Chapter 5
Food-Limited Population Models

If a nonnegative quantity was so small that is smaller than any
given one, then it certainly could not be anything but zero. To
those who ask what the infinity small quantity in mathematics is,
we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed

to be.

Leonhard Euler (1707-1783)
The real end of science is the honor of the human mind.

Gustav J. Jacobi (1804—1851)

Smith [66] reasoned that a food-limited population in its growing stage requires
food for both maintenance and growth, whereas, when the population has reached
saturation level, food is needed for maintenance only. On the basis of these
assumptions, Smith derived a model of the form

dN(t) K — N(t)
o - VN raNo SRY

which is called the “food limited” population. Here N, r, and K are the mass
of the population, the rate of increase with unlimited food, and the value of N
at saturation, respectively. The constant 1/c is the rate of replacement of mass in
the population at saturation. Since a realistic model must include some of the past
history of the population, Gopalsamy, Kulenovic and Ladas introduced the delay
in (5.1) and considered the equation

AN(1) K—N( —1)
dt rN(t)K +crN(t—1)°

as the delay “food-limited” population model, where r, K, ¢, and t are positive
constants.
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216 5 Food-Limited Population Models

In this chapter we discuss autonomous and nonautonomous “food-limited”
population models with delay times.

5.1 Oscillation of Delay Models

Motivated by the model

K — N(h(2)) -0 (5.2)

NG =rONOToNGo)y |2

in this section we consider

14+ x(2) -0 53)

x'(t) = _r([)x(h(t))l +sO[1 + x(g@))]’ =

with the following assumptions:

(A1) r(t) and s(¢) are Lebesgue measurable locally essentially bounded functions
such that 7(¢) > 0 and s(¢) > 0.

(A2) h,g :[0,00) — R are Lebesgue measurable functions such that h(t) < ¢,
gt) < t,tl_iE&h(t) = 00, and tl_i)r&g(t) = o0.
Note the oscillation (or nonoscillation) of N about K is equivalent to oscillation
(nonoscillation) of (5.3) about zero (let x = N/K — 1).
One could also consider for each #;, > 0 the problem

ey 14+ x(t)
xX'(t) = r(l)X(h(t))l SO0 T xG@O)] t > 1o, (5.4)
with the initial condition
x(t) = (1), t <ty, x(ty) = Xo. 5.5)

We also assume that the following hypothesis holds:
(A3) ¢ : (—o00,ty) — Ris a Borel measurable bounded function.

An absolutely continuous function x (: R — R) on each interval [ty, b] is called a
solution of problems (5.4) and (5.5), if it satisfies (5.4) for almost all ¢ € [ty, o0) and
the equality (5.5) for ¢ < ty. Equation (5.3) has a nonoscillatory solution if it has
an eventually positive or an eventually negative solution. Otherwise, all solutions
of (5.3) are oscillatory. The results in this section can be found in [10]. In the
following, we assume that (A1)—(A3) hold and we consider only such solutions
of (5.3) for which the following condition holds:

1+ x(t) > 0. (5.6)

The proof of the following lemma follows a standard argument (see the proof in
Theorem 2.4.1 and see Lemma 2.6.1).
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Lemma 5.1.1. Let (A1) and (A2) hold for the equation
x'@) +r(x(h(t)) =0, t>0. (5.7)
Then the following hypotheses are equivalent:

(1) The differential inequality
xX'(t) +r(@)x(h(t) <0, >0 (5.8)

has an eventually positive solution.
(2) There exists ty > 0 such that the inequality

t

u(t) > r(t)exp {/}( : u(s)ds} Lt >t u(t) =0, <ty (5.9)

has a nonnegative locally integrable solution.
(3) Equation (5.7) has a nonoscillatory solution.

If
! 1
lim sup/ r(s)ds < —, (5.10)
t—00 h(t) e
then (5.7) has a nonoscillatory solution. If

t
1
lim inf/ r(s)ds > —, (5.11)
h e

—>0o0 ()
then all the solutions of (5.7) are oscillatory.
Lemma 5.1.2. Let x(t) be a nonoscillatory solution of (5.3) and suppose that

() B
/O 1+S(t)dt—oo. (5.12)

Then lim,;_, o, x(t) = 0.

Proof. Suppose first x(¢) > 0, ¢ > t;. Then there exists #, > ¢; such that

h(t) =1, gt) =1, fort > 1. (5.13)
Let
_ X
u(t) = X0 t> 1. (5.14)

Then u(t) > 0,7 > t, and

x(t) = x(tp) exp{—/t u(s)ds} , > 1. (5.15)
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Substituting this into (5.3) we obtain

[1 + cexp {— fttz u(s)ds}]

M([) = r(l‘)e(fht(,)u(s)ds)

, (5.16)
[1 + (1) (1 + cexp {— ftf(l) u(s)ds})]
where h(t) <t,g(t) <t,fort > t;,and ¢ = x(t;) > 0. Hence
r) (5.17)

“OZ T o0 s

From (5.12) we have ft(;o u(t)dt = co.
Now suppose —1 < x(¢) < 0,7 > t;. Then there exists t, > t; such that (5.13)

holds for ¢ > t,. With u(¢) denoted in (5.14) and ¢ = x(z,) we have u(¢) > 0 and
—1 < ¢ < 0. Substituting (5.15) into (5.3) and using (5.16), we have

(1 +o)r ()

Thus flfo u(t)dt = oo. Equation (5.15) implies that lim,_, », x(#) = 0. The proof is
complete. |

Theorem 5.1.1. Suppose (5.12) holds and for some & > 0, all solutions of the linear
equation

r(t)
1+ s()

X(6) + (1—e) x(h(t)) =0 (5.19)

are oscillatory. Then all solutions of (5.3) are oscillatory.

Proof. First suppose x(¢) is an eventually positive solution of (5.3). Lemma 5.1.2
implies that there exists #; > 0 such that 0 < x(¢) < e fort > ¢,. We suppose (5.13)
holds for ¢t > t, > 1. Fort > t,, we have

[(L+sOIA+x@) _  (A+50)
L+s@O[1+x(g@)] ~ 1+s@)(1+e)
(1+s@) 1

T Utso)ite (+e - I-e (5:20)
Equation (5.3) implies
YO+ 0—e—D @y <0, 121 (5.21)
1+ (1) -0 = '

Lemma 5.1.1 yields that (5.19) has a nonoscillatory solution. We have a
contradiction.
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Now suppose —¢ < x(t) < O for ¢t > ¢; and (5.13) holds for ¢ > ¢, > t;. Then
fort > t,

[L+sOI0+x(0) _ (+50)1—e) _

1+ s()[1 + x(g())] ~ T+ 5(0) 1—e. (5.22)

Hence, (5.19) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. ]

Corollary 5.1.1. If

t
1
lim inf/ @ L (5.23)
t—>00 h(t) 1 =+ S(T) e
then all solutions of (5.3) are oscillatory.

Theorem 5.1.2. Suppose for some ¢ > 0 there exists a nonoscillatory solution of
the linear delay differential equation

r(t)
14 5()

X(6)+ (1+¢) x(h(t)) = 0. (5.24)

Then there exists a nonoscillatory solution of (5.3).
Proof. Lemma 5.1.1 implies that there exists 7o > 0 such that
wo(t) >0, for t > ty, and wy(¢) = 0, for t < ¢,

and

wo(t) = (1 + 8)1 -ri—(i)(t) exp { /]( : wo(s)ds} . (5.25)

Suppose 0 < ¢ < ¢ and consider two sequences:
t
w(t) = r(t) exp{/ wn_l(s)ds}
h(t)
1+ cexp {— ft; v,,_l(s)ds}

1+ 5(t) (1 + cexp {— &) w,z_l(s)ds})

fo

X

and

t

vu(t) = r(t)exp {/h( : vn_l(s)ds€

1+ cexp {— ftf) wm_l(s)ds}
1+ 5(7) (1 + cexp {— &) vn_l(s)ds}),

fo

X
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where wy is as defined above and vy (¢) = 0. We have
T er [, mo
1) = d
M) = s e { | wo)ds
1+ s@)(1+c)
1+ s(t) (1 + cexp {— ftg(t) wo(s)ds})

X

r() ’
=1 + (1) P %/}Z(z) WO(S)dS}
IT+s@)1+e

1+ s(t) (1 + cexp {— 5() wo(s)ds})

]

X

< wo(?) (5.26)
from (5.25). Clearly v (¢) > vo(t) and wo(t) > vo(t). Hence by induction

0 < Wn(t) < anl(t) <...= WO(t)»
V() = vp—1(t) = ... = y(t) = 0, 5.27)
wp(t) > v,(2).

There exist pointwise limits of the nonincreasing nonnegative sequence w, () and
of the nondecreasing sequence v, (¢). Let

w(t) = lim w,(¢) and v(z) = lim v(¢).
n—>00 n—>00

Then by the Lebesgue Convergence Theorem, we conclude that

t

w(t) = r(t)exp { /h( : w(s)ds}

1+ cexp {— ft(t) v(s)ds}
1+ 5(1) (1 + cexp {— ftf(’) w(s)ds})

X

and

v(t) = r(t)exp %f/z) v(s)ds}

1+ cexp {— ftf) w(s)ds}

* 1+ s(t) (1 + cexp {— lf(t) v(s)ds}) ‘
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We fix b > t; and define the operator T : Loo[to, b)] — Loolto, b] by

r(t) (1 + cexp {— fti u(s)ds})
1+ s(7) (1 + cexp {— flf(t) u(s)ds}) .

T(u(r)) = elio 1©4ds (5.28)

For every function u from the interval v < u < w, we have v < Tu < w. One
can also check that T is a completely continuous operator on the space Lo[to, b].
Then by Schauder’s Fixed Point Theorem there exists a nonnegative solution of
equation u = Tu. Let

cexp {—fl; u(s)a’s}, if t> 1,
0, ift <tp,

x(t) = { (5.29)

and then x (¢) is a nonoscillatory solution of (5.3) which completes the proof. W

The results in this section apply to (5.2). For example by applying Theorem 5.1.1
we have the following result.

Theorem 5.1.3. Suppose (5.12) holds and for some ¢ > 0, all solutions of the linear
equation

r()

NO+0-a770

N(h()) =0 (5.30)

are oscillatory. Then all solutions of (5.2) are oscillatory about K.

5.2 Oscillation of Impulsive Delay Models

In this section we consider the impulsive “food-limited” population model

N'(t) = r(t)N(t) —==NE@D) - p £ g,
K+ NG (1) (5.31)

i=l1

N(t) = N(tx) = bi(N(tx) — K), fork =1,2,...;

here N(#;) = N(t_). In this section, we will assume that the following assumptions
hold:

(A1) 0<ty<t) <t <...<tg <...arefixed points with
limg 00 1 = 00,

(A2) by > —1,k =1,2,..., K is a positive constant,

(A3) r(t)and p;,i = 1,2,...,m, are Lebesgue measurable locally
essentially bounded functions, in each finite interval [0,b], r(tf) > 0 and
pi(t) = 0,fori =1,2,...,m,

(A4) h,g;:[0,00) — Rare Lebesgue measurable functions, h(¢) <t, g;(t) <t,
lim; 00 A(t) = 00, lim; 00 gi (1) = 00,i =1,2,...,m.
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In this section (motivated by (5.31) with y(¢) = % — 1) we consider the delay
model with impulses

Y(0) = —r)— LFYOYRO)
L+ pi@ [+ y(gi(®)] (5.32)

i=1

y(t,j) —y(ty) = bry(ty), fork =1,2,...,

where by > —l and r, h, p; form = 1,2, ... are nonnegative real-valued functions.
We consider (5.32) with the initial condition

y(@) =) >0, o(Ty) >0, t €[T™,T. (5.33)

Here for any Ty > 0, T~ = min <; <, inf;>7,(g: (¢), h(¢)), and ¢ : [T, To] — R4
is a Lebesgue measurable function.

For any T > 0 and ¢(¢), a function y : [T, 0o] — R is said to be a solution
of (5.32) on [T, o¢] satisfying the initial value condition (5.33), if the following
conditions are satisfied:

1. y(t) satisfies (5.33);

2. y(t) is absolutely continuous in each interval (7o, ty), (tx, tk+1), tx > To, k >
ko, y(t,j), y(t,) existand y(z;7) = y(t). k > ko:

3. y(t) satisfies the former equation of (5.32) in [T, 00)\{#} and satisfies the latter
equation for every t = t,k = 1,2,....

For any ¢ > 0, consider the nonlinear delay differential equation

1+ ] a+60|x®

To<ty <t

1+ W(x(gi(1))

<[] a+b)xh). (534)

h(t)<ty <t

x'(t) = —r()
where

Uix(g@) =Y p@ |1+ [ Q+b)x(g@)

i=l1 To<tr<gi(t)
The results in this section are adapted from [77] (in fact as we see below it is easy
to extend the theory in the nonimpulsive case in Sect. 5.1 to the impulsive case).

Lemma 5.2.1. Assume that (A1)-(A4) hold. Then the solution N(t) of (5.31)
oscillates about K if and only if the solution y(t) of (5.32) oscillates about zero.

The proof (which is elementary and straightforward) of the next lemma can be
found in [81].
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Lemma 5.2.2. Assume that (A1)—(A4) hold. For any Ty > 0, y(t) is a solution
of (5.32) on [Ty, 00) if and only if

—1

xoy=| [] a+b| y© (5.35)

To<ty <t

is a solution of the nonimpulsive delay differential equation (5.34).

From Lemmas 5.2.1 and 5.2.2 we see that the solution N(f) of (5.31) is
oscillatory about K if and only if the solution y(¢) of (5.32) is oscillatory.

We consider only such solutions of (5.32) for which the following condition
holds:

14 y(t) >0, forr > Ty, (5.36)
and hence, in view of (5.35),
L+ J] 4560 |x@) >0, fort =T (5.37)
To<ty <t

With y(t) = % — 1 then from (5.36) and (5.37), we see that

Noy=K[1+ ] a+box@)] >0 1=T.

To<ti <t

Thus for the initial condition N(¢) = ¢(¢) : [T, Ty] — R4,¢(Ty) > 0, the
solution of (5.31) is positive on [T}, 00).

Lemma 5.2.3. Assume that (A1)—(A4) hold,
o0 m —1
/r(t) <1 + Zpi(t)) dt = oo, (5.38)
0 i=1

and

[] (+bx)isbounded and lim inf [T (1+ ) > 0. (5.39)
—>00

To<ty <t To<typ <t

If y(t) is a nonoscillatory solution of (5.32), then lim,_,o y(t) = 0.

Proof. Suppose first y(t) > 0 fort > T} > 0. From (5.35) and (A1), x(¢) > 0O for
t > T\. Then there exists 7, > T; such that

h(l) > T, g,‘(l) >T, i=12,....m, for t >T,. (5.40)



224 5 Food-Limited Population Models

Let
u(t) = —);/((t’)) for t > T, (5.41)
Then u(t) > 0 for ¢t > T3 and
t
x(t) = x(Ty) exp {—/u(s)ds} , for t > T>. (5.42)
T

Setting ¢ = x(7T3), we have

) = - ( [T « +bk)1) *(h(0))

h(t) <ty <t

L+ J] a+bpx

To<ty <t

1+ Zpi(t)[l +( l_[ (14 bi))x(gi(1))]

i=1 To<trx<gi ()

X

h(t)<ty <t

g ( T «a +bk)-l) NG

1

X
L+ o+ [] (+boe]
i=1

To<tk<gi(t)

-0 ( I (1+bk)—1)
h

LD pin) \Osist

i=l1

1+ Zpi (1)
X m =
14> pl+  [] (+boe]
i=l1 To<tk<gi(t)
( [T a+on
r(t) h(t) <t <t

L+ p@) A+ p@A+C [ A+boe)

i=1 i=1 To<tx<gi(t)
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Then from (5.38) and (5.39), / u(t)dt =
Now suppose —1 < y(¢) < 0 Hence in view of (5.36),

-1< J] (+b)x@) <0, t=Ti.

To<tr<gi(t)

Then there exists 7> > T such that (5.40) holds for t > T,. With u(z) denoted
in (5.41) and ¢ = x(73), then from (5.37) u(t) > 0, —1 < ¢ < 0, and we obtain

)= "0 T a+v07 | >y

x(l) h(t) <ty <t

L+ ( [T a+b)x®

To<n <t
X
L+ pol+C [ a+b)x@@)]
i=l1 To<tp<gi(t)
L+ ] a+boe
Zx(rh(g)) [T a+607" | xhe)——2%
h(t)<t <t 1+Zpi(t)

[T a+eo™ {1+ ] A+

h(t) <y <t To<tp<t
r(t)
X
1+ Z pi(t)
i=1
o0
Then by (5.37)-(5.39), we have /u(t)dt = oo. Equation (5.42) implies
T
lim; 00 x(¢) = 0. Use (5.35), and then we have lim;_,o y(¢) = 0. The proof
is complete. |

Theorem 5.2.1. Assume that (A1) and (A2), (5.38) hold and for some € > 0, all
solutions of the linear equation
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X' () + (1 —¢) ]_[ 1+ bk)“w =0 (5.43)

h(t)<tg <t 1+ Z pi(t)

are oscillatory. Then all solutions of (5.32) are oscillatory.

Proof. Suppose y(t) is an eventually positive solution of (5.32). Then x(¢) is an
eventually positive solution of (5.34). Lemma 5.2.3 implies that there exists 77 > 0,
such that

0<( J] A+b)x@) <e. fort=T.

To<t <t

We suppose (5.40) holds for ¢t > T,, and we have

(1+Zp,(r))<1+( [T a+b)x@)

To<ty <t
1+ Zp,-(t)[l +( 1_[ (1 + br))x(gi ()]
i=1 To<t<gi(t)
1+Zp,~(t) 1+Zpi(l)
> i=1 - i=1

14> pA+e)  (+ed+ > pil0)

i=1 i=1

1
>1—e. 5.44
l+e™ ¢ (5.44)

Equation (5.34) implies

YO+ (—o ] (+by LXEO)
Mzt L+ i)
i=1

<0, t>T. (5.45)

This implies that the (5.43) has a positive solution, which is a contradiction.
Now, we suppose

—e < ( [] A +b)x@) <0, for 1> 1,

To<ty <t

and (5.38) holds for # > T, > T). Then for t > T,, we also get
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A+ p)A+( J] a+b)x@)

i=1 To<tr<t
L+ p+C J] (0 +b)x(gi )]
i=l1 To<tr<gi(t)

A+ pi)(1—e)

> =1 — =1-c. (5.46)
1+ i)
i=1
Thus (5.43) has a nonoscillatory solution and we again obtain a contradiction. The
proof is complete. n

Theorem 5.2.2. Assume that (A1) and (A2) hold and

1—[ (1 + by) is convergent. (5.47)

h(t) <t <t

Moreover, for some € > 0 if there exists a nonoscillatory solution of the linear delay
differential equation

r(t)x(h(t
YO+ e [ (b LD o s
h(t)<tp <t 1+ Z pi (l)
i=1
then there exists a nonoscillatory solution of (5.32).

Proof. Suppose that x(t) > 0 for t > Ty is a solution of (5.48). Then by (5.34)
there exist 7o > 0 and wo(¢) > 0,¢ > Ty, wo(t) = 0, T, <t < Tj such that

oz LEXLCTT awew] [owdsp. 649
1+ Zpi(l) h(t) <t <t h()

i=1

Since l_[ (1 + by) is convergent, there exists a positive constant ¢ such that

To<tk<gi(t)

0<c( 1—[ (1+by) <e.

To<ty<gi ()
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Consider the two sequences:

wy (1) = r(1) ( H 1+ bk)l) exp /a)n—l(s)ds

h(t)<ty <t ()

t+eC JT a+b0) exp{—/un_l(s)ds}

To<tx<gi(t)

To
m gi (1) ’
ey poa e [T a+byen—t [ oeds)
i=1 To<tr<gi (1) To

n=12,...,

un(t)zr(r)( I1 <1+bk)—‘)exp / Va1 (9)ds (5.50)

h(t)<ty <t ht)

treC T[] (+bexp {—/wn_l(s)ds}

To<tr<gi(t) To

gi(1)

1+Zp,»<r)(1+c( I <1+bk>)exp—{ [ Vi1 (5)ds})

i=1 To<tr<gi(t) To

n=12,...,

where wy is defined above and vy = 0. Thus we have

i) = *( [1 <1+bk>—1) exp | [ wn(s)ds

i=1

A+ p)A+ecC [ a+bo)

i=1 To<tr<gi (1)
X

gi(t)

Yo +eC [T a+ben— [ andsh
i=1

To<ty<gi (1) To
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r()( H (1 +bp)™ /a)o(s)ds 1+ Zpi(t))(l + €)
i=1

h(t) <ty <t

eh(r)
m m
L+ pi(0) L+ pilo)
i=1 i=1
< wy(?). (5.51)
Clearly v;(¢) > vo(t), wo(t) = vo(t). Hence by induction

0<w,(t) S w,—1(t) < ... < wo(t),
v(t) = v (0) > ... > v(E)=0, n=1,2,...,
60,1(l) > Un(l)'

There exist pointwise limits of the nonincreasing nonnegative sequence w,(¢) and

of the nondecreasing sequence v,(t). Let w(f) = lim,_o w,(¢) and v(t) =
lim,— 00 U, (¢). Then by the Lebesgue Convergence Theorem, we deduce that

t

w(t) =r(t) 1_[ (1+by) | exp /a)(s)ds

h(t)<ty <t ht)

t

14+ ¢( l_[ (1 4+ bi)) exp —/U(s)ds
To

To<txk<gi(t)

m gi (1)
Yo+ [T a+ben—t [ o
i=1 To<tr<gi(t) To

t

v(t) = r(1) 1_[ (14 by) | exp /U(s)ds

h(t)<t <t h(t)

t

L+eC [T +boyexp —/w(s)ds

To<tx<gi (1) To

X . (5.52)

gi (1)

— v(s)ds

L+ A +eC [ A+bge o )

i=1 To<tx<gi (1)
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We fix b > T and define the operator T : Loo[Ty, b] = Loo[T0, b] by the following

t

(Tu)(t) = r(t) l_[ (14 bi) | exp /u(s)ds

h(t) <ty <t ()

t

1+¢ l_[ (1+ b)exp —/u(s)ds

To<tr<gi(t) To

x . (5.53)

8 (1)

m - u(s)ds
L+ pd+c J[ A+bge ™ )

i=l To<tx<gi(1)

For every function u from the interval v < u < w, wehave v < Tu < w. Also T is
a completely continuous operator on the space Lo[T0, b], and then by the Schauder
Fixed Point Theorem there exists a nonnegative solution of the equation u = T u.
Let

cexp{— thO u(s)ds}y, t=> Ty,
c, T-<t<T,

x(1) = (5.54)

Then x(¢) is a nonoscillatory solution of (5.34). Thus by Lemma 5.2.1

yor=[ J] a+b07"|x0

h(t)<ty <t

is a nonoscillatory solution of (5.32) which completes the proof of Theorem 5.2.2.
]

The results in this section apply to (5.31).

5.3 3-Global Stability

In this section we examine the global attractivity of the “food-limited” population
model

I-Ne-79) (5.55)

N'(1) = V(I)N(f)m, >

where

r(t) € C([0, 00), (0, 0)), c(t) € C([0, 00), (0,00)), T > 0.
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We consider solutions of (5.55) which correspond to the initial condition

N(1) = ¢(1), 1 €[r.0],

¢ € C([z,0],[0,00)), $(0) > 0. (5.56)

Motivated by (5.55) in this section, we will study the global stability of the general
equation
X)) + [+ xOI[1 —ex (O] F (1, x(g(1)] = 0, (5.57)

where F (¢, ¢) is a continuous functional on [0, c0) x C;, such that F(¢,0) = O for
t > 0 and satisfies a York-type condition

- 1r§:)c Mi(=¢) < F(t.9) < %Mt(—rp), (5.58)

where g : [0, 00) — (—00, 00) is a nondecreasing continuous function with g(¢) <
t fort > 0 and lim;00 g(7) = 00, M;(p) = max{0, sup,e(y () (s)}, ¢ € (0,00)
and r € C([0,00), (0,00)). The class C; is the set of all continuous functions ¢ :
[g(1). 1] — [~1, 00) with the sup-norm [|¢ll, = sup, iz [0(s)].

Let © = —g(0). We consider solutions of (5.57) which correspond to the initial
condition

x(t) =¢@), 1 € [-.0],
p € Cr.0L1-1. ). $(0) > ~1. 03
In the following, we will establish a 3/2-global attractivity condition for (5.57), and
then apply this condition on equation (5.55) to establish a 3/2-global attractivity
condition. The results in this section are adapted from [73]. To prove the results,
we need the following results (whose proofs are standard; for Lemma 5.3.7 see
Lemma 5.7.3 with ¢ = 1).

Lemma 5.3.1. Assume that ¢ € (0, 1]. Then for any v € [0, 1)

1+c¢ Il—c ,
v——v .
2 6

(1 + c)e—cv(l—cv/Z) -1
In
C

(1=v) Z—(1+c)v(1—

Lemma 5.3.2. Assume that ¢ € (0, 1]. Then for any u € [0, 00)

1 cu(l4cu/2) __ 1 1 1—
(1+u)ln( +o)e 2(1+c)u(1+ —;Cu— 66u2).
c

Lemma 5.3.3. Assume that ¢ € (0,1] and v € (0, 1). Then for any x € [0, 00)

1+ [(1 + c)e—cv(l—cv/Z) _ 1]e—vx CV2
n

cv
1 < —cv(l = =
1+ ce™ = —o( 2)+1+c

X.
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-1
Lemma 5.3.4. Assume that ¢ € (0, 1]. Then for 0 <v < |:1—%+ 2(13_0)—}—%}

1 (1 + c)e—cv(l—cv/z) —1
——1In

3
< —(1 .
% c _2( +o)

Lemma 5.3.5. Assume that ¢ € (0, 1]. Then for any x € [0, 00)

1 c+er X n cx? c(l=c)x3  c(1—4dc+c?)x*
n _
I+c¢c " 14+c¢ 2(14+¢)? 6(1+¢)3 24(1 + ¢)*
cl—=1le+ 112 =¢c%) o c(l+ 14 +c*)
— X
120(1 + ¢)? 720(1 + ¢)®

Lemma 5.3.6. Assume that ¢ € (0, 1] and

-1
c 2(1—c¢) 2
I>=v>|1--+ +—1 .

2 3 4
Then
81(1 — 11c¢ + 11c¢? —c3)v3 -1 19(1 —c)v N 27(1 — 4c¢ + c*)?
160 6 16
81(1 + 14¢% + ¢*
n (1+ l4c +C)v4.
640

Lemma 5.3.7. The system of inequalities

lnllj—cyyf(l—i-c)(x—%xz),

1—x 1—c
—In{2E < (40 (v + 5557

has only a unique solution x=y=0in the region {(x,y) : 0 <x <1,0<y < 1/c}.

Theorem 5.3.1. Assume that (5.58) holds. Then the solution x(t,0, @) of (5.57),
(5.59) exists on [0, 00) and satisfies —1 < x(¢,0,¢) < 1/c.

Theorem 5.3.2. Assume that (5.58) holds and there exists a function r* €
C([0, 00), (0, 00)) such that for each ¢ > 0 there is a n = n(e) > 0 satisfying

[ir}f) ]co(s) >e= F(t,) 2 nr*(t), F(t,—¢) < —nr*(t) fort >0  (5.60)
sE(g(t).t

and
/ r*(s)ds = co. (5.61)
0

Then every nonoscillatory solution of IVP (5.57) and (5.59) tends to zero.
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Theorem 5.3.3. Assume that (5.58), (5.60), and (5.61) hold. If there exists a
constant M such that

t
/ r(s)ds < M, (5.62)
g(1)

then the solutions of (5.57), (5.59) satisfy

1 o (20
ey = x() = I i (5.63)
1+cexp(l+“ju) +ce
We now prove our main result in this section.
Theorem 5.3.4. Assume that (5.58)—(5.61) hold, and

! 3
/ r(s)ds < =(1 4+ c¢) forlarge t. (5.64)

g 2

Then every solution of (5.57), (5.59) tends to zero.

Proof. Let x(t) be a solution of (5.57) and (5.59) (note also Theorem 5.3.1 s0 —1 <
x(t) << 1/c, t = 0). By Theorem 5.3.2, we only consider the case when x(¢) is
oscillatory. First assume that 0 < ¢ < 1. Set

u = lim sup x(¢) and v = lim inf x(¢). (5.65)
t—>00

t—>o0

By Theorem 5.3.3,0 < u < oo and 0 < v < 1. It suffices to prove that u = v = 0.
Forany 0 < & < 1 — v, by (5.64) and (5.65) there exists a tp = t5(¢) > g~ 2(0) such
that

t
/ r(s)ds <éy = E(1 +c¢), t > g(t), (5.66)
g(0) 2

—vi=—(+e)<x(@t)<u+te=u, t>gt). (5.67)

From (5.57), (5.58), and (5.67), we have

x'(t) - r(t)v . (5.68)
T+xt)(A—cx(®) ~ 1+¢ = '
and
(@) L Tr@Om fo. (5.69)

1I+x@)A—cx(@) = 1+c
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Let {/,} be an increasing infinite sequence of real numbers such that g(l,) > fto,
x(l,) > 0,x'(I,) = 0, and lim,, & x({,) = u. We may assume that [, is a left local
maximum point of x(¢). It is easy to show that there exists ¢, € [g(l,), [,) such that
x(¢,) =0and x(¢) > Ofort € (¢,,1,]. By (5.68), we have

—1 +exp (—v1 ff” r(s)ds)
1+ cexp (—v1 ff" r(s)ds)

and [see also (5.57) and (5.58)] for £, <t <[, we have

x(t) = , o <t <&,

X'(1) B () 1 —exp (—vl ;E’t)r(s)ds)

I+x@) (A —cx@) ~ l+cq 4 ¢ exp <_V1 ;f,) r(s)ds)’

which together with (5.68) yields for ¢, <t <,

x'(1)
(I+x(@) (A —cx(2))

rom r@) 1R (o[ re)ds)

< min , (5.70)
Ite 1T4+epcexp (—vl fg(t) r(s)ds)
There are two cases to consider.
Case 1. f;”: r(s)ds < —ﬁ In (1+C)E_WIC(I_NI/2)_1 =4
Then by (5.66) and (5.70), we have
In
1+ x(ly) I l4+c lHcexp [—v] (80 _fin r(s)ds)]
In ——— < r(s)ds — In = .
1—cx(,) & v 1 + ce—%m
(5.71)

If [, r(s)ds < A < 8 = 2(1 + ¢), then by Lemmas 5.3.1 and 5.3.3

1 l, 1 1 —vi(8—A4) 1—
1n—+x(1) <A- +cln +ee <(04+c)|vi— cv% .
1—cx(l,) vy 1 + cedovt 6

Iff;“: r(s)ds <8 = 3(1+c) < A, then

1 (1 + c)e—cw(l—cvl/z)
——1n
Vi C

3
—1>=(1 .
> S +0)

From Lemma 5.3.4 we have that

-1
o N 2(1—c¢) N c?
. 2 3 4|
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Hence from (5.71), Lemmas 5.3.5 and 5.3.6, we have

14 x(l,) 1+c 1+ ¢ —c,
_ < 8y = 1 < B .
n 1 —Cx(ln) = CcVy n 1+ ce—80v1 — ( + C) Vi 6 Vi

Case2. A < f;’;’ r(s)ds < &
Choose 1, € (&y,!,) such that fnl: r(s)ds = A. Then by (5.66), (5.70), and
Lemma 5.3.1 we have

N 14+ x(,)
1—cx(y,)

nn L r(t) [1 —exp (—vl o r(s)ds)]
< v1/ r(s)ds +/ dt
Gn i 1+ cexp (—v1 ;E’t) r(s)ds)

3+¢ 1—vi . (1+c)e~ml=en/2
1— - In

5—(1+c)( 5

1—
<({+4vc¢) (vl— 6cvf).
Combining the above cases we see that

T4 x() _ I —c
lnrx(l”)_(l‘i‘C)(Vl— V%)

Vi C

Letting n — oo and ¢ — 0, we have

1 1—
In tu <(Q+c)|v- ). (5.72)
1—cu 6
Now, we show that
1-— 1-—
“hh— < (1 +¢) (u+ cuz). (5.73)
1+cv

Let {s,} be an increasing infinite sequence of real numbers such that g(s) > fo,
x(s,) < 0,x'(s,) = 0 and lim, 00 x(5,) = —v. We may assume that s, is a left
local minimum point of x(¢). It is easy to show that there exists 1, € [g(s,), )
such that x(n,) = 0 and x(¢) < 0 fort € (n,, s,]- By (5.69), we get

(1) < exp (uy [ r(s)ds) — 1
T 14 cexp(uy [ r(s)ds)

» lo =1 =1,
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which together with (5.58) yields

—xX'()
(1+x(1)) (1 —cx(1))

r(t) P (ul Jey r(s)ds) —1

Tt qcexp (ul o) r(s)ds)

s My <t < 8. 5.74)

Note that u; is bounded and note

1. (14 c)ecmliten/2) 1 3(1 4¢)
—1In < .
uj C 2

We consider two cases.
S 1 1 cup (14-cuy/2) _q
CaseI. [ r(s)ds < 3do) 1y, (doetTra/7-1
Mn 2 uj c

From (5.69) and Lemma 5.3.2, we have

1 " Sn
—1 LA x(sn) u / r(s)ds
Tn

B.

" exG)

3(1 + C) (1 + c)ecu1(1+cu1/2) -1
< u —1In
2 c
l—c,
<(1+4c¢) u1+—6 uj ).

Casell. B < [," r(s)ds < kg

Choose h, € (1, sy) such that fnﬁ" r(s)ds = B. Then by (5.69) and (5.74) we
have

L4 x(sn)  _ " ["" Fs)ds + /Sn r(r) [CXP (u1 Jety r(s)ds) — 1]

— n— =
(I —cx(sn)) M b1+ cexp (u1 et r(s)ds)
1+¢)3+c¢
<(4+c)+ ()2#“1
1+ u | (1 + c)ecu1(1+cu1/2) —1
— n
up C

1—
<(+c¢) (Ml +Tcu%).

Combining these two cases we have

14 x(sp) l—c,
_lnmf(l+6)(u1+ 6 ul).
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Letting n — oo and ¢ — 0 we see that (5.73) holds. In view of Lemma 5.3.7, we
see from (5.72) to (5.73) that u = v = 0.
Next assume that ¢ > 1. Set y(f) = —cx(¢). Then (5.57) reduces to

V(@) + [T+ yOIl—c*y@O]F*(t, y(g(t)) =0, t >0, (5.75)

where ¢* = 1/c¢ € (0,1) and F*(t,¢) = —CF(Z,—%(/J) satisfies the York-type
condition
rr(t)
1+c*

r*(t)
14 c*

M (—¢) < F*(t,p) < M;(—9). (5.76)

Note for large ¢ that
! 3
/ r*(s)ds < (1 +c"), (5.77)
g 2

so we have lim;_, o, y(¢) = 0, and this implies that lim;_, o x(¢) = 0. The proof is
complete. |

Applying Theorem 5.3.4 on (5.55) we have the following result.

()] _
/(; 1_{_C(I)a’t—oo

Theorem 5.3.5. Assume that

and
! 3
/ r(s)ds < 5(1 + ¢o) for large t, (5.78)
t—t1

where ¢y = inf{c(t) : t > 0}. Then every solution of (5.55), (5.56) tends to 1.

5.4 3-Uniform Stability

In this section we discuss the uniform stability of the “food-limited” population
model

NI
k- N —7) >0, (5.79)

N'@) =r(ON®— SONTG—0" 7

where r(¢) and s(t) are positive functions, /, 7 > 0 are positive constants, and k'/!
is the unique positive equilibrium point of (5.79). The results in this section are
adapted from [67].



238 5 Food-Limited Population Models

Motivated by (5.79) (let x(t) = (N(z)/k'/!) — 1) in this section we examine
1—(1 t —1))
A+xC—o) (5.80)
L+s(@O1+x(—1))

We consider solutions of (5.80), which correspond to the initial condition for any
th=>0

x'(1) =r@[1 + x(0)]

x(t) =¢(t), fortg—t <t <ty, p € Clty — 7, to]

5.81
14+ ¢()>0fortg—1 <t <ty and 1+ ¢(ty) > 0. (5-:81)

The zero solution of (5.80) is said to be uniformly stable if, for ¢ > 0, there exists a
8(e) such that 7o > 0 and ||@|| = sup,ep,—q ) [9(s)] < &8 imply |y (270, ¢)| < & for
all t >ty where y(¢; 9, ¢) is a solution of (5.80) with the initial value ¢ at ¢,.

Theorem 5.4.1. If

or(u) 3
_— — .82
Z/I_T1+S(u)du§oe<2,tzr, (5.82)

then the zero solution of (5.80) is uniformly stable.

Proof. Since o < %, there exist ¢; > 1 and 0 < p < 1, such that

(+pa 3 (5.83)

o0 ——
1-pf 2

and
|(1 +x)' — 1| <lo|x|, for |x|] <p.
For 0 < ¢ < p, we choose a § = §(g) > 0 sufficiently small so that § < p,
p=04+8e"—1<e and pr= 1+ p)e* —1<e,
where
hi=o8/(1—8) >0, and hy, = a1 p1 /(1 — p1)! > 0.

Clearly, § < p; < p» < &. Consider a solution x(t) = x(¢; ty, ¢) of (5.80) with
initial condition ¢ at fy, where fp > 0 and ||@[| = supye(— ) [#(5)] < 8. We need
to prove that

|x(t)] < e, forallt > t,. (5.84)
For t € [ty, ty + 7], we have

Ir(t)
1+ s@)’

|[In(1 + x(@)])'] < hy
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since
1—(+¢)| <laé
and
L+ s +¢) = 1+s0)1=8)" = 1 +s0)(1-35).
Hence
'nlli_;c((tto)) fhlZ/mt%dufhla, for z € [t0, o + 7.

It follows that

1— (148" < (1—8)eM—1

<x(1) < (1 +8)eM —1, fort €[ty 10 + 7]
and so
|x(®)| < p1 <&, fort e [ty, 1o+ 7].

Repeating the previous argument, we have |x(¢)| < p, < eforallt € [ty+1, tp+27]
and thus

[x()| < pa <&, fort e[ty ty+ 21].

There are two cases to consider.

Case 1. x(t) has no zeros on [ty + T,y + 27].
Without loss of generality, we assume that x(¢) > 0 for ¢ € [ty + 7, to + 27] (the
case when x (¢) < 0 is similar). Then by (5.80)

x'(t) <0 fort € [ty + 21,10 + 317].
If x(z) > Oforallt >ty + 7, then x'(t) < Oforall t >ty + 27 and
0<x(t) <x(ty+21) < pp <eg, for t >ty+ 2t.
Now let #; be the smallest zero of x(¢) on (fy + 27, 00). Clearly, 0 < x(t) < p»
for t € [ty + 21,1) since x(¢) is decreasing on [ty + 27, ;). Thus |x(¢)| < p, for
t € [to, t1]. Assume that (5.84) does not hold. Then there must exist z, > #; such that

|x(62)| = p2 and x(t2)x'(tz) > 0 and |x(¢)| < p,, forty <t < t,. By (5.80), we
have that x (¢) has a zero in [t, — 7, £;], which we call &. Since
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lOllpz
1+ 51— p2)
_ U+ palpy  r()

1=p)t 1+s@)

X' ()| = (1 + p2)r()

forty <t < 1y,

we have for ¢ € [£, 1] that

(1 + p2)ailps /E r(u)

|—x(t —7)| < (1= o) _. 1 +s() u,

and so
ol r(t)
(1= p2)' 14 5(1)

<[a11(1+p2)r riey 5 r@
=l a=p) | P45 S THsw™™

Thus, we get for ¢ € [£, 1] that

X' ()] = (1+ pa) lx(t —7)|

N a+pailpy @) £
"] < , u(t, duy ,
O] =miny = T M) L T s

and therefore

2 V(A4 palpy (@) £

)| < , duy dt,
'X(Z)"/s "N T Trs0 MOV L T s
where
(t,5) := |:0111(1 + P2)1|2 r(t)
HE= 1T a=p | P1+50)
There are two possibilities.
Case L
15
fz r(1) dt(1+172)alll§1
¢ 1+s@)  (1—po)

Then

arl(l + p2>]2

x(r <|——————
) <[ SR

) [f_rw
XPZ/S 50 ) T s
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B [am +p2)]2
L a-p)

S ) ([ rw) C o
X [/; 5 s0) (/_ 1+S(u)du_./s 1+s(u)d”) ””}

al(1+ po) 7
<[ (1= p)! }

3 1=-p) (2 r@) L/ [ r@) 2
Xp2[§a11(1+p2) : 1+S(t)dt_§(/g 1+s(t)dt)}’

Lor(u) 3 (1—py)
/t_f 5@ = 2.l + py)

since

and

© o) [ )
/S T+ e 1~|—s(u)dudl

e (1 ) N 1/ @ 2
_/E d(i(/s 1+s(u)d”)>_§(/g 1+s(t)d[)'

Using the fact that %az - %zz (here a > 0) is an increasing function for 0 < z < %a,
we have

[x(£2)]
<[a11(1+p2)}2p §( (1= p) )2_1( (1= py) )2 .
A—p)' | 2\ + pyert) 2\ + pyaul ’
which is a contradiction.

Case II.

> 1.

/'2 r(t) dt(l—i-Pz)Olll
¢ 1+s@®)  (1—py)

Choose 1 € (£, ;) such that

/lz r(t) di (1 + pz)Ot11 _
g 1+s@ (1=p)
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Then

|x (22)]
- /" (I + p2)ailpy  r(1)
“Je (A=p)t 1450)

2Tonl(1+ po)7? r(t) )
+/n [ (1—po) ] T o THsw ™!

Tl +p)T? [ @) T (u)
_[ (1—py)t } pz/,, 1+S(l)dt/g 1+S(u)dudt

al(l+p)1 (2 r@) [ r@
+[ 1y ] ”zfn T s@ Joe T s@ ™

[0+ p)ail TP 2 or(@) Tor(
= a=p | ”2/,7 1+s<z>d‘/l_fl+s<u)d”d‘

C[Qtpad P T O (3t g g
(1= p,) D2 , 1+s00) 5 arl(1+p2) ; T+s(u)
_[da +P2)0511_2p E( (1-py)! )2_l< (1-py)! )2 —p
(1= pa) 2| 5 \al(@+p2) 5 \al(+p2) 2

which is a contradiction.
This shows that if x(¢) has no zero in [ty + 7, % + 27], then |x(¢)| < p» < ¢ for
all £ > 1.

Case 2. x(t)hasazerof € [ty + 7,19 + 27].

We prove that
|x(@)| < p,, forall ¢t >17. (5.85)

In fact, if (5.85) does not hold, then there must be a point t* > 7 such that |x (t*)| =
P2, x(t*) X'(t*) = 0 and |x(¢t)] < p, fort € [to,t*). Following the reasoning
in Case 1 we derive a similar contradiction. The proof of Theorem 5.4.1 is now
complete. |

Theorem 5.4.2. Assume that

() .
/O 1+S(t)dt—oo. (5.86)

If (5.82) holds, then the zero solution of (5.80) is uniformly and asymptotically
stable.
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Proof. In view of Theorem 5.4.1, it suffices to prove that there exists a §, > 0 such
that the solution of (5.80) with the initial condition [@|| = sup;e(,—r 4 [9()] < o
satisfies

lim x(¢) = lim x(¢;t,9) =0, f) > 0.
—>00 —>00
Leto; > 1and 0 < p < 1 be such that

o = max 1& <g
B A-ptf 2

and
|(1 +x) — 1| <lay |x|, for |x| < p.

Since the zero solution of (5.80) is uniformly stable, it follows that for 0 < ¢ < p,
there exists 8o > 0 such that

P
[x ()] = |x(t:10,0)| < X for t > 1,

provided [[l| = sup, gy [€(0)] < 0. Set

A :=limsup |x(?)]. (5.87)
—>00

Clearly 0 < A < e. We prove that A = 0.

If x(¢) is eventually nonnegative, then by (5.80), x(¢) is eventually decreasing
and hence lim;_,» x () = A; exists. Suppose A; > 0. Then there exists #; > £
such that

1
EAI <x(t) <2A;, fort=>1.

By (5.80), we have for t > #; + 7 that
1—(1+x(t—-1)
1L+ s@)(1+x(t - 1))

- —[A+ 380" =11 r()
- (I +2A)" 14+s@)

(n[1 + x()]) = r(@)

Using (5.86), we have
In[l + x(t)] > —o0, as t — oo,

which contradicts A; > 0. Hence lim;_, x(¢) = A; = 0. Similarly, one can show
that if x (¢) is eventually nonpositive then lim,_, o, x(z) = 0.
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Now assume that x (¢) is oscillatory. For any 0 < n < e—A, by (5.87) there exists
t, > to such that [x(¢)] < A+ nfort > t,. Let {t,"} be an increasing sequence such
that t* > £, 4+ 27, x/(t*) = 0, lim,—e0 [x(t*)| = A and t* — oo asn — oo.
By (5.80), x(¢; — ) = 0. Thus, we have

{(ln[l + x(t)])’|
- lay r(t)
T (=A=' T+5)

|x(t —7)|, for t > 1, + 1. (5.88)

This yields
|[—In(1 4+ x(r — 7))|
_ LA+ /’n*—f r(u)

du, for t € [ty —1,1]].

=A=' S 1+ !
Consequently,
(A +may ("7 r(u)
r— < d -1,
= nl= e ((1 sl | Trsm

since |In(1 + z)| < a implies |z] < e* — 1. Thus for ¢ € [t — 7,1}

|(n[1 + x(1)])'|
- loy r(t)
TA-A-nl14+s@0)

IA+nar (777 r(u)
- [‘”‘P (m J. v s(u)d”) - 1} |

which implies for ¢ € [t — r,¢7] that

|(n[1 + x(1)])'| < min{Cy, G5}, (5.89)

where

C = I(A+nay  r(t)
T A=A 1+s0)

R r(t) I(A+may ["7° r(u) B
CZ"(I—A—n>ll+s(r){e"p(a—A—n)l/t_f 1+s(u)d”) 1]

There are three cases to consider:
Case L

Loy W)

<1.
(I=A=n! Jpe 1+s@)  —
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Then

[In(1 + x (7))

- la Wor(r)
TA=A=n) Jp T+s()

A+ 777 r(u)
" [exp (@25 [ ) - 1} “
- loy /fn* r(t)
T (1=A-p) t"*—r1+s(t)
" log ! r(u)
x|:exp((A+n) (oz _(1—A—n)’ llf_r1+s(u)du))—1i| dt
-1 oA+ 1 rw e
T At l;f‘l[e"p( (A=) ,;11+s<u>d“) 1} "
lay fn r(t)
Ta=a—y) /,_ s
R ST B B C % /) B A C)
T [1 exP( a0 e T 50"

B lay /’" r(t) it
(=A== St 1450
1
A+n

=

e(Atme™ (1 _ p(Atmy _ 1

since the function

7 — ;e(Aﬂ)a* [1—e@+m]_ 7
A+n

is increasing for 0 < z < o™ and

la W r(u)
1 <a.
(l—A—n)l/,n*_Tl—i-s(u)duf =

Thus,

1 *
x (2] fexp( el (1—e<A+">)—1) ~1.
n
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Case II.

Then

or

Case I11.

1

O{*_ln(l+A+17)
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b
<_;@_7/‘ Oy cgr U+ AED)
(1—A—-n) t"*_fl-l-s(l‘) A+
. MA+nm1/ﬁ r)
In(1 7 =
[In( +x(n))|_(1_A_,7)z e L4 5(1)

<a*(A+n—-In(1+A+n

x| < ——
D = AT

ZOl]

et _ g

*
trt r (Z‘) - %

A+n

Choose /1 € (0, 7) such that

2

Loy "h ()

A=A—n) oo T+s0" ~

Then by (5.89)

[In(1 + x(2,))|

<[¢% rt) LA+ ey
TS 145 (1-A—p)
la Woor(r)

+
(I=A—=n)! Sy 14 5(t)
x | exp (A + oy /l;_f
(1 - A-— 77)[ 11—t

5(A+m(f Atn

+e(A+n)a* /tn r(0)
t*—h 14 s()

r(u)
1+ s(u)

_In(1+ A+

o
A=A =n) Sy THs0" =

. In(+A+07)

A+n

) i
)
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I(A+nay [ r(u)
X exp <_(1—A—77)’ /tn*_I N +S(u)a’u dt
e Wor(@)
(I=A=n)" Jron T+ 5(0)

~ . In(1+A+)
—(A+m(a—~—7;;;—J

e e lon(Atm) (77" r()
+——¢€X P Ee— du
&+ (=A=' Jyee T+5W

_e(A'H’)“* exp (- la(A+n) (% r(u) du
(A+m) (I=A=n) Jyr—r 1+ 5()

e /t” r0
(IT=A=n Joen 14500

— @+ ("
1 . lay W ()
(A+m“pQA+m(“_a—A—mlgf1+wwd0)

1 . Loy W r(u)
(A+m“pQA+m<a_a—A—mALﬂ1+wmmJ)

[ n t
— il ; / r) dt, sincee® > 1+ x forall x,
(A=A =n)" Jix—n 1+ (1)

_ma+A+m)
A+

+

In(1+ A 1+ A —1
§(A+n)(a*—n(+ +n)) +A+7

A+ (A+n)
lay W r(u)
u
A Sy T @)

e /ﬁ ro
(I=A=n) Sz 1 +5()

—(A+1n) (a* T
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i ln(1+A+r)))
:A _—_—
() (o - 2
la M)
1-—
ot e 1150
ln(1+A+n))
A
= A+ )( A+n
ot 4o ln(1+A+n)
A+n
14+ A In(1 + A
:1+a*(A+n)_(+ +m)n(l+A+17)
A+7

and so

x(t9))] < exp (1 b dFAtDAF AL ’7)) —1.

A+

Combining all the three cases, we have

|x(t¥))| < max{A4, B, C}, (5.90)
where
A= exp (;emﬂ)a*(l ooy _ 1) 1
A+n
B = ;e(A‘F'ﬂa* _ 1’
I1+A+n
1+ A In(1+ A
C:exp(1+a*(A+n)_( +A+n)n(l+ +n))_1'
A+
Since
1 1« 1
R (ST N I
=07 Z 2
1 1 *
1m—{—e°‘z—1} =a*—-1<1,
=0z (z+1
and

1 1 In(1 1
=07 Z 2
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it follows that there exists ¢p < 1 such that, for sufficiently small ¢ > 0, we have

I« 1 *
exp|—e* “(1—e®)—1)—1<ayz, —e* *—1 < apz,
Z z+1

and

B (14+2)In(1+2)

exp (1 +a*z
z

)—l<aoz, forall0 < z < &.

Thus by (5.90), we get
XD < (A + 7).
Letting n — oo and n — 0, we have
A < oA,

which, together with op < 1, implies A = 0. The proof is now complete. ]

5.5 Models with Periodic Coefficients

The variation of the environment plays an important role in many biological and
ecological dynamical systems. The assumption of periodicity of the parameters in
the system (in a way) incorporates the periodicity of the environment. It is realistic
to assume that the parameters in the models are periodic functions of period w. We
consider the nonautonomous “food-limited” population model

dN() K(@)— Nt —mw)
4 TN e S ONG —me)

(5.91)

In this section we discuss (5.91) when K is a periodic function. The results in this
section are adapted from [28]. We first consider the nondelay case.

Theorem 5.5.1. Suppose r, c, and K are continuous and positive periodic function
of period w. Then there exists a unique w-periodic solution N*(t) of the periodic
differential equation

dN(t) K(t) — N(@)
- ONO e or N D)

(5.92)

such that all other positive solutions of (5.92) satisfy

Tim [N(1) = N*(0)] = 0. (5.93)
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Proof. Let N(t,0, Ny) denote the unique solution of (5.92) through the initial point
(0, No). Let

K. = min K(tf) and K* = max K(¢).
0<t<w

0<i<w
Then it follows from (5.92) that
Ny € [K«, K*] = N(¢,0, Ny) € [K«, K*], for t >0
and in particular
N, = N(w,0, Ny) € [K«, K*].
Define the function
S [Ks, K¥] = [Ks, K]
by
S (No) = No.

As N(t;0, Ny) depends continuously on Ny, it follows that f is a continuous
function mapping [K,, K*] into itself. Therefore f has a fixed point M. In view
of the w-periodic of r,¢, and K, it follows that the unique solution N*(t) =
N(t,0, Ny) of (5.92) through the initial point (0, N;') is positive and w-periodic.
This completes the proof of the existence of a positive and w-periodic solution
N*(t) of (5.92).

Let N(¢) be an arbitrary positive solution of (5.92). We let

N(t) = N*(t)e*? (5.94)
and note
d;gt) = F(N*(1)e"®) — F(N*(1)). (5.95)
where
Flw) = r(n )

K@)+ c(t)r(tu’
By the mean-value theorem of differential calculus, we can rewrite (5.95) in the

form

dx(t) 3 )
= A(t)[e 1], (5.96)

where

14+ r(t)c(?)

= & + reeop DN OKO: (5.97)

A(t)
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and £(¢) lies between N*(¢) and N*(t)e*®. Define a Lyapunov function V
for (5.96) in the form

V() = V(x(@)) =[5V — 1]

Calculating the rate of change of V' along the solutions of (5.96) we obtain for
x(t) # 0 that

dv
d[(t) = 24 —1]?* < 0. (5.98)

One can easily see that every positive solution of this equation is bounded. Therefore
x(t) is also bounded. As r, K, and N* are positive functions and & (¢) lies between
N*(t) and N*(t)e*®, it follows from (5.97) that there exists a positive number 1
such that

A(t) > p, for t > 0.
Thus from (5.98) we have

dVvi(t
df ! < el 1,
SO
t
V) + 2,u/ e We*® —1]2ds < V(0) < oo.
0
Hence

ex(t)[eX(t) —1]? € L(0, 0).

Since x(¢) and x(z) are bounded in [0, 00), it follows from Barbalats’ Theorem (see
Sect. 1.4) that

eV 12 >0 as t - co.

Thus x(t) — 0 as ¢t — oo and the result follows from (5.94). This completes the
proof. |

Now we consider the periodic delay differential equation (5.91), namely

K(t)— N(t —mw)

N'(t) =r(t)N(t , 5.99
O =rON ) e e OrONG = ma) (5-99)

together with the initial condition
N(t) =¢(t), for —mw <t <0, (5.100)

¢ € C[[-mw,0],R*], and ¢(0) > 0.

Note the unique positive periodic solution N *(¢) of (5.92) is also a periodic solution
of (5.99).
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For convenience, we introduce the notations
r* =max{r(t):t €[0,w]}, r«=min{r(r):t € [0, o]},

K* =max{K() :t € [0,0]}, Ks«=min{K(t):1 €[0,w]},

1 maw
N" = K* exp[K*(%)avmw], where (%)av = %/0 Ir{((ss)) ds, (5.101)

*

K* — N¥ 1 mow
N; = Ky exp[———r,mo], where r,, = — r(s)ds. (5.102)
K mo Jo

Theorem 5.5.2. If N(t) is a solution of the initial value problems (5.99) and (5.100)
then there exists a number T = T (¢) such that

Ny < N(@t) <N", fort>T. (5.103)
Proof. We note that any solution of (5.99) satisfies the differential inequality

r()N@)[K* — N(t — mw)]

N = O T erONGC —ma)’

(5.104)

Solutions of (5.104) can be either oscillatory or nonoscillatory about K*.

First, suppose that N(¢) is oscillatory about K*. Then there exists a sequence
{t,}, t, = oo asn — oo of zeros of N(t) — K™* such that N(t) — K™* takes both
positive and negative values on (¢, t,+1) forn = 1,2,....Let N(z,") denote a local
maximum of N(¢) on (¢, t,+1). Then from (5.104), we obtain

rONE)IK® = N(t; —mw)]
K(t?) + ct)rE Ny —mow)’

0=N'(t)) <

which implies that
Nt —mw) < K*.

This shows that there exists a point § € [t — mw,t)] such that N(§) = K*.
Integrating (5.104) over [£, ,¥] we obtain

N@E [, r(s) IO
NG 5/; Krm?@ =X /_ O

and

N(ty) < K™ exp[K*(r/K)amo). (5.105)
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Since the right side of (5.105) is independent of #,,, we conclude that
N(t) < K*exp[K*(r/K)ymw] = N*, for t > t] + 2mw. (5.106)

Next assume that N(¢) is non oscillatory about K*. Then it is easily seen that for
every ¢ > 0 there exists a 71 = T (¢) such that

N() < K* +¢, for t > T.
This and (5.106) imply that there exists a T = T'(¢) such that
N(@) <N" for t>T.

In a similar way we can derive a lower bound for positive solutions of (5.99). In fact
from (5.99) we find

Ky — Nt —mw)
Kt)+c)rt)Nt —mw)’

N'(t) = r(t)N(1) (5.107)

Let N(¢) be an oscillatory solution about K and let {s,} — oo as n — oo be such
that
N(s,)— Ky =0, forn=1,2,...,

and N(¢) — K takes both positive and negative values on (,,#,+1). Let s be such
that N(s;y) is a local minimum of N(¢). Then from (5.107), we obtain

Ky« — N(sy —mw)
K(sy) + c(spr(sHN(sy — mw)’

0= N'(sy) = r(s;)N(sy)

which implies that
N(sy —mw) > K.

This show that there exists a point € [s) — mw,s,] such that N(n) = K.
Integrating (5.107) over [n, s;;] we find

n Y6 / T (K = N o
n

K. ~ K.

*—/ r(s) > *—/ r(s)ds
K 1 K s —mo

and

K. — Nt sy
N(sy) > Ky exp *—/ r(s)ds | = Nj.
K *—mw

S
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Hence
N(s) = Ny, for t > 1) +2mo. (5.108)

Next, assume that N () is nonoscillatory about K. One can easily show in this case
that for every positive ¢ there exists a 7, = T;(¢) such that

N(t) > Ky —¢, for t>T,.
This and (5.108) imply that there exists a 75 = T>(¢) such that
N(t) > Ny —e, for t > T,.

The proof is complete. ]

We will derive sufficient conditions for the global attractivity of N*(z) with
respect to all other positive solutions of (5.99) and (5.100). As before we set

N(t) = N*(t)e* ™, (5.109)
in (5.99) and note that
x'(t) = G(x(t —mw)) — G(0), (5.110)

where

K()— N*(t)e"

CwW =D T eroON e (.11
We can rewrite (5.110) in the form
x'(t) = -B(@) x(t — mw), (5.112)
where
K@)ro)[1 + r(0)c@)]()
B(t) = 5.113
= Tko +corozop G119
and ¢ (¢) lies between N *(¢) and N(t — mw). Clearly
_ Kuri(1 4 rics) N K*r*(1+r*c*)N"
B, = K e S B(1) < KorerNy = BY.  (5.114)

Theorem 5.5.3. Assume that the positive periodic functions r(t), K(t), and c(t)
satisfy the condition

r(s)
K(s)

uw=K*exp |:K* (L) ma)i| /mw[l + r(s)c(s)] ds < 1. (5.115)
av 0

K
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Then every solution of (5.99) and (5.100) satisfies

lim [N(1) = N*(0)] = 0. (5.116)

Proof. 1Tt suffices to prove that every solution x of (5.112) and (5.113) satisfies
lim x(¢) = 0. (5.117)
—>00

Consider V() = V(x(t)) given by

2

Vi) = [x(r) _ f "B+ mw)x(s)ds]

+ /l B(s + 2mw) (/t B(u+ mw)xz(t)du) ds, (5.118)

—mw s

which in view of (5.112) yields

avie)
dr

2 |:x(t) — /t B(s + mw)x(s) ds:| [=B(t + mw)x(1)]

+B(t + mw)x*(t) [t B(s + 2mw)ds
, t—mo
—B(t + mw) B(u 4+ mw)x*(u)du. (5.119)
t—mo
Using the inequality
2x()x(s) < x2(t) + x%(s),
and simplifying (5.119) we obtain

dV(r)
dt

< —B(t + mw)x*(t)

X |:2 —/ B(s + mw)ds — / B(s + ma))ds]
< —B(t + mw)x*()(1 — ). (5.120)

It follows from (5.115) that V' is eventually nonincreasing say for t > T. Clearly
all solutions of (5.99) are bounded and so by (5.109) and (5.110), x is uniformly
continuous on [0, co). Integrating (5.120) over [T, ¢] and taking into account the
inequality (5.115), we get

V(t) +2B;(1 — ) /Tt x2(s)ds < V(T) < oo.
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Hence x? € L(T, 0co) and by Barbalat’s Theorem (see Sect. 1.4)
lim x2(z) = 0.
—>00

The proof is complete. |

5.6 Global Stability of Models with Impulses

In this section, we are concerned with the global stability of “food-limited”
population models with impulsive effects. We consider the model

1—-N@{ -
N0 = PONOT s

N(t) = N(te)'7%, k e N,

t>0, t#, 5.121)

where p € C[0,00) with p > 0, 1 € (0,00), T > 0, by > —1 for all k € N. The
aim in this section is to establish some sufficient conditions which ensure that every
solution of (5.121) tends to 1 as # — oo. The results in this section are adapted from
[41]. Let the sequence # (k € N) be fixed and satisfy the condition,

O<ti<th<...<tlgy = 00, ask — oo.

We only consider solutions of (5.121) with initial conditions of the form

N@)=¢(t), for —1<t=<0,
5.122
% ¢ € C([-7,0],[0,00)), and ¢(0) > 0. ( )
Lemma 5.6.1. Suppose that any € > 0 there exists an integer N such that
n+m
[[a+b) <1+e forn>Nandm=o. (5.123)
k=n
If in addition
+o00
/ p(s) [T 0+ b "ds = oo, (5.124)
0 0<tr <s
then every non-oscillatory solution of
, 1— ex(t—r)
X (t) = P(f)l T dex—0’ t 7& Tk, (5.125)

x(tF) =1 +b)x (), keN

tends to zero as t tends to infinity.



5.6 Global Stability of Models with Impulses 257

Proof. Without loss of generality, suppose that x(¢) is an eventually positive
solution of (5.125). Then thereisa 77 > O such that x(t —7) > O fort > T}, t # 1.
Thus (5.125) implies that x () is decreasing in (y, tx+1] with t; > Tj. Let

lim inf =a.
1mt;r}rmx(t) o

Then o > 0. First we prove @ = 0. Since x (#) is a left locally minimum value of
x(t), there is a subsequence {x(Z;)} such that

Iim x(#%.) = .
;Jim_ (%;)

If « # 0, then @ > 0. Choose € > 0 such that « — ¢ > 0. Again there is a
T >T,, T #t;suchthat x(t — 1) > o — €, fort > T. Hence (5.125) implies

1 — %€

e
"< p(t)———, t>T, t # 1.
X0 = PO 12T 1 E b

Integrating the above inequality from 7" to ;, we get

[ a+b0 ") —x(T)

T <tk <tk

tk/-
1 —e*¢

< W/p(s) [T a+b07"ds.

T T<tp<s
Let either

lim sup 1_[ (14+b;) =0 or lim sup l_[ (14 br) #0,

J—>oo T<t<ty; Jj—>too T<t<t;

and it follows that oo < —oo or —x(7") < —o0, a contradiction. Then o = 0.
Now for any ¢ > T, there is a f, such that 7, < 1 < Suppose that
Ty <tgj41 < ... <Ulij41 < t. Then

i

0 < x(1) < x(tk‘tH) = (1 + br;+1)x (t;+1)
< (1 +bk,-+l)x(t]:j_.+1_1)

= (1 + bi;+) (1 + by +1—1)x (T, +1-1)

IA

i
= [T+ bag o))

s=0
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i
From (5.123), there is a constant A > 0 such that 1_[(1 + b, +5) < A for any
s=0
[ and any k;. Thus 0 < x(f) < Ax(t;). Then lim;— 1o x(t) = 0. The proof is

complete. ]
Lemma 5.6.2. Suppose that (5.123), (5.124) hold and there is a constant M > 0
such that
t
/p(s) [] a+bods <M. t=o0. (5.126)
f—t S<tp <t

Then every oscillatory solution of (5.125) is bounded.
Proof. Let x(t) be oscillatory solution of (5.125). Equation (5.125) implies

xX'(t) < p@). 120, 1#q. (5.127)
Choose a sequence {c, } such that

x(cy) =0, where 0 < c; <c¢; <..., with n—lir—Poocn = 400,

x(t) >0, fort € [c2i—1,¢2], and x(¢) <0, fort € [cai, C2i41]-
Let

Xi= sup x(¢t) and X; = inf x(7).
1€[cai—1.¢2i] t€[c2i 2 41]

It suffices to prove that {X;} and {X;} are bounded. First, we prove that {X;} is
bounded above. In this step, there are two cases to consider.

Case 1. X; is the maximum value of x(¢) in [c2;—1, C2;].

In this case, there is a ¢ € (c¢2;—1, ¢2;) such that x; = x(c) > 0, x'(c) > 0.
Equation (5.125) implies x(t — t) < 0. Then there is a § € (¢ — 1, ¢) such that
x (&) = 0. Integrating (5.127) from & to ¢, we get

c

%= x(c) S/p(t) [T O +bode < m.

1<t <c
£ k

Case 2. X; is not the maximum value of x(¢) in [cp;—1, ¢2;].

In this case, there is a tx4; € (czi—1,¢;) such that X; = x(tk++l). We suppose
that

Coi <l < ... <lpyy.

There are two cases to consider.
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Subcase 2.1: x(t,fﬂ._l) >x(tkvj)j=2,...,1

Then x(¢) has maximum x(c) in [c2;—1, tx+1]- By Case 1 we have x(¢) < M.
Hence

i
2= x(t) = (U4 b x(een) - < ]+ b x ()
s=1

I
< M []A+ biwo)
s=1
Subcase 2.2:  There is an integer j* € {2,...,/} with x(tk++j,_1) < x(t4+;+) and
x(tlii-j—]) > x(tetj), j=Jj +1,....1L

Then x (¢) has maximum x (¢) in [ty 4 j«—1, x4 j+]. By Case 1 we have x(c) < M.
Hence

!
L =xt) =0+ bp)x(tep) < ... < 1_[ (1 + brys) X (trtj+)
s=j*

i
M T+ by,

s=j*

IA

From condition (5.123), from Cases 1 and 2, one gets that there is a constant 4 > 0
such that

X = X(tk+1) <M or X = X(tg41) < AM. (5.128)

Next, we prove that {X; } is bounded below. From (5.128), there is a constant B > 0
such that x(¢) < B, for all ¢t > 0. Equation (5.125) implies

1—eB
"ty> ———p(@t), t >0, t#t. 5.129
x()_1+ke3p()’ >0, t #1 ( )

Using a method similar to that in Cases 1 and 2, we get

. 1—eB
F> <
"T 1+ deB
or
. 1—eB AM
X > ———AM.
"T 14 deB

This shows that {X;} is bounded below. The proof is complete. |
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The following result is well known.
Lemma 5.6.3. The system of inequalities

e 1—e¢"
du>1+A)——
andu = (1+ )1+)Lev

1—
142
r= 04D

has only a unique solution u = v = 0 in the region —oo < u <0 <v < +o0.
Lemma 5.6.4. Suppose that A € (0, 1] and (5.123), (5.124) hold. If

t

lim sup / p(s) l_[ (A+bp)ds <1+ A, (5.130)

t—>—+00 L. s<tp<t

then every oscillatory solution of (5.125) tends to zero as t tends to infinity.
Proof. Let x(t) be an oscillatory solution of (5.125). By Lemma 5.6.2, x(z) is
bounded. Let

11m mf x(t) =u and lim sup x(¢) = v.
t—>+00

Then
—o0o<u<0<v<+oo.

For any € > 0, (5.123) implies that there is a N > 0 such that

n+m
l_[(1+bk)<1+e, forn > N and m > 0.
k=n

In addition, for this € there is a 7" > 5 such that

t

/p(s) [] +b0ds <+ +e). foralls =T,

f—1 St <t

and
m=u—cec<ult—1)<v+e=nv.
Then (5.125) implies

ui

X(t)_p(t) , =T, t#ty, (5.131)

—e
1+ Aen
and

eVl

x(t)>p(t) , t>T, t #t.

1+ Ae"
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Choose a sequence {c,} such that x(¢,) = 0, T < ¢ < ¢2 < ..., ¢ —>
400, x(t) > 0, fort € (czi—1,¢2;) and x(¢) < O0fort € (cz;, c2i41)- Let

Xi= sup x(t), X;i= inf  x(¢).
1€(c2i—1.€2i) 1€(e2ic2i41)

Then

lim supX; = v, lim infX; = u.
I—>00 i—>00

We divide the proof into two steps.
Case 1. X; is the maximum value of x(¢) in (c2;—1, C2;).

In this case, there is a ¢ € (¢2;—1, ¢2;) such that X; = x(¢) > 0, x'(¢) > 0, and
x(t —7) < 0. Then there is a £ € (¢ — 7, ¢) such that x(§) = 0. Integrating (5.131)
from £ to ¢, we get

] _ c
T / po) TT -+ b
ui

1-—
< (1 +)&)(1 +€)m

Case 2. X; is not the maximum value of x(z) in (¢pi—1, ¢2;).

In this case, there is a fx4; € (c2i—1,C2;) such that X; = x(tk++l). Suppose
Cri] < tp41 <...<tg4;.Asin Case2in Lemma 5.6.2, thereisac € (cai—1, tk+1)
such that x(c) is a left locally maximum value of x(¢), and we have that there is a
Jj €{1,2,...,1} such that

1 !
£ < [+ bierdx(©@ = [[A + beadd + (1 + 2)

§=j s=J

Then by (5.123), we get

—e"
1+Au1'

1 —e"
Xi = (1 + 6)2(1 + A)m

Leti — +o00, € — 0, and we get

1—e"
<(1+A 5.132
v+ DT (5.132)
Similarly, we have

eV

1+ Xev’

From Lemma 5.6.3, we get from (5.132) and (5.133) that u = v = 0. Then
lim;—, oo x(¢) = 0. This completes the proof. |

u> (1 +A) (5.133)
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Lemma 5.6.5. Suppose that A > 1 and (5.123), (5.124), and (5.130) hold. Then
every oscillatory solution of (5.125) tends to zero as t tends to infinity.

1
Proof. Since A € (1, +00), let M(t) = m and (5.121) becomes

M(t —‘L’)

1
We note T € (0,1). Then by Lemma 5.6.4, we get Lemma 5.6.5. The proof is

complete. |

Lemma 5.6.6. Suppose that A € (0, 1], and (5.123), (5.124) holds. If

t

3
limsup/p(s) ]_[ (14 b)) ds < 5(1 + 1), (5.135)

1—>+o00 pa t—T<ty <t

then every oscillatory solution of (5.125) tends to zero as t — +o0.
Proof. Let x(t) be an oscillatory solution of (5.125). By Lemma 5.6.2, x(¢) is
bounded. Let

lim sup x(¢) =v and hm 1nf x(t) = u.
t—>+00

Then
—o0o<u<0<v<+oo.

From (5.123), for any € > 0, there is a N such that

n+m
[Ta+b)<1+e n=N m=o.
k=n

Again for this € > 0, there is a T > ty such that

2D gy <31+ A)(14€) :=8(1+e€), t>T

/ ]_[ (14b) ' T (5.136)

I—T=<t<s

m=u—e<x(t—t)<v+e=nv, t>T.
Then (5.125) implies

— pl1

e
"< —p@), t>T, t#t. 5.137
YO S fa PO 12T 1 (5.137)
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Choose a sequence {c,, } suchthat x(c,) =0, T <c; <c3 < ..., ¢y > +00,n —>
400, x(t) > 0fort € (ci—1,¢2;) and x(t) < O fort € (¢, C2i41)- Let

Xi= sup x(¢), X;i= inf x(¢).
t€(cai—1.02i) 1€(c2i,C2i+41)
Then
lim supx; = v, lim infX; = u.
1—>00 1 —>00
We first prove
. 1-1 ,
X <(1+21) A—TA (1+e€) (5.138)
or
1-2 1 —en
V<(0+M)0+e?(A-—=4%), where A = ————. 5.139
X = (T +A)( +€)( 6 ) where 1 + Ae ( )
There are two cases to be considered.
Case 1. X; is the maximum value of x(¢) in (c2;—1, C2;).
In this case, there is a ¢ € (c¢2;—1, ¢2;) such that x; = x(¢) > 0, x'(¢) > 0.

By (5.125) we have x(¢ — 7) < 0. Then there is a £ € (¢ — 7, ¢) such that x(§) = 0.
Ift € [§,c], thent — v < &. Integrating (5.137) from ¢ — 7 to £, one gets

&
- 11 (l+bk)x(t—r)§A/p(s) [T (4 +beds. (5.140)
t—t<t <& —1 s<ty <€
Equation (5.125) implies for ¢t > 0 that
§
t-ew(-A [ o) ] (+bo'as)
X'(1) < p(1) = T . (5.141)
1+)Lexp(—A[p(s) [ a+b0ds)
— —T<tp<s

X

Integrating (5.141) f t d noting that
ntegrating ( ) from £ to ¢ and noting tha T4 her

is decreasing, we get
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§
. tmeeea [ po) [T sl
x(c) < / p() i e [T (0 +bor
d 1+MWPA/M@ [T (+botds)

c

= [»0) TT a+50

<t <c
£ k

t

1= Vexpd [ po) ] (4b0'an)

1—T<t}<s
X Et dt
1+ Ae—48 exp(A[p(S) [T +b0ds)
£ —T=Zt <s

t

1—e—A5exp(A/P(S) [T a+bods [T a+b07

c

£ s<tr<c t—t<tp<c
= [ »0) [
§ 1+ de=48 exp(A/p(s) l_[ (1 + by)ds 1_[ (14 b)) 1
3 S<t<c —T1=<t<c

x [T a+boar

<t <c
t

| 1= Vexp(at+ 97 [ ps) T] (1+bods)

S<t<c
< /p(t) [T a+50 . dt
t<tp<c

§ 1 4+ Ae=48 exp(A(1 +6)_1/p(s) [T (+bods)

E St <c

c

14+ A
= t 1+ b)dt — ————
fp(%llf b =
A+

c

1+ e P exp(A(l +€)~! / p(s) 1_[ (1 + by)ds)

St <c
£ k

14 de—48

x In dt.
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Subcase 1.1:

| 1 (14 A)e 205
/p(t) [T a+b0dr < _Zln%(we)

1<t <c
E =k

A

=a(l+e) <8(1+e).

By the monotone property of the function

(1+21) —AS+ Ax(14e)7!
B G 0 MY I s+ |
TA(+ o) n(1+2e )

and using le=4% = (1 + k)e_M(lJTA) — 1, we get that

1+ 14 peA0tAe
x(c)5(1+e)(a— T In Ry )

=(+a+—7 1 + Ae—As+ia

Then Lemma 5.3.3 gives us that

AAZ

Xi=x(c)<(+e) |:a + 1;_—14)&(—)%(1 — )%A) + (8 — oz))i|

=(1—}-6)[0(—(1—}-1)(1—ATA)—}-AS—AQ]

=—(1+e)(1+2) [1—%1—31]
(1 + A)e M=%
A

—(1+ )

Db A1 (L AeT M0 — et

3+ 4 1-4 M=)
:(1+e)[—(1+x)(1— A)— v In e T 2 1]

2
Then from Lemma 5.3.1

x(e) < —(14+ )1 +¢) (1 - iA)

1+ 1+ 1—2
1 Al1- 124242
+(1+¢€) y ( 3 g )

=(1+e)(1+2A) (A— %Az),

265
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ie.,

x()<(1+e)(1+2) (A — %Az) )

Subcase 1.2:

/p(t) l_[ (14 br)dt <86(1 +¢€) <a(l +¢).

1<t <c
E =ik

In this case o > %(1 + A1), 1i.e.,

(1 + L)e240-5) _ |
)

1 3
S > 2(1+A).
a4 U+

From Lemma 5.3.4 we have that

—1
A a-xn 2
A>O—5+ ( )+—>

3 4

Integrating (5.141) from £ to ¢, we get

N L+ A
i = 1 -
X =x(c)<8(1+e) AT o

1+ de M exp(A(1 +€)7'8(1 + €))
X In

1+ de—48

1+ A 1+ A
_(1+e)(8— A 1n1+)te—A5)

1+ A A+ e
—(1+e)(8+ A (ln 1 —AS)).

By a method similar to that in Lemmas 5.3.5 and 5.3.6, we get

Xi=x()=(U+e)(l+21)

=2 1 19(1=2) .  27(1—4A + A2
All— —2A4-(- A A
xAl g Atg!l 6 + 16
81(1— 114 + 1142 — A3 (1 + 1402 + A4
B0y ) g B0
160 640

ie.,

x(@)<(1+e)(d+2) (A — %Az) )

(5.142)

2

(5.143)
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Subcase 1.3:

8(1 4 ¢) z/p(z) [T a+b0de > e +e).

1<ty <c
§

Choose 1 € (£, ¢) such that

c

/p(t) [] (4 +b0dr =a1+e).

1<t <c
" =lk

Integrating (5.137) from & to 7, one gets

n

x < A/p(t) [T (+b0adr

¢ t<ty<n
Integrating (5.137) from 7 to ¢, we get

x(@)—x(m [] A +bo)

N=<tx<c

3
¢ l—exp(—A/[)(x) l—[ (1+bk)lds)
dt.

1—T=l} <s
< [»0) TT a+80 :
n IS¢ 1+Aexp(—A/p(s) l_[ (l+bk)—1ds)

I—T=<t} <s

t—t

t—t

By deleting x (1) and noting

e (L )05 g
e =

T ,
we have
X = x(c)
n c
=a[p0) [T o+ [ oo [T a+b
1<t <n 1<t <c
§ n
1+ e 4 exp(A(1 + €)™ / p(s) [T (1 +byds)
st <c
X dt

§
n

1+ de= 4 exp(A(1 +¢€)! / p(s) 1_[ (1 + by)ds)
§

S<I<c

267
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n c

=A/p(t) [ (1+bk)dt+fp(t) [T (+bod:
£ 1<t <c " 1<t <c
1+ de 4 exp(A(1 +6)’1/p(s) l_[ (1 + by)ds)

1+ 2 i
- n
AA(1 4+ e)!

3
1
1+ de 4 exp(A(1 + €)! / p(s) l_[ (1 + bi)ds)
St <c
£
Using the monotone property of the function

(1+2) 1+ Le—As+Ax(1+o~!
T AA(1 +e)! f 1 + Ae—Ab—AatAx(i+e)~"

on [0,8(1 + €)]

and by Lemma 5.3.1, it follows that

),(\f,' = X(C)

S(l—i—e)(AS—i—(l—A)oc—l—i_ll L+A )

A "1+ AeAa

:(1+e)(A8+(1—A)a—(1+A)(1—%A))

342 1—4
=(1+¢) (—(1 +/\)(1——2 A)——A w)
1-1 ,
=(1+ed+A1)(A4- — 4 )s
where
(14 A)e~ 0= _ 1
w =1In ,
A
ie.,
1-1 ,
x(e) =1+ +A)(A—TA ). (5.144)

Case 2. X; is not the maximum value of x(¢) in (c2;—1, ¢2;).

In this case, there is a ty4; € (cpi—1,C2;) such that x; = x(t,:rl). Suppose
Crimq < tp41 <...<tr4;.Asin Case 2 in Lemma 5.6.2, thereisac € (¢pi—1, tk+1)
such that x(c) is a locally maximum value of x(¢), and there isa j € {1,2,...,[}
such that



5.6 Global Stability of Models with Impulses

i
& = [0+ bigo)x(e),

s=j

where x(c) satisfies (5.138). Then by (5.123), we get
1—A

F<(4+ex) <1+ +A)(A- TA2).

Leti — +o00, € = 01n (5.138) and (5.139) to obtain

l—e" 1—=X1 [ 1—e")\>
vs(l—'—k)(l—i-/\e”_ 6 (1+Ae”))'

Next we prove

l—e" 1—X4 [ 1—¢e")\>
Mz(l_kk)(l—i—ke“_ 6 (1+Ae”))'

Then by (5.125), we have

v

+ dev’

Let B =
1

x'(t) = Bp(t), t >T, t#t.
There are two cases to consider.

Case 1. X; is the minimum value of x (¢) in (¢;, C2i+1)-

269

(5.145)

(5.146)

(5.147)

In this case, there is a ¢ € (¢, ¢2i4+1) such that x(¢) = % < 0, x'(¢) <0,
and then there isa £ € (¢ — 7,¢) such that x(§) = 0. If t € [£,¢], thent — 7 < §.

Integrating (5.137) from ¢t — 7 to ¢, we get

3

— l_[ (1+bk)x(t—r)zB/p(s) l_[ (1 + by)ds.

t—t<t; <& s<ty <€

—t
Then, we get for ¢ € [§,c], t # t, that

§
t-esp(-8 [ p) ] (+b07'as

—1<
—1 =Tt <s

X (1) = p(r) E

1+/\exp(—B/p(s) 1_[ (1 + by)~lds)

< .
f—1 =TI <S

We consider two subcases.

(5.148)
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Subcase 1.1:
Y 1 (14 e B0=4)
1 1 —1 .
/p(t) [T a+b0dr<( +6)<8+Bn -
3 t<ti<c
In this case, it is easy to see that
_(1+1)B [ 1+AB_ I—ABZ
1-B 2 6
1 —
. _U+HB (1 L1-4 B) .
2 3
Then by Lemma 5.3.2, we get
14 D)e 80— 1 1424 1-2A
n L e ’ L B).
A 2 3
Integrating (5.147) from & to c, one gets
& =2z 8 [ p) [] 1+ bods
£ 1<t <c
14 A)e *BO=%) |
2|:SB+ln( + )ek : (1+¢)
1-2 ,
>+ M) +e)B - TB ).
Then
) =4,
x(@)=%>10+1)A+e)(B - TB ). (5.149)
Subcase 1.2:
§(14¢) > /p(t) [T (+b0dr
£ 1<t <c
1 (14 1)e ™ B0=4)
>(8+Eln( t+ Ae - T ) +e).

Choose 1 € (£, ¢) such that
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| I (14 A)e B0=4)
/p(t) ]_[ (1+bk)dz=[8+§1n( +Ae n - (1+e).
" 1<tp<c

Integrating (5.147) from £ to 7, integrating (5.148) from 7 to ¢, and deleting x (1),
we get

Xi = x(c)
n c
=8 [ p0) [T @ +dodi+ [ p0) [T 450
¢ 1<ty <n 7 t<ty<c
n
l—exp(—B/p(s) [T a+b07"as)

—Tt<tp <s§

X i dt
m

1+Aexp(—B/p(s) [T a+b0ds)

t—T<ty <s

—1

1<t <n

n
> B/p(t) [T (1t + by
¢

+/p(t) [T a+bod:

" t<tp<c
I+ie B3 exp B(l+€)_1/p(s) l_[ (1+by)ds
1 + A, £ St <c
- —In -
AB(1 +€)7!
1+Ae—Bdexp B(1+e)_1/‘p(x) 1—[ (1+by)ds
3 S=tp <c
n c
= B/p(t) I] a +bk)dt+/p(t) [] (+boar
1<ty <n t<ty<c
§ n
1+Ae_3“+f)_l‘gexp B/p(s) l_[ (14by)ds
1+ A ¢ s<tp<c

— n
AB(1+¢€)7! (142)e 8=
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1=t <n

n
= —(1—B)/p(t) l_[ (1 + by)dt
3

Y AB
+/p(t) I1 (I+b)dt = (1+ (1 +e)(1-=7)

<t <c
n =l

CERED
AB

c

14 Ae™ B3 exp(B(1+e)—1/p(s) [T (+bo)ds)

S<t<c
£ =l

1+A

X In

Using the monotone property of the function

1+ )1 +e) 1+ re BleB0to
X — In

1
"B ) cx €[0,8(1 + )],

we get

x(c)

n
=—-5) [ p0) [] (+bd
&

<t <c

181+ — 1+ +e)(1— %B)

= (1+e) [‘(1 Ly et g 128, “*”e_m_lzg)_l}
I .

B A
By Lemma 5.3.2, we get

Fi=x(c) >0 +e)(1+A)(B - %Bz). (5.150)

Case 2. X; is not the minimum value of x(¢) in (cz;, C2i+1)-

In this case, there is a 4 4; € (¢2i—1, ¢2;) such that X; = x(l,jﬂ). Suppose ¢y; <
tet1 < ... < tr4;. As in Case 2 in Lemma 5.6.2, there is a ¢ € (¢pi—1, tx+1) such
that x(c) is a locally minimum value of x(¢), and x(c) satisfies (5.149) [(5.150)].
Then thereis a j € {1,2,...,/} such that

l
% = [ [0+ b1+ €)x(0).

=J
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By (5.123), we have

> +e)xc)>(1+e)*1+A)(B- %Bz)- (5.151)

Leti — +00, € > 0in (5.149) and (5.151) and we get (5.146). Let
l—e" l—e"
T+et 7 Txre

Then (5.145) and (5.146) become

1 1—2
2 < (14 A)(x — —— 242,

1=y & (5.152)
In——— > (1+ A)(—y — —=y?)

14+ Ax — 6 '

By Lemma 5.3.7, then x = y = 0. Thus u = v = 0. Then x(¢) tends to zero as ¢
tends to infinity. The proof is complete. |

Lemma 5.6.7. Suppose that A € (1,00) and (5.123), (5.130) holds. Then every
oscillatory solution of (5.125) tends to zero as t tends to infinity.

Theorem 5.6.1. Assume —1 < by < 0 for everyk € Nand Y ;2 by = —oc. In
addition if

t

[ 2o T1 a+boas

<
f—t St <t

is bounded, then every positive solution of (5.121) tends to 1 as t tends to infinity.
t
Proof. 1t follows from —1 < by < 0 and/ p(s) 1_[ (1 4+ by)ds is bounded

—1 St <t

that (5.123) holds. Let

yo =x@ [T a+s0™

0<tp <t
An argument similar to that in the proof of Lemma 5.6.2 yields that y (¢) is bounded.

o0
If —1 < by <0, then H(l + br) = 0, if and only if Y ;2 | by = —oo. Hence
k=1

x@)=y@ [T a+bo,

0<t <t

and the conditions of this theorem imply that x (¢) tends to zero as ¢ tends to infinity.
This completes the proof. ]
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Theorem 5.6.2. Suppose (5.123), (5.124), and (5.135) hold. Then every positive
solution of (5.121) tends to 1 as t tends to infinity.

5.7 Global Stability of Generalized Models

In this section we establish some global attractivity conditions of the generalized
“food-limited” population model

N'(t) = r(t)N(1) (%) , >0, (5.153)

where
r € C([0, 00), (0, 0)), A(t) € C([0,00),[0,00)), T > 0,

and « is a ratio of two odd positive integers so that o > 1. The results in this section
are adapted from [39]. We consider solutions of (5.153) under the initial condition

N() = (@), t € [-.0],
¢ € C([-7.0].[0,00)), $(0) > 0.

(5.154)
Lemma 5.7.1. Foranyv € [0, 1),
In(2e™17/2 — 1) > 2y,
and for any u € [0, 00),
In(2e" 2 _ 1) > 2u.
Proof. Let
f) =207 — ™ and g(v) = (1 — )" /2.
It is easy to see that
g0) =1,¢'(v) = ="+ <0
and
') =271 —g(v)] = —2¢ g’ (£)v > 0, for some £ € (0,v).

It follows that f(v) > f(0) = 1 for v € [0, 1). The other assertion can be similarly
proved. The proof is complete. ]
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Lemma 5.7.2. Assume that v € (0, 1). Then for any x € [0, c0),

1+ [Ze*V(I*V/z) _ l]e*vx v V2

! =—v({l-5)+ 5 1

n = <—v(1-3)+ 3= (5.155)
Proof. Set

a:= ze—v(l—v/Z) -1
and
fG) = In((1 +ae™)/(1+ 7).

Note

£0) = —v(1—v/2), f'(0) = g[e—vﬂ—v/z) _1,
and

7 _ a . 1 2 vy
f (x) - |:(a +evx)2 (1 +evx)2:|v e

Since o < 1, it follows that f " (x) <0 for x > 0. By the mean-value theorem and
the fact that

e¥(1-x/2) <1l+x, forx>0,

we have
F0) = FO) + f/Ox = =v(1 = 3) + [0 — 1]
< =Dy
2T
The proof is complete. u

The following result follows the usual argument in the literature (for complete-
ness we include it here; see also Lemma 5.3.7).

Lemma 5.7.3. The system of inequalities

In £ <2y,

1—v :

(5.156)

has a unique solution (u,v) = (0,0) in the region {(u,v) : =1 <v <0<u < 1}.
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Proof Set
g(x) = exp(2(1 —x)/(1 +x)), f(x) =x—g(g(x))
and
h(x) = (1+ x)°[1 + ()]’ — 16g(x)g(g(x)).
Observe that (1) = 0,

16g(x)g(g(x))
1+ x)2[1 + g

flx)=1-g'(x)g'(gx)) =1—
and for x > 1

' (x) = 2[1 + g)][(1 +x)(1 + g(x)) — 4g(x)]

[1—g(x)]?

28( x)g(g(x ))m

64
(1+)
> 0.

It follows that 2(x) > h(1) = 0 for x > 1, and so f’(x) > O for x > 1. This shows
that f(x) > f(1) = 0 for x > 1. From (5.156), we have

gp) <A <1<p<gQ),
where
A=1=v)/A+v)and p = (1 +u)/(1 —u).
If u > 0, then 1 > 1, and so
w=gR) <glgw) < p.

This contradiction implies that # = v = 0. The proof is complete. ]
The following result follows the usual argument.

Lemma 5.7.4. Suppose that

+o00
(@) _
[ TR = (5.157)

Then every solution of (5.153) and (5.154) that does not oscillate about 1 tends to 1
ast — oo.
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Lemma 5.7.5. Suppose 0 < A(t) < 1fort > 0and

N0
ltlgliggzr (A(S))adsfi (5.158)

Let N(t) = N(t;0,¢) be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N(t) is bounded above and is strictly bounded below by 0.

Proof. Let ty be large enough so that

t
r(s)
ds < 4, forall t > t,.
/ () ’

Let ¢* be a local maximum point of N(¢) fort > #y + 7. Then
N'(¢*)=0and N¢t* —1) = 1.

Integrating (5.153) from t* — t to ¢* yields

r* — N(s — o
N(*) = exp fr(s)N(s) U(s)N—Ei—m ds
< exp / r(s)ds | < et

Consequently,

lim sup N(t) < e*.

=00

Next, let ¢4 be a local minimum point of N(¢) for¢ > o+ 37. Then N'(t4) = 0 and
N(t« — t) = 1. Proceeding as before and using the fact that
1-Nt—1) - 1 —e* - 1—e*
1+ AON@E —7) ~ 1+ A@)e* ~ A0)(A +e?)’

fort > to + 1, we have

*

r(s) 1—e :
N(tx) = exp f 2e(s) |:)L(s)(1+€4)i| @

x—T

1—e*7”
> exp 4|:1+e4:| .
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Hence

. 1—e*]”

The proof is complete. u

The proof of next result is similar to the proof of Lemma 5.7.5 and is thus
omitted.

Lemma 5.7.6. Assume that A(t) > 1 fort > 1 and

t

lim sup / r(s)ds < 3. (5.159)

t—>—+00
t—t

Let N(t) = N(t,0,¢) be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N(t) is bounded above and strictly bounded below by 0.

Theorem 5.7.1. Suppose 0 < A(t) < 1, fort > 0, and (5.157) holds. If (5.158)
holds, then every solution of (5.153) and (5.154) tends to 1 as t tends to +oo.

Proof. Let

u =1lim sup N(¢) and v = limtinf N(1).
—00

—>o0

Then by Lemma 5.7.5,0 < v < 1 and u > 1. It suffices to show that u = v = 1. For
any ¢ € (0,v), choose #y = ty(&) such that

vi=sv—e<Nlt—-1)<ute=u,t>t (5.160)
and
)
r(s
A”(t)ds§3+8’ t>t—T. (5.161)
-t
Note that
(1 —x) < (1= x) for x <1
(1+ Ax) A1+ x))
and
1— 1-—
( X) > ( X) for x > 1.

(1+Ax) — A1+ x)
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Thus

279

/ < 1——V1 —VI ’ >
N0 =reNE (1 +/\(t)v1) rON® (Mf)(l +V1)) e

and

N'@®) 2 rONG) (1 i;(bgul) ZrONO (Mr)(l Zlu]))

Consequently,
/ r(?)
N(z)sm) ()— =
and
r(r)
N(”Zw) ()1+u1 t> 1.

(5.162)

> 1.

(5.163)

(5.164)

(5.165)

Let R(¢) = r(t)/A%(t). Let { p,} be an increasing sequence such that p, >ty +

lim p, = 400, N'(p,) =0and lim N(p,) = u.
n—00 n—oo

By (5.153), N(p, —t) = 1.For p, — 1t <t < p,, by integrating (5.164) from ¢ — 1

to p, — T, we get

n

N(t —1t) > exp (—

Substituting this into (5.153), if N(t — 7) < 1, we have

1-N(t—r1)

N'(t) < R(t)N(1) |:1+N—(Z—‘L')

} R(t)N(t)l N

Pn—T

1_
1 —exp _1+:11 / R(s)ds

=T
Pn—T

1_
1+ exp _1+: / R(s)ds

t—t

< R)N(@)

If N(t — 1) > 1, by (5.153), N'(¢) < 0, and thus

1 —vy, Pn7T
l—exp(—]+ )
1—v

I + exp (—

N'(1) < R(t)N(t)

er(S)dS) , (pn—71) <t =< pa.

—N( — ‘c)



280

5 Food-Limited Population Models
Ift € (p, — 7, pu), we have

1—
N'(t) < min % RN 1= d ,R(t)N(t)A(t)} , (5.166)
V]
where
1— Pn—T

1 —exp (—1 n d s R(s)ds)

A0 = = -
— vl n

1 — R(s)d
-I-exp( T, t[f () s)
Since

O<x=00-v)/(14+v) <1,
it follows from Lemma 5.7.1 that

In2e*0=/271 > oy

and so

1
0 <—=InQRe*1=/2 _1)<2.
X
There are two possibilities.

Case 1.

Pn

1
/ R(s)ds < ——In(Qe™U0=0/2 _ 1) = A <3 +¢,
Vo

Pn—T

where vo = (1 —vy)/(1 + vy).

Then
o R(?) |:1 — exp (—vo pnfr R(s)ds):|
InN(p,) < [ e dt
Pt 1+ exp (—vo i R(s)ds)
) R(t) |:1 — exp (—vo (} r(s)ds — } R(s)ds)):|
f" t—t Pn—T d
Pn—T

t
1 + exp (—vo (} R(s)ds — } R(s)ds))

- pn—t
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) R(1) |:1 — exp (—vo (3 +e— } R(s)ds))i|
] — d
e 1+ exp (—vo (3 +e— [ R(s)ds))
Pn—T

t

I+exp|—w|3+e— / R(s)ds

IA

t

pf" R(s)ds — =1 o
= s)ds — —1n
it Vo 1 + e—(3+£)vo
Note that the function
21In[1 + e71G+e=0)
) =y Gl )

V1
is increasing in [0, 3 4 ¢] and we have by Lemmas 5.7.1 and 5.7.2, that

2 1 —vo(3+e—A)
InN(p,) <A——1n te

Vo 1+ e—(B+e)vo

2 1 2 —vo(1—vo/2) _ 1 —vo(3+e—A)
A 2L e Je

Vo 1+ e—v0(3+8—A)

2 2
<A+ — —vo(l—v—0)+m(3+8—A)

Vo 2 2

1 —vo —vo(1=v0/2)
=244+ e)vy— In(2e "0V 70/9 — 1)
Vo

<24

Case 2.

Pn
A< / R(s)ds <3 +e.

Pn—T
Choose &, € (p, — t, pu) such that

Pn

g R(s)ds = A.
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Then by (5.166) and Lemma 5.7.1,

én
N < | REs)ds
Pn—T

Pn—T

o R()|1—exp| —wo / R(s)ds

-7
+ / Pn—T dt

i 1 +exp|—w / R(s)ds

S"
<vo [ R(s)ds
Pn—T

) R(it)|1—exp|—w|3+e— / R(s)ds

+/ o dt
t
& 1 +exp (—vo (3 +e— [ R(s)ds))
Pn—T
&n
= / R(s)ds
Pn—T

Pn
2
+ / R(s)ds — —In By
Vo
S’I
Pn 2
= f R(s)ds + (1 —V())A - —BO
Vo

Pn—T

2

2
<B4+ewy+(1—v)d——In—"—
< B +evo+ (1—vo) B p—T

l—VO

=2+ @+e)v — In(2e"0(—w/2 _ 1)

Vo
<24+ 9,
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where

pll
I+exp|—w|3+e— / R(s)ds

Pn—T

EI'I
1 +exp (—vo (3 +e— [ R(s)ds))
Pn—T

and we have used the fact that the function

By =

2 1 4+ exp[—vi 3+ & —x)]
gx)=——1In + vix
vi 1+exp[—vi(3+¢e+ A—x)]

is increasing on [0, 3 + ¢].
In either cases, we have proved that

InN(p,) <2+¢e)y forn=1,2,....
Letting n — oo and ¢ — 0, we have

1—v

lnu<?2 .
1+v

(5.167)

Next, let {¢,} be an increasing sequence such that g, > t + 7, limg, =
n—>oo

+00, N'(gy) = 0, and lim, oo N(g,) = —v. By (5.153), N(¢, — t) = 1. For
qn —t <t < p,, integrating (5.165) from ¢t — 7 to ¢, — 7, we have

—u Pn—T

/ R(S)dS), Gn —T =t = qn.
1 t—1

1
N(t—r)fexp(—1+
u

Substituting this into (5.153), if N(t — ) > 1, we have

N'(6) = r()N() [ I-NG-7) ]a

1+ AN —1)
1-N(t—r1)
1+ AN —1)
| —exp(—uo [ R(s)ds)
> R()N(1) —
1 +exp (—uo tf R(s)ds)

-7

v

R()N(t)

forg, —t <t <q,.-If Nt — t) < 1, then by (5.153), N'(t) > 0, and thus
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qn—T
1 —exp (—uo / R(s)ds)
-7

N'(t) = R(t)N(t)

qn—T ?
1 + exp (—uo / R(s)ds)
t

where ugp = (1 — u1)/(1 4 u;). Thus
qn—T
1 —exp (—uo i R(s)ds)

-7

— N'(t) <min { —R(t)N(#)ug, —R()N(t)

dn—T

1 +exp (—uo / R(s)ds)
o (5.168)

forg, —7 <t < g,. Note that 0 < —up < 1, and one can easily see that
1 —up(1—up/2)
0 < ——1InQRe ™"/ — 1) < 3.
Ug
There are two cases to consider.
Case 1.

Aqn
1

/ R(s)ds < (3 + &) + — In(2e (7 ®/2) _ 1) = B.
Uo

qn—T
By (5.168) and Lemma 5.7.1,

4qn
—InN(g,) < —uo / R(s)ds < —(3 + &)ug — In(2e 01 7#0/2) _ 1)
qn—T
=< —(1 + 8)140.
Case 2.

4n
B < / R(s)ds <3+«

qdn—T
We choose 1,, € (g, — 7, ¢,) such that

Nn

B = / R(s)ds.

qn—T
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Then by (5.155) and Lemma 5.7.1, we have

qn—T
. o ROlexp(—uo [ R(s)ds)—1]
~InN(gn) < —up [ R(s)ds+ [ i dt

qn—T

nt " 1+4exp(—uy [ R(s)ds)
-7

Mn
<-uy [ R(s)ds
qn—T

" R(t)[exp —up(3 + & — / R(s)ds)] — 1

+ L dt

"+ exp(—up(3 4+ £ — / R(s)ds))

qn—T

Mn 4qn
=—uy | R(s)ds— [ R(s)ds
qn—T Mn
an
1+ exp(—up(3 + ¢ — / R(s)ds))
2 qn—T

- M_o In M

1 + exp(—up(3 +¢— / R(s)ds))

qn—T

—In N(qn)

= (1—uy)B —7R(s)ds+2<1 - %)

Mn

qn
1 +exp(—ug(3+¢e— [ R(s)ds))
+—1In i
Up

1—
<2—(4+euy+ ( ”") In (2¢ 0 (—m0/D=1)
)

< (2 + &)uy,
where we have used the fact that

hx) = —x — — g LR O 67 )
Uuo 2

is increasing on [0, 3 + ¢].
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In either cases, we have proved that —In N(p,) < —(2 + &)up forn = 1,2,....
Letting n — oo and ¢ — 0, we have

1—u
—lnv<-2 . (5.169)
1+u
Let
y=—-10-u/(+u)
and

x={0=-v)/(1+v),

then in view of (5.167), (5.169), and Lemma 5.7.3, we get x = y = 0. This shows
that u = v = 1. The proof is complete. |

By methods similar to those in the proof of Theorem 5.7.1, and by noting that if
A > 1, then

(1—=x)/(1+Ax) =(1—x)/(1+x), forx <1,
and
1-=x)/A+Ax)> (1 —-x)/(1+ x), for x > 1,

one can prove the next result. The details are omitted.

Theorem 5.7.2. Suppose A(t) > 1 fort >0, (5.157), and (5.159) hold. Then every
solution of (5.153) and (5.154) tends to 1 as t tends to +o0.

5.8 Existence of Periodic Solutions

In this section, we consider the equation

AN@) (6 —a(ON() — BON( — (1))
o =N T ONO T dONG =) (5.170)

and establish some sufficient condition which ensures the existence of periodic
solutions. Here a,b,c,d,k,r are continuous w-periodic functions with r > 0,
k>0,a>0,b>0,c>0,and d > 0. The results in this section are adapted
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from [22]. Considering the biological significance of system (5.170), we always
assume that N(0) > 0. The main results will be proved by applying Theorem 1.4.11.
To prove the main results we present some useful lemmas.

Let f be a w-periodic function and define

fl'= min f@), f"= max f(1).

1€[0,0] 1€[0,0]
Lemma 5.8.1. There exists a unique u* > 0 such that

° r(0) =la@) +bOW*
o KO+ (e + dO*

Proof. Let

T ) —la) + b))

Sy = | kO + e +
It is clear that
f) = %dt > 0,
0

41

PR | Tro-la@+ b(t)]%
(o=w) =] AR

o k(0) + [c(t) + d(l)]m

IA

dt <0,

k() + [e) + d(] =L

7 ri¢)—(r"+1)
0 al +b!

and then from the zero point theorem, it follows that there exists a u* €

“yq
(0, c:’Terl) such that f(«*) = 0. Moreover,

ar _ _7 k@la(®) +b@] + r@)e() +d@)]
du {k(t) + [c(t) + d(1)]u}?

dt <0,

that is, f(u) is monotonically decreasing with respect to u, and hence u™* is unique.
The proof is complete. ]
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Theorem 5.8.1. Equation (5.170) has at least one positive periodic solution of
period @

Proof. Let N(t) = exp{x(¢)}. Then (5.170) may be reformulated as

dx(t) _ r(1)—a()expix(r)} — b@) exp{x(r — z(r))}

dt k() + c(t)exp{x ()} + d(t) exp{x(t — t(t))} (5.171)

In order to apply Theorem 1.4.11 to (5.171), we first let
X=Y={x() e CR,R), x(t +w) =x(1)}
and

x| = max |[x(¢)], xeX(orY).
t€[0,w]

Then X and Y are Banach spaces with the norm ||.||. Let

_r(t) —a(t)expix (1)} — b(r) exp{x(t — (1))}
k() + c(t)explx(t)} + d(t) exp{x(t — t(t))}’
dx(t)

Lx=x"= , =
dt

€ X,

1(1)
= — [x()dt, xeX,
()

1(,()
— [z(t)dt, zeY.
Wy

Then it follows that

Ker L=R, Im L={z€Y: [z(r)dt =0; isclosedinY,
0

dim Ker L =1 =codim Im L,

and P, Q are continuous projectors such that
ImP =Ker L, Ker Q=Im L=1Im (I — Q).

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (of L)

Kp:Im L — KerP N Dom L
is
t

Kp(z) = [zs)ds —

7}z(s) ds dt.
0 00

g~
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Also
o o= L [ 7O —a)explx(s)) = b(s) explx(s = o)
@ ] K6+ 0 explx )} + A6y expixs = to)]
and
1 r(s) — als) explx(s)} — b(s) explx(s — 7(5))}
KT = QN x = / K(5) F o(5) explr(s)} + d(s) explr(s — 1))

0

ds dt

LT[ r(s) —als) expix(s)} — b(s) expix (s — (s))}
[l

w : k(s) + c(s)exp{x(s)} + d(s) exp{x(s — 7(s))}

B (5 1 ) [ 765) = als) explx ()} = b(s) explr(s = T()}
w 2 A k(s) + c(s) exp{x(s)} + d(s) exp{x(s — t(5))}

By the Arzela—Ascoli Theorem, it is easy to see that Kp(I — Q)N(Q) is compact
for any open bounded subset 2 of X and Q N(2) is bounded. Thus, N is L-compact
on Q for any open bounded set € X.

Consider the operator equation L x = AN x, A € (0, 1), that is,

dx(t) _ , r() —a()expix ()} — b(t) expix(t — (1))}

dt k@) + c(t)exp{x (1)} + d(t) exp{x(t — (1))} (5.172)
Let x = x(t) € X be a solution of (5.172) for a certain A € (0,1).
Integrating (5.172) with respect to ¢ over the interval [0, @] yields
1 r(t) —a(t)expix(t)} — b(1) exp{x(t — (1))} ,
A k() + c(t) exp{x(t)} + d(t) exp{x(t — r(t))}dl =0, (5.173)
and therefore
a(t) expix (1)} + b(1) exp{x(r — 7(2))}
A k(t) 4+ c(t)exp{x(t)} + d(t) exp{x(t — 7(2))}
_ 7 r(t) o
A k(@) + c(t)exp{x(t)} + d(t)exp{x(t — (1))}
- b @ - wr"
< / 0= w (5.174)
0
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which together with (5.172) implies

7 |X'(1)| dt = A7
0 0

From (5.173) and the mean-value theorem for integral, we see that there exists § €
[0, ] such that

r(§) —a@®expix(©)} —bE expix — ()} =
k(&) + c(§) expix(§)} + d(§) expix(§ — (§))} ’

and therefore

r(t) —a(t)exp{x(t)} —b(t)exp{x(t —t(t))} Jr < 2wr"
k() + c(t)exp{x ()} + d(t) exp{x(t — (1))} k!

r(§) = a(§) expix(§)} + b(§) expix(§ — z(§))}. (5.175)

Since x(t) € X, there exist t;,#, € [0, ] such that x(¢;) = x!, x(t,) = x*, and
then from (5.175) it follows that

ru

ln{al+bl}’

n{_""
n )
a* + b

IA

]

a(§) +b(&)

r(§) }
a(§) +b(&)

v

x(f2) = In %

from which we derive

w

/ rt 201"
x(t) < x(th) +/ |x'(1)] dt < ln{al —I—bl} + = M,

0

1 u
r 2wr
— = M,
a" + b } k! z

x(t) = x(t2) —/ |X'(t)| dt = ln{
0

and hence

x|l = max |x(¢)| < max{|M,|,|M>|} := B;.
tel0,w]

Clearly, B, is independent of the choice of A. Take B = By + B, where B, > 0 is
taken sufficiently large such that [In(u*)| < B, and define

Q:={x(t) e X: |x|| < B}.
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Whenx € 0Q N Ker L =392 NR, x = B or x = —B, and then

1 [ r(6) = a() exp{x(1)} — b(t) expix}
w A k(t) 4+ c(t)exp{x(t)} + d(t) exp{x}

ON x = dt # 0.

Furthermore, a direct calculation reveals that

deg{JON,Q2 N Ker L,0}

el L 7k(z)[a(z>+b(r>]+r<r)[c<r>+d(t>]
& k(1) + [e(0) + d ()P

dt y #0;

here J is the identity mapping since IP = KerL. Thus all the requirements
in Theorem 1.4.11 are satisfied. Hence (5.171) has at least one solution x*(¢) €
Dom LNQ.Set N*(t) = exp{x*(¢)}. Then N *(¢) is a positive w-periodic solution
of (5.170). The proof is complete. |
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