 0;

f

�
ru C 1

al C bl

�
D

!Z
0

r.t/ � Œa.t/ C b.t/�
ru C 1

al C bl

k.t/ C Œc.t/ C d.t/�
ru C 1

al C bl

dt

�
!Z
0

r.t/ � .ru C 1/

k.t/ C Œc.t/ C d.t/�
ru C 1

al C bl

dt < 0;

and then from the zero point theorem, it follows that there exists a u� 2�
0;

ru C 1

al C bl

�
such that f .u�/ D 0. Moreover,

df

du
D �

!Z
0

k.t/Œa.t/ C b.t/� C r.t/Œc.t/ C d.t/�

fk.t/ C Œc.t/ C d.t/�ug2
dt < 0;

that is, f .u/ is monotonically decreasing with respect to u, and hence u� is unique.
The proof is complete. �
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Theorem 5.8.1. Equation (5.170) has at least one positive periodic solution of
period !

Proof. Let N.t/ D expfx.t/g. Then (5.170) may be reformulated as

dx.t/

dt
D r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g

k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g : (5.171)

In order to apply Theorem 1.4.11 to (5.171), we first let

X D Y D fx.t/ 2 C.R;R/; x.t C !/ D x.t/g
and

kxk D max
t2Œ0;!�

jx.t/j ; x 2 X .or Y/:

Then X and Y are Banach spaces with the norm k:k. Let

N x D r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g ; x 2 X;

L x D x0 D dx.t/

dt
; P x D 1

!

!R
0

x.t/dt; x 2 X;

Q z D 1

!

!R
0

z.t/dt; z 2 Y:

Then it follows that

Ker L D R; Im L D
�

z 2 Y W
!R
0

z.t/dt D 0

�
is closed in Y;

dim Ker L D 1 D co dim Im L;

and P; Q are continuous projectors such that

Im P D Ker L; Ker Q D Im L D Im .I � Q/:

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (of L)

KP W Im L ! KerP \ Dom L

is

KP .z/ D
tR
0

z.s/ds � 1

!

!R
0

tR
0

z.s/ ds dt:



5.8 Existence of Periodic Solutions 289

Also

QN x D 1

!

!Z
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/ C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds

and

KP .I � Q/N x D
tZ
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/ C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds

� 1

!

!Z
0

tZ
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/ C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds dt

�
�

t

!
� 1

2

� !Z
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/ C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds:

By the Arzela–Ascoli Theorem, it is easy to see that KP .I � Q/N.�/ is compact
for any open bounded subset � of X and QN.�/ is bounded. Thus, N is L-compact
on � for any open bounded set � 2 X.

Consider the operator equation L x D N x;  2 .0; 1/; that is,

dx.t/

dt
D 

r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g : (5.172)

Let x D x.t/ 2 X be a solution of (5.172) for a certain  2 .0; 1/.
Integrating (5.172) with respect to t over the interval Œ0; !� yields

!Z
0

r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt D 0; (5.173)

and therefore

!Z
0

a.t/ expfx.t/g C b.t/ expfx.t � �.t//g
k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt

D
!Z
0

r.t/

k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt

�
!Z
0

r.t/

k.t/
dt � !ru

kl
; (5.174)



290 5 Food-Limited Population Models

which together with (5.172) implies

!Z
0

ˇ̌
x0.t/

ˇ̌
dt D 

!Z
0

ˇ̌̌
ˇ r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/ C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g

ˇ̌̌
ˇ dt <

2!ru

kl
:

From (5.173) and the mean-value theorem for integral, we see that there exists 
 2
Œ0; !� such that

r.
/ � a.
/ expfx.
/g � b.
/ expfx.
 � �.
//g
k.
/ C c.
/ expfx.
/g C d.
/ expfx.
 � �.
//g! D 0;

and therefore

r.
/ D a.
/ expfx.
/g C b.
/ expfx.
 � �.
//g: (5.175)

Since x.t/ 2 X, there exist t1; t2 2 Œ0; !� such that x.t1/ D xl ; x.t2/ D xu; and
then from (5.175) it follows that

x.t1/ � ln

�
r.
/

a.
/ C b.
/

�
� ln

�
ru

al C bl

�
;

x.t2/ � ln

�
r.
/

a.
/ C b.
/

�
� ln

�
rl

au C bu

�
;

from which we derive

x.t/ � x.t1/ C
!Z
0

ˇ̌
x0.t/

ˇ̌
dt � ln

�
ru

al C bl

�
C 2!ru

kl
WD M1;

x.t/ � x.t2/ �
!Z
0

ˇ̌
x0.t/

ˇ̌
dt � ln

�
rl

au C bu

�
� 2!ru

kl
WD M2;

and hence

kxk D max
t2Œ0;!�

jx.t/j � maxfjM1j ; jM2jg WD B1:

Clearly, B1 is independent of the choice of . Take B D B1 C B2; where B2 > 0 is
taken sufficiently large such that jln.u�/j < B2 and define

� WD fx.t/ 2 X W kxk < Bg:



5.8 Existence of Periodic Solutions 291

When x 2 @� \ Ker L D @� \ R; x D B or x D �B; and then

QN x D 1

!

!Z
0

r.t/ � a.t/ expfx.t/g � b.t/ expfxg
k.t/ C c.t/ expfx.t/g C d.t/ expfxgdt ¤ 0:

Furthermore, a direct calculation reveals that

degfJQN; � \ Ker L; 0g

D sign

8<
:� 1

!

!Z
0

k.t/Œa.t/ C b.t/� C r.t/Œc.t/ C d.t/�

fk.t/ C Œc.t/ C d.t/�u�g2
dt

9=
; ¤ 0I

here J is the identity mapping since =P D KerL. Thus all the requirements
in Theorem 1.4.11 are satisfied. Hence (5.171) has at least one solution x�.t/ 2
Dom L\�. Set N �.t/ D expfx�.t/g. Then N �.t/ is a positive !-periodic solution
of (5.170). The proof is complete. �
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