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Abstract The energy of a graph, E.G/, is the sum of the absolute values of its
eigenvalues. The energy concept has received a high interest over the last decade,
at first due to its various applications in chemistry and then in its own right. This
paper focuses on some of the most important results on the bounds for the energy
of general graphs and the energy of bipartite graphs. Some known bounds for the
change in the energy of a graph after deleting a vertex or an edge are also considered.
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1 Introduction and Preliminaries

Let A.G/ be the adjacency matrix of a simple, finite, undirected graph, G, with
vertex set V.G/ and edge set E.G/. The set of the eigenvalues f�1; �2; : : : ; �ng of
A.G/ is the spectrum of G. As the adjacency matrix is symmetric, its eigenvalues
are real and have a sum equal to zero.

According to the interlacing theorem [22]: If G is a graph with spectrum
�1 � �2 � � � � � �n and the spectrum of the graph obtained upon deleting a vertex
u1, G � u1, is �1 � �2 � � � � � �n�1, then the spectrum of G � u1 is “interlaced”
with the spectrum of G, and

�1 � �1 � �2 � �2 � � � � � �n�1 � �n: (1)

Another important property of the eigenvalues of a graph G is: The number of closed
walks of length k in G equals

P
i �k

i , the kth spectral moment of A.G/. In particular,
the trace of A2 is:
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X

i

�2
i D 2m; (2)

and since
P

i �i D 0,

X

i<j

�i �j D �m: (3)

A graph, G, is singular if the adjacency matrix, A.G/, is a singular matrix. The
nullity, �.G/, of a singular graph G is the algebraic multiplicity of the eigenvalue
zero in the graph’s spectrum.

A strongly regular graph with parameters .v; k; �; �/ is a graph with v vertices,
such that each vertex has precisely k neighbors, every pair of its adjacent vertices
has � common neighbors, and every pair of non-adjacent vertices has � common
neighbors.

A 2 � .v; k; �/-design is a family of k blocks of a set of v points, such that each
2-set of points lies in exactly � blocks.

A semiregular bipartite graph is a bipartite graph whose vertices in the same
class of bipartition have the same degree.

The concept of graph energy was first defined by Gutman in [9] and it emerged
from the idea of Hückel energy in theoretical chemistry. Coulson [4] provided the
following integral formula for the energy of a graph, E.G/:

E.G/ D 1

�

Z 1

�1

�

n � ix�0.ix/

�.ix/

�

dx; (4)

where �.x/ is the characteristic polynomial of graph G, and �0.x/ its derivative.
The energy of a graph, G, is defined as the sum of the absolute values of its

eigenvalues:

E.G/ D
nX

iD1

j�i j : (5)

In Sect. 2 of this paper, we focus on some of the most important bounds for the
energy of a general graph and of a bipartite graph, in terms of a graph’s vertices,
edges, degree sequence, and spectral moments. In Sect. 3, we cite several known
bounds for the change in energy upon deleting a vertex or edge. We conclude this
paper with some additional bounds for the energy of bipartite graphs.

We denote the complete graph of order n by Kn and the complete r-partite
graph by Kt;t;:::;t . The path and cycle with n vertices are denoted by Pn and Cn,
respectively. By Tn we denote the tree and by Sn the star graph of order n.
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2 Graph Energy Bounds

The calculation of the energy of certain graphs, such as the path, the cycle, or the
complete graph, is straightforward as their spectrum is known. In this section, we
focus on some of the most important bounds for the energy of general graphs and
the energy of bipartite graphs.

McClelland considers the n vertices and m edges of a graph G for the following
energy bounds:

Theorem 1 ([19]). For an .n; m/-graph G,

q

2m C n.n � 1/ jdetAj2=n � E.G/ � p
2mn: (6)

The upper bound is obtained by the use of the Cauchy–Schwartz inequality to
.1; 1; : : : ; 1/ and .j�1j ; j�2j ; : : : ; j�nj/, so that

E.G/ � p
n

s
X

i

�2
i : (7)

Since
P

i �2
i D 2m, we get the desired result.

For the lower bound, Eq. (2) and the arithmetic-geometric means inequality is
used in

E2.G/ D
 
X

i

j�i j
!2

D
X

i

j�i j2 C 2
X

i<j

ˇ
ˇ�i �j

ˇ
ˇ : (8)

The upper and lower bound of Ineq. (6) can be improved for singular graphs, by
taking into account only the nonzero eigenvalues:

Proposition 1 ([9]). Let G be a graph on n vertices, and nullity �.G/. Then,

E.G/ �
p

2.n � �.G//m: (9)

Proposition 2 ([2]). Let G be a graph on n vertices, and nullity �.G/. Then,

E.G/ � n � �.G/: (10)

In regard to the edges of a graph, a lower and upper bound for the energy of a
graph was given:

Theorem 2 ([3]). Let G be a graph with m edges. Then,

2
p

m � E.G/ � 2m: (11)
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On the left side equality holds if and only if G is a complete bipartite graph and
equality on the right side if and only if G consists of m copies of the complete
graph K2.

The lower bound of the above inequality can be easily derived by using Eqs. (2)

and (3) in E2.G/ D Pn
iD1 �2

i C 2
ˇ
ˇ
ˇ
P

i<j �i �j

ˇ
ˇ
ˇ :

The upper bound takes into consideration that the maximum number of vertices
of a graph with m edges is 2m (this implies m copies of the complete graph K2).

If G is a graph with no isolated vertices, then a lower bound with reference to its
vertices is given by the following theorem.

Theorem 3 ([10]). Let G be a n-vertex graph, with no isolated vertices. Then,

E.G/ � 2
p

n � 1: (12)

If G is connected, then m � n�1 and by using the left side of Ineq. (11), E.G/ �
2
p

m � 2
p

n � 1: The proof is analogous if G is disconnected.
From Ineq. (12), it is obvious that the star graph has minimum energy among all

n-vertex graphs with no isolated vertices.
An upper bound for a graph with n vertices was given by Koolen and Moolton:

Theorem 4 ([12]). Let G be a graph with n vertices. Then,

E.G/ � 1

2
n
�p

n C 1
�

; (13)

with equality if and only if G is a strongly regular graph with parameters�
n;

nCp
n

2
;

nC2
p

n

4
;

nC2
p

n

4

�
.

and later an upper bound for a bipartite graph with n vertices was provided by the
same authors:

Theorem 5 ([13]). Let G be a n-vertex bipartite graph. Then,

E.G/ � 1p
8

n
�p

n C p
2
�

: (14)

Equality holds if and only if n D 2v and G is the incidence graph of a

2 � �
v;

vCp
v

2
;

vC2
p

v

4

�
-design.

In order to prove Ineq. (14), the following bound was taken into account:

Theorem 6 ([13]). Let G be a bipartite graph with n > 2 vertices, and m � n
2

edges. Then,

E.G/ � 2

�
2m

n

�

C
v
u
u
t.n � 2/

"

2m � 2

�
2m

n

�2
#

: (15)
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Moreover, equality holds in (15) if and only if at least one of the following statements
is true:

1. n D 2m and G D mK2:

2. n D 2t; m D t 2 and G D Kt;t :

3. n D 2u; 2
p

m < n < 2m, and G is the incidence graph of a symmetric
2 � .u; k; �/-design with k D 2m

n
and � D k.k�1/

u�1
:

In the above theorem, Eq. (2) and the symmetry of the spectrum of the bipartite
graph G are considered, in order to get:

n�1X

iD2

�2
i D 2m � 2�2

1: (16)

By the use of the Cauchy–Schwartz inequality to .1; 1; : : : ; 1/, .j�2j ; : : : ; j�n�1j/,
we get:

n�1X

iD2

j�i j �
q

.n � 2/.2m � 2�2
1/: (17)

It follows that

E.G/ � 2�1 C
q

.n � 2/.2m � 2�2
1/: (18)

Since the function F.x/ WD 2x C p
.n � 2/.2m � 2x2/ decreases on the intervalq

2m
n

< x � p
m and 2m � n, the result is obtained.

In order to get Ineq. (14), we only need to consider that Ineq. (15) is maximized

when m D n2Cn
p

2n
8

: For a general graph Ineq. (15) is written:

Theorem 7 ([12]). Let G be a graph with n vertices and m edges. If 2m � n, then

E.G/ �
�

2m

n

�

C
v
u
u
t.n � 1/

"

2m �
�

2m

n

�2
#

: (19)

Moreover, equality holds in (19) if and only if G Š n
2
K2, or G Š Kn, or G is a

noncomplete connected strongly regular graph with two nontrivial eigenvalues both

having absolute values equal to

r
2m�. 2m

n /
2

n�1
.

An upper bound for the energy of a graph in terms of its vertex degree sequence is:

Theorem 8 ([28]). If G is a graph with n vertices, m edges, and vertex degree
sequence d1; d2; : : : ; dn then
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E.G/ �
s
Pn

iD1 d 2
i

n
C
s

.n � 1/

�

2m �
Pn

iD1 d 2
i

n

�

: (20)

Equality in (20) holds if and only if G is either n
2
K2 (if n D 2m),

Kn .if m D n.n � 1/=2/, or a noncomplete connected strongly regular graph with

two nontrivial eigenvalues both with absolute value

s�

2m �
�

2m
n

�2�

=

�

n � 1

�

or nK1 .if m D 0/.

For the proof of Ineq. (20), as in the proof of Ineq. (15), the Cauchy–Schwartz
inequality is applied to .1; 1; : : : ; 1/, .j�2j ; : : : ; j�nj/, to get

E.G/ � �1 C
q

.n � 1/.2m � �2
1/ (21)

and the inequation �1 �
qPn

iD1 d2
i

n
[27] is taken into account. In a similar way, the

following bound for bipartite graphs was proved by also considering the symmetry
of the spectrum of bipartite graphs.

Theorem 9 ([28]). If G is a bipartite graph with n > 2 vertices, m edges, and
vertex degree sequence d1; d2; : : : ; dn, then

E.G/ � 2

s
Pn

iD1 d 2
i

n
C
s

.n � 2/

�

2m � 2
Pn

iD1 d 2
i

n

�

: (22)

Equality in (22) holds if and only if G is either n
2
K2, a complete bipartite graph,

or the incidence graph of a symmetric 2 � .v; k; �/-design with k D 2m
n

and

� D k.k�1/

v�1
, .n D 2v/, or nK1.

The 2-degree sequence, ti , of a vertex ui 2 V.G/ is the sum of degrees of the
vertices adjacent to ui .

An upper bound in terms of a graph’s degree sequence and 2-degree sequence is:

Theorem 10 ([26]). Let G be a nonempty graph with n vertices, m edges, degree
sequence d1; d2; : : : ; dn and 2-degree sequence t1; t2; : : : ; tn. Then,

E.G/ �
sPn

iD1 t2
iPn

iD1 d 2
i

C
s

.n � 1/

�

2m �
Pn

iD1 t2
iPn

iD1 d 2
i

�

: (23)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kn:

3. G is a nonbipartite connected p-pseudo-regular graph with three distinct

eigenvalues

�

p;

q
2m�p2

n�1
; �
q

2m�p2

n�1

�

where p >

q
2m
n

:
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For the proof of Ineq. (23), the Cauchy–Schwartz inequality is applied to get the

function F.x/ WD x C p
.n � 1/.2m � x2/ and since �1 �

r
Pn

iD1 t2
iPn

iD1 d2
i

the result is

obtained.
For bipartite graphs Ineq. (23) is written:

Theorem 11 ([26]). Let G D .X; Y / be a nonempty bipartite graph with
n > 2 vertices, m edges, degree sequence d1; d2; : : : ; dn, and 2-degree sequence
t1; t2; : : : ; tn. Then,

E.G/ � 2

sPn
iD1 t2

iPn
iD1 d 2

i

C
s

.n � 2/

�

2m � 2

Pn
iD1 t2

iPn
iD1 d 2

i

�

: (24)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m:

3. G is a connected .px; py/-pseudo-semiregular bipartite graph with four distinct

eigenvalues

�p
pxpy;

q
2m�2pxpy

n�2
; �
q

2m�2pxpy

n�2
; �p

pxpy

�

; where
p

pxpy >
q

2m
n

:

Theorem 12 ([18]). Let G be a nonempty simple graph with n vertices and m edges
and let �i be the sum of the 2-degrees of vertices adjacent to vertex vi . Then,

E.G/ �
sPn

iD1 �2
iPn

iD1 t2
i

C
s

.n � 1/

�

2m �
Pn

iD1 �2
iPn

iD1 t2
i

�

: (25)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kn:

3. G is a non-bipartite connected graph satisfying �1

t1
D � � � D �n

tn
and has three

distinct eigenvalues

�

p;

q
2m�p2

n�1
; �
q

2m�p2

n�1

�

where p D �1

t1
D � � � D �n

tn
>

q
2m
n

:

For Ineq. (25), �1 �
r

Pn
iD1 �2

iPn
iD1 t2

i

is taken under consideration.

For bipartite graphs the above theorem can be written:

Theorem 13 ([18]). Let G D .X; Y / be a nonempty bipartite graph with n > 2

vertices and m edges. Then,

E.G/ � 2

sPn
iD1 �2

iPn
iD1 t2

i

C
s

.n � 2/

�

2m � 2

Pn
iD1 �2

iPn
iD1 t2

i

�

: (26)
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Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m:

3. G is a connected bipartite graph with V D fv1; v2; : : : ; vsg [
fvsC1; vsC2; : : : ; vng such that �1

t1
D � � � D �s

ts
and �sC1

tsC1
D � � � D �n

tn
, and

has four distinct eigenvalues

�p
pxpy;

q
2m�2pxpy

n�2
; �
q

2m�2pxpy

n�2
; �p

pxpy

�

;

where px D �1

t1
D � � � D �s

ts
, py D �sC1

tsC1
D � � � D �n

tn
and

p
pxpy >

q
2m
n

:

An upper bound that involves a graph’s spectral moments is:

Theorem 14 ([15]). Let G be a nonempty graph on n vertices. If

r
Pn

iD1 �2
iPn

iD1 t2
i

�
�

M2k

n

� 1
2k , where k is a positive integer, then the inequality

E.G/ �
sPn

iD1 �2
iPn

iD1 t2
i

C .n � 1/
2k�1

2k

 

M2k �
�Pn

iD1 �2
iPn

iD1 t2
i

�k
! 1

2k

(27)

holds. Moreover, equality in 27 holds if and only if G is either n
2
K2, Kn, or a

non-bipartite connected graph satisfying �1

t1
D � � � D �n

tn
and has three distinct

eigenvalues

�

p;

�
M2k�p2k

n�1

� 1
2k

; �
�

M2k�p2k

n�1

� 1
2k
�

, where p D �1

t1
D � � � D �n

tn
>

�
M2k

n

� 1
2k

:

If G is a bipartite graph, Ineq. (27) is written:

Theorem 15 ([15]). Let G D .X; Y / be a nonempty bipartite graph with n > 2

vertices and m edges. If

r
Pn

iD1 �2
iPn

iD1 t2
i

�
�

M2k

n

� 1
2k

, where k is a positive integer, then

the inequality

E.G/ � 2

sPn
iD1 �2

iPn
iD1 t2

i

C .n � 2/
2k�1

2k

 

M2k � 2

�Pn
iD1 �2

iPn
iD1 t2

i

�k
! 1

2k

(28)

holds. Moreover, equality in (28) holds if and only if G is either n
2
K2,

Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m, or a connected bipartite
graph with V D fv1; v2; : : : ; vsg [ fvsC1; vsC2; : : : ; vng such that �1

t1
D

� � � D �s

ts
and �sC1

tsC1
D � � � D �n

tn
, and has four distinct eigenvalues
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�p
pxpy;

�
M2k�2.pxpy/k

n�2

� 1
2k

; �
�

M2k�2.pxpy/k

n�2

� 1
2k

; �p
pxpy

�

; where px D �1

t1
D

� � � D �s

ts
, py D �sC1

tsC1
D � � � D �n

tn
and

p
pxpy >

�
M2k

n

� 1
2k :

In regard to the k-degree dk.v/ of a vertex v 2 G, which is defined as the number
of walks of length k of G starting at v, the next upper bound was given:

Theorem 16 ([11]). Let G be a connected graph with n .n � 2/ vertices and m

edges. Then,

E.G/ �
v
u
u
t
P

v2V.G/ d 2
kC1.v/

P
v2V.G/ d 2

k .v/
C
v
u
u
t.n � 1/

 

2m �
P

v2V.G/ d 2
kC1.v/

P
v2V.G/ d 2

k .v/

!

: (29)

Equality holds if and only if G is the complete graph Kn, or G is a strongly regular

graph with two nontrivial eigenvalues both with absolute value

r
2m�

�
2m
n

�2

n�1
:

If G is a bipartite graph, the above inequality is:

Theorem 17 ([11]). Let G be a connected bipartite graph with n .n � 2/ vertices
and m edges. Then,

E.G/ � 2

v
u
u
t
P

v2V.G/ d 2
kC1.v/

P
v2V.G/ d 2

k .v/
C
v
u
u
t.n � 2/

 

2m � 2

P
v2V.G/ d 2

kC1.v/
P

v2V.G/ d 2
k .v/

!

: (30)

Equality holds if and only if G is the complete bipartite graph or G is the incidence
graph of a symmetric 2 � .v; k; �/-design with k D 2m

n
, n D 2v and � D k.k�1/

v�1
.

3 Graph Energy Change

In this section, we consider the change in the energy of a graph G when a vertex or
an edge is deleted. Whereas when we remove a vertex u, the energy of the induced
subgraph G � u always decreases, for the subgraph G � e, which is obtained upon
deleting an edge e, it has been proved that the energy may increase, decrease, or
stay the same [5].

By the interlacing theorem it can be easily shown that:

E.G � u/ � E.G/: (31)

For singular graphs, Ineq. (31) is improved if the null spread of a vertex u,
�u.G/ D �.G/ � �.G � u/ [7], is taken into consideration:
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Theorem 18 ([24]). Let G D .V; E/ be a graph and u 2 V . If nu.G/ D �1, then

E.G � u/ � E.G/ � .j�l j C j�mj/; (32)

where �l and �m are the smallest nonnegative and the largest nonpositive eigen-
value, respectively.

In the case where G is a connected graph of nullity �.G/ D n � 2, the equality
holds if and only if G is a star graph and u is the center vertex of the graph.

Theorem 19 ([24]). Let G D .V; E/ be a graph and u 2 V . If nu.G/ D 0, then

E.G � u/ � E.G/ � j�i j (33)

where �i is either the smallest nonnegative or the largest nonpositive eigenvalue
of G.

In a similar way, Ineq. (31) can be improved to also include non-singular graphs.
For example:

Let G D .V; E/ be a graph and u 2 V . Let m.G/ be the multiplicity of a
nonnegative eigenvalue � for G, m.G � u/ be the multiplicity of � for G � u,
and mu.G/ D m.G/ � m.G � u/ be the vertex spread of �. Then by the interlacing
inequalities,

Theorem 20. Let G D .V; E/ be a graph and u 2 V . If mu.G/ D 0, then

E.G � u/ � max fE.G/ � �l ; E.G/ � j�mjg (34)

where �l (resp. �m) is the smallest positive (resp. largest negative) eigenvalue of G.

Since the energy of a graph decreases with the removal of a vertex, it is clear that
if H is an induced subgraph of graph G, then

E.H/ � E.G/: (35)

If we examine the subgraph G � e, obtained by deleting edge e from a graph
G, we find that the change in energy does not always decrease. In fact, it may
increase or stay the same. For example, let us consider the complete bipartite graph
K2;2 with nonzero eigenvalues �2; 2 in its spectrum. Then if we delete an edge
e, the subgraph K2;2 � e is the path P3, with nonzero eigenvalues �p

2 and
p

2

in its spectrum. Thus, the energy decreases upon deleting an edge. However, for
the complete bipartite graph K2;3 with known nonzero eigenvalues

p
6, �p

6, the
energy increases if we remove an edge as we find the spectrum of the subgraph
K2;3 � e to be f2:136; 0:662; 0; �0:662; �2:136g :

It has been shown that:
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Proposition 3 ([24]). Let Kp;q be a complete bipartite graph, with p C q > 4.
Then, if we remove an edge e:

E.Kp;q � e/ D 2

q

pq � 1 C 2
p

.p � 1/.q � 1/: (36)

By Ineq. (11),

E.Kp;q � e/ � E.Kp;q/ � 2

�q

pq � 1 C 2
p

.p � 1/.q � 1/ � p
pq

�

; (37)

and the energy of the complete bipartite graph increases after removing an edge.
To obtain Ineq. (36) the symmetry of the graph’s spectrum is considered for its

four nonzero eigenvalues �1 � �2 � �3 � �4, so that the graph’s characteristic
polynomial is written:

xpCq�4.x4 � .�2
1 C �2

2/x2 C �2
1�2

2/: (38)

By Eq. (2) and the trace of A4, we obtain the desired conclusion.
For complete multipartite graphs:

Theorem 21 ([1]). Let G D Kt1;t2;:::;tk be a complete k-partite graph, with k � 2,
ti � 2, for i D 1; : : : ; k. Then for every edge e,

E.Kt1;t2;:::;tk � e/ � E.Kt1;t2;:::;tk /: (39)

Another example of a graph that increases its energy after an edge is removed is
the singular hypercube Qn (the hypercube with even vertices).

Theorem 22 ([24]). Let Q2k be a singular hypercube. If Q2k � e is its subgraph
after removing edge e, then:

E.Q2k � e/ � E.Q2k/: (40)

For Ineq. (40), the following lemma is considered for the adjacency matrix of

the hypercube: A.Qn/ D
�

A.Qn�1/ I2n�1

I2n�1 A.Qn�1/

	

, where I2n�1 denotes the identity

matrix:

Lemma 1 ([23]). For a partitioned matrix C D
�

A X

Y B

	

, where both A and B are

square matrices, we have:

X

j

sj .A/ C
X

j

sj .B/ �
X

j

sj .C /; (41)

where sj .�/ denote the singular values of a matrix.
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Let G � fmg denote the graph obtained from G by deleting all m edges of a
subgraph H but keeping all vertices of H . If G1 and G2 are two graphs without
common vertices, let G1 ˚ G2 denote the graph with vertex set V.G1/ [ V.G2/ and
edge set E.G1/ [ E.G2/. Hence, A.G1 ˚ G2/ D A.G1/ C A.G2/:

Theorem 23 ([5]). If F is a cut set of a simple graph G, then

E.G � F / � E.G/: (42)

To obtain Ineq. (42), Lemma 1 is applied to A.G/ D
�

A.H/ X

XT A.K/

	

, where H

and K are two complementary induced subgraphs of G, such that G �F D H ˚K.

Theorem 24 ([8]). Let A and B be two n � n complex matrices. Then

nX

iD1

si .A C B/C �
nX

iD1

si .A/ C
nX

iD1

si .B/; (43)

where sj .�/ denote the singular values of a matrix.
Moreover equality holds if and only if there exists a unitary matrix P such that

PA and PB are both positive semi-definite.

Theorem 25 ([6]). Let H be an induced subgraph of a graph G. Then,

E.G/ � E.H/ � E.G � fmg/ � E.G/ C E.H/: (44)

Moreover,

1. if H is nonsingular, then the left equality holds if and only if G D H ˚ .G �H/:

2. the right equality holds if and only if m D 0.

For the left side of Ineq. (44) Theorem 24 is applied to

A.G/ D
�

A.H/ XT

X A.G � H/

	

D
�

A.H/ 0

0 0

	

C
�

0 XT

X A.G � H/

	

; (45)

where X represents edges connecting H and G � H .
For the right side of Ineq. (44) the same theorem is applied to

A.G � fmg/ D A.G/ C
��A.H/ 0

0 0

	

: (46)

It has been shown that:

Theorem 26 ([5]). For any simple graph G with at least one edge,

E.G/ � 2: (47)
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Since the complete graph K2 is an induced subgraph of G, by Ineq. (35) the proof
of the above bound is trivial.

Corollary 1 ([6]). Let e be an edge of a graph G. Then the subgraph with the edge
set feg is induced and nonsingular, hence

E.G/ � 2 � E.G � feg/ � E.G/ C 2: (48)

Moreover,

1. the left equality holds if and only if e is an isolated edge of G.
2. the right equality never holds.

From Ineq. (48), it is clear that:

1. if e is an edge of a connected graph G such that E.G/ D E.G � feg/ C 2, then
G D K2:

2. there are no graphs G such that E.G � feg/ D E.G/ C 2:

4 Energy of Bipartite Graphs

We conclude this paper with some additional bounds for the energy of bipartite
graphs.

Theorem 27 ([2]). If G is a connected bipartite graph of rank r , then

E.G/ �
p

.r C 1/2 � 5: (49)

Theorem 28 ([2]). Let G be a bipartite graph with at least four vertices. If G is
not full rank, then

E.G/ � 1 C rank.G/: (50)

Theorem 29 ([21]). Let G be a bipartite graph with 2N vertices. Then,

E.G/ � 2m

r
m

q
; (51)

where q D PN
iD1 �4

i . The equality holds if and only if G D NK2 or G is the direct
sum of isolated vertices and complete bipartite graphs Kr1;s1 ; : : : ; Krj ;sj such that
r1s1 D � � � D rj sj :

It has been shown [21] that Ineq. (51) remains also true if G is a bipartite graph
with 2N C 1 vertices.
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Fig. 1 The graph Bn;m

Kr,s

u

t

•

•

•
•

•

•

•

•

•

Fig. 2 The graph Grst

Let Bn;m be the bipartite .n; m/-graph with two vertices on one side, one of which
is connected to all vertices on the other side, as illustrated in Fig. 1.

Theorem 30 ([17]). Bn;m .n � m � 2.n � 2// is the unique graph with minimal
energy in all bipartite connected .n; m/-graphs.

An n-vertex graph G is said to be hypoenergetic if E.G/ < n: It has been shown
[20] that almost all graphs are hyperenergetic (E.G/ > 2.n � 1//; which implies
that there are but a few hypoenergetic graphs.

Theorem 31 ([25]). Let G Š Kn1;n2 , n1 ¤ n2. Then G is hypoenergetic.

Since the spectrum of Kn1;n2 is known, the proof of the above theorem is trivial.

Theorem 32 ([16]). The complete bipartite graph K2;3 is the only hypoenergetic
connected cycle-containing (or cyclic) graph with maximum degree � � 3:

Let Grst be a graph of order n constructed as shown in Fig. 2, by identifying
the center of a star K1;t with a vertex of a complete bipartite graph Kr;s , where
r C s C t D n.

Theorem 33 ([25]). Among the complete bipartite graphs with pendent vertices
attached, some are hypoenergetic.

It is well known [14] that the graph G Š Grst has a nullity of �.G/ D n � 4. By
Ineq. (9) and after some calculations, it can be easily shown that the graph Grst is
hypoenergetic for t � r > s � 5:
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