
On Some Integral Operators

Khalida Inayat Noor

Abstract Let P.n; ˇ/; 0 � ˇ < 1; be the class of functions p W p.z/ D 1 C
cnzn CcnC1znC1 C : : : analytic in the unit disc E such that Refp.z/g > ˇ: The class
Pk.n; ˇ/; k � 2 is defined as follows: An analytic function p 2 Pk.n; ˇ/; k � 2;

0 � ˇ < 1 if and only if there exist p1; p2 2 P.n; ˇ/ such that

p.z/ D
�

k

4
C 1

2

�
p1.z/ �

�
k

4
� 1

2

�
p2.z/:

In this paper, we discuss some integral operators for certain classes of analytic
functions defined in E and related with the class Pk.n; ˇ/:

Keywords Analytic functions • Integral operators • Convolution • Libera
operators

1 Introduction

Let A .n/ denote the class of functions f of the form

f .z/ D z C
1X

kDnC1

akzk; .n D N D f1; 2; 3; : : : ; g/ ; (1)

analytic in the unit disc E D fz W jzj < 1g: Let P.n; ˇ/ be the class of functions
h.z/ of the form

h.z/ D 1 C cnzn C cnC1znC1 C : : : ; (2)
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which are analytic in E and satisfy Refh.z/g > ˇ; 0 � ˇ < 1; z 2 We note that
P.1; 0/ � P is the class of functions with positive real part.

Let Pk.n; ˇ/; k � 2; 0 � ˇ < 1; be the class of functions p; analytic in E; such
that

p.z/ D
�

k

4
C 1

2

�
p1.z/ �

�
k

4
� 1

2

�
p2.z/

if and only if p1; p2 2 P.n; ˇ/ for z 2 E: The class Pk.1; 0/ � Pk was introduced
in [6]. We note that p 2 Pk.n; ˇ/ if and only if there exists h 2 Pk.n; 0/ such that

p.z/ D .1 � ˇ/h.z/ C ˇ;

Let f and g be analytic in E with f .z/ given by (1) and g.z/ D zCP1
kDnC1 bkzk:

Then the convolution (or Hadamard product ) of f and g is defined by

.f ? g/.z/ D z C
1X

kDnC1

akbkzk:

A function f 2 A .n/ is said to belong to the class Rk.n; ˇ/; k � 2; 0 � ˇ < 1; if
and only if zf 0

f
2 Pk.n; ˇ/ for z 2 E:

We note that Rk.1; 0/ � Rk is the class of functions with bounded radius
rotation, first discussed by Tammi, see [1] and R2.1; 0/ consists of starlike univalent
functions.

Similarly f 2 A .n/ belongs to Vk.n; ˇ/ for z 2 E if and only if .f 0/0

f 0
2

Pk.n; ˇ/: It is obvious that

f 2 Vk.n; ˇ/ if and only if zf 0 2 Rk.n; ˇ/: (3)

It may be observed that V2.1; 0/ � C; the class of convex univalent functions
and Vk.1; 0/ � Vk is the class of functions with bounded boundary rotation first
discussed by Paatero, see [1].

2 Preliminary Results

We need the following results in our investigation.

Lemma 2.1 ([5]). Let u D u1 C iu2; v D v1 C iv2 and �.u; v/ be a complex-
valued function satisfying the following conditions:

(i). �.u; v/ is continuous in a domain D � C2

(ii). .1; 0/ 2 D and �f.1; 0/g > 0:

(iii). Re�.iu2; v1/ � 0 whenever .iu2; v1/ 2 D and v1 � �1
2

.1 C u2
2/:
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Let h.z/; given by (2), be analytic in E such that .h.z/; zh0.z// 2 D and
Re� .h.z/; zh0.z// > 0 for all z 2 E; then Refh.z/g > 0 in E:

We shall need the following result which is a modified version of Theorem 3.3e
in [4, p113].

Lemma 2.2. Let ˇ > 0; ˇ C ı > 0 and ˛ 2 Œ˛0; 1/; where

˛0 D max

�
ˇ � ı � 1

2ˇ
;

�ı

ˇ

�
:

If
n
h.z/ C zh0.z/

ˇh.z/Cı

o
2 P.1; ˛/ for z 2 E; then h 2 P.1; �/ in E; where

�.˛; ˇ; ı/ D
"

.ˇ C ı/

ˇf2F1.2ˇ.1 � ˛/; 1; ˇ C ı C 1I r
1Cr

g � ı

ˇ

#
; (4)

where 2F1 denotes hypergeometric function. This result is sharp and external
function is given as

p0.z/ D 1

ˇg.z/
� ı

ˇ
; (5)

with

g.z/ D
Z 1

0

�
1 � z

1 � tz

�2ˇ.1�˛/

t .ˇCı�1/dt

D 2F1

�
2ˇ.1 � ˛/; 1; ˇ C ı C 1I z

z � 1

�
: .ˇ C ı/�1 :

3 Main Results

Theorem 3.1. Let f 2 Rk.n; ˇ/; g 2 Rk.n; ˇ/; ˛; c; ı and � be positively real
and ı D � D ˛: Then the function F defined by

ŒF .z/�˛ D cz˛�c

Z z

0

t .c�ı��/�1 .f .t//ı .g.t//� dt (6)

belongs to Rk.n; �/; where

� D 2.2ˇc1 C n˛1/

.n˛1 � 2ˇ C 2c1/ C p
.n˛1 � 2ˇ C 2c1/2 C 8.2ˇc1 C n˛1/

; (7)



576 K.I. Noor

with

c1 D c � ˛

˛
; ˛1 D 1

˛
:

Proof. First we show that there exists a function F 2 A .n/ satisfying (6). Let

G.z/ D z�.�Cı/ .f .z//ı .g.z//� D 1 C ˛nzn C ˛nC1znC1 C : : : ;

and choose the branches which equal 1 when z D 0: For

K.z/ D z.c���ı/�1 .f .z//ı .g.z//� D zc�1G.z/;

we have

L.z/ D c

zc

Z z

0

K.t/dt D 1 C c

n C 1
˛nzn C : : : ;

where L is well defined and analytic in E: Now let

F.z/ D Œz˛L.z/�
1
˛ D z ŒL.z/�

1
˛ ;

where we choose the branch of ŒL.z/�
1
˛ which equals 1 when z D 0: Thus F 2 A .n/

and satisfies (6).
Now, from (6), we have

z.c�˛�1/ ŒF .z/�˛
�
.c � ˛/ C ˛

zF 0.z/
F.z/

�
D c

h
z.c�ı��/�1 .f .z//ı .g.z//�

i
: (8)

We write

zF 0.z/
F.z/

D p.z/ D
�

k

4
C 1

2

�
p1.z/ �

�
k

4
� 1

2

�
p2.z/: (9)

Then p.z/ D 1 C cnzn C cnC1znC1 C : : : ; is analytic in E:

Logarithmic differentiation of (8) and use of (9) yields

.c � ˛ � 1/ C ˛p.z/ C ˛zp0.z/
.c � ˛/ C ˛p.z/

D .c � ı � � � 1/ C ızf 0.z/
f .z/

C �zg0.z/
g.z/

:

Since � C ı D ˛ W f; g 2 Pk.n; ˇ/ and it is known [2] that Pk.n; ˇ/ is a convex set,
it follows that

(
p C

1
˛

zp0

p C �
c�˛

˛

	
)

2 Pk.n; ˇ/; z 2 E:

Define
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˚˛;c.z/ D 1

1 C c1

z

.1 � z/˛1C1
C c1

1 C c1

z

.1 � z/˛1C2
;

with ˛1 D 1
˛
; c1 D c�˛

˛
:

Then, using (9), we have

�
p ?

˚˛;c

z

�
D p.z/ C ˛1zp0.z/

p.z/ C c1

D
�

k

4
C 1

2

� �
p1.z/ C ˛1zp0

1.z/

p1.z/ C c1

�

�
�

k

4
� 1

2

� �
p2.z/ C ˛1zp0

2.z/

p2.z/ C c1

�
:

Since
n
p C ˛1zp0

pCc1

o
2 Pk.n; ˇ/; it follows that

�
pi C ˛1zp0

i

pi C c1

�
2 Pk.n; ˇ/; for i D 1; 2; z 2 E:

Writing pi .z/ D .1 � �/Hi.z/ C �; i D 1; 2; we have, for z 2 E;

�
.1 � �/Hi C � C ˛1.1 � �/H 0

i

.1 � �/Hi C � C c1

� ˇ

�
2 P.n; 0/:

We now form the functional �.u; v/ by taking u D Hi and v D zH 0
i and so

�.u; v/ D .� � ˇ/ C .1 � �/u C ˛1.1 � �/v

.1 � �/u C � C c1

:

It can easily be seen that:

(i) �.u; v/ is continuous in D D �
C � ˚

�Cc1

1��


	 � C :

(ii) .i; 0/ 2 D and Ref�.i; 0/ D 1 � ˇ > 0:

To verify the condition (iii) of Lemma 2.1, we proceed as follows:

For all .iu2; v1/ 2 D such that v1 � �n.1Cu2
2/

2
; and

< f�.iu2; v1/g D .� � ˇ/ C ˛1.1 � �/.� C c1/v1

.� C c1/2 C .1 � �/2u2
2

� 2.� � ˇ/
˚
.�Cc1/2C.1��/2u2

2


 �n˛1.1��/.�Cc1/.1Cu2
2/

2.�Cc1/2C.1��/2u2
2

D A C Bu2
2

2C
(10)

� 0; if A � 0 and B � 0;
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where

A D 2.� � ˇ/.� C c1/2 � n˛1.1 � �/.� C c1/;

B D 2.� � ˇ/.1 � �/2 � n˛1.1 � �/.� C c1/

C D .� C c1/2 C .1 � �/2u2
2 > 0:

From A D 0; we obtain � as given by (7) and B � 0 ensures that 0 � � < 1: Thus
using Lemma 2.1, it follows that Hi 2 P.n; 0/ and therefore pi 2 P.n; �/; i D
1; 2: Consequently p 2 Pk.n; �/ and this completes the proof. �

Corollary 3.1. For 0 D c D n D 1; ˇ D 0 and f D g; F 2 Vk implies that
F 2 Rk. 1

2
/ and this, with k D 2; gives us a well-known result that every convex

function is starlike of order 1
2

in E:

Corollary 3.2. For n D 1; let f 2 Rk.1; �/ in Theorem 3.1. Then F 2 Rk.1; �0/;

where �0 is given by (2.1) with ˇ D ˛; ı D .1 � ˛/: This result is sharp.

Corollary 3.3. In (2), we take � C ı D 1; c D 2; f D g and obtain Libera’s
integral operator [3, 6] as:

F.z/ D 2

z

Z z

0

f .t/dt; (11)

where f 2 Rk.n; ˇ/: Then, by Theorem 3.1, it follows that F 2 Rk.n; �1/; where

�1 D 2.2ˇ C n/h
.n � 2ˇ C 2/ C p

.n � 2ˇ C 2/2 C 8.2ˇ C n/
i : (12)

For ˇ D 0 and n D 1; we have Libera’s operator for the class Rk of bounded radius
rotation. That is, if f 2 Rk and F is given by (3.6), then

F 2 Rk.1; �2/; with �2 D 2

3 C p
17

:

Using Theorem 3.1 and relation (3), we can prove the following.

Theorem 3.2. Let f and g belong to Vk.n; ˇ/; and let F be defined by (6) with
˛; c; ı; � positively real, ı C � D ˛: Then F 2 Vk.n; �/; where � is given by (7).

By taking ˛ D 1; c C 1
�
; � C ı D ˛ D 1 and f D g in (6), we obtain the integral

operator I�.f / D F; defined as:

F.z/ D 1

�

Z z

0

t
1
� �2f .t/dt; .� > 0/: (13)
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With the similar techniques, we can easily prove the following result which is
stronger version than the one proved in Theorem 3.1.

Theorem 3.3. Let f 2 Rk.n; �/ and let, for 0 < � � 1; F be defined by (13). Then
F 2 Rk.n; ı�/; where ı� satisfies the conditions given below:

(i) If 0 < � � 1
2

and n�
2.��1/

� � < 1; then

ı� D ı1 D 1

4�

�
A1 C

q
A2

1 C 8B1

�
� 0;

where

A1 D 2�� C 2� � n�

B1 D �f2�.1 � �/ C n�g:

(ii) If 1
2

< � � 1;
n.��1/

2�
� n.3��p

8�/

2�
� �; then

ı� D ı2 D 1

4�

�
A2 C

q
A2

2 C 8B2

�
� 0;

where

A2 D 2� C 2�� � n�

B2 D �.2�� C n � n�/:

(iii) If 1
2

< � � 1;
n.��1/

2�
<

n.3��p
8�/

2�
< � < 1; then ı3 D ı1:

Special Cases

(1). Let � D 1
2

in (13). Then we have Libera’s operator and (i) gives us

ı� D ı1 D 2.2� C n/

.n � 2� C 2/ C p
.n � 2� C 2/2 C 8.2� C n/

:

(2). When � D 0; � D 1
2
; n D 1; and f 2 Rk; then F 2 Rk.1; ı1/; where

ı� D ı1 D 2

3 C p
17

:

(3). Let � D 1; � D 0; n D 1 and f 2 Rk: Then, from (3.8), it follows that

F.z/ D
Z z

0

f .t/

t
dt
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and, by Theorem 3.3, F 2 Rk. 1
2
/: By using relation (3) and k D 2; we obtain

a well-known result that every convex function is starlike of order 1
2
:

Theorem 3.4. Let f 2 Rk.n; 0/; g 2 Rk.n; ˛/; 0 � ˛ � 1: Let the function F; for
b � 0; be defined as

F.z/ D 1 C b

zb

Z z

0

f ˛.t/tb�˛�1g.t/dt: (14)

Then F 2 Rk.n; �/; z 2 E; where

� D 2n

.2b C n/ C p
.2b C n/2 C 8n

: (15)

Proof. Set

zF 0.z/
F.z/

D p.z/ D
�

k

4
C 1

2

�
p1.z/ �

�
k

4
� 1

2

�
p2.z/:

Then p.z/ is analytic in E and p.0/ D 1: From (14), we have

p.z/ C zp0.z/
p.z/ C b

D
�
˛

zf 0.z/
f .z/

C .1 � ˛/

�
C zg0.z/

g.z/
� 1

D Œ˛h1 C .1 � ˛/� C Œ.1 � ˛/h2.z/ C ˛� � 1

D ˛h1.z/ C .1 � ˛/h2.z/ D h.z/; h 2 Pk.n; 0/:

Since g 2 Pk.n; ˛/; f 2 Rk.n; 0/; it follows that h1; h2 2 Pk.n; 0/ and Pk.n; 0/

is a convex set. Now following the similar technique of Theorem 3.1 and using
Lemma 2.1, we obtain the required result that zF 0.z/

F.z/ D p.z/ 2 Pk.n; �/; where � is
given by (15). �

Remark 3.1. When n D 1; we obtain best possible value of � D � given by (2.1)
with ˛ D 0; ˇ D 1; ı D b:

Conclusion. In this paper, we have introduced and considered a new class Pk.n; ˇ/

of analytic function. We have discussed several special cases of this new class. We
have discussed some integral operators for certain classes of analytic functions in
the unit disc E and related with the new class Pk.n; ˇ/: Results obtained in this
paper can be viewed as an refinement and improvement of the previously known
results in this field.
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