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Preface

This book entitled Topics in Mathematical Analysis and Applications consists of
papers written by eminent scientists from the international mathematical commu-
nity, who present significant advances in a number of theories and problems of
mathematical analysis and its applications. These contributions focus on both old
and recent developments of analytic inequalities, operator theory, functional anal-
ysis, approximation theory, functional equations, differential equations, wavelets,
discrete mathematics and mechanics. Special emphasis is given to new results that
have been obtained in the above-mentioned disciplines in which nonlinear analysis
plays a central role. Furthermore some review papers are published in this volume
which are particularly useful for a broader audience of readers in mathematical
analysis as well as for graduate students who search for the latest information. It is
a pleasure to express our deepest thanks to all of the mathematicians who, through
their works, participated in this volume. We would also wish to acknowledge the
superb assistance that the staff of Springer has provided in the preparation of the
publication.

Athens, Greece Themistocles M. Rassias
Pécs, Hungary László Tóth
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Simple Proofs of Some Bernstein–Mordell
Type Inequalities

Vandanjav Adiyasuren and Tserendorj Batbold

Abstract In this paper we give simple proofs of some Bernstein–Mordell type
inequalities.

Keywords Orthogonal polynomial • Gamma function • Bernstein inequality
• Mordell inequality • Cauchy–Schwarz inequality

Mathematics Subject Classification (2000): Primary 26D15, Secondary 33A65

1 Introduction

In 1926, Bernstein proved the following integral inequality (see [1]).
If a0; : : : ; an are real numbers, then

Z 1

�1
.a0 C a1x C � � � C anxn/2dx � 2

.nC 1/2 : (1)

The following inequality was posed as a problem in the book [2] by Bowman and
Gerard. A simple proof was given by Mordell in [6].
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2 V. Adiyasuren and Ts. Batbold

If a0; : : : ; an are real numbers, then

Z 1
0

e�x.1C b1x C b2x2 C � � � C bnxn/2dx � 1

nC 1 : (2)

In [7], Mordell has solved, in some cases, the problem of finding the minimum
value of integrals of the form

Z b

a

p.x/.a0 C a1x C � � � C anxn/2dx (3)

where p.x/ � 0 is such that the integrals
R b
a
p.x/xrdx .r � 0/ exist and the

coefficient ak of the term xk in the bracket is given as 1. Mirsky [4] has found the
minimum of the integral

Z b

a

p.t/.tk0 C �1tk1 C � � � C �ntkn/2dt; (4)

using the principle of linear algebra.
Inequalities involving (3) and (4) are known in the literature as the Bernstein–

Mordell type inequalities (see [5]).
Vasić and Rakovich [8, 9], and Janous [3] found the minimum values of (3) with

the condition a0 C a1pC � � � C anpn D 1 for any given real number p, and ak D 1
for some integers 0 � k � n, respectively. The method presented in their papers
is based on the properties of orthogonal polynomials and the method of Lagrange
multipliers.

In this paper, we give simple proofs of some Bernstein–Mordell type inequalities
using the properties of orthogonal polynomials and Cauchy–Schwarz inequality.

2 Some Lemmas

In order to establish the proof of the propositions, we need the following lemmas:

Lemma 1 ([3]). Let k and N be non-negative integers. Then

NX
pD0

.2k C 2p C 1/
 
2k C p
p

!2
D .2k C 1/

 
2k CN C 1

N

!2
: (5)

Proof. For any n 2 N we have

.2k C 1/
 
2k C nC 1

n

!2
D .2k C 1/ � .2k C nC 1/

2

.2k C 1/2 �
 
2k C n
n

!2
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D n2 C .2k C 1/.2k C 2nC 1/
2k C 1

 
2k C n
n

!2

D .2k C 1/
 
2k C n
n � 1

!2
C .2k C 2nC 1/

 
2k C n
n

!2
;

i.e.,

.2k C 1/
 
2k C nC 1

n

!2
� .2k C 1/

 
2k C n
n � 1

!2
D .2k C 2nC 1/

 
2k C n
n

!2
:

Summing up these equalities for n D 1; : : : ; N yields

NX
pD0

.2k C 2p C 1/
 
2k C p
p

!2
D .2k C 1/

 
2k CN C 1

N

!2
:

Lemma 2 ([8]). Let � > �1 be real number. Then

nX
jD0

� .j C 2�/.j C �/
j Š

D .2�C 2nC 1/� .2�C nC 1/
2nŠ.2�C 1/ :

Proof. It is clear that

nX
jD0

� .j C 2�/.j C �/
j Š

D � .2�/
nX

jD0

 
j C 2� � 1
2� � 1

!
.j C �/

D � .2�/
0
@2�

nX
jD0

 
j C 2�
2�

!
� �

nX
jD0

 
j C 2� � 1
2� � 1

!1
A

D 2�� .2�/
0
@
 
2�

2�

!
C

nX
jD1

  
j C 2�C 1
2�C 1

!
�
 
j C 2�
2�C 1

!!1
A

��� .2�/
0
@
 
2� � 1
2� � 1

!
C

nX
jD1

  
j C 2�
2�

!
�
 
j C 2� � 1

2�

!!1
A
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D � .2�/ � �
 
2

 
nC 2�C 1
2�C 1

!
�
 
nC 2�
2�

!!

D .2�C 2nC 1/� .2�C nC 1/
2nŠ.2�C 1/ ;

which completes the proof.

Lemma 3. Let ˛ > �1 and ˇ > �1 be real numbers. Then

nX
jD0

� .˛ C j C 1/.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
j Š� .j C ˇ C 1/

D � .nC ˛ C ˇ C 2/� .nC ˛ C 2/
nŠ.˛ C 1/� .nC ˇ C 1/ : (6)

Proof. We will use the method of mathematical induction. If n D 1, then identity
(6) is true:

� .˛ C 1/� .˛ C ˇ C 1/.˛ C ˇ C 1/
� .ˇ C 1/ C � .˛ C 2/� .˛ C ˇ C 2/� .˛ C ˇ C 3/

� .ˇ C 2/

D � .˛ C 2/� .˛ C ˇ C 2/.ˇ C 1/
.˛ C 1/� .ˇ C 2/ C � .˛ C 2/.˛C ˇ C 2/.˛C ˇ C 3/

� .ˇ C 2/

D � .˛ C 2/� .˛ C ˇ C 2/
.˛ C 1/� .ˇ C 2/ .ˇ C 1C .˛ C ˇ C 3/.˛ C 1//

D � .˛ C 2/� .˛ C ˇ C 2/.˛C 2/.˛ C ˇ C 2/
.˛ C 1/� .ˇ C 2/

D � .˛ C 3/� .˛ C ˇ C 3/
.˛ C 1/� .ˇ C 2/ :

Let us assume that

nX
jD0

� .˛ C j C 1/.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
j Š� .j C ˇ C 1/

D � .nC ˛ C ˇ C 2/� .nC ˛ C 2/
nŠ.˛ C 1/� .nC ˇ C 1/

for some n. Then, we have

nC1X
jD0

� .˛ C j C 1/� .˛ C ˇ C j C 1/.˛ C ˇ C 2j C 1/
j Š� .j C ˇ C 1/
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D � .nC ˛ C ˇ C 2/� .nC ˛ C 2/
nŠ.˛ C 1/� .nC ˇ C 1/

C� .˛ C nC 2/� .˛ C ˇ C nC 2/.˛C ˇ C 2nC 3/
.nC 1/Š� .nC ˇ C 2/

D � .nC ˛ C 2/� .nC ˛ C ˇ C 2/
.nC 1/Š.˛ C 1/� .nC ˇ C 2/
� ..nC 1/.nC ˇ C 1/C .˛ C ˇ C 2nC 3/.˛ C 1//

D � .nC ˛ C 2/� .nC ˛ C ˇ C 2/
.nC 1/Š.˛ C 1/� .nC ˇ C 2/ ..˛ C ˇ C nC 2/.nC ˛ C 2//

D � .nC ˛ C 3/� .nC ˛ C ˇ C 3/
.nC 1/Š.˛ C 1/� .nC ˇ C 2/ :

This proves identity (6) for all n.

3 Main Results

Proposition 1. Let An be a set of monic polynomials with real coefficients and
degree at most n. Then

min
An

Z 1

�1
A2n.x/dx D

22nC1 � .nŠ/4
.2n/Š � .2nC 1/Š :

Proof. We start by noting that the normalized Legendre polynomials

Pn.x/ D 1

nŠ � 2n �
r
2nC 1
2
� d

n

dxn

��
x2 � 1�n� ; n D 0; 1; : : :

transformed to the interval Œ�1; 1� form an orthonormal basis of all polynomials
defined on Œ�1; 1�. We put

An.x/ D
nX

jD0
aj Pj .x/: (7)

Then

Z 1

�1
A2n.x/dx D

nX
jD0

a2j : (8)
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From

Pj .x/ D 1

j Š � 2j
r
2j C 1
2
� d

j

dxj

0
@ jX
pD0

.�1/pCp
j .x

2/j�p
1
A

D 1

j Š � 2j
r
2jC1
2
�
Œ
j
2 �X

pD0
.�1/pCp

j .2j�2p/.2j�2p�1/ � � � .j�2pC1/xj�2p

D 1

j Š2j

r
2j C 1
2

Œ
j
2 �X

pD0
.�1/p j Š

pŠ.j � p/Š
.2j � 2p/Š
.j � 2p/Š x

j�2p

D 1

2j

r
2j C 1
2
�
Œ
j
2 �X

pD0
.�1/p .2j � 2p/Š

pŠ.j � p/Š.j � 2p/Šx
j�2p

we deduce that the coefficient of xn in An equals

1 D an � 1
2n
�
r
2nC 1
2
� .2n/Š
.nŠ/2

:

Hence, we find

a2n D
22nC1 � .nŠ/4

.2n/Š � .2nC 1/Š : (9)

From the equalities (8) and (9), we have

Z 1

�1
A2n.x/dx D

nX
jD0

a2j � a2n D
22nC1 � .nŠ/4

.2n/Š � .2nC 1/Š :

We conclude that

min
An

Z 1

�1
A2n.x/dx D

22nC1 � .nŠ/4
.2n/Š � .2nC 1/Š :

Proposition 2 ([9]). Let � > �1 be a real number. Then

min
bk2R;kD1;n

Z 1
0

x�e�x.1C b1x C � � � C bnxn/2dx D � .�C 1/�
nC�C1

n

� :
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Proof. We start by noting that the Laguerre polynomials

L�n.x/ D x��ex
dn

dxn
.x�Cne�x/

transformed to the interval Œ0;1/ form an orthogonal basis of all polynomials
defined on Œ0;1/. We put

1C b1x C � � � C bnxn D
nX

jD0
ajL

�
j .x/: (10)

Then

Z 1
0

x�e�x.1C b1x C � � � C bnxn/2dx D
nX

jD0
a2j � j Š� .�C j C 1/:

By the Leibniz formula, we have

L�n.x/ D
nX

kD0
.�1/k �

 
n

k

!
.�C k C 1/ � � � .�C n/ � xk

D
nX

kD0

.�1/k � � .nC 1/� .�C nC 1/
� .k C 1/� .n � k C 1/� .�C k C 1/ � x

k:

From the above, we deduce that the coefficient of x0 in polynomial (10) equals

1 D
nX

jD0
aj � � .�C j C 1/

� .�C 1/ :

Using Cauchy–Schwarz inequality, we have

1 D
nX

jD0

�
aj �

p
j Š� .�C j C 1/

�
�
 s

� .�C j C 1/
j Š

� 1

� .�C 1/

!

�
vuut nX

jD0
a2j j Š� .�C j C 1/ �

vuut nX
jD0

� .�C j C 1/
j Š

� 1

.� .�C 1//2 ;

i.e.

nX
jD0

a2j �j Š� .�CjC1/ �
.� .�C 1//2Pn
jD0

� .�CjC1/
j Š

D � .�C 1/Pn
jD0

.�Cj /�:::�.�C1/
j Š

D � .�C 1/Pn
jD0

�
�Cj
�

� :
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From the above inequality and following inequality

nX
jD0

 
�C j
�

!
D
 
�

�

!
C

nX
jD1

  
�C j C 1
�C 1

!
�
 
�C j
�C 1

!!

D
 
�C nC 1
�C 1

!
D
 
�C nC 1

n

!
;

we find

nX
jD0

a2j j Š� .�C j C 1/ �
� .�C 1/�
�CnC1

n

� :

Hence
Z 1
0

x�e�x .1C b1x C � � � C bnxn/ dx � � .�C 1/�
�CnC1

n

� :

We conclude that

min
bk2R;kD1;n

Z 1
0

x�e�x .1C b1x C � � � C bnxn/ dx D � .�C 1/�
�CnC1

n

� :

Remark 1. If we substitute � D 0 in Proposition 2, we get the Mordell inequal-
ity (2).

Proposition 3 ([3]). Let n and k be integers with 0 � k � n and let Pn;k be a set of
all polynomials with real coefficients and degree at most n such that the coefficient
of xk is 1. Then

min
Pn;k

Z 1

0

.Pn;k.x//
2 dx D

0
@.2k C 1/

 
nC k C 1
n � k

!2 
2k

k

!21
A
�1

:

Proof. Using similar way of proof of the Proposition 1 and following formula

Pj .x/ D
p
2j C 1
j Š

� d
j

dxj
.x2 � x/j ; j D 0; 1; 2; : : : ;

we have

Pn;k.x/ D
nX

jD0
aj Pj .x/:
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Hence

Z 1

0

.Pn;k.x//
2dx D

nX
jD0

a2j �
nX

jDk
a2j : (11)

From

Pj .x/ D
p
2j C 1
j Š

� d
j

dxj

0
@ jX
pD0

.�1/p �
 
j

p

!
� x2j�p

1
A

D p
2j C 1 �

jX
pD0

.�1/p � .2j � p/Š
pŠ.j � p/Š/2 � x

j�p;

we deduce that the coefficient of xk in Pn;k.x/ equals

1 D
nX

jDk
aj .�1/j�k

p
2j C 1 � .j C k/Š

.j � k/Š.kŠ/2 :

Using Cauchy–Schwarz inequality, we have

1 D
nX

jDk
aj .�1/j�k �

p
2j C 1 .j C k/Š

.j � k/Š.kŠ/2 :

�
vuut nX

jDk
a2j �

vuut nX
jDk

.2j C 1/ � ..j C k/Š/2
..j � k/Š/2.kŠ/4 :

Therefore, using Lemma 1, we have

1 �
0
@ nX
jDk

a2j

1
A �

0
@ nX
jDk

.2j C 1/
 
j C k
j � k

!2 
2k

k

!21
A

D
0
@ nX
jDk

a2j

1
A �

 
2k

k

!2
�

nX
jDk

.2j C 1/
 
j C k
j � k

!2

D
0
@ nX
jDk

a2j

1
A �

 
2k

k

!2
�
n�kX
jD0

.2k C 2j C 1/
 
2k C j
j

!2

D
0
@ nX
jDk

a2j

1
A �

 
2k

k

!2
� .2k C 1/

 
nC k C 1
n� k

!2
;
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i.e.,

nX
jDk

a2j �
0
@.2k C 1/

 
2k

k

!2 
nC k C 1
n � k

!21
A
�1

:

We conclude that

min
Pn;k

Z 1

0

.Pn;k.x//
2dx D

0
@.2k C 1/

 
2k

k

!2 
nC k C 1
n � k

!21
A
�1

:

Proposition 4 ([8]). Let ˛ > �1 and bi ; i D 0; : : : ; n be real numbers such thatPn
iD0 bi D 1. Then

min
bi2R; iD0;n

Z 1

�1
.1� x2/˛

 
nX
iD0

bix
i

!2
dx

D �nŠ� .2˛C 2/� .2˛C 3/
� .2˛ C 2C n/

�
�
�
˛ C 3

2

��2
.˛ C nC 1/22C2˛

:

Proof. The Gegenbauer polynomials

C�
n .x/ D

.�2/n
nŠ

� .nC �/� .nC 2�/
� .�/� .2nC 2�/ .1 � x2/��C 1

2 � d
n

dxn

�
.1 � x2/�Cn� 12

�

transformed to the interval Œ�1; 1� form an orthonormal basis of all polynomials
defined on Œ�1; 1�. We put

nX
iD0

bix
i D

nX
jD0

aj C
�
j .x/: (12)

Hence

Z 1

�1
.1 � x2/�� 1

2

 
nX
iD0

bix
i

!2
dx D

nX
jD0

a2j � kC�
j k2

D
nX

jD0
a2j �

21�2� � � � � .j C 2�/
j Š.j C �/ .� .�//2 : (13)
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By the Leibniz formula and formula 22x�1� .x/� .xC 1=2/ D p�� .2x/, we have

C�
n .1/ D

� .nC 2�/
nŠ� .2�/

:

From the equality (12), we find

1 D
nX
iD0

bi D
nX

jD0
aj C

�
j .1/ D

nX
jD0

aj � � .j C 2�/
j Š� .2�/

:

Therefore, using Cauchy–Schwarz inequality

1 D
nX

jD0

0
@aj

s
21�2��� .j C 2�/
j Š.j C �/.� .�//2

1
A �

0
@� .j C 2�/
j Š� .2�/

�
s
j Š.j C �/.� .�//2
21�2��� .j C 2�/

1
A

�
vuut nX

jD0
a2j �

21�2� � � � � .j C 2�/
j Š.j C �/.� .�//2 �

vuut nX
jD0

� .j C 2�/.j C �/.� .�//2
j Š.� .2�//2 � � � 21�2� ;

i.e.,

nX
jD0

a2j �
21�2� � � � � .j C 2�/
j Š.j C �/.� .�//2 � 1Pn

jD0
� .jC2�/.jC�/.� .�//2
j Š.� .2�//2�� �21�2�

: (14)

By Lemma 2, we find

nX
jD0

� .j C 2�/.j C �/.� .�//2
j Š.� .2�//2 � � � 21�2� D � � � .2�C nC 1/ � .2�C 2nC 1/.� .�//2

21�2��nŠ� .2�/� .2�C 2/ :

(15)
From the relations (13)–(15), we have

Z 1

�1
.1 � x2/�� 12

 
nX
iD0

bix
i

!2
dx � 21�2��nŠ� .2�/� .2�C 2/

� � � .2�C nC 1/.2�C 2nC 1/.� .�//2 :

For � � 1
2
D ˛, we have

Z 1

�1
.1�x2/˛

 
nX
iD0

bix
i

!2
dx � �nŠ� .2˛C 2/� .2˛ C 3/

� .2˛ C 2C n/ �� .˛ C 3
2
/
�2 � .˛ C nC 1/ � 22C2˛ :
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We conclude that

min
bi2R; iD0;n

Z 1

�1
.1� x2/˛

 
nX
iD0

bix
i

!2
dx

D �nŠ� .2˛C 2/� .2˛C 3/
� .2˛ C 2C n/

�
�
�
˛ C 3

2

��2
.˛ C nC 1/22C2˛

:

The proof is completed.

Proposition 5 ([9]). Let ˛ > �1; ˇ > �1, and bi ; i D 0; : : : ; n be real numbers
such that

Pn
iD0 bi D 1. Then

min
bi2R; iD0;n

Z 1

�1
.1 � x/˛.1C x/ˇ

 
nX
iD0

bix
i

!2
dx

D 2˛CˇC1� .˛ C 1/� .˛ C 2/� .nC ˇ C 1/ � nŠ
� .nC ˛ C 2/� .nC ˛ C ˇ C 2/ :

Proof. The Jacobi polynomials

P .˛;ˇ/
n .x/ D .�1/n

2n � nŠ.1�x/
�˛.1Cx/�ˇ � d

n

dxn

�
.1 � x/˛Cn.1C x/ˇCn� .˛; ˇ > �1/;

transformed to the interval Œ�1; 1� form an orthogonal basis of all polynomials
defined on Œ�1; 1�. We put

b0 C b1x C � � � C bnxn D
nX

jD0
aj � P .˛;ˇ/

j .x/: (16)

Hence

Z 1

�1
.1 � x/˛.1C x/ˇ

 
nX
iD0

bix
i

!2
dx

D
nX

jD0
a2j kP .˛;ˇ/

j k2

D
nX

jD0
a2j �

2˛CˇC1 � � .j C ˛ C 1/� .j C ˇ C 1/
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/ : (17)



Bernstein–Mordell Type Inequalities 13

By the Leibniz formula, we have

P .˛;ˇ/
n .x/ D 1

2nnŠ

nX
kD0

C k
n �

� .˛ C nC 1/� .ˇ C nC 1/
� .˛ C k C 1/� .ˇ C n � k C 1/ � .x � 1/

k.x C 1/n�k

Moreover, for x D 1 we have

P .˛;ˇ/
n .1/ D 1

nŠ
� � .˛ C nC 1/� .ˇ C nC 1/

� .˛ C 1/� .ˇ C nC 1/ D 1

nŠ

� .˛ C nC 1/
� .˛ C 1/ :

From the equality (16), we find

1 D
nX
iD0

bi D
nX

jD0
aj P

.˛;ˇ/
j .1/ D

nX
jD0

aj � 1
j Š
� � .˛ C j C 1/

� .˛ C 1/ :

Therefore, using Cauchy–Schwarz inequality

1 D
nX

jD0

0
@aj

s
2˛CˇC1 � � .j C ˛ C 1/� .j C ˇ C 1/
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/

1
A

�
 
1

j Š
� � .˛ C j C 1/

� .˛ C 1/ �
s
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
2˛CˇC1� .j C ˛ C 1/� .j C ˇ C 1/

!

�
vuut nX

jD0
a2j �

2˛CˇC1� .j C ˛ C 1/� .j C ˇ C 1/
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/

�
vuut nX

jD0

� .˛ C j C 1/.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
2˛CˇC1j Š� .j C ˇ C 1/.� .˛ C 1//2 ;

i.e.,

nX
jD0

a2j �
2˛CˇC1� .j C ˛ C 1/� .j C ˇ C 1/
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/

�
0
@ nX
jD0

� .˛ C j C 1/.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
2˛CˇC1j Š� .j C ˇ C 1/.� .˛ C 1//2

1
A
�1

D 2˛CˇC1.� .˛ C 1//2
0
@ nX
jD0

� .˛ C j C 1/.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/
j Š� .j C ˇ C 1/

1
A
�1
:
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By Lemma 3, we find

nX
jD0

a2j �
2˛CˇC1� .j C ˛ C 1/� .j C ˇ C 1/
j Š.˛ C ˇ C 2j C 1/� .˛ C ˇ C j C 1/

� 2˛CˇC1.� .˛ C 1//2 � .˛ C 1/� .nC ˇ C 1/ � nŠ
� .nC ˛ C ˇ C 2/� .nC ˛ C 2/

D 2˛CˇC1� .˛ C 1/� .˛ C 2/� .nC ˇ C 1/nŠ
� .nC ˛ C ˇ C 2/� .nC ˛ C 2/ : (18)

From the relations (17) and (18), we have

Z 1

�1
.1�x/˛.1Cx/ˇ

 
nX
iD0

bix
i

!2
dx � 2˛CˇC1� .˛C1/� .˛C2/� .nCˇC1/ � nŠ

� .nC ˛ C 2/� .nC ˛ C ˇ C 2/ :

We conclude that

min
bi2R; iD0;n

Z 1

�1
.1 � x/˛.1C x/ˇ

 
nX
iD0

bix
i

!2
dx

D 2˛CˇC1� .˛ C 1/� .˛ C 2/� .nC ˇ C 1/ � nŠ
� .nC ˛ C 2/� .nC ˛ C ˇ C 2/ :

The proof is completed.

Remark 2. If we substitute ˛ D ˇ D 0 in Proposition 5, we get the Bernstein
inequality (1).

Corollary 1. Let bi ; i D 0; : : : ; n be real numbers such that
Pn

iD0 bi D 1. Then

min
bi2R; iD0;n

Z 1

0

.1 � x2/� 1
2

 
nX
iD0

bix
i

!2
dx D �

2nC 1 :
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1 Introduction

The Hilbert inequality is one of the most important inequalities in mathematical
analysis. Applications of this inequality in diverse fields of mathematics have cer-
tainly contributed to its importance. After its discovery, the Hilbert inequality was
studied by numerous authors, who either reproved it using various techniques, or
applied and generalized it in many different ways. For a comprehensive inspection
of the initial development of the Hilbert inequality, the reader is referred to a
classical monograph [14].

Nowadays, more than a century after its discovery, this problem area is still of
interest to numerous authors. In 2005, Krnić and Pečarić [17] established a unified
treatment of Hilbert-type inequalities with a general measurable kernel and weight
functions. Here we just refer to Hilbert-type inequalities from [17] regarding a
homogeneous kernel and power weight functions. Namely, if p and q are non-
negative mutually conjugate exponents, that is, if 1

p
C 1

q
D 1, p > 1, q > 1,

then
Z
R

C

Z
R

C

K�.x; y/f .x/g.y/dxdy

< L

"Z
R

C

x1��Cp.A1�A2/f p.x/dx

# 1
p
"Z

R
C

y1��Cq.A2�A1/gq.y/dy
# 1
q

(1)

and

"Z
R

C

y.p�1/.��1/Cp.A1�A2/
 Z

R
C

K�.x; y/f .x/dx

!p
dy

# 1
p

< L

"Z
R

C

x1��Cp.A1�A2/f p.x/dx

# 1
p

; (2)

whereK� W R2C ! R is a non-negative homogeneous function of degree��, � > 0,
f; g W RC ! R are non-negative functions such that f; g ¤ 0 a.e. on RC, and

L D k
1
p

� .pA2/k
1
q

� .2��� qA1/, k�.˛/ D
R1
0
K�.1; t/t

�˛dt . Of course, A1 and A2
are real parameters such that all integrals in above inequalities converge.

Inequalities (1) and (2) are equivalent. Considering (1) with the kernel
K�.x; y/ D .x C y/�1 and parameters A1 D A2 D 1

pq
, it follows that � D 1

and L D �
sin �

p
, so (1) reduces to one of the earliest versions of the Hilbert inequality

(for more details, see [14]). Hence, inequalities related to (1) are usually referred to
as Hilbert-type inequalities. On the other hand, inequality (2) and its consequences
are referred to as Hardy–Hilbert-type inequalities, since (2) is a generalization of the
classical Hardy inequality (for more details, see [17]). In this paper, for the reason



Hilbert-Type Inequalities Including Some Operators 19

of simplicity, a whole class of inequalities related to (1) and (2) will sometimes be
referred to as Hilbert-type inequalities.

In paper [17], authors also derived discrete versions of inequalities (1) and (2),
i.e., the relations

1X
mD1

1X
nD1

K�.m; n/ambn

< L

" 1X
mD1

m1��Cp.A1�A2/apm

# 1
p
" 1X
nD1

n1��Cq.A2�A1/bqn

# 1
q

(3)

and

" 1X
nD1

n.p�1/.��1/Cp.A1�A2/
 1X
mD1

K�.m; n/am

!p# 1
p

< L

" 1X
mD1

m1��Cp.A1�A2/apm

# 1
p

; (4)

which hold under some stronger conditions. Namely, when dealing with discrete
Hilbert-type inequalities, some integral bounds are used for certain sums. Usually,
such sums may be recognized as the lower Darboux sums for the corresponding
integrals. Therefore, inequalities (3) and (4) hold if in addition K� is strictly
decreasing in each argument, and parametersA1 andA2 are chosen so that pA2 � 0
and 2� �� qA1 � 0. Moreover, .am/m2N and .bn/n2N are non-negative sequences,
not identically equal to zero, and we assume convergence of all series appearing in
(3) and (4).

Considering inequalities (1)–(4) with parameters A1 and A2 fulfilling condition
pA2 C qA1 D 2 � �, the constant L reduces to L D k�.pA2/. It was shown
that such constant is the best possible in the corresponding inequalities (for more
details, see [18, 24]). Hilbert-type inequalities may also be considered in the setting
of non-conjugate exponents (see [10, 11]), but in that case there is no evidence that
the constants appearing in the corresponding inequalities are the best possible. For
comprehensive accounts on Hilbert inequality including history, different proofs,
refinements and diverse applications, we refer to recent monograph [19] and
references therein.

In the last few years, considerable attention is given to a class of Hilbert-type
inequalities where the functions and sequences are replaced by certain integral or
discrete operators. As an example, the classical Hardy operator f 7! 1

x

R x
0
f .t/dt

represents the arithmetic mean in integral case. Such inequalities may be derived
by virtue of Hilbert-type inequalities from this Introduction and several well-known
classical inequalities, such as the Hardy, the Knopp inequality etc. But the most
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interesting fact in connection with this topic is that the constants appearing in these
inequalities remain the best possible.

The present work is a review article of research of several authors in this area.
More precisely, this paper is based on some 15 significant papers dealing with
Hilbert-type inequalities including some integral and discrete operators (such as
above mentioned classical Hardy operator), published in the course of the last few
years. All results that will be discussed refer to homogeneous kernels and involve
the best constants on their right-hand sides.

The paper is divided into six sections as follows: After this Introduction, in Sect. 2
we introduce notation and list some important classical inequalities necessary for
studying Hilbert-type inequalities including classical means operators. In Sect. 3,
we present the recent result about a unified treatment of two-dimensional Hilbert-
type inequalities including classical mean operators in both integral and discrete
case. To illustrate the technique, some proofs are also given, as well as some
applications. Further, Sect. 4 deals with the so-called half-discrete case, while in
Sect. 5 we discuss an extension to a multidimensional case. Finally, in Sect. 6, we
discuss several new Hilbert-type inequalities involving some differential operators.

Since the present work is based on numerous papers written by different
authors, the terminology in the paper is not quite unified. However, to avoid
misunderstandings, some extra notation and definitions are presented when it is
necessary.

2 Notation and Preliminaries

Throughout this paper Lp.RC/, p � 1 denotes the space of all Lebesgue

measurable functions f W RC ! R such that kf kLp.R
C

/ D
� R

R
C

jf .t/jpdt� 1p <
1. Similarly, lp , p � 1, denotes the space of all real sequences a D .an/n2N such

that kaklp D
�P1

nD1 janjp
� 1
p < 1. In addition, Lp.RC; '/, where ' W RC ! R

is a non-negative measurable function, stands for the weighted Lebesgue space with

the norm kf kLp.R
C

;'/ D
� R

R
C

'.t/jf .t/jpdt� 1p <1.
Hilbert-type inequalities we deal with in this article will often contain constants

expressed in terms of some special functions. Throughout this article B.�; �/ stands
for the usual Beta function B.a; b/ D R 1

0
ta�1.1 � t/b�1dt , a; b > 0, while � .�/

denotes the usual Gamma function defined by � .a/ D R
R

C

ta�1e�t dt , a > 0:
Besides Hilbert-type inequalities presented in the Introduction, we will need

several other important inequalities. The first of them is the well-known Hardy
inequality

Z
R

C

�
1

x

Z x

0

f .t/dt

�p
dx <

�
p

p � 1
�p Z

R
C

f p.x/dx; (5)
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which holds for p > 1 and for all non-negative functions f W RC ! R, provided
that 0 < kf kLp.R

C

/ <1. Its discrete version asserts that

1X
nD1

 
1

n

nX
kD1

ak

!p
<

�
p

p � 1
�p 1X

nD1
apn ; (6)

where p > 1 and a D .an/n2N is a non-negative sequence such that 0 < kaklp <
1. It should be noticed here that the constant

�
p

p�1
�p

is the best possible in both
inequalities. For comprehensive accounts on Hardy inequality including history,
different proofs, refinements, and diverse applications, we refer to recent monograph
[21] and references therein.

Observe that the Hardy inequality includes arithmetic mean in integral and
discrete case. We shall also be occupied with the corresponding inequalities
including a geometric mean. The integral version of such inequality is known as
the Knopp inequality, i.e.,

Z
R

C

exp

�
1

x

Z x

0

logf .t/dt

�
dx < e

Z
R

C

f .x/dx; (7)

while its discrete version is known as the Carleman inequality:

1X
nD1

 
nY

kD1
ak

! 1
n

< e

1X
nD1

an: (8)

The constant e appearing in both inequalities is the best possible (see [23]).
In 2005, Yang [31] derived the corresponding inequalities equipped with a

generalized harmonic mean. Namely, integral version asserts that

Z
R

C

 
xR x

0
f �r .t/dt

! 1
r

dx < .1C r/ 1r
Z
R

C

f .x/dx (9)

holds for r > 0, while its discrete analogue holds for 0 < r � 1:

1X
nD1

�
nPn

kD1 a�rk

� 1
r

< .1C r/ 1r
1X
nD1

an: (10)

Moreover, Yang also proved that inequalities (9) and (10) include the best constant
.1C r/ 1r . In accordance to [31], inequalities (9) and (10) will be referred to as the
integral and discrete Hardy–Carleman inequality.

For the reader’s convenience, we define integral arithmetic, geometric, and
harmonic mean operators A ;G ;H W Lp.RC/! Lp.RC/ by
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.A f /.x/ D 1

x

Z x

0

f .t/dt;

.G f /.x/ D exp

�
1

x

Z x

0

logf .t/dt

�
;

.H f /.x/ D xR x
0
f �1.t/dt

:

Obviously, the above operators are well-defined since inequalities (5), (7), and (9)
may, respectively, be rewritten as

kA f kLp.R
C

/ <
p

p � 1kf kLp.RC

/; (11)

kG f kLp.R
C

/ < e
1
p kf kLp.R

C

/; (12)

kH f kLp.R
C

/ <

�
1C 1

p

�
kf kLp.R

C

/: (13)

Moreover, since these inequalities include the best constants on their right-hand
sides, we are able to compute norms of the corresponding integral operators.

Namely, since kA k D supf¤0
kA f kLp.R

C

/

kf kLp.R
C

/
; it follows that kA k D p

p�1 ; and

similarly kG k D e 1
p , kH k D 1C 1

p
:

Discrete versions of means operators A ;G ;H W Lp.RC/ ! Lp.RC/, i.e., the
operators A ;G ;H W lp ! lp are defined by

.A a/n D
Pn

kD1 ak
n

;

.G a/n D
 

nY
kD1

ak

! 1
n

;

.H a/n D nPn
kD1 a�1k

:

With this notation, discrete inequalities (6), (8), and (10), respectively, read

kA aklp < p

p � 1kaklp ; (14)

kG aklp < e
1
p kaklp ; (15)

kH aklp <
�
1C 1

p

�
kaklp : (16)
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Clearly, due to the best constants, above inequalities provide norms of the corre-

sponding operators, that is, kA k D p

p�1 ; kG k D e
1
p , and kH k D 1C 1

p
:

3 Hilbert-Type Inequalities Involving Means Operators

In this section we deal with two-dimensional Hilbert-type inequalities, in both
integral and discrete case, involving arithmetic, geometric, harmonic, as well as
some related operators. It should be noticed here that the inequalities appearing in
this section refer to non-negative conjugate parameters p and q, i.e., to parameters
such that 1

p
C 1

q
D 1, p > 1, and q > 1. A pair of non-negative conjugate parameters

will be denoted in this way throughout the whole paper.
We start this overview with some particular results involving arithmetic mean

operators A and A .

3.1 Some Particular Results

In 2010, based on the Hardy integral inequality, Das and Sahoo [12] obtained
the following pair of Hilbert-type inequalities involving the arithmetic mean
operator A .

Theorem 1 ([12]). If r , s, � are positive real parameters such that � D r C s, then
the inequalities

Z
R

C

Z
R

C

x
r� 1

q y
s� 1

p

.x C y/� .A f /.x/.A g/.y/dxdy

< pqB.r; s/kf kLp.R
C

/kgkLq.R
C

/ (17)

and

"Z
R

C

yps�1
 Z

R
C

x
r� 1

q

.x C y/� .A f /.x/dx

!p
dy

# 1
p

< qB.r; s/kf kLp.R
C

/ (18)

hold for all non-negative functions f; g W RC ! R such that 0 < kf kLp.R
C

/ <1
and 0 < kgkLq.R

C

/ <1. In addition, the constants pqB.r; s/ and qB.r; s/ are the
best possible in the corresponding inequalities.

It should be noticed here that some particular cases of inequality (17) were
studied in [28], few years earlier. Furthermore, with the assumption � > 2, Das
and Sahoo also proved a discrete version of Theorem 1.
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Theorem 2 ([12]). Let r; s > 0 and � > 2 be real parameters such that � D r C s.
Then the inequalities

1X
mD1

1X
nD1

m
r� 1q ns�

1
p

.mC n/� .A a/m.A b/n < pqB.r; s/kaklp kbklq (19)

and

" 1X
nD1

nps�1
 1X
mD1

m
r� 1

q

.mC n/� .A a/m

!p# 1
p

< qB.r; s/kaklp (20)

hold for all non-negative sequences a D .am/m2N and b D .bn/n2N satisfying
0 < kaklp < 1 and 0 < kbklq < 1. In addition, the constants pqB.r; s/ and
qB.r; s/ are the best possible in the corresponding inequalities.

Observe also that reference [13] provides the corresponding result for the kernel
1=maxfx�; y�g, with the best possible constant. Moreover, Adiyasuren and Batbold
[3] also obtained some related inequalities:

Theorem 3 ([3]). Let ˛ and ˇ be such that p > 1
˛
; q > 1

ˇ
; 0 < ˛; ˇ � 1; and let

�; s; r > 0 with s C r D �. Then the inequalities

Z
R

C

Z
R

C

x
r� 1

q y
s� 1

p

maxfx�; y�g .A f /˛.x/.A g/ˇ.y/dxdy

<
�

rs

�
˛p

˛p � 1
�˛ �

ˇq

ˇq � 1
�ˇ
kf ˛kLp.R

C

/kgˇkLq.R
C

/ (21)

and

"Z
R

C

yps�1
 Z

R
C

x
r� 1

q

maxfx�; y�g .A f /˛.x/dx

!p
dy

# 1
p

<

�
�

rs

��
˛p

˛p � 1
�˛
kf ˛kLp.R

C

/ (22)

hold for all non-negative functions f; g W RC ! R such that 0 < kf ˛kLp.R
C

/ <1
and 0 < kgˇkLq.R

C

/ < 1. In addition, the constants appearing on the right-hand
sides of (21) and (22) are the best possible.

Theorem 4 ([3]). With the assumptions of Theorem 3, inequalities

Z
R

C

Z
R

C

x
r� 1

q y
s� 1

p

jx � yj� .A f /˛.x/.A g/ˇ.y/dxdy < .B.s; 1 � �/C B.r; 1 � �//

�
�

˛p

˛p � 1
�˛ �

ˇq

ˇq � 1
�ˇ
kf ˛kLp.R

C

/kgˇkLq.R
C

/ (23)
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and

"Z
R

C

yps�1
 Z

R
C

x
r� 1

q

jx � yj� .A f /˛.x/dx

!p
dy

# 1
p

< .B.s; 1 � �/C B.r; 1 � �//
�

˛p

˛p � 1
�˛
kf ˛kLp.R

C

/ (24)

hold for all non-negative functions f; g W RC ! R such that 0 < kf ˛kLp.R
C

/ <1
and 0 < kgˇkLq.R

C

/ < 1. Moreover, the constants appearing on the right-hand
sides of (23) and (24) are the best possible.

All inequalities in this subsection are simple consequences of Hilbert-type
inequalities (1)–(4) and the Hardy inequality. For the proofs of the best possible
constants, the reader is referred to the corresponding references.

3.2 A General Homogeneous Kernel

Observe that all results in the previous subsection have a homogeneity in common.
Now, we give an extension of Theorems 1–4 to a general homogeneous case.
Throughout the whole paper, we deal with the constant

c�.s/ D
Z
R

C

K�.1; t/t
s�1dt;

where K� W R2C ! R is a non-negative homogeneous function of degree �� and s
is a non-negative real parameter. Observe that c�.s/ D k�.1� s/, where k�.�/ is the
constant appearing in relations (1)–(4).

It should be noticed here that Sulaiman (see [29, 30]) investigated some related
results with a homogeneous kernel, without considering the problem of the best
constants.

In already mentioned reference [3], Adiyasuren and Batbold derived a pair of
Hilbert-type inequalities with the arithmetic mean operatorA , referring to a general
homogeneous kernel.

Theorem 5 ([3]). Let ˛ and ˇ be such that p > 1
˛
; q > 1

ˇ
; 0 < ˛; ˇ � 1; and

let s C r D �, where �; s; r > 0. Further, let K� W R2C ! R be a non-negative
homogeneous function of degree ��, provided that

0<c�.s/ <1; 0<
Z
R

C

K�.1; u/u
s� 1

p�ˇdu<1; 0<
Z
R

C

K�.1; u/u
r� 1q�˛du<1:
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Then the inequalities

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .A f /˛.x/.A g/ˇ.y/dxdy

<

�
˛p

˛p � 1
�˛ �

ˇq

ˇq � 1
�ˇ
c�.s/kf ˛kLp.R

C

/kgˇkLq.R
C

/ (25)

and

"Z
R

C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q .A f /˛.x/dx

!p
dy

# 1
p

<

�
˛p

˛p � 1
�˛
c�.s/kf ˛kLp.R

C

/ (26)

hold for all non-negative functions f; g W RC ! R such that 0 < kf ˛kLp.R
C

/ <1
and 0 < kgˇkLq.R

C

/ < 1. In addition, the constants
�

˛p

˛p�1
�˛ �

ˇq

ˇq�1
�ˇ
c�.s/ and�

˛p

˛p�1
�˛
c�.s/ appearing in (25) and (26) are the best possible.

Remark 1. Clearly, if K�.x; y/ D .x C y/�� and ˛ D ˇ D 1, Theorem 5 reduces
to Theorem 1. In a similar manner, Theorem 5 also represents an extension of
Theorems 3 and 4.

Recently, Adiyasuren et al. [5] derived discrete analogues of relations (25) and
(26), as well as the corresponding analogues with geometric and harmonic mean
operators in both integral and discrete case. We first give the corresponding integral
results including operators G and H .

Theorem 6 ([5]). Let r , s, � be non-negative real parameters such that � D r C s.
Further, suppose K� W R2C ! R is a non-negative homogeneous function of degree
�� such that 0 < c�.s/ <1. Then the inequalities

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .G f /.x/.G g/.y/dxdy

< e � c�.s/kf kLp.R
C

/kgkLq.R
C

/ (27)

and

"Z
R

C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q .G f /.x/dx

!p
dy

# 1
p

< e
1
p c�.s/kf kLp.R

C

/

(28)
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hold for all non-negative functions f; g W RC ! R such that 0 < kf kLp.R
C

/ <1
and 0 < kgkLq.R

C

/ < 1. In addition, the constants e � c�.s/ and e
1
p c�.s/ are the

best possible in (27) and (28).

Theorem 7 ([5]). With the assumptions of Theorem 6, the inequalities

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .H f /.x/.H g/.y/dxdy

<

�
2C 1

pq

�
c�.s/kf kLp.R

C

/kgkLq.R
C

/ (29)

and

"Z
R

C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q .H f /.x/dx

!p
dy

# 1
p

<

�
1C 1

p

�
c�.s/kf kLp.R

C

/ (30)

hold for all non-negative functions f; g W RC ! R such that 0 < kf kLp.R
C

/ <1
and 0 < kgkLq.R

C

/ <1. In addition, the constants
�
2C 1

pq

�
c�.s/ and

�
1C 1

p

�
c�.s/

are the best possible in the corresponding inequalities.

The methods of proving Theorems 5–7 are quite similar. For an illustration, we
give the proof of Theorem 6.

Proof (Proof of Theorem 6). The starting point in the proof is inequality (1) with
parametersA1 D 1�r

q
,A2 D 1�s

p
, and with functions f and g, respectively, replaced

by xr�
1
q .G f /.x/ and ys�

1
p .G g/.y/, that is, the inequality

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .G f /.x/.G g/.y/dxdy

< k�.1 � s/kG f kLp.R
C

/kG gkLq.R
C

/ D c�.s/kG f kLp.R
C

/kG gkLq.R
C

/:

Now, due to the Knopp inequality (12), it follows that kG f kLp.R
C

/ < e
1
p kf kLp.R

C

/

and kG gkLq.R
C

/ < e
1
q kgkLq.R

C

/, which yields inequality (27). Similarly, inequality
(28) follows from Hardy–Hilbert-type inequality (2) and the Knopp inequality.
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In order to prove that inequalities (27) and (28) involve the best constants on their
right-hand sides, we first suppose that there exists a positive constantC , smaller than
e � c�.s/, such that the inequality

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .G f /.x/.G g/.y/dxdy < Ckf kLp.R
C

/kgkLq.R
C

/

(31)

holds for all non-negative functions f; g W RC ! R with 0 < kf kLp.R
C

/ <1 and
0 < kgkLq.R

C

/ <1.

Considering the above inequality with functions Qf ; Qg W RC ! R defined by

Qf .x/ D
(
1; 0 < x < 1

e
� 1
p x

�"�1
p ; x � 1 ; Qg.y/ D

(
1; 0 < y < 1

e
� 1
q y

�"�1
q ; y � 1 ;

where " > 0 is sufficiently small number, its right-hand side reduces to

Ck Qf kLp.R
C

/k QgkLq.R
C

/ D C

"

�
"C 1

e

�
: (32)

On the other hand, since

�
G Qf �.x/ D

(
1; 0 < x < 1

e
"
p� "

xp x
�"�1
p ; x � 1

and

�
G Qg�.y/ D

(
1; 0 < y < 1

e
"
q� "

yq y
�"�1
q ; y � 1 ;

the well-known Fubini theorem and the change of variables t D y

x
imply the

following series of relations:

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p
�
G Qf �.x/�G Qg�.y/dxdy

>

Z 1
1

Z 1
1

K�.x; y/x
r� 1

q y
s� 1

p
�
G Qf �.x/�G Qg�.y/dxdy

D
Z 1
1

Z 1
1

K�.x; y/x
r� "

p�1ys�
"
q�1e"�

"
xp� "

yq dxdy

�
Z 1
1

Z 1
1

K�.x; y/x
r� "

p�1ys�
"
q�1dxdy



Hilbert-Type Inequalities Including Some Operators 29

D
Z 1
1

x�"�1
Z 1
1
x

K�.1; t/t
s� "

q�1dtdx

D 1

"

Z 1
1

K�.1; t/t
s� "

q�1dt C
Z 1
1

x�"�1
Z 1

1
x

K�.1; t/t
s� "

q�1dtdx

D 1

"

�Z 1
1

K�.1; t/t
s� "

q�1dt C
Z 1

0

K�.1; t/t
sC "

p�1dt
�
: (33)

Now, multiplying both sides of inequality (31) by ", relations (32) and (33) yield
inequality

Z 1
1

K�.1; t/t
s� "

q�1dt C
Z 1

0

K�.1; t/t
sC "

p�1dt < C
 
"C 1

e

!
:

Finally, when " goes to 0, it follows that e � c�.s/ � C , which is in contrast to our
hypothesis. Therefore, the constant e � c�.s/ is the best possible in (27).

It remains to show that e
1
p c�.s/ is the best possible constant in (28). Similarly to

above discussion, suppose that there exists a constant C 0 smaller than e
1
p c�.s/ such

that inequality

"Z
R

C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q .G f /.x/dx

!p
dy

# 1
p

< C 0kf kLp.R
C

/

holds for all non-negative functions f W RC ! R such that 0 < kf kLp.R
C

/ < 1.
Then, utilizing the well-known Hölder and the Knopp inequality, we have

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .Gf /.x/.G g/.y/dxdy

D
Z
R

C

 Z
R

C

K�.x; y/x
r� 1

q y
s� 1

p .G f /.x/dx

!
.G g/.y/dy

�
"Z

R
C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q .G f /.x/dx

!p
dy

# 1
p

kG gkLq.R
C

/

< C 0e
1
q kf kLp.R

C

/kgkLq.R
C

/;

which results that the constant e �c�.s/ is not the best possible in (27), since C 0e
1
q <

c�.s/e
1
p e

1
q D e � c�.s/. This contradiction completes the proof.

In order to prove Theorem 5, it is necessary to use Hardy integral inequality
(5), while the proof of Theorem 7 is accompanied with Hardy–Carleman integral
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inequality (9). Of course, to establish the best constants in these theorems, it is
necessary to find suitable functions to obtain contradiction, as in the proof of
Theorem 6 (for more details, see [5]).

Paper [5] also provides discrete versions of Theorems 5–7, including discrete
means operators A , G , and H . Discrete Hilbert-type inequalities are more
complicated than the integral ones. Namely, in order to derive discrete forms of
the corresponding integral inequalities, it is necessary to estimate certain sums by
integrals, which requires some extra conditions regarding a kernel and the weight
functions.

Theorem 8 ([5]). Let r , s, � be real parameters such that 0 < r; s � 1 and � D
r C s, and let K� W R2C ! R be a non-negative homogeneous function of degree
��, strictly decreasing in each argument, such that 0 < c�.s/ < 1. Then the
inequalities

1X
mD1

1X
nD1

K�.m; n/m
r� 1q ns�

1
p .A a/m.A b/n < pqc�.s/kaklpkbklq (34)

and
" 1X
nD1

nps�1
 1X
mD1

K�.m; n/m
r� 1q .A a/m

!p# 1
p

< qc�.s/kaklp (35)

hold for all non-negative sequences a D .am/m2N and b D .bn/n2N satisfying
0 < kaklp < 1 and 0 < kbklq < 1. In addition, the constants pqc�.s/ and
qc�.s/ are the best possible in the corresponding inequalities.

Theorem 9 ([5]). With the assumptions as in Theorem 8, the inequalities

1X
mD1

1X
nD1

K�.m; n/m
r� 1

q n
s� 1

p .G a/m.G b/n < e � c�.s/kaklpkbklq (36)

and

" 1X
nD1

nps�1
 1X
mD1

K�.m; n/m
r� 1q .G a/m

!p# 1
p

< e
1
p c�.s/kaklp (37)

hold for all non-negative sequences a D .am/m2N and b D .bn/n2N, 0 < kaklp <
1, 0 < kbklq < 1. In addition, the constants e � c�.s/ and e

1
p c�.s/ are the best

possible in the corresponding inequalities.

Theorem 10 ([5]). With the assumptions of Theorem 8, the inequalities

1X
mD1

1X
nD1

K�.m; n/m
r� 1

q n
s� 1

p .H a/m.H b/n <

�
2C 1

pq

�
c�.s/kaklpkbklq (38)
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and

" 1X
nD1

nps�1
 1X
mD1

K�.m; n/m
r� 1q .H a/m

!p# 1
p

<

�
1C 1

p

�
c�.s/kaklp (39)

hold for all non-negative sequences a D .am/m2N and b D .bn/n2N, provided that
0 < kaklp <1 and 0 < kbklq <1. In addition, the constants

�
2C 1

pq

�
c�.s/ and�

1C 1
p

�
c�.s/ are the best possible in the corresponding inequalities.

To illustrate the discrete case, we provide the proof of Theorem 8. For the proofs
of the remaining theorems, the reader is referred to [5].

Proof (Proof of Theorem 8). Utilizing discrete Hilbert-type inequality (3) with

sequences mr� 1q .A a/m, ns�
1
p .A b/n, and with parameters A1 D 1�r

q
, A2 D 1�s

p
,

we have

1X
mD1

1X
nD1

K�.m; n/m
r� 1

q n
s� 1

p .A a/m.A b/n < c�.s/kA aklpkA bklq :

Now, double use of discrete Hardy inequality (14) yields (34). Similarly, inequality
(35) follows by virtue of discrete Hardy–Hilbert-type inequality (4).

Now, we prove that the constants appearing in (34) and (35) are the best possible.
First, suppose that there exists a positive constant 0 < K < pqc�.s/ so that

1X
mD1

1X
nD1

K�.m; n/m
r� 1q ns�

1
p .A a/m.A b/n < Kkaklpkbklq (40)

holds for 0 < kaklp < 1 and 0 < kbklq < 1. Let QL and QR, respectively, denote
the left-hand side and the right-hand side of (40) equipped with the sequences

Qam D
(
m
� 1
p ; m � N

0; otherwise
and Qbn D

(
n
� 1
q ; n � N

0; otherwise
; (41)

whereN 2 N is fixed. Then, the right-hand side of (40) may be bounded from above
by a natural logarithm function:

QR D Kk Qaklpk Qbklq D K
 

NX
mD1

1

m

!
D K

 
1C

NX
mD2

1

m

!

< K

�
1C

Z N

1

dx

x

�
D K.1C logN/: (42)
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Our next intention is to estimate the left-hand side of inequality (40) from below.

More precisely, considering
Pm

kD1 k
� 1
p as the upper Darboux sum for the function

h.x/ D x� 1
p on the segment Œ1;mC 1�, we have

mX
kD1

k
� 1
p >

Z mC1

1

x
1
p dx >

Z m

1

x
� 1
p dx D q.m 1

q � 1/;

and consequently,

.A Qa/m > q.m
1
q � 1/
m

D qm� 1
p .1 �m� 1q /; m � N;

.A Qb/n > p.n
1
p � 1/
n

D pn� 1
q .1 � n� 1

p /; n � N:

Therefore, QL may be estimated as follows:

QL > pq
NX
mD1

NX
nD1

K�.m; n/m
r�1ns�1.1 �m� 1

q /.1 � n� 1
p /:

Moreover, since .1�m� 1q /.1�n� 1
p / > 1�m� 1q �n� 1

p ; the above relation implies
inequality

QL
pq

>

NX
mD1

NX
nD1

K�.m; n/m
r�1ns�1

�
NX
mD1

NX
nD1

K�.m; n/m
r�1� 1

q ns�1

�
NX
mD1

NX
nD1

K�.m; n/m
r�1ns�1�

1
p : (43)

The next goal is to establish suitable estimates for double sums on the right-hand
side of inequality (43). The first double sum may be regarded as the upper Darboux
sum for the function K�.x; y/x

r�1ys�1 defined on square Œ1; N C 1� � Œ1; N C 1�,
since this two-variable function is strictly decreasing in each argument. Hence,
utilizing suitable variable changes and the well-known Fubini theorem, we have

NX
mD1

NX
nD1

K�.m; n/m
r�1ns�1

>

Z N

1

Z N

1

K�.x; y/x
r�1ys�1dxdy
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D
Z N

1

dx

x

Z N
x

1
x

K�.1; t/t
s�1dt

D
Z 1

1
N

 Z N

1
t

dx

x

!
K�.1; t/t

s�1dt C
Z N

1

 Z N
t

1

dx

x

!
K�.1; t/t

s�1dt

D logN
Z 1

1
N

K�.1; t/t
s�1

�
1C log t

logN

�
dt

C logN
Z N

1

K�.1; t/t
s�1

�
1 � log t

logN

�
dt: (44)

The second sum on the right-hand side of (43) may be rewritten as

NX
mD1

NX
nD1

K�.m; n/m
r�1� 1

q ns�1D
NX
nD1

K�.1; n/n
s�1C

NX
mD2

NX
nD1

K�.m; n/m
r�1� 1

q ns�1;

and both sums on the right-hand side of this relation may be regarded as the lower
Darboux sums for the corresponding functions. More precisely, we have

NX
nD1

K�.1; n/n
s�1 <

Z N

0

K�.1; t/t
s�1dt <

Z 1
0

K�.1; t/t
s�1dt D c�.s/

and

NX
mD2

NX
nD1

K�.m; n/m
r�1� 1

q ns�1 <
Z N

1

Z N

0

K�.x; y/x
r�1� 1

q ys�1dxdy

D
Z N

1

dx

x
1C 1

q

Z N
x

0

K�.1; t/t
s�1dt

<

Z N

1

dx

x
1C 1

q

Z 1
0

K�.1; t/t
s�1dt

D
�
q � q

N
1
q

�
c�.s/;

so that

NX
mD1

NX
nD1

K�.m; n/m
r�1� 1

q ns�1 <
�
1C q � q

N
1
q

�
c�.s/: (45)
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In a similar manner, it follows that

NX
mD1

NX
nD1

K�.m; n/m
r�1ns�1�

1
p <

�
1C p � p

N
1
p

�
c�.s/: (46)

Now, relations (40), (42)–(46) yield inequality

K.1C logN/

pq
> logN

Z 1

1
N

K�.1; t/t
s�1

�
1C log t

logN

�
dt

C logN
Z N

1

K�.1; t/t
s�1

�
1� log t

logN

�
dt

�
�
2C pq � p

N
1
p

� q

N
1
q

�
c�.s/: (47)

Dividing inequality (47) by logN and letting N to infinity, it follows that K
pq
�

c�.s/; which contradicts with the assumption that K is smaller than pqc�.s/.
Therefore, the constant pqc�.s/ is the best possible in (34).

It remains to prove that qc�.s/ is the best constant in (35). For this reason, suppose
that there exists a positive constant 0 < K 0 < qc�.s/ such that inequality

" 1X
nD1

nps�1
 1X
mD1

K�.m; n/m
r� 1q .A a/m

!p# 1
p

< K 0kaklp

holds for all non-negative sequences a D .am/m2N, provided that 0 < kaklp <1.
Then, utilizing the Hölder and the Hardy inequality, we have

1X
mD1

1X
nD1

K�.m; n/m
r� 1q ns�

1
p .A a/m.A b/n

D
1X
nD1

 1X
mD1

K�.m; n/m
r� 1q ns�

1
p .A a/m

!
.A b/n

�
" 1X
nD1

nps�1
 1X
mD1

K�.m; n/m
r� 1q .A a/m

!p# 1
p

kA bklq

< K 0pkaklpkbklq ;

which is impossible since K 0p < pqc�.s/ and pqc�.s/ is the best constant in (34).

As the application of Theorems 8–10, we consider the function K� W R2C ! R,
defined by K�.x; y/ D ln y�ln x

y�x . Evidently, it is homogeneous of degree �1 and
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strictly decreasing in both arguments, c�.s/ converges for all s 2 .0; 1/, and we
have c�.s/ D �2

sin2 �s
; (see [1, 5]). Now, Theorems 8–10 equipped with this kernel

and parameters r D 1
q

, s D 1
p

read as follows:

Corollary 1 ([5]). The series of inequalities

1X
mD1

1X
nD1

log m
n

m � n.A a/m.A b/n <
pq�2

sin2 �
p

kaklpkbklq ;

1X
mD1

1X
nD1

log m
n

m � n.G a/m.G b/n <
e�2

sin2 �
p

kaklpkbklq ;

1X
mD1

1X
nD1

log m
n

m � n.H a/m.H b/n <

�
2C 1

pq

�
�2

sin2 �
p

kaklpkbklq ;

and

" 1X
nD1

 1X
mD1

log m
n

m � n.A a/m

!p# 1
p

<
q�2

sin2 �
p

kaklp ;

" 1X
nD1

 1X
mD1

log m
n

m � n.G a/m
!p# 1

p

<
e
1
p �2

sin2 �
p

kaklp ;

" 1X
nD1

 1X
mD1

log m
n

m� n.H a/m

!p# 1
p

<

�
1C 1

p

�
�2

sin2 �
p

kaklp

hold for all non-negative sequences a D .am/m2N and b D .bn/n2N, provided that
0 < kaklp <1 and 0 < kbklq <1. Moreover, above inequalities include the best
constants on their right-hand sides.

3.3 Inequalities with Some Related Integral Operators

We continue our discussion with a few related Hilbert-type inequalities involving
some other integral operators. In 2012, Adiyasuren and Batbold [2] gave the
following analogue of Theorem 5, where the arithmetic mean operatorA is replaced
by integral operator .A1f /.x/ D 1

x

R x
0
.x � t/f .t/dt .

Theorem 11 ([2]). Let sCr D �, �; s; r > 0, andK� W R2C ! R be a non-negative
homogeneous function of degree ��, provided that

0<c�.s/<1; 0<
Z
R

C

K�.1; u/u
s� 1

p�1du<1; 0<
Z
R

C

K�.1; u/u
r� 1q�1du<1:
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Then the inequalities

Z
R

C

Z
R

C

K�.x; y/x
r� 1

q�1ys�
1
p�1.A1f /.x/.A1g/.y/dxdy

<
.pq/2

1C 2pq c�.s/kf kLp.RC

/kgkLq.R
C

/ (48)

and

"Z
R

C

yps�1
 Z

R
C

K�.x; y/x
r� 1

q�1.A1f /.x/dx

!p
dy

# 1
p

<
p2

1C pc�.s/kf kLp.RC

/; (49)

hold for all non-negative functions f; g W RC ! R such that 0 < kf kLp.R
C

/ <1
and 0 < kgkLq.R

C

/ < 1. The constants .pq/2

1C2pq c�.s/ and p2

1Cp c�.s/ are the best
possible in (48) and (49).

It should be noticed here that Theorem 11 follows from inequalities (1), (2), and
general version of the Hardy integral inequality (5). On the other hand, Liu and Yang
[22] obtained a pair of inequalities, based on the so-called dual Hardy inequality
(see relation (83), for more details see also [21]). The following result deals with an
integral operator A �� defined by .A �� f /.x/ D 1

x

R1
x

f .t/

t�
dt .

Theorem 12 ([22]). Let �1 C �2 D � < 2, and let K� W R2C ! R be a non-
negative homogeneous function of degree ��, provided that 0 < c�.�1/ < 1 for
any �1 2 .� � 1; 1/. Then, for '.x/ D xp.2����1/�1;  .y/ D yq.1��2/�1, 0 <
kf kLp.R

C

;'/ <1, and 0 < kgkLq.R
C

; / <1, the inequalities

Z
R

C

Z
R

C

K�.x; y/xy.A
�
� f /.x/.A

�
� g/.y/dxdy

<
c�.�1/

.1 � �1/.1 � �2/kf kL
p.R

C

;'/kgkLq.R
C

; / (50)

and

"Z
R

C

 1�p.y/
 Z

R
C

K�.x; y/x.A
�
� f /.x/dx

!p
dy

# 1
p

<
c�.�1/

1 � �1 kf kLp.RC

;'/

(51)
hold and the constants c�.�1/

.1��1/.1��2/ and c�.�1/

1��1 are the best possible.

Observe also that Yang and Xie proved discrete versions of inequalities (50) and
(51) in [34].
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3.4 Applications

In Sect. 2 we have defined a class of operators representing arithmetic, geometric,
and harmonic mean in both integral and discrete case. Their norms were determined
as a simple consequences of the corresponding inequalities. With the same reason-
ing, Hardy–Hilbert-type inequalities established in this section enable us to define
another class of integral and discrete operators and to determine their norms.

Regarding notations from this section and Sect. 2, we define integral operators
A;G;H W Lp.RC/! Lp.RC/ by

.Af /.y/ D ys� 1
p

Z 1
0

K�.x; y/x
r� 1

q .A f /.x/dx;

.Gf /.y/ D ys� 1
p

Z 1
0

K�.x; y/x
r� 1

q .G f /.x/dx;

.Hf /.y/ D ys� 1
p

Z 1
0

K�.x; y/x
r� 1

q .H f /.x/dx:

Due to inequalities (26), (28), and (30), the above operators are well-defined.
Moreover, since the corresponding inequalities include the best constants, it follows

that kAk D qc�.s/, kGk D e 1
p c�.s/, and kHk D �1C 1

p

�
c�.s/.

Similarly to integral case, we also define discrete operators A;G;H W lp ! lp by

.Aa/n D ns�
1
p

1X
mD1

K�.m; n/m
r� 1q .A a/m;

.Ga/n D ns� 1
p

1X
mD1

K�.m; n/m
r� 1q .G a/m;

.Ha/n D ns� 1
p

1X
mD1

K�.m; n/m
r� 1q .H a/m:

Due to inequalities (35), (37), and (39), these operators are well-defined. Moreover,

by virtue of the best constants, it follows that kAk D qc�.s/, kGk D e
1
p c�.s/, and

kHk D �1C 1
p

�
c�.s/.

4 Half-Discrete Versions

Nowadays, considerable attention is given to the so-called half-discrete Hilbert-
type inequalities, that is, to inequalities which include both integral and sum.
Recently, Krnić et al. [20] provided a unified treatment of half-discrete Hilbert-type
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inequalities with a homogeneous kernel and in the setting with non-conjugate
exponents. In this article we only refer to a conjugate version, since in this case
one may obtain the best constants.

More precisely, if K� W R2C ! R is a non-negative homogeneous function of
degree ��, � > 0, Krnić et al. [20] have showed that the following triple of half-
discrete Hilbert-type inequalities

1X
nD1

an

Z
R

C

K�.x; n/f .x/dx D
Z
R

C

f .x/

 1X
nD1

K�.x; n/an

!
dx

< L

"Z
R

C

x1��Cp.˛1�˛2/f p.x/dx

# 1
p
" 1X
nD1

n1��Cq.˛2�˛1/aqn

# 1
q

; (52)

" 1X
nD1

n.p�1/.��1/Cp.˛1�˛2/
 Z

R
C

K�.x; n/f .x/dx

!p# 1
p

< L

"Z
R

C

x1��Cp.˛1�˛2/f p.x/dx

# 1
p

; (53)

and

"Z
R

C

x.q�1/.��1/Cq.˛2�˛1/
 1X
nD1

K�.x; n/an

!q
dx

# 1
q

< L

" 1X
nD1

n1��Cq.˛2�˛1/aqn

# 1
q

; (54)

where L D k
1
p

� .p˛2/k
1
q

� .2 � s � q˛1/, k�.˛/ D
R
R

C

K�.1; t/t
�˛dt , and ˛1, ˛2

are real parameters such that the function K.x; y/y�q0˛2 is decreasing on RC for
any x 2 RC, holds for any non-negative measurable function f W RC ! R and a
non-negative sequence a D .an/n2N. Clearly, in the above inequalities all integrals
and sums are assumed to be convergent, and the function and the sequence are not
equal to zero. For some related half-discrete Hilbert-type inequalities, regarding
some particular classes of kernels and weight functions, the reader is referred to
the following references: [15, 26, 32, 33].

Based on the above half-discrete inequalities, Adiyasuren et al. [8] derived
half-discrete versions of inequalities from Sect. 3. Clearly, the following set of
inequalities include both integral and discrete mean operators.
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Theorem 13 ([8]). Let K� W R2C ! R be a non-negative homogeneous function
of degree ��; � > 0, and let ˛1 and ˛2 be real parameters fulfilling condition
p˛2 C q˛1 D 2 � �. If the function K�.x; y/y

�p˛2 is decreasing on RC for any
fixed x 2 RC, then the inequalities

1X
nD1

n
1�pq˛2

q .A a/n

Z
R

C

K�.x; n/x
1�pq˛1

p .A f /.x/dx

D
Z
R

C

x
1�pq˛1

p .A f /.x/

 1X
nD1

K�.x; n/n
1�pq˛2

q .A a/n

!
dx

< c�.1 � p˛2/pqkf kLp.R
C

/kaklq ; (55)

" 1X
nD1

 
n
1�pq˛2

q

Z
R

C

K�.x; n/x
1�pq˛1

p .A f /.x/dx

!p# 1
p

< c�.1�p˛2/qkf kLp.R
C

/;

(56)
and

"Z
R

C

 
x
1�pq˛1

p

1X
nD1

K�.x; n/n
1�pq˛2

q .A a/n

!q
dx

# 1
q

< c�.1 � p˛2/pkaklq (57)

hold for any non-negative measurable function f W RC ! R and a non-negative
sequence a D .an/n2N, provided 0 < kf kLp.R

C

/ < 1 and 0 < kaklq < 1. In
addition, the constants c�.1 � p˛2/pq, c�.1 � p˛2/q, and c�.1 � p˛2/p are the
best possible in the corresponding inequalities.

Theorem 14 ([8]). Under the same assumptions as in Theorem 13, inequalities

1X
nD1

n
1�pq˛2

q .G a/n

Z
R

C

K�.x; n/x
1�pq˛1

p .G f /.x/dx

D
Z
R

C

x
1�pq˛1

p .Gf /.x/

 1X
nD1

K�.x; n/n
1�pq˛2

q .G a/n

!
dx

< c�.1 � p˛2/ekf kLp.R
C

/kaklq ; (58)

" 1X
nD1

 
n
1�pq˛2

q

Z
R

C

K�.x; n/x
1�pq˛1

p .G f /.x/dx

!p# 1
p

< c�.1�p˛2/e
1
p kf kLp.R

C

/;

(59)
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and

"Z
R

C

 
x
1�pq˛1

p

1X
nD1

K�.x; n/n
1�pq˛2

q .G a/n

!q
dx

# 1
q

< c�.1 � p˛2/e 1q kaklq (60)

hold and the constants appearing on their right-hand sides are the best possible.

Theorem 15 ([8]). With the assumptions of Theorem 13, inequalities

1X
nD1

n
1�pq˛2

q .H a/n

Z
R

C

K�.x; n/x
1�pq˛1

p .H f /.x/dx

D
Z
R

C

x
1�pq˛1

p .H f /.x/

 1X
nD1

K�.x; n/n
1�pq˛2

q .H a/n

!
dx

< c�.1 � p˛2/
�
2C 1

pq

�
kf kLp.R

C

/kaklq ; (61)

" 1X
nD1

 
n
1�pq˛2

q

Z
R

C

K�.x; n/x
1�pq˛1

p .H f /.x/dx

!p# 1
p

< c�.1 � p˛2/
�
1C 1

p

�kf kLp.R
C

/; (62)

and

"Z
R

C

 
x
1�pq˛1

p

1X
nD1

K�.x; n/n
1�pq˛2

q .H a/n

!q
dx

# 1
q

< c�.1� p˛2/
�
1C 1

q

�kaklq
(63)

hold and the constants appearing on their right-hand sides are the best possible.

The idea of proving Theorems 13–15 is quite similar to theorems from Sect. 3,
except that we utilize half-discrete inequalities (52)–(54) instead of integral and
discrete Hilbert-type inequalities. Moreover, to obtain the best constants, we
simultaneously plug the appropriate function and the sequence in the corresponding
inequality. For detailed proofs of these theorems, the reader is referred to [8].

Remark 2. Similarly to Sect. 3.4, by virtue of Hardy–Hilbert-type inequalities from
Theorems 13–15, one can define certain half-discrete operators and determine their
norms.
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Namely, with the assumptions of Theorem 13, it follows from (56) and (57), that
a pair of half-discrete arithmetic operators A1 W Lp.RC/ ! lp and A2 W lq !
Lq.RC/,

.A1f /n D n
1�pq˛2

q

Z
R

C

K.x; n/x
1�pq˛1

p .A f /.x/dx;

.A2a/.x/ D x
1�pq˛1

p

1X
nD1

K.x; n/n
1�pq˛2

q .A a/n;

is well-defined. Moreover, inequalities (56) and (57) may be rewritten as
kA1f klp < c�.1� p˛2/qkf kLp.R

C

/ and kA2akLq.R
C

/ < c�.1� p˛2/pkaklq . Due
to the best constants, it follows that kA1k D c�.1�p˛2/q and kA2k D c�.1�p˛2/p.

In the same way, Theorems 14 and 15 are utilized to define the corresponding
half-discrete geometric and harmonic operators. For more details, the reader is
referred to [8].

5 Extension to a Multidimensional Case

The main goal of this section is to present extensions of Theorems 5–7 to a
multidimensional case. Such results are consequences of multidimensional Hilbert-
type inequalities.

In 2005, Brnetić et al. [10] (see also [11]) provided a unified treatment of
multidimensional Hilbert-type inequalities with non-conjugate exponents, with
a basic result including a general non-negative measurable kernel and weight
functions. Moreover, Perić and Vuković [25] studied the latter inequalities for the
case of a homogeneous kernel. For some related multidimensional Hilbert-type
inequalities, regarding some particular classes of kernels and weight functions, the
reader is referred to the following references: [19, 27].

Before we state the basic result, we need some conventions. Recall that the
functionK� W RnC ! R is said to be homogeneous of degree��, � > 0, ifK.tx/ D
t��K.x/ for all t > 0 and x D .x1; x2; : : : ; xn/ 2 RnC. If a D .a1; a2; : : : ; an/ 2 Rn,
we define

ki .a/ D
Z
R
n�1
C

K. Oui /
nY

jD1;j¤i
u
aj
j
Od iu; i D 1; 2; : : : ; n; (64)

where Oui D .u1; : : : ; ui�1; 1; uiC1; : : : ; un/, Od iu D du1 : : : dui�1duiC1 : : : dun,
and provided that the above integral converges. Further, in the sequel du is the
abbreviation for du1du2 : : : dun.

Although the general Hilbert-type inequalities are derived in the setting with non-
conjugate exponents, we consider here only the conjugate case. More precisely, in
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this section fp1; p2; : : : ; png represents the set of non-negative conjugate parame-
ters, that is,

Pn
iD1 1

pi
D 1, pi > 1, i D 1; 2; : : : ; n. The parameters p0i are defined

as associated conjugates, that is, 1
pi
C 1

p0

i
D 1.

Here we refer to a pair of inequalities derived in [25], regarding a homogeneous
kernel K� and some particular parameters. More precisely, the authors obtained
inequalities

Z
R
n
C

K�.x/
nY
iD1

fi .xi /dx � k1. QA/
nY
iD1
kfik

Lpi .R
C

;x
�1�pi QAi
i /

(65)

and

"Z
R

C

xn
.p0

n�1/.1Cpn QAn/
 Z

R
n�1
C

K�.x/
n�1Y
iD1

fi .xi / Odnx

!p0

n

dxn

#1=p0

n

� k1. QA/
n�1Y
iD1
kfik

Lpi .R
C

;x
�1�pi QAi
i /

; (66)

where the parameters QAi , i D 1; : : : ; n, fulfill conditions

k1. QA/ <1 for QA2; : : : ; QAn > �1;
nX
iD2
QAi < � � nC 1; and

nX
iD1
QAi D � � n: (67)

In addition, the constant k1. QA/, appearing in (65) and (66) is the best possible in
both inequalities.

Utilizing the above two inequalities, Krnić [16] obtained the following multidi-
mensional version of Theorem 5.

Theorem 16 ([16]). Let K� W RnC ! R be a non-negative measurable homoge-
neous function of degree ��, � > 0, such that for every i D 2; 3; : : : ; n,

K�.1; t2; : : : ; ti ; : : : ; tn/ � CKK�.1; t2; : : : ; 0; : : : ; tn/; 0 � ti � 1;

where CK is a positive constant. Further, let 1=pi < �i � 1, i D 1; 2; : : : ; n, and
let the parameters QAi , i D 1; 2; : : : ; n, fulfill conditions as in (67). If fi W RC ! R,
i D 1; 2; : : : ; n, are non-negative measurable functions, then

Z
R
n
C

K�.x/
nY
iD1

x
1
pi
C QAi

i .A fi /
�i .xi /dx � m�

n.p; QA;�/
nY
iD1
kfi�i kLpi .R

C

/; (68)
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and

2
4
Z
R

C

xn
.p0

n�1/.1Cpn QAn/
 Z

R
n�1
C

K�.x/
n�1Y
iD1

x
1
pi
C QAi

i .A fi /
�i .xi / Odnx

!p0

n

dxn

3
5

1

p0

n

� m�
n�1.p; QA;�/

n�1Y
iD1
kfi�i kLpi .R

C

/; (69)

where the constants

m�
n.p; QA; �/ D k1. QA/

nY
iD1

�
pi�i

pi�i � 1
��i

;

and

m�
n�1.p; QA;�/ D k1. QA/

n�1Y
iD1

�
pi�i

pi�i � 1
��i

are the best possible in the corresponding inequalities.

Remark 3. Considering inequality (68) with the kernel K�.x/ D .x1 C x2 C � � � C
xn/
��, � > 0, and the parameters QAi D si � 1, i D 1; 2; : : : ; n, the constant on its

right-hand side reduces to 1
� .�/

Qn
iD1 � .si /

Qn
iD1

�
pi �i
pi�i�1

��i
, where � stands for

the usual Gamma function. This particular result was obtained by Adiyasuren and
Batbold [4], in 2012.

Recently, Adiyasuren et al. [6] gave analogues of inequalities (68) and (69), with
the weighted geometric and harmonic mean operators, instead of the arithmetic
operator. The weighted geometric mean operator G˛, ˛ > 0 is defined by

.G˛f /.x/ D exp

�
˛

x˛

Z x

0

t˛�1 logf .t/dt

	
; (70)

while the weighted harmonic operator H˛ , ˛ > 0 is given by

.H˛f /.x/ D x˛R x
0
t˛�1f �1.t/dt

: (71)

Theorem 17 ([6]). LetK� W RnC ! R be a non-negative measurable homogeneous
function of degree��, � > 0. Further, let �i ; �i , and ˛ > 0 be real parameters such
that QAi � �i � ˛

pi
C QAi , i D 1; 2; : : : ; n, where the parameters QAi , i D 1; 2; : : : ; n,

fulfill conditions as in (67). If fi W RC ! R, i D 1; 2; : : : ; n are non-negative
measurable functions, then the following two inequalities hold
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Z
R
n
C

K�.x/
nY
iD1

x
�i
i .G˛fi /

�i .xi /dx � m�
n.p; QA; �/

nY
iD1
kf �i

i kLpi .RC

;'i .xi // (72)

and

"Z
R

C

xn
.p0

n�1/.1Cpn QAn/
 Z

R
n�1
C

K�.x/
n�1Y
iD1

x
�i
i .G˛fi /

�i .xi / Odnx

!p0

n

dxn

#1=p0

n

� m�
n�1.p; QA; �/

n�1Y
iD1
kf �i

i kLpi .RC

;'i .xi //; (73)

where 'i .xi / D xpi �i�pi QAi�1i , and the constants

m�
n.p; QA; �/ D k1. QA/e

1
˛ Œ��CnC

Pn
iD1 �i �

and

m�
n�1.p; QA; �/ D k1. QA/e

1
˛ Œ��CnC QAnC

Pn�1
iD1 �i �

are the best possible in the corresponding inequalities.

Theorem 18 ([6]). Suppose K� W RnC ! R is a non-negative measurable
homogeneous function of degree ��, � > 0, and let ˛; �i , and �i > 0 be real
parameters such that ˛ C 1

�i
.�i � QAi/ > 0, i D 1; 2; : : : ; n, where the parameters

QAi , i D 1; 2; : : : ; n, fulfill conditions as in (67). If fi W RC ! R, i D 1; 2; : : : ; n

are non-negative measurable functions, then the following inequalities hold

Z
R
n
C

K�.x/
nY
iD1

x
�i
i .H˛fi /

�i .xi /dx � Qm�
n.p; QA; �;�/

nY
iD1
kf �i

i kLpi .RC

;'i .xi // (74)

and

"Z
R

C

xn
.p0

n�1/.1Cpn QAn/
 Z

R
n�1
C

K�.x/
n�1Y
iD1

x
�i
i .H˛fi /

�i .xi / Odnx

!p0

n

dxn

#1=p0

n

� Qm�
n�1.p; QA; �;�/

n�1Y
iD1
kf �i

i kLpi .RC

;'i .xi //; (75)
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where 'i .xi / D xpi �i�pi QAi�1i , and the constants

Qm�
n.p; QA; �;�/ D k1. QA/

nY
iD1

�
˛ C 1

�i

�
�i � QAi

�	�i

and

Qm�
n�1.p; QA; �;�/ D k1. QA/

n�1Y
iD1

�
˛ C 1

�i

�
�i � QAi

�	�i

are the best possible in the corresponding inequalities.

The methodology of proving Theorems 16–18 follows the lines of proofs of
Theorems 5–7, except that multidimensional Hilbert-type inequalities (65) and
(66) are utilized instead of two-dimensional ones. In addition, in Theorems 16–18
one deals with the weighted versions of the Hardy, Knopp, and Hardy–Carleman
inequality (for more details, see [6]). It should also be noticed here that the
condition regarding a homogeneous kernel in Theorem 16 may be omitted (see
[16]). However, the proofs of these multidimensional theorems are technically more
complicated. As an illustration, we give the part of the proof of Theorem 18 referring
to the best constant.

Proof (Proof of the Best Constant in (74)). Suppose that the inequality

Z
R
n
C

K�.x/
nY
iD1

x
�i
i .H˛fi /

�i .xi /dx � Cn
nY
iD1
kf �i

i kLpi .RC

;'i .xi //; (76)

holds with the constant 0 < Cn < Qm�
n.p; QA; �;�/. Considering this inequality with

the functions

f "
i .xi / D

(
x

QAi��i
�i
C "
pi �i

i ; 0 < xi � 1;
0; xi > 1;

where " is sufficiently small number, its right-hand side reduces to

Cn

nY
iD1
k.f "

i /
�i kLpi .R

C

;'i .xi // D
Cn

"
: (77)

Moreover, since

.H˛f
"
i /.xi / D

8<
:
h
˛ C �i� QAi

�i
� "

�ipi

i
x

QAi��i
�i
C "
�i pi

i ; 0 < xi � 1;
0; xi > 1;
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the left-hand side of (76), denoted here by L, reads

L D
Z
R
n
C

K�.x/
nY
iD1

x
�i
i

�
H˛f

"
i

��i
.xi /dx

D '."/ � I;

where

'."/ D
nY
iD1

"
˛ C �i � QAi

�i
� "

�ipi

#�i

and

I D
Z
.0;1�n

K�.x/
nY
iD1

x
QAiC "

pi

i dx:

Obviously, the integral I can be rewritten as

I D
Z 1

0

x"�11

"Z
.0;1=x1�n�1

K�. Ou1/
nY
iD2

u
QAiC"=pi
i

Od1u
#
dx1;

providing the estimate

I �
Z 1

0

x"�11

"Z
R
n�1
C

K�. Ou1/
nY
iD2

u
QAiC"=pi
i

Od1u
#
dx1

�
Z 1

0

x"�11

2
4 nX
iD2

Z
Ei

K�. Ou1/
nY

jD2
u
QAjC"=pj
j

Od1u
3
5 dx1

� 1

"

Z
R
n�1
C

K�. Ou1/
nY
iD2

u
QAiC"=pi
i

Od1u

�
Z 1

0

x�11

2
4 nX
iD2

Z
Ei

K�. Ou1/
nY

jD2
u
QAjC"=pj
j

Od1u
3
5 dx1; (78)

where Ei D f.u2; u3; : : : ; un/I 1=x1 � ui < 1; uj > 0; j ¤ ig, 1=p D
.1=p1; : : : ; 1=pn/.

Clearly, it suffices to estimate the integral
R
E2
K�. Ou1/Qn

jD2 u
QAjC"=pj
j

Od1u.

Namely, choosing ˛ > 0 so that QA2 C 1 > �"=p2 � ˛, since �u�˛2 log 1
u2
!

0 .u2 !1/, there existsM � 0 such that�u�˛2 log 1
u2
�M .u2 2 Œ1;1//. Further,
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considering the parameters a2 D QA2C."=p2C˛/ and ai D QAiC"=pi ; i D 3; : : : ; n,
we have

Z 1

0

x�11
Z
E2

K�. Ou1/
nY

jD2
u
QAjC"=pj
j

Od1udx1

�M � k1. QA2 C ."=p2 C ˛/; QA3 C "=p3; : : : ; QAn C "=pn/ <1;

and utilizing (78), it follows that

L � '."/ �
�
1

"
k1

� QAC "1=p
�
�O.1/

�
: (79)

Finally, taking into account (77) and (79), we have that Qm�
n.p; QA; �;�/ � Cn when

"! 0C, which is in contrast to our hypothesis.

6 Hilbert-Type Inequalities with Differential Operators

So far, we have discussed Hilbert-type inequalities with certain operators on their
left-hand sides. To conclude the paper, in this section we deal with some related
inequalities accompanied with operators on their right-hand sides.

Recently, Azar [9] derived several new forms of Hilbert-type inequalities accom-
panied with some operators on their right-hand sides. The constants appearing in
these inequalities are also the best possible.

His first result refers to the homogeneous kernel K�.x; y/ D .x C y/��, � > 0

and the Hardy (or integration) operator .H f /.x/ D R x
0
f .t/dt .

Theorem 19 ([9]). If � > 0, kH f kLp.R
C

;x���1/ <1, and kH gkLq.R
C

;y���1/ <

1, then

Z
R

C

Z
R

C

f .x/g.y/

.x C y/� dxdy

� �2

pq
B

�
�

q
;
�

p

�
kH f kLp.R

C

;x���1/kH gkLq.R
C

;y���1/; (80)

where the constant �2

pq
B
�
�
q
; �
p

�
is the best possible.

In the same paper, Azar also obtained an analogue of Theorem 19, with a differential
operator instead of the Hardy integration operator. Moreover, Adiyasuren et al. [7],
extended that result to hold for an arbitrary homogeneous kernel. Before we state
the corresponding pair of Hilbert-type inequalities, we first introduce some notation.
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We denote by DnC, n � 0, a differential operator defined by DnCf .x/ D f .n/.x/,
where f .n/ stands for the n-th derivative of a function f W RC ! R. In addition,
throughout this section, �nC denotes the set of non-negative measurable functions
f W RC ! R such that f .n/ exists a.e. on RC, f .k/.x/ > 0, k D 0; 1; 2; : : : ; n, a.e.
on RC, and f .k/.0/ D 0, k D 0; 1; 2; : : : ; n � 1.

The following theorem deals with a homogeneous kernel K� W R2C ! R, of
degree ��, � > 0, such that the integral

k.˛/ D
Z
R

C

K�.1; t/t
˛dt;

converges for �1 < ˛ < � � 1.

Theorem 20 ([7]). Let ˛1, ˛2 be real parameters such that ˛1; ˛2 2 .n � 1; � � 1/
and ˛1 C ˛2 D � � 2, where n is a fixed non-negative integer and � > n, and
let '.x/ D xp.n�˛1/�1;  .y/ D yq.n�˛2/�1. If K� W R2C ! R is a non-negative
measurable homogeneous function of degree ��, then the inequalities

Z
R

C

Z
R

C

K�.x; y/f .x/g.y/dxdy

< M kDnCf kLp.RC

;'.x//kDnCgkLq.RC

; .y// (81)

and

"Z
R

C

y.p�1/.1Cq˛2/
 Z

R
C

K�.x; y/f .x/dx

!p
dy

# 1
p

< mkDnCf kLp.RC

;'.x// (82)

hold for all non-negative functions f; g 2 �nC: In addition, the constants M D
k.˛2/

� .˛1�nC1/� .˛2�nC1/
� .˛1C1/� .˛2C1/ and m D k.˛2/

� .˛1�nC1/
� .˛1C1/ are the best possible in the

corresponding inequalities.

Inequalities (81) and (82) are consequences of Hilbert-type inequalities (1) and
(2), equipped with the weighted Hardy inequality. The idea of proving the best
constants in (81) and (82) is similar to the proofs presented in this article. Namely,
starting from the opposite assumption, it is necessary to plug suitable functions in
inequality to obtain a contradiction (for more details, see [7]).

Remark 4. Considering (81) with a homogeneous kernel K�.x; y/ D .x C y/��,
� > 0, and the parameters ˛1 D �

p
� 1, ˛2 D �

q
� 1, where � > nmaxfp; qg,

the above constantM reduce to
�
�
�
p�n

�
�
�
�
q�n

�
� .�/

. This particular case was studied by
Azar [9], and it was derived by a different technique.
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Observe that Theorem 20 covers the case when the degree of homogeneity of
the kernel, i.e. �� is less than �n, for a fixed non-negative integer n. The next
result from [7], that is in some way complementary to Theorem 20, covers the case
0 < � � 1, and it follows by virtue of the weighted dual Hardy inequality.

The dual Hardy inequality, accompanied with the dual integration operator or the
dual Hardy operator H �f .x/ D R1

x
f .t/dt; asserts that

Z
R

C

x�r
�
H �f .x/

�p
dx <

� p

1 � r
�p Z

R
C

xp�r f p.x/dx; (83)

holds for p > 1 and r < 1, provided that 0 <
R
R

C

xp�r f p.x/dx <1. We define

a differential operator Dn˙ by Dn˙f .x/ D .�1/nf .n/.x/; where n is a non-negative
integer. Moreover, the following theorem holds for all non-negative functions f W
RC ! R such that the n-th derivative f .n/ exists a.e. on RC, Dk˙f .x/ > 0, k D
0; 1; 2; : : : ; n, a.e. on RC, and limx!1 f .k/.x/ D 0 for k D 0; 1; 2; : : : ; n� 1. This
set of functions will be denoted by �n˙.

Theorem 21 ([7]). Suppose that ˛1, ˛2 are real parameters such that ˛1; ˛2 2
.�1; � � 1/ and ˛1 C ˛2 D � � 2, where 0 < � � 1, and let '.x/ D
xp.n�˛1/�1;  .y/ D yq.n�˛2/�1. If K� W R2C ! R is a non-negative homogeneous
function of degree ��, then the inequalities

Z
R

C

Z
R

C

K�.x; y/f .x/g.y/dxdy

< M �kDn˙f kLp.RC

;'.x//kDn˙gkLq.RC

; .y// (84)

and

"Z
R

C

y.p�1/.1Cq˛2/
 Z

R
C

K�.x; y/f .x/dx

!p
dy

# 1
p

< m�kDn
˙f kLp.RC

;'.x// (85)

hold for all non-negative functions f; g 2 �n˙, where n is a fixed non-negative inte-

ger. In addition, the constantsM � D k.˛2/ � .�˛1/� .�˛2/
� .n�˛1/� .n�˛2/ andm� D k.˛2/ � .�˛1/� .n�˛1/ ,

appearing in (84) and (85) are the best possible.

For an illustration, we only give the proof of inequality (84).

Proof (Proof of Inequality (84)). The starting point is inequality (1) accompanied
with the dual Hardy inequality (83). Namely, utilizing (1) with parameters A1 D
�˛1

q
and A2 D �˛2p , its right-hand side may be rewritten as
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k.˛2/

"Z
R

C

x�p˛1�1f p.x/dx

# 1
p
"Z

R
C

y�q˛2�1gq.y/dy
# 1
q

D k.˛2/
"Z

R
C

x�.p˛1C1/.H �.D˙f /.x//pdx
# 1
p

�
"Z

R
C

y�.q˛2C1/.H �.D˙g/.y//qdy
# 1
q

; (86)

since H �.D˙f /.x/ D �
R1
x f 0.t/dt D f .x/:Moreover, applying the dual Hardy

inequality to the expressions on right-hand side of (86) n times, it follows that

"Z
R

C

x�.p˛1C1/.H �.D˙f /.x//pdx
# 1
p

<
1

.�˛1/n
"Z

R
C

xp.n�˛1/�1.Dn˙f .x//pdx
# 1
p

(87)

and

"Z
R

C

y�.q˛2C1/.H �.D˙g/.y//qdy
# 1
q

<
1

.�˛2/n
"Z

R
C

yq.n�˛2/�1.Dn
˙g.y//

qdy

# 1
q

; (88)

where xn stands for a rising factorial power or a Pochhammer symbol, that is, xn D
x.xC1/.xC2/ � � � .xCn�1/: Now, since .�˛1/n D � .n�˛1/

� .�˛1/ and .�˛2/n D � .n�˛2/
� .�˛2/ ,

the inequality (84) holds due to (1), (86)–(88).

Remark 5. Considering dual inequalities (84) and (85) accompanied with the kernel
K�.x; y/ D .x C y/��, � > 0, the constantsM � and m� become, respectively,

M �1 D
�2

sin.˛1�/ sin.˛2�/
� 1

� .�/� .n � ˛1/� .n � ˛2/

m�1 D �
�

sin.˛1�/
� � .˛2 C 1/
� .�/� .n� ˛1/ ; ˛1; ˛2 2 .�1; � � 1/; 0 < � � 1:

In addition, if K�.x; y/ D maxfx; yg��, � > 0, these constants M � and m�
reduce to
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M �2 D
�

.˛1 C 1/.˛2 C 1/ �
� .�˛1/ � .�˛2/

� .n � ˛1/ � .n � ˛2/

m�2 D
�

.˛1 C 1/.˛2 C 1/ �
� .�˛1/
� .n � ˛1/ ; ˛1; ˛2 2 .�1; � � 1/; 0 < � � 1:

For some other applications of Theorems 20 and 21, the reader is referred to [7].
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A Fixed Point Approach to Stability
of the Quadratic Equation

M. Almahalebi, A. Charifi, S. Kabbaj, and E. Elqorachi

Abstract In this paper, by using the fixed point method in Banach spaces, we prove
the Hyers–Ulam–Rassias stability for the quadratic functional equation

f
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mX
iD1

f .xi /C 1

2

X
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ff .xi C xj /� f .xi � xj /g:

The concept of the Hyers–Ulam–Rassias stability originated from Rassias’ stability
theorem that appeared in his paper: On the stability of the linear mapping in Banach
spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978).

Keywords Hyers-Ulam-Rassias stability • fixed point alternative theorem •
quadratic functional equation • quadratic mapping

1 Introduction and Preliminaries

Under what conditions does there exist a group homomorphism near an approximate
group homomorphism? This question concerning the stability of group homo-
morphisms was posed by Ulam [60]. In 1941, Ulam’s problem for the case of
approximately additive mappings was solved by Hyers [25] on Banach spaces.
In 1950 Aoki [6] provided a generalization of the Hyers’ theorem for additive
mappings and in 1978 Rassias [53] generalized the Hyers’ theorem for linear
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mappings by considering an unbounded Cauchy difference. The result of Rassias’
theorem has been generalized by Gǎvruta [23] who permitted the Cauchy difference
to be bounded by a general control function in the spirit of Rassias’ approach.

Since then, the stability problems of various types of functional equations have
been extensively investigated by different authors, we refer, for example, to [8,9,12,
13, 22, 26–33, 35–40, 42–47, 51–59, 61].

The functional equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/ (1)

is called a quadratic functional equation, and every solution of the quadratic
functional equation is said to be a quadratic mapping.

A Hyers–Ulam stability problem for the quadratic functional equation was proved
by Skof [56] for mappings f W X ! Y , where X is a normed space and Y is a
Banach space.

Cholewa [15] noticed that the theorem of Skof is still true if the relevant domain
X is replaced by an Abelian group.

Czerwik [17] obtained the Hyers–Ulam–Rassias stability of the quadratic func-
tional equation. The stability problem of quadratic functional equations have been
investigated by a number of authors, we refer, for example, to [1, 4, 5, 14, 21, 24, 29,
31, 35, 39, 44].

In 2003 Cǎdariu and Radu [10] noticed that a fixed point alternative method is
very essential for the solution of the Hyers–Ulam stability problem. Subsequently,
this method was applied to investigate the Hyers–Ulam–Rassias stability for Jensen
functional equation, as well as for the additive Cauchy functional equation [11]
by considering a general control function '.x; y/, with appropriate properties. By
applying this idea, several mathematicians applied the method to investigate the
stability of certain functional equations, see for example [2, 3, 16, 34, 41, 48].

The fixed point method was used for the first time by Baker [7] who applied
a variant of Banach’s fixed point theorem to obtain the Hyers Ulam stability of a
functional equation in a single variable.

In the present paper, we shall study the following functional equations:

f
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C 1
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X
1�i<j�h

ff .yi C yj /� f .yi � yj /g

C 1

2

hX
jD1

kX
iD1
ff .xi C yj /� f .xi � yj /g; (3)

and we consider the difference operatorDf W Xm ! Y as:

Df.x1; x2; : : : ; xm/WDf
 

mX
iD1

xi

!
�

mX
iD1

f .xi /�1
2

X
1�i<j�m

ff .xiCxj /�f .xi�xj /g:

The main purpose of this paper is to provide the general solution of (2), (3) and to
apply the fixed point method as in [10] to prove the Hyers–Ulam–Rassias stability
of the functional equations (2) and (3).

In the following we recall one of the fundamental results of fixed point theory.
Let X be a set. A function d W X �X ! Œ0;1� is called a generalized metric on

X if d satisfies the following:

1. d.x; y/ D 0 if and only if x D y;
2. d.x; y/ D d.y; x/ for all x; y 2 X ;
3. d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X .

Theorem 1 ([19]). Suppose we are given a complete generalized metric space
.X; d/ and a strictly contractive mapping J W X ! X , with the Lipshitz constant
L < 1. If there exists a nonnegative integer k such that d.J kx; J kC1x/ < 1 for
some x 2 X , then the following are true:

(1) the sequence J nx converges to a fixed point x� of J ;
(2) x� is the unique fixed point of J in the set Y D fy 2 X W d.J kx; y/ <1g;
(3) d.y; x�/ � 1

1�Ld.y; Jy/ for all y 2 Y .

2 Solutions of Eq. (2)

Throughout this section, X and Y will be real vector spaces. The functional
equation (2) is connected with the functional equation (1) as it is shown below:

Theorem 2. A function f W X ! Y satisfies the functional equation:

f
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ff .xi C xj /� f .xi � xj /g (4)
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for all x1; x2; : : : ; xm 2 X if and only if f satisfies the quadratic functional
equation:

f .x C y/C f .x � y/ D 2f .x/C 2f .y/ (5)

for x; y 2 X .

Proof. Suppose that the function f W X �! Y satisfies (4) for all x1; : : : ; xm 2 X .
Letting xi D xj for i; j 2 f1; : : : ; mg in (4), we get that f .0/ D 0: Setting x1 D x,
x2 D y and xi D 0; i D 3; 4; : : : ; m in (4), we conclude that f is a solution of (5).
Conversely, let f W X �! Y be a quadratic function, so f .0/ D 0 and f is even.
Now, by induction, we will prove (4). f is a quadratic function, then we have

f .x C y/ D f .x/C f .y/C 1

2
.f .x C y/� f .x � y//;

this proves (4) form D 1. Assume that (4) is true for m and written

f
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xi

!
D f

 
mX
iD1

yi

!
; (6)

with y1 D x1 C xmC1 and yi D xi , 2 � i � m. Then,
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ff .xi C xj /� f .xi � xj /g: (7)

By using the induction assumption form D 3, and the fact that f is an even function
we obtain

f .x1 ˙ xj C xmC1/ D f .x1/C f .xj /C f .xmC1/

C 1

2

�
f .x1 ˙ xj / � f .x1 � xj /

�

C 1

2
.f .x1 C xmC1/� f .x1 � xmC1//

C 1

2

�
f .xj ˙ xmC1/� f .xj � xmC1/

�
(8)
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so, we have

1
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jD2

�
f .x1 C xmC1 C xj /� f .x1 C xmC1 � xj /

�

D 1

2

mX
jD2

�
f .x1 C xj /� f .x1 � xj /

�

C 1

2

mX
jD2

�
f .xj C xmC1/� f .xj � xmC1/

�
; (9)

f .x1 C xmC1/ D f .x1/C f .xmC1/C 1

2
.f .x1 C xmC1/� f .x1 � xmC1// : (10)

It follows from (7), (9) and (10) that
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Therefore,
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Consequently,

f

 
mC1X
iD1

xi

!
D

mC1X
iD1

f .xi /C 1

2

X
1�i<j�mC1

ff .xi C xj / � f .xi � xj /g: (13)

which proves (4) formC 1.

In the following, by using [50] we find the general solution of (4).

Corollary 1. A function f : X �! Y satisfies (4) if and only if there exists a
symmetric b-additive function B: X � X �! Y such that f .x/ D B.x; x/ for all
x 2 X:

3 Hyers–Ulam–Rassias Stability of the Quadratic Functional
Equation (4)

Throughout this section, we assume that X is a normed space and Y is a Banach
space. In the following theorem, we will apply the fixed point method as in [19] to
prove the Hyers–Ulam–Rassias stability of the quadratic functional equation (4). For
convenience, we use the following abbreviation. For a given function f : X �! Y

Df .x1; : : : ; xm/ D f
 

mX
iD1

xi

!
�

mX
iD1

f .xi /� 1
2

X
1�i<j�m

ff .xiCxj /�f .xi �xj /g:

Theorem 3. Let f W X ! Y be a mapping with f .0/ D 0 for which there exists
a function 	 W Xm ! Œ0;1/, where m � 2 be an integer, such that there exists an
L < 1 and

	.x;�x; : : : ;˙x/ � 4L	
 
x

2
;
�x
2
; : : : ;

˙x
2

!
(14)

for all x 2 X ;

lim
n!C1 4

�n	.2nx1; 2nx2; : : : ; 2nxm/ D 0 (15)

kDf.x1; x2; : : : ; xm/k � 	.x1; x2; : : : ; xm/ (16)

for all x1; x2; : : : ; xm 2 X . Then, there exists a unique quadratic mappingQ which
satisfies
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(1)

kf .x/ �Q.x/k � 1

m �mL	.x;�x; x; : : : ; x;�x/ (17)

for all x 2 X , where m is an even integer;
(2)

kf .x/ �Q.x/k � 1

.m � 1/.1� L/	.x;�x; x; : : : ;�x; x/ (18)

for all x 2 X , where m is an odd integer.

Proof. If f W X �! Y be an even mapping, then we study two cases as follows:

Case 1: m is even

Let us consider the set S WD fg W X ! Y g and introduce the generalized metric
on S as follows:

d.g; h/ D inf fK 2 Œ0;1/ W kg.x/ � h.x/k � K	.x;�x; : : : ; x;�x/;8x 2 Xg :
(19)

It is easy to show that .S; d/ is complete (see for example [11]). Now, we consider
the linear mapping J W S ! S such that

Jg.x/ WD 1

4
g.2x/ (20)

for all x 2 X: First we assert that J is strictly contractive on S . Given g; h 2 S , let
K 2 Œ0;1/ be an arbitrary constant with d.g; h/ � K , that is k g.x/ � h.x/ k�
K	.x;�x; : : : ; x;�x/. So, we have

k Jg.x/ � Jh.x/ k D 1

4
k g.2x/ � h.2x/ k� 1

4
K	.2x;�2x; : : : ; 2x;�2x/

� KL	.x;�x; : : : ; x;�x/

for all x 2 X , that is, d.Jg; Jh/ � Ld.g; h/, for any g; h 2 S:
For i odd and j even, we let xi D x and xj D �x in (16), so by using the

evenness of f we get




m
4
f .2x/ �mf.x/




 � 	.x;�x; : : : ; x;�x/ (21)

for all x 2 X and we obtain,





f .x/ � 14f .2x/




 � 1

m
	.x;�x; : : : ; x;�x/ (22)
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for all x 2 X , that is

d.f; Jf / � 1

m
<1 (23)

By Theorem 1, there exists a mappingQ W X ! Y satisfying the following:

1. Q is a fixed point of J, that is,

Q.2x/ D 4Q.x/ (24)

for all x 2 X . The mappingQ is a unique fixed point of J in the set

M D fg 2 S W d.f; g/ <1g : (25)

This implies that Q is a unique mapping satisfying (24) such that there exists
K 2 .0;1/ which satisfies

kf .x/ �Q.x/k � K	.x;�x; : : : ; x;�x/ (26)

for all x 2 X .
2.

d.J nf;Q/ �! 0 as n �!1:

This implies that

lim
n!C1J

nf .x/ D lim
n!C1

f .2nx/

4n
D Q.x/ (27)

for all x 2 X .
3.

d.f;Q/ � 1

1 � Ld.f; Jf /; (28)

which implies the inequality

d.f;Q/ � 1

m �mL (29)

This implies that the inequality (17) holds.
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It follows from (15), (16) and (27) that

k DQ.x1; x2; : : : ; xm/ kD lim
n!C1

1

4n
kDf.2nx1; 2nx2; : : : ; 2nxm/k

� lim
n!C1

1

4n
	.2nx1; 2

nx2; : : : ; 2
nxm/ D 0 (30)

for all x1; x2; : : : ; xm 2 X . So,DQ.x1; x2; : : : ; xm/ D 0 for all x1; x2; : : : ; xm 2 X .
By Theorem 2, we get that the mapping Q W X ! Y is a quadratic function.
Therefore, there exists a unique quadratic mapping Q W X ! Y satisfying (17), as
desired.

Case 2: m is odd

Let us consider the set S WD fg W X ! Y g and introduce the generalized metric
on S as follows:

d.g; h/ D inffK 2 Œ0;1/ W kg.x/ � h.x/k � K	.x;�x; : : : ;�x; x/;8x 2 Xg:
(31)

It is easy to show that .S; d/ is complete (see for example [11]). Now, we consider
the linear mapping J W S ! S such that

Jg.x/ WD 1

4
g.2x/ (32)

for all x 2 X: Given g; h 2 S andK 2 Œ0;1/ such that d.g; h/ � K , so we get

k Jg.x/ � Jh.x/ k D 1

4
k g.2x/ � h.2x/ k� 1

4
K	.2x;�2x; : : : ;�2x; 2x/

� KL	.x;�x; : : : ;�x; x/

for all x 2 X . Hence we see that .Jg; Jh/ � Ld.g; h/ for all g; h 2 S . So J is a
strictly contractive operator.

Putting xi D x and xj D �x in (16), for i odd and j even, we have





 .m � 1/4
f .2x/ � .m � 1/f .x/





 � 	.x;�x; : : : ;�x; x/ (33)

for all x 2 X . So,





f .x/ � 14f .2x/




 � 1

m� 1	.x;�x; : : : ;�x; x/ (34)
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for all x 2 X . That is,

d.f; Jf / � 1

m � 1 <1 (35)

for all f 2 S . The rest of the proof is similar to the proof of case 1.

Corollary 2. Let 0 < p < 2 and 
 � 0 be real numbers, and let f W X ! Y be a
mapping such that

k Df.x1; x2; : : : ; xm/ k� 

mX
iD1
k xi kp (36)

for all x1; x2; : : : ; xm 2 X �f0g, wherem � 2 be an even integer. Then, there exists
a unique quadratic mappingQ W X ! Y such that

k f .x/ �Q.x/ k� 


.1 � 2p�2/ k x k
p (37)

for all x 2 X � f0g.
Proof. We obtain Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mX
iD1
k xi kp (38)

for all x1; x2; : : : ; xm 2 X � f0g Then, we can choose L D 2p�2 and we get the
desired result.

Corollary 3. Let p and 
 � 0 be real numbers such that 0 < p < 2
m

, and let
f W X ! Y be a mapping such that

kDf.x1; x2; : : : ; xm/k � 

mY
iD1
k xi kp (39)

for all x1; x2; : : : ; xm 2 X �f0g, wherem � 2 be an even integer. Then, there exists
a unique quadratic mappingQ W X ! Y such that

kf .x/ �Q.x/k � 


m.1� 2mp�2/ k x k
mp (40)

for all x 2 X � f0g.



A Fixed Point Approach to Stability of the Quadratic Equation 63

Proof. The proof follows from Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mY
iD1
k xi kp (41)

for all x1; x2; : : : ; xm 2 X � f0g. Then, we can choose L D 2mp�2 and we get the
desired result.

Corollary 4. Let pi , i D 1; 2; : : : ; m, where m � 2 be an even integer andPm
iD1 pi < 2, let 
 � 0 be a real number, and let f W X ! Y be a mapping

fulfilling

kDf.x1; x2; : : : ; xm/k � 

mY
iD1
k xi kpi (42)

for all x1; x2; : : : ; xm 2 X � f0g. Then, there exists a unique quadratic mapping
Q W X ! Y such that

kf .x/ �Q.x/k � 


m.1� 2.Pm
iD1 pi /�2/

k x k.
Pm
iD1 pi / (43)

for all x 2 X � f0g.
Proof. We obtain Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mY
iD1
k xi kpi (44)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 2 be an even integer. Then, we can
choose L D 2.

Pm
iD1 pi /�2 and we get the desired result.

Remark 1. Let 0 < p < 2 and 
 � 0 be real numbers, and let f W X ! Y be a
mapping such that

kDf.x1; x2; : : : ; xm/k � 

mX
iD1
k xi kp (45)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, there exists
a unique quadratic mappingQ W X ! Y such that

kf .x/ �Q.x/k � m


.m � 1/.1 � 2p�2/ k x k
p (46)

for all x 2 X � f0g.
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Proof. We obtain Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mX
iD1
k xi kp (47)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, we can
choose L D 2p�2 and we get the desired result.

Remark 2. Let p and 
 � 0 be real numbers such that 0 < p < 2
m

, and let f W
X ! Y be a mapping such that

kDf.x1; x2; : : : ; xm/k � 

mY
iD1
k xi kp (48)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, there exists
a unique quadratic mappingQ W X ! Y such that

kf .x/ �Q.x/k � 


.m � 1/.1� 2mp�2/ k x k
mp (49)

for all x 2 X � f0g.
Proof. We obtain Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mY
iD1
k xi kp (50)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, we can
choose L D 2mp�2 and we get the desired result.

Remark 3. Let pi , i D 1; 2; : : : ; m, where m � 2 be an odd integer andPm
iD1 pi < 2, let 
 � 0 be a real number, and let f W X ! Y be a mapping

such that

kDf.x1; x2; : : : ; xm/k � 

mY
iD1
k xi kpi (51)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, there exists
a unique quadratic mappingQ W X ! Y such that

kf .x/ �Q.x/k � 


.m � 1/.1 � 2.Pm
iD1 pi /�2/

k x k.
Pm
iD1 pi / (52)

for all x 2 X � f0g.
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Proof. We obtain Theorem 3 by taking

	.x1; x2; : : : ; xm/ WD 

mY
iD1
k xi kpi (53)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 3 be an odd integer. Then, we can
choose L D 2.

Pm
iD1 pi /�2 and we get the desired result.

Remark 4. Let f W X ! Y be an even mapping with f .0/ D 0 for which there
exists a function 	 W Xm ! Œ0;1/, wherem � 2 be an integer, such that

lim
n!C1 4

n	

 
1

2n
x1;

1

2n
x2; : : : ;

1

2n
xm

!
D 0 (54)

for all x1; x2; : : : ; xm 2 X . By similar method to the proof of Theorem 3, one can
show that if there exists an L < 1 such that

	.x;�x; : : : ;˙x/ � 1

4
L	.2x;�2x; : : : ;˙2x/

for all x 2 X , then there exists a unique quadratic mappingQ W X ! Y satisfying

kDf.x1; x2; : : : ; xm/k � 	.x1; x2; : : : ; xm/ (55)

and

(1)

kf .x/ �Q.x/k � L

m �mL	.x;�x; x; : : : ; x;�x/; (56)

for all x 2 X , where m is an even integer;
(2)

kf .x/ �Q.x/k � L

.m � 1/.1� L/	.x;�x; x; : : : ;�x; x/ (57)

for all x 2 X , where m is an odd integer.

For the cases p > 2, p > 2
m

and
Pm

iD1 pi > 0, i D 1; 2; : : : ; m, we can obtain
a similar result to Corollaries 2–4 respectively. For the cases p > 2, p > 2

m
andPm

iD1 pi > 0, i D 1; 2; : : : ; m, we can obtain a similar result to Remarks 1–3
respectively.
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Theorem 4. Let f W X ! Y be a mapping with f .0/ D 0 for which there exists
a function 	 W Xm ! Œ0;1/, where m � 2 be an integer, such that there exists an
L < 1 such that

	.x1; x2; : : : ; xm/ � 4L	
 
x1

2
;
x2

2
; : : : ;

xm

2

!
(58)

for all x 2 X , and

lim
n!C1 4

�n	.2nx1; 2nx2; : : : ; 2nxm/ D 0 (59)

kDf.x1; x2; : : : ; xm/k � 	.x1; x2; : : : ; xm/ (60)

for all x1; x2; : : : ; xm 2 X . Then, there exists a unique quadratic mappingQ W X !
Y which satisfies

(1)

kf .x/ �Q.x/k � 2

m �mL

(
	

 
x

2
;
�x
2
; : : : ;

�x
2

!
C 	

 
�x
2
;
x

2
; : : : ;

x

2

!)

(61)

for all x 2 X , where m is an even integer;
(2)

kf .x/�Q.x/k� 2

.m � 1/.1�L/

(
	

 
x

2
;
�x
2
; : : : ;

x

2

!
C	

 
�x
2
;
x

2
; : : : ;

�x
2

!)

(62)

for all x 2 X , where m is an odd integer.

Proof. We decompose f into the odd part and the even part by putting

fo.x/ D f .x/ � f .�x/
2

and fe.x/ D f .x/C f .�x/
2

for all x 2 X . It is clear that f .x/ D fo.x/C fe.x/ for all x 2 X . It follows from
(60) that

kDfe.x1; : : : ; xm/k � 1

2
f	.x1; : : : ; xm/C 	.�x1; : : : ;�xm/g (63)

kDfo.x1; : : : ; xm/k � 1

2
f	.x1; : : : ; xm/C 	.�x1; : : : ;�xm/g (64)

for all x1; : : : ; xm 2 X .
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We have fe is even and satisfies (63), so by Theorem 3, there exists a quadratic
mappingQ W X �! Y such that

kfe.x/ �Q.x/k � 1

2m.1� L/ f	.x;�x; : : : ;�x/C 	.�x; x; : : : ; x/g (65)

wherem is even, and

kfe.x/ �Q.x/k � 1

2.m� 1/.1 �L/ f	.x;�x; : : : ;�x/C 	.�x; x; : : : ; x/g
(66)

wherem is odd. It implies that

kfe.x/ �Q.x/k � 2L

m.1 �L/

(
	

 
x

2
;
�x
2
; : : : ;

�x
2

!
C 	

 
�x
2
;
x

2
; : : : ;

x

2

!)

(67)

wherem is even, and

kfe.x/�Q.x/k � 2L

.m � 1/.1 �L/

(
	

 
x

2
;
�x
2
; : : : ;

�x
2

!
C 	

 
�x
2
;
x

2
; : : : ;

x

2

!)

(68)

wherem is odd, for all x 2 X .
On the other side, letting xi D x and xj D �x in (64), where i is even and j is

odd, then we get two cases as follows
Firstly, if m is even, then we have




m
4
fo.2x/




 � 1

2
f	.x;�x; : : : ;�x/C 	.�x; x; : : : ; x/g (69)

Therefore,

kfo.x/k � 2

m

(
	

 
x

2
;
�x
2
; : : : ;

�x
2

!
C 	

 
�x
2
;
x

2
; : : : ;

x

2

!)
(70)

for all x 2 X .
Secondly, if m is odd, then we have

kfo.x/k � 2

m � 1

(
	

 
x

2
;
�x
2
; : : : ;

x

2

!
C 	

 
�x
2
;
x

2
; : : : ;

�x
2

!)
(71)

for all x 2 X .
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From (67) and (70), we get

kf .x/ �Q.x/k � kfo.x/k C kfe.x/ �Q.x/k

�
�
2

m
C 2L

m.1�L/
� (

	

 
x

2
;
�x
2
; : : : ;

�x
2

!
C	

 
�x
2
;
x

2
; : : : ;

x

2

!)

(72)

for x 2 X . Then, we obtain the inequality (61). In the same way, from (68) and (71),
we get the inequality (62).

4 Solutions and Hyers–Ulam–Rassias Stability of Eq. (3)

Throughout this section, we assume that X is a normed space and Y is a Banach
space.

Let us consider the functional equation

f

0
@ kX
iD1

xi C
hX

jD1
yj

1
A D

kX
iD1

f .xi /C
hX

jD1
f .yj /

C 1

2

X
1�i<j�k

ff .xi C xj /� f .xi � xj /g

C 1

2

X
1�i<j�h

ff .yi C yj /� f .yi � yj /g

C 1

2

hX
jD1

kX
iD1
ff .xi C yj /� f .xi � yj /g (73)

for all x1; x2; : : : ; xk; y1; y2; : : : ; yh 2 X , where k � 2 and h � 2 are integers.
This equation is connected with the functional equation (4) as it is shown below:

Theorem 5. A function f W X �! Y satisfies the functional equation (73) for
all x1; x2; : : : ; xk; y1; y2; : : : ; yh 2 X , if and only if f satisfies the functional
equation (4) for all x1; x2; : : : ; xm 2 X .

Proof. Assume that f W X �! Y satisfies (73). Let yj D xjCk ; j D 1; 2; : : : ; h in
(73), we get

f

0
@ kX
iD1

xi C
hX

jD1
xjCk

1
A D

kX
iD1

f .xi /C
hX

jD1
f .xjCk/

C 1

2

X
1�i<j�k

ff .xi C xj / � f .xi � xj /g
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C 1

2

X
1�i<j�h

ff .xiCk C xjCk/� f .xiCk � xjCk/g

C 1

2

hX
jD1

kX
iD1
ff .xi C xjCk/� f .xi � xjCk/g (74)

Then,

f

0
@ kX
iD1

xi C
mX

jDkC1
xj

1
A D

kX
iD1

f .xi /C
mX

jDkC1
f .xj /

C 1

2

X
1�i<j�k

ff .xi C xj /� f .xi � xj /g

C 1

2

X
kC1�i<j�m

ff .xi C xj /� f .xi � xj /g

C 1

2

mX
jDkC1

kX
iD1
ff .xi C xj / � f .xi � xj /g (75)

for all x1; x2; : : : ; xk; xkC1; : : : ; xm 2 X . Therefore,

f

 
kChX
iD1

xi

!
D

kChX
iD1

f .xi /C 1

2

X
1�i<j�kCh

ff .xi C xj / � f .xi � xj /g (76)

So, we get that f satisfies (4).
Assume that f W X �! Y satisfies (4). Let 1 < k < m, then we can write the

functional equation (4) as follows

f

0
@ kX
iD1

xi C
mX

jDkC1
xj

1
A D

kX
iD1

f .xi /C
mX

jDkC1
f .xj /

C 1

2

X
1�i<j�k

ff .xi C xj /� f .xi � xj /g

C 1

2

X
kC1�i<j�m

ff .xi C xj /� f .xi � xj /g

C 1

2

mX
jDkC1

kX
iD1
ff .xi C xj / � f .xi � xj /g (77)

for all x1; x2; : : : ; xk; xkC1; : : : ; xm 2 X . Then,
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f

0
@ kX
iD1

xi C
hX

jD1
xjCk

1
A D

kX
iD1

f .xi /C
hX

jD1
f .xjCk/

C 1

2

X
1�i<j�k

ff .xi C xj / � f .xi � xj /g

C 1

2

X
1�i<j�h

ff .xi C xjCk/ � f .xi � xjCk/g

C 1

2

hX
jD1

kX
iD1
ff .xi C xjCk/� f .xi � xjCk/g (78)

where m D k C h. By putting xjCk D yj with j D 1; 2; : : : ; h in (78), we obtain
the functional equation (73).

For a given mapping f W X �! Y , we use the following abbreviation � W
XkCh �! Y , where

�f.x1; : : : ; xk; y1; : : : ; yh/ W D f
0
@ kX
iD1

xi C
hX

jD1
yj

1
A �

kX
iD1

f .xi /�
hX

jD1
f .yj /

�1
2

X
1�i<j�k

ff .xi C xj /� f .xi � xj /g

�1
2

X
1�i<j�h

ff .yi C yj / � f .yi � yj /g

�1
2

hX
jD1

kX
iD1
ff .xi C yj /� f .xi � yj /g (79)

for all x1; x2; : : : ; xk; y1; y2 : : : ; yh 2 X .
In the following theorem, we will apply the fixed point method as in [19] to prove

the Hyers–Ulam–Rassias stability of the quadratic functional equation (3).

Theorem 6. Let f W X �! Y be an even mapping with f .0/ D 0 for which there
exists a function ' W XkCh �! Œ0;1/, where h � 2 and k � 2 are integers, such
that there exists an L < 1 such that

'.x;�x; : : : ;˙x/ � 4L'
 
x

2
;
�x
2
; : : : ;

˙x
2

!
(80)

for all x 2 X , and
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lim
n!C1 4

�n'.2nx1; : : : ; 2nxk; 2ny1; : : : ; 2nyh/ D 0 (81)

k�f.x1; : : : ; xk; y1; : : : ; yh/k � '.x1; : : : ; xk; y1; : : : ; yh/ (82)

for all x1; x2; : : : ; xk; y1; y2; : : : ; yh 2 X . Then, there exists a unique quadratic
mappingQ W X �! Y which satisfies

(1)

kf .x/ �Q.x/k � 1

.k C h/.1 � L/'.x;�x; x; : : : ; x;�x/ (83)

for all x 2 X , where .k C h/ is an even integer;
(2)

kf .x/ �Q.x/k � 1

.k C h� 1/.1� L/'.x;�x; x; : : : ;�x; x/ (84)

for all x 2 X , where .k C h/ is an odd integer.

Proof. If f W X �! Y is an even mapping, then we study two cases as follows:

Case 1: k+h is even

Consider the set S WD fg W X ! Y g and introduce the generalized metric on S
as follows:

d.g; h/ D inf fK 2 Œ0;1/ W kg.x/ � h.x/k � K'.x;�x; : : : ; x;�x/;8x 2 Xg :

It is easy to show that .S; d/ is complete (see for example [11]). Now, we consider
the linear mapping J W S ! S such that

Jg.x/ WD 1

4
g.2x/ (85)

for all x 2 X . Given g; h in S , let K 2 Œ0;1/ be an arbitrary constant with
d.g; h/ � K , that is

k Jg.x/ � Jh.x/ k D 1

4
k g.2x/ � h.2x/ k� 1

4
K'.2x;�2x; : : : ; 2x;�2x/

� KL'.x;�x; : : : ; x;�x/

for all x 2 X . Hence we see that d.Jg; Jh/ � Ld.g; h/; for any g; h 2 S . So J is
a strictly contractive operator.

For i odd and j even, we let xi D x and xj D �x in (82), so by using the
evenness of f we get
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 .k C h/4
f .2x/ � .k C h/f .x/





 � '.x;�x; : : : ; x;�x/

for all x 2 X and we obtain,





f .x/ � 14f .2x/




 � 1

k C h'.x;�x; : : : ; x;�x/ (86)

for all x 2 X , that is

d.f; Jf / � 1

k C h <1 (87)

The rest of the proof of this case is similar to the proof of Theorem 3.

Case 2: k+h is odd

Let us consider the set S WD fg W X ! Y g and introduce the generalized metric
on S as follows:

d.g; h/ D inffK 2 Œ0;1/ W kg.x/ � h.x/k � K'.x;�x; : : : ;�x; x/;8x 2 Xg:

It is easy to show that .S; d/ is complete (see for example [11]). Now, we consider
the linear mapping J W S ! S such that

Jg.x/ WD 1

4
g.2x/ (88)

for all x 2 X . Given g; h 2 S , let K 2 Œ0;1/ be an arbitrary constant with
d.g; h/ � K , that is

k Jg.x/ � Jh.x/ k D 1

4
k g.2x/ � h.2x/ k� 1

4
K'.2x;�2x; : : : ;�2x; 2x/

� KL'.x;�x; : : : ;�x; x/

for all x 2 X . Hence we see that .Jg; Jh/ � Ld.g; h/ for any g; h 2 S: So J is a
strictly contractive operator.

For i odd and j even, we let xi D x and xj D �x in (82), so by using the
evenness of f we get





 .k C h� 1/4
f .2x/ � .k C h � 1/f .x/





 � '.x;�x; : : : ;�x; x/

for all x 2 X and we obtain,





f .x/ � 14f .2x/




 � 1

k C h � 1'.x;�x; : : : ;�x; x/ (89)
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for all x 2 X , that is

d.f; Jf / � 1

k C h � 1 <1 (90)

8f 2 S . The rest of this proof is similar to the proof of Theorem 3.

Theorem 7. Let f W X ! Y be a mapping with f .0/ D 0 for which there exists a
function 	 W Xm ! Œ0;1/, where m � 2 be an integer, such that

kDf.x1; x2; : : : ; xm/k � 	.x1; x2; : : : ; xm/ (91)

lim
n!C1m

�2n	.mnx1;m
nx2; : : : ; m

nxm/ D 0 (92)

for all x1; x2; : : : ; xm 2 X . Let 0 < L < 1 be a constant such that the mapping

x 7!  .x/ WD 	.x; : : : ; x/C m.m� 1/
2

	.x; 0; : : : ; 0/

satisfying  .x/ � m2L . x
m
/ for all x 2 X . Then, there exists a unique quadratic

mappingQ W X ! Y which satisfies

kf .x/ �Q.x/k � 1

m2.1 � L/ .x/ (93)

for all x 2 X .

Proof. Consider the set S WD fg W X ! Y g and introduce the generalized metric on
S as follows:

d.g; h/ D inf fK 2 Œ0;1/ W kg.x/ � h.x/k � K .x/;8x 2 Xg :

It is easy to show that .S; d/ is complete (see for example [11]). Now, we consider
the linear mapping J W S ! S such that

Jg.x/ WD 1

m2
g.mx/ (94)

for all x 2 X . Given g; h 2 S , let K 2 Œ0;1/ be an arbitrary constant with
d.g; h/ � K , that is

k Jg.x/ � Jh.x/ k D 1

m2
k g.mx/ � h.mx/ k� 1

m2
K .mx/

� KL .x/
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for all x 2 X . Hence we see that .Jg; Jh/ � Ld.g; h/ for any g; h 2 X . From
(91), we get




Df.x; : : : ; x/�m.m�1/
2

Df .x; 0; : : : ; 0/



�	.x; : : : ; x/Cm.m�1/

2
	.x; 0; : : : ; 0/

for all x 2 X and we obtain,

k f .mx/ �m2f .x/ k�  .x/ (95)

for all x 2 X , that is

k f .x/ � 1

m2
f .mx/ k� 1

m2
 .x/

k f .x/ � Jf .x/ k� 1

m2
 .x/

Hence we see that

d.f; Jf / � 1

m2
<1: (96)

The rest of the proof is similar to the proof of Theorem 3.

Corollary 5. Let 0 < p < 2 and 
 � 0 be real numbers, and let f W X ! Y be a
mapping such that

kDf.x1; x2; : : : ; xm/k � 

mX
iD1
k xi kp (97)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 2 be an integer. Then, there exists a
unique quadratic mappingQ W X ! Y such that

kf .x/ �Q.x/k � .mC 1/
2.1�mp�2/


 k x kp (98)

for all x 2 X � f0g.
Proof. We obtain Theorem 7 by taking

	.x1; x2; : : : ; xm/ WD 

mX
iD1
k xi kp (99)

for all x1; x2; : : : ; xm 2 X � f0g, where m � 2 be an integer. Then, we can choose
L D mp�2 and we get the desired result.
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Abstract We deal with the minimum number of critical points of circular functions
with respect to two different classes of functions. The first one is the whole class
of smooth circular functions and, in this case, the minimum number is the so
called circular '-category of the involved manifold. The second class consists of
all smooth circular Morse functions, and the minimum number is the so called
circular Morse–Smale characteristic of the manifold. The investigations we perform
here for the two circular concepts are being studied in relation with their real
counterparts. In this respect, we first evaluate the circular '-category of several
particular manifolds. In Sect. 5, of more survey flavor, we deal with the computation
of the circular Morse–Smale characteristic of closed surfaces. Section 6 provides an
upper bound for the Morse–Smale characteristic in terms of a new characteristic
derived from the family of circular Morse functions having both a critical point of
index 0 and a critical point of index n. The minimum number of critical points for
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1 Introduction

Let Mm;Nn be two smooth manifolds and let F � C1.M;N / be a family of
smooth mappingsM ! N . The 'F -category of the pair .M;N / is defined by

'F .M;N / D minf�.f / W f 2 F g;

where �.f / D cardC.f / and C.f / is the critical set of f . It is clear that 0 �
'F .M;N / � C1 and we have 'F .M;N / D 0 if and only if the family F contains
immersions (if m < n), submersions (if m > n), or local diffeomorphisms (if
m D n). Several topological and geometrical properties involving the 'F -category
of a pair .M;N / of manifolds are provided in [8]. For more details and examples
of pairs of manifolds with finite or infinite '-category we refer to the reader to
[3–5, 25, 26] or [18, 45–50], respectively.

In this paper we deal with two examples of circular categories. In Sect. 2 we
briefly review some results involving the real '-category. The circular '-category
of a manifold M is defined in Sect. 3 as the '-category of the pair .M; S1/
corresponding to the family C1.M; S1/. Taking into account the inequality
'S1.M/ � '.M/, emphasized by the relations (7), one of the main goals of this
section is to provide classes of manifolds M satisfying the equality 'S1.M/ D
'.M/. Section 4 is devoted to the study of some similar aspects for the circular
Morse–Smale characteristic �S1.M/ introduced by the first two authors in [6] as the
'-category of the pair .M; S1/ corresponding to the family F.M; S1/ of all circular
Morse functions defined onM . Taking into account the inequality �S1.M/ � �.M/,
labeled by (9), in this section we point out some classes of manifolds M with the
property �S1.M/ D �.M/. These results are obtained assuming some hypotheses
on the topology of M related to the lifting condition

Hom.�.M/;Z/ D 0 (1)

of circular functions to real valued functions via the universal covering exp W
R ! S1, exp.x/ D eix . The computation of �S1.M/ for manifolds which are not
subject to such a requirement seems to be quite a challenging problem. The closed
connected surfaces are examples of manifolds in this respect and their circular
Morse–Smale category is computed in Sect. 5. Indeed we prove there that

�S1.S/C .S/ D 0; (2)

for every closed connected surface S , except for the unit sphere S2 and the
projective plane RP

2 which satisfy the lifting property (1) anyway. We present two
different proofs for the formula (2), based on our papers [10] and [11]. Section 6
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is dealing with the estimation of the circular Morse–Smale characteristic of a
connected sum of manifolds. In Theorem 2 we obtain an upper bound in terms of a
new '-category of the pair .X; S1/, denoted by �0;n

S1
.X/, corresponding to the family

F0;n.X; S
1/ of all smooth Morse functions defined on the n-dimensional manifold

X , having both a critical point of index 0 and a critical point of index n. While
the computation of �0;n

S1
.X/ might be a difficult problem, we only observe here that

it is equal to �S1.X/ when the lifting property Hom.�.X/;Z/ D 0 holds. This
observation allows us to provide some upper bounds for �0;n

S1
of some connected

sums.
The minimum number of critical points for circular Morse functions on the closed

orientable surface˙ is realized by the restriction of the function

f W R3 nOz! R; f .x; y; z/ D 1p
x2 C y2 .x; y; 0/

to a certain embedding of ˙ in R
3 n Oz. The critical points of this restriction are

the characteristic points of the embedded copy of ˙ with respect to the tangent
distribution of the foliation through the fibers of f , which is obviously involutive.
The last section provides a lower and an upper bound for the minimum characteristic
number of a surface S 	 R

3 with respect to the noninvolutive horizontal distribution
of the first Heisenberg group H

1.

2 The Real '-Category of a Manifold

Consider the particular case when the target manifold N is the real line R and F is
the family F .M/ D C1.M;R/ of all smooth real functions onM . In this situation
'F .M;R/ represents the '-category (or the real functional category) of M and it is
denoted by '.M/. More precisely, '.M/ is defined by

'.M/ D minf�.f / W f 2 C1.M/g; (3)

where �.f / denotes the number of the critical points of f . This number was
intensively studied by Takens [53] for the class of closed manifolds, i.e. compact
and without boundary. There are other notations in the literature for '.M/ such as
F:.M/ in [53] and Crit.M/ in the monograph [19], where it is called the criticality
of M . In this case the following general inequalities, proved by Takens [53], hold

cat.M/ � '.M/ � dim.M/C 1; (4)

where cat.M/ is the Lusternik–Schnirelmann category ofM , i.e. the smallest num-
ber of open contractible subsets ofM which are needed to coverM . The right-hand
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side inequality shows that '.M/ is finite. IfM is a closed manifold, then cat.M/ �
2 sinceM is not contractible in this case and we may complete the inequalities (4) to

2 � cat.M/ � '.M/ � dim.M/C 1; (5)

wheneverM is closed.

Remark 1. If M;N are smooth manifolds, then

'.M �N/ � minfdim.M/C dim.N /C 1; '.M/'.N /g:

Indeed, the inequality '.M �N/ � dim.M/C dim.N /C 1 follows from (4). The
inequality '.M �N/ � '.M/'.N / follows by taking into account that

C.f ˚ g/ D C.f / � C.g/; f 2 C1.M/; g 2 C1.N /;

where .f ˚ g/.x; y/ D f .x/C g.y/ for all x 2M and y 2 N [2, p. 131].

3 The Circular '-Category of a Manifold

The systematic study of the smooth circular functions defined on a manifold was
initiated by Pitcher [51, 52], in order to extend in this context the Morse theory for
real-valued functions.

The circular '-category (or the circular functional category) of the manifold M
is defined by

'S1.M/ D minf�.f / W f 2 C1.M; S1/g; (6)

where S1 is the unit circle. Clearly, it is the 'F -category of the pair .M; S1/ with
respect to the family F D C1.M; S1/.

Notice that we have the inequality 'S1.M/ � '.M/. Indeed, considering a
function f 2 C1.M/ with �.f / D '.M/, then the function Qf D exp ıf , where
exp W R! S1 is the universal covering of the circle S1, satisfies C. Qf / D C.f /.
Therefore, we obtain 'S1.M/ � �. Qf / D �.f / D '.M/ and the property follows.
Combining this inequality with the right inequality of (4), it follows

'S1.M/ � '.M/ � mC 1: (7)

The main purpose of this section is to point out some classes of closed manifolds
for which the equality 'S1.M/ D '.M/ holds.
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3.1 The Coverings of Circular Functions and the Lifting
Property

In this section we relay on the lifting properties of the covering maps to obtain
information on the size of critical sets of circular functions. The properties of
covering maps p W E �!M , we have in mind, are:

1. The group homomorphism p� W �.E/ �! �.M/, induced by the projection p
at the level of fundamental groups, is one-to-one.

2. The cardinality of the inverse images p�1.y/ is independent of y 2 M whenever
E is connected and it is equal to the index Œ�.M/ W Im.p�/�.

3. For every subgroup H of the fundamental group �.M/ of M , there exists a
covering map q W EH !M such that q� .�.EH // D H .

4. A necessary and sufficient condition for a continuous map f W X ! M to be
lifted to a map Nf W X �! E is the inclusion f� .�.X// � Nf� .�.X//. In other
words, there is a map Nf W X �! E such that p ı Nf D f if and only if the
relation f� .�.X// � Nf� .�.X// holds. Note that one of the two implications is
obvious.

These properties were intensively used in the previous papers [45, 49] to point
out maps with large critical sets and large sets of critical values. Recall that the
circular functions on a compact manifold whose fundamental group is a torsion
group are rather real valued functions as they all can be lifted to the real line
through the exponential covering map exp W R �! S1, due to the lifting property
Hom.�.M/;Z/ D 0. More precisely we have:

Remark 2. Let M be a connected smooth manifold. If Hom .�.M/;Z/ D 0, then
every circular map f WM �! S1 can be lifted to a map Qf WM �! R through the
exponential covering map exp W R �! S1. Indeed, since f� D 0 and exp� D 0 the
existence of a lifting map Qf WM �! R which factors as f D exp ı Qf follows from
property (4) in the above list. The manifolds M with torsion fundamental group is
a class of topological spaces satisfying the lifting property Hom .�.M/;Z/ D 0.
However, there are manifolds whose fundamental groups are not torsion groups
and yet the lifting property Hom .�.M/;Z/ D 0 is satisfied. Such examples are
provided below by Corollary 2.

Besides the manifolds having torsion fundamental groups, the group homomor-
phisms of connected sums of such manifolds are still trivial whenever the terms of
connected sums, alongside the connected sums themselves, have dimension three or
higher.

Proposition 1. If .G1; �/; : : : ; .Gr ; �/; .H; �/ are groups and

f W G1 
 � � � 
Gr �! H
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is a given group homomorphism, then

Im.f / � hIm.f ı i1/[ � � � [ Im.f ı ir /i;

where ik W Gk �! G1 
 � � � 
 Gr , k D 1; : : : ; r are the natural embeddings. In
particular Hom.G1 
 � � � 
 Gr;H/ D 0 whenever G1; : : : ; Gr are torsion groups
andH is torsion free.

Proof. Every element of the free productG1
� � �
Gr has the form ik1.g1/ � � � iks .gs/,
where g˛ 2 Gk˛ for ˛ D 1; : : : ; s and ikˇ ¤ ikˇC1

for ˇ D 1; : : : ; s � 1. Therefore
f .ik1.g1/ � � � iks .gs// D f .ik1.g1// � � �f .iks .gs// D f .ik1.g1// � � �f .iks .gs// D
.f ı ik1/.g1/ � � � .f ı iks /.gs// 2 hIm.f ı i1/ [ � � � [ Im.f ı ir /i. If G1; : : : ; Gr
are torsion groups and H is torsion free, then obviously Hom.Gj ;H/ D 0 for all
j D 1; : : : ; r , which shows that Im.f ı ij / D 0 for every j D 1; : : : ; r . �

Corollary 1. If .G1; �/; : : : ; .Gr ; �/ are groups and f WG1 
 � � � 
Gr! Z is a given
group homomorphism, then Im.f / D gcd.mi1; : : : ; mis /Z, where mi1; : : : ; mis are
generators of the nontrivial groups Im.f ıi1/; : : : ; Im.f ıis/, i.e. Im.f ıij / D mjZ,
for j D 1; : : : ; r and mi1; : : : ; mis ¤ 0. If m1 D � � � D mr D 0, i.e. f ı i1 D
� � �f ı ir D 0, then Im.f / D 0. In particular Hom.G1 
 � � � 
Gr ;Z/ D 0 whenever
G1; : : : ; Gr are torsion groups.

Proof. According to Proposition 1 we have,

Im.f / � hIm.f ı i1/ [ � � � [ Im.f ı ir /i
D m1ZC � � � CmrZ

D mi1ZC � � � CmisZ D gcd.mi1; : : : ; mis /Z: �

Corollary 2. If Mn
1 ; : : : ;M

n
r ; n � 3, are connected n-dimensional manifolds such

that �.M1/; : : : ; �.Mr/ are torsion groups, then the connected sum M1# � � � #Mr

satisfies the lifting property, i.e. Hom.�.M1# � � � #Mr/;Z/ D 0. In particular, if
each of Mn

1 ; : : : ;M
n
r ; n � 3 is either a real projective space or a lens space, then

M1# � � �#Mr satisfies the lifting property.

Proof. The first statement follows from Corollary 1 taking into account the isomor-
phism �.M1# � � �#Mr/ Š �.M1/ 
 � � � 
 �.Mr/. For the second statement we just
need to observe that the fundamental groups �.M1/; : : : ; �.Mr/ are torsion groups
as they are actually finite. �

Remark 3. The requirement n � 3 in Corollary 1 is essential. Indeed, the
fundamental group of the compact non-orientable surface Pg D RP2# � � �#RP2
of non-orientable genus g � 3 (i.e. the connected sum of g copies of projective
planes) admit circular functions inducing nontrivial group of homomorphisms at the
level of fundamental groups, although the terms of the connected sum have torsion
fundamental groups. Such examples will appear as circular Morse functions, both on
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the closed orientable surface ˙g WD T 2# � � � #T 2 of genus g � 2 and on the closed
non-orientable surface Pg of non-orientable genus g � 2, with all critical points of
index one. This phenomenon is not possible for real valued Morse functions.

Proposition 2. Let M be a compact smooth manifold with Abelian fundamental
group. Every continuous circular function f W M �! S1 which cannot be lifted to
any real valued function via the exponential covering exp W R! S1 can be covered
by a circular function Nf W NM �! S1 such that �. NM/ is torsion free and the induced
group homomorphism Nf� W �. NM/ �! �.S1/ Š Z is onto. More precisely, there are
some covering maps Np W NM �! M and q W S1 �! S1 which, besides the already
mentioned properties, make commutative the following diagrams

NM Nf�! S1

Np # # q

M
f�! S1

�. NM/
Nf
��! �.S1/ Š Z

Np� # # q�
�.M/

f
��! �.S1/ Š Z:

Proof. Since �.M/ is Abelian, it follows that �.M/ is isomorphic to H1.M;Z/,
as we generally have H1.M;Z/ Š �.M/

ı
Œ�.M/; �.M/�. On the other hand the

homology groups of a compact manifold are all finitely generated and their torsion
parts are direct summands therefore. In particular �.M/ Š t.�.M//˚K for some
torsion-free subgroup K of �.M/, where t.�.M// stands for the torsion subgroup
of �.M/. Let us consider a covering map Np W NM �! M with the property that
Np�
�
�. NM/

� D K . Note that �. NM/ is torsion free and Im.f�/ D Im.f� ı Np�/.
Indeed, we have f� .�.M// D f� .�.M/˚K/ D f� .�.M// C f� .K/ D 0 C
f�
� Np� ��. NM/

��
. Let n be the nonnegative integer such that Im.f�/ D Im.f� ı

Np�/ D nZ. Since f cannot be lifted to any real valued function via the exponential
covering exp W R �! S1, it follows that n ¤ 0. Recall that the function q W S1 �!
S1, q.z/ D zn is an n-sheeted covering function and q�.Z/ D nZ D Im.f�/ D
Im. Nf ı p/�. This shows that f ı p can be lifted to a map Nf W NM �! S1, i.e.
q ı Nf D f ı Np.

We next assume that Nf� .�.M// D mZ. Thus, we obtain successively

nZ D .f� ı Np�/.�.M// D .q� ı Nf�/.�.M//

D q�
� Nf� .�.M//

� D q� .mZ/ D mq� .Z/ D mnZ:

Therefore n D nm, i.e. m D 1, which shows that Nf� .�.M// D Z. �

3.2 Manifolds Satisfying 'S 1.M/ D '.M/

Let us first observe that the inequality 'S1.M/ � '.M/ ensured by (7) can be strict.
Indeed, the m-dimensional torus T m D S1 � � � � � S1 (m times) has, according to
[2, Example 3.6.16], the '-category '.T m/ D m C 1. On the other hand, every
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projection T m ! S1 is a trivial differentiable fibration, hence it has no critical
points, implying 'S1.T

m/ D 0. This example is part of the following more general
observation.

Remark 4. For a closed manifold M we have 'S1.M/ D 0 if and only if there
is a differentiable fibration M ! S1. Indeed, the existence of a differentiable
fibration M ! S1 ensures the equality 'S1.M/ D 0, as the fibration itself has
no critical points at all. Conversely, the equality 'S1.M/ D 0 ensures the existence
of a submersionM ! S1, which is also proper, as its inverse images of the compact
sets in S1 are obviously compact. Thus, by the Ehresmann’s fibration theorem (see
[22] for the original reference, or [20, p. 15]) one can conclude that our submersion
is actually a locally trivial fibration.

Proposition 3. Let M be a connected smooth manifold. If M satisfies the lifting
property Hom .�.M/;Z/ D 0, then '

S1
.M/ D '.M/. In particular '

S1
.M/ D

'.M/ whenever the fundamental group of M is a torsion group.

Proof. Indeed, in this case every smooth circle valued function f W M �! S1

can be lifted to a smooth real valued function Qf W M �! R, i.e. exp ı Qf D f .
Since the universal cover exp W R �! S1 is a local diffeomorphism, it follows that
C.f / D C. Qf / � '.M/ for every smooth function f WM �! S1. This shows that
the inequality '

S1
.M/ � '.M/ holds, which combined to the general inequality

(1.4), leads to the desired relation. �

Corollary 3. If n � 2 is an integer, then '
S1
.Sn/ D '.Sn/ D 2 and '

S1
.RPn/ D

'.RPn/ D nC 1.

Proof. While the equalities '
S1
.Sn/ D '.Sn/, '

S1
.RPn/ D '.RPn/ follow from

Proposition 3, the equality '.Sn/ D 2 is obvious. On the other hand, we have

'.RPn/ � �.f / D card.C.f // D nC 1;

where f W RPn �! R is defined by

fn.Œx1 ; : : : ; xnC1
�/ D x21 C 2x22 C � � � C nx2n C .nC 1/x2nC1

x21 C x22 C � � � C x2n C x2nC1
whose critical set consists of the nC 1 critical points

Œ1; 0; : : : ; 0�; Œ0; 1; : : : ; 0�; : : : ; Œ0; 0; : : : ; 1� 2 RP
n:

Note that f is a Morse function and its critical points have indices 0; 1; : : : ; n,
respectively, (see, for instance, [35, p. 84, 85]). Finally, we use the inequality

'.RPn/ � cat.RPn/ D nC 1
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where cat.RPn/ stands for the Lusternik–Schnirelmann category of the projective
space RPn [41, pp. 190–192]. �

Corollary 4. If k; l;m1; : : : ; mk � 2 are integers, then the following relations
hold:

1. '
S1
.Sm1 � � � � � Smk / D '.Sm1 � � � � � Smk/ D k C 1.

2. '
S1
.RPm1� � � � �RPmk/ D '.RPm1� � � � �RPmk/ � m1 Cm2 C � � � Cmk C 1.

3. '
S1
.L.7; 1/�S4/ D '.L.7; 1/�S4/ D '

S1
.L.7; 1/�S4/ D '.L.7; 1/�S4/ D 5,

where L.r; s/ is the 3-dimensional lens space of type (r,s).
4. '

S1
.RPk � Sl/ D '.RPk � Sl/ � k C 2.

Proof. For the equalities

'
S1
.Sm1 � � � � � Smk / D '.Sm1 � � � � � Smk/

'
S1
.RPm1� � � � �RPmk/ D '.RPm1� � � � �RPmk/

'
S1
.L.7; 1/�S4/ D '.L.7; 1/; '

S1
.L.7; 1/�S4/ D '.L.7; 1/�S4/

'
S1
.RPk � Sl/ D '.RPk � Sl/:

we merely need to use Proposition 3. The proofs of the equalities

'.Sm1 � � � � � Smk/ D k C 1
'.L.7; 1/� S4/ D '.L.7; 1/ � S4/ D 5

have been done by Gavrilă [27, Proposition 4.6, Example 4.7]. The inequality
'.RPm1� � � � �RPmk/ � m1Cm2C� � �Cmk C 1 follows from (4) and the estimate
'.RPk � Sl/ � k C 2 relies on [27, Proposition 4.19]. �

Combining Corollary 2 with Proposition 3 we obtain:

Corollary 5. If Mn
1 ; : : : ;M

n
r ; n � 3 are connected manifolds with torsion fun-

damental groups, then '
S1
.M1# � � � #Mr/ D '.M1# � � �#Mr/. In particular the

following equality '
S1
.rRPn/ D '.rRPn/ holds, where rRPn stands for the

connected sum RPn# � � �#RPn of r copies of RPn.

The following result is mentioned in the monograph [19, p. 221].

Lemma 1. If M and N are closed manifolds, then the following inequality holds
'.M #N/ � maxf'.M/; '.N /g. In particular '.X#X/ � '.X/ for every closed
manifold X .

Recall that Pg denotes the closed connected non-orientable surface RP
2# � � �#RP2

of non-orientable genus g and˙g stands for the closed connected orientable surface
T 2# � � � #T 2 of genus g.

Corollary 6. The following relations hold:

1. '.˙g/ D '.Pg/ D 3, g � 1;
2. 2 � '.rRPn/ D 'S1.rRPn/ � nC 1, r � 1, n � 3.



88 D. Andrica et al.

Proof. (1) Let us first observe that

'.˙g/ � cat.˙g/ D 3 and '.Pg/ � cat.Pg/ D 3:

According to Lemma 1 we obtain inductively the inequalities '.˙g/ � '.T 2/ and
'.Pg/ � '.RP2/ D 3. Thus the equality '.Pg/ D 3 is now completely proved.

In order to construct a real valued function f with three critical points on the
torus T 2 we follow the idea of [51]. Consider the torus by a rectangle with matched
opposite edges in which one diagonal has been drawn. Then f can be defined so
that it is 0 on the edges and the diagonal and nowhere else, is positive and has
an absolute nondegenerate maximum interior to one triangle, is negative and has a
proper nondegenerate minimum interior to the other triangle, has a monkey saddle at
the point represented by the four vertices, and no other critical points. Then, we get
'.T 2/ � 3. On the other hand we have 3 D cat.T 2/ � '.T 2/, implying '.T 2/ D 3,
and we are done.

(2) The equality '.rRPn/ D 'S1.rRP
n/ is assured by Corollary 5 and the

inequality '.rRPn/ � '.RPn/ D nC 1 by Corollary 3 and Lemma 1. �

Corollary 7. If k; l � 2 are integers, then

'
S1

�
.Sk � Sl/# � � �#.Sk � Sl/� D ' �.Sk � Sl/# � � �#.Sk � Sl/� D 3:

Proof. For the equality

'
S1

�
.Sk � Sl /# � � �#.Sk � Sl /� D ' �.Sk � Sl /# � � �#.Sk � Sl/�

we merely need to use Corollary 5. On the other hand, according to Lemma 1 and
Corollary 4(1) it follows that '

�
.Sk � Sl/# � � �#.Sk � Sl/� � '.Sk � Sl/ D 3.

Finally, we have '
�
.Sk � Sl /# � � �#.Sk � Sl /� � cat

�
.Sk � Sl/# � � �#.Sk � Sl/� D

3, as follows from the inequality (4) combined to [21, Theorem 5.9]. �

Let us finally mention that we do not have any example of a closed manifold
M such that cat.M/ < '.M/ and also the equality cat.M/ D '.M/ is proved
only for some isolated classes of manifolds, one example in this respect is the
connected sum .Sk � Sl/# � � �#.Sk � Sl/, (k; l � 2) justified by Corollary 7.
In order to understand the difficulty of the problem, assume that the equality
cat.M/ D '.M/ holds for every closed manifold. Let us only look to the following
particular situation: cat.M/ D '.M/ D 2. From cat.M/ D 2 one obtains that
M is a homotopy sphere. Taking into account the well-known Reeb’s result, from
the equality '.M/ D 2 it follows that M is a topological sphere. Therefore, the
equalities cat.M/ D '.M/ D 2 are related to the Poincaré conjecture. Taking
into account the validity of the Poincaré conjecture, proved by Perelmann [42–44],
it follows for instance that for any closed manifold with cat.M/ D 2 we have
'.M/ D 2 and therefore cat.M/ D '.M/ D 2.
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Taking into account these comments, we consider that the following Reeb type
problem for circular functions is interesting.

Open problem. Characterize the closed manifolds Mm with the property
'
S1
.M/ D 1.

Whenm D 2, one example of such a manifold, suggested to us by L. Funar, is given
by the closed orientable surface ˙g of genus g � 2, i.e. we have '

S1
.˙g/ D 1.

Indeed, we may construct a function with one critical point from ˙g to S1 by
composing the projection p W T 2 D S1 � S1 ! S1, p.x; y/ D x, with a map
f W ˙g ! T 2 having precisely one critical point. The existence of the map f is
assured by [3] (see also [4]) as '.˙g; T

2/ D 1, and the projection p is a fibration,
i.e. the critical set C.p/ is empty. Therefore, the composed function p ı f has at
most one critical point as C.p ı f / � C.f / and card.C.f // D 1. This shows
that '

S1
.˙g/ � 1. For the opposite inequality, assume that '

S1
.˙g/ D 0 and

consider a fibration g W ˙g ! S1, whose fiber F is a compact one-dimensional
manifold without boundary, i.e. a circle or a disjoint union of circles. By applying
the product property of the Euler–Poincaré characteristic associated to the fibration

F ,! ˙g

g! S1, one obtains 2 � 2g D .˙g/ D .F /.S1/ D 0 as .S1/ D 0, a
contradiction with the initial assumption g � 2.

4 The Circular Morse–Smale Characteristic

The Morse functions on finite dimensional manifolds are important tools for
topological investigations on their source spaces, especially when these spaces are
compact. Indeed, a homotopical spherical structure of a compact manifold can be
recovered from each Morse function on the manifold in discussion [35, 36, 39, 41].

The Morse functionals on infinite dimensional Banach spaces are also of great
importance as their critical sets have various important interpretations. For example
the critical points of the energy functional defined on the space of piecewise smooth
closed curves which lie inside a compact manifold, which is a Morse functional, are
the closed geodesics of that manifold [30].

Also, the multiple solutions of the semilinear elliptic boundary problem

� � ru D  .x; u/ in ˝
Tr u D 0 on @˝

can be approached by using Morse Theory, where ˝ � Rn .n � 3/ is a bounded
domain and Tr W H1.˝/! H1=2.@˝/ is the trace operator as defined in [38] (see
also [32]). For such applications of the Morse Theory in infinite dimensional context
we refer the reader to [14, 15, 28, 54]. For other boundary value problems, studied
with completely different tools, we refer the reader to [31].
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The minimum number of critical points over all real-valued Morse functions
defined on a manifold M , equally called the Morse–Smale characteristic of M ,
is an important tool in differential topology as, for example, it is related to the
minimum number of cells in the CW -decompositions of M up to homotopy. It
is also a lower bound for the total curvature of M with respect to its embeddings in
Euclidean spaces. In fact, the Chern–Lashof conjecture states that the Morse–Smale
characteristic of a manifoldM is precisely the infimum of the total curvatures ofM
with respect to its embeddings in Euclidean spaces. Recall that the Chern–Lashof
conjecture holds true for several manifolds [16, 17].

The Morse–Smale characteristic of a compact smooth manifold is therefore worth
to be studied. More precisely, it is defined by

�.M/ D minf�.f / W f 2 F.M/g;

where F.M/ denotes the set of all real-valued Morse functions defined on M

and �.f / stands for card.C.f //. For details, examples, properties, and concrete
computations of � we refer the reader to the monograph [2, pp. 106–129]. Clearly,
�.M/ is the 'F -category of the pair .M;R/ with respect to the family F D F.M/

of real valued Morse functions onM .
The minimality of the number of cells in the CW -decompositions of M up to

homotopy emphasizes the importance of �.M/ and provides a serious reason why
its computation is rather a hard problem in differential topology. Hajduk [29] has
proved that it is a simply homotopy invariant of the manifoldMm, in the casem � 6.
On the other hand, the existence of F -perfect Morse functions onM , for some given
field F , is characterized by the equality between �.M/ and the total F -Betti number
ofM , i.e. the sum of F -Betti numbers ofM with respect to F [2, Theorem 4.2.3]. If
.M;!/ is a symplectic manifold, then the latter Z2-sum associated to a coisotropic
submanifold of M is a lower bound for the number of leaf-wise fixed points of
suitable Hamiltonian diffeomorphisms and coisotropic submanifolds of M [55].

The formulation of the circle-valued Morse theory as a new branch of differential
topology with its own problems was outlined by S. P. Novikov in 1980 (see the
monographs [24] and [40]). The motivation came from a problem in hydrodynamics,
where the application of the variational approach led to a multi-valued Lagrangian.

The circular version of the Morse–Smale characteristic was introduced by the
first two authors in the paper [6]. IfM is a manifold, then the circular Morse–Smale
characteristic of M is defined by

�
S1
.M/ D minf�.f / W f 2 F.M; S1/g; (8)

where F.M; S1/ stands for the set of all circular Morse functions f WM! S1 and
�.f / for card.C.f //.

Also, the number �
S1
.M/ is a special case of 'F -category of a pair of manifolds

.M;N / (see the recent expository paper [8]), where N is the circle S1 and F D
F.M; S1/ is the family of all circle-valued Morse functions f WM ! S1.
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Some properties of the circular Morse–Smale characteristic are already proved
in the papers [6] and [7]. For instance, for every closed manifold (i.e., compact and
without boundary) we have the inequality

�
S1
.M/ � �.M/: (9)

The proof is immediate, since every Morse real valued function composed with the
universal cover exp W R �! S1 produces a circle valued Morse function. This
property implies that �

S1
.M/ is finite wheneverM is compact.

Proposition 4 ([10]). If Hom .�.M/;Z/ D 0 for some connected smooth manifold
M , then �

S1
.M/ D �.M/. In particular �

S1
.M/ D �.M/ whenever M is

connected and simply-connected.

Corollary 8 ([10]). If n � 2 is an integer, then �
S1
.Sn/ D �.Sn/ D 2 and

�
S1
.RPn/ D �.RPn/ D nC 1.

Corollary 9 ([10]). If m1; : : : ; mk � 2 are positive integers, then

�
S1
.Sm1 � � � � � Smk/ D �.Sm1 � � � � � Smk / D 2k;

�
S1
.RPm1� � � � �RPmk/ D �.RPm1� � � � �RPmk/ D .m1 C 1/ � � � .mk C 1/:

Corollary 10. If Mn
1 ; : : : ;M

n
r , n � 3 are connected manifolds with torsion

fundamental groups, then �
S1
.M1# � � � #Mr/ D � .M1# � � �#Mr/.

Proof. Indeed, according to Corollary 2 we obtain Hom.�.M1# � � �#Mr/;Z/ D 0,
which combined with Proposition 4 shows the stated relation. �

Example 1. If n � 3, then �
S1
.rRPn/ D � .rRPn/ D r.n C 1/ � 2.r � 1/,

where rRPn stands for the connected sum RP
n# � � �#RPn of r copies of the

projective space RP
n. Indeed, the first equality �

S1
.rRPn/ D � .rRPn/ follows

from Corollary 2 and the second equality � .rRPn/ D r.nC1/�2.r �1/ is proved
in [2, p. 125].

Remark 5. The hypothesis n � 3 within Corollary 10 and Example 1 is essential.
Indeed, for r � 2, we have �

S1

�
rRP2

� D r � 2 ¤ r.2 C 1/ � 2.r � 1/. While
the first equality �

S1

�
rRP2

� D r � 2 will be proved in the next section in a general
context, the second relation is obvious.

Another property relating the circular Morse–Smale characteristics of the total
and base spaces of a finite-fold covering map is provided by the following result:

Proposition 5 ([10]). If QM is a k-fold cover of M , then �
S1
. QM/ � k � �

S1
.M/.

The proof in the case of the real Morse–Smale characteristic was given in [1].
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Now, following the paper [34], we will use the Morse–Novikov inequalities (see
[24] and [40]) to get a lower bound to �S1.M/ in terms of some invariants of
manifold M . Recall that the Novikov numbers of the manifold M with respect to
the cohomology class � 2 H1.M/ are bNov

i .M; �/ and qNov
i .M; �/, i D 0; 1; : : : ; m,

where

bNov
i .M; �/ D dimZ..z//.H

Nov
i .M; �/=T Nov

i .M; �//

are the Betti numbers of the Novikov homology and qNov
i .M; �/ is the minimum

numbers of generators of T Nov
i .M; �/. Here Z..z// is the Novikov ring and

T Nov
i .M; �/ D fx 2 HNov

i .M; �/ W ax D 0; a ¤ 0 2 Z..z//g
is the torsion Z..z//-submodule ofHNov

i .M; �/. The Morse–Novikov inequalities are

ci .f / � bNov
i .�/C qNov

i .�/C qNov
i�1.�/; i D 0; 1; : : : ; m; (10)

where ci .f / D card.Ci .f // and Ci.f / WD fp 2 C.f / W indp.f / D ig. For more
details we refer the reader to the monographs [24] and [40]. Note that in the proof
of these Morse-Novikov inequalities the theory of h-cobordism [37] is essentially
used.

Let f W M ! S1 be a circle-valued Morse function, and let f � W H1.S1/ !
H1.M/ be the induced homomorphism in cohomology. Denote

F 1.M/ D ff �.1/ W f 2 F.M; S1/g � H1.M/:

Proposition 6. The following inequality holds:

�S1.M/ � minfbNov.�/C qNov
m .�/C 2

m�1X
iD0

qNov
i .�/ W � 2 F 1.M/g;

where

bNov.�/ D
mX
iD0

bNov
i .�/

is the total Betti number of the manifold M with respect to the cohomology class
� 2 H1.M/.

Proof. Let f W M ! S1 be a circle-valued Morse function. By using the Morse–
Novikov inequalities (10) we obtain

�.f / D
mX
iD0

ci .f / �
mX
iD0
.bNov
i .�/C qNov

i .�/C qNov
i�1.�//

D bNov.�/C qNov
m .�/C 2

m�1X
iD0

qNov
i .�/

� minfbNov.�/C qNov
m .�/C 2

m�1X
iD0

qNov
i .�/ W � 2 F 1.M/g:
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Since f WM ! S1 is an arbitrary circle-valued Morse function, it follows that

minf�S1.f / D card.CS1.f // W f 2 F.M; S1/g
� min

(
bNov.�/C qNov

m .�/C 2
m�1X
iD0

qNov
i .�/ W � 2 F 1.M/

)
;

and the proof is complete. �

Proposition 7. For �.M/ Š Z andm � 6, the following relation holds:

�S1.M/ D min

(
bNov.�/C qNov

m .�/C 2
m�1X
iD0

qNov
i .�/ W � 2 F 1.M/

)
:

Proof. Let f W M ! S1 be a circle-valued Morse function with minimal number
of critical points. According to the result in [24], we have the following relations

ci .f / D bNov
i .�/C qNov

i .�/C qNov
i�1.�/; i D 0; 1; : : : ; m

hence

�S1.M/ � �.f / D
mX
iD0

ci .f /

D
mX
iD0
.bNov
i .�/C qNov

i .�/C qNov
i�1.�//

D b.�/C qNov
m .�/C 2

m�1X
iD0

qNov
i .�/:

That is

�S1.M/ � min

(
bNov.�/C qNov

m .�/C 2
m�1X
iD0

qNov
i .�/ W � 2 F 1.M/

)
:

Taking into account the inequality in Proposition 6 the desired result follows. �

Open problem. With the above notations, for every closed manifoldM the relation
F 1.M/ D H1.M/ holds, i.e. the map F.M; S1/ ! H1.M/; f 7! f �.1/ is
surjective.
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5 The Circular Morse–Smale Characteristic of Compact
Surfaces

The circular Morse–Smale characteristic reduces to the real Morse–Smale charac-
teristic for manifolds M which satisfy the lifting property Hom .�.M/;Z/ D 0.
For the opposite situation Hom .�.M/;Z/ ¤ 0 the two characteristics might be
quite different. For example, this is the case for the closed surfaces. In this section
we shall determine the circular Morse–Smale characteristic of any closed surface,
orientable or not. Recall that the surface ˙g is defined to be the connected sum

T 2#T 2# � � �#T 2;

of g copies of the two-dimensional torus T 2 D S1 � S1. We can extend the
definition for g D 0 by considering ˙0 D S2, the two-dimensional sphere. From
the well-known classification theorem of surfaces, it follows that every smooth,
compact, orientable, connected surface, without boundary, is diffeomorphic to ˙g ,
for some value of g � 0. Recall that the Morse–Smale characteristic was completely
determined by Kuiper [33] who proved the formula �.S/ C .S/ D 4 for every
compact connected surface S . In this section we will prove that �

S1
.S/C.S/ D 0

for every closed surface S , except for the sphere S2 and the projective plane RP2.
Producing a suitable embedding of the surface ˙g in R3 n Oz, where Oz stands

for the z-axis f.x; 0; 0/ j x 2 Rg, and a submersion f W R3 n Oz �! S1, whose
restriction f

ˇ̌
˙g

is a circular Morse function with exactly 2.g � 1/ critical points,
is a part of our strategy to compute the circular Morse–Smale characteristic of the
surface ˙g . In this respect we need to characterize somehow the critical points of
such a restriction. In fact the suitable submersion we are looking for is

f .x; y; z/ D 1p
x2 C y2 .x; y; 0/: (11)

Proposition 8. Let ˙ � R3 be a regular surface and f W R3 �! N be a
submersion, where N is either the real line or the circle S1. The point p D
.x0; y0; z0/ 2 ˙ is critical for the restriction f j˙ if and only if the tangent plane of
˙ at p is the tangent plane at p to the fiber Fp WD f �1.f .p// of the submersion
(11) through p.

Proposition 8 follows from the following more general statement:

Proposition 9 ([11]). Let Mm; Nn; P p; m � n > p be differential manifolds, let
f WM!N be a differential map, and g W N ! P be a submersion. Then x 2 M
is a regular point of g ı f if and only if f tx Fx , where Fx is the fiber g�1.g.x//
of g through x.
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Theorem 1. The circular Morse–Smale characteristic of a closed surfacė ¤RP2 is

�
S1
.˙/ D j.˙/j: (12)

The proof of Theorem 1 for ˙ D S2 or T 2 is immediate. Indeed �
S1
.˙0/ D

�
S1
.S2/ D �.S2/ D 2, since the two-dimensional sphere S2 is simply-connected.

Also �
S1
.˙1/ D �

S1
.T 2/ D 0, as the projection T 2 D S1 � S1 ! S1 is a

submersion.
Our previous works [10] and [11] provide two different proofs for Theorem 1.

The Proof of Theorem 1 that we have provided in [10] starts with the inequality
�
S1
.˙/ � j.˙/j for surfaces ˙ with the property b1.˙/ � 2 and it is based on

standard Morse Theory arguments for real valued Morse functions, which involve
the Morse inequalities. Indeed, we considered the restriction of an arbitrary circular

Morse function f W ˙ ! S1 to the complement ˙ n f �1�6ei.t0�"/ei.t0C"/�, where

cl
�
6ei.t0�"/ei.t0C"/

� 	 S1 is a closed arc of regular values of f . We may obviously
consider t0 D 0. In this situation the distribution of their indexes remains unchanged
if we compose f from the left side with any rotation of the unity circle S1.
Obviously the restriction

˙" WD ˙ n f �1
�
2e�i"ei"

�! S1 n2e�i"ei"; p 7! f .p/ (13)

can be treated as a real valued Morse function, since the complement of 2e�i"ei"
in S1 is diffeomorphic to an interval of the real axis. Also, the critical set of f
is entirely inherited by the restriction (13), which shows that f and its restriction
f j˙" have the same number of critical points. On the other hand, the inverse image

f �1
�
cl
�
2e�i"ei"

��
is diffeomorphic to ˙1 � Œ�"; "�, where ˙1 stands for f �1.1/,

hence the restriction

f �1
�
cl
�
2e�i"ei"

��!2e�i"ei"; p 7! f .p/ (14)

is a fibration whose critical set is empty. We only need to work with circular Morse
functions f W ˙ ! S1 which cannot be lifted to any real valued Morse function via
the exponential function exp W R! S1, exp.x/ D eix (which is the universal cover
of S1). Indeed, the number of critical points of those circular Morse functions which
can be lifted to real-valued Morse functions is either the Morse–Smale characteristic
�.˙/ or exceeds it and �.˙/ D 4 � .˙/ � j.˙/j.

The number of critical points of the restriction (13) is evaluated by means of the
Morse inequalities, which involve the Betti numbers, of the pair .˙"; @C˙"/, where
@C˙" stands for the component of the boundary @˙" ' ˙1 � f˙"g of the manifold
˙" which corresponds to " via the diffeomorphism

@˙" ! ˙1 � f˙"g; q ! f .q/:
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The opposite inequality �
S1
.˙/ � j.˙/j, for surfaces ˙ with the property

b1.˙/ � 2, is proved by using the classical description of ˙ in terms of a polygon
with a suitable even number of edges and suitable pairwise identifications of its
edges. The associated handle decomposition to this description corresponds to a
Morse function on the surface with one critical point for each handle. In our case
there is a Morse function on ˙ with �.˙/ D b1.˙/C 2 critical points. Due to the
condition b1.˙/ � 2, we can also find a non-separating circle in ˙ representing a
primitive homology class in H1.˙;Z/ along which we cut the surface ˙ to get a
new surface˙ 0 with two circular boundary componentsC ,�C and .˙/ D .˙ 0/.
Cap the componentsC and �C of the boundary of˙ 0 with two disksD˙ to obtain
a closed surface S satisfying the relation

.S/ D .˙ 0/C 2 D .˙/C 2:

In particular, we have

b1.S/ D b1.˙/ � 2:

We now choose a Morse function h W S �! R which has minimal number of critical
points equal to b1.S/ C 2. This function has a unique maximum point pC and a
unique minimum point p� which can be placed at the centers of D˙ and no other
critical points in D˙. The restriction of h to ˙ 0 has b1.S/ D b1.˙/ � 2 D j.˙/j
critical points. A circular Morse function on ˙ with j.˙/j critical points can be
now constructed out of h by performing some inverse surgery operations on S .

The Proof of Theorem 1 that we have provided in [11] is considering two cases
depending on the orientability of the closed connected surface. The orientable case
relies on the following strategy:

1. We show that �.F / WD �0.F /C�1.F /C�2.F / � 2.g� 1/, for every circular
Morse function F W ˙g �! S1, where �j .F / stands for the number of critical
points of index j of F and �.F / for the cardinality of the critical set C.F / of F ;

2. We construct a circular Morse function on ˙g with exactly 2.g � 1/ critical
points.

In order to do so, we first observe that

2 � 2g D �0.F /� �1.F /C �2.F /: (15)

Indeed, by using the well-known Poincaré–Hopf Theorem, one obtains

2 � 2g D .˙g/ D
X

p2C.F /
indp.rF /;
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where rF is the gradient vector field of F with respect to some Riemannian metric
on˙g . To finish the proof of relation (15), we just need to observe that the index of
rF at a critical point of index one is �1, and the index of rF at the critical points
of index zero and two is 1. Indeed, the local behavior of F around the critical points
of index one is F D x2�y2 and its gradient behaves locally around such a point like
the vector field .x;�y/. The degree of its normalized restriction to the circle S1 is
�1 as the normalized restriction is a diffeomorphism which reverses the orientation.
Similarly, the index of rF at a critical point of index zero or two is 1 as the local
behavior of F around such a critical point is F D x2Cy2 or F D �x2�y2 and its
gradient behaves locally around such a point like the vector field .x; y/ or .�x;�y/,
respectively. The normalized restrictions of these vector fields to the circle S1 are
diffeomorphisms preserving the orientation and their degree is therefore one. Thus,
the relation (15) is now completely proved via the Poincaré–Hopf Theorem.

The second item of our strategy is based on the following:

Lemma 2 ([11]). The surface˙g can be suitably embedded into R3 nOz such that
the restriction f

ˇ̌
˙g
W ˙g �! S1 is a circular Morse function with exactly 2.g� 1/

critical points, where f W R3 nOz �! S1 is the submersion defined by

f .x; y; z/ D 1p
x2 C y2 .x; y; 0/:

To construct the suitable embedding of ˙g in R3 n Oz recall that ˙1 D T 2 D
S1 � S1 is being usually identified with the surface of revolution in R3 obtained
by rotating, around the z-axis, a circle in the plane xOz centered at a point on
the x-axis. In order to avoid some possible intersections, the radius of the circle
is supposed to be strictly smaller than the distance from the origin to its center.
A certain embedding of the surface ˙g in R3, obtained from the one of ˙1 on
which we perform some surgery, will be useful in our approach. However, the above
mentioned embedding of ˙1 in R3 has one circle on the top and one circle on the
bottom on which the Gauss curvature vanishes. The two circles define the critical set
of the standard height function fk in the z-axis direction, restricted to the embedded
copy of T 2 in R3. Thus, this restricted height function is not a Morse function since
its critical set is not finite. In order to construct our suitable embedding of ˙g we
rather need to rotate around the z-axis a closed convex curve with a unique center
of symmetry, on the x-axis, which lies in the plane xOz and has no overlaps with
the z-axis. This curve is also required to contain two segments mutually symmetric
with respect to the x-axis, one on the top and the other one on its bottom. These
two segments define the critical set of the height function fk restricted to the curve
itself.

Consider the embedding of ˙1, obtained by rotating such a closed convex curve,
instead of a circle within the plane xOz, within the same plane (Fig. 1).

The obtained copy of ˙1 is flat on the two annuli A and A 0 which lie in two
horizontal parallel planes. Consider the points p1; : : : pg�1 2 A and the points
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x x

y

O O

y

Fig. 1 An embedded copy of ˙6 constructed out of an embedded copy of ˙1

q1; : : : ; qg�1 2 A 0 such that the lines piqi , i D 1; : : : ; g � 1 are vertical, i.e.
parallel to the z-axis. In order to obtain a topological copy of the surface˙g we next
remove some small open discs D1; : : : ;Dg�1 � A centered at p1; : : : pg�1, and
D01; : : : ;D0g�1 � A 0 centered at q1; : : : ; qg�1 respectively. The radii of the disksDi

andD0i are supposed to be equal. Now, consider suitable planar curves

�i W Œ0; 1� �! cl .B/ \ �i ; i D 1; : : : ; g � 1

such that �i .0/ 2 @Di and �i.1/ 2 @D0i , wherepiqi \ xOy D f.xi ; yi ; 0/g, �i is the
plane parallel to xOz through the point .xi ; yi ; 0/ (i.e. �i has the equation y D yi )
and B is the bounded component of the complement of the embedded copy of ˙1.
The curves �i are chosen in such a way to complete, by their rotation around the
axes piqi , the embedded copy of ˙1 n ŒD1 [ : : :[Dg�1 [D01 [ : : : [D0g�1� up to
a smooth embedded copy of ˙g .

Proposition 10 ([11]). The following equality holds �
�
f j˙g

� D 2.g � 1/.
Proposition 11 ([11]). The restriction f j˙g is a circular Morse function, i.e. its
critical points are nondegenerate. Moreover, all critical points of f j˙g have index 1.

The Second Proof of Theorem 1 in the Case of Orientable Surfaces. For the
inequality �

S1
.˙g/ � 2.g � 1/ we merely need to use the relation (15) that is

2 � 2g D �0.F / � �1.F /C �2.F / � ��1.F /, for every circular Morse function
F W ˙g �! S1. This shows that

2.g � 1/ � �1.F / � �0.F /C �1.F /C �2.F / D �.F /;

for every circular Morse function F W ˙g �! S1, and the inequality 2.g � 1/ �
�
S1
.˙g/ follows. The opposite inequality is proved by the existence of the circular

Morse function f
ˇ̌
˙g

which has exactly 2.g � 1/ critical points. �
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Remark 6. No real valued Morse function defined on a compact manifold Mm

.m � 2/ can merely have critical points of index one. Indeed the global minimum
of such a function has index zero and its global maximum has index m. Thus, the
restriction f j˙g cannot be lifted to any map Qf W ˙g �! R and the induced group
homomorphism

�
f j˙g

�
� W �.˙g/ �! Z D �.S1/ is nontrivial therefore.

The Second Proof to Theorem 1 in the Case of Non-orientable Surfaces. In this
case we use Proposition 5 in order to prove the inequality

�
S1

�
gRP2

� � j�gRP2�j;
for g � 2, where kRP2 stands for the connected sum RP2#RP2# � � �#RP2 of k
copies of the projective plane. Indeed, by applying Proposition 5 to the orientable
double covering

˙g�1 ! gRP2

we obtain successively:

�
S1

�
gRP2

� � 1
2
�
S1

�
˙g�1

� D 1
2
j�˙g�1

�j
D 1

2
j2 � 2.g � 1/j D j2 � gj D j�gRP2�j:

For the opposite inequality we first recall that

f W RP2 �! R; f .Œx1 ; x2 ; x3 �/ D
x21 C 2x22 C 3x23
x21 C x22 C x23

;

is a perfect Morse function with exactly three critical points of indices 0; 1; 2, i.e.
a minimum point p, a maximum point q and a saddle point s. If " > 0 is small
enough, then the inverse images

D WD f �1.�1; f2.p/C "/; D0 WD f �1.f .q/� ";1/

are open disks and the inverse image f �1Œf .p/C "; f .q/� "� D RP2 n .D1 [D2/

is a compact surface with two circular boundary components f �1.f .p/ C "/ and
f �1.f .q/ � "/. Observe that the restriction

f
ˇ̌
RP2n.D[D0/

W RP2 n .D1 [D2/ �! Œf .p/C "; f .q/ � "�

has one critical point of index one, i.e. the saddle point s. We construct a circular
Morse function on .gC2/RP2 with g saddle points by gluing cyclically g copies of
RP2 n .D[D0/. This construction shows that the inequality �

S1

�
.g C 2/RP2� � g

holds for all g � 1. On the other hand the Klein Bottle 2RP2 fibers over S1 (with
fiber S1), which shows that
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�
S1

�
2RP2

� D 0 D j.2RP2/j;
and the second proof of Theorem 1 in the non-orientable case is now complete. �

For the closed non-orientable surface of even non-orientable genus 2g C 2 we
may visualize its orientable double cover by means of the embedding of the closed
orientable surface of genus 2gC 1 in R3 nOz described before. Since the genus of
the embedded copy of ˙2gC1 is odd, we may impose the extra-requirement on the
embedded image of ˙2gC1 to be symmetric with respect to the origin, i.e. invariant
with respect to the antipodal action of Z2 on R3 n f0g. Because the restriction of this

action to ˙2gC1 reverses the orientation, it follows that the quotient˙2gC1
.
Z2 is a

compact non-orientable surface. Obviously the projection

� W ˙2gC1 �! ˙2gC1
.
Z2

is the orientable double covering of ˙2gC1
.
Z2. The reversing orientation property

of the antipodal involution a follows from the reversing orientation property of
the reflections �xy , �xz, and �yz with respect to the coordinate planes xOy, xOz,
and yOz, respectively, and the decomposition a D �xy ı �xz ı �yz. Note that the
three reflections commute with each other. The reversing orientation property of the
reflection �xy , for example, follows by looking to the orientation behavior at a fixed
point p 2 Fix.�xy/ D xOy \ ˙2gC1. Since the tangent map of �xy at p reverses
the orientation of the tangent space Tp

�
˙2gC1

�
, it follows that �xy , and by similar

arguments each of the reflections �xz and �yz, reverses the orientation of ˙2gC1.
Consequently, the antipodal map a D �xy ı�xz ı�yz reverses the orientation as well.

One can easily check that the non-orientable genus of ˙2gC1
.
Z2 is 2gC 2, that

is ˙2gC1
.
Z2 is diffeomorphic to .2gC 2/RP2.

Remark 7. For the inequality �
S1

�
.2gC 2/RP2

�
� 2g we can produce a particular

Morse function

f0 W .2g C 2/RP2 D ˙2gC1
.
Z2 �! S1

with precisely 2g critical points in the following different way. Pick the function
g0 WD f

ˇ̌
˙2gC1

W ˙2gC1 �! S1 considered for the proof of Theorem 1 and recall

that g0 has precisely 4g critical points and 4g critical values, i.e. card
�
g0.C.g0/

�
is also 4g. Indeed, the restriction g0

ˇ̌
C.g0/

is obviously one-to-one. Due to the
way we embedded ˙2gC1, the critical values of g0, alongside its critical points,
are pairwise antipodal in S1 and in ˙2gC1, respectively. By considering now the
covering projection p W S1 �! P1.R/, p.x/ D Œx� WD f�x; xg, one actually obtain
a cyclic covering of order two p W S1 �! S1, as P1.R/ is diffeomorphic to S1.
The composed function p ı g0 is a circular Morse function with 2g critical values,
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each of whose inverse image consists of two critical points. Thus �.p ı g0/ D
card

�
C.p ı g0/

� D 4g. In fact ��1.�.x// D f�x; xg � .p ı g0/�1.x/, for
every x 2 ˙2gC1. This shows that the restriction g0 factors to a Morse function

f0 W ˙2gC1
.
Z2 �! S1 such that we have p ı g0 D f0 ı � . Let us now observe

that ��1.C.f0// D C.p ı g0/ and therefore �.p ı g0/ D card
�
C.p ı g0/

� D
2card

�
C.f0/

� D 2�.f0/, i.e. �.f0/ D card
�
C.f0/

� D 1
2
card

�
C.p ı g0/

� D
1
2
�.p ı g0/ D 2g.

6 The Circular Morse–Smale Characteristic
of Connected Sums

In this section we plan to provide an upper bound for the circular Morse–Smale
characteristic of an arbitrary connected sum X#Y in terms of some circular
characteristic of X and Y by using similar arguments to those in the proof of
[2, Theorem 4.2.21], initially stated and proved in [9]. In this respect we consider
the family F0;n.X; S

1/ of all smooth circular Morse functions on the closed n-
dimensional manifold X which admit both a critical point of index 0 and a critical
point of index n. In the case of real-valued Morse functions on X , this is always
the case, i.e. F0;n.X;R/ D F.X/, where F.X/ stands for the collection of all
smooth real valued Morse functions. Recall however that the function constructed
in Proposition 11 is a circular Morse function on the surface ˙g without critical
points of index zero and index two. This shows that, generally, the inclusion
F0;n.X; S

1/ 	 F.X; S1/ is strict. In this section we shall merely consider the family
F0;n.X; S

1/ of circular Morse functions on X . Note that the family F0;n.X; S
1/ is

quite rich as it contains the family of functions

fexp ıf W f 2 F.X/g:

In the case Hom.�.X/;Z/ D 0, the following equalities hold

F0;n.X; S
1/ D F.X; S1/ D exp ıF.X/: (16)

Figure 2 suggests an example of a circular Morse function on the surface˙6 which
belongs to F0;2.˙6; S

1/ and cannot be lifted to any real valued Morse function.
If X is a given manifold, we define the Morse–Smale characteristic of X related

to the family F0;n.X; S
1/ by

�0;n
S1
.X/ D minf�.f / W f 2 F0;n.X; S

1/g;

where �.f / stands for card .C.f //.
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Fig. 2 An embedded copy of
˙6 in R

3 on which the
restriction of f is in
F0;2.˙6; S

1/ and cannot be
lifted to any real valued
Morse function

Remark 8. If X is a smooth manifold, then �
S1
.X/ � �0;n

S1
.X/, as F0;n.X; S

1/ �
F.X; S1/. If Hom.�.X/;Z/ D 0, then �0;n

S1
.X/ D �

S1
.X/ D �.X/, as

F0;n.X; S
1/ D F.X; S1/ D exp ıF.X/ in this case.

Theorem 2. If X and Y are closed smooth n-manifolds, then the following
inequality holds true:

�
S1
.X#Y / � �0;n

S1
.X/C �0;n

S1
.Y / � 2:

Proof. Following the idea in the paper [9] (see also Theorem 4.2.21 in the
monograph [2]), consider the circular Morse functions f 2 F0;n.X; S

1/ and
g 2 F0;n.Y; S

1/ such that �0;n
S1
.X/ D card .C.f // D �.f / and �0;n

S1
.Y / D

card .C.g// D �.g/. We also consider a critical point of index zero p 2 C.f /
and a critical point q 2 C.g/ of index n. By composing the two functions on their
left-hand sides with suitable rotations of the circle S1 we obtain new circular Morse
function with the same number of critical points having the same distributions of
indexes, still denoted by f and g, such that, for small enough " > 0, the following
requirements hold:

1. The restriction exp" WD exp j.�";"/ W .�"; "/ ! exp.�"; "/ 	 S1 of the
exponential function exp W R! S1, exp.x/ D eix is a diffeomorphism;

2. f .p/ D exp.� "
2
/ and g.q/ D exp. "

2
/, i.e. ei

"
2 f .p/ D 1 D e�i "2 g.q/;

3. f .U /; g.V / � exp.�"; "/;
4. exp

� "
2
; "
2

� D f .U / \ g.V /,
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where .U; '/ is a Morse chart at p 2 X and .V;  / is a Morse chart at q 2 Y , i.e.

�
exp�1" ıf jU ı '�1

�
.x1; : : : ; xn/ D � "

2
C x21 C � � � C x2n�

exp�1" ıgjV ı  �1
�
.y1; : : : ; yn/ D "

2
� y21 � � � � � y2n:

Thus, the inverse images .f jU /�1
�
4

e�i. "2C
/1
�

and .gjV /�1
�
3

1ei.
"
2C
/

�
of the

small open arcs
4

e�i. "2C
/1 and
3

1ei.
"
2C
/ are some open disks, for 
 > 0

small enough, with spherical boundaries .f jU /�1 .1/ and .gjV /�1 .1/, respectively.
Indeed we have successively:

'

�
.f jU /�1

�
4

e�i. "2C
/1
��
D '

�
.f jU /�1

�
exp"

�� "
2
� 
; 0�

��

D �exp�1
" ıf jU ı '�1

� �� "
2
� 
; 0�

�

D
n
x 2 '.U / W � "

2
� 
 < � "

2
C x21 C � � � C x2n < 0

o

D
n
xD.x1; : : : ; xn/ 2 '.U / j �
 < x21C � � �Cx2n <

"

2

o
:

Thus, the inverse image .f jU /�1
�
4

e�i. "2C
/1
�

is an open disk with the .n � 1/-
dimensional spherical boundary

'�1
�n
x D .x1; : : : ; xn/ 2 '.U / j x21 C � � � C x2n D

"

2

o�
D .f jU /�1 .1/:

One can similarly show that .gjV /�1
�
3

1ei.
"
2C
/

�
is an open disk whose boundary

.gjV /�1 .1/ is an .n� 1/-dimensional sphere.
In fact, we may think of the connected sum X#Y along these boundaries

.f jU /�1 .1/ and .gjV /�1 .1/, which are being identified within the connected sum
X#Y .

The circular function f #g W X#Y ! S1 defined by

.f #g/.z/ D

8̂
ˆ̂<
ˆ̂̂:

f .z/ if z 2M n .f jU /�1
�
4

e�i. "2C
/1
�

1 if z 2 .f jU /�1 .1/ D .gjV /�1 .1/
g.z/ if z 2 N n .gjV /�1

�
3

1ei.
"
2C
/

�

is a Morse function on X#Y with

�.f /C �.g/ � 2 D card.C.f //C card.C.g// � 2 D �0;1
S1
.X/C �0;1

S1
.Y /� 2
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critical points. Consequently

�
S1
.X#Y / � �.f #g/ D �.f /C �.g/ � 2 D �0;1

S1
.X/C �0;1

S1
.Y /� 2

and the proof is now complete. �

Corollary 11. IfX is a closed smooth n-manifold, then �
S1
.X#X/ � 2�0;n

S1
.X/�2.

Corollary 12. If m; n are natural numbers such thatm; n � 2, then:

1. �
S1
..Sm � Sn/#.Sm � Sn// � 6.

2. �
S1
..RPm � RPn/#.RPm � RPn// � 2.mnCmC n/.

Proof. We only need to apply Corollary 11 for X D Sm � Sn or RPm � RPn and
the equalities

�0;mCn
S1

.Sm � Sn/ D �
S1
.Sm � Sn/ D �.Sm � Sn/ D 4;

�0;mCn
S1

.RPm � RP
n/ D �

S1
.RPm � RP

n/ D �.RPm � RP
n/ D .mC 1/.nC 1/;

which work as Hom .�.Sm � Sn/;Z/ D 0 and Hom .�.RPm � RPn/;Z/ D 0. �

In the case of torsion fundamental groups we may consider connected sums of
arbitrary many manifolds. Indeed, we have the following:

Corollary 13. If M1; : : : ; ;Mr are smooth n-manifolds with torsion fundamental
groups, then

�
S1
.M1# � � �#Mr/ � �.M1/C � � � C �.Mr/� 2.r � 1/: (17)

Proof. Taking into account that Hom .�.M1# � � � #Ms/;Z/ D 0 for every s � r (see
Corollary 2), we only need to apply Theorem 2 inductively with respect to r and use
the obvious equalities �

S1
.Mi / D �.Mi/ for every i D 1; : : : ; r . �

Remark 9. 1. If M1; : : : ;Mr are smooth n-manifolds with torsion fundamental
groups, then, according to Corollary 10, �

S1
.M1# � � � #Mr/ D �.M1# � � � #Mr/

and the inequality (17) can be rewritten as �.M1# � � �#Mr/ � �.M1/ C � � � C
�.Mr/ � 2.r � 1/. The latter one is a direct consequence of the inequality [2,
(4.2.20), p. 124].

2. Corollary 12 can be extended to the connected sums of arbitrary many products
of spheres or projective spaces, as these products have torsion fundamental
groups. More precisely, if m; n � 2, then the following inequalities hold:

1. �
S1
.r.Sm � Sn// � 2r C 2,

2. �
S1
.r.RPm �RPn// � r.mC 1/.nC 1/� 2.r � 1/,

where rX stands for the connected sumX# � � �#X of r copies of the manifoldX .



Aspects of Global Analysis of Circle-Valued Mappings 105

7 Estimates for the Number of Characteristic Points

The critical points of the real valued height functions alongside those of some
circular functions on a surface S 	 R

3, are, according to Propositions 8 and 9,
the characteristic points with respect to some involutive distributions. In this last
section we show that every closed orientable surface can be embedded into the three
dimensional space R

3 in such a way to get only finitely many characteristic points
with respect to the noninvolutive horizontal distribution of the first Heisenberg group
H
1 D .R3;
/. The horizontal distribution of the first Heisenberg group H

1 D
.R3;
/ is H D span.X; Y / D ˚Hp WD span.Xp; Yp/

�
p2H1 , whereX D @xC2yi@t

and Y D @y � 2x@t . Let us consider a C1-differentiable surface S 	 R
3. The

characteristic set of S with respect to H is defined as

C.S;H / D fp 2 S W TpS DHpg:

Note that the characteristic set C.˙;H / of some surface ˙ 	 R3 with respect
to the horizontal distribution H is the set of singularities of the vector field Z˙
on ˙ obtained by projecting orthogonally X ^ Y on the tangent spaces of ˙ , i.e.
C.˙;H1/ D Sing.Z˙/.

The minimum characteristic number of S relative to H is defined as

mcn.S;H / WD minfcard .C.f .S/;H // W f 2 Embed.S;R3/g;

where Embed.S;R3/ stands for the set of all embeddings of S into R3. Note that
the minimum characteristic number of a surface can be defined in relation with an
arbitrary distribution on the ambient space, as the characteristic set of a surface
can be defined in such a situation. In fact the characteristic sets are being defined
for hypersurfaces of a given manifold with respect to arbitrary codimension one
distribution on that manifold. Moreover, the more general concept of tangency set
can be defined for a k-submanifold of a given manifold with respect to an arbitrary
distribution on the ambient manifold of rank k [13] (see also [12]).

Theorem 3. If g � 2, then the following inequalities hold true

2g � 2 � mcn.˙g;H / � 4g � 4:

An argument towards the lower bound 2g�2 relies on the Poincaré–Hopf Theorem

2 � 2g D  �˙g

� D X
x2Sing.Z˙g /

indexz.Z˙g /:

applied to the vector field Z˙ , whose singularities are generally of index ˙1 [23].
For the upper bound 4g � 4 we need to construct an embedding of ˙g with 4g � 4
characteristic points. In this respect we use the possibility of ˙1 to be embedded
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in H1 as a revolution surface and construct a suitable embedding of ˙g out of ˙1

by performing some suitable surgery on ˙1. The handles we plan to glue will be
surfaces of revolution as well. Therefore, we are going to pay some special attention
to the size of the characteristic sets of revolution surfaces which lie inside H1 with
respect to its horizontal distribution H .

Every revolution surface S obtained by rotating a plane curve of parametric
equations x D ˛.v/; z D v, with ˛ > 0, around the vertical line x D x0; y D y0,
admits a local parametrization of type

x D x0 C ˛.v/ cos u
y D y0 C ˛.v/ sin u
z D v

; u 2 I; v 2 J;

where I is an open interval of length 2� and J will be symmetric with respect to the
origin, i.e. J D .�a; a/. The function ˛ is subject to the following requirements:

˛ is bounded ; ˛00 > 0 and lim
v!˙a ˛

0.v/ D ˙1: (18)

One can easily see that the point .x.u; v/; y.u; v/; z.u; v// 2 S is a horizontal point
if and only if the vectors

sin uC 2˛.v/˛0.v/ cos u D �2x0˛0.v/
2˛.v/˛0.v/ sin u � cos u D �2y0˛0.v/:

Solving this system for sin u and cos u, we get

sin u D �2˛0.v/ x0 C 2y0˛.v/˛
0.v/

1C 4˛2.v/.˛0.v//2

cos u D �2˛0.v/ 2x0˛.v/˛
0.v/ � y0

1C 4˛2.v/.˛0.v//2 :
(19)

Remark 10. No revolution surface around the z-axis has H -tangency points, as the
system of (19) has no solutions at all for x0 D y0 D 0.

The identity sin2 uC cos2 u D 1 leads us to the equation

�
˛0.v/

�2 D 1

4 .jj.x0; y0/jj2 � ˛2.v// ; (20)

which has at least two solutions on the interval J D .�a; a/. Indeed, the right-hand
side of (20) is bounded and .˛0/2 covers the positive real half line Œ0;1/ twice,
once on the interval .�a; 0� and once on the interval Œ0; a/. For suitable choices of
the function ˛, (20) has precisely two solutions. Such a choice is
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˛.v/ D 2 �
r
2 � v2
2

(21)

for a D p2 and jj.x0; y0/jj D 3. Indeed, (20), for ˛ considered in (21), becomes:

4v2
p
2.2� v2/ D �v4 � 9v2 C 2;

which has, indeed, precisely two solutions, as can be easily checked. Making use
of the above observations, the proof of Theorem 3 follows immediately. For more
details on this elementary proof we refer the reader to [11].
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27. Gavrilă, C.: Functions with minimal number of critical points. Ph.D. thesis, Heidelberg (2001)
28. Ghoussonb, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts

in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)
29. Hajduk, B.: Comparing handle decomposition of homotopy equivalent manifolds. Fund. Math.

95(1), 3–13 (1977)
30. Klingenberg, W.: Lectures on Closed Geodesics. Grundlehren der Mathematischen Wis-

senschaften, vol. 230. Springer, New York (1978)
31. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type

for the Brinkmann and Darcy-Forchheimer-Brinkmann systems in Lipschitz domains. J. Math.
Fluid Mech., DOI: 10.1007/s00021-014-0176-3

32. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds:
transmission problems in Lipschitz and C1 domains. Potential Anal. 32, 229–273 (2010)

33. Kuiper, N.H.: Tight embeddings and Maps. Submanifolds of geometrical class three in En.
In: The Chern Symposium 1979, Proceedings of the International Symposium on Differential
Geometry in honor of S.-S. Chern, Berkley, pp. 79–145. Springer, New York (1980)

34. Mangra, D.: Estimation of the number of critical points of circle-valued mappings. In:
Proceedings of the International Conference on Theory and Applications of Mathematics and
Informatics, ICTAMI 2011, Acta Universitatis Apulensis, Alba Iulia, pp. 195–200, 21–24 July
2011, Special Issue

35. Matsumoto, Y.: An introduction to Morse Theory. Iwanami Series in Modern Mathematics,
1997. Translations of Mathematical Monographs, vol. 208. AMS, Providence (2002)

36. Milnor, J.W.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University
Press, Princeton (1963)

37. Milnor, J.W.: Lectures on the h-Cobordism. Princeton University Press, Princeton (1965)
38. Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian

manifolds. J. Funct. Anal. 163, 181–251 (1999)
39. Nicolaescu, L.: An Invitation to Morse Theory. Universitext, 2nd edn. Springer, New York

(2011)



Aspects of Global Analysis of Circle-Valued Mappings 109

40. Pajitnov, A.: Circle-Valued Morse Theory. Walter de Gruyter, Berlin (2006)
41. Palais, R.S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry. Lecture Notes in

Mathematics, vol. 1353. Springer, Berlin (1988)
42. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.

arXiv:math.DG/0211159 (2002)
43. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109 (2003)
44. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds. arXiv:math.DG/0307245 (2003)
45. Pintea, C.: Continuous mappings with an infinite number of topologically critical points. Ann.

Polon. Math. 67(1), 87–93 (1997)
46. Pintea, C.: Differentiable mappings with an infinite number of critical points. Proc. Am. Math.

Soc. 128(11), 3435–3444 (2000)
47. Pintea, C.: A measure of the deviation from there being fibrations between a pair of compact

manifolds. Diff. Geom. Appl. 24, 579–587 (2006)
48. Pintea, C.: The plane CS1 non-criticality of certain closed sets. Topol. Appl. 154, 367–373

(2007)
49. Pintea, C.: The size of some critical sets by means of dimension and algebraic '-category.

Topol. Methods Nonlinear Anal. 35, 395–407 ( 2010)
50. Pintea, C.: Smooth mappings with higher dimensional critical sets. Canad. Math. Bull. 53,

542–549 (2010)
51. Pitcher, E.: Critical points of a map to a circle. Proc. Natl. Acad. Sci. USA 25, 428–431 (1939)
52. Pitcher, E.: Inequalities of critical point theory. Bull. Am. Math. Soc. 64(1), 1–30 (1958)
53. Takens, F.: The minimal number of critical points of a function on a compact manifold and the

Lusternik-Schnirelmaann category. Inventiones Math. 6, 197–244 (1968)
54. Wang, Z.Q.: On a superlinear elliptic equation. Analyse Non Linéaire 8, 43–58 (1991)
55. Ziltener, F.: Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings.

J. Symplectic Geom. 8(1), 1–24 (2010)



A Remark on Some Simultaneous Functional
Inequalities in Riesz Spaces

Bogdan Batko and Janusz Brzdȩk

Abstract We study continuous at a point functions that take values in a Riesz space
and satisfy some systems of two simultaneous functional inequalities. In this way
we obtain in particular generalizations and extensions of some earlier results of
Krassowska, Matkowski, Montel, and Popoviciu.

Keywords Functional inequality • Riesz space • �-Ideal

Mathematics Subject Classification (2010): 39B72.

1 Introduction

In what follows N0, N, Z, Q, R and RC denote, as usual the sets of nonnegative inte-
gers, positive integers, integers, rationals, reals and nonnegative reals, respectively.
Moreover, let a; b 2 R n f0g with ab�1 … Q and ab < 0 be fixed. Montel [13] (see
also [14] and [11, p. 228]) proved that a function f W R ! R, that is continuous at
a point and satisfies the system of functional inequalities

f .x C a/ � f .x/; f .x C b/ � f .x/ ; x 2 R ; (1)

has to be constant. A similar (but more abstract) result for measurable functions has
been proved in [2].

In [7–9] (see also [10]) the result of Montel has been generalized and extended in
several ways. In particular, motivated by some problem arising in a characterization
of Lp norm, Krassowska and Matkowski [8] (cf. also [7]) have proved that if ˛; ˇ 2
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R and ˛b � ˇa, then a continuous at a point function f W R ! R satisfies the
following two functional inequalities

f .x C a/ � f .x/C ˛; f .x C b/ � f .x/C ˇ ; x 2 R ; (2)

if and only if ˛b D ˇa; moreover f has to be of the form f .x/ D cx C d for
x 2 R, with some c; d 2 R.

In this paper we investigate the possibility to obtain results analogous to those
in [2, 8, 13] for functions taking values in Riesz spaces. Moreover, we consider
the system (2) in a conditional form and almost everywhere. We obtain outcomes
that correspond somewhat to the results in [3, 4] and to the problem of stability of
functional equations and inequalities (for some further information concerning that
problem we refer to, e.g., [1, 5, 6]).

2 Preliminaries

For the readers convenience we present the definition and some basic properties of
Riesz spaces (see [12]).

Definition 1 (cf. [12, Definitions 11.1 and 22.1]). We say that a real linear space
L, endowed with a partial order � 	 L2, is a Riesz space if sup fx; yg exists for
all x; y 2 L and

ax C y � azC y ; x; y; z 2 X; x � z; a 2 RC I

we define the absolute value of x 2 L by the formula jxj WD sup fx;�xg � 0:

Next, we write x < z provided x � z and x ¤ z.
A Riesz space L is called Archimedean if, for each x 2 L, the inequality x � 0

holds whenever the set fnx W n 2 Ng is bounded from above.

In the following it will be assumed that L is an Archimedean Riesz space. It is
easily seen that ˛u � ˇu for every u 2 LC WD fx 2 L W x > 0g and ˛; ˇ 2 R,
˛ � ˇ. Moreover, given u 2 LC we can define an extended (i.e., admitting the
infinite value) norm k � ku on L by

kvku WD inf f� 2 RC W jvj � �ug ; v 2 L ;

where it is understood that inf ; D C1 and 0 � .C1/ D 0:
Let us yet recall some further necessary definitions.

Definition 2. Let E 	 R be nonempty and let I 	 2R. We say that a property
p.x/ (x 2 E) holds I -almost everywhere in E (abbreviated in the sequel to I -
a.e. in E) provided there exists a set A 2 I such that p.x/ holds for all x 2 E nA.

Definition 3. I 	 2R is a �-ideal provided 2A 	 I for A 2 I and



Simultaneous Functional Inequalities 113

[
n2N

An 2 I ; fAngn2N 	 I :

Moreover, if I ¤ 2R, then we say that I is proper; if I ¤ f;g, then we say that
I is nontrivial. Finally, I is translation invariant (abbreviated to t.i. in the sequel)
if x C A 2 I for A 2 I and x 2 R.

We have the following (see [3, Propositions 2.1 and 2.2]).

Proposition 1. Let I 	 2R be a proper t.i. �-ideal and let U 	 R be open and
nonempty. Then

int Œ.U n T / � V � ¤ ; ; V 2 2R nI ; T 2 I ; (3)

where .U n T / � V D fu � v W u 2 U n T; v 2 V g .

3 The Main Result

Let us start with an auxiliary result.

Theorem 1. Let P be a dense subset of R, J 	 2R be a proper t.i. �-ideal and
let E be a subset of a nontrivial interval I 	 R with H WD I nE 2J . We assume
that v W I ! L satisfies

v.p C x/ � v.x/ ; x 2 E \ .E � p/; p 2 P : (4)

If there exists u 2 LC such that v is continuous at a point x0 2 I , with respect to
the extended norm k � ku , then v.x/ D v.x0/J -a.e. in I .

Proof. Note that (4) yields

v.y/ � v.y C q/ ; y 2 E \ .E � q/; q 2 �P ; (5)

where �P WD f�p W p 2 P g. Since J is proper and t.i., we deduce that I 62 J ,
whence E 62J .

For each n 2 N we write

Dn WD
n
z 2 I W kv.z/ � v.x0/ku <

1

n

o
;

E 0n WD
n
z 2 E W v.z/ � v.x0/ < 1

n
u
o
;

F 0n WD
n
z 2 E W v.x0/� v.z/ < 1

n
u
o
;
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Cn WD Dn nH , En WD E n E 0n and Fn WD E n F 0n. Clearly, int Dn ¤ ; for n 2 N,
because v is continuous at x0.

Suppose that there exists k 2 N withEk …J . Then, on account of Proposition 1,
there is p 2 P such that �p 2 int .Ck � Ek/, whence p C c D e 2 Ek 	 E with
some c 2 Ck and e 2 Ek . Hence, by (4),

v.e/ � v.x0/ D v.p C c/ � v.x0/ � v.c/ � v.x0/ < 1

k
u :

This is a contradiction.
Next, suppose that Fk …J for some k 2 N. Then, on account of Proposition 1,

there is q 2 �P with �q 2 int .Ck � Fk/, whence qC c D e 2 Fk 	 E with some
c 2 Ck and e 2 Fk . Hence, by (5),

v.x0/� v.e/ D v.x0/� v.c C q/ � v.x0/� v.c/ < 1

k
u :

This is a contradiction, too.
In this way we have shown that Gk WD Ek [ Fk 2J for k 2 N. Clearly

V WD v�1.L n fv.x0/g/ D I n
\
n2N

Dn

D
[
n2N

I nDn 	 H [
[
k2N

Gk 2J

and v.x/ D v.x0/ for x 2 I n V . ut
The next theorem is the main result of this paper.

Theorem 2. Let I be a real infinite interval, J 	 2R be a proper t.i. �-ideal, L
be an Archimedean Riesz space, v W I ! L, a1; a2; ˛1; ˛2 2 R, a1 < 0 < a2,
a1a
�1
2 62 Q and

ci WD 1

ai
˛i ; i D 1; 2 : (6)

If c1 � c2 and there exist !; u 2 LC such that k!ku < 1, v is continuous at
some point x0 2 I , with respect to the extended norm k � ku, and the following two
conditional inequalities

if a1 C x 2 I; then v.a1 C x/ � v.x/ � ˛1! ; (7)

if a2 C x 2 I; then v.a2 C x/ � v.x/ � ˛2! (8)
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are valid J -a.e. in I , then c2 D c1 and

v.x/ D c1.x � x0/ ! C v.x0/ ; J -a.e. in I : (9)

Conversely, if c1 � c2 and (9) holds for some x0 2 I , then v satisfies inequalities
(7) and (8) J -a.e. in I .

Proof. Since J is a proper and t.i. �-ideal, it is easily seen that we have the
following property

int T D ; ; T 2J : (10)

Next, there is a set T 2J such that conditions (7) and (8) hold for x 2 F WD I nT .
Let

wi .x/ WD v.x/ � cix ! ; i D 1; 2; x 2 I :

Clearly wi is continuous at x0 with respect to k � ku. Further, for every i; j 2 f1; 2g,
we have ˛j � ciaj and consequently

wi .x C aj / D v.x C aj /� ci .x C aj /!
� v.x/C ˛j! � cix! � ciaj !
�wi .x/ ; x 2 F \ .F � aj / : (11)

Let E WD I nH , where

H WD
[
m;n2Z

.T C na1 Cma2/ 2J :

If we write P WD fna1 Cma2 W n;m 2 N0g; then

H C p D H ; p 2 P ; (12)

the set P is dense in R (see, e.g., [7–9]) and, in view of (11) and (12), it is easy to
notice that

wi .x C p/ � wi .x/ ; x 2 E \ .E � p/; p 2 P; i D 1; 2 : (13)

Hence, on account of Theorem 1, there are V1; V2 2J such that

wi .x/ D wi .x0/ ; x 2 E n Vi ; i D 1; 2 ;

which implies (9).
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Further, observe that, by (10), we have int.H [ V1 [ V2/ D ; and

v.x0/� cix0! D v.x/ � cix! ; x 2 E0 WD I n .H [ V1 [ V2/; i D 1; 2 :

Hence

.c1 � c2/x! D .c1 � c2/x0! ; x 2 E0 ;

whence we get c1 D c2.
The converse is easy to check. ut

Remark 1. Let a1; a2 2 R and ˛1; ˛2 2 .0;1/. Then every function v W I ! R

with

sup
x2R
jv.x/j � 1

2
min f˛1; ˛2g

fulfils (7) and (8) for each real interval I . This shows that some assumptions
concerning a1; a2; c1; c2 are necessary in Theorem 2.

Taking J D f;g in Theorem 2 we obtain the following corollary.

Corollary 1. Let a1; a2; ˛1; ˛2 2 R be such that a1 < 0 < a2, a1a�12 62 Q and
c1 � c2, where c1; c2 are given by (6). Let I be a real infinite interval, L be an
Archimedean Riesz space, u; ! 2 LC and k!ku <1. Then a function v W I ! L,
that is continuous (with respect to the extended norm k � ku ) at a point x0 2 I ,
satisfies the inequalities

if a1 C x 2 I; then v.a1 C x/ � v.x/ � ˛1! ;

if a2 C x 2 I; then v.a2 C x/ � v.x/ � ˛2!

if and only if c2 D c1 and

v.x/ D c1.x � x0/ ! C v.x0/ ; x 2 I :
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Elliptic Problems on the Sierpinski Gasket

Brigitte E. Breckner and Csaba Varga

Abstract There are treated nonlinear elliptic problems defined on the Sierpinski
gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs
considerably from that of (open) domains of Euclidean spaces, this note emphasizes
that PDEs defined on it may be studied (as in the Euclidean case) by means of certain
variational methods. Using such methods, and appropriate abstract multiplicity
theorems, there are proved several results concerning the existence of multiple
(weak) solutions of Dirichlet problems defined on the Sierpinski gasket.

Keywords Sierpinski gasket • Weak Laplacian • Dirichlet problem on the Sier-
pinski gasket • Weak solution • Critical point

1 Introduction

The origins of analysis on fractals lie in Mandelbrot’s book [21] where fractals are
proposed as models for different physical phenomena. Subsequently, the Laplacian
on fractals, which first appeared in physics as a tool for investigating the percolation
effect and various transport processes (in classical as well as in quantum mechanics),
became the subject of intensive mathematical research. An overview of these
researches can be found, for instance, in the introduction of Strichartz’s book [37].
Here we only point out that defining the Laplacian on a general fractal implies to
cope with considerable difficulties and that, over the years, several definitions have
been proposed that are applicable to certain classes of fractals. For example, in the
construction that goes back to Kigami (e.g., [15–18]) the Laplacian is defined as the
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limit of discrete differences on graphs approximating the fractal, a method that fits
with so-called post-critically-finite fractals. Another approach was taken by Mosco
(e.g., [23–25]), who introduced a framework for the Laplacian by taking as a starting
point a Dirichlet form that reflects the self-similarities of the underlying fractal. This
framework led to the very general theory of variational fractals.

Once a Laplacian having been defined on a fractal, one began to study elliptic
(linear and nonlinear) problems on it. In the last 20 years there have been brought
many contributions to this area. The papers [2–8, 10, 12, 13, 35, 36] are only a few
examples in this sense.

It has turned out that well-established methods to investigate the existence and the
multiplicity of solutions of PDEs defined on open domains in the Euclidean spaces
can also be used in the case of PDEs on fractals. For instance, the main tools used in
the papers [8,10,12,13,36] to prove the existence of at least one nontrivial solution
or of multiple solutions of nonlinear elliptic equations with zero Dirichlet boundary
conditions defined on fractals are, besides suitable techniques from variational
calculus, certain minimax results (mountain pass theorems, saddle-point theorems),
results from genus theory, and minimization procedures. A particular concern has
been devoted to PDEs on the Sierpinki gasket. In this sense, we mention the
pioneering paper [12] where nonlinear elliptic equations on the Sierpinski gasket
in the two-dimensional Euclidean space have been treated. It should be pointed out
that this paper, which was published in 2004 and had considerably influenced further
investigations in the theory of PDEs on the Sierpinski gasket, was written a few
years earlier, because the paper [10], published in 1999, refers to it as a preprint. The
subsequent papers [2–7, 10] brought further contributions to the study of nonlinear
PDEs on the Sierpinski gasket in the N dimensional Euclidean space.

This note aims, on the one hand, to describe the general framework that allows
the study of PDEs on the Sierpinski gasket (see Sect. 2 below), and, on the other
hand, to present a few results concerning the existence of multiple weak solutions
of elliptic problems defined on the Sierpinski gasket. More exactly, in Sect. 5, which
is based on [7], we use a method that goes back to Saint Raymond in order to prove
the existence of infinitely many weak solutions of certain Dirichlet problems on the
Sierpinski gasket. The subsequent Sect. 6, based on [4–6], is devoted to parameter-
depending Dirichlet problems on the Sierpinski gasket. Our approach for proving
the existence of finitely many (weak) solutions of one-, two-, respectively, three-
parameter Dirichlet problems on the Sierpinski gasket is mainly based on recent
abstract multiplicity theorems by Ricceri.

2 The Sierpinski Gasket

In what follows we first describe the two major constructions that lead to the
Sierpinski gasket, and afterwards we introduce that space of real-valued functions
on the Sierpinski gasket that corresponds to Sobolev spaces defined in the context



Elliptic Problems on the Sierpinski Gasket 121

of open subsets of Euclidean spaces. Having also suitable measure theoretical
ingredients associated with the gasket, we then construct the weak Laplacian on it.

Notations. We denote by N the set of natural numbers f0; 1; 2; : : : g, by N� WD
N n f0g the set of positive naturals, and by j � j the Euclidean norm on the spaces
Rn, n 2 N�. The spaces Rn are endowed, throughout the paper, with the topology
induced by j � j. If X is a topological space andM a subset of it, thenM denotes the
closure of M .

2.1 The Construction of the Sierpinski Gasket

LetN � 2 be a natural number and let p1; : : : ; pN 2 RN�1 be so that jpi �pj j D 1
for i ¤ j . Define, for every i 2 f1; : : : ; N g, the map Si WRN�1 ! RN�1 by

Si .x/ D 1

2
x C 1

2
pi :

Obviously every Si is a similarity with ratio 1
2
. Let S WD fS1; : : : ; SN g and denote

by S WP.RN�1/!P.RN�1/ the map assigning to a subset A of RN�1 the set

S.A/ D
N[
iD1

Si .A/:

It is known (see, for example, Theorem 9.1 in [9]) that there is a unique nonempty
compact subset V of RN�1, called the attractor of the family S , such that S.V / D
V (that is, V is a fixed point of the map S ). The set V is called the Sierpinski gasket
(SG for short) in RN�1.

For every m 2 N� denote by Wm WD .f1; : : : ; N g/m. Every element w 2 Wm is
called a word of lengthm. For w D .w1; : : : ;wm/ 2Wm put Sw WD Sw1 ı � � � ı Swm .
The equality V D S.V / clearly yields

V D
[

w2Wm

Sw.V /: (1)

Equation (1) is the levelm decomposition of V , and each Sw.V /, w 2Wm, is called
a cell of level m, or, for short, an m-cell.

Remark 1. Let m 2 N�. It can be proved easily by induction that two distinct m-
cells are either disjoint or intersect at a single point. In the latter case the cells are
said to be adjacent.

There are two main constructions leading to the SG: an outer and an inner
construction. Both of them are based on the convex hull C of the set fp1; : : : ; pN g
and on the following property of C



122 B.E. Breckner and C. Varga

Si.C / � C; for all i 2 f1; : : : ; N g: (2)

The outer construction follows from the previously mentioned Theorem 9.1 in [9]
which also implies that

V D
\
n2N

Sn.C /; (3)

where S0 is the identity map of RN�1 and SnC1 D Sn ı S , for all n 2 N�.
In order to get the inner construction put

V0 WD fp1; : : : ; pN g; VmC1 WD S.Vm/; form 2 N; and V� WD
[
m�0

Vm: (4)

Since pi D Si.pi / for i D 1;N , the inclusion V0 � V1 holds, hence S.V�/ D V�.
Taking into account that the maps Si , i D 1;N , are homeomorphisms, we conclude
that V� is a fixed point of S . The inclusions (2) yield that Vm � C for everym 2 N,
so V� � C . It follows that V� is nonempty and compact, hence we get that

V D V�; (5)

which yields the inner construction of the SG.
In the sequel V is considered to be endowed with the relative topology induced

from the Euclidean topology on RN�1. The set V0 is called the intrinsic boundary
of the SG.

In the particular case N D 2 the SG coincides with the compact interval of R
determined by p1 and p2, i.e., with C . If N D 3 the SG becomes the Sierpinski
triangle (ST for short) whose construction goes back to the Polish mathematician
W. Sierpinski. The ST is the subset of the plane obtained from an equilateral triangle
by removing the open middle inscribed equilateral triangle of a quarter of the
area, removing the corresponding open triangle from each of the three constituent
triangles, and continuing this way, as it is shown in the following figure. The union
of the black triangles arising in the nth step of this construction is exactly the set
Sn.C /, n 2 N, in (3).
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2.2 The Space H 1
0

.V /

We now introduce the space H1
0 .V / of certain real-valued functions on the SG that

corresponds to Sobolev spaces which are defined in the context of open subsets of
Euclidean spaces. The space H1

0 .V / will be obtained as a subset of the space of
real-valued continuous functions on V , denoted by C.V /. Since our interest will be
mainly in functions that are zero on the intrinsic boundary of V , we consider also
the set

C0.V / WD fu 2 C.V / j ujV0 D 0g:

Both spaces C.V / and C0.V / are endowed with the usual supremum norm jj � jjsup.
In order to make the presentation as clear as possible we will next describe in

detail only the caseN D 3, since the caseN � 4 is a straightforward generalization
of this one.

2.2.1 The Case N D 3

The key tool for introducing that space of functions on the ST, which plays the role
of a Sobolev space in this fractal context, is the harmonic extension procedure, as
presented in Sect. 1.3 of [37]. In order to describe this procedure, consider the sets
Vm, m 2 N, defined in (4). Givenm 2 N, define for every uWVm ! R

Em.u/ WD
X

x;y2Vm
jx�yjD2�m

.u.x/ � u.y//2: (6)

Remark 2. The bilinear map associated with Em is defined, for u; vWVm ! R, by

Em.u; v/ WD
X

x;y2Vm
jx�yjD2�m

.u.x/� u.y//.v.x/ � v.y//:

The map Em.u; v/ is actually an inner product on the space of real-valued functions
on Vm modulo the constant functions. It follows that

p
Em is a seminorm on the

space of real-valued functions on Vm.

The harmonic extension procedure consists in the following: Given m 2 N and
the map uWVm ! R, find a harmonic extension QuWVmC1 ! R of u to VmC1, i.e., an
extension of u to VmC1 (hence QujVm D u) that minimizesEmC1 for all extensions of u
to VmC1. Thus, for every other extension u0WVmC1 ! R of u to VmC1, the inequality

EmC1.Qu/ � EmC1.u0/
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has to hold. We summarize in the following result the computation done in Sect. 1.3
of [37] in order to get harmonic extensions.

Theorem 1. Letm 2 N. Then every uWVm ! R has exactly one harmonic extension
QuWVmC1 ! R. Moreover the following equality holds

EmC1.Qu/ D 3

5
Em.u/:

Proof. We only sketch the proof and refer to [37] for details. The statement can
be obtained using induction. The first step consists in finding the unique harmonic
extension of a function uWV0 ! R. Put a WD u.p1/, b WD u.p2/, and c WD u.p3/. If
u0WV1 ! R is an extension of u, denote by x WD u0.S2.p3//, y WD u0.S1.p3//, and
z WD u0.S1.p2//, as shown in the figure below.

•a

•z •y

•b •x •c

Then

E1.u
0/ D .a � z/2 C .z� b/2 C .b � x/2 C .x � c/2 C .c � y/2 C .y � a/2
C .z � x/2 C .x � y/2 C .y � z/2:

To find a harmonic extension Qu of u is equivalent to find a global minimum of
the above quadratic function in x; y; z. One gets that there is a unique harmonic
extension defined by

u0.S2.p3// D 1

5
aC 2

5
b C 2

5
c;

u0.S1.p3// D 2

5
aC 1

5
b C 2

5
c;

u0.S1.p2// D 2

5
aC 2

5
b C 1

5
c

and, consequently, that E1.Qu/ D 3
5
E0.u/:

Consider now m 2 N
� and uWVm ! R. If u0WVmC1 ! R is an extension of u,

then EmC1.u0/ is the sum of contributions from each cell Sw.V /, w 2 Wm. The
contribution from the cell Sw.V /, w 2Wm, is obtained by considering the values of
u0 on the set Sw.V1/, as shown in the following figure



Elliptic Problems on the Sierpinski Gasket 125

Sw(p1)

Sw(p2) Sw(p3)

Sw(S1(p2)) Sw(S1(p3))

Sw(S2(p3))

Thus we get

EmC1.u0/ D
X

w2Wm

E1.u
0 ı Sw/: (7)

Observe that, for every w 2Wm, the cell Sw.V / yields exactly three points, namely,
Sw.S1.p2//; Sw.S1.p3//, and Sw.S2.p3//, for the set VmC1 n Vm. Thus the problem
of minimizing EmC1.u0/ can be reduced to minimize each of the 3m terms E1.u0 ı
Sw/, w 2 Wm, on the right side of the equality (7). But minimizing each of these
terms is exactly a problem of the sort we have solved at the beginning of the proof.
Hence we get that u has a unique harmonic extension QuWVmC1 ! R that satisfies the
equalities

E1.Qu ı Sw/ D 3

5
E0.u ı Sw/;8 w 2Wm:

According to (7), we get

EmC1.Qu/ D 3

5

X
w2Wm

E0.u ı Sw/ D 3

5
Em.u/;

which finishes the proof ut
Remark 3. The proof of Theorem 1 yields in particular that harmonic extension is
a linear transformation. More precisely, ifm 2 N, u; vWVm ! R, ˛; ˇ 2 R then the
following equality holds for the harmonic extensions of u, v, and ˛uC ˇv to VmC1

D.˛uC ˇv/ D ˛ QuC ˇ Qv:

Given m 2 N, we introduce now the following renormalization of the function
Em defined in (6)

Wm.u/ D
�
3

5

��m
Em.u/; for every uWVm ! R: (8)

From Theorem 1 we now immediately derive the following result.
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Corollary 1. Let m 2 N and let uWVm ! R. If QuWVmC1 ! R is the harmonic
extension of u and if u0WVmC1 ! R is an arbitrary extension of u then the following
relations hold

Wm.u/ D WmC1.Qu/ � WmC1.u0/:

Recall from (4) that V� is the union of the sets Vm, m 2 N. For a function
uWV� ! R consider now its restrictions ujVm to the sets Vm, m 2 N. For simplicity
we denote by

Wm.u/ WD Wm .ujVm/ ;8 m 2 N:

Corollary 1 yields then the following result.

Corollary 2. For every uWV� ! R the sequence .Wm.u//m2N is increasing.

According to Corollary 2, it makes sense to define for a function uWV� ! R

W.u/ WD lim
m!1Wm.u/: (9)

Denote by

domW WD fuWV� ! R j W.u/ <1g:

Remark 4. Let uWV� ! R. Using the definition of Wm and Corollary 2, we get that

0 � Wm.u/ � W.u/;8m 2 N:

ThusW.u/ D 0 if and only if u is constant.

Definition 1. Let m 2 N. A function hWV� ! R is called a harmonic function
of level m if h is obtained by specifying the values of h on Vm arbitrarily and then
extending harmonically to Vk for each k > m. Denote by Hm the set of all harmonic
functions of levelm.

Remark 5. Let m 2 N. Remark 3 implies that Hm is a linear subspace of the (real)
vector space of real-valued functions on V�. Moreover, the dimension of Hm is
card Vm D 1

2
.3mC1 C 3/. By Corollary 1 we have that

W.u/ D Wm.u/;8 u 2Hm;

thus Hm � domW:
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Remark 6. Let m 2 N. For later use we introduce the following linear subspace
of Hm

H 0
m WD fh 2Hm j hjV0 D 0g: (10)

It follows from Remark 5 that the dimension of H 0
m is 1

2
.3mC1 � 3/.

The computations on p. 19 in [37] yield the following result.

Proposition 1. Let u 2 domW andm 2 N. If x; y 2 V� belong to the samem-cell
or to adjacentm-cells, then

ju.x/� u.y/j � 2r
m
2

1 �pr
p
W.u/;

where r D 3
5
.

Theorem 2. Let u 2 domW . Then the following inequality holds

ju.x/� u.y/j � 2

r.1 �pr/ jx � yj
˛
p
W.u/;8 x; y 2 V�;

where r D 3
5

and ˛ D ln 1
r

2 ln 2 .

Proof. Let x; y 2 V�. Without any loss of generality we may assume that x ¤ y.
Set

M WD fk 2 N
� j x and y belong to disjoint k-cellsg:

Assuming that M D ;, we get, for everym 2 N�, that x and y belong either to the
samem-cell or to adjointm-cells. It follows that jx�yj � 1

2m�1 , for allm 2 N�, thus
x D y, a contradiction. HenceM ¤ ;. Denote by m WD minM . Since two distinct
1-cells are adjacent, we conclude that m � 2. Also, due to the minimality of m, we
have that m � 1 … M . Thus x and y belong to cells of level m � 1 with common
points. We argue by contradiction to show that x and y cannot belong to the same
cell of level m � 1. Assume that there exists w 2 Wm�1 such that x; y 2 Sw.V /.
Then each of the points x and y belongs to one of the three m-cells obtained from
Sw.V /, namely to Sw.S1.V //, Sw.S2.V //, or Sw.S3.V //. But every two distinct
cells of these three m-cells are adjacent, contradicting the fact that m 2 M . Hence
x and y lie in adjacent cells of levelm�1, as shown in the following figure. Denote
by C1; C2; C3 them-cells obtained from the cell of levelm� 1 that contains x, and
by C4; C5; C6 the m-cells obtained from the cell of levelm � 1 that contains y.



128 B.E. Breckner and C. Varga

Since x and y belong to disjointm-cells, we consider now all possibilities that may
occur: .x; y/ 2 C1 � C4, .x; y/ 2 C1 � C5, .x; y/ 2 C1 � C6, .x; y/ 2 C2 � C5,
.x; y/ 2 C2 �C6, .x; y/ 2 C3 �C4, .x; y/ 2 C3�C5, .x; y/ 2 C3 �C6. Geometric
argumentations yield in all cases that for sure

jx � yj > 1

2mC1
: (11)

On the other hand, since x and y belong to adjacent cells of levelm�1, Proposition 1
implies that

ju.x/� u.y/j � 2r
m�1
2

1 �pr
p
W.u/;

or, equivalently,

ju.x/� u.y/j � 2r
.mC1/
2

r.1 �pr/
p
W.u/: (12)

We determine now the unique positive real ˛ satisfying the condition

r
.mC1/
2 D

�
1

2mC1

�˛
” mC 1

2
ln r D ˛.mC 1/ ln

1

2
” ˛ D ln 1

r

2 ln 2
:

Since ˛ > 0 we thus get from (11) that

r
.mC1/
2 D

�
1

2mC1

�˛
< jx � yj˛:

From (12) we finally derive the inequality to be proved. ut
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Corollary 3. Let u 2 dom W . Then u is uniformly continuous, thus u admits a
unique continuous extension to V .

Proof. The assertion is an immediate consequence of Theorem 2. ut
According to Corollary 3, the set dom W may be viewed as a subset of C.V /.

Define now

H1
0 .V / WD fu 2 C0.V / j ujV� 2 dom W g:

If u 2 H1
0 .V /, we write for simplicity

W.u/ WD W.ujV�/:

Proposition 2. H1
0 .V / is an infinite dimensional linear subspace of the real vector

space C0.V /.

Proof. The constant zero function clearly belongs to H1
0 .V /, so H1

0 .V / ¤ ;. Let
u; v 2 H1

0 .V /. Then uC v 2 C0.V / and

Wm.uC v/ � 2Wm.u/C 2Wm.v/;8 m 2 N;

where Wm is defined in (8). We obtain that lim
m!1Wm.u C v/ < 1, showing that

uC v 2 H1
0 .V /. If t 2 R and u 2 H1

0 .V /, then clearly tu 2 H1
0 .V /. Thus H1

0 .V /

is a linear subspace of C0.V /.
We have that, for everym 2 N, the continuous extensions of the functions of the

space H 0
m , introduced in (10), belong toH1

0 .V /. According to Remark 6, the space
H1
0 .V / has infinite dimension. ut

Proposition 3. Let u; v 2 H1
0 .V / and define for every m 2 N

Wm.u; v/ WD
�
5

3

�m X
x;y2Vm

jx�yjD2�m

.u.x/� u.y//.v.x/ � v.y//:

Then the sequence .Wm.u; v//m2N is convergent.

Proof. An easy computation yields that

Wm.u; v/ D 1

4
.Wm.uC v/ �Wm.u � v// ;8 m 2 N:

By Proposition 2, the sequences .Wm.uC v//m2N and .Wm.u � v//m2N are conver-
gent. Thus the assertion follows. ut

According to Proposition 3 we may now define W WH1
0 .V / �H1

0 .V /! R by

W .u; v/ D lim
m!1Wm.u; v/;8 u; v 2 H1

0 .V /: (13)



130 B.E. Breckner and C. Varga

Theorem 3. 1ı W is an inner product, and the norm jj � jjWH1
0 .V / ! R induced

by it satisfies the equality

jjujj DpW.u/;8 u 2 H1
0 .V /:

2ı The pair .H1
0 .V /; jj � jj/ is a real Hilbert space.

3ı H1
0 .V / is a dense subset of .C0.V /; jj � jjsup/.

4ı There exists a constant c > 0 such that every u 2 H1
0 .V / satisfies the inequality

ju.x/� u.y/j � cjx � yj˛jjujj;8 x; y 2 V; (14)

where ˛ D ln 5
3

2 ln 2 .

Proof. 1ı Let u 2 H1
0 .V /. Then, by definition,

Wm.u; u/ D Wm.u/;8 m 2 N;

hence, according to (13),

W .u; u/ D W.u/: (15)

If W .u; u/ D 0, then, according to Remark 4, u is constant on V�. Thus, by
continuity, u is constant on V . Since u is zero on V0, we conclude that u is the
constant zero function. The other properties of an inner product follow easily.
Formula (15) implies that jj � jj satisfies the asserted equality.

2ı See Theorem 1.4.2 in [37].
3ı See Theorem 1.4.4 in [37].

Assertion 4ı follows from Theorem 2. ut
Before stating the next result, we recall that a map between normed spaces is said

to be compact if it maps bounded sets onto relatively compact sets.

Corollary 4. There exists a constant c > 0 such that

jjujjsup � cjjujj;8 u 2 H1
0 .V /:

Moreover, the embedding

.H1
0 .V /; jj � jj/ ,! .C0.V /; jj � jjsup/

is compact.

Proof. Let c > 0 be the constant in assertion 4ı of Theorem 3. Let u 2 H1
0 .V /. If

we choose y D p1 in (14) and keep in mind that jx � p1j � 1, for every x 2 V , we
get that jjujjsup � cjjujj.
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The compactness of the embedding follows from assertion 4ı of Theorem 3 and
Ascoli’s Theorem. ut

2.2.2 The General Case

For the case N D 2 we refer to Sect. 1.3 in [37] where it is treated in detail. If
N � 4, then the spaceH1

0 .V / is obtained by a straightforward generalization of the
previously treated case N D 3. We present the main concepts and results, omitting
the details.

For a function u 2 C.V / and form 2 N let

Wm.u/ D
�
N C 2
N

�m X
x;y2Vm

jx�yjD2�m

.u.x/� u.y//2: (16)

We have Wm.u/ � WmC1.u/ for every natural m, so we can put

W.u/ D lim
m!1Wm.u/: (17)

Define now

H1
0 .V / WD fu 2 C0.V / j W.u/ <1g:

It turns out that H1
0 .V / is a dense linear subspace of .C0.V /; jj � jjsup/ of infinite

dimension. We now endowH1
0 .V / with the norm

jjujj D pW.u/: (18)

In fact, there is an inner product defining this norm: For u; v 2 H1
0 .V / andm 2 N let

Wm.u; v/ D
�
N C 2
N

�m X
x;y2Vm

jx�yjD2�m

.u.x/� u.y//.v.x/ � v.y//:

Put

W .u; v/ D lim
m!1Wm.u; v/: (19)

Then W .u; v/ 2 R, and H1
0 .V /, equipped with the inner product W (which

obviously induces the norm jj � jj), becomes a real Hilbert space.
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Moreover, there exists a real number c > 0 such that

jjujjsup � cjjujj; for every u 2 H1
0 .V /; (20)

and the embedding

.H1
0 .V /; jj � jj/ ,! .C0.V /; jj � jjsup/ (21)

is compact.

We now prove the analogue in the case of H1
0 .V / of a property stated in [22] for

Sobolev spaces.

Lemma 1. Let hWR ! R be a Lipschitz map with Lipschitz constant L � 0 and
such that h.0/ D 0. Then, for every u 2 H1

0 .V /, the function hıu belongs toH1
0 .V /

and jjh ı ujj � L � jjujj.
Proof. It is clear that h ı u 2 C0.V /. For every m 2 N we have, by (16) and the
Lipschitz property of h, that

Wm.h ı u/ � L2 �Wm.u/:

HenceW.hıu/ � L2 �W.u/, according to (17). Thus hıu 2 H1
0 .V / and jjhıujj �

L � jjujj.

2.3 The Weak Laplacian on the SG

The idea for introducing the weak Laplacian on the SG goes back to [19].
Afterwards this notion was adopted in [10] and [12]. The advantage of the weak
Laplacian is that it is obtained by means of methods of functional analysis. The
main tool in this approach is a measure naturally associated with the SG.

2.3.1 A Measure Associated with the SG

Observe first that the family S of similarities, defined in Sect. 2.1, satisfies the
open set condition (see p. 129 in [9]) with the interior of C . (Note that the interior
of C is nonempty since the points p1; : : : ; pN are affinely independent.) Applying
Theorem 9.3 of [9], we then get, on the one hand, that the Hausdorff dimension d
of V satisfies the equality
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NX
iD1

�
1

2

�d
D 1;

hence d D lnN
ln 2 , and, on the other hand, that 0 < H d .V / < 1, where H d is the

d -dimensional Hausdorff measure on R
N�1. Let � be the normalized restriction of

H d to the subsets of V , so �.V / D 1. In the sequel, if p � 1 is a real number,
then the Lebesgue space Lp.V; �/ is considered to be equipped with the usual jj � jjp
norm.

We summarize in the next result the main properties of �.

Proposition 4. The measure � has the following properties:

1ı Every Borel set in V is �-measurable.
2ı The set C.V / is dense in L2.V; �/.
3ı � satisfies the outer regularity condition for Borel sets, i.e., the following

equality holds for every Borel set A � V

�.A/ D inff�.O/ j A � O � V; O open inV g:

4ı The set C0.V / is dense in L2.V; �/,
5ı The support of � coincides with V , i.e.,

�.B/ > 0; for every nonempty open subset B of V: (22)

Proof. Assertion 1ı follows, for instance, from Theorems 16 and 19 in [32].
2ı Further results in [32] (e.g., Theorems 3, 20, 21, 23) yield that � satisfies all

assumptions required in Theorem 3.14 of [33] for ensuring that C.V / is dense in
L2.V; �/.

Assertion 3ı results from the already mentioned results (e.g., Theorems 20
and 21) in [32].
4ı According to 2ı, it suffices to show that C0.V / is dense in C.V /, when these

spaces are endowed with the norm jj � jj2 of L2.V; �/. The outer regularity condition
for Borel sets mentioned at 3ı implies, due to the fact that�.V / <1, the following
inner regularity condition for Borel sets: for every Borel set A � V

�.A/ D supf�.F / j F � A; F closed in V g:

Applying this inner regularity condition to the set V n V0, we get that, for every
n 2 N�, there exists a closed set Kn � V n V0 such that

�.Kn/ > �.V n V0/� 1

n2
:

Since �.V0/ D 0 (by the definition of the Hausdorff measure), we obtain that
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�.V nKn/ <
1

n2
:

By Urysohn’s Lemma there exists, for n 2 N�, a continuous function unWV ! Œ0; 1�

such that

un.x/ D 1;8 x 2 V0; and un.x/ D 0;8 x 2 Kn:

Thus

jjunjj22 D
Z
V nKn

u2nd� � �.V nKn/ <
1

n2
:

Consider now an arbitrary f 2 C.V / and denote by fn WD .1 � un/f , for every
n 2 N�. Then fn 2 C0.V / and

jjf � fnjj22 D
Z
V

u2nf
2d� � jjf jj2supjjunjj22 �

jjf jj2sup

n2
;8 n 2 N

�:

It follows that the sequence .fn/ converges in the jj � jj2 norm to f .
5ı Let B be a nonempty open subset of V and fix an arbitrary element x 2 B .

Then (see 3.1 (iii) in [14]) the equality F.V / D V yields the existence of a function
	WN� ! f1; : : : ; N g such that x is the unique element in the intersection of the
members of the following sequence of sets

V � Vi1 � Vi1i2 � � � � � Vi1i2:::in � � � � ;

where Vi1:::in WD .S	.1/ ı � � � ı S	.n//.V / for every n 2 N�. Assuming that

Vi1:::in n B ¤ ;; for every n 2 N
�;

there exists an element xn 2 Vi1:::in n B for every n 2 N�. Since

jxn � xj � diamVi1:::in D
�
1

2

�n
diamV; for all n 2 N

�;

the sequence .xn/ converges to x. Thus there is an index n0 with xn 2 B for all
n � n0, a contradiction. We conclude that there is n 2 N� such that

Vi1:::in � B:

It follows that �.Vi1:::in / � �.B/. On the other hand, by the scaling property of the
Hausdorff measure (see 2.1 in [9]), we have that



Elliptic Problems on the Sierpinski Gasket 135

�.Vi1:::in/ D
�
1

2

�nd
� �.V / > 0;

so �.B/ > 0.

Remark 7. Maintain the notations introduced in Sect. 2.2 for the inner product W
defined onH1

0 .V / and for the norm jj�jj induced by it. Recall thatH1
0 .V / is dense in

.C0.V /; jj�jjsup/ and that .H1
0 .V /; jj�jj/ is a (real) Hilbert space. Since the embedding

.C0.V /; jj � jjsup/ ,! .L2.V; �/; jj � jj2/

is continuous, assertion 4ı of Proposition 4 yields thatH1
0 .V / is dense in L2.V; �/.

We thus conclude from Lemma 1 that W is a Dirichlet form on L2.V; �/.

2.3.2 The General Framework for Defining the Weak Laplacian on the SG

Let .X; h�; �iX/ and .Y; h�; �iY / be real Hilbert spaces such that Y � X . Denote
by jj � jjX , respectively, jj � jjY the norms induced by the inner products on X ,
respectively, Y . Moreover assume that Y is dense in X and that the inclusion

i W .Y; jj � jjY / ,! .X; jj � jjX/

is compact. Thus this inclusion is also continuous (being linear). Let c > 0 be so that

jjyjjX � cjjyjjY ;8 y 2 Y: (23)

It follows that, for every x 2 X , the functional h�; xiX W .Y; jj � jjY / ! R is linear
and continuous. Note that by the Schwarz inequality and by (23) we have that

j hy; xiX j � jjyjjX � jjxjjX � cjjxjjX � jjyjjY ;8 y 2 Y: (24)

Using the Riesz representation theorem, there exists, for every x 2 X , a unique
element 	.x/ 2 Y such that

hy; xiX D hy; 	.x/iY ;8 y 2 Y: (25)

The map 	W .X; jj � jjX/! .Y; jj � jjY / is linear and, by (24), it satisfies the inequality

jj	.x/jjY � cjjxjjX;8 x 2 X:

Thus 	 is continuous. Denote by D WD 	.X/. Assuming that D is not dense in Y ,
there exists Ny 2 Y n f0g such that hy; NyiY D 0 for all y 2 D. It follows that
h	.x/; NyiY D 0, for all x 2 X , thus, by (25), h Ny; xiX D 0, for all x 2 X . We
conclude that h Ny; NyiX D 0, so Ny D 0, a contradiction. ThusD is dense in .Y; jj � jjY /.
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Moreover, 	 is injective, since 	.x1/ D 	.x2/, for x1; x2 2 X , yields, by (25), that
hy; x1iX D hy; x2iX , for every y 2 Y , thus x1 D x2 by the density of Y in X .

Let  W .X; jj � jjX/! .X; jj � jjX/ be the composition  D i ı 	. It follows from
the above considerations that  is injective, linear, continuous, and that its image
 .X/ D D is dense in .X; jj � jjX/. Furthermore, since the inclusion i is compact,
 is also compact. Using (25), the following equalities hold for every u; v 2 X

h .u/; viX D h	.u/; 	.v/iY D h	.v/; 	.u/iY D h .v/; uiX ;

hence  is symmetric. We conclude that the inverse  �1WD ! X is self-adjoint
and that, according to (25), it satisfies the equality

hy; NxiY D
˝
y; �1. Nx/˛

X
;8 . Nx; y/ 2 D � Y: (26)

Remark 8. Assuming that X has infinite dimension, Theorem 19.B of [39], applied
to  W .X; jj � jjX/! .X; jj � jjX/, yields thatX has a complete countable orthonormal
system consisting of eigenvectors of  . Thus there exists a countable and dense
subset M of X . It follows that 	.M/ is a countable and dense subset of .Y; jj � jjY /,
hence .Y; jj � jjY / is separable.

We get now the weak Laplacian on the SG, by considering the particular case

.X; h�; �iX/ D .L2.V; �/; h�; �i2/;

where h�; �i2 is the inner product that induces the norm jj � jj2 on L2.V; �/, and

.Y; h�; �iY / D .H1
0 .V /;W /;

where W is the inner product defined in (19). Recall that jj � jj stands for the norm
induced by W . We know from (21) that the embedding

.H1
0 .V /; jj � jj/ ,! .C0.V /; jj � jjsup/

is compact. In addition, the embedding

.C0.V /; jj � jjsup/ ,! .L2.V; �/; jj � jj2/

is continuous, thus the embedding

.H1
0 .V /; jj � jj/ ,! .L2.V; �/; jj � jj2/

is compact. We recall from Remark 7 that H1
0 .V / is dense in L2.V; �/.

The map 	W .L2.V; �/; jj � jj2/ ! .H1
0 .V /; jj � jj/, defined according to (25),

satisfies in this case the equality
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Z
V

uvd� D W .u; 	.v//;8 .u; v/ 2 H1
0 .V / � L2.V; �/:

The setD WD 	.L2.V; �// is dense both in .H1
0 .V /; jj � jj/ and in .L2.V; �/; jj � jj2/.

Let � WD � �1WD ! L2.V; �/. Then � is linear, self-adjoint, and satisfies, by
(26), the equality

�W .u; v/ D
Z
V

�.u/ � vd�;8 .u; v/ 2 D �H1
0 .V /: (27)

The operator� is called the weak Laplacian on the SG.

Remark 9. SinceL2.V; �/ has infinite dimension, Remark 8 implies that the Hilbert
space .H1

0 .V /; jj � jj/ is separable.

3 Some Basic Facts About Derivatives

The results of this section will be used in the next one for determining the energy
functional of certain elliptic problems defined on the SG. For the beginning we recall
a few basic notions.

Definition 2. Let E be a real Banach space, E� its dual (endowed with the usual
norm), and let T WE ! R be a functional.

We say that T is Fréchet differentiable at u 2 E if there exists a continuous linear
functional T 0.u/WE ! R, called the Fréchet differential of T at u, such that

lim
v!0
jT .uC v/ � T .u/� T 0.u/.v/j

jjvjj D 0:

The functional T is Fréchet differentiable (on E) if T is Fréchet differentiable
at every point u 2 E . In this case the map T 0WE ! E�, assigning to each point
u 2 E the Fréchet differential of T at u, is called the Fréchet derivative of T on E .
If T 0WE ! E� is continuous, then T is called a C1-functional.

We next establish a few straightforward results in a general setting. In the
subsequent part of the paper the term differentiable means Fréchet differentiable
and derivative means Fréchet derivative.

Let .X; jj � jjX/ and .Y; jj � jjY / be real normed spaces such that Y � X and such
that the inclusion

i W .Y; jj � jjY / ,! .X; jj � jjX/ (28)

is continuous. Define i�WX� ! Y � by i�.x�/ D x� ı i . The continuity of i implies
that of i�. The following result is now an immediate consequence of the chain rule.
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Proposition 5. Let y 2 Y and assume that the map LWX ! R is differentiable
at y. Then the restriction `WY ! R of L to Y is differentiable at y and `0.y/ D
i�.L0.y//.

Corollary 5. Let LWX ! R be differentiable on X . Then the restriction `WY ! R

of L to Y is differentiable on Y and its derivative is given by `0 D i� ı L0 ı i .
Corollary 6. Let LWX ! R be a C1-functional. Then the restriction `WY ! R of
L to Y is also C1.

Proof. We know from Corollary 5 that `0 D i� ı L0 ı i . The continuity of i�; L0,
and i implies that of `0. Hence ` is C1. ut
Corollary 7. Assume that the inclusion from (28) is compact. IfLWX ! R is a C1-
functional, then the restriction `WY ! R of L to Y is a C1-functional with compact
derivative.

Proof. That ` is C1 follows from Corollary 6. The compactness of `0 is a
consequence of Corollary 5, since the composition of a continuous map (i� ı L0
in our case) with a compact one (i in our case) is compact. ut

We will apply the above results, by taking .X; jj � jjX/ D .C0.V /; jj � jjsup/ and
.Y; jj � jjY / D .H1

0 .V /; jj � jj/.
Proposition 6. Let � 2 L1.V; �/, let F WR ! R be a C1-function with derivative
f WR! R, and define the map LWC0.V /! R by

L.u/ D
Z
V

�.x/F.u.x//d�: (29)

Then L is a C1-functional and its differential at a point u 2 C0.V / is given by

L0.u/.v/ D
Z
V

�.x/f .u.x//v.x/d�;8 v 2 C0.V /: (30)

Proof. Let u 2 C0.V / be arbitrary and denote by a WD jjujjsup. The functional

v 2 C0.V / 7!
Z
V

�.x/f .u.x//v.x/d� 2 R

is obviously linear and continuous. Consider an arbitrary " > 0. Since the restriction
of f to Œ�a � 1; aC 1� is uniformly continuous, there exists ı 2�0; 1Œ such that

jf .s/� f .t/j < "

jj� jj1 C 1;8 s; t 2 Œ�a � 1; aC 1� with js � t j < ı: (31)

Pick v 2 C0.V / so that jjvjjsup < ı, and let x 2 V be arbitrary. According to the
mean value theorem, there exists tx 2 Œ0; 1� such that

F.u.x/C v.x// � F.u.x// D f .u.x/C txv.x//v.x/:
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Then

F.u.x/C v.x//�F.u.x//� f .u.x//v.x/ D .f .u.x/C txv.x// � f .u.x/// v.x/:

Since u.x/ and u.x/ C txv.x/ belong to Œ�a � 1; a C 1� and since jtxv.x/j < ı,
inequality (31) yields that

jF.u.x/C v.x// � F.u.x//� f .u.x//v.x/j � "jv.x/j
jj� jj1 C 1 �

"jjvjjsup

jj� jj1 C 1:

Since
ˇ̌
ˇ̌L.uC v/ �L.u/�

Z
V

�.x/f .u.x//v.x/d�

ˇ̌
ˇ̌

�
Z
V

j�.x/ .F.u.x/C v.x// � F.u.x// � f .u.x//v.x//j d�;

we thus get

ˇ̌
ˇ̌L.uC v/ �L.u/�

Z
V

�.x/f .u.x//v.x/d�

ˇ̌
ˇ̌ � "jjvjjsupjj� jj1

jj� jj1 C 1 :

We conclude that

ˇ̌
L.uC v/� L.u/ � RV �.x/f .u.x//v.x/d�

ˇ̌
jjvjjsup

< ";8v 2 C0.V / n f0g with jjvjjsup < ı:

It follows that L is differentiable at u and that its differential at this point is given
by formula (30).

We now prove that the derivative L0WC0.V / ! .C0.V //
� is continuous. To this

end let u 2 C0.V / be arbitrary and denote, as before, by a WD jjujjsup. Consider an
arbitrary " > 0 and let ı 2�0; 1Œ be so that (31) holds. Pick w 2 C0.V / such that
jjw � ujjsup < ı. For every x 2 V we then have that u.x/; w.x/ 2 Œ�a � 1; a C 1�
and jw.x/ � u.x/j < ı. Thus, by (31), we get for v 2 C0.V / with jjvjjsup � 1 that

ˇ̌
L0.w/.v/� L0.u/.v/ˇ̌ �

Z
V
j�.x/ .f .w.x//� f .u.x/// v.x/j d� � "jj� jj1

jj� jj1 C 1 < ":

Hence

jjL0.w/� L0.u/jj � ";8 w 2 C0.V / with jjw� ujjsup < ı:

We conclude that L0 is continuous, thus L is C1. ut
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Corollary 8. Let � 2 L1.V; �/, let F WR ! R be a C1-function with derivative
f WR! R, and define the map `WH1

0 .V /! R by

`.u/ D
Z
V

�.x/F.u.x//d�:

Then ` is a C1-functional with compact derivative and its differential at a point
u 2 H1

0 .V / is given by

`0.u/.v/ D
Z
V

�.x/f .u.x//v.x/d�;8 v 2 H1
0 .V /:

Proof. The map ` is the restriction toH1
0 .V / of the mapL defined in (29). We know

from (21) that the embedding .H1
0 .V /; jj � jj/ ,! .C0.V /; jj � jjsup/ is compact. The

assertion follows now from Proposition 6, Corollaries 5, and 7. ut
Definition 3. If f WV � R ! R is such that the partial map f .x; �/WR ! R is
continuous for every x 2 V , then we call the map F WV � R! R, defined by

F.x; t/ D
Z t

0

f .x; �/d�; for every .x; t/ 2 V � R; (32)

the antiderivative of f with respect to the second variable.

Remark 10. Using the uniform continuity of continuous maps defined on compact
metric spaces, it can be proved that if f WV � R ! R is continuous, then its
antiderivative with respect to the second variable is also continuous.

Involving similar arguments as in the proof of Proposition 6 (based on the
mean value theorem and on the uniform continuity of continuous maps defined on
compact metric spaces), one can prove the following result.

Proposition 7. Let f WV � R ! R be continuous and let F WV � R ! R be its
antiderivative with respect to the second variable. Then the map LWC0.V / ! R,
given by

L.u/ D
Z
V

F.x; u.x//d�;

is a C1-functional and its differential at a point u 2 C0.V / is defined by

L0.u/.v/ D
Z
V

f .x; u.x//v.x/d�;8 v 2 C0.V /:

Corollary 9. Let f WV �R! R be continuous, letF WV �R! R be its antideriva-
tive with respect to the second variable, and define the map `WH1

0 .V /! R by
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`.u/ D
Z
V

F.x; u.x//d�:

Then ` is a C1-functional with compact derivative and its differential at a point
u 2 H1

0 .V / is given by

`0.u/.v/ D
Z
V

f .x; u.x//v.x/d�;8 v 2 H1
0 .V /:

Proof. The statement follows from Proposition 7, using similar arguments as in the
proof of Corollary 8. ut

4 Dirichlet Problems on the SG

Having defined the weak Laplacian, satisfying condition (27), we proceed now to
formulate nonlinear elliptic problems with zero Dirichlet boundary condition on the
SG. For this denote by DP.V / the set of all functions BWV � R ! R having the
property that, for every u 2 H1

0 .V /, the map

x 2 V 7! B.x; u.x// 2 R

belongs to L1.V; �/.
Given B 2 DP.V /, find appropriate functions uWV ! R such that

( ��u.x/C B.x; u.x// D 0; 8 x 2 V n V0;
ujV0 D 0:

We call this problem a Dirichlet problem with zero boundary condition on the SG.
We are interested in weak solutions of it, i.e., in functions u 2 H1

0 .V / with the
property that

W .u; v/C
Z
V

B.x; u.x//v.x/d� D 0; 8 v 2 H1
0 .V /:

Remark 11. Assume that BWV � R! R is continuous. Using the regularity result
Lemma 2.16 of [10], it follows that every weak solution of the Dirichlet problem
defined above is actually a strong solution of it (as defined in [10]). That is the reason
for calling in this case weak solutions of the Dirichlet problem simply solutions of it.

In the present note we are mainly concerned with Dirichlet problems defined with
the aid of a function BWV �R! R such that

B.x; t/ D f1.x; t/C �.x/f2.t/;
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where f1WV � R ! R and f2WR ! R are continuous, and � 2 L1.V; �/. Thus in
this case the Dirichlet problem becomes

.DP/

( ��u.x/C f1.x; u.x//C �.x/f2.u.x// D 0; 8 x 2 V n V0;
ujV0 D 0:

A function u 2 H1
0 .V / is a weak solution of (DP) if and only if

W .u; v/C
Z
V

f1.x; u.x//v.x/d�C
Z
V

�.x/f2.u.x//v.x/d� D 0; 8 v 2 H1
0 .V /:

(33)

In order to apply variational methods for the study of the existence and the
multiplicity of weak solutions of problem (DP) we have to introduce the so-called
energy functional of this problem. For this we recall the following notions.

Definition 4. Let E be a real Banach space and let T WE ! R be a functional. If T
is differentiable on E , then a point u 2 E is a critical point of T if T 0.u/ D 0.

Remark 12. Note that if the differentiable functional T WE ! R has in u 2 E a
local extremum, then u is a critical point of T .

Definition 5. A differentiable functional T WH1
0 .V / ! R is called an energy

functional of problem (DP) if it has the property that u 2 H1
0 .V / is a weak solution

of problem (DP) if and only if u is a critical point of T .

For F 2 DP.V / we denote by TF WH1
0 .V /! R the functional defined by

TF .u/ D
Z
V

F.x; u.x//d�: (34)

Coming now back to problem (DP) and keeping in mind Definition 3, denote by
F1WV � R! R the antiderivative of the continuous function f1WV � R! R with
respect to the second variable, and by F2WV � R ! R the antiderivative of the
function .x; t/ 2 V � R 7! �.x/f2.x/ 2 R with respect to the second variable.
Thus

F2.x; t/ D �.x/
Z t

0

f2.�/d�;8 .x; t/ 2 V � R:

The maps F1 and F2 belong to DP.V /. Denote the functionals TF1 and TF2
associated with F1, respectively, F2, according to (34), simply by

T1 WD TF1 and T2 WD TF2:
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Furthermore define I WH1
0 .V /! R by

I.u/ D 1

2
jjujj2; (35)

where, as until now, jj � jj denotes the norm onH1
0 .V / induced by the inner product

W given in (19).

Proposition 8. The above defined maps I; T1; T2WH1
0 .V /! R have the following

properties:

1ı I is a C1-functional and its differential at an arbitrary point u 2 H1
0 .V / is

given by

I 0.u/.v/ D W .u; v/;8 v 2 H1
0 .V /:

2ı T1 is a C1-functional with compact derivative and its differential at an arbitrary
point u 2 H1

0 .V / is given by

T 01.u/.v/ D
Z
V

f1.x; u.x//v.x/d�;8 v 2 H1
0 .V /:

3ı T2 is a C1-functional with compact derivative and its differential at an arbitrary
point u 2 H1

0 .V / is given by

T 02.u/.v/ D
Z
V

�.x/f2.u.x//v.x/d�;8 v 2 H1
0 .V /:

4ı I C T1 C T2 is an energy functional of problem (DP).
5ı T1 and T2 are sequentially weakly continuous.
6ı I C T1 C T2 is sequentially weakly lower semicontinuous.

Proof. A straightforward computation yields 1ı.
While assertion 2ı is a consequence of Corollary 9, assertion 3ı follows from

Corollary 8.
Assertion 4ı follows from the previous ones and (33).
5ı Since T1 and T2 have compact derivative, Corollary 41.9 in [38] implies that

these functionals are sequentially weakly continuous.
6ı Since I is continuous in the norm topology on H1

0 .V / and convex, it is
sequentially weakly lower semicontinuous. Using 5ı, we conclude that I CT1CT2
is sequentially weakly lower semicontinuous. ut

In the next sections, we will study by means of various techniques the existence
of multiple weak solutions of certain Dirichlet problems on the SG.
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5 Dirichlet Problems on the SG with Infinitely
Many Weak Solutions

Following [7], we present now the application of a method that goes back to Saint
Raymond [34] in order to prove the existence of infinitely many weak solutions
of certain Dirichlet problems on the SG. This method has been used successfully
to prove, in the context of certain Sobolev spaces, the existence of infinitely many
solutions of Dirichlet problems on bounded domains [34], of one-dimensional scalar
field equations and systems [11], of homogeneous Neumann problems [20]. The aim
of the present section is to show that the methods used in [11] can be successfully
adapted to prove the existence of infinitely many (weak) solutions of Dirichlet
problems on the SG.

We point out that there are also other approaches for proving the existence of
infinitely many weak solutions of Dirichlet problems on the SG. For instance, in [2]
and [3] one uses a general variational principle by Ricceri to prove the existence
of infinitely many solutions of other classes of Dirichlet problems on the Sierpinski
gasket than those treated in the previously mentioned article [7].

Let a; g 2 L1.V; �/ and let f WR! R be continuous. We are concerned with the
following Dirichlet problem on the SG

.P /

(
�u.x/C a.x/u.x/ D g.x/f .u.x//; 8 x 2 V n V0;
ujV0 D 0:

Define F WR! R by F.t/ D R t
0
f .�/d�. According to assertion 4ı of Proposition 8

the functional T WH1
0 .V /! R, defined by

T .u/ D 1

2
jjujj2� 1

2

Z
V

a.x/u2.x/d�C
Z
V

g.x/F.u.x//d�; 8 u 2 H1
0 .V /; (36)

is an energy functional of problem .P /.

Remark 13. Assume that a � 0 and g � 0 a.e. in V . Consider u 2 H1
0 .V / and

d; b 2 R such that d � u.x/ � b for every x 2 V . According to the fact that g � 0
a.e. in V , we then have

Z
V

g.x/F.u.x//d� � max
s2Œd;b� F .s/ �

Z
V

g.x/d�: (37)

For later use we state the following relations about the functional T WH1
0 .V / ! R

defined by (36): The inequalities (37) and a � 0 a.e. in V imply that

T .u/ � max
s2Œd;b� F .s/ �

Z
V

g.x/d� (38)
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and

1

2
jjujj2 � T .u/� max

s2Œd;b� F .s/ �
Z
V

g.x/d�: (39)

We also note that for every x 2 V

F.u.x// � jF.u.x//j D
ˇ̌
ˇ̌
ˇ
Z u.x/

0

f .t/dt

ˇ̌
ˇ̌
ˇ � max

t2Œd;b�
jf .t/j � jjujjsup:

As above we then conclude that

T .u/ � max
t2Œd;b� jf .t/j � jjujjsup �

Z
V

g.x/d� (40)

and

1

2
jjujj2 � T .u/� max

t2Œd;b� jf .t/j � jjujjsup �
Z
V

g.x/d�: (41)

We recall the definition of the coercivity of a functional, respectively, the subse-
quent standard result concerning the existence of minimum points of sequentially
weakly lower semicontinuous functionals.

Definition 6. Let X be a real normed space and let M be a nonempty subset of X .
A functionalLWM ! R is said to be coercive if for every sequence .xn/ inM such
that lim

n!1 jjxnjj D 1 it follows that lim
n!1L.xn/ D1.

Proposition 9. LetX be a reflexive real Banach space,M a nonempty sequentially
weakly closed subset of X , and LWM ! R a sequentially weakly lower semicon-
tinuous and coercive functional. Then L possesses at least one minimum point.

The following corollary of Proposition 9 is a key element in our approach.

Corollary 10. Let a; g 2 L1.V; �/ be so that a � 0 and g � 0 a.e. in V , and let
f WR! R be continuous. Consider d; b 2 R so that d < 0 < b and put

M WD fu 2 H1
0 .V / j d � u.x/ � b; 8x 2 V g:

Then the functional T WH1
0 .V /! R defined by (36) attains its infimum on M , thus

it is bounded from below on M .

Proof. Obviously the set M is nonempty (it contains the constant 0 function) and
convex. Since the inclusion (21) is continuous,M is closed in the norm topology on
H1
0 .V /. It follows that M is also closed in the weak topology on H1

0 .V /, thus M
is sequentially weakly closed. It follows from (39) that the restriction of T to M is
coercive. Proposition 9 implies now that T attains its infimum on M . ut
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The main result of this section is contained in the following theorem concerning
the existence of multiple weak solutions of problem .P /.

Theorem 4. Assume that the following conditions hold:

(C1) a 2 L1.V; �/ and a � 0 a.e. in V .
(C2) f WR! R is continuous such that

(1*) There exist two sequences .ak/ and .bk/ in �0;1Œ with bkC1 < ak < bk ,
lim
k!1 bk D 0 and such that f .s/ � 0 for every s 2 Œak; bk�:

(2*) Either supfs < 0 j f .s/ > 0g D 0, or there is a ı > 0 with f jŒ�ı;0� D 0.

(C3) F WR! R, defined by F.s/ D R s
0
f .t/dt , is such that

(3*) �1 < lim inf
s!0C

F.s/

s2
,

(4*) lim sup
s!0C

F.s/

s2
D 1.

(C4) gWV ! R is continuous with g � 0 and such that the restriction of g to every
open subset of V is not identically 0.

Then there is a sequence .uk/ of pairwise distinct weak solutions of problem .P /

such that lim
k!1 kukk D 0: In particular, lim

k!1 kukksup D 0:
Remark 14. The conditions (C2) and (C3) of Theorem 4 concerning the nonlinear
term f WR! R of problem .P / show that this function has an oscillating behavior
at 0. This oscillating behavior of f is the key element for applying Saint Raymond’s
method. In Example 2 of [11] there is given the following example of a function
satisfying the conditions (C2) and (C3) of the theorem: Let 0 < ˛ < 1 < ˇ

and define f WR ! R by f .0/ D 0 and f .t/ D jt j˛ maxf0; sin jt j�1g C
jt jˇ minf0; sin jt j�1g for t ¤ 0.

In what follows we assume that the conditions (C1)–(C4) in the hypotheses of
Theorem 4 are satisfied.

Case 1: Suppose first that the equality supfs < 0 j f .s/ > 0g D 0 in condition (2*)
of (C2) holds. Then there exists a strictly increasing sequence .ck/ of negative reals
such that lim ck D 0 and f .ck/ > 0 for every natural k. By continuity of f there
exists another sequence .dk/ such that dk < ck < dkC1 and f .t/ > 0 for every
t 2 Œdk; ck� and every natural k.
Case 2: If we have in (2*) that there is a ı > 0 with f jŒ�ı;0� D 0, then choose a
strictly increasing sequence .ck/ of negative reals strictly greater than �ı such that
lim ck D 0. Let .dk/ be a sequence such that �ı < d0 and dk < ck < dkC1 for
every natural k. Then f .t/ D 0 for every t 2 Œdk; ck� and every natural k.
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In both cases, since F.s/ D R s0 f .t/dt for every s 2 R, it follows that

F.s/ � F.ck/; for every s 2 Œdk; ck�: (42)

Using condition (1*) of (C2), we have that

F.s/ � F.ak/; for every s 2 Œak; bk�: (43)

For every k 2 N set now

Mk WD fu 2 H1
0 .V / j dk � u.x/ � bk; 8 x 2 V g:

The proof of Theorem 4 includes the following main steps contained in the next
lemmas:

1. we show that the map T WH1
0 .V / ! R defined by (36) has at least one critical

point in each of the sets Mk,
2. we show that there are infinitely many pairwise distinct such critical points,
3. since T is an energy functional of Problem .P /, each of these critical points is a

weak solution of Problem .P /.

Lemma 2. For every k 2 N there is an element uk 2 Mk such that the following
conditions hold:

(i) T .uk/ D inf T .Mk/,
(ii) ck � uk.x/ � ak , for every x 2 V .

Proof. Fix k 2 N. According to Corollary 10, there is an element Quk 2 Mk such
that T .Quk/ D infT .Mk/. Define hWR! R by

h.t/ D
8<
:
ck; t < ck
t; t 2 Œck ; ak�
ak; t > ak:

Note that h.0/ D 0 and that h is a Lipschitz map with Lipschitz constant L D 1.
According to Lemma 1 the map uk WD h ı Quk belongs to H1

0 .V / and

jjukjj � jjQukjj: (44)

Moreover, uk belongs to Mk and obviously satisfies condition (ii) to be proved. We
next show that (i) also holds. For this set

V1 WD fx 2 V j Quk.x/ < ckg; V2 WD fx 2 V j Quk.x/ > akg:
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Then

uk.x/ D
8<
:
ck; x 2 V1
Quk.x/; x 2 V n .V1 [ V2/
ak; x 2 V2:

It follows that

.uk.x//
2 � .Quk.x//2; for every x 2 V: (45)

Furthermore, if x 2 V1 then Quk.x/ 2 Œdk; ckŒ, hence F.Quk.x// � F.ck/ D
F.uk.x//, by (42). Analogously, if x 2 V2, then (43) yields F.Quk.x// � F.ak/ D
F.uk.x//. Thus

F.Quk.x// � F.uk.x//; for every x 2 V: (46)

The inequalities (44)–(46) imply, together with the fact that a � 0 a.e. in V and
g � 0, that

T .Quk/� T .uk/ D 1

2
jjQukjj2 � 1

2
jjukjj2 � 1

2

Z
V

a.x/.Qu2k.x/ � u2k.x//d�

C
Z
V

g.x/.F.Quk.x// � F.uk.x///d� � 0:

Thus T .Quk/ � T .uk/. Since T .Quk/ D infT .Mk/ and since uk 2 Mk , we conclude
that T .uk/ D infT .Mk/, thus (i) is also fulfilled. ut
Lemma 3. For every k 2 N let uk 2 Mk be a function satisfying the conditions (i)
and (ii) of Lemma 2. The functional T has then in uk a local minimum (with respect
to the norm topology on H1

0 .V /), for every k 2 N. In particular, .uk/ is a sequence
of weak solutions of problem .P /.

Proof. Fix k 2 N. Suppose to the contrary that uk is not a local minimum of T .
This implies the existence of a sequence .wn/ in H1

0 .V / converging to uk in the
norm topology such that

T .wn/ < T .uk/; for every n 2 N:

In particular, wn …Mk , for all n 2 N. Choose a real number " such that

0 < " � 1

2
minfbk � ak; ck � dkg:

In view of (20) the sequence .wn/ converges to uk in the supremum norm topology
on C.V /. Hence there is an indexm 2 N such that

jjwm � ukjjsup � ":
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For every x 2 V we then have according to (ii) of Lemma 2

wm.x/ D wm.x/ � uk.x/C uk.x/ � "C uk.x/ � bk � ak
2

C ak < bk

and

wm.x/ D wm.x/ � uk.x/C uk.x/ � �"C uk.x/ � dk � ck
2

C ck > dk:

Thus wm 2 Mk, a contradiction. We conclude that T has in uk a local minimum.
The last assertion of the lemma follows now from Remark 12 and the fact that T is
an energy functional of problem .P /. ut
Lemma 4. For every k 2 N put �k WD infT .Mk/. Then �k < 0 for all k 2 N and
lim
k!1 �k D 0.

Proof. Lemma 1 implies that juj 2 H1
0 .V / whenever u 2 H1

0 .V /. Thus we can
pick a function u 2 H1

0 .V / such that u.x/ � 0 for every x 2 V and such that there
is an element x0 2 V with u.x0/ > 1. It follows that U WD fx 2 V j u.x/ > 1g
is a nonempty open subset of V . Let hWR ! R be defined by h.t/ D minft; 1g,
for every t 2 R. Then h.0/ D 0 and h is a Lipschitz map with Lipschitz constant
L D 1. Lemma 1 yields that v WD h ı u 2 H1

0 .V /. Moreover, v.x/ D 1 for every
x 2 U , and 0 � v.x/ � 1 for every x 2 V .

On the other hand, condition (3*) of (C3) implies the existence of real numbers
� > 0 andm such that F.s/

s2
> m for every s 2�0; �Œ. It follows that

F.s/ � ms2; for every s 2 Œ0; �Œ: (47)

Condition (4*) of (C3) yields the existence of a sequence .rn/ in �0; �Œ such that
lim
n!1 rn D 0 and

lim
n!1

F.rn/

r2n
D1: (48)

We then have for every n 2 N

T .rnv/ D r2n
2
jjvjj2 � r

2
n

2

Z
V

a.x/v2.x/d�C F.rn/
Z
U

g.x/d�

C
Z
V nU

g.x/F.rnv.x//d�:

Using (47) and the fact that g � 0 in V , we get for every n 2 N
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T .rnv/ � r2n
2
jjvjj2 � r

2
n

2

Z
V

a.x/v2.x/d�C F.rn/
Z
U

g.x/d�

Cmr2n
Z
V nU

g.x/v2.x/d�:

Thus

T .rnv/

r2n
� 1
2
jjvjj2�1

2

Z
V

a.x/v2.x/d�CF.rn/
r2n

Z
U

g.x/d�Cm
Z
V nU

g.x/v2.x/d�:

Condition (C4) and relation (22) imply that
R
U
g.x/d� < 0, so we get from (48)

and the above inequality that

lim
n!1

T .rnv/

r2n
D �1:

Thus there is an index n0 such that T .rnv/ < 0 for every n � n0. Fix now k 2 N.
Since lim

n!1 jjrnvjjsup D 0, we get an index p � n0 such that rpv 2 Mk . Hence

�k � T .rpv/ < 0.
Let uk 2Mk be so that �k D T .uk/. Since Mk �M0, relation (40) yields

�k D T .uk/ � max
t2Œd0;b0�

jf .t/j � jjukjjsup �
Z
V

g.x/d�;

hence

0 > �k � max
t2Œd0;b0�

jf .t/j �maxfbk; jdkjg �
Z
V

g.x/d�:

Since lim
k!1 bk D lim

k!1dk D 0, we conclude that lim
k!1 �k D 0. ut

Proof of Theorem 4 concluded. From Lemma 3 we know that there is a sequence
.uk/ of weak solutions of problem .P / such that �k D T .uk/, where �k D
infT .Mk/, for every natural k. Using relation (41) and the fact that �k � 0, we
obtain

1

2
jjukjj2 � � max

t2Œd0;b0�
jf .t/j �maxfbk; jdkjg �

Z
V

g.x/d�:

Using once again that lim
k!1 bk D lim

k!1dk D 0, we conclude that lim
k!1 jjukjj D 0.

Thus also lim
k!1 jjukjjsup D 0, by (20).

We know from Lemma 4 that T .uk/ D �k < 0, for every natural k, and that
lim
k!1 �k D 0. Thus we can find a subsequence .ukj / of the sequence .uk/ consisting

of pairwise distinct elements. ut
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Remark 15. By the same method one can prove (see also [11]) an analogous result
in the case the nonlinear term f WR ! R has an oscillating behavior at1. In this
case one obtains a sequence .uk/ of pairwise distinct weak solutions of problem .P /

such that lim
k!1 jjukjj D 1.

6 Parameter-Depending Dirichlet Problems on the SG

This section is based on the papers [4–6] and it contains applications of abstract
critical points results by Ricceri to parameter-depending Dirichlet problems defined
on the SG. We mention in this context that the celebrated three-critical-point
theorem obtained by Ricceri in [27] turned out to be one of the most often applied
abstract multiplicity results for the study of different types of nonlinear problems of
variational nature. Along the years Ricceri has obtained several refinements of his
previously mentioned three-critical-point theorem. Two of these refinements will be
used in this section for the study of two-, respectively, three-parameter Dirichlet
problems on the SG. As far as we know, Theorem 6 below (taken from [6]) contains
the first application of a Ricceri type three-critical-point theorem to nonlinear partial
differential equations on fractals.

6.1 Two-Parameter Dirichlet Problems on the SG

This subsection contains some results of [6]. Let f; gWV � R ! R be continuous
functions, and let �; � 2 R be parameters. Consider the following Dirichlet problem
on the SG

.P�;�/

( ��u.x/ D �f .x; u.x//C �g.x; u.x//; 8 x 2 V n V0;
ujV0 D 0:

Let F WV � R ! R be the antiderivative of f with respect to the second variable,
and letGWV �R! R be the antiderivative of g with respect to the second variable.
Assertion 4ı of Proposition 8 implies that the map T WH1

0 .V /! R, defined by

T .u/ D 1

2
jjujj2 � �

Z
V

F.x; u.x//d� � �
Z
V

G.x; u.x//d�;

is an energy functional of .P�;�/.
The study of problem .P�;�/ is based on the following three-critical-point

theorem by Ricceri (see Theorem 2 of [28]).
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Theorem 5. Let X be a separable and reflexive real Banach space, and let
˚; J WX ! R be functionals satisfying the following conditions:

(i) ˚ is a coercive, sequentially weakly lower semicontinuous C1-functional,
bounded on each bounded subset of X , and whose derivative admits a
continuous inverse on X�.

(ii) If .un/ is a sequence inX converging weakly to u, and if lim inf
n!1 ˚.un/ � ˚.u/,

then .un/ has a subsequence converging strongly to u.
(iii) J is a C1-functional with compact derivative.
(iv) The functional ˚ has a strict local minimum u0 with ˚.u0/ D J.u0/ D 0.
(v) The inequality �1 < �2 holds, where

�1 WD max

(
0; lim sup
jjujj!1

J.u/

˚.u/
; lim sup

u!u0

J.u/

˚.u/

)
and �2 WD sup

u2˚�1.�0;1Œ/
J.u/

˚.u/
:

Then, for each compact interval Œ�1; �2� 	� 1�2 ; 1�1 Œ (where, by convention, 1
0
WD 1

and 1
1 WD 0), there exists a positive real number r with the following property: For

every � 2 Œ�1; �2� and for every C1-functional � WX ! R with compact derivative
there exists ı > 0 such that, for every � 2 Œ0; ı�, the equation

˚ 0.u/ D �J 0.u/C �� 0.u/

has at least three solutions in X whose norms are less than r .

The aim of this subsection is to apply Theorem 5 to show that, under suitable
assumptions and for certain values of the parameters � and �, problem .P�;�/ has at
least three (weak) solutions. More precisely, we can state the following result.

Theorem 6. Assume that the following hypotheses hold:

(C1) The function f WV � R! R is continuous.
(C2) The antiderivative F WV � R ! R of f with respect to the second variable

satisfies the following conditions:

(1*) There exist ˛ 2 Œ0; 2Œ, a 2 L1.V; �/, and m � 0 such that

F.x; t/ � m.a.x/C jt j˛/; for all .x; t/ 2 V � R:

(2*) There exist t0 > 0, M � 0 and ˇ > 2 such that

F.x; t/ �M jt jˇ; for all .x; t/ 2 V � Œ�t0; t0�:

(3*) There exists t1 2 R n f0g such that for all x 2 V and for all t between 0
and t1 we have

F.x; t1/ > 0 and F.x; t/ � 0:
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Then there exists a real number � � 0 such that, for each compact interval
Œ�1; �2� 	��;1Œ, there exists a positive real number r with the following property:
For every � 2 Œ�1; �2� and every continuous function gWV � R ! R there exists
ı > 0 such that, for each � 2 Œ0; ı�, the problem .P�;�/ has at least three solutions
whose norms are less than r .

Proof. Set X WD H1
0 .V /. Then X is separable (by Remark 9) and reflexive (as a

Hilbert space). Define the functionals˚; J WX ! R, for every u 2 X , by

˚.u/ D 1

2
jjujj2; J.u/ D

Z
V

F.x; u.x//d�:

In order to apply Theorem 5, we show that the conditions (i)–(v) required in this
theorem are satisfied for the above defined functionals.

Clearly condition (i) of Theorem 5 is satisfied. (Recall that, according to assertion
1ı of Proposition 8, ˚ 0WX ! X� is defined by ˚ 0.u/.v/ D W .u; v/ for every
u; v 2 X .) Condition (ii) is a consequence of the facts that X is uniformly convex
and that ˚ is sequentially weakly lower semicontinuous. Condition (iii) follows
from assertion 2ı of Proposition 8. Obviously condition (iv) holds for u0 D 0.

To verify (v), observe first that assumption (1*) of (C2) implies, together with
(20), that for every u 2 X n f0g the following inequality holds:

J.u/

˚.u/
� 2m

jjujj2
Z
V

ad�C 2mc˛jjujj˛�2:

Since ˛ < 2, we conclude that

lim sup
jjujj!1

J.u/

˚.u/
� 0: (49)

Note that if u 2 X is so that jjujj � t0
c

, then, by (20), jjujjsup � t0. It follows that
u.x/ 2 Œ�t0; t0� for every x 2 V . Using (2*) of (C2), we thus get that for every
x 2 V

F.x; u.x// �M ju.x/jˇ �Mcˇjjujjˇ:

Hence the following inequality holds for every u 2 X n f0g with jjujj � t0
c

J.u/

˚.u/
� 2Mcˇjjujjˇ�2:

Since ˇ > 2, we obtain

lim sup
u!0

J.u/

˚.u/
� 0: (50)
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The inequalities (49) and (50) yield that

�1 WD max

(
0; lim sup
jjujj!1

J.u/

˚.u/
; lim sup

u!u0

J.u/

˚.u/

)
D 0: (51)

Without any loss of generality we may assume that the real number t1 in condition
(3*) of (C2) is positive. Lemma 1 implies that juj 2 H1

0 .V / whenever u 2 H1
0 .V /.

Thus we can pick a function u 2 H1
0 .V / such that u.x/ � 0 for every x 2 V , and

such that there is an element x0 2 V with u.x0/ > t1. It follows that

U WD fx 2 V j u.x/ > t1g

is a nonempty open subset of V . Let hWR ! R be defined by h.t/ D minft; t1g,
for every t 2 R. Then h.0/ D 0 and h is a Lipschitz map with Lipschitz constant
L D 1. Lemma 1 yields that u1 WD h ı u 2 H1

0 .V /. Moreover, u1.x/ D t1 for every
x 2 U , and 0 � u1.x/ � t1 for every x 2 V . Then, according to condition (3*) of
(C2), we obtain

F.x; u1.x// > 0; for every x 2 U; and F.x; u1.x// � 0; for every x 2 V:

Together with (22) we then conclude that J.u1/ > 0. Thus

�2 WD sup
u2˚�1.�0;1Œ/

J.u/

˚.u/
> 0: (52)

Relations (51) and (52) finally imply that assertion (v) of Theorem 5 is also fulfilled.
Put� WD 1

�2
(with the convention 1

1 WD 0). Note that if gWV �R! R is continuous,
then the map � WX ! R, defined by

�.u/ D
Z
V

G.x; u.x//d�;

where GWV � R! R is the antiderivative of g with respect to the second variable,
is, by assertion 2ı of Proposition 8, a C1-functional with compact derivative. Recall
that assertion 4ı of Proposition 8 yields that ˚ � �J � �� is an energy functional
of problem .P�;�/. So, applying Theorem 5, we obtain the asserted conclusion.

Example 1. Let 0 < ˛ < 2 < ˇ and define f1WR! R by

f1.t/ D
( jt jˇ�2t; if jt j � 1
jt j˛�2t; if jt j > 1:
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Then F1WR! R, F1.t/ D
R t
0
f1.�/d�, is given by

F1.t/ D
8<
:

1
ˇ
jt jˇ; if jt j � 1

1
ˇ
� 1

˛
C 1

˛
jt j˛; if jt j > 1:

Consider a continuous map aWV ! R with a.x/ > 0, for every x 2 V , and define
f WV �R! R by f .x; t/ D a.x/f1.t/. The antiderivative of f with respect to the
second variable is then the map F WV � R! R given by F.x; t/ D a.x/F1.t/, for
all .x; t/ 2 V � R. Hence F satisfies condition (C2) of Theorem 6.

6.2 One-Parameter Dirichlet Problems on the SG

The following immediate consequence of Theorem 6 gives information concerning
one-parameter Dirichlet problems on the SG.

Theorem 7. Assume that the hypotheses (C1) and (C2) of Theorem 6 hold true.
Then there exists a real number � � 0 such that for every � > � the problem

( ��u.x/ D �f .x; u.x//; 8 x 2 V n V0;
ujV0 D 0:

(53)

has at least three solutions.

Remark 16. Assume that the hypotheses (C1) and (C2) of Theorem 6 hold true.
Note that condition (2*) of (C2) implies in particular that f .x; 0/ D 0, for every
x 2 V . Hence the constant zero function is a solution of problem (53), for every
� 2 R. Thus Theorem 7 yields that, for every � > �, problem (53) has at least two
nontrivial weak solutions.

Following [4], we next establish a sort of stability result concerning problem (53):
As it will follow from Theorem 9 below, if one perturbs the left side of the first
equation in (53) with a linear term satisfying certain conditions, and if one slightly
modifies condition (2*) of (C2) (requiring that the inequalityF.x; t/ �M jt jˇ holds
for every .x; t/ 2 V � R), then the same conclusion as in Theorem 7 holds. The
perturbation we introduce in problem (53) will affect the functional ˚ defined in
the proof of Theorem 6, so that the derivative of this perturbed functional will no
more have necessarily a continuous inverse. Thus we cannot apply Theorem 5 in the
perturbed case. In this case we will use another three-critical-point result, namely
a result due to Arcoya and Carmona. For our purposes we don’t need the three-
critical-point result of Arcoya and Carmona in its full generality as it is stated in
Theorem 3.4 of [1], but only the following immediate consequence which is the
differentiable version of it. We also point out that this differentiable version is in
fact an application of the three-critical-point theorem of Pucci and Serrin in [26].
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Theorem 8. Let X be a reflexive real Banach space, ˚ WX ! R a sequentially
weakly lower semicontinuous C1-functional, � WX ! R a nonconstant C1-
functional with compact derivative, and A � R an interval such that for every
� 2 A the functional ˚ C �� is coercive and satisfies the Palais-Smale condition.
If the real number r 2 � inf�.X/; sup�.X/Œ is such that 	1.r/ < 	2.r/ and
�	1.r/; 	2.r/Œ\A ¤ ;, where

	1.r/ D inf

�
infv2��1.r/ ˚.v/ �˚.u/

�.u/� r j u 2 ��1. � �1; rŒ /
�

(54)

and

	2.r/ D sup

�
infv2��1.r/ ˚.v/ �˚.u/

�.u/� r j u 2 ��1. �r;1Œ /
�
; (55)

then, for every � 2 �	1.r/; 	2.r/Œ\A, the functional ˚ C �� has at least three
critical points.

Let b 2 L1.V; �/, f 2 DP.V /, and � 2 R. We consider now the following
one-parameter Dirichlet problem on the SG

.P�/

( ��u.x/C b.x/u.x/ D �f .x; u.x//; 8 x 2 V n V0;
ujV0 D 0:

Note that, by (33), a function u 2 H1
0 .V / is a weak solution of problem .P�/ if and

only if

W .u; v/C
Z
V

b.x/u.x/v.x/d� � �
Z
V

f .x; u.x//v.x/d� D 0; 8 v 2 H1
0 .V /:

(56)

Before stating the analog of Theorem 7 for problem .P�/ recall (for example,
from [10]) that if b 2 L1.V; �/nf0g is such that b � 0 a.e. in V , then the eigenvalue
problem

( ��u.x/C �b.x/u.x/ D 0; 8 x 2 V n V0;
ujV0 D 0

(57)

has an increasing sequence of eigenvalues .�n/n2N� with �1 > 0 and lim
n!1 �n D1.

Theorem 9. Assume that the following hypotheses hold:

(C1) The function f WV � R! R is continuous.
(C2) The antiderivative F WV � R ! R of f with respect to the second variable

satisfies the following conditions:
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(1*) There exist ˛ 2 Œ0; 2Œ, a 2 L1.V; �/, and m � 0 such that

F.x; t/ � m.a.x/C jt j˛/; for all .x; t/ 2 V � R:

(2’) There exist M � 0 and ˇ > 2 such that

F.x; t/ �M jt jˇ; for all .x; t/ 2 V � R:

(3*) There exists t1 2 R n f0g such that for all x 2 V and for all t between 0
and t1 we have

F.x; t1/ > 0 and F.x; t/ � 0:

(C3) The map b 2 L1.V; �/ is such that b � 0 a.e. in V and it satisfies one of the
conditions

(4*) jjbjj1 < 1
c2

, where c is the positive constant in (20), or
(5*) b ¤ 0 and �1 > 1, where �1 is the first eigenvalue of problem (57).

Then there exists a real number �b � 0 such that for every real � > �b problem
.P�/ has at least three weak solutions, i.e., at least two nontrivial weak solutions.

Proof. In order to apply Theorem 8, we put X WD H1
0 .V /, A WD Œ0;1Œ, and define

˚; � WX ! R as follows

˚.u/ D 1

2
jjujj2 C 1

2

Z
V

b.x/u2.x/d�; �.u/ D �
Z
V

F.x; u.x//d�:

Proposition 8 yields that ˚ WX ! R is a sequentially weakly lower semicontinuous
C1-functional,� WX ! R is a C1-functional with compact derivative, and ˚ C��
is an energy functional of problem .P�/ for every � 2 R.

Let u1 2 H1
0 .V / be the function constructed in the proof of Theorem 6, using

condition (3*) of (C2). Then �.u1/ < 0. Since �.0/ D 0, it follows that � is
nonconstant.

Let u 2 H1
0 .V /. Since b � 0 a.e. in V , we get, using also (20), that

˚.u/ � 1

2
jjujj2 C 1

2
c2jjujj2

Z
V

b.x/d� D 1

2
jjujj2.1 � c2jjbjj1/:

It is known (see, for example, formula (3.15) in [10]) that

jjujj2 � ��1
Z
V

b.x/u2.x/d�;
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so

˚.u/ � 1

2�1
jjujj2.�1 � 1/:

Thus both conditions (4*) and (5*) of (C3) imply the existence of a real number
d > 0 such that

˚.u/ � d jjujj2; for every u 2 H1
0 .V /: (58)

Fix an arbitrary � 2 A. According to (20), (58), and to assumption (1*) of (C2), the
following inequality holds for every u 2 H1

0 .V / with u ¤ 0

˚.u/C ��.u/ � jjujj2
�
d � �m

jjujj2
Z
V

ad� � �mc˛jjujj˛�2
�
:

Since ˛ < 2, we conclude that

lim
jjujj!1

.˚.u/C ��.u// D 1;

i.e., ˚ C �� is coercive. Example 38.25 in [38] yields that ˚ C �� satisfies
the Palais-Smale condition (for this note that the derivative of the map u 2
H1
0 .V / 7! 1

2
jjujj2 has a continuous inverse, and both of the maps u 2 H1

0 .V / 7!
1
2

R
V
b.x/u2.x/d� and �� have compact derivatives).

Next we show that

lim sup
r!0
r<0

	1.r/ � 	1.0/ (59)

and

lim inf
r!0
r<0

	2.r/ D 1; (60)

where 	1.r/ and 	2.r/ are defined by (54) and (55), respectively. To show (59),
observe that (58) and the fact that 0 2 ��1.0/ yield

inf
v2��1.0/

˚.v/ D 0;

thus

	1.0/ D inf

�
�˚.u/
�.u/

j u 2 ��1.� �1; 0Œ/
�
: (61)
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Fix arbitrary u 2 ��1.��1; 0Œ/ and r 2 ��.u/; 0Œ. Then, by the definition of 	1.r/,
we get that

	1.r/ �
infv2��1.r/ ˚.v/ � ˚.u/

�.u/� r :

Since infv2��1.r/ ˚.v/ � 0, it follows that

	1.r/ � � ˚.u/

�.u/� r ; for all r 2 ��.u/; 0Œ:

Thus

lim sup
r!0
r<0

	1.r/ � �˚.u/
�.u/

; for all u 2 ��1.� �1; 0Œ/;

which implies, according to (61), the inequality (59).
In order to prove (60), consider r 2 � inf�.X/; 0Œ. Then 0 D �.0/ > r , so, by

the definition of 	2.r/,

	2.r/ �
infv2��1.r/ ˚.v/

�r :

We know from assertion 5ı of Proposition 8 that � is sequentially weakly
continuous. Thus��1.r/ is a sequentially weakly closed set. Also, by the continuity
of � in the norm topology, this set is nonempty. Hence, ˚ being coercive (in view
of (58)) and sequentially weakly lower semicontinuous, there exists, according to
Proposition 9, a point v0 2 ��1.r/ such that

inf
v2��1.r/

˚.v/ D ˚.v0/:

Thus

� ˚.v0/
r
� 	2.r/: (62)

On the other hand, using (20) and condition (2’) of (C2), we get that

�r D ��.v0/ D
Z
V

F.x; v0.x//d� �Mcˇjjv0jjˇ;

so

.�r/ 2ˇ � .Mcˇ/ 2ˇ � jjv0jj2:
In view of (58) we thus obtain

�˚.v0/
r
� d

.Mcˇ/
2
ˇ

.�r/ 2ˇ�1:
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The above inequality and (62) imply that

d

.Mcˇ/
2
ˇ

.�r/ 2ˇ�1 � 	2.r/; for all r 2 � inf�.X/; 0Œ:

Since 2
ˇ
� 1 < 0, we obtain (60).

Finally, put �b WD 	1.0/. Then 0 � �b <1 (by (58) and (61)). Consider now a
real � > �b . From (59) and (60) we then get that

lim sup
r!0
r<0

	1.r/ < � < lim inf
r!0
r<0

	2.r/:

It follows that there exists r 2 � inf�.X/; 0 Œ such that 	1.r/ < � < 	2.r/. Applying
now Theorem 8, we see that the map ˚ C �� has at least three critical points.
Since this map is an energy functional of problem .P�/, we conclude that .P�/ has
at least three weak solutions, thus at least two nonzero weak solutions (since, by
Remark 16, the constant zero function is a weak solution of this problem). ut
Remark 17. The proof of Theorem 6 implies that the real number � � 0 in
Theorem 7 can be obtained as

� D 1

�2
; where �2 D sup

( R
V
F.x; u.x//d�

1
2
jjujj2

ˇ̌
ˇ̌
ˇ
Z
V

F.x; u.x//d� > 0

�
;

with the convention 1
1 WD 0. On the other hand, if one considers b D 0, then the

proof of the above Theorem 9 yields that �0 can be chosen as

�0 D inf

(
1
2
jjujj2R

V
F.x; u.x//d�

ˇ̌
ˇ̌
ˇ
Z
V

F.x; u.x//d� > 0

�
:

Thus �0 D �, showing that in the case b D 0 the approach used in the proof of
Theorem 9 fits to the one used in the proof of Theorem 6.

We finish the study of one-parameter Dirichlet problems on the SG with the
following result which gives sufficient conditions that ensure that problem .P�/ has
only the trivial weak solution.

Proposition 10. Assume that the functions b 2 L1.V; �/ and f 2 DP.V / satisfy
the following conditions:

(i) There exists a positive real d with

jf .x; t/j � d jt j; for al l .x; t/ 2 V �R:

(ii) jjbjj1 < 1
c2

, where c is the positive constant in (20).
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Then, for every � 2 R with j�j < 1
d
. 1
c2
� jjbjj1/, the only weak solution of problem

.P�/ is the trivial one.

Proof. Let � 2 R be so that j�j < 1
d
. 1
c2
� jjbjj1/. Suppose, by contradiction, that

u 2 H1
0 .V / is a nontrivial weak solution of problem .P�/. If we put v D u in

relation (56) and use the assumptions (i), (ii), and the inequality (20), we obtain

jjujj2 D �
Z
V

f .x; u.x//u.x/d� �
Z
V

b.x/u2.x/d�

� j�j
Z
V

jf .x; u.x//j � ju.x/jd�C
Z
V

jb.x/ju2.x/d�

� j�jd
Z
V

u2.x/d�C
Z
V

jb.x/ju2.x/d�

� jjujj2c2.j�jd C jjbjj1/ < jjujj2;

a contradiction. So, since f .x; 0/ D 0, for every x 2 V , problem .P�/ has only the
trivial weak solution. ut

6.3 Three-Parameter Dirichlet Problems on the SG

Let f; g; hWV �R! R be continuous functions, and let ˛; ˇ; � 2 R be parameters.
In the present subsection, based on [5], we are concerned with the following
Dirichlet problem on the SG

.P˛;ˇ;�/

( ��u.x/C˛g.x; u.x//Cˇh.x; u.x//C�f .x; u.x//D 0; 8 x 2V nV0;
ujV0 D 0:

Denote by F; G; H WV � R ! R the antiderivatives of, respectively, f; g; h with
respect to the second variable, and by J; �; ˚ WH1

0 .V /! R the functionals

J WD TG; � WD TH ; ˚ WD TF ; (63)

defined according to (34). Let I WH1
0 .V / ! R be the functional defined in (35).

Assertion 4ı of Proposition 8 yields that IC˛J Cˇ� C�˚ is an energy functional
of problem .P˛;ˇ;�/.

The main result concerning the existence of multiple solutions of problem
.P˛;ˇ;�/ is based on some results by Ricceri: on the one hand, on a three-
critical-point theorem contained in [29] and in [31], and, on the other hand, on a
four-critical-point theorem proved in [30]. More exactly, Theorem 1 established in
[29] (see also its addendum, i.e., Theorem 1 in [31]) and Theorem 1 in [30] yield
the following abstract multiplicity result.
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Theorem 10. Let X be a reflexive real Banach space, I WX ! R a sequentially
weakly lower semicontinuous and coercive C1-functional which is bounded on each
bounded subset of X and whose derivative admits a continuous inverse on X�, and
consider J;�;˚ WX ! R three C1-functionals with compact derivative satisfying
the conditions:

(C1) lim inf
jjujj!1

J.u/

I.u/
� 0,

(C2) lim sup
jjujj!1

J.u/

I.u/
< C1,

(C3) lim inf
jjujj!1

�.u/

I.u/
D �1,

(C4) inf
u2X.�.u/C �˚.u// > �1, for all � > 0.

Then the following assertions hold:

(a) For every ˛ > 0, there exists ˇ˛ 2 �0;C1� with the property that, for every real
number ˇ 2 �0; ˇ˛Œ, there exist �ˇ

1 ;�
ˇ
2 with 0 � �ˇ

1 < �
ˇ
2 � C1 such that,

for each compact interval Œa; b� � ��ˇ
1 ;�

ˇ
2 Œ, there exists r > 0 such that, for

every � 2 Œa; b�, the functional I C ˛J C ˇ� C �˚ has at least three critical
points whose norms are less than r .

(b) If one assumes, in addition to conditions (C1)–(C4), that there exist u0; u1 2 X
such that

(C5) u0 is a strict local minimum of I with I.u0/ D J.u0/ D �.u0/ D ˚.u0/ D 0,

(C6) min

�
lim inf

u!u0

J.u/

I.u/
; lim inf

u!u0

˚.u/

I.u/

�
� 0,

(C7) lim inf
u!u0

�.u/

I.u/
> �1,

(C8) �.u1/ � 0, ˚.u1/ � 0, J.u1/ < 0,

then, for every ˛ > 0 large enough, there exists ˇ 0̨ 2 �0; ˇ˛� with the property that,
for every ˇ 2 �0; ˇ 0̨ Œ, there exists �� > 0 such that the functional I C ˛J C ˇ� C
��˚ has at least four critical points, u0 being one of them. Moreover, two of these
four critical points (different from u0) are actually global minima of IC˛J Cˇ�C
��˚ .

From Theorem 10, we derive the following multiplicity result concerning the
existence of multiple solutions of .P˛;ˇ;�/. This result was inspired by Theorem 2
in [30]. We had to adapt the methods involved in [30] in the context of the Sobolev
spaces W 1;p

0 .˝/ (with p > 1 and ˝ a bounded domain in R
n) to the case of the

function spaceH1
0 .V /. There are several differences between these two approaches.

For instance, it turned out that, especially when one looks for concrete examples of
functions that belong to the space one works with, the spaceH1

0 .V / is more difficult
to be treated than Sobolev spaces. This will become clear especially in the final part
of the proof.
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Theorem 11. Let f; g; hWV � R ! R be continuous functions such that their
antiderivatives F; G; H WV � R ! R with respect to the second variable satisfy
the following conditions:

(1�) lim inf
jt j!C1

infx2V G.x; t/
t2

� 0,

(2�) lim sup
jt j!C1

supx2V G.x; t/
t2

< C1,

(3�) lim
jt j!C1

supx2V H.x; t/
t2

D �1,

(4�) there exists a positive real q with

lim inf
jt j!C1

infx2V H.x; t/
jt jq > �1 and lim

jt j!C1
infx2V F.x; t/

jt jq D C1:

Then the following assertions hold:

(A) For every ˛ > 0, there exists ˇ˛ 2 �0;C1� with the property that, for every
real number ˇ 2 �0; ˇ˛Œ , there exist �ˇ

1 ;�
ˇ
2 with 0 � �ˇ

1 < �
ˇ
2 � C1 such

that, for each compact interval Œa; b� � ��ˇ
1 ;�

ˇ
2 Œ, there exists r > 0 such that,

for every � 2 Œa; b�, problem .P˛;ˇ;�/ has at least three solutions whose norms
are less than r .

(B) If one assumes, in addition to conditions .1�/–.4�/, that

(5�) min

�
lim inf
t!0

infx2V G.x; t/
t2

; lim inf
t!0

infx2V F.x; t/
t2

�
� 0,

(6�) lim inf
t!0

infx2V H.x; t/
t2

> �1,

(7�) there exist a compact set K � V n V0 with �.K/ > 0 and a nonzero real
number t� such that

maxfF.x; t�/; G.x; t�/; H.x; t�/g < 0; for all x 2 K;

then, for every ˛ > 0 large enough, there exists ˇ 0̨ 2 �0; ˇ˛� with the property that,
for every ˇ 2 �0; ˇ 0̨ Œ, there exists �� > 0 such that problem .P˛;ˇ;�� / has at least
three nontrivial solutions. Moreover, two of these three solutions are global minima
of the energy functional of problem .P˛;ˇ;�� /.

Proof. Let X WD H1
0 .V / and consider the functionals I and J; �; ˚ defined in

(35) and (63), respectively. According to Proposition 8, these functionals satisfy all
conditions mentioned at the beginning of the statement of Theorem 10.

(A) We show that I; J; �; ˚ satisfy the conditions (C1)–(C4) of Theorem 10. To
verify condition (C1), consider an arbitrary " > 0. According to (1�), there exists a
real t" > 0 such that

G.x; t/ > �"t2; for every x 2 V and every t with jt j > t":
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Put m" WD minfG.x; t/ W x 2 V; t 2 Œ�t"; t"�g. Then m" � 0, since G.x; 0/ D 0 for
all x 2 V . Thus

G.x; t/ � �"t2 Cm"; for all .x; t/ 2 V �R:

Using (20), we get

J.u/ � �"
Z
V

u2d�Cm" � �"c2jjujj2 Cm"; for all u 2 X;

which yields

J.u/

I.u/
� �2"c2 C 2m"

jjujj2 ; for all u 2 X n f0g:

Hence

lim inf
jjujj!1

J.u/

I.u/
� �2"c2; for all " > 0;

so (C1) holds.
In order to verify (C2), fix, according to (2�), a positive real d such that

lim sup
jt j!C1

supx2V G.x; t/
t2

< d:

Then there exists a real t1 > 0 such that

G.x; t/ < dt2; for every x 2 V and every t with jt j > t1:

Put Md WD maxfG.x; t/ W x 2 V; t 2 Œ�t1; t1�g. ThenMd � 0, so

G.x; t/ � dt2 CMd; for all .x; t/ 2 V � R:

Using (20), we get

J.u/ � d
Z
V

u2d�CMd � dc2jjujj2 CMd; for all u 2 X:

This implies

J.u/

I.u/
� 2dc2 C 2Md

jjujj2 ; for all u 2 X n f0g;
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hence

lim sup
jjujj!1

J.u/

I.u/
� 2dc2;

so (C2) holds.
Next, we proceed to verify (C3). For this, recall first from Sect. 2.3 that,

by construction, the map .��/�1WL2.V; �/ ! L2.V; �/ is linear, symmetric,
compact, and that its image D is a linear subset of X which is dense in L2.V; �/.
Hence, using assertion (b) of Proposition 19.14 in [39], we get that this (injective)
operator admits at least one nonzero eigenvalue Q�. Fix a corresponding eigenvector
Qu 2 X n f0g. Then

Q�jjQujj2 D
Z
V

Qu2d�:

In particular, Q� > 0. We will show that

lim
n!1

�.nQu/
I.nQu/ D �1: (64)

For this, let M > 0 be arbitrary and put M1 WD 4M
Q� . In view of (3�) there exists

�M > 0 such that

H.x; t/ � �M1t
2; for every x 2 V and every t with jt j > �M : (65)

Put QM WD maxfH.x; t/ W x 2 V; t 2 Œ��M ; �M �g. Then QM � 0. For every
n 2 N� let

An WD
�
x 2 V W jQu.x/j > �M

n

�
:

Consider n 2 N�. Then

�.nQu/
2I.nQu/ D

1

n2jjQujj2
�Z

An

H.x; nQu.x//d�C
Z
V nAn

H.x; nQu.x//d�
�
:

If x 2 An, then jnQu.x/j > �M , henceH.x; nQu.x// � �M1n
2.Qu.x//2, by (65). So

Z
An

H.x; nQu.x//d� � �M1n
2

Z
An

Qu2d�:

If x 2 V n An, then jnQu.x/j � �M , hence H.x; nQu.x// � QM . It follows that
Z
V nAn

H.x; nQu.x//d� � QM:
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Thus

�.nQu/
2I.nQu/ � �

M1

jjQujj2
Z
An

Qu2d�C
QM

n2jjQujj2 : (66)

Taking into account that An � AnC1 for every nonzero natural n and that Qu.x/ D 0
if and only if x … A WD

[
n2N�

An, we get that

lim
n!1

Z
An

Qu2d� D
Z
A

Qu2d� D
Z
V

Qu2d� D Q�jjQujj2:

Fix a nonzero natural n0 such that

1

jjQujj2
Z
An

Qu2d� >
Q�
2
; for all n � n0;

so

� M1

jjQujj2
Z
An

Qu2d� < �
Q�M1

2
; for all n � n0:

Using (66) we thus get

�.nQu/
2I.nQu/ < �

Q�M1

2
C

QM
n2jjQujj2 ; for all n � n0:

It follows that

�.nQu/
2I.nQu/ < �2M CM D �M; for all n � max

8<
:n0;

1

jjQujj

s
QM
M

9=
; :

Thus (64) holds, which finally implies condition (C3).
Next, we are going to verify (C4). For this, fix � > 0 and choose, according to

(4�), a negative real a so that

lim inf
jt j!C1

infx2V H.x; t/
jt jq > a:

Thus there exists a positive real d1 with

H.x; t/ > ajt jq; for every x 2 V and every t with jt j > d1:
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Denoting bym1 WD minfH.x; t/ W x 2 V; jt j � d1g, we get

H.x; t/ � ajt jq Cm1; for all .x; t/ 2 V � R;

which yields

�.u/ � a
Z
V

jujqd�Cm1; for all u 2 X: (67)

Pick now a (positive) real number b such that a C �b > 0. Then, by (4�), there
exists a positive real d2 with

F.x; t/ > bjt jq; for every x 2 V and every t with jt j > d2:

Denoting by m2 WD minfF.x; t/ � bjt jq W x 2 V; jt j � d2g, we get (note that
m2 � 0)

F.x; t/ � bjt jq Cm2; for all .x; t/ 2 V � R;

which yields

˚.u/ � b
Z
V

jujqd�Cm2; for all u 2 X: (68)

We finally get from (67) and (68) that

�.u/C �˚.u/ � .aC �b/
Z
V

jujqd�Cm1 Cm2 � m1 Cm2; for all u 2 X;

hence (C4) holds. Statement (A) follows now from assertion (a) of Theorem 10.
(B) We show that conditions (C5)–(C8) of Theorem 10 are satisfied. For this, let

u0 be the constant zero function in X . Then, clearly, condition (C5) holds. Next, we
are going to verify condition (C6). Let " > 0 be arbitrary. In view of condition (5�)
there exists a positive real ı with

G.x; t/ � �"t2; for every x 2 V and every t 2 Œ�ı; ı�:

If u 2 X is such that jjujj � ı
c
, then, according to (20), we have that jjujjsup � ı,

hence

G.x; u.x// � �".u.x//2; for every x 2 V:
It follows, using again (20), that

J.u/ � �"c2jjujj2; for all u 2 X with jjujj � ı

c
:
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Thus

J.u/

I.u/
� �2"c2; for all u 2 X n f0g with jjujj � ı

c
:

It follows that lim inf
u!u0

J.u/

I.u/
� 0. One proves similarly that lim inf

u!u0

˚.u/

I.u/
� 0, so

condition (C6) of Theorem 10 holds.
Now we are going to show that condition (C7) holds, too. For this fix, according

to (6�), a real number a < 0 with lim inf
t!0

infx2V H.x; t/
t2

> a. Then there exists a

positive real ı such that

H.x; t/ � at2; for every x 2 V and every t 2 Œ�ı; ı�:

If u 2 X is such that jjujj � ı
c
, then, according to (20), we have that jjujjsup � ı,

hence

H.x; u.x// � a.u.x//2; for every x 2 V:

It follows, using again (20), that

�.u/ � ac2jjujj2; for all u 2 X with jjujj � ı

c
:

Thus

�.u/

I.u/
� 2ac2; for all u 2 X n f0g with jjujj � ı

c
;

which yields that lim inf
u!u0

�.u/

I.u/
> �1. Hence condition (C7) of Theorem 10 is

satisfied.
In order to show that (C8) holds, observe first that condition (7�) yields that

� WD max

�Z
K

F.x; t�/d�;
Z
K

G.x; t�/d�;
Z
K

H.x; t�/d�
�
< 0: (69)

Fix a real number 
 with � < 
 < 0. Put

M � WD maxfF.x; t/; G.x; t/; H.x; t/ W x 2 V; t 2 Œ�jt�j; jt�j�g: (70)

Then M � � 0. Fix " such that 0 < " � 
��
M�C1 . According to assertion 3ı of

Proposition 4, there exists an open set O � V withK � O and �.O/ < �.K/C ",
so (since � is finite)

�.O nK/ < ": (71)
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Since the restrictions of F; G; H to the compact metric space V � Œ�jt�j; jt�j� are
uniformly continuous, there exists a positive real ı� � jt�j such that

jF.x; t/j � "; jG.x; t/j � "; jH.x; t/j � "; for all .x; t/ 2 V � Œ�ı�; ı��: (72)

Let ı > 0 be such that ı � ı�

ı�Cjt�j . Then ı � 1
2

and

jt�j � ı
1 � ı � ı

�: (73)

By Urysohn’s Lemma, there exists a continuous function 	WV ! Œ0; 1� such that
	.x/ D 1, for x 2 K , and 	.x/ D 0, for x 2 .V n O/ [ V0. Since X is dense
in the space .C0.V /; jj � jjsup/, we can find a function u 2 X with jj	 � ujjsup � ı.
Thus �ı C 	.x/ � u.x/ � ı C 	.x/, for every x 2 V . These yield the following
inequalities

� ı � u.x/ � ı C 1; for all x 2 V; (74)

� ı C 1 � u.x/ � ı C 1; for all x 2 K; (75)

� ı � u.x/ � ı; for all x 2 V nO: (76)

Define `WR! R by `.t/ WD minft; 1�ıg. Since ` is a Lipschitz map with `.0/ D 0,
Lemma 1 yields that Qu WD `ıu 2 X . Using the definition of Qu, the fact that ı � 1�ı,
and the relations (74)–(76), we get

� .1 � ı/ � Qu.x/ � 1� ı; for all x 2 V; (77)

Qu.x/ D 1 � ı; for all x 2 K; (78)

� ı � Qu.x/ � ı; for all x 2 V nO: (79)

Put now u1 WD t�

1�ı Qu 2 X . Then the relations (77)–(79), respectively, yield,
according to (73), that

ju1.x/j � jt�j; for all x 2 V; (80)

u1.x/ D t�; for all x 2 K; (81)

ju1.x/j � ı�; for all x 2 V nO: (82)

From (80) and the definition of M � in (70), we get

F.x; u1.x// �M �; for all x 2 V;
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so, using (71), we obtain

Z
OnK

F.x; u1.x//d� �
Z
OnK

M �d� � "M �: (83)

The relations (72) and (82) imply

jF.x; u1.x/j � "; for all x 2 V nO;

so
Z
V nO

F.x; u1.x//d� �
Z
V nO
jF.x; u1.x//jd� � "�.V nO/ � ": (84)

Finally, we conclude from (69), (81), (83), (84), and the choice of 
 and " that

˚.u1/ D
Z
V

F.x; u1.x//d� D
Z
K

F.x; t�/d�C
Z
OnK

F.x; u1.x//d�

C
Z
V nO

F.x; u1.x//d� � �C "M � C " � �C 
 � � D 
 < 0:

One obtains similarly that �.u1/ < 0 and J.u1/ < 0. Thus condition (C8) of
Theorem 10 is satisfied. By applying assertion (b) of this theorem, we finish the
proof. ut
Example 2. Fix real numbers t� 2 R n f0g, p � 2, q > 2, q1 � 2, r1 > 0, r2 > q,
s > 0. Consider a differentiable function F1WR! R such that

F1.t/ D jt jr1 ; for jt j sufficiently small;
F1.t/ D jt jr2 ; for jt j sufficiently large;
F1.t

�/ < 0:

Let �1WV ! R be a continuous map with �1.x/ > 0, for all x 2 V . Define the map
F WV �R! R by F.x; t/ WD �1.x/F1.t/.

Consider a differentiable function G1WR! R such that

G1.t/ D jt js; for jt j sufficiently small;
G1.t/ D jt jp; for jt j sufficiently large;
G1.t

�/ < 0:

Let �2WV ! R be a continuous map with �2.x/ > 0, for all x 2 V . Define the map
GWV �R! R by G.x; t/ WD �2.x/G1.t/.
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Consider a differentiable functionH1WR! R such that

H1.t/ D jt jq1 ; for jt j sufficiently small;
H1.t/ D jt jq; for jt j sufficiently large;
H1.t

�/ > 0:

Let �3WV ! R be a continuous map with �3.x/ < 0, for all x 2 V . Define the map
H WV � R! R byH.x; t/ WD �3.x/H1.t/.

A straightforward computation yields that the functions F; G; H satisfy the
conditions (1�)–(6�) of Theorem 11. Moreover, F.x; t�/ < 0, G.x; t�/ < 0,
H.x; t�/ < 0, for all x 2 V . In order to find a compact set K � V n V0 with
�.K/ > 0, fix m 2 N withm � 2 and consider the levelm decomposition (1) of V .
If w D .w1; : : : ;wm/ 2 Wm is so that there exist i; j 2 f1; : : : ; mg with wi ¤ wj ,
then it can be proved easily that Sw.V / \ V0 D ;. Put K WD Sw.V /. The scaling
property 2.1 in [9] implies now �.K/ > 0. Hence condition (7�) of Theorem 11 is
satisfied, too.

7 Conclusions

By treating nonlinear elliptic problems on a fractal, the results of this note
complement the theory of nonlinear PDEs defined on (open) domains of Euclidean
spaces. The symmetric structure of the fractal we worked on (namely, the Sierpinski
gasket in the N dimensional Euclidean space), facilitated considerably our study
since it allows to introduce in a quite natural manner, from a functional analytical
point of view, a Laplace operator (in the literature named as weak Laplacian) on it.
The major ingredient for defining the weak Laplacian on the Sierpinski gasket is an
energy form that leads to a Hilbert space of continuous real-valued functions of finite
energy, defined on the gasket. Due to the geometry of this fractal, there is a Sobolev-
like inequality on the Sierpinski gasket, which yields that the previously mentioned
Hilbert space can be compactly embedded in a space of continuous real-valued
functions, endowed with the usual supremum norm. This compact embedding is
actually the central element which allows to investigate PDEs on this fractal using
variational methods. We have presented how one may combine these methods
with certain abstract multiplicity theorems in order to get results concerning the
existence of multiple (weak) solutions of certain nonlinear elliptic problems defined
on the Sierpinski gasket. Finally, it is worthy of mention that the Sierpinski gasket
is of particular interest in fractal theory since it is typical for the more general
class of post-critically-finite fractals. Thus, the understanding and dealing with the
phenomena in the case of PDEs on the Sierpinski gasket is the first step to consider
such equations in the more general setting of post-critically-finite fractals.
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Abstract For some general linear integral operator equations, we investigate
consequent initial value problems by using the theory of reproducing kernels. A new
method is proposed which—in particular—generates a new field among initial value
problems, linear integral operators, eigenfunctions and values, integral transforms
and reproducing kernels. In particular, examples are worked out for the integral
equations of Lalesco–Picard, Dixon, and Tricomi types.
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solutions can be interpreted and used in an appropriated way. Sometimes, finding
new frameworks for those solutions leads even to the discovery of completely new
solutions which could not be reached in a somehow more “classical” and known
setting. This is just one of the reasons why it is still well appropriate to continue
to perform research in such a classical field. Moreover, additional knowledge about
the solutions is also very welcome—even in cases where we know already a great
variety of solutions. This is the case of the study of different kinds of stability which
is, e.g., highly relevant when we would like to apply numerical methods. Within this
spirit, we would like to consider initial value problems in linear integral operator
equations by using reproducing kernel Hilbert space machinery [1, 12–14].

Having those general goals in mind, in [4] the authors proposed a general method
for the existence and construction of the solution of the following initial problem

.@t C Lx/uf .t; x/ D 0; t > 0; (1)

satisfying the initial value condition

uf .0; x/ D f .x/; (2)

for some general linear operator Lx on a certain function space, and on some
domain, by using the theory of reproducing kernels.

Here, we consider a general linear integral equation

Ixu.x/ D 0 (3)

and we assume that the eigenfunctionsL� and values � are known; that is,

IxL�.x/ D �L�.x/: (4)

Then, note that the functions

exp.��t/L�.x/ (5)

are the solutions of the operator equation

.@t C Ix/ u.t; x/ D 0: (6)

In order to consider a fully general sum, in the case that � are positive reals, we
shall consider the kernel form, for a nonnegative continuous function �,

Kt .x; yI �/ D
Z C1
0

expf��tgL�.x/L�.y/�.�/d�: (7)

Of course, in here, we are considering the integral with absolutely convergence for
the kernel form.
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The fully general solutions of (6) may be represented in the integral form

u.t; x/ D
Z C1
0

expf��tgL�.x/F.�/�.�/d�; (8)

for the functions F satisfying

Z C1
0

expf��tgjF.�/j2�.�/d� <1: (9)

Then, the solution u.t; x/ of (6) satisfying the initial condition

u.0; x/ D F.x/ (10)

will be obtained by t ! C0 in (8) with a natural meaning. However, this point will
be very delicate and we will need to consider some deep and beautiful structure.
Here, (7) is a reproducing kernel and in order to analyze the logic above, we will
need the theory of reproducing kernels within an essential (and beautiful) way.
Indeed, in order to construct natural solutions of (1)–(2), we will need a new
framework and function space.

2 Preliminaries on Linear Mappings and Inversions

In order to analyze the integral transform (8) and in view to set the basic background
for our purpose, we will need the essence of the theory of reproducing kernels.

We are interested in the integral transforms (8) in the framework of Hilbert
spaces. Of course, we are interested in the characterization of the image functions,
the consequent isometric identity like the Parseval identity and the inversion
formula, basically. For these general and fundamental problems, we have a unified
and fundamental method and concept in the general situation. Namely, following
[12–14], we shall recall a general theory for linear mappings in the framework of
Hilbert spaces.

Let H be a Hilbert (possibly finite-dimensional) space. Let E be an abstract set
and h be a Hilbert H -valued function on E . Then, we shall consider the linear
transform

f .x/ D .f;h.x//H ; f 2H ; (11)

from H into the linear space F .E/ comprising all the complex valued-functions
on E . In order to investigate the linear mapping (11), we form a positive definite
quadratic form functionK.x; y/ on E � E defined by

K.x; y/ D .h.y/;h.x//H on E�E:
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A complex-valued function k W E � E ! C is called a positive definite quadratic
form function on the set E , or shortly, positive definite function, when it satisfies the
property that, for an arbitrary function X W E ! C and any finite subset F of E ,

X
x;y2F

X.x/X.y/k.x; y/ � 0: (12)

By the fundamental theorem, we know that for any positive definite quadratic
form function K , there exists a uniquely determined reproducing kernel Hilbert
space admitting the reproducing property.

Then, we obtain the following fundamental result.

Proposition 1 (cf. [12–14]).

(A) The range of the linear mapping (11) by H is characterized as the reproducing
kernel Hilbert space HK.E/ admitting the reproducing kernel K.x; y/ whose
characterization is given by the two properties: .i/ K.�; y/ 2 HK.E/ for any
y 2 E and, .i i/ for any f 2 HK.E/ and for any x 2 E , .f .�/;K.�:x//HK.E/ D
f .x/.

(B) It holds

kf kHK.E/ � kfkH :

Here, for any member f ofHK.E/ there exists a uniquely determined f� 2H
satisfying

f .x/ D .f�;h.x//H on E

and

kf kHK.E/ D kf�kH :

(C) We have the inversion formula in (11) in the form

f 7! f� (13)

in (B) by using the reproducing kernel Hilbert space HK.E/.

However, in general, this formula (13) is not obvious. Consequently, case by
case, we need different arguments to analyse it. See [13] and [14] for the details
and applications. Recently, however, we obtained a very general inversion formula,
based on the so-called Aveiro Discretization Method in Mathematics (cf. [2]), by
using the ultimate realization of reproducing kernel Hilbert spaces that is introduced
simply in the last section. In this paper, however, in order to give prototype examples
with analytical nature, we shall consider the following global inversion formula in
the general situation with natural assumptions.
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Here we consider a concrete case of Proposition 1. In order to derive a general
inversion formula widely applicable in analysis, we assume that H D L2.I; dm/

and thatHK.E/ is a closed subspace of L2.E; d�/. Furthermore, below we assume
that .I;I ; dm/ and .E;E ; d�/ are both �-finite measure spaces and that

HK.E/ ,! L2.E; d�/: (14)

Suppose that we are given a measurable function h W I � E ! C satisfying
hy D h.�; y/ 2 L2.I; dm/ for all y 2 E . Let us set

K.x; y/ � hhy; hxiL2.I;dm/: (15)

As we have established in Proposition 1, we have

HK.E/ � ff 2 F .E/ W f .x/ D hF; hxiL2.I;dm/ for some F 2H g: (16)

Let us now define

L WH ! HK.E/.,! L2.E; d�// (17)

by

LF.x/ � hF; hxiL2.I;dm/ D
Z
I

F .�/h.�; x/ dm.�/; x 2 E; (18)

for F 2H D L2.I; dm/, keeping in mind (14). Observe that LF 2 HK.E/.
The next result will serve to the inversion formula.

Proposition 2 (cf. [13]). Assume that fEN g1ND1 is an increasing sequence of
measurable subsets in E such that

1[
ND1

EN D E (19)

and that
Z
I�EN

jh.�; x/j2 dm.�/ d�.x/ <1 (20)

for all N 2 N. Then we have

L�f .�/
�
D lim

N!1.L
�ŒEN f �/.�/

�
D lim

N!1

Z
EN

f .x/h.�; x/ d�.x/ (21)
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for all f 2 L2.I; d�/ in the topology of H D L2.I; dm/. Here, L�f is the
adjoint operator of L, but it represents the inversion with the minimum norm for
f 2 HK.E/.

Moreover, in this Proposition 2, we see that—in a very natural way—the inversion
formula may be given in the strong convergence in the space H D L2.I; dm/.

3 Main Result

Following the general theory in Sect. 2, we shall now build our results. Without loss
of generality, we will assume that � is on the positive real line.

Then, we form the reproducing kernel

K .x; yI �/ D
Z C1
0

L�.x/L�.y/�.�/d�; t > 0; (22)

and consider the reproducing kernel Hilbert space HK .�/.R
C/ admitting the kernel

K .x; yI �/. Here, we assume that the kernel form converges in the absolute sense.
In particular, note that

Kt .x; yI �/ 2 HK .�/.R
C/; y > 0:

Then, we obtain the main theorem in this paper:

Theorem 1. For any member f 2 HK .�/.R
C/, the solution uf .t; x/ of the initial

value problem, for t > 0,

.@t C Ix/uf .t; x/ D 0; (23)

satisfying the initial value condition

uf .0; x/ D f .x/; (24)

exists and it is given by

uf .t; x/ D .f .�/;Kt .�; xI �//HK .�/.RC/: (25)

Here, the meaning of the initial value (24) is given by

lim
t!C0 uf .t; x/ D lim

t!C0.f .�/;Kt .�; xI �//HK .�/.RC/

D .f .�/;K .�; xI �//HK .�/.RC/

D f .x/; (26)
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whose existence is ensured and the limit is the uniformly convergence on any subset
of RC such that K .x; xI �/ is bounded.

The uniqueness property of the initial value problem is depending on the
completeness of the family of functions

fKt .�; xI �/ W x 2 R
Cg (27)

in HK .�/.R
C/.

Before starting with the proof of the theorem some remarks are in order. In
our theorem, the complete property of the solutions uf .t; x/ of (23) and (24)
satisfying the initial value f may be derived by the reproducing kernel Hilbert space
admitting the kernel

k.x; t Iy; � I �/ WD .K� .�; yI �/;Kt .�; xI �//HK .�/.RC/: (28)

In our method, we see that the existence problem of the initial value problem is
based on the eigenfunctions and we are constructing the desired solution satisfying
the desired initial condition. For a larger knowledge for the eigenfunctions we can
consider a more general initial value problem.

Furthermore, by considering the linear mapping of (25) with various situations,
we will be able to obtain various inverse problems looking for the initial values f
from the various output data of uf .t; x/.

Proof (of Theorem 1). In first place, note that the kernel Kt .x; yI �/ satisfies the
operator equation (23) for any fixed y, because the functions

expf��tgL�.x/

satisfy the operator equation and it is the summation. Similarly, the function uf .t; x/
defined by (25) is the solution of the operator equation (23).

Secondly, in order to see the initial value problem, we note the important general
property

Kt .x; yI �/ K .x; yI �/I (29)

that is, K .x; yI �/ � Kt .x; yI �/ is a positive definite quadratic form function.
Moreover, we have

HKt .�/ 	 HK .�/.R
C/

and for any function f 2 HKt .�/

kf kHK .�/.RC/ D lim
t!C0 kf kHKt .�/
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in the sense of non-decreasing norm convergence (see [1]). In order to see the crucial
point in (26), note that

kK .y; xI �/ �Kt .y; xI �/k2HK .�/.RC/

D K .x; xI �/ � 2Kt .x; xI �/C kKt .y; xI �/k2HK .�/.RC/

� K .x; xI �/ � 2Kt .x; xI �/C kKt .y; xI �/k2HKt .�/

D K .x; xI �/ �Kt .x; xI �/;

that converses to zero as t ! C0. We thus obtain the desired limit property in the
theorem.

Finally, the uniqueness property of the initial value problem follows from (25)
easily.

4 Examples

At first, we shall consider the typical and famous Lalesco–Picard equation:

y.x/ � �
Z 1
�1

e�jx�t jy.t/dt D 0; � > 0: (30)

Then, we know the general solution

y.x/ D C1 exp.x
p
1 � 2�/C C2 exp.�x

p
1� 2�/; 0 < � <

1

2
; (31)

and

y.x/ D C1 cos.x
p
2� � 1/C C2 sin.x

p
2� � 1/; 1

2
< �; (32)

(see [7, 9]).
From the results, we can consider the four eigenfunctions and eigenvalues groups;

so, without loss of generality, we shall consider the case, for

y�.x/ D exp.�x
p
1 � 2�/ (33)

in which we have
Z 1
�1

e�jx�t jy�.t/dt D 1

�
y�.x/; 0 < � <

1

2
: (34)

Therefore, by a suitable weight �, we shall consider the reproducing kernel
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Z 1=2

0

exp.�y
p
1 � 2�/ exp.�x

p
1 � 2�/�.�/d�: (35)

Note that we can consider many weights �, however, as the simplest case, we obtain
the reproducing kernel

K.x; y/ D
Z 1=2

0

exp.�y
p
1 � 2�/ exp.�x

p
1 � 2�/ 1p

1 � 2�d�

D 1

x C y .1 � e
�xe�y/ : (36)

Now, we are interested in the integral transform

f .x/ D
Z 1=2

0

F.�/ exp.�x
p
1 � 2�/ 1p

1 � 2�d� (37)

for the functions F satisfying the conditions

Z 1=2

0

jF.�/j2 1p
1 � 2�d� <1: (38)

Note that for the kernel form

1

zC u
; z D x C iy; (39)

on the right half complex plane, this reproducing kernel is the Szegö kernel and for
the image of the integral transform

f .z/ D
Z 1
0

e��zF.�/d�; (40)

for the L2.0;1/ functions F.�/, we obtain the isometric identity

1

2�

Z C1
�1

jf .iy/j2dy D
Z 1
0

jF.�/j2d�: (41)

Here, f .iy/ means the Fatou’s non-tangential boundary values of the Szegö space
of analytic functions on the right-hand half complex plane.

From the relation for analytic extension

K.z; u/ 1

zC u
(42)
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(in the sense that the right-hand side minus the left-hand side is a positive definite
quadratic form function), we see that the admissible reproducing kernel Hilbert
spacesHK and HS have the inclusion relation as functions

HK 	 HS (43)

and we have the norm inequality, for any f 2 HK ,

kf kHS � kf kHK : (44)

The space HK is a subspace of the Szegö space HS and so we can use the Szegö
spaceHS for the isometric identity and inversion formula. For extra details on these
general properties, see [13]. As the conclusions, we see that the image f .x/ of the
integral transform (37) is extensible analytically onto the right half complex plane
as f .z/, z D x C iy, and we obtain the norm inequalities

Z 1=2

0

jF.�/j2 1p
1 � 2�d� �

1

2�

Z C1
�1

jf .iy/j2dy: (45)

Furthermore, we obtain the inversion formula in the space satisfying (38)

F.�/ D
Z 1
�1

f .iy/ exp.�iy
p
1 � 2�/dy: (46)

For other eigenfunctions, we can obtain similar results. For other weighted
functions, we can obtain more complicated results; see [13] for consequent details.

Next, as a typical example of Volterra integral equations, we shall consider, the
Dixon’s equation

y.x/ � �
Z x

0

y.t/dt

x C t D f .x/; � > 0: (47)

For the homogeneous case of f � 0, we know the solutions

y.x/ D CxˇI ˇ > �1; (48)

where

� D 1

I.ˇ/
I I.ˇ/ D

Z 1

0

�ˇd�

1C � ; (49)

(cf. [9, p. 136]). Therefore, for the integral operator

Z x

0

y.t/dt

x C t (50)
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we have the eigenfunctions and eigenvalues

y.t/ D I.�/t�; � > �1: (51)

Thus, we obtain the related reproducing kernel, for 0 < x; y < 1, for example,

K.x; y/ D
Z 1
�1

x�y�d�

D � 1

lnxy

1

xy
: (52)

The property of the integral transform

f .x/ D
Z 1
�1

x�F.�/d� (53)

for the functions F satisfying

Z 1
�1
jF.�/j2d� <1 (54)

will be involved. However, we see that the image f is extensible analytically onto
the complex plane cutted by the half real line .�1; 0�.

By the complex conformal mappingW D log z, the image f .z/ D f .ew/ of (53)
may be discussed by the Szegö space on the strip domain

n
=w <

�

2

o
:

At last, as a typical example of singular integral equations, we shall consider the
Tricomi equation

y.x/ � �
Z 1

0

�
1

t � x C
1

x C t � 2xt
�
y.t/dt D f .x/; � > 0: (55)

For the homogeneous case of f � 0, we know the solutions

y.x/ D C .1 � x/
ˇ

x1Cˇ
I tan

ˇ�

2
D ��; �2 < ˇ < 0 (56)

(cf. [9, p. 769]). Therefore, for the integral operator

Z 1

0

�
1

t � x C
1

x C t � 2xt
�
y.t/dt; (57)
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we have the eigenfunctions and eigenvalues

y.t/ D 1

�

.1 � x/ 2� arctan��

x1C 2
� arctan��

: (58)

Therefore, we obtain the related reproducing kernel, for 0 < x; y < 1 and for
example, for 0 < � <1:

K.x; y/ D
Z 1
0

.1 � x/ 2� arctan��

x1C 2
� arctan��

.1 � y/ 2� arctan��

y1C 2
� arctan��

d�

D 1

2

Z 1

0

.1 � x/�
x1C�

.1 � y/�
y1C�

sec2
��

2
d�: (59)

As typical integral equations, we stated the above three integral equations.
However, we can consider many and many different integral equations, and the
eigenfunctions structures will be mysterious deep and we are requested to analyze
their structures and the corresponding integral transforms. Furthermore, we are
particularly interested in kernel form integrals. To this end, the great book [9]
presents a huge range of possibilities.

5 Concrete Realization of the Reproducing Kernel
Hilbert Spaces

In Sect. 4, we can consider many concrete forms of the reproducing kernels and
among those we have very complicated structures of the related reproducing kernel
Hilbert spaces. Even just from the point of view of the theory of reproducing kernels,
their realizations will give interesting research topics that are requested separate
papers.

We were able to realize the important reproducing kernel Hilbert spaces con-
cretely and analytically. However, for many kernels their realizations will be
complicated. Despite this difficulty, it is clear that the concrete forms of the
reproducing kernels will be very important and interested by themselves.

Meanwhile, we are also interested in the kernel forms Kt and k. These calcula-
tions will create a new and large field in integral formulas.

As explained, we have to analyze and realize the corresponding reproducing
kernel Hilbert spaces. However, we can also apply quite general formula by
the Aveiro discretization method exposed in [2, 3]. In these papers, numerical
experiments are also given based on the following result:

Proposition 3 (Ultimate Realization of Reproducing Kernel Hilbert Spaces).
In our general situation and for a uniqueness set fpj g for the reproducing kernel
Hilbert space HK of the set E satisfying the linearly independence of K.�; pj / for
any finite number of the points pj , we obtain
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kf k2HK D kf�k2H D lim
n!1

nX
jD1

nX
j 0D1

f .pj /eajj 0f .pj 0/: (60)

Here, eajj 0 is the element of the complex conjugate inverse of the positive definite
Hermitian matrix formed by

ajj 0 D K.pj ; pj 0/:

In this proposition, for the uniqueness set of the space, if the reproducing kernel
is analytical, then, the criteria will be very simple by the identity theorem of analytic
functions. For the Sobolev space cases, we have to consider some dense subset ofE
for the uniqueness set. Meanwhile, the linearly independence will be easily derived
from the integral representations of the kernels.

From the great mathematicians books [5,6,8,10,11], we can find many and many
concrete problems among partial differential equations, eigenfunctions, integral
transforms, and reproducing kernels which are admitting the application of these
results.
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Extension Operators that Preserve Geometric
and Analytic Properties of Biholomorphic
Mappings

Teodora Chirilă

Abstract In this survey we are concerned with certain extension operators which
take a univalent function f on the unit disc U to a univalent mapping F from the
Euclidean unit ball Bn in Cn into Cn, with the property that f .z1/ D F.z1; 0/.
This subject began with the Roper–Suffridge extension operator, introduced in
1995, which has the property that if f is a convex function of U then F is
a convex mapping of Bn. We consider certain generalizations of the Roper–
Suffridge extension operator. We show that these operators preserve the notion
of g-Loewner chains, where g.�/ D .1 � �/=.1 C .1 � 2�/�/, j�j < 1 and
� 2 .0; 1/. As a consequence, the considered operators preserve certain geometric
and analytic properties, such as g-parametric representation, starlikeness of order � ,
spirallikeness of type ı and order � , almost starlikeness of order ı and type � .

We use the method of Loewner chains to generate certain subclasses of norma-
lized biholomorphic mappings on the Euclidean unit ball Bn in Cn, which have
interesting geometric characterizations. We obtain the characterization of g-starlike
and g-spirallike mappings of type ˛ 2 .��=2; �=2/, as well as of g-almost starlike
mappings of order ˛ 2 Œ0; 1/, by using g-Loewner chains. Also, we will show that,
under certain assumptions, the mapping F.z/ D P.z/z, z 2 Bn, has g-parametric
representation on Bn, where P W Bn ! C is a holomorphic function such that
P.0/ D 1.
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1 Introduction and Preliminaries

Let Cn denote the space of n complex variables z D .z1; : : : ; zn/ with the Euclidean
inner product hz;wi D Pn

jD1 zjwj and the Euclidean norm kzk D hz; zi1=2. The
open ball fz 2 C

n W kzk < rg is denoted by Bn
r and the unit ball Bn

1 is denoted
by Bn. In the case of one complex variable, B1 is denoted by U .

Let L.Cn;Cm/ denote the space of linear continuous operators from C
n into

C
m with the standard operator norm, kAk D supfkA.z/k W kzk D 1g and let In

be the identity of L.Cn;Cn/. If ˝ is a domain in C
n, we denote by H.˝/ the

set of holomorphic mappings from ˝ into C
n. Also, let H.Bn;C/ be the set of

holomorphic functions from Bn into C. If f 2 H.Bn/, we say that f is normalized
if f .0/ D 0 and Df.0/ D In. We say that f 2 H.Bn/ is locally biholomorphic
on Bn if the complex Jacobian matrix Df.z/ is nonsingular at each z 2 Bn. Let
L Sn be the set of normalized locally biholomorphic mappings on Bn. We denote
by S.Bn/ the set of normalized biholomorphic mappings on Bn. We also denote by
S�.Bn/ (respectively K.Bn/) the subset of S.Bn/ consisting of starlike mappings
with respect to zero (respectively convex mappings). In the case of one complex
variable, we write L S1 D L S , S.B1/ D S , K.B1/ D K and S�.B1/ D S�.

We next consider some subclasses of S.Bn/.
A locally biholomorphic mapping f W Bn ! C

n such that f .0/ D 0 is starlike if
and only if (see [35])

Re hŒDf .z/��1f .z/; zi > 0; z 2 Bnnf0g:

The following notion of starlikeness of order � was introduced by Curt and Kohr
(see [8, 21]).

A mapping f 2 L Sn is called starlike of order � 2 .0; 1/ if [8, 21]

ˇ̌
ˇ̌ 1

kzk2 hŒDf .z/�
�1f .z/; zi � 1

2�

ˇ̌
ˇ̌ < 1

2�
; z 2 Bnnf0g:

In the case n D 1, we obtain the usual class of starlike functions of order � on
the unit disc U . Obviously, if f is starlike of order � , then f is starlike, and hence
biholomorphic onBn. We denote by S�� .Bn/ the set of starlike mappings of order � .
In the case of one complex variable, S�� .U / is denoted by S�� . It is known that
K 	 S�1=2 (see e.g. [11]). Also, if f 2 K.Bn/, then f 2 S�1=2.Bn/ [8, 21].

A closely related notion to starlikeness of order � 2 .0; 1/ is that of spirallikeness
of type ı and order � , where ı 2 .��=2; �=2/. This notion was studied by Liu and
Liu [24] and Chirilă [4] (cf. [19]). We first recall the definition of spirallike mappings
of type ı.
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A normalized locally biholomorphic mapping f W Bn ! Cn is said to be
spirallike of type ı 2 .��=2; �=2/ if and only if (see [19])

ReŒe�iıhŒDf .z/��1f .z/; zi� > 0; z 2 Bn n f0g:

The class of spirallike mappings of type ı onBn is denoted by OSı.Bn/. When n D 1,
OSı.B1/ is denoted by OSı.

Definition 1. Let f 2 L Sn, ı 2 .��=2; �=2/ and � 2 .0; 1/. We say that f is
spirallike of type ı and order � if

ˇ̌
ˇ̌e�iı 1

kzk2 hŒDf .z/�
�1f .z/; zi C i sin ı � cos ı

2�

ˇ̌
ˇ̌ < cos ı

2�
; z 2 Bn n f0g: (1)

From (1) we deduce that if f is spirallike of type ı and order � , then f is also
spirallike of type ı. Hence f 2 S.Bn/ (see [19]).

We next present the definition of almost starlike mappings of order ı and type � .
This notion was introduced by Chirilă [5]. We first recall the definition of almost
starlike mappings of order ı.

A normalized locally biholomorphic mapping f W Bn ! Cn is said to be almost
starlike of order ı 2 Œ0; 1/ if (see [37])

Re hŒDf .z/��1f .z/; zi > ıkzk2; z 2 Bn n f0g:

Definition 2. Let f 2 L Sn, ı 2 Œ0; 1/ and � 2 .0; 1/. A mapping f 2 L Sn is
almost starlike of order ı and type � if

ˇ̌
ˇ̌ 1

kzk2 hŒDf .z/�
�1f .z/; zi � ı � 1 � ı

2�

ˇ̌
ˇ̌ < 1 � ı

2�
; z 2 Bn n f0g: (2)

It is obvious that if f satisfies (2), then f is almost starlike of order ı, hence
f 2 S.Bn/ (see [37]). In fact, f is also starlike on Bn.

The following class of mappings plays the role of the Carathéodory class in Cn

(see e.g. [11, 28, 35]):

M D fh 2 H.Bn/ W h.0/ D 0;Dh.0/ D In; Re hh.z/; zi > 0; z 2 Bn n f0gg:

In the case n D 1, h 2 M if and only if p 2 P , where h.�/ D �p.�/ for � 2 U ,
and P is the well known Carathéodory class

P D ff 2 H.U / W f .0/ D 1; Ref .�/ > 0; � 2 U g:

The class M plays an important role in the study of Loewner chains and
the Loewner differential equation in several complex variables, as well as in
characterizing certain classes of biholomorphic mappings on the Euclidean unit
ball Bn in Cn (for details, see [11]).
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Next, we recall the definitions of subordination and Loewner chains. For various
results related to Loewner chains in Cn, the reader may consult [11, 14, 16, 18, 28].
Recent results of the theory of Loewner chains and the generalized Loewner
differential equation in one and higher dimensions are due to Bracci et al. [3], Arosio
et al. [2], etc. For further details, see the survey of Abate et al. [1].

Let f; g 2 H.Bn/. We say that f is subordinate to g (and write f � g) if there
is a Schwarz mapping v (i.e. v 2 H.Bn/ and kv.z/k � kzk, z 2 Bn) such that
f .z/ D g.v.z//, z 2 Bn.

Definition 3. A mapping f W Bn � Œ0;1/ ! Cn is called a Loewner chain if
f .�; t/ is biholomorphic on Bn, f .0; t/ D 0, Df.0; t/ D et In for t � 0, and
f .�; s/ � f .�; t/ whenever 0 � s � t <1.

The requirement f .z; s/ � f .z; t/ is equivalent to the condition that there is
a unique biholomorphic Schwarz mapping v D v.z; s; t/, called the transition
mapping associated to f .z; t/ such that f .z; s/ D f .v.z; s; t/; t/ for z 2 Bn,
t � s � 0.

Remark 1. Certain subclasses of S.Bn/ can be characterized in terms of Loewner
chains. In particular, f 2 H.Bn/ is starlike if and only if f .z; t/ D etf .z/ is a
Loewner chain (see e.g. [35]). Moreover, f is spirallike of type ı 2 .��=2; �=2/
if and only if f .z; t/ D e.1�ia/t f .eiat z/ is a Loewner chain, where a D tan ı
(see [19]). Also, f is almost starlike of order ı 2 Œ0; 1/ if and only if f .z; t/ D
e

t
1�ı f .e

ıt
ı�1 z/ is a Loewner chain (see [37]).

The following characterization of Loewner chains was obtained by Pfaltzgraff
[28] and Graham et al. [14] and yields that the Loewner differential equation
provides subordination chains.

Lemma 1. Let ht .z/ D h.z; t/ W Bn � Œ0;1/ ! Cn satisfy the following
conditions:

(i) h.�; t/ 2M for t � 0.
(ii) h.z; �/ is measurable on Œ0;1/ for z 2 Bn.

Let f D f .z; t/ W Bn � Œ0;1/ ! C
n be a mapping such that f .�; t/ 2 H.Bn/,

f .0; t/ D 0, Df.0; t/ D et In for t � 0 and f .z; �/ is locally absolutely continuous
on Œ0;1/ locally uniformly with respect to z 2 Bn. Assume that

@f

@t
.z; t/ D Df.z; t/h.z; t/; a.e. t � 0; 8 z 2 Bn:

Further, assume that there exists an increasing sequence ftmgm2N such that tm > 0,
tm !1 and lim

m!1 e
�tmf .z; tm/ D F.z/ locally uniformly on Bn. Then f .z; t/ is a

Loewner chain.

Remark 2. (i) Graham et al. [16] (see also [11]) proved that if f .z; t/ is a Loewner
chain on Bn, then f .z; �/ is locally Lipschitz on Œ0;1/ locally uniformly with
respect to z 2 Bn. Also, there exists a mapping h D h.z; t/, which satisfies the
conditions (i) and (ii) in Lemma 1, such that (see [14])
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@f

@t
.z; t/ D Df.z; t/h.z; t/; a.e. t � 0; 8 z 2 Bn: (3)

(ii) The mapping h D h.z; t/ which occurs in the Loewner differential equation (3)
is unique up to a measurable set of measure zero which is independent of z 2
Bn, i.e. if there is another mapping q D q.z; t/ such that q.�; t/ 2 M for a.e.
t � 0, q.z; �/ is measurable on Œ0;1/ for z 2 Bn, and such that the Loewner
differential equation (3) holds for q.z; t/, then h.�; t/ D q.�; t/, a.e. t � 0 (see
e.g. [2]).

We next recall the class Mg and the notions of g-Loewner chains and g-
parametric representation (see [14]).

Definition 4. Let g 2 H.U / be a univalent function such that g.0/ D 1, g.�/ D
g.�/ for � 2 U (i.e. g has real coefficients), Re g.�/ > 0 on U , and assume that g
satisfies the following conditions for r 2 .0; 1/:

(
minj�jDr Re g.�/ D minfg.r/; g.�r/g
maxj�jDr Re g.�/ D maxfg.r/; g.�r/g (4)

We define the class Mg, where g satisfies the assumptions of Definition 4. This
class was introduced by Graham et al. [14]. The class Mg is given by

Mg D
n
h W Bn ! C

n W h 2 H.Bn/; h.0/ D 0; Dh.0/ D In;
D
h.z/;

z

kzk2
E
2 g.U /; z 2 Bn

o
:

Note that hh.z/; z
kzk2 i is understood to have the value 1 (its limiting value) when

z D 0. Clearly, Mg �M and if g.�/ � 1��
1C� , then Mg �M . Note that Mg ¤ ;,

since idBn 2Mg .
We next present the definitions of a g-Loewner chain and g-parametric represen-

tation (cf. [14]; compare with [16] and [32] for g.�/ � 1��
1C� ).

Definition 5. We say that a mapping f D f .z; t/ W Bn � Œ0;1/ ! Cn is a
g-Loewner chain if f .z; t/ is a Loewner chain such that fe�t f .�; t/gt�0 is a normal
family on Bn and the mapping h D h.z; t/ which occurs in the Loewner differential
equation (3) satisfies the condition h.�; t/ 2Mg for a.e. t � 0.

Remark 3. In the case of one complex variable, if f .�; t/ is a Loewner chain, then
fe�tf .�; t/gt�0 is a normal family onU , and there exists a functionp D p.�; t/ such
that (see [14]) p.�; t/ 2P for t � 0, p.�; �/ is measurable on Œ0;1/ for � 2 U , and
(see [31])

@f

@t
.�; t/ D �f 0.�; t/p.�; t/; a.e. t � 0; 8 � 2 U: (5)
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Hence, in the case n D 1, a g-Loewner chain f .�; t/ is a Loewner chain such
that the function p.�; t/ defined by (5) satisfies the condition p.�; t/ 2 g.U / for a.e.
t � 0. In the case g.�/ D 1��

1C� , j�j < 1, any Loewner chain on the unit disc is also a
g-Loewner chain.

Definition 6. Let g W U ! C satisfy the assumptions of Definition 4. We say that
a normalized mapping f 2 H.Bn/ has g-parametric representation if there exists a
g-Loewner chain f .z; t/ such that f D f .�; 0/.

We denote by S0g.B
n/ the set of mappings which have g-parametric represen-

tation. When g.�/ D 1��
1C� , � 2 U , the set S0g.B

n/ reduces to the set S0.Bn/ of
mappings which have usual parametric representation (see [14]; cf. [32, 33] on
the unit polydisc in Cn). One of the motivations for the study of g-parametric
representation and g-Loewner chains is that S�.Bn/ 	 S0.Bn/ and K.Bn/ 	
S0g.B

n/, where g.�/ � 1 � � (see [14]).
We next present some extension operators that preserve certain geometric and

analytic properties (i.e. the notions of starlikeness, spirallikeness of type ı and
parametric representation).

For n � 2, let Qz D .z2; : : : ; zn/ 2 Cn�1 such that z D .z1; Qz/ 2 Cn.
The Roper–Suffridge extension operator provides a way of extending a locally

univalent function on the unit disc U to a locally biholomorphic mapping on the
Euclidean unit ball Bn in Cn. This operator was introduced by Roper and Suffridge
in 1995 [34] in order to construct convex mappings on the Euclidean unit ball Bn

in Cn starting with a convex function on the unit disc. If f1; : : : ; fn are convex
functions on the unit disc U , then F.z/ D .f1.z1/; : : : ; fn.zn//, z D .z1; : : : ; zn/ 2
Bn is not necessary a convex mapping on the Euclidean unit ball Bn in Cn (see e.g.
[11]).

The Roper–Suffridge extension operator ˚n W L S ! L Sn is defined by [34]

˚n.f /.z/ D .f .z1/; Qz
p
f 0.z1//; z D .z1; Qz/ 2 Bn:

We choose the branch of the power function such that
p
f 0.z1/

ˇ̌
z1D0 D 1:

Roper and Suffridge [34] proved the following result:

Theorem 1. If f is a convex function on the unit disc U , then F D ˚n.f / is a
convex mapping on the Euclidean unit ball Bn in Cn. Hence ˚n.K/ � K.Bn/.

A different proof of Theorem 1 was given by Graham and Kohr in 2000 (see
[10]). Graham and Kohr [10] also proved the following result, which shows that the
Roper–Suffridge extension operator preserves the notion of starlikeness.

Theorem 2. If f 2 S�, then F D ˚n.f / 2 S�.Bn/. Hence ˚n.S�/ � S�.Bn/.

Graham et al. [13] showed that the Roper–Suffridge extension operator preserves
the notion of spirallikeness of type ı 2 .��=2; �=2/.
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Theorem 3. If f 2 OSı, ı 2 .��=2; �=2/, then F D ˚n.f / 2 OSı.Bn/. Hence
˚n. OSı/ � OSı.Bn/.

We now give the connection between the Roper–Suffridge extension operator and
the Loewner theory. Graham et al. (see [13]; see also [11]) obtained the following
result, which shows that the operator ˚n preserves the notion of parametric
representation.

Theorem 4. If f 2 S and F D ˚n.f /, then F 2 S0.Bn/. Hence ˚n.S/ �
S0.Bn/.

We are now interested in other extension operators that have similar properties to
those of the Roper–Suffridge extension operator. For several generalizations of the
Roper–Suffridge extension operator, see [10,15], [11, Chap. 11], [12,13,22,25,26].

Graham et al. [13] considered the following operator

˚n;˛.f /.z/ D F.z/ D .f .z1/; Qz.f 0.z1//˛/; z D .z1; Qz/ 2 Bn;

where ˛ 2 Œ0; 1=2�, and f is a locally univalent function on U , normalized by
f .0/ D f 0.0/ � 1 D 0. We choose the branch of the power function such that
.f 0.z1//˛jz1D0 D 1: When ˛ D 1=2, this operator reduces to the Roper–Suffridge
extension operator.

Graham et al. [13] obtained a number of extension results related to the operator
˚n;˛ , ˛ 2 Œ0; 1=2�.
Theorem 5. Let f 2 L S , ˛ 2 Œ0; 1=2�.

(i) If f 2 S , then ˚n;˛.f / can be embedded in a Loewner chain and moreover
˚n;˛.f / 2 S0.Bn/. Hence ˚n;˛.S/ � S0.Bn/.

(ii) If f 2 S�, then ˚n;˛.f / 2 S�.Bn/. Hence ˚n;˛.S�/ � S�.Bn/.
(iii) If f 2 OSı, ı 2 .��=2; �=2/, then ˚n;˛.f / 2 OSı.Bn/. Hence ˚n;˛. OSı/ �OSı.Bn/.

Graham et al. [13] also proved that convexity is preserved under the operator˚n;˛
only if ˛ D 1=2, i.e. only in the case of the Roper–Suffridge extension operator.

Graham et al. [15] considered the operator ˚n;˛;ˇ given by

˚n;˛;ˇ.f /.z/ D
�
f .z1/; Qz

�
f .z1/

z1

�˛
.f 0.z1//ˇ

�
; z D .z1; Qz/ 2 Bn;

where ˛ � 0, ˇ � 0, and f is a locally univalent function on U , normalized by
f .0/ D f 0.0/ � 1 D 0, and such that f .z1/ ¤ 0 for z1 2 U nf0g. The branches of
the power functions are chosen such that

�
f .z1/

z1

�˛ ˇ̌ˇ̌
z1D0
D 1 and .f 0.z1//ˇjz1D0 D 1:
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Note that the operator ˚n;0;1=2 reduces to the Roper–Suffridge extension operator.
Graham et al. [15] obtained certain extension results related to the operator˚n;˛;ˇ ,

where ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2� and ˛ C ˇ � 1.

Theorem 6. Let f 2 L S , ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2�, ˛ C ˇ � 1.

(i) If f 2 S , then ˚n;˛;ˇ.f / can be embedded in a Loewner chain and moreover
˚n;˛;ˇ.f / 2 S0.Bn/. Hence ˚n;˛;ˇ.S/ � S0.Bn/.

(ii) If f 2 S�, then ˚n;˛;ˇ.f / 2 S�.Bn/. Hence ˚n;˛;ˇ.S�/ � S�.Bn/.

Moreover, Graham et al. [15] showed that ˚n;˛;ˇ.K/ 	 K.Bn/ only if .˛; ˇ/ D
.0; 1=2/, i.e. only in the case of the Roper–Suffridge extension operator.

The following extension operator was introduced by Muir [26]. The purpose of
this operator was to provide examples of extreme points of K.Bn/, starting with
extreme points of K (see [27]).

Definition 7. Let Q W Cn�1 ! C be a homogeneous polynomial of degree 2. The
Muir operator ˚n;Q W L S ! L Sn is defined by

˚n;Q.f /.z/ D .f .z1/CQ.Qz/f 0.z1/; Qz
p
f 0.z1//; z D .z1; Qz/ 2 Bn:

We choose the branch of the power function such that
p
f 0.z1/jz1D0 D 1:

In the case Q � 0, the Muir operator reduces to the Roper–Suffridge extension
operator.

Muir [26] proved the following result. Note that (ii) was also obtained by
Kohr [22].

Theorem 7. (i) ˚n;Q.K/ � K.Bn/ if and only if kQk � 1=2.
(ii) ˚n;Q.S�/ � S�.Bn/ if and only if kQk � 1=4.

Kohr [22] proved the following result regarding the Muir operator.

Theorem 8. ˚n;Q.S/ � S0.Bn/, whenever kQk � 1=4.

Another generalization of the Roper–Suffridge extension operator was given by
Pfaltzgraff and Suffridge [30] in 1999. This operator provides a way of extending
a locally biholomorphic mapping on the Euclidean unit ball Bn in Cn to a locally
biholomorphic mapping on the Euclidean unit ball BnC1 in CnC1.

For n � 1, let z0 D .z1; : : : ; zn/ 2 Cn and z D .z0; znC1/ 2 CnC1.
The Pfaltzgraff–Suffridge extension operator �n W L Sn ! L SnC1 is defined by

(see [30])

�n.f /.z/ D F.z/ D
�
f .z0/; znC1ŒJf .z0/�

1
nC1

�
; z D .z0; znC1/ 2 BnC1;

where Jf .z0/ D detDf.z0/, z0 2 Bn. We choose the branch of the power function

such that ŒJf .z0/�
1

nC1

ˇ̌
z0D0 D 1: Then F D �n.f / 2 L SnC1 whenever f 2 L Sn.
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Moreover, if f 2 S.Bn/ then F 2 S.BnC1/. Note that if n D 1, then �1 reduces to
the Roper–Suffridge extension operator ˚2.

Pfaltzgraff and Suffridge [30] proposed the following conjecture regarding the
preservation of convexity under the operator �n.

Conjecture 1. If f 2 K.Bn/ then �n.f / 2 K.BnC1/.

The operator �n was also studied by Graham et al. [17]. They obtained a partial
answer to Conjecture 1 (see [17]).

Graham et al. [17] also proved the following result, which shows that the
Pfaltzgraff–Suffridge extension operator preserves the notion of parametric
representation.

Theorem 9. If f 2 S0.Bn/, then F D �n.f / 2 S0.BnC1/. Hence �n.S0.Bn// �
S0.BnC1/.

In particular, Graham et al. [17] obtained that the Pfaltzgraff–Suffridge extension
operator preserves starlikeness (compare with [30]).

Corollary 1. If f 2 S�.Bn/, then F D �n.f / 2 S�.BnC1/. Hence
�n.S

�.Bn// � S�.BnC1/.

2 g-Loewner Chains Associated with Generalized
Roper–Suffridge Extension Operators

In this section we are concerned with the extension operators˚n;˛ , ˚n;˛;ˇ and ˚n;Q
that provide a way of extending a locally univalent function f on the unit disc U to
a locally biholomorphic mapping F 2 H.Bn/. We show that if f can be embedded
as the first element of a g-Loewner chain on the unit disc, where g.�/ D 1��

1C.1�2�/�
for j�j < 1 and � 2 .0; 1/, then F D ˚n;˛.f / can also be embedded as the first
element of a g-Loewner chain on Bn, whenever ˛ 2 Œ0; 1

2
�. In particular, if f is

starlike of order � on U (resp. f is spirallike of type ı and order � on U , where
ı 2 .��=2; �=2/), then F D ˚n;˛.f / is also starlike of order � on Bn (resp.
F D ˚n;˛.f / is spirallike of type ı and order � on Bn). Also, if f is almost starlike
of order ı and type � on U , where ı 2 Œ0; 1/, then F D ˚n;˛.f / is almost starlike of
order ı and type � onBn. Similar ideas are applied in the case of the Muir extension
operator˚n;Q, whereQ is a homogeneous polynomial of degree 2 onCn�1 such that

kQk � 1�j2��1j
8�

, � 2 .0; 1/, and in the case of the extension operator ˚n;˛;ˇ .
Throughout this section we consider g-Loewner chains with g 2 H.U / given by

g.�/ D 1 � �
1C .1 � 2�/� ; j�j < 1;
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where � 2 .0; 1/. Then g maps the unit disc onto the open disc of centre 1=.2�/ and
radius 1=.2�/. Hence, in this case the class Mg is given by

Mg D
(
h 2 H.Bn/ W h.0/ D 0;Dh.0/ D In;

ˇ̌
ˇ 1

kzk2 hh.z/; zi �
1

2�

ˇ̌
ˇ

<
1

2�
; z 2 Bnnf0g

)
:

2.1 The Operator ˚n;˛ and g-Loewner Chains

The following result due to Chirilă [5] yields that the operator ˚n;˛ preserves the
notion of g-Loewner chains for g.�/ D 1��

1C.1�2�/� , j�j < 1, where � 2 .0; 1/. In the
case � D 0, this result was obtained by Graham et al. (see [13]).

Theorem 10. Assume f 2 S can be embedded as the first element of a g-Loewner
chain, where g.�/ D 1��

1C.1�2�/� , j�j < 1, � 2 .0; 1/. Then F D ˚n;˛.f / can be
embedded as the first element of a g-Loewner chain on Bn, for ˛ 2 Œ0; 1=2�.

In view of Theorem 10, Chirilă [5] obtained the following particular cases.
Corollary 2 was obtained by Graham et al. [13], in the case � D 0.

Corollary 2. If f W U ! C has g-parametric representation and ˛ 2 Œ0; 1=2�,
then F D ˚n;˛.f / 2 S0g.Bn/, where g.�/ D 1��

1C.1�2�/� , � 2 U and � 2 .0; 1/.
The following result was obtained by Hamada et al. [20], in the case ˛ D � D

1=2, and by Liu [23], in the case � 2 .0; 1/ and ˛ 2 Œ0; 1=2�. Chirilă [5] gave a
different proof of this result using g-Loewner chains.

Corollary 3. If f 2 S�� , � 2 .0; 1/ and ˛ 2 Œ0; 1=2�, then F D ˚n;˛.f / 2
S�� .Bn/. In particular, the Roper–Suffridge extension operator preserves the notion
of starlikeness of order � .

Remark 4. Since K 	 S�1=2, it follows in view of Corollary 3 that ˚n;˛.K/ 	
S�1=2.Bn/ for ˛ 2 Œ0; 1

2
�. However, ˚n;˛.K/ ª K.Bn/ for ˛ ¤ 1=2 (see [13]).

The following result is due to Liu and Liu [24] (see also [23]). Chirilă [5] obtained
this result by using g-Loewner chains.

Corollary 4. Let ˛ 2 Œ0; 1=2�, ı 2 .��=2; �=2/ and � 2 .0; 1/. Also, let f W U !
C be a spirallike function of type ı and order � on U , and let F D ˚n;˛.f /. Then
F is also spirallike of type ı and order � on Bn.

Chirilă [5] obtained the following preservation result of almost starlikeness of
order ı and type � in the case of the operator ˚n;˛ (cf. [37]).
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Corollary 5. Let ˛ 2 Œ0; 1=2�, ı 2 Œ0; 1/ and � 2 .0; 1/. Also, let f W U ! C

be an almost starlike function of order ı and type � . Then F D ˚n;˛.f / is almost
starlike of order ı and type � on Bn.

2.2 The Muir Extension Operator and g-Loewner Chains

Chirilă [5] proved that the Muir extension operator ˚n;Q preserves the notion of
g-Loewner chains, where g.�/ D 1��

1C.1�2�/� for � 2 U , and � 2 .0; 1/. In the case
� D 0, this result was obtained by Kohr (see [22]).

Theorem 11. Let Q W Cn�1 ! C be a homogeneous polynomial of degree 2 such
that kQk � 1�j2��1j

8�
, where � 2 .0; 1/. Assume f 2 S can be embedded as the first

element of a g-Loewner chain. Then F D ˚n;Q.f / can be embedded as the first
element of a g-Loewner chain on Bn, where g.�/ D 1��

1C.1�2�/� , j�j < 1.

In view of the above result, Chirilă [5] deduced that the operator ˚n;Q preserves
the notion of g-parametric representation and starlikeness of order � , whenever
g.�/ D 1��

1C.1�2�/� , j�j < 1, � 2 .0; 1/ and kQk � 1�j2��1j
8�

.

Corollary 6. Let � 2 .0; 1/ and let Q W Cn�1 ! C be a homogeneous polynomial
of degree 2 such that kQk � 1�j2��1j

8�
. If f W U ! C has g-parametric

representation, then F D ˚n;Q.f / 2 S0g.Bn/, where g.�/ D 1��
1C.1�2�/� , j�j < 1.

The following result was obtained by Wang and Liu [36]. Chirilă [5] obtained
this result by using the method of g-Loewner chains.

Corollary 7. Let � 2 .0; 1/ and let Q W Cn�1 ! C be a homogeneous polynomial
of degree 2 such that kQk � 1�j2��1j

8�
. If f 2 S�� , then F D ˚n;Q.f / 2 S�� .Bn/.

Chirilă [5] obtained the following improvement of Theorem 11 in the case of g-
Loewner chains f .z1; t/ such that f .�; t/ is convex on U for t � 0, where g.�/ D

1��
1C.1�2�/� , j�j < 1, � 2 .0; 1/ (cf. [22] and [26]).

Proposition 1. Let Q W Cn�1 ! C be a homogeneous polynomial of degree 2 such
that kQk � 1�j2��1j

4�
, where � 2 .0; 1/. Assume f 2 S can be embedded as the first

element of a g-Loewner chain f .z1; t/ such that f .�; t/ is convex on U for t � 0,
where g.�/ D 1��

1C.1�2�/� , j�j < 1. Then F D ˚n;Q.f / can be embedded as the first
element of a g-Loewner chain on Bn for t � 0.

2.3 The Operator ˚n;˛;ˇ and g-Loewner Chains

The following theorem due to Chirilă [4] yields that the operator ˚n;˛;ˇ preserves
the notion of g-Loewner chains for g.�/ D 1��

1C.1�2�/� , j�j < 1, where � 2 .0; 1/.
This result was obtained by Graham et al. [15], in the case � D 0. In the case ˛ D 0
and � 2 .0; 1/, Theorem 12 was obtained by Chirilă [5].
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Theorem 12. Assume f 2 S can be embedded as the first element of a g-Loewner
chain, where g.�/ D 1��

1C.1�2�/� , j�j < 1 and � 2 .0; 1/. Then F D ˚n;˛;ˇ.f /

can be embedded as the first element of a g-Loewner chain on Bn for ˛ 2 Œ0; 1�,
ˇ 2 Œ0; 1=2�, ˛ C ˇ � 1.

In view of Theorem 12, Chirilă [4] obtained the following particular cases.
Corollary 8 was obtained by Graham et al. [15], in the case � D 0. Also, Corollary 8
was obtained by Chirilă [5], in the case ˛ D 0.

Corollary 8. If f W U ! C has g-parametric representation and ˛ 2 Œ0; 1�,
ˇ 2 Œ0; 1=2�, ˛ C ˇ � 1, then F D ˚n;˛;ˇ.f / 2 S0g.Bn/, where g.�/ D 1��

1C.1�2�/� ,
� 2 U , and � 2 .0; 1/.

The following result was obtained by Hamada et al. [20], in the case ˛ D 0,
ˇ D � D 1=2, and by Liu [23], in the case � 2 .0; 1/ and ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2�,
˛ C ˇ � 1. If � D 0, the result below was obtained by Graham et al. [15]. Chirilă
[4] proved this result by using the method of g-Loewner chains.

Corollary 9. If f 2 S�� and ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2�, ˛ C ˇ � 1, then F D
˚n;˛;ˇ.f / 2 S�� .Bn/, where � 2 .0; 1/. In particular, the Roper–Suffridge extension
operator preserves the notion of starlikeness of order � .

The following remark follows from Corollary 9 (see [4]).

Remark 5. Since K 	 S�1=2, it follows in view of Corollary 9 that ˚n;˛;ˇ.K/ 	
S�1=2.Bn/ for ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2�, ˛Cˇ � 1. However,˚n;˛;ˇ.K/ ª K.Bn/ for
.˛; ˇ/ ¤ .0; 1=2/ (see [15]).

The following result is due to Liu and Liu [24] (see also [23]). Chirilă [4] obtained
a different proof by using the method of g-Loewner chains.

Corollary 10. Let ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2�, ˛ C ˇ � 1, ı 2 .��=2; �=2/ and
� 2 .0; 1/. Also, let f W U ! C be a spirallike function of type ı and order � on
U , and let F D ˚n;˛;ˇ.f /. Then F is also spirallike of type ı and order � on Bn.

2.4 Subordination and Radius Problems Associated
with the Operator ˚n;˛;ˇ

The following subordination preserving result under the operator ˚n;˛;ˇ was
obtained by Chirilă [4]. This result was obtained by Hamada et al. [20], in the case
˛ D 0 and ˇ D 1=2.

Theorem 13. Let f; g W U ! C be two locally univalent functions such that
f .0/ D g.0/ D 0, f 0.0/ D a and g0.0/ D b, where 0 < a � b. Assume that
f .z1/ ¤ 0 and g.z1/ ¤ 0 for 0 < jz1j < 1. If ˛ � 0, ˇ 2 Œ0; 1=2� and f � g, then
˚n;˛;ˇ.f / � ˚n;˛;ˇ.g/. We choose the branches of the power functions such that
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Œf 0.z1/�ˇjz1D0 D aˇ;
�
f .z1/

z1

	˛ ˇ̌ˇ̌
z1D0
D a˛;

Œg0.z1/�ˇjz1D0 D bˇ;
�
g.z1/

z1

	˛ ˇ̌ˇ̌
z1D0
D b˛:

For various consequences of the above result, see [4] (see also [20], in the case
˛ D 0 and ˇ D 1=2).

We next consider certain radius problems associated with the operator ˚n;˛;ˇ .
First, we recall the concept of the radius for a certain property in a certain set (see
e.g. [9, 11]).

Definition 8. Given F a nonempty subset of S.Bn/ and a property P which the
mappings in F may or may not have in a ball Bn

r , the radius for the property P in
the set F is denoted byRP.F / and is the largestR such that every mapping in the
set F has the property P in each ball Bn

r for every r < R.

Let RS�.F / be the radius of starlikeness of F , RK.F / the radius of convexity
and R OSı .F / the radius of spirallikeness of type ı of F .

It is known that RK.S/ D RK.S
�/ D 2 � p3 and RS�.S/ D tanh.�=4/ (see

e.g. [31]). Graham et al. [13] obtained the radius of starlikeness and the radius of
convexity associated with ˚n.S/. Also, Graham et al. [15] obtained the radius of
starlikeness associated with ˚n;˛;ˇ.S/.

Chirilă [4] obtained the following result regarding the radius of spirallikeness of
type ı for the set ˚n;˛;ˇ.S/.

Theorem 14. R OSı .˚n;˛;ˇ.S// D tanh
h
�
4
� jıj

2

i
, for ˛ 2 Œ0; 1�, ˇ 2 Œ0; 1=2� such

that ˛ C ˇ � 1 and ı 2 .��=2; �=2/.
For other radius problems associated with the extension operator ˚n;˛;ˇ , see [4].

3 Subclasses of Biholomorphic Mappings Associated
with g-Loewner Chains

In this section we use the method of Loewner chains to generate certain subclasses
of normalized biholomorphic mappings on the Euclidean unit ball Bn in Cn, which
have interesting geometric characterizations. We present the classes of g-starlike
mappings, g-spirallike mappings of type ˛ 2 .��=2; �=2/ and g-almost starlike
mappings of order ˛ 2 Œ0; 1/ on Bn and we obtain their characterization by using
g-Loewner chains. We also show that, under certain assumptions, the mapping F W
Bn ! Cn given by F.z/ D P.z/z has g-parametric representation on Bn, where
P W Bn ! C is a holomorphic function such that P.0/ D 1. Several applications
are provided.
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Pfaltzgraff and Suffridge [30] obtained a necessary and sufficient condition of
starlikeness regarding the mapping F.z/ D P.z/z and gave a sharp distortion
theorem for a subclass of S�.Bn/. Graham et al. [14] obtained a necessary and
sufficient condition of g-starlikeness for the mapping F.z/ D P.z/z. Further results
in this direction were obtained by Xu and Liu [38].

We first present the set of g-starlike mappings on Bn, where g satisfies the
requirements of Definition 4. This notion was introduced by Graham et al. [14]
and by Hamada and Honda [18]. This notion was also studied by Xu and Liu in the
case of complex Banach spaces [38].

Definition 9. A normalized locally biholomorphic mapping f W Bn ! Cn is said
to be g-starlike on Bn if

1

kzk2 hŒDf .z/�
�1f .z/; zi 2 g.U /; z 2 Bn n f0g: (6)

We denote the class of g-starlike mappings on Bn by S�g .Bn/. When n D 1, we
denote this class by S�g . If g.�/ D .1 � �/=.1 C �/, then this class reduces to the
class of starlike mappings on Bn.

Note that if g.�/ D 1��
1C.1�2�/� , j�j < 1 and � 2 .0; 1/, then the class S�g .Bn/

reduces to the class of starlike mappings of order � on Bn.
Chirilă et al. [7] proved the following compactness result for the class S�g .Bn/.

Theorem 15. Let g W U ! C be a univalent function, which satisfies the
requirements of Definition 4. Then the family S�g .Bn/ is compact.

For various results regarding g-starlike mappings, such as growth and covering
theorems and coefficient estimates, see [14, 18, 38].

Next we define the set of g-spirallike mappings of type ˛ 2 .��=2; �=2/ on Bn,
where g satisfies the requirements of Definition 4. This notion was introduced by
Chirilă [6].

Definition 10. A normalized locally biholomorphic mapping f W Bn ! Cn is said
to be g-spirallike of type ˛ 2 .��=2; �=2/ if

i
sin ˛

cos˛
C e�i˛

cos˛

�
ŒDf .z/��1f .z/;

z

kzk2
�
2 g.U /; z 2 Bn n f0g: (7)

If g.�/ D .1� �/=.1C �/, this class becomes the class of spirallike mappings of
type ˛ on Bn and when g.�/ D 1��

1C.1�2�/� , j�j < 1, � 2 .0; 1/, we obtain the class
of spirallike mappings of type ˛ and order � on Bn. When ˛ D 0, the class of g-
spirallike mappings of type 0 onBn reduces to the set of g-starlike mappings onBn.

Obviously, if f is g-spirallike of type ˛, then f is also spirallike of type ˛, and
hence f is biholomorphic on Bn. On the other hand, the motivation for introducing
the subclass of g-spirallike mappings of type ˛ is provided by Corollary 12.
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We next present the set of g-almost starlike mappings of order ˛ 2 Œ0; 1/ on Bn,
where g satisfies the requirements of Definition 4. This class was introduced by
Chirilă [6].

Definition 11. A normalized locally biholomorphic mapping f W Bn ! Cn is said
to be g-almost starlike of order ˛ 2 Œ0; 1/ if

1

1 � ˛
�
ŒDf .z/��1f .z/;

z

kzk2
�
� ˛

1 � ˛ 2 g.U /; z 2 Bn n f0g: (8)

If g.�/ D .1 � �/=.1 C �/, this class reduces to the class of almost starlike
mappings of order ˛ on Bn and when g.�/ D 1��

1C.1�2�/� , j�j < 1, � 2 .0; 1/, we
obtain the class of almost starlike mappings of order ˛ and type � on Bn. When
˛ D 0, the class of g-almost starlike mappings of order 0 on Bn reduces to the set
of g-starlike mappings on Bn.

If f is g-almost starlike of order ˛, then f is also almost starlike of order ˛,
and hence biholomorphic on Bn. The motivation for introducing the subclass of
g-almost starlike mappings of order ˛ on Bn is provided by Corollary 13.

3.1 Characterizations by Using g-Loewner Chains

We next present the characterizations of g-starlikeness, g-spirallikeness of type ˛
and g-almost starlikeness of order ˛, in terms of g-Loewner chains. We first present
the characterization of g-starlike mappings by using g-Loewner chains, where g
satisfies the requirements of Definition 4. This result is due to Chirilă [6]. In the
case g.�/ D 1��

1C� , j�j < 1, we obtain the usual characterization of starlikeness in
terms of Loewner chains due to Pfaltzgraff and Suffridge (see [29]).

Theorem 16. A normalized locally biholomorphic mapping f W Bn ! Cn is g-
starlike if and only if f .z; t/ D etf .z/ is a g-Loewner chain, where g satisfies the
requirements of Definition 4.

The characterization of g-spirallike mappings of type ˛ 2 .��=2; �=2/ on
Bn by using g-Loewner chains was obtained by Chirilă [6], where g satisfies the
requirements of Definition 4 (compare with [19]). In the case g.�/ D 1��

1C� in
Theorem 17, we obtain the usual characterization of spirallikeness of type ˛ in terms
of Loewner chains due to Hamada and Kohr (see [19]).

Theorem 17. A normalized locally biholomorphic mapping f W Bn ! Cn is
g-spirallike of type ˛ 2 .��=2; �=2/ if and only if f .z; t/ D e.1�ia/t f .eiat z/ is a
g-Loewner chain, where a D tan˛ and g satisfies the requirements of Definition 4.

Chirilă [6] also obtained the characterization of g-almost starlike mappings of
order ˛ 2 Œ0; 1/ by using g-Loewner chains, where g satisfies the requirements of
Definition 4. If we take g.�/ D .1 � �/=.1 C �/ in Theorem 18, we obtain the
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characterization of almost starlike mappings of order ˛ using Loewner chains due
to Xu and Liu (see [37]).

Theorem 18. A normalized locally biholomorphic mapping f W Bn ! Cn is g-
almost starlike of order ˛ 2 Œ0; 1/ if and only if f .z; t/ D e

1
1�˛ tf .e

˛
˛�1 t z/ is a

g-Loewner chain, where g satisfies the requirements of Definition 4.

3.2 A Subclass of Biholomorphic Mappings on Bn Generated
by g-Loewner Chains

In the following theorem due to Chirilă [6] we consider conditions such that a
mapping F W Bn ! C

n given by F.z/ D P.z/z belongs to S0g.B
n/, where

P 2 H.Bn;C/ with P.0/ D 1.

Theorem 19. Let P W Bn ! C be a holomorphic function onBn such that P.0/ D
1 and let F.z/ D P.z/z, z 2 Bn. Let F.z; t/ D P.z; t/z, z 2 Bn, t � 0, where
P.z; t/ W Bn � Œ0;1/! C satisfies the following conditions:

(i) P.�; t/ 2 H.Bn;C/, P.0; t/ D et , t � 0, P.�; 0/ D P , P.z; t/ ¤ 0, z 2 Bn,

t � 0, and 1C DP.z; t/.z/

P.z; t/
¤ 0, for z 2 Bn and t � 0;

(ii) P.z; �/ is locally Lipschitz continuous on Œ0;1/ locally uniformly with respect
to z 2 Bn.

(iii) fe�tP.�; t/gt�0 is a normal family on Bn.

If g satisfies the requirements of Definition 4 and

@P

@t
.z; t/

P.z; t/

 
1C DP.z; t/.z/

P.z; t/

! 2 g.U /; a.e. t � 0; 8z 2 Bn; (9)

then F.z; t/ is a g-Loewner chain. Moreover, F 2 S0g.Bn/.
Conversely, if F.z; t/ is a g-Loewner chain, then the relation (9) holds.

In view of Theorem 19, Chirilă [6] obtained the following particular cases.
Corollary 11 was obtained by Pfaltzgraff and Suffridge [30] in the case g.�/ D

.1 � �/=.1 C �/ and by Graham et al. [14] in the case of functions g W U !
C satisfying the requirements of Definition 4. Corollary 11 was also obtained by
Chirilă [6].

Corollary 11. Let g W U ! C satisfy the requirements of Definition 4. Also, let
F.z/ D P.z/z, z 2 Bn, where P W Bn ! C is a holomorphic function such that
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P.0/ D 1. If 1C DP.z/.z/
P.z/ 2 1

g
.U /, z 2 Bn, then F.z; t/ D etP.z/z, z 2 Bn, t � 0,

is a g-Loewner chain. Moreover, F 2 S�g .Bn/.

In view of Theorem 19, we obtain the following consequence regarding
g-spirallike mappings of type ˛ on Bn (see [6]).

Corollary 12. Let g W U ! C satisfy the requirements of Definition 4. Also, let
F.z/ D P.z/z, z 2 Bn, where P W Bn ! C is a holomorphic function such that

P.0/ D 1 and 1 C DP.z/.z/
P.z/ ¤ 0, z 2 Bn. If

1Cia DP.z/.z/P.z/

1CDP.z/.z/
P.z/

2 g.U /, z 2 Bn, then

F.z; t/ D etP.eiat z/z, z 2 Bn, t � 0, is a g-Loewner chain, where a D tan ˛ and
˛ 2 .��=2; �=2/. Moreover, F is g-spirallike of type ˛ on Bn.

In view of Theorem 19, Chirilă [6] obtained the following consequence regarding
g-almost starlike mappings of order ˛ on Bn.

Corollary 13. Let g W U ! C satisfy the requirements of Definition 4. Also, let
F.z/ D P.z/z, z 2 Bn, where P W Bn ! C is a holomorphic function such that

P.0/ D 1 and 1C DP.z/.z/
P.z/ ¤ 0, z 2 Bn. If

1C ˛
˛�1

DP.z/.z/
P.z/

1CDP.z/.z/
P.z/

2 g.U /, z 2 Bn, ˛ 2 Œ0; 1/,
then F.z; t/ D etP.e

˛
˛�1 t z/z, z 2 Bn, t � 0, is a g-Loewner chain. Moreover, F is

g-almost starlike of order ˛ on Bn.
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Normal Cones and Thompson Metric

Ştefan Cobzaş and Mircea-Dan Rus

Abstract The aim of this paper is to study the basic properties of the Thompson
metric dT in the general case of a linear spaceX ordered by a coneK . We show that
dT has monotonicity properties which make it compatible with the linear structure.
We also prove several convexity properties of dT ; and some results concerning
the topology of dT ; including a brief study of the dT -convergence of monotone
sequences. It is shown that most results are true without any assumption of an
Archimedean-type property for K . One considers various completeness properties
and one studies the relations between them. Since dT is defined in the context of a
generic ordered linear space, with no need of an underlying topological structure,
one expects to express its completeness in terms of properties of the ordering
with respect to the linear structure. This is done in this paper and, to the best of
our knowledge, this has not been done yet. Thompson metric dT and order-unit
(semi)norms j � ju are strongly related and share important properties, as both are
defined in terms of the ordered linear structure. Although dT and j � ju are only
topologically (and not metrically) equivalent onKu, we prove that the completeness
is a common feature. One proves the completeness of the Thompson metric on a
sequentially complete normal cone in a locally convex space. At the end of the
paper, it is shown that, in the case of a Banach space, the normality of the cone is
also necessary for the completeness of the Thompson metric.
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Keywords Ordered vector space • Ordered locally convex vector space • Ordered
Banach space • Self-complete cone • Normal cone • Order-unit seminorm •
Thompson metric • Metrical completeness

1 Introduction

In his study on the foundation of geometry, Hilbert [16] introduced a metric in
the Euclidean space, known now as the Hilbert projective metric. Birkhoff [5]
realized that fixed point techniques for nonexpansive mappings with respect to the
Hilbert projective metric can be applied to prove the Perron–Frobenius theorem
on the existence of eigenvalues and eigenvectors of non-negative square matrices
and of solutions to some integral equations with positive kernel. The result on
the Perron–Frobenius theorem was also found independently by Samelson [39].
Birkhoff’s proof relied on some results from differential projective geometry, but
Bushell [7, 8] gave new and more accessible proofs to these results by using the
Hilbert metric defined on cones, revitalizing the interest for this topic (for a recent
account on Birkhoff’s definition of the Hilbert metric see the paper [24], and for
Perron–Frobenius theory, the book [23]). A related partial metric on cones in Banach
spaces was devised by Thompson [41], who proved the completeness of this metric
(under the hypothesis of the normality of the cone), as well as some fixed point
theorems for contractions with respect to it. It turned out that both these metrics
are very useful in a variety of problems in various domains of mathematics and in
applications to economy and other fields. Among these applications we mention
those to fixed points for mixed monotone operators and other classes of operators
on ordered vector spaces, see [9–12, 38]. Nussbaum alone, or in collaboration with
other mathematicians, studied the limit sets of iterates of nonexpansive mappings
with respect to Hilbert or Thompson metrics, the analog of Denjoy–Wolff theorem
for iterates of holomorphic mappings, see [25–27, 31–33]. These metrics have
also interesting applications to operator theory—to means for positive operators,
[18, 29], and to isometries in spaces of operators on Hilbert space and in C �-
algebras, see [15, 28], and the papers quoted therein.

Good presentations of Hilbert and Thompson metrics are given in the mono-
graphs [17, 31, 32], and in the papers [1, 24, 34]. A more general approach—Hilbert
and Thompson metrics on convex sets— is proposed in the papers [3] and [4].

The aim of this paper, essentially based on the Ph.D. thesis [37], is to study the
basic properties of the Thompson metric dT in the general case of a vector space X
ordered by a cone K . Since dT is defined in the context of a generic ordered vector
space, with no need of an underlying topological structure, one expects to express
its completeness in terms of properties of the ordering, with respect to the linear
structure. This is done in the present paper and, to the best of our knowledge, this
has not been done yet.

For the convenience of the reader, we survey in Sect. 2 some notions and notations
which will be used throughout and list, without proofs, the most important results
that are assumed to be known. Since there is no standard terminology in the theory
of ordered vector spaces, the main purpose of this preliminary section is to provide
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a central point of reference for a unitary treatment of all of the topics in the rest of
the paper. As possible we give exact references to textbooks were these results can
be found, [2, 6, 13, 14, 19, 35, 40].

Section 3 is devoted to the definition and basic properties of the Thompson metric.
We show that dT has monotonicity properties which make it compatible with the
linear structure. We also prove several convexity properties of dT : We close this
section with some results concerning the topology of dT ; including a brief study of
the dT -convergence of monotone sequences. Note that most of these results are true
without the assumption of an Archimedean-type property for K .

We show that the Thompson metric dT and order-unit (semi)norms j � ju
are strongly related and share important properties (e.g., they are topologically
equivalent), as both are defined in terms of the ordered linear structure.

Section 4 is devoted to various kinds of completeness. It is shown that, although
dT and j � ju are only topologically, and not metrically, equivalent, the completeness
is a common feature. Also we study a special notion, called self-completeness, we
prove that several completeness conditions are equivalent and that the Thompson
metric on a sequentially complete normal cone K in a locally convex space X is
complete.

In the last subsection we show that in the case when X is a Banach space, the
completeness of K with respect to dT is also necessary for the normality of K .
This is obtained as a consequence of a more general result (Theorem 14) on the
equivalence of several conditions to the completeness of K with respect to dT .

2 Cones in Vector Spaces

2.1 Ordered Vector Spaces

A preorder on a set Z is a reflexive and transitive relation � on Z. If the relation
� is also antisymmetric then it is called an order on Z. If any two elements in Z
are comparable (i.e., at least one of the relations x � y or y � x holds), then one
says that the order (or the preorder)� is total.

Since in what follows we shall be concerned only with real vector spaces, by a
“vector space” we will understand always a “real vector space.”

A nonempty subset W of a vector space X is called a wedge if

.C1/ W CW 	 W;

.C2/ tW 	 W; for all t � 0: (1)

The wedgeW induces a preorder on X given by

x �W y ” y � x 2 W: (2)

The notation x <W y means that x �W y and x ¤ y: If there is no danger of
confusion the subscripts will be omitted.
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This preorder is compatible with the linear structure of X , that is

.i/ x � y H) x C z � y C z; and

.ii/ x � y H) tx � ty; (3)

for all x; y; z 2 X and t 2 RC; where RC D ft 2 R W t � 0g: This means that one
can add inequalities

x � y and x0 � y0 H) x C x0 � y C y0;

and multiply by positive numbers

x � y ” tx � ty;

for all x; x0; y; y0 2 X and t > 0: The multiplication by negative numbers reverses
the inequalities

8t < 0; .x � y ” tx � ty/:

As a consequence of this equivalence, a subset A of X is bounded above iff the
set �A is bounded below. Also

infA D � sup.�A/ supA D � inf.�A/:

It is obvious that the preorder �W is total iff X D W [ .�W /:
Remark 1. It follows that in definitions (or hypotheses) we can ask only one order
condition. For instance, if we ask that every bounded above subset of an ordered
vector space has a supremum, then every bounded below subset will have an
infimum, and consequently, every bounded subset has an infimum and a supremum.
Similarly, if a linear preorder is upward directed, then it is automatically downward
directed, too.

Obviously, the wedgeW agrees with the set of positive elements in X ,

W D XC WD fx 2 X W 0 �W xg:

Conversely, if � is a preorder on a vector spaceX satisfying (3) (such a preorder
is called a linear preorder), then W D XC is a wedge in X and �D�W .
Consequently, there is a perfect correspondence between linear preorders on a vector
space X and wedges in X and so any property in an ordered vector space can be
formulated in terms of the preorder or of the wedge.

A coneK is a wedge satisfying the condition

.C3/ K \ .�K/ D f0g: (4)



Normal Cones and Thompson Metric 213

This is equivalent to the fact that the induced preorder is antisymmetric,

x � y and y � x H) y D x; (5)

for all x; y 2 X; that it is an order on X .
A pair .X;K/; where K is a cone (or a wedge) in a vector space X; is called an

ordered (resp. preordered) vector space.
An order interval in an ordered vector space .X;K/ is a (possibly empty) set of

the form

ŒxIy�o D fz 2 X W x � z � yg D .x CK/\ .y �K/;
for some x; y 2 X: It is clear that an order interval ŒxIy�o is a convex subset of X
and that

ŒxIy�o D x C Œ0Iy � x�o:

The notation ŒxIy� will be reserved to algebraic intervals: ŒxIy� WD f.1 � t/x C
ty W t 2 Œ0I 1�g:

A subset A of X is called order-convex (or full, or saturated) if ŒxIy�o 	 A for
every x; y 2 A: Since the intersection of an arbitrary family of order-convex sets is
order-convex, we can define the order-convex hull ŒA� of a nonempty subset A of X
as the intersection of all order-convex subsets of X containing A, i.e. the smallest
order-convex subset of X containing A. It follows that

ŒA� D
[
fŒxIy�o W x; y 2 Ag D .ACK/\ .A�K/: (6)

Obviously, A is order-convex iff A D ŒA�:
Remark 2. It is obvious that if x � y; then ŒxIy� 	 ŒxIy�o; but the reverse
inclusion could not hold as the following example shows. Taking X D R2 with
the coordinate order and x D .0; 0/; y D .1; 1/; then ŒxIy�o equals the (full) square
with the vertices .0; 0/; .0; 1/; .1; 1/, and .0; 1/; so it is larger than the segment
ŒxIy�:

We mention also the following result.

Proposition 1 ([6]). Let .X;�/ be an ordered vector space. Then the order � is
total iff every order-convex subset of X is convex.

We shall consider now some algebraic-topological notions concerning the subsets
of a vector space X . Let A be a subset of X .

The subset A is called:

• balanced if �A 	 A for every j�j � 1I
• symmetric if �A D AI
• absolutely convex if it is convex and balanced;
• absorbing if ft > 0 W x 2 tAg ¤ ; for every x 2 X:
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The following equivalences are immediate:

A is absolutely convex ” 8a; b 2 A; 8˛; ˇ 2 R; with j˛j C jˇj D 1; ˛aC ˇb 2 A
” 8a; b 2 A; 8˛; ˇ 2 R; with j˛j C jˇj � 1; ˛aC ˇb 2 A:

Notice that a balanced set is symmetric and a symmetric convex set containing 0
is balanced.

The following properties are easily seen.

Proposition 2. Let X be an ordered vector space and A 	 X nonempty. Then

1. If A is convex, then ŒA� is also convex.
2. If A is balanced, then ŒA� is also balanced.
3. If A is absolutely convex, then ŒA� is also absolutely convex.

One says that a is an algebraic interior point of A if

8x 2 X; 9ı > 0; such that 8� 2 Œ�ıI ı�; aC �x 2 A: (7)

The (possibly empty) set of all interior points of A, denoted by aint.A/; is called
the algebraic interior (or the core) of the set A. It is obvious that ifX is a TVS, then
int.A/ 	 aint.A/ where int.A/ denotes the interior of the set A. In finite dimension
we have equality, but the inclusion can be proper if X is infinite dimensional.

A coneK is called solid if int.K/ ¤ ;:
Remark 3. Zălinescu [45] uses the notation Ai for the algebraic interior and iA

for the algebraic interior of A with respect to its affine hull (called the relative
algebraic interior). In his definition of an algebraic interior point of A one asks
that the conclusion of (7) holds only for � 2 Œ0I ı�; a condition equivalent to (7).

The set A is called lineally open (or algebraically open) if A D aint.A/; and
lineally closed ifX nA is lineally open. This is equivalent to the fact that any line in
X meets A in a closed subset of the line. The smallest lineally closed set containing
a set A is called the lineal (or algebraic) closure of A and it is denoted by acl.A/:
Again, ifX is a TVS, then any closed subset ofX is lineally closed. The subsetA is
called lineally bounded if the intersection with any lineD in X is a bounded subset
of D.

Remark 4. The terms “lineally open,” “lineally closed,” etc, are taken from Jameson
[19].

Remark 5. Similar to the topological case one can prove that

a 2 aint.A/; b 2 A and � 2 Œ0I 1/ H) .1� �/aC �b 2 aint.A/: (8)

Consequently, if A is convex then aint.A/ is also convex.
If K is a cone, then aint.K/[ f0g is also a cone and
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aint.K/CK 	 aint.K/: (9)

We justify only the second assertion. Let x 2 aint.K/ and y 2 K: Then

x C y D 2
�
1

2
x C 1

2
y

�
2 aint.K/:

Now we shall consider some further properties of linear orders. A linear order �
on a vector space X is called:

• Archimedean if for every x; y 2 X;

.8n 2 N; nx � y/ H) x � 0I (10)

• almost Archimedean if for every x; y 2 X;

.8n 2 N; �y � nx � y/ H) x D 0I (11)

The following four propositions are taken from Breckner [6] and Jameson [19].
In all of them X will be a vector space and � a linear preorder on X given by the
wedgeW D XC:
Proposition 3. The following are equivalent.

1. The preorder� is Archimedean.
2. The wedge W is lineally closed.
3. For every x 2 X and y 2 W; 0 D inffn�1x W n 2 Ng:
4. For every x 2 X and y 2 W; nx � y; for all n 2 N; implies x � 0:
5. For every A 	 R and x; y 2 X; y � �x for all � 2 A; implies y � �x; where
� D infA:

Proposition 4. The following are equivalent.

1. The preorder is almost-Archimedean.
2. acl.W / is a wedge.
3. Every order interval in X is lineally bounded.

A wedge W in X is called generating if X D W � W: The preorder � is
called upward (downward) directed if for every x; y 2 X there is z 2 X such that
x � z; y � z (respectively, x � z; y � z). If the order is linear, then these two
notions are equivalent, so we can say simply that � is directed.

Proposition 5. The following are equivalent.

1. The wedge W is generating.
2. The order � is directed.
3. 8x 2 X; 9y 2 W; x � y:
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Let .X;W / be a preordered vector space. An element u 2 W is called an order
unit if the set Œ�uI u�o is absorbing. It is obvious that an order unit must be different
of 0 (providedX ¤ f0g).
Proposition 6. Let u 2 W n f0g: The following are equivalent.

1. The element u is an order unit.
2. The order interval Œ0I u�o is absorbing.
3. The element u belongs to the algebraic interior of W:
4. ŒRu� D X:

2.2 Completeness in Ordered Vector Spaces

An ordered vector space X is called a vector lattice if any two elements x; y 2 X
have a supremum, denoted by x _ y: It follows that they have also an infimum,
denoted by x^y; and these properties extend to any finite subset ofX . The ordered
vector space X is called order complete (or Dedekind complete) if every bounded
from above subset of X has a supremum and order �-complete (or Dedekind
�-complete) if every bounded from above countable subset of X has a supremum.
The fact that every bounded above subset of X has a supremum is equivalent to the
fact that every bounded below subset of X has an infimum. Indeed, if A is bounded
above, then supfy W y is a lower bound for Ag D infA:

Remark 6. An ordered vector space X is order complete iff for each pair A;B of
nonempty subsets of X such that A � B there exists z 2 X with A � z � B .

This similarity with “Dedekind cuts” in R justifies the term Dedekind complete
used by some authors. Here A � B means that a � b for all .a; b/ 2 A �B:

The following results give characterizations of these properties in terms of
directed subsets.

Proposition 7 ([2], Theorem 1.20). Let X be a vector lattice.

1. The space X is order complete iff every upward directed bounded above subset
of X has a supremum (equivalently, if every bounded above monotone net has a
supremum).

2. The space X is Dedekind �-complete iff every upward directed bounded above
countable subset of X has a supremum (equivalently, if every bounded above
monotone sequence has a supremum).

2.3 Ordered Topological Vector Spaces

In the case of an ordered topological vector space (TVS) .X; �/ some connections
between order and topology hold. In the following propositions .X; �/ will be a
TVS with a preorder or an order, � generated by a wedge W; or by a cone K;
respectively. We start by a simple result.
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Proposition 8. A wedge W is closed iff the inequalities are preserved by limits,
meaning that for all nets .xi W i 2 I /; .yi W i 2 I / in X;

8i 2 I; xi � yi and lim
i
xi D x; lim

i
yi D y H) x � y:

Other results are contained in the following proposition.

Proposition 9 ([2], Lemmas 2.3 and 2.4). Let .X; �/ be a TVS ordered by a
�-closed coneK . Then

1. The topology � is Hausdorff.
2. The coneK is Archimedean.
3. The order intervals are �-closed.
4. If .xi W i 2 I / is an increasing net which is �-convergent to x 2 X , then x D

supi xi :
5. Conversely, if the topology � is Hausdorff, int.K/ ¤ ; and K is Archimedean,

then K is �-closed.

Note 1. In what follows by an ordered TVS we shall understand a TVS ordered by
a closed cone. Also, in an ordered TVS .X; �;K/ we have some parallel notions—
with respect to topology and with respect to order. To make distinction between
them, those referring to order will have the prefix “order-”, as, for instance, “order-
bounded”, “order-complete”, etc., while for those referring to topology we shall
use the prefix “�-”, or “topologically-”, e.g., “�-bounded”, “�-complete” (resp.
“topologically bounded”, “topologically complete”), etc.

2.4 Normal Cones in TVS and in Locally Convex Spaces

Now we introduce a very important notion in the theory of ordered vector spaces.
A coneK in a TVS .X; �/ is called normal if there exists a neighborhood basis at 0
formed of order-convex sets.

The following characterizations are taken from [6] and [35].

Theorem 1. Let .X; �;K/ be an ordered TVS. The following are equivalent.

1. The coneK is normal.
2. There exists a basis B formed of order-convex balanced 0-neighborhoods.
3. There exists a basis B formed of balanced 0-neighborhoods such that for every
B 2 B; y 2 B and 0 � x � y implies x 2 B:

4. There exists a basis B formed of balanced 0-neighborhoods such that for every
B 2 B; y 2 B implies Œ0Iy�o 	 B:

5. There exists a basis B formed of balanced 0-neighborhoods and a number � > 0
such that for every B 2 B; ŒB� 	 �B:

6. If .xi W i 2 I / and .yi W i 2 I / are two nets in X such that 8i 2 I; 0 � xi � yi
and limi yi D 0; then limi xi D 0:
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If further, X is a LCS, then the fact that the cone K is normal is equivalent to
each of the conditions 2–5, where the term “balanced” is replaced with “absolutely
convex”.

Remark 7. Condition 6 can be replaced with the equivalent one:
If .xi W i 2 I /; .yi W i 2 I /, and .zi W i 2 I / are nets inX such that 8i 2 I; xi �

zi � yi , and limi xi D x D limi yi ; then limi zi D x:
The normality implies the fact that the order-bounded sets are bounded.

Proposition 10 ([35], Proposition 1.4). If .X; �/ is a TVS ordered by a normal
cone, then every order-bounded subset of X is �-bounded.

Remark 8. In the case of a normed space this condition characterizes the normality,
see Theorem 3 below. Also, it is clear that a subset Z of an ordered vector space X
is order-bounded iff there exist x; y 2 X such that Z 	 ŒxIy�o:

The existence of a normal solid cone in a TVS makes the topology normable.

Proposition 11 ([2], p. 81, Exercise 11, and [35]). If a Hausdorff TVS .X; �/
contains a solid �-normal cone, then the topology � is normable.

In order to give characterizations of normal cones in locally convex spaces (LCS)
we consider some properties of seminorms. Let � > 0. A seminorm p on a vector
space X is called:

• � -monotone if 0 � x � y H) p.x/ � �p.y/I
• � -absolutely monotone if �y � x � y H) p.x/ � �p.y/I
• � -normal if x � z � y H) p.z/ � � maxfp.x/; p.y/g:

A 1-monotone seminorm is called monotone. Also a seminorm which is
� -monotone for some � > 0 is called sometimes semi-monotone (see [13]).

These properties can be characterized in terms of the Minkowski functional
attached to an absorbing subset A of a vector space X , given by

pA.x/ D infft > 0 W x 2 tAg; .x 2 X:/ (12)

It is well known that if the set A is absolutely convex and absorbing, then pA is a
seminorm on X and

aint.A/ D fx 2 X W pA.x/ < 1g 	 A 	 fx 2 X W pA.x/ � 1g D acl.A/: (13)

Proposition 12 ([6], Proposition 2.5.6). Let A be an absorbing absolutely convex
subset of an ordered vector space X .

1. If ŒA� 	 �A; then the seminorm pA is � -normal.
2. If 8y 2 A; Œ0Iy� 	 �A; then the seminorm pA is � -monotone.
3. If 8y 2 A; Œ�yIy� 	 �A; then the seminorm pA is � -absolutely monotone.
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Based on Theorem 1 and Proposition 12 one can give further characterizations of
normal cones in LCS.

Theorem 2 ([6], [35], and [40]). Let .X; �/ be a LCS ordered by a cone K: The
following are equivalent.

1. The coneK is normal.
2. There exists � > 0 and a family of � -normal seminorms generating the topology
� of X .

3. There exists � > 0 and a family of � -monotone seminorms generating the
topology � of X .

4. There exists � > 0 and a family of � -absolutely monotone seminorms generating
the topology � of X .

All the above equivalences hold also with � D 1 in all places.

2.5 Normal Cones in Normed Spaces

We shall consider now characterizations of normality in the case of normed spaces.
For a normed space .X; k � k/; let BX D fx 2 X W kxk � 1g be its closed unit ball
and SX D fx 2 X W kxk D 1g its unit sphere.

Theorem 3 ([13] and [14]). Let K be a cone in a normed space .X; k � k/: The
following are equivalent.

1. The coneK is normal.
2. There exists a monotone norm k � k1 on X equivalent to the original norm k � k:
3. For all sequences .xn/; .yn/; .zn/ in X such that xn � zn � yn; n 2 N; the

conditions limn xn D x D limn yn imply limn zn D x:
4. The order-convex hull ŒBX � of the unit ball is bounded.
5. The order interval ŒxIy�o is bounded for every x; y 2 X:
6. There exists ı > 0 such that 8x; y 2 K \ SX; kx C yk � ı:
7. There exists � > 0 such that 8x; y 2 K; kx C yk � � maxfkxk; kykg:
8. There exists � > 0 such that kxk � �kyk; for all x; y 2 K with x � y:

We notice also the following result, which can be obtained as a consequence of a
result of T. Andô on ordered LCS (see [2, Theorem 2.10]).

Proposition 13 ([2], Corollary 2.12). Let X be a Banach space ordered by a
generating cone XC and BX its closed unit ball. Then .BX \XC/� .BX \XC/ is
a neighborhood of 0.
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2.6 Completeness and Order Completeness in Ordered TVS

The following notions are inspired by Cantor’s theorem on the convergence of
bounded monotone sequences of real numbers.

Let X be a Banach space ordered by a cone K . The cone K is called:

• regular if every increasing and order-bounded sequence in X is convergent;
• fully regular if every increasing and norm-bounded sequence in X is convergent.

By Proposition 7 if X is a regular normed lattice, then every countable subset of
X has a supremum.

These notions are related in the following way.

Theorem 4 ([14], Theorems 2.2.1 and 2.2.3). If X is a Banach space ordered by
a cone K , then

K fully regular H) K regular H) K normal:

If the Banach spaceX is reflexive, then the reverse implications hold too, i.e.-both
implications become equivalences.

Some relations between completeness and order completeness in ordered TVS
were obtained by Ng [30], Wong [43] (see also the book [44]). Some questions
about completeness in ordered metric spaces are discussed by Turinici [42].

Let .X; �/ be a TVS ordered by a coneK . One says that the space X is

• fundamentally �-order complete if every increasing �-Cauchy sequence inX has
a supremum;

• monotonically sequentially complete if every increasing �-Cauchy sequence in
X is convergent in .X; �/.

In the following propositions .X; �/ is a TVS ordered by a cone K:
The following result is obvious.

Proposition 14.

1. If X is sequentially complete, then X is monotonically sequentially complete.
2. If X is monotonically sequentially complete, then X is fundamentally �-order

complete.
3. If K is normal and generating, and X is fundamentally �-order complete, then
X is monotonically sequentially complete.

The following characterizations of these completeness conditions will be used in
the study of the completeness with respect to the Thompson metric.

Proposition 15. The following conditions are equivalent.

1. X is fundamentally �-order complete.
2. Any decreasing Cauchy sequence in X has an infimum.
3. Any increasing Cauchy sequence in K has a supremum.
4. Any decreasing Cauchy sequence in K has an infimum.
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Proposition 16. The following conditions are equivalent.

1. X is monotonically sequentially complete.
2. Any decreasing Cauchy sequence in X has limit.
3. Any increasing Cauchy sequence in K has limit.
4. Any decreasing Cauchy sequence in K has limit.

Proposition 17. If K is lineally solid, then the following conditions are
equivalent.

1. X is fundamentally �-order complete.
2. Any increasing Cauchy sequence in aint.K/ has a supremum.
3. Any decreasing Cauchy sequence in aint.K/ has an infimum.

Proposition 18. If K is lineally solid, then the following conditions are
equivalent.

1. X is monotonically sequentially complete.
2. Any increasing �-Cauchy sequence in aint.K/ has limit.
3. Any decreasing �-Cauchy sequence in aint.K/ has limit.

3 The Thompson Metric

3.1 Definition and Fundamental Properties

Let X be a vector space andK a cone in X . The relation

x � y ” 9�;� > 0; x � �y and y � �x; (14)

is an equivalence relation inK . One says that two elements x; y 2 K satisfying (14)
are linked and the equivalence classes are called components. The equivalence class
of an element x 2 K will be denoted by K.x/:

Proposition 19. Let X be a vector space ordered by a coneK .

1. K.0/ D f0g and aint.K/ is a component of K if K is lineally solid.
2. Every component Q of K is order-convex, convex, closed under addition and

multiplication by positive scalars, that is Q [ f0g is an order-convex cone.

Proof. We justify only the assertion concerning aintK , the others being trivial. If
x; y 2 aintK; then there exist ˛; ˇ > 0 such that x C ty 2 K for all t 2 Œ�˛; ˛�
and y C sx 2 K for all s 2 Œ�ˇ; ˇ�: It follows y � ˇx 2 K; i.e. y � ˇx; and
x � ˛y 2 K; i.e., x � ˛y: ut

For two linked elements x; y 2 K put

�.x; y/ D fs � 0 W e�sx � y � esxg; (15)
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and let

dT .x; y/ D inf �.x; y/: (16)

Remark 9. It is convenient to define dT for any pair of elements in K , by setting
dT .x; y/ D 1 for any x; y not lying in the same component of K which, by (16),
is in concordance with the usual convention inf; D 1: In this way, dT becomes an
extended (or generalized) (semi)metric (in the sense of Jung [20]) on K and, for all
x; y 2 K; x � y ” d.x; y/ < 1: Though dT is not a usual (semi)metric on
the whole cone, we will continue to call dT a metric. The Thompson metric is also
called, by some authors, the part metric (of the cone K).

Remark 10. It is obvious that the definition of d.x; y/ depends only on the ordering
of the vector subspace spanned by fx; yg. This ensures that if x and y are seen as
elements of some vector subspace Y of X , then dT .x; y/ is the same in Y as in X
(assuming, of course, that Y inherits the ordering from X ).

The initial approach of Thompson [41] was slightly different. He considered
the set

˛.x; y/ D f� � 1 W x � �yg: (17)

and defined the distance between x and y by

ı.x; y/ D ln .maxfinf˛.x; y/; inf ˛.y; x/g/: (18)

The following proposition shows that the relations (16) and (18) yield the same
function.

Proposition 20. For every x; y 2 K the following equality holds

dT .x; y/ D ı.x; y/:

Proof. It suffices to prove the equality for two linked elements x; y 2 K: In this
case let

˛1 D inf˛.x; y/; ˛2 D inf˛.y; x/; and ˛ D maxf˛1; ˛2g:

Put also

d D dT .x; y/ D inf �.x; y/ and ı D ı.x; y/ D ln˛:

For s 2 R let � D es: Then the following equivalences hold

s 2 �.x; y/ ” ��1x � y � �x
” x � �y ^ y � �x ” � 2 ˛.x; y/ \ ˛.y; x/:

(19)
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Consequently � � maxf˛1; ˛2g D ˛ and s � ln ˛ D ı; for every s 2 �.x; y/;
and so

d D inf �.x; y/ � ı: (20)

To prove the reverse inequality, suppose that ˛1 � ˛2 and let � > ˛1. Then � 2
˛.x; y/ \ ˛.y; x/ and the equivalences (19) show that s D ln� 2 �.x; y/; so that
ln� � d: It follows

ı D inffln� W � > ˛1g � d;

which together with (20) yields ı D d: ut
There is another metric defined on the components of K , namely the Hilbert

projective metric, defined by

dH .x; y/ D ln .inf˛.x; y/ � inf˛.y; x// ; (21)

for any two linked elements x; y of K .
The term projective comes from the fact that dH.x; y/ D 0 iff x D �y for some

� > 0:

The original Hilbert’s definition (see [16]) of the metric was the following.
Consider an open bounded convex subset ˝ of the Euclidean space Rn. For two
points x; y 2 ˝ let `xy denote the straight line through x and y, and denote the
points of intersection of `xy with the boundary @˝ of ˝ by x0; y0; where x is
between x0 and y, and y is between x and y0. For x ¤ y in ˝ the Hilbert distance
between x and y is defined by

ıH .x; y/ D ln

�kx0 � yk � ky0 � xk
kx0 � xk � ky0 � yk

�
; (22)

and ıH .x; x/ D 0 for all x 2 ˝; where k � k stands for the Euclidean norm in Rn:

The metric space .˝; ıH/ is called the Hilbert geometry on ˝ . In this geometry
there exists a triangle with non-colinear vertices such that the sum of the lengths of
two sides equals the length of the third side. If ˝ is the open unit disk, the Hilbert
metric is exactly the Klein model of the hyperbolic plane.

The definition (21) of Hilbert metric on cones in vector spaces was proposed by
Bushell [7] (see also [8]).

Note 2. As we shall consider only the Thompson metric, the subscript T will be
omitted, that is d.�; �/ will stand always for the Thompson metric.

In the following proposition we collect some properties of the set �.x; y/:

Proposition 21. Let X be a vector space ordered by a cone K and x; y; z linked
elements in K .
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1. Symmetry: �.y; x/ D �.x; y/:
2. .d.x; y/I1/ 	 �.x; y/ 	 Œd.x; y/I1/: If the cone K is Archimedean, then
d.x; y/ 2 �.x; y/; that is �.x; y/ D Œd.x; y/I1/.

3. �.x; y/C �.y; z/ 	 �.x; z/:
Proof. 1. The symmetry follows from the definition of the set �.x; y/:
2. The inclusion .d.x; y/I1/ 	 �.x; y/ follows from the fact that 0 < � < �

and x � 0 implies �x � �x: The second inclusion follows from the fact that no
� < d.x; y/ belongs to �.x; y/:

Let d D d.x; y/ D inf �.x; y/: Since an Archimedean cone is lineally closed
and y � e�sx 2 K for every s > d , it follows y � e�dx 2 K: Similarly
edx � y 2 K; showing that d 2 �.x; y/:

3. Let s 2 �.x; y/ and t 2 �.y; z/: Then

e�sx � y � esx and e�t y � z � ety:

It follows

e�.sCt /x � e�t y � z and z � ety � esCtx;

which shows that s C t 2 �.x; z/: ut
Now it is easy to show that the function d given by (16) is an extended

semimetric.

Proposition 22. Let X be a vector space ordered by a coneK .

1. The function d defined by (16) is a semimetric on each component of K .
2. The function d is a metric on each component of K iff the order defined by the

cone K is almost Archimedean.

Proof. 1. The fact that d is a semimetric follows from the properties of the sets
�.x; y/ mentioned in Proposition 21.

2. Suppose now that the cone K is almost Archimedean and d.x; y/ D 0 for two
linked elements x; y 2 K: It follows

8s > 0; e�sx � y � esx ”8s > 0; .e�s � 1/x � y � x � .es � 1/x

”8s > 0; �e
s � 1
es

x � y � x � .es � 1/x:

The inequality e�s.es � 1/ � es � 1 implies �e�s.es � 1/x � �.es � 1/x.
Consequently,

8s > 0; �.es � 1/x � y � x � .es � 1/x ” 8� > 0; ��x � y � x � �x:

Taking into account that K is almost Archimedean it follows y � x D 0; that is
y D x:
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To prove the converse, suppose that K is not almost Archimedean. Then there
exists a line D D fx C �y W � 2 Rg; with y ¤ 0; contained in K . If x D 0; then
˙y 2 K; that would imply y D 0; a contradiction.

Consequently x ¤ 0: Observe that in this case, for all � 2 R;

d.x; x C �y/ D 0; (23)

which shows that d is not a metric. The equality (23) is equivalent to

8s > 0; e�sx � x C �y � esx: (24)

The inclusionD 	 K implies x ˙ �y 2 K for all � > 0; and so

�x � �y � x;

for all � > 0: Taking � D �.1 � e�s/�1 the first inequality from above becomes

�.1 � e�s/x � �y ” e�sx � x C �y:

From the second inequality one obtains

�y � .1 � e�s/x D e�s.es � 1/x � .es � 1/x;

which implies

x C �y � esx;

showing that the inequalities (24) hold. ut
Remark 11. By the triangle inequality, the equality (23) implies that d.u; v/ D 0

for any two points u; v on D, that is

d.x C �y; x C �y/ D 0;

for all �;� 2 R:

Example 1. If X D Rn and K D RnC, then the components of K are f0g; .0I1/ �
ei ; 1 � i � n; and aint.K/ D fx 2 K W xi > 0; i D 1; : : : ; ng; while d.x; y/ D
maxfj lnxi � lnyi j W 1 � i � ng; for any x D .xi /

n
iD1 and y D .yi /

n
iD1, with

xi ; yi > 0; i D 1; : : : ; n.

The following proposition contains some further properties of the sets �.x; y/
and their correspondents for the Thompson metric.
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Proposition 23. Let X be a vector space ordered by a coneK .

1. For x; y 2 K and �;� > 0

.i/ �.�x; �y/ D �.x; y/ and so d.�x; �y/ D d.x; y/I

.ii/ �.�x; �x/ D Œˇ̌ ln
��
�

�ˇ̌I1/ and so d.�x; �x/ D
ˇ̌
ˇ̌
ˇ ln

 
�

�

!ˇ̌
ˇ̌
ˇI

.iii/ If �x � y � �x; for some�;� > 0; then d.x; y/ � ln maxf��1; �g:

2. If �.x; y/ 	 �.x0; y0/; then d.x; y/ � d.x0; y0/: The converse is true if the order
is Archimedean. Also

maxfd.x; y/; d.x0; y0/g D infŒ�.x; y/ \ �.x0; y0/�: (25)

3. The following monotony inequalities hold

.i/ x � x0 and y0 � y H) d.x0; x0 C y0/ � d.x; x C y/I
.i i/ x � x0 � y0 � y H) d.x0; y0/ � d.x; y/: (26)

4. For all x; y; x0; y0 2 K and �;� > 0;

d.�x C �y; �x0 C �y0/ � maxfd.x; x0/; d.y; y0/g: (27)

Proof. 1. The equalities from (i) are obvious.
To prove (ii) suppose � > �: Then e�sx � x � ���1x implies �e�sx � �x;

for every s > 0: Since

���1x � esx ” s � ln
�
���1

�
;

it follows �.�x; �x/ D  ln
�
���1

�I1/ and d.�x; �x/ D ln
�
���1

�
:

To prove (iii) observe that �x � y is equivalent to x � ��1y; that is ��1 2
˛.x; y/; and so ��1 � inf˛.x; y/: Similarly, y � �x is equivalent to � 2
˛.y; x/; implying � � inf˛.x; y/: It follows

ln maxf��1; �g � ln.maxfinf˛.x; y/; inf ˛.y; x/g D d.x; y/:

2. The first implication is obvious. The converse follows from the fact that
�.x; y/ D Œd.x; y/I1/ and �.x0; y0/ D Œd.x0; y0/I1/ if K is Archimedean
(Proposition 21 (2)).

The equality (25) follows from the inclusions

.d.x; y/I1/ 	 �.x; y/ 	 Œd.x; y/I1/ and

.d.x0; y0/I1/ 	 �.x0; y0/ 	 Œd.x0; y0/I1/:
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3. The inequality (i) for the metric d will follow from the inclusion

�.x; x C y/ 	 �.x0; x0 C y0/: (28)

Let s 2 �.x; x C y/; that is s > 0 and

e�sx � x C y � esx:

Then

e�sx0 � x0 � x0 C y0 � x0 C y D x C y C .x0 � x/
� esx C es.x0 � x/ D esx0;

showing that s 2 �.x0; x0 C y0/:
The inequality (ii) follows from (i) by taking y WD y � x � y0 � x0 DW y0:

4. By 1 (i), d.�x; �x0/ D d.x; x0/ and d.�y;�y0/ D d.y; y0/; so that it is
sufficient to show that

d.x C y; x0 C y0/ � maxfd.x; x0/; d.y; y0/g: (29)

Taking into account (25) and the assertion 2 of the proposition, the inequality (29)
will be a consequence of the inclusion

�.x; x0/ \ �.y; y0/ 	 �.x C y; x0 C y0/:

But, if s 2 �.x; x0/ \ �.y; y0/; then e�sx � x0 � esx and e�sy � y0 � esy;
which by addition yield e�s.x C y/ � x0 C y0 � es.x C y/; that is s 2 �.x C
y; x0 C y0/: ut

Based on these properties one obtains other properties of the Thompson metric.

Theorem 5. Let X be a vector space ordered by a coneK .

1. The function d is quasi-convex with respect to each of its argument, that is

d..1 � t/x C ty; v/ � maxfd.x; v/; d.y; v/g and

d.u; .1 � t/x C ty/ � maxfd.u; x/; d.u; y/g; (30)

for all x; y; u; v 2 K and t 2 Œ0I 1�:
2. The following convexity-type inequalities hold

d..1� t/x C ty; v/ � ln
�
.1 � t/ed.x;v/ C ted.y;v/� ;

d.u; .1� t/x C ty/ � ln
�
.1 � t/ed.u;x/ C ted.u;y/� ; (31)

for all x; y; u; v 2 K and t 2 Œ0I 1�; and
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d..1 � t/x C ty; .1 � s/x C sy/ � ln
�js � t/ed.x;y/ C 1 � js � t j� ; (32)

for all x; y 2 K; x � y; and s; t 2 Œ0I 1�:
Proof. 1. By (25) and Proposition 23 (1) (i),

d..1�t /xCty; v/D d..1�t /xCty; .1�t /vCtv/
�maxfd..1�t /x; .1�t /v/; d.ty; tv/gD maxfd.x; v/; d.y; v/g;

showing that the first inequality in (30) holds. The second one follows by the
symmetry of the metric d:

2. For s1 2 �.x; v/ and s2 2 �.y; v/ put s D ln ..1 � t/es1 C tes2 / : By a
straightforward calculation it follows that

..1 � t/es1 C tes2 / � ..1� t/e�s1 C te�s2 / D 2t.1 � t/.cosh.s1 � s2/ � 1/ � 0;

which implies

�s � ln ..1 � t/e�s1 C te�s2 / ;
or, equivalently,

e�s � .1 � t/e�s1 C te�s2 :

The above inequality and the inequalities e�s1v � x; e�s2v � y imply

e�sv � ..1 � t/e�s1 C te�s2 / v � .1� t/x C ty:

Similarly, the inequalities x � es1v; y � es2v; and the definition of s imply

.1 � t/x C ty � ..1 � t/e�s1 C te�s2 / v D esv:

It follows s 2 �..1 � t/x C ty; v/ and so

d..1 � t/x C ty; v/ � s D ln ..1 � t/e�s1 C te�s2 / ;

for all s1 2 �.x; v/ and all s2 2 �.y; v/: Passing to infimum with respect to s1
and s2; one obtains the first inequality in (31). The second inequality follows by the
symmetry of d .

It is obvious that (32) holds for s D t , so we have to prove it only for s ¤ t: By
symmetry it suffices to consider only the case t > s: Putting zt D .1 � t/x C ty
and zs D .1� s/x C sy; it follows zs D .1� s

t
/xC s

t
zt ; so that, applying twice the

inequality (31),

d.x; zt / � ln
�
1 � t C ted.x;y/� ;
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and

d.zs; zt / � ln
��
1 � s

t

�
ed.x;zt / C s

t

�

� ln
��
1 � s

t

�
.1� t C ted.x;y//C s

t

�
D ln

�
.t � s/ed.x;y/ C 1 � .t � s/� :

ut
Recall that a metric space .X; �/ is called metrically convex if for every pair of

distinct points x; y 2 X there exists a point z 2 X n fx; yg such that

�.x; y/ D �.x; z/C �.z; y/: (33)

The following theorem, asserting that every component ofK is metrically convex
with respect to the Thompson metric, is a slight extension of a result of Nussbaum
[31, Proposition 1.12].

Theorem 6. Every component of K is metrically convex with respect to the
Thompson metric d . More exactly, for every pair of distinct points x; y 2 X and
every t 2 .0I 1/ the point

z D sinh r.1 � t/
sinh r

x C sinh rt

sinh r
y;

where r D d.x; y/, satisfies (33).

Proof. By the triangle inequality it suffices to show that

r D d.x; y/ � d.x; z/C d.z; y/: (34)

If s 2 �.x; y/; that is e�sx � y � esx; then

�
sinh r.1 � t/

sinh r
C sinh rt

sinh r
e�s

�
x � z �

�
sinh r.1 � t/

sinh r
C sinh rt

sinh r
es
�
x: (35)

Putting

�.s/ D sinh r.1 � t/
sinh r

C sinh rt

sinh r
e�s and �.s/ D sinh r.1 � t/

sinh r
C sinh rt

sinh r
es;

the inequalities (35) imply

d.x; z/ � ln.maxf�.s/�1; �.s/g/;

for all s > r: Since the functions �.s/�1 and �.s/ are both continuous on .0I1/, it
follows
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d.x; z/ � ln.maxf�.r/�1; �.r/g/: (36)

Taking into account the definition of the function sinh; a direct calculation shows
that �.r/�1 D �.r/ D ert , and so the inequality (36) becomes

d.x; z/ � rt:

By symmetry

d.z; y/ � r.1 � t/;

so that (34) holds. ut

3.2 Order-Unit Seminorms

Suppose that X is a vector space ordered by a cone K . For u 2 K n f0g put

Xu D [��0�Œ�uI u�o: (37)

It is obvious thatXu is a nontrivial subspace ofX .Ru 	 Xu/; and that Œ�uI u�o is
an absorbing absolutely convex subset of Xu and so u is a unit in the ordered vector
space .Xu; Ku/, where Ku is the cone in Xu given by

Ku D K \ Xu ; (38)

or, equivalently, by

Ku D [��0�Œ0I u�o : (39)

The Minkowski functional

jxju D inff� > 0 W x 2 �Œ�uI u�og; (40)

corresponding to the set Œ�uI u�o; is a seminorm on the space Xu and

j � uju D juju D 1: (41)

For convenience, denote by the subscript u the topological notions corresponding
to the seminorm j � ju. Let also Bu.x; r/; BuŒx; r� be the open, respectively closed,
ball with respect to j � ju. For x 2 Xu let

Mu.x/ D f� > 0 W x 2 �Œ�uI u�og; (42)
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so that

jxju D infMu.x/:

Taking into account the convexity of Œ�uI u�o it follows that

.jxjuI1/ 	Mu.x/ 	 ŒjxjuI1/; (43)

for every x 2 Xu:

Proposition 24. Let u 2 K n f0g and Xu; Ku; j � ju as above.

1. If v 2 K is linked to u, then Xu D Xv; Ku D Kv, and the seminorms j � ju; j � jv
are equivalent. More exactly the following inequalities hold for all x 2 Xu

jxju � jvjujxjv and jxjv � jujvjxju: (44)

2. The Minkowski functional j � ju is a norm on Xu iff the cone Ku is almost
Archimedean.

3. The seminorm j � ju is monotone: x; y 2 Xu and 0 � x � y implies jxju � jyju:
4. The coneKu is generating and normal in Xu :

5. For any x 2 Xu and r > 0; Bu.x; r/ 	 x C rŒ�uI u�o 	 BuŒx; r�:

6. The following equalities hold:

aint.Ku/ D K.u/ D intu.Ku/: (45)

7. The following are equivalent:

(i) Ku is j � ju-closed;
(ii) Ku is lineally closed;

(iii) Ku is Archimedean.
In this case, jxju 2Mu.x/ .that is Mu.x/ D ŒjxjuI1// and BuŒ0; 1� D

Œ�uI u�o:
Proof. 1. If v � u; then v 2 Xu and u 2 Xv which imply Xu D Xv and Ku D Kv:

We have

8˛ > jvju; �˛u � v � ˛u: (46)

Let x 2 Xu. If ˇ > 0 is such that

� ˇv � x � ˇv; (47)

then

8˛ > jvju; �˛ˇu � x � ˛ˇu:
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It follows

jxju � ˛ˇ;

for all ˇ > 0 for which (47) is satisfied and for ˛ > jvju; implying jxju �
jvjujxjv: The second inequality in (44) follows by symmetry.

2. It is known that the Minkowski functional corresponding to an absorbing
absolutely convex subset Z of a linear space X is a norm iff the set Z is
radially bounded in X (i.e., any ray from 0 intersects Z in a bounded interval).
Since a cone is almost Archimedean iff any order interval is lineally bounded
(Proposition 4), the equivalence follows.

3. If 0 � x � y; then Mu.y/ 	 Mu.x/ and so jyju D infMu.y/ � infMu.x/ D
jxju:

4. The fact that Ku is generating follows from definitions. The normality follows
from the fact that the seminorm j � ju is monotone and Theorem 3.

5. If p is a seminorm corresponding to an absorbing absolutely convex subset Z of
a vector space X , then

Bp.0; 1/ 	 Z 	 BpŒ0; 1�;
which in our case yield

Bu.0; 1/ 	 Œ�uI u�o 	 BuŒ0; 1�;

which, in their turn, imply the inclusions from 4.
6. We shall prove the inclusions

intu.Ku/ 	 aint.Ku/ 	 K.u/ 	 intu.Ku/: (48)

The first inclusion from above is a general property in TVS.
The inclusion aint.Ku/ 	 K.u/:
For x 2 aint.Ku/ we have to prove the existence of ˛; ˇ > 0 such that

˛u � x � ˇu:

Since x 2 aint.Ku/ there exists ˛ > 0 such that xCtu 2 Ku for all t 2 Œ�˛; ˛�
which implies x � ˛u 2 Ku; that is x � ˛u:

From (39) and the fact that x 2 Ku follows the existence of ˇ > 0 such that
x 2 ˇŒ0I u�o; so that x � ˇu:

The inclusion K.u/ 	 intu.Ku/:

If x 2 K.u/; then there exist ˛; ˇ > 0 such that ˛u � x � ˇu: But then

Bu

�
x;
˛

2

�
D x C Bu

�
0;
˛

2

�
	 x C ˛

2
Œ�uI u�o 	

h˛
2

uI
�
ˇ C ˛

2

�
u
i
o
	 Ku;

proving that x is a j � ju-interior point of Ku:



Normal Cones and Thompson Metric 233

7. The implication (i)) (ii) is a general property. By Proposition 3, (ii) ” (iii).
It remains to prove the implication (iii)) (i).

Let x 2 Xu be a point in the j � ju-closure ofKu: Then for every n 2 N there exists
xn 2 Ku such that jxn � xju < 1

n
: By the definition of the seminorm j � ju;

xn � x 2 1
n
Œ�uI u�o;

so that

�x � �x C xn � 1

n
u;

for all n 2 N:

By Proposition 3, this implies �x � 0; that is x � 0; which means that x 2 Ku:

Suppose now that the cone Ku is Archimedean. For x 2 Xu n f0g put
˛ WD jxju > 0: Then there exists a sequence ˛n & ˛ such that x 2 ˛nŒ�uI u�o
for all n 2 N; so that

1

˛n
x C u � 0 and � 1

˛n
x C u � 0;

for all n 2 N: Since the coneKu is lineally closed, it follows

1

˛
x C u � 0 and � 1

˛
x C u � 0;

which means x 2 ˛Œ�uI u�o:
By 4, Œ�uI u�o 	 BuŒ0; 1�: If x 2 BŒ0; 1� (i.e., jxju � 1), then Mu.x/ D

ŒjxjuI1/; and so

x 2 jxju Œ�uI u�o 	 Œ�uI u�o: ut

The above construction corresponds to the one used in LCS. For a bounded
absolutely convex subsetA of a locally convex space .X; �/ one considers the space
XA generated by A,

XA D [�>0�A D [1nD1nA: (49)

Then A is an absolutely convex absorbing subset of XA and the attached
Minkowski functional

pA.x/ D inff� > 0 W x 2 �Ag; x 2 A; (50)

is a norm on XA :
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Theorem 7. Let .X; �/ be a Hausdorff locally convex space and A a bounded
absolutely convex subset of X .

1. The Minkowski functional pA is a norm onXA and the topology generated by pA
is finer than that induced by � (or, in other words, the embedding of .XA; pA/ in
.X; �/ is continuous).

2. If, in addition, the set A is sequentially complete with respect to �; then .XA; pA/
is a Banach space. In particular, this is true if the space X is sequentially
complete.

In the case when .XA; pA/ is a Banach space one says that A is a Banach disc.
These spaces are used to prove that every locally convex space is an inductive
limit of Banach spaces and that weakly bounded subsets of a sequentially complete
Hausdorff LCS are strongly bounded. (A subset Y of a LCS X is called strongly
bounded if

supfjx�.y/j W y 2 Y; x� 2M g <1;

for every weakly bounded subset M of X�/:
For details concerning this topic, see the book [36, Sect. 3.2], or [21, Sect. 20.11].
In our case, the normality ofK guarantees the completeness of .Xu; j � ju/:

Theorem 8. Let .X; �/ be a Hausdorff LCS ordered by a closed normal cone K
and u 2 K n f0g:
1. The functional j � ju is a norm on Xu and the topology generated by j � ju on Xu

is finer than that induced by � (or, equivalently, the embedding of .Xu; j � ju/ in
.X; �/ is continuous).

2. If the space X is sequentially complete, then .Xu; j � ju/ is a Banach space.
3. If u is a unit in .X;K/; then Xu D X: If u 2 int.K/; then the topology generated

by j � ju agrees with �:

Proof. By Theorem 2, we can suppose that the topology � is generated by a directed
family P of � -monotone seminorms, for some � > 0:

1. By Proposition 10, the set Œ�uI u�o is bounded and so j � ju is a norm. We show
that the embedding of .Xu; j � ju/ in .X; P / is continuous.

Let p 2 P: The inequalities �jxjuu � x � jxjuu imply

0 � x C jxjuu � 2jxjuu and 0 � �x C jxjuu � 2jxjuu;

for all x 2 Xu

By the � -monotonicity of the seminormp these inequalities imply in their turn

2p.x/ �p.x C jxjuu/C p.x � jxjuu/ D p.x C jxjuu/C p.�x C jxju u/

�4� jxju p.u/:
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Consequently, for every p 2 P;

p.x/ � 2�p.u/jxju; (51)

for all x 2 Xu; which shows that the embedding of .Xu; j � ju/ in .X; �/ is
continuous.

2. Suppose now that .X; �/ is sequentially complete and let .xn/ be a j � ju-Cauchy
sequence in Xu. By (51), .xn/ is p-Cauchy for every p 2 P; so it is �-convergent
to some x 2 X: By the Cauchy condition, for every " > 0 there is n0 2 N such
that jxnCk � xnju < "; for all n � n0 and all k 2 N: By the definition of the
functional j � ju; it follows

�"u � xnCk � xn � "u;

for all n � n0 and all k 2 N: Letting k !1; one obtains

�"u � x � xn � "u;

for all n � n0, which implies x 2 Xu and jx � xnju � "; for all n � n0. This

shows that xn
j�ju�! x:

3. If u is a unit in .X;K/, then the order interval Œ�uI u�o is absorbing, and so
X D [1nD1n Œ�uI u�o D Xu:

Suppose now that u 2 int.K/: Then u is a unit in .X;K/, so thatX D Xu and,
by 1, the topology �u generated by j � ju is finer than �; � 	 �u:

Since u 2 int.K/, there exists p 2 P and r > 0 such that BpŒu; r� 	 K: Let
x 2 X; x ¤ 0:

If p.x/ D 0, then u˙ tx 2 BpŒu; r� 	 K for every t > 0; so that �t�1u �
x � t�1u for all t > 0; which implies jxju D 0; in contradiction to the fact that
j � ju is a norm on X .

Consequently, p.x/ > 0 and u˙ p.x/�1rx 2 BpŒu; r� 	 K; that is

�p.x/
r

u � x � p.x/

r
u;

and so

jxju � p.x/

r
:

But then, BpŒ0; r� 	 Bj�ju Œ0; 1�, which implies Bj�ju Œ0; 1� 2 �; and so �u 	 �:
ut

Remark 12. Incidentally, the proof of the third assertion of the above theorem gives
a proof to Proposition 11.
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3.3 The Topology of the Thompson Metric

We shall examine some topological properties of the Thompson extended metric d .
An extended metric � on a set Z defines a topology in the same way as a usual one,
via balls. In fact all the properties reduce to the study of metric spaces formed by
the components with respect to �. For instance, a sequence .zn/ in .Z; �/ converges
to some z 2 Z; iff there exist a componentQ with respect to � and n0 2 N such that
z 2 Q; xn 2 Q for n � n0; and �.zn; z/! 0 as n!1; that is .zn/n�n0 converges
to z in the metric space .Q; �jQ/:

The following results are immediate consequences of the definition.

Proposition 25. Let X be a vector space ordered by a coneK .

1. The following inclusions hold

Bd .x; r/ 	 Œe�r xI erx�o 	 Bd Œx; r�: (52)

If K is Archimedean, then Bd Œx; r� D Œe�r xI erx�o:
2. If K is Archimedean, then the set ŒxI1/o WD fz 2 K W x � zg and the order

interval ŒxIy�o are d -closed, for every x 2 K and y � x:
3. Let x; y 2 K with x � y: Then the order interval ŒxIy�o is d -bounded iff x � y:
Proof. 1. If d.x; y/ < r; then there exists s; d.x; y/ � s < r; such that
y 2 Œe�sxI esx�o: Since Œe�sxI esx�o 	 Œe�r xI erx�o; the first inclusion in (52)
follows. Obviously, y 2 Œe�r xI erx�o implies d.x; y/ � r:

Suppose that K is Archimedean and d.x; y/ D r: Let tn > r with tn & r:

Then e�tnx � y � etnx for all n: Since K is Archimedean, these inequalities
imply e�rx � y � erx:

2. Let z be in the d -closure of ŒxI1/o : Let tn > 0; tn & 0: Then for every n 2 N

there exists zn � x such that d.z; zn/ < tn; implying x � zn � etnz: The
inequalities x � etnz yield for n!1; x � z; that is z 2 ŒxI1/o:

In a similar way one shows that Œ0I x�0 is d -closed. But then, ŒxIy�o D
ŒxI1/o \ Œ0Iy�o is also d -closed.

3. If ŒxIy�o is bounded, then d.x; y/ < 1; and so x � y: Conversely, if x � y;

then there exist ˛; ˇ > 0 such that ˛x � y � ˇx: Then, x � z � y implies
x � z � y � ˇx, and so, by Proposition 23 (1) (iii), d.x; z/ � lnˇ: ut

Proposition 26. Let X be a vector space ordered by a coneK .

1. The multiplication by scalars � W .0I1/ � K ! K and the addition
C W K �K ! K are continuous with respect to the Thompson metric.

2. If Q is a component of K , then the mapping .�; x; y/ 7! .1 � �/x C �y from
Œ0I 1� �Q2 to Q is continuous with respect to the Thompson metric.

Proof. 1. Let .�0; x0/ 2 .0I1/ �K . Appealing to Proposition 23 (1) it follows

d.�x; �0x0/ �d.�x; �0x/C d.�0x; �0x0/
Dj ln� � ln�0j C d.x; x0/! 0;
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if �! �0 and x
d�! x0.

The continuity of the addition can be obtained from (27) (with � D � D 1).
2. Let �; �0 2 Œ0I 1� and x; x0; y; y0 2 Q: This time we shall appeal to the

inequalities (27) and (32) to write

d..1� �/x C �y; .1 � �0/x0 C �0y0/
� d..1��/xC�y; .1��/x0C�y0/Cd..1��/x0C�y0; .1��0/x0C�0y0/
� maxfd.x; x0/; d.y; y0/g C ln

�j� � �0jed.x0;y0/ C 1 � j� � �0j�! 0

as �! �0; x
d�! x0 and y

d�! y0. ut
Corollary 1. Every component of K is path connected with respect to the
Thompson metric.

Proof. Follows from Proposition 26 (2). If x0; x1 are in the same component, then
'.t/ D .1 � t/x0 C tx1; t 2 Œ0I 1�; is a path connecting x0 and x1: ut
Remark 13. The equivalence classes with respect to the equivalence � are exactly
the equivalence classes considered by Jung [20] (the equivalence relation considered
by Jung is x ' y ” d.x; y/ <1; see Remark 9). Since these classes are both
open and closed, it follows that the components of K with respect to � are, in fact,
the connected components ofK with respect to the Thompson (extended) metric d .

In the following proposition we give a characterization of d -convergent mono-
tone sequences.

Proposition 27. Let X be a vector space ordered by an Archimedean coneK .

1. If .xn/ is an increasing sequence inK , then .xn/ is d -convergent to an x 2 K iff

.i/ 8n 2 N; xn � x; and

.i i/ 8� > 1; 9k 2 N; x � �xk:

In this case, x D supn xn and there exists k 2 N such that xn 2 K.x/ for all
n � k:

2. If .xn/ is a decreasing sequence in K , then .xn/ is d -convergent to an x 2 K iff

.i/ 8n 2 N; x � xn; and

.i i/ 8� 2 .0I 1/; 9k 2 N; x � �xk:

In this case, x D infn xn and there exists k 2 N such that xn 2 K.x/ for all
n � k:
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3. Let .X; �/ be a TVS ordered by a cone K . If .xn/ is a d -Cauchy sequence in K

which is �-convergent to x 2 K , then xn
d�! x:

Proof. We shall prove only the assertion 1, the proof of 2 being similar.
Suppose that the condition (i) and (ii) hold and let " > 0: Then � WD e" > 1; so

that, by (ii), there exists k 2 N such that x � �xk D e"xk: Taking into account the
monotony of the sequence .xn/ it follows that

e�"xn � xn � x � e"xn;

for all n � k, which implies d.x; xn/ � " for all n � k; that is xn
d�! x as n!1:

Conversely, suppose that .xn/ is an increasing sequence in K which is d -
convergent to x 2 K: For � > 1 put " WD ln� > 0: Then there exists k 2 N

such that

8n � k; d.x; xn/ < ";
which implies

8n � k; e�"xn � x � e"xn:
By the second inequality above, x � �xk; which shows that (i) holds. Since .xn/ is
increasing the first inequality implies that for every n 2 N

e�"xn � x;
for all " > 0: By Proposition 3, the cone K is lineally closed, so that the above
inequality yields for "& 0; xn � x for all n 2 N; that is (i) holds too.

It is clear that if xn
d�! x, then there exists k 2 N such that d.x; xn/ � 1 < 1;

for all n � k; which implies xn 2 K.x/ for all n � k:
It remains to show that x D supn xn: Let y be an upper bound for .xn/. Then for

every n 2 N;

xn � xnCk � y ” xnCk 2 ŒxnIy�o; (53)

for all k 2 N: By Proposition 25 (2) the interval ŒxnIy�o is d -closed, so that, letting
k ! 1 in (53) it follows x 2 ŒxnIy�o: The inequality x � y shows that x D
supn xn:

3. It follows that .xn/ is eventually contained in a component Q of K; so we can
suppose xn 2 Q; n 2 N: Since .xn/ is d -Cauchy, there exists n0 such that
d.xn; xn0/ < 1 for all n � n0: Then e�1xn0 � xn � exn0 ; for all n � n0: Letting
n ! 1; one obtains e�1xn0 � x � exn0 ; which shows that x � xn0 ; that is
x 2 Q: Now for " > 0 there exists n" 2 N such that d.xnCk; xn/ < " for all
n � n" and all k 2 N. Then for every n � n"; e�"xn � xnCk � e"xn; for all
k 2 N: Letting k !1; one obtains e�"xn � x � e"xn; implying d.xn; x/ � "
for all n � n", that is xn

d�! x: ut
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3.4 The Thompson Metric and Order-Unit Seminorms

The main aim of this subsection is to show that the Thompson metric and the
metric seminorms are equivalent on each component of K . We begin with some
inequalities.

Proposition 28. Let X be a vector space ordered by a cone K; u 2 K n f0g and
x; y 2 K.u/: The following relations hold.

1. d.x; y/ D ln.maxfjxjy; jyjxg/:
2. (i) d.x; y/ � j ln jxju � ln jyjuj; or, equivalently,

(ii) jxju � ed.x;y/jyju and jyju � ed.x;y/jxju:
3. e�d.x;u/ � jxju � ed.x;u/:
4. jujx � ed.x;y/jujy:
5. d.x; y/ � ln

�
1C jx � yju �maxfjujx; jujyg

�
:

6.
�
ed.x;y/ � 1� � minfjuj�1x ; juj�1y g � jx � yju �

�
2ed.x;y/ C e�d.x;y/ � 1� �

minfjxju; jyjug:
7.
�
1 � e�d.x;u/� �maxfjuj�1x ; juj�1y g � jx � yju:

8. jx � yjx � 1 � e�d.x;y/.
Proof. 1. Recalling (42), it is easy to check that

s 2 �.x; y/ ” es 2Mx.y/ \My.x/;

and so

d.x; y/ D ln
�

inf
˚
Mx.y/ \My.x/

�� D ln.maxfjxjy; jyjxg/:

2. By (44), jxju � jyjujxjy: Taking into account 1, it follows

d.x; y/ � ln jxjy � ln jxju � ln jyju:

By symmetry, d.x; y/ � ln jyju� ln jxju; so that 2 (i) holds. It is obvious that
(i) and (ii) are equivalent.

3. Taking y WD u in both the inequalities from 2 (ii), one obtains

jxju � ed.x;u/jyju and 1 � ed.x;u/jxju :

4. By (44), jujx � jujyjyjx and, by 3, jyjx � ed.x;y/; hence jujx � ed.x;y/jujy:
5. By (44) and the triangle inequality

jyjx � jxjx C jx � yjx � 1C jx � yjujujx ; and

jxjy � jyjy C jx � yjy � 1C jx � yjujujy ;
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so that

maxfjxjy; jyjxg � 1C jx � yju �maxfjujx; jujyg :

The conclusion follows from 1.
6. The inequality 6 can be rewritten as jx � yju maxfjujx; jujyg � ed.x;y/ � 1; so

that

jx � yju �
�
ed.x;y/ � 1�maxfjujx; jujyg

��1 D �ed.x;y/ � 1� �minfjuj�1x ; juj�1y g:

To prove the second inequality, take s 2 �.x; y/ arbitrary. Then �.es � 1/x �
x�y � .1� e�ss/x; so that 0 � x�yC .es � 1/x � .es��s/x: The monotony
of j � ju and the triangle inequality imply

jx � yju � .es � 1/jxu � jx � y � .es � 1/.es � e�s/xju � .es � e�s/jxju;

so that jx � yju �
�
2es C e�s � 1�jxju: Since this holds for every s 2 �.x; y/ it

follows

jx � yju �
�
2ed.x;y/ C e�d.x;y/ � 1�jxju:

By interchanging the roles of x and y in the above inequality, one obtains

jx � yju �
�
2ed.x;y/ C e�d.x;y/ � 1�jyju:

These two inequalities imply the second inequality in 6.
7. By 4,

juj�1x � e�d.x;y/juj�1y and juj�1y � e�d.x;y/juj�1x ;

so that

min
˚juj�1x ; juj�1y � � e�d.x;y/ max

˚juj�1x ; juj�1y �:
The conclusion follows by 6.

8. This can be obtained by taking u WD x in 7. ut
Theorem 9. Let X be a vector space ordered by a cone K and u 2 K n f0g. Then
the Thompson metric and the u-seminorm are topologically equivalent onK.u/:

Proof. We have to show that d and j � ju have the same convergent sequences, that is

xn
d�! x ” xn

j�ju�! x;

for any sequence .xn/ in K.u/ and any x 2 K.u/. But, by Proposition 24 (1),
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xn
j�ju�! x ” xn

j�jx��! x;

hence we have to prove the equivalence

xn
d�! x ” xn

j�jx��! x: (54)

Suppose that xn
d�! x: By Proposition 28 (6)

jxn � xjx � 2ed.xn;x/ C e�d.xn;x/ � 1! 0 as n!1;

showing that xn
j�jx��! x:

Conversely, if xn
j�jx��! x; then by Proposition 28 (8),

jxn � xjx � 1 � e�d.xn;x/;

which implies d.xn; x/! 0: ut
Remark 14. The seminorm j � ju and the metric d are not metrically equivalent on
Xu: Take, for instance, U WD Œ0I u�o \K.u/: Then jxju � 1 for every x 2 U . But U
is not d -bounded because e�nu belongs to U for all n 2 N; and d.xn; u/ D n!1
for n!1:
Corollary 2 ([9] or [17]). LetK be a solid normal cone in a Hausdorff LCS .X; �/:
Then the topology generated by d on intK agrees with the restriction of � to intK .

Proof. Let u 2 intK: By Theorem 8, Xu D X and the topology generated by
j � ju agrees with �; that is j � ju is a norm on X generating the topology �: Since
K.u/ D intK; Theorem 9 implies that d and j � ju are topologically equivalent on
K.u/: ut

4 Completeness Properties

4.1 Self-bounded Sequences and Self-complete Sets in a Cone

Let X be a vector space ordered by a cone K . A sequence .xn/ in K is called:

• self order-bounded from above (or upper self-bounded) if for every � > 1 there
exists k 2 N such that xn � �xk for all n � k.

• self order-bounded from below (or lower self-bounded) if for every � 2 .0I 1/
there exists k 2 N such that xn � �xk for all n � k.

• self order-bounded (or, simply, self-bounded) if is self order-bounded both from
below and from above.
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Remark 15. If the sequence .xn/ is increasing, then it is self order-bounded from
above iff for every � > 1 there exists k 2 N such that �xk is an upper bound for the
sequence .xn/.

Similarly, if the sequence .xn/ is decreasing, then it is self order-bounded from
below iff for every � 2 .0I 1/ there exists k 2 N such that �xk is an lower bound
for the sequence .xn/.

The following propositions put in evidence some connections between self order
bounded sequences and d -Cauchy sequences.

Proposition 29. Let X be a vector space ordered by a coneK .

1. Any d -Cauchy sequence in K is self-bounded.
2. An increasing sequence in K is upper self-bounded iff it is d -Cauchy.
3. A decreasing sequence in K is lower self-bounded iff it is d -Cauchy.

Proof. 1. Let .xn/ be a d -Cauchy sequence in K . If � > 1; then for " WD ln� > 0

there exists k 2 N such that

e�"xn � xk � e"xn ” ��1xn � xk � �xn ;

for all n � k: Consequently xn � �xk; for all n � k; proving that .xn/ is upper
self-bounded.

The lower self-boundedness of .xn/ is proved similarly, taking "0 D � ln�;
for � 2 .0I 1/:

2. It suffices to prove that an increasing upper self-bounded sequence is d -Cauchy.
For " > 0 let � D e" and k 2 N such that xn � �xk for all n � k: It follows that

e�"xm � xm � xn � �xk � �xm D e�"xm ;

for all n � m � k. Consequently, d.xn; xm/ � "; for all n � m � k, which
shows that the sequence .xn/ is d -Cauchy.

The proof of 3 is similar to the proof of 2, so we omit it. ut
Proposition 30. Let X be a vector space ordered by an Archimedean cone K and
.xn/ an increasing sequence in K . The following statements are equivalent.

1. The sequence .xn/ is d -convergent.
2. The sequence .xn/ is d -Cauchy and has a supremum.
3. The sequence .xn/ is upper self-bounded and has a supremum.

In the affirmative case xn
d�! supn xn:

Proof. 1) 2 Follows from Proposition 27.

2) 3. Follows from Proposition 29 (1)
3) 1. If x D supn xn; then xn � x for all n 2 N; showing that condition (i)
from Proposition 27 (1) holds. Now let � > 1: Since .xn/ is upper self-bounded
there exists k 2 N such that xn � �xk for all n � k; and so xn � �xk for all
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n 2 N (because .xn/ is increasing). But then x D supn xn � �xk; which shows

that condition (ii) of the same proposition is also fulfilled. Consequently xn
d�! x:

The last assertion follows by the same proposition. ut
Similar equivalences, with similar proofs, hold for decreasing sequences.

Proposition 31. Let X be a vector space ordered by an Archimedean cone K and
.xn/ a decreasing sequence in K . The following statements are equivalent.

1. The sequence .xn/ is d -convergent.
2. The sequence .xn/ is d -Cauchy and has an infimum.
3. The sequence .xn/ is lower self-bounded and has an infimum.

In the affirmative case xn
d�! infn xn:

The following proposition emphasizes a kind of duality between upper and lower
self-bounded sequences. If Y is a subset of an ordered set X; then one denotes by
supjY A (infjY A) the supremum (resp. infimum) in Y of a subset A of Y . This may
differ from the supremum (resp. infimum) of the set A in X .

Proposition 32. Let X be a vector space ordered by a coneK; .xn/ an increasing,
upper self-bounded sequence inK , and .tk/ a decreasing sequence of real numbers,
convergent to 1. Then there exists a subsequence .xnk / of .xn/ such that the
following conditions are satisfied.

1. The sequence .yk/ given by yk D tkxnk ; k 2 N; is decreasing and lower self-
bounded and

8n; k 2 N; xn � yk: (55)

2. If the cone K is Archimedean, x is an upper bound for .xn/ and y is a lower
bound for .yk/, then y � x:

3. If the coneK is Archimedean and .xn/ lies in a vector subspace Y of X , then the
following statements are equivalent.

(a) .xn/ has supremum; (c) .yk/ has an infimum;
(b) .xn/ has supremum in Y ; (d) .yk/ has an infimum in Y ;
(e) there exists x 2 K such that

8n; k 2 N; xn � x � yk: (56)

In the affirmative case

supfxn W n 2 Ng D supjY fxn W n 2 Ng D inffyk W k 2 NgD infjY fyk W k 2 Ng D x;

and xn
d�! x and yk

d�! x:
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Proof. 1. Since .tk/ is decreasing, �k WD tk=tkC1 > 1; k 2 N: The upper self-
boundedness of the sequence .xn/ implies the existence of n1 2 N such that

8n � n1; xn � �1xn1 : (57)

Since .xn/ is increasing, the inequalities (57) hold for all n 2 N. If m2 2 N

is such that xn � �2xm2 for all n 2 N; then n2 WD 1 C maxfn1;m2g > n1 and
xn � �2xn2 for all n 2 N: Continuing in this way one obtains a sequence of
indices n1 < n2 < � � � such that

xn � �kxnk ; (58)

for all n 2 N and all k 2 N:

Let yk WD tkxnk ; k 2 N: Putting n D nkC1 in (58) it follows ykC1 � yk: By
the same inequality

xn � tkC1xn � tkxnk D yk;
for all n; k 2 N:

Let now � 2 .0I 1/. Since tk ! 1 there exists k0 such that tk0 < ��1: But
then, by (55),

�yk0 � t�1k0 yk0 D xnk0 � yk;
for all k 2 N; proving that .yk/ is lower self-bounded.

2. Suppose that xn � x; n 2 N; and yk � y; n 2 N: Then, for all k 2 N;

y � yk D tkxnk � tkx :

Since K is Archimedean and tk ! 1; the inequalities y � tkx; k 2 N; yield
for k !1; y � x:

3. The implications (a)) (b) and (c)) (d) are obvious.
Let as prove (b)) (d). Observe first that yk 2 Y; k 2 N: Let x D supY fxn W

n 2 Ng: By (55) yk is an upper bound for .xn/; for every k 2 N; so that x � yk ;
for all k 2 N: If y 2 Y is such that y � yk for all k 2 N; then, by 2, y � x;
proving that x D infY fyk W k 2 Ng: On the way we have shown that xn � x �
yk , for all n; k 2 N; that is the implication (b)) (e) holds too.

Similar reasonings show that (d)) (b), that is (b) ” (d). The equivalence
(a) ” (c) can be proved in the same way (just let Y WD X ).

Finally, let us show that (e)) (c). Assume that for some x 2 K; xn � x � yk
for all n; k 2 N: Suppose that y 2 K is such that y � yk for all k 2 N: Then, by
2, these inequalities imply y � x; showing that x D infk yk: (Similar arguments
show that x D supn yn; that is (e)) (a).) The equivalence of the assertions from
3 is (over) proven.

The last assertions of the proposition follow from Propositions 30 and 31.
ut
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Similar results, with similar proofs, hold for decreasing lower self-bounded
sequences.

Proposition 33. Let X be a vector space ordered by a cone K; .xn/ a decreasing,
lower self-bounded sequence inK , and .tk/ an increasing sequence of real numbers,
convergent to 1. Then there exists a subsequence .xnk / of .xn/ such that following
conditions are satisfied.

1. The sequence .yk/ given by yk D tkxnk ; k 2 N; is increasing and upper self-
bounded and

8n; k 2 N; xn � yk: (59)

2. If the cone K is Archimedean, x is a lower bound for .xn/ and y is an upper
bound for .yk/, then y � x:

3. If the coneK is Archimedean and .xn/ lies in a vector subspace Y of X , then the
following statements are equivalent.

(a) .xn/ has an infimum; (c) .yk/ has a supremum;
(b) .xn/ has an infimum in Y ; (d) .yk/ has a supremum in Y ;
(e) there exists x 2 K such that

8n; k 2 N; xn � x � yk: (60)

In the affirmative case

inf
n
xn D infjY fxn W n 2 Ng D sup

k

yk D supjY fyk W k 2 Ng D x;

and xn
d�! x and yk

d�! x:

The following notions will play a crucial role in the study of completeness of the
Thompson metric.

Let X be a vector space ordered by a cone K . A nonempty subset U of K is
called:

• self order-complete from above (or upper self-complete) if every increasing self-
bounded sequence .xn/ in U has a supremum and supn xn 2 U:

• self order-complete from below (or lower self-complete) if every decreasing self-
bounded sequence .xn/ in U has an infimum and infn xn 2 U:

• self order-complete (or, simply, self-complete) if it is self order-complete both
from below and from above.

If we do not require the supremum (resp. infimum) to be in U , then we say that
U is quasi upper (resp. lower) self-complete.

The duality results given in Propositions 32 and 33 have the following important
consequence.
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Theorem 10. Let X be a vector space ordered by an Archimedean cone K: If U
is an order-convex, strictly positively homogeneous, nonempty subset ofK , then all
six completeness properties given in the above definitions are equivalent.

Proof. It is a simple observation that the stated equivalences hold if we show
that self-completeness is implied by each of the conditions of quasi upper self-
completeness and quasi lower self-completeness.

Assume that U is quasi upper self-complete and show first that U is upper self-
complete.

Let .xn/ be an increasing upper self-bounded sequence in U: By hypothesis, there
exists x WD supn xn 2 K: Also there exists k 2 N such that xn � 2xk for all n 2 N:

Consequently xk � x � 2xk: Since xk and 2xk belong to U and U is order-convex,
x 2 U , proving that U is upper self-complete.

Let us show now that U is lower self-complete too. Suppose that .xn/ is a
decreasing lower self-bounded sequence .xn/ in U and let .tk/ be an increasing
sequence of positive numbers which converges to 1 (e.g., tk D 1 � 1

2k
/. By

Proposition 33 there exists a subsequence .xnk / of .xn/ such that the sequence
yk WD tkxnk ; k 2 N; is increasing and upper self-bounded. Since we have shown
that U is upper self-complete, there exists x WD supk yk 2 U: By the last part of the
same proposition, infn xn D x 2 U; proving that U is lower self-complete.

When U is quasi lower self-complete, the proof that U is self-complete follows
the same steps as before, using Proposition 32 instead of Proposition 33. ut

The following corollary shows that we can restrict to order-convex subspaces
of X .

Corollary 3. Let X be a vector space ordered by an Archimedean cone K and Y
an order-convex vector subspace of X . If U is an order-convex, strictly positively
homogeneous, nonempty subset of Y \ K , then U is self-complete in X iff U is
self-complete in Y .

For a lineally solid cone K; the self-completeness is equivalent to the self-
completeness of its algebraic interior.

Proposition 34. Let X be a vector space ordered by an Archimedean coneK .

1. The coneK is self-complete iff every component of K is self-complete.
2. If, in addition, K is lineally solid and aint.K/ is self-complete then K is self-

complete.

Proof. 1. Suppose that K is self-complete. Then any component Q of K is
quasi upper self-complete. By Proposition 19, Q satisfies the hypotheses of
Theorem 10, so that it is self-complete.

Conversely, suppose that every component of K is self-complete and let .xn/
be an increasing upper self-bounded sequence in K . By Proposition 29 the
sequence .xn/ is d -Cauchy, so there exists k 2 N such that d.xk; xn/ � 1 <1;
for all n � k; implying that the set fxn W n � kg is contained in a componentQ
of K . By the self-completeness of Q there exists x WD supfxn W n � kg 2 Q:
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Since the sequence .xn/ is increasing it follows x D supn xn: Consequently, K
is upper self-complete and, by Theorem 10, self-complete.

2. Let .xn/ be an increasing, upper self-bounded sequence in K . Fix x 2 aint.K/:
Then, by Remark 5, the sequence yn WD xn C x; n 2 N; is contained in aint.K/
and it is obviously increasing and upper self-bounded. Consequently, .yn/ has
a supremum, y WD supn yn 2 aint.K/: But then there exists supn xn D y � x:
Therefore the cone K is upper self-complete and, by Theorem 10, it is self-
complete. ut

Remark 16. All the results proven so far can be restated into local versions, by
replacing X with Xu, hence K with Ku (where u 2 K n f0g). In this way, we can
weaken the Archimedean condition by requiring only that Ku is Archimedean. In
this case, the conditions “has a supremum”, respectively “has an infimum” must be
understood with respect toXu. Consequently, a subsetU ofKu can be self-complete
in Xu, but may be not self-complete in X (yet, by Corollary 3, this cannot happen
when K is Archimedean). Note that the definition of the Thompson metric is not
affected by this change (see Remark 10).

4.2 Properties of Monotone Sequences with Respect
to Order-Unit Seminorms

In this subsection we shall examine the behavior of monotone sequences with
respect to order-unit seminorms, considered in Sect. 3.2. The results are analogous
to those established in Sect. 3.3 for the Thompson metric.

Throughout this subsection X will be a vector space ordered by a cone K; u 2
K n f0g, and Xu; Ku are as in Sect. 3.2. We shall assume also that the cone Ku D
Xu \K is Archimedean.

Proposition 35. Let .xn/ be an increasing sequence in Xu and x 2 Xu :

1. The sequence .xn/ is j � ju-Cauchy iff

8" > 0; 9k 2 N; 8n 2 N; xn � xk C "u: (61)

2. The sequence .xn/ is j � ju-convergent to x 2 Xu iff

.i/ 8n 2 N; xn � xI
.i i/ 8" > 0; 9k 2 N; such that x � xk C "u:

In the affirmative case, x D supjXufxn W n 2 Ng: If K is Archimedean, then
x D supn xn:

3. The sequence .xn/ is j � ju-convergent to x 2 Xu iff it is j � ju-Cauchy and has a

supremum in Xu. In the affirmative case xn
j�ju�! supjXufxn W n 2 Ng:
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Proof. 1. The sequence .xn/ is j � ju-Cauchy iff

8" > 0; 9k 2 N; 8n � m � k; �"u � xn � xm � "u: (62)

Suppose that .xn/ is j � ju-Cauchy and for " > 0 let k be given by the above
condition. Takingm D k in the right inequality, one obtains xn � xk C "u for all
n � k; and so for all n 2 N:

Suppose now that .xn/ satisfies (61). For " > 0 let k be chosen according to
this condition. By the monotony of .xn/; xn � xm � 0 � �"u; for all n � m;
and so the left inequality in (62) is true. By (61) and the monotony of .xn/,

xn � xk C "u � xm C "u;

for all m � k; so that the right inequality in (62) holds too.

2. We have xn
j�ju�! x iff

8" > 0; 9k 2 N; 8n � k; �"u � x � xn � "u:

The left one of the above inequalities implies xn � xC"u for all n � k; and so,
by the monotony of .xn/, for all n 2 N: Since Ku is Archimedean, letting "& 0

it follows xn � x; for every n 2 N: The right inequality implies x � xk C "u:
Conversely, suppose that (i) and (ii) hold. For " > 0 choose k according to

(ii). Then, by the monotony of .xn/,

x � xk C "u � xn C "u;

and so x�xn � "u; for all n � k: By (i), xn � x � xC"u; and so x�xn � �"u
for all n 2 N: Consequently, �"u � x � xn � "u for all n � k:
By Proposition 24 (7), the cone Ku is j � ju-closed, and so, by Proposition 9,

xn
j�ju�! x implies x D supjXufxn W n 2 Ng:

Suppose now that the coneK is Archimedean and that y 2 X is such that xn � y
for all n 2 N:By (ii) for every " > 0 there exists k 2 N such that x � xkC"u; hence
x � y C "u: Letting "& 0 one obtains x � y; which proves that x D supn xn:

The direct implication in 3 follows from 1 and 2. Suppose that .xn/ is j�ju-Cauchy
and let x D supjXufxn W n 2 Ng: For " > 0 there exists k 2 N such that xn � xkC"u
for all n 2 N; implying x � xkC"u: Taking into account 2, it follows xn

j�ju�! x: ut
As before, similar results, with similar proofs, hold for decreasing sequences.

Proposition 36. Let .xn/ be a decreasing sequence in Xu and x 2 Xu :

1. The sequence .xn/ is j � ju-Cauchy iff

8" > 0; 9k 2 N; 8n 2 N; xn � xk � "u: (63)
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2. The sequence .xn/ is j � ju-convergent to x 2 Xu iff

.i/ 8n 2 N; xn � xI
.i i/ 8" > 0; 9k 2 N; such that x � xk � "u:

In the affirmative case, x D infjXufxn W n 2 Ng: If K is Archimedean, then
x D infn xn:

3. The sequence .xn/ is j � ju-convergent to x 2 Xu iff it is j � ju-Cauchy and has an

infimum in Xu. In the affirmative case xn
j�ju�! infjXufxn W n 2 Ng:

Now we consider the connection with self-bounded sequences.

Proposition 37. Let .xn/ be a j � ju-Cauchy sequence in Ku:

1. If there exist ˛ > 0 and a subsequence .xnk / of .xn/ such that xnk � ˛u; then
.xn/ is self-bounded.

2. If .xn/ is increasing and there exists n0 2 N such that xn0 2 K.u/; then .xn/ is
self-bounded.

3. If .X; �/ is a TVS ordered by a cone K and .xn/ is a j � ju-Cauchy sequence in

Xu; �-convergent to some x 2 Xu; then xn
j�ju�! x:

Proof. 1. For � > 1 put " WD ˛.� � 1/: Since the sequence .xn/ is j � ju-Cauchy,
there exists k 2 N such that xn � xm C "u for all n;m � k: Takingm D nk and
n � nk.� k/, it follows

xn � xnk C .� � 1/˛u � xnk C .� � 1/xnk D �xnk ;

proving that .xn/ is upper self-bounded.
The fact that .xn/ is lower self-bounded can be proved in a similar way, taking

" WD ˛.1 � �/ for 0 < � < 1:
2. If xn0 belongs to the componentK.u/ of K , then xn0 � u; so there exists ˛ > 0

such that xn0 � ˛u: It follows xn � ˛u; for all n � n0; and so the hypotheses of
1 are satisfied.

3. For " > 0 let n" 2 N be such that jxnCk � xnju < " for all n � n" and all k 2 N:

By (43) " 2Mu.xnCk � xn/; that is �"u � xnCk � xn � "u; for every n � n"
and all k 2 N: Letting k ! 1; one obtains �"u � x � xn � "u; implying

jxn � xju � "; for all n � n": This shows that xn
j�ju�! x: ut

4.3 The Completeness Results

The following important result shows that the completeness of the Thompson metric
d on K.u/ and that of the u-norm on Xu are equivalent when Ku is Archimedean
(by Remark 14 this result is nontrivial) and also reduces the completeness to
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the convergence of the monotone Cauchy sequences. We also show that the
completeness of d on K.u/ is equivalent to several order-completeness conditions
in Xu.

The notation in the following theorem is that of Sects. 3.1 and 3.2.

Theorem 11. Let X be a vector space ordered by a coneK and let u 2 K n f0g be
such thatKu is Archimedean. Then the following assertions are equivalent.

1. K.u/ is d -complete.
2. K.u/ is self-complete in Xu.
3. Ku is self-complete in Xu.
4. .Xu; j � ju/ is fundamentally �-order complete.
5. .Xu; j � ju/ is monotonically sequentially complete.
6. Xu is j � ju-complete.

If, in addition,K is Archimedean, then the assertions 2 and 3 can be replaced by
the stronger versions:

20. K.u/ is self-complete (in X ).
30: Ku is self-complete (in X ).

Proof. 1) 2. If .xn/ is an increasing, upper self-bounded sequence in K.u/, then,
by Proposition 29 (2), it is d -Cauchy, so that it is d -convergent to some x 2
K.u/, and, by Theorem 9, also j � ju-convergent to x. By Proposition 24 the cone
Ku is j�ju-closed inXu; so that, by Proposition 9 (4), x D supn xn: Consequently,
K.u/ is upper self-complete in Xu. But then, by Proposition 19 and Theorem 10,
self-complete in Xu.
2 ” 3. By (45), K.u/ D aint.Ku/; so that, by Proposition 34, Ku is self-
complete iff K.u/ is self-complete.
4” 5. The implication 5) 4 is trivial and 4) 5 follows by Propositions 35
(3) and 36 (3).
2) 4. Using again the fact that K.u/ D aint.Ku/; it is sufficient to show
that every increasing j � ju-Cauchy sequence in K.u/ has a supremum in Xu.
Indeed, by Proposition 15 this is equivalent to the fact that the space .Xu; j � ju/ is
fundamentally �-order complete. By Proposition 24 (4), the cone Ku is normal
and generating, so that, by Proposition 14 (3), it is monotonically sequentially
complete.

But, by Proposition 37 (2), the sequence .xn/ is self-bounded so it has a
supremum in Xu:

5) 6. Since a Cauchy sequence is convergent if has a convergent subsequence,
it is sufficient to show that every sequence .xn/ in Xu satisfying

8n 2 N0; jxnC1 � xnju � 1

2n
; (64)

is convergent in .Xu; j � ju/, where N0 D N [ f0g:
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The inequality (64) implies

� 1

2n
u � xnC1 � xn � 1

2n
u; (65)

for all n 2 N0. Writing (65) for 0; 1; : : : ; n � 1 and adding the obtained
inequalities, one obtains

�
�
2 � 1

2n�1

�
� xn � x0 �

�
2 � 1

2n�1

�
;

for all n 2 N: Putting yn WD xn � x0 C
�
2 � 1

2n�1

�
u it follows

0 � yn �
�
4 � 1

2n�2

�
u; n 2 N;

which proves that yn 2 Ku for all n 2 N:Also from ynC1�yn D xnC1�xnC 1
2n

u
and (65), one obtains

0 � ynC1 � yn � 1

2n�1
u;

implying

0 � ynCk � yn �
�

1

2n�1
C 1

2n
C � � � C 1

2nCk�2

�
u <

1

2n�2
u:

It follows that .yn/ is an increasing j � ju-Cauchy sequence in Ku; hence it is
j � ju-convergent to some y 2 Xu. But then

xn D yn C x0 �
�
2 � 1

2n�1

�
u

is j � ju-convergent to y C x0 � 2u 2 Xu:

6) 1. Again, to prove the completeness of .K.u/; d / it is sufficient to show
that every sequence .xn/ in K.u/ which satisfies

8n 2 N0; d.xnC1; xn/ � 1

2n
; (66)

is convergent in .K.u/; d /. Let s0 D d.x0; u/: Then, by the triangle inequality
and (66) applied successively,

d.xn; x0/ � 1C 1

2
C � � � C 1

2n�1
< 2;
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so that

d.xn; u/ � d.xn; x0/C d.x0; u/ < 2C s0;
implying

e�.2Cs0/u � xn � e2Cs0u (67)

for all n 2 N0: The inequality (66) implies

xnC1 � e1=2nxn;
and

xn � e1=2nxnC1;
so that, taking into account the second inequality in (67), one obtains the
inequalities

xnC1 � xn �
�
e1=2

n � 1�xn � �e1=2n � 1�e2Cs0u;
and

xnC1 � xn � �
�
e1=2

n � 1�xn � ��e1=2n � 1�e2Cs0u;
which, in their turn, imply

jxnC1 � xnju �
�
e1=2

n � 1�e2Cs0 ;
for all n 2 N0: The convergence of the series

P
n

�
e1=2

n � 1�e2Cs01 and the
above inequalities imply that the sequence .xn/ is j � ju-Cauchy, and so it is
j � ju-convergent to some x 2 Xu. By Proposition 9 the order intervals in
Xu are j � ju-closed and, by (67), xn 2


e�.2Cs0/uI e2Cs0u�

u
it follows x 2

e�.2Cs0/uI e2Cs0u�
u
	 K.u/: Since, by Theorem 9, d and j � ju are topologically

equivalent on K.u/; it follows xn
d�! x: ut

Combining Proposition 34 and Theorem 11 one obtains the following corollaries.

Corollary 4. If K is Archimedean, then d is complete iff K is self-complete.

Corollary 5. If K is Archimedean and lineally solid, then the following conditions
are equivalent.

1Follows from the inequality e1=2
n � 1 D 1

2n
C 1

2Š
� 1
22n
C � � � < 1

2n
.1C 1

2Š
C � � � / D 1

2n
.e � 1/.
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1. The Thompson metric d is complete.
2. The coneK is self-complete.
3. The algebraic interior aint.K/ of K is self-complete.
4. The algebraic interior aint.K/ of K is d -complete.

4.4 The Completeness of the Thompson Metric in LCS

In this subsection we shall prove the completeness of the Thompson metric d
corresponding to a normal cone K in a sequentially complete LCS X . In the case
of a Banach space the completeness was proved by Thompson [41]. In the locally
convex case we essentially follow [17].

Note that if .X; �/ is an extended metric space, then the completeness ofX means
the completeness of every component ofX . Indeed, if .xn/ is a d -Cauchy sequence,
then there exits n0 2 N such that d.xn; xn0/ � 1; for all n � n0; implying that
xn 2 Q; for all n � n0; where Q is the component of X containing xn0 : Also if

xn
d�! x; then there exists n1 > n0 in N such that d.xn; x/ � 1 for all n � n1;

implying that the limit x also belongs to Q.

Theorem 12. Let .X; �/ be a locally convex space, K a sequentially complete
closed normal cone in X . Then each component of K is a complete metric space
with respect to the Thompson metric d:

By Theorem 2 one can suppose that the topology � is generated by a family P of
monotone seminorms.

We start by a lemma which is an adaptation of Lemma 2.3 (ii) in [22], proved for
Banach spaces, to the locally convex case.

Lemma 1. Let .X; �/ be a Hausdorff LCS ordered by a closed normal coneK and
d the Thompson metric corresponding to K . Supposing that P is a directed family
of monotone seminorms generating the topology �; then for every x; y 2 K n f0g
and every p 2 P; the following inequality holds

p.x � y/ � �2ed.x;y/ C e�d.x;y/ � 1� �minfp.x/; p.y/g : (68)

Proof. We can suppose d.x; y/ <1 (i.e., x � y). By Proposition 9 the coneK is
Archimedean, so that, by Proposition 21, d.x; y/ 2 �.x; y/: Putting ˛ D ed.x;y/; it
follows

˛�1x � y � ˛x;

so that .˛ � 1/x � x � y � .1 � ˛�1/x; and so

0 � .x � y/C .˛ � 1/x � .˛ � ˛�1/x :
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Let p 2 P: By the monotony of p the above inequalities yield

p.x � y/ � .˛ � 1/p.x/ � p..x � y/C .˛ � 1/x/ � .˛ � ˛�1/p.x/;

and so

p.x � y/ � .2˛ � ˛�1 � 1/p.x/:

Interchanging the roles of x and y one obtains,

p.x � y/ � .2˛ � ˛�1 � 1/p.y/;

showing that (68) holds. ut
Proof of Theorem 12. Let .xn/ be a d -Cauchy sequence in a componentQ of K .

Observe first that the sequence .xn/ is �-bounded, that is p-bounded for every
p 2 P:

Indeed, if n0 2 N is such that d.xn; xn0 / � 1; for all n � n0; then xn �
ed.xn;xn0 /xn0 � exn0 ; for all n � n0: By the monotony of p, it follows p.xn/ �
ep.xn0/ for all n � n0 and every p 2 P: This fact and the inequality (68) imply that
.xn/ is p-Cauchy for every p 2 P , hence it is P -convergent to some x 2 X:

If n0 is as above, then the inequalities e�1xn0 � xn � exn0 ; valid for all n � n0,
yield for n!1; e�1xn0 � x � exn0 ; showing that x � xn0 ; that is x 2 Q:

Since .xn/ is d -Cauchy and �-convergent to x, Proposition 27 (3) implies that

xn
d�! x; proving the completeness of .K; d/. �

4.5 The Case of Banach Spaces

We have seen in the previous subsection that the normality of a cone K in a
sequentially complete LCS X is a sufficient condition for the completeness of K
with respect to the Thompson metric. In this subsection we show that, in the case
when X is a Banach space ordered by a cone K , the completeness of d implies the
normality of K . The proof will be based on the following result.

Theorem 13. Let .X; k�k/ be a Banach space ordered by a coneK and u 2 Knf0g.
Then the following assertions are equivalent.

1. The Thompson metric d is complete on K.u/.
2. .Xu; j � ju/ is a Banach space.
3. The embedding of .Xu; j � ju/ into .X; k � k/ is continuous.
4. The order interval Œ0I x�o is k � k-bounded for every x 2 K.u/:
5. The order interval Œ0I u�o is k � k-bounded.
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6. Any sequence .xn/ in K.u/ which is d -convergent to x 2 K.u/ is also k � k-
convergent to x.

Proof. The equivalence 1 ” 2 is in fact the equivalence 1 ” 6 in
Theorem 11.

2 ) 3. Since both .X; k�k/ and .Xu; j�ju/ are Banach spaces, by the closed graph
theorem it suffices to show that the embedding mapping I W Xu ! X; I.x/ D x;
has closed graph. This means that for every sequence .xn/ in Xu; xn

j�ju�! x and

xn
k�k�! y imply y D x: Passing to limit for n ! 1 with respect to k � k in the

inequalities

xn � x C jxn � xjuu � 0 and xn � x C jxn � xjuu � 0 ;
and taking into account the fact that the cone K is k � k-closed, one obtains

y � x � 0 and x � y � 0;
that is y D x:
3 ) 4. By the continuity of the embedding, there exists � > 0 such that kxk �
� jxju for all x 2 Xu: By Proposition 24 the norm j � ju is monotone, so that
0 � z � x implies kzk � � jzju � � jxju; for all z 2 Œ0I x�o:

The implication 4 ) 5 is obvious.
5 ) 3. Let � > 0 be such that kzk � � for every z 2 Œ0I u�u: For x ¤ 0 in Xu,
the inequalities �jxjuu � x � jxjuu; imply

x C jxjuu

2jxju 2 Œ0I u�o;

so that kx C jxjuuk � 2� jxju :
Hence,

kxk � jxjukuk � kx C jxjuuk � 2� jxju;

and so

kxk � .2� C kuk/jxju/;

for all x 2 Xu, proving the continuity of the embedding of .Xu; j�ju/ into .X; k�k/.
3 ) 2. Let .xn/ be a j � ju-Cauchy sequence in Xu. The continuity of the
embedding implies that it is k � k-Cauchy and so, k � k-convergent to some x 2 X:
But then, by Proposition 37 (3), .xn/ is j � ju-convergent to x:

The implication 3) 6 follows by Theorem 9.
6) 3. Let .xn/ be a sequence in Xu which is j � ju-convergent to x 2 Xu: Then
.xn/ is j � ju-bounded, so there exists ˛ > 0 such that �˛u � xn � ˛u: It
follows that yn WD xn C .˛ C 1/u 2 ŒuI .2˛ C 1/u�o; and so yn 2 K.u/; n 2 N;



256 Ş. Cobzaş and M.-D. Rus

and yn
j�ju�! x C .˛ C 1/u: By Theorem 9, yn

d�! x C .˛ C 1/u; so that, by

hypothesis, yn
k�k�! x C .˛ C 1/u: It follows xn

k�k�! x; proving the continuity of
the embedding. ut
Now we present several conditions equivalent to the completeness of the Thomp-

son metric.

Theorem 14. Let .X; k � k/ be a Banach space ordered by a coneK . The following
assertions are equivalent.

1. The Thompson metric d is complete.
2. The coneK is self-complete.
3. The coneK is normal.
4. The norm topology on K is weaker than the topology of d .

Proof. The equivalence 1 ” 2 follows by Corollary 4 (remind that, by
Proposition 9, the coneK is Archimedean).

2” 3. By Proposition 34, the coneK is self-complete iff each component of
K is self-complete. By Theorem 13, this happens exactly when the order interval
Œ0I x�o is k � k-bounded for every x 2 K; which is equivalent to the fact that the
order intervals ŒxIy�o are k � k-bounded for all x; y 2 K: By Theorem 3 this is
equivalent to the normality of K .
1 ” 4. By Theorem 13 the cone K is d -complete iff the norm topology on
each component of K is weaker than the topology generated by d , and this is
equivalent to 4. ut

Remark 17. By Theorem 14 in the case of an ordered Banach space the normality
of the cone is both necessary and sufficient for the completeness of the Thompson
metric. The proof, relying on Theorem 13, uses the closed graph theorem and the
fact that a cone in a Banach space is normal iff every order interval is norm bounded.
As these results are not longer true in arbitrary LCS, we ask the following question.

Problem. Characterize the class of LCS for which the normality of K is also
necessary for the completeness of the Thompson metric (or, at least, put in evidence
a reasonably large class of such spaces).
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Functional Operators and Approximate
Solutions of Functional Equations

Stefan Czerwik and Krzysztof Król

Abstract In this paper we consider the problem of approximate solutions of
functional equations.

In the first part of this chapter we present the integral least squares method for
functional equations.

The second part is devoted to investigations on some functional operators, useful
for both theory and applications.

Finally, in the last one we present some results on convergence of a sequence of
approximate solutions of a functional equation obtained by the integral least squares
method as well as some estimations of the errors of approximations.

Keywords Functional equation • Functional operator • Approximation by the
integral least squares method • Estimation of the error of approximation

Subject Classifications: 39B22, 39B99, 40A05, 41A30.

1 The Integral Least Squares Method

In this section we shall present the integral least squares method for the functional
equations.

We shall consider the following (linear) functional equation (see [5])
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Fig. 1 Function belonging
to R0

� [P]

yŒf .x/� D g.x/y.x/C F.x/; (1)

where f; g; F are given functions and y is an unknown function.
Denote by YŒP� the class of all functions defined on an interval P with values

in R (the set of all real numbers). Let R0
� ŒP� be the class of all functions from YŒP�

which are continuous, strictly increasing on P and fulfilling for � 2 P (the closure
of P ) the following conditions:

(a) .f .x/ � x/.� � x/ > 0; for x 2 P; x ¤ �,
(b) .f .x/ � �/.� � x/ < 0; for x 2 P; x ¤ �.

(see Fig. 1).
We shall use the following result.

Theorem 1 ([5]). Let f 2 R0
� ŒP�, where � 2 P . Let functions g; F 2 YŒP� be

continuous on P , g.x/ ¤ 0 for x 2 P , x ¤ � and assume that

jg.�/j > 1:
Then the Eq. (1) has exactly one continuous solution y 2 YŒP� on P . This solution
is given by the formula

y.x/ D �
1X
nD0

F Œf n.x/�

GnC1.x/
; x 2 P; (2)

where

Gn.x/ D
n�1Y
iD0

gŒf i .x/�; x 2 P; n D 1; 2; 3; : : : ;

(f k means the kth iterate of f ).
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Firstly we shall make some remarks.

Remark 1. In the Theorem 1 we assume that f is a strictly increasing. If f is a
strictly decreasing, then we can transform this case to the former one.

In fact, f 2 WD f ı f is strictly increasing function, and moreover if y satisfies
the Eq. (1), then

yŒf .f .x//� D g.f .x//y.f .x// C F.f .x//
D g.f .x//Œg.x/y.x/ C F.x/�C F.f .x//
D g.f .x//g.x/y.x/ C g.f .x//F.x/C F.f .x//;

i.e.

yŒf 2.x/� D h.x/y.x/CK.x/; x 2 P;

where

h.x/ D g.f .x//g.x/; K.x/ D g.f .x//F.x/C F.f .x//; x 2 P

and

f .f .�// D f .�/ D �:

It means that y satisfies the Eq. (1) with h and K and f replaced by f 2.

Remark 2. If � D b is the right endpoint of P , the proofs runs similarly.

Remark 3. If � is inside the intervalP , we consider separately the subintervals Œa; ��
and Œ�; b�.

Remark 4. If � … P , then the situation is different. In this case a continuous solution
depends on arbitrary function on the interval Œx0; f .x0/� or Œf .x0/; x0� (x0 2 P ).
This situation is not very interesting for applications (for correctly stated problems
there exists exactly one (the best) solution).

Remark 5. For f non-invertible we can also get similar results (see [5], but
investigations are more complicated).

Now we present the basic result concerning the application of the integral least
squares method for the functional equation (1).

Theorem 2. Let functions g; F W Œa; b� ! R, f W Œa; b� ! Œa; b� satisfy the
assumptions of the Theorem 1 for P D Œa; b�, a < b; a; b 2 R. Assume that
˚j W Œa; b�! R,
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j D 1; : : : ; n; are given, continuous and linearly independent functions on interval
Œa; b�. Assume that the matrix

C D fCij gi;jD1;:::;n; Cij D
Z b

a

�i .x/�j .x/ dx;

where

�j .x/ D ˚j Œf .x/� � g.x/˚j .x/; x 2 Œa; b�; j D 1; : : : ; n;
is positively defined. Then the continuous solution of the Eq. (1) on the interval Œa; b�
can be approximated by the function

yn.x/ D
nX

jD1
pj˚j .x/; x 2 Œa; b�; n 2 N; (3)

where the coefficients pj ; j D 1; : : : ; n; are the solutions of the system of linear
equations

nX
jD1

pj

Z b

a

�i .x/�j .x/ dx D
Z b

a

�i .x/F.x/ dx; (4)

for i D 1; : : : ; n:
Proof. Let’s note that from the assumptions and Theorem 1 it follows that Eq. (1)
has the exactly one continuous solution on I . We shall find its approximation. Define
the function

RŒy.x/� WD yŒf .x/� � g.x/y.x/ � F.x/; x 2 P:
We will find for x 2 Œa; b�

RŒyn.x/� D ynŒf .x/� � g.x/yn.x/ � F.x/

D
nX

jD1
pj˚j Œf .x/� � g.x/

nX
jD1

pj˚j .x/ � F.x/

D
nX

jD1
pj

�
˚j Œf .x/� � g.x/˚j .x/

	
� F.x/:

Denote

�j .x/ WD ˚j Œf .x/� � g.x/˚j .x/; for j D 1; : : : ; n;
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then

RŒyn.x/� D
nX

jD1
pj�j .x/ � F.x/:

To find pi , we shall calculate the minimum value of the function

I.p/ D I.p1; : : : ; pn/ WD
Z b

a

�
RŒyn.x/�

�2
dx: (5)

To this end we take pi such that

@I.p/
@pi

D 0; for i D 1; : : : ; n:

Putting RŒyn.x/� to (5) we get

I.p/ D
Z b

a

� nX
jD1

pj�j .x/ � F.x/
	2
dx;

and consequently

1

2

@I.p/
@pi

D
Z b

a

� nX
jD1

pj�j .x/ � F.x/
	
�i.x/ dx;

for i D 1; : : : ; n:
To get the minimum of the function (5) we shall consider the (algebraic) system of
linear equations

nX
jD1

pj

Z b

a

�i .x/�j .x/ dx D
Z b

a

�i .x/F.x/ dx;

for i D 1; : : : ; n:
Calculating the Hessian of the function I , we obtain

HI .p/ D fHij gi;jD1;:::;n;

where

Hij D @2I.p/
@pi@pj

D 2
Z b

a

�i .x/�j .x/ dx;
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or shortly HI .p/ D 2C. This means that the Hessian is positively defined and
function I has at the point p D .p1; : : : ; pn/ the minimum. This ends the proof
of the theorem. ut

For the convenience, we can write the system of equations (4) in the form

C � p D F;

where
CDfCij gi;jD1;:::;n, Cij D

R b
a �i .x/�j .x/ dx,

pD Œp1; : : : ; pn�T ,
FD ŒF1; : : : ; Fn�T , FiD

R b
a �i.x/F.x/ dx.

Remark 6. The problems of the convergence of the sequence (3) and the estimation
of the error of accuracy shall be considered in the next parts of the paper.

2 Linear Functional Operator

In functional equations (in one variable—see e.g., [5] or in several variables [2])
there occur some important functional equations which induce special functional
operators very useful in many fields, especially in the theory of approximate
solutions of functional equations. The theory of approximate solutions of functional
equations has been systematically built mainly by the authors of this chapter
(see [1, 3, 4]).

In this part we shall consider some functional equation and related functional
operator.

Let’s consider the following functional equation

yŒf .x/�C g.x/y.x/ D F.x/; (6)

where the functions f W Œa; b� ! Œa; b�, g; F W Œa; b� ! R, Œa; b� 	 R are given and
yW Œa; b�! R is an unknown function (R stands for the set of all real numbers).

We shall use the notations

kf k1 WD sup
x2Œa;b�

jf .x/j; kf k2 WD
 Z b

a

jf .x/j2 dx
! 1

2

: (7)

Denote by C.Œa; b�/ the class of all continuous functions defined on the interval
Œa; b� with values in R.

At first we shall prove the following.

Theorem 3. Let functions f W Œa; b� ! Œa; b�; gW Œa; b� ! R be continuous on the
interval Œa; b� and let AWC.Œa; b�/ ! C.Œa; b�/ be the functional operator given by
the formula

AŒy�.x/ WD yŒf .x/�C g.x/y.x/; x 2 Œa; b�; (8)
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for y 2 C.Œa; b�/. Then A is linear and bounded operator. Moreover we have

kAŒy�k1 � ˛kyk1; (9)

where

˛ WD 1C sup
x2Œa;b�

jg.x/j: (10)

Proof. We shall verify that A is a linear operator. Namely, we have for
y1; y2 2 C.Œa; b�/
AŒy1 C y2�.x/ WD y1Œf .x/� C y2Œf .x/� C g.x/.y1.x/ C y2.x// D AŒy1�.x/ C
AŒy2�.x/.
Further for � 2 R and y 2 C.Œa; b�/
AŒ�y�.x/ WD �yŒf .x/�C g.x/�y.x/ D �AŒy�.x/,
i.e. A is linear.
Now we shall prove that A is also bounded (in the norm k � k1). Really, for
f; g; y 2 C.Œa; b�/ and jg.x/j �M for x 2 Œa; b�, one has

kAŒy�k1 D sup
x2Œa;b�

jAŒy�.x/j D sup
x2Œa;b�

jyŒf .x/�C g.x/y.x/j

� sup
x2Œa;b�

.jyŒf .x/�j C jg.x/j � jy.x/j/

� sup
x2Œa;b�

jyŒf .x/�j C sup
x2Œa;b�

.jg.x/j � jy.x/j/

� sup
x2Œa;b�

jy.x/j CM sup
x2Œa;b�

jy.x/j � kyk1 CM kyk1

� .1CM/kyk1 D ˛kyk1:

Therefore there exists the number

˛ D 1C sup
x2Œa;b�

jg.x/j > 0

such that for every y 2 C.Œa; b�/

kAŒy�k1 � ˛kyk1;

which means that A is a bounded operator. This completes the proof. ut
In the sequel let’s consider the linear homogeneous functional equation

yŒf .x/� D g.x/y.x/: (11)
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Define (see [5]) the following sequence

Gn.x/ D
n�1Y
iD0

gŒf i .x/�; x 2 P; n D 1; 2; 3; : : : ; (12)

where P is an subinterval of R and f k denotes the kth iteration of f . We shall call
this sequence as the Choczewski–Kuczma sequence.

For the Choczewski–Kuczma sequence fGng the following causes can occur
(see [5]):

(i) There exists the limit G.x/ D limn!1Gn.x/, for x 2 P . Moreover G is
continuous on P and G.x/ ¤ 0 for x 2 P .

(ii) There exists an interval J 	 P such that limn!1Gn.x/ D 0 uniformly on J .
(iii) Neither of the cases (i) and (ii) occurs.

The following theorem holds true.

Theorem 4 ([5]). Let f 2 R0
� ŒP�, where � 2 P . Let g 2 YŒP� be a continuous

function on P and g.x/ ¤ 0 for x 2 P , x ¤ �. In the case (iii) the function
y.x/ � 0, x 2 P is the only continuous solution of the equation (11) in the class
YŒP�.

Moreover, we have

Corollary 1 ([5]). Under the assumptions of the Theorem 4 and if

jg.�/j > 1; (13)

then the case (iii) occurs.

Now we shall prove the following theorem.

Theorem 5. Assume that the assumptions of the Theorem 4 are satisfied and let
jg.�/j > 1. Then there exists the inverse operator A�1 to the operator
AWC.Œa; b�/! C.Œa; b�/ given by (8).

Proof. Firstly we shall verify that A is an injection. Really, let AŒy1� D AŒy2� for
y1; y2 2 C.Œa; b�/, then

y1Œf .x/�C g.x/y1.x/ D y2Œf .x/�C g.x/y2.x/; x 2 Œa; b�;

or

.y1 � y2/Œf .x/�C g.x/.y1.x/ � y2.x// D 0; x 2 Œa; b�:

Denote  WD y1 � y2, so

 Œf .x/�C g.x/ .x/ D 0; x 2 Œa; b�;
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or

 Œf .x/� D �g.x/ .x/; x 2 Œa; b�:

Therefore by j � g.�/j D jg.�/j > 1, Theorem 4 and Corollary 1,  .x/ D 0 for
x 2 Œa; b�.
Hence 0 D  .x/ D y1.x/ � y2.x/, i.e. y1.x/ D y2.x/ for x 2 Œa; b�.
Finally we have proved that AŒy1� D AŒy2� implies y1 D y2 which means that A is
an injection and A�1 exists. This concludes the proof. ut

Now we can prove.

Theorem 6. Let the assumptions of the Theorem 4 be satisfied. Then the operator
A�1, inverse to the operator AWC.Œa; b�/! C.Œa; b�/ defined by the formula (8), is
linear and bounded.

Proof. In view of Theorem 5, A�1 exists and is a linear operator as the inverse to
the linear one.

Next we shall verify that it is also bounded.
Assume that � is the left endpoint of P D Œa; b� D Œ�; b� (in other cases the proof

is similar). Moreover f .�/ D �, jg.�/j > 1 and g is continuous. Thus there exists
constants ı > 0 and� > 1, such that

jg.x/j > � > 1 for x 2 Œ�; � C ı� 	 Œ�; b�:

For b 2 P we can find N , such that

f n.b/ 2 Œ�; � C ı� for n � N: (14)

Then the condition (13) holds true, because f n.b/! � as n!1.
Since f is strictly increasing by (13) one gets

f n.x/ 2 Œ�; � C ı� for n � N and x 2 Œ�; b�:

Denote

L D inf
x2Œ�;b� jg.x/j > 0:

This is true because g is continuous on the compact interval P D Œ�; b� function
without zero values.
For x 2 P and n � N we get

1

jGnC1.x/j D
1

jg.x/ � g.f .x// � : : : � gŒf n.x/�j
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D 1

jg.x/ � g.f .x// � : : : � gŒf N�1.x/� � gŒf N .x/� � : : : � gŒf n.x/�j

� 1

LN�nC1�N :

Hence
ˇ̌
ˇ̌.�1/n F Œf n.x/�

GnC1.x/

ˇ̌
ˇ̌ � kF k1

LN�nC1�N for n � N and x 2 Œ�; b�:

Let’s note that the formula (2) for the Eq. (6) has the form

y.x/ D
1X
nD0
.�1/n F Œf

n.x/�

GnC1.x/
; x 2 Œa; b�: (15)

Thus, in view of (15), for F 2 C.Œ�; b�/ D C.Œa; b�/

y.x/ D A�1ŒF �.x/ D
1X
nD0
.�1/n F Œf

n.x/�

GnC1.x/
; x 2 Œa; b�:

Hence we get

kA�1ŒF �k1 D sup
x2Œ�;b�

ˇ̌
ˇ̌
ˇ
1X
nD0
.�1/n F Œf

n.x/�

GnC1.x/

ˇ̌
ˇ̌
ˇ �

1X
nD0

sup
x2Œ�;b�

ˇ̌
ˇ̌.�1/n F Œf n.x/�

GnC1.x/

ˇ̌
ˇ̌

�
N�1X
nD0

sup
x2Œ�;b�

kF k1
jGnC1.x/j C

1X
nDN

sup
x2Œ�;b�

kF k1
LN�nC1�N

� kF k1
N�1X
nD0

sup
x2Œ�;b�

1

jGnC1.x/j C
kF k1
LN

1X
nD1

1

�n

� M1kF k1 CM2kF k1 � .M1 CM2/kF k1 � KkF k1:

ConstantsM1 andM2 exist, since the functions

1

jGnC1.x/j ; n D 0; 1; : : : ; N � 1;

are continuous on the compact set (and with positive values) and the series is the
geometric convergent one, respectively.
Finally, there exists a constant K � 0, such that for any function F 2 C.Œ�; b�/ D
C.Œa; b�/

kA�1ŒF �k1 � KkF k1; (16)
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where

K D
N�1X
nD0

sup
x2Œ�;b�

1

jGnC1.x/j C
1

LN .� � 1/ ; (17)

which means that A�1 is bounded (continuous), and the proof of the theorem is
completed. ut

In the sequel we shall apply the following result (see [7]).

Theorem 7. Let T be a linear operator from a normed space .X; k � k/ on to
a normed space .Y; k � k/. Operator T is an injection and the inverse operator
T �1WY ! X is linear and continuous if and only if there exists a constant m > 0

such that

kT xk � mkxk; for x 2 X:

We shall prove the following.

Theorem 8. Let the assumptions of the Theorem 4 be satisfied. There exists a
number � > 0, such that for every y 2 C.Œa; b�/

kyk1 � �kAŒy�k1; (18)

where A is given by (8).
Moreover

� D K; (19)

(K is given by (17)).

Proof. The operator A is a linear injection and A�1 is a linear and continuous.
On account of the Theorem 7 the inequality (18) holds true.
We shall find the constant � .
Let y 2 X D C.Œa; b�/ and let AŒy� D F .
From (16) we get (for K > 0)

kAŒy�k1 D kF k1 � 1

K
kA�1ŒF �k1 D 1

K
kyk1;

and hence

kyk1 � KkAŒy�k1 for every y 2 C.Œa; b�/:

Thus � D K , which concludes the proof. ut
In the sequel we present
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Theorem 9. Let y 2 C.Œa; b�/ be a function with constant sign and let f W Œa; b�!
Œa; b� and gW Œa; b�! R be continuous on Œa; b�. Moreover, let

inf
x2Œa;b� g.x/ > 0:

Then there exists a constant ı > 0 (independent on y), such that

kyk2 � ıkAŒy�k2; (20)

where

ı D
�

inf
x2Œa;b� g.x/

	�1
: (21)

Proof. We have for y with constant sign,

kAŒy�k22 D
Z b

a

.yŒf .x/�C g.x/y.x//2 dx �
Z b

a

g2.x/y2.x/ dx

�
Z b

a

�
inf

x2Œa;b� g.x/
�2
y2.x/ dx � ˇ2

Z b

a

y2.x/ dx D ˇ2kyk22;

where ˇ D infx2Œa;b� g.x/ > 0. Hence

kAŒy�k22 � ˇ2kyk22
or

kyk22 �
1

ˇ2
kAŒy�k22;

i.e.

kyk2 � ıkAŒy�k2;

which ends the proof. ut
We also have

Theorem 10. Let y; g 2 C.Œa; b�/ and let f W Œa; b� ! Œa; b� be continuous. Then
there exists the real constant � > 0, such that

kAŒy�k2 � �kyk1; for y 2 C.Œa; b�/; (22)
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where

� D .1C �/
p
b � a; (23)

� WD sup
x2Œa;b�

jg.x/j:

Proof. Denote � D supx2Œa;b� jg.x/j. For any y 2 C.Œa; b�/ one has

kAŒy�k22 D
Z b

a

.yŒf .x/�C g.x/y.x//2 dx

�
Z b

a

 
sup
x2Œa;b�

jyŒf .x/�j C sup
x2Œa;b�

jg.x/y.x/j
!2

dx

�
 

sup
x2Œa;b�

jyŒf .x/�j C � sup
x2Œa;b�

jy.x/j
!2
� .b � a/

� .kyk1 C �kyk1/2 � .b � a/
D .b � a/.1C �/2kyk21:

Therefore, for y 2 C.Œa; b�/

kAŒy�k22 � .1C �/2.b � a/kyk21
or

kAŒy�k2 � �kyk1;

with

� D .1C �/
p
b � a > 0:

The proof is completed. ut
The last theorem of this section is

Theorem 11. Let y 2 C.Œa; b�/. Then there exists a constant % > 0, such that

kyk2 � %kyk1; (24)

where

% D
p
b � a:

Proof. We have for any y 2 C.Œa; b�/
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kyk22 D
Z b

a

y2.x/ dx �
Z b

a

. sup
x2Œa;b�

jy.x/j/2 dx � .b � a/kyk21:

This means that

kyk2 � %kyk1;

where

% D
p
b � a > 0;

which ends the proof. ut
Remark 7. The operator (8) can be considered in more general spaces.

3 On the Convergence of the Integral Least Squares Method
and Estimations of the Error of Approximations

For the convenience of the reader we shall recall some ideas, which will be used
later on.

Definition 1 ([6]). A system .'k/ of elements of a normed space .X; k � k/ we shall
call closed, if for every x 2 X and every " > 0 there exist a natural number n and
constants (real or complex) ˛1; : : : ; ˛n such that

kx � ynk < ";

where

yn D
nX

kD1
˛k'k:

Definition 2 ([6]). Let a linear operatorAW .X; k�k/! .X; k�k/ be given. A system
.'k/ of elements of a normed space .X; k � k/ is said to be A-closed, if for every
y 2 X and every " > 0 there exist a natural number n and constants ˇ1; : : : ; ˇn,
such that

kAŒy� �AŒyn�k < ";

where

yn D
nX

kD1
ˇk'k:

The following result is true.
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Corollary 2 ([6]). If a system .'k/ in X is closed and an operator AWX ! X is
linear and bounded, then the system .'k/ is A-closed.

Corollary 3. The system of functions

1; x; x2; : : : ; for x 2 Œa; b�; (25)

is the closed system in C.Œa; b�/ with the Chebyshev supremum norm.

Proof. The proof follows from the fact that the sequence of polynomials

 n.x/ D
nX

kD1
˛k'k.x/; 'k.x/ D xk; x 2 Œa; b�

converges uniformly to a function ' 2 C.Œa; b�/, where ' is any such function. This
completes the proof. ut
Now we are in a position to prove the result concerning the convergence of the
sequence fAŒyn�g1nD1, where fyng1nD1 is a sequence of approximate solutions of the
functional equation (6) obtained by the integral least squares method.

Theorem 12 (Convergence Theorem). Let the assumptions of the Theorem 1 for
P D Œa; b� be satisfied. Let, moreover, fyng1nD1 be a sequence of approximate
solutions of the equation (6) obtained by the integral least squares method. Then

AŒyn�! AŒy� D F in k � k2; as n!1; (26)

where y is the (unique) continuous solution of the equation (6) on P .

Proof. Note that, in view of Theorem 1, it follows that the Eq. (6) has exactly one
continuous solution y on P .

Since the operator A given by the formula (8) is bounded, by Corollary 2 we
guess that the system (25) is A-closed.

Therefore, for " > 0 there exist constants ˛1; : : : ; ˛n0 , such that

kAŒy� � AŒ n0�k1 <
"

%
;

where

 n0 D
n0X
kD1

˛k'k; 'k.x/ D xk: x 2 Œa; b�:

Moreover, for the sequence fyng1nD1, obtained by the integral least squares
method, we have

kAŒy� �AŒyn0 �k2 � kAŒy� � AŒ n0 �k2;
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because the left-hand side takes minimum value for yn0 , but  n0 is a linear
combination of functions 'n. Thus by Theorem 11, we get

kAŒy� �AŒyn0 �k2 � kAŒy� �AŒ n0 �k2 � %kAŒy� � AŒ n0�k1 < % �
"

%
D ";

i.e.

kAŒy� � AŒyn0 �k2 < ":

Taking into account that if n increases, then the left-hand side does not increase,
thus

kAŒy� � AŒyn�k2 < " for n � n0:

This means that the condition (26) is fulfilled, which was to be shown. ut
The next useful result is the following.

Theorem 13 (Convergence of a Sequence fyng). Let the assumptions of the
Theorem 1 for P D Œa; b� be satisfied and assume

inf
x2Œa;b� g.x/ > 0:

Let, moreover, y 2 C.Œa; b�/ be the (unique) continuous solution of the equation (6)
and let fyng be a sequence of approximate solutions of the equation (6) obtained by
the integral least squares method. If fy � yng1nD1 is the sequence of functions with
constant sign (not necessary the same), then

yn ! y in k � k2; as n!1: (27)

Proof. By Corollary 3 it follows that the sequence of polynomials

 n.x/ D
nX

kD1
˛k'k.x/; 'k.x/ D xk; x 2 Œa; b�; ˛k—constant;

is convergent to y, i.e.

 n ! y in k � k1;

which means that for every " > 0 there exists an n0, such that

ky �  nk1 < " for n � n0:
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Thus by Theorem 9 we have for n � n0
ky � ynk2 � ıkAŒy � yn�k2 � ıkAŒy� � AŒyn�k2 � ıkAŒy� �AŒ n�k2

(the last inequality holds true due to minimum property of the sequence fyng,  n is
just a linear combination of the functions 'k, k D 1; : : : ; n).

Therefore on account of the Theorem 10, one gets for n � n0
ky � ynk2 � ıkAŒy� �AŒ n�k2 � ı�ky �  nk1 < ı�":

Since ı� is a constant and " > 0 is arbitrary real number, this means that (27) is
fulfilled, which concludes the proof. ut
Remark 8. The assumptions of the Theorem 13 do not look very easy to
verification.

In the last theorem we shall present a result about the estimations of the error of
approximations.

Theorem 14 (Estimation Test). Let the assumptions of the Theorem 1 for P D
Œa; b� be satisfied. Assume that y 2 C.Œa; b�/ is the unique continuous solution of
the functional equation (6) and yn is its approximation obtained by the integral lest
squares method. Then the following estimations hold true

kyn � yk2 � �%kAŒyn� � F k1 for � > 0; % > 0;

kyn � yk1 � �kAŒyn� � F k1 for � > 0;

where

% D
p
b � a;

� D K
(K is given by the formula (17)).

Proof. By Theorems 11 and 8 we obtain

kyn � yk2 � %kyn � yk1 � �%kAŒyn� �AŒy�k1 � �%kAŒyn� � F k1;
and

kyn � yk1 � �kAŒyn� � AŒy�k1 � �kAŒyn� � F k1;
where

% D
p
b � a;

� D K;

which ends the proof. ut
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Remark 9. The integral least squares method is very useful (in practice) because of
the commutativity of the operations: integration and differentiation (for the norm
k � k1 this is not the case).

References

1. Adam, M., Czerwik, S., Król, K.: On some functional equations. In: Handbook in Functional
Equations: Functional Inequalities. Springer (in print)

2. Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific,
London/Singapore (2002)

3. Czerwik, S., Król, K.: On the convergence of Adomian’s method (sent to journal)
4. Król, K.: Application the least squares method to solving the linear functional equa-

tion. In: Materiały konferencyjne: Młodzi naukowcy wobec wyzwań współczesnej techniki,
pp. 263–270. Politechnika Warszawska (2007)

5. Kuczma, M.: Functional equations in a single variable. In: Monografie Matematyczne, vol. 46.
Polish Scientific Publishers, Warsaw (1968)

6. Michlin, S.G.: Variacionnye metody v matematicheskoi fizike, Gosudarstvennoe izdatelstvo
tehniko-teoreticheskoi literatury. Moskva (1957)

7. Musielak, J.: Wstp do analizy funkcjonalnej. PWN, Warszawa (1989)



Markov-Type Inequalities with Applications
in Multivariate Approximation Theory

Nicholas J. Daras

Abstract In this paper, we provide a brief overview of several refinements and
applications of the Markov-type inequalities in various contexts.

Keywords Markov inequality • Markov-type inequalities • Polynomials with
restricted zeros • Multivariate polynomials • Continuous linear extension of C1
functions • Müntz polynomials • Leja–Siciak extremal function • Green function
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1 Introduction

Let Pd .K/ be the collection of all polynomials of degree at most d with coefficients
in the field K D R;C. An inequality of the Markov-type is an inequality of the
form




P .�/ .x/



 � C kP .x/k

for every P 2 Pd .K/. Here P .�/ .x/ denotes the �th derivative. The best possible
constant C depends on d , � and the norm k�k, and the determination and estimation
of C has been the subject of numerous investigations since Andrei Markov’s paper
[50] (:� D 1 and k�k being the L1-norm on a bounded interval) and the paper [51]
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by his brother Vladimir Markov: (� � 2 and the sameL1-norm). Markov’s original
paper dates back to 1889 and it is not readily accessible. For a modern exposition
on this and other related topics we also refer to [16].

The first purpose of this paper is to give a brief overview of all the refinements,
extensions and generalizations of the Markov-type inequalities. The second purpose
of the paper is to summarize some basic applications of various forms of these
inequalities in the context of multivariate approximation theory. A useful reference
in the paper could be the book [52].

2 Markov-Type Inequalities in R

2.1 Markov’s Original Inequality and Constrained Variations

Markov’s (Andrey (Andrei) Andreyevich Markov, in older works also spelled
Markoff, 14 June 1856–20 July 1922) original inequality asserts that if P 2Pd .R/

such that supx2Œ�1;1� jP .x/j � 1, then

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � d2:

Clearly Markov’s result can also be equivalently stated as follows.

Theorem 1 ([31]). For all polynomials P 2Pd .R/, it holds

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � d2supx2Œ�1;1� jP .x/j :

More generally,

supx2Œa;b�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � 2d2

b � a supx2Œa;b� jP .x/j :

The prissy result of Theorem 1 for classes of polynomials under various
constraints has attracted a number of authors. For example, it has been observed by
Sergei Natanovich Bernstein in that Markov’s inequality for monotone polynomials
is not essentially better than for arbitrary polynomials:

Theorem 2 ([9]). If d is odd, then

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ �

�
d C 1
2

�2
sup

x2Œ�1;1�
jP .x/j

for all P 2Pd .R/ n f0g that are monotone on Œ�1; 1�.
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Another direction is considered by P. Borwein and Erdélyi who proved the
following Markov-type inequality for polynomials with coefficients in f�1; 0; 1g.
Theorem 3 ([21]). For all polynomialsP 2Pd .R/ with each of their coefficients
in f�1; 0; 1g, there are two constants �1 > 0 and �2 > 0 such that

�1 � 1

d � log .d C 1/
supx2Œ0;1�

ˇ̌
ˇP 0

.x/
ˇ̌
ˇ

supx2Œ0;1� jP .x/j
� �2:

Let me finally mention a totally different approach due to Newman and Frappier
and concerning a Markov-type inequality formulation for Müntz polynomials.

Theorem 4 ([34, 57]). Given any sequence ƒ D �
�j
�
jD0;1;2;::: of distinct real

numbers, let Md .ƒ/ be the linear span of ƒ over R denoted by

Md .ƒ/ WD span
R

˚
x�0 ; x�1 ; : : : ; x�d

�
� ˚

a�0x
�0 C a�1x�1 C � � � C a�d x�d W a�0 ; a�1 ; : : : ; a�d 2 R

�

(d D 0; 1; 2; : : : ). Elements of Md .ƒ/ are called Müntz polynomials. Every
polynomial P 2Md .ƒ/ n f0g satisfies the following Markov-type inequality

�
2

3

�
�
0
@ dX
jD0

�j

1
A � supx2Œ0;1�

ˇ̌
ˇxP 0

.x/
ˇ̌
ˇ

supx2Œ0;1� jP .x/j
� .8:29/ �

0
@ dX
jD0

�j

1
A :

2.2 Markov-Type Inequalities for the Derivatives
of an Algebraic Polynomial

Having found an upper bound for
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ, it would be natural to go on and ask for

an upper bound for
ˇ̌
P .k/ .x/

ˇ̌
(where k � d ). Iterating Markov’s theorem yields

supx2Œ�1;1�
ˇ̌
ˇP .k/ .x/

ˇ̌
ˇ � d2k � supx2Œ�1;1� jP .x/j .P 2Pd .R//:

However, this inequality is not sharp. The best possible inequality was found by
Markov’s brother Vladimir Andreevich Markov (May 8, 1871–January 18, 1897),
who proved the following.

Theorem 5 ([51]). For all polynomials P 2Pd .R/, it holds

supx2Œ�1;1�
ˇ̌
ˇP .k/ .x/

ˇ̌
ˇ � d2 � �d2 � 12� � � � � � �d2 � .k � 1/2�

1 � 3 � 5 � � � � � .2k � 1/ � supx2Œ�1;1� jP .x/j ;
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for every k D 1; 2; : : : ; n. The fraction on the right-hand side of this inequality is
exactly equal to T .k/d .1/ where

Td .x/ D cos .d arccosx/ D 2d�1
dY
�D1

�
x � cos

��
� � 1

2

	
�=d

��

is the Chebyshev polynomial of the first kind.

2.3 Refinements of the Markov-Type Inequality for Real
Polynomials with Restricted Zeros

2.3.1 The Case of Real Roots

In 1940, P. Erdös offered the following refinement of Markov’s inequality.

Theorem 6 ([32]). If P 2Pd .R/ and P has all its roots in Rn .�1; 1/, then

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � ed

2
� supx2Œ�1;1� jP .x/j :

However, we cannot proceed inductively with Erdos’ inequality, since some of the
roots of the derivatives may be in Œ�1; 1�. With this in mind, Szabados and Varma
established the following version of Erdos’ inequality.

Theorem 7 ([74]). If P 2 Pd .R/ and P has all its roots in R and at most one
root in Œ�1; 1�, then

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � C1 � d � supx2Œ�1;1� jP .x/j

where C1 is independent of d .

This, of course, yields the following inequality.

Corollary 8. If P 2Pd .R/ and P has all its roots in Rn .�1; 1/, then

supx2Œ�1;1�
ˇ̌
ˇP 00

.x/
ˇ̌
ˇ � C2 � d2 � supx2Œ�1;1� jP .x/j

where the constant C2 is independent of d .

Generalizing, in 1985, P. Borwein showed the next result.

Theorem 9 ([17]). If P 2Pd .R/ and the polynomial P has at least d �m roots
in Rn .�1; 1/, then there is a constant C (C � 9) so that
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supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � C � d � .mC 1/ � supx2Œ�1;1� jP .x/j :

Remark 10. Up to the constant this result is best possible. In fact, Szabados in [73]
constructed polynomials P 2Pd .R/ with d �m roots in Rn .�1; 1/ so that

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � d �m

2
� supx2Œ�1;1� jP .x/j .0 < m � d/:

We obtain immediately the following refinement of Theorem 5.

Corollary 11. For all polynomials P 2 Pd .R/, having at least n � m roots in
Rn .�1; 1/, it holds

supx2Œ�1;1�
ˇ̌
ˇP .k/ .x/

ˇ̌
ˇ � cm � dŠ � .mC k/

.d � k/Š �mŠ � supx2Œ�1;1� jP .x/j ;

for every k D 1; 2; : : : ; n. The constant cm � 9m depends only on k.

2.3.2 The Case of Complex Roots

Let us now turn to the case of non-real (complex) zeros. Recall that, by Theorem 1,
we have

supx2Œ0;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � 2d2supx2Œ0;1� jP .x/j :

In [7], Benko and Erdélyi proved the following refinement of this Markov Inequality.

Theorem 12. Let P .m; C/

d .R/ be the collection of all polynomials of degree at most
d with real coefficients that have at most m distinct complex zeros. For every P 2
P

.m;C/

d .R/, it holds

supx2Œ0;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � 32 � 8m � d � supx2Œ0;1� jP .x/j :

2.3.3 The General Case

Independently of the location of polynomial roots, Duffin and Schaeffer provided
the following nice and general uniform refinement of Markov’s inequality.

Theorem 13 ([27]). For all polynomials P 2Pd .R/, it holds

supx2Œ�1;1�
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � d2 �maxjD0;1;:::;d jP .cos Œj�=d �/j :
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In this direction, but in contrast to the uniform estimate of Markov’s inequality,
S. N. Bernstein inequality gave nice punctual bounds for the first derivative of a
polynomial.

Theorem 14 ([8]). For every polynomial P 2 Pd .R/ and every a < b in R, we
have

ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � dp

.x � a/ .b � x/ � supy2Œa;b� jP .y/j .a < x < b/:

Apart from the above general Markov–Bernstein inequality, there is another general
nice result, due to G. G. Lorentz.

Theorem 15 ([48]). For all polynomialsP 2Pd .R/ having no zeros in the ellipse
L� D .x/2C.y=�i/2 with large axis Œ�1; 1� and small axis Œ��i; �i � (�1 < � < 1),
there is an constant c > 0 such that

ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � c �min

( p
d

�
p
1 � x2 ;

d

�2

)
� supy2Œ�1;1� jP .y/j .�1 < x < 1/:

2.4 Extensions of Markov-Type Inequality

Another natural direction of interest is the extension of Markov-type inequalities to
other types of compact subsets of R. For a survey of these results see the monograph
of P. Borwein and Erdélyi [20]. A number of papers study possible extensions of
Markov-type inequalities to compact setsK 	 R when the geometry ofK is known
a priori (Cantor type sets, finitely many intervals, etc.; cf. Pleśniak [61] and the
references therein, as well as [18, 76]).

However, most of the results concerning the extension of Markov-type inequal-
ities in other types of compact subsets of R are partial cases of more general
results reported in compact sets of Kn (K D R;C). Consequently, we would
prefer not to speak at all about the extension of Markov-type inequalities in various
compact subsets of the real line, and to come back when we will consider the
multidimensional case.

For now, let me mention just two indicative propositions which have been proven
only in the case of a real variable.

Proposition 16 ([18]). Let 0 < a � 1, and let A be a closed subset of Œ0; 1� with
Lebesgue measure m.A/ � 1 � a. Then there is a constant C > 0 such that

supx2I
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � C � d2 � supx2A jP .x/j

for every P 2Pd .R/ and for every subinterval I of A with length at least a.
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Proposition 17 ([31]). Let ˛ and ˇ be two real numbers such that 1 < ˛C 1 < ˇ
and 5 .˛ C 1/ < ˇ. Let also

K D K˛;ˇ D
1[
kD1

�
1

.k C 1/˛ C
˛

4.k C 1/ˇ ;
1

k˛

	[
f0g:

Then there is a constant C D C .˛; ˇ/ > 0 such that

supx2K
ˇ̌
ˇP 0

.x/
ˇ̌
ˇ � C � d2 � supx2K jP .x/j

for every P 2Pd .R/.

3 Markov-Type Inequalities in R
n

The purpose of this section is to study Markov-type inequalities for multivariate
polynomials. Thus we consider the space Pd .R

n/ of polynomials

P .x/ D
X
jkj�d

akx
k

of n real variables and total degree � d . (As usually, jkj D k1 C � � � C kn and
xk D x

k1
1 : : : x

kn
n , where k D .k1; : : : ; kn/ and x D .x1; : : : ; xn/ 2 Rn.) In what

follows kxk denotes the Euclidean norm of x 2 Rn, Sn�1 D fx 2 Rn W kxk D 1g
is the unit sphere in Rn, while B

n D fx 2 Rn W kxk � 1g stands for the closed unit
ball of Rn.

We are interested in estimating DyP .x/, the derivative of P .x/ 2 Pd .R
n/ in

the direction y 2 Sn�1. In particular, this leads to estimates for the magnitude of
the gradient of P .x/ given by

jgrad P .x/ j D sup
˚ˇ̌
DyP .x/

ˇ̌ W y 2 Sn�1� :
Naturally, in the multivariate case the results are closely related to the geometry of
the underlying set K 		 Rn on which the uniform norm kP kK WD supx2K jP .x/j
of P .x/ 2Pd .R

n/ is considered.
A compact subset K of Rn is said to preserve (or admit) Markov’s inequality, or

simply to be Markov, if there exist constants M > 0 and r > 0 such that for each
polynomial p 2Pd .R

n/ we have

supx2K jgrad P .x/j �M � d � r � supx2K jP .x/j ;whenever d 2 N .Mn/

The first sharp Markov-type inequality in Rn was obtained by Kellogg in 1928 in
the case whenK is the closed unit ball B

n
of Rn.
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Theorem 18 ([45]). B
n

is a Markov set; indeed, for all polynomialsP 2Pd .R
n/,

it holds

supx2Bn jgrad P .x/j � d2 � supx2Bn jP .x/j :

(Clearly, this inequality is sharp for every d; n 2 N.)
In 1974, Wilhelmsen gave a Markov-type estimate for an arbitrary convex body

K 2 Rn. Recall that a convex body in Rn is a convex compact set with non-
empty interior [77]. Twenty-five years later, Kroó and Révéz improved slightly
Wilhelmsen’s estimate by showing the following result.

Theorem 19 ([47]). Let K 		 Rn be a convex body. Denote by w.K/ the minimal
distance between two parallel supporting hyperplanes for K . Then K is a Markov
set; indeed, for all polynomials P 2Pd .R

n/, it holds

supx2K jgrad P .x/j � 4d2 � 2d
w .K/

� supx2K jP .x/j :

Wilhelmsen’s inequality with a different, weaker constant was given earlier by

Coatmelec [23]. Note that w
�
B
n
�
D 2, i.e. for the unit ball the constant in the

inequality of Theorem 19 is twice larger than in the inequality of Theorem 18.
Independently Nadzhmiddinov and Subbotin proved Theorem 19 in the special case
whenK is a triangle in R2 [56]. This leads to the interesting problem of finding the
exact constant in Theorem 19. Evidently, this constant must be between 2 and 4.
This question was partially resolved in 1991 by Sarantopoulos who found sharp
Bernstein and Markov-type inequalities in the case when K is central symmetric
[66]. Recall thatK is central symmetric if and only if with proper shift it is the unit
ball of some norm on Rn.

Apart from the above results, we also have some additional results reported only
in the case of two real variables. First, we must notice that the constant in the
estimate of Theorem 19 can be improved as follows in the special case when K
is a triangle� in R2.

Theorem 21 ([47]). Assume thatK D � 		 R2 is a triangle with angles 0 < � �
ˇ � a � �=2. Then K is a Markov set; indeed, for all polynomials P 2Pd .R

n/,
it holds

supx2� jgrad P .x/j � s .�/ � d2
w .K/

� supx2� jP .x/j :

where

s .�/ WD 2

˛

p
˛2 C ˇ2 C 2˛ˇ cos �:

Clearly, 10 � s .�/ � 2p2C 2 cos � < 4.
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We can also give Markov-type estimates on certain special irrational arcs and
domains of R2.

Example 22 ([30]). Let �a WD
˚
.x; x˛/ 2 R2 W 0 � x � 1�. For every irrational

number ˛ > 0, there are constants A; B > 1, depending only on ˛, such that
the tangential Markov factor

M T
d .�a/ WD sup

˚kDTP k�a W P 2Pd .R
n/ ; kP k�a � 1

�

of �a (T is the unit tangent to �a and DTP is the tangential derivative of P along
�a) satisfies the following Markov-type inequality

Ad �M T
d .�a/ � Bd

for every sufficiently large d .

Example 23 ([30]). Let ˛ > 1 and Ka WD f.x; y/ 2 R2 W 0 � x � 1 and x˛

2
� y

� 2x˛g. There exists a constant C > 0, depending only on ˛, such that every
Markov factor on Ka

Md .Ka/ WD sup
n

DyP




Ka
W P 2Pd

�
R
2
�
; kP kKa � 1 and y 2 Sn�1

o

satisfies the Markov-type inequality

Md .Ka/ � dc log d

for every sufficiently large d .

Example 24 ([36]). Let

K WD ˚.x; y/ 2 R
2 W 0 � x � 1 and 0 � y � xm� :

Then,K preserves Markov inequality; indeed, for all polynomials P 2Pd .R
n/, it

holds

supx2K jgrad P .x/j �M � d2m � supx2K jP .x/j :

This last example had inspired W. Pawlucki and W. Plésniak to investigate
Markov-type inequalities in semianalytic and subanalytic sets, and more general,
sets with polynomial cusps. Let us recall that a subset E of R

n is said to be
semianalytic if for each point x 2 R

n one can find a neighbourhood U of x and
a finite number of real analytic functions fi;j and gi;j defined in U , such that

E
\
U D

[
i

\
j

˚
fi;j > 0 and gi;j D 0

�
:

The projection of a semianalytic set need not be semianalytic [49]. The class
of sets obtained by enlarging that of semianalytic sets to include images under the
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projections has been called the class of subanalytic sets. More precisely, a subset
E of Rn is said to be subanalytic if for each point x 2 Rn there exists an open
neighbourhood U of x such that EnU is the projection of a bounded semianalytic
subset of RnCm, where m � 0. If n � 3, the class of subanalytic sets is essentially
larger than that of semianalytic sets, the classes being identical if n � 2. The union
of a locally finite family and the intersection of a finite family of subanalytic sets is
subanalytic. The closure, interior, boundary and complement of a subanalytic set is
still subanalytic, the last property being a (non-trivial) theorem of Gabrielov.

It is clear that the set Km of Example 24 is semianalytic, whence subanalytic. It
appears that the family of (fat) subanalytic sets is a subfamily of a family of sets
admitting only polynomial-type cusps.

Definition 25. A subset E of Rn is said to be uniformly polynomially cuspidal if
one can choose three constantsM > 0, m � 1 and d 2 N and a mapping

q W E � Œ0; 1�! K

such that for each x 2 E ,

i. q.x; 1/ D x, q .x; �/ is a polynomial map of degree d and
ii. dist.q.x; t/I Rn nE/ � M.1� t/m for .x; t/ 2 E � Œ0; 1� :

Application of Hironaka’s rectilinearisation theorem (see [15]) and Łojasiewicz’
regular separation (see [49]), shows that every bounded subanalytic subset of Rn

with intE dense in E is uniformly polynomially cuspidal. The importance of
uniformly polynomially cuspidal compact sets in Rn is explained by the following.

Theorem 26 ([58]). If K is a uniformly polynomially cuspidal compact subset of
R
n, then there exist two constantsM > 0 and r > 0 such that for each polynomial

P 2Pd .R
n/, we have

sup
x2K
jgrad P .x/j �M � dr � supx2K jP .x/j :

Further, there are two other constants R > 0 and � > 0 such that for every
polynomial P 2Pd .R

n/ the following inequality holds

supx2K
ˇ̌
ˇ̌ @P
@xj

ˇ̌
ˇ̌ � R � d� � supx2K jP .x/j whenever j D 1; 2; : : : ; n:

4 Markov-Type Inequalities in C

In the complex plane, the notion of a compact set that is uniformly polynomially
cuspidal becomes trivial. Therefore we are really most interested in sets that are
totally disconnected or otherwise highly irregular.
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However, for completeness, we will make a short reference to the case of
continuous compact subsets of the complex plane. The first sharp Markov-type
inequality in C was obtained by S. N. Bernstein in 1928 in the case when K D
D D fz 2 CW jzj � 1g is the closed unit disc.

Theorem 27 (Bernstein’s Inequality). For all P 2Pd .C/, it holds

supz2D
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � d � supz2D jP .z/j :

The result is best possible and the equality holds for p .z/ D �zn, � being a complex
number.

Remark 28. The above Bernstein’s inequality has an analogue for trigonometric
polynomials which states that if t .
/ D Pd

�D�d a�ei�
 is a trigonometric poly-
nomial (possibly with complex coefficients) of degree n, such that jt .
/j � 1 for

0 � 
 < 2� then
ˇ̌
ˇt 0

.
/
ˇ̌
ˇ � d whenever 0 � 
 < 2� . Equality holds if and only if

.
/ D ei� cos .d
 � ˛/, where � and ˛ are arbitrary real numbers.

Remark 29 ([26]). Related to the derivative inequality of Theorem 27, Dryanov and
Fournier showed the estimate

supjzjD1
ˇ̌
ˇ̌P .z/ � P .z/

z � z

ˇ̌
ˇ̌

� d �maxjD0;1;:::;n

ˇ̌
ˇ̌
ˇ
P
�
eij�=d

�C P �e�ij�=d �
2

ˇ̌
ˇ̌
ˇ .P 2Pd .C//:

Using this estimate, Dryanov and Fournier proved Duffin and Schaeffer’s theorem
(see Theorem 13), as well as its complex version due to Frappier, Rahman and
Ruscheweyh [35]:

supz2D
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � d �maxjD0;1;:::;2d�1

ˇ̌
P
�
eij�=d

�ˇ̌
:

More generally, for any convex compact subset of the complex plane, we can prove
the next result.

Theorem 30. For any compact convex set K 		 C and any P 2 Pd .C/, the
following Markov-type inequality holds

supz2K
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � 4

diam .K/
� d2supz2K jP .z/j

where diam .K/ is the diameter of K .

Generalizing even more, in 1959, Pommerenke proved the following very nice
Erdos-type Markov inequality (compare with Theorem 6).
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Theorem 31 ([65]). Let K 		 C be a connected, closed, bounded set of capacity
capK . For all P 2Pd .C/ such that kP kK � 1 it holds

supz2K
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � e

2
� d2

capK
< 1:36 � d2

capK
:

Several years later, in 2007, Eremenko proved a precise version of this inequality
with an arbitrary continuum K in the complex plane C instead of a connected
compact set.

Theorem 32 ([33]). If P 2 Pd .C/ is a polynomial of degree at most d with
complex coefficients, then

.capK/ � supz2K
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � 21=Œdeg.P /��1 � Œdeg .P /�2 � supz2K jP .z/j

wheneverK is a continuum in C with transfinite diameter (capacity) capK .

A different approach to the investigation of Markov-type polynomial inequalities
in disconnected or irregular planar sets was proposed by Toókos and Totik, in 2005.
Their idea was based to the Lipschitz continuity of the Green function in these sets.
More specifically, they proved the following striking result.

Theorem 33 ([75]). Let K be a compact subset of the plane such that the
unbounded component� of C nK is regular (with respect to the Dirichlet problem:
this means that the Green function g� of� with pole at infinity is continuous on the
boundary @� of �). Then the following are pairwise equivalent.

i. Optimal Markov–Bernstein type inequality holds onK , i.e. there exists a C > 0

such that

supz2K
ˇ̌
ˇP 0

.z/
ˇ̌
ˇ � C � d � supz2K jP .z/j :

for all P 2Pd .C/.
ii. Green’s function g� is Lipschitz continuous, i.e. there exists a C1 > 0 such that

g� .z/ � C1 � dist .z; K/

for every z 2 C.
iii. The equilibrium measure �K of K satisfies a Lipschitz type condition, i.e. there

exists a C2 > 0 such that

�K .D .z0I ı// � C2ı

for every z 2 K and ı > 0. Here,D .z0I ı/ denotes the disk fz 2 C W jz0�zj � ıg
centered at z0 with radius ı.
If � is simply connected, then (i)–(iii) are also equivalent to
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iv. The conformal mapping ˚ from � onto the exterior of the unit disk is Lipschitz
continuous, i.e.

j˚ .z1/ �˚ .z2/j � C3 � jz1 � z2j ; z1; z2 2 �:

5 Markov-Type Inequalities in Cn

It is clear that from Theorem 1 it is easily proved that for the unit cube Œ�1; 1�n 	
Rn the following inequality holds

supz2Œ�1; 1�n jDaP j � d2jaj � supz2Œ�1; 1�n jP j

whenever P 2Pd .C
n/ and a 2 Nn.

Throughout the sequel, Rn will be treated as a subset of Cn such that

R
n D ˚.z1; : : : ; zn/ 2 C

n W Imzj D 0; j D 1; 2; : : : ; n
�
:

With this notation, a compact set K 		 Cn is said to preserve (or admit)
Markov’s inequality .M1/ or simply to be .M1/-Markov, if there exist an integer
m � 1 and, for every a 2 Nn, a constant Ma > 0 such that for each polynomial
P 2Pd .C

n/ we have

supz2K jDaP .z/j �Ma � dm�jaj � supz2K jP .z/j : .M1/

Extending this inequality in various classes of compact subsets of Cn was the
subject of many studies which would be difficult to make an exhaustive list.
Nevertheless, one can refer to the references [1, 58, 70].

It is clear that the well-known concept of a uniformly polynomially cuspidal
compact subset of Rn (Definition 25) can be directly extended to the case of Cn.
A compact set K 		 Cn is said to be uniformly polynomially cuspidal (briefly,
UPC) with parameter m > 0, if one can choose a constant M > 0 and an integer
d0 � 1 such that for any z 2 K there exists a polynomial applicationQa W C! Cn

with degree � d0 satisfying the following two conditions:

(i) Qa .0/ D a andQa .Œ0; 1�/ 2 K
(ii) dist .Qa .t/ ;C

nnK/ �M � tm, whenever t 2 Œ0; 1�.
The UPC sets are important from the pluripotential theory point of view, since

they admit (pluricomplex) Green functions with nice continuity properties. To
explain this, let us suppose that E is a compact subset of Cn. We set

VK .z/ WD sup
˚
u .z/ W u 2 L .Cn/ ; ujK � 0

�
; z 2 C

n;
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where

L .Cn/ WD ˚u 2 PSH .Cn/ W supz2Cn ju .z/ � log .1C jzj/j <1�

is the Lelong class of plurisubharmonic functions with minimal growth. The
function VK is called the (plurisubharmonic) extremal function associated withK .
Its upper semicontinuous regularization V �K is a multidimensional counterpart of the
classical Green function for Cnn OK, where OK is the polynomial hull of K , since
by the pluripotential theory due to E. Bedford and B.A. Taylor it is a solution of
the homogeneous complex Monge–Ampére equation, which is reduced in the one-
dimensional case to the Laplace equation [6]. It is known that

VK.z/D sup

�
1

d
log jp .z/j Wp 2Pd .C

n/ with d � 1 and kpkjK � 1
�
; z 2 C

n[69]:

In other words,

VK .z/ D logˆK .z/

whereˆK is Siciak’s extremal function.

Definition 34. The set K 		 C
n is said to have Hölder’s Continuity Property

(briefly, HCP) if there exist two constants C and s such that

ˆK .z/ � 1C C � ı1=s as dist .z; K/ � ı � 1:

Example 35. Let P W Cn ! Cn be a polynomial mapping satisfying

lim infjzj!1
jP .z/j
jzjı > 0

for some ı > 1. We define the filled-in Julia set associated with P to be the set

JP D
˚
z 2 C

n W the set fP� .z/g�2N0 is bounded
�

where P� denotes the �-th iteration of the polynomial mapping P . Following [46],
the filled-in Julia set associated with P is a compact, polynomially convex set
satisfying HCP.

Now we can come back to the multivariate Markov inequality. In 1967, Siciak
used Cauchy integral formula and proved the following property.

Theorem 36 ([68]). If K 		 Cn has HCP, then K preserves Markov’s inequality
.M1/, with Ma D aŠeC jaj andm D Œs�.

The importance of the class UPC is explained by the following
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Theorem 37 ([58]). If K is a compact UPC subset of Cn with parameter m, then
K satisfies HCP with exponent s D 1=2 Qm, where Qm WD k as k � 1 < m � k with
k 2 Z.

There are, however, sets that are HCP without being UPC. Such Cantor-type sets
were first constructed by Jonsson [44] and Siciak [71]. The problem of whether the
classical Cantor ternary set has Markov’s property has appeared more difficult and a
positive answer was first given in 1993 by Białas and Volberg [10] who showed that
this set is even HCP. It is worth adding that there are also Cantor-type sets which do
not preserve Markov’s inequality and, at the same time, they are regular with respect
to the (classical) Green function [39, 60, 76].

Up to now, the problem of whether Markov’s property of K implies that K is
HCP remains open. We know only that the answer is “yes” for a class of one-
dimensional Cantor-type sets [11, 76]. In general, we even do not know whether
Markov’s property of K implies the continuity of the Green function VK or else
non-pluripolarity of K . We recall that a subset K of Cn is said to be pluripolar
if one can find a plurisubharmonic function u on Cn such that K 	 fu D �1g.
However, Białas-Cież [12] proved that any planar compact Markov set has a
positive logarithmic capacity, whence it is not polar.

Let me finally mention an .M1/-type inequality, due to Baran and Pleśniak.

Theorem 38 ([4]). If K is a polynomially convex, HCP compact subset of C
n

with HCP-exponent m and f is a nondegenerate analytic map defined in an open
neighbourhood of K , with values in an algebraic subset M of Cn of dimension M ,
1 � M � N , then there exists a constant C > 0 such that for every polynomial
Q.z1; : : : ; zn/ we have

jDT.t I v/Q.f .t//j � C1d1=mkQkf .K/
where t 2 K and T .t; �/ D D�f .t/ the derivative of f in direction �.

6 Markov-Type Inequalities in Lp Spaces

Markov classical inequality in Theorem 1 has been extended to the Lp-norm (p �
1) by Hille, Szegö and Tamarkin [43]. Their result reads




P 0





p
� C .p; d/ � d2 � kP kp.P 2Pd .R//

where kkp is the usual Lp-norm on Œ�1; 1� and C .p; d/ is the following bounded

(by 6e1C.1=e/, whenever p � 1 and d � 1) coefficient

C.p; d/ WD
�

2.1C .1=d//dC1; if p D 1
2.p � 1/.1=p/�1.p C .1=d//.1C p=.dp � p C 1//d�1C1=d ; if p>1:
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Several years later, in 1990, Goetgheluck improved the admissible values for
C .p; d/ [38].

During the next years, severalLp-Markov-type inequalities are obtained for many
special cases. We mention two such cases. First, in 1995, P. Borwein and Erdélyi
gave the following sharp Lp-Markov-type inequality on Œ�1; 1�.
Theorem 39 ([19]). It holds

Z 1

�1

ˇ̌
ˇP 0

.x/
ˇ̌
ˇpdx � M .p/ � .d � .k C 1//p �

Z 1

�1
jP .x/jpdx

for all real algebraic polynomials P 2Pd .C/ having at most k, with 0 � k � d ,
zeros (counting multiplicities) in the open unit disk of the complex plane, and for
al l p > 0, where M .p/ D cpC1 �1C p�1� with some absolute constant c > 0.

Next, in 2000, Erdélyi proved the following Lp-Markov-type inequality for
Müntz polynomials and exponential sums on Œa; b�.

Theorem 40 ([29]). (Newman’s Inequality in Lp Œa; b� for Œa; b� 	 .0;1/). Let
� D ��j �jD0;1;2;::: be an increasing sequence of nonnegative real numbers. Suppose
�0 D 0 and there exists a ı > 0 so that �j � ı � j for each j . Suppose 0 < a < b

and 1 � p � 1. Then there exists a constant c.a; b; ı/ depending only on a, b,
and ı so that

 Z b

a

ˇ̌
ˇP 0

.x/
ˇ̌
ˇpdx

!1=p
� c.a; b; ı/ �

0
@ dX
jD0

�j

1
A �

 Z b

a

jP .x/jpdx
!1=p

for every P 2 Md .�/, where Md .�/ is the space of Müntz polynomials, that is
the linear span of � over R

Md .ƒ/ W D span
R
fx�0; x�1 ; : : : ; x�d g � fa�0x�0 C a�1x�1 C � � � C a�d x�d W a�0 ;

a�1 ; : : : ; a�d 2 Rg:
Generalizing, in this direction, Baouendi and Goulaouic obtained Lp-Markov’s
inequalities on compact subsets of Rn satisfying a parallelepiped property [1],
while Goetgheluck obtained Lp-Markov’s inequalities on compact UPC subsets of
Rn [37].

Let us now turn to the more general case of a compact subset K of Cn and let us
give general conditions for a positive measure � on K to satisfy an Lp-Markov’s
inequality. We say that .K;�/ satisfies a Markov inequality for the exponent p >
0, if for any ˛ 2 Nn there exist a constantM DM .p; ˛/ and two integers r;m > 1

such that for each polynomial P 2Pd .C
n/ we have
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sup
x2K
jDaP.z/j �M � d m

pCr �jaj �
�Z

K

jP.z/jpd�
� 1

p

: .Mp/

It is easily seen that

Theorem 41. A compact set K 		 C
n preserving Markov’s inequality .M1/

satisfies a Markov inequality
�
Mp

�
for the exponent p > 0 if the following condition

is fulfilled.

supx2K jP .z/j �M � d
m
p �
�Z

K

jP .z/jpd�
� 1

p

; for any P 2Pd .C
n/ :

In 1993, Zeriahi gave a general density condition on the positive measure �
around any point of K , under which a condition similar to that of Theorem 40 is
satisfied.

Theorem 42 ([79]). Let K be a compact set in Cn preserving Markov’s inequality
.M1/. Let also � be a Borel measure on K satisfying the following density
condition:

there are two constants C; � > 0 and a real number �0 2 .0; 1/
such that

8 a 2 @SK H) �
�
K
\
Bn .aI �/

�
� C � �� ;

whenever � 2 .0; �0/ where Bn .aI �/ is the open ball of C
n

with centre a and radius � and @SK is the Shilov boundary with
respect to the uniform algebra generated by the restrictions of the
analytic polynomials onK .

.D/

Then .K;�/ satisfies an Lp-Markov inequality. More specifically, there exist two
constantsM1; M2 > 0 and an integerm � 1 such that for any p > 0 it holds

supx2K jP .z/j �M1 � .M2 � d/mp �
�Z

K

jP .z/jpd�
� 1

p

.P 2Pd .C
n//:

Corollary 43 ([79]). If K is a compact UPC subset of Cn and � is the Lebesgue
measure on K , then .K; �/ satisfies the following Lp-Markov inequality:

supx2K jP .z/j �M1 � .M2 � d/
m
p �
�Z

K

jP .z/jpd�
� 1

p

whenever P 2 Pd .C
n/ and the constants M1; M2;m > 0 are independent of P

and p.
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7 Markov-Type Inequalities in Normed Linear Spaces

7.1 Markov-Type Inequalities in Banach Spaces

We will first recall the definitions of polynomial defined in normed linear spaces
and its Fréchet and directional derivatives.

Let X and Y be real normed linear spaces. Given a positive integer d , a mapping
P W X ! Y is called a homogeneous polynomial of degree d if there exists
a continuous symmetric d -linear mapping F W X � � � �� X ! Y such that
P.x/ D F.x; : : : ; x/ for all x 2 X . In this case we write P D OF and call P the
homogeneous polynomial associated with F . A mapping P W X ! Y is called a
polynomial of degree at most d if

P D P0 C P1 C : : :C Pd ;

where Pk W X ! Y is a homogeneous polynomial of degree k for k D 1; : : : ; d

and a constant function for k D 0.
Let P .Y /

d .X/ be the collection of all polynomials P W X ! Y of degree at

most d . Given a x 2 X , the Fréchet derivative of the polynomial P 2P
.Y /

d .X/ at
x, denoted by DP.x/, is a continuous linear map L W X ! Y such that

lim y>0

kP.x C y/ � P.x/ � L.y/k
kyk D 0:

Clearly,

DP .x/ y D d

dt
P .x C ty/jtD0

whenDP.x/ exists.
If F is a continuous symmetric d -linear mapping, we write F

�
xj yk

�
for

F

0
B@x; : : : ; x„ ƒ‚ …

j

; y; : : : ; y„ ƒ‚ …
k

1
CA :

Then the binomial theorem for F can be written as

OF .x C y/ D
dX
kD0

�
d

k

�
F
�
xd�kyk

�
:

It follows from the continuity of F that D OF .x/ y D dF
�
xd�1y

�
. Hence if

P W X ! Y is a polynomial of degree at most d then DP W X ! L .X; Y /
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is a polynomial of degree at most d � 1, where L .X; Y / denotes the space of
all continuous linear mappings L W X ! Y with the operator norm, i.e. kLk D
sup fkL.x/k W kxk � 1g.

It is an elementary fact that the k-th order Fréchet derivative DkP .x/ may be
identified with a continuous symmetric k-linear map. We denote the associated
homogeneous polynomial of degree k by ODkP .x/ and call this the k-th order
directional derivative of P at x. Thus,

ODkP .x/ y D dk

dtk
P .x C ty/jtD0 and

1

kŠ
ODk OF .x/ y D

�
d

k

�
F
�
xd�kyk

�

for all integers k with 0 � k � d .
As usually, if P 2P

.Y /

d .X/ is a polynomial, we define

kP k D sup fkP .x/k W kxk � 1g

and



DkP


 D sup

˚

DkP .x/ .x1; : : : ; xk/


 W kx1k � 1; : : : ; kxkk � 1�

for x 2 X . By an inequality of R. S. Martin (see [25], Theorem 1.7),



DkP .x/


 � kk

kŠ




 ODkP .x/





for x 2 X . If X is a real Hilbert space, by an equality due to Banach and others (see
[40], Theorem 4 or [25], Example 1.9),



DkP .x/


 D




 ODkP .x/





for x 2 X . For further discussion of all these concepts, see [25] and [42].
The fundamental problem we will now consider in this section is to find the

smallest number M D M .d; k/ such that



 ODkP




 � M � kP k whenever P 2
P

.Y /

d .X/ is a polynomial of degree at most d and X and Y are any real normed
linear spaces. We shall always assume that Y D R since by the Hahn–Banach
theorem the numbersM DM .d; k/ do not change when we restrict to this case.

We have the following crude estimates for the numbersDM .d; k/.

Theorem 44 ([28], p. 149). For any two positive integers d and k with 1 � k � d ,
it holds

T
.k/

d .1/ �M .d; k/ � 22k�1T .k/d .1/ ;
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where Td .x/ is the Chebyshev polynomial of the first kind:

Td .x/ D cos .d arccosx/ D 2d�1
dY
�D1

�
x � cos

��
� � 1

2

	
�=d

��
:

The following reduces the computation of the numbers M D M .d; k/ to the case
where X is `1

�
R2
�
, i.e. the space R2 with norm k.s; t/k D jsj C jt j.

Theorem 45 ([41], Lemma 9). The number M .d; k/ is the supremum of the
absolute values of

dk

dtk
q .1; t/jtD0

where q W R2 ! R is any polynomial of degree at most d such that

jq.s; t/j � 1
whenever k.s; t/k D jsj C jt j � 1.

For the case of the first and highest derivative, Sarantopoulos and Muñoz have
shown that the best constant in Markov’s theorem is no larger for real normed linear
spaces than it is for the real line.

Theorem 46 ([55, 66]). It holds

M .d; 1/ D d2 andM .d; d/ D 2d�1 d Š:

In 2002, Muñoz and Sarantopoulos (see [14]) have completely solved the problem
of determining the Markov constants for the case of Hilbert spaces. The case of
the first derivative was done in finite dimensions by Kellogg [45] and in infinite
dimensions by the Harris [40].

Theorem 47 ([55]). If the spaces X in the definition of M D M .d; k/ are
restricted to be real Hilbert spaces, then

M .d; k/ D T .k/d .1/

whenever d and k are positive integers with 1 � k � d .

7.2 Markov-Type Inequalities in Banach Algebras

Let A D .A; kk/ be a unital (complex and not necessarily commutative) Banach
algebra, with unitary element e and norm kk.
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For any polynomial P 2 Pd .C/ of the form P .z/ D Pd
jD0 aj zj and for all

x 2 A, define

P .x/ D
dX
jD0

aj x
j 2 A

where

xj D
�
xk WD e; for k D 0
xk D xk�1 � x; for k D 1; 2; : : : ; d:

We say that P .x/ is a polynomial in A of degree at most d with coefficients in the
field C. The set of all polynomials P .x/ will be denoted by Pd .A/.

Let also

A0 WD fx 2 A W there is a d � 1 and a P 2Pd .A/ such that P .x/ D 0 g
A� WD fx 2 A W for any d � 1 and any P 2Pd .A/ we have P .x/ ¤ 0 g :

It is easily seen that

1. if x; y 2 A0 and x and y commute, then x C y 2 A0, xy 2 A0 and �x 2 A0

whenever � 2 C,
2. if x 2 A0 and x is invertible in A, then x�1 2 A0,
3. if A is Abelian, then A0 is a subalgebra of A and
4. if A has finite dimension, then A D A0 and A� D ;.

With the above sufficient notation, we are in position to define Markov-type
inequalities in the Banach algebra A. But, now, the approach will be notably
different from the standard situation discussed in previous sections.

Definition 48. We shall say that an element x 2 A� has Markov’s property .M/ if
there exist two positive integers M and m such that for each d D 1; 2; : : : and any
polynomial P 2Pd .A/ we have




P 0

.x/



 �M � dm � kP .x/k : .M/

According to [53], to study the elements x 2 A� with Markov’s property, we may
consider Pleśniak’s type conditions .B/ and .B�/:

Definition 49.

i An element x 2 A� satisfies Pleśniak’s type condition .B/ if there exist three
positive constants c1, c2 and c3 such that

kP .x � �e/k � c1 � kP .x/k .B/

whenever P 2Pd .A/ (d D 1; 2; : : : ) and j�j � c2d�c3 .
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ii Let S 		 C be a compact set and � be a Borel probabilistic measure on S . An
element x 2 A� satisfies Pleśniak’s type condition .B�/ with respect to the pair
.S; �/ if there exist three positive constants C1, C2 and C3 such that






Z
S

P .x � �te/d� .t/




 � C1 � kP .x/k

�
B�
�

whenever P 2Pd .A/ (d D 1; 2; : : : ) and j�j � C2d�C3 .
We have the following result.

Theorem 50 ([53]).

i Let S be a compact subset of C and let � be a Borel probabilistic measure on
S such that Z

S

tkd� .t/ D 0 for some positive integer k � 1:

If an element x 2 A� satisfies Pleśniak’s type condition .B�/ with respect to
the pair .S; �/, then x has Markov’s property for the k-th derivative, that is




P .k/ .x/



 � Ck � dkC1 � kP .x/k .Mk/

whenever P 2Pd .A/ (d D 1; 2; : : : ). Here C is a positive constant and C1 is
the constant of condition .B�/ in Definition 49.ii.

ii. Let x be an element of A� satisfying the following inequality



.P .x//2




 � �kP .x/k2 wheneverP 2Pd .A/ .d D 1; 2; : : : /

where the constant � > 0 is independent of the polynomial P but it can depend
on the element x. Then x has Markov’s property .Mk/.

iii. If an element x 2 A� has Markov’s property .Mk/ for some integer k � 1, then
x has the following Markov’s propertyW



P 0

.x/
k




1
k � 6 � C � kC1�1 � dC1 2 kP .x/k .P 2Pd .A/ ; d D 1; 2; : : : /:

8 Six Applications in Multivariate Approximation Theory

8.1 Polynomial Approximation of C1 Functions

A subset K of Rn is C1 determining if for each function f 2 C1 .Rn/, condition
f D 0 on K , implies that Daf D 0 on K , for each ˛ 2 Z

nC.
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Theorem 51 ([58, 60]). If a compact set K in Rn is C1 determining, then the
following statements are equivalent:

i. K has Markov’s property;
ii. K has the following property: there exist positive constants M and r such that

for each polynomial every polynomial P 2Pd .R
n/ (d D 1; 2; : : : ) one has

jP .z/j � M � supw2K jP .w/j whenever dist .z; K/ � .1=d r/

iii. (Bernstein’s Theorem) For every function f W K ! R, if the sequence

.distK .f;Pd .R
n///dD1;2;:::

is rapidly decreasing, i.e. for each s > 0, dsdistE.f;Pd .R
n// > 0 as d > 1,

then f extends to a C1 function f in Rn. Here,

distK .f;Pd .R
n// WD inf fkf � P kK W P 2Pd .R

n/g :

8.2 Extension of C1 Functions from Compact Sets in R
n

The development that will be adopted in this Paragraph comes from the com-
prehensive presentation made by Professor W. Pleśniak on 10 November 2005
at the Seminarium Wydziau, Matematyki i Informatyki UJ, Uniwersytet Jagiel-
loski, Poland (see http://minikonferencja.matinf.uj.edu.pl/assets/wyklad-plesniak.
pdf, [64]).

Let K be a compact set in R
n and let OC1 .K/ denote the space of all functions

u W K ! C that can be extended to C1 functions in the whole space R
n. We give

the space OC1 .K/ the topology TQ endowed with the family of the seminorms

�K;� D inf
˚
supjaj��kDagkK W g 2 C1 .Rn/ ; g=K D u

�
:

TQ is the quotient topology of the space C1 .Rn/=T .K/, where C1 .Rn/ is
endowed with the natural topology determined by the seminorms kgkK;� WD
supjaj��kDagkK and T .K/ WD fu 2 C1 .Rn/ W u=K D 0g. Since C1 .Rn/ is
complete and since T .K/ is a closed subspace of C1 .Rn/, the quotient space

C1 .Rn/=T .K/ is also complete, whence
� OC1 .K/ ;TQ

�
is a Fréchet space.

If the set K is C1 determining, this space can be identified with the space of
Whitney jets onK . Let us recall that a C1 Whitney jet onK is a vector U D .U ˛/

(˛ 2 ZnC), where each U˛ is a continuous function defined on K , such that

jkU kjK;� WD kU kK;� C supj˛j��

( 

�R�xU �˛ .y/




Ê

.kx � ykK/��j˛j
)
.� D 0; 1; : : : /

http://minikonferencja.matinf.uj.edu.pl/assets/wyklad-plesniak.pdf
http://minikonferencja.matinf.uj.edu.pl/assets/wyklad-plesniak.pdf
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where

kU kK;� WD supjaj��kU akK and
�
R�xU

�˛
.y/

WD U˛ .y/ �
X

jˇj���j˛j

1

ˇŠ
U ˛Cˇ .x/ .y � x/ˇ:

Let us denote by E .K/ the space of all C1 Whitney fields on K endowed with the
topology TW determined by the seminorms jkkjK;� (� D 0; 1; : : : ). It is a Fréchet
space. By Whitney’s Extension Theorem [78], U 2 E .K/ if and only if there exists
a C1 function u in Rn such that for all ˛ 2 ZnC, D˛ .u=K/ D U˛ . In particular, if
K is C1 determining, the mapping

J W OC1 .K/! E .K/ W u 7�! J .u/ D .D˛ .v=K//˛2Zn
C

where v 2 C1 .Rn/ and v=K D u, is a linear bijection of OC1 .K/ onto E .K/.
Since, for a cube �n such that K 	 int�n, the seminorms jkkj�n;� and kU k�n;�
are equivalent (see [78]), the linear bijection J is a continuous mapping, whence by
Banach’s theorem, it is a linear isomorphism.

Contrary to the case of Ck jets, for k finite, Whitney’s proof does not yield
a continuous linear operator extending jets from E .K/ to functions in C1 .Rn/.
Moreover, such an operator does not in general exist, which is, e.g. the case when
K is a single point. The problem of the existence of such an operator has a long
history. Positive examples were first given by Mityagin [54] and Seeley [67] (case of
a half-space in R

n). Stein showed that such an operator exists if K is the closure of a
domain in R

n whose boundary is locally of class 1 [72]. In 1978, Bierstone extended
this result to the case of Lip ˛ domains with 0 < ˛ < 1 [13]. He also proved that
an extension operator exists if K is a fat (i.e. intK � K) closed subanalytic subset
of R

n. His method is essentially based on the famous Hironaka Desingularization
Theorem.

All the above mentioned sets are UPC (whence they are Markov). It appears that
some restrictions concerning cuspidality of K are necessary, since Tidten proved
that there exists a set K 		 R

2 which is not Markov and there is no continuous
linear extension operator from

� OC1 .K/ ;TQ

�
to the space C1

�
R
2
�
. However,

Pawlucki and Pleśniak showed that if K is a Markov compact subset of Rn, then
one can easily construct a continuous linear operator extendingC1 functions onK
to C1 functions in Rn [59]. In order to state this result, we give the space OC1 .K/
a topology connected with Jackson’s theorem. To this end, let us put

%d .u/ WD
8<
:
kukK; if d D �1
distK .u;P0 .C/ / ; if d D 0
supl�1lk distK .u;Pd .C// ; if d � 1

where

distK .u;Pd .C/ / WD inf
˚
supz2K ju .z/� P .z/j W P 2Pd .C/

�
:
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By Jackson’s theorem the functionals %d are seminorms on OC1 .K/. Let us denote
by TJ the topology of OC1 .K/ determined by this family of seminorms. In general,
it is not Fréchet. We are now in a position to state the following.

Theorem 52 ([62]). Let K be a C1 determining compact subset of Rn. Then the
following requirements are equivalent.

i. K is Markov;

ii. The space
� OC1 .K/ ;TJ

�
is complete;

iii. The topologies TJ and TQ for OC1 .K/ coincide;
iv. There exists a continuous linear operator

L W
� OC1 .K/ ;TJ

�
! C inf ty .Rn/

such that .Lu=K/ D u for each u 2 OC1 .K/.
Moreover, if K is Markov, such an operator can be defined by

Lu D v1`1uC
1X
dD1

vd .`dC1u � `du/

where `du is a Lagrange interpolation polynomial of u of degree d and vd are
specially chosen cut-off functions.ę

By Jackson’s Theorem, the topology TQ is finer than the Jackson topology TJ.
Hence

Corollary 53. If K is a Markov compact subset of Rn, then the assignment

Lu D v1`1uC
1X
dD1

vd .`dC1u � `du/

defines a continuous linear extension operator

L W
� OC1 .K/ ;TQ

�
! C1 .Rn/

8.3 Expansion of C1 and A1 Functions in Series
of Orthogonal Polynomials

One consequence of Markov’s property .M2/ for .K;�/ is that the vector space
C1 .K/, of all complex-valued functions defined on a compact set K in Rn and
admitting a C1 extension on Rn, has a Schauder basis consisting of orthogonal
polynomials.
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To see this, let � W N ! Nn be a bijection with j� .j /j � j� .j C 1/j for any j .
If .K;�/ satisfies .M2/, the set

˚
x�.j / W j D 0; 1; 2; : : : � is linearly independent in

L2 .K;�/ and, by theHilbert–Schmidt Orthogonalization Process, one can
construct a family

˚
	j W j D 0; 1; 2; : : :

�
of orthonormal polynomials in L2 .K;�/,

such that deg	j D j� .j /j, j D 0; 1; 2; : : : For each u 2 L2 .K;�/, we then write

sj .u/ WD
Z
K

u	j d�.j D 0; 1; 2; : : : /:

Theorem 54 ([79]). If .K;�/ satisfies .M2/ and u 2 C1 .K/, then there holds

u .z/ D
1X
jD0

sj .u/	j .z/ uniformly on K:

The result of Theorem 54 generalizes to the context of a compact set K 	 Rn

satisfying .M1/. To prove this, we may first define a nuclear Fréchet topology on
the space of polynomials P .Rn/ WD S1

dD0Pd .R
n/, by introducing again (see

Sect. 8.2) the topology TQ described by the family of the seminorms &K;� on
OC1 .K/:

�K;� D inf
˚
supjaj��kDagkK W g 2 C1 .Rn/ ; g=K D u

�

(u 2 OC1 .K/, K 		 Rn, � 2 N). By .M1/, if Q 2 P .Cn/ and Q=K D 0, then
Q � 0. From Jackson’s Theorem, it therefore follows that for any g 2 C1 .Rn/,
such that g=K D 0, the restriction of any derivative of g to K is equal to
0. This means that the injective restriction C1 .K/ ! OC1 .K/ is continuous.
Since OC1 .K/ is a nuclear Fréchet space, Mityagin’s Theorem [54] guarantees the
existence of a Hilbert space H such that the injections

C1 .K/! H ! OC1 .K/
are continuous. Let now again � W N ! Nn, be a bijection with j� .j /j �
j� .j C 1/jfor any j . Since K satisfies .M1/, the set

˚
x�.j / W j D 0; 1; 2; : : : � is

linearly independent in H and hence, by the Hilbert–Schmidt Orthogonalization
Process, one can find a system

˚
 j W j D 0; 1; 2; : : :

� 	 H consisting of orthonor-
mal polynomials with deg j D j� .j /j for any j . For each u 2 C1 .K/, we then
write

tj .u/ WD
˝
u
ˇ̌
 j
˛
H
.j D 0; 1; 2; : : : /:

Theorem 55 ([79]). If K satisfies .M1/ and u 2 C1 .K/, then there holds

u .z/ D
1X
jD0

tj .u/ j .z/ uniformly on K:
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8.4 Generalized Padé-Type Approximation
to Continuous Functions

Let K be a compact subset of Cn (K ¤ ;).Suppose � is a positive measure on
K and assume that .K;�/ satisfies Markov’s inequality .M2/. In this Paragraph,
we will define generalized Padé-type approximants to continuous functions on K
(see [24]).

As we have already seen in Theorem 54, there is a family
˚
	j W j D 0; 1; 2; : : :

�
of orthonormal polynomials in L2 .K;�/, such that deg	j � deg	jC1 (j D
0; 1; 2; : : : ) and every u 2 C1 .K/ can be written as

u .z/ D
1X
jD0

sj .u/	j .z/

where sj .u/ WD
R
K

u	j d� (j D 0; 1; 2; : : :) and the series converges uniformly
on K .

In the sequel, we shall assume that
˚
	j W j D 0; 1; 2; : : :

�
is a self-summable fam-

ily in L2 .K;�/, i.e. for any z 2 K , the sequence
n
	j .z/ 	j .z/ W j D 0; 1; 2; : : :

o
is

summable in L2 .K;�/. This means that for every z 2 K and every positive number
� there exists a finite set J0 D J0 .z; �/ of indices such that








X
j2J

	j 	j








K

WD

0
B@
Z
K

ˇ̌
ˇ̌
ˇ̌
X
j2J

	j 	j

ˇ̌
ˇ̌
ˇ̌
2

d�

1
CA
1=2

< �

whenever J is a finite set of indices disjoint from J0. By this summability condition,
for each z 2 K fixed, the function

K
.2/
K .z; �/ W K ! C

[
f1g W x 7�! K

.2/
K .z; x/ WD 	j .z/ 	j .x/

is in L2 .K;�/.
Let now u 2 C1 .K/. We introduce the linear functional

T .�/u W ˆ.Cn/! C W 	j .x/ 7�! T .�/u

�
	j .x/

�
WD sj .u/ ;

where ˆ.Cn/ is the complex vector space which is spanned by all finite complex
combinations of ˚j ’s. If P .x/ D Pd

�D0 ˇ�	� .x/ 2 ˆ.Cn/, then, from Hölder’s

Inequality, it follows that
ˇ̌
ˇT .�/u .P .x//

ˇ̌
ˇ � kukKkP kK , and, by the Hahn–Banach

Theorem, T .�/u extends to a linear continuous functional on L2 .K;�/. For each

z 2 K fixed, one can therefore define the number T .�/u

�
K
.2/
K .z; x/

�
, where T .�/u
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acts on the variable x 2 K . Furthermore, by continuity, computing u .z/ for a fixed

value of z 2 K is nothing else than computing T .�/u

�
K
.2/
K .z; x/

�
.

If only a few Fourier coefficients Qcj .u/ of u are known, then the function

K
.2/
K .z; x/ has to be replaced by a simpler expression. To do so, let us consider

the .mC 1/-dimensional complex vector space FmC1 spanned by the Tchebycheff
system

˚
	0; 	1; : : : ; 	m

�
, and suppose that FmC1 satisfies the Haar condition into

a finite set of pair-wise distinct points MmC1 D f�m;0; �m;1; : : : ; �m;m g 	 K with

MmC1
T�S

0�j�m Ker	j
�
D ;. For any z 2 K there is a unique gm .x; z/ DPm

jD0 �
.m/
j .z/	j .x/ 2 FmC1 satisfying gm .x; �m;k/ D K

.2/
K .z; �m;k/ for any

k � m. A necessary and sufficient condition for the existence of a unique solution
�
�
.m/
0 .z/ ; �.m/1 .z/ ; : : : ; �.m/m .z/

�

for this linear system is that the determinant det
h
	j .�m;k/

i
k;j

is different from zero.

Notice that this condition is equivalent to the Haar condition for FmC1 into the set
MmC1. Then, for any j D 0; 1; 2; : : : ; m, there holds

�
.m/
j .z/ D

mX
kD0

K
.2/
K .z; �m;k/

	j .�m;k/

�
Qj

�

Definition 56. Let K 		 Cn and let � be a positive measure of K , such that
.K;�/ satisfies Markov’s inequality .M2/. Assume that

˚
	j W j D 0; 1; 2; : : :

�
is

a self-summable family, consisting of orthonormal polynomials in L2 .K;�/ such
that deg	j � deg	jC1 (j D 0; 1; 2; : : : ). Form � 0, choose a finite set of pair-wise
distinct points

MmC1 D f�m;0; �m;1; : : : ; �m;m g 	 Kn
0
@ [
0�j�m

Ker	j

1
A

so that det
h
	j .�m;k/

i
k;j
¤ 0 and for any k � m the series

P1
jD0 	j .�/	j .�m;k/

converges uniformly on K . Any function .GPTA=m/.�/u .z/, defined by

T .�/u .gm .x; �// W K ! C W z 7�! .GPTA=m/.�/u .z/ WD T .�/u .gm .x; z//

is called a generalized Padé-type approximant to u 2 C1 .K/, with generating
system MmC1. If, moreover

mX
jD0.j¤�/

sj .u/
mX
kD0

	� .�m;k/

	j .�m;k/
D 0 for every � D 0; 1; 2; : : : ; m;



Markov-Type Inequalities with Applications in Multivariate Approximation Theory 305

then the function T .�/u .gm .x; �// is said to be a Padé-type approximant to u, with
generating system MmC1. It is denoted by .PTA=m/.�/u .z/.

The uniform convergence of the series
P1

jD0 	j .�/	j .�m;k/ guarantees that

K
.2/
K .�; �m;k/ 2 C1 .K/ .k D 0; 1; 2; : : : ; m/:

Hence, the generalized Padé-type approximant T .�/u .gm .x; �// is a continuous
function onK . Notice that the computation of a generalized Padé-type approximant
T
.�/

u .gm .x; �// requires only the knowledge of the Fourier coefficients s0 .u/,
s1 .u/ ; : : : ; sm .u/ of u and of the functions �.m/0 .z/, �.m/1 .z/, . . . ., �.m/m .z/ resulting
from .Q0/, .Q1/ ; : : : ; .Qm/.

Under the assumptions of Definition 56, we have the following result which
justifies the notation Padé-type approximant.

Theorem 57 ([24]). If
P1

�D0 ˇ.m;u/� 	� .z/ is the Fourier expansion of a Padé-type
approximant .PTA=m/.�/u .z/ to u .z/ DP1�D0 s� .u/	� .z/ 2 C1 .K/ with respect
to the family f	� W � D 0; 1; 2; : : : g, then

ˇ.m;u/� D s� .u/ ; for every � D 0; 1; 2; : : : ; m

Theorem 58 ([24]). The error of a generalized Padé-type approximation equals

T .�/u .gm .x; z// � u .z/ D
1X
�D0

mX
jD0.j¤�/

"
sj .u/

mX
kD0

	� .�m;k/

	j .�m;k/

#
	� .z/.z 2 K/:

The error of a Padé-type approximation is

T .�/u .gm .x; z// � u .z/ D
1X

�DmC1

mX
jD0.j¤�/

"
sj .u/

mX
kD0

	� .�m;k/

	j .�m;k/

#
	� .z/.z 2 K/:

Let us now give integral representations for the generalized Padé-type approx-
imants. For u 2 C1 .K/, the corresponding linear functional T .�/u extends
continuously and linearly onto the Hilbert space L2 .K;�/. By Riez’s Represen-
tation Theorem, there exists a unique element U 2 L2 .K;�/ satisfying

T .�/u .g/ D
Z
K

g U d�;whenever g 2 L2 .K;�/ :

For g D 	� , we therefore obtain T .�/u
�
	�
� D R

K
	� U d� D Qc� .u/ D

R
K

u 	� d�
and, consequently
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Z
K

�
u � U � 	� d� D 0; for any � D 0; 1; 2; : : :

Theorem 59 ([24]). If the family f	� W � D 0; 1; 2; : : : g is complete in L2 .K;�/,
then the following result holds.

i. T .�/u .g/ D R
K
g u d� (g 2 L2 .K;�/).

ii. Each generalized Padé-type approximant T .�/u .gm .x; z// to u 2 C1 .K/ has
the integral representation

T .�/u .gm .x; z// D
Z
K

u .x/Dm .x; z/ d� .x/;

where Dm .x; z/ is the kernel

mX
kD0

K
.2/
K .z; �m;k/

mX
jD0

	j .x/

	j .�m;k/
:

Since K
.2/
K .�; �m;k/ D K

.2/
K .�m;k; �/ 2 L2 .K;�/, we also have

R
K g .x/ Dm .x; �/

d� .x/ 2 L2 .K;�/ for any g 2 L2 .K;�/. From the Closed Graph Theorem, it
follows that the integral operator

S.m/� W L2 .K;�/! L2 .K;�/ W g .�/ 7�!
Z
K

g .x/ Dm .x; �/ d� .x/

is continuous. Further, by Fubini’s Theorem, its adjoint operator is given by

S.m/�

� W L2 .K;�/! L2 .K;�/ W g .�/ 7�!
�
S.m/�

��
.g/

D
Z
K

g .x/ Dm .x; �/ d� .x/:

Definition 60. The restriction of S.m/� to C1 .K/ is called a generalized Padé-

type operator for C1 .K/. We denote T .�/u .gm .x; �// WD S.m/� =C1 .K/.

The continuity property of the operator

T .�/ .gm .x; �// W C1 .K/! C1 .K/ W u .�/ 7! T .�/u .gm .x; �//

WD
Z
K

u .x/Dm .x; z/ d� .x/

is a useful tool for the study of convergence and in this connection we have the
following result.
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Theorem 61 ([24]). If the sequence fu� 2 C1 .K/ W � D 0; 1; 2; : : : g con-
verges to u 2 C1 .K/ with respect to the L2-norm of L2 .K;�/, then
lim�!1T .�/u� .gm .x; �// D T .�/u .gm .x; �// in L2 .K;�/.

Corollary 62 ([24]). If the series of functions
P1

�D0 a�u� .z/ (a� 2 C, u� 2
C1 .K/) converges to u 2 C1 .K/ with respect to the L2-norm of L2 .K;�/,
then T .�/u .gm .x; �// DP1�D0 a�T .�/u� .gm .x; �// in L2 .K;�/.

Until now, we have supposed that the compact setK satisfies Markov’s inequality
.M2/ with respect to some positive measure � on K . We will now turn to the case
where E fulfils Markov’s property .M1/. As it is pointed out in Theorem 55 of
Sect. 8.3, ifK 		 Rn verifies .M1/, then there is a Hilbert space .H; h� j �iH/ and
an orthonormal system

˚
 j W deg j � deg jC1; j D 0; 1; 2; : : :

�
in H , such that

the injections

C1 .K/! .H; h� j �iH/ and .H; h� j �iH/! OC1 .K/

are continuous and each function u 2 C1 .K/ has the Fourier expansion

u .z/ D
1X
jD0

tj .u/ j .z/ uniformly on K

where Q�j .u/ D
˝
u
ˇ̌
 j
˛
H

(j D 0; 1; 2; : : : ) and where the series converges
uniformly onH .

As for the .M2/-case, we shall assume that

˚
 j W j D 0; 1; 2; : : :

�

is a self-summable family in .H; h� j �iH/, i.e. for any z 2 K , the sequence˚
 j .z/  j W j D 0; 1; 2; : : :

�
is summable in .H; h� j �iH/, in the sense that for

every z 2 K and every � > 0 there exists a finite set J0 D J0 .z; �/ of indices

with



Pj2J  j .z/  j





H
< � whenever J is a finite set of indices disjoint from J0.

This summability condition implies that for each z 2 K fixed, the function

K
.1/
K .z; �/ W K ! C W x 7�! K

.1/
K .z; x/ WD

1X
jD0

 j .z/  j .x/

belongs to H . Note that, for any z 2 K fixed, K
.1/
K .z; �/ 2 C1 .K/.

Further, by the continuity of the injective map .H; h� j �iH/ ! OC1 .K/, the
series

P1
jD0  j .z/  j .x/ converges uniformly onK to K

.1/
K .z; �/.

Let u 2 C1 .K/. Define the linear functional

Tu W  .Cn/! C W  j .x/ 7�! Tu

�
 j .x/

�
WD tj .u/ ;
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where  .Cn/ is the complex subspace of H , which is generated by all finite
combinations of  j ’s. If .x/ D Pd

�D0 ˇ� � .x/ 2  .Cn/, then from Schwarz’s
Inequality, it follows that jTu .P .x//j � kukHkP kH and, by the Hahn–Banach
Theorem, Tu extends to a continuous linear functional on H . For each z 2 K fixed,

one can therefore define the number Tu

�
K
.1/
K .z; x/

�
, where Tu acts on the variable

x 2 K . By continuity, computing u .z/ for a fixed value of z is nothing else than

computing Tu

�
K
.1/
K .z; x/

�
.

If only a few Fourier coefficients tj .u/ of u are known or if the Fourier series
expansion of u (with respect to the family

˚
 j W j � 0

�
) converges too slowly, then

the function K
.1/
K .z; x/ has to be replaced by a simpler expression.

To do so, for anym D 0; 1; 2; : : : , let us consider the .mC 1/-dimensional com-
plex vector space GmC1 spanned by the Tchebycheff system

˚
 0; 1; : : : ;  m

�
,

and suppose that GmC1 satisfies the Haar condition into a finite set of pair-wise

distinct points MmC1 D f�m;0; �m;1; : : : ; �m;m g 	 Kn
�S

0�j�m Ker j
�

, that is

det
h
 j .�m;k/

i
k;j
¤ 0. This is equivalent to the fact that for any z 2 K there

is a unique gm .x; z/ D P1
jD0 �

.m/
j .z/ j .x/ 2 GmC1 satisfying gm .x; �m;k/ D

K
.2/
K .z; �m;k/ for any k � m.
A necessary and sufficient condition for the existence of a unique solution�
�
.m/
0 .z/ ; � .m/1 .z/ ; : : : ; � .m/m .z/

�
for this linear system is that the determinant

det
h
 j .�m;k/

i
k;j

is different from zero. Notice that this condition is equivalent to the Haar condition
for GmC1 into the set MmC1. Then, for any j D 0; 1; 2; : : : ; m there holds

�
.m/
j .z/ D

mX
kD0

K
.1/
K .z; �m;k/

 j .�m;k/

�
Pj
�

Definition 63. Any function .GPTA=m/u .z/, defined by

Tu .gm .x; �// W K ! C W z 7�! .GPTA=m/u .z/ W DTu .gm .x; z//D
mX
jD0

tj .u/ �
.m/
j .z/

is called a generalized Padé-type approximant to u 2 C1 .K/, with generating
system MmC1. If

mX
jD0.j¤�/

tj .u/
mX
kD0

 � .�m;k/

 j .�m;k/
D 0 for every � D 0; 1; 2; : : : ; m;
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then the function Tu .gm .x; �// is said to be a Padé-type approximant to u, with
generating system MmC1.It is denoted by .PTA=m/u .z/.

Obviously, the computation of a generalized Padé-type approximantTu .gm .x; �//
requires only the knowledge of the Fourier coefficients t0 .u/, t1 .u/, : : :, tm .u/ and
of the functions �.m/0 .z/, �.m/1 .z/ ; : : : ; � .m/m .z/ resulting from .P0/, .P1/ ; : : : ; .Pm/
respectively.

Theorem 64 ([24]). If
P1

�D0 �.m;u/�  � .z/ is the Fourier expansion of a Padé-type
approximant .PTA=m/.u/u .z/ to u .z/ D P1

�D0 t� .u/ � .z/ 2 C1 .K/ with respect
to the family f � W � D 0; 1; 2; : : : g, then

�.m;u/� D t� .u/ ; for every � D 0; 1; 2; : : : ; m:

Theorem 65 ([24]). The error of a generalized Padé-type approximation equals

Tu .gm .x; z//�u .z/ D
1X
�D0

mX
jD0.j¤�/

"
tj .u/

mX
kD0

 � .�m;k/

 j .�m;k/
� �� .u/

#
 � .z/.z 2 K/:

The error of a Padé-type approximation is

Tu .gm .x; z//�u .z/D
1X

�DmC1

mX
jD0.j¤�/

"
tj .u/

mX
kD0

 �
�
�m;k

�
 j

�
�m;k

���� .u/
#
 � .z/.z 2 K/:

We can immediately obtain an answer to the convergence problem of a generalized
Padé-type approximation sequence.

Theorem 66 ([24]). Let K be a compact subset of Rn satisfying Markov’s
inequality .M1/ and let u 2 C1 .K/. Consider the intermediate Hilbert space
.H; h� j �iH/, for which the natural injections C1 .K/ ! H ! OC1 .K/ are
continuous. Suppose

˚
 j .z/ W j D 0; 1; 2; : : :

�
is a self-summable family consisting

of orthonormal polynomials in H , such that deg j � deg jC1 (j D 0; 1; 2; : : : )
and assume that the function

K
.1/
K .�; �/ W K ! R W z 7! K

.1/
K .z; z/ D

1X
jD0

ˇ̌
 j .z/

ˇ̌2

is continuous on K . Let also M D .�m;k/m�0;0�k�m be an infinite triangular
matrix, such that for any m � 0
�m;k ¤ �m;k0 if k ¤ k

0

, �m;k …
�S

0�j�m Ker j
�

(k � m) and

det
h
 j .�m;k/

i
k;j
¤ 0.
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If

limm!1

8̂
<
:̂
1X
�D0








mX
jD0

 � .�m;k/

 j .�m;k/
�  �








2

H

9>=
>; D 0;

then, the corresponding generalized Padé-type approximation sequence

.Tu .gm .x; z///mD0;1;2;:::

converges to u .z/ uniformly on K .

8.5 Markov Exponents

If K is a Markov compact subset of Rn and u W K ! C admits rapid uniform
approximation by polynomials on K then u extends to a C1 function in Rn. In
general, the extension is done at the cost of u’s regularity. It is seen by the following.

Example 67 ([63]). Let Fp D
˚
.x; y/ 2 R2 W xp � y � 1; 0 < x � 1� and

F D ˚
.x; y/ 2 R2 W 0 � x � 1; �1 � y � 0�. Let also u .x; y/ D exp.�1=x/,

if .x; y/ 2 Fp and u .x; y/ D 0, if .x; y/ 2 F . Then u is C1 in intEp where
Ep D Fp

S
F and all derivatives of f extend continuously to Ep . Moreover, they

admit the following Gevrey type estimates:

kD˛ukEp � C j˛jj˛j2j˛j for ˛ 2 Z
2C:

Since the set Ep is p-regular in the sense of Whitney, u can be extended to a C1
function v on R2 [14]. However, if p � 2, there is no open neighbourhood V of Ep
such that the extension v could satisfy the above estimates with exponent 2 in V ,
which can be easily seen by the Mean Value Theorem.

It was shown that if we know the constant r of .Mn/ (see Sect. 3) then we can
estimate the loss of regularity of a C1 extension of u [63]. This motivates the
following definition of Markov’s exponent of a compact set K in Rn:

r .K/ WD inf fr > 0 W K satisfies .Mn/ with exponent rg

If K is not a Markov set, we set r .K/ WD 1. By the fact that the Chebyshev
polynomials are best possible for .M1/, one can prove that if K is a compact set in
Rn then r .K/ � 2. In particular, if K is a fat, convex compact subset of Rn, then by
a standard argument based on inequality .M1/, we obtain r .K/ D 2. If K is a UPC
compact subset of Rn with parameterm, then by r .K/ D 2m [2].
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It appears that Markov’s exponent is invariant under “good” analytic mappings.
More precisely, we have the following.

Theorem 68 ([3]). IfK is a compact subset of Rn satisfying .Mn/ with an exponent
r , and u is an analytic mapping defined in a neighbourhood U of K , with values
in Rn, such that f u .K/ is not pluripolar (in Cn) and detdxu ¤ 0 for each x 2 K ,
then u .K/ also satisfies .Mn/ with the same exponent r as that of K .

This result is sharp in the sense that if the assumption detdxu ¤ 0 is not satisfied
for all x 2 K then the exponent r .u .K// may increase [3]. Moreover, if we knew
that Markov’s property of K implies that K is not pluripolar, we could remove in
the above theorem the assumption for u .K/ to be not pluripolar.

8.6 Characterization of Compact Subsets of Algebraic Varieties

Let me finally mention a beautiful result according to which the tangential Markov
inequality with exponent 1 characterizes the property of a compact subset K of Rn

to be a piece of an algebraic variety. More precisely, we have the following.

Theorem 69 ([5]). If Let K be a compact subset of Rn admitting an analytic
parameterization of order m (1 � m � n). Then the Zariski dimension of K is
m if and only if there exists a constant C > 0 such that

supx2K jDTP .x/j � C � d � supx2K jP .x/j

for every x 2 K and for every polynomialP 2Pd .R
n/, whereDTP is a (unitary)

tangential derivative of P .

Notice that if K is a smooth compact subvariety of Rn of dimension M , 1 �
M � N , the above theorem was earlier proved in 1995 by Bos, Levenberg, Milman
and Taylor [22].
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Abstract In a series of papers, we have constructed large families of normal
numbers using the concatenation of the values of the largest prime factor P.n/, as n
runs through particular sequences of positive integers. A similar approach using the
smallest prime factor function also allowed for the construction of normal numbers.
Letting !.n/ stand for the number of distinct prime factors of the positive integer
n, we show that the concatenation of the successive values of j!.n/ � blog logncj,
as n runs through the integers n � 3, yields a normal number in any given basis
q � 2. We show that the same result holds if we consider the concatenation of the
successive values of j!.p C 1/ � blog log.p C 1/cj, as p runs through the prime
numbers.
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Given an integer q � 2, we say that an irrational number � is a q-normal number
if the q-ary expansion of � is such that any preassigned sequence of length k � 1,
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1=qk.
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In a series of papers, we have constructed large families of normal numbers using
the distribution of the values of P.n/, the largest prime factor function (see [1–3]
and [4]). Recently [5], we showed how the concatenation of the successive values
of the smallest prime factor p.n/, as n runs through the positive integers, can also
yield a normal number.

Let !.n/ stand for the number of distinct prime factors of the positive integer n.
One can easily show that the concatenation of the successive values of !.n/, say
by considering the real number � WD 0:!.2/!.3/ !.4/ !.5/ : : :, where each m
stands for the q-ary expansion of the integer m, will not yield a normal number.
Indeed, since the interval I WD Œee

r�1
; ee

r
�, where r WD blog logxc, covers most of

the interval Œ1; x� and since

ˇ̌
ˇ̌!.n/
r
� 1

ˇ̌
ˇ̌ < 1

r1=4
, say, with the exception of a small

number of integers n 2 I , it follows that � cannot be normal in basis q.
Recently, Vandehay [9] used another approach to yet create normal numbers

using certain small additive functions. He considered irrational numbers formed by
concatenating some of the base q digits from additive functions f .n/ that closely
resemble the prime counting function ˝.n/ WD P

p˛kn ˛. More precisely, he used

the concatenation of the last dy log log log n
log q e digits of each f .n/ in succession and

proved that the number thus created turns out to be normal in basis q if and only if
0 < y � 1=2.

In this paper, we show that the concatenation of the successive values of
j!.n/ � blog logncj, as n runs through the integers n � 3, yields a normal number
in any given basis q � 2. We show that the same result holds if we consider the
concatenation of the successive values of j!.p C 1/� blog log.p C 1/cj, as p runs
through the prime numbers.

2 Notation

Let } stand for the set of all the prime numbers. The letter p, with or without
subscript, will always denote a prime number. The letter c, with or without subscript,
will always denote a positive constant, but not necessarily the same at each
occurrence.

At times, we will use the notation x1 D logx, x2 D log logx, x3 D log log logx.
Let q � 2 be a fixed integer. Given an integer t � 1, an expression of the form

i1i2 : : : it , where each ij is one of the numbers 0; 1; : : : ; q � 1, is called a word of
length t . Given a word ˛, we shall write �.˛/ D t to indicate that ˛ is a word
of length t . We shall also use the symbol� to denote the empty word.

Let A D Aq D f0; 1; 2; : : : ; q � 1g. Then, At will stand for the set of words of
length t over A, while A� will stand for the set of all words over A regardless of
their length, including the empty word �. Observe that the concatenation of two
words ˛; ˇ 2 A�, written ˛ˇ, also belongs to A�. Finally, given a word ˛ and a
subword ˇ of ˛, we will denote by Fˇ.˛/ the number of occurrences of ˇ in ˛, that
is, the number of pairs of words �1; �2 such that �1ˇ�2 D ˛.
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Given a positive integer n, we write its q-ary expansion as

n D "0.n/C "1.n/q C � � � C "t .n/qt ;

where "i .n/ 2 A for 0 � i � t and "t .n/ ¤ 0. To this representation, we associate
the word

n D "0.n/"1.n/ : : : "t .n/ 2 AtC1

For convenience, if n � 0, we write n D �.
Finally, the number of digits of such a number n will be

�.n/ D
�

logn

log q

�
C 1:

Finally, given a sequence of integers a.1/; a.2/; a.3/; : : :, we will say that
the concatenation of their q-ary digit expansions a.1/ a.2/ a.3/ : : :, denoted by
Concat.a.n/ W n 2 N/, is a normal sequence if the number 0:a.1/ a.2/ a.3/ : : :
is a q-normal number.

For each integer n � 2, we let !.n/ stand for the number of distinct prime factors
of n. We then introduce the arithmetic function ı.n/ WD j!.n/ � blog logncj.

3 Main Results

Theorem 1. Let R 2 ZŒx� be a polynomial such that R.y/ � 0 for all y � 0. Let

� D Concat.R.ı.n// W n D 3; 4; 5; : : :/:

Then, � is a normal sequence in any given basis q � 2.

Theorem 2. Let

� D Concat.ı.p C 1/ W p 2 }/:

Then, � is a normal sequence in any given basis q � 2.

Remark 1. We shall only provide the proof of Theorem 2, the reason being that it
is somewhat harder than that of Theorem 1. Indeed, for the proof of Theorem 1, one
can use the fact that

�k.n/ WD #f� x W !.n/ D kg D .1C o.1// x
x1

xk�12

.k � 1/Š
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uniformly for jk � x2j � px2 x3, say, and also the Hardy–Ramanujan inequality

�k.x/ < c1
x

x1

.x2 C c2/k�1
.k � 1/Š

which is valid uniformly for 1 � k � 10x2 and x � x0 (see, for instance, the book
of De Koninck and Luca [6], p. 157). Hence, using these estimates, one can easily
prove Theorem 1 essentially as we did to prove that Concat.P.m/ W m 2 N/ is a
normal sequence in any given basis q � 2 (see [1]). Now, since there are no known
estimate for the asymptotic behavior of #fp � x W !.p C 1/ D kg, we need to find
another approach for the proof of Theorem 2.

Remark 2. It will be clear from our approach that if !.n/ is replaced by˝.n/ or by
ı2.n/ WD jblog �.n/c � blog logncj, the same results hold.

4 Preliminary Results

For each real number u > 0, let ˚.u/ WD 1p
2�

Z u

�1
e�t 2=2 dt .

Lemma 1. (a) As x !1,

1

�.x/
#

�
p � x W ı.p C 1/p

x2
< u

�
D .1C o.1// .˚.u/� ˚.�u// :

(b) Letting "x a function which tends to 0 as x !1. Then, as x !1,

1

�.x/
#
n
p � x W ı.p C 1/ � "x

p
log logx

o
! 0:

Proof. For a proof of part (a), see the book of Elliott [7]. Part (b) is an immediate
consequence of part (a).

Let x be a fixed large number. For each integer n � 2, we now introduce the
function

ı�.n/ WD j!.n/ � blog logxcj :

Lemma 2. For all x � 2,
X
p�x

.ı�.p C 1//2 � c�.x/ log logx:

Proof. For a proof, see the book of Elliott [7].
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Lemma 3. Given an arbitrary � 2 .0; 1=2/, then, for all x � 2,

#fp � x W P.p C 1/ < x�g C #fp � x W P.p C 1/ > x1��g � c��.x/:

Proof. For a proof see Theorem 4.2 in the book of Halberstam and Richert [8].

Lemma 4. Let a and b be two nonzero co-prime integers, one of which is even.
Then, as x !1, we have, uniformly in a and b,

#fp � x W ap C b 2 }g

� 8
Y
p>2

�
1 � 1

.p � 1/2
�Y

p>2
pjab

p � 1
p � 2

x

log2 x

�
1CO

�
log logx

logx

��
:

Proof. This is Theorem 3.12 in the book of Halberstam and Richert [8] for the
particular case k D 1.

Lemma 5. Let M � 2k, ˇ1; ˇ2 2 Akq . Set �.˛/ D ˇ̌Fˇ1.˛/ � Fˇ2.˛/ˇ̌. Then,

X
˛2AMC1

q

�2.˛/ � cMqM :

Proof. Let ˇ D bk�1 : : : b0 2 Akq . Consider the function fˇ W Akq ! f0; 1g
defined by

fˇ.uk�1; : : : ; u0/ D
�
1 if uk�1 : : : u0 D ˇ;
0 otherwise.

LetM 2 N,M � 2k. Let ˛ D "M : : : "0 run over elements of AMC1q . It is clear that

A WD
X

˛2AMC1
q

Fˇ.˛/

D
MC1�kX
�D0

#f˛ 2 AMC1q W "�Ck�1 : : : "� D ˇg

D .M C 1 � k/qMC1�k : (1)

On the other hand,

B WD
X

˛2AMC1
q

F 2
ˇ .˛/
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D
MC1�kX
�1D0

MC1�kX
�2D0

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/

D AC 2
MC1�kX
�1;�2D0
�1<�2

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/

D AC 2
MC1�kX
�1;�2D0

�1<�2��1Ck

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/

C 2
MC1�kX
�1;�2D0
�2>�1Ck

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/: (2)

Now, on the one hand we have

MC1�kX
�1;�2D0

�1<�2��1Ck

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/ � ckMqMC1�k; (3)

while on the other hand,

MC1�kX
�1;�2D0
�2>�1Ck

X
"0;:::;"M

fˇ."�1Ck�1; : : : ; "�1/fˇ."�2Ck�1; : : : ; "�2/

D
MC1�kX
�1;�2D0

�1Ck<�2

qMC1�2k D qMC1�2k �.M C 1/2 �O.kM/
�
: (4)

Combining (1) and (2), using estimates (3) and (4), we conclude that

X
˛D"M :::"0

�
Fˇ.˛/ � M C 1

qk

�2
� cMqM : (5)

Note that here we summed over those "M D 0 as well. But (5) remains true if we
drop those "M D 0. This allows us to conclude that

X
˛2AMC1

q

�
Fˇ.˛/ � M C 1

qk

�2
� cMqM ;

thus completing the proof of Lemma 5.
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5 Proof of Theorem 2

Let

�x D Concat.ı.p C 1/ W p � x/:
Our goal is to prove that there exist two positive constants c1 and c2 such that

c1 � �.�x/

�.x/ x3
� c2; (6)

provided x is sufficiently large.
We first establish the size of �.�x/. We have

�.�x/ D
X
p�x

ı.pC1/¤0

�
log ı.p C 1/

log q

�
C �.x/ D ˙1 C˙2 C �.x/; (7)

say, where the sum in ˙1 runs over the primes p � x=x2, while that of ˙2 runs
over the primes located in the interval Jx WD .x=x2; x�. From this observation, it
follows that

˙1 � 2�.x=x2/x2 D O.�.x//: (8)

On the other hand, it follows from Lemma 1 that, for each u > 0 there exists c.u/> 0
such that

#

�
p � x W ı.p C 1/p

x2
> u

�
> c.u/�.x/:

From this, we may conclude that

˙2 � c�.x/ x3: (9)

Combining (8) and (9) in (7), we obtain that, if x > x0, the inequality
�.�x/

�.x/ x3
> c

holds for some positive constant c, thereby establishing the first inequality in (6).
Now, from the definitions of the functions ı and ı�, it is clear that

jı�.p C 1/� ı.p C 1/j � 1 for all p 2 Jx:

From the trivial estimate ı.pC1/ � c logx, we obtain that log ı.pC1/ � x2Cc1,
so that

˙2 � c�.x/ x3 C
X

ı�.pC1/
p

x2
>4

.log 2/ ı�.p C 1/ D c�.x/ x3 C˙3; (10)

say.
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From Lemma 2, we obtain that for every A � 1, we have

#

�
p 2 Jx W A < ı�.p C 1/p

x2
< 2A

�
� c�.x/

A2
: (11)

We now apply (11) successively with A D 2j , j D 2; 3; : : :, thus obtaining

˙3 � c�.x/
X
j�2

log 2jC2px2
2jC2

� c�.x/
2
41
2
x3
X
j�2

1

2jC2
C c

X
j�2

j

2j

3
5

� c1�.x/ x3;
from which we may conclude that, in light of (7), (8), and (10), the right-hand side
of (6) follows as well.

We will prove that, given any fixed integer k � 1, ˇ1; ˇ2 2 Akq , and setting
�.˛/ WD Fˇ1.˛/ � Fˇ2.˛/ for each word ˛ 2 A�q ,

lim
x!1

j�.�x/j
�.�x/

D 0: (12)

In order to achieve this, now that we know (from (6)) that the true size of �.�x/ is
�.x/ x3, we essentially need to prove that �.�x/ is of smaller order than �.x/ x3.

Let 
x be an arbitrary function which tends monotonically to 0 very slowly. Then
consider the sets

D1 D fp 2 } W p � x=x2g;
D2 D fp 2 } W p � x and ı.p C 1/ � 
xpx2g;

D3 D fp 2 } W p � x and ı.p C 1/ > 1


x

p
x2g;

and let D D D1 [D2 [D3.
Because �.ı.p C 1// � cx3 if p 2 D1 and p � cx2, and since (11) holds for

p 2 D3, it follows from Lemma 1 and (8) that
X
p2D
j�.ı.p C 1//j � cx3�.x/ .˚.
x/� ˚.�
x//C c�.x=x2/x2

C
1X
jD0

#

�
p 2 Jx W ı

�.p C 1/p
x2

2
�
2j


x
;
2jC1


x

	�
log

�p
x2 � 2

jC1


x

�
: (13)
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Since this last sum is less than

�.x/
X
j�0

.x3 C j C log.1=
x// � 

2
x

22j
� c .log.1=
x/C x3/ 
2x�.x/;

it follows that (13) yields

X
p2D
j�.ı.p C 1//j D o.�.x/ x3/ .x !1/: (14)

Now, from (14), we have that

�.�x/ D
X
p 62D

�.ı.p C 1//C o.�.x/ x3/ D ˙A C o.�.x/ x3/; (15)

say.
From Lemma 3, we obtain, using the fact that p 62 D3 (since p 62 D), that

X
p 62D

P.pC1/62Œx� ;x1�� �

j�.ı..p C 1//j � c�.x/ log

�
1


x

p
x2

�
� c�.x/x3; (16)

provided that 
x is chosen so that 1=
x < x2, say.
Now let K D bx2c and then, for ` satisfying "x

p
K � j`j � 1

"x

p
K, let

R�.`/ WD #fp 2 Jx W P.p C 1/ 2 .x�; x1��/ and !.p C 1/ D K C `g:

Using Lemma 4, we obtain that

R�.`/ � #fp 2 Jx W p C 1 D aq; a < x1�� ; q > x�=x2; !.a/ D K C ` � 1g

� c1

�2
x

log2 x

X
!.a/DKC`�1

1

a

Y
p>2
pja

p � 1
p � 2 CO

�
x1��

�
; (17)

where theO.: : :/ term accounts for the contribution of those q such that q2 j pC 1.
It follows from (17) that

R�.`/ � c1x

�2 log2 x

 X
p�x

1

p
C c

!KC`�1
1

.K C ` � 1/Š CO
�
x1��

�

� c2x

�2 log2 x

.K C c/KC`�1
.K C ` � 1/Š : (18)
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Now, observe that, if !.p C 1/ D K C `, p 2 Jx , then ı.p C 1/ 2 fj`j � 1;
j`j; j`j C 1g. Thus,

j˙Aj �
X

"x
p
K�j`j� 1

"x

p
K

�
�.j`j/C�.j`j � 1/C�.j`j C 1/

�
� .R�.�`/CR�.`//

C c��.x/x3
D ˙B C c��.x/x3; (19)

say.
Using (18), we obtain that

˙B � c2x

�2 log2 x

X
"x� p̀

K
� 1
"x

�
�.l/C�.l � 1/C�.l C 1/

�

�
�
.K C c/KC`�1
.K C ` � 1/Š C

.K C c/K�`�1
.K � ` � 1/Š

�
: (20)

Since we can easily establish that

max
0�`� 1

"x
p

K

�
.K C c/KC`�1
.K C ` � 1/Š C

.K C c/K�`�1
.K � ` � 1/Š

�
<
.K C c/K�1
.K � 1/Š exp

(
c3

�
1

"x

�2)
;

it follows from (20) that

˙B � c2x

�2 log2 x
exp

(
c3

�
1

"x

�2)
.K C c/K�1
.K � 1/Š ˙C ; (21)

where

˙C D
X

"x� p̀

K
� 1
"x

�
�.`/C�.` � 1/C�.`C 1/

�

� 3
X

"x� p̀

K
� 1
"x

�.`/CO.x3/ D 3˙D CO.x3/; (22)

say.
To estimate ˙D , we will use Lemma 5. Indeed, let M0 be the largest integer for

which qM0 � "x
p
K and let M1 be the smallest integer for which qM1 > 1

"x

p
K.

Set KM D ŒqM ; qMC1 � 1�. With this setup, we clearly have that

˙D �
X

M0�M�M1

TM ; (23)
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where TM D
X
`2KM

�.`/. Now, it follows from Lemma 5 that

TM � c.qMC1/1=2.MqM�k/1=2 � cpMqM : (24)

Using (24) in (23), we obtain that

˙D � c
p
M1q

M1

�
1C 1

q
C 1

q2
C � � �

�
<
c1

"x

p
K
p

logK <
c1x

1=2
2

p
x3

"x
: (25)

Gathering (21), (22), and (25), we have that

˙B � cx

�2 log2 x
exp

(
c3

�
1

"x

�2)
.K C c/K�1
.K � 1/Š �

p
x2
p
x3

"x
: (26)

Since it is well known that nŠ D nne�np2�n.1CO.1=n//, it follows that by setting

`K D .KCc/K�1

.K�1/Š ,

log `K D .K � 1/ log.K C c/ � .K � 1/ log

�
K � 1
e

�
� 1
2

logK CO.1/

D .K � 1/ log
K C c
K � 1 �

1

2
logK CO.1/CK � 1;

from which it follows that

`K � x1p
x2
:

Using this last estimate in (26), it follows that

˙B � exp
˚
c3="

2
x

�
�2"x

�.x/x3: (27)

Choosing "x D x5, say, we get from (27) that

lim sup
x!1

˙B

�.�x/
D 0: (28)

Combining (28), (19), and (15), we obtain that

lim sup
x!1

�.�x/

�.�x/
� c�: (29)

Since � can be taken arbitrarily small, we may finally conclude that (12) holds, thus
completing the proof of Theorem 1.
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Imbedding Inequalities for Composition
of Green’s and Potential Operators

Shusen Ding and Yuming Xing

Abstract In this paper, we prove both local and global imbedding inequalities with
L'-norms for the composition of the potential operator and Green’s operator applied
to differential forms.

Keywords Imbedding • Differential forms • Green’s operator • Potential opera-
tor • A-harmonic equations

1 Introduction

Let P be the potential operator and G be Green’s operator applied to differential
forms. Assume that ' W Œ0;1/ ! Œ0;1/ with '.0/ D 0 is a Young function
satisfying certain conditions. In this paper, we prove some inequalities with
L'-norms for G ı P and the related operators that are applied to differential
forms. Our main results are the local L'-imbedding inequality and the global L' -
imbedding inequality for G ı P

kG.P.u// � .G.P.u///˝kW 1;'.˝/ � CkukL'.˝/;

where ˝ is any bounded and convex domain and C is a constant independent of
differential form u. These results are presented in Theorems 4 and 5, respectively.
The potential operator P and Green’s operator G are key operators and are widely
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studied and used in analysis, partial differential equations, physics, and potential
theory [1–5].

Let ˝ be a bounded domain in IRn, n � 2, B and �B be the balls with the same
center and diam.�B/ D �diam.B/ throughout this paper. We do not distinguish the
balls from cubes in this paper. We use jEj to denote the n-dimensional Lebesgue
measure of a set E � IRn. For a function u, the average of u over B is defined by
uB D 1

jBj
R
B

udx. All integrals involved in this paper are the Lebesgue integrals.
A differential 1-form u.x/ in IRn can be written as u.x/ D Pn

iD1 ui .x1; x2;
� � � ; xn/dxi , where the coefficient functions ui .x1; x2; � � � ; xn/, i D 1; 2; � � � ; n, are
differentiable. A differential k-form u.x/ can be expressed as

u.x/ D
X
I

uI .x/dxI D
X

ui1i2���ik .x/dxi1 ^ dxi2 ^ � � � ^ dxik ;

where I D .i1; i2; � � � ; ik/, 1 � i1 < i2 < � � � < ik � n. A function
u.x1; x2; � � � ; xn/ is a 0-form. Assume that ^l D ^l .IRn/ is the set of all l-forms
in IRn, D0.˝;^l / is the space of all differential l-forms in ˝ , and Lp.˝;^l /
is the l-forms u.x/ D P

I uI .x/dxI in ˝ satisfying
R
˝ juI jp < 1 for all

ordered l-tuples I , l D 1; 2; � � � ; n. The exterior derivative is denoted by d and
the Hodge star operator by ?. The Hodge codifferential operator d? is given by
d? D .�1/nlC1 ? d?, l D 1; 2; � � � ; n. For u 2 D0.˝;^l / the vector-valued
differential form

ru D
�
@u

@x1
; � � � ; @u

@xn

�

consists of differential forms @u
@xi
2 D0.˝;^l /; where the partial differentiation is

applied to the coefficients of u. The nonlinear partial differential equation

d?A.x; du/ D B.x; du/ (1)

is called non-homogeneousA-harmonic equation, whereA W ˝�^l .IRn/! ^l .IRn/
and B W ˝ � ^l .IRn/! ^l�1.IRn/ satisfy the conditions:

jA.x; �/j � aj�jp�1; A.x; �/ � � � j�jp and jB.x; �/j � bj�jp�1 (2)

for almost every x 2 ˝ and all � 2 ^l .IRn/. Here a; b > 0 are constants and
1 < p <1 is a fixed exponent associated with (1). A solution to (1) is an element
of the Sobolev space W 1;p

loc .˝;^l�1/ such that

Z
˝

A.x; du/ � d' C B.x; du/ � ' D 0 (3)

for all ' 2 W 1;p
loc .˝;^l�1/ with compact support. If u is a function (0-form) in IRn,

Eq. (1) reduces to

divA.x;ru/ D B.x;ru/: (4)
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If the operator B D 0, Eq. (1) becomes d?A.x; du/ D 0 which is called
the (homogeneous) A-harmonic equation. See [6–10] for recent results on the
A-harmonic equations and related topics.

Assume that D 	 IRn is a bounded, convex domain. The following operator Ky

with the case y D 0 was first introduced by Cartan in [11]. Then, it was extended
to the following general version in [12]. For each y 2 D, there corresponds a linear
operator Ky W C1.D;^l / ! C1.D;^l�1/ defined by .Kyu/.xI �1; � � � ; �l�1/ DR 1
0
t l�1u.txC y � tyI x� y; �1; � � � ; �l�1/dt and the decomposition u D d.Kyu/C

Ky.du/: A homotopy operator T W C1.D;^l / ! C1.D;^l�1/ is defined by
averagingKy over all points y in D T u D R

D
'.y/Kyudy ; where ' 2 C10 .D/ is

normalized by
R
D
'.y/dy D 1. For simplicity purpose, we write � D .�1; � � � ; �l�1/.

Then, T u.xI �/ D R 1
0 t

l�1 R
D '.y/u.tx C y � tyI x � y; �/dydt: By substituting

z D tx C y � ty and t D s=.1C s/, we have

T u.xI �/ D
Z
D

u.z; �.z; x � z/; �/d z; (5)

where the vector function � W D � IRn ! IRn is given by �.z; h/ D h
R1
0 sl�1.1C

s/n�1'.z � sh/ds: The integral (7) defines a bounded operator T W Ls.D;^l / !
W 1;s.D;^l�1/; l D 1; 2; � � � ; n; and the decomposition

u D d.T u/C T .du/ (6)

holds for any differential form u. The l-form uD 2 D0.D;^l / is defined by

uD D �
Z
D

u.y/dy D jDj�1
Z
D

u.y/dy; l D 0; and uD D d.T u/; l D 1; 2; � � � ; n;
(7)

for all u 2 Lp.D;^l /, 1 � p <1. Also, for any differential form u, we have

kr.T u/kp;D � C jDjkukp;D; and kTukp;D � C jDjdiam.D/kukp;D: (8)

From [13, Page 16], we know that any open subset ˝ in IRn is the union of a
sequence of cubes Qk, whose sides are parallel to the axes, whose interiors are
mutually disjoint, and whose diameters are approximately proportional to their
distances from F , where F is the complement of ˝ in IRn. Specifically, (i) ˝ D
[1kD1Qk, (ii) Q0

j \Q0
k D 	 if j 6D k, (iii) there exist two constants c1; c2 > 0 (we

can take c1 D 1, and c2 D 4), so that

c1diam.Qk/ � distance.Qk; F / � c2diam.Qk/: (9)

Thus, the definition of the homotopy operator T can be generalized to any domain
˝ in IRn: For any x 2 ˝ , x 2 Qk for some k. Let TQk

be the homotopy
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operator defined on Qk (each cube is bounded and convex). Thus, we can define
the homotopy operator T˝ on any domain˝ by

T˝ D
1X
kD1

TQk
Qk.x/: (10)

Hui Bi extended the definition of the potential operator to the case of differential
forms, see [2]. For any differential l-form u.x/, the potential operator P is
defined by

Pu.x/ D
X
I

Z
E

K.x; y/uI .y/dydxI ; (11)

where the kernel K.x; y/ is a nonnegative measurable function defined for x ¤ y

and the summation is over all ordered l-tuples I . The l D 0 case reduces to the
usual potential operator,

Pf .x/ D
Z
E

K.x; y/f .y/dy; (12)

where f .x/ is a function defined on E 	 IRn. See [2] and [14] for more results
about the potential operator. We say a kernel K on IRn � IRn satisfies the standard
estimates if there exist ı, 0 < ı � 1, and constant C such that for all distinct
points x and y in IRn, and all z with jx � zj < 1

2
jx � yj, the kernel K satisfies

(i) K.x; y/ � C jx � yj�n; (ii) jK.x; y/ � K.z; y/j � C jx � zjıjx � yj�n�ı; (iii)
jK.y; x/ �K.y; z/j � C jx � zjıjx � yj�n�ı.

We always suppose that P is the potential operator defined in (11) with the kernel
K.x; y/ satisfying condition (i) of the standard estimates throughout this paper.
Recently, Hui Bi in [2] proved the following inequality for the potential operator.

kP.u/kp;E � Ckukp;E ; (13)

where u 2 D0.E;^l /; l D 0; 1; : : : ; n�1, is a differential form defined in a bounded
and convex domain E , and p > 1 is a constant.

2 Local Imbedding Inequalities

We first prove the local L' imbedding inequalities for G ı P applied to solutions
of the non-homogeneousA-harmonic equation in a bounded domain. We will need
the following definitions and standard notation. A continuously increasing function
' W Œ0;1/ ! Œ0;1/ with '.0/ D 0 is called an Orlicz function. The Orlicz space
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L'.˝/ consists of all measurable functions f on ˝ such that
R
˝ '

� jf j
�

�
dx <

1 for some � D �.f / > 0. L'.˝/ is equipped with the nonlinear Luxemburg
functional

kf kL'.˝/ D inf

�
� > 0 W

Z
˝

'

� jf j
�

�
dx � 1

�
:

A convex Orlicz function ' is often called a Young function. If ' is a Young
function, then k � kL'.˝/ defines a norm in L'.˝/, which is called the Luxemburg
norm or Orlicz norm. For any subset E 	 IRn, we use W 1;'.E;^l / to denote the
Orlicz-Sobolev space of l-forms which equals L'.E;^l /\ L'1 .E;^l / with norm

kukW 1;' .E/ D kukW 1;'.E;^l / D diam.E/�1kukL'.E/ C krukL'.E/: (14)

If we choose '.t/ D tp , p > 1 in (14), we obtain the usual Lp norm for
W 1;p.E;^l /

kukW 1;p.E/ D kukW 1;p.E;^l / D diam.E/�1kukp;E C krukp;E : ((14)’)

Definition 1 ([15]). We say a Young function ' lies in the class G.p; q; C /,
1 � p < q < 1, C � 1, if (i) 1=C � '.t1=p/=g.t/ � C and (ii) 1=C �
'.t1=q/=h.t/ � C for all t > 0, where g is a convex increasing function and h is a
concave increasing function on Œ0;1/.
From [15], each of '; g, and h in above definition is doubling in the sense that its
values at t and 2t are uniformly comparable for all t > 0, and the consequent fact
that

C1t
q � h�1.'.t// � C2tq; C1tp � g�1.'.t// � C2tp; (15)

where C1 and C2 are constants. Also, for all 1 � p1 < p < p2 and ˛ 2 IR,
the function '.t/ D tp log˛C t belongs to G.p1; p2; C / for some constant C D
C.p; ˛; p1; p2/. Here logC.t/ is defined by logC.t/ D 1 for t � e; and logC.t/ D
log.t/ for t > e. Particularly, if ˛ D 0, we see that '.t/ D tp lies in G.p1; p2; C /,
1 � p1 < p < p2. We will need the following Reverse Hölder inequality.

Lemma 1 ([8]). Let u be a solution of the non-homogeneous A-harmonic equa-
tion (1) in a domain ˝ and 0 < s; t < 1. Then, there exists a constant C ,
independent of u, such that

kuks;B � C jBj.t�s/=stkukt;�B (16)

for all balls B with �B 	 ˝ for some � > 1.
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Using the same way in the proof of Propositions 5.15 and 5.17 in [3], we can prove
that for any closed ball B D B [ @B , we have

kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B
Ckd�G.u/ks;B C kG.u/ks;B � C.s/kuks;B :

Note that for any Lebesgue measurable function f defined on a Lebesgue mea-
surable set E with jEj D 0, we have

R
E
fdx D 0. Thus, kuks;@B D 0 and

kdd�G.u/ks;@BCkd�dG.u/ks;@BCkdG.u/ks;@BCkd�G.u/ks;@BCkG.u/ks;@B D 0
since j@Bj D 0. Therefore, we obtain

jdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;MB C kG.u/ks;B
D kdd�G.u/ks;B Ckd�dG.u/ks;B CkdG.u/ks;B Ckd�G.u/ks;B CkG.u/ks;B
� C.s/kuks;B
D C.s/kuks;B :

Hence, we have the following lemma.

Lemma 2. Let u be a smooth differential form defined inM and 1 < s <1. Then,
there exists a positive constant C D C.s/, independent of u, such that

kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;B C kG.u/ks;B
� C.s/kuks;B

for any ball B 	M .

We first prove the following local inequality for the composition T ı P with the
L'-norm.

Theorem 1. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1, ˝ be a bounded domain, G be Green’s operator, and P be the potential
operator defined in (11) with the kernel K.x; y/ satisfying condition (i) of the
standard estimates. Assume that '.juj/ 2 L1loc.˝/ and u is a solution of the non-
homogeneous A-harmonic equation (1) in ˝ . Then, there exists a constant C ,
independent of u, such that

kG.P.u// � .G.P.u///BkL'.B/ � Cdiam.B/kukL'.�B/ (17)

for all balls B with �B 	 ˝ for some � > 1.

Proof. Using Lemma 2 and (13), we have

kdG.P.u//kq;B � C1kP.u/kq;B � C2kukq;B : (18)
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From (8) and (18), we obtain

kG.P.u//� .G.P.u///Bkq;B D kTd.G.P.u///kq;B
� C3jBjdiam.B/kdG.P.u//kq;B
� C4jBjdiam.B/kukq;B (19)

for any differential form u and all balls B with B 	 ˝ . From Lemma 1, for any
positive numbers p and q, it follows that

� Z
B

jujqdx
�1=q � C5jBj.p�q/=pq

� Z
�B

jujpdx
�1=p

; (20)

where � is a constant � > 1. Using Jensen’s inequality for h�1, (15), (19), (20), (i) in
Definition 1, and noticing the fact that ' and h are doubling, and ' is an increasing
function, we obtain

Z
B

'
�
jG.P.u//� .G.P.u///B j

�
dx

D h
�
h�1

� Z
B

' .jG.P.u//� .G.P.u///B j/ dx
��

� h
� Z

B

h�1
�
' .jG.P.u//� .G.P.u///B j/

�
dx
�

� h
�
C6

Z
B

jG.P.u//� .G.P.u///B jqdx
�

� C7'
��
C6

Z
B

jG.P.u//� .G.P.u///B jqdx
�1=q�

� C7'
�
C8jBj1C1=n

� Z
B

jujqdx
�1=q�

� C7'
�
C9jBj1C1=nC.p�q/=pq

� Z
�B

jujpdx
�1=p�

� C7'
��
C
p
9 jBjp.1C1=n/C.p�q/=q

Z
�B

jujpdx
�1=p�

� C10g
�
C
p
9 jBjp.1C1=n/C.p�q/=q

Z
�B

jujpdx
�

D C10g
� Z

�B

C
p
9 jBjp.1C1=n/C.p�q/=qjujpdx

�

� C10
Z
�B

g
�
C
p
9 jBjp.1C1=n/C.p�q/=qjujp

�
dx

� C11
Z
�B

'
�
C9jBj1C 1

nC p�q
pq juj

�
dx (21)
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Since p � 1, then 1 C 1
n
C p�q

pq
> 1

n
. Hence, we have jBj1C 1

nC p�q
pq � C12jBj 1n :

Note that ' is doubling, we obtain

'
�
C9jBj1C 1

nC p�q
pq juj� � C13jBj 1n '�juj�: (22)

Combining (21) and (22) and using jBj 1n D C14diam.B/ yields

Z
B

' .jG.P.u//� .G.P.u///B j/ dx � C15 diam.B/
Z
�B

' .juj/ dx: (23)

Since each of '; g, and h in Definition 1 is doubling, from (23), we have

Z
B

'

� jG.P.u//� .G.P.u///B j
�

�
dx � Cdiam.B/

Z
�B

'

� juj
�

�
dx

for all balls B with �B 	 ˝ and any constant � > 0. From the definition of
Luxemburg norm and the last inequality, we have the following inequality with the
Luxemburg norm

kG.P.u// � .G.P.u///BkL'.B/ � Cdiam.B/kukL'.�B/
The proof of Theorem 1 has been completed.

In order to prove our main local imbedding theorem, we will need the following
Theorems 2 and 3.

Theorem 2. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1, ˝ be a bounded domain, G be Green’s operator, and P be the potential
operator defined in (11) with the kernel K.x; y/ satisfying condition (i) of the
standard estimates. Assume that '.juj/ 2 L1loc.˝/ and u is a solution of the non-
homogeneous A-harmonic equation (1) in ˝ . Then, there exists a constant C ,
independent of u, such that

kTd.G.P.u///kL'.B/ � Cdiam.B/kukL'.�B/ (24)

for all balls B with �B 	 ˝ for some � > 1.

Proof. Using (8) and (18), we have

kTd.G.P.u///kq;B � C1jBjdiam.B/kd.G.P.u///kq;B
� C2jBjdiam.B/kukq;B (25)

for any differential form u and q > 1. By Lemma 1, for any positive numbers p and
q, it follows that



Imbedding Inequalities for Composition of Green’s and Potential Operators 335

� Z
B

jujqdx
�1=q � C3jBj.p�q/=pq

� Z
�B

jujpdx
�1=p

; (26)

where � is a constant � > 1. Using Jensen’s inequality for h�1, (15), (26), (i) in
Definition 1, and noticing the fact that ' and h are doubling, and ' is an increasing
function, we obtain

Z
B

'
�
jTd.G.P.u///j

�
dx D h

�
h�1

� Z
B

' .jTd.G.P.u///j/ dx
��

� h
� Z

B

h�1
�
' .jTd.G.P.u///j/

�
dx
�

� h
�
C4

Z
B

jTd.G.P.u///jqdx
�

� C5'
��
C4

Z
B

jTd.G.P.u///jqdx
�1=q�

� C5'
�
C6jBjdiam.B/

� Z
B

jujqdx
�1=q�

� C5'
�
C7jBj1C.p�q/=pqdiam.B/

� Z
�B

jujpdx
�1=p�

� C5'
��
C
p
7 jBjpC.p�q/=q.diam.B//p

Z
�B

jujpdx
�1=p�

� C8g
�
C
p
7 jBjpC.p�q/=q.diam.B//p

Z
�B

jujpdx
�

D C8g
� Z

�B

C
p
7 jBjpC.p�q/=q.diam.B//pjujpdx

�

� C9
Z
�B

g
�
C
p
7 jBjpC.p�q/=q.diam.B//pjujp

�
dx

� C10
Z
�B

'
�
C7jBj1C.p�q/=pqdiam.B/juj

�
dx (27)

Since p � 1, then 1C p�q
pq

> 0. Hence, we have

jBj1C p�q
pq D jBj1C1=q�1=p � C11:

Note that ' is doubling, we obtain

'
�
C7jBj1C.p�q/=pqdiam.B/juj

�
� C12diam.B/'

�juj�: (28)
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Combining (27) and (28) yields

Z
B

' .jTd.G.P.u///j/ dx � C13diam.B/
Z
�B

' .juj/ dx: (29)

Since each of '; g, and h in Definition 1 is doubling, from (29), we have

Z
B

'

� jTd.G.P.u///j
�

�
dx � C14diam.B/

Z
�B

'

� juj
�

�
dx (30)

for all balls B with �B 	 ˝ and any constant � > 0. From the definition of
Luxemburg norm and (30), we have the following inequality with the Luxemburg
norm

kTd.G.P.u///kL'.B/ � C15diam.B/kukL'.�B/: (31)

The proof of Theorem 2 has been completed.

Theorem 3. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1, ˝ be a bounded domain, G be Green’s operator, and P be the potential
operator defined in (11) with the kernel K.x; y/ satisfying condition (i) of the
standard estimates. Assume that '.juj/ 2 L1loc.˝/ and u is a solution of the non-
homogeneous A-harmonic equation (1) in ˝ . Then, there exists a constant C ,
independent of u, such that

krTd.G.P.u///kL'.B/ � CkukL'.�B/ (32)

for all balls B with �B 	 ˝ for some � > 1.

Proof. Replacing u by d.G.P.u/// in the first inequality in (8) and using (18), we
find that

krTd.G.P.u///kq;B � C1jBjkd.G.P.u///kq;B � C2jBjkukq;B (33)

holds for any differential form u and q > 1. Starting with (33) and using the similar
method as we did in the proof of Theorem 2, we can obtain

krTd.G.P.u///kL'.B/ � CkukL'.�B/: (34)

The proof of Theorem 3 has been completed.

Now, we are ready to present and prove the main local theorem, the L' -imbedding
theorem, as follows.

Theorem 4. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1, ˝ be a bounded domain, G be Green’s operator, and P be the potential
operator defined in (11) with the kernel K.x; y/ satisfying condition (i) of the
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standard estimates. Assume that '.juj/ 2 L1loc.˝/ and u is a solution of the non-
homogeneous A-harmonic equation (1) in ˝ . Then, there exists a constant C ,
independent of u, such that

kG.P.u//� .G.P.u///BkW 1;'.B;^l / � CkukL'.�B/ (35)

for all balls B with �B 	 ˝ for some � > 1.

Proof. From (14), (24) and (32), we have

kG.P.u//� .G.P.u///BkW 1;'.B;^l /
D kTd.G.P.u///kW 1;'.B;^l /
D .diam.B//�1kTd.G.P.u///kL'.B/ C krTd.G.P.u///kL'.B/
� .diam.B//�1

�
C1diam.B/kukL'.�1B/

�C C2kukL'.�2B/
� C1kukL'.�1B/ C C2kukL'.�2B/
� C3kukL'.�B/ (36)

for all balls B with �B 	 ˝ , where � D maxf�1; �2g. The proof of Theorem 4 has
been completed.

Note that if we choose '.t/ D tp log˛C t or '.t/ D tp in Theorems 1–3 and 4,
we will obtain some Lp.log˛C L/-norm or Lp-norm inequalities, respectively. For
example, let '.t/ D tp log˛C t in Theorem 4, we have the following imbedding
inequalities for G ı P with the Lp.log˛CL/-norms.

Corollary 1. Let '.t/ D tp log˛C t , p � 1 and ˛ 2 IR, and ˝ be a bounded
domain. Assume that '.juj/ 2 L1loc.˝/ and u is a solution of the non-homogeneous
A-harmonic equation (1). Then, there exists a constant C , independent of u, such
that

kG.P.u//� .G.P.u///Bk
W
1;tp log˛

C

t
.B;^l / � CkukLp.log˛

C

L/.�B/ (37)

for all balls B with �B 	 ˝ , where � > 1 is a constant.

Selecting '.t/ D tp in Theorem 4, we obtain the usual imbedding inequalitiesGıP
with the Lp-norms.

kG.P.u//� .G.P.u///BkW 1;p.B;^l / � Ckukp;�B (38)

for all balls B with �B 	 ˝ , where � > 1 is a constant. Similarly, if we choose
'.t/ D tp log˛C t or '.t/ D tp in Theorems 1–4, respectively, we will obtain the
corresponding special results.
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3 Global Imbedding Theorem

In this section, we prove the globalL'-imbedding inequalityG ıP in bounded and
convex domains. We need the following Covering Lemma.

Lemma 3 ([8] Covering Lemma). Each˝ has a modified Whitney cover of cubes
V D fQig such that [iQi D ˝ ,

P
Qi2V p 5

4Q
� N˝ and some N > 1, and

if Qi \ Qj 6D ;, then there exists a cube R (this cube need not be a member
of V ) in Qi \ Qj such that Qi [ Qj 	 NR. Moreover, if ˝ is ı-John, then
there is a distinguished cube Q0 2 V which can be connected with every cube
Q 2 V by a chain of cubesQ0;Q1; � � � ;Qk D Q from V and such thatQ 	 �Qi ,
i D 0; 1; 2; � � � ; k, for some � D �.n; ı/.
Finally, we are ready to prove another main theorem, the global imbedding
inequality with the L' -norm.

Theorem 5. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1,G be Green’s, andP be the potential operator defined in (11) with the kernel
K.x; y/ satisfying condition (i) of the standard estimates. Assume that '.juj/ 2
L1.˝/ and u is a solution of the non-homogeneousA-harmonic equation (1) in ˝ .
Then, there exists a constant C , independent of u, such that

kG.P.u//� .G.P.u///˝kW 1;'.˝/ � CkukL'.˝/ (39)

holds for any bounded and convex domain˝ .

Proof. From the Covering Lemma and Theorem 2, we find that

kTd.G.P.u///kL'.˝/ �
X
B2V
kTd.G.P.u///kL'.B/

�
X
B2V

�
C1diam.B/kukL'.�B/

�

� C2diam.˝/N kukL'.˝/
� C3diam.˝/kukL'.˝/; (40)

whereN is a positive integer appearing in the Covering Lemma. Similarly, from the
Covering Lemma and Theorem 3, we obtain

krTd.G.P.u///kL'.˝/ �
X
B2V
krTd.G.P.u///kL'.B/

�
X
B2V

�
C4jBjkukL'.�B/

�

� C5N kukL'.˝/
� C6kukL'.˝/: (41)
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Thus, from (14), (40), and (41), we have

kG.P.u//� .G.P.u///˝kW 1;'.˝/

D kTd.G.P.u///kW 1;'.˝/

D .diam.˝//�1kTd.G.P.u///kL'.˝/ C krTd.G.P.u///kL'.˝/
� .diam.˝//�1.C3diam.˝/kukL'.˝/C C6kukL'.˝/
� C7kukL'.˝/: (42)

We have completed the proof of Theorem 5

From Imbedding inequality (39), we have the following global Poincaré-type
inequality with L' -norm.

Theorem 6. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1,G be Green’s, andP be the potential operator defined in (11) with the kernel
K.x; y/ satisfying condition (i) of the standard estimates. Assume that '.juj/ 2
L1.˝/ and u is a solution of the non-homogeneousA-harmonic equation (1) in ˝ .
Then, there exists a constant C , independent of u, such that

kG.P.u//� .G.P.u///˝kL'.˝/ � Cdiam.˝/kukL'.˝/ (43)

holds for any bounded and convex domain˝ .

Proof. Thus, from (14) and (39), we have

kG.P.u//� .G.P.u///˝kL'.˝/
� diam.˝/

�
.diam.˝//�1kG.P.u// � .G.P.u///˝kL'.˝/

�
Cdiam.˝/

�kr.G.P.u// � .G.P.u///˝/kL'.˝/�
D diam.˝/kG.P.u//� .G.P.u///˝kW 1;'.˝/

� Cdiam.˝/kukL'.˝/: (44)

We have completed the proof of Theorem 6.

As applications of the global Poincaré-type inequality 43 with L' -norm, we can
estimate the L' -norm of G.P.u// in terms of the L'-norm of u.

Corollary 2. Let ' be a Young function in the class G.p; q; C /, 1 � p < q <1,
C � 1,G be Green’s, andP be the potential operator defined in (11) with the kernel
K.x; y/ satisfying condition (i) of the standard estimates. Assume that '.juj/ 2
L1.˝/ and u is a solution of the non-homogeneousA-harmonic equation (1) in ˝ .
Then, there exists a constant C , independent of u, such that

kG.P.u//kL'.˝/ � Cdiam.˝/kukL'.˝/ (45)

holds for any bounded and convex domain˝ .
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Proof. For any solution u of the non-homogeneousA-harmonic equation (1), using
the global Poincaré-type inequality (43), we have

kG.P.u//kL'.˝/ � kG.P.u//� .G.P.u///˝kL'.˝/ C k.G.P.u///˝kL'.˝/
� C1diam.˝/kukL'.˝/ C k.G.P.u///˝kL'.˝/: (46)

Note that for any differential form u and constant p > 1, ku˝kp;˝ �
C2diam.˝/kukp;˝ . Thus, we can also prove that

k.G.P.u///˝kL'.˝/ � C3diam.˝/k.G.P.u///˝kL'.˝/ � C4diam.˝/kukL'.˝/:
(47)

Substituting (47) into (46) yields

kG.P.u//kL'.˝/ � Cdiam.˝/kukL'.˝/:

We have completed the proof of Corollary 2.

Choosing '.t/ D tp log˛C t in Theorems 5, we obtain the following imbedding
inequality with the Lp.log˛C L/-norms.

Corollary 3. Let '.t/ D tp log˛C t , p � 1, ˛ 2 IR, ˝ be any bounded L' -
averaging domain, G be Green’s, and P be the potential operator defined in (11)
with the kernel K.x; y/ satisfying condition (i) of the standard estimates. Assume
that '.juj/ 2 L1.˝/ and u is a solution of the non-homogeneous A-harmonic
equation (1) in ˝ . Then, there exists a constant C , independent of u, such that

kG.P.u//� .G.P.u///B0kW 1;tp log˛
C

t
.˝/
� Ckuk

L
tp log˛

C

t
.˝/

(48)

holds for any bounded and convex domain˝ .

Selecting '.t/ D tp in Theorem 5, we have the following imbedding inequality
with Lp-norms

kGP.u/ � .G.P.u///˝kW 1;p.˝/ � Ckukp;˝ (49)

for any bounded and convex domain˝ .
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On Approximation Properties of q-King
Operators

Zoltán Finta

Abstract Based on q-integers we introduce the q-King operators which
approximate each continuous function on Œ0; 1� and preserve the functions
e0.x/ D 1 and ej .x/ D xj : We also construct a q-parametric sequence of
polynomial bounded positive linear operators possessing similar properties. In
both cases the rate of convergence is estimated with the aid of the modulus of
continuity.

Keywords q-integers • q-Bernstein operators • q-King operators •
q-derivative • positive linear operators • Korovkin type theorem • ordered normed
space • modulus of continuity

1 Introduction

The Bernstein operators Bn W C Œ0; 1� ! C Œ0; 1� are given by .Bnf /.x/ �
Bn.f; x/; n D 1; 2; : : : ; where

Bn.f; x/ D
nX

kD0
pn;k.x/f

�
k

n

�
�

nX
kD0

�
n

k

�
xk.1 � x/n�kf

�
k

n

�
(1)

are the so-called Bernstein polynomials. These polynomials have been introduced
by Bernstein [1] in 1912 and with the aid of them he gave the proof of the
Weierstrass approximation theorem. Later it was found that Bernstein polynomials
possess many remarkable properties, which made them an area of intensive research.
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For a systematic treatment of the theory of Bernstein polynomials until 1990s, see
e.g. [8]. Nowadays, there are new papers on the subject constantly coming out and
generalizations of these polynomials being studied. The aim of these generalizations
is to provide appropriate tools for studying various problems of analysis. In this
sense we mention the following Bernstein type operator introduced by King [7].

Definition 1. For a sequence of continuous functions frng defined on Œ0; 1� with
0 � rn.x/ � 1; x 2 Œ0; 1�; the operators Vn W C Œ0; 1�! C Œ0; 1� are given by

.Vnf /.x/ � Vn.f; x/ D
nX

kD0
pn;k.rn.x//f

�
k

n

�
: (2)

In the special case rn.x/ D x; n D 1; 2; : : : ; the expression of (2) reduces to (1).
For the choice rn D r�n ; where

r�1 .x/ D x2;

r�n .x/ D �
1

2.n� 1/ C
s

n

n � 1x
2 C 1

4.n � 1/2 ; n D 2; 3; : : : ;

we have Vne0 D e0; Vne2 D e2 and limn!1.Vnf /.x/ D f .x/ for each
f 2 C Œ0; 1� and x 2 Œ0; 1�: We have denoted by es; s � 0; the power function
es.x/ D xs; x 2 Œ0; 1�: In comparison with Bernstein operators, the King operators
preserve the functions e0 and e2; and not the functions e0 and e1: Moreover, in
[7] quantitative estimates and connections with summability are discussed. The
quantitative estimates are obtained with the aid of the modulus of continuity of
f 2 C Œ0; 1�; given by

!.f; ı/ D supfjf .x/ � f .y/j W x; y 2 Œ0; 1�; jx � yj � ıg; ı > 0: (3)

The development of q-calculus has led to the discovery of new Bernstein type
operators involving q-integers. The first example in this direction was given by
Lupaş [10] in 1987. If q ¤ 1 then the Lupaş q-analogue of the Bernstein
operators gives rational function rather than polynomial. New results concerning
convergence of the Lupaş operators can be found in [12] and [2]. The so-called
q-Bernstein operators were introduced by Phillips [15] in 1997 and they mean
another generalization of Bernstein operators based on the q-integers. Nowadays,
q-Bernstein operators form an area of an intensive research. A survey of the obtained
main results and references in this area during the first decade of study can be
found in [13]. It is worth mentioning that in [3] direct and converse theorems
are established for the q-Bernstein operators. The direct approximation theorem is
given for the second-order Ditzian–Totik modulus of smoothness, and the converse
result is a theorem of Berens–Lorentz type. Further, in [4] sufficient conditions are
established to insure the convergence of a sequence of positive linear operators
defined on C Œ0; 1�: As applications quantitative estimates for some q-Bernstein
type operators are obtained. The convergence properties of q-Bernstein operators
(0 < q < 1) in the complex plane were studied in [14].
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To present the q-Bernstein operators we recall some notions of the q-calculus
(cf. [6] and [16]). Let q > 0: For each non-negative integer n; the q-integers Œn� and
the q-factorials Œn�Š are defined by

Œn� D
8<
:
1C q C : : :C qn�1; if n � 1

0; if n D 0
and Œn�Š D

8<
:
Œ1�Œ2� : : : Œn�; if n � 1

1; if n D 0:

For integers 0 � k � n; the q-binomial coefficients are defined by

�
n

k

	
D Œn�Š

Œk�ŠŒn � k�Š :

If q D 1 then Œn� D n; Œn�Š D nŠ and

�
n

k

	
D
�
n

k

�
:

Definition 2. For q > 0 the q-Bernstein operators Bn;q W C Œ0; 1� ! C Œ0; 1�

are given by .Bn;qf /.x/ � Bn;q.f; x/; n D 1; 2; : : : ; where the q-Bernstein
polynomials are defined by

Bn;q.f; x/ D
nX

kD0
pn;k.qI x/f

�
Œk�

Œn�

�

�
nX

kD0

�
n

k

	
xk.1 � x/.1 � qx/ : : : .1 � qn�k�1x/f

�
Œk�

Œn�

�
(4)

(for k D n the empty product is taken to equal 1). When q D 1; we recover
the Bernstein polynomials: Bn;1.f; x/ D Bn.f; x/: In the case 0 < q < 1;

the q-Bernstein operators are positive linear operators on C Œ0; 1� with kBn;qkD1:
Moreover, Bn;q are variation-diminishing, which imply that for an increasing
(decreasing) function f on Œ0; 1� we have that Bn;qf is also increasing (decreasing)
on Œ0; 1�; and if f is convex (concave) on Œ0; 1� then so is Bn;qf: Furthermore,

Bn;q.e0; x/ D 1; Bn;q.e1; x/ D x and Bn;q.e2; x/ D x2 C 1

Œn�
x.1 � x/: (5)

If q D qn satisfy 0 < qn < 1 and qn ! 1 as n ! 1; then Bn;q.f; x/ converges
uniformly to f .x/ on Œ0; 1� as n!1; and moreover

jBn;q.f; x/ � f .x/j � 3

2
!.f; Œn��1=2/: (6)

Here we mention that Œn� ! 1 as n ! 1: Indeed, for any fixed positive integer
k; we have Œn� � Œk� D 1 C q C : : : C qk�1 when n � k: But q D qn ! 1
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as n ! 1; therefore lim infn!1Œn� � lim infn!1Œk� D k: Since k has been
chosen arbitrarily, it follows that Œn� ! 1 as n ! 1: For other properties of the
q-Bernstein polynomials, see [16].

Taking into account Definition 1 and Definition 2, we may introduce the q-King
operators as follows.

Definition 3. For q > 0 and for a sequence of continuous functions frn;qg defined
on Œ0; 1� with 0 � rn;q.x/ � 1; x 2 Œ0; 1� and n D 1; 2; : : : ; the q-King operators
Vn;q W C Œ0; 1�! C Œ0; 1� are defined by

.Vn;qf /.x/ � Vn;q.f; x/ D
nX

kD0
pn;k.qI rn;q.x//f

�
Œk�

Œn�

�
: (7)

Obviously Vn;1.f; x/ D Vn.f; x/ and Vn;q.f; x/ D Bn;q.f; rn;q.x//:
The goal of the paper is to prove the existence of a sequence fVn;qg of type (7),

0 < q < 1; which approximate each continuous function on Œ0; 1� such that
Vn;qe0 D e0 and Vn;qej D ej ; where j 2 f2; 3; : : :g is fixed. Moreover, for
0 < q < 1 we construct a sequence fLn;qg of polynomial bounded positive linear
operators which approximate each continuous function on Œ0; 1�; and Ln;qe0 D e0
and Ln;qej D ej ; respectively. In both cases the rate of convergence will be
estimated by the modulus of continuity (3), obtaining quantitative estimates.

2 Auxiliary Results

In the sequel we need some lemmas.

Lemma 1. Let j 2 f2; 3; : : :g be given, n � j and 0 < q < 1: Then

Pn;q;j .y/ D
nX

kD0
pn;k.qIy/

�
Œk�

Œn�

�j
; y 2 Œ0; 1�;

is a polynomial in y of degree � j: Moreover, Pn;q;j .y/ D a0y
j C a1y

j�1 C
: : : C aj�1y; y 2 Œ0; 1�; where a0; a1; : : : ; aj�1 depend on n and q; and a0 D�
1 � Œ1�

Œn�

� �
1 � Œ2�

Œn�

�
: : :

�
1 � Œj�1�

Œn�

�
; a1; : : : ; aj�1 > 0; a0 C a1 C : : :C aj�1 D 1:

Proof. The q-derivative of a function f; denoted by Dqf; is defined by

Dqf .x/ D f .qx/ � f .x/
.q � 1/x ; x ¤ 0 and Dqf .0/ D lim

x!0Dqf .x/:

The formula for the q-derivative of a product is

Dq.fg/.x/ D Dqf .x/g.qx/C f .x/Dqg.x/ (8)
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(for details see [6, pp. 1–3]). Hence, by (8),

y.1 � y/Dqpn;k.qI �/.y/

D y.1 � y/
�
Œk�

�
n

k

	
yk�1.1 � qy/.1 � q2y/ : : : .1 � qn�ky/

� Œn � k�
�
n

k

	
yk.1 � qy/.1 � q2y/ : : : .1 � qn�k�1y/

�

D Œk�pn;k .qIy/.1 � qn�ky/ � yŒn � k�pn;k.qIy/
D pn;k.qIy/.Œk� � Œn�y/:

Thus

DqPn;q;j .y/ D
nX

kD0
Dqpn;k.qI �/.y/

�
Œk�

Œn�

�j
D

nX
kD0

pn;k.qIy/ Œk� � Œn�y
y.1 � y/

�
Œk�

Œn�

�j

D Œn�

y.1 � y/
nX

kD0
pn;k.qIy/

�
Œk�

Œn�
� y

��
Œk�

Œn�

�j

D Œn�

y.1 � y/Pn;q;jC1.y/ �
Œn�y

y.1 � y/Pn;q;j .y/:

Hence the following relation of recurrence is obtained:

Pn;q;jC1.y/ D yPn;q;j .y/C 1

Œn�
y.1 � y/DqPn;q;j .y/: (9)

Because Pn;q;j .y/ D .Bn;qej /.y/; where Bn;qej is a polynomial of degree
minfn; j g D j (see [15, p. 513]) andDqej .y/ D Œj �yj�1; we obtain that DqPn;q;j
is a polynomial in y of degree j � 1: In conclusion, by induction, using the
relation (9), we find that Pn;q;j is a polynomial in y of degree� j: Thus follows the
first statement of the lemma.

We may write Pn;q;j .y/ D a0y
j C a1yj�1 C : : : C aj�1y C aj ; where ai D

ai .n; q/; i D 0; 1; : : : ; j: Then aj D Pn;q;j .0/ D .Bn;qej /.0/ D 0 and a0 C a1 C
: : :C aj D Pn;q;j .1/ D .Bn;qej /.1/ D 1: Hence a0 C a1 C : : :C aj�1 D 1: From
the recurrence formula (9) follows by induction the expression of the coefficient a0
and the positivity of a1; : : : ; aj�1; respectively. ut
Lemma 2. (a) For j 2 f2; 3; : : :g and n � j; we have

0 � 1�
�
1 � Œ1�

Œn�

��
1 � Œ2�

Œn�

�
: : :

�
1 � Œj � 1�

Œn�

�
� Œ1�C Œ2�C : : :C Œj � 1�

Œn�
:

(b) For j 2 f1; 2; : : :g and u; v 2 Œ0; 1�; we have .u � v/2j � .uj � vj /2:
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Proof. .a/ We prove it by induction. For j D 2 it is obvious. We shall show that if
the inequality holds for j; then it holds for j C 1: Indeed, we have

0 � 1 �
�
1 � Œ1�

Œn�

��
1 � Œ2�

Œn�

�
: : :

�
1 � Œj � 1�

Œn�

��
1 � Œj �

Œn�

�

D 1 �
�
1 � Œ1�

Œn�

��
1 � Œ2�

Œn�

�
: : :

�
1 � Œj � 1�

Œn�

�

C
�
1 � Œ1�

Œn�

��
1 � Œ2�

Œn�

�
: : :

�
1 � Œj � 1�

Œn�

�
Œj �

Œn�

� Œ1�C Œ2�C : : :C Œj � 1�/
Œn�

C Œj �

Œn�
D Œ1�C Œ2�C : : :C Œj �

Œn�
:

.b/ We prove it by induction. For j D 1 it is obvious. We shall show that if the
inequality holds for j; then it holds for j C1: At the same time, without loss of
generality, we may suppose that u � v: Then .u� v/2jC2 � .uj � vj /2.u� v/2
� .ujC1 � vjC1/2; because the last inequality is equivalent with vj .u � v/ C
v.uj � vj / � 0: ut

In the next lemma we establish a Korovkin type theorem.

Lemma 3. Let fUng be a sequence of positive linear operators such that Un W
C Œ0; 1� ! C Œ0; 1�; n D 1; 2; : : : ; and lim

n!1.Unes/.x/ D es.x/ uniformly for x 2
Œ0; 1�; where s 2 f0; j=2; j g and j 2 f2; 3; : : :g is given. Then lim

n!1.Unf /.x/ D
f .x/ uniformly for x 2 Œ0; 1�; where f 2 C Œ0; 1� is arbitrary.

Proof. Because Py.x/ D .yj=2 � xj=2/2 D yj e0.x/ � 2yj=2ej=2.x/ C ej .x/ � 0
for all x; y 2 Œ0; 1�; and Py.x/ D 0 if and only if x D y; we obtain the validity of
the lemma because of [9, p. 7, Theorem 3]. ut

Before starting the next lemma we recall some notions concerning ordered
normed spaces. A real linear space X is said to be ordered linear space if X is
equipped with an order relation � satisfying the conditions: x; y; z 2 X; x � y )
xCz � yCzI x; y 2 X; x � y; ˛ � 0 .˛ 2 R/) ˛x � ˛y:We denote byXC the
set of all positive elements of X; i.e. XC D fx 2 X W 0X � xg: An ordered linear
space X is said to be ordered normed space if there exists a norm k � kX on X such
that 0X � x � y ) kxkX � kykX :
Lemma 4 ([11, p. 82]). Let X be an ordered normed space with intXC ¤ ; and
Y a normed subspace of X such that Y \ intXC ¤ ;: If � W Y ! R is a bounded
positive linear functional, then there exists a bounded positive linear functional Q� W
X ! R such that Q�.x/ D �.x/ for all x 2 Y:
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3 Main Results

Theorem 1. Let j 2 f2; 3; : : :g be given, n � j and let q D qn 2 .0; 1/ satisfy
qn ! 1 as n ! 1: Then there exists a sequence frn;qg of continuous functions on
Œ0; 1�; 0 � rn;q.x/ � 1 for x 2 Œ0; 1� and n � j; such that the operators Vn;q defined
by (7) satisfy the following properties:

.i/ Vn;qe0 D e0; Vn;qej D ej I
.i i/ lim

n!1.Vn;qf /.x/ D f .x/ uniformly for x 2 Œ0; 1�; for all f 2 C Œ0; 1�I
.i i i/ j.Vn;qf /.x/�f .x/j�

n
1C 2j

p
8
p
j .Œ1�C Œ2�C : : :C Œj � 1�/1=2j C 6j

o
�

!.f; Œn��1=4j 2 / for every f 2 C Œ0; 1� and x 2 Œ0; 1�:
Proof. We consider the function 'x W Œ0; 1�! Œ0; 1�; 'x.y/ D Pn;q;j .y/�xj ;where
x 2 Œ0; 1� is arbitrary. We prove that the equation 'x.y/ D 0 has a unique solution
y D y.x/: Indeed, in view of Lemma 1, if x D 0 then we set y D y.0/ D 0;

because Pn;q;j .0/ D 0I if x D 1 then we set y D y.1/ D 1; because Pn;q;j .1/ D 1:
Further, for x 2 .0; 1/ we have 'x.0/ � 'x.1/ D �xj .1� xj / < 0: Then there exists
y D y.x/ 2 .0; 1/ such that 'x.y/ D 0: Again, in view of Lemma 1, we have
' 0x.y/ D ja0y

j�1 C .j � 1/a1yj�2 C : : :C aj�1 > 0 for y 2 Œ0; 1�; therefore 'x
is increasing function on Œ0; 1�; so 'x.y/ D 0 has a unique solution.

Now let rn;q.x/ D y.x/; where x 2 Œ0; 1� and n � j: Then 0 � rn;q.x/ � 1

for x 2 Œ0; 1� and rn;q 2 C Œ0; 1�; because the conditions Pn;q;j .rn;q.x// D xj and
Pn;q;j .rn;q.x0// D xj0 imply

frn;q.x/ � rn;q.x0/gfa0Œ.rn;q.x//j�1 C : : :C .rn;q.x0//j�1�
C a1Œ.rn;q.x//j�2 C : : :C .rn;q.x0//j�2�C : : :
C aj�2Œrn;q.x/C rn;q.x0/�C aj�1g

D .x � x0/.xj�1 C xj�2x0 C : : :C xxj�20 C xj�10 /:

Hence, by Lemma 1, aj�1jrn;q.x/ � rn;q.x0/j � j jx � x0j; which implies the
continuity of rn;q in x0:

For the constructed sequence frn;qg we prove the statements .i/–.i i i/:

.i/ In view of (7) and (5), we have .Vn;qe0/.x/ D .Bn;qe0/.rn;q.x// D 1 D
e0.x/: Further, by (7) and Lemma 1, .Vn;qej /.x/ D Pn;q;j .rn;q.x// D xj D
ej .x/:

.i i/ Taking into account Lemmas 1 and 2 .a/; we obtain

jxj � .rn;q.x//j j D jPn;q;j .rn;q.x// � .rn;q.x//j j
D j.a0 � 1/.rn;q.x//j C a1.rn;q.x//j�1 C : : :C aj�1rn;q.x/j
D j � .a1 C : : :C aj�1/.rn;q.x//j C a1.rn;q.x//j�1 C : : :C aj�1rn;q.x/j
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D a1Œ.rn;q.x//j�1 � .rn;q.x//j �C : : :C aj�1Œrn;q.x/ � .rn;q.x//j �
� a1 C : : :C aj�1 D 1� a0

D 1�
�
1� Œ1�
Œn�

��
1� Œ2�
Œn�

�
: : :

�
1� Œj � 1�

Œn�

�
� Œ1�C Œ2�C : : :C Œj � 1�

Œn�
:

Hence, by Lemma 2 .b/; we get

.x � rn;q.x//2j � .xj � .rn;q.x//j /2 �
�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�2
:

In conclusion

jx � rn;q.x/j �
�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�1=j
: (10)

On the other hand, in view of (7) and (5), x � .Vn;qe1/.x/ D
x � .Bn;qe1/.rn;q.x// D x � rn;q.x/ and x2 � .Vn;qe2/.x/ D x2 �
.Bn;qe2/.rn;q.x// D x2 � .rn;q.x//2 � 1

Œn�
rn;q.x/ .1 � rn;q.x//: Hence,

due to (10),

j.Vn;qe1/.x/ � e1.x/j �
�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�1=j
! 0

and

j.Vn;qe2/.x/� e2.x/j � 2
�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�1=j
C 1

Œn�
! 0

as n ! 1: In conclusion, by Lemma 3 (case j D 2), we find that
lim
n!1.Vn;qf /.x/ D f .x/ uniformly for x 2 Œ0; 1�:

.i i i/ Due to (5), (3), the property !.f; aı/ � .1 C a/!.f; ı/; a > 0, (5) and
Hölder’s inequality, we have

j.Vn;qf /.x/ � f .x/j �
nX

kD0
pn;k.qI rn.x//

ˇ̌
ˇ f

�
Œk�

Œn�

�
� f .x/

ˇ̌
ˇ

�
nX

kD0
pn;k.qI rn.x// !

�
f;
ˇ̌
ˇ Œk�
Œn�
� x

ˇ̌
ˇ
�

� !.f; ı/
nX

kD0
pn;k.qI rn.x//

�
1C ı�1

ˇ̌
ˇ Œk�
Œn�
� x

ˇ̌
ˇ
�
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D !.f; ı/
8<
:1C ı�1

 
nX

kD0
pn;k.qI rn.x//

�
Œk�

Œn�
� x

�2j!1=2j9=
; : (11)

But, in view of Lemma 2 .b/;

�
Œk�

Œn�
� x

�2j
�
 �

Œk�

Œn�

�j
� xj

!2

D
 �

Œk�

Œn�

�j=2
C xj=2

!2  �
Œk�

Œn�

�j=2
� xj=2

!2
� 4

 �
Œk�

Œn�

�j=2
� xj=2

!2
:

Hence, by (11) and .i/;

j.Vn;qf /.x/ � f .x/j

� !.f; ı/

8̂
<
:̂1C ı

�1
0
@4

nX
kD0

pn;k.qI rn;q.x//
 �

Œk�

Œn�

�j=2
� xj=2

!21
A
1=2j

9>=
>;

D !.f; ı/
n
1C 21=j ı�1 �.Vn;qej /.x/ � 2xj=2.Vn;qej=2/.x/C xj �1=2j

o

D !.f; ı/
n
1C 21=j ı�1 �2xj � 2xj=2.Vn;qej=2/.x/�1=2j

o

� !.f; ı/
n
1C 23=2j ı�1 �xj=2 � .Vn;qej=2/.x/�1=2j

o
: (12)

On the other hand

jxj=2 � .Vn;qej=2/.x/j
� jxj=2 � .rn;q.x//j=2j C j.rn;q.x//j=2 � .Bn;qej=2/.rn;q.x//j: (13)

Again, by Lemma 2 .b/ (case j D 2), we have

.xj=2 � .rn;q.x//j=2/4 � .xj � .rn;q.x//j /2
D .x � rn;q.x//2fxj�1 C xj�2rn;q.x/C : : :C .rn;q.x//j�1g2
� j 2.x � rn;q.x//2:

Hence, by (10),

jxj=2 � .rn;q.x//j=2j �
p
j jx � rn;q.x/j1=2

� pj
�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�1=2j
: (14)
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Further, due to (6) and the property !.f; ı/ � ıkf 0k; where k � k is the uniform
norm on C Œ0; 1�; we have

j.rn;q.x//j=2 � .Bn;qej=2/.rn;q.x//j � 3

2
!.ej=2; Œn�

�1=2/ � 3

4
j Œn��1=2: (15)

Combining (13), (14) and (15), we obtain

jxj=2 � .Vn;qej=2/.x/j �
p
j

�
Œ1�C Œ2�C : : :C Œj � 1�

Œn�

�1=2j
C 3

4
j Œn��1=2

�
�p

j .Œ1�C Œ2�C : : :C Œj � 1�/1=2j C 3

4
j

�
Œn��1=2j :

Hence, by (12),

j.Vn;qf /.x/ � f .x/j

� !.f; ı/
�
1C ı�1 2j

q
8
p
j .Œ1�C Œ2�C : : :C Œj � 1�/1=2j C 6j Œn��1=4j 2

�
:

Choosing ı D Œn��1=4j 2 ; we get the desired result. ut
Theorem 2. Let j 2 f2; 3; : : :g be given, n � j and let q D qn 2 .0; 1/ satisfy
qn ! 1 as n!1: Then there exist polynomial bounded positive linear operators
Ln;q W C Œ0; 1�! C Œ0; 1� such that

.i/ Ln;qe0 D e0; Ln;qej D ej I
.i i/ lim

n!1.Ln;qf /.x/ D f .x/ uniformly for x 2 Œ0; 1�; for all f 2 C Œ0; 1�I
.i i i/ j.Ln;qf /.x/ � f .x/j �

n
1C 2j

p
6j C 4j Œj � 1�C 16

o
!.f; Œn��1=4j / for

every f 2 C Œ0; 1� and x 2 Œ0; 1�:
Proof. We define the operators Ln;q W C Œ0; 1�! C Œ0; 1� by

.Ln;qf /.x/ � Ln;q.f; x/ D
nX

kD0
pn;k.qI x/ �n;k.f /; (16)

where the bounded positive linear functionals �n;k 2 C Œ0; 1�� are defined step by
step as follows. We set �n;0.f / D f .0/ and �n;n.f / D f .1/ for f 2 C Œ0; 1� and
n D 1; 2; : : : If n � j and k D 1; 2; : : : ; n � 1; then we set

�n;k.e0/ D 1; �n;k.ej / D Œk�Œk�1�:::Œk�jC1�
Œn�Œn�1�:::Œn�jC1� ;

�n;k.ej=2/ D
8<
:

Œk�1�
Œn�

�
Œk�2�Œk�3�:::Œk�jC1�
Œn�2�Œn�3�:::Œn�jC1�

�1=2
; if n � j > 3

Œk�1�
Œn�
; if n � j D 2:

(17)
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Then we get

�n;k.ej / � �n;k.ej=2/ � .�n;k.ej //1=2 � �n;k.ej=2/C 2

Œn�
(18)

for all n � j and k D 1; 2; : : : ; n� 1: We justify only the last inequality, the others
follow by simple computations; due to (17), we have

.�n;k.ej //
1=2 � �n;k.ej=2/

D
�
Œk � 1�Œk � 2� : : : Œk � j C 1�
Œn�Œn � 2� : : : Œn � j C 1�

�1=2 (s
Œk�

Œn � 1� �
s
Œk � 1�
Œn�

)

�
s
Œk � 1�
Œn�

Œk�

Œn�1� � Œk�1�
Œn�q

Œk�

n�1� C
q

Œk�1�
Œn�

� Œk�

Œn � 1� �
Œk � 1�
Œn�

D Œn�Œk� � Œn � 1�Œk � 1�
Œn � 1�

1

Œn�
� 2

Œn�
;

because Œn�Œk��Œn�1�Œk�1� D .1CqŒn�1�/Œk��Œn�1�Œk�1�DŒk�CŒn�1�.qŒk��
Œk � 1�/ D Œk� C Œn � 1�fq � .1 � q2/Œk � 1�g � Œk� C Œn � 1� � 2Œn � 1� for
k D 1; 2; : : : ; n � 1 and n � j > 3I analogously

.�n;k.ej //
1=2 � �n;k.ej=2/ D

�
Œk�Œk � 1�
Œn�Œn � 1�

�1=2
� Œk � 1�

Œn�

D
s
Œk � 1�
Œn�

(s
Œk�

Œn � 1� �
s
Œk � 1�
Œn�

)
� 2

Œn�

for k D 1; 2; : : : ; n � 1 and n � j D 2:
Further, �n;k .k D 1; 2; : : : ; n � 1/ will be defined on the linear subspace Y D

f˛e0 C ˇej=2 C �ej j ˛; ˇ; � 2 R g of the linear space C Œ0; 1� as follows: for P D
˛e0 C ˇej=2 C �ej we set �n;k.P / D ˛�n;k.e0/C ˇ�n;k.ej=2/C ��n;k.ej /:

We prove that �n;k 2 Y � .k D 1; 2; : : : ; n � 1/ are bounded positive linear
functionals. Obviously �n;k are linear. Moreover, �n;k are positive: if P.x/ � 0 for
x 2 Œ0; 1�; then we distinguish the following two cases:

.a/ � � 0: By (18), we have �n;k.P / D ˛ C ˇ�n;k.ej=2/ C ��n;k.ej / � ˛ C
ˇ�n;k.ej=2/C� .�n;k.ej=2//2 D P..�n;k.ej=2//2=j / � 0I

.b/ � < 0: By (18), we have �n;k.P / D ˛ C ˇ�n;k.ej=2/ C ��n;k.ej / � ˛ C
ˇ�n;k.ej=2/C��n;k.ej=2/ D P.0/.1 � �n;k.ej=2//C P.1/�n;k.ej=2/ � 0:

Further,�n;k .k D 1; 2; : : : ; n�1/ are bounded on Y: Indeed, the positivity of �n;k
imply for all P 2 Y that j�n;k.P /j � �n;k.jP j/ � �n;k.kP ke0/ D kP k�n;k.e0/ D
kP k; where k � k denotes the uniform norm on C Œ0; 1�:
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Finally, we define �n;k .k D 1; 2; : : : ; n � 1/ on the whole space C Œ0; 1�: The
real linear space C Œ0; 1� is an ordered Banach space with k � k and the natural
order relation: f � g if and only if f .x/ � g.x/; x 2 Œ0; 1�: Using the notation
C Œ0; 1�C D ff 2 C Œ0; 1� W 0CŒ0;1� � f g; we have ff 2 C Œ0; 1� W kf � e0k < 1g 	
C Œ0; 1�C: Thus int C Œ0; 1�C ¤ ; and e0 2 Y \ int C Œ0; 1�C: Now we can extend
�n;k on the whole space C Œ0; 1� as bounded positive linear functionals, because of
Lemma 4.

.i/ Obviously, by (16), Ln;q is a polynomial operator: Ln;qf is a polynomial
of degree � n; for all f 2 C Œ0; 1�: By (16), (17) and (5), .Ln;qe0/.x/ D
.Bn;qe0/.x/ D e0.x/ and

.Ln;qej /.x/ D
nX

kD0
pn;k.qI x/ Œk�Œk � 1� : : : Œk � j C 1�

Œn�Œn � 1� : : : Œn � j C 1� D x
jBn�j;q.e0; x/

D ej .x/:

.ii/ For n � j � 3 and f 2 C Œ0; 1�; we have, in view of (4) and (16), that

f .x/ � Ln;q.f; x/ D f .x/ � Bn;q.f; x/

C
nX

kD0
pn;k.qI x/

(
f

�
Œk�

Œn�

�
� f

 �
Œk�Œk � 1� : : : Œk � j C 1�
Œn�Œn � 1� : : : Œn � j C 1�

�1=j!)

C
nX

kD0
pn;k.qI x/

(
f

 �
Œk�Œk�1� : : : Œk�jC1�
Œn�Œn�1� : : : Œn�jC1�

�1=j!
��n;k.f /

)
: (19)

But (see (3))

ˇ̌
ˇ̌
ˇ f

�
Œk�

Œn�

�
� f

 �
Œk�Œk � 1� : : : Œk � j C 1�
Œn�Œn � 1� : : : Œn � j C 1�

�1=j! ˇ̌ˇ̌
ˇ� !

�
f;
Œj � 1�
Œn�

�
;

(20)
because the inequalities Œk�

Œn�
� Œk�1�

Œn�1� � : : : � Œk�jC1�
Œn�jC1� imply

0 � Œk�

Œn�
�
�
Œk�Œk � 1� : : : Œk � j C 1�
Œn�Œn � 1� : : : Œn � j C 1�

�1=j

� Œk�

Œn�
� Œk � j C 1�
Œn � j C 1� D

qk�jC1Œj � 1�Œn � k�
Œn�Œn � j C 1� � Œj � 1�

Œn�

for n � k � j � 3: For k D 0; 1; : : : ; j � 1; we have

ˇ̌
ˇ̌
ˇ f

�
Œk�

Œn�

�
� f

 �
Œk�Œk � 1� : : : Œk � j C 1�
Œn�Œn � 1� : : : Œn � j C 1�

�1=j! ˇ̌ˇ̌
ˇ
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D
ˇ̌
ˇ̌
ˇ f

�
Œk�

Œn�

�
� f .0/

ˇ̌
ˇ̌
ˇ� !

�
f;
Œk�

Œn�

�
� !

�
f;
Œj � 1�
Œn�

�
: (21)

Now combining (19), (20), (21), (6), (18) and the property !.f; ı/ � ıkf 0k
(each for f D ej=2), we find that

jej=2.x/ � Ln;q.ej=2; x/j
� jej=2.x/ � Bn;q.ej=2; x/j

C
nX

kD0
pn;k.qI x/

ˇ̌
ˇ̌
ˇ
�
Œk�

Œn�

�j=2
�
�
Œk�Œk � 1� : : : Œk � j C 1�
Œn�Œn � 1� : : : Œn � j C 1�

�1=2 ˇ̌ˇ̌
ˇ

C
nX

kD0
pn;k.qI x/

˚
.�n;k.ej //

1=2 � �n;k.ej=2/
�

� 3

2
!.ej=2; Œn�

�1=2/C !
�
ej=2;

Œj � 1�
Œn�

�
C 2

Œn�

� 3

4
j Œn��1=2 C j

2
Œj � 1�Œn��1 C 2Œn��1

�
�
3

4
j C 1

2
j Œj � 1�C 2

�
Œn��1=2: (22)

On the other hand, if n � j D 2; then, by (16), (18), Hölder’s inequality, (17),
.i/ and (5), we get

Ln;q.e1; x/ D
nX

kD0
pn;k.qI x/�n;k.e1/ �

nX
kD0

pn;k.qI x/.�n;k.e2//1=2

�
 

nX
kD0

pn;k.qI x/�n;k.e2/
!1=2
D .Ln;q.e2; x//1=2 D e1.x/

and

Ln;q.e1; x/ D
n�1X
kD1

pn;k.qI x/ Œk � 1�
Œn�

C pn;n.qI x/

D
nX

kD0
pn;k.qI x/ Œk�

Œn�
�

n�1X
kD1

pn;k.qI x/ Œk� � Œk � 1�
Œn�

D x �
n�1X
kD1

pn;k.qI x/q
k�1

Œn�
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� x � 1

Œn�

n�1X
kD1

pn;k.qI x/ � e1.x/ � 1

Œn�
;

respectively. Hence

0 � e1.x/ � Ln;q.e1; x/ � 1

Œn�
: (23)

Now (22), (23), .i/ and Lemma 3 imply that lim
n!1.Ln;qf /.x/ D f .x/

uniformly in x 2 Œ0; 1�:
.iii/ Because �n;k 2 C Œ0; 1�� are bounded positive linear functionals and

�n;k.e0/ D 1 (see (17)), we have the representations �n;k.f / DR 1
0
f .t/ d�n;k.t/; where the functions �n;k are increasing on Œ0; 1� andR 1

0
d�n;k.t/ D 1; k D 0; 1; : : : ; n: Hence, by (16), the property !.f; aı/ �

.1C a/!.f; ı/; a > 0 and Hölder’s inequality, we obtain

j.Ln;qf /.x/� f .x/j

�
nX

kD0
pn;k.qIx/j�n;k.f / � f .x/j �

nX
kD0

pn;k.qIx/
Z 1

0
jf .t/� f .x/jd�n;k.t/

�
nX

kD0
pn;k.qIx/

Z 1

0
!.f; jt � xj/ d�n;k.t/

� !.f; ı/
nX

kD0
pn;k.qIx/

Z 1

0

n
1C ı�1jt � xj

o
d�n;k.t/

� !.f; ı/
8<
:1C ı�1

 
nX

kD0
pn;k.qIx/

Z 1

0
.t � x/2j d�n;k.t/

!1=2j9=
; : (24)

By Lemma 2 .b/; we get

.t � x/2j � .tj � xj /2 D .tj=2 C xj=2/2.tj=2 � xj=2/2 � 4.tj=2 � xj=2/2:

Hence, by (24) and .i/;

j.Ln;qf /.x/ � f .x/j

� !.f; ı/
8<
:1C 21=j ı�1

 
nX

kD0
pn;k.qI x/

Z 1

0

.tj=2 � xj=2/2 d�n;k.t/
!1=2j9=

;
D !.f; ı/

˚
1C 21=j ı�1
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� �.Ln;qej /.x/ � 2xj=2.Ln;qej=2/.x/C xj .Lne0/.x/�1=2j
o

D !.f; ı/

�
1C 23=2j ı�1 2j

q
xj=2.xj=2 � .Ln;qej=2/.x//

�
: (25)

Using (22), (23) and (25), we find that

j.Ln;qf /.x/�f .x/j � !.f; ı/
(
1C 23=2j 2j

r
3

4
j C 1

2
j Œj � 1�C 2 Œn��1=4j

)
:

Choosing ı D Œn��1=4j ; we arrive at the desired result. ut
Corollary 1. Let j 2 f2; 3; : : :g be given, n � j and let q 2 .0; 1/ be fixed. Then
the operators Ln;q constructed in Theorem 2 verify for j � 3 that

lim
n!1.Ln;qej=2/.x/

D

8̂
<
:̂

1X
kD1

p1;k.qI x/.1 � qk�1/
q
.1 � qk�2/ : : : .1 � qk�jC1/; if x 2 Œ0; 1/

1; if x D 1

uniformly in x 2 Œ0; 1�; where p1;k.qI x/ D xk

.1� q/kŒk�Š
1Y
sD0

.1 � qsx/; k D
0; 1; : : : I

lim
n!1.Ln;qe1/.x/ D x � .1 � q/q

�1.1 � x/
(
1 �

1Y
sD1

.1 � qsx/
)

uniformly in x 2 Œ0; 1�; when j D 2:
Proof. We introduce the notation

L1;q.ej=2; x/ D

8̂
<
:̂

1X
kD0

p1;k.qI x/�1;k.ej=2/; if 0 � x < 1

1; if x D 1
(26)

where �1;0.ej=2/ D 0; �1;k.ej=2/ D .1 � qk�1/p.1 � qk�2/ : : : .1� qk�jC1/;
k D 1; 2; : : : Because of (16), (17), (26) and

1X
kD0

p1;k.qI x/ D 1 (see [17, p. 154,

(2.3)]), we have
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Ln;q.ej=2; x/ � L1;q.ej=2; x/ D
nX

kDj
.�n;k.ej=2/ � �1;k.ej=2//pn;k.qI x/

C
nX

kDj
.�1;k.ej=2/ � 1/.pn;k.qI x/ � p1;k.qI x//

�
1X

kDnC1
.�1;k.ej=2/ � 1/p1;k.qI x//: (27)

Further, for k D j; j C 1; : : : ; n � 1 and j � 3; we obtain

j�n;k.ej=2/ � �1;k.ej=2/j

D
ˇ̌
ˇ̌
ˇ
Œk � 1�
Œn�

�
Œk � 2�Œk � 3� : : : Œk � j C 1�
Œn � 2�Œn � 3� : : : Œn � j C 1�

�1=2

� .1 � qk�1/
q
.1 � qk�2/ : : : .1 � qk�jC1/

ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
�
Œk � 1�
Œn�

� .1 � qk�1/
��

Œk � 2�Œk � 3� : : : Œk � j C 1�
Œn � 2�Œn � 3� : : : Œn � j C 1�

�1=2

C .1 � qk�1/
(�

Œk � 2�Œk � 3� : : : Œk � j C 1�
Œn � 2�Œn � 3� : : : Œn � j C 1�

�1=2

�
q
.1 � qk�2/ : : : .1 � qk�jC1/

� ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
�
Œk � 1�
Œn�

� .1 � qk�1/
��

Œk � 2�Œk � 3� : : : Œk � j C 1�
Œn � 2�Œn � 3� : : : Œn � j C 1�

�1=2

C .1 � qk�1/
( s

Œk � 2�
Œn � 2� �

q
1� qk�2

!�
Œk � 3� : : : Œk � j C 1�
Œn � 3� : : : Œn � j C 1�

�1=2

C
q
1 � qk�2

 s
Œk � 3�
Œn � 3� �

q
1 � qk�3

!�
Œk � 4� : : : Œk � j C 1�
Œn � 4� : : : Œn � j C 1�

�1=2
C : : :

C
q
.1 � qk�2/ : : : .1� qk�jC1/

 s
Œk � j C 1�
Œn � j C 1� �

q
1 � qk�jC1

!) ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ Œk � 1�

Œn�
� .1 � qk�1/

ˇ̌
ˇ C

ˇ̌
ˇ
s
Œk � 2�
Œn � 2� �

q
1 � qk�2

ˇ̌
ˇ C : : :

C
ˇ̌
ˇ
s
Œk � j C 1�
Œn � j C 1� �

q
1 � qk�jC1

ˇ̌
ˇ : (28)
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But

0 � Œk � 1�
Œn�

� .1 � qk�1/ D 1 � qk�1
1� qn�1 � .1 � q

k�1/ D qn�1.1 � qk�1/
1 � qn�1 � qn�1

for k D j; j C 1; : : : ; n � 1 and j � 3I further, we have

0 �
s
Œk � i �
Œn � i � �

q
1 � qk�i D

s
1 � qk�i
1 � qn�i �

q
1 � qk�i

D
s
1 � qk�i
1� qn�i .1 �

p
1 � qn�i / � qn�i

for i D 2; 3; : : : ; j � 1: Hence, by (28), we find for k D j; j C 1; : : : ; n � 1 that

j�n;k.ej=2/� �1;k.ej=2/j � qn�1 C qn�2 C : : :C qn�jC1 D qn�jC1 1 � q
j

1 � q : (29)

In what follows we shall use the following estimate (see [17, p. 156, (2.8)]):

1 �
1Y
sDi

.1 � qs/ � qi

q.1� q/ ln
1

1 � q ; i D 1; 2; : : : (30)

Then

j�n;k.ej=2/ � �1;k.ej=2/j D 1 � .1 � qn�1/
p
.1 � qn�2/ : : : .1 � qn�jC1/

� 1 � .1 � qn�1/.1 � qn�2/ : : : .1 � qn�jC1/

� 1 �
1Y

sDn�jC1
.1 � qs/

� qn�jC1

q.1 � q/ ln
1

1 � q : (31)

Analogously

j�1;k.ej=2/ � 1j � qk�jC1

q.1 � q/ ln
1

1 � q (32)
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for k D j; j C 1; : : : ; n; and

j�1;k.ej=2/ � 1j � qn�jC2

q.1 � q/ ln
1

1 � q (33)

for k D nC 1; nC 2; : : :
Taking into account the estimate

nX
kD0

qkjpn;k.qI x/ � p1;k.qI x/j � 2qn

q.1 � q/ ln
1

1 � q

(see [17, p. 156, (2.9)]) and the equality
1X
kD0

p1;k.qI x/ D 1 (see [17, p. 154, (2.3)]),

we find, in view of (27), (29), (31), (32) and (33), that

jLn;q.ej=2; x/ � L1;q.ej=2; x/j

�
nX

kDj
j�n;k.ej=2/ � �1;k.ej=2/jpn;k.qI x/

C
nX

kDj
j�1;k.ej=2/� 1jjpn;k.qI x/ � p1;k.qI x/j

C
1X

kDnC1
j�1;k.ej=2/ � 1jp1;k.qI x//

� qn�jC1 1 � q
j

1 � q C
qn�jC1

q.1 � q/ ln
1

1 � q

C 1

qj .1 � q/ ln
1

1 � q
nX

kD0
qkjpn;k.qI x/ � p1;k.qI x/j C qn�jC2

q.1 � q/ ln
1

1 � q

� qn�jC1
(
1 � qj
1 � q C

1C q
q.1 � q/ ln

1

1 � q C 2
�

1

q.1 � q/ ln
1

1 � q
�2)
! 0

as n ! 1: Besides Ln;q.ej=2; 1/ D L1;q.ej=2; 1/ in view of (16), (17) and (26).
This means that lim

n!1.Ln;qej=2/.x/ D L1;q.ej=2; x/ uniformly in x 2 Œ0; 1�:
For j D 2 we use the following result established in [5, p. 334, (3.1)]:

Ln;q.e1; x/D 1
q
x� 1

qŒn�
C 1

qŒn�
.1�x/.1�qx/ : : : .1�qn�1x/C

�
1 � 1

q
C 1

qŒn�

�
xn:
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Then
ˇ̌
ˇ̌
ˇ Ln;q.e1; x/� x C .1 � q/q�1.1 � x/

(
1 �

1Y
sD0

.1 � qsx/
) ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ �

1

qŒn�
C 1

qŒn�
.1 � x/.1 � qx/ : : : .1 � qn�1x/C

�
1 � 1

q
C 1

qŒn�

�
xn

C 1 � q
q
� 1 � q

q

1Y
sD0

.1 � qsx/
ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ 1

qŒn�
� 1 � q

q

ˇ̌
ˇ jxn � 1j C 1

qŒn�

ˇ̌
ˇ .1 � x/.1� qx/ : : : .1 � qn�1x/�

1Y
sD0

.1 � qsx/
ˇ̌
ˇ

C
ˇ̌
ˇ 1

qŒn�
� 1 � q

q

ˇ̌
ˇ
1Y
sD0

.1� qsx/: (34)

On the other hand

ˇ̌
ˇ 1

qŒn�
� 1 � q

q

ˇ̌
ˇD qn�1 1 � q

1 � qn � q
n�1

and, by (30),

ˇ̌
ˇ .1� x/.1 � qx/ : : : .1 � qn�1x/ �

1Y
sD0

.1 � qsx/
ˇ̌
ˇ

D .1 � x/.1 � qx/ : : : .1 � qn�1x/
(
1 �

1Y
sDn

.1� qsx/
)

� 1 �
1Y
sDn

.1 � qs/ � qn

q.1 � q/ ln
1

1 � q :

Hence, due to (34),

ˇ̌
ˇ̌
ˇ Ln;q.e1; x/ � x C .1� q/q�1.1 � x/

(
1 �

1Y
sD0

.1 � qsx/
) ˇ̌
ˇ̌
ˇ

� 2qn�1 C qn�1

q.1 � q/ ln
1

1 � q � q
n�1

�
2C 1

q.1� q/ ln
1

1 � q
�
! 0

as n!1; which completes the proof of the corollary. ut
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Abstract In the present article we discuss direct estimates of the Durrmeyer type
modifications of the well-known Szász-Mirakyan operators. The present article is
divided into two sections. In the first section, we mention some of the different inte-
gral modifications of the Szász-Mirakyan operators and mention their direct results
which were done in ordinary, and specially in the simultaneous approximation.

In the second section for the Szász-Mirakyan-Beta operators, we find the alter-
nate hypergeometric representation and propose their Stancu type generalization
based on two parameters. We obtain the moments using confluent Hypergeometric
functions. Also it is observed here that the moments are related to the Laguerre
polynomials. We study direct approximation results for these Szász-Mirakyan-Beta-
Stancu operators, which include a Voronovskaja-type asymptotic formula and error
estimations in terms of modulus of continuity.
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1 Introduction

The Szász-Mirakyan operators [13] are given by

Sn.f; x/ � .Snf /.x/ D
1X
kD0

sn;k.x/f

�
k

n

�
;

where the Szász basis function is defined as

sn;k.x/ D e�nx .nx/
k

kŠ
: (1)

Lots of work has been done on the Szász-Mirakyan operators in the last six decades.
Some of the important results on these operators have recently been compiled by
Gupta in [5]. As such Szász-Mirakyan operators are discrete operators and they are
not able to approximate Lebesgue integrable functions on the positive real axis. To
approximate Lebesgue integrable functions on the interval Œ0;1/; the two usual
modifications available in the literature are due to Kantorovich and Durrmeyer.
Several other summation-integral modifications of the Durrmeyer-type operators
were proposed and their approximation properties have been discussed and studied
by researchers in the last three decades.

The present article is divided into two sections. In the first section, below we
mention some of the summation-integral type integral modifications of the Szász-
Mirakyan operators and mention their direct results which were done in ordinary,
and specially in the simultaneous approximation. In the second section, that contains
new results, we propose the Stancu type modification of Szász-Mirakyan-Beta
operators and study some direct results in simultaneous approximation. Our results
include the asymptotic formula, and error estimations in terms of modulus of
continuity of first and second order.

1.1 Szász-Mirakyan-Durrmeyer Operators

In the year 1985, Mazhar and Totik [11] introduced the Szász-Durrmeyer operators
to approximate Lebesgue integrable functions on the interval Œ0;1/ as

OSn.f; x/ D n
1X
kD0

sn;k.x/

Z 1
0

sn;k.t/f .t/dt

where sn;k.x/ is the Szász-Mirakyan basis functions defined by (1). Also, around
the same time Kasana et al. [10] introduced the operators as

OSn;y.f; x/ D n
1X
kD0

sn;k.x/

Z 1
0

sn;k.t/f .t C y/dt:
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They considered by CBŒ0;1/ the class of real valued bounded and uniformly
continuous functions on Œ0;1/ with the norm jj:jjB D supx2Œ0;1/ jf .x/j: The
following main results were developed in [10]:

Theorem 1 ([10]). Let f be integrable on Œ0;1/ and f 2 CBŒ0;1/. Then

ˇ̌
ˇ OSn;y.f; x/ � f .x C y/

ˇ̌
ˇ �

�
1C 2

�
x C 1

n

��
!.f; n�1=2/;

where !.f; :/ is the modulus of continuity of f on Œ0;1/:
Theorem 2 ([10]). Let f be integrable on Œ0;1/ and f 0 2 CBŒ0;1/. Then

ˇ̌
ˇ OSn;y.f; x/� f .x C y/

ˇ̌
ˇ � n�1=2!.f 0; n�1=2/

�
2

�
x C 1

n

�� 1=2 "
1C

�
2

�
x C 1

n

�� 1=2#

C 1
n
jjf 0jjB jj;

where !.f 0; :/ is the modulus of continuity of f 0 on Œ0;1/:
Theorem 3 ([10]). Let f be bounded and integrable on Œ0;1/ and let f 00 exist at
a point x C y 2 Œ0;1/: Then

lim
n!1

h OSn;y.f; x/ � f .x C y/
i
D f 0.x C y/C xf 00.x C y/:

Theorem 4 ([10]). Let f be bounded and integrable function on Œ0;1/ admitting
a derivative of order r at x C y 2 .0;1/: Then

lim
n!1

@r

@xr
OSn;y.f; x/ D @r

@xr
f .x C y/:

Theorem 5 ([10]). Let f be bounded and integrable on Œ0;1/ and

@r

@xr
f .x C y/ 2 C Œ0; b/:

Then for sufficiently large n, there holds

sup
a�xCy�c

ˇ̌
ˇ̌ @r
@xr
OSn;y.f; x/ � @r

@xr
f .x C y/

ˇ̌
ˇ̌ � max

˚
C1!.f

.r/; n�1=2/; c2n�.s�r/=2
�
;

where C1 D C1.r; y/; C2 D C2.r; f; y/; 0 < a < c < b; s > r and !.f .r/; :/

denotes the modulus of continuity of f .r/ on Œ0; b/:

Theorem 6 ([10]). Let f be integrable on Œ0;1/: Then
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lim
n!1

OSn;y.f; x/ D f .x C y/

almost everywhere on Œ0;1/:

1.2 Szász-Beta Operators

In the year 1995 Gupta et al. [7] introduced another Durrmeyer type modification
of the Szász-Mirakyan operators by considering the weight functions of Beta basis
functions, which they called Szász-Mirakyan-Beta operators. For x 2 Œ0;1/; the
Szász-Mirakyan-Beta operators are defined as

Bn.f; x/ D
1X
kD0

sn;k.x/

Z 1
0

bn;k.t/f .t/dt; (2)

where sn;k.x/De�nx .nx/kkŠ
, bn;k.t/D 1

B.kC1;n/
tk

.1Ct /nCkC1D
n.nC 1/k

kŠ

tk

.1C t/nCkC1
and the Pochhammer symbol .n/k is defined as

.n/k D n.nC 1/.nC 2/.nC 3/ : : : :.nC k � 1/:

Below, we present the alternate form of the operators (2) as

Bn.f; x/ D n

1X
kD0

e�nx
.nx/k

kŠ

Z 1
0

.nC 1/k
kŠ

tk

.1C t/nCkC1 f .t/dt

D ne�nx
Z 1
0

f .t/

.1C t/nC1
1X
kD0

.nC 1/k
kŠ.1/k

�
nxt

1C t
�k
dt:

Using the confluent hypergeometric series 1F1.aI bI x/ D
1X
kD0

.a/k

.b/kkŠ
xk , we can

write

Bn.f; x/ D ne�nx
Z 1
0

f .t/

.1C t/nC1 1F1

�
nC 1; 1I nxt

.1C t/
�
dt:

Next, applying Kummer’s first transformation

1F1.aI bI x/ D ex 1F1 .b � aI bI �x/ ;

we have
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Bn.f; x/ D n
Z 1
0

e
nx.t�1/
.tC1/

f .t/

.1C t/nC1 1F1

�
�nI 1I �nxt

.1C t/
�
dt; (3)

which is the alternate form of the operators (2) in terms of hypergeometric functions.
Gupta et al. [7] denoted by HŒ0;1/ the class of all Lebesgue measurable

functions defined on Œ0;1/ satisfying

Z 1
0

jf .t/jdt
.1C t/nC1 <1;

for some positive integer n: This class is naturally bigger than the class of all
Lebesgue integrable functions on Œ0;1/: The following asymptotic formula and
an estimation of error in simultaneous approximation were studied in [7].

Theorem 7 ([7]). Let f 2 HŒ0;1/ and be bounded on every finite subinterval of
Œ0;1/: If f .rC2/ exists at a fixed point x 2 .0;1/ and f .y/ D O.y˛/ as y !1
for some ˛ > 0, then we have

lim
n!1nŒB

.r/
n .f; x/ � f .r/.x/� D r.r C 1/

2
f .r/.x/C Œx.1C r/C 1C r�f .rC1/.x/

Cx
2 C 2x
2

f .rC2/.x/:

Theorem 8 ([7]). Let f 2 HŒ0;1/ be bounded on every finite subinterval of
Œ0;1/ and f .y/ D O.y˛/ as y ! 1 for some ˛ > 0. If f .rC1/ exists and is
continuous on .a � �; b C �/; � > 0, then for n sufficiently large we have

jjB.r/
n .f; :/ � f .r/jj � C1n�1=2

�jjf .r/jj C jjf .rC1/jj�
CC2n�1=2!.f .rC1/; n�1=2 CO.n�p/;

for some p > 0 where C1 and C2 are constants independent of f and n, !.f; ı/ is
the modulus of continuity of f on .a � �; b C �/, and jj:jj stands for the sup-norm
on Œa; b�:

1.3 Discretely Defined Szász-Beta Operators

Although there are other forms of the Szász-Beta type operators available in the
literature, in this direction Gupta and Noor [6] also defined for f 2 CˇŒ0;1/ WD
ff 2 C Œ0;1/ W jf .t/j � M.1 C t/ˇ; for some M > 0; ˇ > 0g the following
form
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QBn.f; x/ D
1X
kD1

sn;k.x/

Z 1
0

Qbn;k.t/f .t/dt C sn;0.x/f .0/; (4)

where

Qbn;k.t/ D 1

B.nC 1; k/
tk�1

.1C t/nCkC1 :

The main aim to introduce this slightly different form of Szász-Beta operators
was that these form (4) reproduce constant as well as linear functions, while the
form (2) reproduce only the constant functions. We may call the form (4) as genuine
Szász-Beta operators. In [6], Gupta and Noor established some direct results in
simultaneous approximation of this form.

Theorem 9 ([6]). Let f 2 CˇŒ0;1/; ˇ > 0, and f .r/ exists at a point x 2 .0;1/:
Then we have

lim
n!1

QB.r/
n .f; x/ D f .r/.x/:

Theorem 10 ([6]). Let f 2 CˇŒ0;1/; ˇ > 0, and f .rC2/ exists at a point x 2
.0;1/; then

lim
n!1Œ

QB.r/
n .f; x/ � f .r/.x/� D r.r � 1/

2
f .r/.x/

C.x C 1/rf .rC1/.x/C .x2 C x/f .rC2/.x/:

Theorem 11 ([6]). Let f 2 CˇŒ0;1/; ˇ > 0, and r � m � .r C 2/: If f .m/ exists
and is continuous on .a � �; b C �/, then for n sufficiently large

jj QB.r/
n .f; x/ � f .r/.x/jj � M1n

�1
mX
iDr
jjf .i/jj

CM2n
�1=2!.f .rC1/; n�1=2/CO.n�2/;

where the constantsM1 andM2 are independent of f and n, !.f; ı/ is the modulus
of continuity of f on .a � �; b C �/ and jj:jj denotes the sup-norm in the interval
Œa; b�:

Finta et al. [2] also studied this form of Szász-Beta operators and they used iterative
combinations to improve the order of approximation to estimate direct results.
Without combinations, they obtained the following direct estimate:
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Theorem 12 ([2]). Let f 2 CBŒ0;1/: Then for every x 2 Œ0;1/ and n � 2 there
exists an absolute constant C > 0 such that

j QBn.f; x/ � f .x/j � C!
 
f;

r
x.2C x/
n � 1

!
:

1.4 Modified Szász-Beta Operators

In the recent years Dubey et al. [1] proposed some other slightly modified form of
the operators (2), having weights of Beta basis functions depending on a parameter
˛ > 0 as

Bn;˛.f; x/ D
1X
kD0

sn;k.x/

Z 1
0

bn;k;˛.t/f .t/dt; (5)

where

bn;k;˛.t/ D ˛
�
�
n
˛
C k C 1�

� .k C 1/� . n
˛
/

.˛t/k

.1C ˛t/ n˛CkC1 :

In [1], Dubey et al. have also obtained some direct estimates in simultaneous
approximation for the operators (5).

Theorem 13 ([1]). Let n > ˛.r C 1/ > 2˛ and f .i/ 2 CBŒ0;1/ for i 2
f0; 1; 2; � � � ; rg: Then

jB.r/
n;˛.f; x/ � f .r/.x/j �

�
. n
˛
/r� . n

˛
� r/

� . n
˛
/

� 1
�
jjf .r/jj

C2.
n
˛
/r� . n

˛
� r/

� . n
˛
/

!.f .r/; ı.n; r; x; ˛//;

where

ı.n; r; x; ˛/ D
�
n˛C3r˛2C2˛2Cr2˛2
Œn�˛.rC1/�Œn�˛.rC2/�x

2

C 2nC˛r2C6˛rC4˛
Œn�˛.rC1/�Œn�˛.rC2/�xC

r2C3rC2
Œn�˛.rC1/�Œn�˛.rC2/�

� 1=2
;

and x 2 Œ0;1/:
They considered the class f 2 C�Œ0;1/ WD ff 2 C Œ0;1/ W f .t/ D O.t� /;

� > 0 as t !1g: The norm jj:j� on C�Œ0;1/ is defined as
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jjf jj� D sup
0�t<1

jf .t/j.1C t/�� :

Theorem 14 ([1]). Let f 2 C�Œ0;1/; � > 0, and f .rC2/ exists at a point x 2
.0;1/: Then

lim
n!1ŒB

.r/
n;˛.f; x/�f .r/.x/� D ˛r.rC1/

2
f .r/.x/

C.˛xC1/.rC1/f .rC1/.x/Cx.2C˛x/
2

f .rC2/.x/:

Theorem 15 ([1]). Let f 2 C�Œ0;1/; � > 0: If f .rC1/ exists and is continuous on
.a � �; b C �/; � > 0, then for n sufficiently large

jjB.r/
n;˛.f; :/ � f .r/jj � Cn�1 �jjf .r/jj C jjf .rC1/jj�

CCn�1=2!.f .rC1/; n�1=2 CO.n�p/;

where !.f .rC1/; ı/ is the modulus of continuity of f .rC1/ on .a� �; bC �/ and jj:jj
stands for the sup-norm on Œa; b�:

Theorem 16 ([1]). Let f 2 C�Œ0;1/; � > 0 and suppose 0 < a < a1 < b1 <

b <1: Then for n sufficiently large

jjB.r/
n;˛.f; :/ � f .r/jjCŒa1;b1� � C

˚
!2.f

.r/; n�1=2; a; b/C n�1jjf jj�
�
;

where !2.f .r/; a; b/ D supfj�2
hf

.r/.x/j W jhj � n�1=2I x; x C 2h 2 Œa; b�g:

2 Szász-Beta-Stancu Operators

Also, in the year 1983, Stancu [12] generalized the classical Bernstein polynomials
by considering two parameters ˛; ˇ satisfying the conditions 0 � ˛ � ˇ:Motivated
by the generalization of Bernstein polynomials recently Gupta and Yadav [8]
proposed the Stancu type generalization of the Baskakov-Beta operators. Here we
propose the Stancu type generalization of the Szász-Mirakyan-Beta operators (2),
which for 0 � ˛ � ˇ are defined as

Bn;˛;ˇ.f; x/ D n
Z 1
0

e
nx.t�1/
.tC1/

1

.1C t/nC1 1F1

�
�nI 1I �nxt

.1C t/
�
f

�
nt C ˛
nC ˇ

�
dt:

(6)

For the special case if ˛ D ˇ D 0 the operators (6) reduce to the well-known
Szász-Mirakyan-Beta operators defined by (2), and introduced and studied in [7].

The present section deals with some of the approximation properties of the Szász-
Mirakyan-Beta-Stancu (abbr. SMBS) operators. We obtain the moments of these
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operators in terms of hypergeometric functions. We also establish a Voronovkaja
kind asymptotic formula and estimations of error in simultaneous approximation
for the SMBS operators.

2.1 Moment Estimation and Auxiliary Results

In this section, we estimate moments and certain basic results:

Lemma 1. For n > 0 and r > �1, we have

Bn.t
r ; x/ D � .r C 1/� .n � r/

� .n/
1F1 .�r I 1I �nx/ :

Further

Bn.t
r ; x/ D � .n � r/� .r C 1/

� .n/
Lr.�nx/;

where Lr.�nx/ are the Laguerre polynomials.

Proof. Taking f .t/ D t r ; using � .n C k C 1/ D � .n C 1/.nC 1/k; and noting
that kŠ D .1/k; we have

Bn.t
r ; x/ D ne�nx

1X
kD0

.nx/k

kŠ

Z 1
0

.nC 1/k
kŠ

tkCr

.1C t/nCkC1 dt

D ne�nx
1X
kD0

.nx/k

kŠ

.nC 1/k
kŠ

B.k C r C 1; n� r/

D ne�nx
� .r C 1/� .n � r/

� .nC 1/
1X
kD0

.nx/k

kŠ

.nC 1/k
kŠ

.r C 1/k
� .nC 1/k

D ne�nx
� .r C 1/� .n � r/

� .nC 1/
1X
kD0

.nx/k

kŠ

.r C 1/k
.1/k

D ne�nx
� .r C 1/� .n � r/

� .nC 1/ 1F1 .r C 1I 1Inx/ :

If we apply Kummer’s first transformation

1F1.aI bI x/ D ex 1F1 .b � aI bI �x/

we get
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Bn.t
r ; x/ D � .r C 1/� .n � r/

� .n/
1F1 .�r I 1I �nx/ :

By using the identity between confluent Hypergeometric function and the
generalized Laguerre polynomialsLmn .x/, we have

Lmn .x/ D
.mC n/Š
mŠnŠ 1

F1 .�nImC 1I x/ ;

which gives

Bn.t
r ; x/ D � .n � r/� .r C 1/

� .n/
Lr.�nx/;

and the proof is thus completed.

Remark 1. We may observe here that the Laguerre polynomials can be written as

Lk.x/ D
kX

jD0
.�1/j

 
k

k � j

!
xj

j Š
:

Thus, by Lemma 1, the r-th moment can be expressed as

Bn.t
r ; x/ D � .n � r/� .r C 1/

� .n/

rX
jD0

 
r

r � j

!
.nx/j

j Š
:

Remark 2. From Remark 1, we easily obtain

Bn.t; x/ D 1C nx
n � 1 ; Bn.t

2; x/ D n2x2 C 2.1C 2nx/
.n � 1/.n � 2/

Bn.t � x; x/ D 1C x
n � 1 ; Bn..t � x/

2; x/ D .nC 2/x2 C 2.nC 2/x C 2
.n � 1/.n � 2/ :

Also, by simple computation we get

Bn.t
r ; x/ D .n� r � 1/Šnr

.n � 1/Š xr C r2 .n � r � 1/Šn
r�1

.n � 1/Š xr�1 CO.n�2/:

Lemma 2. For 0 � ˛ � ˇ, we have

Bn;˛;ˇ.t
r ; x/ D xr nr

.nC ˇ/r
.n � r � 1/Šnr
.n � 1/Š
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Cxr�1
�

nr

.nCˇ/r r
2 .n � r � 1/Šnr�1

.n� 1/Š Cr˛ nr�1

.nC ˇ/r
.n � r/Šnr�1
.n � 1/Š

�

CO.n�2/:

Proof. The relation between operators (3) and (6) can be defined as

Bn;˛;ˇ.t
r ; x/ D

rX
jD0

�
r

j

�
nj ˛r�j

.nC ˇ/r Bn.t
j ; x/

D nr

.nC ˇ/r Bn.t
r ; x/C r˛ nr�1

.nC ˇ/r Bn.t
r�1; x/C � � �

which on using Remark 2 gives the required result.

Lemma 3 ([4]). Form 2 N
Sf0g, if

Un;m.x/ D
1X
kD0

sn;k.x/

�
k

n
� x

�m
;

then Un;0.x/ D 1; Un;1.x/ D 0 and we have the recurrence relation:

nUn;mC1.x/ D x

U 0n;m.x/CmUn;m�1.x/

�
:

Consequently, Un;m.x/ D O
�
n�Œ.mC1/=2�

�
; where Œm� is integral part of m:

Lemma 4. If we define the central moments as

�n;m.x/ D Bn;˛;ˇ..t � x/m; x/

D
1X
kD0

sn;k.x/

Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�m
dt; m 2 N;

then for n > mC 1, we have the following recurrence relation

.n�m � 1/
�
nC ˇ
n

�
�n;mC1.x/

D x �0n;m.x/Cm�n;m�1.x/�

C
�
.mC nx C 1/C

�
nC ˇ
n

��
˛

nC ˇ � x
�
.n � 2m � 1/

	
�n;m.x/

C
�

˛

nC ˇ � x
���

˛

nC ˇ � x
��

nC ˇ
n

�
� 1

	
m�n;m�1.x/:
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From the recurrence relation, it can be easily verified that for all x 2 Œ0;1/; we
have

�n;m.x/ D O.n�Œ.mC1/=2�/:

Proof. From the definition of the operators (6), we obviously have�n;0.x/ D 1. The
other moments follow from the recurrence relation. Now we prove the recurrence
relation as follows:

Using the identities xs0n;k.x/ D .k � nx/sn;k.x/ and t.1 C t/b0n;k.t/ D
.k � .nC 1/t/ bn;k.t/; we have

x�0n;m.x/ D
1X
kD0

.k � nx/sn;k.x/
Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�m
dt

�mx�n;m�1.x/:

Thus

x

�0n;m.x/Cm�n;m�1.x/

�

D
1X
kD0

sn;k.x/

Z 1
0

.k � nx/bn;k.t/
�
nt C ˛
nC ˇ � x

�m
dt

D
1X
kD0

sn;k.x/

Z 1
0

Œfk � .nC 1/tg C .nC 1/t� bn;k.t/
�
nt C ˛
nC ˇ � x

�m
dt

�nx�n;m.x/

D
1X
kD0

sn;k.x/

Z 1
0

t.1C t/b0n;k.t/
�
nt C ˛
nC ˇ � x

�m
dt

C.nC 1/
1X
kD0

sn;k.x/

Z 1
0

bn;k.t/t

�
nt C ˛
nC ˇ � x

�m
dt � nx�n;m.x/:

Now using the identity t D nCˇ
n

h
ntC˛
nCˇ � x �

�
˛

nCˇ � x
�i
; we have

x

�0n;m.x/Cm�n;m�1.x/

�

D nC ˇ
n

1X
kD0

sn;k.x/

Z 1
0

b0n;k.t/
�
nt C ˛
nC ˇ � x

�mC1
dt

�nC ˇ
n

�
˛

nC ˇ � x
� 1X
kD0

sn;k.x/

Z 1
0

b0n;k.t/
�
nt C ˛
nC ˇ � x

�m
dt
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C
�
nC ˇ
n

�2 � 1X
kD0

sn;k.x/

Z 1
0

b0n;k.t/
�
nt C ˛
nC ˇ � x

�mC2
dt

C
�

˛

nC ˇ � x
�2 1X

kD0
sn;k.x/

Z 1
0

b0n;k.t/
�
nt C ˛
nC ˇ � x

�m
dt

�2
�

˛

nC ˇ � x
� 1X
kD0

sn;k.x/

Z 1
0

b0n;k.t/
�
nt C ˛
nC ˇ � x

�mC1
dt

	

C.nC 1/
�
nC ˇ
n

�
�n;mC1.x/ � .nC 1/

�
nC ˇ
n

��
˛

nC ˇ � x
�
�n;m.x/

�nx�n;m.x/:

On integrating by parts after simple computation, we get

.n �m � 1/
�
nC ˇ
n

�
�n;mC1.x/

D x �0n;m.x/Cm�n;m�1.x/�

C
�
.mC nx C 1/C

�
nC ˇ
n

��
˛

nC ˇ � x
�
.n � 2m � 1/

	
�n;m.x/

C
�

˛

nC ˇ � x
���

˛

nC ˇ � x
��

nC ˇ
n

�
� 1

	
m�n;m�1.x/:

Lemma 5 ([4]). There exist polynomials qi;j;r .x/ on Œ0;1/, independent of n and
k such that

xr
d r

dxr
sn;k.x/ D

X
2iCj�r
i;j�0

ni .k � nx/j qi;j;r .x/sn;k.x/:

Lemma 6. If f is r times differentiable on Œ0;1/ such that f .r�1/.t/ D O.t� / for
some � > 0 as t !1; then for r D 1; 2; : : : and n > � C r , we have

B
.r/

n;˛;ˇ.f; x/ D
�

n

nC ˇ
�r
.n � r � 1/Šnr
.n � 1/Š

1X
kD0

sn;k.x/

:

Z 1
0

bn�r;kCr.t/f .r/

�
nt C ˛
nC ˇ

�
dt:

Proof. By Leibniz theorem, we have
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B
.r/

n;˛;ˇ.f; x/ D
rX
iD0

1X
kDi

 
r

i

!
.�1/r�i nre�nx.nx/k�i

.k � i/Š
Z 1
0

bn;k.t/f

�
nt C ˛
nC ˇ

�
dt

D
rX
iD0

1X
kD0

 
r

i

!
.�1/rCinr sn;k.x/

Z 1
0

bn;kCi .t/f
�
nt C ˛
nC ˇ

�
dt

D
1X
kD0

sn;k.x/

Z 1
0

.�1/r
 

rX
iD0

 
r

i

!
.�1/inrbn;kCi .t/

!
f

�
ntC˛
nCˇ

�
dt:

Again by Leibniz theorem, we have

b
.r/

n�r;kCr .t/ D
.n � 1/Š

.n � r � 1/Š
rX
iD0
.�1/i

 
r

i

!
bn;kCi .t/:

Hence

B.r/
n .f; x/ D

nr .n� r � 1/Š
.n � 1/Š

1X
kD0

sn;k.x/

Z 1
0

.�1/rb.r/n�r;kCr .t/f
�
nt C ˛
nC ˇ

�
dt;

and on integrating by parts, r times the required result follows.

By C�Œ0;1/; we denote the class of all continuous functions on the interval
Œ0;1/ having growth of order O.t� /; � > 0: It can be easily verified that the
operators Bn;˛;ˇ.f; x/ are well defined for f 2 C�Œ0;1/: The norm-jj:jj� on
C�Œ0;1/ is defined as

jjf jj� D sup
x2Œ0;1/

jf .t/jt�� :

Definition 1. Let us assume that 0 < a < a1 < b1 < b <1: Then for sufficiently
small � > 0 the Steklov mean f�;2 of second order corresponding to f 2 C�Œa; b�
and t 2 I1 is defined as follows:

f�;2.t/ D ��2
Z �=2

��=2

Z �=2

��=2
�
f .t/ ��2

hf .t/
�
dt1dt2;

where h D .t1 C t2/=2 and �2
h is the second order forward difference operator with

step length h: For f 2 C Œa; b�; f�;2 satisfy the following properties [9]:

1. f�;2 has continuous derivatives up to order 2 over Œa1; b1�;
2. kf�;2kCŒa1;b1� � C !r.f; �; Œa; b�/; r D 1; 2I
3. kf � f�;2kCŒa1;b1� � C !2.f; �; Œa; b�/;
4. kf�;2kCŒa1;b1� � C ��2kf kCŒa;b�I
5. kf�;2kCŒa1;b1� � C kf k� ;
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where byC we denote the certain constants independent of f and � that are different
in each occurrence.

Lemma 7 ([3]). Let f 2 C Œa; b�: Suppose that f .k/ 2 AC Œ0;1/ and f .kC1/ 2
C Œ0;1/: Then,

kf .i/

�;2kkCŒa;b� � Cifkf�;2kkCŒa;b� C kf .2k/

�;2k kCŒa;b�g; i D 1; 2; : : : ; 2k � 1;

where C 0i s are certain constants independent of f .

2.2 Direct Estimates

In this section, we present some direct results, which include asymptotic for-
mula and error estimations in terms of modulus of continuity in simultaneous
approximation.

Theorem 17. Let f 2 C�Œ0;1/ be bounded on every finite sub-interval of Œ0;1/
admitting the derivative of order .r C 2/ at a fixed point x 2 .0;1/ and let f .t/ D
O.t� / as t !1; for some � > 0: Then we have

lim
n!1n

�
B
.r/

n;˛;ˇ.f; x/ � f .r/.x/

�
D r.r C 1 � 2ˇ/

2
f .r/.x/

CŒx.1C r � ˇ/C r C 1C ˛�f .rC1/.x/

Cx.2C x/
2

f .rC2/.x/:

Proof. By Taylor’s expansion of f , we have

f .t/ D
rC2X
iD0

f .i/.x/

i Š
.t � x/i C ".t; x/.t � x/rC2;

where ".t; x/ ! 0 as t ! x and ".t; x/ D o..t � x/ı/ as t !1 for some ı > 0:

Now using Lemma 6, we can write

n
h
B
.r/

n;˛;ˇ.f; x/ � f .r/.x/
i
D n

"
rC2X
iD0

f .i/.x/

i Š
B
.r/

n;˛;ˇ..t � x/i ; x/ � f .r/.x/

#

CnB.r/

n;˛;ˇ.".t; x/.t � x/rC2; x/
DW J1 C J2:
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First to estimate J1, we use binomial theorem as

J1 D n

rC2X
iD0

f .i/.x/

i Š

iX
jDr

 
i

j

!
.�x/i�j B.r/

n;˛;ˇ.t
j ; x/ � nf .r/.x/

D f .r/.x/

rŠ
n
�
B
.r/

n;˛;ˇ.t
r ; x/ � rŠ

�

Cf
.rC1/.x/
.r C 1/Š n

�
.r C 1/.�x/B.r/

n;˛;ˇ.t
r ; x/C B.r/

n;˛;ˇ.t
rC1; x/

�

Cf
.rC2/.x/
.r C 2/Š

�n
�
.r C 2/.r C 1/

2
x2B

.r/

n;˛;ˇ.t
r ; x/C .r C 2/.�x/B.r/

n;˛;ˇ.t
rC1; x/

C B.r/

n;˛;ˇ.t
rC2; x/

�

Next using Lemma 2, we have

J1 D n
�

nr

.nC ˇ/r
.n � r � 1/Šnr
.n � 1/Š � 1

	
f .r/.x/

Cnf
.rC1/.x/
.r C 1/Š

�
.r C 1/.�x/ n

r .n � r � 1/Šnr
.nC ˇ/r .n � 1/ŠrŠ

Cn
rC1.n � r � 2/ŠnrC1
.nC ˇ/rC1 .n � 1/Š .r C 1/Šx C

.r C 1/2nrC1.n � r � 2/Šnr
.nC ˇ/rC1 .n� 1/Š rŠ

C.r C 1/˛ nr.n � r � 1/Šnr
.nC ˇ/rC1 .n � 1/Š rŠ

�

Cnf
.rC2/.x/
.r C 2/Š

�
.rC2/.rC1/

2
x2

nr

.nC ˇ/r
.n� r � 1/Šnr
.n � 1/Š rŠ

�.r C 2/x
�
nrC1.n � r � 2/ŠnrC1
.nC ˇ/rC1 .n � 1/Š .rC1/ŠxC

.r C 1/2nrC1.n � r � 2/Šnr
.nC ˇ/rC1 .n � 1/Š rŠ

C.r C 1/˛ nr.n � r � 1/Šnr
.nC ˇ/rC1 .n � 1/Š rŠ

�
C nrC2.n� r � 3/ŠnrC2

.nC ˇ/rC2 .n � 1/Š
.r C 2/Š

2
x2

C .r C 2/
2nrC2.n � r � 3/Š

.nC ˇ/rC2 .n� 1/Š nrC1.r C 1/Šx C .r C 2/

˛
nrC1.n � r � 2/ŠnrC1
.nC ˇ/rC2 .n� 1/Š .r C 1/Šx

�
CO.n�2/:

In the limiting case as n ! 1; we obtain the coefficients of f .r/.x/; f .rC1/.x/
and f .rC2/.x/ in the above expression as r.rC1�2ˇ/

2
; Œx.1 C r � ˇ/ C r C 1C ˛�
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and x.2Cx/
2

, respectively. Hence in order to complete the proof of the theorem it is
sufficient to show that J2 ! 0 as n!1: For this note that by using Lemma 4, we
have

jJ2j � n
X

2iCj�r
i;j�0

ni
jqi;j;r .x/j

xr

1X
kD0

sn;k.x/jk�nxjj
Z 1
0

bn;k.t/j".t; x/j
ˇ̌
ˇ̌ntC˛
nCˇ �x

ˇ̌
ˇ̌rC2 dt:

Since ".t; x/! 0 as t ! x, hence for a given " > 0 there exists a ı > 0 such that
j".t; x/j < " whenever jt�xj < ı: Further, if � is any integer� maxf�; rC2g, then

we find a constantK > 0 such that j".t; x/j
ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌rC2 � K

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌� :

jJ2j � C1
X

2iCj�r
i;j�0

niC1
1X
kD0

sn;k.x/jk � nxjj
� Z
jt�xj<ı

"bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌rC2 dt

C
Z
jt�xj�ı

Kbn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌� dt

�

DW J3 C J4:

Now applying Schwarz inequality for the integration and summation, we have

jJ3j � "C1
X

2iCj�r
i;j�0

niC1
1X
kD0

sn;k.x/jk � nxjj
�Z 1

0

bn;k.t/dt

� 1
2

�
 Z 1

0

bn;k.t/

�
nt C ˛
nC ˇ � x

�2rC4
dt

! 1
2

� "C1
X

2iCj�r
i;j�0

niC1
 1X
kD0

sn;k.x/.k � nx/2j
! 1

2

�
 1X
kD0

sn;k.x/

Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�2rC4
dt

! 1
2

:

Next, using Lemmas 3 and 4, we get

jJ3j � "C1
X

2iCj�r
i;j�0

niC1 �O.nj=2/ �O.n�.rC2/=2/

� "O.1/:
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In view of arbitrariness of "; it follows that J3 D o.1/: Again, using Schwarz
inequality for the integration and summation, Lemmas 3 and 4, we have

jJ4j � C2
X

2iCj�r
i;j�0

niC1
1X
kD0

sn;k.x/jk � nxjj
Z
jt�xj�ı

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌� dt

� C2
X

2iCj�r
i;j�0

niC1
 1X
kD0

sn;k.x/.k � nx/2j
! 1

2

�
 1X
kD1

sn;k.x/

Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�2�
dt

! 1
2

D
X

2iCj�r
i;j�0

niC1 �O.nj=2/ �O.n��=2/

D O.n.rC2��/=2/ D o.1/:

Thus J2 ! 0 as n!1: Combining the estimates of J1 and J2, we get the desired
result. This completes the proof of the theorem.

Theorem 18. Let f 2 C�Œ0;1/ for some � > 0 and r � m � rC 2. If f .m/ exists
and is continuous on .a � �; b C �/ 	 .0;1/; � > 0; then for n sufficiently large,
we have

kB.r/

n;˛;ˇ.f; x/�f .r/.x/kCŒa;b� � C1n�1
mX
iDr
kf .i/kCŒa;b�CC2n�1=2!.f .m/; n�1=2/

CO.n�2/;

where C1; C2 are constants independent of f and n, !.f; ı/ is the modulus of
continuity of f on .a � �; b C �/ and k:kCŒa;b� denotes the sup-norm on Œa; b�.

Proof. By Taylor’s expansion of f , we have

f .t/D
mX
iD0

f .i/.x/

i Š
.t�x/iCf

.m/.�/�f .m/.x/

mŠ
.t�x/m.t/Ch.t; x/.1�.t//;

where � lies between t and x and .t/ is the characteristic function on the interval
.a � �; b C �/. Now,

B
.r/

n;˛;ˇ.f; x/ � f .r/.x/ D
(

mX
iD0

f .i/.x/

i Š
B
.r/

n;˛;ˇ..t � x/i ; x/ � f .r/.x/

)
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C B
.r/

n;˛;ˇ

�
f .m/.�/ � f .m/.x/

mŠ
.t � x/m.t/; x

�

C B
.r/

n;˛;ˇ .h.t; x/.1 � .t//; x/
DW E1 C E2 C E3:

By using Lemmas 4 and 2, we have

E1 D
mX
iD0

f .i/.x/

i Š

iX
jD0

 
i

j

!
.�x/i�j d

r

dxr

�
xj

nj

.nC ˇ/j
.n � j � 1/Šnj

.n � 1/Š

Cxj�1
�

nj

.nC ˇ/j j
2 .n � j � 1/Šnj�1

.n � 1/Š

Cj˛ nj�1

.nC ˇ/j
.n � j /Šnj�1
.n � 1/Š

�

Cxj�2
�
j.j � 1/2˛ nj�1

.nC ˇ/j
.n � j /Šnj�2
.n � 1/Š

Cj.j � 1/˛
2

2

nj�2

.nC ˇ/j
.n � j C 1/Šnj�2

.n � 1/Š
�

CO.n�2/
	
� f .r/.x/:

Consequently, for n sufficiently large, we get

kE1kCŒa;b� � C1n�1
mX
iDr
kf .i/kCŒa;b� CO.n�2/; uniformly on Œa; b�:

Next, we estimate E2 as follows

jE2j �
1X
kD0

s
.r/

n;k.x/

Z
1

0

bn;k.t/

� ˇ̌
ˇ̌f .m/.�/� f .m/.x/

mŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m .t/

�
dt

� !.f .m/; ı/

mŠ

1X
kD0

s
.r/

n;k.x/

Z
1

0

bn;k.t/

�
1C

ˇ̌
ˇ ntC˛
nCˇ
� x

ˇ̌
ˇ

ı

� ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt

� !.f .m/; ı/

mŠ

1X
kD0

s
.r/

n;k.x/

Z
1

0

bn;k.t/

� ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m C ı�1

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌mC1 �

dt:

Therefore, by applying Lemma 5, we get



382 N.K. Govil et al.

1X
kD0

s
.r/

n;k.x/

Z 1
0

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt

�
1X
kD0

X
2iCj�r
i;j�0

ni jk � nxjj jqi;j;r .x/j
xr

sn;k.x/

Z 1
0

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt

�
0
B@ sup

2iCj�r
i;j�0

jqi;j;r .x/j
xr

1
CA X

2iCj�r
i;j�0

ni

 
1X
kD0

sn;k.x/jk � nxjj
Z

1

0

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt

!
:

Using Schwarz inequality for integration and summation, and using Lemmas 3
and 4, we get

1X
kD0

sn;k.x/jk � nxjj
Z 1
0

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt

�
1X
kD0

sn;k.x/jk�nxjj
�Z 1

0

bn;k.t/dt

�1=2  Z 1
0

bn;k.t/

�
ntC˛
nCˇ �x

�2m
dt

!1=2

�
 1X
kD0

sn;k.x/.k � nx/2j
! 1

2

�
 1X
kD0

sn;k.x/

Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�2m
dt

! 1
2

D O.nj=2/ �O.n�m=2/ D O.n.j�m/=2/; uniformly on Œa; b�:

Thus

1X
kD0

s
.r/

n;k.x/

Z 1
0

bn;k.t/

ˇ̌
ˇ̌nt C ˛
nC ˇ � x

ˇ̌
ˇ̌m dt (7)

� C
X

2iCj�r
i;j�0

niO.n.j�m/=2/ D O.n.r�m/=2/; uniformly on Œa; b�;

where C D sup
2iCj�r
i;j�0

jqi;j;r .x/j
xr

8 x 2 Œ0;1/: Choosing ı D n�1=2 and applying (7),

we obtain

jE2j � !.f .m/; n�1=2/
mŠ


O.n.r�m/=2/C n1=2O.n.r�m�1/=2/CO.n�m/

� C2n�.r�m/=2!.f .m/; n�1=2/:
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Since t 2 Œ0;1/ n .a � �; b C �/, we can choose ı such that jt � xj � ı for all
x 2 Œa; b�. Thus by Lemma 5, we get

jE3j � C
X

2iCj�r
i;j�0

ni
1X
kD0

sn;k.x/jk � nxjj
Z 1
0

bn;k.t/jh.t; x/j:

For jt � xj � ı, we can find the constant M such that jh.t; x/j � M
ˇ̌
ˇ ntC˛nCˇ � x

ˇ̌
ˇˇ ;

where ˇ is an integer � f�;mg: Hence using the Schwarz inequality for both
integration and summation, Lemmas 3 and 4, it easily follows that E3 D O.n�s/
for any s > 0; uniformly on Œa; b�:

Combing the estimates of E1; E2; E3; the required result is immediate.

Theorem 19. Let f 2 C�Œ0;1/ for some � > 0 and 0 < a < a1 < b1 < b <1.
Then for n sufficiently large, we have

kB.r/

n;˛;ˇ.f; :/ � f .r/kCŒa1;b1� � C1!2.f .r/; n�1=2; Œa1; b1�/C C2n�kkf k� ;

where C1 D C1.r/ and C2 D C2.r; f /:
Proof. Using the linearity property and linear approximating method viz. Steklov
mean of second order (see Definition 1), we can write

kB.r/

n;˛;ˇ.f; :/ � f .r/kCŒa1;b1� � kB.r/

n;˛;ˇ..f � f�;2/; :/kCŒa1;b1�
CkB.r/

n;˛;ˇ.f; x/.f�;2; :/ � f .r/
�;2 kCŒa1;b1�

Ckf .r/ � f .r/
�;2 kCŒa1;b1�

D S1 C S2 C S3:

Since f .r/
�;2 D .f .r//�;2, hence by property (3) of the Steklov mean, we get

S3 � C1!2.f .r/; �; Œa; b�/:

Next, using Theorem 17 and Lemma 7, we get

S2 � C2n�1
2CrX
iDr
kf .i/

�;2 kCŒa;b�

� C3n�1fkf�;2kCŒa;b� C kf .2Cr/
�;2 kCŒa;b�g:

By applying properties (2) and (4) of Steklov mean, we obtain

S2 � C4n�1fkf k� C ��2!2.f .r/; �; Œa; b�/g:
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Finally, we estimate S1 choosing a�; b� satisfying the condition 0 < a < a� <
a1 < b1 < b

� < b <1. For this, let .t/ denote the characteristic function on the
interval Œa�; b��, then

S1 � kB.r/

n;˛;ˇ

�
.t/.f .t/ � f�;2.t//; :

�kCŒa1;b1�
CkB.r/

n;˛;ˇ.f; x/
�
.1 � .t/��f .t/ � f�;2.t/�; :/kCŒa1;b1�

D S4 C S5:

By Lemma 6, we have

B
.r/

n;˛;ˇ.f; x/
�
.t/.f .t/ � f�;2.t//; x

�

D nr.n � r � 1/Šnr
.nC ˇ/r .n � 1/Š

1X
kD0

sn;k.x/

Z 1
0

bn�r;kCr.t/.t/

�
�
f .r/

�
nt C ˛
nC ˇ

�
� f .r/

�;2

�
nt C ˛
nC ˇ

�	
dt:

Hence,



B.r/

n;˛;ˇ.f; x/
�
.t/.f .t/ � f�;2.t//; :

�


CŒa1;b1�

� C5kf .r/ � f .r/
�;2 kCŒa� ;b��:

Now for x 2 Œa1; b1� and t 2 Œ0;1/nŒa�; b��, we choose a ı > 0 satisfyingˇ̌
ˇ ntC˛nCˇ � x

ˇ̌
ˇ � ı. By using Lemma 6 and Schwarz inequality, we have

I � jB.r/

n;˛;ˇ.f; x/
�
.1 � .t/��f .t/ � f�;2.t/�; x/j

�
X

2iCj�r
i;j�0

ni
jqi;j;r .x/j

xr

1X
kD0

sn;k.x/jk � nxjj

�
Z 1
0

bn;k.t/
�
.1� .t/�

ˇ̌
ˇ̌f
�
nt C ˛
nC ˇ

�
� f�;2

�
nt C ˛
nC ˇ

� ˇ̌
ˇ̌dt

� C6kf k�
�
ı�2s

X
2iCj�r
i;j�0

ni
1X
kD0

sn;k.x/jk � nxjj
�Z 1

0

bn;k.t/dt

�1=2

�
 Z 1

0

bn;k.t/

�
nt C ˛
nC ˇ � x

�4s
dt

!1=2 �
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Finally applying Lemmas 3 and 4, we get

I � C6kf k� ı�2s
X

2iCj�r
i;j�0

ni
� 1X
kD0

sn;k.x/.k � nx/2j
� 1=2

�
 1X
kD0

sn;k.x/

Z 1
0

bn;k.t/

�
nt C ˛
nC ˇ � x

�4s
dt

!1=2

� C7kf k� ı�2s
X

2iCj�r
i;j�0

O.n.iCj=2�s// � C7n�qkf k� ; q D s � r=2;

where the last term vanishes as n!1. Now choosingm > 0 satisfying q � 1, we
have

I � C7n�1kf k� :

Therefore by property (3) of Steklov mean, we obtain

S1 � C9!2.f .r/; �; Œa; b�/C C7n�1kf k� :

Choosing � D n�1=2; the theorem follows by combining the estimates of S1 and S2:

References

1. Dubey, D.K., Gangwar, R.K., Jain, S.: Rate of approximation for certain Szász-Mirakyan
Durrmeyer operators. Georgian Math. J. 16(3), 475–487 (2009)

2. Finta, Z., Govil, N.K., Gupta, V.: Some results on modified Szász-Mirakyan operators. J. Math.
Anal. Appl. 327, 1284–1296 (2007)

3. Goldberg, S., Meir, V.: Minimum moduli of ordinary differential operators. Proc. Lond. Math.
Soc. 23(3), 1–15 (1971)

4. Gupta, V.: Simultaneous approximation by Szász-Durrmeyer operators. Math. Stud. 64(1–4),
27–36 (1995)

5. Gupta, V.: On approximation properties of Szász-Mirakyan operators. In: Handbook on
Functional Equations: Functional Inequalities. Springer Optimization and Its Applications,
Vol. 95 Rassias, Th. M. (Ed.) (2014)

6. Gupta, V., Noor, M.A.: Convergence of derivatives for certain mixed Szász Beta operators.
J. Math. Anal. Appl. 321(1), 1–9 (2006)

7. Gupta, V., Srivastava, G.S., Sahai, A.: On simultaneous approximation by Szász Beta operators.
Soochow J. Math. 21(1), 1–11 (1995)

8. Gupta, V., Yadav, R.: Direct estimates in simultaneous approximation for BBS operators. Appl.
Math. Comput. 218, 11290–11296 (2012)

9. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. McGraw Hill, New York (1956)
10. Kasana, H.S., Prasad, G., Agrawal, P.N., Sahai, A.: Modified Szász operators, mathematical

analysis and its applications. In: Proceedings of Int. Conf. Math. Anal. Appl. ed. S. M. Mazhar,
A. Hamoui and N. S. Faour, Pergamon Press, 29–41 (1985)



386 N.K. Govil et al.

11. Mazhar, S.M., Totik, V.: Approximation by modified Szász operators. Acta. Sci. Math. 49,
257–268 (1985)

12. Stancu, D.D.: Approximation of functions by means of a new generalized Bernstein operator.
Calcolo 20, 211–229 (1983)

13. Szász, O.: Generalizations of S. Bernstein’s polynomial to the infinite interval. J. Res. Nat. Bur.
Standards 45, 239–245 (1950)



Extremal Problems and g-Loewner Chains
in Cn and Reflexive Complex Banach Spaces

Ian Graham, Hidetaka Hamada, and Gabriela Kohr

Abstract Let X be a reflexive complex Banach space with the unit ball B . In
the first part of the paper, we survey various growth and coefficient bounds for
mappings in the Carathéodory family M , which plays a key role in the study of
the generalized Loewner differential equation. Then we consider recent results in
the theory of Loewner chains and the generalized Loewner differential equation on
the unit ball of Cn and reflexive complex Banach spaces. In the second part of this
paper, we obtain sharp growth theorems and second coefficient bounds for mappings
with g-parametric representation and we present certain particular cases of special
interest. Finally, we consider extremal problems related to bounded mappings in
S0g.B

n/, where Bn is the Euclidean unit ball in Cn. To this end, we use ideas
from control theory to investigate the (normalized) time-logM -reachable family
QRlogM .idBn;Mg/ generated by a subset Mg of M , where M � 1 and g is a

univalent function on the unit disc U such that g.0/ D 1, <g.�/ > 0, j�j < 1,
and which satisfies some natural conditions. We characterize this family in terms
of univalent subordination chains, and we obtain certain results related to extreme

points and support points associated with the compact family QRlogM.idBn;Mg/.
Also, we give some examples of mappings in QRlogM.idBn;Mg/ and obtain the sharp
growth result for this family.
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1 Introduction and Preliminaries

Let X be a complex Banach space with respect to a norm k � k. Let Br be the open
ball centered at zero and of radius r , and letB be the open unit ball inX . IfX D Cn,
the unit ball is denoted by Bn, while the unit polydisc in Cn is denoted by Un. Also,
let U be the unit disc in C. A function g W U ! C is said to be univalent if g is
holomorphic and injective on U . Also, g is said to be convex if g is univalent and
g.U / is a convex domain in C.

We denote byL.X; Y / the set of continuous linear operators fromX into another
complex Banach space Y with the standard operator norm. The space L.X;X/ is
denoted by L.X/. Let I be the identity in L.X/. Let ˝ be a domain in X and
f W ˝ ! X be a mapping. We say that f is holomorphic if for each z 2 ˝ there
exists a mappingDf.z/ 2 L.X/ such that

lim
h!0
kf .zC h/ � f .z/ �Df.z/.h/k

khk D 0:

Let H.˝/ be the set of holomorphic mappings from ˝ into X with the compact-
open topology. A mapping f 2 H.˝/ is said to be biholomorphic if f .˝/ is
a domain, and the inverse f �1 exists and is holomorphic on f .˝/. A mapping
f 2 H.˝/ is said to be locally biholomorphic if each z 2 ˝ has a neighborhood
V such that f jV is biholomorphic. An injective mapping in H.˝/ will be said to
be univalent. A mapping f 2 H.B/ is said to be normalized if f .0/ D 0 and
Df.0/ D I . Let S.B/ be the set of normalized biholomorphic mappings of B into
X . Also, let S�.B/ and K.B/ be the subsets of S.B/ consisting of starlike and
convex mappings, respectively. In the case X D C, the family S.U / is the usual
family S of normalized univalent functions on the unit disc U . The family S�.U /
is denoted by S�.

Obviously, in the finite dimensional case X D Cn, the notions of univalence and
biholomorphy are equivalent. However, in the infinite dimensional complex Banach
spaces, there exist univalent mappings which are not biholomorphic (see, e.g., [45]).

For z 2 X n f0g, we define

T .z/ D flz 2 L.X;C/ W lz.z/ D kzk; klzk D 1g:

Then T .z/ ¤ ; in view of the Hahn–Banach theorem.
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It is a result of Harris [28, Theorem 1] that if Pm W X ! X is a homogeneous
polynomial mapping of degreem, then kPmk � kmjV.Pm/j form � 1, where km D
mm=.m�1/ for m > 1 and k1 D e. Note that if X is a complex Hilbert space, then
k1 D 2 (see, e.g., [6, p. 3]). Here jV.Pm/j is the numerical radius of Pm given by

jV.Pm/j D supfjlz.Pm.z//j W kzk D 1; lz 2 T .z/g:

1.1 The Carathéodory Family

Next, we recall the Carathéodory family in H.B/:

M D fh 2 H.B/ W h.0/ D 0;Dh.0/ D I;<Œlz.h.z//� > 0; z 2 B n f0g; lz 2 T .z/g:

If X D C, it is clear that f 2M if and only if f .z/=z 2P , where

P D fp 2 H.U / W p.0/ D 1;<p.z/ > 0; z 2 U g

is the Carathéodory family on the unit disc U .
For various applications of these families in the theory of Loewner chains and

biholomorphic mappings in finite and infinite dimensional complex Banach spaces,
see [8, 10, 12, 13, 16, 17, 19, 23, 36, 40, 45].

The following growth and coefficient bounds for the class M are known. Graham
et al. [13] proved the coefficient bounds using the result of [28, Theorem 1], and
hence the upper growth estimate. The lower growth estimate in Theorem 1 (iii) is
due to Pfaltzgraff [36] (see also [22]).

Theorem 1. Let h.z/ D zCP1mD2 Pm.zm/ W Bn ! C
n be such that h 2M , where

Pm D 1
mŠ
Dmh.0/ form � 2. Then the following relations hold:

.i/ jV.Pm/j � 2, m � 2: These bounds are sharp when Bn is the unit ball in Cn

with respect to a p-norm, where p 2 Œ1;1�.
.i i/ kPmk � 2km, m � 2, where km D mm=.m�1/ for m � 2.
.i i i/

r.1�r/
1Cr � kh.z/k � 4r

.1�r/2 , kzk D r < 1:
Recently Bracci et al. [8], Graham et al. [20] obtained the following improvement

of the upper growth estimate in Theorem 1 (iii), which holds in the case of complex
Banach spaces.

Proposition 1. Let h 2M . Then

kh.z/k � r
�
1C 8r.1� r ln 2/

.1 � r/2
	
; kzk D r < 1:

As a consequence of Theorem 1 (iii) and the fact that M is a closed family, we
obtain the following compactness result (see [13]).
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Corollary 1. The family M is compact in the topology of H.Bn/.

If X D Cn with respect to the maximum norm k � k1, the following growth and
coefficient bounds for the Carathéodory family M hold. The upper bound in (2) was
obtained by Poreda [38, Corollary 1]. The lower bound in (2) is due to Gurganus [22,
Lemma 3]. The authors in [20] proved the same result as in Corollary 2 in the case
of the space X D `1.

Corollary 2. Let h W Un ! Cn be such that h 2 M , and let Pm.z/ D
1
mŠ
Dmh.0/.zm/, m � 2. Then

kPmk1 � 2; m � 2; (1)

r.1 � r/
1C r � kh.z/k1 �

r.1C r/
1 � r ; kzk1 D r < 1: (2)

These estimates are sharp.

The following family of holomorphic mappings on B is a natural refinement of
the Carathéodory family M . This family was introduced by Graham et al. in the
case X D Cn (see [13]), and played an important role in the study of normalized
biholomorphic mappings which have parametric representation on the unit ball in
Cn (see [12, 13, 27]).

Definition 1. Let g W U ! C be a univalent function such that g.0/ D 1. Also, let
h W B ! X be a normalized holomorphic mapping. We say that h belongs to the
family Mg if

1

kzk lz.h.z// 2 g.U /; z 2 B n f0g; lz 2 T .z/: (3)

Remark 1. Obviously, if <g.�/ > 0, � 2 U , then Mg �M . Also, if g.�/ D 1C�
1�� ,

� 2 U , then Mg D M . However, there are other choices of g which provide
interesting properties of the family Mg (see [12, 13, 27]).

Definition 2. Let g W U ! C be a univalent function such that g.0/ D 1. Also, let
f W B ! X be a normalized holomorphic mapping. We say that f belongs to the
family Rg if h 2 Mg, where h.z/ D Df.z/.z/, z 2 B . The family Rg0 is denoted
by R, where g0.�/ D 1C�

1�� , j�j < 1.

The following connection between the families Rg and Mg holds in the case that
g is a convex function on U with g.0/ D 1 (see [20]).

Proposition 2. Let g W U ! C be a univalent function such that g.0/ D 1. If g is
convex, then Rg � Mq � Mg, where q.�/ D 1

�

R �
0 g.t/dt , � 2 U . In particular,

R �Mq �M , where q.�/ D �1 � 2 log.1��/
�

, j�j < 1.

The following assumption will be useful in the forthcoming sections (see [13]).
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Assumption 1. Let g W U ! C be a univalent function such that g.0/ D 1,
g.�/ D g.�/ for � 2 U.so, g has real coefficients in its power series expansion/,
and <g.�/ > 0 on U . We assume that g satisfies the conditions

8<
:

min
j�jDr
<g.�/ D minfg.r/; g.�r/g

max
j�jDr
<g.�/ D maxfg.r/; g.�r/g; (4)

for all r 2 .0; 1/.
Remark 2. We recall that a set ˝ in the complex plane is said to be Steiner
symmetric with respect to the real axis if tw C .1 � t/w 2 ˝ , for all w 2 ˝ and
t 2 Œ0; 1�. Note that the condition (4) is satisfied by all univalent functions g on U
with g.0/ D 1, g.�/ D g.�/, � 2 U , and whose images are Steiner symmetric with
respect to the real axis (see [29, Theorem 2 and p. 304]). In particular, all convex
functions g on U with g.0/ D 1 and having real coefficients in their power series
expansions satisfy (4).

The following lemma will be used in the forthcoming results (see [13] for X D
Cn). The estimate (5) was obtained in [47, Lemma 3], in the case of complex Banach
spaces. The proof is similar to the finite dimensional case X D Cn. The sharpness
is proved in [20].

Lemma 1. Let g satisfy the conditions of Assumption 1. Then

kzkminfg.kzk/; g.�kzk/g � <lz.h.z//
� kzkmaxfg.kzk/; g.�kzk/g; (5)

for h 2Mg, z 2 B n f0g, lz 2 T .z/. This estimate is sharp.

Graham et al. [20] proved recently the following results related to the families
Mg and Rg (compare with [13, Theorem 1.2]):

Theorem 2. Let g W U ! C be a univalent function such that g.0/ D 1. Also, let
h 2Mg and Pm D 1

mŠ
Dmh.0/ for m 2 N. Then the following conditions hold:

.i/ jV.Pm/j � .m � 1/jg0.0/j for m � 2.
.i i/ kPmk � m m

m�1 .m � 1/jg0.0/j form � 2.
.i i i/ For each r 2 .0; 1/, there exists a constant M D M.r; g/ > 0, which is

independent of h, such that kh.z/k �M for kzk � r .

Theorem 3. Let g W U ! C be a univalent function such that g.0/ D 1. Also, let
f 2 Rg and Pm D 1

mŠ
Dmf .0/ form 2 N. Then the following conditions hold:

.i/ jV.Pm/j � m�1
m
jg0.0/j for m � 2.

.i i/ kPmk � m 1
m�1 .m � 1/jg0.0/j form � 2.

.i i i/ For each r 2 .0; 1/, there exists a constant M D M.r; g/ > 0, which is
independent of h, such that kf .z/k �M for kzk � r .



392 I. Graham et al.

The following compactness result is a consequence of Theorems 2 and 3 (see
[20]).

Corollary 3. Let g W U ! C be a univalent function such that g.0/ D 1. Then Mg

and Rg are compact families in H.Bn/.

If X D C
n with respect to the maximum norm k � k1, we obtain the following

coefficient bounds for the families Mg and Rg, in the case that g is not necessarily
convex, but still a univalent function on U (see [20]).

Theorem 4. Let g W U ! C be a univalent function such that g.0/ D 1. Let
h 2 H.U n/ be such that h 2 Mg, and let Pm.z/ D 1

mŠ
Dmh.0/.zm/, m � 2. Then

the following relation holds:

kPmk1 � .m � 1/jg0.0/j; m � 2: (6)

Theorem 5. Let g W U ! C be a univalent function such that g.0/ D 1. Let
f 2 H.U n/ be such that f 2 Rg and let Pm.z/ D 1

mŠ
Dmf .0/.zm/, m � 2. Then

the following relation holds:

kPmk1 � m � 1
m
jg0.0/j; m � 2: (7)

1.2 Loewner Chains and the Loewner Differential Equation

We next consider the notions of subordination and Loewner chain on the unit ball
B of X . Recent contributions in the Loewner theory in Cn and complete hyperbolic
complex manifolds may be found in [1–3, 7], and [24].

For f; g 2 H.B/, we say that f is subordinate to g (written f � g) if f D g ıv
for some Schwarz mapping v (i.e., v 2 H.B/ and kv.z/k � kzk, z 2 B).

Definition 3. A mapping f W B � Œ0;1/! X is called a Loewner chain if f .�; t/
is univalent on B , f .0; t/ D 0, Df.0; t/ D et I , for all t � 0, and f .�; s/ � f .�; t/,
0 � s � t <1.

The above subordination implies the existence of a univalent Schwarz mapping
v D v.�; s; t/, called the transition mapping associated with f .z; t/, such that

f .z; s/ D f .v.z; s; t/; t/; z 2 B; 0 � s � t <1:

Note that the transition mapping v.z; s; t/ satisfies the semigroup property:

v.z; s; t/ D v.v.z; s; u/; u; t/; z 2 B; 0 � s � u � t <1: (8)
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The following existence and uniqueness result of solutions to the initial value
problem (9) was obtained in [26] (see also [19]), and is a generalization to reflexive
complex Banach spaces of [36, Theorem 2.1 and Lemma 2.2].

Lemma 2. Let X be a reflexive complex Banach space and let h D h.z; t/ W B �
Œ0;1/! X be a mapping which satisfies the following conditions:

.i/ h.�; t/ 2M for t � 0;
.i i/ h.z; �/ is strongly measurable on Œ0;1/ for z 2 B .

Then for each s � 0 and z 2 B , the initial value problem

@v

@t
D �h.v; t/ a.e. t � s; v.z; s; s/ D z; (9)

has a unique solution v D v.z; s; t/ such that v.�; s; t/ is a univalent Schwarz
mapping, v.z; s; �/ is Lipschitz continuous on Œs;1/ uniformly with respect to
z 2 Br , r 2 .0; 1/, andDv.0; s; t/ D es�t I for t � s � 0. Moreover, the limit

lim
t!1 e

tv.z; s; t/ D f .z; s/ (10)

exists uniformly on each closed ball Br for r 2 .0; 1/ and s � 0. Also, f .z; t/ is
a Loewner chain. In addition, for each r 2 .0; 1/, there exists M.r/ � r

.1�r/2 such
that

ke�t f .z; t/k �M.r/; kzk � r; t � 0: (11)

Definition 4. Let X be a reflexive complex Banach space. A mapping h D h.z; t/ W
B � Œ0;1/! X which satisfies the assumptions (i) and (ii) of Lemma 2 is called a
generating vector field (cf. [2, 7, 10]).

Remark 3. If the condition (ii) of Lemma 2 is replaced by the assumption that h D
h.z; t/ W B � Œ0;1/ ! X is continuous on B � Œ0;1/, then the conclusion of
Lemma 2 is true in the case of complex Banach spaces, not necessarily reflexive, in
view of [40, Lemmas 4.3–4.5, Corollary 4.3].

Remark 4. It is known that if f .z; t/ is a Loewner chain on Bn � Œ0;1/, then
f .z; �/ is locally Lipschitz continuous on Œ0;1/ locally uniformly with respect to
z 2 Bn (see [14], [12, Chap. 8]). Graham et al. [13, Theorem 1.10] proved that in
the finite dimensional case X D Cn, every Loewner chain on Bn � Œ0;1/ satisfies
the generalized Loewner differential equation (12).

Theorem 6. Let f .z; t/ W Bn�Œ0;1/! C
n be a Loewner chain. Then there exist a

generating vector field h D h.z; t/ and a measurable subset E of Œ0;1/ of measure
zero such that

@f

@t
.z; t/ D Df.z; t/h.z; t/; t 2 Œ0;1/ nE; 8 z 2 Bn: (12)
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If, in addition, fe�t f .�; t/gt�0 is a locally uniformly bounded family on Bn, then
f .z; s/ D limt!1 etv.z; s; t/ locally uniformly on Bn, where v D v.z; s; t/ is the
unique Lipschitz continuous solution on Œs;1/ of the initial value problem

@v

@t
D �h.v; t/; a.e. t � s; 8 z 2 Bn:

The notion of parametric representation on the unit ball of X was introduced in
[19] (see [13] and [38], for X D Cn).

Definition 5. Let X be a reflexive complex Banach space and let f 2 H.B/ be
a normalized mapping. We say that f has parametric representation (denote by
f 2 S0.B/) if there exists a generating vector field h D h.z; t/ W B � Œ0;1/! X

such that f .z/ D lim
t!1 e

tv.z; t/ uniformly on each closed ball Br for r 2 .0; 1/,
where v D v.z; t/ is the unique Lipschitz continuous solution on Œ0;1/ of the
initial value problem

@v

@t
D �h.v; t/ a.e. t � 0; v.z; 0/ D z; 8 z 2 B:

If, in addition, g W U ! C is a univalent function such that g.0/ D 1 and
<g.�/ > 0, j�j < 1, and if h.�; t/ 2 Mg for a.e. t � 0, then we say that f has
g-parametric representation (denote by f 2 S0g.B/). Moreover, if h.�; t/ 2 Rg for

a.e. t � 0, then we denote that f 2 OS0g.B/.
Taking into account Proposition 2, we deduce that if g is a convex function on U

such that g.0/ D 1, <g.�/ > 0, j�j < 1, then

OS0g.B/ � S0q .B/ � S0g.B/ � S0.B/;

where q.�/ D 1
�

R �
0
g.t/dt , � 2 U .

Definition 6. Let X be a complex Banach space (not necessarily reflexive), and
let f 2 H.B/ be a normalized mapping. We say that f has strong parametric
representation (cf. [19, 39]) (and denote by f 2 QS0.B/) if there exists a mapping
h D h.z; t/ W B � Œ0;1/ ! X which is continuous on B � Œ0;1/, h.�; t/ 2 M
for t � 0, and such that f .z/ D lim

t!1 e
tv.z; t/ uniformly on each closed ball Br for

r 2 .0; 1/, where v D v.z; t/ is the unique Lipschitz continuous solution on Œ0;1/
of the initial value problem

@v

@t
D �h.v; t/; 8 t � 0; v.z; 0/ D z;

for each z 2 B .
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If, in addition, h.�; t/ 2 Mg for t � 0, where g W U ! C is a univalent
function such that g.0/ D 1 and <g.�/ > 0, j�j < 1, then we say that f has
strong g-parametric representation (and denote by f 2 QS0g.B/).

Clearly, if X is a reflexive complex Banach space, then QS0.B/ � S0.B/ and
QS0g.B/ � S0g.B/.

Recently, the following characterization of parametric representation in terms of
Loewner chains in reflexive complex Banach spaces was proved in [19] (cf. [26];
see [17] and [39], in the case X D C

n). The second statement (ii) of Theorem 7 was
obtained by Pfaltzgraff [36] in the case X D C

n.

Theorem 7. Let X be a reflexive complex Banach space and let f W B ! X be a
normalized holomorphic mapping. Then the following statements hold:

(i) If f has parametric representation, then there exists a Loewner chain f .z; t/
such that f D f .�; 0/ and the conditions (10) and (11) hold.

(ii) Conversely, let h D h.z; t/ W B � Œ0;1/ ! X be a generating vector field.
Assume that f .�; t/ 2 H.B/, f .0; t/ D 0, Df.0; t/ D et I , t � 0, f .z; �/ is
strongly locally absolutely continuous on Œ0;1/ for z 2 B , and there exists a
set E 	 Œ0;1/ of measure zero such that

@f

@t
.z; t/ D Df.z; t/h.z; t/; t 2 Œ0;1/ n E; 8 z 2 B: (13)

Also, assume that for each r 2 .0; 1/, there exists M DM.r/ > 0 such that

ke�t f .z; t/k �M.r/; kzk � r; t � 0: (14)

Then f .z; t/ is a Loewner chain and f D f .�; 0/ has parametric representation.

Remark 5. In the finite dimensional case X D Cn, f 2 S0.Bn/ if and only if there
exists a Loewner chain f .z; t/ such that f D f .�; 0/ and fe�t f .�; t/gt�0 is a normal
family on Bn (see [13] and [14]).

Remark 6. (i) It is well known that every function f 2 S can be embedded as the
first element of a Loewner chain. In addition, f has parametric representation,
i.e. f .z/ D limt!1 etv.z; t/ locally uniformly on U , where v D v.z; t/ is the
unique Lipschitz continuous solution on Œ0;1/ of the initial value problem

@v

@t
D �vp.v; t/ a.e. t � 0; v.z; 0/ D z;

for some choice of p D p.z; t/ such that p.�; t/ 2P for almost all t 2 Œ0;1/
and p.z; �/ is measurable on Œ0;1/ for z 2 U (see [37]). Becker [5] obtained
the general form of solutions to the Loewner differential equation on the unit
disc, i.e.
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@f

@t
.z; t/ D zf 0.z; t/p.z; t/; a.e. t � 0; 8z 2 U;

where p.�; t/ 2 P for any fixed t 2 Œ0;1/, and p.z; �/ is measurable on
Œ0;1/ for z 2 U . In the case n D 1, there exists a unique normalized univalent
solution f .z; t/ D et zC � � � of the above Loewner differential equation.

(ii) In dimension n � 2, the analogous uniqueness result does not hold (see [10]
and [13]). Indeed, if f .z; t/ D et zC � � � is a Loewner chain that satisfies the
Loewner differential equation (12), and if ˚ is a normalized biholomorphic
mapping on Cn, not the identity mapping, then g.z; t/ D ˚.f .z; t// is another
Loewner chain, which satisfies the same Loewner differential equation as
f .z; t/.

Recent work on the structure of solutions of the Loewner differential
equation in Cn appears in [10] (see also [1, 3, 4, 17, 23, 24] and [46]).

2 Growth Theorems and Coefficient Bounds for Mappings
in S 0

g.B/

In this section, we assume thatX is a reflexive complex Banach space. Let B be the
unit ball ofX . We obtain growth results and second coefficient bounds for mappings
with g-parametric representation on B . We also give various particular cases and
consequences.

2.1 Growth Results

Using arguments similar to those in the proof of [27, Lemma 9], we obtain the
following lemma.

Lemma 3. Let X be a reflexive complex Banach space and let g W U ! C satisfy
the conditions of Assumption 1. Also, let h D h.z; t/ be a generating vector field
such that h.�; t/ 2 Mg for a.e. t � 0. Also, let v D v.z; s; t/ be the solution of the
initial value problem (9). Then

eskzk exp
Z kzk
kv.z;s;t /k

�
1

maxfg.x/; g.�x/g � 1
	
dx

x
� etkv.z; s; t/k (15)

� eskzk exp
Z kzk
kv.z;s;t /k

�
1

minfg.x/; g.�x/g � 1
	
dx

x
;

for z 2 B and t � s � 0.
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Proof. Fix z 2 B n f0g and s � 0. Let v.t/ D v.z; s; t/ for t � s. Then v.t/ ¤ 0,
t � 0. Also, let lz 2 T .z/. Since v.z; s; �/ is Lipschitz continuous in Œs;1/, it
follows that kv.z; s; �/k is also Lipschitz continuous on Œs;1/, and hence kv.t/k is
differentiable for a.e. t � s. In view of [31, Lemma 1.3], it follows that

dkv.t/k
dt

D <
�
lv.t/

�
@v

@t

�	
; a.e. t � s; 8 lv.t/ 2 T .v.t//:

Thus, we obtain that

dkv.t/k
dt

D �<Œlv.t/.h.v.t/; t//�; a.e. t � s; 8 lv.t/ 2 T .v.t//:

From (5), we have

�
dkv.t/k
dt

kv.t/kminfg.kv.t/k/; g.�kv.t/k/g � 1

and

�
dkv.t/k
dt

kv.t/kmaxfg.kv.t/k/; g.�kv.t/k/g � 1

for a.e. t � s. Integrating both sides of the above relations with respect to t , we
deduce that

Z kzk
kv.t/k

dx

xminfg.x/; g.�x/g D �
Z t

s

dkv.�/k
d�

kv.�/kminfg.kv.�/k/; g.�kv.�/k/gd�

�
Z t

s

d� D t � s;
Z kzk
kv.t/k

dx

xmaxfg.x/; g.�x/g D �
Z t

s

dkv.�/k
d�

kv.�/kmaxfg.kv.�/k/; g.�kv.�/k/gd�

�
Z t

s

d� D t � s:

After elementary computations, the result follows, as desired. ut
Now, we are able to obtain the following sharp growth result for the family S0g.B/

(see [13, Theorem 2.2], in the caseX D Cn). Note that a similar sharp growth result
as in Theorem 8 holds for the family QS0g.B/, where B is the unit ball of a complex
Banach space, not necessarily reflexive.
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Theorem 8. Let X be a reflexive complex Banach space and let g W U ! C satisfy
the conditions of Assumption 1. Also, let f 2 S0g.B/. Then

kzk exp
Z kzk
0

�
1

maxfg.x/; g.�x/g � 1
	
dx

x
� kf .z/k

� kzk exp
Z kzk
0

�
1

minfg.x/; g.�x/g � 1
	
dx

x
; z 2 B: (16)

This result is sharp.

Proof. Since f 2 S0g.B/, there exists a generating vector field h D h.z; t/ such that
h.�; t/ 2Mg for a.e. t � 0, and f .z/ D limt!1 etv.z; t/ uniformly on each closed
ball Br , r 2 .0; 1/, where v D v.z; t/ is the unique Lipschitz continuous solution
on Œ0;1/ of the initial value problem

@v

@t
D �h.v; t/ a.e. t � 0; v.z; 0/ D z:

Then

lim
t!1 v.z; t/ D lim

t!1 e
�t .etv.z; t// D lim

t!1 e
�t f .z/ D 0

uniformly on each closed ball Br , r 2 .0; 1/. Letting s D 0 and t !1 in (15) and
using the above relation, the result follows, as desired.

Finally, to prove sharpness of (16), it suffices to use the fact that the estimate (16)
also holds and is sharp for the family S�g .B/ of normalized biholomorphic mappings
f on B such that h 2 Mg, where h.z/ D ŒDf .z/��1f .z/ (see [25, Theorem 3.2]).
Since S�g .B/ � QS0g.B/ � S0g.B/, the result follows, as desired. This completes the
proof. ut

In particular, if g.�/ D 1C�
1�� in Theorem 8, we obtain the following sharp growth

result for the family S0.B/ (see [26, Corollary 3.6]; cf. [19, Theorems 3.1 and
3.5]; see also [13] and [38], in the case of X D Cn). Note that a similar sharp
growth result as in Corollary 4 holds for the family QS0.B/ of mappings with strong
parametric representation, where B is the unit ball of a complex Banach space X ,
not necessarily reflexive.

Corollary 4. Let X be a reflexive complex Banach space and let f 2 S0.B/. Then

kzk
.1C kzk/2 � kf .z/k �

kzk
.1� kzk/2 ; z 2 B:

This result is sharp.



Extremal Problems and g-Loewner Chains 399

Another special particular case in Theorem 8 is provided by the function g.�/ D
1C �, j�j < 1. In this case, if h 2 H.B/ is a normalized mapping, then h 2Mg if
and only if

ˇ̌
ˇ̌ 1
kzk lz.h.z//� 1

ˇ̌
ˇ̌ < 1; z 2 B n f0g; lz 2 T .z/:

Let f be a starlike mapping of order 1=2 on B (denote by f 2 S�1=2.B/), i.e.

h 2 Mg, where h.z/ D ŒDf .z/��1f .z/ for z 2 B . Hence f .z; t/ D etf .z/ is
a Loewner chain. Moreover, h.z; t/ D ŒDf .z/��1f .z/ is a generating vector field
such that h.�; t/ 2 Mg for t � 0, where g.�/ D 1C �. In view of Theorem 7 and
Definition 5, we deduce that f 2 S0g.B/. Moreover, it is known that if f 2 K.B/,
then f 2 S�1=2.B/ (cf. [13] and [41]; see also [12, Chap. 6]). Hence, if g.�/ D 1C�,
then we deduce that (cf. [13] in the case X D Cn)

K.B/ � S�1=2.B/ � S0g.B/:

The above relation was one of the motivations for introducing the family S0g.B/ in
the finite dimensional case X D Cn (see [13]). Note that if g.�/ D 1C �, then the
following inclusion relation

K.B/ � S�1=2.B/ � QS0g.B/

also holds in the case of complex Banach spaces not necessarily reflexive, in view
of Remark 3.

The following result holds (cf. [13], in the case X D Cn). Note that a similar
sharp growth result as in Corollary 5 holds for the family QS0g.B/ of mappings with
strong g-parametric representation, where g.�/ D 1C � and B is the unit ball of a
complex Banach space X , not necessarily reflexive.

Corollary 5. LetX be a reflexive complex Banach space and let f 2 S0g.B/, where
g.�/ D 1C �, j�j < 1. Then

kzk
1C kzk � kf .z/k �

kzk
1 � kzk ; z 2 B:

This result is sharp.

2.2 Coefficient Bounds

Next, we obtain the following second coefficient bounds for mappings which can be
imbedded as the first element of a Loewner chain which satisfies the conditions of
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Theorem 7 (ii). We remark that the estimate (17) holds for the full family S0g.B/ in
the case that B is the unit ball of X D Cn (see [13, Theorem 2.14]).

Theorem 9. Let X be a reflexive complex Banach space and let g W U ! C be
a univalent function such that g.0/ D 1 and <g.�/ > 0, j�j < 1. Also, let h D
h.z; t/ W B � Œ0;1/ ! X be a generating vector field such that h.�; t/ 2 Mg for
a.e. t � 0. Assume that f .z; t/ W B � Œ0;1/ ! X satisfies the assumptions of
Theorem 7 .i i/. Let f D f .�; 0/ and P2.w/ D 1

2
D2f .0/.w2/. Then

jlw.P2.w//j � jg0.0/j; kwk D 1; lw 2 T .w/: (17)

Moreover, kP2.w/k � 4jg0.0/j, kwk D 1.

Proof. It suffices to use arguments similar to those in the proof of [13, Theo-
rem 2.14]. ut

In particular, if g.�/ D 1C�
1�� in Theorem 9, we obtain the following result (see [13]

and [38], in the case X D Cn). We remark that if X D Cn, then the estimate (18)
holds for the full family S0.B/ and is sharp (see [13] and [38]).

Corollary 6. Let X be a reflexive complex Banach space and let f .z; t/ W B �
Œ0;1/ ! X satisfy the assumptions of Theorem 7 .i i/. Also, let f D f .�; 0/ and
P2.w/ D 1

2
D2f .0/.w2/. Then f 2 S0.B/ and

jlw.P2.w//j � 2; kwk D 1; lw 2 T .w/: (18)

Moreover, kP2.w/k � 8, kwk D 1.

In the case that X D Cn with respect to the maximum norm k � k1, we obtain
the following improvement of Theorem 9. In the case g.�/ D 1C�

1�� , the relation (19)
was obtained by Poreda (see [38, Theorem 3]).

Theorem 10. Let g W U ! C be a univalent function such that g.0/ D 1 and
<g.�/ > 0, j�j < 1. Also, let f 2 S0g.U n/ and P2.w/ D 1

2
D2f .0/.w2/. Then

kP2k1 � jg0.0/j: (19)

If, in addition, f 2 OS0g.U n/, then

kP2k1 � 1

2
jg0.0/j: (20)

These estimates are sharp.

Proof. We shall use arguments similar to those in the proof of [38, Theorem 3] and
[13, Theorem 2.14]. Since f 2 S0g.U n/ � S0.U n/, there exists a Loewner chain
f .z; t/ such that f D f .�; 0/ and fe�t f .�; t/gt�0 is a normal family on Un. Also,
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there exists a generating vector field h D h.z; t/ W Un � Œ0;1/ ! Cn such that
h.�; t/ 2Mg for a.e. t � 0, and

@f

@t
.z; t/ D Df.z; t/h.z; t/; a.e. t � 0; 8 z 2 Un:

Integrating both sides of the above equality and using elementary computations, we
deduce as in the proof of [38, Theorem 3] (see also the proof of [13, Theorem 2.14])
that

e�2TD2f .0; T /.w2/ �D2f .0; 0/.w2/ D
Z T

0

e�tD2h.0; t/.w2/dt; (21)

for all T > 0 and w 2 Cn. On the other hand, since fe�t f .�; t/gt�0 is a normal
family on Un, it follows that (see [38] and [13])

kzk1
.1C kzk1/2 � ke

�t f .z; t/k1 � kzk1
.1 � kzk1/2 ; z 2 Un; t � 0:

In view of the Cauchy integral formula and the above relation, we easily deduce that
limT!1 e�2TD2f .0; T /.w2/ D 0. Finally, letting T ! 1 in (21) and using the
relation (6), we obtain that

1

2
kD2f .0; 0/.w2/k1 � 1

2

Z 1
0

e�tkD2h.0; t/.w2/k1dt � jg0.0/j; kwk1 D 1:

Hence, the relation (19) follows, as desired. Also, since S�g .U n/ � S0g.U
n/, the

estimation (19) is sharp for f 2 S0g.U n/.
To deduce the relation (20), it suffices to use a similar argument as above and the

relation (7). We will show the sharpness of (20). For u 2 @U n and lu 2 T .u/, let

h.z/ D
�Z 1

0

g.lu.tz//dt

	
z; z 2 Un:

Then h 2 Rg. Since Rg � R �M , there exists f 2 S�.U n/ such that

ŒDf .z/��1f .z/ D h.z/ 2 Rg;

as in the proof of [17, Corollary 2.10]. Therefore, f 2 OS0g.U n/. Since h has the
Taylor expansion

h.z/ D z� 1
2
D2f .0/.z2/C � � � ; z 2 Un;
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we obtain

kP2.u/k1 D 1

2
kD2h.0/.u2/k1 D 1

2
jg0.0/j:

This completes the proof. ut

3 Extremal Problems for Reachable Families Generated
by the Family Mg

In this section, let Cn be the n-dimensional complex space with the Euclidean
structure, and let Bn be the Euclidean unit ball in Cn. We are concerned with
extremal problems for bounded mappings with g-parametric representation on Bn.

3.1 Extreme Points and Support Points for the Family S 0.Bn/

We begin this section with the well-known notions of extreme points and support
points for a subset of H.Bn/. Various results related to extreme points and support
points for compact subsets ofH.Bn/may be found in [9,15,18,21,33,34], and [44].

Definition 7. Let F be a subset of H.Bn/.

(i) A point f 2 F is called an extreme point of F provided f D tg C .1 � t/h,
where t 2 .0; 1/, g; h 2 F , implies f D g D h. In other words, f 2 F is
an extreme point of F if f is not a proper convex combination of two points
in F .

(ii) A point g 2 F is called a support point of F if there exists a continuous linear
functionalL W H.Bn/! C such that <LjF is not constant and

<L.g/ D max
h2F <L.h/:

We denote by exF and suppF the subsets of F consisting of extreme points
of F and support points of F , respectively. It is known that if F is a nonempty
compact subset of H.Bn/, then exF is a nonempty subset of F . Also, it is known
that if F is a compact subset of H.Bn/ which has at least two distinct points, then
suppF ¤ ;.

Remark 7. In the case of one complex variable, Pell [35] and Kirwan [32] proved
that if f is an extreme point of S (respectively, f is a support point of S ) and if
f .z; t/ is a Loewner chain such that f D f .�; 0/, then e�t f .�; t/ is an extreme point
of S (respectively, e�t f .�; t/ is a support point of S ), for all t � 0.

Graham et al. [18] proved the following result on extreme points and support
points for S0.Bn/.
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Theorem 11. Let f 2 S0.Bn/. If f 2 exS0.Bn/ .respectively, f 2 suppS0.Bn//

and f .z; t/ is a Loewner chain such that f D f .�; 0/ and fe�t f .�; t/gt�0 is a normal
family onBn, then e�t f .�; t/ 2 exS0.Bn/ for t � 0 .respectively, there exists t0 > 0
such that e�t f .�; t/ 2 suppS0.Bn/ for 0 � t < t0/.
Example 1. Let n � 2 and let f W Bn ! Cn be given by

f .z/ D .f1.z1/; f2.z0//; z D .z1; z0/ 2 Bn;

where

f1.z1/ D z1
.1 � z1/2

and f2 2 S0.Bn�1/ n S�.Bn�1/:

It is easy to see that f 2 S0.Bn/ n S�.Bn/. For fixed r 2 .0; 1/, let z0 D .r; 00/ and

L.g/ D g1.z0/; for g 2 H.Bn/:

Then L is a continuous linear functional on H.Bn/. For g 2 S0.Bn/, we have

<L.g/ � jg1.z0/j � f1 .r/ D <L.f /

by Corollary 4. We also have idBn 2 S0.Bn/ and <L.idBn/ < f1 .r/ D <L.f /.
Thus f 2 suppS0.Bn/, and this gives a nontrivial example of a support point in
S0.Bn/.

Remark 8. (i) Let f .z; t/ be a Loewner chain on Bn � Œ0;1/. As in the proof
of Graham et al. [18, Theorem 2.1 and Proposition 2.2], it can be proved that
etv.�; 0; t/ 2 S0.Bn/ n exS0.Bn/ for t � 0, where v.z; s; t/ is the transition
mapping associated with f .z; t/. They also conjectured that etv.�; 0; t/ 62
suppS0.Bn/ for t � 0 and n � 2. Recently, the above conjecture was solved
by Schleissinger [44]. In view of his result, it follows that if f 2 suppS0.Bn/

and f .z; t/ is a Loewner chain such that f D f .�; 0/ and fe�t f .�; t/gt�0 is a
normal family on Bn, then e�t f .�; t/ 2 suppS0.Bn/ for t � 0 (see [44]).

(ii) Recently, Chirilă et al. [9] proved that if g W U ! C is a univalent
function, which satisfies the conditions of Assumption 1, and if f 2
exS0g.Bn/.respectively, f 2 suppS0g.Bn//, then there exists a Loewner
chain f .z; t/ such that f D f .�; 0/, fe�tf .�; t/gt�0 is a locally uniformly
bounded family on Bn, and e�t f .�; t/ 2 exS0g.Bn/.respectively, e�t f .�; t/ 2
suppS0g.Bn//, for all t � 0.

(iii) If g W U ! C is a univalent function, which satisfies the conditions
of Assumption 1, then the identity mapping idBn is not an extreme point
(respectively, is not a support point) of S0g.Bn/ (see [9]).
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3.2 Extremal Problems for Bounded Mappings in S 0
g.Bn/

Next, we study bounded mappings in S.Bn/ which have g-parametric represen-
tation. To this end, we use ideas from control theory to obtain properties of the
normalized time-logM -reachable family QRlogM.idBn;Mg/, where M > 1. We
prove a characterization in terms of univalent subordination chains.

Let M 2 Œ1;1/ and let

S0g.M;B
n/ D

n
f 2 S0g.Bn/ W kf .z/k < M; z 2 Bn

o
:

Definition 8. Let E � Œ0;1/ be an interval and let ˝ � H.Bn/ be a normal
family. A mapping h D h.z; t/ W Bn � E ! Cn is called a Carathéodory mapping
on E with values in ˝ if the following conditions hold:

(i) h.�; t/ 2 ˝ for t 2 E .
(ii) h.z; �/ is a measurable mapping on E for z 2 Bn.

Let C .E;˝/ be the family of all Carathéodory mappings onE with values in˝ . In
terms of control theory, the mapping h D h.z; t/ may be called a control function
and the family C .E;˝/may be called a control system inH.Bn/. Also, the family
˝ may be called an input family (cf. [30] and [42]).

Definition 9. Let T 2 Œ0;1/ and let ˝ � M . Also, let h 2 C .Œ0; T �;˝/ and let
v D v.z; t Ih/ be the unique Lipschitz continuous solution on Œ0; T � of the initial
value problem

@v

@t
.z; t/ D �h.v.z; t/; t/ a.e. t 2 Œ0; T �; v.z; 0/ D z; (22)

for z 2 Bn, such that v.�; t Ih/ is a univalent Schwarz mapping and Dv.0; t Ih/ D
e�t I for t 2 Œ0; T �. Also let

RT .idBn;˝/ D
n
v.�; T Ih/ W h 2 C .Œ0; T �;˝/

o

denote the family of all such solutions at t D T generated by all Carathéodory
mappings on Œ0; T � with values in ˝ . The family RT .idBn;˝/ is called the time-T -
reachable family of (22) (cf. [18, 43] and [42]). The set ˝ is called the input set or
input family (cf. [42]). Let

QRT .idBn;˝/ D eTRT .idBn;˝/ for T 2 Œ0;1/

and

QR1.idBn;˝/ D
n

lim
t!1 e

tv.�; t Ih/ W h 2 C .Œ0;1/;˝/
o
:
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The family QRT .idBn;˝/ will be called the normalized time-T-reachable family
of (22).

Remark 9. It is known that QR1.idU ;M / D S (see [37] and [38]). Also, if M 2
.1;1/, then QRlogM.idU ;M / D S.M/ (see [11] and [42, Theorem 1.48]), where
S.M/ D ff 2 S W jf .z/j < M; z 2 U g. On the other hand, QR1.idBn;Mg/ D
S0g.B

n/ (see [9]). Moreover, QRlogM .idBn;Mg/ � S0g.M;B
n/, by Theorem 13.

Obviously, if T D 0, then QRT .idBn;Mg/ D fidBng.
Let g W U ! C be a univalent function such that g.0/ D 1 and <g.�/ > 0, j�j <

1. In the followings, we obtain some properties of the family QRlogM.idBn;Mg/ for
M 2 .1;1/. First, we give two examples of mappings in the normalized reachable
family QRlogM.idBn;Mg/. In the case g.�/ D 1C�

1�� , see [18] (compare with [21]).

Example 2. Let g W U ! C be a univalent function such that g.0/ D 1 and
<g.�/ > 0, j�j < 1. Also, let M > 1 and F 2 S�g .Bn/. Let FM W Bn ! Cn

be given by

FM.z/ DMF�1.M�1F.z//; z 2 Bn: (23)

Then FM 2 QRlogM.idBn;Mg/.

Proof. Since F 2 S�g .Bn/, it follows that the mapping FM is well defined. Also,
sinceF 2 S�g .Bn/, we deduce thatF.z; t/ D etF .z/ is a Loewner chain andF.z/ D
F.v.z; t/; t/ for z 2 Bn and t � 0, where v.z; t/ D F�1.e�tF .z//. Obviously,

Mv.z; logM/ DMF�1.M�1F.z//;

i.e. FM .z/ DMv.z; logM/, z 2 Bn. Since

@v

@t
.z; t/ D �h.v.z; t//; z 2 Bn; t � 0;

where h.z/ D ŒDf .z/��1f .z/ 2Mg, FM 2 QRlogM .idBn;Mg/, as desired. ut
Example 3. Let g W U ! C be a convex function such that g.0/ D 1 and <g.�/ >
0, j�j < 1. Also, let M > 1 and let fj 2 QRlogM.idU ;Mg/ for j D 1; : : : ; n. If
f D .f1; : : : ; fn/, then f 2 QRlogM.idBn;Mg/.

Proof. Since fj 2 QRlogM.idU ;Mg/, there exists a unique Lipschitz continuous
solution vj D vj .zj ; t/ on Œ0; logM� of the initial value problem

@vj

@t
.zj ; t/ D �hj .vj .zj ; t/; t/; a.e. t 2 Œ0; logM�; vj .zj ; 0/ D zj ; (24)
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for zj 2 U such that fj .zj / D Mvj .zj ; logM/, zj 2 U , where hj .zj ; t/ is a
generating vector field such that hj .zj ; t/=zj 2 g.U / for a.e. t 2 Œ0; logM� and
zj 2 U . Now, let h D h.z; t/ W Bn � Œ0;1/! Cn be given by

h.z; t/ D .h1.z1; t/; : : : ; hn.zn; t//; z D .z1; : : : ; zn/ 2 Bn; t 2 Œ0; logM�:

Then h.�; t/ 2 H.Bn/, h.0; t/ D 0, Dh.0; t/ D I , t 2 Œ0; logM�, and

D
h.z; t/;

z

kzk2
E
D

nX
jD1

jzj j2
kzk2 �

hj .zj ; t/

zj
2 g.U /;

for a.e. t 2 Œ0; logM� and z D .z1; : : : ; zn/ 2 Bn n f0g. Here we have used the
fact that g.U / is a convex domain. Hence h.�; t/ 2 Mg for a.e. t � 0. Next, let
v D v.z; t/ W Bn � Œ0;1/! Cn be given by

v.z; t/ D .v1.z1; t/; : : : ; vn.zn; t//; z D .z1; : : : ; zn/ 2 Bn; t 2 Œ0; logM�:

Then, in view of (24), we deduce that

@v

@t
.z; t/ D �h.v.z; t/; t/; a.e. t 2 Œ0; logM�; 8 z 2 Bn:

Since fj .�/ D Mvj .�; logM/ 2 QRlogM.idU ;Mg/, j D 1; : : : ; n, it follows that
f .�/ DMv.�; logM/ 2 QRlogM .idBn;Mg/, as desired. This completes the proof.

ut
Theorem 12. Let g W U ! C be a univalent function such that g.0/ D 1,<g.�/ >
0, and g.�/ D g.�/, j�j < 1. Assume that g satisfies the conditions

min
j�jDr
<g.�/ D g.r/; max

j�jDr
<g.�/ D g.�r/;

for all r 2 .0; 1/. Let M > 1 and let f 2 QRlogM.idBn;Mg/. Then

�Mb�1
�
1

M
b.�kzk/

�
� kf .z/k �Mb�1

�
1

M
b.kzk/

�
; z 2 Bn; (25)

where b 2 S� is defined by b.0/ D 0, b0.0/ D 1, and

�b0.�/
b.�/

D 1

g.�/
; � 2 U: (26)

These estimates are sharp.
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Proof. Since f 2 QRlogM.idBn;Mg/, there exists h D h.z; t/ 2 C .Œ0; logM�;Mg/

such that f D Mv.�; logM/, where v D v.z; t/ is the unique Lipschitz continuous
solution on Œ0; logM� of the initial value problem (22). Now, fix z 2 Bn n f0g.
Since v.z; �/ is Lipschitz continuous on Œ0; logM� locally uniformly with respect to
z 2 Bn, it follows that kv.z; �/k is differentiable a.e. on Œ0; logM�. After elementary
computations we deduce that

@kv.z; t/k
@t

D � 1

kv.z; t/k<hh.v.z; t/; t/; v.z; t/i; a.e. t 2 Œ0; logM�:

Since h.�; t/ 2Mg , we obtain from Lemma 1 that

kzk2g.kzk/ � <hh.z; t/; zi � kzk2g.�kzk/; z 2 Bn; t 2 Œ0; logM�:

In view of the above relations, we obtain that

�g.�kv.z; t/k/ � 1

kv.z; t/k �
@kv.z; t/k

@t
� �g.kv.z; t/k/;

for a.e. t 2 Œ0; logM�, which is equivalent to the following:

1

g.�kv.z; t/k/kv.z; t/k �
@kv.z; t/k

@t
� �1

and

1

g.kv.z; t/k/kv.z; t/k �
@kv.z; t/k

@t
� �1:

Integrating both sides of the above inequalities on Œ0; logM� and using (26) and the
fact that kv.z; �/k is decreasing on Œ0; logM�, we obtain that

� logM � log
b
��M�1kf .z/k�
b.�kzk/ ; and � logM � log

b
�
M�1kf .z/k�
b.kzk/ :

Since b.t/ is increasing for t 2 .�1; 1/ and b.0/ D 0, we have

�Mb�1
�
1

M
b.�kzk/

�
� kf .z/k �Mb�1

�
1

M
b.kzk/

�
:

Next, we show that the estimates (25) are sharp. Let

F.z/ D b.z1/

z1
z z D .z1; z0/ 2 Bn:
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Then F 2 S�g .Bn/ by [25, Lemma 3.1]. Let FM W Bn ! Cn be given by (23).

Then FM 2 QRlogM.idBn;Mg/ by Example 2. The equalities in (25) are attained at
z D .˙r; 00/ for r 2 .0; 1/. This completes the proof. ut
Let f .z; t/ W Bn � Œ0;1/ ! Cn be a Loewner chain. In view of Remark 4
and Theorem 6, f .z; �/ is locally Lipschitz continuous on Œ0;1/ locally uniformly
with respect to z 2 Bn, and there exists a generating vector field h D h.z; t/ W
Bn � Œ0;1/ ! Cn, which is unique up to a null subset of Œ0;1/, such that
the Loewner differential equation (12) holds (see [13, Theorem 1.10]; cf. [2]).
Moreover, if fe�tf .�; t/gt�0 is a normal family on Bn, then f .z; t/ coincides with
the canonical solution of (12).

In view of the above, we recall the notion of a g-Loewner chain (cf. [13]).

Definition 10. Let f .z; t/ W Bn � Œ0;1/ ! Cn be a Loewner chain and let g W
U ! C be a univalent function such that g.0/ D 1 and<g.�/ > 0, j�j < 1. We say
that f .z; t/ is a g-Loewner chain if fe�tf .�; t/gt�0 is a normal family on Bn and
h.�; t/ 2 Mg, for almost all t 2 Œ0;1/, where h D h.z; t/ is the generating vector
field given by (12).

Remark 10. (i) A normalized mapping f 2 H.Bn/ has g-parametric representa-
tion if and only if there exists a g-Loewner chain f .z; t/ such that f D f .�; 0/
(see [13]).

(ii) In view of [13, Corollary 2.3], we deduce that S0g.B
n/ is a locally uniformly

bounded family, and thus S0g.B
n/ is compact. Also, it is clear that S0g.B

n/ �
S0.Bn/.

(iii) Let S�g .Bn/ be the subset of S�.Bn/ consisting of g-starlike mappings (cf.
[25]). Also, let S�g .B1/ D S�g . Recall that f 2 S�g .Bn/ if and only if f
is normalized locally biholomorphic on Bn and h 2Mg , where h.z/ D
ŒDf .z/��1f .z/, z 2 Bn. Clearly, f 2 S�g .Bn/ if and only if f .z; t/ D etf .z/
is a g-Loewner chain (cf. [13]). Hence, it is clear that S�g .Bn/ � S0g.Bn/.

Theorem 13. Let M > 1 and let f 2 H.Bn/ be a normalized mapping. Also,
let g W U ! C be a univalent function such that g.0/ D 1 and <g.�/ > 0,
j�j < 1. Then f 2 QRlogM .idBn;Mg/ if and only if there exists a g-Loewner chain
f .z; t/ such that f .�; 0/ D f , f .�; logM/ D M idBn . Hence QRlogM.idBn;Mg/ �
S0g.M;B

n/.

Proof. We shall use arguments similar to those in the proofs of [18, Theorem 3.7]
and [21, Theorem 4.5].

(i) First, assume that f 2 QRlogM.idBn ;Mg/. Let h.z; t/ and v.z; t/ satisfy the
assumptions of Definition 9 for˝ DMg . Also, let w D w.z; s; t/ be the unique
Lipschitz continuous solution of the initial value problem

@w

@t
.z; s; t/ D �h.w.z; s; t/; t/; a.e. s � t � logM; w.z; s; s/ D z;



Extremal Problems and g-Loewner Chains 409

for z 2 Bn and 0 � s < logM . Then w.�; s; t/ is a univalent Schwarz mapping and
Dw.0; s; t/ D es�t I (cf. [17], [12, Chap. 8]). Also, w.z; 0; t/ D v.z; t/, and thus

f .z/ DMv.z; logM/ D Mw.z; 0; logM/:

Now, if F.z; s/ D Mw.z; s; logM/, s 2 Œ0; logM/, then F.z; s/ satisfies the
subordination condition on Bn � Œ0; logM/ needed to be the restriction of a
Loewner chain, in view of the semigroup property (8) of the Schwarz mapping
w.z; s; t/. Also, F.z; 0/ D f .z/ and F.z; logM/ D M z for z 2 Bn. Next, let
f .z; s/ W Bn � Œ0;1/! Cn be given by

f .�; s/ D
�
F.�; s/; s 2 Œ0; logM/;

esidBn; s � logM:

Then f .z; s/ is a Loewner chain such that f .z; 0/ D f .z/ and f .z; logM/ D M z
for z 2 Bn. Also, fe�sf .�; s/gs�0 is a normal family on Bn. Indeed, if 0 � s <

logM , then

ke�sf .z; s/k D kelogM�sw.z; s; logM/k �Me�sr �Mr;

for kzk � r < 1. If s � logM , then

ke�sf .z; s/k � r; kzk � r < 1:

Thus, we obtain that ke�sf .z; s/k � Mr for kzk � r and s � 0. Moreover, f .z; s/
is a g-Loewner chain. Indeed, we have

@f

@s
.z; s/ D Df.z; s/hf .z; s/; a.e. s � 0; z 2 Bn;

where

hf .z; s/ D
�
h.z; s/; s 2 Œ0; logM/;

z; s � logM:

Note that for s 2 Œ0; logM/, we use [14, Theorem 2.3]. Thus, f .z; s/ is a g-Loewner
chain and f 2 S0g.M;Bn/, as desired.

(ii) Conversely, assume that there exists a g-Loewner chain f .z; t/ such that
f .�; 0/ D f , f .�; logM/ D M idBn . Let v.z; s; t/ be the transition mapping
associated with f .z; t/ and let v.z; t/ D v.z; 0; t/. Then

f .z/ D f .v.z; logM/; logM/ D Mv.z; logM/; z 2 Bn;
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and hence f D Mv.�; logM/. On the other hand, since f .z; t/ is a g-Loewner
chain, there exists a mapping h D h.z; t/ 2 C .Œ0;1/;Mg/ such that

@f

@t
.z; t/ D Df.z; t/h.z; t/; a.e. t � 0; 8z 2 Bn:

In view of [17, Theorem 2.6], we deduce that v.z; s; t/ is the unique Lipschitz
continuous solution on Œs;1/ of the initial value problem

@v

@t
D �h.v; t/ a.e. t � s; v.z; s; s/ D z;

for all z 2 Bn and s � 0. Since f .z/ D Mv.z; logM/ for z 2 Bn, it follows that
f 2 QRlogM.idBn;Mg/, as desired. This completes the proof. ut
Corollary 7. Let M > 1 and let g W U ! C be a univalent function such that
g.0/ D 1 and <g.�/ > 0, j�j < 1. Then

QRlogM.idBn;Mg/ 	 S0g.Bn/ n
�

exS0g.B
n/[ suppS0g.B

n/
�
: (27)

Especially, QRlogM .idBn;M / 	 S0.Bn/ n �exS0.Bn/[ suppS0.Bn/
�
.

Proof. It suffices to show the inclusion (27). Let f 2 QRlogM.idBn;Mg/. By

Theorem 13, f 2 S0g.Bn/. Since f 2 QRlogM.idBn;Mg/, there exists a sequence

ffkgk2N 	 QRlogM.idBn;Mg/ such that fk ! f locally uniformly on Bn.
Then by Theorem 13, there exists a g-Loewner chain fk.z; t/ such that fk D
fk.�; 0/ and fk.�; logM/ D M idBn for each k 2 N. Now, ffk.�; t/gk2N is a
sequence of g-Loewner chains, and in view of [14, Lemma 2.8], there exists
a subsequence ffkp .�; t/gp2N such that fkp .�; t/ ! f .�; t/ locally uniformly on
Bn for each t � 0, where f .z; t/ is a Loewner chain and fe�t f .�; t/gt�0 is
a locally uniformly bounded family in H.Bn/. Also, we have f .�; 0/ D f

and f .�; logM/ D M idBn . If f 2
�

exS0g.Bn/ [ suppS0g.Bn/
�

, then we have

e�t f .�; t/ 2
�

exS0g.Bn/[ suppS0g.Bn/
�

for t � 0 by using arguments similar

to those in the proof of [9, Theorems 3.2 and 4.3]. This implies that idBn D
e� logMf .�; logM/ 2

�
exS0g.Bn/ [ suppS0g.Bn/

�
. This is a contradiction. Thus,

the inclusion (27) holds. This completes the proof. ut
Next, we consider extreme points associated with the family QRlogM.idBn;Mg/.

First, we obtain the following result (cf. [21], in the case g.�/ D 1C�
1�� , j�j < 1, and

[9, Lemma 3.1]).

Lemma 4. Let g W U ! C be a univalent function such that g.0/ D 1 and
<g.�/ > 0, j�j < 1. Let f .z; t/ be a g-Loewner chain on Bn � Œ0;1/. Also,
let vs;t .z/ D v.z; s; t/ be the transition mapping associated with f .z; t/ and let
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vt .z/ D v.z; t/ D v0;t .z/ for z 2 Bn and t � 0. If r 2 QRlogM�t .idBn;Mg/, then
et r.v.�; t// 2 QRlogM.idBn;Mg/ for 0 � t < logM .

Proof. We shall use arguments similar to those in the proof of [9, Lemma 3.1].
Fix t 2 Œ0; logM/. Since r 2 QRlogM�t .idBn;Mg/, there exists a g-Loewner chain
r.z; s/ such that r D r.�; 0/ and r.�; logM � t/ D elogM�t idBn by Theorem 13. Let
F1 D F1.z; s/ W Bn � Œ0;1/! Cn be the mapping given by

F1.z; s/ D
�
et r.v.z; s; t//; 0 � s � t;
et r.z; s � t/; s > t:

We will show that F1.z; s/ is a g-Loewner chain such that F1.�; 0/ D
et r.v.�; t// and F1.�; logM/ D M idBn . Then, by Theorem 13, et r.v.�; t// 2
QRlogM .idBn;Mg/. Taking into account the proof of [18, Theorem 2.1], we

deduce that F1.z; s/ is a Loewner chain such that F1.�; 0/ D etr.v.�; t// and
F1.�; logM/ D et r.�; logM � t/ D M idBn . Also, it is not difficult to deduce that
fe�sF1.�; s/gs�0 is a normal family on Bn, since fe�sr.�; s/gs�0 is a normal family
on Bn.

Since F1.z; s/ is a Loewner chain, there exist a generating vector field h.z; s/ and
a subset E of Œ0;1/ of measure zero such that

@F1

@s
.z; s/ D DF1.z; s/h.z; s/; s 2 Œ0;1/ nE; z 2 Bn: (28)

It remains to show that h.�; s/ 2 Mg for a.e. s 2 Œ0;1/. On the other hand, since
f .z; s/ is a g-Loewner chain, there exist a generating vector field hf D hf .z; s/ and
a subset QE of Œ0;1/ of measure zero, such that hf .�; s/ 2Mg for s 2 Œ0;1/ n QE ,
and

@f

@s
.z; s/ D Df.z; s/hf .z; s/; s 2 Œ0;1/ n QE; 8 z 2 Bn:

Also, since v.z; �; t/ is Lipschitz continuous on Œ0; t � locally uniformly with respect
to z 2 Bn, there exists a subset Et of Œ0; t � of measure zero, such that @v

@s
.�; s; t/

exists and is holomorphic on Bn, for all s 2 Œ0; t � n Et , and the following relation
holds, in view of [14, Theorem 2.3]:

@v

@s
.z; s; t/ D Dv.z; s; t/hf .z; s/; s 2 .0; t � n Et ; 8 z 2 Bn: (29)

First, we assume that s 2 Œ0; t � n .E [ Et [ QE/. Then F1.z; s/ D et r.v.z; s; t//
for z 2 Bn, and hence

@F1

@s
.z; s/DetDr.v.z; s; t//@v

@s
.z; s; t/ and DF1.z; s/DetDr.v.z; s; t//Dv.z; s; t/;
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for all z 2 Bn and s 2 Œ0; t �n .E [Et [ QE/. Taking into account the above relations
and (28), we easily deduce that

@v

@s
.z; s; t/ D Dv.z; s; t/h.z; s/; s 2 Œ0; t � n .E [Et [ QE/; z 2 Bn: (30)

In view of the relations (29) and (30), we obtain that h.z; s/ D hf .z; s/, for all
s 2 Œ0; t � n .E [ Et [ QE/ and z 2 Bn. Since hf .�; s/ 2 Mg for s 2 Œ0;1/ n QE , it
follows that h.�; s/ 2Mg, for s 2 Œ0; t � n .E [Et [ QE/, and thus h.�; s/ 2Mg, a.e.
s 2 Œ0; t �, as desired.

Next, we assume that s 2 .t;1/ n .E [ OEt/, where OEt D OEC t and OE 	 Œ0;1/
is a set of measure zero such that @r

@u .�; u/ exists and is holomorphic in Bn for u 2
Œ0;1/ n OE, and

@r

@u
.z; u/ D Dr.z; u/hr .z; u/; u 2 Œ0;1/ n OE; z 2 Bn; (31)

where hr D hr.z; u/ is a generating vector field such that hr.�; u/ 2 Mg for u 2
Œ0;1/ n OE . Since s 2 .t;1/ n .E [ OEt/, it follows that F1.z; s/ D et r.z; s � t/ for
z 2 Bn. It is clear that

@F1

@s
.z; s/ D et @r

@s
.z; s � t/ and DF1.z; s/ D etDr.z; s � t/;

for all s 2 .t;1/ n .E [ OEt/ and z 2 Bn. In view of (28) and (31), and the above
relation, it is not difficult to deduce that h.z; s/ D hr.z; s � t/, for all s 2 .t;1/ n
.E [ OEt/ and z 2 Bn. Hence, h.�; s/ 2 Mg for s 2 .t;1/ n .E [ OEt/, and thus
h.�; s/ 2Mg for a.e. s 2 .t;1/.

In view of the above arguments, we conclude that h.�; s/ 2Mg for a.e. s � 0, as
desired. This completes the proof. ut

Next, we obtain some extremal results for mappings in the reachable family
QRlogM .idBn;Mg/ (cf. [18] and [21] in the case g.�/ D 1C�

1�� ; compare [42,
Theorem 2.52], in the case n D 1). First, we obtain the following result related

to extreme points for the compact family QRlogM.idBn;Mg/ (cf. [9, Theorem 3.2]).

Theorem 14. Let g W U ! C be a univalent function such that g.0/ D 1 and

<g.�/ > 0, j�j < 1. Let M > 1 and let f 2 ex QRlogM.idBn;Mg/. Then there exists
a Loewner chain f .z; t/ such that fe�t f .�; t/gt�0 is a locally uniformly bounded

family, f D f .�; 0/, and e�t f .�; t/ 2 ex QRlogM�t .idBn;Mg/ for 0 � t < logM .

Proof. We shall use arguments similar to those in the proof of [9, Theorem 3.2].

Since f 2 ex QRlogM.idBn;Mg/, it is clear that f 2 QRlogM.idBn;Mg/, and
thus there exists a sequence ffkgk2N 	 QRlogM.idBn;Mg/ such that fk ! f

locally uniformly on Bn. Clearly, f 2 QRlogM.idBn;M /, since QRlogM .idBn;Mg/ �
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QRlogM .idBn;M / and QRlogM.idBn;M / is a compact subset of H.Bn/, by [21,
Corollary 4.7]. Also, for each k 2 N, there exists a g-Loewner chain fk.z; t/ such
that fk D fk.�; 0/, fk.�; logM/ D M idBn by Theorem 13. Let vk D vk.z; s; t/
be the transition mapping associated with fk.z; t/. Then ffk.�; t/gk2N is a sequence
of g-Loewner chains, and in view of [14, Lemma 2.8], there exists a subsequence
ffkp.�; t/gp2N such that fkp .�; t/! f .�; t/ locally uniformly on Bn for each t � 0,
where f .z; t/ is a Loewner chain and fe�tf .�; t/gt�0 is a locally uniformly bounded
family in H.Bn/. Also, since fvkp.�; s; t/g is a sequence of univalent Schwarz
mappings such that Dvkp .0; s; t/ D es�t In, there exists a subsequence, again
denoted by fvkp .�; s; t/g, which converges locally uniformly on Bn to a univalent
Schwarz mapping v.�; s; t/ such that Dv.0; s; t/ D es�t In. Taking limits through
this subsequence, it is easily seen that fkp .vkp .�; s; t/; t/ ! f .v.�; s; t/; t/ locally
uniformly on Bn. Also, since fkp .�; s/ ! f .�; s/ locally uniformly on Bn, and
fkp .z; s/ D fkp.vkp .z; s; t/; t/, it is clear that f .z; s/ D f .v.z; s; t/; t/ for z 2 Bn

and t � s � 0. Hence vs;t .z/ D v.z; s; t/ is the transition mapping associated with
f .z; t/. Let v.z; t/ D v0;t .z/ for z 2 Bn and t � 0.

Next, fix t 2 Œ0; logM/. First, we prove that e�t f .�; t/ 2 QRlogM�t .idBn;Mg/.
For this aim, it suffices to prove that e�t fk.�; t/ 2 QRlogM�t .idBn;Mg/ for k 2 N.
Indeed, fix k 2 N, and letLk.z; s/ D e�t fk.z; tCs/ for z 2 Bn and s � 0. As in the
proof of [18, Theorem 2.1], we deduce that Lk.z; s/ is a Loewner chain such that
fe�sLk.�; s/gs�0 is a locally uniformly bounded family in H.Bn/ and Lk.�; 0/ D
e�t fk.�; t/, Lk.�; logM � t/ D elogM�t idBn . Then there exists a generating vector
field hL;k D hL;k.z; s/ such that

@Lk

@s
.z; s/ D DLk.z; s/hL;k.z; s/; a.e. s � 0; 8 z 2 Bn: (32)

Hence, it suffices to prove that hL;k.�; s/ 2Mg, a.e. s � 0. Indeed, since fk.z; s/ is
a g-Loewner chain, there exists a generating vector field hf;k D hf;k.z; s/ such that
hf;k.�; s/ 2Mg for a.e. s � 0, and

@fk

@s
.z; s/ D Dfk.z; s/hf;k .z; s/; a.e. s � 0; 8 z 2 Bn: (33)

On the other hand, in view of the relation (32), we obtain that

@fk

@s
.z; t C s/ D Dfk.z; t C s/hL;k.z; s/; a.e. s � 0; 8 z 2 Bn:

Hence, the above relation and (33) yield that hL;k.z; s/ D hf;k.z; t C s/, for a.e.
s � 0 and for all z 2 Bn, and thus hL;k.�; s/ 2Mg , a.e. s � 0, as desired.

In view of the above arguments and the fact that fkp .�; t/ ! f .�; t/ locally

uniformly on Bn, we deduce that e�t f .�; t/ 2 QRlogM�t .idBn;Mg/.
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Next, we prove that e�t f .�; t/ 2 ex QRlogM�t .idBn;Mg/. To this end, we suppose
that

e�t f .z; t/ D �r.z/C .1 � �/q.z/; z 2 Bn;

where � 2 .0; 1/ and r; q 2 QRlogM�t .idBn;Mg/. Then

f .z/ D f .v.z; t/; t/ D �et r.v.z; t//C .1 � �/etq.v.z; t//; z 2 Bn:

In view of Lemma 4, we deduce that

et r.v.�; t//; et q.v.�; t// 2 QRlogM .idBn;Mg/:

Indeed, since r 2 QRlogM�t .idBn;Mg/, there exists a sequence

frkgk2N 	 QRlogM�t .idBn;Mg/

such that rk ! r locally uniformly on Bn. Now, et rk.vk.�; t// 2 QRlogM .idBn;Mg/

for k 2 N, by Lemma 4, where vk.�; t/ D vk.�; 0; t/ is defined in the first
part of the proof. As in the first part of the proof, there exists a subsequence
fvkp.�; t/g of fvk.�; t/g such that vkp.�; t/ ! v.�; t/ locally uniformly on Bn.
Then et rkp .vkp .�; t// ! et r.v.�; t//, and the conclusion follows, as desired.
A similar argument as above applies for etq.v.�; t//. On the other hand, since

f 2 ex QRlogM.idBn;Mg/, we must have et r.v.�; t// � etq.v.�; t//. Finally,
applying the identity theorem for holomorphic mappings, we deduce that r � q.

Hence e�t f .�; t/ 2 ex QRlogM�t .idBn;Mg/, as desired. This completes the proof.
ut

Next, we obtain the following result related to support points for the compact

family QRlogM .idBn;Mg/ (cf. [21, Theorem 4.9] for A D In, and [9, Theorem 4.2]).

Theorem 15. Let g W U ! C be a univalent function such that g.0/ D 1 and

<g.�/ > 0, j�j < 1. Also, let M > 1 and let f 2 supp QRlogM.idBn;Mg/. Then
there exist a Loewner chain f .z; t/ such that fe�tf .�; t/gt�0 is a locally uniformly
bounded family, f D f .�; 0/, f .�; logM/ D M idBn and a constant " 2 .0; logM/

such that e�t f .�; t/ 2 supp QRlogM�t .idBn;Mg/ for 0 � t < ".
Proof. We shall use arguments similar to those in the proofs of [21, Theorem 4.9]
and [9, Theorem 4.2]. Let f .z; t/ and vt .z/ be as in Theorem 14. Since f 2
supp QRlogM.idBn;Mg/, there exists a continuous linear functionalL onH.Bn/ such

that <L is nonconstant on QRlogM.idBn ;Mg/ and
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<L.f / D max
q2 QRlogM .idBn ;Mg/

<L.q/: (34)

Now fix t 2 Œ0; logM/. Let Lt W H.Bn/! C be given by

Lt.r/ D L.et r ı vt /; r 2 H.Bn/:

It is clear that Lt is a continuous linear functional on H.Bn/ and Lt.e�t f .�; t// D
L.f .v.�; t/; t// D L.f /. In view of the above arguments, we deduce that

<Lt.e�t f .�; t// D <L.f / � <L.et r ı vt / D <Lt.r/;

for all r 2 QRlogM�t .idBn;Mg/, i.e.

<Lt.e�t f .�; t// D max
r2 QRlogM�t .idBn ;Mg/

<Lt.r/:

Here we have used the fact that

et r ı vt 2 QRlogM.idBn;Mg/ for r 2 QRlogM�t .idBn;Mg/

by Lemma 4 and the proof of Theorem 14 (cf. [9]).
Finally, we will show that there exists " 2 .0; logM/ such that <Lt is noncon-

stant on QRlogM�t .idBn;Mg/ for 0 � t < ". There exists F 2 QRlogM .idBn;Mg/

such that <L.F / < <L.f /. Then there exists a Loewner chain F.z; t/ such that

F.�; 0/ D F.�/ and e�tF .�; t/ 2 QRlogM�t .idBn;Mg/. Then

<Lt .e�tF .�; t// D <L.F.vt ; t//

for t 2 Œ0; logM/. Since L.F.vt ; t// ! L.F / as t ! 0C, there exists " 2
.0; logM/ such that

<Lt.e�tF .�; t// < <L.f / D <Lt .e�t f .�; t// 0 � t < ":

Hence <Lt j QRlogM�t .idBn ;Mg/
is nonconstant, as desired. This completes the proof.

ut
Example 4. Let g W U ! C be a convex function such that g.0/ D 1, <g.�/ > 0,
and g.�/ D g.�/, j�j < 1. Assume that g satisfies the conditions

min
j�jDr
<g.�/ D g.r/; max

j�jDr
<g.�/ D g.�r/;

for all r 2 .0; 1/. Let b 2 S�g be defined by b.0/ D 0, b0.0/ D 1 and
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z1b
0.z1/=b.z1/ D 1=g.z1/; z1 2 U:

Let f1.z1/ D Mb�1.M�1b.z1// for z 2 U . Then f1 2 QRlogM.idU ;Mg/ by
Example 2. Let n � 2 and let f W Bn ! Cn be given by

f .z/ D .f1.z1/; f2.z0//; z D .z1; z0/ 2 Bn;

where f2 2 QRlogM.idBn�1 ;Mg/. As in Example 3, f 2 QRlogM .idBn;Mg/. For
fixed r 2 .0; 1/, let z0 D .r; 00/ and

L.g/ D g1.z0/; for g 2 H.Bn/:

Then L is a continuous linear functional on H.Bn/. For g 2 QRlogM.idBn ;Mg/, we
have

<L.g/ � jg1.z0/j � f1 .r/ D <L.f /

by Theorem 12 . We also have idBn 2 QRlogM.idBn;Mg/ and <L.idBn/ < f1 .r/ D
<L.f /. Thus f 2 supp QRlogM.idBn;Mg/.

Taking into account Example 2, we obtain an extremal result in the family
QRlogM .idBn;Mg/ involving mappings in S�g .Bn/ (cf. [21, Theorem 4.11] for

g.�/ D 1C�
1�� , and [9, Corollary 4.4]; compare [42, Theorem 2.65] for n D 1).

Theorem 16. Let g W U ! C be a univalent function such that g.0/ D 1

and <g.�/ > 0, j�j < 1. Let � W S0g.Bn/ ! R be a continuous real-valued
functional. Assume that F 2 S�g .Bn/ provides the maximum for � over the set

S0g.B
n/. Then for each M > 1, the mapping FM 2 QRlogM.idBn;Mg/ given

by (23) provides the maximum on QRlogM.idBn;Mg/ for the associated functional

�M W QRlogM.idBn;Mg/! R, given by

�M .r/ D �.MF.r.�/=M//; r 2 QRlogM.idBn;Mg/:

In addition, �M.FM / D �.F /.
Proof. Since F 2 S�g .Bn/, we deduce that FM 2 QRlogM.idBn;Mg/ by Example 2.

On the other hand, if r 2 QRlogM.idBn;Mg/, then the mapping MF.r.�/=M/

belongs to S0g.B
n/, by an argument similar to that in the proof of [21, Theo-

rem 4.11]. Then

�M.r/ D �.MF.r.�/=M// � �.F / D �M.FM/; r 2 QRlogM .idBn;Mg/;

as desired. This completes the proof. ut
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9. Chirilă, T., Hamada, H., Kohr, G.: Extreme points and support points for mappings with
g-parametric representation in C

n Mathematica (Cluj) (2014, to appear)
10. Duren, P., Graham, I., Hamada, H., Kohr, G.: Solutions for the generalized Loewner differential

equation in several complex variables. Math. Ann. 347, 411–435 (2010)
11. Goodman, G.S.: Univalent functions and optimal control. Ph.D. Thesis, Stanford University

(1968)
12. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel

Dekker, New York (2003)
13. Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several

complex variables. Can. J. Math. 54, 324–351 (2002)
14. Graham, I., Kohr, G., Kohr, M.: Loewner chains and parametric representation in several

complex variables. J. Math. Anal. Appl. 281, 425–438 (2003)
15. Graham, I., Kohr, G., Pfaltzgraff, J.A.: Parametric representation and linear functionals

associated with extension operators for biholomorphic mappings. Rev. Roum. Math. Pures
Appl. 52, 47–68 (2007)

16. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Parametric representation and asymptotic
starlikeness in Cn. Proc. Am. Math. Soc. 136, 3963–3973 (2008)

17. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Asymptotically spirallike mappings in several
complex variables. J. Anal. Math. 105, 267–302 (2008)

18. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner
variation in several complex variables. Sci. China Math. 55, 1353–1366 (2012)

19. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Univalent subordination chains in reflexive
complex Banach spaces, Contemp. Math. (AMS) 591, 83–111 (2013)

20. Graham, I., Hamada, H., Honda, T., Kohr, G., Shon, K.H.: Growth, distortion and coefficient
bounds for Carathéodory families in C

n and complex Banach spaces J. Math. Anal. Appl. 416,
449–469 (2014)



418 I. Graham et al.

21. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extremal properties associated with univalent
subordination chains in C

n. Math. Ann. 359, 61–99 (2014)
22. Gurganus, K.: ˚-like holomorphic functions in C

n and Banach spaces. Trans. Am. Math. Soc.
205, 389–406 (1975)

23. Hamada, H.: Polynomially bounded solutions to the Loewner differential equation in several
complex variables. J. Math. Anal. Appl. 381, 179–186 (2011)

24. Hamada, H.: Approximation properties on spirallike domains of Cn (2013, submitted)
25. Hamada, H., Honda, T.: Sharp growth theorems and coefficient bounds for starlike mappings

in several complex variables. Chin. Ann. Math. Ser. B 29, 353–368 (2008)
26. Hamada, H., Kohr, G.: Loewner chains and the Loewner differential equation in reflexive

complex Banach spaces. Rev. Roum. Math. Pures Appl. 49, 247–264 (2004)
27. Hamada, H., Honda, T., Kohr, G.: Growth theorems and coefficient bounds for univalent

holomorphic mappings which have parametric representation. J. Math. Anal. Appl. 317,
302–319 (2006)

28. Harris, L.: The numerical range of holomorphic functions in Banach spaces. Am. J. Math. 93,
1005–1019 (1971)

29. Hengartner, W., Schober, G.: On schlicht mappings to domains convex in one direction.
Comment. Math. Helv. 45, 303–314 (1970)

30. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, New York (1997)
31. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)
32. Kirwan, W.E.: Extremal properties of slit conformal mappings. In: Brannan, D., Clunie,

J. (eds.) Aspects of Contemporary Complex Analysis, pp. 439–449. Academic, London/New
York (1980)

33. Muir, J.R.: A class of Loewner chain preserving extension operators. J. Math. Anal. Appl. 337,
862–879 (2008)

34. Muir, J.R., Suffridge, T.J.: Extreme points for convex mappings of Bn. J. Anal. Math. 98,
169–182 (2006)

35. Pell, R.: Support point functions and the Loewner variation. Pac. J. Math. 86, 561–564 (1980)
36. Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in C

n. Math.
Ann. 210, 55–68 (1974)

37. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)
38. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in C

n which have the
parametric representation, I: the geometrical properties. Ann. Univ. Mariae Curie Skl. Sect. A.
41, 105–113 (1987)

39. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in C
n which have the

parametric representation, II: the necessary conditions and the sufficient conditions. Ann. Univ.
Mariae Curie Skl. Sect. A. 41, 115–121 (1987)

40. Poreda, T.: On generalized differential equations in Banach Spaces. Dissertationes Math. 310,
1–50 (1991)

41. Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and Geometry of Domains in
Banach Spaces. Imperial College Press, London (2005)

42. Roth, O.: Control Theory in H .D/. Dissertation. Bayerischen University Wuerzburg (1998)
43. Roth, O.: A remark on the Loewner differential equation. Computational Methods and Function

Theory 1997 (Nicosia). Ser. Approx. Decompos. 11, 461–469 (1999)
44. Schleissinger, S.: On support points of the class S0.Bn/. Proc. Am. Math. Soc. (2014, to

appear)
45. Suffridge, T.J.: Starlikeness, convexity and other geometric properties of holomorphic maps in

higher dimensions. In: Lecture Notes in Mathematics, vol. 599, pp. 146–159. Springer, New
York (1977)

46. Voda, M.: Solution of a Loewner chain equation in several complex variables. J. Math. Anal.
Appl. 375, 58–74 (2011)

47. Xu, Q.H., Liu, T.S.: On biholomorphic mappings in complex Banach spaces. Rocky Mt.
J. Math. 41, 2069–2086 (2011)



Different Durrmeyer Variants of Baskakov
Operators

Vijay Gupta

Abstract The present article deals with the different Durrmeyer type modifications
of the well-known Baskakov. These operators came into existence almost 28
years ago when in the year 1985 the Baskakov Durrmeyer operators were intro-
duced. After that several approximation properties of such operators were studied
extensively. The present article is an attempt to present some of the results
and the approximation properties of the different Durrmeyer type modifications
of the classical Baskakov operators. We also give here the alternate form of some of
the operators in terms of hypergeometric functions. In the last section, we present
some results for mixed operators related to convergence.

Keywords Baskakov Durrmeyer operators • Simultaneous approximation • Lin-
ear combinations • Asymptotic formula • Inverse theorem • Saturation theorem •
Steklov mean • Hypergeometric functions • q Baskakov Durrmeyer operators.

1 Introduction

Baskakov [6] in the year 1957 introduced a new type of operators in the general
way:

Let the functions 	1.x/; 	2.x/; � � � possess the following properties on an interval
Œ0; R�; R > 0:

• 	n.x/ is analytic on the interval Œ0; R� including at the end points,
• 	n.0/ D 1,
• 	n is completely monotone, i.e. .�1/k	.k/n .x/ � 0; k D 0; 1; 2; � � � and
x 2 Œ0; R�,
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• There exists a positive integerM.n/ not depending on k such that

�	.k/n .x/ D n	k�1m.n/.x/Œ1C ˛k;n.x/�; k D 1; 2; � � � ;

where for n sufficiently large ˛k;n converges uniformly to zero.
•

lim
n!1

n

m.n/
D 1:

From above it is observed that �	.k/n .x/ D n	k�1nCc.x/; k D 1; 2; � � � and c is a
positive integer (see [8]). Then the sequence Vn of operators on CBŒ0;1/ (the space
of all bounded continuous functions on Œ0;1/) into itself is defined as

Gn.f; x/ D
1X
kD0

.�1/k	.k/n .x/xk

kŠ
f .k=n/; n 2 N: (1)

If c D 1 and 	n.x/ D .1 C x/�n, one gets from (1) the Baskakov (Lupas)
operators as

Bn.f; x/ D Vn.f; x/ D
1X
kD0

�
nC k � 1

k

�
xk

.1C x/nCk f .k=n/ (2)

If c D 0 and 	n.x/ D e�nx, one gets from (1) the Szász-Mirakyan operators as

Sn.f; x/ D
1X
kD0

e�nx
.nx/k

kŠ
f .k=n/ (3)

These operators are linear positive exponential type operators. These operators are
discretely defined. Lot of work has been done on Baskakov operators in local
and global approximation. In the year 1978 Becker [7] established the equivalence
theorem for the Baskakov operators in polynomial weight spaces. It is observed that
the operators Vn are not able to deal with integrable functions, in this direction the
Kanorovich type integral modifications of these operators were discussed by several
researchers. In the year 1985 Durrmeyer type modifications of these operators came
into existence and after that several modifications were introduced and studied. In
the present article we discuss different kinds of the Durrmeyer type modifications of
the Baskakov operators, which include Baskakov Durrmeyer operators, Baskakov
Beta operators, Discretely defined Baskakov Durrmeyer operators at zero and
Baskakov-Szász type operators.
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2 Baskakov Durrmeyer Operators

In the year 1985 the Durrmeyer type integral modification of these operators was
first introduced in [29] so as to approximate Lebesgue integrable functions on the
interval Œ0;1/ as

Vn.f; x/ WD .n � 1/
1X
vD0

bn;v.x/

Z 1
0

bn;v.t/f .t/dt (4)

where

bn;v.x/ D
�
nC v � 1

v

�
xv

.1C x/nCv :

The authors Sahai-Prasad in [29] termed the operators as modified Lupas operators.
Sahai-Prasad [29] estimated an asymptotic formula and an error estimation for
the operators (4) in simultaneous approximation (approximation of derivative of
functions by the corresponding order derivatives of the operators).

Theorem 1 ([29]). If f is integrable in Œ0;1/, admits its .r C 1/ and .r C 2/-th
derivatives, which are bounded at a point x 2 Œ0;1/ and f .r/.x/ D O.x˛/ (˛ is a
positive integer � 2) as x !1, then

lim
n!1nŒV

.r/
n .f; x/ � f .r/.x/� D .r C 1/.1C 2x/f .rC1/.x/C x.1C x/f .rC2/.x/:

Theorem 2 ([29]). If f 2 C .rC1/Œ0; a� and !.f .rC1/; :/ be the modulus of
continuity of f .rC1/, then for r D 0; 1; 2; 3; � � �

jjV .r/
n .f; x/ � f .r/.x/jjCŒ0;a� � .r C 1/.1C 2a/

n � r � 2 jjf .rC1/jjCŒ0;a�

CC.n; r/
�p

�C �

2

�
!.f .rC1/; C.n; r//;

where � D 2.n � 1/a.1C a/ C .r C 1/.r C 2/.1C 2a/2; C.n; r/ D 1=.n � r �
2/.n� r � 3/ and jj:jj denotes the sup-norm on Œ0; a�:

Six years later Sinha–Agrawal–Gupta [31] observed that the above results
obtained in [29] have some mistakes and gaps. They improved the results of [29] and
termed the operators Vn as modified Baskakov operators. Actually the operators (4)
are Durrmeyer type modification of Baskakov operators. Sinha–Agrawal–Gupta
[31] considered the class Ł of Lebesgue measurable functions f on the positive
real axis as
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Ł D
�
f W

Z 1
0

jf .t/j
.1C t/n dt <1 for some positive integer n

�
:

The class Ł is naturally bigger than the class of Lebesgue integrable functions on
the positive real axis. The correct and improved versions of the above Theorems 1, 2
are given as follows:

Theorem 3 ([31]). Let f 2 Ł be bounded on every finite subinterval of Œ0;1/
admitting a derivative of order .rC2/ at a fixed point x 2 .0;1/. Let f .t/ D O.t˛/
as t !1 for some ˛ > 0, then we have

lim
n!1nŒV

.r/
n .f; x/�f .r/.x/� D r.1C r/f .r/.x/

C .r C 1/.1C 2x/f .rC1/.x/Cx.1C x/f .rC2/.x/:

Theorem 4 ([31]). Let f 2 Ł be bounded on every finite subinterval of Œ0;1/ and
f .t/ D O.t˛/ as t ! 1 for some ˛ > 0. If f .rC1/ exists and is continuous on
< a; b >	 .0;1/, where < a; b > denotes an open interval containing the closed
interval Œa; b�; then for n sufficiently large

jjV .r/
n .f; :/ � f .r/jj � C1

�jjf .r/jj C jjf .rC1/jj�n�1
CC2n�1=2!.f .rC1/; n�1=2/CO.n�s/;

for any s > 0; where the constants C1 and C2 are independent of f and n, and
!.f; ı/ is the modulus of continuity of f on < a; b > and norm-jj:jj denotes the
sup-norm on Œa; b�:

In order to make the convergence faster, Kasana–Agrawal–Gupta [27] estimated the
direct, inverse and saturation theorems for the linear combinations due to May [28],
which are defined as

Vn.f; k; x/ D
kX

jD0
C.j; k/Vdj n.f; x/;

where

C.j; k/ D
kY
iD0
i¤j

dj

dj � di ; k ¤ 0IC.0; 0/ D 1

and d0; d1; : : : ::; dk are arbitrary but fixed distinct positive integers. We present here
the results on the Baskakov–Durrmeyer operators Vn defined on a class C�Œ0;1/ as

C�Œ0;1/ � ff 2 C Œ0;1/ W jf .t/j �Mt�; � > 0;M > 0g:
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The norm-jj:jj� on C�Œ0;1/ is defined as jjf jj� D supt2.0;1/ jf .t/jt�� : The
following theorem is an asymptotic formula in ordinary approximation for the linear
combinations of Baskakov–Durrmeyer operators:

Theorem 5 ([27]). Let f 2 C�Œ0;1/ for some � > 0. If f .2kC2/ exists at a point
x 2 .0;1/, then

lim
n!1n

kC1 ŒVn .f; k; x/ � f .x/� D
2kC2X
jDkC1

f .j /.x/

j Š
Q.j; k; x/ (5)

where Q.j; k; x/ are certain polynomials in x of degree j: Moreover

Q.2k C 2; k; x/ D .�1/kfx.1C x/gkC1Qk
jD0 dj

.2k C 2/Š
.k C 1/Š

and

Q.2k C 1; k; x/ D .�1/k.1C 2x/fx.1C x/gkQk
jD0 dj

.2k C 2/Š
2.kŠ/

:

Further, if f .2kC1/ exists and is absolutely continuous over Œa; b� and f .2kC2/ 2
L1Œa; b�; then for any Œc; d � 	 .a; b/ there holds

jjVn .f; k; :/ � f jj �Mn�.kC1/
˚jjf jj� C jjf .2kC2/jjL

1

Œa;b�

�
(6)

The next following theorem is an error estimation in ordinary approximation for the
linear combinations of Baskakov–Durrmeyer operators:

Theorem 6 ([27]). Let f 2 C�Œ0;1/ and 0 < a1 < a2 < b2 < b1 <1: Then for
n sufficiently large, there exists a constantMk such that

jjVn.f; k; :/ � f jjCŒa2;b2� �Mk

˚
!2kC2.f; n�1=2; a1; b1/C n�.kC1/jjf jj�

�
:

Following theorem is an inverse theorem in ordinary approximation for the linear
combinations of Baskakov–Durrmeyer operators:

Theorem 7 ([27]). Let f 2 C�Œ0;1/ and 0 < ˛ < 2. Then in the following
statements .i/) .i i/, .i i i/) .iv/ hold:

(i) jjVn.f; k; :/ � f jjCŒa1;b1� D O.n�.˛.kC1/=2//I
(ii) f 2 Liz.˛; k C 1; a2; b2/I

(iii) (a) For m < ˛.k C 1/ < mC 1;m D 0; 1; 2; : : : : : : :2k C 1; f .m/ exists and
belong to the class Lip.˛.k C 1/�m; a2; b2/;

(b) For ˛.k C 1/ D mC 1;m D 0; 1; 2; : : : : : : :2k; f .m/ exists and belong to
the class Lip�.1; a2; b2/;

(iv) jjVn.f; k; :/ � f jjCŒa3;b3� D O.n�.˛.kC1/=2//;
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where Liz.˛; k; a; b/ denotes the generalized Zygmund class of functions for which
!2k.f; h; a; b/ � Mh˛k , when k D 1Liz.˛; 1/ reduces to the Zygmund class
Lip�˛.

We present below a saturation theorem in ordinary approximation for the linear
combinations of Baskakov–Durrmeyer operators:

Theorem 8 ([27]). Let f 2 C�Œ0;1/ and 0 < a1 < a2 < a3 < b3 < b2 < b1
< 1: Then in the following statements, the implications .i/ ) .i i/ ) .i i i/ and
.iv/) .v/) .vi/ hold true:

(i) jjVn.f; k; :/ � f /jjCŒa1;b1� D O.n�.kC1//I
(ii) f .2kC1/ 2 A:C:Œa2; b2� and f .2kC2/ 2 L1Œa2; b2� ;

(iii) jjVn.f; k; :/ � f jjCŒa3;b3� D O.n�.kC1///I
(iv) jjVn.f; k; :/ � f jjCŒa1;b1� D o.n�.kC1//I

(v) f 2 C2kC2Œa2; b2� and
2kC2X
jDkC1

Q.j; k; x/f .j /.x/ D 0; x 2 Œa2; b2� where the

polynomialsQ.j; k; x/ are defined in Theorem 5;
(vi) jjVn.f; k; :/ � f jjCŒa3;b3� D o.n�.kC1//.
Agrawal–Gupta–Sahai [3] also studied simultaneous approximation for the linear
combinations.

The following result is an asymptotic formula in simultaneous approximation for
the linear combinations.

Theorem 9 ([3]). Let f be integrable on Œ0;1/ admitting .2kCrC2/-th derivative
at a point x 2 Œ0;1/ with f .r/.x/ D O.x˛/; where ˛ is a positive integer not less
than 2k C 2, as x !1, then

lim
n!1n

kC1ŒV .r/
n .f; k; x/ � f .r/.x/� D

2kC2X
iD1

Q.i; k; r; x/f .iCr/.x/

and

lim
n!1n

kC1ŒV .r/
n .f; k C 1; x/ � f .r/.x/� D 0;

where Q.i; k; r; x/ are certain polynomials in x of degree at most i . Further if
f .2kCrC2/ exists and is continuous on< a; b >, then the above limits hold uniformly
on Œa; b�: Here < a; b >	 Œ0;1/ denotes an open interval containing the closed
interval Œa; b�:

The next following result is an error estimation in simultaneous approximation for
the linear combinations.

Theorem 10 ([3]). Let 1 � p � 2k C 2 and f be integrable on Œ0;1/: If f .pCr/
exists and is continuous on < a; b > having the modulus of continuity !.f .pCr/; ı/
on < a; b > and f .r/.x/ D O.x˛/; where ˛ is a positive integer � p, then for n
sufficiently large, we have
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jjV .r/
n .f; k; :/ � f .r/jj � maxfC1n�p=2!.f .pCr/; n�1=2/; C2n�.kC1/g

where C1 D C1.k; p; r/ and C2 D C2.k; p; r; f /:
Sinha et al. [30] obtained some local error estimates in Lp-norm for the linear
combinations of Baskakov–Durrmeyer operators Vn.f; x/ using the linear approx-
imating technique of Steklov mean’s. In the following three theorems 0 < a1 <

a2 < b2 < b1 <1 and Ii D Œai ; bi �; i D 1; 2:
Theorem 11 ([30]). Let f 2 LpŒ0;1/; p > 1. If f has 2k C 2 derivatives on I1
with f .2kC1/ 2 A:C:.I1/ and f .2kC2/ 2 Lp.I1/; then for n sufficiently large

jjVn.f; k; :/ � f jjLp.I2/ �Mkn
�.kC1/fjjf .2kC2/jjLp.I1/ C jjf jjLpŒ0;1/g;

where Mk is a constant independent of f and n:

Theorem 12 ([30]). Let f 2 L1Œ0;1/. If f has 2k C 1 derivatives on I1 with
f .2k/ 2 A:C:.I1/ and f .2kC1/ 2 B:V:.I1/; then for all n sufficiently large

jjVn.f; k; :/ � f jjL1.I2/ � Mkn
�.kC1/

�
jjf .2kC1/jjB:V:.I1/

C jjf .2kC1/jjL1.I2/ C jjf jjL1Œ0;1/
�
;

where Mk is a constant independent of f and n:

The following error estimation is in terms of higher order integral modulus of
smooth, which can be obtained by using the above Theorems 11 and 12.

Theorem 13 ([30]). Let f 2 LpŒ0;1/; p � 1. Then for n sufficiently large

jjVn.f; k; :/ � f jjLp.I2/ �Mk

�
!2kC2.f; n�1=2; p; I1/; n�.kC1/jjf jjLpŒ0;1/

�
;

where Mk is a constant independent of f and n:

Also in the year 1989 Heilmann and Muller [25] considered the general form (1) to
define the Durrmeyer variant of the Baskakov operators as

Hn.f; x/ D .n � c/
1X
kD0

.�1/k	.k/n .x/xk

kŠ

Z 1
0

.�1/k	.k/n .t/tk

kŠ
f .t/dt;

where the different cases of 	n.x/ are as given in (1). They obtained direct global
result in terms of Ditzian–Totik modulus of smoothness

jj.Hnf /
.r/ � f .r/jjp � C

�
!2'.f

.r/; n�1=2/p C n�1jjf .r/jjp
�
;
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where C is a constant independent of n; '.x/ D px.1C cx/ and !2' is the second
order Ditzian–Totik modulus of smoothness.

3 Baskakov-Beta Operators

It was observed in [13] that by considering the weights of Beta basis functions in the
integral modification of Baskakov operators, we have better approximation. These
operators are defined as

Ln.f; x/ D
1X
kD0

bn;k.x/

Z 1
0

vn;k.t/f .t/dt; (7)

where

bn;k .x/ D
�
nC k � 1

k

�
xk

.1C x/nCk D
.n/k

kŠ

xk

.1C x/nCk ;

vn;k .t/ D 1

B.k C 1; n/
tk

.1C t/nCkC1 D
n.nC 1/k

kŠ

tk

.1C t/nCkC1

with B.m; n/ D .m � 1/Š.n� 1/Š
.nCm � 1/Š : The Pochhammer symbol .n/k is defined as

.n/k D n.nC 1/.nC 2/.nC 3/ : : : :.nC k � 1/:

Motivated by the recent studies on certain Beta type operators by Ismail and
Simeonov [26] in the hypergeometric form, recently Gupta–Yadav [22] proposed
the Stancu variant of the Baskakov-Beta operators and represented the operatorsLn
in terms of hypergeometric function as

Ln.f; x/ D n
1X
kD0

.n/k

kŠ

xk

.1C x/nCk
Z 1
0

.nC 1/k
kŠ

tk

.1C t/nCkC1 f .t/dt

D n
Z 1
0

f .t/.1C x/
Œ.1C x/.1C t/�nC1

1X
kD0

.n/k.nC 1/k
.kŠ/2

.xt/k

Œ.1C x/.1C t/�k dt:

Using the hypergeometric series 2F1.a; bI cI x/ D
1X
kD0

.a/k.b/k

.c/kkŠ
xk , we have

Ln.f; x/ D n
Z 1
0

f .t/.1C x/
Œ.1C x/.1C t/�nC1 2F1

�
n; nC 1I 1I xt

.1C x/.1C t/
�
dt;
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Now using 2F1.a; bI cI x/ D 2F1.b; aI cI x/ and applying Pfaff–Kummer
transformation

2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�

we have

Ln.f; x/ D n
Z 1
0

f .t/
1C x

.1C x C t/nC1 2F1

�
nC 1; 1� nI 1I �xt

1C x C t
�
dt;

which is the alternate form of the operatorsLn in terms of hypergeometric functions.
The following lemma is also represented in terms of hypergeometric function:

Lemma 1 ([22]). For n > 0 and r > �1, we have

Ln.t
r ; x/ D � .n � r/� .r C 1/

� .n/
.1C x/r 2F1

�
1 � n;�r I 1I x

1C x
�
:

Proof. Taking f .t/ D t r ; t D .1 C x/u and using Pfaff–Kummer transformation
the right-hand side of (7) becomes

n

Z 1
0

.1C x/rC2ur
..1C x/.1C u//nC1

.1C x/
1X
kD0

.nC 1/k.1 � n/k
.kŠ/2

.�x.1C x/u/k
..1C x/.1C u//k

du

D n
1X
kD0

.nC 1/k.1 � n/k
.kŠ/2

.�x/k.1C x/r�nC1
Z 1
0

urCk

.1C u/nCkC1
du

D n
1X
kD0

.nC 1/k.1 � n/k
.kŠ/2

.�x/k.1C x/r�nC1B.r C k C 1; n � r/

D n
1X
kD0

.nC 1/k.1 � n/k
.kŠ/2

.�x/k.1C x/r�nC1 � .r C k C 1/� .n� r/
� .nC k C 1/ :

Using, � .nC k C 1/ D � .nC 1/.nC 1/k; we have

Ln.t
r ; x/ D n

1X
kD0

.nC1/k.1�n/k
.kŠ/2

.�x/k.1Cx/r�nC1 � .rC1/.rC1/k� .n�r/
� .nC 1/.nC 1/k

D n.1C x/r�nC1 � .r C 1/� .n � r/
� .nC 1/

1X
kD0

.r C 1/k.1 � n/k
.kŠ/2

.�x/k

D n.1C x/r�nC1 � .r C 1/� .n � r/
� .nC 1/ 2F1.1 � n; r C 1I 1I �x/:
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Using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
; we have

Ln.t
r ; x/ D � .n � r/� .r C 1/

� .n/
.1C x/r 2F1

�
1 � n;�r I 1I x

1C x
�
:

For approximation properties of these operators, we also refer the readers to [14,
21]. In [15] Gupta, proposed the Bézier variant of the Baskakov-Beta operators and
studied the rate of convergence for functions of bounded variation. Govil–Gupta
[11] studied convergence in simultaneous approximation for the Bézier analogue
of Baskakov-Beta operators, for ready reference we mention below the Baskakov-
Beta-Bézier operators, which for ˛ � 1 are defined as

Ln;˛.f; x/ D
1X
kD0

Q
.˛/

n;k.x/

Z 1
0

bn;k.t/f .t/dt; n 2 N; x 2 Œ0;1/

where

Q
.˛/

n;k.x/ D ŒJn;k.x/�˛ � ŒJn;kC1.x/�˛; Jn;k.x/ D
1X
jDk

bn;j .x/:

As a special case when ˛ D 1, these operators reduce to the Baskakov-Beta
operators (7).

4 Baskakov Durrmeyer Operators by Agrawal–Thamer

For f 2 C˛Œ0;1/ � ff 2 C Œ0;1/ W jf .t/j � M.1 C t/˛; ˛ > 0;M > 0g;
Agrawal–Thamer [2] proposed a new type of Baskakov–Durrmeyer operator as

Mn.f; x/ D .n � 1/
1X
kD1

bn;k.x/

Z 1
0

bn;k.t/f .t/ dt C bn;0.x/f .0/; (8)

where

bn;k.x/ D
 
nC k � 1

k

!
xk

.1C x/nCk :

The norm-jj:jj˛ on C˛Œ0;1/ is defined as jjf jj˛ D sup
t2Œ0;1/

jf .t/j.1 C t/�˛: In [2],

the authors have obtained point-wise convergence, asymptotic formula, and error
estimation in simultaneous approximation.
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Theorem 14 ([2]). If r 2 N; f 2 C˛Œ0;1/ for some ˛ > 0 and f .r/ exists at a
point x 2 .0;1/, then

lim
n!1M

.r/
n .f; x/ D f .r/.x/:

Further, if f .r/ exists and is continuous on .a��; bC�/ 	 .0;1/; � > 0, then this
limit holds uniformly in x 2 Œa; b�:
Theorem 15 ([2]). Let f 2 C˛Œ0;1/ for some ˛ > 0: If f .rC2/ exists at a point
x 2 .0;1/, then

lim
n!1nŒM

.r/
n .f; x/ � f .r/.x/� D r.1C r/f .r/.x/

C Œ2.rC1/xCr�f .rC1/.x/C x.1C x/f .rC2/.x/:

Further, if f .rC2/ exists and is continuous on .a � �; b C �/ 	 .0;1/; � > 0, then
this limit holds uniformly in x 2 Œa; b�:
Theorem 16 ([2]). Let f 2 C˛Œ0;1/ for some ˛ > 0 and r � q � r C 2: If f .q/

exists and is continuous on .a � �; b C �/ 	 .0;1/; � > 0, then for n sufficiently
large

jjM.r/
n .f; :/ � f .r/jj � C1n�1

 
qX
iDr
jjf .i/jj

!

C C2n
�1=2!.f .rC1/; n�1=2/CO.n�2/;

where C1 and C2 are independent of f and n, and !.f; ı/ is the modulus of
continuity of f on .a � �; b C � > and norm-jj:jj denotes the sup-norm on Œa; b�:

For these operators Gupta [16] studied the rate of pointwise approximation for
functions of bounded variation. To prove the rate of approximation we used
some results of probability theory. He also introduced the Bézier variant of these
operators.

5 Baskakov Durrmeyer Operators by Finta

For f 2 C Œ0;1/; a new type of Baskakov–Durrmeyer operator studied by Finta in
[10] is defined as

Dn.f; x/ D
1X
kD1

bn;k.x/

Z 1
0

pn;k.t/f .t/ dt C bn;0.x/f .0/; (9)
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where

bn;k.x/ D
 
nC k � 1

k

!
xk

.1C x/nCk D
.n/k

kŠ

xk

.1C x/nCk ;

pn;k.x/ D 1

B.k; nC 1/
xk�1

.1C x/nCkC1 D
.nC 1/k
.k � 1/Š

xk�1

.1C x/nCkC1 :

The main advantage to consider the operators in this form is that they preserve
constant and linear functions. Govil and Gupta [12] studied some approximation
properties for the operators defined in (9) and estimated local results in terms of
modulus of continuity. In terms of the hypergeometric form, we write the operators
Dn as

Dn.f; x/ D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
Z 1
0

.nC 1/k
.k � 1/Š

tk�1
.1C t/nCkC1 f .t/dt C bn;0.x/f .0/

D
Z 1
0

f .t/x.1C x/
Œ.1C x/.1C t/�nC2

1X
kD1

.n/k.nC 1/k
.k � 1/ŠkŠ

.xt/k�1
Œ.1C x/.1C t/�k�1 dt

C bn;0.x/f .0/

D
Z 1
0

f .t/x.1C x/
Œ.1C x/.1C t/�nC2

1X
kD0

.n/kC1.nC 1/kC1
kŠ.k C 1/Š

.xt/k

Œ.1C x/.1C t/�k dt

C bn;0.x/f .0/

D n.nC 1/
Z 1
0

f .t/x.1Cx/
Œ.1Cx/.1Ct/�nC2

1X
kD0

.nC1/k.nC2/k
kŠ.2/k

.xt/k

Œ.1C x/.1C t/�k dt

C bn;0.x/f .0/;

where in the last equality we have used .n/kC1 D n.nC1/k and .nC1/kC1 D .nC
1/.nC 2/k and .k C 1/Š D .2/k: Using the hypergeometric series 2F1.a; bI cI x/ D1X
kD0

.a/k.b/k

.c/kkŠ
xk , we have

Dn.f; x/ D n.nC1/
Z 1
0

f .t/x.1C x/
Œ.1Cx/.1Ct/�nC2 2F1

�
nC1; nC2I 2I xt

.1Cx/.1Ct/
�
dt

C bn;0.x/f .0/;

Now using 2F1.a; bI cI x/ D 2F1.b; aI cI x/ and applying Pfaff–Kummer
transformation

2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
;
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we have

Dn.f; x/ D n.nC 1/
Z 1
0

f .t/
x.1C x/

.1C x C t/nC2 2F1

�
nC 1;�nI 2I �xt

1C x C t
�
dt

C bn;0.x/f .0/;

which is the alternate form of the operatorsLn in terms of hypergeometric functions.

Lemma 2. For n > 0 and r � 1, we have

Dn.t
r ; x/ D � .n � r C 1/� .r C 1/x

� .n/
2F1 .nC 1; 1� r I 2I �x/ :

Proof. Taking f .t/ D t r ; we can write

Dn.f; x/ D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
Z 1
0

� .nC k C 1/
.k � 1/ŠnŠ

tkCr�1

.1C t/nCkC1 dt

D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
� .nC k C 1/
.k � 1/ŠnŠ B.k C r; n � r C 1/

D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
� .nC k C 1/
.k � 1/ŠnŠ

� .k C r/� .n � r C 1/
� .nC k C 1/

D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
� .k C r/� .n � r C 1/

.k � 1/ŠnŠ

D � .n � r C 1/.1C x/�n
� .nC 1/

1X
kD1

.n/k

kŠ

xk

.1C x/k
� .k C r/
.k � 1/Š

D n� .n� r C 1/x.1C x/
�.nC1/

� .nC 1/
1X
kD0

.nC 1/k
.2/k

xk

.1C x/k
� .k C r C 1/

kŠ

D n� .n�rC1/� .rC1/x.1Cx/
�.nC1/

� .nC 1/
1X
kD0

.nC1/k.rC1/k
kŠ.2/k

xk

.1C x/k

D n� .n�rC1/� .rC1/x.1Cx/
�.nC1/

� .nC 1/ 2F1

�
nC1; rC1I 2I x

1C x
�
:

Using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
; we have

Dn.t
r ; x/ D � .n � r C 1/� .r C 1/x

� .n/
2F1 .nC 1; 1� r I 2I �x/ :
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Remark 1. We may remark from the above Lemma 2 that

Dn.1; x/ D 1;Dn.t; x/ D x;Dn.t
2; x/ D .nC 1/x2 C 2x

n � 1 :

Several approximation properties of these operators were discussed in [10, 12, 23].
Recently Gupta–Verma–Agrawal [24] proposed the Stancu variant of the operators
Dn and established some direct results.

6 q-Baskakov–Durrmeyer Operators

In the year 2010 Aral–Gupta [4] introduced q-Baskakov Durrmeyer operators. For
every n 2 N; q 2 .0; 1/ ; the q analogue of Baskakov operators is defined as

V q
n .f .t/ ; x/ WD Œn � 1�q

1X
kD0

b
q

n;k .x/

Z 1=A
0

b
q

n;k .t/ f .t/ dqt; (10)

where

b
q

n;k .x/ WD
�
nC k � 1

k

	
q

q
k2

2
xk

.1C x/nCkq

;

for x 2 Œ0; 1/ and for every real valued continuous and bounded function f on
Œ0; 1/ : It can be observed that in case q D 1 the above operators reduce to the
usual Baskakov Durrmeyer operators. Some direct results were established in [4]
and [17]. For details we refer the readers to the recent book by Aral–Gupta–Agarwal
[5], where notations and such results on q operators are collected.

Theorem 17 ([4]). Let q 2 .0; 1/ and n � 4. We have

jV q
n .f; x/ � f .x/j � C!2

 
f;

ın.x/p
q6Œn � 2�q

!
C !

�
f;
q�2Œ2�qx C q�1

Œn � 2�q
�
;

for every x 2 Œ0;1/ and f 2 CBŒ0;1/; where C is a positive constant.

Let Bx2Œ0;1/ is the set of all functions defined on Œ0;1/ satisfying the growth
condition

jf .x/j �Mf .1C x2/;

whereMf is a constant depending on f only.Cx2Œ0;1/ denotes the subspace of all
continuous functions belonging to Bx2Œ0;1/: Also let C �

x2
Œ0;1/ be the subspace



Different Durrmeyer Variants of Baskakov Operators 433

of all functions f 2 Cx2Œ0;1/; for which limx!1 jf .x/j1Cx2 is finite. The norm jj:jjx2
on C �

x2
Œ0;1/ is defined by

jjf jjx2 D sup
x2Œ0;1/

jf .x/j
1C x2 :

Theorem 18 ([4]). Let f 2 Cx2 Œ0; 1/ ; q D qn 2 .0; 1/ such that qn ! 1

as n ! 1 and !aC1 .f; ı/ be its modulus of continuity on the finite interval
Œ0; aC 1� 	 Œ0; 1/ ; where a > 0: Then for every n > 3; we have

kV q
n .f / � f kCŒ0; a� �

K

q6 Œn � 3�q
C 2!aC1

 
f;

s
K

q6 Œn � 3�q

!
;

where K D 90Mf

�
1C a2� �1C aC a2� :

Theorem 19 ([4]). Let q D qn satisfies 0 < qn < 1 and let qn ! 1 as n ! 1:
For each f 2 C �

x2
Œ0; 1/ ; we have

lim
n!1 jjV

qn
n .f /� f jjx2 D 0:

Theorem 20 ([4]). Let q D qn satisfies 0 < qn < 1 and let qn ! 1 as n ! 1:
For each f 2 Cx2 Œ0; 1/ and ˛ > 0; we have

lim
n!1 sup

x2Œ0; 1/

ˇ̌
V
qn
n .f; x/ � f .x/ˇ̌
.1C x2/1C˛ D 0:

Theorem 21 ([17]). Let f 2 C Œ0;1/ be a bounded function and .qn/ denote a
sequence such that 0 < qn < 1 and qn ! 1 as n ! 1: Then we have for a point
x 2 .0; 1/

lim
n!1 Œn�qn

�
V qn
n .f; x/ � f .x/� D .2x C 1/Dqnf .x/C x.1C x/D2

qn
f .x/ :

7 Baskakov Szász Operators by Gupta–Srivastava

In the year 1993 Gupta–Srivastava [20] introduced the mixed Durrmeyer type
operators by taking the weight functions of Szász basis function as

Mn.f; x/ WD n
1X
kD0

bn;k.x/

Z 1
0

sn;k.t/f .t/dt; (11)
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where

bn;k.x/ D
�
nC k � 1

k

�
xk

.1C x/nCk ; sn;k.t/ D e
�nt .nt/k

kŠ
:

Gupta–Srivastava [20] estimated direct results in simultaneous approximation and
established an asymptotic formula and estimation of error. In the year 2003
Gupta–Maheshwari [19] extended the studies on these operators and they proved
an inverse theorem for the linear combinations of the operators Mn: Here we
present alternate form of such operators and find the moments using hypergeometric
representation.

We may rewrite these operators in the form of hypergeometric function as

Mn.f; x/ D n

1X
kD0

bn;k.x/

Z 1
0

sn;k.t/f .t/dt

D n

� .n/.1C x/n
Z 1
0

e�ntf .t/dt
1X
kD1

� .nC k/
.kŠ/2

�
nxt

1C x
�k
:

Using the identity � .nC k/ D � .n/.n/k and .1/k D kŠ, we have

Mn.f; x/ D n

.1C x/n
Z 1
0

e�ntf .t/dt
1X
kD0

.n/k

.1/k:kŠ

�
nxt

1C x
�k

D n

.1C x/n
Z 1
0

e�ntf .t/ 1F1

�
nI 1I nxt

1C x
�
dt:

To obtain the moments the authors in [20] used the standard techniques of
recurrence relation. Here we give the following lemma in terms of hypergeometric
representation, by which one can easily obtain the moments of higher order.

Lemma 3. If er D t r ; r � 1, then we have

Mn.er ; x/ D x� .r C 1/
nr�1 2F1 .nC 1; 1� r I 2I �x/ :

Proof. By definition (11), we have

Mn.er ; x/ D n
1X
kD0

bn;k.x/

Z 1
0

sn;k.t/t
rdt

D n

� .n/.1C x/n
1X
kD0

� .nC k/
kŠ

�
x

1C x
�k Z 1

0

e�nt
.nt/k

kŠ
t rdt
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D n

� .n/.1C x/n
1X
kD0

� .nC k/
kŠ

�
x

1C x
�k Z 1

0

e�u uk

kŠ

ur

nrC1
du

D 1

nr� .n/.1C x/n
1X
kD1

� .nC k/
kŠ

�
x

1C x
�k

� .k C r C 1/
kŠ

D x

nr� .n/.1C x/nC1
1X
kD0

� .nC k C 1/
.k C 1/Š

�
x

1C x
�k

� .k C r C 1/
kŠ

D x� .r C 1/
nr�1.1C x/nC1

1X
kD0

.nC 1/k.r C 1/k
.2/k

�
x

1C x
�k

1

kŠ

D x� .r C 1/
nr�1.1C x/nC1 2F1

�
.nC 1/; .r C 1/I 2I x

1C x
�
:

Finally, using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x�1
�
, we get

Mn.er ; x/ D x� .r C 1/
nr�1 2F1 .nC 1; 1� r I 2I �x/ :

8 Baskakov Szász Operators by Agrawal–Mohammad

In the year 2003, Agrawal and Mohammad [1] proposed another modification of the
Baskakov operators with weights of Szász basis function. The operators considered
in [1] are defined as

Pn.f; x/ WD n
1X
kD1

bn;k.x/

Z 1
0

sn;k�1.t/f .t/dt C bn;0.x/f .0/ (12)

where

bn;k.x/ D
�
nC k � 1

k

�
xk

.1C x/nCk ; sn;k�1.t/ D e
�nt .nt/k�1

.k � 1/Š

with bn;0.x/ D .1C x/�n: These operators preserve constant and linear functions,
which is the important property of these operators. Gupta–Gupta [18] estimated the
rate of convergence of these operators for the iterative combinations in terms of
higher order integral modulus of smoothness. They used the linear approximating
method viz. Steklov mean to prove the main results.
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We present here the alternate form of these operators in terms of hypergeometric
function as

Pn.f; x/ D n
1X
kD1

bn;k.x/

Z 1
0

sn;k�1.t/f .t/dt C .1C x/�nf .0/

D n

� .n/.1C x/n
Z 1
0

e�ntf .t/dt
1X
kD1

� .nC k/
kŠ

�
x

1C x
�k

.nt/k�1

.k � 1/Š
C .1C x/�nf .0/

D n

� .n/.1C x/n
Z 1
0

e�ntf .t/dt
1X
kD0

� .nC k C 1/
.k C 1/Š

�
x

1C x
�kC1

.nt/k

kŠ

C .1C x/�nf .0/:

Using the identity � .nCkC1/ D � .nC1/.nC1/k and .2/k D .kC1/Š, we have

Pn.f; x/ D n2x

.1C x/nC1
Z 1
0

e�ntf .t/dt
1X
kD0

.nC 1/k
.2/k

�
nxt

1C x
�k

1

kŠ

C .1C x/�nf .0/

D n2x

.1C x/nC1
Z 1
0

e�ntf .t/ 1F1

�
nC 1I 2I nxt

1C x
�
dt

C .1C x/�nf .0/:

For these operators we establish below the moments estimation in terms of
hypergeometric function, which was not done earlier.

Lemma 4. If er D t r ; r � 1, then we have

Pn.er ; x/ D x� .r C 1/
nr�1 2F1 .nC 1; 1� r I 2I �x/ :

Proof. By definition (12), we have

Pn.er ; x/ D n
1X
kD1

bn;k.x/

Z 1
0

sn;k�1.t/t rdt

D n

� .n/.1C x/n
1X
kD1

� .nC k/
kŠ

�
x

1C x
�k Z 1

0

e�nt
.nt/k�1

.k � 1/Š t
rdt

D n

� .n/.1C x/n
1X
kD1

� .nC k/
kŠ

�
x

1C x
�k Z 1

0

e�u uk�1

.k � 1/Š
ur

nrC1
du
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D 1

nr� .n/.1C x/n
1X
kD1

� .nC k/
kŠ

�
x

1C x
�k

� .k C r/
.k � 1/Š

D x

nr� .n/.1C x/nC1
1X
kD0

� .nC k C 1/
.k C 1/Š

�
x

1C x
�k

� .k C r C 1/
kŠ

D x� .r C 1/
nr�1.1C x/nC1

1X
kD0

.nC 1/k.r C 1/k
.2/k

�
x

1C x
�k

1

kŠ

D x� .r C 1/
nr�1.1C x/nC1 2F1

�
.nC 1/; .r C 1/I 2I x

1C x
�
:

Finally, using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x�1
�
, we get

Pn.er ; x/ D x� .r C 1/
nr�1 2F1 .nC 1; 1� r I 2I �x/ :

Remark 2. By simple computation from Lemma 4, we have

Pn.e0; x/ D 1; Pn.e1; x/ D x;

Pn.e2; x/ D x2 C x.x C 2/
n

:

Remark 3. Let  x.t/ D t � x, n 2 N then from Remark 2, we have

Pn. x; x/ D 0

Pn. 
2
x ; x/ D

x.x C 2/
n

:

Further, for r D 0; 1; 2; : : :, we have

Pn. 
r
x ; x/ D O

�
n�Œ.rC1/=2�

�
:

Applying Schwarz inequality, we have

Pn.j rx j; x/ �
q
Dn. 2rx ; x/ D O

�
n�r=2

�
:

Further, we can write

Pn.j x j; x/ �
r
x.x C 2/

n
:
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8.1 Convergence

Theorem 22. Let f be a continuous function on Œ0;1/ for n! 1, the sequence
fPn.f; x/g converges uniformly to f .x/ in Œa; b� 	 Œ0;1/:
Proof. For sufficiently large n, it is obvious from Remark 2 that Pn.e0; x/;
Pn.e1; x/, and Pn.e2; x/ converge uniformly on to 1; x, and x2, respectively, on
every compact subset of Œ0;1/: Thus the required result follows from Bohman–
Korovkin theorem.

By CBŒ0;1/, we denote the class on real valued continuous bounded functions
f .x/ for x 2 Œ0;1/ with the norm

jjf jj D sup
x2Œ0;1/

jf .x/j:

For f 2 CBŒ0;1/ and ı > 0 the first and second order modulus of continuity
are defined as

!.f; ı/ D sup
0�h�ı

sup
x2Œ0;1/

jf .x C h/ � f .x/j

and

!2.f; ı/ D sup
0�h�ı

sup
x2Œ0;1/

jf .x C 2h/� 2f .x C h/C f .x/j;

respectively.
The Peetre’s K-functional is defined as

K2.f; ı/ D inf
g2C2B Œ0;1/

˚jjf � gjj C ıjjg00jj W g 2 C2
BŒ0;1/

�
;

where

C2
BŒ0;1/ D fg 2 CBŒ0;1/ W g0; g00 2 CBŒ0;1/g:

There exists a constant C > 0 due to [9] such that for ı > 0, we have

K2.f; ı/ � C!2.f;
p
ı/: (13)

Theorem 23. For x 2 Œ0;1/ and f 2 CBŒ0;1/, there exists a constant C > 0

such that

jPn.f; x/ � f .x/j � C!2
 
f;

r
x.x C 2/

n

!
:
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Proof. Let g 2 C2
BŒ0;1/: By the Taylor’s expansion

g.t/ D g.x/C g0.t � x/C
Z t

x

.t � u/g00.u/du:

and by using Remark 3, we have

Pn.g; x/ � g.x/ D
�Z t

x

.t � u/g00.u/du; x

�
:

Since, we have

ˇ̌
ˇ̌Z t

x

.t � u/g00.u/du

ˇ̌
ˇ̌ � .t � x/2jjg00jj:

By Remark 3, we get

jPn.g; x/ � g.x/j � Pn..t � x/2; x/jjg00jj D x.x C 2/
n

jjg00jj:

Now by Remark 2, we have

jPn.f; x/j � n
1X
kD1

bn;k.x/

Z 1
0

sn;k�1.t/jf .t/jdt C bn;0jf .0/j � jjf jj:

Therefore

jPn.f; x/ � f .x/j � jPn.f � g; x/ � .f � g/.x/j C jPn.g; x/ � g.x/j

� 2jjf � gjj C x.x C 2/
n

jjg00jj:

Finally taking the infimum on the right-hand side over all g 2 C2
BŒ0;1/ and

using (13), we get the desired result.

Theorem 24. Let f be bounded and integrable on the interval Œ0;1/, second
derivative of f exists at a fixed point x 2 Œ0;1/, then

lim
n!1n .Pn.f; x/ � f .x// D

x.x C 2/
2

f 00.x/:

Proof. By the Taylor’s expansion, we may write

f .t/ D f .x/C f 0.x/.t � x/C 1

2
f 00.x/.t � x/2 C r.t; x/.t � x/2; (14)
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where r.t; x/ is the remainder term and lim
n!1 r.t; x/ D 0: Operating Pn to (14) we

obtain

Pn.f; x/ � f .x/ D Pn.t � x; x/f 0.x/C Pn
�
.t � x/2 ; x

� f 00.x/
2

CPn
�
r .t; x/ .t � x/2 ; x

�

Applying the Cauchy–Schwartz inequality, we have

Pn

�
r .t; x/ .t � x/2 ; x

�
�
p
Pn .r2 .t; x/ ; x/

r
Pn

�
.t � x/4 ; x

�
: (15)

As r2 .x; x/ D 0 and r2 .:; x/ 2 C �2 Œ0;1/, we have from Remark 3, that

lim
n!1Pn

�
r2 .t; x/ ; x

� D r2 .x; x/ D 0; (16)

uniformly with respect to x 2 Œ0; A� : Now from (15), (16), and Remark 2, we thus
have

lim
n!1Pn

�
r .t; x/ .t � x/2 ; x

�
D 0:

Then, we obtain

lim
n!1 .Pn.f; x/� f .x//

D lim
n!1

�
f 0.x/Pn ..t�x/ ; x/C1

2
f 00.x/Pn

�
.t�x/2 ; x

�
CPn

�
r .t; x/ .t�x/2 Ix

��

D x.x C 2/
2

f 00.x/:

Let C �
x2
Œ0;1/ be the space of all continuous functions satisfying the condition

limx!1 f .x/

1Cx2 is finite and belonging to Bx2Œ0;1/, where

Bx2Œ0;1/ D ff W for every x 2 Œ0;1/; jf .x/j �Mf .1C x2/;
Mf being a constant depending on f g:

The norm on C �
x2
Œ0; 1/ is kf kx2 D sup

x2Œ0; 1/
jf .x/j
1C x2 : For weighted approximation,

we give here the following result.

Theorem 25. For each f 2 C �
x2
Œ0; 1/ ; we have

lim
n!1 kPn.f / � f kx2 D 0:
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Proof. Using Korovkin’s theorem, in order to prove the theorem, it is sufficient to
show that

lim
n!1 kPn.e�; x/ � e�kx2 D 0; � D 0; 1; 2: (17)

Since Pn .e0; x/ D 1 and Pn .e1; x/ D x, the above condition holds for � D 0; 1:
Next, we can write



Pn .e2; x/ � x2

x2 � sup
x2Œ0; 1/

x2

1C x2
x.x C 2/

n
;

which implies that

lim
n!1



Pn .e2; x/ � x2

x2 D 0:
Thus the result holds for � D 0; 1; 2. This completes the proof of the theorem.

8.2 Convergence on Bounded Derivative

In this section we discuss the convergence of operators Pn defined by (12), for the
functions having bounded derivatives.

Rewriting the operators (12) as

Pn.f; x/ D
Z 1
0

Kn.x; t/f .t/dt; (18)

whereKn is the kernel function given by

Kn.x; t/ D n
1X
kD1

bn;k.x/sn;k�1.t/C bn;0.x/ı.t/;

and ı.t/ being the Dirac delta function.

Lemma 5. For any fixed x 2 .0;1/, we have

�n.x; y/ D
Z y

0

Kn.x; t/dt � x.x C 2/
n.x � y/2 ; 0 � y < x;

1 � �n.x; z/ D
Z 1

z
Kn.x; t/dt � x.x C 2/

n.z � x/2 ; x < z <1:
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Let us define the class ˚DB of functions as:

˚DB D
�
f W f .x/ � f .0/ D

Z x

0

	.t/dt I f .t/ D O.tr /; t !1
�
;

where 	 is bounded on every finite subinterval of Œ0;1/:
For a fixed x 2 Œ0;1/, � � 0 and f 2 ˚DB let us define the metric form as

˝.f; �/ D sup
t2Œx��;xC��\Œ0;1/

jf .t/ � f .x/j:

Theorem 26. Let f 2 ˚DB , x 2 .0;1/ be fixed. If 	.x�/ and 	.xC/ exists, then
for n � 4; we have

ˇ̌
ˇ̌
ˇPn.f; x/�f .x/�

	.xC/ � 	.x�/
2

r
x.x C 2/

n

ˇ̌
ˇ̌
ˇ �

.2x C 9/
n

Œ
p
n�X

kD1
˝x

�
	x;

x

k

�
CO.n�r /;

where

	x.t/ D
8<
:
	.t/ � 	.x�/; 0 � t < x
0; t D x
	.t/ � 	.xC/; x < t <1

:

Proof. By simple computation, we have

Dn.f; x/ � f .x/ � 	.xC/ � 	.x�/
2

Dn.jt � xj; x/

C	.xC/C 	.x�/
2

Dn.t � x; x/
�An;x.	x/C Bn;x.	x/C Cn;x.	x/; (19)

where

An;x.	x/ D
Z x

0

�Z x

t

	x.u/du

�
dt .�n.x; t//;

Bn;x.	x/ D
Z 2x

x

�Z t

x

	x.u/du

�
dt .�n.x; t//;

Cn;x.	x/ D
Z 1
2x

�Z t

x

	x.u/du

�
dt .�n.x; t//:
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Integrating by parts, we have

An;x.	x/ D
Z x

t

	x.u/du�n.x; t/jx0 C
Z x

0

�n.x; t/	x.t/dt

D
 Z x�x=pn

0

C
Z x

x�x=pn

!
�n.x; t/	x.t/dt:

As �n.x; t/ � 1, from the monotonicity of ˝x.	x; �/ and the definition of 	x.t/,
we have

ˇ̌
ˇ̌Z x

x�x=pn
�n.x; t/	x.t/dt

ˇ̌
ˇ̌ � xp

n
˝x

�
	x;

xp
n

�

� 2x

n

Œ
p
n�X

kD1
˝x

�
	x;

x

k

�
:

Taking t D x
x�u and using Lemma 5, we get

ˇ̌
ˇ̌
ˇ
Z x�x=pn

0

�n.x; t/	x.t/dt

ˇ̌
ˇ̌
ˇ �

x.x C 2/
n

Z x�x=pn

0

˝x .	x; x � t/
.x � t/2 dt

� 2C x
n

Z pn
1

˝x

�
	x;

x

u

�
du

� 2C x
n

p
nX

kD1
˝x

�
	x;

x

k

�
:

Collecting above results, we get

jAn;x.	x/j � .3x C 2/
n

p
nX

kD1
˝x

�
	x;

x

k

�
: (20)

Further, we have

Bn;x.	x/ D
Z 2x

x

�Z t

x

	x.u/du

�
dt .�n.x; t//

D �
Z 2x

x

�Z t

x

	x.u/du

�
dt .1 � �n.x; t//

D �
Z 2x

x

	x.u/du .1 � �n.x; 2x//C
Z 2x

x

	x.t/ .1 � �n.x; t// dt:
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From Lemma 5, we have

ˇ̌
ˇ̌�
Z 2x

x

	x.u/du .1 � �n.x; 2x//
ˇ̌
ˇ̌ � x˝x.	x; x/

x.x C 2/
nx2

D x C 2
n

˝x.	x; x/:

Also, we have

ˇ̌
ˇ̌Z 2x

x

	x.t/ .1 � �n.x; t// dt
ˇ̌
ˇ̌ � x C 2

n

p
nX

kD1
˝x

�
	x;

x

k

�
:

Hence, we get

jBn;x.	x/j � x C 2
n

˝x.	x; x/C x C 2
n

p
nX

kD1
˝x

�
	x;

x

k

�
: (21)

Assuming that there exists an integer r such that f .t/ D O.t2r / as t !1: Finally
for a certain constantM > 0 depending only on f; x; r , we obtain

jCn;x.	x/j D Mn

1X
kD1

bn;k.x/

Z 1
2x

sn;k�1.t/t2rdt:

Using Remark 3 and the inequality t � 2.t � x/ for t � 2x, we get

jCn.f; x/j � 22rMn

1X
kD1

bn;k.x/

Z 1
0

sn;k�1.t/.t � x/2rdt

D 22rM 
Dn. 

2r
x ; x/ � bn;0.�x/2r

�
D O.n�r /CO.n�s/ for any s > 0

D O.n�r /: (22)

The proof of the theorem is completed by combining the (19), (20), (21), and (22).
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Hypergeometric Representation of Certain
Summation–Integral Operators

Vijay Gupta and Themistocles M. Rassias

Abstract The general sequence of the summation-integral type operators was
proposed by Srivastava and Gupta [Math. Comput. Modelling 37(12–13)(2003),
1307–1315]. In the present article we give the alternate forms of such operators
in terms of hypergeometric series. We also obtain moments using hypergeometric
series. Finally we obtain the rate of convergence for functions having bounded
derivatives.

Keywords Linear positive operators • Srivastava-Gupta operators • Moments •
Convergence

1 Introduction

About ten years ago Srivastava and Gupta [9] introduced a general sequence of
linear positive operatorsGn;c.f; x/ which when applied to f are defined as

Gn;c .f; x/ D n
1X
kD1

pn;k .x; c/

Z 1
0

pnCc;k�1 .t; c/ f .t/ dt C pn;0 .x; c/ f .0/ ;
(1)
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where

pn;k .x; c/ D .�x/k
kŠ

	.k/n;c .x/

and

	n;c .x/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

e�nx ; c D 0

.1C cx/�n=c ; c 2 N WD f1; 2; 3; : : :g ,

.1 � x/n ; c D �1:

Ispir and Yuksel [7] first considered the Bézier variant of these operators and
estimated the rate of convergence for functions of bounded variation. They termed
these operators as Srivastava–Gupta operators. Later Deo [1] and Verma and
Agrawal [10] also used this terminology and they established some approximation
properties of Gn;c :

The following are the special cases of the operators Gn;c .f; x/ defined in (1),
which have the following forms:

1. If c D 0; then pn;k .x; 0/ D e�nx .nx/
k

kŠ
and operators become the Phillips

operatorsGn;0 .f; x/ ; introduced by [8], which for x 2 Œ0;1/ are defined by

Gn;0 .f; x/ D n
1X
kD1

pn;k .x; 0/

Z 1
0

pn;k�1 .t I 0/ f .t/ dt C e�nxf .0/ :

2. If c D 1; 2; � � � ; one has pn;k .x; c/ D
�
n
c
C k � 1
k

�
.cx/k

.1Ccx/ nc Ck
and operators

become the Durrmeyer type Baskakov operators Gn;1 .f; x/, which was intro-
duced by Gupta et al. in [5], and which for x 2 Œ0;1/ are defined as

Gn;1 .f; x/Dn
1X
kD1

pn;k .x; 1/

Z 1
0

pnC1;k�1 .t; 1/ f .t/ dtC.1Ccx/�n=cf .0/ :

3. If c D �1; then pn;k .x;�1/ D
�
n
k

�
xk.1 � x/n�k; and we get the Bernstein–

Durrmeyer type operatorsGn;�1 .f; x/ introduced by Gupta and Maheshwari [6]
and also studied in [3]. In this case the summation runs from 1 to n, integration
from 0 to 1, and x 2 Œ0; 1�, and Gn;�1 .f; x/ is defined as

Gn;�1 .f; x/Dn
nX

kD1
pn;k .x;�1/

Z 1

0

pn�1;k�1 .t;�1/ f .t/ dt C .1 � x/nf .0/ :
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In the present article we give the alternate hypergeometric representations of the
different cases of the operators Gn;c ; and also establish moments using such
representations. Finally we estimate the rate of convergence for functions having
bounded derivatives.

2 Alternate Forms

It is observed that as an application of the special functions, we can write the
different cases of the operators Gn;c .f; x/ in terms of Hypergeometric series. For
details on Hypergeometric series, we refer the readers to [2].

The hypergeometric function is defined as

2F1.a; bI cI x/ D
1X
kD0

.a/k.b/k

.c/k
:
xk

kŠ
:

The confluent hypergeometric function is a degenerate form of the hypergeometric
function 2F1.a; bI cI x/ which arises as a solution the confluent hypergeometric
differential equation is defined as

1F1.aI cI x/ D
1X
kD0

.a/k

.c/k

xk

kŠ
;

where the Pochhammer symbol .n/k is defined as

.n/k D n.nC 1/.nC 2/.nC 3/ : : : :.nC k � 1/:

Also, it is easy to observe that

lim
b!1 2F1

�
a; bI cI x

b

�
D 1F1.aI cI x/:

2.1 Case c D 0

For this case, we have

Gn;0.f; x/ D n
1X
kD1

pn;k.x; 0/

Z 1
0

pn;k�1.t; 0/f .t/dt C e�nxf .0/; (2)
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where the Szász basis function is given by

pn;k.x; 0/ D e�nx .nx/
k

kŠ
:

The operator (2) can be written as (see also [4])

Gn;0.f; x/ D n
Z 1
0

f .t/

1X
kD1

e�nx
.nx/k

kŠ
e�nt

.nt/k�1

.k � 1/Šdt C e
�nxf .0/

D n2x
Z 1
0

e�n.xCt /f .t/
1X
kD1

.n2xt/k�1

kŠ.k � 1/Šdt C e
�nxf .0/

D n2x
Z 1
0

e�n.xCt /f .t/
1X
kD0

.n2xt/k

.2/kkŠ
dt C e�nxf .0/

D n2x
Z 1
0

e�n.xCt /f .t/ 0F1
��I 2In2xt� dt C e�nxf .0/;

where 0F1
��I 2In2xt� D � .2/.n2xt/�1=2I1.2n

p
xt/ and I1.2n

p
xt/ is the

modified Bessel’s function of first kind of index 1 which is given by

I1.2n
p
xt/ D 1

i
J1.i2n

p
xt/ D 1

i

1X
jD0

1

j Š� .j C 2/.in
p
xt/2jC1:

2.2 Case c D 1

For this case, we have

Gn;1.f; x/ D n
1X
kD1

pn;k.x; 1/

Z 1
0

pnC1;k�1.t; 1/f .t/dt C .1C x/�nf .0/ (3)

where the Baskakov basis function is given by

pn;k.x; 1/ D
�
nC k � 1

k

�
xk

.1C x/nCk D
.n/k

kŠ

xk

.1C x/nCk :

The operator (3) can be written as

Gn;1.f; x/ D
1X
kD1

.n/k

kŠ

xk

.1C x/nCk
Z 1
0

.n/k

.k � 1/Š
tk�1

.1C t/nCk f .t/dt C .1C x/
�nf .0/
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D
Z 1
0

f .t/x

Œ.1C x/.1C t/�nC1
1X
kD1

.n/k.n/k

.k � 1/ŠkŠ
.xt/k�1

Œ.1C x/.1C t/�k�1 dt

C .1C x/�nf .0/

D n2
Z 1
0

f .t/x

Œ.1C x/.1C t/�nC1
1X
kD0

.nC 1/k.nC 1/k
.2/kkŠ

.xt/k

Œ.1C x/.1C t/�k dt

C .1C x/�nf .0/:

Using the hypergeometric series 2F1.a; bI cI x/ D
1X
kD0

.a/k.b/k

.c/kkŠ
xk; we have

Gn;1.f; x/ D n2
Z 1
0

f .t/x

.1C x C t/nC1 2F1

�
nC 1; nC 1I 2I xt

.1C x/.1C t/
�
dt

C .1C x/�nf .0/;

Now applying Pfaff-Kummer transformation

2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
;

we have

Gn;1.f; x/ D n2
Z 1
0

f .t/x

.1C x C t/nC1 2F1

�
nC 1; 1 � nI 2I �xt

1C x C t
�
dt

C .1C x/�nf .0/;

which is the alternate form of the operators (3) in terms of hypergeometric functions.

2.3 Case c D �1

For this case, we have

Gn;�1.f; x/ D n
1X
kD1

pn;k.x;�1/
Z n

0

pn�1;k�1.t; 1/f .t/dt C .1 � x/nf .0/; (4)

where the Benstein basis function is given by

pn;k.x;�1/ D
�
n

k

�
xk.1 � x/n�k
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D n.n � 1/.n � 2/ : : : ::.n � k C 1/
kŠ

xk.1� x/n�k

D .�1/k.�n/k
kŠ

xk.1 � x/n�k :

The operator (4) can be written as

Gn;�1.f; x/ D n
Z 1

0

f .t/

nX
kD1

nŠ

kŠ.n � k/Šx
k.1 � x/n�k .n � 1/Š

.k � 1/Š.n� k/Š t
k�1

�.1 � t/n�kdt C .1 � x/nf .0/

D n
Z 1

0

f .t/x Œ.1 � x/.1 � t/�n�1
nX

kD1
.xt/k�1

� .�n/k.�n/k
kŠ.k � 1/Š

dt

Œ.1 � x/.1 � t/�k�1 C .1 � x/
nf .0/

D n
Z 1

0

f .t/x Œ.1 � x/.1 � t/�n�1
nX

kD0
.xt/k

� .�n/kC1.�n/kC1
kŠ.k C 1/Š

dt

Œ.1 � x/.1 � t/�k C .1 � x/
nf .0/:

Using the fact .�n/kC1 D .�n/.�nC1/.�nC2/ : : : :.�nCk/ D .�n/:.�nC1/k ;
we have

Gn;�1.f; x/ D n2
Z 1

0

f .t/xŒ.1 � x/.1 � t/�n�1
n�1X
kD0

.�nC 1/k.�nC 1/k
.2/kkŠ

�
�

xt

.1 � x/.1 � t/
�k
dt C .1 � x/nf .0/

D n2
Z 1

0

f .t/xŒ.1 � x/.1 � t/�n�1 2F1

�
�
�nC 1;�nC 1I 2I xt

.1 � x/.1 � t/
�
dt C .1 � x/nf .0/:

Now applying Pfaff-Kummer transformation

2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
;

V. Gupta and Th.M. Rassias



Certain Summation–Integral Operators 453

we have

Gn;�1.f; x/ D n2
Z 1

0

f .t/x

.1 � x � t/n�1 2F1

�
�nC 1; nC 1I 2I �xt

1 � x � t
�
dt

C .1 � x/nf .0/;

which is the alternate form of the operators (4) in terms of hypergeometric functions.

3 Moments

This section deals with the moment estimation for the different cases of the operators
Gn;c.f; x/. Here we use the alternate form, i.e. Hypergeometric representation,
which can provide easily the moments of higher order.

Lemma 1. For n > 0; c D �1; 0; 1; 2; � � � and r � 1, we have

Gn;c.t
r ; x/ D nx� .r C 1/

.n � c/.n � 2c/ � � � .n � cr/ 2F1
�n
c
C 1; 1 � r I 2I �cx

�
: (5)

Proof. We shall prove the result separately for different cases.

Case 1. By definition of operator (1) in the case c D 0, we have

Gn;0.t
r ; x/ D n

1X
kD1

e�nx
.nx/k

kŠ

Z 1
0

t r e�nt
.nt/k�1

.k � 1/Šdt

D n

1X
kD1

e�nx
.nx/k

kŠ.k � 1/Š
Z 1
0

e�ntnk�1tkCr�1dt

D ne�nx
1X
kD1

.nx/k

kŠ.k � 1/Š
� .k C r/
nrC1

D ne�nx
1X
kD0

.nx/kC1

.k C 1/ŠkŠ
� .k C r C 1/

nrC1
:

Using .k C 1/Š D .2/k and � .r C k C 1/ D � .r C 1/.r C 1/k; we have

Gn;0.t
r ; x/ D n2xe�nx

1X
kD0

.nx/k

.k C 1/ŠkŠ
.r C 1/k� .r C 1/

nrC1

D x� .r C 1/e�nx
nr�1

1X
kD0

.r C 1/k
.2/kkŠ

.nx/k
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D x� .r C 1/e�nx
nr�1 1F1 .r C 1I 2Inx/ :

Using Kummer’s transformations 1F1.a; bI x/ D ex 1F1.b � a; bI �x/; we have

Gn;0.t
r ; x/ D nx� .r C 1/

nr
1F1 .1� r I 2I �nx/ ;

which is the limiting case of (5) when c ! 0:

Case 2. Taking f .t/ D t r and using n
c

�
n
c
C 1�

k�1 D . nc /k; we have

Gn;c.t
r ; x/ D n

1X
kD1

�
n
c

�
k

kŠ

.cx/k

.1C cx/ ncCk
Z 1
0

�
n
c
C 1�

k�1
.k � 1/Š

.ct/k�1t r

.1C ct/ ncCk dt

D c

1X
kD1

�
n
c

�
k

kŠ

.cx/k

.1C cx/ ncCk
�
n
c

�
k

.k � 1/Š
1

crC1
:
� .k C r/� �n

c
� r�

�
�
n
c
C k�

D �
�
n
c
� r�
cr

1X
kD0

�
n
c

�
kC1

.k C 1/Š
.cx/kC1

.1C cx/ ncCkC1
�
n
c

�
kC1
kŠ

� .k C r C 1/
�
�
n
c
C k C 1�

D �
�
n
c
� r�
cr

1X
kD0

n
c

�
n
c
C 1�

k
n
c

�
n
c
C 1�

k

.2/kkŠ

� � .r C 1/.r C 1/k
�
�
n
c
C 1� �n

c
C 1�

k

.cx/kC1

.1C cx/ ncCkC1

D �
�
n
c
� r�� .r C 1/n2x

�
�
n
c
C 1� crC1.1C cx/ ncC1

1X
kD0

�
n
c
C 1�

k
.r C 1/k

.2/kkŠ

�
cx

1C cx
�k

D �
�
n
c
� r�� .r C 1/n2x

�
�
n
c
C 1� crC1.1C cx/ ncC1 2F1

�
n

c
C 1; r C 1I 2I cx

1C cx
�
:

Using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
; we have

Gn;c.t
r ; x/ D nx� .r C 1/

.n� c/.n � 2c/ � � � .n � cr/ 2F1
�n
c
C 1; 1� r I 2I �cx

�
;

which proves the result when c D 1; 2; 3; � � �
Case 3. By definition of operator (1) in the case c D �1 and using� .rCkC1/ D
� .r C 1/.r C 1/k; we have

Gn;�1.t r ; x/ D n
nX

kD1
pn;k.x/

Z 1

0

pn�1;k�1.t/t rdt
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D n
nX

kD1

.�1/k.�n/k
kŠ

xk.1 � x/n�k

�
Z 1

0

.n � 1/Š
.k � 1/Š.n� k/Š t

kCr�1.1 � t/n�kdt

D n
nX

kD1

.�1/k.�n/k
kŠ

xk.1 � x/n�k .n� 1/Š
.k � 1/Š.n� k/Š

�B.k C r; n � k C 1/

D n
nX

kD1

.�1/k.�n/k
kŠ

xk.1 � x/n�k .n� 1/Š
.k � 1/Š.n� k/Š

�� .k C r/� .n � k C 1/
� .nC r C 1/

D nŠ

� .nC r C 1/
nX

kD0

.�1/kC1.�n/kC1
.2/kkŠ

�� .r C 1/.r C 1/kxkC1.1 � x/n�k�1

D � .nC 1/� .r C 1/
� .nC r C 1/ x.1 � x/n

nX
kD0

.�1/kC1.�n/kC1.r C 1/k
.2/kkŠ

�
� x

1 � x
�k
:

Next .�n/kC1 D .�n/.�nC 1/k; thus

Gn;�1.t r ; x/ D � .nC1/� .rC1/
� .nCrC1/ .1�x/nnx

nX
kD0

.�nC 1/k.r C 1/k
.2/kkŠ

� x

x � 1
�k

D � .r C 1/� .nC 1/
� .nC r C 1/ nx.1 � x/n 2F1

�
�nC 1; r C 1I 2I x

x � 1
�
:

Using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�
; we have

Gn;�1.t r ; x/ D nx� .r C 1/
.nC 1/.nC 2/ � � � .nC r/ 2F1 .�nC 1; 1 � r I 2I x/ ;

which completes the proof in case c D �1:
Remark 1. By Lemma 1, we have the first three moments of the Phillips operators as

Gn;0.1; x/ D 1;Gn;0.t; x/ D x;Gn;0.t2; x/ D x2 C 2x

n
:
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We have the first three moments of the Baskakov–Durrmeyer operators as

Gn;1.1; x/ D 1;Gn;1.t; x/ D nx

n� 1 ;Gn;1.t
2; x/ D n.nC 1/x2 C 2nx

.n � 1/.n� 2/ :

We have the first three moments of the Bernstein–Durrmeyer operators as

Gn;�1.1; x/ D 1;Gn;�1.t; x/ D nx

nC 1 ;Gn;�1.t
2; x/ D n.n � 1/x2 C 2nx

.nC 1/.nC 2/ :

Remark 2. Let  x.t/ D t � x, n 2 N then from Lemma 1, we have

Gn;c. x; x/ D cx

n � c
Gn;c. 

2
x ; x/ D

x.1C cx/.2n � c/C .1C 3cx/cx
.n � c/.n � 2c/ :

Further, for r D 0; 1; 2; : : :, we have

Gn;c. 
r
x; x/ D O

�
n�Œ.rC1/=2�

�
:

Applying Schwarz inequality, we have

Gn;c.j rx j; x/ �
q
Gn;c. 2rx ; x/ D O

�
n�r=2

�
:

In particular for certain � > 2; we can write

Gn;c.j x j; x/ �
r
�x.1C cx/

n
:

Rewriting the operators (1) as

Gn;c.f; x/ D
Z 1
0

Kn;c.x; t/f .t/dt; (6)

whereKn;c.x; t/ is the kernel function given by

Kn;c.x; t/ D
1X
kD1

pn;k.x; c/pnCc;k�1 .t; c/C pn;0.x; c/ı.t/;

and ı.t/ being the Dirac delta function.
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Lemma 2. For certain � > 2 and for fixed x 2 .0;1/; we have

�n;c.x; y/ D
Z y

0

Kn;c.x; t/dt � �x.1C cx/
n.x � y/2 ; 0 � y < x;

1 � �n;c.x; z/ D
Z 1

z
Kn;c.x; t/dt � �x.1C cx/

n.z � x/2 ; x < z <1:

4 Convergence

In this section we discuss the convergence behavior of operators (1) in case c 2
f0; 1; 2; � � � g; for functions having bounded derivatives. Let us denote the class ˚DB

of the functions with growth as:

˚DB D
�
f W f .x/ � f .0/ D

Z x

0

	.t/dt I f .t/ D O.tr /; t !1
�
;

where 	 is bounded on every finite subinterval of Œ0;1/: For a fixed x 2 Œ0;1/,
� � 0 and f 2 ˚DB let us define the metric form as

˝.f; �/ D sup
t2Œx��;xC��\Œ0;1/

jf .t/ � f .x/j:

Theorem 1. Let f 2 ˚DB, x 2 .0;1/ be fixed and c 2 f0; 1; 2; � � � g. If 	.x�/ and
	.xC/ exists, then for certain � > 2; we have

ˇ̌
ˇ̌
ˇGn;c.f; x/ � f .x/ �

	.xC/ � 	.x�/
2

r
�x.1C cx/

n

ˇ̌
ˇ̌
ˇ

� �Œ3C x.2C 3c/�
n

Œ
p
n�X

kD1
˝x

�
	x;

x

k

�

C j	.xC/C 	.x�/j
2

:
cx

n � c CO.n
�r /;

where

	x.t/ D
8<
:
	.t/ � 	.x�/; 0 � t < x
0; t D x
	.t/ � 	.xC/; x < t <1

:
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Proof. By simple computation, we have

Gn;c.f; x/ � f .x/ � 	.xC/ � 	.x�/
2

Gn;c.jt � xj; x/

C 	.xC/C 	.x�/
2

Gn;c.t � x; x/
� An;x.	x/C Bn;x.	x/C Cn;x.	x/; (7)

where

An;x.	x/ D
Z x

0

�Z x

t

	x.u/du

�
dt .�n;c.x; t//;

Bn;x.	x/ D
Z 2x

x

�Z t

x

	x.u/du

�
dt .�n;c.x; t//;

Cn;x.	x/ D
Z 1
2x

�Z t

x

	x.u/du

�
dt .�n;c.x; t//:

Integrating by parts, we have

An;x.	x/ D
Z x

t

	x.u/du�n;c.x; t/jx0 C
Z x

0

�n;c.x; t/	x.t/dt

D
 Z x�x=pn

0

C
Z x

x�x=pn

!
�n;c.x; t/	x.t/dt:

As �n;c.x; t/ � 1, from the monotonicity of ˝x.	x; �/ and the definition of 	x.t/,
we obtain

ˇ̌
ˇ̌Z x

x�x=pn
�n;c.x; t/	x.t/dt

ˇ̌
ˇ̌ � xp

n
˝x

�
	x;

xp
n

�

� 2x

n

Œ
p
n�X

kD1
˝x

�
	x;

x

k

�
:

Taking t D x
x�u and using Lemma 2, we get

ˇ̌
ˇ̌
ˇ
Z x�x=pn

0

�n;c.x; t/	x.t/dt

ˇ̌
ˇ̌
ˇ �

�x.1C cx/
n

Z x�x=pn

0

˝x .	x; x � t/
.x � t/2 dt

� �.1C cx/
n

Z pn
1

˝x

�
	x;

x

u

�
du
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� �.1C cx/
n

p
nX

kD1
˝x

�
	x;

x

k

�
:

Collecting the above estimates, we are led to

jAn;x.	x/j � �Œ1C x.1C c/�
n

p
nX

kD1
˝x

�
	x;

x

k

�
: (8)

Furthermore, we derive

Bn;x.	x/ D
Z 2x

x

�Z t

x

	x.u/du

�
dt .�n;c.x; t//

D �
Z 2x

x

�Z t

x

	x.u/du

�
dt .1 � �n;c.x; t//

D �
Z 2x

x

	x.u/du .1 � �n;c.x; 2x//C
Z 2x

x

	x.t/ .1 � �n;c.x; t// dt:

Using Lemma 2, it yields

ˇ̌
ˇ̌�
Z 2x

x

	x.u/du .1 � �n;c.x; 2x//
ˇ̌
ˇ̌ � x˝x.	x; x/

�x.1C cx/
nx2

D �.1C cx/
n

˝x.	x; x/:

Also, we have

ˇ̌
ˇ̌Z 2x

x

	x.t/ .1 � �n;c.x; t// dt
ˇ̌
ˇ̌ � �Œ1C x.1C c/�

n

p
nX

kD1
˝x

�
	x;

x

k

�
:

Hence, we get

jBn;x.	x/j � �.1C cx/
n

˝x.	x; x/C �Œ1C x.1C c/�
n

p
nX

kD1
˝x

�
	x;

x

k

�
: (9)

Assuming that there exists an integer r such that f .t/ D O.t2r / as t ! 1 for
certain constant M.f; x; r/ > 0; thus

jCn;x.	x/j D M
1X
kD1

pn;k .x; c/

Z 1
2x

pnCc;k�1 .t; c/ t2rdt:
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Applying Remark 2 and the inequality t � 2.t � x/ for t � 2x, we obtain

jCn.f; x/j � 22rM
1X
kD1

pn;k .x; c/ .x/

Z 1
0

pnCc;k�1 .t; c/ .t � x/2rdt

D 22rM 
Gn;c. 

2r
x ; x/ � pn;0 .x; c/ .�x/2r

�
D O.n�r /CO.n�s/ for any s > 0

D O.n�r /: (10)

Finally, by combining the estimates in (7), (8), (9), and (10), we get the desired
result.

Remark 3. For the case c D �1, the rate of convergence can be obtained
analogously and we need not to take any growth in that case, we omit the details.
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On a Hybrid Fourth Moment Involving
the Riemann Zeta-Function

Aleksandar Ivić and Wenguang Zhai

Abstract For each integer 1 � j � 6; we provide explicit ranges for � for which
the asymptotic formula

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2j dt � T

4X
kD0

ak;j .�/ logk T

holds as T ! 1, where �.s/ is the Riemann zeta-function. The obtained ranges
improve on an earlier result of the authors. An application to a weighted divisor
problem is also given.

Keywords Riemann zeta-function • Hybrid moments • Exponent pairs •
Asymptotic formula

1 Introduction

Let as usual �.s/ D
1P
nD1

n�s .<s > 1/ denote the Riemann zeta-function, where

s D � C i t is a complex variable. Mean values of �.s/ in the so-called critical strip
1
2
� � � 1 represent a central topic in the theory of the zeta-function (see, e.g.,

the monographs [10] and [9] for an extensive account). Of special interest are the
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moments on the so-called critical line � D 1
2
. Unfortunately as of yet no bound of

the form

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌2m dt ";m T

1C" (1)

is known to hold for any integer m � 3, while in the cases m D 1; 2

precise asymptotic formulas for the integrals in question are known (see op. cit.).
Throughout this paper, " denotes fixed small positive constants, not necessarily
the same ones at each occurrence, while a;::: denotes the dependence of the -
constant on a; : : : .

Having in mind the difficulties of establishing (1) when m � 3, it appeared
interesting to consider the following problem. For any fixed integer j � 1; let
��4;j .� 1=2/ denote the infimum of all � for which the estimate

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2j dt j;" T

1C" (2)

holds. The left-hand side of (2) may be called a “hybrid” moment, since it combines
moments on the lines <s D 1

2
and <s D � . The problem is to estimate ��4;j for

a given integer j . If the well-known Lindelöf hypothesis (�.1=2C i t/ " jt j") is
true, then ��4;j D 1

2
for any j � 1:However, up to now even ��4;1 D 1

2
is out of reach

by the use of existing methods. We cannot have ��4;j <
1
2

in view of the functional
equation

�.s/ D .s/�.1� s/; .s/ WD � .1
2
.1 � s//
� . 1

2
s/

�s�1=2 � jt j1=2�� :

In his work [11] the first author investigated the integral in (2) for the case j D 1
and the case j D 2: In particular, he proved that ��4;1 � 5

6
D 0:8N3, while if .k; `/ is

an exponent pair (see, e.g., [4] or Chap. 2 of [10] for definitions) with 3k C ` < 1,
then

��4;2 � max

�
` � k C 1

2
;
11k C `C 1
8k C 2

�
;

which implies that ��4;2 � 1953=1984 D 0:984375. Since �.� C i t/  log jt j for
� � 1, it is trivial that ��4;j � 1 for any fixed j � 1. At the end of [11] it was stated,
as an open problem, to prove the strict inequality ��4;j < 1 for any fixed j � 1.

In [14], which is a continuation of [11], the authors proved that indeed ��4;j < 1

holds for any fixed j � 1: In fact, if .k; `/ is an exponent pair with `C.2j�1/k < 1;
then we showed that

��4;j �
`C .6j � 1/k
1C 4jk :

In particular, we have ��4;2 � 37
38
D 0:97368 � � � :
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In [14], which is a continuation of [11], we also considered the possibilities of
sharpening (2) to an asymptotic formula. We showed that, for any given integer
j � 1, there exists a number �1 D �1.j / for which 3

4
< �1 < 1 such that, when

� > �1, there exists an asymptotic formula for the integral in (2) . This is

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2j dt � T

4X
kD0

ak;j .�/ logk T .T !1/; (3)

where all the coefficients ak;j .�/, which depend on � and j , may be evaluated
explicitly. However, in [14] we did not provide explicitly the range of � for which (3)
holds.

In this paper we shall provide some explicit values of � for which (3) holds.

Theorem 1. The asymptotic formula (3) holds in the following ranges:

� >
4

5
D 0:8 .j D 1/;

� > 0:904391 � � � .j D 2/;
� > 0:940001 � � � .j D 3/;
� > 0:959084 � � � .j D 4/;
� > 0:970734 � � � .j D 5/;
� > 0:978286 � � � .j D 6/:

Corollary 1. We have

��4;1 �
4

5
D 0:8 .j D 1/;

��4;2 � 0:904391 � � � .j D 2/;
��4;3 � 0:940001 � � � .j D 3/;
��4;4 � 0:959084 � � � .j D 4/;
��4;5 � 0:970734 � � � .j D 5/;
��4;6 � 0:978286 � � � .j D 6/:

As an application of Theorem 1, we shall consider a weighted divisor problem.
Suppose that ` � 1 is a fixed integer and a is a fixed real number. Define the divisor
function

d4;`.n/ D d4;`.nI a/ D
X

nDn1n2
d4.n1/d`.n2/n

�a
2 ; (4)
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where dk.n/ denotes the number of ways n can be written as a product of k factors
(so dk.n/ is generated by �k.s/). If a D 0; then d4;`.n/ � d4C`.n/:

Henceforth we consider only the case a > 0: Suppose X � 2: It is expected that
the summatory function

P
n�X d4;`.n/ is asymptotic to

X

3X
kD0

ck;`.a/ logk X CX1�a
`�1X
kD0

c0k;`.a/ logk X

as X ! 1; where the constants ck;` and c0k;` are effectively computable. More
precisely, if one defines

E4;`.X/ WD
X
n�X

d4;`.n/ � X
3X

kD0
ck;`.a/ logk X � X1�a

`�1X
kD0

c0k;`.a/ logk X;

then we expectE4;`.X/ D o.X/ to hold asX !1. ThusE4;`.X/ should represent
the error term in the asymptotic formula for

P
n�X d4;`.n/. It is also clear that the

difficulty of the estimation of E4;`.x/ increases with `, and it also increases as a
in (4) gets smaller.

By using (2) and the complex contour integration method, we can prove

Theorem 2. If max
�
��4;j0 � 1

2
; 1
2
� 1

`

�
� a < 1

2
; then for ` � 1 fixed we have

E4;`.X/ " x
1=2C"; (5)

where j0 D 1
2
` if ` is even, and j0 D 1

2
.`C 1/ if ` is odd.

From Theorem 2 and Corollary 1 we obtain at once

Corollary 2. The estimate (5) holds for

3
10
< a < 1

2
; .` D 1; 2/;

0:404391 � � �< a < 1

2
; .` D 3; 4/;

0:440001 � � �< a < 1

2
; .` D 5; 6/;

0:459084 � � �< a < 1

2
; .` D 7; 8/;

0:470734 � � �< a < 1

2
; .` D 9; 10/;

0:478286 � � �< a < 1

2
; .` D 11; 12/:
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2 The Necessary Lemmas

In order to prove our results, we require some lemmas which will be given in this
section. The first lemma is the following upper bound for the fourth moment of
�. 1

2
C i t/; weighted by a Dirichlet polynomial.

Lemma 2.1. Let a1; a2; : : : ; aM be complex numbers. Then we have, for any
" > 0;M � 1 and T � 1,

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4

ˇ̌
ˇ X
m�M

amm
it
ˇ̌
ˇ2dt " T

1C"M.1CM2T �1=2/ max
m�M jamj

2: (6)

This result is due to Watt [16]. It is founded on the earlier work of Deshouillers
and Iwaniec [1], which involved the use of Kloosterman sums, but Watt’s result is
sharper.

We also need some results on power moments of �.s/:

Lemma 2.2. For any fixed A � 4; let us defineM.A/ as

M.A/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

A�4
8
; if 4 � A � 12;

3A�14
22

; if 12 � A � 178=13D 13:6923 � � � ;
416A�2416

2665
; if 178=13 � A � 20028=1313D 15:253 � � � ;

7A�36
48

; if 20028=1313� A � 1836=101D 18:178 � � � ;
32.A�6/
205

; if A � 1836=101:

Then we have the estimate

Z T

1

ˇ̌
�
�
1
2
C i t�ˇ̌A dt " T

1CM.A/C": (7)

Proof. The case 4 � A � 178=13 is contained in Theorem 8.2 of Ivić [10]. Now
suppose that A > 178=13:

Suppose that t1 < t2 < � � � < tR are real numbers which satisfy

jtr j � T .r D 1; 2; � � � ; R/; jts � tr j � 1 .1 � r 6D s � R/;

and

ˇ̌
�
�
1
2
C i tr

�ˇ̌ � V > 0 .r D 1; 2; � � � ; R/:
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The large values estimate (8.29) of Ivić [10] reads

R  T V �6 log8 T C T 29=13V �178=13 log235=13 T (8)

 T 29=13V �178=13 log235=13 T;

if we note that �. 1
2
C i t/" jt j32=205C" (see Huxley [6] and [7]).

We shall also use (8.33) of [10], namely

R  T 2V �12 log16 T: (9)

From (8) and (9) we obtain

Z T

1

ˇ̌
�
�
1
2
C i t�ˇ̌A dt "

(
T 2C

3.A�12/
22 C"; if 12 � A � 178=13;

T
29
13C 32.A�178=13/

205 C"; if A � 178=13: (10)

The formula (8.56) of Ivić [10] reads

R
8<
:
T V �6 log8 T; if V � T 11=72 log5=4 T;

T 15=4V �24 log61=2 T; if V < T 11=72 log5=4 T:
(11)

From (9) and (11) we have

Z T

1

ˇ̌
�
�
1
2
C i t�ˇ̌A dt (12)

"

(
T max.1C 32.A�12/

205 ;2C 7.A�12/
48 /C"; if 12 � A � 24;

T 1C
32.A�6/
205 C"; if A � 24:

Now Lemma 2.2 for the case A > 178=13 follows from (10) and (12).

Lemma 2.3. For 1=2 < � < 1 fixed we define m.�/ .� 4/ as the supremum of all
numbersm .� 4/ such that

Z T

1

j�.� C i t/jm dt " T
1C" (13)

for any " > 0: Then

m.�/ � 4=.3 � 4�/; 1
2
< � � 5

8
;

m.�/ � 10=.5� 6�/; 5
8
� � � 35

54
;

m.�/ � 19=.6� 6�/; 35
54
� � � 41

60
;
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m.�/ � 2112=.859� 948�/; 41
60
� � � 3

4
;

m.�/ � 12408=.4537� 4890�/; 3
4
� � � 5

6
;

m.�/ � 4324=.1031� 1044�/; 5
6
� � � 7

8
;

m.�/ � 98=.31� 32�/; 7
8
� � � 0:91591 : : : ;

m.�/ � .24� � 9/=.4� � 1/.1� �/; 0:91591 : : : � � � 1 � ":

Proof. This is Theorem 8.4 of Ivić [10]. In Ivić–Ouellet [13] some improvements
have been obtained. Thus, it was shown there that m.�/ � 258=.63 � 64�/ for
14=15 � � � c0 and m.�/ � .30� � 12/=.4� � 1/.1 � �/ for c0 � � � 1 � ",
where c0 D .171C

p
1602/=222 D 0:95056 � � � .

Lemma 2.4. Let q � 1 be an integer,Q D 2q: Then for jt j � 3 we have

�

�
1 � q C 2

2qC2 � 2
�
 jt j1=.2qC2�2/ log jt j: (14)

We also have

�. 5
7
C i t/ " jt j0:07077534���C" .jt j � 2/: (15)

Proof. The formula (14) is Theorem 2.12 of Graham and Kolesnik [4]. The
estimate (15) is to be found on p. 66 of [4]. It improves (14) in the case when
q D 2, when one obtains the exponent 1

14
D 0:0714285 � � � .

Lemma 2.5. Suppose 1
2
� �1 < �2 � 1 are two real numbers such that

�.�j C i t/ " jt jc.�j /C" .j D 1; 2/;

then for �1 � � � �2 we have

�.� C i t/ " jt jc.�1/
�2��
�2��1

Cc.�2/ ���1
�2��1

C"
: (16)

Proof. This follows from the well-known Phragmén–Lindelöf principle (convex-
ity); see, e.g., Sect. 8.2 of [10].

Lemma 2.6. Let

I.h; k/ WD
Z 1
�1

�
h

k

��i t
�
�
1
2
C ˛ C i t� � � 1

2
C ˇ C i t� � � 1

2
C � � i t�

� � � 1
2
C ı � i t�w.t/dt;
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where h; k are positive integers with .h; k/ D 1, and ˛; ˇ; �; ı are complex numbers
 1= logT . Then for hk � T 2=11�" we have

I.h; k/ D 1p
hk

Z 1
�1

w.t/

(
Z˛;ˇ;�;ı;h;k .0/C

�
t

2�

��˛�ˇ���ı
Z��;�ı;˛;�ˇ;h;k .0/

C
�
t

2�

��˛��
Z��;ˇ;�˛;ı;h;k .0/C

�
t

2�

��˛�ı
Z�ı;ˇ;��;�˛;h;k .0/

C
�
t

2�

��ˇ��
Z˛;��;�ˇ;ı;h;k .0/C

�
t

2�

��ˇ�ı
Z˛;ı;�;�ˇ;h;k .0/

)
dt

CO"
�
T 3=4C".hk/7=8.T=T0/9=4

�
: (17)

The function Z:::.0/ is given in term of explicit, albeit complicated Euler products.

The formula (17) is due to Hughes and Young [5]. It is intended primarily for the
asymptotic evaluation of the integral

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌M �

1
2
C i t�ˇ̌2 dt; (18)

where

M.s/ WD
X
h�T 


a.h/h�s

is a Dirichlet polynomial of length T 
 with complex coefficients a.h/: The integral
in (18) reduces to a sum of integrals of the type I.h; k/ after one developsˇ̌
M
�
1
2
C i t�ˇ̌2 and chooses suitably the weight function w.t/, which is discussed

below. In general, the evaluation of the integral in (18) is an important problem in
analytic number theory. It was studied by Deshouillers and Iwaniec [1], Watt [16]
and most recently by Motohashi [15], all of whom used powerful methods from the
spectral theory of the non-Euclidean Laplacian. In [5] Hughes and Young obtained
an asymptotic formula for (18) when 
 D 1

11
� ": Two of the chief ingredients

in their proof are an approximate functional equation for the product of four zeta
values, and the so-called delta method of Duke et al. [2]. Watt’s result (6) gives
the expected upper bound O".T 1C"/ in the range 
 � 1

4
, but does not produce an

asymptotic formula for the integral in (18) (or (6)). At the end of [15], Motohashi
comments on the value 
 D 1

11
�" of [5]. He says: “Our method should give a better

result than theirs, if it is combined with works by N. Watt on this mean value.”
Note that the bound O".T 1C"/ for (18) with T 
 ; 
 D 1

2
would give the hitherto

unproved sixth moment of zeta-function in the form
Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌6 dt " T

1C";
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which is (1) with m D 3.
The weight function w.t/ .� 0/ which appears in the integral in (17) is a smooth

function majorizing or minorizing the characteristic function of the interval ŒT; 2T �.
The fact that the integrand in (18) is nonnegative makes this effective. We shall
actually take two such functions: w.t/ D w1.t/ supported in ŒT � T0; 2T C T0�
such that w1.t/ D 1 for t 2 ŒT; 2T �, and w.t/ D w2.t/ supported in ŒT; 2T � such
w2.t/ D 1 for t 2 ŒT � T0; 2T � T0�. For an explicit construction of such a smooth
function w.t/ see, e.g., Chap. 4 of the first author’s monograph [9]. We then have, in
either case, w.r/.t/ r T

�r
0 for all r D 0; 1; 2; : : : , where T0 is a parameter which

satisfies T 1=2C"  T0  T , and appears in the error term in (17).

3 Proof of Theorem 1

3.1 The Case When j D 1

In this subsection we shall prove Theorem 1 in the case when j D 1: However, we
shall deal with the general case and restrict ourselves to j D 1 only at the end of
the proof.

Suppose T � 10. It suffices to evaluate the integral

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2j dt;

replace then T by T 2�j for j D 1; 2; : : : and sum the resulting estimates. For
convenience, henceforth we set L WD logT: Let s D � C i t; 1

2
< � � 1 and

T � t � 2T: We begin with the well-known Mellin inversion integral (see, e.g., the
Appendix of [10]),

e�x D 1

2�i

Z
.c/

x�w� .w/dw .c > 0; x > 0/; (19)

where
R
.c/

denotes integration over the line <w D c:
Suppose T 1=11  Y  T is a parameter to be determined later. In (19) we set

x D n=Y; multiply by dj .n/n�s , and then sum over n: This gives

1X
nD1

dj .n/e
�n=Y n�s D 1

2�i

Z
.2/

Y w�j .s C w/� .w/dw: (20)

Suppose �0 is fixed number which satisfies 1
2
� �0 < min.1; �/ and will be

determined later. In (20) we shift the line of integration to <w D �0 � � and apply
the residue theorem. The pole at w D 1 � s, which is of degree j , contributes
the residue which is T �10; by Stirling’s formula for � .w/: The pole at w D 0

contributes the residue �j .s/: Thus we have
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�j .s/ (21)

D
1X
nD1

dj .n/e
�n=Y n�s � 1

2�i

Z
.�0��/

Y w�j .s C w/� .w/dwCO.T �10/:

By the well-known elementary estimate
X
n�u

dj .n/ u logj�1 u

and partial summation it is easy to see that
X

n>YL 2

dj .n/e
�n=Y n�s  T �10:

By Stirling’s formula for � .w/ again we have

1

2�i

Z
<wD�0��;j=wj>L 2

Y w�j .s C w/� .w/dw T �10:

Let Y1 WD T 1=11�": Inserting the above two estimates into (21) we can write

�j .s/ D B1.s/C B2.s/C B3.s/C B4.s/; (22)

say, where

B1.s/ WD
X
n�Y1

dj .n/e
�n=Y n�s ;

B2.s/ WD
X

Y1<n�YL 2

dj .n/e
�n=Y n�s ;

B3.s/ WD � 1

2�i

Z
<wD�0��;j=wj�L 2

Y w�j .s C w/� .w/dw;

B4.s/ WD O.T �10/:
The partitioning in (22) is a new feature in the approach to this problem. The
flexibility is present in the parameters Y and �0, which will allow us to use
Lemmas 2.2 and 2.3, hence to connect our problem to the power moments of
j�.� C i t/j.

Therefore from (22) we have, since jabj � 1
2
jaj2 C 1

2
jbj2,

j�.� C i t/j2j D jB1.� C i t/j2

C
X
2�k�4

O
�jB1.� C i t/Bk.� C i t/j C jBk.� C i t/j2� :
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Multiplying the above relation by
ˇ̌
�
�
1
2
C i t�ˇ̌4 and integrating, we obtain

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2j dt D J1 C X

2�k�4
O.Jk C J 0k/; (23)

say, where

Jk WD
Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 jBk.� C i t/j2dt;

J 0k WD
Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 jB1.� C i t/Bk.� C i t/jdt:

The main contribution to the integral in (3) will come from the integral J1, with
our choice Y1 D T 1=11�". In [14], the authors evaluated the integral similar to J1
with the help of the result of Hughes and Young (Lemma 2.6). Actually, disregarding
the harmless factor e�n=Y , the integral I1 in (4.6) of [14] is just the integral J1 if the
parameter Y D T 1=.11j /�"1 therein is replaced by Y1 D T 1=11�" defined above.
For the sake of completeness we shall give the details of the evaluation of J1. As a
technical convenience, we consider instead of J1 the weighted integral

J � WD
Z 1
�1

w.t/
ˇ̌
�
�
1
2
C i t�ˇ̌4

ˇ̌
ˇ X
n�Y1

dj .n/e
�n=Y n���i t

ˇ̌
ˇ2 dt; (24)

with w.t/ D wj .t/ .� 0I j D 1; 2/ as in the discussion following Lemma 2.6.
We note that

Z 1
�1

w2.t/
ˇ̌
�
�
1
2
Ci t�ˇ̌4

ˇ̌
ˇ X
n�Y1
� � �
ˇ̌
ˇ2 dt�J1�

Z 1
�1

w1.t/
ˇ̌
�
�
1
2
Ci t�ˇ̌4

ˇ̌
ˇ X
n�Y1
� � �
ˇ̌
ˇ2 dt;

and we shall show that the same asymptotic formula holds for the integral with w1.t/
and w2.t/ above, which will show then that such a formula holds for J1 as well. We
write the square of the sum in (24) as

ˇ̌
ˇ X
n�Y1

dj .n/e
�n=Y n���i t

ˇ̌
ˇ2 (25)

D
X

m;n�Y1
dj .m/dj .n/e

�m=Y e�n=Y
�m
n

��i t
.mn/��

D
X
ı�Y1

ı�2�
X

h�Y1=ı;k�Y1=ı;.h;k/D1
dj .ıh/dj .ık/e

�ıh=Y e�ık=Y .hk/��
�
h

k

��i t
;



472 A. Ivić and W. Zhai

where we put m D ıh; n D ık; .h; k/ D 1. With the aid of (25) it follows that J �
reduces to the summation of integrals of the type

I�.h; k/ WD
Z 1
�1

w.t/
ˇ̌
�
�
1
2
C i t�ˇ̌4

�
h

k

��i t
dt ..h; k/ D 1/:

We continue now the proof of Theorem 1, and we multiply (17) by

dj .ıh/dj .ık/e
�h=Y e�k=Y .hk/��

and insert the resulting expression in (24). The error term in (17) makes a
contribution which will be, since dj .n/" n

",

"

X
ı�Y1

ı"�2�
X

h�Y1=ı;k�Y1=ı
T 3=4C".hk/7=8�� .T=T0/9=4

" T
3=4C"Y 15=4�2�1 .T=T0/

9=4:

Note that Y
15
4 �2�
1 < Y

11
4

1 because � > 1
2
. Therefore we see, since Y1 D T 1

11�", as in
the discussion made in [5], that we obtain first the desired asymptotic formula, with
an error term O.T 1�"1 / for some "1 > 0, for the twisted integral J � in (24), withˇ̌
�
�
1
2
C i t�ˇ̌4 replaced by

�
�
1
2
C ˛ C i t� � � 1

2
C ˇ C i t� � � 1

2
C � � i t� � � 1

2
C ı � i t� :

Finally, if ˛; ˇ; �; ı all tend to zero, we obtain the desired asymptotic formula

J1 � T
4X

kD0
bkIj .�/ logk T .T !1; /; (26)

and the coefficients bkIj .�/ depend on � and j: It remains then to show that the
contribution of Jk and J 0k in (23), for 2 � k � 4, is of a lower order of magnitude
than the right-hand side of (26), and Theorem 1 will follow.

We shall estimate the integral J2 by Lemma 2.1. We split the range of summation
in B2.s/ intoO.logT / ranges of summation of the form

Y1 �M < n �M 0 � 2M  YL 2:

Hence by Lemma 2.1 and the well-known elementary bound

dj .n/ " n
" (27)
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we have

J2  L max
Y1�M�YL 2

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4

ˇ̌
ˇ X
M<n�M 0�2M

dj .n/e
�n=Y n���i t

ˇ̌
ˇ2dt

" max
Y1�M�YL 2

T 1C"M.1CM2T �1=2/ max
M<n�2M d

2
j .n/e

�2n=Y n�2�

" max
Y1�M�YL 2

T 1C".M 1�2� CM3�2�T �1=2/

" L
2T 1C3"Y 1�2�1 C T 1=2C3"Y 3�2�L 8�4�

" T
1C"Y 1�2�1 C T 1=2C"Y 3�2� :

Since Y1 D T 1
11�", we see that

J2 " T
1�" (28)

if

Y D T
1

6�4� �"; (29)

and the condition T
1
11  Y  T is seen to hold.

We turn now to the estimation of the integral J3. From its definition we have

B3.� C i t/  Y �0��
Z L 2

�L 2

j�.�0 C i t C iv/jj dv;

hence by using this bound and Cauchy’s inequality we infer that

jB3.� C i t/j2  Y 2�0�2�L 2

Z L 2

�L 2

j�.�0 C i t C iv/j2j dv:

Thus by integration we have

J3  Y 2�0�2�L 2

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4

 Z L 2

�L 2

j�.�0 C i t C iv/j2j dv
!
dt:

Suppose now that �0, besides 1
2
� �0 < min.1; �/, also satisfies the condition

m.�0/ > 2j: (30)

Let

q WD m.�0/

2j
; p WD m.�0/

m.�0/� 2j : (31)
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Then

p > 1; q > 1;
1

p
C 1

q
D 1;

and by Hölder’s inequality for integrals we obtain

J3  Y 2�0�2�L 2

�Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4p dt

� 1
p

(32)

�
 Z 2T

T

 Z L 2

�L 2

j�.�0 C i t C iv/j2j dv
!q
dt

! 1
q

:

We have
Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4p dt " T

1CM.4p/C"; (33)

where we shall use the bounds for M.A/ furnished by Lemma 2.2. By Hölder’s
inequality again we have

 Z L 2

�L 2

j�.�0 C i t C iv/j2j dv
!q


Z L 2

�L 2

j�.�0 C i t C iv/j2jqdv �
 Z L 2

�L 2

1dv

! q
p

 L
2q
p

Z L 2

�L 2

j�.�0 C i t C iv/j2jqdv:

Therefore

Z 2T

T

 Z L 2

�L 2

j�.�0 C i t C iv/j2j dv
!q
dt (34)

 L
2q
p

Z 2T

T

 Z L 2

�L 2

j�.�0 C i t C iv/j2jqdv
!
dt

D L
2q
p

Z L 2

�L 2

dv

Z 2T

T

j�.�0 C i t C iv/j2jqdt

D L
2q
p

Z L 2

�L 2

dv

Z 2T

T

j�.�0 C i t C iv/jm.�0/dt

" T
1C":
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From (32)–(34) and (29) we obtain

J3 " Y
2�0�2�L 2

�
T 1CM.4p/C"

� 1
p

�
T 1C"L

2q
p C2

� 1
q

(35)

" Y
2�0�2�T 1C

M.4p/
p C"L 4 " T

1�"

if T
M.4p/
p C3"  Y 2��2�0 . With the choice (29) this condition reduces to

� >

3M.4p/

p
C �0

2M.4p/

p
C 1 : (36)

To bound the integrals J 0k (see (23)) note that from (26), (28), (35) and Cauchy’s
inequality for integrals we obtain

J 0k � J 1=21 J
1=2

k  T 1�2"L 2  T 1�" .k D 2; 3/: (37)

Obviously we have

J4  T �18; (38)

and consequently

J 04  T �16: (39)

From (26), (28), (35) and (37)–(39) we obtain that, if (30) and (36) hold,

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2dt � T

4X
kD0

bkIj .�/ logk T .T !1/;

This implies that

Z T

1

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t/j2dt � T

4X
kD0

akIj .�/ logk T .T !1/;

where the akIj ’s are constants which are easily expressible in term of the bkIj ’s.
Now we determine the permissible range of � from (36) for the case j D 1: We

take �0 D 5
8
. Lemma 2.3 gives m.�0/ D m.5

8
/ � 8, so (29) holds, and p D 4

3
.

Then (36) reduces to � > 4
5
:

Remark 1. When j D 2; 3; 4; the above procedure can also give nontrivial results.
Actually, when j D 2; we take �0 D 35

54
and (36) becomes � > 71

78
D 0:91025 � � � :

When j D 3; we take �0 D 5
6

and (36) becomes � > 659
690
D 0:95507 � � � : When
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j D 4; we take �0 D 7
8

and (36) becomes � > 221
229
D 0:96506 � � � : However, in

Sect. 3.2 we shall give better ranges for � in these three cases.

Remark 2. When j > 4, the above method does not give good results in view
of the existing bounds for the functions M.A/ and m.�/ defined in Lemmas 2.2
and 2.3, respectively. However, in that case it is not difficult to see that (3) holds
for � > ��4;j , the infimum of numbers for which (2) holds. Thus (3) will hold for
� > .`C .6j � 1/k/=.1C 4jk/ when .k; `/ is an exponent pair. To see this, note
first that the discussion preceding (30) yields

J3  Y 2�0�2�L 2 max
jvj�L 2

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.�0 C i t C iv/j2j dt: (40)

This is almost the same integral as the initial one, and the conclusion of Theorem 1
of our joint paper [14] holds, namely

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.� C i t C iv/j2j dt j;" T

1C" .jvj � L 2/; (41)

if

� > �0 D `C .6j � 1/k
1C 4jk ; `C .2j � 1/k < 1; (42)

and .k; `/ is an exponent pair. With �0 as in (41) and � � �0 C ı .ı > 0/ one has
trivially J3  T 1�1=11 for ı; " sufficiently small (since Y 2�0��  T �2=11C2ı"), and
we get an asymptotic formula for the initial integral in the range � > �0 for j > 4:

Remark 3. We may further discuss the asymptotic formula (3). Denote by, say,
E.T I �; j / the difference between the left and right-hand side in (3), thusE.T I �; j /
is the error term in the asymptotic formula for our integral. Let c.�; j / be the
infimum of numbers c such that, for a given integer j � 1,

E.T I �; j / T c:

We know that c.�; j / < 1 by [14], and it seems reasonable to expect that
c.�; j / � 1

2
. Namely in case when j D 0, we have the fourth moment of

j�.1=2 C i t/j, and in this case a precise asymptotic formula is known, and the
exponent of the error term cannot be smaller than 1

2
(see [12]). However, obtaining

any qualitative results on c.�; j / will be difficult, one of the reasons being that it is
hard from the method of Hughes and Young [5] to get explicit O-estimates for the
error terms in their formulas.
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3.2 The Case When j � 2

To deal with the case j � 2 we shall use an induction method. Namely, for each
j � 1; we shall prove that there is a constant 1

2
< cj < 1 such that (41) holds in the

range � > cj : When j D 1; we can take c1 D 4
5

from the result in Sect. 3.1.
Let C.�/ > 0 be a function which connects . 5

7
; 0:07077534 � � �/ and the points

.aq; bq/ .q � 3/ with line segments, where

aq WD 1 � q C 2
2qC2 � 2 ; bq WD

1

2qC2 � 2 ; (43)

and q D q.j /will be suitably chosen. We then have, in view of Lemmas 2.4 and 2.5,

�.� C i t/ " jt jC.�/C" .� � 5
7
/: (44)

Now we suppose that j � 2 and we have already defined cl for any 1 � l < j:

From (40) and (44) we have

J3  Y 2�0�2�L 2 max
jvj�L 2

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.�0 C i t C iv/j2C2.j�1/ dt (45)

" Y
2�0�2�T 2C.�0/C2"L 2 max

jvj�L 2

Z 2T

T

ˇ̌
�
�
1
2
C i t�ˇ̌4 j�.�0 C i t C iv/j2.j�1/ dt

" Y
2�0�2�T 2C.�0/C1C3"

" T
. 1
6�4� �"/.2�0�2�/C2C.�0/C1C3"

" T
�0��
3�2� C2C.�0/C1C3"

if �0 > cj�1:
Take �0 D cj�1 C ı; where ı > 0 is a small positive constant. When

� >
6C.cj�1/C cj�1
4C.cj�1/C 1 ; (46)

from (45) we have

J3 " T
1�"

if ı; " are sufficiently small.
We define the sequence cj .j � 1/ as follows:

c1 D 4

5
; cj WD 6C.cj�1/C cj�1

4C.cj�1/C 1 .j � 2/: (47)
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It is easy to see that cj < 1 for any j since C.�/ < 1
2
.1 � �/: From the above

procedure and the results in Sect. 3.1 we see that the asymptotic formula (3) holds
for � > cj for any j � 2:

We provide now the explicit values of cj when j D 2; 3; 4; 5; 6; and we remark
that continuing in this fashion we could obtain the values for j > 6 as well.

1. The case j D 2: from Lemma 2.4 we have C.5
7
/ D 0:07077534 � � � ; C. 5

6
/ D

1
30
D 0:03333333 � � � : Thus from Lemma 2.5 we have C.4

5
/ D 0:0438170952

� � � : Hence

c2 D 6C.4=5/C 4=5
4C.4=5/C 1 D 0:904391 � � � :

2. The case j D 3: from (3.25) we have a4 D 28
31
< c2 < a5 D 119

126
: From

Lemma 2.4 we have C.28
31
/ D 1

62
; C. 119

126
/ D 1

126
: From Lemma 2.5 we get

C.c2/ D 0:01589736 � � � : Hence

c3 D 6C.c2/Cc2
4C.c2/C1 D 0:9400013 � � � :

3. The case j D 4: we have a4 D 28
31
< c3 < a5 D 119

126
: From Lemma 2.5 we get

C.c3/ D 0:008819601 � � � : Hence

c4 D 6C.c3/Cc3
4C.c3/C1 D 0:959084 � � � :

4. The case j D 5: we have a5 D 119
126

< c4 < a6 D 123
127
: From Lemma 2.5 we get

C.c4/ D 0:005502913 � � � : Hence

c5 D 6C.c4/Cc4
4C.c4/C1 D 0:970734 � � � :

5. The case j D 6: we have a6 D 123
127

< c5 < a7 D 501
510
: From Lemma 2.5 we get

C.c5/ D 0:0035902 � � � : Hence

c6 D 6C.c5/Cc5
4C.c5/C1 D 0:978286 � � � :

Remark 4. It is not difficult to evaluate additional values of cj . For example, we
have c7 D 0:983536; c8 D 0:987254; c9 D 0:990005; c10 D 0:992046; c11 D
0:993616:When j large, the value of cj is close to 1:

Remark 5. The values of cj .j � 2/ depend on the upper bound of �.� C i t/:

Therefore we can improve the values of cj .j � 2/ if we have better upper bounds
for �.� C i t/: For example, instead of Lemma 2.4 (Th. 2.12 of Graham-Kolesnik
[4]), we could use Theorem 4.2 of theirs (p. 38), which is strong for any q � 1:

Then we can get small improvements for any j � 2: We also remark that we have
(see (7.57) of [10])
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�.� C i t/  t .kC`��/=2 log t

�
� � 1

2
; ` � k � �

�
;

where .k; `/ is an exponent pair. A judicious choice of the exponent pair .k; `/,
especially the use of new exponent pairs due to Huxley (see, e.g., his papers [7] and
[8]), would likely lead to some further small improvements.

Kevin Ford [3] proved

j�.� C i t/j � 76:2t4:45.1��/3=2 log2=3 t

for 1
2
� � � 1; t � 3. This estimate is quite explicit, and best when � is close to 1:

This estimate would imply better values of cj when j is large. There is, however,
no simple procedure which yields (in closed form) the range for � for which the
asymptotic formula (3) holds, for any given j .

4 Proof of Theorem 2

In this section we shall prove Theorem 2. By the definition of the generalized divisor
function dk.n/ we have, for 0 � a < 1

2
and <s > 1,

1X
nD1

d4;`.n/n
�s D

1X
n1;n2D1

d4.n1/d`.n2/n
�a
2 .n1n2/

�s D �4.s/�`.s C a/: (48)

By using Perron’s inversion formula (see, e.g., the Appendix of [10]) we have

X
n�X

d4;`.n/ D 1

2�i

Z 1C"CiX

1C"�iX
�4.s/�`.s C a/X

s

s
ds CO".X"/; (49)

if we note that d4;`.n/";` n
": Now we put j0 D 1

2
` if ` is even, and j0 D 1

2
.`C1/

if ` is odd, and then move the line of integration in (49) to � D 1
2
: In doing this we

encounter two poles. These are s D 1, a pole of order four, and s D 1 � a which is
a pole of order `: It is easy to verify that the sum of residues of the integrand in (4)
is of the form (4). Thus from (5), (49) and the residue theorem we obtain

E4;`.X/ D I1 C I2 � I3 CO".X"/; (50)

say, where



480 A. Ivić and W. Zhai

I1 WD 1

2�i

Z 1
2CiX

1
2�iX

�4.s/�`.s C a/X
s

s
ds;

I2 WD 1

2�i

Z 1C"CiX
1
2CiX

�4.s/�`.s C a/X
s

s
ds;

I3 WD 1

2�i

Z 1C"�iX
1
2�iX

�4.s/�`.s C a/X
s

s
ds:

For �.s/ we have the bounds

�.� C i t/
8<
:
.2C jt j/ 1��3 log.2C jt j/; if 1

2
� � � 1;

log.2C jt j/; if 1 � � � 2:
(51)

which follows from the standard bounds

�. 1
2
C i t/ jt j 16 log jt j; �.� C i t/ log jt j .� � 1; jt j � 2/

and convexity (see, e.g., (1.67) of [10]). Recalling the condition

max
�
��4;j0 �

1

2
;
1

2
� 1
`

�
� a < 1

2
;

we obtain

jI2j C jI3j (52)


Z 1�a
1
2

X
4.1��/

3 C `.1���a/
3 �1X� log4C` Xd�

C
Z 1

1�a
X

4.1��/
3 �1X� log4C` Xd� C

Z 1C"

1

X�1X� log4C` Xd�

 X
1
2 log4C` X:

Now we estimate I1: When ` is even, we obtain directly I1 " X
1=2C", since

j0 D 1
2
`. Therefore we consider in detail the case when ` is odd. Let j1 D `� j0 D

1
2
.` � 1/ D j0 � 1: Then we have by Cauchy’s inequality that
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Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌` dt

D
Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌j0Cj1 dt


�Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌2j0 dt

�1=2

�
�Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌2j1 dt

�1=2
:

Since ��4;j0 � 1
2
� a, we have 1

2
C a � ��4;j0 : Hence from (2) we obtain

Z T

0

j�. 1
2
C i t/j4 ˇ̌� � 1

2
C aC i t�ˇ̌2j0 dt " T

1C":

Similarly we have

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌2j1 dt " T

1C":

From the above three estimates we obtain

Z T

0

ˇ̌
�
�
1
2
C i t�ˇ̌4 ˇ̌� � 1

2
C aC i t�ˇ̌` dt " T

1C";

which combined with integration by parts gives

I1 " X
1
2C": (53)

By combining (50), (52), and (53) we complete the proof of Theorem 2.
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On the Invertibility of Some Elliptic Operators
on Manifolds with Boundary
and Cylindrical Ends

Mirela Kohr and Cornel Pintea

Abstract In this paper we perform several steps towards the layer potential
theory for the Brinkman system on manifolds with boundary and cylindrical ends.
In addition, we refer to the Dirichlet problem for a Laplace type operator on
parallelizable manifolds with cylindrical ends.

Keywords Boundary value problem • Brinkman operator • Deformation
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boundary and cylindrical ends • Parallelizable manifold • Pseudodifferential
operator • Translation invariant operator in a neighborhood of infinity
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1 Introduction

The methods of layer potential theory are frequently used, due to their effectiveness,
to analyze elliptic boundary value problems both on compact and noncompact
manifolds. For example, the case of the Laplace operator on compact Riemannian
manifolds has been intensively studied by Mitrea and Taylor [16–21] (see also [13]).
Also, the cases of the Stokes and (generalized) Brinkman systems, as well as the
Navier–Stokes system, have been considered by Mitrea and Taylor [16], Dindos̆
and Mitrea [4], and Kohr, Pintea and Wendland [10,11]. The role of potential theory
in the study of elliptic boundary value problems on Lipschitz domains in Euclidean
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setting is well emphasized by the pioneering works of Costabel [2], Fabes, Kenig,
and Verchota [7], Dahlberg, Kenig and Verchota [3], Jerison and Kenig [9], Verchota
[24]. Recent relevant works in this setting are due to Fabes, Mendez and Mitrea
[6], Escauriaza and Mitrea [5], Hsiao and Wendland [8], Mitrea and Wright [23].
The layer potential approach for the Laplace operator on more general noncompact
manifolds, i.e., manifolds with cylindrical ends, was developed by Mitrea and Nistor
[15] (see also [14]). For harmonic differential forms in nonsmooth domains we refer
the reader to [12].

In this paper we show the invertibility of some operators associated with the
Brinkman system on manifolds with boundary and cylindrical ends. In addition, we
refer to the Dirichlet problem for a Laplace type operator on parallelizable manifolds
with cylindrical ends.

2 Pseudodifferential Operators

Let us denote by OPS`.Rn/ � OPS` the class of pseudodifferential operators
p.x;D/ of order ` on R

n. Also, by OPS`cl we denote the class of classical
pseudodifferential operators of order ` on R

n. Recall that an operator P.x;D/ is
called a classical pseudodifferential operator of order ` if its symbol p.x; �/ has
the asymptotic expansion

p.x; �/ Ï p`.x; �/C p`�1.x; �/C � � � ; (1)

wherepk.x; �/ is smooth in x and � and homogeneous of degree k in � (for j�j � 1),
i.e., pk.x; t�/ D tkpk.x; �/, 8 t > 0, k D `; `�1; : : : The meaning of (1) is that, for
each k � 1, the difference between the left-hand side and the sum of the first k terms
on the right-hand side belongs to Hörmander’s class S`�k1;0 (see, e.g., [8, Chap. 6]).
We denote the class S`�k1;0 simply by S`�k . The term p`.x; �/ in (1) is called the
principal symbol of P.x;D/ and is denoted by �0.P I x; �/. Recall that a Schwartz
kernel, alongside the corresponding integral representation, can be associated with
every pseudodifferential operator (see, e.g., [16, p. 186]). Let OPS`.˝/ be the set
of pseudodifferential operators of order ` on an open set ˝ � Rn.

If M is a smooth n-dimensional manifold, we say that P W C10 .M/! C1.M/

belongs to the classOPS`.M/ of pseudodifferential operators of order ` onM if the
Schwartz kernel of P is smooth off the diagonal inM �M and if for any coordinate
neighborhood U in M with  W U ! O a diffeomorphism onto an open set O of
Rn, the map C10 .O/ ! C10 .O/; u 7! P.u ı / ı �1 belongs to OPS`.O/. If
E;F are vector bundles over the smooth manifold M , one can similarly define the
concept of pseudodifferential operator P W � .E/! � .F / of order `, where � .E/
and � .F / are the C1.M/-modules of smooth sections of E and F , respectively.
We denote by OPS`.E; F / the collection of all such pseudodifferential operators
of order ` (for more details see e.g., [25]).
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3 Manifolds with Cylindrical Ends

Recall that a manifold M with cylindrical ends (see [15]) consists of a compact
manifoldM1 with boundary @M1 ¤ ; and a decomposition

M WD M1 [ .@M1 � .�1; 0�/ ; (2)

in which the boundary ofM1 is identified with @M1�f0g and the union is considered
along the boundaries ofM1 and @M1 � .�1; 0�. The Riemannian structure onM is
provided by the Riemannian metric

g.x; t/ D g
@M1
.x/C dt2; (3)

where g
@M1

is a Riemannian metric on the boundary of M1.
If M D M1 [ .@M1 � .�1; 0�/ is a manifold with cylindrical ends and s � 0,

consider the translation with �s in the x-direction

	s W @M1 � .�1; 0�! @M1 � .�1;�s�: (4)

If s < 0, then 	s is defined as 	�1�s .
For boundary value problems in our context, the manifolds with boundary and

cylindrical ends are the proper objects to be considered.

Definition 1 ([15]). Let N be a Riemannian manifold with boundary @N . We call
N a manifold with boundary and cylindrical ends if there exists an open subset V of
N isometric to .�1; 0/ �X , where X is a compact manifold with boundary, such
that N n V is compact.

Lemma 1 ([15]). Let N be a Riemannian manifold with boundary @N . Then N is
a manifold with boundary and cylindrical ends if and only if there exists a manifold
with cylindrical ends (without boundary)M with a standard decomposition

M DM1 [ .@M1 � .�1; 0�/

and containingN such thatN\.@M1 � .�1; 0�/ D X�.�1; 0� for some compact
manifold with boundaryX 	 @M1.

This result has been obtained in [15, Lemma 5.2] based on the property that any
metric of N is equivalent to a product metric in a small tubular neighborhood of
@N . For a general tubular neighborhood theorem, we refer the reader to [1].
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4 Translation Invariant Operators in a Neighborhood
of Infinity

In this section we consider operators acting on one forms, on a manifold with
cylindrical ends that are translation invariant in a neighborhood of infinity (see, e.g.,
[15, Definition 1.1] in the case of translation invariant in a neighborhood of infinity
operators acting on functions).

Definition 2. A translation invariant in a neighborhood of infinity operator is
a linear and continuous map P W C10 .M;�1TM/ ! C1.M;�1TM/ whose
Schwartz kernel is supported in a neighborhood of the diagonal

f.x; y/ 2M �M W dist.x; y/ < "g

for some " > 0, and there exists R > 0 such that

P.˚�s !/ D ˚�s .P!/;

for all s > 0 and all ! 2 C10
�
@M1 � .�1;�R�;�1T .@M1 � .�1;�R�/

�
. The

space of all classical pseudodifferential operators of order m that are translation
invariant in a neighborhood of infinity is denoted by �m

inv.M;�
1TM/.

Note that the Riemannian metric (3) is translation invariant in a neighborhood of
infinity in the sense that ˚�s g D g for sufficiently large absolute value of s. The
same invariance property holds for the Levi–Civita connection (for more details
see [15]).

Next, we use the notations

��1inv .M;�1TM/ W D
\
m2Z

�minv.M;�
1TM/; �1inv.M;�

1TM/ W D
[
m2Z

�minv.M;�
1TM/:

The following lemma can be obtained by means of similar arguments to the case of
operators from C10 .M/ to C1.M/ (see, e.g., [15, Lemma 1.2]).

Lemma 2. If M is an n-dimensional manifold with cylindrical ends, then every
operator P in the class ��n�1inv .M;�1TM/ induces a bounded operator on
L2.M;�1TM/.

For each s 2 R, we denote by Hs.M;�1TM/ the Sobolev space of one forms,
defined by Hs.M;�1TM/ WD Hs.M/˝ C1.M;�1TM/.

Let �m.P / 2 Sm.T �M;�1TM/=Sm�1.T �M;�1TM/ denote the principal
symbol of an operator P 2 �m

inv.M;�
1TM/. Then we have the following result

(see [15]).

Lemma 3. If M is a manifold with cylindrical ends and P 2 �m
inv.M;�

1TM/,
then
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a) �r
inv.M;�

1TM/�r 0

inv.M;�
1TM/ 	 �rCr 0

inv .M;�1TM/ and the principal
symbol

�r W �rinv.M;�
1TM/=�r�1inv .M;�1TM/! Sr .T �M;�1TM/=Sr�1.T �M;�1TM/

induces, for every r 2 R, an isomorphism onto the subspace of symbols of
operators that are translation invariant in a neighborhood of infinity.

b) Any operator P 2 �m
inv.M;�

1TM/ extends to a continuous operator

P W Hm0

.M;�1TM/! Hm0�m.M;�1TM/; if m;m0 2 2Z:

The proof of Lemma 3 follows by using similar arguments to those for [15,
Lemma 1.3], in the case of a translation invariant in a neighborhood of infinity
operator acting on functions.

Let us mention that any operator P W C10 .M;�1TM/ �! C1.M;�1TM/ that
is translation invariant in a neighborhood of infinity will be properly supported and
gives rise to a pseudodifferential operator

QP W C10 .@M1 �R; �1T .@M1 �R// �! C10 .@M1 � R; �1T .@M1 � R//

such that

QP .!/ D ˚��s.P˚�s .!//; (5)

where ˚s is the translation by s on the cylinder @M1 � R, and s is large enough for
the relations supp.P˚�s .!//; supp.˚�s .!// 	 @M1� .�1; 0/ 	M to be satisfied.
We call QP the indicial operator associated with P . Note that QP is well defined
in the sense that the operator ˚��s.P˚�s .!// does not depend on s as above. Let
�1inv.@M1 � R; �1T .@M1 � R//R be the class of operators contained in the space
�1inv.@M1 � R; �1T .@M1 � R// that are translation invariant with respect to the
natural action of R on @M1 �R.

If T 2 �1inv.@M1 � R; �1T .@M1 � R//R and � is a smooth function on @M1 � R

with support in .�1;�1/� @M1, which is equal to 1 in a neighborhood of infinity,
then the operator s0.T / given by

s0.T / WD �T � (6)

belongs to ��1inv .M;�1TM/.

Remark 1. If s0 is as in (6), then for all T 2 �1inv.@M1 � R; �1T .@M1 � R// the
equality ˚.s0.T // D T holds, where

˚ W �1inv.M;�
1TM/ 3 P 7! QP 2 �1.@M1 � R; �1T .@M1 � R//

is the indicial morphism. The range of ˚ is �1inv.@M1 � R; �1T .@M1 � R//R.
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Lemma 4. Let P;P1 2 �1inv.M;�
1TM/ and let � W M ! Œ1;1/ be a smooth

function such that �.y; x/ WD x on a neighborhood of infinity in @M1 � .�1; 0�.
Then the following properties hold:

(a) ePP1 D QP QP1.
(b) ad�.P / WD Œ�; P � D �P � P� 2 �1inv.M;�

1TM/.

Proof. (a) In view of the formula (5) we have

ePP1.!/ D ˚��s.PP1˚�s .!// D ˚��sP˚�s
�
˚��sP1˚�s .!/

� D QP �fP1.!/�:
(b) The proof is similar to that of [15, Lemma 1.6 (ii)].

Let us consider the one-dimensional Fourier transform

F W L2�@M1 � R
�! L2

�
@M1 �R

�
; F .f /.y; �/ WD 1p

2�

Z
R

f .y; x/e�i�xdx:
(7)

We also consider the Fourier transform of one forms on @M1 � R when @M1 is
parallelizable. We adopt this assumption everywhere from now on. In this case,
every one form is naturally identified with an m-tuple of functions on @M1 � R,
where m D dim.M1/. The Fourier transforms of one forms is denoted in the same
way as the Fourier transform of functions.

Let QP be the operator defined by (5). Since QP is translation invariant with respect
to the action of R, the resulting operator P1 WD F QPF�1 commutes with the
multiplication operators in � . Therefore, P1 is a decomposable operator, i.e., there
exist some operators

OP .�/ W C1.@M1;�
1T .@M1//! L2.@M1;�

1T .@M1// (8)

defined by

.P1f /.�; �/ D OP.�/f .�; �/; 8 f .�; �/ 2 C1.@M1;�
1T .@M1// 	 L2.@M1;�

1T .@M1//:

5 The Dirichlet Problem for a Laplace Type Operator
on Parallelizable Manifolds with Cylindrical Ends

Let N be a manifold with boundary and cylindrical ends. The potential analysis for
such manifolds, culminating with an existence and uniqueness result for the Dirich-
let problem associated with the Laplace operator, was developed by Mitrea and
Nistor in [15]. Due to the triviality of the cotangent bundle in the case of a paralleliz-
able manifold, the standard Sobolev spaces Hr.N;�1TN/ and Hr.@N;�1TN/,
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r > 1
2
, are being identified withHr.N;Rn/ andHr.@N;Rn/, respectively, via some

linear isomorphisms N̨ W Hr.N;�1TN/! Hr.N;Rn/;
@̨N
W Hr.@N;�1TN/!

Hr.@N;Rn/ coming from a global trivialization of the cotangent bundle of M .
Consider a Riemannian metric on N and the Laplace type operator 4N and the
trace operator �j@N , which makes the following diagrams commutative:

Hr.N;�1TN/
4N�! Hr�2.N;�1TN/

N̨ # # N̨

H r .N;Rn/ Hr�2.N;Rn/
o# #o

�
Hr.N/

�n 4
Rn�! �

Hr�2.N /
�n

Hr.N;�1TN/
�j@N�! Hr� 12 .@N;�1TN/

N̨ # #
@̨N

Hr .N;Rn/ Hr�2.N;Rn/
o# #o�

Hr.N/
�n .�j@N ;:::;�j@N /�! �

Hr� 12 .@N /
�n

where 4
Rn
.u1; : : : ; un/ D

�4u1; : : : ;4un
�

and 4 D d�d is the Laplace operator
on N . We wonder whether the operator 4N coincides with the Laplace–Beltrami
operator for suitable choices of the Riemannian metric on N and the global
trivialization.

According to [15, Theorem 5.7] the correspondence

Hr.N / 3 u 7! ��4N C V I
�
u; u

ˇ̌
@N

� 2 Hr�2.N /˚Hr�1=2.@N /

is a continuous bijection for every r > 1=2, where V � 0 stands for an
asymptotically translation invariant smooth function. Therefore, the correspondence

.Hr.N //n 3 u 7! ��4Rn C V I
�
u; u

ˇ̌
@N

� 2 .Hr�2.N //n ˚ .Hr�1=2.@N //n

is a bijection for every r > 1=2, as well. Taking into account that

4
N
C V I D ˛�1

N
ı �4

Rn
C V I� ı

N̨
; �ˇ̌

@N
D ˛�1

@N
ı .�j@N ; : : : ; �j@N / ı @̨N

;

where .u1; : : : ; un/ D ˛N u, we obtain the following:

Theorem 1. Let N be a parallelizable manifold with boundary and cylindrical
ends and V � 0 be a smooth function which is asymptotically translation invariant
in a neighborhood of infinity. Then the correspondence

Hr.N;�1TN/ 3 u 7! ��4N C V I
�
u; u

ˇ̌
@N

� 2 Hr�2.N;�1TN/˚Hs�1=2.@N;�1TN/

is a continuous bijection for every r > 1=2.

The proof of Theorem 1 relies on some existence and uniqueness result for the
Dirichlet problem

�
.4C V I/u D 0; u 2 HrC1=2.N /
u
ˇ̌
@N
D f 2 Hr.@N /;

(9)
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proved by Mitrea and Nistor in [15, Theorem 5.6]. This existence and uniqueness
result, as many other intermediate results, rely, especially for their existence parts,
on the layer potential associated with the supramanifold M with cylindrical ends
without boundary, assured by Lemma 1. The layer potential are defined by means
of the inverse of the operator 4M C V I, where 4M is the Laplace operator on M
and V � 0, V ¤ 0 is a smooth function on M . Indeed we have:

Theorem 2 ([15]). IfM is a manifold with cylindrical ends and V � 0 is a smooth
function on M that is translation invariant in a neighborhood of infinity and does
not vanish at infinity, then 4M C V I is invertible as an unbounded operator on
L2.M/ and .4M C V I/�1 2 �0

ai.M/.

The kernel of .4MCV I/�1 restricted to the boundary @N gives rise to an operator

S WD Œ.4M C V I/�1�@N 2 �0
ai.@N /: (10)

The single layer potential is defined as

S .f / WD .4M C V I/�1.f ˝ ı@N /; (11)

where f 2 L2.@N / and f ˝ ı@N is the distribution defined, via the conditional
measure on @N , by hf ˝ ı@N ; 'i D

R
@N
f '.

In order to define the double layer potential we first consider a unit vector field
� on M , which is normal to @N at every point of @N , and points outside N . The
double layer potential with density f 2 L2.@N / is defined as

D.f / WD .4M C V I/�1.f ˝ ı0@N /; (12)

where f ˝ ı0@N is the distribution defined by hf ˝ ı0@N ; 'i D
R
@N
f @�', via the

directional derivative @� in the direction of �. The operators S and

S D Œ.4M C V I/�1�@N and K WD Œ.4M C V I/�1@�� �@N ; (13)

relate the non-tangential limits of the single and double layer. Indeed the following
statement holds and can be proved by reduction to the compact case.

Theorem 3 ([15]). LetN be a parallelizable manifold with boundary and cylindri-
cal ends and V 2 �0

ai.M/ be a smooth function, where M is a supramanifold of N
assured by Lemma 1. Given f 2 L2.@N /, we have:

S .f /CDS .f /�DSf; @�S .f /˙D
�
˙1
2
ICK�

�
f; D.f /˙D

�
˙1
2
ICK

�
f;

where K� is the transpose of K and g
˙

denote the non-tangential pointwise limits
of g W M n @N ! R. In addition, the following operators are invertible for any
s 2 R:
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�1
2
ICK W Hs.@N /! Hs.@N /; S W Hs.@N /! HsC1.@N /:

Theorem 4 ([15]). Let N be a manifold with boundary and cylindrical ends and
V 2 �0

ai.M/ be a smooth function, where M is a supramanifold of N assured by
Lemma 1. For any r > 0 and any f 2 Hr.@N /, there exists a unique solution
u 2 HrC1=2.N / of the Dirichlet problem .4N C V I/u D 0, u

ˇ̌
@N
D f , given by

u D S .S�1f / D D

�
�1
2
ICK

��1
f 2 HrC1=2.N /: (14)

The result of Theorem (4) also works in the parallelizable case.

Theorem 5. Let N be a parallelizable manifold with boundary and cylindrical
ends and V 2 �0

ai.M/ be a smooth function, where M is a supramanifold of N
assured by Lemma 1. For any r > 0 and any f D .f1; : : : ; fn/ 2 Hr.@N;Rn/, the
Dirichlet problem .4RnCV I/u D 0, u

ˇ̌
@N
D f has a unique solution, given by any

of the following integral forms

u D �S .S�1f1/; : : : ;S .S�1fn/
�

(15)

D
 
D

�
�1
2
ICK

��1
f1; : : : ;D

�
�1
2
ICK

��1
fn

!
2 HrC1=2.N;Rn/:

In addition, the Dirichlet problem

.4N C V I/w D 0; w
ˇ̌
@N
D ˛Nf 2 Hr.@N;�1TN/ (16)

has the unique solution w D ˛�1N u 2 HrC1=2.N;�1TN/, where u 2
HrC1=2.N;Rn/ is given by (15).

6 Operators Between Weighted Sobolev Spaces That Are
Almost Translation Invariant in a Neighborhood of Infinity

Let T W C10 .M;�1TM/ ! C1.M;�1TM/ be a linear map such that adk�.T /

extends to a bounded operator adk�.T / W H�m.M;�1TM/! Hm.M;�1TM/ for
any m 2 ZC, where we use the notations of Lemma 4. Let kT kk;m be the norm of
the resulting operator adk�.T /.

The almost translation invariant in a neighborhood of infinity operators acting on
functions has been defined in [15]. Such operators acting on one forms are defined
as follows.
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Definition 3. The space ��1ai .M;�1TM/ is defined as the closure of
��1inv .M;�1TM/ with respect to the countable family of seminorms

T 7! kT kk;m; T 7! k�`.T � s0.˚.T ///�`k0;m; (17)

where k;m=2; ` 2 ZC. The space of almost translation invariant in a neighborhood
of infinity operators of orderm is defined by

�m
ai .M;�

1TM/ WD �m
inv.M;�

1TM/C ��1ai .M;�1TM/: (18)

We now consider the weighted Sobolev space

�aHs.M;�1TM/ WD f�au W u 2 Hs.M;�1TM/g;
endowed with the norm kf ks;a WD k��af ks .
Theorem 6. Let M be a manifold with cylindrical ends. Let P 2 �m

ai .M;�
1TM/

and let �.y; x/ D x on a neighborhood of infinity in @M1 � .�1; 0�. Then for
s; a 2 R the following statements hold:

1. P extends to a continuous operator P W �aHs.M;�1TM/ ! �aHs�m
.M;�1TM/.

2. P W �aHs.M;�1TM/ ! �a
0

Hs�m0

.M;�1TM/ is compact for any a0 < a,
m0 > m.

3. P W�aHs.M;�1TM/!�aHs�m.M;�1TM/is compact if and only if �m.P / D 0
and QP D 0.

4. P W�aHs.M;�1TM/!�aHs�m.M;�1TM/ is Fredholm if and only if �m.P / is
invertible and P WHs.@M1�R; �1T .@M1�R//!Hs�m.@M1�R; �1T .@M1�R//
is an isomorphism.

Theorem 7. Let M be a manifold with cylindrical ends. Let T 2 �m
ai .M;�

1TM/

.m � 0/ be such that its extension T W L2.M;�1TM/ ! H�m.M;�1TM/ is
invertible. In the case m > 0 it is also assumed that T is an elliptic operator. Then
the inverse T �1 belongs to the class ��mai .M;�1TM/.

The proof of Theorem 6 can be done by using similar arguments to those for [15,
Theorem 2.1] and the proof of Theorem 7 follows with arguments similar to those
for [15, Theorem 2.10] (see also [14]). We omit them for the sake of brevity.

7 The Brinkman System on Manifolds with Cylindrical Ends

In this section we present the Brinkman system on manifolds with cylindrical ends.
Let M D M1 [ .@M1 � .�1; 0�/ be a Riemannian manifold with cylindrical

ends and let g be its Riemannian metric tensor such that g D g@ C dx2 on the
cylindrical end @M1 � .�1; 0�, where g@ is a metric on @M1 and x 2 .�1; 0�.
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Let d W C1.M/ ! C1.M;�1TM/; d D @j dxj ; be the exterior derivative
operator, and let ı W C1.M;�1TM/ ! C1.M/; ı D d� be the exterior co-
derivative operator. Denote by r the Levi–Civita connection associated with the
Riemannian metric tensor g ofM .

If X 2 TM , then the antisymmetric part of rX , defined by

.rX/.Y;Z/ D hrY X;Zi; 8 Y;Z 2 X.M/; (19)

is dX , i.e.,

dX.Y;Z/ D hdX; Y ^Zi

D 1

2

˚hrY X;Zi � hrZX; Y i�; 8 Y;Z 2 X.M/;

where^ denotes the exterior product of forms. The symmetric part ofrX is DefX ,
the deformation of X , i.e.,

.Def X/.Y;Z/ D 1

2
fhrY X;Zi C hrZX; Y ig; 8 Y;Z 2 X.M/; (20)

where X.M/ is the C1.M/-module of smooth vector fields onM . The coordinates
of Def X are given by

.Def X/jk D .Def X/.@j ; @k/ D 1

2
.Xj Ik CXkIj /; j; k D 1; � � � ; m; (21)

where, for X D Xj@j , we set XkIj D @jXk C � l
kjXl and � l

kj are the Christoffel
symbols of the second kind. Thus, Def X is a symmetric tensor field of type .0; 2/.
Denoting by S2T �M the set of symmetric tensor fields of type .0; 2/, we obtain the
deformation operator Def W X.M/! C1.M; S2T �M/.

Note that the invariance properties of the Riemannian metric g and its associated
Levi–Civita connection rg assure the almost translation invariant property of the
deformation operator Def in a neighborhood of infinity.

A vector field X 2 X.M/, which satisfies Def X D 0 on M is called a Killing
field. We assume that the manifoldM does not have nontrivial Killing fields.

For more details on the notations in this paper we refer the reader to [10, 11].

Definition 4. An operator T on L2loc has the unique continuation property if
T u D 0 and u vanishes on some open subset then u � 0.

Example 1. The deformation operator Def has the unique continuation property.
Indeed, the lack of nontrivial Killing field on the manifold M is a stronger
requirement.

Proposition 1. Let L 2 �m
ai .M;�

1TM/ .m � 0/ be an operator which has the
unique continuation property and is nonnegative, i.e.,
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hLv; vi � 0; 8 v 2 C1.M;�1TM/: (22)

Also, let P 2 �0
inv.M;�

1TM/ be a nonnegative operator, which is strictly positive
on some open set O 	M , i.e.,

hP v; vi � 0; 8 v 2 C1.M;�1TM/;

For v 2 C1.O; �1TO/; hP ˇ̌
O

v; vi D 0 ” v D 0: (23)

If LCP W Hm.M;�1TM/! L2.M;�1TM/ is Fredholm operator of index zero,
then it is invertible.

The proof of Proposition 1 is similar to the proof of [15, Proposition 2.5].

Example 2. If T 2 �k
ai.M;�

1TM/ .k � 0/ has the unique continuation property,
thenL WD T �T satisfies the hypothesis of Proposition 1 withm D 2k. In particular,
the operator

L W X.M/! X.M/; L WD 2Def�Def D �4C dı � 2Ric; (24)

satisfies the hypothesis of Proposition 1, where 4 WD �.dı C ıd/ is the Hodge
Laplacian, and Ric is the Ricci tensor.

Theorem 8. Let M be a parallelizable manifold with cylindrical ends. Let V � 0
be a smooth function onM that is translation invariant in a neighborhood of infinity
and does not vanish at infinity. Then the operator

LV WD LC V I D 2Def�DefC V I

is invertible as an unbounded operator on L2.M;�1TM/ and

.LC V I/�1 2 ��2ai .M;�
1TM/:

Proof. The operator LV is nonnegative, one-to-one and hence it has the unique
continuation property. In view of Proposition 1 we have to show that the operator

LV W H2.M;�1TM/! L2.M;�1TM/

is Fredholm of index zero. In this respect, by the ellipticity property of LV and
Theorem 6 (iv), the operator

LV W H2.M;�1TM/! L2.M;�1TM/

is Fredholm if and only if the operator

QLV .�/ W H2.@M1 � R; �1T .@M1 � R//! L2.@M1 �R; �1T .@M1 �R//
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is an isomorphism. To show this result, let V1 be the limit at infinity of the
function V . Then we have

OLV .�/ D 2.Def�Def/j@M1 C .�2 C V1/I: (25)

Since �2 C V1 is nonnegative and does not vanish identically for any � 2 R, one
obtains that the operator

OLV .�/ W H2.@M1;�
1T .@M1//! L2.@M1;�

1T .@M1// (26)

is one-to-one, i.e., its kernel is trivial. In addition, this operator is self-adjoint and
hence its (trivial) kernel is the orthogonal complement of its range, i.e., the operator
is onto. Consequently, the operator (26) is invertible for any � 2 R. In addition, the
norm of the inverse of OLV .�/ is bounded uniformly in � (for details see [16]).

Remark 2. Note that the operator

2.Def�Def/ W H2.M1 � R; �1T .M1 � R//! L2.M1 � R; �1T .M1 �R// (27)

is not a Fredholm operator, although its restriction to the boundary @M1

2.Def�Def/j@M1 W H2.@M1 �R; �1T .@M1 �R//! L2.@M1 �R; �1T .@M1 �R//

has this property. Indeed, the one forms ! 2 H2.@M1 � R; �1T .@M1 � R//

depending just on the variable t 2 R, which determine an infinite dimensional
subspace of the space H2.@M1 � R; �1T .@M1 � R//, are all within the kernel of
the operator (27).

Theorem 9. Let M be a parallelizable manifold with cylindrical ends and let
V � 0 be a smooth function on M that is translation invariant in a neighborhood
of infinity and does not vanish at infinity. Then the operators

OBV .�/ WH2.@M1;�
1T .@M1//�H1

F .@M1/!L2.@M1;�
1T .@M1//�L2F .@M1/

(28)

associated with the operator1

BV WD
�
LC V I d

ı 0

�
W L2.M;�1TM/� L2�.M/ �! L2.M;�1TM/� L2�.M/

(29)
are isomorphisms, where

L2�.M/ WD ff 2 L2.M/ W hf; 1iM D 0g (30)

1See Eq. (8).
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and

H1
F .@M1/ WD F�1

�
H1�.@M1/

�
; L2F .@M1/ WD F�1

�
L2�.@M1/

�
: (31)

Proof. By Proposition 1 we have to show that the operator

BV W H2.M;�1TM/�H1�.M/! L2.M;�1TM/ �L2�.M/ (32)

is Fredholm of index zero. In this respect, we first recall that the ellipticity
property in the sense of Agmon–Douglis–Nirenberg of BV and Theorem 6 (iv)
imply that the operator (32) is Fredholm if and only if the operator QBV .�/ from
H2

�
@M1 � R; �1T .@M1 � R/

��H1�.@M1�R/ toL2
�
@M1 � R; �1T .@M1 � R/

��
L2�.@M1 � R/ is an isomorphism, for any � 2 R. To this purpose, recall that V1 is
the limit at infinity of the function V and note that

OBV .�/ D
 
2.Def�Def/j@M1 C

�
�2 C V1

�
I Od

Oı 0

!

D
�
2.Def�Def/j@M1 C �2I d j@M1

ıj@M1 0

�
C
�
V1I dcomp

ıcomp 0

�

D OB0.�/C OBV
1

I0.�/;

where dcomp.�/f D i�fdt and ıcomp.�/ D
�
dcomp.�/

��
.

We first observe that the operator

OB0.�/ W H2.@M1;�
1T .@M1// �H1

F .@M1/! L2.@M1;�
1T .@M1// �L2F .@M1/;

OB0.�/ D
�
2.Def�Def/j@M1 C �2I d j@M1

ıj@M1 0

�
(33)

is Fredholm with index zero, as the boundary @M1 is compact (see [4, 10, 22]).
In addition, the complementary operator

OBV
1

I0.�/ W H2.@M1;�
1T .@M1// �H1

F .@M1/! L2.@M1;�
1T .@M1// � L2F .@M1/

OBV
1

I0.�/ WD OBV .�/ � OB0.�/ (34)

is compact as H2.@M1;�
1T .@M1// � H1

F .@M1/ ,! L2.@M1;�
1T .@M1// �

L2F .@M1/ is a compact embedding, dcomp is essentially a multiplication operator,
and ıcomp is its dual. Consequently, the operator

OBV .�/ WH2.@M1;�
1T .@M1//�H1

F .@M1/!L2.@M1;�
1T .@M1//�L2F .@M1/

(35)
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is Fredholm with index zero, for any � 2 R. We next show that this operator is
one-to-one. Let .u; �/ 2 H2.@M1;�

1T .@M1// �H1
F .@M1/ be such that

OBV .�/
�

u
�

�
D
�

0
0

�
(36)

i.e.,

( OLV uC Od� D 0
Oıu D 0 ,

(
2.Def�Def/j@M1uC .�2 C V1/uC Od� D 0

Oıu D 0:

Consequently, we obtain

0 D 2hDef u;Def ui C h.�2 C V1/u;ui C h�; Oıui
D 2hDef u;Def ui C h.�2 C V1/u;ui; (37)

i.e., u D 0. Also, one obtains Od� D 0, i.e., � D 0 as � 2 L2F .@M1/. Hence, the
operator (35) is an isomorphism.

Remark 3. The invertibility of the operator

BV W H2.M;�1TM/�H1�.M/! L2.M;�1TM/ �L2�.M/ (38)

depends on the uniformly boundedness of the inverse of OBV .�/ in � (for details
we refer the reader to [16]). The invertibility of BV would allow us to develop a
layer potential approach towards the Dirichlet problem for the Brinkman system on
manifolds with cylindrical ends, via its inverse

B�1V D
�
AV BV

CV DV

�
W L2.M;�1TM/� L2�.M/! H2.M;�1TM/�H1�.M/

(39)

Indeed the role of the single layer potential and its corresponding pressure potential
for the Brinkman system could be played by

S .f / WD AV .f ˝ ı@N /; P.f / WD CV .f ˝ ı@N /; (40)

where f 2 L2.@N;�1TN/ and f ˝ ı@N is the distribution defined, via the
conditional measure on @N , by

hf ˝ ı@N ; 'i D
Z
@N

hf; 'i:
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Similarly, the role of the double layer potential and its corresponding pressure
potential for the Brinkman system could be played by

D.f / WD AV .f ˝ ı0@N /; Q.f / WD CV .f ˝ ı0@N /; (41)

where f 2 L2.@N;�1TN/ and f ˝ ı@N is the distribution defined by

hf ˝ ı0@N ; 'i D
Z
@N

hf; @�'i;

via the directional derivative @� in the direction of �.
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Meaned Spaces and a General Duality Principle

József Kolumbán and József J. Kolumbán

Abstract We present a new duality principle, in which we do not suppose that the
range of the functions to be optimized is a subset of a linear space. The methods
used in the proofs of our results are based on the notion of meaned space, which is
a generalization of the notion of ordered linear space.

1 Introduction

In current mathematical literature there exists a vast variety of duality theorems
regarding optimization problems. Recently, multiple important works have been
published that summarize the most important results of duality theory, such as the
monographies [12] (in the case of real-valued optimization) and [1] (in the case of
vector-valued optimization).

The purpose of this paper is to present a general duality principle, which
contains as a particular case the known duality theorems for real- and vector-valued
optimization. The method used in the proof of this principle is based on the notion
of meaned space, which is a triplet .E;R;
/, where E is a nonempty set, R a
binary relation, and 
 a binary operation on E (called mean operation), satisfying
the following conditions:
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(i) for every f; g 2 E with fRg we have f ¤ g,
(ii) for every f; g 2 E with fRg we have fRf 
 g and f 
 gRg.

It is easy to verify that ordered linear spaces are meaned spaces.
With all the generality of the obtained results, they are easy to comprehend due

to the intuitive substrate of the theory, highlighted by examples in Sects. 4 and 5.
Unlike the majority of papers concerning duality problems, in our paper we specify
the role of each property (axiom), that is at the base of the theory. In this sense, our
results can be seen as an axiomatic approach to duality theory. Our work is related,
in its spirit, to the papers [10, 11], and the dissertation [6].

In the particular case when E is an open interval, our duality principle reduces to
the theorem stated in [10], to which applications have been given in [11]. The results
presented in Sects. 4 and 5 can be found in the first author’s doctoral dissertation
[6], which has not been published in a journal or book. However, some particular
cases of the results of Sect. 4 were published in the articles [2,3] and [7]. The results
of Sect. 5 are inspired by the pioneering work due to Gale, Kuhn, and Tucker (see
[4]), and were also stated in [8].

The paper is structured as follows. In Sect. 2 we present some notions and propo-
sitions which will be used in the proof of the main result. Section 3 encompasses
the main duality theorem of our paper. In Sect. 4 we present an important particular
case of this theorem from the point of view of its applications in optimization theory.
In Sect. 5 we show how we can apply the results of the previous section to finite
dimensional linear vector (Pareto) optimization.

2 Preliminaries

Definition 1. Let E be a nonempty set, R � E � E a binary relation and 
 W
E �E ! E a binary operation on E . We say that the triplet .E;R;
/ is a meaned
space if the following conditions are satisfied:

(i) for every f; g 2 E with fRg we have f ¤ g,
(ii) for every f; g 2 E with fRg we have fRf 
 g and f 
 gRg.

Let a D .a1; a2; : : :/ be an infinite binary string made up of symbols 0 and 1. In
the following, for each f0; g0 2 E with f0Rg0 and n 2 N�, we define

fn D
�
fn�1; if an D 0;
fn�1 
 gn�1; if an D 1;

and

gn D
�
fn�1 
 gn�1; if an D 0;
gn�1; if an D 1:
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Definition 2. It is said that the meaned space .E;R;
/ is complete if, for each
f0; g0 2 E with f0Rg0 and for every a D .a1; a2; : : :/ infinite binary string, there
exists f .a/ 2 E such that f0Rf .a/, f .a/Rg0, and the sequences .fn/n�0

and
.gn/n�0

, constructed as above, satisfy the following conditions:

(˛) for each f 2 E with fRf .a/ there exists n0 2 N such that fRfn0 ;
(ˇ) for each g 2 E with f .a/Rg there exists n1 2 N such that gn1Rg.

Definition 3. A complete meaned space .E;R;
/ is called a fundamental domain
if, for every f; g 2 E , there exist e; d 2 E with eRf , eRg, fRd , and gRd .

Example 1. Let E � R be an open interval, R be the classic order relation “<”
on R, and let 
 be the arithmetic mean on R, that is, for each f; g 2 E we have
f 
 g D fCg

2
. Then .E;R;
/ is a fundamental domain.

Example 2. LetE be the set of all closed half-spaces in R3, R D “	”, and for each
f; g 2 E we define f 
 g D fCg

2
, in the Minkowski sense. Then .E;R;
/ is a

fundamental domain.

Example 3. Consider the Heisenberg group .H3.R/; �/, where

H3.R/ D fx D .a; b; c/ j a; b; c 2 Rg;

and for each x; x0 2 H3.R/, x D .a; b; c/, x0 D .a0; b0; c0/, we have

x � x0 D .aC a0; b C b0; c C c0 C 2.a0b � ab0//:

Let E D H3.R/. For each x; x0 2 H3.R/, x D .a; b; c/, x0 D .a0; b0; c0/, we
define

x 
 x0 D
�
aC a0
2

;
b C b0
2

;
c C c0
2

�
;

and xRx0 if and only if x�1 � x0 > 0, where by x�1 we mean the inverse of x in
the group .H3.R/; �/ (by “>” we mean the strict componentwise ordering relation
in R3). Then .E;R;
/ is a fundamental domain.

Observe that the relation R is not transitive. Indeed, let x D .�2;�1; 0/, y D
.1; 0; 0/, z D .2; 1; 0/. We have xRy, yRz, but xRz (where R is the negation
of R).

Let .E;R;
/ be a fundamental domain, X a nonempty set, and � a transitive
binary relation defined on X . The negation of � will be denoted by �. In the
following we suppose that w W E ! X is a given map.

Definition 4. We say that an element x 2 X is admissible if there exists at least
one f 2 E with x�w.f /.
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Let S be a fixed subset of X and consider the following properties:

P1: For any f; g 2 E with fRg we have w.f /�w.g/.
P2: For any f 2 E and any admissible element x 2 S there exists g 2 E with
gRf and x�w.g/.

P3: Let f 2 E . If for each g 2 E with fRg there exists x0 2 S with x0�w.g/,
then there exists x 2 S with x�w.h/, for each h 2 E with fRh.

Definition 5. Let x 2 X be an admissible element. We say that fx 2 E is an
indicator of x if the following conditions are satisfied:

1/ x�w.h/ for each h 2 E with fxRh,
2/ x�w.g/ for each g 2 E with gRfx .

We will see later that an admissible element may have more than one indicator.
Let Ix be the set of all indicators of an admissible element x from X , and define

IS D
[
x2S

Ix:

Proposition 1. No admissible element x 2 X can have two indicators f 0x and f 00x
with f 0xRf 00x .

Proof. Suppose that there exists x 2 X which has two indicators f 0x and f 00x with
f 0xRf 00x . Let g D f 0x 
 f 00x , we have g 2 E , f 0xRg and gRf 00x . It follows from the
definition of the indicators f 0x and f 00x that x�w.g/ and x�w.g/, a contradiction.

Proposition 2. Let x 2 S and f 2 E . Suppose that x�w.f / and propertiesP1�P2
hold, then there exists fx 2 Ix such that either fxRf or fx D f .

Proof. It follows from P2 that there exists g0 2 E with g0Rf and x�w.g0/. Let
h0 D f and define, for each n 2 N�,

gn D
�
gn�1; if x�w.gn�1 
 hn�1/;
gn�1 
 hn�1; if x�w.gn�1 
 hn�1/;

and

hn D
�
gn�1 
 hn�1; if x�w.gn�1 
 hn�1/;
hn�1; if x�w.gn�1 
 hn�1/:

Let fx D f .a/ from the definition of completeness, where for each n 2 N
�

an D
�
0; if x�w.gn�1 
 hn�1/;
1; if x�w.gn�1 
 hn�1/:

We want to prove that fx is an indicator of x.



Meaned Spaces and a General Duality Principle 505

Let h 2 E such that fxRh. It follows from the definition of completeness that
there exists n1 2 N such that hn1Rh. From the definition of hn1 and from P1 we
have x�w.hn1/ and w.hn1/�w.h/, therefore x�w.h/.

Let g 2 E such that gRfx . It follows from the definition of completeness that
there exists n0 2 N such that gRgn0 . From definition of gn0 and from P1 we have
x�w.g/.

To conclude the proof it is sufficient to observe that fxRf or fx D f .

Corollary 3. If properties P1 � P2 hold, then each admissible element from S has
at least one indicator.

Definition 6. We say that an admissible element x0 2 S is optimal relatively to S ,
if there exists fx0 2 Ix0 such that, for each admissible element x 2 S and for each
fx 2 Ix , we have fxRfx0 .

The set of elements that are optimal relatively to S is denoted by OS .

Proposition 4. If properties P1 � P2 hold, then an admissible element x0 belongs
to OS if and only if there exists fx0 2 Ix0 such that, for each f 2 E with fRfx0
and for each admissible element x 2 S , we have x�w.f /.

Proof. Necessity: Suppose that, for each fx0 2 Ix0 , there exist f 2 E and x 2 S
such that fRfx0 and x�w.f /. From Proposition 2 it follows that there exists
fx 2 Ix such that fxRfx0 or fx D fx0 . The second equality cannot hold, because
due to x�w.f / it would contradict the definition of fx . Consequently, x0 62 OS .

Sufficience: Suppose that, for each fx0 2 Ix0 , there exist an admissible element
x 2 S and there exists fx 2 Ix with fxRfx0 . Let f D fx 
 fx0 , we have fxRf ,
fRfx0 and x�w.f /.

By the problem of the optimal element we understand the problem of
studying OS .

In the following we will formulate a problem that is, in a sense, the dual of the
problem of the optimal element.

Let the nonempty set Y , the transitive relation �� defined on Y , and the map
w� W E ! Y be given.

Definition 7. An element y 2 Y is said to be admissible if there exists at least one
f 2 E with y��w�.f /.

Let S� be a fixed subset of Y and consider the following properties:

P �1 : For any f; g 2 E with gRf we have w�.f /��w�.g/.
P �2 : For any f 2 E and any admissible element y 2 S� there exists g 2 E with
fRg and y��w�.g/.

P �3 : Let f 2 E . If for each g 2 E with gRf there exists y0 2 S� with y0��w�.g/,
then there exists y 2 S� such that y��w�.d/, for each d 2 E with dRf .

P �4 : Let f 2 E . If there exists y 2 S� with y��w�.f / then, for each g 2 E with
gRf , there does not exist x 2 S such that x�w.g/.
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P �5 : Let f 2 E . If there exist admissible elements in S or in S�, and there does not
exist x 2 S with x�w.f /, then for each g 2 E with gRf there exists y 2 S�
such that y��w�.g/.

Remark 1. Properties P �1 ; P �2 and P �3 can be derived from properties P1; P2 and
P3 by replacing R with its dual, S with S�, � with �� and w with w�.

Proposition 5. If there exist admissible elements in S and P1; P2 and P �4 hold,
then P �2 holds as well.

Proof. Suppose that y 2 S� is admissible and f 2 E . Let x 2 S be an admissible
element and fx 2 Ix . Since .E;R;
/ is a fundamental domain, it follows that there
exists g 2 E with fRg and fxRg. Let d D fx 
 g, from the definition of fx and
from fxRd it follows that x�w.d/. Since dRg, it follows from P �4 that y��w�.g/.
Consequently, P �2 holds.

Definition 8. Let y 2 Y be an admissible element. We say that f y 2 E is an
indicator of y, if the following conditions are satisfied:

1�/ y��w�.h/ for each h 2 E with hRf y ,
2�/ y��w�.g/ for each g 2 E with f yRg.

Let I y be the set of all indicators of an admissible element y from S�, and define

I S
� D

[
y2S�

I y:

From Remark 1 and from Propositions 1, 2 and 4 we may deduce the following
results:

Proposition 6. No admissible element y 2 Y can have two indicators f y
1 and f y

2

with f y
2 Rf

y
1 .

Proposition 7. Let y 2 S� and f 2 E . Suppose that y��w�.f / and properties
P �1 � P �2 hold, then for each g 2 E with gRf there exists f y 2 I y , such that
either gRf y or g D f y .

Corollary 8. If properties P �1 � P �2 hold, then each admissible element from S�
has at least one indicator.

Definition 9. We say that an admissible element y0 2 S� is optimal relatively to
S�, if there exists an f y0 2 I y0 such that, for each admissible element y 2 S� and
for each f y 2 I y , we have f y0Rf y .

The set of elements that are optimal relatively to S� is denoted by OS�

.

Proposition 9. If properties P �1 �P �2 hold, then an admissible element y0 belongs
toOS�

if and only if there exists f y0 2 I y0 such that, for each f 2 E with f y0Rf
and for each admissible element y 2 S�, we have y��w�.f /.

By the dual problem of the optimal element we understand the problem of
studying OS�

.
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3 The Duality Principle

In this section we will study the link between the problem of the optimal element
and its dual.

Proposition 10. If P �4 holds, then for all admissible elements x 2 S and y 2 S�,
and for all fx 2 Ix and f y 2 I y , we have fxRf y .

Proof. Suppose that fxRf y and let f D fx 
 f y . From the definition of f y and
from fRf y we have y��w�.f /. Let g D fx 
 f , it follows from P �4 that x�w.g/.
On the other hand, from the definition of fx and from fxRg we have x�w.g/,
a contradiction.

Proposition 11. If P �4 holds, x 2 S and y 2 S� are admissible elements, and
fx 2 Ix , f y 2 I y with fx D f y , then x 2 OS and y 2 OS�

.

Proof. If x 62 OS , then there exists an admissible element x0 2 S and fx0 2 Ix0

such that fx0Rfx . It follows that fx0Rf y , which contradicts Proposition 10.
Consequently, x 2 OS . The proof of y 2 OS�

is similar.

Proposition 12. If properties P1; P2; P �3 ; P �4 ; P �5 hold and x 2 OS , then there
exists y 2 OS�

and there exist fx 2 Ix , f y 2 I y with fx D f y .

Proof. From Proposition 4 it follows that there exists fx 2 Ix such that for each
f 2 E with fRfx and for each admissible element x0 2 S , we have x0�w.f /. If
f 2 E and fRfx , then it follows from P �5 that for each g 2 E with gRf there
exists y0 2 S� such that y0��w�.g/. We may deduce that for each g 2 E with
gRfx there exists y0 2 S� such that y0��w�.g/ holds (to see this, take f D g 
 fx
in the prior statement). It follows from P �3 that there exists y 2 S� such that for
each e 2 E with eRfx we have y��w�.e/.

Let g 2 E such that fxRg. If y��w�.g/ holds, then from Propositions 5 and 7
it follows that there exists f y 2 I y such that fxRf y or fx D f y . However, due
to Proposition 10, fxRf y cannot hold. From the definition of the indicator f y and
from fxRg it follows that y��w�.g/, a contradiction. Therefore, y��w�.g/ must
hold for each g 2 E with fxRg.

It follows that fx 2 I y , and from Proposition 11 we have y 2 OS�

.

Proposition 13. If properties P3; P �1 ; P �2 ; P �4 ; P �5 hold and y 2 OS�

, then there
exists x 2 OS and there exist fx 2 Ix , f y 2 I y with fx D f y .

Proof. From Proposition 9 it follows that there exists f y 2 I y such that for each
g 2 E with f yRg and for each admissible element y0 2 S�, we have y0��w�.g/.
Let f; g 2 E such that f yRg and gRf . It follows from P �5 that there exists x 2 S
with x�w.f /. We may deduce that for each f 2 E with f yRf here exists x0 2 S
with x0�w.f /. It follows from P3 that there exists x 2 S such that for each e 2 E
with f yRe, x�w.e/ holds. The proof of f y 2 Ix and x 2 OS is similar to the proof
in case of Proposition 12.
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Theorem 14.

1. If properties P1; P2; P �1 ; P �2 ; P �5 hold and there are no admissible elements in
S or in S�, thenOS D OS� D ;.

2. If properties P1; P2; P3; P �1 ; P �3 ; P �4 hold and there are admissible elements
in S and in S�, then OS ¤ ; andOS� ¤ ;. Moreover, if x 2 OS and y 2 OS�

,
then for all fx 2 Ix and f y 2 I y , we have fxRf y .

3. If properties P1; P2; P �3 ; P �4 ; P �5 hold, then an admissible element x 2 S
belongs to OS if and only if there exist y 2 OS�

, fx 2 Ix and f y 2 I y with
fx D f y .

4. If properties P3; P �1 ; P �2 ; P �4 ; P �5 hold, then an admissible element y 2 S�
belongs to OS�

if and only if there exist x 2 OS , fx 2 Ix and f y 2 I y with
fx D f y .

Proof. 1. It is clear that if there are no admissible elements in S and in S�, then
OS D OS� D ;.
Suppose that there are no optimal elements in S and that there are optimal

elements in S�. Let y 2 OS�

, f y 2 I y and f 2 E such that f yRf . It follows
from the definition of the fundamental domain .E;R;
/ that there exists e 2 E with
fRe. Since there are no admissible elements in S , we may deduce from P �5 that
there exists y0 2 S� such that y0��w�.f /. It follows from Proposition 7 that there
exists f y0 2 I y0

such that f yRf y0

or f y D f y0

. The last equality cannot hold,
since y0��w�.f / and f yRf . Consequently, y 62 OS�

, and thereforeOS� D ;.
Now suppose that there are no admissible elements in S� and that there are

admissible elements in S . It follows from P �5 that for each f 2 E there exists
x0 2 S such that x0�w.f /. Similarly to the first case, it can be proved that OS D ;.

2. Let x 2 S and y 2 S� be admissible elements. It follows from Propositions 2
and 7 that there exist fx 2 Ix and f y 2 I y . Let f 2 E such that fRfx and
fRf y .

If we suppose that there exists x0 2 S with x0�w.f /, then from P1, fRf y and
the transitivity of � we get x0�w.f y/. Applying Proposition 2 yields that there exists
fx0 2 Ix0 such that either fx0Rf y or fx0 D f y . However, due to Proposition 10,
fx0Rf y cannot hold. Furthermore, fx0 D f y cannot hold either, because it would
yield fRfx0 , and from the definition of fx0 we get x0�w.f /, a contradiction.

Consequently, x0�w.f / does not hold for any x0 2 S . Let g 2 E such that fxRg,
f0 D f , g0 D g, and define for each n 2 N�

fn D
�
fn�1; if there exists z 2 S such that z�w.fn�1 
 gn�1/I
fn�1 
 gn�1; if there does not exist z 2 S such that z�w.fn�1 
 gn�1/I

gn D
�
fn�1 
 gn�1; if there exists z 2 S such that z�w.fn�1 
 gn�1/I
gn�1; if there does not exist z 2 S such that z�w.fn�1 
 gn�1/:
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It follows from the completeness of .E;R;
/ that there exists f .a/ 2 E such
that f0Rf .a/, f .a/Rg0, and for each e; d 2 E with eRf .a/ and f .a/Rd there
exists n0; n1 2 N� such that eRfn0 , gn1Rd . We may deduce from the definition of
the sequences .fn/, .gn/ that for each n 2 N there exists xn 2 S with xn�w.gn/,
and there does not exist z 2 S with z�w.fn/. The transitivity of � and property
P1 imply that there exists xn0 2 S with xn0�w.d/, and there does not exist z 2 S
with z�w.e/. It follows from P3 that there exists x0 2 S with x0�w.d/, for each
d 2 E with f .a/Rd . Furthermore, for each e 2 E with eRf .a/, x0�w.e/ holds.
Consequently, f .a/ is an indicator of x0.

Suppose that there exists an admissible element z 2 S and fz 2 Iz with fzRf .a/.
Let e D fz 
f .a/. It follows from fzRe that z�w.e/. However, we have seen above
that eRf .a/ implies that z�w.e/ cannot hold for any z 2 S . This contradiction
proves that x0 2 OS .

The proof of OS� ¤ ; is similar.
Statements 3 and 4 are consequences of Propositions 11, 12 and 13.

4 Duality in Vector Optimization

The following particular case of the duality theorem is of importance from the point
of view of its applications in vector optimization theory.

LetM ¤ ; andX D 2M . Suppose thatE is a real vector space andC is a convex
pointed cone in E with a nonempty algebraic interior. We define f 
 g D fCg

2
for

each f; g 2 E , and we choose R D “<C ”, where “�C ” is the ordering relation
induced by C (that is, for each f; g 2 E the relation f �C g is equivalent to
g � f 2 C , and the relation f <C g is equivalent to f �C g and f ¤ g).
Similarly we may define “�C ” and “>C ”, as usual. For the sake of simplicity, from
now on we will leave the cone out of the index of the notations of these relations
(using simply “�”, “<”, etc.).

Observe that .E;R;
/ is a fundamental domain. Let w W E ! X , w.f / D
U.f / \ V.f /, where U.f /; V .f / 	M . We denote

S D ffxg; x 2M g ;

and from now on, instead of writing fxg 2 S , we will write x 2 M . Furthermore,
we choose � D “�”. In this case we can apply all the notions and results stated
before. For example, an element x 2 M is admissible if and only if there exists
f 2 E such that x 2 U.f / \ V.f /.

Consider the following properties:

Q1: For any f; g 2 E with f < g we have

U.f / � U.g/; V .f / � V.g/:
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Q2: For any f 2 E and any admissible element x 2 M there exists g 2 E with
g < f and x 62 U.g/ \ V.g/.

Q3: Let f 2 E . If for each g 2 E with f < g we have U.g/ \ V.g/ ¤ ;, then\
f <d2E

ŒU.d/ \ V.d/� ¤ ;:

The following results are immediate:

Proposition 15. Property Qi implies property Pi , for each i 2 f1; 2; 3g:
Proposition 16. Let x 2M be an admissible element. Then fx 2 E is an indicator
of x if and only if x 2

\
fx<d2E

ŒU.d/\V.d/� and x 62 U.g/\ V.g/, for each g 2 E

with g < fx .

It follows from Proposition 1 that two indicators of an admissible element are
either equal, or uncomparable.

LetE1 be a topological vector space over the reals,K a convex cone inE1, that is
not a linear subspace. We may consider the ordering relation induced byK , namely
“�K”, and the strict ordering relation “<K”, defined as before, similarly for “�K”
and “>K”. For the sake of simplicity, from now on we will once again leave the
cone out of the index of the notations of these relations (using again simply “�”,
“<”, etc.). This will not cause confusion, because the cones are in different spaces.

Let M 0 be a set of functions that map M to E1. We choose Y D 2M
0

and �� D
“�”. We denote

S� D ˚fyg; y 2 M 0� ;
and from now on, instead of writing fyg 2 S�, we will write y 2M 0.

Let f 2 E ,

U �.f / D
8<
:y j y 2 M 0; y.x/ � 0; 8x 2

\
f <g2E

U.g/

9=
; ;

V �.f / D
8<
:y j y 2M 0; y.x/ > 0; 8x 2

[
f >g2E

V.g/

9=
; ;

and w�.f / D U �.f /\ V �.f /.
Proposition 17. Property P �1 is satisfied.

Proof. Let f; g 2 E with f < g. It follows from
\

f <d2E
U.d/ �

\
g<d2E

U.d/ and

[
f >e2E

V.e/ �
[

g>e2E
V.e/ it follows that U �.g/ � U �.f / and V �.g/ � V �.f /,

consequently w�.g/ � w�.f /, thus P �1 holds.
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Proposition 18. If property Q1 is satisfied, then P �4 holds.

Proof. Let f; g 2 E with g < f , and let y 2 S� be an admissible element such
that y 2 w�.f /. It follows that y.x/ � 0 for all x 2

\
f <d2E

U.d/, and y.x/ > 0 for

all x 2
[

f >e2E
V.e/, consequently

2
4 \
f <d2E

U.d/

3
5 \

2
4 [
f >e2E

V.e/

3
5 D ;. Taking

into consideration Q1, we may deduce that U.e/ \ V.e/ D ; for each e 2 E with
e < f , and thus it holds for e D g as well. Consequently, there is no x 2 S with
x 2 w.g/ and therefore P �4 holds.

The next consequence of this result is due to Proposition 5.

Corollary 19. If properties Q1 and Q2 are satisfied, and there exist admissible
elements in M , then property P �2 holds.

Consider the following properties:

Q�1 : Let f 2 E . If w�.g/ ¤ ; for each g 2 E with g < f , then
\

f >e2E
w�.e/ ¤ ;.

Q�2 : Let f 2 E . If there exist admissible elements in M or in M 0, and w.f / D ;,
then w�.g/ ¤ ; for each g 2 E with g < f .

The following results are immediate:

Proposition 20. Property Q�1 implies property P �3 , and property Q�2 implies
property P �5 .

Proposition 21. Let y 2 M 0 be an admissible element. We say that f y 2 E is an
indicator of y if and only if y 2

\
f y>e2E

w�.e/ and y 62 w�.d/, for each d 2 E with

f y < d .

From Propositions 15–21 and from Theorem 14 we can deduce the following
result:

Theorem 22. 1. If properties Q1; Q2; Q
�
2 hold and there are no admissible

elements in M or in M 0, then OS D OS� D ;.
2. If propertiesQ1; Q2; Q3; Q

�
1 hold and there are admissible elements inM and

in M 0, then OS ¤ ; andOS� ¤ ;.
3. If propertiesQ1; Q2; Q

�
1 ; Q

�
2 hold, then an admissible element x 2M belongs

to OS if and only if there exist y 2 OS�

, fx 2 Ix and f y 2 I y with fx D f y .
4. If propertiesQ1; Q2; Q3; Q

�
2 hold, then an admissible element y 2 M 0 belongs

to OS�

if and only if there exist x 2 OS , fx 2 Ix and f y 2 I y with fx D f y .

Example 4. In the following we will consider a generalized vector minimization
problem discussed in [9].

Let � be a nonempty set, P a set-valued map from � to E , G a set-valued map
from � to E1; E , C , E1 and K are as defined before. If A is a nonempty subset of
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E , we say that a point a0 2 A is minimal with respect to C if there is no a 2 A with
a0 > a. Denote the set of minimal points of A with respect to C by Min.AjC/. We
investigate the following problem:

min P.�/ (1)

s:t: � 2 �; G.�/ \ �K ¤ ;:
By this we mean that if �0 2 � with G.�0/ \ �K ¤ ;, and if a0 2 P.�0/ satisfies
a0 2 Min.P.�/jC/, then .�0; a0/ is a solution of (1), where P.�/ D

[
�2�

P.�/.

We may apply Theorem 22 in this context by choosingM D E1�E and defining,
for each f 2 E ,

U.f / D U D f.�; p/ j 9� 2 � W � 2 G.�/; p 2 P.�/g;

V .f / D f.�; p/ j � 2 �K; p 2 P.�/ W p � f g:
One can verify that the duality theorems presented by the authors in [9] can be
included in our theory. Naturally, vector optimization can be regarded as a particular
case of the optimization of set-valued functions.

Instead of going into the details of applying our theory in this general case, we
will illustrate in the next section through a simple problem how one can apply
Theorem 22. Observe that the methods presented in the next section can be applied
(with some constraint qualifications) to more general cases as well, for example in
the case of convex vector optimization in infinite dimensional spaces.

5 Linear Vector Optimization

Let aij ; bj ; cik (i D 1;m; j D 1; n; k D 1; l; l; m; n 2 N�) be given real numbers.
Let � be the set of all � D .�1; : : : ; �m/ 2 Rm with �i � 0, i D 1;m. Suppose
that H is the Euclidean space Rn, where we define the following ordering relation:
�0 � �00 if and only if �0j � �00j , j D 1; n, �0 D .�01; : : : ; �0n/, �00 D .�001 ; : : : ; �00n/.

LetE be the Euclidean space Rl , where we define the following ordering relation:
f � g if and only if f D g or fk < gk , k D 1; l , f D .f1; : : : ; fl /, g D
.g1; : : : ; gl /.

Let �0 D .b1; : : : ; bn/, and consider the linear maps 	 W �!Rl and W � ! Rn

defined by

	.�/ D
 

mX
iD1

ci1�i ; : : : ;

mX
iD1

cil �i

!
;

 .�/ D
 

mX
iD1

ai1�i ; : : : ;

mX
iD1

ain�i

!
:
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Our goal is to minimize the vector-valued function 	 on the set defined by the
following inequalities:

8̂
<
:̂
�i � 0; i D 1;m;
mX
iD1

aij �i � bj ; j D 1; n: (2)

Let M D H �E and, for each f 2 E , define

U.f / D U D f.�; 	.�// j � 2 �; � 2 H; � �  .�/g;
V .f / D f.�0; g/ j g 2 E; g � f g;

and w.f / D U \ V.f /:
Definition 10. We say that � 2 � is permissible if �0 �  .�/, i.e. inequalities (2)
hold.

The following assertation is immediate:

Proposition 23. An element � 2 � is permissible if and only if .�0; 	.�// 2 M is
admissible in the sense of Sect. 2.

If x 2 U \V.f / for some f 2 E , then there exists a permissible element � 2 �
with x D .�0; 	.�// 2M . Consequently, conditionsQ1 andQ2 hold.

Furthermore, observe that if � 2 � is permissible, then 	.�/ is an indicator of
.�0; 	.�//.

Definition 11. We say that � 2 � is minimal, if there is no permissible element
� 2 � with 	.�/ < 	.�/.

Observe that, for � D .�1; : : : ; �m/ 2 � and � 2 H; we have .�; 	.�// 2 U if
and only if there exist nonnegative numbers � 01; : : : ; � 0n such that

.�; 	.�// D
 

mX
iD1

ai1�i � � 01; : : : ;
mX
iD1

ain�i � � 0n;
mX
iD1

ci1�i ; : : : ;

mX
iD1

cil �i

!
:

It follows that U is actually the cone generated by a1; : : : ; am;�e1; : : : ;�en,
where ai D .ai1; : : : ; ain; ci1; : : : ; ci;l /, i D 1;m, ej is the versor of the j -th axis in
R
nCl . That is,

U D
8<
:x 2 R

nCl j x D
mX
iD1

�ia
i �

nX
jD1

� 0j ej I �1; : : : ; �m; � 01; : : : ; � 0n � 0
9=
; :



514 J. Kolumbán and J.J. Kolumbán

Proposition 24. Let � 2 � be a permissible element, f D .f1; : : : ; fl / 2 E is an
indicator of .�0; 	.�// if and only if

mX
iD1

cik�i � fk; k D 1; l;

and there exists k0, 1 � k0 � l , such that

mX
iD1

cik0�i D fk0 :

Proof. Necessity: Suppose that f D .f1; : : : ; fl / 2 E is an indicator of .�0; 	.�//.
If there existed k1, 1 � k1 � l , such that

mX
iD1

cik1�i > fk1 ;

then for any g D .g1; : : : ; gl / 2 E with f < g and

gk1 D
1

2

 
mX
iD1

cik1�i C fk1
!
;

we would have .�0; 	.�// 62 U \ V.g/, which contradicts the fact that f is an
indicator of .�0; 	.�//.

If we had
mX
iD1

cik�i < fk; k D 1; l;

then by choosing

gk D 1

2

 
mX
iD1

cik�i C fk
!
;

for each k D 1; l , we would have g < f and .�0; 	.�// 2 U \ V.g/, which again
contradicts the fact that f is an indicator of .�0; 	.�//.

Sufficience: If the said conditions hold, we have .�0; 	.�// 2 U \V.g/, for each
g 2 E with f < g, and .�0; 	.�// 62 U \ V.g/, for each g 2 E with g < f , that
is, f is an indicator of .�0; 	.�//.

It follows from the above result that an admissible element can have more than
one indicator.
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Proposition 25. A permissible element � 2 � is minimal if and only if .�0; 	.�//
is optimal.

Proof. Suppose that � is not minimal. Then there exists a permissible element � 0 D
.� 01; : : : ; � 0m/ 2 � such that

mX
iD1

cik�
0
i <

mX
iD1

cik�i ; k D 1; l:

Let f be an indicator of .�0; 	.�//. Set f 0k D
Pm

iD1 cik�i ; k D 1; l and f 0 D
.f 01 ; : : : ; f 0l /. We have from Proposition 24 that f 0 < f , consequently .�0; 	.�// is
not optimal.

If there is no permissible element � 0 D .� 01; : : : ; � 0m/ 2 � with

mX
iD1

cik�
0
i <

mX
iD1

cik�i ; k D 1; l;

then we may deduce from Proposition 24 that .�0; 	.�// is optimal.

The next lemma is part of the folklore of polyhedral convex set theory (see [5]).

Lemma 1. For any convex polyhedron A 	 M and for any finite B 	 M , such
that the convex coneKB generated by B does not intersect A, there exists x� 2M �
such that x�.x/ > 0 for every x 2 A and x�.x/ � 0 for every x 2 KB (here M �
denotes the dual space of M ).

Proposition 26. ConditionQ3 is satisfied.

Proof. Let f 2 E such that U \ V.g/ ¤ ; for each g 2 E with f < g. Clearly

\
f <d

ŒU \ V.d/� � U \ V.f /:

Suppose that U \ V.f / D ;. Since U is a convex cone generated by a finite
set, and V.f / is a convex polyhedron, it follows from Lemma 1 that there exists
a hyperplane x�.x/ D ˛ that separates U from V.f /, and has no common points
with V.f / (for instance, x�.u/ � ˛ < x�.v/; 8u 2 U; 8v 2 V.f /). It follows
that there exists g 2 E with f < g, such that U \ V.g/ D ;, a contradiction.

Let M 0 be the set of all linear functions overM D RnCl that have the form

'.x/ D
nX

jD1
yj xj �

lX
kD1

ynCkxnCk;

where y1; : : : ; ynCl � 0, ynC1 C : : :C ynCl > 0 and x D .x1; : : : ; xnCl / 2M .
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For each f 2 E we define

U �.f / D U � D f' 2M 0 j '.�; h/ � 0; 8.�; h/ 2 U g;

V �.f / D
8<
:' 2 M 0 j '.�; h/ > 0; 8.�; h/ 2

[
g<f

V .g/

9=
; ;

and w�.f / D U � \ V �.f /:
Proposition 27. Let f D .f1; : : : ; fl / 2 E and ' 2 M 0. The relation ' 2 w�.f /
holds if and only if the following inequalities are satisfied:

nX
jD1

yj aij �
lX

kD1
ynCkcik � 0; i D 1;m; (3)

nX
jD1

yj bj �
lX

kD1
ynCkfk � 0: (4)

Proof. Necessity: From ' 2 U � it follows that

nX
jD1

yj

 
mX
iD1

aij �i � � 0j
!
�

lX
kD1

ynCk

 
mX
iD1

cik�i

!
� 0;

for every �1; : : : ; �m; � 01; : : : ; � 0n � 0: Consequently,

mX
iD1

0
@ nX
jD1

yj aij �
lX

kD1
ynCkcik

1
A �i �

nX
jD1

yj �
0
j � 0; (5)

for every �1; : : : ; �m; � 01; : : : ; � 0n � 0: It is clear that (3) holds.
The relation ' 2 V �.f / is equivalent to

nX
jD1

yj bj �
lX

kD1
ynCkgk > 0; 8g < f; g D .g1; : : : ; gl /: (6)

From (6) it follows that (4) holds.
Sufficience: From (3) and (4) it follows that (5) and (6) hold, and consequently

' 2 w�.f /.

Consequently, there exist admissible elements in M 0 if and only if the following
system is compatible:
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8̂
ˆ̂̂<
ˆ̂̂̂
:

y1; : : : ; ynCl � 0;
ynC1 C : : :C ynCl > 0;
�

nX
jD1

yj aij C
lX

kD1
ynCkcik � 0; i D 1;m:

(7)

Proposition 28. ConditionsQ�1 andQ�2 are satisfied.

Proof. First, let us show that Q�2 is satisfied. Let f; g 2 E such that g < f and
U \ V.f / D ;. It follows from Lemma 1 that there exists a hyperplane of the form

'.x/ D
nX

jD1
yj xj �

lX
kD1

ynCkxnCk D 0; (8)

that strictly separates these two sets.
We have yj � 0, j D 1; n, since �ej 2 U , j D 1; n. Let us prove that

ynCk � 0, k D 1; l . Suppose the contrary: if there exists k0, 1 � k0 � l ,
with ynCk0 < 0, then, taking into consideration that any component of x of larger
order than n can be arbitrarily shrinked without leaving the set V.f /, there exists
x0 D .x01 ; : : : ; x0nCl / 2 V.f / with

'.x0/ D
nX

jD1
yj bj �

lX
kD1

ynCkx0nCk < 0:

This contradicts '.x/ > 0; 8x 2 V.f /.
Suppose that there exist admissible elements in M . Let us prove that there

exists k0, 1 � k0 � l , with �enCk0 62 U . Supposing the contrary, if x D
.b1; : : : ; bn; g

0
1; : : : ; g

0
l / is an admissible element, then U contains the cone gen-

erated by x;�enC1; : : : ;�enCl , that is

fx 2M j x D .b1; : : : ; bn; xnC1; : : : ; xnCl /; xnCk � g0k; k D 1; lg 	 U:

This contradicts U \ V.f / D ;.
If �enCk0 62 U , then U can be separated from V.f / with a hyperplane of the

form

nX
jD1

yj xj �
lX

kD1
ynCkxnCk D 0; (9)

where yj � 0, j D 1; nC l , and ynCk0 D 1. Consequently, w�.f / ¤ ;, from
where w�.g/ ¤ ;.



518 J. Kolumbán and J.J. Kolumbán

If there do not exist admissible elements inM , but there exist admissible elements
in M 0, then clearly there exists k0, 1 � k0 � l , with �enCk0 62 U , from where
w�.g/ ¤ ;. Therefore,Q�2 holds.

Let f 2 E such that w�.g/ ¤ ; for any g 2 E with g < f . It follows that
U \ V.g/ D ;, from where we may deduce that there exists a hyperplane of the
form (8) strictly separating U and V.f /. It can be shown as above that yj � 0,
j D 1; nC l . From w�.g/ ¤ ; for any g 2 E with g < f it follows that there
exists k0, 1 � k0 � l , with �enCk0 62 U . Consequently, U and V.f / can be
strictly separated by a hyperplane of the form (9), with yj � 0, j D 1; nC l , and

ynCk0 D 1. It follows that w�.f / ¤ ;, from where
\
f >d

w�.d/ ¤ ;. Therefore,Q�1

holds as well.

Remark 2. The set M 0 is isomorphic to the set
(
x 2M j x D .x1; : : : ; xnCl /; xj � 0; j D 1; nC l ;

lX
kD1

xnCk > 0
)
:

Therefore, when ' is defined with the formula (8), we may put ' D .y1; : : : ; ynCl /.
Proposition 29. An element f 2 E is an indicator of the admissible element ' D
.y1; : : : ; ynCl / from M 0 if and only if

nX
jD1

yj bj �
lX

kD1
ynCkfk D 0: (10)

Proof. Necessity: Let f 2 E be an indicator of ' 2M 0, and suppose that

nX
jD1

yj bj �
lX

kD1
ynCkfk < 0;

that is, '.�0; f / < 0. Let us consider an element g 2 E with g < f , and construct
the following sequence:

fn D f � 1

2n�1
f C 1

2n�1
g; n 2 N

�:

We have fn < f and fn < fn�1, for any n 2 N�: Taking into account
that limn!1 '.�0; fn/ D '.�0; f /, it follows that there exists n0 2 N� such
that '.�0; fn0/ < 0. However, this implies ' 62 V �.fn0�1/, which contradicts
Proposition 21, since fn0�1 < f .

If we have
nX

jD1
yj bj �

lX
kD1

ynCkfk > 0; that is, '.�0; f / > 0, we may similarly

prove that there exists h 2 E with f < h and ' 2 V �.h/, which also contradicts
Proposition 21.
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Sufficience: Let '.�0; f / D
nX

jD1
yj bj �

lX
kD1

ynCkfk D 0, g 2 E with g < f ,

and .�0; g1/ 2
\
h<g

V .h/, g1 D .g11; : : : ; g
1
l /. From yj � 0, j D 1; nC l , and

lX
kD1

ynCk > 0, we may deduce that

'.�0; g1/ D
nX

jD1
yj bj �

lX
kD1

ynCkg1k >
nX

jD1
yj bj �

lX
kD1

ynCkfk D 0;

consequently ' 2 V �.g/.
Now let g 2 E with f < g. Similarly, we have

'.�0; g/ <

nX
jD1

yj bj �
lX

kD1
ynCkfk D 0;

and we may show, similarly to the methods used in proving the necessity, that there
exists g1 2 E with g1 < g and '.�0; g1/ < 0. It follows that ' 62 V �.g/. We may
conclude from Proposition 21 that f is an indicator of '.

Proposition 30. The admissible element ' D .y1; : : : ; ynCl / from M 0 is optimal if
and only if there exist f1; : : : ; fl 2 R such that

1. Eq. (10) holds
2. there does not exist an admissible element ' 0 D .y01; : : : ; y0nCl / and real numbers

f 01 ; : : : ; f 0l , such that f 0k > fk , k D 1; l , and

nX
jD1

y0j bj �
lX

kD1
y0nCkf 0k � 0: (11)

Proof. Necessity: If ' is optimal and f D .f1; : : : ; fl / is an indicator of ', it
follows from Proposition 29 that (10) holds.

If we suppose that 2: does not hold, from Propositions 9 and 29, taking into
account that the indicator f was chosen arbitrarily, it follows that ' is not optimal,
a contradiction.

Sufficience: If 1: and 2: are satisfied, it follows from Propositions 9 and 29 that '
is optimal.

Let M be the set of minimal elements in� and O� be the set of optimal elements
in M 0.
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Theorem 31.

1. If one of the inequality systems (2) or (7) is incompatible, then M D O� D ;.
2. If both (2) and (7) are compatible, then M ¤ ; and O� ¤ ;.
3. An element .�1; : : : ; �m/ satisfying (2) is in M if and only if there exists
.y1; : : : ; ynCl / 2 O� with

nX
jD1

yj bj D
lX

kD1

 
mX
iD1

cik�i

!
ynCk: (12)

4. An element .y1; : : : ; ynCl / satisfying (7) is in O� if and only if there exists
.�1; : : : ; �m/ 2M such that (12) holds.

Proof. Statements 1 and 2 result from Theorem 22.
If � D .�1; : : : ; �m/ 2M , then it follows from Proposition 25 that x D .�0; 	.�//

is optimal. We may deduce from Theorem 22 and Propositions 24, 29 that there

exist f1; : : : ; fl 2 R and .y1; : : : ; ynCl / 2 O� such that (10) holds and
mX
iD1

cik�i �

fk; k D 1; l: It follows that

nX
jD1

yj bj �
lX

kD1

 
mX
iD1

cik�i

!
ynCk � 0: (13)

If we had

nX
jD1

yj bj �
lX

kD1

 
mX
iD1

cik�i

!
ynCk > 0; (14)

then there would exist f 0 D .f 01 ; : : : ; f 0l / 2 E such that
mX
iD1

cik�i < f 0k ; k D 1; l;

and

nX
jD1

yj bj �
lX

kD1
ynCkf 0k D 0:

It follows from Propositions 24 and 29 that

 
mX
iD1

ci1�i ; : : : ;

mX
iD1

cil �i

!
is an indi-

cator of x and f 0 is an indicator of .y1; : : : ; ynCl /. However, this contradicts
Proposition 10.

If (12) holds, then it follows from Propositions 24 and 29 that
 

mX
iD1

ci1�i ; : : : ;

mX
iD1

cil �i

!
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is an indicator of x D .�0; 	.�// and of ' D .y1; : : : ; ynCl /. It follows from
Theorem 22 that x is optimal, and from Proposition 25 we get � 2M .

Consequently, 3. holds.
If ' D .y1; : : : ; ynCl / 2 O�, it follows from Theorem 22 that there exists an

optimal element x D .�0; 	.�// 2 M and f D .f1; : : : ; fl / 2 E such that f
is an indicator of x and of '. We may deduce from Propositions 24 and 29 that
mX
iD1

cik�i � fk; k D 1; l; and (10) holds. Consequently, (13) holds as well. It can

be shown, similarly to the proof of 3., that (14) cannot hold, so (12) holds.

For the converse implication, if (12) holds, then

 
mX
iD1

ci1�i ; : : : ;

mX
iD1

cil �i

!
is

an indicator of ' and of .�0; 	.�//, where � D .�1; : : : ; �m/. It follows from
Theorem 22 that ' 2 O�.

Corollary 32. An element .�1; : : : ; �m/ satisfying (2) is in M if and only if there
exists .y1; : : : ; ynCl / satisfying (7) such that

nX
jD1

yj aij D
lX

kD1
cikynCk; if �i > 0 .i D 1;m/;

and

yj D 0; if
mX
iD1

aij �i > bj .j D 1; n/:

Remark 3. The authors intend to revisit the optimization problem for functions that
take their values in Heisenberg groups in a separate forthcoming paper.
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An AQCQ-Functional Equation in Matrix
Random Normed Spaces

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract In this paper, we prove the Hyers–Ulam stability of the following
additive-quadratic-cubic-quartic functional equation

f .x C 2y/C f .x � 2y/
D 4f .x C y/C 4f .x � y/� 6f .x/C f .2y/C f .�2y/ � 4f .y/ � 4f .�y/

in matrix random normed spaces.

Keywords Hyers–Ulam stability • Matrix random normed space • Additive-
quadratic-cubic-quartic functional equation

1 Introduction and Preliminaries

The abstract characterization given for linear spaces of bounded Hilbert space oper-
ators in terms of matricially normed spaces [26] implies that quotients, mapping
spaces and various tensor products of operator spaces may again be regarded as
operator spaces. Owing in part to this result, the theory of operator spaces is having
an increasingly significant effect on operator algebra theory (see [8]).

J.R. Lee
Department of Mathematics, Daejin University, Pocheon, Korea
e-mail: jrlee@daejin.ac.kr

C. Park (�)
Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
e-mail: baak@hanyang.ac.kr

Th.M. Rassias
National Technical University of Athens, Athens, Greece
e-mail: trassias@math.ntua.gr

Th. M. Rassias and L. Tóth (eds.), Topics in Mathematical Analysis and Applications,
Springer Optimization and Its Applications 94, DOI 10.1007/978-3-319-06554-0__22,
© Springer International Publishing Switzerland 2014

523

mailto:jrlee@daejin.ac.kr
mailto:baak@hanyang.ac.kr
mailto:trassias@math.ntua.gr


524 J.R. Lee et al.

The proof given in [26] appealed to the theory of ordered operator spaces [3].
Effros and Ruan [9] showed that one can give a purely metric proof of this important
theorem by using a technique of Pisier [22] and Haagerup [17] (as modified in [7]).

The stability problem of functional equations originated from a question of Ulam
[30] concerning the stability of group homomorphisms. The functional equation

f .x C y/ D f .x/C f .y/

is called the Cauchy additive functional equation. In particular, every solution of
the Cauchy additive functional equation is said to be an additive mapping. Hyers
[18] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [23] for linear mappings by considering an unbounded Cauchy difference.
A generalization of the Rassias theorem was obtained by Găvruta [13] by replacing
the unbounded Cauchy difference by a general control function in the spirit of
Rassias’ approach.

In 1990, Rassias [24] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p � 1. In 1991, Gajda [12] following the same approach as in Rassias [23] gave
an affirmative solution to this question for p > 1. It was shown by Gajda [12], as
well as by Rassias and Šemrl [25] that one cannot prove a Rassias’ type theorem
when p D 1 (cf. the books of Czerwik [6], Hyers, Isac and Rassias [19]).

The functional equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/ (1)

is related to a symmetric bi-additive mapping. It is natural that this equation is
called a quadratic functional equation. In particular, every solution of the quadratic
functional equation (1) is said to be a quadratic mapping. The Hyers–Ulam stability
problem for the quadratic functional equation (1) was proved by Skof for mappings
f W A ! B , where A is a normed space and B is a Banach space (see [29]).
Cholewa [4] noticed that the theorem of Skof is still true if relevant domain A is
replaced by an abelian group. In [5], Czerwik proved the Hyers–Ulam stability of
the functional equation (1). Grabiec [14] has generalized these results mentioned
above.

In [20], Jun and Kim considered the following cubic functional equation

f .2x C y/C f .2x � y/ D 2f .x C y/C 2f .x � y/C 12f .x/: (2)

It is easy to show that the function f .x/ D x3 satisfies the functional equation (2),
which is called a cubic functional equation and every solution of the cubic functional
equation is said to be a cubic mapping.

In [21], Lee et al. considered the following quartic functional equation

f .2x C y/C f .2x � y/ D 4f .x C y/C 4f .x � y/C 24f .x/ � 6f .y/: (3)
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It is easy to show that the function f .x/ D x4 satisfies the functional equation (3),
which is called a quartic functional equation and every solution of the quartic
functional equation is said to be a quartic mapping.

In the sequel, we adopt the usual terminology, notations and conventions of
the theory of random normed spaces, as in [2, 27, 28]. Throughout this paper,
�C is the space of distribution functions, that is, the space of all mappings F W
R [ f�1;1g ! Œ0; 1� such that F is left-continuous and non-decreasing on
R; F .0/ D 0 and F.C1/ D 1: DC is a subset of �C consisting of all functions
F 2 �C for which l�F.C1/ D 1, where l�f .x/ denotes the left limit of the
function f at the point x, that is, l�f .x/ D limt!x� f .t/. The space �C is
partially ordered by the usual point-wise ordering of functions, i.e., F � G if and
only if F.t/ � G.t/ for all t in R. The maximal element for �C in this order is the
distribution function "0 given by "0.t/ D 0 if t � 0 andD 1 if t > 0.

Definition 1 ([27]). A mapping T W Œ0; 1��Œ0; 1�! Œ0; 1� is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

.a/ T is commutative and associative;

.b/ T is continuous;

.c/ T .a; 1/ D a for all a 2 Œ0; 1�;
.d/ T .a; b/ � T .c; d/ whenever a � c and b � d for all a; b; c; d 2 Œ0; 1�.

Typical examples of continuous t-norms are TP .a; b/ D ab, TM.a; b/ D
min.a; b/ and TL.a; b/ D max.a C b � 1; 0/ (the Lukasiewicz t-norm). Recall
(see [15,16]) that if T is a t-norm and fxng is a given sequence of numbers in Œ0; 1�,
then T niD1xi is defined recurrently by T 1iD1xi D x1 and T niD1xi D T .T n�1iD1 xi ; xn/ for
n � 2: T1iDnxi is defined as T1iD1xnCi�1: It is known [16] that for the Lukasiewicz
t-norm the following implication holds:

lim
n!1 .TL/

1
iD1xnCi�1 D 1”

1X
nD1
.1 � xn/ <1:

Definition 2 ([28]). A random normed space (briefly, RN-space) is a triple
.X;�; T /, where X is a vector space, T is a continuous t-norm and � is a mapping
from X into DC such that the following conditions hold:

.RN1/ �x.t/ D "0.t/ for all t > 0 if and only if x D 0;

.RN2/ �˛x.t/ D �x. tj˛j / for all x 2 X , ˛ ¤ 0;

.RN3/ �xCy.t C s/ � T .�x.t/; �y.s// for all x; y 2 X and all t; s � 0:
Every normed space .X; k:k/ defines a random normed space .X;�; TM /, where

�x.t/ D t

t C kxk
for all t > 0; and TM is the minimum t-norm. This space is called the induced
random normed space.
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Definition 3. Let .X;�; T / be an RN-space.

.1/ A sequence fxng in X is said to be convergent to x in X if, for every � > 0 and
� > 0, there exists a positive integer N such that �xn�x.�/ > 1 � � whenever
n � N .

.2/ A sequence fxng in X is called a Cauchy sequence if, for every � > 0 and
� > 0, there exists a positive integer N such that �xn�xm.�/ > 1 � � whenever
n � m � N .

.3/ An RN-space .X;�; T / is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X .

Theorem 1 ([27]). If .X;�; T / is an RN-space and fxng is a sequence such that
xn ! x, then limn!1 �xn.t/ D �x.t/ almost everywhere.

We introduce the concept of matrix random normed space.

Definition 4. Let .X;�/ be a random normed space. Then

(1) .X; f�.n/g; T / is called a matrix random normed space if for each positive
integer n, .Mn.X/; �

.n/; T / is a random normed space and �
.k/
AxB.t/ �

�
.n/
x

�
t

kAk�kBk
�

for all t > 0, A 2 Mk;n.R/, x D Œxij � 2 Mn.X/ and

B 2 Mn;k.R/ with kAk � kBk ¤ 0.
(2) .X; f�.n/g; T / is called a matrix random Banach space if .X;�/ is a random

Banach space and .X; f�.n/g/ is a matrix random normed space.

Example 1. Let .X; fk � kng/ be a matrix normed space. Let �.n/x .t/ WD t
tCkxkn for

all t > 0 and x D Œxij � 2Mn.X/. Then

�
.k/
AxB.t/ D

t

t C kAxBkk �
t

t C kAk � kxkn � kBk D
t

kAk�kBk
t

kAk�kBk C kxkn

D �.n/x
�

t

kAk � kBk
�

for all t > 0,A 2Mk;n.R/, x D Œxij � 2Mn.X/ andB 2Mn;k.R/with kAk�kBk ¤
0. If T .a; b/ D minfa; bg, then .X; f�.n/g; T / is a matrix random normed space.

Let E;F be vector spaces. For a given mapping h W E ! F and a given positive
integer n, define hn WMn.E/!Mn.F / by

hn.Œxij �/ D Œh.xij /�
for all Œxij � 2 Mn.E/.

The aim of this paper is to investigate the Hyers–Ulam stability of the additive-
quadratic-cubic-quartic functional equation

f .x C 2y/C f .x � 2y/ D 4f .x C y/C 4f .x � y/ � 6f .x/
Cf .2y/C f .�2y/� 4f .y/ � 4f .�y/ (4)

in matrix random normed spaces.
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One can easily show that an odd mapping f W X ! Y satisfies (4) if and only if
the odd mapping f W X ! Y is an additive-cubic mapping, i.e.,

f .x C 2y/C f .x � 2y/ D 4f .x C y/C 4f .x � y/ � 6f .x/:

It was shown in [11, Lemma 2.2] that g.x/ WD f .2x/�8f .x/ and h.x/ WD f .2x/�
2f .x/ are additive and cubic, respectively, and that f .x/ D 1

6
h.x/ � 1

6
g.x/.

One can easily show that an even mapping f W X ! Y satisfies (4) if and only if
the even mapping f W X ! Y is a quadratic-quartic mapping, i.e.,

f .x C 2y/C f .x � 2y/ D 4f .x C y/C 4f .x � y/ � 6f .x/C 2f .2y/� 8f .y/:

It was shown in [10, Lemma 2.1] that g.x/ WD f .2x/ � 16f .x/ and h.x/ WD
f .2x/ � 4f .x/ are quadratic and quartic, respectively, and that f .x/ D 1

12
h.x/ �

1
12
g.x/.

Lemma 1. Each mapping f W X ! Y satisfying (4) can be realized as the sum of
an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping.

This paper is organized as follows: In Sect. 2, we prove the Hyers–Ulam stability
of the additive-quadratic-cubic-quartic functional equation (4) in matrix random
normed spaces for an odd mapping case. In Sect. 3, we prove the Hyers–Ulam
stability of the additive-quadratic-cubic-quartic functional equation (4) in matrix
random normed spaces for an even mapping case.

Throughout this paper, assume that X is a real vector space and that .Y; �.n/; T /
is a matrix random Banach space.

2 Hyers–Ulam Stability of the AQCQ-Functional
Equation (4) in Matrix Random Normed Spaces:
Odd Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equa-
tion (4) in matrix random normed spaces for an odd mapping case.

We will use the following notations:

Mn.X/ is the set of all n � n-matrices in X ;
ej 2M1;n.R/ is that j -th component is 1 and the other components are zero;
Eij 2Mn.R/ is that .i; j /-component is 1 and the other components are zero;
Eij ˝ x 2 Mn.X/ is that .i; j /-component is x and the other components are
zero.

Lemma 2. Let .X; f�.n/g; T / be a matrix random normed space. Let �.1/ D �.

(1) �.n/Ekl˝x.t/ D �x.t/ for all t > 0 and x 2 X .
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(2) For all Œxij � 2 Mn.X/ and t DPn
i;jD1 tij ,

�xkl .t/ � �.n/Œxij �.t/ � T n
2

.�x11 .t11/; �x12.t12/; � � � ; �xnn.tnn// ;

�xkl .t/ � �.n/Œxij �.t/ � T n
2

�
�x11

�
t

n2

�
; �x12

�
t

n2

�
; � � � ; �xnn

�
t

n2

��

(3) limn!1 xn D x if and only if limn!1 xijn D xij for xn D Œxijn�; x D Œxij � 2
Mk.X/.

Proof. (1) Since Ekl ˝ x D e�k xel and ke�k k D kelk D 1, �.n/Ekl˝x.t/ � �x.t/.

Since ek.Ekl ˝ x/e�l D x, �.n/Ekl˝x.t/ � �x.t/. So �.n/Ekl˝x.t/ D �x.t/.
(2)

�
.n/

Œxij �
.t/ D �.n/Pn

i;jD1 Eij˝xij .t/

� T n2
�
�
.n/
E11˝x11.t11/; �

.n/
E12˝x12.t12/; � � � ; �

.n/
Enn˝xnn.tnn/

�

D T n2 .�x11.t11/; �x12.t12/; � � � ; �xnn.tnn// ;

where t DPn
i;jD1 tij . In particular,

�
.n/

Œxij �
.t/ � T n2

�
�x11

�
t

n2

�
; �x12

�
t

n2

�
; � � � ; �xnn

�
t

n2

��
:

So �xkl .t/ D �ekxe�

l
.t/ � �.n/x

�
t

kekk�ke�

l k
�
D �.n/x .t/.

(3) By �xkl .t/ � �.n/Œxij �.t/ � T n
2 �
�x11

�
t
n2

�
; �x12

�
t
n2

�
; � � � ; �xnn

�
t
n2

��
, we obtain

the result.

For a mapping f W X ! Y , define Df W X2 ! Y and Dfn W Mn.X
2/ !

Mn.Y / by

Df.a; b/ WD f .aC 2b/C f .a � 2b/� 4f .aC b/� 4f .a � b/C 6f .a/
�f .2b/ � f .�2b/C 4f .b/C 4f .�b/;

Dfn.Œxij �; Œyij �/ WD fn.Œxij �C 2Œyij �/C fn.Œxij � � 2Œyij �/� 4fn.Œxij �C Œyij �/
�4fn.Œxij � � Œyij �/C 6fn.Œxij �/ � fn.2Œyij �/� fn.�2Œyij �/C 4fn.Œyij �/
C4fn.�Œyij �/

for all a; b 2 X and all x D Œxij �; y D Œyij � 2 Mn.X/.
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Theorem 2. Let f W X ! Y be an odd mapping for which there is a � W X2 ! DC
(�.a; b/ is denoted by �a;b) such that

�Df.a;b/.t/ � �a;b.t/ (5)

for all a; b 2 X and all t > 0: If

lim
l!1T

1
kD1

�
T
�
�2kCl�1a;2kCl�1a

�
2l�3t

�
; �2kCl a;2kCl�1a

�
2l�1t

��� D 1
and

lim
l!1 �2la;2l b.2

l t/ D 1

for all a; b 2 X and all t > 0, then there exist a unique additive mapping A W X !
Y and a unique cubic mapping C W X ! Y such that

�
.n/

fn.2Œxij �/�8fn.Œxij �/�An.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���
; (6)

�
.n/

fn.2Œxij �/�2fn.Œxij �/�Cn.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���
(7)

for all x D Œxij �; y D Œyij � 2Mn.X/ and all t > 0:

Proof. Putting a D b in (5), we get

�f.3b/�4f .2b/C5f .b/.t/ � �b;b.t/ (8)

for all b 2 X and all t > 0. Replacing a by 2b in (5), we get

�f.4b/�4f .3b/C6f .2b/�4f .b/.t/ � �2b;b .t/ (9)
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for all b 2 X and all t > 0. It follows from (8) and (9) that

�f.4a/�10f .2a/C16f .a/.t/

D �.4f .3a/�16f .2a/C20f .a//C.f .4a/�4f .3a/C6f .2a/�4f .a//.t/

� T
�
�4f.3a/�16f .2a/C20f .a/

�
t

2

�
; �f.4a/�4f .3a/C6f .2a/�4f .a/

�
t

2

��

� T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��

for all a 2 X and all t > 0. Let g W X ! Y be a mapping defined by g.a/ WD
f .2a/ � 8f .a/. Then we conclude that

�g.2a/�2g.a/.t/ � T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��

for all a 2 X and all t > 0. Thus we have

�g.2a/
2 �g.a/.t/ � T

�
�a;a

�
t

4

�
; �2a;a .t/

�

for all a 2 X and all t > 0. Hence

�g.2kC1a/

2kC1 � g.2
ka/

2k

.t/ � T ��2ka;2ka �2k�2t� ; �2kC1a;2ka

�
2kt
��

for all a 2 X , all t > 0 and all k 2 N: From 1 > 1
2
C 1

22
C � � � C 1

2l
; it follows that

�g.2l a/

2l
�g.a/.t/ � T

l
kD1

�
�g.2ka/

2k
� g.2k�1a/

2k�1

�
t

2k

��

� T lkD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(10)

for all a 2 X and all t > 0: In order to prove the convergence of the sequencen
g.2la/

2l

o
, replacing a with 2ma in (10), we obtain that

�g.2lCma/

2lCm � g.2ma/2m

.t/

� T lkD1
�
T
�
�2kCm�1a;2kCm�1a

�
2m�3t

�
; �2kCma;2kCm�1a

�
2m�1t

���
: (11)

Since the right-hand side of the inequality (11) tends to 1 as m and l tend to

infinity, the sequence
n
g.2l a/

2l

o
is a Cauchy sequence. Thus we may define A.a/ D

liml!1 g.2la/

2l
for all a 2 X .
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Now we show that A is an additive mapping. Replacing a and b with 2la and 2lb
in (5), respectively, we get

�Df.2l a;2l b/

2l

.t/ � �2l a;2l b.2l t/:

Taking the limit as l ! 1, we find that A W X ! Y satisfies (4) for all a; b 2 X .
Since f W X ! Y is odd, A W X ! Y is odd. By [11, Lemma 2.2], the mapping
A W X ! Y is additive. Letting the limit as l !1 in (10), we get

�f.2a/�8f .a/�A.a/.t/

� T1kD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(12)

for all a 2 X and all t > 0:
Next, we prove the uniqueness of the additive mapping A W X ! Y subject

to (12). Let us assume that there exists another additive mappingL W X ! Y which
satisfies (12). Since A.2la/ D 2lA.a/; L.2la/ D 2lL.a/ for all a 2 X and all
l 2 N; from (12), it follows that

�A.a/�L.a/.2t/ D �A.2l a/�L.2l a/.2
lC1t /

� T .�A.2l a/�g.2l a/.2
l t /; �g.2la/�L.2l a/.2

l t //

� T
�
T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2l�3t

�
; �2lCka;2lCk�1a

�
2l�1t

���
;

T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2l�3t

�
; �2lCka;2lCk�1a

�
2l�1t

����
(13)

for all a 2 X and all t > 0. Letting l !1 in (13), we conclude that A D L.
By Lemma 2 and (12),

�
.n/

gn.Œxij �/�An.Œxij �/.t/

� T n2
�
�g.x11/�A.x11/

�
t

n2

�
; �g.x12/�A.x12/

�
t

n2

�
; � � � ; �g.xnn/�A.xnn/

�
t

n2

��

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���

for all x D Œxij � 2 Mn.X/ and all t > 0. Thus A W X ! Y is a unique additive
mapping satisfying (6).
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Let h W X ! Y be a mapping defined by h.a/ WD f .2a/ � 2f .a/. Then we
conclude that

�h.2a/�8h.a/.t/ � T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��

for all a 2 X and all t > 0. Thus we have

�h.2a/
8 �h.a/.t/ � T .�a;a .t/ ; �2a;a .4t//

for all a 2 X and all t > 0. Hence

�h.2kC1a/

8kC1 � h.2
ka/

8k

.t/ � T ��2ka;2ka �8kt� ; �2kC1a;2ka

�
4 � 8kt��

for all a 2 X , all t > 0 and all k 2 N: From 1 > 1
8
C 1

82
C � � � C 1

8l
; it follows that

�h.2l a/

8l
�h.a/.t/ � T

l
kD1

�
�h.2k a/

8k
� h.2k�1a/

8k�1

�
t

8k

��

� T lkD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(14)

for all a 2 X and all t > 0: In order to prove the convergence of the sequencen
h.2l a/

8l

o
, replacing a with 2ma in (14), we obtain that

�h.2lCma/

8lCm � h.2ma/
8m

.t/

� T lkD1
�
T
�
�2kCm�1x;2kCm�1a

�
8m�1t

�
; �2kCma;2kCm�1a

�
4 � 8m�1t��� : (15)

Since the right-hand side of the inequality (15) tends to 1 as m and l tend to

infinity, the sequence
n
h.2l a/

8l

o
is a Cauchy sequence. Thus we may define C.a/ D

liml!1 h.2l a/

8l
for all a 2 X .

Now we show that C is a cubic mapping. Replacing a and b with 2la and 2lb
in (5), respectively, we get

�Df.2l a;2l b/

8l

.t/ � �2l a;2l b.8nt/ � �2l a;2l b.2l t/:

Taking the limit as l ! 1, we find that C W X ! Y satisfies (4) for all a; b 2 X .
Since f W X ! Y is odd, C W X ! Y is odd. By [11, Lemma 2.2], the mapping
C W X ! Y is cubic. Letting the limit as l !1 in (14), we get



An AQCQ-Functional Equation in Matrix Random Normed Spaces 533

�f.2a/�2f .a/�C.a/.t/

� T1kD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(16)

for all a 2 X and all t > 0:
Next, we prove the uniqueness of the cubic mapping C W X ! Y subject

to (16). Let us assume that there exists another cubic mapping L W X ! Y which
satisfies (16). Since C.2la/ D 8lC.a/; L.2la/ D 8lL.a/ for all a 2 X and all
l 2 N; from (16), it follows that

�C.a/�L.a/.2t/ D �C.2l a/�L.2l a/.2 � 8l t /
� T .�C.2la/�h.2l a/.8

l t /; �h.2l a/�L.2l a/.8
l t //

� T
�
T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
8l�1t

�
; �2lCka;2lCk�1a

�
4 � 8l�1t

���
;

T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
8l�1t

�
; �2lCka;2lCk�1a

�
4 � 8l�1t

����

� T
�
T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2l�3t

�
; �2lCka;2lCk�1a

�
2l�1t

���
;

T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2l�3t

�
; �2lCka;2lCk�1a

�
2l�1t

����
(17)

for all a 2 X and all t > 0. Letting l !1 in (17), we conclude that C D L.
By Lemma 2 and (16),

�
.n/

hn.Œxij �/�Cn.Œxij �/.t/

� T n2
�
�h.x11/�C.x11/

�
t

n2

�
; �h.x12/�C.x12/

�
t

n2

�
; � � � ; �h.xnn/�C.xnn/

�
t

n2

��

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���

for all x D Œxij � 2 Mn.X/ and all t > 0. Thus C W X ! Y is a unique cubic
mapping satisfying (7).

Similarly, one can obtain the following result.

Theorem 3. Let f W X ! Y be an odd mapping for which there is a � W X2 ! DC
(�.a; b/ is denoted by �a;b) satisfying (5). If

lim
l!1T

1
kD1

�
T

�
� a

2kCl ;
a

2kCl

�
t

8lC2k

�
; � a

2kCl�1 ;
a

2kCl

�
4t

8lC2k

���
D 1
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and

lim
l!1� a

2l
; b
2l

�
t

8l

�
D 1

for all a; b 2 X and all t > 0, then there exist a unique additive mapping A W X !
Y and a unique cubic mapping C W X ! Y such that

�
.n/

fn.2Œxij �/�8fn.Œxij �/�An.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�x11
2k
;
x11

2k

�
t

22kC1n2

�
; � x11

2k�1 ;
x11

2k

�
t

22k�1n2

�
;

� x12
2k
;
x12

2k

�
t

22kC1n2

�
; � x12

2k�1 ;
x12

2k

�
t

22k�1n2

�
; � � � ;

� xnn
2k
;
xnn

2k

�
t

22kC1n2

�
; � xnn

2k�1 ;
xnn

2k

�
t

22k�1n2

���
;

�
.n/

fn.2Œxij �/�2fn.Œxij �/�Cn.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�x11
2k
;
x11

2k

�
t

82kn2

�
; � x11

2k�1 ;
x11

2k

�
4t

82kn2

�
;

� x12
2k
;
x12

2k

�
t

82kn2

�
; � x12

2k�1 ;
x12

2k

�
4t

82kn2

�
; � � � ;

� xnn
2k
;
xnn

2k

�
t

82kn2

�
; � xnn

2k�1 ;
xnn

2k

�
4t

82kn2

���

for all x D Œxij � 2Mn.X/ and all t > 0.

3 Hyers–Ulam Stability of the AQCQ-Functional
Equation (4) in Matrix Random Normed Spaces:
Odd Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equa-
tion (4) in matrix random normed spaces for an even mapping case.

Theorem 4. Let f W X ! Y be an even mapping for which there is a � W X2 !
DC (�.a; b/ is denoted by �a;b) satisfying f .0/ D 0 and (5). If

lim
l!1T

1
kD1

�
T
�
�2kCl�1a;2kCl�1a

�
2 � 4l�2t� ; �2kCl a;2kCl�1a

�
2 � 4l�1t��� D 1
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and

lim
l!1 �2la;2l b.4

l t/ D 1

for all a; b 2 X and all t > 0, then there exist a unique quadratic mapping P W
X ! Y and a unique quartic mappingQ W X ! Y such that

�
.n/

fn.2Œxij �/�16fn.Œxij �/�Pn.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���
;

�
.n/

fn.2Œxij �/�4fn.Œxij �/�Qn.Œxij �/
.t/

� T1kD1
�
T n

2C1
�
�2k�1x11;2k�1x11

�
t

8n2

�
; �2kx11;2k�1x11

�
t

2n2

�
;

�2k�1x12;2k�1x12

�
t

8n2

�
; �2kx12;2k�1x12

�
t

2n2

�
; � � � ;

�2k�1xnn;2k�1xnn

�
t

8n2

�
; �2kxnn;2k�1xnn

�
t

2n2

���

for all x D Œxij � 2Mn.X/ and all t > 0.

Proof. Putting a D b in (5), we get

�f.3b/�6f .2b/C15f .b/.t/ � �b;b.t/ (18)

for all b 2 X and all t > 0. Replacing a by 2b in (5), we get

�f.4b/�4f .3b/C4f .2b/C4f .b/.t/ � �2b;b .t/ (19)

for all b 2 X and all t > 0. It follows from (18) and (19) that

�f.4a/�20f .2a/C64f .a/.t/

D �.4f .3a/�24f .2a/C60f .a//C.f .4a/�4f .3a/C4f .2a/C4f .a// .t/

� T
�
�4f.3a/�24f .2a/C60f .a/

�
t

2

�
; �f.4a/�4f .3a/C4f .2a/C4f .a/

�
t

2

��

� T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��
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for all a 2 X and all t > 0. Let g W X ! Y be a mapping defined by g.a/ WD
f .2a/ � 16f .a/. Then we conclude that

�g.2a/�4g.a/.t/ � T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��

for all a 2 X and all t > 0. Thus we have

�g.2a/
4 �g.a/.t/ � T

�
�a;a

�
t

2

�
; �2a;a .2t/

�

for all a 2 X and all t > 0. Hence

�g.2kC1a/

4kC1 � g.2
ka/

4k

.t/ � T ��2ka;2ka �2 � 4k�1t� ; �2kC1a;2ka

�
2 � 4kt��

for all a 2 X , all t > 0 and all k 2 N: From 1 > 1
4
C 1

42
C � � � C 1

4l
; it follows that

�g.2l a/

4l
�g.a/.t/ � T

l
kD1

�
�g.2ka/

4k
� g.2k�1a/

4k�1

�
t

4k

��

� T lkD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(20)

for all a 2 X and all t > 0: In order to prove the convergence of the sequencen
g.2la/

4l

o
, replacing a with 2ma in (20), we obtain that

�g.2lCma/

4lCm �

g.2ma/
4m

.t /

� T lkD1

�
T
�
�2kCm�1a;2kCm�1a

�
2 � 4m�2t

�
; �2kCma;2kCm�1a

�
2 � 4m�1t

���
: (21)

Since the right-hand side of the inequality (21) tends to 1 as m and l tend to

infinity, the sequence
n
g.2l a/

4l

o
is a Cauchy sequence. Thus we may define P.a/ D

liml!1 g.2la/

4l
for all a 2 X .

Now we show that P is a quadratic mapping. Replacing a and b with 2la and 2lb
in (5), respectively, we get

�Df.2l a;2l b/

4l

.t/ � �2l a;2l b.4l t/:

Taking the limit as l ! 1, we find that P W X ! Y satisfies (4) for all a; b 2 X .
Since f W X ! Y is even, P W X ! Y is even. By [10, Lemma 2.1], the mapping
P W X ! Y is quadratic. Letting the limit as l !1 in (20), we get
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�f.2a/�16f .a/�P.a/.t/

� T1kD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
; (22)

for all a 2 X and all t > 0.
Next, we prove the uniqueness of the quadratic mapping P W X ! Y subject

to (22). Let us assume that there exists another quadratic mapping L W X ! Y

which satisfies (22). Since P.2la/ D 4lP.a/; L.2la/ D 4lL.a/ for all a 2 X and
all l 2 N; from (22), it follows that

�P.a/�L.a/.2t/ D �P.2l a/�L.2l a/.2 � 4l t/
� T .�P.2l a/�g.2la/.4

l t/; �g.2l a/�L.2l a/.4
l t//

� T
�
T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2 � 4l�2t� ; �2lCka;2lCk�1a

�
2 � 4l�1t�

��
;

T1

kD1

�
T
�
�2lCk�1a;2lCk�1a

�
2 � 4l�2t� ; �2lCka;2lCk�1a

�
2 � 4l�1t�

���
(23)

for all a 2 X and all t > 0. Letting l !1 in (23), we conclude that P D L.
Let h W X ! Y be a mapping defined by h.a/ WD f .2a/ � 4f .a/. Then we

conclude that

�h.2a/�16h.a/.t/ � T
�
�a;a

�
t

8

�
; �2a;a

�
t

2

��

for all a 2 X and all t > 0. Thus we have

�h.2a/
16 �h.a/.t/ � T .�a;a .2t/ ; �2a;a .8t//

for all a 2 X and all t > 0. Hence

�h.2kC1a/

16kC1 � h.2
ka/

16k

.t/ � T ��2ka;2ka �2 � 16kt� ; �2kC1a;2ka

�
8 � 16kt��

for all a 2 X , all t > 0 and all k 2 N: From 1 > 1
16
C 1

162
C� � �C 1

16l
; it follows that

�h.2l a/

16l
�h.a/.t/ � T

l
kD1

�
�h.2k a/

16k
� h.2k�1a/

16k�1

�
t

16k

��

� T lkD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(24)

for all a 2 X and all t > 0: In order to prove the convergence of the sequencen
h.2l a/

16l

o
, replacing a with 2ma in (24), we obtain that
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�h.2lCma/

16lCm
� h.2ma/

16m

.t/

� T lkD1
�
T
�
�2kCm�1a;2kCm�1a

�
2 � 16m�1t� ; �2kCma;2kCm�1a

�
8 � 16m�1t��� : (25)

Since the right-hand side of the inequality (25) tends to 1 as m and l tend to

infinity, the sequence
n
h.2l a/

16l

o
is a Cauchy sequence. Thus we may define Q.a/ D

liml!1 h.2l a/

16l
for all a 2 X .

Now we show that Q is a quartic mapping. Replacing a and b with 2la and 2lb
in (5), respectively, we get

�Df.2l a;2l b/

16l

.t/ � �2la;2l b.16l t/ � �2l a;2l b.4l t/:

Taking the limit as l ! 1, we find that Q W X ! Y satisfies (4) for all a; b 2 X .
Since f W X ! Y is even, Q W X ! Y is even. By [10, Lemma 2.1], the mapping
Q W X ! Y is quartic. Letting the limit as l !1 in (24), we get

�f.2a/�4f .a/�Q.a/.t/

� T1kD1
�
T

�
�2k�1a;2k�1a

�
t

8

�
; �2ka;2k�1a

�
t

2

���
(26)

for all a 2 X and all t > 0.
Next, we prove the uniqueness of the quartic mapping Q W X ! Y subject

to (26). Let us assume that there exists another quartic mapping L W X ! Y which
satisfies (26). Since Q.2la/ D 16lQ.a/; L.2la/ D 16lL.a/ for all a 2 X and all
l 2 N; from (26), it follows that

�Q.a/�L.a/.2t/ D �Q.2l a/�L.2la/.2 � 16l t/
� T .�Q.2la/�h.2l a/.16l t/; �h.2l a/�L.2l a/.16l t//
� T �T1kD1 �T ��2lCk�1a;2lCk�1a

�
2 � 16l�1t� ; �2lCka;2lCk�1a

�
8 � 16l�1t��� ;

T1kD1
�
T
�
�2lCk�1a;2lCk�1a

�
2 � 16l�1t� ; �2lCka;2lCk�1a

�
8 � 16l�1t����

� T �T1kD1 �T ��2lCk�1a;2lCk�1a

�
2 � 4l�2t� ; �2lCka;2lCk�1a

�
2 � 4l�1t��� ;

T1kD1
�
T
�
�2lCk�1a;2lCk�1a

�
2 � 4l�2t� ; �2lCka;2lCk�1a

�
2 � 4l�1t���� (27)

for all a 2 X and all t > 0. Letting l !1 in (27), we conclude that Q D L.
The rest of the proof is similar to the proof of Theorem 2.

Similarly, one can obtain the following result.

Theorem 5. Let f W X ! Y be an even mapping for which there is a � W X2 !
DC (�.a; b/ is denoted by �a;b) satisfying f .0/ D 0 and (5). If



An AQCQ-Functional Equation in Matrix Random Normed Spaces 539

lim
l!1T

1
kD1

�
T

�
� a

2kCl ;
a

2kCl

�
2t

16lC2k

�
; � a

2kCl�1 ;
a

2kCl

�
8t

16lC2k

���
D 1

and

lim
l!1 � a

2l
; b
2l

�
t

16l

�
D 1

for all a; b 2 X and all t > 0, then there exist a unique quadratic mapping P W
X ! Y and a unique quartic mappingQ W X ! Y such that

�
.n/

fn.2Œxij �/�16fn.Œxij �/�Pn.Œxij �/.t/

� T1kD1
�
T n

2C1
�
�x11
2k
;
x11

2k

�
2t

42kC1n2

�
; � x11

2k�1 ;
x11

2k

�
2t

42kn2

�
;

� x12
2k
;
x12

2k

�
2t

42kC1n2

�
; � x12

2k�1 ;
x12

2k

�
2t

42kn2

�
; � � � ;

� xnn
2k
;
xnn

2k

�
2t

42kC1n2

�
; � xnn

2k�1 ;
xnn

2k

�
2t

42kn2

���
;

�
.n/

fn.2Œxij �/�4fn.Œxij �/�Qn.Œxij �/
.t/

� T1kD1
�
T n

2C1
�
�x11
2k
;
x11

2k

�
2t

162kn2

�
; � x11

2k�1 ;
x11

2k

�
8t

162kn2

�
;

� x12
2k
;
x12

2k

�
2t

162kn2

�
; � x12

2k�1 ;
x12

2k

�
8t

162kn2

�
; � � � ;

� xnn
2k
;
xnn

2k

�
2t

162kn2

�
; � xnn

2k�1 ;
xnn

2k

�
8t

162kn2

���

for all x D Œxij � 2Mn.X/ and all t > 0:
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16. Hadžić, O., Pap, E., Budincević, M.: Countable extension of triangular norms and their

applications to the fixed point theory in probabilistic metric spaces. Kybernetica 38, 363–381
(2002)

17. Haagerup, U.: Decomposition of completely bounded maps (unpublished manuscript)
18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A.

27, 222–224 (1941)
19. Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables.

BirkhRauser, Basel (1998)
20. Jun, K., Kim, H.: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation.

J. Math. Anal. Appl. 274, 867–878 (2002)
21. Lee, S., Im, S., Hwang, I.: Quartic functional equations. J. Math. Anal. Appl. 307, 387–394

(2005)
22. Pisier, G.: Grothendieck’s Theorem for non-commutative C�-algebras with an appendix on

Grothendieck’s constants. J. Funct. Anal. 29, 397–415 (1978)
23. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc.

72, 297–300 (1978)
24. Rassias, Th.M.: Problem 16; 2. Report of the 27th international symp. on functional equations.

Aequationes Math. 39, 292–293, 309 (1990)
25. Rassias, Th.M., Šemrl, P.: On the behaviour of mappings which do not satisfy Hyers-Ulam

stability. Proc. Am. Math. Soc. 114, 989–993 (1992)
26. Ruan, Z.-J.: Subspaces of C�-algebras. J. Funct. Anal. 76, 217–230 (1988)
27. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, North Holand (1983)
28. Sherstnev, A.N.: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149,

280–283 (in Russian) (1963)
29. Skof, F.: Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53,

113–129 (1983)
30. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)



A Planar Location-Allocation Problem
with Waiting Time Costs

L. Mallozzi, E. D’Amato, and Elia Daniele

Abstract We study a location-allocation problem where the social planner has to
locate some new facilities minimizing the social costs, i.e. the fixed costs plus the
waiting time costs, taking into account that the citizens are partitioned in the region
according to minimizing the capacity acquisition costs plus the distribution costs
in the service regions. In order to find the optimal location of the new facilities
and the optimal partition of the consumers, we consider a two-stage optimization
model. Theoretical and computational aspects of the location-allocation problem
are discussed for a planar region and illustrated with examples.

Keywords Bilevel optimization • Continuous facility location

1 Introduction

A distribution of citizens in an urban area (rectangular region in the plane), where
a given number of services must be located, is given. Citizens are partitioned in
service regions such that each facility serves the consumer demand in one of the
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service regions [1–4, 7–14]. For a fixed location of all the services, every citizen
chooses the service minimizing the total cost, i.e. the capacity acquisition cost plus
the distribution cost (depending on the travel distance). In our model there is a
fixed cost of each service depending on its location and an additional cost due to
time spent being in the queue for a service, depending on the amount of people
waiting for the same service, but also on the characteristics of the service itself (for
example, its dimension). The objective is to find the optimal location of the services
in the urban area and the related consumers’ partition. We consider a two-stage
optimization model to solve this location-allocation problem. The social planner
minimizes the social costs, i.e. the fixed costs plus the waiting time costs, taking
into account that the citizens are partitioned in the region according to minimizing
the capacity acquisition costs plus the distribution costs in the service regions.

This model has been studied in [10] in the linear city case from a theoretical and
numerical point of view. In [11] the general planar case has been investigated and
existence results of the solution to the bilevel problem have been proved by using
optimal transport theory.

Here we consider the problem to be defined in a square of the plane: by using
the results present in [11] we find the solution of the bilevel problem numerically,
by means of a genetic algorithm procedure. In Sect. 2 the model is presented; in
Sect. 3 computational aspects and some examples are discussed; Sect. 4 contains
concluding remarks.

2 The Bilevel Problem

We consider a bounded region of the plane˝ 	 R2. Each pointp D .x; y/ 2 ˝ has
a given demand density D, namely an absolutely continuous probability measure
whereD W ˝ ! R is a non-negative function with unit integral

Z
˝

D.q/dq D 1; (H1)

with dq D dxdy. The problem is to locate n new facilities p1; : : : ; pn, pi D
.xi ; yi / 2 ˝ for any i 2 N D f1; 2; : : : ; ng. Facility pi serves the consumers
demand in the region Ai � ˝: we have a partition of the set ˝ , i.e. [niD1Ai D ˝

and VAi \ VAj ¤ ; for any i D j . Citizens are partitioned in service regions such that
each facility serves the consumer demand in only one of the service regions. More
precisely, for any i 2 N , we denote by

!i D
Z
Ai

D.q/dq;

the total demand within each service region Ai . Now we define for any i 2 N the
following non-negative functions:
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1. Fi W ˝ ! R, being Fi .pi / the annualized fixed cost of facility i ;
2. ai W ˝ ! R, being ai .pi / the annualized variable capacity acquisition cost per

unit demand;
3. Ci W ˝ ! R, being

Ci.pi/ D c
Z
Ai

d 2.pi ; p/D.p/dp;

the distribution cost in service regionAi , d.�; �/ the Euclidean distance in R2 and
c the distribution cost per unit distance, that we suppose to be constant in ˝;

4. hi W Œ0; 1� ! R, being hi .!i / the total cost, in terms of time spent to be served,
of consumers of region Ai using the service pi .

We denote by An the set of all partitions in n sub-regions of the region ˝ , A D
.A1; : : : ; An/ 2 An and p D .p1; : : : ; pn/ 2 ˝n.

Definition 1. Any tuple < ˝Ip1; : : : ; pnI l; Z > is called a facility location situa-
tion, where ˝ is a compact set in R2, pi 2 ˝ for any i 2 N ; l; Z W ˝n �An ! R

defined by

l.p; A/ D
nX
iD1

�
Fi .pi/C !ihi .!i /

	
; (s)

Z.p;A/ D
nX
iD1

�
c

Z
Ai

d 2.pi ; p/D.p/dp C ai .pi /
Z
Ai

D.p/dp

	
: (g)

Given a facility location situation, the problem is to find an optimal location for
the facilities p1; : : : ; pn and also an optimal partition A1; : : : ; An of the consumers
in the market region ˝ by minimizing the costs. We distinguish the total cost in a
geographical part that is given by (g) and in a social part that is given by (s).

In order to find the optimal pair given by the optimal partition of ˝ and the
optimal location of the facilities, we propose a bilevel approach. Given the location
of the new facilities, we search the optimal partition of the consumers minimizing
the geographical cost .g/. Then, we optimize the social cost .s/ to look for the
optimal location of the facilities according to a bilevel formulation.

For a given location p 2 ˝n of the n facilities, the consumers decide which
is the best facility to use: they minimize the costs given by the distribution costs,
that depend on the distance from the chosen facility, plus the acquisition costs, that
is the capacity acquisition cost of the facility supposed to be linear with respect
to the density in the region where the chosen facility is located. We assume that
p D .p1; : : : ; pn/ with pi ¤ pj for i ¤ j; i; j 2 N and pi 2 Ai for each i 2 N .
Then, the optimal partition of the consumers in the set An will be a solution to the
following lower level problem LL.p/:

min
.A1;:::;An/2An

Z.p;A/: (LL.p/)
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Suppose that the problem LL.p/ has a unique solution for any p 2 ˝n, called
.A1.p/; : : : ; An.p// D A.p/. The function p ! A .p/ is called the best reply
function.

In a second step, the social planner proposes the best location of the n facilities
in such a way that additional costs, that are social costs given by the functional
l.p; A/, must be the lowest possible, knowing that the best partition of the customers
is given by the best reply function. These additional costs are the fixed cost of each
facility plus a cost due to the waiting time given by the function hi . We have a
constrained optimization problem: the optimal location of the facilities Np 2 ˝n

solves the following upper level problem UL:

min
.p1;:::;pn/2˝n

l.p;A.p//; (UL)

where, for a given locationp, the optimal partitionA.p/ of˝ is given by the unique
solution of the problem LL.p/.

The problem UL is known as a bilevel problem, since it is a constrained
optimization problem with the constraint that A.p/ is the solution of another
optimization problem LL.p/, for any p 2 ˝n. We solve it by using the backward
induction procedure as specified in the following definition.

Definition 2. Any Np that solves the problemUL is an optimal solution to the bilevel
problem. In this case the optimal pair is . Np;A. Np//, where Np solves the problem UL

and A.p/ is the unique solution of the problem LL.p/ for each p 2 ˝n.

In a Game Theory context, the solution of the upper level problem is called
Stackelberg strategy and the pair solution of the bilevel problem as given in
Definition 2 is called a Stackelberg equilibrium [2].

2.1 The Linear City

Let us recall the location-allocation problem in the linear city case [10]. We consider
a linear region on the real line, i.e. a compact real interval ˝ . Without loss of
generality, we normalize it and assume ˝ D Œ0; 1�. This assumption corresponds
to concrete situations as the location of a gasoline station along a highway or the
location of a railway station to improve the service to the inhabitants of the region.

LetD.p/ be the demand density s.t.
R 1
0 D.p/dp D 1where dp D dx. We want to

locate n facilities pi D xi 2 Œ0; 1� for any i D 1; : : : ; n with p1 < p2 < : : : < pn.
A partition A D .A1; : : : ; An/ of the region ˝ D Œ0; 1� is given by a real vector
� D .�1; : : : ; �n�1/ such that �i 2 Œpi ; piC1�; i D 1; ::; n � 1. The partition in this
case is: A1 D Œ0; �1Œ,. . . , An D��n�1; 1�. We denote �0 D 0 and �n D 1.
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p1 p2
x = 0 x = 1

λ

Fig. 1 Location of two
facilities in the linear city [10]

A linear facility location situation is a tuple < ˝Ip1; : : : ; pnI l1; Z1 >, where
˝ D Œ0; 1�, pi 2 ˝ for any i 2 N ; l1; Z1 W ˝n �An ! R defined by

l1.p; �/ D
n�1X
iD0

ŒFiC1.piC1/C !iC1hiC1.!iC1/� ;

Z1.p; �/ D
n�1X
iD0

"
!iC1aiC1.piC1/C c

Z �iC1

�i

d 2.piC1; p/D.p/dp
#
;

where !i is the total demand within service region Ai D Œ�i�1; �i � for any i D
1; : : : ; n, namely

!i D
Z �i

�i�1

D.p/dp:

Here the functions l1 and Z1 represent the social .s/ and the geographic cost .g/,
respectively.

Definition 3. Any Np that solves the problem

min
p2˝n

l1.p; �.p//; (UL)

is an optimal solution to the bilevel problem, where for each p 2 ˝n, �.p/ is the
unique solution of the problem LL.p/ defined by:

min
�2Œp1;p2��::::�Œpn�1;pn�

Z1.p; �/:

In this case the optimal pair is . Np; �. Np// where Np solves the problem UL and
�. Np/ is the unique solution of the problem LL.p/.

Existence results for the bilevel problem UL, together with computational test
cases can be found in [10], from which is taken the sketch reported in Fig. 1.



546 L. Mallozzi et al.

2.2 The Planar Region

In what follows, we shall assume that:

• hi .�/ is a continuous function on Œ0; 1� for any i ; (H2)
• Fi .�/; ai .�/ are continuous functions on˝ . (H3)

Now we recall the following preliminary result, which is a characterization of the
sets of the optimal partition for the lower level problem.

Lemma 1 (From [11]). Given p 2 ˝n. Suppose that there exists .A1; : : : ; An/ an
optimum for the problem LL.p/. Then

Ai D
n
x 2 ˝ W ai .pi /C cjx � pi j2 < aj .pj /C cjx � pj j2 8j 6D i

o
; (1)

where the equalities is intended up to D-negligible sets.

Remark 1. Previous Lemma allows us to describe the shape of the optimal partition.
In fact the sets Ai are polygons whose boundaries can be obtained as follows

x 2 Ai \ Aj , ai .pi /C cjx � pi j2 D aj .pj /C cjx � pj j2;

and hence x D .x1; x2/ 2 Ai \Aj if and only if

x2 D �
p1i � p1j
p2i � p2j

x1 C jpi j
2 � jpj j2

2.p2i � p2j /
C ai .pi /� aj .pj /

2c.p2i � p2j /
;

in case p2i 6D p2j , where pi D .p1i ; p2i /. If p2i D p2j , x D .x1; x2/ 2 Ai \Aj if and
only if

x1 D jpi j
2 � jpj j2

2.p1i � p1j /
C ai .pi /� aj .pj /

2c.p1i � p1j /
:

The following result guarantees a unique solution to the problemLL.p/ for each
p and the existence of the solution to the upper level problem UL.

Theorem 1 (From [11]). Assume (H1)–(H3). Then, for any p 2 ˝n, the problem
LL.p/ admits a unique solution A .p/ and there exists a solution Np to the problem
UL.

Example 1 ([11]). We want to locate two new facilities p1 D .x1; y1/, p2 D
.x2; y2/, in the market region ˝ D Œ0; 1� � Œ0; 1� 	 R2 where the consumers are
uniformly distributed (D.p/ D 1 for any p 2 Œ0; 1�2).

Suppose that the capacity acquisition costs are a1.p1/ D jp1j2; a2.p2/ D jp2j2,
and the unit distribution cost is c D 3: for a given pair p D .p1; p2/ 2
˝2 we consider the partition .A1; A2/ of ˝ that minimize the cost function
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p1

p2

A1(p)
A2(p)

(0, 0) (1, 0)

(0, 1) (1, 1)
Fig. 2 Location of facilities
in planar region

Z.p1; p2; A1; A2/ as in problem LL.p/. As claimed in Lemma 1, we give the
expression of the optimal partition .A1.p/; A2.p//. The set A1.p/ is the set of the
pairs .x; y/ 2 Œ0; 1�2 such that

x21 C y21 C 3.x � x1/2 C 3.y � y1/2 < x22 C y22 C 3.x � x2/2 C 3.y � y2/2;

then

3y.y2 � y1/ < 2Œ.y22 � y21/C .x22 � x21/� � 3x.x2 � x1/:

For x1 � x2 and y1 < y2 we have:

A1.p/D

8̂
<̂
ˆ̂:

n
.x; y/2˝ W y<2

3

h
y1Cy2C x22�x21

y2�y1
i
�x

�
x2�x1
y2�y1

�o
if y1<

y2
2

and x1<
x2
2

n
.x; y/ 2 ˝ W y < y2 � .x � x2/

�
x2�x1
y2�y1

�o
otherwise

;

and if y1 D y2 with x1 < x2

A1.p/ D

8̂
<̂
ˆ̂:
f.x; y/ 2 ˝ W x < 2

3
.x1 C x2/g if x1 <

x2
2

f.x; y/ 2 ˝ W x < x2g otherwise

;

being A2.p/ D ˝ n A1.p/. The other cases are similar (a sketch is reported in
Fig. 2).
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3 Numerical Results

In this section we present some computational results to solve the location-
allocation problem. Our approach is based on Genetic Algorithms (GAs), a heuristic
search technique modeled on the principle of evolution with natural selection.
Namely, the main idea is the reproduction of the best elements with possible
crossover and mutation to improve population [5, 6].

The initial population is provided with a random seeding in the leader’s strategy
space. In the following examples, the bilevel algorithm has been simplified, using
analytical results in Sect. 2.2. Thus for each individual (or chromosome), the optimal
partition of the region is computed using expression (1) representing the best reply.
A full Gauss numerical integration algorithm has been developed in order to evaluate
!i in (s) for each region, to compute the objective function and fitness for each
configuration.

The leader population is sorted under objective function criterion and a mating
pool is generated. Now a second step begins and a common crossover and mutation
operation on the leader population is performed. Again the follower’s best reply
should be computed, in the same way described above.

This is the kernel procedure of the genetic algorithm that is repeated until a
terminal period is reached or an exit criterion is met.

For the algorithm validation we consider the parameters as specified in Table 1.

3.1 Test Cases

Test cases on several scenarios have been performed.

Example 2. We want to locate two new facilities p1 D .x1; y1/, p2 D .x2; y2/, in
the market region ˝ D Œ0; 1� � Œ0; 1� 	 R2 where the consumers are uniformly
distributed (D.p/ D 1 for any p 2 Œ0; 1�2).

As in Example 1, we suppose that the capacity acquisition costs are a1.p1/ D
jp1j2; a2.p2/ D jp2j2, and the unit distribution cost is c D 3: for a given pair

Table 1 GA details Parameter Value

Population size (�) 100
Crossover fraction (�) 0.90
Mutation fraction (�) 0.10
Parent sorting Tournament between couple
Mating pool (%) 50
Elitism No
Crossover mode Simulated Binary Crossover (SBX)
Mutation mode Polynomial
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Fig. 3 Points and relative partitions for Example 2 (� D 0)

p D .p1; p2/ 2 ˝2 we consider the partition .A1; A2/ of ˝ that minimize the cost
functionZ.p1; p2; A1; A2/ as in problem LL.p/.

Fixed costs and waiting time costs are, respectively, for � > 0:

F1.p1/ D jp1j2; F2.p2/ D 0; (2)

h1.t/ D .1C �/t; h2.t/ D t; (3)

Numerical results are summarized in Figs. 3 and 4, respectively, for � D 0

and � D 1 with relative evolution (Figs. 5 and 6) during generations of genetic
optimization algorithm.

Example 3. We want to locate two new facilities p1 D .x1; y1/, p2 D .x2; y2/, in
the market region ˝ D Œ0; 1� � Œ0; 1� 	 R2 where the consumers are uniformly
distributed (D.p/ D 1 for any p 2 Œ0; 1�2). Points position is constrained to stay
on the x axis to validate the algorithm using the linear city results (p21 D 0 and
p22 D 0).

Fixed costs, the acquisition costs and waiting time costs are, respectively, for
� > 0:

F1.p1/ D jp1j2; F2.p2/ D jp2j=4; (4)

a1.p1/ D jp1j2; a2.p2/ D jp2j2; (5)
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Fig. 4 Points and relative partitions for Example 2 (� D 1)
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Fig. 5 Evolution of points position and objective function during algorithm generations for
Example 2 (� D 0)
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Fig. 6 Evolution of points position and objective function during algorithm generations for
Example 2 (� D 1)

h1.t/ D .1C �/t; h2.t/ D t: (6)

In [10] has been computed that for � < 5=4 the solution is

Op1 D
�
1

8
; 0

�
; (7)

Op2 D
�
31 � 4�
32.2C �/ ; 0

�
; (8)

OA1 D
�
x <

13

16.2C �/
�
: (9)

For � D 1 the analytical solution is:

Op1 D .0:125; 0/; Op2 D .0:2812; 0/: (10)

Numerical results are summarized in Figs. 7 and 8, respectively, for � D 0 and
� D 1. They are compliant with results obtained in the linear city problem [10].

Example 4. We want to locate five new facilities pi D .xi ; yi /; i D 1; : : : ; 5, in
the market region ˝ D Œ0; 1� � Œ0; 1� 	 R2 where the consumers are uniformly
distributed (D.p/ D 1 for any p 2 Œ0; 1�2).
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Fig. 7 Points and relative partitions for Example 3 (� D 0)

Fig. 8 Points and relative partitions for Example 3 (� D 1)
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Fig. 9 Points and relative partitions for Example 4 (� D 0)

We suppose that the capacity acquisition costs are zero for all new facilities, i. e.
ai .pi / D 0;8i D 1; : : : ; 5, and the unit distribution cost is c D 3: for a given
tuple p D .p1; p2; p3; p4; p5/ 2 ˝5 we consider the partition .A1; A2; A3; A4; A5/
of˝ that minimize the cost functionZ.p1; p2; p3; p4; p5; A1; A2; A3; A4; A5/ as in
problem LL.p/.

Fixed costs and waiting time costs are, respectively, for � > 0:

F1.p1/ D jp1j2; F2.p2/ D F3.p3/ D F4.p4/ D F5.p5/ D 0; (11)

h1.t/ D .1C �/t; h2.t/ D t: (12)

Numerical results are summarized in Fig. 9 for � D 0, with relative evolution
during generations of genetic optimization algorithm in Fig. 10: the GA in this
example has been run with a population size equal to 200 and a number of
generations equal to 100.

Example 5. As in Example 4, we want to locate five new facilities pi D
.xi ; yi /; i D 1; : : : ; 5, in the market region ˝ D Œ0; 1� � Œ0; 1� 	 R2

where the consumers have, in this case, a Gaussian distribution (D.p/ D
exp

��.16.x � 0:5/2 C 16.y � 0:5/2� for any p D .x; y/ 2 Œ0; 1�2) as in Fig. 11.
We suppose that the capacity acquisition costs are zero for all new facilities, i.e.

ai .pi / D 0;8i D 1; : : : ; 5, and the unit distribution cost is c D 3: for a given
tuple p D .p1; p2; p3; p4; p5/ 2 ˝5 we consider the partition .A1; A2; A3; A4; A5/
of˝ that minimize the cost functionZ.p1; p2; p3; p4; p5; A1; A2; A3; A4; A5/ as in
problem LL.p/.
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Fig. 10 Evolution objective function during algorithm generations for Example 4 (� D 0)
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Fig. 11 Population distribution for Example 5

Fixed costs and waiting time costs are, respectively, for � > 0:

F1.p1/ D jp1 � .0:5; 0:5/j2; F2.p2/ D F3.p3/ D F4.p4/ D F5.p5/ D 0; (13)

h1.t/ D .1C �/t; h2.t/ D t: (14)
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Fig. 12 Points and relative partitions for Example 5 (� D 0)

Numerical results are summarized in Fig. 12, for � D 0: as in the Example 4,
the algorithm has been run with a population size equal to 200 and a number of
generations equal to 100.

4 Concluding Remark

The problem studied in this work encloses many computational difficulties, mainly
exploited in the planar region case. An algorithm based on sections of the elements
A1; : : : ; An of the partitions is given in [13] for a similar problem formulated as an
optimization problem not by considering several hierarchical levels and without the
waiting time costs. The algorithm in [13] uses Voronoi diagrams. In this work we
approached the problem in a planar region by using a genetic algorithm. We solved a
bilevel problem where the solution of the lower level problem is given in Lemma 1.
This allowed to use a numerical procedure dealing with an optimization problem.
Several test cases have been provided and a comparison with the problem in a linear
city has been discussed. The circular region case (see, for example, [12]), as well
the problem with some obstacles in the planar region would be the subject of future
works.
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The Stability of an Affine Type Functional
Equation with the Fixed Point Alternative

M. Mursaleen and Khursheed J. Ansari

Abstract In this paper, we consider the following affine functional equation

f .3xCyCz/Cf .xC3yCz/Cf .xCyC3z/Cf .x/Cf .y/Cf .z/ D 6f .xCyCz/:

We obtain the general solution and establish some stability results by using
direct method as well as the fixed point method. Further we define the stability of
the above functional equation by using the fixed point alternative.

Keywords Hyers-Ulam stability • Affine functional equation • Fixed point
method • Alternative fixed point method

1 Introduction and Preliminaries

The concept of stability of a functional equation arises when one replaces a
functional equation by an inequality which acts as a perturbation of the equation. In
1940, Ulam [31] raised a question concerning the stability of group homomorphism
as follows:
Let G1 be a group and let G2 be a metric group with the metric d.:; :/: Given " > 0.
Does there exists a ı > 0 such that if a function f W G1 ! G2 satisfies the inequality

d.f .xy/; f .x/f .y// < ı for all x; y 2 G1;

then there exists a homomorphism h W G1 ! G2 with

d.f .x/;H.x// < " for all x 2 G1‹
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The concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation.
In 1941, the Ulam problem for the case of approximately additive mappings was
solved by Hyers [12] under the assumption that G2 is a Banach space. In 1978,
a generalized version of the theorem of Hyers for approximately linear mapping
was proved by Rassias [27]. Rassias proved the following Theorem: Let a mapping
f W E1 ! E2 be such that f .tx/ is continuous in t for each real value of t for a
fixed x 2 E1: Assume that there exists a constant " > 0 and p 2 Œ0; 1/ with

k f .x C y/ � f .x/ � f .y/ k� ".k x kp C k y kp/ (1)

for x; y 2 E1: Then there exists a unique linear mapping T W E1 ! E2 such that

k f .x/ � T .x/ k� 2"

2 � 2p k x k
p (2)

for x 2 E1.
A number of mathematicians were attracted by the result of Rassias. The stability

concept that was introduced and investigated by Rassias is called the Hyers–Ulam–
Rassias stability. During the last decades, stability problems of several functional
equations have been extensively investigated by a number of mathematicians (c.f.
[1, 8, 13, 15, 18–24, 26, 28, 29] and [30] etc.).

Several proofs in this domain of research use the direct method that was
introduced by Hyers [26]. The exact solution of the functional equation is explicitly
constructed as a limit of a sequence, starting from the given approximate solution.
On the other hand, Baker [2] used the Banach fixed point theorem to prove Hyers–
Ulam stability results for a nonlinear functional equation. In 2003, Radu [25]
proposed a new method, successively developed in [4–6], to obtain the existence
of the exact solutions and the error estimations, based on the fixed point alternative
(see also [19]). Subsequently, these results were generalized by Mihet [17], Gavruta
[10] and by Cadariu and Radu [7]. Later on, Gavruta and Gavruta introduced a new
method in [11], called the weighted space method, for the generalized Hyers–Ulam
stability. Mohiuddine has shown the stability of some functional equations [20, 21]
via fixed point technique. For most recent work, we refer to [16]. Cadariu, Gavruta
and Gavruta [3] obtained the general solution, the generalized Hyers–Ulam stability
by using the direct method as well as the fixed point method for the following affine
functional equation:

f .2x C y/C f .x C 2y/C f .x/C f .y/ D 4f .x C y/; for all x; y 2 G;
where f W G ! X , G is an abelian group and X is a normed space.

In the present paper we obtain the general solution of the following affine
functional equation

f .3xCyCz/Cf .xC3yCz/Cf .xCyC3z/Cf .x/Cf .y/Cf .z/ D 6f .xCyCz/
(3)
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for all x; y 2 G, where f W G ! X , G is an abelian group and X is a normed
space. By using the direct method, the fixed point method as well as the fixed point
alternative, we provide proofs of generalized Hyers–Ulam stability results for the
respective equation.

2 Solution of the Functional Equation (3)

Theorem 2.1. A mapping f W G ! X , where G is an abelian group and X is a
normed space, is a solution of the functional equation (3) iff it is an affine mapping
(i.e., it is the summation of a constant and an additive function).

Proof. It is obvious that any affine function f is a solution of (3).
Conversely, we consider two cases:

Case 1 W f .0/ D 0.

If we take y D z D �x in (3), then we obtain

f .�3x/C f .x/ D 2f .�x/;8x 2 G: (4)

By replace x by �x and put y D z D 0 in (3), we get

f .�3x/ D 3f .�x/;8x 2 G

Using this result in (4), we have f .�x/ D �f .x/; for all x 2 G. Hence f is an
odd mapping.
Take z D �y in (3), we have

f .3x/C f .x C 2y/C f .x � 2y/ D 5f .x/;8x 2 G: (5)

If we substitute y D z D 0 in (3), we get f .3x/ D 3f .x/;8x 2 G. Using this
result in (5), we obtain

f .x C 2y/C f .x � 2y/ D 2f .x/;8x 2 G: (6)

Put y D x=2 in the last equation and using f .0/ D 0, we get the following relation

f .2x/ D 2f .x/;8x 2 G: (7)

If we replace x by uCv
2

and y by u�v
4

in (6), we obtain

f .u/C f .v/ D 2f:

Hence f is an additive mapping.
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Case 2 W General case.

Let us consider the function g.x/ WD f .x/ � f .0/. It is clear that g.0/ D 0 and
f .x/ D g.x/C f .0/.
Replacing f in (3), it results

g.3x C y C z/C g.x C 3y C z/C g.x C y C 3z/C g.x/C g.y/C g.z/
D 6g.x C y C z/;8x; y 2 G:

Taking into account that g.0/ D 0, from Case 1, we obtain that g is an additive
mapping. Hence f .x/ D g.x/C f .0/ is an afine function.

This completes the proof.

3 Direct Method

In this section we will obtain some properties of the generalized Hyers–Ulam
stability for the affine functional equation (3). For the proof, we will use the direct
method.

Let .G;C/ be an abelian group and .X; k:k/ be a Banach space. Let a mapping
' W G �G �G �! Œ0;1/ be such that

˚.x/ D
1X
kD0

'.3kx; 0; 0/

3k
<1;8x 2 G (8)

and

lim
n!1

'.3nx; 3ny; 3nz/

3n
D 0;8x; y; z 2 G: (9)

We formulate the main result of the paper:

Theorem 3.1. Let f W G �! X , such that

kf .3x C y C z/ Cf .x C 3y C z/C f .x C y C 3z/C f .x/C f .y/
Cf .z/ � 6f .x C y C z/k � '.x; y; z/ (10)

for all x; y; z 2 G. Then there exists a unique mappingA W G �! X , which satisfies
the Eq. (3) and

kf .x/ � A.x/ � f .0/k � 1

3
˚.x/; (11)

for all x 2 G.
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Proof. For y D z D 0 in (10), we obtain

kf .3x/ � 3f .x/C 2f .0/k � '.x; 0; 0/;8x 2 G:

If we define the function g W G �! X ,

g.x/ WD f .x/ � f .0/; (12)

we have

kg.3x/ � 3g.x/k � '.x; 0; 0/;8x 2 G
Thus





g.3x/3
� g.x/





 � 1

3
'.x; 0; 0/;8x 2 G: (13)

If we replace x by 3x in the above relation and divide it by 3, it results





g.3
2x/

32
� g.x/

3





 � 1

32
'.3x; 0; 0/;8x 2 G: (14)

Using the triangle inequality, from (13) and (14), it follows that





g.3
2x/

32
� g.x/





 � 1

3

�
'.x; 0; 0/C 1

3
'.3x; 0; 0/

�
;8x 2 G:

It is easy to prove, by induction on n, that





g.3
nx/

3n
� g.x/





 � 1

3

n�1X
kD0

'.3kx; 0; 0/

3k
;8x 2 G:

Now, we claim that the sequence
n
g.3nx/

3n

o
is a Cauchy sequence. Indeed, for n >

m > 0, we have:




g.3

nx/

3n
� g.3

mx/

3m





 D 1

3m





g.3
n�m:3mx/
3n�m

� g.3mx/






� 1

3m
:
1

3

n�m�1X
kD0

'.3kCmx; 0; 0/
3k

D 1

3

n�m�1X
kD0

'.3kCmx; 0; 0/
3kCm

D 1

3

n�1X
pDm

'.3px; 0; 0/

3p
;8x 2 G:
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Taking the limit as m!1, it results that

lim
m!1





g.3
nx/

3n
� g.3

mx/

3m





 D 0;8x 2 G:

SinceX is a Banach space, then we obtain that the sequence
n
g.3nx/

3n

o
converges. We

define

A.x/ WD lim
n!1

g.3nx/

3n
;

for each x in G. From (12) it is clear that

A.x/ D lim
n!1

f .3nx/

3n
;8x 2 G: (15)

We claim that A satisfies (3). Replace x and y by 3nx and 3ny, respectively, in
relation (10) and divide by 3n. It follows that

k3�nf .3n.3x C y C z//C 3�nf .3n.x C 3y C z//C 3�nf .3n.x C y C 3z//

C 3�nf .3nx/C 3�nf .3ny/C 3�nf .3nz/ � 6:3�nf .3n.x C y C z//k

� 1

3n
'.3nx; 3ny; 3nz/;

for all x; y; z 2 G. Taking on the limit as n ! 1 in the above relation and using
(9) and (15), it results

A.3xCyCz/CA.xC3yCz/CA.xCyC3z/CA.x/CA.y/Cf .z/ D 6A.xCyCz/:

In order to show that A is the unique function defined on G, with the properties (3)
and (11), let B W G �! X be another affine mapping such that

kf .x/ � B.x/ � f .0/k � 1

3
˚.x/;8x 2 G:

It follows that

A.3nx/C A.0/ D 3nA.x/; B.3nx/C B.0/ D 3nB.x/;

for all x in G. Then

kA.x/ � B.x/k D




 .A.3

nx/C A.0//� .B.3nx/C B.0//
3n
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�




A.3

nx/ � f .0/ � f .3nx/
3n





C




B.3

nx/ � f .0/� f .3nx/
3n






C




A.0/� B.0/3n






� 1

3n
:
1

3
˚.3nx/C 1

3n
:
1

3
˚.3nx/C 1

3n
kA.0/� B.0/k

D 1

3n
˚.3nx/C 1

3n
kA.0/� B.0/k

D
1X
kD0

'.3kCnx; 0; 0/
3k:3n

C 1

3n
kA.0/ � B.0/k

D
1X
pDn

'.3px; 0; 0/

3p
C 1

3n
kA.0/ � B.0/k;8x 2 G

Taking the limit as n!1 in the above relation we obtainA coincides withB . This
completes the proof of the theorem. From the Theorem 3.1 we obtain the following
corollary concerning the stability for the Eq. (3).

Corollary 3.2. Let G be an abelian group andX a Banach space. Let p; q; r; "i be
real numbers such that "i > 0 .i D 1; 2; 3/; p; q; r 2 Œ0; 1/. Suppose that a function
f W G �! X satisfies

kf .3x C y C z/C f .x C 3y C z/C f .x C y C 3z/C f .x/C f .y/C f .z/
� 6f .x C y C z/k � ."1kxkp C "2kykq C "3kzkr /

for all x; y; z 2 G. Then there exists a unique mappingA W G �! X , which satisfies
the Eq. (3) and the estimation

kf .x/ �A.x/ � f .0/k � "1

3 � 3p kxk
p; 8x 2 G:

If we take "1 D "2 D "3 D " .say/, then we have the estimation

kf .x/ �A.x/ � f .0/k � "

3 � 3p kxk
p; 8x 2 G:

Remark 3.3. For p D q D r D 0 in the above corollary, properties of stability in
Hyers–Ulam sense for (3) are obtained.

Remark 3.4. In the case p D q D r D 1 the affine functional equation (3) is
unstable.
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Corollary 3.5. Let G be an abelian group and X be a Banach space, respectively.
Suppose that a function f W G �! X satisfies

kf .3xCyCz/Cf .xC3yCz/Cf .xCyC3z/Cf .x/Cf .y/Cf .z/�6f .xCyCz/k � 
;

for all x; y; z 2 G; 
 � 0 is fixed. Then there exists a unique affine mapping A W
G �! X , which satisfies the Eq. (3) and the estimation

kf .x/ � A.x/ � f .0/k � 


2

holds 8 x 2 G.

4 Fixed Point Method

We consider a nonempty set G, a complete metric space .X; d/ and the mappings
� W RGC ! RGC and T W XG �! XG . We remember that XG is the space of all
mappings fromG intoX . In the following, we suppose that� satisfies the condition:
for every sequence .ın/n2N , with

ın.t �! 0/.n!1/; t 2 G H) .�ın/.t/ �! 0.n!1/; t 2 G: (C1)

Proposition 4.1. Let G be a nonempty set, .X; d/ a complete metric space and
� W RGC ! RGC a non-decreasing operator satisfying the hypothesis .C1/. If T W
XG �! XG is an operator satisfying the inequality

d..T �/.x/; .T �/.x// � �.d.�.x/; �.x///; �; � 2 XG; x 2 G; (16)

and the functions " W G �! RC and g W G �! X are such that

d..T g/.x/; g.x// � ".x/; x 2 G; (17)

and

"�.x/ WD
1X
kD0

.�k"/.x/ <1; x 2 G; (C2)

then, for every x 2 G, the limit

A.x/ WD lim
n!1.T

ng/.x/

exists and the function A 2 XG , defined in this way, is a fixed point of T , with

d.g.x/; A.x// � "�.x/; x 2 G:
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Moreover, if the condition

lim
n!1.�

n"�/.x/ D 0; 8x 2 G; (C3)

holds, then A is the unique fixed point of T with the property

d.g.x/; A.x// � "�.x/; x 2 G:

The proof of Theorem 3.1. We apply the above proposition by taking the mapping

� W RGC ! RGC; .�ı/.x/ WD
ı.3x/

3
; .ı W G �! RC/;

and the operator

T W XG �! XG; .T  /.x/ WD  .3x/

3
; . W G �! X/:

From the definition of �, the relation .C1/ is obvious and (16) holds with equality.
If we take ".x/ WD '.x;0;0/

3
, where the mapping ' is defined in Theorem 3.1, the

relation (8) implies that the series

"�.x/ WD
1X
kD0

.�k"/.x/ D 1

3

1X
kD0

'.3kx; 0; 0/

3k
D 1

3
˚.x/; 8x 2 G

is convergent, so .C2/ is verified.
As in the first part of the initial proof of Theorem 3.1, we have that





g.3x/3
� g.x/





 � 1

3
'.x; 0; 0/;8x 2 G;

where g.x/ WD f .x/ � f .0/ and f satisfied the hypotheses of Theorem 3.1. This
means that (17) holds. Also

.�k"�/.x/ D .�n˚/.x/

3
D ˚.3nx/

3nC1
D 1

3

1X
kD0

'.3nCkx; 0; 0/
3nCk

D 1

3

1X
pDn

'.3px; 0; 0/

3p
; 8x 2 G:

Taking on the limit in the above relation as n!1, we obtain that .C3/ is verified.
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From Proposition 4.1 it results that the limit

lim
n!1.T

ng/.x/ D lim
n!1

g.3nx/

3n
D lim

n!1
f .3nx/

3n

exists for every x 2 G. Moreover, the mapping A W G �! X ,

A.x/ D lim
n!1.T

ng/.x/

is the unique fixed point of T , with

d.g.x/; A.x// � "�.x/; 8x 2 G;

which implies that

kf .x/ �A.x/ � f .0/k � 1

3
˚.x/; 8x 2 G:

To prove that the function A is a solution of the affine functional equation (3) we
use (9) and the definition of A.

This completes the proof.

5 The Alternative of Fixed Point

Theorem 5.1 (The alternative of fixed point [9]). Suppose that we are given
a complete generalized metric space .˝; d/ and a strictly contractive mapping T W
˝ �! ˝ with Lipchitz constant L. Then, for each given x 2 ˝ , either

d.T nx; T nC1x/ D1 for all n � 0;

or there exists a natural number n0 such that

• d.T nx; T nC1x/ <1 for all n � n0I
• The sequence .T nx/ is convergent to a fixed point y� of T ;
• y� is the unique fixed point of T in the set � D fy 2 ˝ W d.T n0x; y/ <1gI
• d.y; y�/ � 1

1�Ld.y; Ty/ for all y 2 �:
Utilizing the above-mentioned fixed point alternative, we now obtain our result,

i.e., the generalized Hyers–Ulam–Rassias stability of the functional equation (3).
From now on, letG be an abelian group andX a Banach space. Given a mapping

f W G �! X , we set

Df.x; y; z/WDf .3xCyCz/Cf .xC3yCz/Cf .xCyC3z/C f .x/C f .y/
C f .z/ � 6f .x C y C z/
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for all x; y; z 2 G. Let ' W G �G �G �! Œ0;1/ be a function such that

lim
n!1

'.3nx; 3ny; 3nz/

3n
D 0;8x; y; z 2 G: (18)

Yang-Soo Jung and Ick-Soon Jung [14] used the above result to show the stability
of a cubic functional equation. In the following theorem we will use the same result
to prove the properties of stability from the Theorem 3.1.

Theorem 5.2. Suppose that a function f W G �! X satisfies the functional
inequality

kDf.x; y; z/k � '.x; y; z/ (19)

8x; y; z 2 G. If there exists L < 1 such that the mapping

x 7!  .x/ D '
�x
3
; 0; 0

�

has the property

 .x/ � 3L 
�x
3

�
(20)

for all x 2 G, then there exists a unique affine function A W G �! X such that the
inequality

kf .x/ � A.x/� f .0/k � L

1 �L .x/ (21)

holds for all x 2 G.

Proof. Let us define the mapping g W G �! X such that

g.x/ D f .x/ � f .0/: (22)

It is clear that g.0/ D 0 and f .x/ D g.x/C f .0/.
Consider the set

˝ WD fg W X �! Y; g.0/ D 0g

and introduce the generalized metric on ˝ ,

d.g; h/ D d .g; h/ D inffK 2 .0;1/ W kg.x/ � h.x/k � K .x/; x 2 Xg:

It is easy to see that .˝; d/ is complete.
Now we define a function T W ˝ �! ˝ by
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Tg.x/ D 1
3
g.3x/ for all x 2 G. Note that for all g; h 2 ˝ ,

d.g; h/ < K H) kg.x/ � h.x/k � K .x/; x 2 G;

H)




g.3x/3

� h.3x/
3





 � 1

3
K .3x/; x 2 G;

H)




g.3x/3

� h.3x/
3





 � LK .x/; x 2 G;
H) d.Tg; T h/ � LK:

Hence we see that
d.Tg; T h/ � Ld.g; h/ for all g; h 2 ˝ , that is, T is a strictly self-mapping of

˝ with the Lipschitz constant L.
If we put y D z D 0 in (10), we obtain

kf .3x/ � 3f .x/C 2f .0/k � '.x; 0; 0/; 8x 2 G:

Using (22) in the last inequality, we have

kg.3x/ � 3g.x/k � '.x; 0; 0/; 8x 2 G;




g.x/ � g.3x/3





 � 1

3
'.x; 0; 0/; 8x 2 G;

which is reduced to




g.x/ � g.3x/3





 � L .x/; 8x 2 G;

i.e., d.g; Tg/ � L <1:
Now, from the fixed point alternative, that there exists a fixed point A of T in ˝

such that

A.x/ D lim
n!1

g.3nx/

3n
D lim

n!1
f .3nx/

3n
(23)

for all x 2 G since lim
n!1 d.T

nf;A/ D 0
To show that the function A W G �! X is affine, let us replace x; y and z by

3nx; 3ny and 3nz in (19), respectively, and divide by 3n.

k3�nf .3n.3x C y C z//C 3�nf .3n.x C 3y C z//C 3�nf .3n.x C y C 3z//

C 3�nf .3nx/C 3�nf .3ny/C 3�nf .3nz/ � 6:3�nf .3n.x C y C z//k

� 1

3n
'.3nx; 3ny; 3nz/;
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for all x; y; z 2 G. Taking on the limit as n ! 1 in the above relation and using
(18) and (23), it results

kDA.x; y; z/k D lim
n!1

kDf.3nx; 3ny; 3nz/k
3n

� lim
n!1

'.3nx; 3ny; 3nz/

3n
D 0

for all x; y; z 2 G, i.e., A satisfies the functional equation (3). Theorem 2.1
guarantees that A is affine.

According to the fixed point alternative, since A is the unique fixed point of T in
the set � D fh 2 ˝ W d.g; h/ <1g, A is unique function such that

kg.x/ �A.x/k � K .x/; 8x 2 G

and some K > 0. Again using the fixed point alternative, we have

d.g;A/ � 1

1 �Ld.g; Tg/

and so we obtain the inequality

d.g;A/ � L

1 � L
which yields the inequality (21).

This completes the proof of the theorem.

From Theorem 5.2, we obtain the following corollary concerning the Hyers–
Ulam–Rassias stability [27] of the functional equation (3).

Corollary 5.3. Let G be an abelian group andX a Banach space, respectively. Let
0 � p < 1 be given. Assume that ı � 0 and " � 0 are fixed. Suppose that a function
f W G �! X satisfies the functional inequality

kDf.x; y; z/k � ı C ".kxkp C kykp C kzkp/ (24)

for all x; y; z 2 G. Then there exists a unique affine mapping A W G �! X such
that the inequality

kf .x/ � A.x/� f .0/k � ı

31�p � 1 C
"

3 � 3p kxk
p (25)

holds for all x 2 G.

Proof. Let '.x; y; z/ WD ıC".kxkpCkykpCkzkp/; 8x; y; z 2 G. Then it follows
that
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'.3nx; 3ny; 3nz/

3n
D ı

3n
C 3n.p�1/.kxkp C kykp C kzkp/! 0

as n!1; where p < 1, i.e., the relation (18) is true.
Since the inequality

 .x/ D ı C "

3p
kxkp � 3p

�
ı C "

32p
kxkp

�

i.e.,  .x/ � 3:3p�1 .x
3
/ holds 8x 2 G, where p < 1 with L D 3p�1 < 1.

Now the inequality (21) yields the inequality (25) which completes the proof of
the corollary. This completes the proof.
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On Some Integral Operators

Khalida Inayat Noor

Abstract Let P.n; ˇ/; 0 � ˇ < 1; be the class of functions p W p.z/ D 1 C
cnznCcnC1znC1C : : : analytic in the unit disc E such thatRefp.z/g > ˇ: The class
Pk.n; ˇ/; k � 2 is defined as follows: An analytic function p 2 Pk.n; ˇ/; k � 2;
0 � ˇ < 1 if and only if there exist p1; p2 2 P.n; ˇ/ such that

p.z/ D
�
k

4
C 1

2

�
p1.z/ �

�
k

4
� 1
2

�
p2.z/:

In this paper, we discuss some integral operators for certain classes of analytic
functions defined in E and related with the class Pk.n; ˇ/:

Keywords Analytic functions • Integral operators • Convolution • Libera
operators

1 Introduction

Let A .n/ denote the class of functions f of the form

f .z/ D zC
1X

kDnC1
akzk; .n D N D f1; 2; 3; : : : ; g/ ; (1)

analytic in the unit disc E D fz W jzj < 1g: Let P.n; ˇ/ be the class of functions
h.z/ of the form

h.z/ D 1C cnzn C cnC1znC1 C : : : ; (2)
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which are analytic in E and satisfy Refh.z/g > ˇ; 0 � ˇ < 1; z 2 We note that
P.1; 0/ � P is the class of functions with positive real part.

Let Pk.n; ˇ/; k � 2; 0 � ˇ < 1; be the class of functions p; analytic in E; such
that

p.z/ D
�
k

4
C 1

2

�
p1.z/ �

�
k

4
� 1
2

�
p2.z/

if and only if p1; p2 2 P.n; ˇ/ for z 2 E: The class Pk.1; 0/ � Pk was introduced
in [6]. We note that p 2 Pk.n; ˇ/ if and only if there exists h 2 Pk.n; 0/ such that

p.z/ D .1 � ˇ/h.z/C ˇ;

Let f and g be analytic inE with f .z/ given by (1) and g.z/ D zCP1kDnC1 bkzk:
Then the convolution (or Hadamard product ) of f and g is defined by

.f ? g/.z/ D zC
1X

kDnC1
akbkzk:

A function f 2 A .n/ is said to belong to the class Rk.n; ˇ/; k � 2; 0 � ˇ < 1; if
and only if zf 0

f
2 Pk.n; ˇ/ for z 2 E:

We note that Rk.1; 0/ � Rk is the class of functions with bounded radius
rotation, first discussed by Tammi, see [1] andR2.1; 0/ consists of starlike univalent
functions.

Similarly f 2 A .n/ belongs to Vk.n; ˇ/ for z 2 E if and only if .f 0/0

f 0

2
Pk.n; ˇ/: It is obvious that

f 2 Vk.n; ˇ/ if and only if zf 0 2 Rk.n; ˇ/: (3)

It may be observed that V2.1; 0/ � C; the class of convex univalent functions
and Vk.1; 0/ � Vk is the class of functions with bounded boundary rotation first
discussed by Paatero, see [1].

2 Preliminary Results

We need the following results in our investigation.

Lemma 2.1 ([5]). Let u D u1 C iu2; v D v1 C iv2 and �.u; v/ be a complex-
valued function satisfying the following conditions:

(i). �.u; v/ is continuous in a domainD 	 C2

(ii). .1; 0/ 2 D and �f.1; 0/g > 0:
(iii). Re�.iu2; v1/ � 0 whenever .iu2; v1/ 2 D and v1 � �12 .1C u22/:
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Let h.z/; given by (2), be analytic in E such that .h.z/; zh0.z// 2 D and
Re� .h.z/; zh0.z// > 0 for all z 2 E; then Refh.z/g > 0 in E:

We shall need the following result which is a modified version of Theorem 3.3e
in [4, p113].

Lemma 2.2. Let ˇ > 0; ˇ C ı > 0 and ˛ 2 Œ˛0; 1/; where

˛0 D max

�
ˇ � ı � 1

2ˇ
;
�ı
ˇ

�
:

If
n
h.z/C zh0.z/

ˇh.z/Cı
o
2 P.1; ˛/ for z 2 E; then h 2 P.1; �/ in E; where

�.˛; ˇ; ı/ D
"

.ˇ C ı/
ˇf2F1.2ˇ.1� ˛/; 1; ˇ C ı C 1I r

1Cr g
� ı

ˇ

#
; (4)

where 2F1 denotes hypergeometric function. This result is sharp and external
function is given as

p0.z/ D 1

ˇg.z/
� ı

ˇ
; (5)

with

g.z/ D
Z 1

0

�
1 � z

1 � tz
�2ˇ.1�˛/

t .ˇCı�1/dt

D 2F1

�
2ˇ.1� ˛/; 1; ˇ C ı C 1I z

z � 1
�
: .ˇ C ı/�1 :

3 Main Results

Theorem 3.1. Let f 2 Rk.n; ˇ/; g 2 Rk.n; ˇ/; ˛; c; ı and � be positively real
and ı D � D ˛: Then the function F defined by

ŒF .z/�˛ D cz˛�c
Z z

0

t .c�ı��/�1 .f .t//ı .g.t//� dt (6)

belongs to Rk.n; �/; where

� D 2.2ˇc1 C n˛1/
.n˛1 � 2ˇ C 2c1/C

p
.n˛1 � 2ˇ C 2c1/2 C 8.2ˇc1 C n˛1/

; (7)
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with

c1 D c � ˛
˛

; ˛1 D 1

˛
:

Proof. First we show that there exists a function F 2 A .n/ satisfying (6). Let

G.z/ D z�.�Cı/ .f .z//ı .g.z//� D 1C ˛nzn C ˛nC1znC1 C : : : ;

and choose the branches which equal 1 when z D 0: For

K.z/ D z.c���ı/�1 .f .z//ı .g.z//� D zc�1G.z/;

we have

L.z/ D c

zc

Z z

0

K.t/dt D 1C c

nC 1˛nzn C : : : ;

where L is well defined and analytic in E: Now let

F.z/ D Œz˛L.z/� 1˛ D z ŒL.z/�
1
˛ ;

where we choose the branch of ŒL.z/�
1
˛ which equals 1when z D 0: ThusF 2 A .n/

and satisfies (6).
Now, from (6), we have

z.c�˛�1/ ŒF .z/�˛
�
.c � ˛/C ˛ zF 0.z/

F.z/

	
D c

h
z.c�ı��/�1 .f .z//ı .g.z//�

i
: (8)

We write

zF 0.z/
F.z/

D p.z/ D
�
k

4
C 1

2

�
p1.z/�

�
k

4
� 1
2

�
p2.z/: (9)

Then p.z/ D 1C cnzn C cnC1znC1 C : : : ; is analytic in E:
Logarithmic differentiation of (8) and use of (9) yields

.c � ˛ � 1/C ˛p.z/C ˛zp0.z/
.c � ˛/C ˛p.z/ D .c � ı � � � 1/C

ızf 0.z/
f .z/

C �zg0.z/
g.z/

:

Since �C ı D ˛ W f; g 2 Pk.n; ˇ/ and it is known [2] that Pk.n; ˇ/ is a convex set,
it follows that

(
p C

1
˛

zp0

p C � c�˛
˛

�
)
2 Pk.n; ˇ/; z 2 E:

Define
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˚˛;c.z/ D 1

1C c1
z

.1 � z/˛1C1
C c1

1C c1
z

.1 � z/˛1C2
;

with ˛1 D 1
˛
; c1 D c�˛

˛
:

Then, using (9), we have

�
p ?

˚˛;c

z

�
D p.z/C ˛1zp0.z/

p.z/C c1
D
�
k

4
C 1

2

��
p1.z/C ˛1zp01.z/

p1.z/C c1
	

�
�
k

4
� 1
2

��
p2.z/C ˛1zp02.z/

p2.z/C c1
	
:

Since
n
p C ˛1zp0

pCc1
o
2 Pk.n; ˇ/; it follows that

�
pi C ˛1zp0i

pi C c1
�
2 Pk.n; ˇ/; for i D 1; 2; z 2 E:

Writing pi .z/ D .1 � �/Hi .z/C �; i D 1; 2; we have, for z 2 E;
�
.1 � �/Hi C � C ˛1.1 � �/H 0i

.1 � �/Hi C � C c1 � ˇ
	
2 P.n; 0/:

We now form the functional �.u; v/ by taking u D Hi and v D zH 0i and so

�.u; v/ D .� � ˇ/C .1 � �/uC ˛1.1 � �/v
.1 � �/uC � C c1 :

It can easily be seen that:

(i) �.u; v/ is continuous in D D �C � ˚ �Cc1
1��

�� � C :
(ii) .i; 0/ 2 D and Ref�.i; 0/ D 1 � ˇ > 0:

To verify the condition (iii) of Lemma 2.1, we proceed as follows:

For all .iu2; v1/ 2 D such that v1 � �n.1Cu22/
2

; and

<f�.iu2; v1/g D .� � ˇ/C ˛1.1 � �/.� C c1/v1
.� C c1/2 C .1 � �/2u22

� 2.� � ˇ/ ˚.�Cc1/2C.1��/2u22��n˛1.1��/.�Cc1/.1Cu22/

2.�Cc1/2C.1��/2u22
D AC Bu22

2C
(10)

� 0; if A � 0 and B � 0;
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where

A D 2.� � ˇ/.� C c1/2 � n˛1.1 � �/.� C c1/;
B D 2.� � ˇ/.1 � �/2 � n˛1.1 � �/.� C c1/
C D .� C c1/2 C .1 � �/2u22 > 0:

From A D 0; we obtain � as given by (7) and B � 0 ensures that 0 � � < 1: Thus
using Lemma 2.1, it follows that Hi 2 P.n; 0/ and therefore pi 2 P.n; �/; i D
1; 2: Consequently p 2 Pk.n; �/ and this completes the proof. �

Corollary 3.1. For 0 D c D n D 1; ˇ D 0 and f D g; F 2 Vk implies that
F 2 Rk.12 / and this, with k D 2; gives us a well-known result that every convex
function is starlike of order 1

2
in E:

Corollary 3.2. For n D 1; let f 2 Rk.1; �/ in Theorem 3.1. Then F 2 Rk.1; �0/;
where �0 is given by (2.1) with ˇ D ˛; ı D .1 � ˛/: This result is sharp.

Corollary 3.3. In (2), we take � C ı D 1; c D 2; f D g and obtain Libera’s
integral operator [3, 6] as:

F.z/ D 2

z

Z z

0

f .t/dt; (11)

where f 2 Rk.n; ˇ/: Then, by Theorem 3.1, it follows that F 2 Rk.n; �1/; where

�1 D 2.2ˇC n/h
.n � 2ˇ C 2/Cp.n � 2ˇ C 2/2 C 8.2ˇ C n/i : (12)

For ˇ D 0 and n D 1; we have Libera’s operator for the classRk of bounded radius
rotation. That is, if f 2 Rk and F is given by (3.6), then

F 2 Rk.1; �2/; with �2 D 2

3Cp17:

Using Theorem 3.1 and relation (3), we can prove the following.

Theorem 3.2. Let f and g belong to Vk.n; ˇ/; and let F be defined by (6) with
˛; c; ı; � positively real, ı C � D ˛: Then F 2 Vk.n; �/; where � is given by (7).

By taking ˛ D 1; cC 1
�
; �C ı D ˛ D 1 and f D g in (6), we obtain the integral

operator I�.f / D F; defined as:

F.z/ D 1

�

Z z

0

t
1
��2f .t/dt; .� > 0/: (13)
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With the similar techniques, we can easily prove the following result which is
stronger version than the one proved in Theorem 3.1.

Theorem 3.3. Let f 2 Rk.n; �/ and let, for 0 < � � 1; F be defined by (13). Then
F 2 Rk.n; ı�/; where ı� satisfies the conditions given below:

(i) If 0 < � � 1
2

and n�
2.��1/ � � < 1; then

ı� D ı1 D 1

4�

�
A1 C

q
A21 C 8B1

	
� 0;

where

A1 D 2��C 2�� n�
B1 D �f2�.1� �/C n�g:

(ii) If 1
2
< � � 1; n.��1/

2�
� n.3��p8�/

2�
� �; then

ı� D ı2 D 1

4�

�
A2 C

q
A22 C 8B2

	
� 0;

where

A2 D 2�C 2�� � n�
B2 D �.2�� C n � n�/:

(iii) If 1
2
< � � 1; n.��1/

2�
<

n.3��p8�/
2�

< � < 1; then ı3 D ı1:
Special Cases

(1). Let � D 1
2

in (13). Then we have Libera’s operator and (i) gives us

ı� D ı1 D 2.2� C n/
.n � 2� C 2/Cp.n � 2� C 2/2 C 8.2� C n/ :

(2). When � D 0; � D 1
2
; n D 1; and f 2 Rk; then F 2 Rk.1; ı1/; where

ı� D ı1 D 2

3Cp17:

(3). Let � D 1; � D 0; n D 1 and f 2 Rk: Then, from (3.8), it follows that

F.z/ D
Z z

0

f .t/

t
dt
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and, by Theorem 3.3, F 2 Rk.12 /: By using relation (3) and k D 2; we obtain
a well-known result that every convex function is starlike of order 1

2
:

Theorem 3.4. Let f 2 Rk.n; 0/; g 2 Rk.n; ˛/; 0 � ˛ � 1: Let the function F; for
b � 0; be defined as

F.z/ D 1C b
zb

Z z

0

f ˛.t/tb�˛�1g.t/dt: (14)

Then F 2 Rk.n; �/; z 2 E; where

� D 2n

.2b C n/Cp.2b C n/2 C 8n: (15)

Proof. Set

zF 0.z/
F.z/

D p.z/ D
�
k

4
C 1

2

�
p1.z/�

�
k

4
� 1
2

�
p2.z/:

Then p.z/ is analytic in E and p.0/ D 1: From (14), we have

p.z/C zp0.z/
p.z/C b D

�
˛

zf 0.z/
f .z/

C .1 � ˛/
	
C zg0.z/

g.z/
� 1

D Œ˛h1 C .1 � ˛/�C Œ.1 � ˛/h2.z/C ˛� � 1
D ˛h1.z/C .1 � ˛/h2.z/ D h.z/; h 2 Pk.n; 0/:

Since g 2 Pk.n; ˛/; f 2 Rk.n; 0/; it follows that h1; h2 2 Pk.n; 0/ and Pk.n; 0/
is a convex set. Now following the similar technique of Theorem 3.1 and using
Lemma 2.1, we obtain the required result that zF 0.z/

F .z/ D p.z/ 2 Pk.n; �/; where � is
given by (15). �

Remark 3.1. When n D 1; we obtain best possible value of � D � given by (2.1)
with ˛ D 0; ˇ D 1; ı D b:
Conclusion. In this paper, we have introduced and considered a new class Pk.n; ˇ/
of analytic function. We have discussed several special cases of this new class. We
have discussed some integral operators for certain classes of analytic functions in
the unit disc E and related with the new class Pk.n; ˇ/: Results obtained in this
paper can be viewed as an refinement and improvement of the previously known
results in this field.
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1 Introduction: Classic Lattice Point Theory

Let B denote a compact body in three-dimensional Euclidean space R
3, with a

sufficiently smooth boundary @B, and t a large real parameter. It is well known that
the numberN.BI t/ of points with integer coordinates in a linearly dilated copy tB
of B is asymptotically equal to the volume vol.B/t3. The central question of the
classic lattice point theory of large bodies, as founded by E. Landau and others in
the first decades of the twentieth century, is to estimate, from above and below, the
lattice discrepancy

D.BI t/ WD N.BI t/ � vol.B/ t3 : (1)

Enlightening and comprehensive accounts on this theory have been given in the
monographs by Fricker [8] and by Krätzel [22, 23], as well as in a more recent
survey article by Ivić, Krätzel, Kühleitner, and the author [19]. The most up-to-date
approach to planar lattice point problems (“discrete Hardy–Littlewood method”)
has been exposed in detail in Huxley’s book [15].

1.1 The “Generic Case” of Strict Convexity and Nonzero
Curvature

For the generic case that B is strictly convex and the Gaussian curvature � of @B is
everywhere bounded from above and away from zero, Hlawka [14] in 1950 proved
that1

D.BI t/ D O.t3=2/ ; D.BI t/ D ˝.t/ ; (2)

with the constants implied possibly depending on the original body B. (This will
be the case throughout this article.) An elegant proof of this upper estimate has been
given by Krätzel [23, Satz 5.15].

We remark parenthetically that in both references the problem has been treated in
the more general setting of a body in k-dimensional space Rk, k � 3. This applies
to most contributions to the literature which deal with the generic case. The general
analogues of (2) read

D.BI t/ D O.tk�2C2=.kC1// ; D.BI t/ D ˝.t.k�1/=2/ :

For the sake of clarity, in this article we shall restrict the discussion to dimension
three.

1For the definitions of the order symbols O , ˝,�,	, etc., see, e.g., Krätzel’s book [22].
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Hlawka’s bound was improved in later decades by Krätzel and the author to
O.t37=25/ [27], and O.t25=17C"/ [28], by Müller [35] to O.t63=43C"/, and most
recently by Guo [11] to O.t231=158C"/. Notice that 37

25
D 1:48, 25

17
D 1:470 : : : ,

63
43
D 1:4651 : : : , and 231

158
D 1:4620 : : : .

Apparently the only improvement of the lower bound in (2) is due to the author
[37] and reads

D.BI t/ D ˝.t .log t/1=3/ : (3)

Thus, for the generic case, it is not known what might be the infimum of all possible
exponents in this problem. The conjecture that it equals 1 may (or may not) be a
hazardous guess, although it is supported not only by the lower bound (3) but also
by the mean-square estimate

TZ

1

.D.BI t//2dt  T 3 .logT /2 ; (4)

which is due to Iosevich et al. [17].

1.2 Balls in R3

For the special case of the three-dimensional unit ball B0 (“sphere problem”),
far better bounds are known. During several decades in the twentieth century,
Vinogradov was almost the only one working on this problem, finally arriving in
1963 at [50]

D.B0I t/ D O
�
t4=3.log t/6

�
:

This was improved in 1995 by Chamizo and Iwaniec [6] to

D.B0I t/ D O
�
t29=22C"

�
;

and a little later refined further by Heath-Brown [13] who obtained

D.B0I t/ D O
�
t21=16C"

�
: (5)

To understand why the results for balls are much sharper than for general bodies, it
must be pointed out that here the explicit formula (see Bateman [1]) for r3.n/, the
number of ways to write n as a sum of three squares of integers, plays an important
role. This formula involves a certain real character; to estimate the latter on average,
results of Burgess [3, 4] have been applied with gain.
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The bound (5) was subsequently generalized to rational ellipsoids by Chamizo
et al. [7]. We mention parenthetically that deep results on ellipsoids in higher
dimensions have been established fairly recently by Bentkus and Götze [2] and by
Götze [10].

Concerning lower estimates, Tsang [49] in 2000 proved that, somewhat sharper
than (3),

D.B0I t/ D ˝˙
�
t.log t/1=2

�
: (6)

The ˝�-part of this result was already known to Szegö [47] in 1926.
Furthermore, there is the mean-square asymptotics

TZ

1

.D.B0I t//2dt D c0T 3 logT CO.T 3/ ; (7)

due to Lau [33], who improved the error term compared to much earlier work by
Jarnik [21].

1.3 Bodies of Rotation (Generic Case)

Sort of “hybrids” between balls and general convex bodies are bodies of rotation
Brot, the axis of rotation being assumed throughout to coincide with one coordinate
axis. In this subsection we will assume further that the Gaussian curvature � is
bounded away from zero on the sufficiently smooth boundary @Brot of Brot. Under
this condition (and some technicalities), F. Chamizo showed that [5]

D.BrotI t/ D O
�
t11=8C"

�
: (8)

In the other direction, Kühleitner and the author [32] proved that

D.BrotI t/ D ˝�
�
t .log t/1=3.log log t/2.

p
2�1/=3.log log log t/�2=3

�
;

using an ingenious method of Soundararajan [46].
A bit special is the case of ellipsoids of rotation

Ea W x21 C x22
a

C a2x23 � 1

depending on one positive parameter a, and normalized such that vol.Ea/ D 4�
3

.
Krätzel and the author [29] derived an upper bound for D.EaI t/, uniform in a and
t , with explicit numerical constants. For fixed a, this amounts to O.t11=8.log t/3=8/
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which is slightly sharper than (8). Later on [41, 42], the author proved that

D.EaI t/ D O
�
t3433555=2498114C"

�
;

uniformly in a on every compact interval Œa1; a2�, 0 < a1 < a2. Note that 3433555
2498114

D
1:37445889 : : : , while 11

8
D 1:375.

2 Bodies with Boundary Points of Curvature Zero

Until now we have only discussed bodies with nonzero Gaussian curvature through-
out their (smooth) boundary. In order to understand the role of boundary points
of curvature zero, it may be helpful to recall the following result for the planar
case which may be considered as a main theorem of planar lattice point theory; see
Müller and the author [36].

Theorem 1. For a compact planar domain D with analytic boundary @D , suppose
that the curvature vanishes on @D exactly in finitely many points pj , of orders nj
with respect to the arclength, @D possessing a rational normal vector in every pj .
Then,

#
�
tD \ Z

2
� � area.D/t2 D

X
pj

X
k�1

Fj;k.t/ t
1�k=.njC2/ CO.t
 /; 
 <

2

3
;

where the functionsFj;k.t/ are continuous and periodic, and can be given explicitly
in terms of Fourier series.

Concerning the extension of this scenario to dimension three, the results have
been rather fragmentary until very recently, and they are not really satisfactory at the
time being. To start with, it is not even clear what might be “natural assumptions”
about the set

Z D fp 2 @B W � D 0 at p g :

Should it be supposed to consist of isolated points or of whole curves on @B? In the
latter case it has to be expected that “almost all” normal vectors attached to points
of Z are not rational.

2.1 Isolated Boundary Points of Curvature Zero

In pioneer work in 1993, which unfortunately was never published in print,
Haberland [12] investigated the case that Z consists of finitely many points, each
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Fig. 1 Krätzel’s 3D-body for
k D 6, `D 3

with a rational normal vector. Assuming � to vanish of sufficiently high order, he
was able to derive an asymptotic formula for D.BI t/.

In 2002, Peter [44] realized that an important role was played by the so-called flat
points of @B

F D fp 2 @B W both main curvatures of @B vanish at p g :

For F finite and the normal vector of @B rational in each p 2 F , he established an
asymptotics for D.BI t/ consisting of a main term generated by the flat points and
an error of O.t9=5/.

2.2 Krätzel’s 3D-Body

At about the same time, Krätzel [24–26] deduced more precise estimates for certain
special bodies. His research culminated in a very precise asymptotics concerning
bodies (Fig. 1)

Bk;` W
�jx1j` C jx2j`�k=` C jx3jk � 1 ; (9)

where k � 4 and ` � 2 are fixed integers, ` a divisor of k. As an arithmetic
interpretation, counting the lattice points in tBk;` yields information about the
average number of solutions of a corresponding Diophantine equation.
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It is straightforward to verify that @Bk;` has flat points in .0; 0;˙1/, and for
` > 2 also in .0;˙1; 0/ and .˙1; 0; 0/. The normal vectors are all rational in these
points. Furthermore, the Gaussian curvature identically vanishes (at least for ` > 2)
along the curves of intersection of @Bk;` with the coordinate planes. Krätzel’s result
ultimately reads

D.Bk;`I t/ D F .t/t2�2=k CO
�
t
119
73 � 165

146k .log t/
315
146

�
CO.t3=2.log t/3/ : (10)

Here F .t/ is given explicitly by an absolutely convergent Fourier series, hence
a continuous periodic function; it reflects the contribution of the two flat points at
.0; 0;˙1/ to the lattice discrepancy. The firstO-term comes from all other boundary
points of curvature zero. The corresponding normal vectors are all different and
almost everywhere irrational, thus their contribution cannot be evaluated asymptot-
ically, but only estimated from above. To do so, Huxley’s deep technique [15] has
been applied.

For the special case ` D 2, Bk;2 is a body of rotation, generated by a Lamé curve
rotating about the third coordinate axis. Here a much better error estimate can be
obtained: see Krätzel and the author [30].

3 Recent Progress

3.1 General Bodies of Rotation

Further research concentrated on bodies of rotation Brot (about a coordinate axis),
for at least two good reasons: The set of points on @Brot with Gaussian curvature
zero are in a natural way and conveniently described by the meridian curve
whose rotation generates @Brot. Furthermore, the necessary analysis is considerably
simpler than in general. Therefore, in certain interesting cases, it is possible to
determine the exact order of magnitude of D.BrotI t/.

In this direction, pioneer work has been done by Popov [45]. The following result
due to the author is a bit sharper and more general. Look at the body Brot shown
in Fig. 2. Its boundary contains two flat points in the points of intersection of @Brot

with the axis of rotation. Moreover, the Gaussian curvature vanishes on @Brot at
altogether five circles: at the equator (borrowing this expression from geography)
and in four other circles symmetric to it. (Obviously, the curvature is positive close
to the equator and close to the endpoints, but negative somewhere in between.)

The situation is described in satisfactory generality in the following theorem [39].

Theorem 2. Suppose that the boundary @Brot of a body of rotation Brot is smooth
and generated by rotation of a meridian curve C about the horizontal axis. For
� 2 C4Œ0; �� positive, let

C D f.x; y/ D .�.j
 j/ cos 
; �.j
 j/ sin 
/ W 
 2 Œ��; �� g ;
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Fig. 2 A general non-convex
body of rotation about a
horizontal coordinate axis

with dx
d


< 0 for 0 < 
 < � . Further, the curvature of C vanishes at most at
the points corresponding to finitely many 
-values 0; � and 
1; : : : ; 
J 2�0; �Œ. In
these points, �.
/ is analytic. Let N1;N2, resp., M1; : : : ;MJ denote the orders of
the zeros of the curvature of C in these points, as a function of 
 . Then it holds true
that

D.BrotI t/ D
X
iD1;2

X
k�2

Fi;k.t/t
2�k=.NiC2/ C�.BrotI t/ ;

�.BrotI t/
8<
:
t3=2C� for M WD max.Mj / � 7;
t
339MC416
208.MC2/ C� forM � 8:

(11)

The functions Fi .t/, i D 1; 2, are again represented by absolutely convergent
Fourier series, hence continuous and periodic.

Remark 1. The terms Fi;k.t/t
2�k=.NiC2/ describe the contribution of the two flat

points toD.BrotI t/. Here the normal vectors are rational, which permits an explicit
evaluation. However, the leading terms Fi;2.t/t

2�2=.NiC2/ can supersede the error
only if Ni � 3, i.e., if the curvature of the meridian curve has a zero of order at
least three in this flat point. All other points of @Brot of curvature zero are located
on circles along which the normal vector varies, being irrational in almost all points.
Hence the contribution of these points cannot be evaluated exactly, but only be
estimated from above. This is done by the last bound for �.BrotI t/ which has been
obtained by an application of Huxley’s method in its presently sharpest form [16].
However, this term is of significance only if the curvature of C has a zero of order
� 8 in those points. Otherwise, it is absorbed by the error term O.t3=2C"/ which
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matches well with Hlawka’s classic result (2) and which shows the limit of the
method employed.

There is also a mean-square result for bodies of rotation Brot as described in the
above theorem, for which the flat points at the ends are the only points of @Brot with
curvature zero [38]: For this special case,

TZ

1

.�.BrotI t//2 dt D O
�
T 3C"

�
;

where �.BrotI t/ is defined by (11). This matches well with the results (4) by
Iosevich et al. [17] and (7) by Lau [33].

3.2 An “Exotic” Example: The Torus in R
3

Apparently there is only one body that has been discussed in the literature in this
context, whose boundary is a surface of genus exceeding zero. It is the body T
whose boundary @T is the three-dimensional torus

@T W
0
@xy

z

1
A D

0
@ .aC b cos˛/ cosˇ
.aC b cos˛/ sinˇ

b sin ˛

1
A ; 0 � ˛; ˇ < 2� ;

where a > b are two fixed positive constants. It is worthwhile to consider this sort of
“exotic” body because this will lead to a surprisingly precise result and, furthermore,
provide some preparation for an important general insight to be discussed in the next
subsection.

The points on @T with curvature zero are all located on the two circles

Cȧ;b W x2 C y2 D a2 ; z D ˙b :

There are no flat points at all, but the normal vectors are

0
@ 00
1

1
A throughoutCȧ;b , i.e.,

they are rational and sort of “pull into the same direction”. This very fact opens the
way to the following quite accurate result; see2 the author [40], as well as Garcia
and the author [9] (Fig. 3).

2A weaker version of the first asymptotics, with error term O.t3=2�1=286C"/, has been established
by Popov [45].
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Fig. 3 The torus @T for
a D 7, b D 2:5

Theorem 3. For any fixed reals a > b > 0,

D.T I t/ D Fa;b t
3=2 CO �t11=8C"�

with

Fa;b.t/ WD 4a
p
b

1X
jD1

j�3=2 sin
�
2�jbt � �

4

�
:

Furthermore,

TZ

1

�
D.T I t/ �Fa;b.t/ t

3=2
�2
dt D O �T 3C�� :

3.3 The Effect of Destroyed Convexity: Bodies with a “Dent”3

Returning to bodies B with boundary of genus zero, we recall that it has been
possible to determine the exact order of D.BI t/ only for quite special cases,
namely, if @B contains flat points where the curvature vanishes of sufficiently high
order. This applies to Eq. (10), to Theorem 2, as well as to the results mentioned
in Sect. 2.1. In particular, for the generic case of strict convexity and nonvanishing
curvature treated in Sect. 1.1, there is little hope to determine the optimal exponent
of t when estimatingD.BI t/ from above.

One might expect that the difficulty is increased if the convexity of B is
destroyed. This is done in the most natural way by a single “dent” as shown in

3This subsection describes quite recent research by the author which is in course of publication
elsewhere [43].
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Fig. 4 Body of rotation Brot

with a “dent”

x

zFig. 5 The meridian curve
whose rotation about the
vertical axis generates @Brot .
Its right-hand half is CC

Fig. 4. However, perhaps as a surprise,4 the true order of magnitude of D.BI t/
essentially can be determined, at least for the important class of bodies of rotation.

Assuming w.l.o.g. the axis of rotation to be the z-axis in a Cartesian system, the
body Brot is fully described by the right-hand half CC of a meridian curve in the
.x; z/-plane, whose rotation about the z-axis generates @Brot (Fig. 5).

We proceed to state in detail the assumptions required for the next theorem; in
other words, we describe Fig. 5 exactly.

• The curve CC has a natural parametrization s 7! .x.s/; z.s//, with s the
arclength, which is an injective map of Œ0; L� into the .x; z/-plane R2. Both
components are four times continuously differentiable.

• x.0/ D x.L/ D 0, and x.s/ > 0 for 0 < s < L. Further, Pz.0/ D Pz.L/ D 0, so
that @Brot is smooth.

4Or not, if one has learned the right lesson from the example of the torus.
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• There exists a value s1 2 �0; LŒ such that z.s/ increases on �0; s1Œ and decreases
on �s1; LŒ. Denote by zmax D z.s1/ the global maximum of z along CC.

• The curvature �.s/ of CC vanishes for exactly one value s2 2 �0; LŒ. This is a
zero of first order, and s2 > s1. Hence, �.s/ is positive on Œ0; s2Œ, and negative on
�s2; L�. Further, Px.s2/ < 0.

• x.s/ and z.s/ are analytic (at least) in s 2 f0; s1; s2; Lg.
Under these assumptions, the following result can be deduced.

Theorem 4 ([43]). For the lattice discrepancy D.BrotI t/ of a body Brot whose
boundary @Brot is generated by the rotation about the z-axis of a curve CC
satisfying the properties stated, it holds true that

inff� 2 R W D.BrotI t/ D O.t� / g D 3

2
: (12)

Furthermore,

D.BrotI t/ D ct3=2Fzmax.t/C�.BrotI t/ ; (13)

with a constant c ¤ 0 depending on Brot,

Fzmax.t/ WD
1X
jD1

j�3=2 sin
�
2�j zmaxt � �

4

�
;

and an error term �.BrotI t/ satisfying the mean-square estimate, for T large and
every fixed " > 0,

2TZ

T

.�.BrotI t//2 dt  T 31=9C" : (14)

Remark 2. It readily follows from (13) and (14) that, for T large,

2TZ

T

.D.BrotI t//2 dt �
2TZ

T

�
c t3=2Fzmax.t/

�2
dt � c1T 4 ;

with c1 > 0 depending on Brot. From this D.BrotI t/ D ˝.t3=2/ is immediate.
To establish (12), the upper bound D.BrotI t/ D O.t3=2C"/ is proved by similar
methods as used for Theorem 2.

To understand the result of Theorem 4 intuitively, observe that the points of @Brot

with Gaussian curvature zero are located on two circles: the one with z D zmax and
another one with z D z.s2/. On z D zmax, the normal vector is the same everywhere
and it is rational, namely .0; 0; 1/. This creates the large contribution c t3=2Fzmax.t/

to the lattice discrepancy. On the circle where z D z2, however, the normals are
all different and “most of them” are irrational. Their contribution to D.BrotI t/ is
proved to be small, at least “on average”.
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It it reasonable to conjecture that, sharper than Theorem 4, there is a pointwise
asymptotics

D.BrotI t/ D c t3=2Fzmax.t/CO.t�/ ;

with some � < 3
2
, possibly depending on Brot. However, it turns out to be very

difficult to establish such a sharp and general result, without any stringent conditions
on CC which do not have an intuitive geometric interpretation.

3.4 A Look into the Toolbox

In this section we are going to give a brief account on the method used to derive the
recent results described. It can be called a “cut-into-slices”-approach and is based
on the identity

N.BI t/ D
X
m32Z

#f.m1;m2/ 2 Z
2 W .m1;m2;m3/ 2 tB g : (15)

It works best for (but is not limited to!) bodies of rotation. We will consider an
example of a body without rotational symmetry in the last subsection.

Step 1. In the case of a body of rotation (about the z-axis), the quantity

#f.m1;m2/ 2 Z
2 W .m1;m2;m3/ 2 tB g ;

form3 fixed, enumerates the number of integer points in a circular disc. For this,
one uses a truncated form of Hardy’s identity, in the shape

X
0�n�X

r.n/ � �X

D 1

�
X1=4

X
1�n�Y

r.n/

n3=4
cos.2�

p
nX � 3�=4/CO �X1=2C� Y �1=2

�CO .Y �/ ;

where X and Y are large real parameters, and r.n/ denotes the number of ways
to represent n � 0 as a sum of two squares of integers.
For r.n/ replaced by the number-of-divisors function d.n/, the analogue of this
formula is classic and can be found, e.g., in the book of Titchmarsh [48, p. 319].
The present assertion has been stated and applied, e.g., by Ivić [18, Eq. (1.9)]. An
explicit proof has been given for a more general result by Müller [34, Lemma 3].

Step 2. After applying this identity, there remains a weighted trigonometric sum
with respect to the variable m3. To reduce its length, a device is used which
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is called the Van der Corput transformation of exponential sums. It essentially
reads, writing e.w/ WD e2�iw as usual,

X
m32I

G.m3/ e.F.m3//

D e
�

sgn.F 00/
8

� X
m2F 0.I /

G.F 0�1.m//pjF 00.F 0�1.m//j e
�
F.F 0�1.m//�mF 0�1.m/�

C error terms ;

under suitable conditions on the derivatives of F and G. (E.g., F 00 ¤ 0

throughout.) For a version with very sharp error terms, see Iwaniec and Kowalski
[20, Theorem 8.16 and Eq. (8.47)]. The proof of results of this kind is based on
Poisson’s formula and on the method of stationary phase.

Step 3. To estimate the remaining exponential sum, in many cases a result of the
following shape is useful.
For r � 4 a fixed integer, and positive real parameters M � 1 and T , suppose
that F is a real function on some compact interval I� of length M , with r C 1
continuous derivatives which satisfy throughout

M�j T  F .j / M�j T for j D r � 2; r � 1; r :

Then, for every interval I � I�,
X
m2I

e.F.m//Mar T br CM�r T �r CM˛r CM�r T �ır ;

where the nonnegative exponents .ar ; br ; �r ; �r ; ˛r ; �r ; ır/ are given for every
r � 4 by recursive formulas.
This result is sort of a “hybrid” of the classic Van der Corput theory, as displayed,
e.g., in Krätzel [22], with Huxley’s [15] “Discrete Hardy–Littlewood Method”:
See the author’s article [42].
If one is interested in a mean-square result instead of a point-wise one, step 3 is
usually replaced by a lemma which can be found in Iwaniec and Kowalski [20,
Lemma 7.1].

3.5 Krätzel’s 3D-Body Revisited: A Body Without Rotational
Symmetry

We conclude this article by making reference to a perhaps “exotic” example where
the “cut-into-slices”-method has been successfully applied to a body which is not
invariant under rotation: This is Krätzel’s 3D-body already encountered in Sect. 2.2.
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With a slight change of notation compared to (9),

B�k;m WD f.u1; u2; u3/ 2 R
3 W �ju1jk C ju2jk�m C ju3jmk � 1 g ;

where k > 2 andm > 1 are fixed reals. As a variant of (15),

N.B�k;mI t/ D
X
jm3j�t

Lk

��
tmk � jm3jmk

�1=m�
;

Lk.W / WD
X

jm1jkCjm2jk�W
1

D ak W 2=k C 8Ik.W /� 8�k.W /CO.1/ :

Here the “slices” are Lamé discs, and ak D 2� 2.1=k/

k� .2=k/
is the area of the unit Lamé

disc ju1jk C ju2jk � 1. Further, with  .u/ WD u � Œu� � 1
2
,

Ik.W / WD
W 1=kZ

0

 .u/ d
�
.W � uk/1=k

�
;

�k.W / WD
X

. 12W /
1=k<n�W 1=k

 
�
.W � nk/1=k� :

The integral Ik.W / has been evaluated with high precision in Krätzel [22,
Chap. 3.3]. The sum �k.W / is treated by transition to exponential sums and the
devices sketched above (Steps 2 and 3). In this way, the following result can be
established.

Theorem 5 (Krätzel and the author [31]). For fixed reals k > 2, m > 1, with
mk > 7

3
, and large t ,

D.B�k;mI t/ D F1.t/ t
2� 2

mk CF2.t/ t
2� 1

mk� 1
k C Em;k.t/ ;

with continuous periodic functions F1.t/, F2.t/. The error term is

Em;k.t/ D O
�
t
37
25

�
CO

�
t
339
208� 131

104mkC�
�
CO

�
t
339
208� 235

208kC�
�
:

Here the termsF1.t/ t
2� 2

mk andF2.t/ t
2� 1

mk� 1
k come from the flat points .0; 0;˙1/,

resp., .˙1; 0; 0/; .0;˙1; 0/ of @B�k;m. The two complicated O-terms represent the
contribution of the curves of intersection of @B�k;m with the coordinate planes:
Along these, the Gaussian curvature vanishes identically, and the normal vector
varies steadily, being irrational in most points.
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On the Orderability Problem and the Interval
Topology

Kyriakos Papadopoulos

Abstract The class of LOTS (linearly ordered topological spaces, i.e. spaces
equipped with a topology generated by a linear order) contains many important
spaces, like the set of real numbers, the set of rational numbers and the ordinals.
Such spaces have rich topological properties, which are not necessarily hereditary.
The Orderability Problem, a very important question on whether a topological space
admits a linear order which generates a topology equal to the topology of the space,
was given a general solution by van Dalen and Wattel (Gen. Topol. Appl. 3:347–
354, 1973). In this article we first examine the role of the interval topology in van
Dalen’s and Wattel’s characterization of LOTS, and we then discuss ways to extend
this model to transitive relations that are not necessarily linear orders.

Keywords Orderability problem • Nest • LOTS • Interval topology

1 Introduction
Order is a concept as old as the idea of number and much of early mathematics was devoted
to constructing and studying various subsets of the real line. (Steve Purisch).

In Purisch’s account of results on orderability and suborderability (see [5]),
one can read the formulation and development of several orderability problems,
starting from the beginning of the twentieth century and reaching our days. By
an orderability problem, in topology, we mean the following. Let .X;T / be a
topological space and let X be equipped with an order relation <. Under what
conditions will T<, i.e. the topology induced by the order <, be equal to T ? There
was no general solution to this problem until the early 1970s.
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The first general solution to the characterization of LOTS (linearly ordered
topological spaces, that is, spaces whose topology is generated by a linear order)
was given by van Dalen and Wattel, in 1973 (see [6]). These authors succeeded
to generalize and expand the properties that appear in the real line, where the
natural topology equals the natural order topology. Their main tool were nests. They
considered a topological spaceX , whose topology is generated by a subbasisL [R
of two nests L and R on X , whose union is T1-separating. By considering also the
order which is generated by the nest L on X , namely GL , the authors introduced
conditions such that TGL to be equal to TL[R. In this case, they proved the space
to be LOTS, while in the case where TGL 	 TL[R, the space was proved to be
GO (generalized ordered, i.e. a topological subspace of a LOTS). Both in the case
of GO-spaces and of LOTS the authors demanded L [R to form a T1-separating
subbasis for the topology on X . The necessary and sufficient condition for both
nests L , R to be interlocking was added in order for the space to be LOTS.

LOTS are natural occurring topological objects and are canonical building blocks
for topological examples. For example, a space which is LOTS is also monotonically
normal (see, for example, [4]). On the other hand, a subspace of a LOTS is not
necessarily a LOTS.

In this paper we will initially use tools from [3], where the authors revisited and
simplified J. van Dalen and E. Wattel’s ideas in order to construct ordinals, and
we will then investigate the role of the interval topology in their solution to the
orderability problem. The interval topology can be defined for any transitive order
(see, for example, [1]), and we believe that it is a good candidate for replacing the
topology that is generated by the T1-separating union of two nests, L and R (the
topology used by van Dalen and Wattel), in order to extend the orderability problem
to nonlinearly ordered spaces.

2 Preliminaries and a Few Remarks on [6]

In this section we will introduce the machinery that will be needed in order to
develop our ideas in the succeeding sections. Our main reference on standard order-
and lattice-theoretic definitions will be the book [1]. A more recent account on
topological properties of ordered structures is given in [2].

Definition 1. Let .X;</ be a set equipped with a transitive relation <. We define
" A 	 X to be the set:

" A D fx W x 2 X and there exists y 2 A, such that y < xg:

We also define # A 	 X to be the set:

# A D fx W x 2 X and there exists y 2 A, such that x < yg:
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More specifically, if A D fyg, then:

" A D fx W x 2 X and y < xg

and

# A D fx W x 2 X and x < yg

From now on we will use the conventions " x D" fxg and # x D# fxg.
We remind that the upper topology TU is generated by the subbasis S D fX� #

x W x 2 Xg and the lower topology Tl is generated by the subbasis S D fX� "
x W x 2 Xg. The interval topology Tin is defined as Tin D TU _Tl , where _ stands
for supremum.

Definition 2. Let X be a set.

1. A collection L , of subsets of X , T0-separatesX , if and only if for all x; y 2 X ,
such that x ¤ y, there exist L 2 L , such that x 2 L and y … L or y 2 L and
x … L.

2. Let X be a set. A collection L , of subsets of X , T1-separates X , if and only if
for all x; y 2 X , such that x ¤ y, there exist L;L0 2 L , such that x 2 L and
y … L and also y 2 L0 and x … L0.
One can easily see the link between Definition 2 and the separation axioms of

topology: a topological space .X;T / is T0 (resp. T1), if and only if there is a
subbasis S , for T , which T0-separates (resp. T1-separates) X .

Definition 3. Let X be a set and let L be a family of subsets of X . L is a nest on
X , if for everyM;N 2 L , either M 	 N or N 	M .

Definition 4. Let X be a set and let L be a nest on X . We define an order relation
on X via the nest L , as follows:

x GL y , 9L 2 L ; such that x 2 L and y … L

It follows from Definitions 2 and 4 that if the nest L is T0-separating, then the
order GL is linear, provided the order is reflexive.

We note that the declaration of reflexivity in the order is very vital from a
purely order-theoretic point of view: a partial order is defined to be reflexive,
antisymmetric, and transitive. A linear order is a partial order plus every two
distinct elements in the set can be compared to one another via the order. On the
other hand, the orderability problem is in fact a topological problem of comparing
two topologies, as stated in the introductory section, and J. van Dalen’s and E.
Wattel’s proof of the general solution to this problem does not examine reflexivity or
antisymmetry in the order: only transitivity and comparability of any two elements.
More specifically, if x and y are distinct elements in a set X , and GL is an order
relation generated by a T0-separating nest on X , then one can easily check that it
cannot happen that x GL y and simultaneously y GL x. This gives us the liberty to
say that the order is always antisymmetric but, still, from an order-theoretic point of
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view one should state explicitly whether the order is reflexive or not. In conclusion,
the characterization of LOTS in [6] not only refers to linearly ordered sets but also
covers cases of sets which are equipped with an order < which appears to be a
weaker version of the linear order.

Having this in mind, we find it important to make a distinction between GL and
EL .

Definition 5. Let X be a set and x; y 2 X . We say that x EL y, if and only if
either x D y or there exists L 2 L , such that x 2 L and y … L.

From now on, whenever we write x GL y, we will assume that x ¤ y.
The order of Definition 4 was first introduced in [6] and was further examined

in [3], where the authors gave the following useful (for the purposes of this paper)
theorem.

Theorem 1. Let X be a set. Suppose L and R are two nests on X . L [ R is
T1-separating, if and only if L and R are both T0-separating and GL D FR .

Definition 6 (van Dalen & Wattel). Let X be a set and let L 	 P.X/. We say
that L is interlocking if and only if, for each L 2 L , L D TfN 2 L W L 	
N; L ¤ N g implies L DSfN 2 L W N 	 L; L ¤ N g.

The following theorem, stemming from Definition 6, gives conditions so that a
nest to be interlocking in linearly ordered spaces, in particular.

Theorem 2 (See [3]). Let X be a set and let L be a T0-separating nest on X . The
following are equivalent:

1. L is interlocking;
2. for eachL 2 L , if L has a GL -maximal element, thenX�L has a GL -minimal

element;
3. for allL 2 L , eitherL has no GL -maximal element orX�L has a GL -minimal

element.

Theorem 2 permits us to say that if L is a T0-separating nest on X and if for
every L 2 L , X �L has a minimal element, then L is interlocking.

We remark that the subset X D Œ0; 1/ [ f2g, of the real line, together with its
subspace topology inherited from the topology of the real line, is a non-compact
GO-space, but not a LOTS: the order GL , where L D X \ f.�1; a/ W a 2 Rg,
cannot “spot” the difference between X and the space Y D Œ0; 2�, because it cannot
tell whether there is a gap between Œ0; 1/ and 2 or not. The property of interlocking
(Theorem 2) is what guarantees that there are not such gaps. We will now give the
version of the solution to the orderability problem that was stated by van Dalen and
Wattel, as it appeared in [3].

Theorem 3 (van Dalen & Wattel). Let .X;T / be a topological space.

1. If L and R are two nests of open sets, whose union is T1-separating, then every
GL -order open set is open, in X .

2. X is a GO space, if and only if there are two nests, L and R, of open sets, whose
union is T1-separating and forms a subbasis for T .
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3. X is a LOTS, if and only if there are two interlocking nests L and R, of open
sets, whose union is T1-separating and forms a subbasis for T .

In the section that follows, we will examine particular properties of the interval
topology, when the order is generated by a T0-separating nest, and we will see the
key role that it plays in the characterization of LOTS. The topology TL[R does
not have any particular topological meaning when the union of L and R is not T1-
separating. The interval topology though, as being more flexible from the way that
it is defined, can replace the TL[R topology, if subjected to certain conditions. We
will see this in more detail in Sect. 3 that follows.

3 Some Further Remarks on the Orderability Problem

Remark 1. Let X be a set and let L be a T0-separating nest on X .
If EL is reflexive, then obviously the interval topology T EL

in , via EL , will
be equal to the topology TGL (for a rigorous proof, one should add T0-separation
in Lemma 3 of Sect. 4). In addition, the order topology TEL will be equal to the
discrete topology on X .

If GL is irreflexive, then the interval topology via GL will be equal to the discrete
topology on X . Indeed, # a D fx 2 X W x GL ag and so X� # a D fx 2 X W
a EL xg D .�1; a�. In a similar fashion, x� " a D Œa;1/ and so .�1; a� \
Œa;1/ D fag.

Given the conditions in Theorem 3 and the observations in Remark 1, we
achieve the following comparisons for the topologies TGL ;TEL ;T

GL
in ;T EL

in , on
a space X :

Lemma 1. 1. TGL D TL[R D T EL

in � T GLin D TEL , provided that L and
R are interlocking and L [R T1-separatesX .

2. TGL D T EL

in � TL[R � T GLin D TEL , provided that L [R T1-separates
X .

Lemma 1 permits us to restate Theorem 3, using the interval topology.

Corollary 1. A topological space .X;T / is:

1. a LOTS, iff there exists a nest L on X , such that L is T0-separating and
interlocking and also T D T EL

in .
2. a GO-space, iff there exists a nest L on X , such that L is T0-separating and

also T D T EL

in .

Our proposed weaker version of the orderability problem, that will be presented
in Sect. 5, will be based on observations on Lemma 1. Knowing that the interval
topology can be defined via any transitive relation, a weaker version of the
orderability question can be expressed as follows.
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Question: Let X be a set equipped with a transitive relation < and the interval
topology T �in , defined via �, where � is < plus reflexivity. Under which necessary
and sufficient conditions will T< be equal to T �in ?

In this paper we give a partial answer to this question, through Theorem 4.

4 The Order Topology and the Interval Topology
in the Light of Nests

In order to give an answer to the Question of Sect. 3, we will need first to see what
form do the topologies TGL and T EL

in take, when the nest L is not necessarily
T0-separating.

Lemma 2. LetX be a set and let L be a nest onX . Let also� D f.x; x/ W x 2 Xg.
Then:

1. GL DSL2L ŒL � .X � L/�.
2. ¶LD X �X � GL D TL2L Œ..X �L/ �X/[ .X � L/�.
3. μLD TL2L Œ..X �L/ �X/[ .X � L/� \ .X ��/

Notation: From now on, if U 	 X �X , then U.x/ D fy 2 X W .x; y/ 2 U g.
Lemma 3. 1. For each x 2 X , X� " x D TfL 2 L W x 2 Lg � fxg.
2. For each x 2 X , X� # x D TfX �L W x 2 X �Lg [ fxg
Proof. 1. y 2 X� " x, if and only if x μL y, if and only if .x; y/ …EL , if and

only if (by Lemma 2) y 2 TL2L f..X �L/�X/.x/[ .X �L/.x/g and y ¤ x,
if and only if y 2TfL 2 L W x 2 Xg � fxg.

2. In a similar fashion to 1 using Lemma 2. �

Let us now have a closer look to the order topology. It is known that if a set X is
equipped with an order<, then the order topology T<, on X , will be the supremum
of two topologies, namely the topologyT and the topologyT!. In particular,T 
is generated by a subbasis S D f. ; a/ W a 2 Xg, where . ; a/ D fx 2 X W
x < ag. Similarly, the topology T! is generated by a subbasis S! D f.a;!/ W
a 2 Xg, where .a;!/ D fx 2 X W a < xg. We will now see how these subbasis
look like when the order is generated by a not necessarily T0-separating nest, that is
<D GL , where < stands for any (not necessarily linear) order.

Notation: Let L be a nest on a set X . Then, La D fL 2 L W a 2 Lg, for each
a 2 X .

Lemma 4. 1. For each a 2 X , .a;!/ DSL2La
X �L .

2. For each a 2 X , . ; a/ DSL…La
L .

It is easily seen that when L is T0-separating, Lemmas 2 and 3 compensate to
our remarks in Sect. 3.
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5 A Weaker Orderability Problem

In this section we find necessary conditions, so that T �in D T<, where < is a
transitive relation, � is < plus reflexivity and T �in is the interval topology that is
defined via �. To achieve this, we will give conditions such that Tl D T and
TU D T!. The logic behind these conditions is the following. As we have seen in
Theorem 1, linearity in the space is strongly related to the notion T0-separating nest.
We believe that a first step towards the generalization of the orderability problem
will be to define a weaker version of T0-separation, and we can achieve this without
using the notion of nest. It seems that the use of nests was vital in the understanding
and the description of the order-theoretic properties and of the topological properties
of linearly ordered topological spaces. Even the fact that our approach can be stated
using nests and the material that was presented in Sect. 4, we prefer to adopt a more
general approach. The description of the order topology and the interval topology
in Sect. 4 will permit us to see that (i) if the nest is T0-separating we will get back
to Sect. 3 and that (ii) nests might not help that much to describe sets that are not
necessarily linearly ordered. This can be also seen in the topology TL[R, which
loses its meaning when it does not refer to linearly ordered sets.

Let X be a set and let < be a transitive relation on X .
Condition 1 Let x; y 2 X , such that x — y. Then, there exist zi 2 X , i D

1; � � � ; n, such that y < zi and, if w 2 X , such that w < zi , then x — w.
Condition 2 Let x; y 2 X , such that y — x. Then, there exist zi 2 X , i D

1; � � � ; n, such that zi < y and, if w 2 X , such that zi < w, then w — x.
Condition 3 Let x; y 2 X , such that y < x. Then, there exist zi 2 X , i D

1; � � � ; n, such that zi — y and, if w 2 X , such that zi — w, then w < x.
Condition 4 Let x; y 2 X , such that x < y. Then, there exist zi 2 X , i D

1; � � � ; n, such that y — zi and, if w 2 X , such that w — zi , then x < w.

Proposition 1. 1. Tl D T , if and only if Conditions 1 and 3 are satisfied.
2. TU D T!, if and only if Conditions 2 and 4 are satisfied.

Proof. Tl 	 T , if and only if for an arbitrary y 2 X� " x, there exists a basic-
open set B , in T , such that y 2 B 	 X� " x. By Condition 1, there exist zi 2 X ,
i D 1; � � � ; n, such that y 2 Tn

iD1. ; zi / 	 X� " x. That T 	 Tl follows
in a similar fashion, using Condition 3 and given this, the proof of TU D T! is
straightforward. �

Theorem 4. If Conditions 1, 2, 3, and 4 are satisfied, then T �in D T<.

Remark 2. If .X;</ is a linearly ordered set, then Condition 1 is obviously
satisfied. Indeed, if x — y, then y < x. So, there exists z D x, such that y < z
and, if w 2 X , such that w < x, then x — w.

Remark 2 shows that our conditions give weaker properties than those satisfied
from linear orders (and T0-separating nests). Even the fact that we have a necessary
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but not yet a sufficient condition for our Question of Sect. 3, Theorem 4 permits us to
conclude that the “distance” of the interval topology T EL

in , from the order topology
T<, depends on how weaker are our conditions from T0-separation (-linear order).
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A Class of Functional-Integral Equations
with Applications to a Bilocal Problem

Adrian Petruşel and Ioan A. Rus

Abstract Let ˛ � a < b � ˇ be some real numbers,K W Œ˛; ˇ� � Œ˛; ˇ� � Œ˛; ˇ� �
Œ˛; ˇ� � Rm ! Rm and g W Œ˛; ˇ� ! Rm be continuous functions. In this work,
using the Picard operator technique in a RmC-metric space, we study the following
functional-integral equation

x.t/ D
Z b

a

K.t; s; a; b; x.s//ds C g.t/; t 2 Œ˛; ˇ�:

As an application, the following bilocal problem

�x00.t/C px0.t/C qx.t/ D f .t; x.t//; t 2 Œ˛; ˇ�; x.a/ D 0; x.b/ D 0:

is also discussed.
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(continuity, differentiability) • Ulam-Hyers stability • Open problem

1 Introduction

Let ˛ � a < b � ˇ be some real numbers, K W Œ˛; ˇ� � Œ˛; ˇ� � Œ˛; ˇ� � Œ˛; ˇ� �
Rm ! Rm and g W Œ˛; ˇ� ! Rm be continuous functions. The aim of this work
is to study existence, uniqueness, dependence with respect to K and g, dependence
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x.t/ D
Z b

a

K.t; s; a; b; x.s//ds C g.t/; t 2 Œ˛; ˇ�;

where K 2 C.Œ˛; ˇ�4 � Rm;Rm/ and g 2 C Œ˛; ˇ�;Rm. The main tool in our
approach will be the weakly Picard operator technique, see, for example, [33,36,38].

As an application, the following bilocal problem

�x00.t/C px0.t/C qx.t/ D f .t; x.t//; t 2 Œ˛; ˇ�; x.a/ D 0; x.b/ D 0

is also discussed.
The plan of our work is the following:

1. Introduction
2. Preliminaries

2.1. Notations
2.2. Matrices convergent to zero
2.3. Cauchy lemmas
2.4. Picard operators in RmC-metric spaces
2.5. Fiber Picard operators on RmC-metric spaces
2.6. Ulam–Hyers stability of a fixed point equations in a RmC-metric spaces
2.7. A special class of integral equations

3. Data dependence with respect to K and g
4. Ulam stability
5. Differentiability with respect to a and b
6. An application to a bilocal problem
7. Some future research directions
References

2 Preliminaries

2.1 Notations

The following notations will be used throughout this paper.

N WD f0; 1; 2; : : :g; N� WD f1; 2; : : :g; R WD the set of all real numbers;

RC WD fx 2 R j x � 0g; Rm WD fx D .x1; : : : ; xm/ j xi 2 R; i 2 f1; 2; : : : mgg;
R
�CW Dfx 2 Rj x > 0g;Rm�mC W D the set of all m �m matrices with

elements in RC:
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Let X be a nonempty set and A W X ! X be an operator. Then we denote:

P.X/ WD fY j Y is a subset of Xg, P.X/ WD fY 2P.X/j Y is nonemptyg;
I.A/ WD fY 2 P.X/ j A.Y / 	 Y g � � � the family of all nonempty invariant

subsets of A:

If A W X ! X is an operator, then FA WD fx 2 Aj x D A.x/g denotes the fixed
point set of A, while FA WD fx�g means that the operatorA has a unique fixed point
which is denoted by x�. The symbols A0 WD 1X , A1 WD A, A2 WD A ı A, : : :,
An WD f ı An�1 denote the iterates of A.

2.2 Matrices Convergent to Zero

We recall first the concept of matrix convergent to zero. Throughout this paper, we
denote by I the identitym�mmatrix and byO the zerom�mmatrix. Also, for the
sake of simplicity we will make an identification between row and column vectors.
in Rm.

Definition 1. A square matrix of real numbers is said to be convergent to zero if
and only if An ! O as n!1. (See, for example, [43].)

A classical result in matrix analysis is the following theorem (see, for example,
[1, 43]).

Theorem 1. Let A 2Mmm .RC/. The following assertions are equivalent:

(i) A is a matrix convergent to zero;
(ii) the spectral radius �.A/ of the matrix A is strictly less than 1, i.e., j�j < 1, for

every � 2 C with det .A � �I/ D 0;
(iii) The matrix .I � A/ is nonsingular and

.I �A/�1 D I C AC � � � C An C � � � I (1)

(iv) The matrix .I � A/ is nonsingular and .I �A/�1 has nonnegative elements;
(v) Anq ! O and qAn ! O as n!1, for each q 2 Rm.

2.3 Cauchy Lemmas

We start by presenting the classical Cauchy’s lemma, see [37].

Lemma 1. Let an; bn 2 RC; n 2 N. We suppose that:
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(i)
P1

kD0 ak < C1I

(ii) bn ! 0 as n!1:
Then

nX
kD0

an�kbk ! 0 as n!1:

The next result was given by Rus [31].

Lemma 2. Let An 2 Rm�mC .RC/ and Bn 2 RmC, n 2 N. We suppose that:

(i)
P1

kD0 Ak < C1I
(ii) Bn ! 0 as n!1:

Then

nX
kD0

An�kBk ! 0 as n!1:

2.4 Picard Operators in R
m
C-Metric Spaces

Let .X; d/ be a RmC-metric space (in the sense that d W X �X ! R
mC and it satisfies

the standard axioms of a metric) and let A W X ! X be an operator. By definition,
the operator A is said to be:

(i) an S -contraction if S 2 Rm�mC is a matrix convergent to zero and

d .A .x/ ; A .y// � Sd .x; y/ ; for all x; y 2 X I

(ii) a Picard operator if FA D fx�g and An.x/! x� as n!1, for all x 2 X .
(iii) a C -Picard operator if A is a Picard operator, C 2 R

m�mC and

d.x; x�/ � Cd.x;A.x//; for all x 2 X:

We recall now Perov’s fixed point theorem (see Perov [23], Perov and Kibenko
[24], Ortega and Rheinboldt [22], pp. 433–434).

Notice that Perov’s fixed point theorem is an extension of Banach’s contraction
principle for single valued contractions on spaces endowed with R

mC-metrics.
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Theorem 2 (Perov). Let .X; d/ be a complete generalized metric space and the
operator A W X ! X be an S -contraction then:

(i) FA D fx�g;
(ii) the sequence of successive approximations .xn/n2N, xn WD An .x0/ is conver-

gent to x�, for all x0 2 X and the following estimation holds

d
�
xn; x

�� � Sn .I � S/�1 d .x0; x1/ I (2)

(iii) d.x; x�/ � .I � S/�1d.x; A.x//, for all x 2 X ;
(iv) let B W X ! X be an operator for which there exists � 2 R

mC such that

d .A .x/ ; B .x// � �; for each x 2 X:
If FB ¤ ;; then d

�
x�; y�

� � .I � S/�1 �; for all y� 2 FB:

In other words, from the above theorem we conclude that an S -contraction is a
C -Picard operator with C WD .I � S/�1.

The following abstract data dependence lemma also holds.

Theorem 3 (Data Dependence Lemma). Let .X; d/ be an RmC-metric space and
A;B W X ! X be two operators. We suppose that:

(i) A is a C -Picard operator with FA D fx�Ag;
(ii) there exists � 2 RmC such that d.A.x/; B.x// � �, for all x 2 X ;

(iii) FB ¤ ;.

Then, d.x; x�A/ � C�, for all x 2 FB .

For other considerations on this lemma, see [36, 38].

2.5 Fiber Picard Operators on Rm
C-Metric Spaces

The following abstract problem appears when we study the differentiability of the
fixed points with respect to parameters.

Problem 1. Let .X; d/; .Y; �/ be two metric spaces and

A W X � Y ! X � Y; .x; y/ 7�! .B.x/; C.x; y//

be a triangular operator. We suppose that:

(a) the operator B W X ! X is Picard;
(b) the operator C.x; �/ W Y ! Y is Picard, for each x 2 X .

The problem is in which conditions the operator A is Picard.
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In [14] Hirsch and Pugh give the following result for this problem.

Theorem 4 (Fiber Contraction Theorem). Let .X; d/ be a metric space and
.Y; �/ be a complete metric spaces. Let A W X � Y ! X � Y; .x; y/ 7�!
.B.x/; C.x; y// be a triangular operator. We suppose:

(a) B W X ! X is a Picard operator;
(b) there exists ˛ 2�0; 1Œ such that

�.C.x; y/; C.x; z// � ˛�.y; z/; for all x 2 X and y; z 2 Y I

(c) C.�; y/ is continuous, for all y 2 Y .

Then A is a Picard operator.

The proof of this result makes use of the classical Cauchy Lemma. A more
general result is the following one.

Theorem 5 (Fiber Generalized Contraction Theorem). Let .X; d/ be a RmC-
metric space and .Y; �/ be a complete RmC-metric spaces. Let A W X � Y !
X � Y; .x; y/ 7�! .B.x/; C.x; y// be a triangular operator. We suppose:

(a) B W X ! X is a Picard operator;
(b) there exists S a matrix convergent to zero such that

�.C.x; y/; C.x; z// � S�.y; z/; for all x 2 X and y; z 2 Y I

(c) C.�; y/ is continuous, for all y 2 Y .

Then A is a Picard operator.

Proof. Let x0 2 X and y0 2 Y . Since B is Picard there exists a unique fixed point
x� of B and the sequence xn WD Bn.x0/ converges to x� as n ! 1. From (b),
using Perov’s Theorem, we get that C.x�; �/ has a unique fixed point, which will be
denoted by y�. Thus .x�; y�/ is the unique fixed point of the operator A. We will
show now that

An.x0; y0/! .x�; y�/ as n!1:

If we denote ynC1 WD C.xn; yn/ (n 2 N�/, then it is easy to check thatAn.x0; y0/ D
.xn; yn/. Now we successively have:
�.ynC1; y�/ �
�.C.xn; yn/; C.xn; y

�//C �.C.xn; y�/; y�/ � S�.yn; y�/C �.C.xn; y�/; y�/
� S2�.yn�1; y�/C S�.C.xn�1; y�/; y�/C �.C.xn; y�/; y�/
� � � �SnC1�.y0; y�/C Sn�.C.x0; y�/; y�/C � � �CS�.C.xn�1; y�/; y�/
C�.C.xn; y�/; y�/:

The conclusion follows now by Lemma 2.
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2.6 Ulam–Hyers Stability of a Fixed Point Equations
in a Rm

C-Metric Spaces

An important stability concept is that of Ulam–Hyers stability for the fixed point
equation. The following notion was given by Rus in [32].

Definition 2. Let .X; d/ be a RmC-metric space and A W X ! X be an operator.
Then, the fixed point equation

x D A.x/ (3)

is said to be Ulam–Hyers stable if there exists a matrix C 2 Rm�mC such that, for
any " WD ."1; : : : ; "m/ with "i > 0 for i 2 f1; : : : ; mg and any "-solution y� 2 X
of (3), i.e.,

d
�
y�; f

�
y�
�� � "; (4)

there exists a solution x� of (3) such that

d
�
x�; y�

� � C": (5)

We have the following abstract result (see also Rus [32]) concerning the Ulam–
Hyers stability of the fixed point equation (3).

Theorem 6. Let .X; d/ be a RmC-metric space and A W X ! X be a C -Picard
operator. Then, the fixed point equation (3) is Ulam–Hyers stable.

For the Ulam stability of a fixed point equation, see also [6, 12, 25, 32, 34, 35].

2.7 A Special Class of Integral Equations

Let ˛ � a < b � ˇ be some real numbers, B be a Banach space (real or complex),
K 2 C.Œ˛; ˇ�2 �B;B/ and g 2 C.Œ˛; ˇ�;B/. We consider the following functional-
integral equation

x.t/ D
Z b

a

K.t; s; x.s//ds C g.t/; t 2 Œ˛; ˇ�: (6)

We are looking for the solution of this equation in C.Œ˛; ˇ�;B/.
Let us now consider the following integral equation:

x.t/ D
Z b

a

K.t; s; x.s//ds C g.t/; t 2 Œa; b�: (7)
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We notice that the following statements are equivalent:

(1) Equation (7) has a unique solution in C.Œa; b�;B/;
(2) Equation (6) has a unique solution in C.Œ˛; ˇ�;B/.

Moreover, if u 2 C.Œa; b�;B/ is the unique solution of (7), let us define v1 2
C.Œ˛; a�;B/ and v2 2 C.Œb; ˇ�;B/ be defined by:

v1.t/ WD
Z b

a

K.t; s; u.s//ds C g.t/; t 2 Œ˛; a�

and

v2.t/ WD
Z b

a

K.t; s; u.s//ds C g.t/; t 2 Œb; ˇ�:

Then, the function v 2 C.Œ˛; ˇ�;B/ defined by

v.t/ WD
8<
:
v1.t/; t 2 Œ˛; a�
u.t/; t 2 Œa; b�
v2.t/; t 2 Œb; ˇ�

is the unique solution of (6). As we shall see in this paper, Eq. (6) is useful and
important in the study of data dependence of the solution of the integral equation (7)
with respect to a and b (see also [31]).

For the theory of Eq. (6), see also [2, 11, 13, 17, 28].

3 Existence and Uniqueness

Let ˛ � a < b � ˇ be some real numbers, K 2 C.Œ˛; ˇ�4 � Rm;Rm/ and g 2
C.Œ˛; ˇ�;Rm/. We consider the following functional-integral equation

x.t/ D
Z b

a

K.t; s; a; b; x.s//ds C g.t/; t 2 Œ˛; ˇ�: (8)

We have the following result.

Theorem 7. Let us consider Eq. (8). We suppose that there exists a matrix Q 2
R
m�mC such that:

(i) for all u D .u1; : : : ; um/; v D .v1; : : : ; vm/ 2 Rm and all t; s; a; b 2 Œ˛; ˇ� we
have
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0
@ jK1.t; s; a; b; u/�K1.t; s; a; b; v/j

: : :

jKm.t; s; a; b; u/�Km.t; s; a; b; v/j

1
A � Q

0
@ ju1 � v1j: : :

jum � vmj

1
A I

(ii) The matrix S WD .ˇ � ˛/Q is convergent to zero.

Then, we have the following conclusions:

(a) Equation (8) has in C.Œ˛; ˇ�;Rm/ a unique solution x�.�; a; b/;
(b) for all x0 2 C.Œ˛; ˇ�;Rm/, the sequence .xn/n2N defined by

xnC1.t; a; b/ WD
Z b

a

K.t; s; a; b; xn.s; a; b//ds C g.t/

converges uniformly to x� with respect to t; a; b 2 Œ˛; ˇ�. Moreover

0
@ jx1n.t; a; b/� x1�.t; a; b/j: : :

jxmn.t; a; b/� xm�.t; a; b/j

1
A�.I �S/�1Sn

0
@ jx10.t; a; b/� x11.t; a; b/j: : :

jxm0.t; a; b/� xm1.t; a; b/j

1
A I

(c) the function

x� W Œ˛; ˇ�3 ! R
m; .t; a; b/ 7! x�.t; a; b/

is continuous.

Proof. We consider the operator A W C.Œ˛; ˇ�;Rm/! C.Œ˛; ˇ�;Rm/ defined by

Ax.t/ WD
Z b

a

K.t; s; a; b; x.s//ds C g.t/; t 2 Œ˛; ˇ�:

From (i) and (ii) it follows that A is an S -contraction on the Banach space
.C.Œ˛; ˇ�;Rm/; k � k1/, where k � k1 is the supremum vector-valued norm given
by kxk1 WD .kx1k1; : : : ; kxmk1/. So, the proof follows from Perov’s Theorem.
From now on, we will denote the norm k � k1 by k � k.
Remark 1. In the conditions of Theorem 7, the operator A W C.Œa; b�;Rm/ !
C.Œa; b�;Rm/ (which appears in the proof of the above mentioned theorem) is
C -Picard with respect to the vector-valued norm k � k, with C WD .I � S/�1.

4 Data Dependence with Respect to K and g

Let us perturbe Eq. (8) as follows
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y.t/ D
Z b

a

H.t; s; a; b; y.s//ds C h.t/; t 2 Œ˛; ˇ�; (9)

whereH 2 C.Œ˛; ˇ�4 � Rm;Rm/ and h 2 C.Œ˛; ˇ�;Rm/.
We suppose that there exist �; � 2 .R�C/m such that, for i 2 f1; 2; : : : ; mg, one

have:

jKi.t; s; a; b; u/ �Hi.t; s; a; b; u/j � �i ; for all t; s; a; b 2 Œ˛; ˇ� and u 2 R
mC
(10)

and

jgi .t/ � hi .t/j � �i ; for all t 2 Œ˛; ˇ�: (11)

The problem is to estimate the vectorial distance k � k in C.Œ˛; ˇ�;Rm/ between
the unique solution of Eq. (8) and a solution of Eq. (9), if a such solution exists.

In this direction, we have:

Theorem 8. Consider Eqs. (8) and (9). Suppose that:

(i) the functionsK and g satisfy all the assumptions of Theorem 7;
(ii) the functionsK;H; g; h satisfy the assumptions (10) and (11);

(iii) Equation (9) has at least one solution.

Then, if x� is the unique solution of Eq. (8) and y� denotes a solution of Eq. (9),
we have

kx� � y�k � .I � S/�1Œ.ˇ � ˛/�C ��:

Proof. Let us consider the operator A W C.Œ˛; ˇ�;Rm/ ! C.Œ˛; ˇ�;Rm/, x 7! Ax

given by

Ax.t/ WD
Z b

a

K.t; s; a; b; x.s//ds C g.t/

and the operator B W C.Œ˛; ˇ�;Rm/! C.Œ˛; ˇ�;Rm/, x 7! Bx defined by

Bx.t/ WD
Z b

a

H.t; s; a; b; x.s//ds C h.t/:

By Theorem 7, we obtain that A is a .I � S/�1-operator. On the other hand,
using (10) and (11) we obtain that

kAx � Bxk � .ˇ � ˛/�C �:

Now the conclusion follows from the Data Dependence Lemma.
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Remark 2. Let K;Kn 2 C.Œ˛; ˇ�4 � Rm;Rm/ and g; gn 2 C.Œ˛; ˇ�;Rm/ be some
functions, form 2 N�. Let us consider the following sequence of integral equations

yn.t/ D
Z b

a

Kn.t; s; a; b; yn.s//ds C hn.t/; t 2 Œ˛; ˇ� .n 2 N
�/: (12)

Suppose also that the sequences .Kn/ and .gn/ converge, in some sense, to K
and, respectively, g. The problem is to obtain sufficient conditions such that, if yn
is a solution of (12) and x� is the unique solution of Eq. (8), the sequence .yn/
converges, in a given sense, to x� as n! C1.

An answer to this problem is the following theorem.

Theorem 9. Consider Eqs. (8) and (12). Suppose that:

(i) the functionsK and g satisfy all the assumptions of Theorem 7;
(ii) the sequence .Kn/ uniformly converges to K and the sequence .gn/ uniformly

converges to g, as n! C1;
(iii) for each n 2 N� Eq. (12) has at least one solution yn 2 C.Œ˛; ˇ�;Rm/.

Then, if x� denotes the unique solution of Eq. (8), we have that .yn/ uniformly
converges to x� as n! C1.

Proof. The conclusion follows by Theorem 8.

5 Data Dependence with Respect to a and b

Let ˛ � a < b � ˇ be some real numbers and denote X WD C.Œ˛; ˇ�3;Rm/. We
will consider on X the following vectorial norm:

kxk WD

0
BB@

max
t;a;b2Œ˛;ˇ� jx1.t; a; b/j

: : :

max
t;a;b2Œ˛;ˇ� jxm.t; a; b/j

1
CCA :

Then .X; k � k/ is a generalized complete linear normed space.
Throughout this section we suppose that K 2 C.Œ˛; ˇ�4 � Rm;Rm/ and g 2

C.Œ˛; ˇ�;Rm/ are given functions. We consider the integral equation

x.t; a; b/ D
Z b

a

K.t; s; a; b; x.s; a; b//ds C g.t/; t 2 Œ˛; ˇ�: (13)

We are looking for the solutions of this equations in X . Let us denote by
B W X ! X , x 7! Bx the following operator
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Bx.t; a; b/ WD
Z b

a

K.t; s; a; b; x.s; a; b//ds C g.t/:

Then, Eq. (13) takes the form of a fixed point problem, as follows

x D Bx: (14)

By a similar approach to the proof of Theorem 7 in Sect. 3, we can get the following
existence and uniqueness result in X for Eq. (13).

Theorem 10. Let us consider Eq. (13). We suppose that there exists a matrix Q 2
R
m�mC such that:

(i) for all u D .u1; : : : ; um/; v D .v1; : : : ; vm/ 2 Rm and all t; s; a; b 2 Œ˛; ˇ� we
have

0
@ jK1.t; s; a; b; u/�K1.t; s; a; b; v/j

: : :

jKm.t; s; a; b; u/�Km.t; s; a; b; v/j

1
A � Q

0
@ ju1 � v1j: : :

jum � vmj

1
A I

(ii) The matrix S WD .ˇ � ˛/Q is convergent to zero.

Then, we have the following conclusions:

(a) Equation (13) has in X a unique solution x�.�; a; b/;
(b) for all x0 2 X , the sequence .xn/n2N defined by

xnC1.t; a; b/ WD
Z b

a

K.t; s; a; b; xn.s; a; b//ds C g.t/; n 2 N

converges uniformly on with respect to Œ˛; ˇ�3 to x�.

Remark 3. Under the above hypotheses, the operatorB is a C -Picard operator, with
C WD .I � S/�1.

We will consider now the differentiability of the solutions with respect to a and b.
In this sense, we have the following result.

Theorem 11. Let us consider Eq. (13). We suppose that:

(i) the functionsK and g satisfy all the assumptions of Theorem 10;
(ii) K.t; s; �; �; �/ 2 C1.Œ˛; ˇ�2 �Rm;Rm/, for all t; s 2 Œ˛; ˇ�.

Then, for the unique solution x� 2 X of Eq. (13) we have that

x�.t; �; �/ 2 C1.Œ˛; ˇ�2;Rm/; for all t 2 Œ˛; ˇ�:

Proof. By Theorem 10 we get that Eq. (13) has a unique solution x� 2 X . Let
us prove, for example, that @x

�

@a
exists and @x

�

@a
2 X . To do this, we shall use the
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following heuristic argument (see [31,33,39,40]). We suppose that there exists @x
�

@a
.

Then, from Eq. (13) we get

@x�.t; a; b/
@a

D �K.t; a; a; b; x�.a; a; b//

C
Z b

a

@K.t; s; a; b; x�.s; a; b//
@a

ds

C
Z b

a

�
@Kj .t; s; a; b; x�.s; a; b//

@xi

�
@x�.s; a; b/

@a
ds:

This relation suggests to consider the operator C W X �X ! X defined by

C.x; y/.t; a; b/ WD �K.t; a; a; b; x.a; a; b//C
Z b

a

@K.t; s; a; b; x.s; a; b//

@a
ds

C
Z b

a

�
@Kj .t; s; a; b; x.s; a; b//

@xi

�
y.s; a; b/ds:

By the assumption (i) in Theorem 10 and by assumption (ii) in Theorem 11 it follows
that

�ˇ̌
ˇ̌@Kj .t; s; a; b; u/

@xi

ˇ̌
ˇ̌
�
� Q; for all t; s; a; b 2 Œ˛; ˇ� and u 2 Rm:

Thus, we obtain

kC.x; y1/� C.x; y2/k � Sky1 � y2k; for all x; y1; y2 2 X;

where S D .ˇ � ˛/Q.
Let us consider now the operator

A W X �X ! X �X; A WD .B; C /:

Notice that we are now in the conditions of the Fiber Generalized Contraction
Theorem. Thus, the operator A is Picard and the sequences

xnC1.t; a; b/ WD
Z b

a

K.t; s; a; b; xn.s; a; b//ds C g.t/; n 2 N

and
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ynC1.t; a; b/ WD �K.t; a; a; b; xn.a; a; b//C
Z b

a

@K.t; s; a; b; xn.s; a; b//

@a
ds

C
Z b

a

�
@Kj .t; s; a; b; x

n.s; a; b//

@xi

�
yn.s; a; b/ds

converge uniformly on Œ˛; ˇ�3 to the unique fixed point .x�; y�/ of A. If we choose
x0 D y0 D 0, then y1 D @x1

@a
. By induction, we can prove that yn D @xn

@a
, for

n 2 N�. In conclusion:

.xn/
unif! x� and

�
@xn

@a

�
unif! y� as n! C1:

These relations imply that there exists @x
�

@a
and @x

�

@a
D y�. In a similar way, one can

prove that @x�

@b
exists and @x

�

@b
2 X .

Remark 4. An important particular case is when K.t; s; a; b; u/ WD H.t; s; a; b/

F.s; u/, where H 2 C.Œ˛; ˇ�4;Rm�m/ and F 2 C.Œ˛; ˇ� � R
m;Rm/. Thus, the

corresponding equation is:

x.t; a; b/ D
Z b

a

H.t; s; a; b/F.s; x.s; a; b//ds C g.t/; t 2 Œ˛; ˇ�: (15)

For this particular case we obtain the following results.

Theorem 12. Let us consider Eq. (15). We suppose that there exists a matrix Q 2
Rm�mC such that:

(i) for all u D .u1; : : : ; um/; v D .v1; : : : ; vm/ 2 Rm and all s 2 Œ˛; ˇ� we have

0
@ jF1.s; u/ � F1.s; v/j: : :

jFm.s; u/ � Fm.s; v/j

1
A � Q

0
@ ju1 � v1j: : :

jum � vmj

1
A I

(ii) H 2 C.Œ˛; ˇ�4;Rm�m/, F 2 C.Œ˛; ˇ� � Rm;Rm/ and g 2 C.Œ˛; ˇ�;Rm/;
(iii) The matrix S WD .ˇ � ˛/MHQ is convergent to zero, where MH WD

max
Œ˛;ˇ�4
jH.t; s; a; b/j.

Then:

(a) the operator B W X ! X x 7�! Bx, given by

Bx.t; a; b/ WD
Z b

a

H.t; s; a; b/F.s; x.s; a; b//ds C g.t/

is C -Picard with C WD .I � S/�1.
(b) Equation (15) has a unique solution x� 2 X .
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Theorem 13. Let us consider Eq. (15). We suppose that there exists a matrix Q 2
Rm�mC such that:

(i) for all u D .u1; : : : ; um/; v D .v1; : : : ; vm/ 2 Rm and all s 2 Œ˛; ˇ� we have

0
@ jF1.s; u/ � F1.s; v/j: : :

jFm.s; u/ � Fm.s; v/j

1
A � Q

0
@ ju1 � v1j: : :

jum � vmj

1
A I

(ii) The matrix S WD .ˇ � ˛/Q is convergent to zero;
(iii) H 2 C1.Œ˛; ˇ�4;Rm�m/, F 2 C1.Œ˛; ˇ� � Rm;Rm/, and g 2 C1.Œ˛; ˇ�;Rm/.

Then, for the unique solution x� 2 X of Eq. (15) we have x�.t; �; �/ 2
C1.Œ˛; ˇ�2;Rm/.

Remark 5. Let ˛ � a < b � ˇ be some real numbers, '; 2 C.Œ˛; ˇ�; Œ˛; ˇ�/,
K 2 C.Œ˛; ˇ�4 �Rm;Rm/, and g 2 C.Œ˛; ˇ�3;Rm/ be given functions. We consider
the following functional-integral equation

x.t; a; b/ D
Z  .b/

'.a/

K.t; s; a; b; x.s; a; b//ds C g.t; a; b/; t 2 Œ˛; ˇ�: (16)

We are looking for the solutions of this equations in X WD C.Œ˛; ˇ�3;Rn/.
As in the case of Eq. (13) we have the following result.

Theorem 14. Let us consider Eq. (16). We suppose that there exists a matrix Q 2
Rm�mC such that:

(i) for all u D .u1; : : : ; um/; v D .v1; : : : ; vm/ 2 Rm and all t; s; a; b 2 Œ˛; ˇ� we
have

0
@ jK1.t; s; a; b; u/�K1.t; s; a; b; v/j

: : :

jKm.t; s; a; b; u/�Km.t; s; a; b; v/j

1
A � Q

0
@ ju1 � v1j: : :

jum � vmj

1
A I

(ii) The matrix S WD .ˇ � ˛/Q is convergent to zero.

Then, we have the following conclusions:

(a) Equation (16) has in X a unique solution x�.�; a; b/;
(b) if K.t; s; �; �; �/ 2 C1.Œ˛; ˇ�2 � Rm;Rm/, for all t; s 2 Œ˛; ˇ�. g.t; �; �/ 2

C1.Œ˛; ˇ�2;Rm/, for all t 2 Œ˛; ˇ�, and if '; 2 C1.Œ˛; ˇ�; Œ˛; ˇ�/, then

x�.t; �; �/ 2 C1.Œ˛; ˇ�2;Rm/; for all t 2 Œ˛; ˇ�:
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Remark 6. The particular cases:

(i) '.a/ D ˛; .b/ D ˇ
and

(ii) '.a/ D a; .b/ D b
are the most relevant for the applications.

6 Ulam–Hyers Stability

In this section we will consider Eq. (13). With respect to the Ulam–Hyers stability
of this equation we can prove the following result.

Theorem 15. Consider Eq. (13). Suppose that all the assumptions of Theorem 10
hold. Then, Eq. (13) is Ulam–Hyers stable.

Proof. The conclusion follows by Theorem 6 and Remark 1.

Remark 7. For other considerations on Ulam stability of the fixed point equation,
with emphasis on the case of integral equations, see [12, 25, 32, 34, 35].

7 Applications to Bilocal Problems

7.1 The Dirichlet Problem in the Linear Case

Let p; q; f 2 C Œa; b� and �1; �2 be some real numbers. We will denote

L0.x/.t/ WD �x00.t/C p.t/x.t/:

We consider the following Dirichlet problem (also called Picard problem):

�
L.x/.t/ WD L0.x/.t/C q.t/x.t/ D f .t/; t 2�a; bŒ
x.a/ D �1; x.b/ D �2 (17)

For this problem we have the following well-known result (see [4, 18, 19, 27, 29,
30]).

Theorem 16. Consider the Dirichlet problem (17). Suppose that one has unique-
ness for the Dirichlet problem (17). Then, the following statements are equivalent:

(i) there exists a function v such that L.v/ � 0 in �a; bŒ and v > 0 on Œa; b�;
(ii) Given any continuous function q1 � q, one has uniqueness for the Dirichlet

problem written for the operator L1 WD L0 C q1 on the interval Œa; b�;
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(iii) for every interval Œc; d � 	 Œa; b� one has uniqueness for the Dirichlet problem
written for the operator L0 and the interval Œc; d �;

(iv) the Green functionG.t; s/ corresponding to the operator L and Œa; b� satisfies
the condition

G.t; s/ � 0; for all t; s 2 Œa; b�:

From the above theorem we have the following notion, see [30].

Definition 3. Concerning the Dirichlet problem (17), the interval Œa; bŒ is, by
definition, a maximum uniqueness interval for L if:

(1) we have uniqueness for the Dirichlet problem corresponding to L and for all
intervals Œc; d � 	 Œa; bŒ;

(2) we have no uniqueness for the Dirichlet problem (17) corresponding to L and
Œa; b�.

7.2 Bilocal Problems

Let ˛ � a < b � ˇ; �1; �2 be some real numbers and let q; f 2 C Œ˛; ˇ�. We
consider the following differential equation

L.x/.t/ WD �x00.t/C q.t/x.t/ D f .t/; t 2 Œ˛; ˇ�: (18)

The problem is to find the solutions x 2 C2Œ˛; ˇ� of the above equation which also
satisfy the conditions:

x.a/ D �1; x.b/ D �2: (19)

In other words, the bilocal problem for Eq. (18) is to find the solutions x 2 C2Œ˛; ˇ�

which are solutions for the Dirichlet problem corresponding to the operator L and
for the interval Œa; b� 	 Œ˛; ˇ�.

In the rest of this section, we will take (for simplicity) �1 D �2 D 0 and we will
suppose that the interval Œ˛; ˇ� is a subinterval of a maximum uniqueness interval
corresponding to the operator L.

Let G.t; sI a; b/ be the Green function corresponding to L and Œa; b�. Then, the
function x0 2 C2Œa; b� defined by

x0.t/ WD
Z b

a

G.t; sI a; b/f .s/ds

is a solution of the Dirichlet problem

L.x/ D f; x.a/ D 0; x.b/ D 0:
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Let us consider now the following Cauchy problems:

(
L.x/.t/ D f .t/; t 2 Œ˛; a�
x.a/ D 0; x0.a/ D R ba @G.a;sIa;b/

@t
f .s/ds

(20)

and
(
L.x/.t/ D f .t/; t 2 Œb; ˇ�
x.b/ D 0; x0.b/ D R b

a
@G.b;sIa;b/

@t
f .s/ds

(21)

Let x1 2 C2Œ˛; a� be the unique solution of (20) and x2 2 C2Œb; ˇ� be the unique
solution of (21). Then, it is easy to see that the function x� 2 C2Œ˛; ˇ� defined by

x�.t/ WD
8<
:
x1.t/; t 2 Œ˛; a�
x0.t/; t 2 Œa; b�
x2.t/; t 2 Œb; ˇ�

is the unique solution of the following bilocal problem

�
L.x/.t/ D f .t/; t 2 Œ˛; ˇ�
x.a/ D 0; x.b/ D 0: (22)

For the case a D b, notice that x�.t/ is the unique solution on Œ˛; ˇ� of the
Cauchy problem

�
L.x/.t/ D f .t/; t 2 Œ˛; ˇ�
x.a/ D 0; x0.a/ D 0: (23)

By the Cauchy’s formula and using Green’s formula, we have

x�.t/ D
Z ˇ

˛

QG.t; sI a; b/f .s/dsCh.t; a; b/; for all t 2 Œ˛; ˇ�; a; b 2 Œ˛; ˇ�; a � b;
(24)

with suitable functions QG 2 C.Œ˛; ˇ�2 �D/ and h 2 C1.Œ˛; ˇ� �D/ (where D WD
f.a; b/ 2 Œ˛; ˇ� � Œ˛; ˇ� W a � bg. Moreover, the function QG has some regularity
properties as in the case of Green functions.

7.3 Nonlinear Bilocal Problems

Let ˛ � a < b � ˇ be some real numbers, let p; q 2 C Œ˛; ˇ� and define L.x/ WD
�x00 C px0 C qx; t 2 Œ˛; ˇ�.
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We suppose that Œ˛; ˇ� is included in a maximum uniqueness interval correspond-
ing to the operatorL. Let f 2 C.Œ˛; ˇ��R;R/. We consider the following nonlinear
bilocal problem:

�
L.x/.t/ D f .t; x/; t 2 Œ˛; ˇ�
x.a/ D 0; x.b/ D 0; (25)

where x 2 C2Œ˛; ˇ�.
From (24) we get that the problem (25) is equivalent to the following functional

integral equation

x.t/ D
Z ˇ

˛

QG.t; s; a; b/f .s; x.s//ds C h.t; a; b/; t 2 Œ˛; ˇ�; (26)

where we are looking for the unknown function x 2 C Œ˛; ˇ�.
From Theorem 14 (withm D 1) we obtain the following result for the functional

integral equation:

x.t; a; b/ D
Z ˇ

˛

QG.t; s; a; b/f .s; x.s; a; b//ds C h.t; a; b/; t 2 Œ˛; ˇ�; (27)

Theorem 17. Let us consider Eq. (27), where f 2 C.Œ˛; ˇ� � R;R/ and h 2
C.Œ˛; ˇ�3;R/. We suppose that there exists r 2 RC such that:

(i) for all u; v 2 R and all t; s; a; b 2 Œ˛; ˇ� we have

jf .t; u/� f .t; v/j � r ju � vjI

(ii) .ˇ � ˛/r < 1.

Then, Eq. (27) has a unique solution x�.�; a; b/.
Proof. For the theory of bilocal problem

�
L.x/.t/ D f .t; x/; t 2 Œa; b�
x.a/ D 0; x.b/ D 0; (28)

see [4, 5, 7, 9–11, 20, 27, 29, 41, 42].
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8 Some Further Research Directions

8.1 Integral Equations in Banach Spaces

1. Let B a Banach space, ˛ � a < b � ˇ be some real numbers, K 2 Œ˛; ˇ�4�
B! B and g W Œ˛; ˇ� ! B be continuous functions. The problem is to study, in
C.Œ˛; ˇ�3;B/, the following functional-integral equation:

x.t; a; b/ D
Z b

a

K.t; s; a; b; x.s; a; b//ds C g.t/; t 2 Œ˛; ˇ�; (29)

In this paper, we studied the case B WD Rm.
2. Let B a Banach space, ˛ � a < b � ˇ be some real numbers, '; 2
C.Œ˛; ˇ�; Œ˛; ˇ�/, K 2 C.Œ˛; ˇ�4 � B;B/, and g 2 C.Œ˛; ˇ�3;B/. The problem
is to study, in C.Œ˛; ˇ�3;B/, the following functional-integral equation:

x.t; a; b/ D
Z  .b/

'.a/

K.t; s; a; b; x.s; a; b//ds C g.t; a; b/; t 2 Œ˛; ˇ�: (30)

In this paper, we studied the case B WD Rm.
3. Let ˛ � a < b � ˇ be some real numbers, q 2 C Œ˛; ˇ� and f 2 C.Œ˛; ˇ� �

Rm;Rm/. We consider, in C2.Œ˛; ˇ�;Rm/, the following bilocal problem:

� �x00.t/C q.t/x.t/ D f .t; x.t//; t 2 Œ˛; ˇ�
x.a/ D 0; x.b/ D 0; (31)

If this problem has a unique solution in C2.Œ˛; ˇ�;Rm/, then the question is
if the data dependence phenomenon with respect to a and b takes place, for this
unique solution.

Notice that the case m D 1 is treated in this paper.
4. Let ˛ � t1 < � � � < tk � ˇ be some real numbers, pi 2 C Œ˛; ˇ� and
f 2 C.Œ˛; ˇ� � R;R/. We consider, in Ck.Œ˛; ˇ�;Rm/, the following polilocal
problem:

� �x.k/.t/C p1.t/x.k�1/.t/C � � � C pk.t/x.t/ D f .t; x.t//; t 2 Œ˛; ˇ�
x.t1/ D 0; : : : ; x.tk/ D 0; (32)

If this problem has a unique solution in CK.Œ˛; ˇ�;Rm/, then the question is
again to study the data dependence of this solution with respect to t1; : : : ; tk . See
[18, 19, 21, 27, 44–46].
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8.2 Integral Inclusions and Multivalued Bilocal Problems

1. Let ˛ � a < b � ˇ be some real numbers, g W Œ˛; ˇ� ! Rm be a continuous
function and let K W Œ˛; ˇ�4 � Rm ( Rm be a multivalued operator such
that K.t; �; a; b; x.�; a; b// W Œ˛; ˇ� ( Rm is Aumann integrable, for every
x 2 C.˛; ˇ�3;Rm/. The problem is to study, in C.Œ˛; ˇ�3;Rm/, the following
functional-integral inclusion:

x.t; a; b/ 2
Z b

a

K.t; s; a; b; x.s; a; b//ds C g.t/; t 2 Œ˛; ˇ�; (33)

2. Let ˛ � a < b � ˇ be some real numbers, q 2 C Œ˛; ˇ� and let F W Œ˛; ˇ� ( R

be a continuous (in some sense) multivalued operator with compact and convex
values. The problem is to study, in C2.Œ˛; ˇ�;R/, the following bilocal problem:

� �x00.t/C q.t/x.t/ 2 F.t/; t 2 Œ˛; ˇ�
x.a/ D 0; x.b/ D 0; (34)

For the above problems, see [3, 8, 15, 16, 26] and the references therein.
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Univ. “Al. I. Cuza” Iaşi Mat. 97, 65–74 (2011)
7. Degla, G.A.: A unifying maximum principle for conjugate boundary value problems. SISSA

Ref. 145/1999 M, Trieste (1999)
8. Deimling, K.: Multivalued Differential Equations. W. de Gruyter, Berlin (1992)
9. Ehme, J.A.: Differentiation of solutions of boundary value problems with respect to nonlinear

boundary conditions. J. Differ. Equ. 101, 139–147 (1993)
10. Fabry, Ch., Habets, P.: The Picard boundary value problem for nonlinear second order vector

differential equations. Univ. Catholique Louvain, Rep. no. 143 (1980)
11. Fitzpatrick, P.M., Petryshyn, W.V.: Galerkin methods in the constructive solvability of nonlin-

ear Hammerstein equations with applications to differential equations. Trans. Am. Math. Soc.
238, 321–340 (1978)
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Ph.D. Thesis, Babeş-Bolyai University Cluj-Napoca (2013)

21. Opial, Z.: On a theorem of O. Arama. J. Differ. Equ. 3, 88–91 (1967)
22. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables.

Academic, New York (1970)
23. Perov, A.I.: On the Cauchy problem for a system of ordinary differential equations. Pviblizhen.

Met. Reshen. Differ. Uravn. 2, 115–134 (1964) (in Russian)
24. Perov, A.I., Kibenko, A.V.: On a certain general method for investigation of boundary value

problems. Izv. Akad. Nauk SSSR Ser. Mat. 30, 249–264 (1966) (in Russian)
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Hyperbolic Wavelets

F. Schipp

Abstract In the last two decades a number of different types of wavelets transforms
have been introduced in various areas of mathematics, natural sciences, and
technology. These transforms can be generated by means of a uniform principle
based on the machinery of harmonic analysis. In this way we pass from the
affine group to the wavelet transforms, from the Heisenberg group to the Gábor
transform. Taking the congruences of the hyperbolic geometry and using the same
method we introduced the concept of hyperbolic wavelet transforms (HWT). These
congruences can be expressed by Blaschke functions, which play an eminent role
not only in complex analysis but also in control theory. Therefore we hope that the
HWT will become an adequate tool in signal and system theories. In this paper we
give an overview on some results and applications concerning HWT.

Keywords Wavelets • Hyperbolic geometry • Rational systems • Blaschke
functions • System identification • Signal processing

1 Introduction

The evolution of the theory of Fourier-series is strongly connected with important
practical applications. Fourier himself developed his method for solving a physical
problem on heat conduction. The born and progress of many areas of mathematics
are related to the same problems that inspired that application of Fourier series [1,
52]. At the beginning of the last century several function systems, that seemed rather
exotic at that time, have been introduced. Their theoretical and practical importance
became evident only much later. A very special one of them is the Haar orthonormal
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system defined by Alfréd Haar [30] in 1909, which looks quite artificial for the
first look. It contains step functions originated from the basic function h.x/ WD
1 .x 2 Œ0; 1=2//; h.x/ WD �1 .x 2 Œ1=2; 1//; h.x/ D 0 .x 2 Œ1;1// by means of
simple transformations, namely by translation and dilation: h0.x/ D 1; hm.x/ WD
2n=2h.2nx�k/ .x 2 Œ0; 1//, .m D 2nCk; n; k 2 N/: The Haar-system is orthogonal
in the Hilbert space L2 WD L2.Œ0; 1// with respect to the usual scalar product, and
the Haar–Fourier series of a function f 2 L1.Œ0; 1// converges to the function
in both norm and almost everywhere. In particular, if the function is continuous,
then the convergence is uniform. In this respect it is essentially different from the
trigonometric system [58].

The Haar system was the starting point in several investigations in martingale
theory, in wavelet theory, and in functional analysis [10, 58, 59, 64]. The fact
that the members of the system are not continuous makes them inappropriate for
approximating smooth functions. By multiple integration and orthogonalization of
the Haar functions Z. Ciesielski constructed orthogonal bases of smooth functions
having good approximation properties [9, 11]. Taking the Haar system and fol-
lowing a different path Y. Meyer, I. Daubechies among others started to construct
orthonormed systems, so-called wavelets, of the form

'n;k.x/ D 2n=2'.2nx � k/ .x 2 R; ' 2 L2.R/; k'k2 D 1/:

Except from the Haar system the construction of such systems is a hard task [13,
40, 41]. Then the Fourier transform O' instead of the mother wavelet ' itself turned
to be a good starting point. Despite the fact that ' cannot be given in an explicit
form generally the wavelet Fourier series enjoy nice convergence and approximation
properties. The kernel functions of the partial sums can be well estimated and the
wavelet Fourier coefficients can be calculated by a fast algorithm.

In applications not only the Lp spaces but also the set of analytic functions A
on the unit disc D WD fz 2 C W jzj < 1g and the Banach spaces related to it play
important roles. Taking the integral means

kfrkp WD
�
1

2�

Z 2�

0

jf .reit /jp dt
�1=p

.0 < p <1/

of a function f 2 A Frigyes Riesz [53] introduced the class of functions in A for
which sup0<r<1 kfrkp <1. Referring to a paper of Hardy [31] from 1915, in which
Hardy showed that kfrkp is monotonic with respect to r , he named the function
class after Hardy and denoted it by H p: The quantity kf kHp WD sup0<r<1 kfrkp
defines a norm .1 � p � 1/ or a quasinorm .0 < p < 1/ on H p.D/ WD H p;

and it becomes complete with respect to them. It is known that the boundary
function f .eit / WD limr!1 f .reit / exists a.e. for every f 2 H p .p > 0/;

and f belongs to Lp.T/ on T WD fz 2 C W jzj D 1g: Moreover kf kHp D
kf kLp.T/: The space H 1.D/ is the collection of functions f 2 A for which
kf kH1 WD supz2D jf .zj <1. The disc algebra A, i.e. the set of functions analytic
on D and continuous on its closure is a closed subspace of H 1.D/ [14, 28, 66].
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The Hardy spaces are applied intensively not only in the theories of complex
functions and Fourier series but as it turned out in the 1960s they, in particular
H 2.D/; and H 1.D/; are the proper Banach spaces for mathematical modeling of
problems in control and operator theories [34, 54, 62].

The simplest discrete systems in control theory can be described by linear
operators of type T W `2 ! `2 W

y D T .x/ .x D .xn; n 2 N/; y D .yn; n 2 N/ 2 `2/:

The sequences x; y 2 `2 are called (input, output) signals, and the norm kxk`2 WD
.
P

n2N jxnj2/1=2 is the energy of x: The usual interpretation of the index n in
.xn; n 2 N/ is discrete time. The discrete linear causal and time invariant (LTI)
systems can be given by convolution operators:

y D Tax WD a 
 x; yn D .a 
 x/n WD xna0 C xn�1a1 C � � � C x0an .n 2 N/:

The map

x ! X; X.z/ WD
X
n2N

xnzn .z 2 D/

is isometric isomorphy between `2 and the Hardy space H 2.D/: The function

A.z/ WD
X
n2N

anzn .z 2 D/

generated by the sequence a is called the transfer function of the system. Taking the
isometry between `2 and H 2.D/ the operator x ! Tax corresponds to the operator
of multiplication by the transfer functionX ! AX: Since this is a bounded operator
on H 2.D/ if and only if A 2H 1.D/ and its norm is kAkH1 we have that

kTak`2!`2 D kAkH1 :

This implies that Ta ! A is isomorphism between the LTI systems and H 1.D/:
This makes clear the importance of Hardy spaces in mathematical modeling of
system theory.
Ta W `2 ! `2 is a unitary operator, i.e. it satisfies the principle of energy

conservations, if kTaxk`2 D kxk`2 .x 2 `2/. For the transfer function it means
that kXkL2.T/ D kAXkL2.T/ holds for every X 2 H 2.D/: Hence we have that the
operator Ta is unitary if and only if:

A 2H 1.D/; jA.eit /j D 1 .a.e. t 2 Œ0; 2�//:

The functions satisfying this condition are called inner functions. Consequently, the
LTI systems for which the energy conservation law holds can be given by the inner
functions in H 1.D/ [34].
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It is easy to show that the functions

Bb.z/ WD �Bb.z/; Bb.z/ WD z� b
1 � bz

.z 2 C; b D .b; �/ 2 B WD D � T/

with parameters b 2 D and � 2 T are bijections of the form D ! D and T ! T;

so they are inner functions. Clearly, their finite products are inner functions as well.
Blaschke [2] proved that if the sequence bn 2 D .n 2 N/ satisfies the condition

X
n2N
.1 � jbnj/ <1;

which was named after him, then taking �n WD �bn=jbnj .bn ¤ 0/; �n D 1 .bn D 0/
the infinite product B.z/ WD Q1nD0 Bbn.z/ .z 2 D/ is uniformly convergent on every
compact subset of D; and B 2 H 1 is an inner function. Bb is called Blaschke-
function, and B is called Blaschke-product.
b 2 D is the zero of the function Bb; and b� WD 1=b which is the inverse

of b with respect to the unit circle is the pole of Bb: Therefore the zeros of the
Blaschke-productB are bn and their multiplicities correspond to their occurrences in
.bk; k 2 N/: Conversely, it is known [60] that the zeros of any f 2H p.D/ .p > 0/

satisfy the Blaschke-condition. The Blaschke-product defined by them contains the
zeros of f and f can be written in the form f D Bg; where g 2H p.D/ does not
vanish on D and kf kHp D kgkHp [53]. This decomposition is unique except for a
factor with absolute value 1:

Based on the Blaschke functions Malmquist [39] and Takenaka [63] in 1925
independently introduced a wide class of orthogonal systems of rational functions in
H 2.D/: These systems are now called Malmquist–Takenaka (MT) systems. They
can be generated by an arbitrary sequence bn 2 D .n 2 N/ and can be given in an
explicit form as follows

˚n.z/ WD
p
1 � jbnj2
1 � bnz

n�1Y
kD0

Bbk .z/ .z 2 D WD D [ T; bk 2 D; k 2 N/:

It is known that the opposite of the Blaschke-condition is necessary and sufficient for
the MT-systems to be closed in the Hardy spaces H p.D/ .1 � p <1/ and in the
disc algebra. We note that the power functions en.z/ WD zn .z 2 C; n 2 N/ (complex
trigonometric functions on T) can be obtained from the MT-systems by choosing
bn D 0 .n 2 N/: While the classical orthogonal systems (e.g., Jacobi-, Csebisev-,
Laguerre-systems) used in physical applications and the wavelets applied in signal
theory have only one or two parameters, there are infinitely many parameters that
can be chosen freely in the construction of MT-systems. This makes possible to take
parameters according to the problem that are optimal in a sense. Following this idea
we considered the decomposition of ECG signals in rational bases. It resulted in
good approximation and efficient compression of the signal.
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Starting from the 1960s researchers have realized the advantage of using
MT-systems with one or two parameters over the trigonometric one in applications
in system theory [34]. The MT-system

Lbn.z/ WD
p
1� jbj2
1 � bz

Bn
b .z/ .z 2 D; n 2 N/

corresponding to the constant sequence bn WD b; n 2 N is called discrete Laguerre-
system. Taking the Fourier transform of it we receive the Laguerre-functions, that
are especially important in theoretical physics, which justifies the name. The special
MT-system, when b2n D b; b2nC1 D b .n 2 N/ was introduced by Kautz for
system representation. MT-systems generated by periodic sequences .bn; n 2 N/ are
called periodic MT-systems. A thorough summary on the application of MT-systems
in control theory can be found in the book [34]. The problem of discretization of
MT expansions and their applications, in particular simple representations of ECG
signals, will be addressed in Sect. 5.

The Blaschke functions play important role not only in system identification or
factorization of function belonging to Hardy spaces. For instance, they can be used
to represent the congruences in the Poincaré model of the Bolyai–Lobachevsky
geometry. Based on this property we can take them in the construction of wavelets
instead of the affine transforms in R. As a result the so-called hyperbolic wavelets
are introduced. The definition and properties of them will be given in Sect. 4.

2 The Blaschke-Group

The Blaschke-function are very useful in modeling the hyperbolic geometry.

2.1 Möbius Transforms

Let the group of Möbius transforms (linear rational functions) be denoted by M; and
the complex two dimensional linear group by SL.2/ WD fA 2 C2�2 W detA D 1g:
The map

�
a11 a12
a21 a22

�
! rA.z/ WD a11zC a12

a21zC a22 .z 2 C WD C [ f1g/

is an SL.2/ ! M group homomorphism: rA1A2 D rA1 ı rA2 , where ı stands for
composition of functions. The class of unitary matrices SU.2/ forms a subgroup of
SL.2/: Every matrix A 2 SU.2/ is of the form
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A D
�
p �q
q p

�
; det A D jpj2 C jqj2 D 1 .p; q 2 C/:

Moreover the (positive definite) quadratic form QE.x/ WD jx1j2 C jx2j2 .x D
.x1; x2/ 2 C2/ is invariant with respect to the transformations in SU.2/ W
QE.Ax/ D QE.x/ .x 2 C2; A 2 SU.2//:

The subgroup of SL.2/ that contains the matrices

B D
�
p �q
�q p

�
; det B D jpj2 � jqj2 D 1 .p; q 2 C/

will play an important role. The hyperbolic quadratic form QH.x/ WD jx1j2 � jx2j2
.x D .x1; x2/ 2 C

2/ is invariant with respect to these transformations:QH.Bx/ D
QH.x/. This justifies the usual notation SH.2/ (or SU.1; 1/) for this subgroup
[65]. The homomorphism B ! rB will take the elements of SH.2/ to Blaschke-
functions:

rB.z/ WD pz � q
qzC p D

p

p

z � q=p
1 � zq=p

D � z � b
1 � bz

DW Bb.z/ .z 2 C/

�
b WD q=p 2 D; � WD p

p
2 T

�
:

Consequently, the set of Blaschke-functions B is a subgroup of the Möbius-
transforms M: The group .B; ı/ is called Blaschke-group.

2.2 The Parameters of the Blaschke-Group

It follows from the identity (see [32])

1 � jBb.z/j2 D .1 � jzj2/.1 � jbj2/
j1� bzj2 .z 2 D; b D .b; �/ 2 B WD D � T/

that if b 2 B then Bb W D! D, and Bb W T! T is one-to-one. Moreover, the unit
element of B is Be .e WD .0; 1// and Bb�1 .b�1 WD .�b�; �// is the inverse of Bb:

The sets

BI WD fBb W b D .s; 1/; s 2 .�1; 1/g; BT WD fBb W b D .0; �/; � 2 Tg

are one parameter subgroups of the Blaschke-group, which by means of

Bb D B.0;ei.'C
// ıB.r;1/ ı B.0;e�i' / .b WD .rei'; ei
 / 2 B/
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generate the Blaschke-group: B D BT ıBI ıBT. The functions in BI map the set
I WD fz 2 D W �1 < <z < 1;=z D 0g onto itself, and 1;�1 are fix points of them.

The disc D with the pseudohyperbolic metric

�.z1; z2/ WD jz1 � z2j
j1 � z1z2j D jBz2 .z1/j .z1; z2 2 D/

is a complete metric space. This metric is invariant with respect to Blaschke-
functions:

�.Bb.z1/; Bb.z2// D �.z1; z2/ .z1; z2 2 D; b 2 B/: (1)

This is the consequence of the identity

Bb.z1/ � Bb.z2/

1 � Bb.z1/Bb.z2/
D z1 � z2
1 � z1z2

1 � bz2

1 � bz2
.z1; z2 2 D; b D .b; �/ 2 B/:

The property in (1) characterizes the Blaschke-functions. Namely, for every f 2
H 1.D/; kf k1 � 1 we have �.f .z1/; f .z2// � �.z1; z2/; and equality holds in a
point z 2 D if and only if f is a Blaschke-function [15].

The map b! Bb induces a group structure in the parameter set B: Moreover

zıb D .Bb�1 .z/; ��b�1 .z//

 
�b.z/ WD � 1 � zb

1 � zb
; b D .b; �/; z D .z; �/ 2 B

!
: (2)

Hence it is clear that the group operation .z; b/! zıb�1 is continuous with respect
to the (euclidian) metric %.b1; b2/ WD jb1 � b2j C j1� �1�2j .bj D .bj ; �j / 2 B/ of
the space B. Consequently, .B; ı/ is a locally compact continuous group.

The bijection Bb W T! T .b WD rei' 2 D/ can be written in the following form
on the boundary T

Bb.e
it / D eiˇb.t/; ˇb.t/ WD ' C �r.t � '/ .t 2 R/; (3)

where the derivative of �r is the Poisson-kernel function:

� 0r .t/ D Pr.t/ D
1 � r2

1 � 2r cos t C r2 .t 2 R/; �r .0/ D 0: (4)

Since Pr.t/ > 0 .t 2 R/ we have that �r is strictly increasing, and

�r.t/ D
Z t

0

Pr .�/ d� D 2 arctan.c.r/ tan t=2/

.c.r/ WD .1C r/=.1� r/; r 2 Œ0; 1/; t 2 R/:
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2.3 Hyperbolic Geometry

In the disc model (PD) of Poincaré for the Bolyai–Lobachevsky geometry the
Blaschke-group can be identified with the group of congruences. The lines in the
model are the images of the interval I by Blaschke-functions: flb WD Bb.I/ W b 2 Bg:
They coincide with the circular arcs and line segments within D that cross T

perpendicularly. The points Bb.1/; Bb.�1/ 2 T are called the points at infinity
of the line lb; and the images Bb.I / of the intervals I WD Œs1; s2� 	 I are called
(hyperbolic) line segments. It is easy to show that lb1 D lb2 if and only if there
exists a function B 2 BI with Bb1 D Bb2 ı B: Therefore the collection of the lines
in PD can be identified with the right cosets G=G0: An important metric, other than
� is the hyperbolic metric:

��.z1; z2/ WD arth�.z1; z2/ D 1

2
ln

�
1C �.z1; z2/
1� �.z1; z2/

�
.z1; z2 2 D/:

It can be shown that taking the triangle inequality with respect to �� the equality
��.z1; z2/ D ��.z1; z3/ C ��.z3; z2/ holds if and only if z3 lies on the hyperbolic
segment z1; z2:

There exist several equivalent models for the Bolyai–Lobachevsky geometry
[12]. The half plane model of Poincareé (HP) can be generated from the disc model
by the Cayley-transform

# .z/ WD i � z

i C z
.z 2 C/:

This bijection maps the half plane CC WD fz 2 C W =z > 0g onto D; the real line R

onto T n f�ig; and # .t/ D e2i arctan t 2 T .t 2 R/. The functions

Bb̆ .z/ WD Bb.# .z// D �˘ z � b˘
z � b˘

�
z 2 C; b˘ WD # �1.b/; �˘ D �� 1C b

1C b
�

on the half plane correspond to the Blaschke functions. The lines in HP are the sets
f# �1.lb/ W b 2 Bg; the circular arcs, and half lines in CC that cross the real line
perpendicularly. The congruences can be given as # �1 ı Bb ı # .b 2 B/:

3 Wavelet, Gábor, and Voice Transforms

In order to define the continuous version of the wavelet transform let us start from a
basic function  2 L2.R/; called mother wavelet, and use dilation and translation
to obtain the collection of functions

 pq.x/ D  ..x � q/=p/p
p

.x 2 R; .p; q/ 2 L WD .0;1/ � R/:
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By means of this kernel function we can construct an integral operator

.W f /.p; q/WD 1p
p

Z
R

f .x/ ..x�q/=p/ dx D hf; pqi ..p; q/ 2 L; f 2 L2.R//

called wavelet transform. It is known that under general conditions made on  the
function f can be reconstructed from its wavelet transform and the analogue of the
Plancherel formula, in other words the energy conservation principle holds for it
[13, 33, 41].

Similarly to the Fourier transform there can be given a group theoretical
interpretation forW by means of the collection L of affine maps

`a.x/ WD px C q .x 2 R; a D .p; q/ 2 L/:

The function set L is closed for composition ı, it contains the identical map `e that
corresponds to e WD .1; 0/: Moreover the function in L corresponding to a�1 WD
.p�1;�qp�1/ 2 L is the inverse function of `a W `a�1 D `�1a . The group .L; ı/ is
called affine group. Introducing the group operation

a1 ı a2 WD .p1p2; q1 C p1q2/ .aj WD .pj ; qj / 2 L; j D 1; 2/

on L we obtain the group .L; ı/which is isomorphic with the affine group, and `a D
`a1 ı `a2 . The group operations are continuous with respect to the usual topology in
L; therefore .L; ı/ is a (noncommutative, locally compact) topological group.

The wavelet transform can be described by the family of operators

Ua WD 1p
p
 ı `�1a .a D .p; q/ 2 L;  2 L2.R//

as

.W f /.a/ D hf;Ua i .a D .p; q/ 2 L; f;  2 L2.R//: (5)

It is easy to show that the operators Ua W L2.R/ ! L2.R/ .a 2 L/ are unitary
representations of .L; ı/ on the space L2.R/; i.e.

.i/ kUa k D k k; .i i/ Ua1 .Ua1 / D Ua1ıa2 .a; a1; a2 2 L;  2 L2.R//:

Moreover the representation is continuous in the following sense: For every function
 2 L2.R/ we have

.i i i/ kTan � Ta k ! 0; if an ! a .n!1/:
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Taking the discrete subgroup .L0; ı/;L0 WD f.2�n; k2�n/ W k; n 2 Zg instead
of .L; ı/ we obtain, as a generalization of Haar–Fourier coefficients, the discrete
version of the wavelet transform

.W f /.2
�n; k2�n/ D p2n

Z
R

f .x/ .2nx � k/ dx .k; n 2 Z/:

Referring to the relation with the affine group the map W is usually called affine
wavelet transform.

This model can serve as an example for the construction of useful function
transformations. Instead of the affine group one may take a locally compact
topological group .G; �/ and a unitary representation Vg W H ! H .g 2 G/ of
it. Then similarly to (5)

.V f /.g/ WD hf; Vg i .g 2 G; f;  2 H/

will be a bounded linear operator from the Hilbert spaceH to the space of bounded
continuous functions C.G/ defined on G: According to Feichtinger and Gröchenig
the map V is called voice-transform generated by the representation .Vg; g 2 G/

[20, 21]. We say that the representation is irreducible if it has no proper closed
invariant subspace, i.e. Vg .g 2 G/ is a closed system in H for any  2 H; ¤

 . It can be shown that if the representation is irreducible then the voice transform
is injective. Let the left invariant Haar measure on the group G be denoted by m;
and the Hilbert space generated by the measure m on G by L2m.G/: The elements
 2 H for which V .H/ 	 L2m.G/ are called admissible elements.

The set H0 of admissible elements is dense in H: Moreover,  2 H0; ¤ 


if and only if V  2 L2m.G/. One can show [29, 33] that there is positive definite
quadratic form C W H0 ! RC for which

hV 1f1;V 2f2iL2m.G/ D C. 1;  2/hf1; f2iH .f1; f2 2 H; 1;  2 2 H0/:

This can be considered as the analogue of the Plancherel-theorem for voice
transforms. In particular, if the group G is unimodular, i.e. every left invariant
measure is right invariant as well, then there is an absolute constant C0 for which
the equality

kV f kL2m.G/ D C0k kH kf kH .f 2 H; 2 H0/

holds. Consequently, with k kH D 1=C0 the voice transform becomes unitary. This
means not only that the analogue of the Plancherel theorem holds true under a very
general condition but also it explains the special form of the formula in the particular
cases by enlightening the role of the group G:

The transform introduced by Dénes Gábor in 1946 can be understood as a
special voice transform by taking a special representation of the Heisenberg group.
This explains that the Gábor-transform is also called as Weyl–Heisenberg wavelet
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transform. Taking the Haar measures for the affine and Heisenberg groups one can
characterize the admissible functions and the analogues of the Plancherel formula
can be written in explicit forms [33, 55].

4 Hyperbolic Wavelets

In view of the geometric representation of the Blaschke-functions, and their role
in control and complex function theories it seemed natural to introduce the voice
transform based on the Blasche group. The basic properties of the transform are
proved in [42, 49–51] and applications concerning system identification are given
in the papers [6–8]. The potential applications in numerical mathematics and in
the theory of complex functions are presented in [22, 23, 56, 57]. The Blaschke
group was shown to be identical with the group of congruences in the PD model of
hyperbolic geometry, which makes it logical to call the voice transform in question
as hyperbolic wavelet transform

4.1 Hardy and Bergman Spaces

We will introduce a one parameter collection of hyperbolic wavelet transform. To
this order we take the group .B; ı/, or the isomorphic .B; ı/ Blaschke group, a
family of Hilbert spaces Hs .s � �1/ and the unitary representations T Œs�b W Hs !
Hs .b 2 B; s � �1/ of .B; ı/: If s D �1, then the Hilbert space Hs will be the
Hardy space H 2.D/ (or the isomorphic H 2.T/ space). In case s > �1 we will
consider the weighted Bergman space B2

s .D/: For the definition of Bergman spaces
(see [32]) let us introduce the weight function �s.z/ WD .1 � jzj2/s .z 2 D; s > �1/
and the area measure d&s.z/ WD .sC1/�s.z/ dxdy=� .z D xC iy 2 D/ on the disc
generated by it. If s D �1, then d&s.eit / D dt=2� is the Lebesgue-measure on the
torus T: Set Fs WD D if s > �1; and Fs WD T if s D �1. Let

kf kp;s WD
�Z

Fs

jf .z/jp d&s.z/
�1=p

.0 < p <1/

denote the norm of Lebesgue space Lps .Fs/ WD L
p
&s .Fs/: The closed subspace

B
p
s .Fs/ WD L

p
s .D/ \ A ; s > �1 of Lps .Fs/ is called weighted Bergman space.

In the special case s D �1 let Bp
s .Fs/ be the Hardy space H p.T/: Then for every

value of the parameter s � �1 we have that Hs WD B2
s .Fs/ is a Hilbert space with

the scalar product

hf; gis WD
Z
Fs

f .z/g.z/ d&s.z/ .f; g 2 Hs/;
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and the subspace of complex algebraic polynomials is dense in B
p
s .Fs/ .0 < p <

1/: If s > �1, then for the k � ks norm of the function A.z/ WDPn2N anzn .z 2 D/

we have

kAk2s D .s C 1/
1X
nD0
janj2

Z 1

0

r2nC1.1 � jr j2/s dr D
1X
nD0
janj2�Œs�n <1;

�Œs�n WD .s C 1/
Z 1

0

r2nC1.1 � jr j2/s D nŠ� .2C s/
� .2C s C n/ .s � �1; n 2 N/:

Let hs .s � �1/ denote the set of complex sequences a D .an; n 2 N/ for which

kaks WD
 1X
nD0
janj2�Œs�n

!1=2
<1:

Then hs is a Hilbert space with the scalar product

Œa; b�s WD
1X
nD0

anbn�
Œs�
n

and the map a! A is an isomorphism between hs and Hs; provided s > �1. Since
�
Œ�1�
n D 1 .n 2 N/ and h�1 D `2;H�1 DH 2.T/ we have that the isomorphism

kAks D kaks .a 2 hs/

holds for s D �1 as well. Moreover, H�1 	 Hs1 	 Hs2 .�1 < s1 < s2/. The power
functions

eŒs�n .z/ WD zn=

q
�
Œs�
n .z 2 Fs; n 2 N; s � �1/

form an orthogonal basis in Hs if s � �1 [15, 32].

4.2 Invariant Integrals, Haar Measure

The space L1�2.D/ enjoy the following invariance properties:

Z
D

f .w/��2.w/ dudv D
Z
D

f .Bb.z//��2.z/ dxdy .b 2 B; f 2 L1�2.D//:
(6)

Indeed, for the Jacobi determinant of the bijection Bb W D! D we have (see [32])
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jB 0b.z/j2 D
.1 � jbj2/2
j1 � bzj4 D

.1 � jBb.z/j2/2
.1 � jzj2/2 D ��2.z/

��2.Bb.z//
.z 2 D/

therefore (6) follows by applying the integral transform w D Bb.z/:
Similar reasoning yields that L1�1.I/ is invariant with respect to the transforms

in B0:

Z
I

f .t/��1.t/ dt D
Z
I

f .Bb.t//��1.t/ dt .Bb WD B.b;1/ 2 B0/: (7)

(6) implies that the integral

Z
B

f .z/ dm.z/ WD
Z 2�

0

Z
D

f .z; eit /��2.z/ dxdydt

defined on the group B is invariant with respect to the transform z ! z ı b:
Consequently,m is a right invariant Haar measure of .B; ı/: Indeed, by (2) we have

z ı b D .Bb�1 .z/; eit �b�1 .z//; �b�1 .z/ 2 T .z D .z; eit /; b 2 B/:

Then by Fubini’s theorem and by (7) we obtain

Z
B

f .z ı a/ dm.z/ D
Z 2�

0

Z
D

f .Bb�1 .z/; eit �b�1 .z//��2.z/ dxdydt

D
Z 2�

0

Z
D

f .Bb�1 .z/; eit /��2.z/ dxdydt

D
Z 2�

0

Z
D

f .z; eit /��2.z/ dxdydt D
Z
B

f .z/ dm.z/:

Similarly, it follows from z�1 D .�eit z; e�i t / .z D .z; eit / 2 B/ that the measure
m is invariant with respect to the transform z! z�1; and so the Haar measure m is
unimodular.

4.3 Unitary Representations

In order to define unitary representations that generate hyperbolic wavelets we start
from the linear space of Lebesgue measurable functions M .Fs/ defined on the torus
Fs WD T if s D �1; and on the disc Fs WD D if s > �1; and take the maps of the
form

Tbf WD f ı B�1b .f 2M .Fs/; b 2 B/:
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Since

Tb1ıb2fDf ıB�1b1ıb2Df ı.B�1b2
ıB�1b1

/ D Tb1 .f ıB�1b2
/DTb1 .Tb2f / .f 2M .Fs//;

we have that .Tb; b 2 B/ is the so-called right regular representation of the group
.B; ı/:

For the construction of unitary representations we will apply multiplier represen-
tations [42, 49–51, 65]. Let Mb 2M .Fs/ .b 2 B/ be a collection of functions. It is
easy to show that the family of operators

Rbf WD Mb�1 � f ı Bb�1 .b 2 B; f 2M .Fs//

is a homomorphism if and only if

Me D 1; Mb1ıb2 DMb2 �Mb1 ı Bb2 .b1; b2 2 B/: (8)

The set of functions .Mb; b 2 B/ that satisfy condition (8) is called multiplier
class, and the homomorphism .Rb; b 2 B/ generated by them is called multiplier
representation.

Simple calculation yields that the collection of functions

Mb.z/ WD �Mb.z/; Mb.z/ WD 1 � jbj2
.1 � bz/2

.b D .b; �/ 2 B; z 2 Fs/

is a multiplier class. Since

Mb.z/ D B 0b.z/ .z 2 D/; ieitMb.e
it / D d

dt
Bb.e

it / .t 2 R/; (9)

we have by the law of differentiation of composite functions that (8) holds on Fs W

Mb1ıb2 D B 0b1ıb2 D B 0b2 � B 0b1 ı Bb2 D Mb2 �Mb1 ı Bb2 : (10)

Along with the functionsMb .b 2 B/ also their powers satisfy condition (8). Thus

T
Œs�
b f WD Ms=2C1

b�1 � f ı Bb�1 .s � �1; b 2 B/

is a multiplier representation of the group .B; ı/ on the space M .Fs/:We will show
that T Œs�b is unitary on the Hilbert spaceL2s .Fs/: Let us first take the case s > �1 and
use the substitution w D Bb.z/: By jB 0b.z/j D jMb.z/j and (9), (10) we have

�s ı Bb

�s
D jMbjs; Mb�1 .Bb.z//Mb.z/ D Mb�1ıb D 1:
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Then

kTbf k22;s D
Z
D

jMb�1 .w/jsC2jf .B�1b .w//j2�s.w/ dudv

D
Z
D

jMb�1 .Bb.z//jsC2jf .z/j2�s.Bb.z//jB 0b.z/j2 dydy

D
Z
D

jMb�1 .Bb.z//jsC2jMb.z/jsC2jf .z/j2�s.z/ dydy D kf k22;s :

In case s D �1 we have that
�
T
Œ�1�
b�1 f

�
.z/ WD M1=2

b .z/f .Bb.z// .z 2 T; f 2 L2.T//

is a unitary representation of .B; ı/ on the Hilbert space L2.T/: Indeed, it follows
from (3) and (4) that if b D rei' then

jMb.e
it /j D 1 � r2

1 � 2r cos.t � '/C r2 D ˇ
0
b.t/:

Therefore

Z 2�

0

j.T Œ�1�
b�1 f /.e

it /j2 dt D
Z 2�

0

jMb.e
it /jjf .eiˇb.t//j2 dt

D
Z 2�

0

ˇ0b.t/jf .eiˇb.t//j2 dt D
Z 2�

0

jf .eis/j2 ds:

It is known that if s � �1 then the space Hs is a closed subspace of the Hilbert
space L2s .Fs/ (see [32]). Consequently, the representation .T Œs�b ; b 2 B/ is unitary
also on this space.

By

kT Œs�b f � T Œs�a f k2;s WD kT Œs�a�1ıbf � f k2;s .f 2 Hs/

we have that continuity is equivalent to the condition that the convergence

kT Œs�c e
Œs�
n � eŒs�n k2;s ! 0 .n 2 N; c! e/:

holds for the orthonormed basis of the space Hs if c! e: This convergence is easy
to show.

4.4 The Hyperbolic Wavelet Transform

The voice transform

.T ;sf /.b/ WD hf; T Œs�b  is .b 2 B; f;  2 Hs/
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generated by the unitary representations T Œs�b W Hs ! Hs .s � �1/ of the Blaschke
group .B; ı/ is called hyperbolic wavelet transform (HWT), and the functions

T
Œs�

b  . 2 Hs; b 2 B; s � �1/

themselves are called hyperbolic wavelets (HW).
Since the unitary operator T Œs�b is a bijection of Hs onto itself we have that it takes

any orthonormal basis in Hs into an orthonormal basis. In particular the systems

LŒb;s�n WD T Œs�
b�1e

Œs�
n D Ms=2C1

b � eŒs�n ı Bb .b D .b; 1/ 2 B/

form an orthonormal basis of the Hilbert space Hs for any value of the parameter
b 2 D: Hence in case s D �1 we obtain the discrete Laguerre orthonormal system,
used widely in control theory, on H2.T/ W LŒb;�1�n D Lbn .b 2 D/.

In the papers [42, 50, 51] we presented the matrix of the representation T Œs�b W
Hs ! Hs in the basis eŒs�n .n 2 N/ W

t Œs�mn.b/ WD hT Œs�b e
Œs�
n ; e

Œs�
m is D heŒs�n ; T Œs�b�1e

Œs�
m is .m; n 2 N; s � �1/:

The elements of this matrix can be expressed by the Jacobi polynomials, in special
case by the Zernike polynomials. Using this relation new formulas can be derived
for these polynomials. This way, for instance, we showed the addition formulas for
the Zernike functions, which play fundamental role in optics.

The matrix of this representation is diagonal on the subgroup BT WD f.0; �/ W � 2
Tg: Indeed, since T Œs�.0;�/e

Œs�
n D ��.s=2CnC1/eŒs�n we have

t Œs�mn..0; �// D ımn��.s=2CnC1/ .m; n 2 N/:

Using the decomposition b WD .rei'; ei
 / D .0; ei.'C
// ı .r; 1/ ı .0; e�i'/ DW
.0; �1/ ı .r; 1/ ı .0; �2/ the representation in question can be written in the form
T
Œs�

b D T
Œs�

.0;�1/
ı T Œs�.r;1/ ı T Œs�.0;�2/; and the elements t Œs�mn.r; 1/ can be expressed by the

Jacobi polynomials. If s D �1, then tmn.rei'/ WD t
Œ�1�
mn .re

i'; 1/ can be expressed
by the Zernike functions Y `n .r; '/ W

tmn.re
i'/ D .�1/mp1 � r2p

nCmC 1 Y
jm�nj

minfm;ng.r; '/:

The property T Œs�.b1 ı b2/ D T Œs�.b1/T Œs�.b2/ is equivalent to the identity

t Œs�mn.b1 ı b2/ D
X
k2N

t
Œs�

mk.b1/t
Œs�

kn.b2/ .m; n 2 N/:
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From this identity we can derive the so-called addition formulas for the Jacobi
polynomials and for the Zernike functions.

It can be shown that the representation T Œs� is irreducible on the space
Hs .s � �1/: Consequently, the hyperbolic wavelet transform T ;s generated by it
is injective.

In the papers [42, 50, 51] we investigated the admissible elements of Hs and
gave the analogues of the Plancherel formula for hyperbolic wavelet transform. For
instance, for the case s D 0; i.e. for the Bergman space B0.D/ D B2.D/ we proved
that every  2 B2.D/ is admissible and

kT Œ0�
 f kL2m.B/ D ck kB2.D/kf kB2.D/;

where c is an absolute constant, andm is the Haar measure of the group .B; ı/:
In the papers [20, 21] atoms and atomic decompositions are constructed for

a wide class of Banach spaces by discretizing the voice transform of general
locally compact groups induced by square integrable and integrable representations.
Applying these general results atomic decompositions are constructed for a wide
class of Bergman spaces by means of HWT in [23, 44]. In [22, 43, 45] the problem
of discretization of HWT is addressed based on the discrete subgroups of B: Among
others MRA decompositions and construction of orthogonal bases are considered.

4.5 Poles, Eigenvalues, Identification

The hyperbolic wavelet transform can be applied for determining the poles of ratio-
nal functions, the eigenvalues of matrices and for system identification [6–8, 56, 57].
To this order let us start from the hyperbolic wavelet transform (discrete Laguerre
coefficients) Tn WD T Œ�1�

en generated by the basis functions en.z/ WD e
Œ�1�
n .z/ WD zn

.n 2 N; z 2 C/ of the Hardy space H2.T/ W
.Tnf /.b/ WD hf; T Œ�1�.b;1/ eni D hf;Lbni .n 2 N; b 2 D; h�; �i WD h�; �i�1/:

We will define a map, that will be useful in several respects, which takes the
elements of H 2.D/ to sequences of functions T f WD .Tnf; n 2 N/ analytic on
D: For example, the `2norm of the sequence is a constant function on the disc:
k.T f /.b/k`2 D kf kH2.D/ .f 2 H 2.D/; b 2 D/: We showed in [56] that the
nonlinear sequence of functionals

.Qnf /.b/ WD .TnC1f /.b/
.Tnf /.b/

.n 2 N/:

can be used for calculating the poles of rational functions. To the description of the
set of convergence we will use the PD model and the pseudohyperbolic metric �:
Namely, let f be a proper rational function whose poles lie outside the closed disc
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D: Let ai 2 D .i D 1; 2; : : : ; N / denote the inverse poles of f; i.e. a�i WD 1=ai
.i D 1; : : : ; N / are the poles of f: It can be shown that except for the points of the
perpendicular bisector of the hyperbolic segment

Dij WD fb 2 D W �.b; ai / D �.b; aj /g;

the sequence ..Qnf /.b/; n 2 N/ converges for every b 2 D and the limits form a
subset of D with at most N elements. Indeed, if

D0 WD
[

1�i<j�N
Dij ; Di WD fb 2 D W �.b; ai / > max

1�j�n;j¤i
�.b; aj /g;

then the sets Di .1 � i � N/ are pairwise disjoint and D D [0�i�NDi . It can
be proved that for every b 2 Di the sequence ..Qnf /.b/; n 2 N/ converges to the
same point in bi 2 D and so ai is easy to reconstruct:

bi D .Qf /.b/ WD lim
n!1.Qnf /.b/; B

�1
b .bi / D ai .b 2 Di; 1 � i � N/:

For poles with multiplicity one the numbers

qi .b/ WD max
1�j�N;j¤i

�.b; aj /=�.b; ai / .b 2 Di; 1 � i � N/

can be used also for measuring the rate of convergence:

jbi � .Qnf /.b/j D O.qni .b// .b 2 Di; n!1/:

In case of poles with multiplicity higher than one, the rate of convergence is jbi �
.Qnf /.b/j D O.1=n/:

We note that depending on the locations of the inverse poles it may happen that
Di is empty for some i: In that case the pole a�i is called a hidden pole. By means
of the nonlinear operator

.Sf /.b/ WD .B�1b .Qf //.b/ .b 2 B nD0/

we can obtain all of the poles, except for the hidden ones, of a rational function f:
Separating these poles and repeating the process we can get every pole.

We construct a similar algorithm for calculating the eigenvalues of matrices [57].
Let us suppose that the eigenvalues �1; : : : ; �N of the matrix A 2 CN�N lie in D:

Starting from an arbitrary vector x0 2 CN and using the so-called Mises iteration
we calculate the sequence

xnC1 D Axn 2 C
N .n 2 N/:
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This recursion can also be considered as special discrete time invariant system.
The algorithm will be presented in this special case, noting that the method can
be extended to any discrete time invariant system. Let

F.z/ WD
1X
nD0

xnzn .z 2 D/

stand for the transfer function of the system. The function F W D! C
N is analytic

and

F.z/ � x0 D
1X
nD0

xnC1zn D A
 1X
nD0

xnzn
!
D AF.z/:

Hence we have that the transfer function can be written as

F.z/ D .I � zA/�1x0 .z 2 D/:

F is an analytic rational function on the closed disc D; which can be expressed by
the minimal polynomial

pA.z/ WD
mY
jD1

.z � �j /�j .z 2 C; m � N; �1 C � � � C �m � N/

of the matrix A W

F.z/ D
mX
jD1

�j�1X
kD0

zk

.1 � �j z/kC1
hij .A/x0:

Here the hij ’s are the Hermite type base polynomials generated by the zeros of the
minimal polynomial pA: Using the method given above for coordinate functions Fj
of F we obtain the non-hidden inverse poles ai D �i ; or eigenvalues.

5 Discrete Orthonormal Systems

In practical applications of orthogonal expansion we always use a discrete version
of the system. This means that instead of the original continuous system 'n W I !
C .n 2 N/ we take the restriction of the first N members onto a subset IN 	 I with
N elements. The discretization process produces a suitable discrete system if for a
proper discrete scalar product of the form
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Œf; g�N WD
X
t2IN

f .t/g.t/�N .t/ .�N .t/ > 0/; (11)

the discrete system will be orthonormal, i.e.

Œ'n; 'm�N D ımn .0 � m; n < N/: (12)

Such process is called orthogonal discretization. In this case the N th partial sum
of the Fourier expansion will interpolate the function in the pint of IN : For the
trigonometric case the discrete system is generated by equidistant partitions.

In the orthogonalization of the Malmquist–Takenaka systems we will make use
the fact that they can be originated from the trigonometric system by means of an
argument transform:

Bb.e
it / D eiˇb.t/; ˇb.t/ D ' C �r.t � '/ .t 2 R; b D rei' 2 D/;

where �r is the integral function of the Poisson kernel (see (4)). Then it follows that
the Blascke products in the MT functions can be written in the form

N�1Y
kD0

Bbk .e
it / D eiN
N .t/; 
N .t/ D 1

N

N�1X
kD0

ˇbk .t/;

where 
N W R ! R is a strictly increasing function for which 
N .t C 2�/ D

N .t/C 2� .t 2 R/. The Dirichlet kernel functions of the MT systems, similarly to
the trigonometric case, can be given in a closed form [43]:

N�1X
jD0

˚j .z/˚j .�/ D
QN�1
kD0 Bbk .z/Bbk .�/ � 1

z� � 1 .z; � 2 D/:

Hence

N�1X
jD0

˚j .zk/˚j .z`/ D ık`�N .zk/; �N .z/ D
N�1X
jD0

1 � jbj j2
j1� bj zj2 .0 � k; ` < N/

in the points of the set

TN WD fzk WD ei�k W �k WD 
�1N .t0 C 2k�=N/; 0 � k < N g:

Equivalently, ˛jk WD ˚j .zk/=
p
�N.zk/ .0 � j; k < N/ is orthogonal. Conse-

quently,
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N�1X
kD0

˛rk˛sk D
N�1X
kD0

˚r.zk/˚s.zk/=�N .zk/ D ırs:

Thus we obtain an orthogonal discretization of the MT systems of the form (11) on
the set IN WD TN and with the weight function �N D 1=�N :

We note that by means of the Christoffel–Darboux formula the orthogonal
discretization of the polynomial system P�

n .n 2 N/ with respect to the weight
function � W I ! .0;1/ is obtained in a similar way. Namely, taking the set of
the zeros of P�

N as IN the functions 'n D P�
n .0 � n < N/ satisfy the discrete

orthogonality (12), with �N .t/ .t 2 IN / being the Christoffel–Darboux numbers in
this case [61]. We used these ideas for the orthogonal discretization of the Zernike
functions, and for other discrete orthogonal systems, and also for the construction
of approximation, interpolation processes [16, 47, 48]. We found that these results
can be effectively applied for the mathematical representation of the human cornea
and for the approximation of functions defined on the surface of a ball [17–19, 48].

The MT systems share a number of properties with the orthogonal polynomials.
The roots of the classical orthogonal polynomials are related to electrostatic
equilibrium [61]. Similar interpretation can be given for the discretization set TN
[46]. Namely, setting

!1.z/ W D
N�1Y
jD0

.z� bj /; !2.z/ WD
N�1Y
jD0

.1 � bj z/;

!.z/ W D !01.z/!2.z/ � !02.z/!1.z/ .z 2 C/

we have that if � 2 C is a root of the polynomial ! of order 2.N � 1/ then this
holds also for �� WD 1=�, the mirror image of � with respect to T; with the same
multiplicity. Let �k 2 D .k D 1; : : : ; s/ denote the pairwise distinct roots of !
in the set D; and let mk be the multiplicity of �k: Then the following equilibrium
condition holds true:

NX
kD1;k¤n

1

zn � zk
D 1

2

sX
jD1

 
mj

zn � �j C
mj

zn � ��j

!
.n D 1; 2; : : : ; N /:

In particular, if b0 D � � � D bN�1 D b, then b and b� are zeros of ! with multiplicity
.N � 1/; and the equilibrium equation is:

NX
kD1;k¤n

1

zn � zk
D N � 1

2

�
1

zn � b C
1

zn � b�
�

.n D 1; 2; : : : ; N /: (13)

The last two equations can be understood as electrostatic equilibrium conditions.
The two-dimensional vector



654 F. Schipp

Fnk D 1

zn � zk
D 1

jzn � zkj
zn � zk
jzn � zkj

is the force between two unit charges with same polarity, where the Coulomb force
is reciprocally proportional with the distance. For the interpretation of the second
equation let us place N unit charges along the unit circle that can freely move and
fix two charges of value .N � 1/=2 at the points b and b�. The forces generated
by the fixed charges are called outer forces while those generated by the moving
charges are called inner forces. Equation (13) shows that for any particle zn the sum
of the outer forces acting on it is equal to the sum of the inner forces.

We have used the discrete version of the MT systems in system identification,
and in approximation and compression of ECG signals. In connection with system
identification we mention two results which are related to summation of expansions
with respect to periodic MT systems (especially Laguerre, and Kautz series). It may
occur that these expansions, similarly to the situation in the trigonometric case, do
not converge even for continuous functions. In order to fix this problem we showed
that for a wide collection of summation processes, so-called 
 summations, the

 means of continuous functions with respect to periodic MT systems converge
uniformly. We proved similar results for discrete periodic MT systems as well [3–5].

In case b0 D 0 the MT system, similarly to the trigonometric system, can be
extended to an orthonormal system on L2.T/ by adding the functions ˚�n.z/ D
˚n.z/ .z 2 T; n 2 N/: Then both the real <˚n and the imaginary =˚n .n 2 N/

systems are orthogonal in L2.T/: We used 2� periodic functions to model the ECG
curves. The typical segments, like the QRS complex, of it are of similar shape as the
linear combinations of real and imaginary parts of the basic functions

rb;j .z/ WD 1

.1 � bz/j
.b 2 D; j D 1; 2; : : : ; z 2 T/

that generate the MT systems. This observation was the motive behind the represen-
tation of the ECG signals in MT bases rather than in trigonometric or wavelet ones
[24–27]. We have worked out several algorithms for finding the optimal parameters
.bj ; j 2 N/ for the discrete orthogonal real MT systems. Based on our experiments
we found it advantageous to use three parameters, i.e. inverse poles b1; b2; b3 2 D

and repeating them periodically. Then the approximation of an ECG signal is
performed in two steps: First the distance

Ls WD spanf<rbj ;k;=rbj ;k W 1 � j � 3; 1 � k � sg

of f from the subspace

dist.b1; b2; b3/ WD min
g2Lr

kf � gk

is calculated, then it is minimalized with respect to the parameters b1; b2; b3 [35–38].
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One Hundred Years Uniform Distribution
Modulo One and Recent Applications
to Riemann’s Zeta-Function

Jörn Steuding

Dedicated to the Memory of Professor Wolfgang Schwarz

Abstract We start with a brief account of the theory of uniform distribution
modulo one founded by Weyl and others around 100 years ago (which is neither
supposed to be complete nor historically depleting the topic). We present a few
classical implications to diophantine approximation. However, our main focus is on
applications to the Riemann zeta-function. Following Rademacher and Hlawka, we
show that the ordinates of the nontrivial zeros of the zeta-function �.s/ are uniformly
distributed modulo one. We conclude with recent investigations concerning the
distribution of the roots of the equation �.s/ D a, where a is any complex number,
and further questions about such uniformly distributed sequences.

Keywords Riemann zeta-function • Zeros • a-points • Uniform distribution
modulo one

1 Dense Sequences and Classical Diophantine
Approximation

There are several opportunities to motivate uniform distribution modulo one. We
start with a remarkable observation from the Middle Ages due to the French
mathematician Nicole Oresme. In his work De proportionibus proportionum from
around 1360 he wrote that
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it is probable that two proposed unknown ratios are incommensurable because if many
unknown ratios are proposed it is most probable that any [one] would be incommensurable
to any [other].1

In another work entitled Tractatus de commensurabilitate vel incommensurabilitate
motuum cell from this time Oresme considered two bodies moving on a circle with
uniform but incommensurable velocities; here, he claimed that

no sector of a circle is so small that two such bodies could not conjunct in it at some future
time, and could not have conjuncted in it sometime [in the past].2

These sentences form part of Oresme’s refutation of astrology. He considered
the future as essentially unpredictable, a modern viewpoint which was pretty
controversial to the standards of his contemporaries. The above quotations indicate
a deep understanding of irrationality and circle rotations. In modern mathematical
language Oresme’s observation is that rational numbers form a negligible set (of
Lebesgue measure zero) and that the multiples of an irrational number lie dense
in the unit interval; with this statement Oresme was more than half a millennium
ahead of his time although his reasoning had gaps; we refer to [92] for a detailed
analysis of his thinking. Oresme is also well known for his opposition to Aristotle’s
astronomy; indeed, he thought about rotation of the Earth about two centuries before
Copernicus. Moreover, Oresme wrote an interesting treatise on the speed of light and
he invented a kind of coordinate geometry before Descartes, to mention just a few
of his ingenious ideas.

We continue with an interesting phenomenon about irregularities in the distri-
bution of digits in statistical data: in 1881, Simon Newcomb noticed that in books
consisting tabulars with values for the logarithm those pages starting with digit 1
were looking more used than others. In 1938, this phenomenon was rediscovered
and popularized by the physicist Frank Benford [3] who gave further examples from
statistics about American towns. According to this distribution a set of numbers
is said to be Benford distributed if the leading digit equals k 2 f1; 2; : : : ; 9g for
log10.1 C 1

k
/ percent instances. Thus, slightly more than 30 % of the numbers in

a Benford distributed data set have leading digit 1, and only about 6 % start with
digit 7. Benford’s law is supposed to hold for quite many sequences as constants in
physics and stock market values. An example for which Benford’s law is known to
hold is the sequence of Fibonacci numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; : : :, however,
the sequence of primes is not Benford distributed as was proved by Jolissaint [50]
and Diaconis [15]. Recent investigations show that certain stochastic processes,
e.g., the geometric Brownian motion or the 3X C 1-iteration due to Collatz satisfy
Benford’s law as shown by Kontorovich and Miller [55].

Here is an illustrating example of a deterministic sequence which follows
Benford’s law. Considering the powers of two, we notice that among the first of
those powers,

1; 2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; 2048; 4096; 8092; : : : ;

1The English translation is taken from [92].
2The English translation is taken from [92].
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there are indeed more integers starting with digit 1 than with digit 3. Obviously, a
power of 2 with a decimal expansion of m C 1 digits has leading digit k if, and
only if,

10mk � 2n < 10m.k C 1/ for k 2 f0; 1; : : : ; 9gI

taking the logarithm gives

mC log10 k � n log10 2 < mC log10.k C 1/:

For a real number x we introduce the decomposition in its integral and fractional
parts by writing x D bxc C fxg with bxc being the largest integer less than or
equal to x and fxg 2 Œ0; 1/ the fractional part. Consequently, the latter inequalities
transform into

log10 k � fn log10 2g < log10.k C 1/:

Since the logarithm is concave, the interval Œlog10 k; log10.kC1// is larger for small
k, so, heuristically, the chance is larger that n log10 2 has fractional part in such an
interval as n ranges through the set of positive integers. In the next section we shall
show that the sequence of numbers log10 xn D n log10 2 is uniformly distributed
modulo 1 which implies that indeed the proportion of 2n with leading digit k 2
f1; 2; 3; : : : ; 9g equals the length of the interval Œlog10 k; log10.k C 1//, that is

log10.k C 1/� log10 k D log10.1C 1
k
/:

In particular, log10 2 � 30:1% of the powers of 2 have a decimal expansion with
leading digit 1 whereas the leading digit equals 7 for only approximately 5:8%.
On the contrary, powers of 10 have always leading digit 1 in the decimal system.
This shows that the arithmetical nature of log10 2 is relevant for the proportion with
which leading digits appear.

For the first we shall generalize this problem to powers of some positive integer
a with respect to expansions to an arbitrary base b. Here both, a and b are
positive integers at least two. We shall use classical inhomogeneous Diophantine
approximation in order to show that any possible digit will appear as leading digit
of a power of a if, and only if, logb a is irrational. A theorem of Leopold Kronecker
[57] from 1884 states that given ˛ 2 R n Q and ˇ 2 R, for any N 2 N and any
" > 0, there exist integers n > N andm such that

jn˛ �m � ˇj < ":

There are many proofs of this theorem; see [41] for a collection of such proofs. An
elementary proof could start with the observation that, if ˛ 62 Q, then there exist
integers k; ` such that jk˛ � `j < ". Hence, the sequence fk˛g; f2k˛g; : : : provides
a chain of points across Œ0; 1/ where the distance between consecutive points is less



662 J. Steuding

than ". Applying Kronecker’s approximation theorem, we find that for any fixed
k 2 f1; : : : ; b � 1g, for any ˇ 2 .logb k; logb.k C 1//, and any " > 0, there do exist
integersm; n such that

jn logb a �m � ˇj < "

provided logb a is irrational. Thus, for sufficiently small ", the number an has
leading digit k with respect to its expansion in base b. Otherwise, if logb a is
rational, the sequence fn logb ag is periodic and the distribution of leading digits
of an differs from Benford’s law. We may interpret Kronecker’s approximation
theorem as follows: Given an irrational ˛, the sequence fn˛g lies dense in the unit
interval Œ0; 1/ as n ranges through N. This is nothing but Oresme’s statement from
the beginning! In the next section we shall strengthen this approximation theorem
significantly.

2 Uniform Distribution Modulo One

Given a dense sequence in the unit interval, e.g., the fractional parts of the numbers
n˛ with some explicit irrational real number ˛, it is natural to ask how this sequence
is distributed: are there subintervals that contain only a few elements of this
sequence? How soon does a sequence meet a given subinterval? The elaborated
study of such dense sequences was started around 1909 by three mathematicians
independently.

The Latvian mathematician Piers Bohl [7] was the first to succeed with a
quantitative improvement of Kronecker’s denseness theorem. He came across the
following Diophantine result:

We consider a onesided unlimited yarn with an infinite number of knots in such a way
that the first knot is at the end of the yarn and the other knots follow equally spaced with
subsequent distance r > 0. (. . . ) On a circle of circumference 1 we take a line segment
AB of length s .0 < s < 1/ and wrap the yarn starting from some arbitrary point
on the circumference. The number of the first n knots which after wrapping the yarn fall
into the line segment AB is denoted by '.n/. (. . . ) If r is an irrational number, then (. . . )
limn!1

'.n/

n
D s.3

3This is the author’s free translation of the original German text: “Wir denken uns nun einen
einseitig unbegrenzten Faden und nehmen auf demselben eine unbegrenzte Zahl von Knoten in
der Weise an, daß der erste Knoten mit dem Fadenende zusammenfällt, während die übrigen
im Abstände r > 0 der Reihe nach aufeinander folgen. (. . . ) Auf einem Kreise vom Umfang 1
nehmen wir (. . . ) eine Strecke AB von der Länge s (0 < s < 1) an und wickeln den Faden von
irgendeinem Punkte ausgehend auf die Peripherie auf. Die Anzahl derjenigen unter den n ersten
Knoten, welche bei der Aufwickelung auf der Strecke AB liegen, bezeichnen wir mit '.n/. (. . . )
Ist r eine Irrationalzahl, so folgt (. . . ) limn!1

'.n/

n
D s”.
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Bohl’s reasoning was of geometrical nature and rather complicated; his motivation
originated from astronomical questions.

In order to formulate his result in modern language we begin with a crucial
definition: a sequence .xn/n2N of real numbers is said to be uniformly distributed
modulo one (resp. equidistributed) if for all ˛; ˇ with 0 � ˛ < ˇ � 1 the proportion
of the fractional parts of the xn in the interval Œ˛; ˇ/ corresponds to its length in the
following sense:

lim
N!1

1

N
]f1 � n � N W fxng 2 Œ˛; ˇ/g D ˇ � ˛:

Obviously, it suffices to consider only intervals of the form Œ0; ˇ/ with arbitrary
ˇ 2 .0; 1/.
Theorem 1. Given a real number ˛, the sequence .n˛/n2N is uniformly distributed
modulo one if, and only if, ˛ is irrational.

This theorem is due to Bohl [7] and it provides an immediate solution of the problem
concerning the powers of two from the previous section. Since log10 2 is irrational,
an application of Theorem 1 shows that the proportion of positive integers n for
which the inequalities log10 k � fn log10 2g < log10.k C 1/ hold equals the length
of the interval, that is log10.1C 1

k
/, as predicted by Benford’s law. We shall give an

elegant and short proof of Bohl’s theorem below.
Around the same time Wacław Sierpińksi [80, 81] gave an independent proof

of this result; his motivation was of pure arithmetical nature. Finally, there is to
mention Hermann Weyl [95, 96] who at the same time was investigating Gibb’s
phenomenon in Fourier analysis; he was faced with essentially the same arithmetical
question as Bohl and Sierpinski. In view of these rather different motivations
uniform distribution was indeed a hot topic around 1909/1910. A little later, Felix
Bernstein [4] observed the similarities in the papers of Bohl, Sierpinksi, and Weyl.
Interestingly, his approach is based on Lebesgue theory, a modern tool in that
time which turned out to be not appropriate with respect to uniform distribution
modulo one (as follows from Theorem 2 below). The paper of Bernstein was
rather influential; it stands at the beginning of further investigations of illustrious
mathematicians.

Once Harald Bohr said “To illustrate to what extent Hardy and Littlewood in
the course of the years came to be considered as the leaders of recent English
mathematical research, I may report what an excellent colleague once jokingly
said: ‘Nowadays, there are only three really great English mathematicians: Hardy,
Littlewood, and Hardy-Littlewood”’. (cf. [66]). In 1912, the third of these three
English mathematicians, Hardy and Littlewood [38, 39] started his (their) research
on uniform distribution and succeeded to prove

lim
N!1

1

N

NX
nD1

exp.�ink˛/ D 0 (1)
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for fixed k ¤ 0 and irrational ˛. Their aim were applications to the Riemann zeta-
function, however, of different nature than our later applications. The same can be
said about the work of Bohr and Courant [8]. We refer to Binder and Hlawka [5]
for a detailed historical account of their work and the very beginnings of uniform
distribution theory. We remark that besides Cambridge, where Hardy and Littlewood
were doing their work, Göttingen was the place of location giving the impetus on
uniform distribution theory. Here Bernstein was working as a professor, Weyl as
young docent, and Bohr was visiting Courant.

Another impact of Bernstein’s paper [4] was the new awakening of Weyl’s old
interest in questions on rational approximation. The following quote is from a late
work of Weyl [102]:

When the problem and Bohl’s paper were pointed out to me by Felix Bernstein in 1913, it
started me on my investigations on Diophantine approximations. . .

Indeed, Weyl starts his pathbreaking article [100] with almost the same words as the
above quotation of Bohl’s theorem. We continue with presenting the main results
from Weyl’s papers [98–100].

Theorem 2. A sequence .xn/n2N of real numbers is uniformly distributed modulo
one if, and only if, for any Riemann integrable function f W Œ0; 1�! C,

lim
N!1

1

N

NX
nD1

f .fxng/ D
Z 1

0

f .x/ dx: (2)

By this criterion uniform distribution modulo one can be characterized by a certain
property in some class of functions. This point of view is completely different
from previous approaches and might be seen as starting point of any deeper study
of uniform distribution. Moreover, Weyl’s first theorem may be interpreted as a
forerunner of the celebrated Birkhoff pointwise ergodic theorem [6]; nowadays,
any treatise on ergodic theory with applications in number theory as, for instance
[18], includes uniform distribution modulo one and, in particular, Weyl’s theorem
as motivation for the concept of ergodicity. And indeed, in 1913/1914, Rosenthal
[75,76] showed the impossibility of the strong ergodicity hypothesis from statistical
mechanics and how a weak ergodicity hypothesis can be used as substitute; for the
latter purpose he used ideas similar to those of Bohr and Weyl.

Proof. Given ˛; ˇ 2 Œ0; 1�, denote by Œ˛;ˇ/ the indicator function of the interval
Œ˛; ˇ/, i.e.,

Œ˛;ˇ/.x/ D
�
1 if ˛ � x < ˇ;
0 otherwise.
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Obviously,

Z 1

0

Œ˛;ˇ/.x/ dx D ˇ � ˛:

Therefore, the sequence .xn/ is uniformly distributed modulo 1 if, and only if, for
any pair ˛; ˇ 2 Œ0; 1/,

lim
N!1

1

N

NX
nD1

Œ˛;ˇ/.fxng/ D
Z 1

0

Œ˛;ˇ/.x/ dx:

Assuming the asymptotic formula (2) for any Riemann integrable function f , it
follows that .xn/ is indeed uniformly distributed modulo one.

In order to show the converse implication we suppose that .xn/ is uniformly
distributed modulo 1. Then (2) holds for f D Œ˛;ˇ/ and, consequently, for any
linear combination of such indicator functions. In particular, we may deduce that (2)
is true for any step function. For any real-valued Riemann integrable function f and
any " > 0, we can find step functions t�; tC such that

t�.x/ � f .x/ � tC.x/ for all x 2 Œ0; 1�;

and

Z 1

0

.tC.x/ � t�.x// dx < ":

Hence,

Z 1

0

f .x/ dx �
Z 1

0

t�.x/ dx >
Z 1

0

tC.x/ dx � ";

and

1

N

NX
nD1

f .fxng/�
Z 1

0

f .x/ dx � 1

N

NX
nD1

tC.fxng/�
Z 1

0

tC.x/ dx C ";

which is less than 2" for all sufficiently large N . Analogously, we obtain a similar
lower bound. Consequently, (2) holds for all real-valued Riemann integrable func-
tions f . The case of complex-valued Riemann integrable functions can be deduced
from the real case by treating the real and imaginary part of f separately. ut

We shall illustrate Theorem 2 with an example of a sequence which is not
uniformly distributed modulo one. For this purpose we consider the fractional parts
of the numbers xn D logn and the function defined by f .u/ D exp.2�iu/. An easy
computation shows
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NX
nD1

f .log n/ D
NX
nD1

n2�i D
NX
nD1

� n
N

�2�i
N 2�i � N1C2�i

Z 1

0

u2�i du D N1C2�i

1C 2�i

which is not o.N /. Hence, the sequence .logn/n is not uniformly distributed modulo
1. Actually, this is the reason why we have been surprised by Benford’s law: if
.xn/ is uniformly distributed modulo one, then .logxn/ is Benford distributed. As
a matter of fact, the Benford distribution is nothing else than the probability law of
the mantissa with respect to the basis.

The converse of Weyl’s Theorem was found by de Bruijn and Post [12]: given
a function f W Œ0; 1/ ! C with the property that for any uniformly distributed
sequence .xn/ the limit

lim
N!1

1

N

NX
nD1

f .fxng/

exists, then f is Riemann integrable. It is interesting that here the Riemann integral
is superior to the Lebesgue integral (different from ergodic theory where it is vice
versa). In fact, Theorem 2 does not hold for Lebesgue integrable functions f in
general since f might vanish at each point fxng but have a non-vanishing integral.
This subtle difference is related to a rather important application of uniformly
distributed sequences, namely so-called Monte-Carlo methods and their use in
numerical integration: if N points are uniformly distributed in the square Œ�1; 1�2 in
the Euclidean plane and the numberM counts those points which lie inside the unit
circle centred at the origin, then the quotient M=N is a good guess for the area �
of the unit disk. In view of this idea uniformly distributed sequences can be used to
evaluate numerically certain integrals for which there is no elementary method, e.g.
the Gaussian integral

R
exp.�x2/ dx. More on this topic can be found in [45].

Our next aim is another characterization of uniform distribution modulo one,
also due to Weyl. For abbreviation, we write e.�/ D exp.2�i�/ for � 2 R

which translates the 2�i -periodicity of the exponential function to 1-periodicity:
e.�/ D e.� C Z/.

Theorem 3. A sequence .xn/n2N of real numbers is uniformly distributed modulo
one if, and only if, for any integerm ¤ 0,

lim
N!1

1

N

NX
nD1

e.mxn/ D 0: (3)

Proof. Suppose the sequence .xn/ is uniformly distributed modulo one, then
Theorem 2 applied with f .x/ D e.mx/ shows

lim
N!1

1

N

NX
nD1

e.mxn/ D
Z 1

0

e.mx/ dx:

For any integerm ¤ 0 the right-hand side equals zero which gives (3).
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For the converse implication suppose (3) for all integers m ¤ 0. Starting with a
trigonometric polynomial

P.x/ D
CMX

mD�M
am e.mx/ with am 2 C;

we compute

lim
N!1

1

N

NX
nD1

P.fxng/D
CMX

mD�M
am � lim

N!1
1

N

NX
nD1

e.mxn/Da0D
Z 1

0

P.x/ dx: (4)

Recall Weierstraß’ approximation theorem which claims that, for any continuous
1-periodic function f and any " > 0, there exists a trigonometric polynomial P
such that

jf .x/ � P.x/j < " for 0 � x < 1 (5)

(this can be proved with Fourier analysis). Using this approximating polynomial,
we deduce

ˇ̌
ˇ̌
ˇ
1

N

NX
nD1

f .fxng/�
Z 1

0

f .x/ dx

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
1

N

NX
nD1
.f .fxng/� P.fxng//

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ
1

N

NX
nD1

P.fxng/�
Z 1

0

P.x/ dx

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌
Z 1

0

.P.x/ � f .x// dx

ˇ̌
ˇ̌ :

The first and the third terms on the right are less than " thanks to (5); the second term
is small by (4). Hence, formula (2) holds for all continuous, 1-periodic functions f .
Denoting by Œ˛;ˇ/ the indicator function of the interval Œ˛; ˇ/ (as in the proof of
the previous theorem), for any " > 0, there exist continuous 1-periodic functions
f�; fC satisfying

f�.x/ � Œ˛;ˇ/.x/ � fC.x/ for all 0 � x < 1;

and

Z 1

0

.fC.x/ � f�.x// dx < ":
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This leads to

lim
N!1

1

N

NX
nD1

Œ˛;ˇ/.fxng/ D
Z 1

0

Œ˛;ˇ/.x/ dx:

Hence, the sequence .xn/ is uniformly distributed modulo one. ut
A probabilistic proof can be found in Elliott’s monography [20].
As an easy application of the latter criterion we shall deduce Bohl’s Theorem 1:

if ˛ is irrational, then e.m˛/ ¤ 1 for any 0 ¤ m 2 Z and the formula for the finite
geometric series yields

NX
nD1

e.mn˛/ D e.m˛/
1 � e.mN˛/

1� e.m˛/

for all integersm ¤ 0. Since this quantity is bounded independently ofN , it follows
that (3) holds with xn D n˛. Otherwise, ˛ D a

b
for some integers a; b with b ¤ 0;

in this case, the limit is different from zero for all integer multiples m of b and
Theorem 3 implies the assertion. For an elementary proof see Miklavc [68].

Weyl [100] gave the following polynomial generalization of Bohl’s Theorem 1
extending the result on the uniform distribution of ˛nk implied from (1) signifi-
cantly: If P D adX

d C � � � C a1X C a0 is a polynomial with real coefficients,
where at least one coefficient aj with j ¤ 0 is irrational, then the values P.n/ are
uniformly distributed modulo one as n ranges through N.

In the brief introduction to uniform distribution modulo one above we have
closely followed Weyl [100]. It should be noticed that Theorem 3 was already
known to Weyl as early as Summer 1913 previous to Theorem 2; in [100] he wrote
about Bohl’s theorem:

The claim, that this sequence is everywhere dense, is the content of a famous approximation
theorem due to Kronecker. The present stronger theorem has been presented first by myself
in a talk at the Göttingen Mathematical Society in Summer 1913 and it had been proved in
a similar way as here.4

However, after its presentation at the meeting of the Göttingen Mathematical Society
in July 1913 Weyl did not intend to publish this criterion immediately since at that
time he was much impressed by Bohr’s approach to related problems (see [98]). The
first publication of Weyl’s elegant characterization of uniform distribution is [99].
In view of Hardy and Littlewood’s estimate (1) it follows from Theorem 3 that for
an arbitrary positive integer k the sequence nk˛ is uniformly distributed modulo
one if ˛ is irrational. It might have been that Weyl was inspired by (1) to consider

4This is the author’s free translation of the original German text: “Die Behauptung, daß diese
Punktfolge überall dicht liegt, ist der Inhalt eines berühmten Approximationssatzes von Kronecker.
Das vorliegende viel schärfere Theorem ist zuerst im Sommer 1913 von mir in einem Vortrag in der
Göttinger Mathematischen Gesellschaft aufgestellt und ähnliche Weise wie hier bewiesen worden”.
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exponential sums with respect to uniform distribution and his extension to more
general polynomials changed his reservation to publish his results.

The year 1913 must have been a very important year for Hermann Weyl for
various reasons. Not only that he gave birth to the theory of uniform distribution
modulo one, in the same year Weyl married Helene Joseph, a student of the
philosopher Husserl, he left Göttingen for Zurich where he became full professor at
the Polytechnic Zurich,5 and he published his famous treatise on Riemann surfaces
[97]. At that time Weyl was 27 years old. His later works to mathematics include
his important contributions to the theory of group representations, mathematical
physics, and philosophy of mathematics. In 1919, Weyl adopted Brouwer’s ideas
about intuitionism and in particular Weyl’s approach to uniform distribution modulo
one was based on non-constructive mathematics. This is neither curious nor tragic
since Weyl was discussing this type of questions with a certain gingerliness. As
Taschner [84] showed, Weyl’s reasoning can be made constructive.

It might be interesting to notice that in the mathematical diaries of Adolf Hurwitz
[46] one can find an entry from April 19146 dealing with Sierpiński’s theorem [80,
81] claiming that, for any a 2 Œ0; 1�,

lim
n!1

1

n

X
m�n
fm˛C ag D 1

2

if, and only if, ˛ is irrational. At that time young Weyl and the established Hurwitz
were colleagues at the ETH Zurich but it seems that the elder did not know about the
younger’s work on this topic beyond the papers [95, 96] from 1909/1910. Actually,
Sierpiński used a result of Hurwitz in his second paper [81] and we may guess
that this started Hurwitz’s interest on this topic. In his diary Hurwitz proves a
generalization of Sierpiński’s theorem which is very close to Weyl’s Theorem 2,
namely: if f is Riemann integrable on Œ0; 1� and ˛ irrational, then

lim
n!1

1

n
.f .f˛g/C f .f2˛g/C � � � C f .fn˛g// D

Z 1

0

f .x/ dx

(by slight modification of his notation from the diary). It is also mentioned that this
holds with replacing the left-hand side by limn!1 1

n
.f .fcC ˛g/C f .fcC 2˛g/C

� � � C f .fc C n˛g//, where c is an arbitrary real number (Fig. 1 and Fig. 2).
The strong criterion, Weyl’s Theorem 3, can be applied and extended in various

ways giving generalizations beyond Bohl’s theorem. He himself strengthened
results of Hardy and Littlewood on sequences of the form nk˛ (as already mentioned
above), mathematical billiards, and the three-body problem (see [100]). One of the
most spectacular results is due to Vinogradov [87] being the main ingredient in his

5Eidgenössische Hochschule Zürich (ETH).
6A precise date is impossible because this entry is without date, however, comparing with other
date entries one may deduce that Hurwitz wrote this in between April 2 and April 30.
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Fig. 1 Adolf Hurwitz, Mathematische Tagebücher, no. 26, p. 185: Sierpiński’s theorem. As
follows from a handwritten note [72] Hurwitz’s protégé Pólya gave the inspiration

Fig. 2 Adolf Hurwitz, Mathematische Tagebücher, no. 26, p. 187: Hurwitz’s generalization

proof of the ternary Goldbach conjecture that any sufficiently large odd integer can
be represented as a sum of three primes. For this purpose he found a nontrivial
estimate for the exponential sum

P
pn�N e.pn˛/, where pn denotes the nth prime

(in ascending order). Vinogradov proved that for irrational ˛ the sequence .pn˛/ is
uniformly distributed modulo 1. In order to get an impression on the depth of this
result one may notice that in case of rational ˛ this question is intimately related
to the distribution of primes in arithmetic progressions.7 The binary Goldbach

7Recently, H. Helfgott published an article “Major arcs for Goldbach’s theorem” (see
arXiv:1305.2897) and another article “Numerical Verification of the Ternary Goldbach Conjecture
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conjecture that any even integer larger than two is representable as sum of two
primes is wide open.

We conclude this section with another open question. It is not known whether the
sequence of powers . 3

2
/n or the numbers exp.n/ are uniformly distributed modulo

one. Koksma [53] showed that almost all sequences .˛n/ with ˛ > 1 are uniformly
distributed, however, there is no single ˛ with this property explicitly known. On the
contrary, if ˛ is a Salem number, i.e., all algebraic conjugates of ˛ (except ˛) have
absolute value less than one, then the sequence .˛n/ is not uniformly distributed. An
excellent reading on the beautiful theory of uniform distribution modulo one are the
monographs [10] and [58] by Bugeaud and Kuipers and Niederreiter, respectively.

3 Basic Theory of the Riemann Zeta-Function

Prime numbers are the fascinating multiplicative atoms from which the integers
are built. It was the young Gauss who was the first to conjecture the true order of
growth for the number �.x/ of primes p � x. In a letter to Encke from Christmas
1849 Gauss wrote

You have reminded me of my own pursuit of the same subect, whose first beginnings
occurred a very long time ago, in 1792 or 1793, when I had procured for myself
Lambert’s supplement to the table of logarithms. Before I had occupied myself with the
finer investigations of higher arithmetic, one of my first projects was to direct my attention
to the decreasing frequency of prime numbers, to which end I counted them up in several
chiliads and recorded the results on one of the affixed white sheets. I soon recognized, that
under all variations of this frequency, on average, it is nearly inversely proportional to the
logarithm, so that the number of all prime numbers under a given boundary n were nearly
expressed through the integral

Z
dn

logn
;

if the integral is understood hyperbolic. (see [86]).8

up to 8.875e30” (see arXiv:1305.3062) which is joint work with D.J. Platt; both pieces together
imply the full ternary Goldbach conjecture provided that there is no serious gap in their reasoning.
8“Die gütige Mittheilung Ihrer Bemerkungen über die Frequenz der Primzahlen ist mir in mehr als
einer Beziehung interessant gewesen. Sie haben mir meine eigenen Beschäftigungen mit demsel-
ben Gegenstande in Erinnerung gebracht, deren erste Anfänge in eine sehr entfernte Zeit fallen,
ins Jahr 1792 oder 1793, wo ich mir die Lambertschen Supplemente zu den Logarithmentafeln
angeschafft hatte. Es war noch ehe ich mit feineren Untersuchungend er höheren Arithmetik mich
befasst hatte eines meiner ersten Geschäfte, meine Aufmerksamkeit auf die abnehmende Frequenz
der Primzahlen zu richten, zu welchem Zweck ich die einzelnen Chiliaden abzählte, und die
Resultate auf einem der angehefteten weissen Blätter verzeichnete. Ich erkannte bald, dass unter
allen Schwankungen diese Frequenz durchschnittlich nahe dem Logarithmen verkehrt proportional
sei, so dass die Anzahl aller Primzahlen unter einer gegebenen Grenze n nahe durch das IntegralR

dn
logn ausgedrückt werde, wenn der hyperbolische Logarithm. verstanden werde”.
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The appearing integral is the logarithmic integral; if the upper limit equals x, then
it is asymptotically equal to x

log x , hence Gauss’ conjecture can be made precise in
writing

�.x/ � li .x/ WD
Z x

2

du

log u
; as x !1; (6)

using a modified logarithmic integral.
In 1859, Riemann [74] figured out how the distribution of prime numbers can

be studied by means of analysis; in contrast to previous work of Euler on the
zeta-function Riemann had the stronger tools of complex analysis at hand. In the
following we shall briefly survey his remarkable insights in the close relation
between primes and the zeta-function.

For Re s > 1, the Riemann zeta-function is defined by

�.s/ D
1X
nD1

1

ns
D
Y
p

�
1 � 1

ps

��1
I (7)

here the product is taken over all prime numbers p. The identity between the
series and the product is an analytic version of the unique prime factorization of
the integers as becomes obvious by expanding each factor of the product into a
geometric series. This type of series is called a Dirichlet series and a product over
primes as above is referred to as Euler product. It is not difficult to show that both,
the series and the product in (7) converge absolutely for all complex numbers s
with Re s > 1. We need an analytic continuation of the zeta-function to the left
of this half-plane of absolute convergence. Following Riemann [74] we substitute
u D �n2x in Euler’s representation of the Gamma-function,

� .u/ D
Z 1
0

uz�1 exp.�u/ du;

and obtain

�
� s
2

�
��

s
2
1

ns
D
Z 1
0

x
s
2�1 exp.��n2x/ dx: (8)

Summing up over all n 2 N yields

��
s
2 �

� s
2

� 1X
nD1

1

ns
D
1X
nD1

Z 1
0

x
s
2�1 exp.��n2x/ dx:

On the left-hand side we find the Dirichlet series defining �.s/; in view of its
convergence, the latter formula is valid for Re s > 1. On the right-hand side we may
interchange summation and integration, justified by absolute convergence. Thus we
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obtain

�� s
2 �

� s
2

�
�.s/ D

Z 1
0

x
s
2�1

1X
nD1

exp.��n2x/ dx:

We split the integral at x D 1 and get

��
s
2 �

� s
2

�
�.s/ D

�Z 1

0

C
Z 1
1

�
x
s
2�1!.x/ dx; (9)

where the series !.x/ is given in terms of the theta-function of Jacobi:

!.x/ WD 1
2
.#.x/ � 1/ with #.x/ WD

C1X
nD�1

exp.��n2x/:

In view of the functional equation for the theta-function, we have

!

�
1

x

�
D 1

2

�



�
1

x

�
� 1

�
D px!.x/C 1

2
.
p
x � 1/;

which can be deduced from Poisson’s summation formula. By the substitution
x 7! 1

x
it turns out that the first integral in (9) equals

Z 1
1

x�
s
2�1!

�
1

x

�
dx D

Z 1
1

x�
sC1
2 !.x/ dx C 1

s � 1 �
1

s
:

Using this in (9) yields

��
s
2 �

� s
2

�
�.s/ D 1

s.s � 1/ C
Z 1
1

�
x�

sC1
2 C x s

2�1
�
!.x/ dx: (10)

Since !.x/  exp.��x/, the integral converges for all values of s, and thus (10)
holds, by analytic continuation, throughout the complex plane. The right-hand side
remains unchanged by s 7! 1� s. This proves

Theorem 4. The zeta-function �.s/ has an analytic continuation to C n f1g with a
simple pole at s D 1 and satisfies

��
s
2 �

� s
2

�
�.s/ D �� 1�s

2 �

�
1 � s
2

�
�.1� s/: (11)

Riemann’s functional equation (11) in combination with the Euler product disclose
important information about the analytic behaviour of the zeta-function. In view
of the Euler product (7) it is easily seen that �.s/ has no zeros in the half-plane
Re s > 1. It follows from the functional equation (11) and from basic properties of
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the Gamma-function that �.s/ vanishes in Re s < 0 exactly at the so-called trivial
zeros s D �2n with n 2 N. All other zeros of �.s/ are said to be nontrivial, and we
denote them by � D ˇ C i� . Obviously, they lie inside the so-called critical strip
0 � Re s � 1, and they are non-real. The functional equation (11) and the identity
�.s/ D �.s/ show some symmetries of �.s/. In particular, the nontrivial zeros of
�.s/ are distributed symmetrically with respect to the real axis and to the vertical
line Re s D 1

2
. It was Riemann’s ingenious contribution to number theory to point

out how the distribution of these nontrivial zeros is linked to the distribution of prime
numbers. Riemann conjectured the asymptotics for the number N.T / of nontrivial
zeros � D ˇ C i� with 0 < � < T (counted according to multiplicities). This
conjecture was proved in 1895 by von Mangoldt [90,91] who found more precisely,
as T !1,

N.T / D T

2�
log

T

2�e
CO.logT /: (12)

Here and elsewhere the nontrivial zeros are counted according to their multiplicity.
There is no multiple zero known, however, one cannot exclude their existence so
far; it follows from (12) that the multiplicity of a nontrivial zero � D ˇ C i� is
bounded by O.log j� j/. Since there are no zeros on the real line except the trivial
ones, and nontrivial zeros are symmetrically distributed with respect to the real axis,
it suffices to study the distribution of zeros in the upper half-plane.

Riemann worked with the function t 7! �. 1
2
C i t/ and wrote that very likely

all roots t are real,9 i.e., all nontrivial zeros lie on the so-called critical line
Re s D 1

2
. This is the famous, yet unproved Riemann hypothesis which we rewrite

equivalently as

Riemann’s hypothesis. �.s/ ¤ 0 for Re s > 1
2
.

In support of his conjecture, Riemann calculated some zeros; the first one with
positive imaginary part is � D 1

2
C i14:134 : : :. Furthermore, he conjectured that

there exist constants A and B such that

1
2
s.s � 1/�� s

2 �
� s
2

�
�.s/ D exp.AC Bs/

Y
�

�
1 � s

�

�
exp

�
s

�

�
; (13)

where the product on the right is taken over all nontrivial zeros (the trivial zeta zeros
are cancelled by the poles of the Gamma-factor). This latter conjecture was shown
by Hadamard [35] in 1893 (on behalf of his theory of product representations of
entire functions). Finally, Riemann conjectured the so-called explicit formula which
states that

9The original German text is: “und es ist wahrscheinlich, daß alle Wurzeln den Realteil 1=2
haben: Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung
desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für
den nächsten Zweck meiner Untersuchung entbehrlich schien”.
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�.x/C
1X
nD2

�
�
x
1
n

�
n
D li.x/ �

X
�DˇCi�
�>0

�
li.x�/C li.x1��/

�

C
Z 1
x

du

u.u2 � 1/ log u
� log 2 (14)

for any x � 2 not being a prime power (otherwise a term 1
2k

has to be added on
the left-hand side where k stems from x D pk). The appearing modified integral
logarithm is defined by

li.xˇCi� / D
Z .ˇCi�/ log x

.�1Ci�/ log x

exp.z/

zC ıi� dz;

where ı D C1 if � > 0 and ı D �1 otherwise. The explicit formula was proved
by von Mangoldt [90] in 1895 as a consequence of both product representations
for �.s/, the Euler product (7) and the Hadamard product (13). Building on these
ideas, Hadamard [36] and de la Vallée-Poussin [13] gave (independently) in 1896
the first proof of Gauss’ conjecture (6), the celebrated prime number theorem. For
technical reasons it is of advantage to work with the logarithmic derivative of �.s/
which is for Re s > 1 given by

� 0

�
.s/ D �

1X
nD1

�.n/

ns
;

where the von Mangoldt�-function is defined by

�.n/ D
�

logp if n D pk with k 2 N;

0 otherwise.
(15)

Important information concerning the prime counting function �.x/ can be
recovered from information about

 .x/ WD
X
n�x

�.n/ D
X
p�x

logp CO
�
x
1
2 logx

�
:

Partial summation gives �.x/ �  .x/

log x . First of all, we shall express  .x/ in terms
of the zeta-function. If c is a positive constant, then

1

2�i

Z cCi1

c�i1
xs

s
ds D

�
1 if x > 1;
0 if 0 < x < 1:

This yields the so-called Perron formula: for x 62 Z and c > 1,
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 .x/ D � 1

2�i

Z cCi1

c�i1
� 0

�
.s/
xs

s
ds: (16)

Moving the path of integration to the left, we find that the latter expression is equal
to the corresponding sum of residues, that are the residues of the integrand at the
pole of �.s/ at s D 1, at the zeros of �.s/, and at the additional pole of the integrand
at s D 0. The main term turns out to be

RessD1
�
��
0

�
.s/
xs

s

�
D lim

s!1.s � 1/
�

1

s � 1 CO.1/
�
xs

s
D x;

whereas each nontrivial zero � gives the contribution

RessD�
�
��
0

�
.s/
xs

s

�
D �x

�

�
:

By the same reasoning, the trivial zeros altogether contribute

1X
nD1

x�2n

2n
D � 1

2
log

�
1 � 1

x2

�
:

Incorporating the residue at s D 0, this leads to the exact explicit formula

 .x/ D x �
X
�

x�

�
� 1

2
log

�
1 � 1

x2

�
� log.2�/;

which is equivalent to Riemann’s formula (14). This formula is valid for any x 62 Z.
Notice that the right-hand side of this formula is not absolutely convergent. If �.s/
would have only finitely many nontrivial zeros, the right-hand side would be a
continuous function of x, contradicting the jumps of  .x/ for prime powers x.
Going on it is more convenient to cut the integral in (16) at t D ˙T which leads to
the truncated version

 .x/ D x �
X
j� j<T

x�

�
CO

� x
T
.log.xT //2

�
; (17)

valid for all values of x. Next we need information on the distribution of the
nontrivial zeros. Already the non-vanishing of �.s/ on the line Re s D 1 yields the
asymptotic relations  .x/ � x, resp. �.x/ � li .x/, which is Gauss’ conjecture (6)
and sufficient for many applications. However, more precise asymptotics with a
remainder term can be obtained by a zero-free region inside the critical strip. The
largest known zero-free region for �.s/was found by Vinogradov [88] and Korobov
[56] (independently) in 1958 who proved
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�.s/ ¤ 0 in Re s � 1 � c.log.jt j C 3//� 13 .log log.jt j C 3//� 23 ;

where c is some positive absolute constant. In combination with the Riemann–
von Mangoldt formula (12) we can estimate the sum over the nontrivial zeros
in (17). Balancing T and x, we obtain the prime number theorem with the sharpest
known remainder term: there exists an absolute positive constant C such that for
sufficiently large x

�.x/ D li .x/CO
 
x exp

 
�C .logx/

3
5

.log logx/
1
5

!!
:

By the explicit formula (17) the impact of the Riemann hypothesis on the prime
number distribution becomes visible. In 1900, von Koch [89] showed that for fixed

 2 Œ 1

2
; 1/

�.x/ � li .x/ x
C" ” �.s/ ¤ 0 for Re s > 
 I (18)

equivalently, one can replace the left-hand side by  .x/ � x; here " stands for an
arbitrary small positive constant. In view of the existence of zeros on the critical
line an error term with 
 < 1

2
is impossible. Hardy [37] proved that infinitely many

zeros lie on the critical line. Refining a method of Atle Selberg [78], Levinson [63]
localized more than one third of the nontrivial zeros of the zeta-function on the
critical line, and as Heath-Brown [42] and Selberg (unpublished) discovered, those
zeros are all simple. The current record is due to Bui et al. [11] who showed, by
extending Levinson’s method, that more than 41 % of the zeros are on the critical
line and more than 40:5% are simple and on the critical line. For further reading on
the theory of the Riemann zeta-function we refer to the classical monograph [85] by
Titchmarsh and the current book [48] by Ivić; many historical details about prime
numbers can be found in Schwarz’s survey [77] and Narkiewicz’s monograph [70].

4 The Ordinates of Zeta Zeros are Uniformly Distributed
Modulo One

Obviously, the trivial zeros are not uniformly distributed modulo one. In 1956
Rademacher [73] proved on the contrary the remarkable result that the ordinates
of the nontrivial zeros of the zeta-function are uniformly distributed modulo one
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provided that the Riemann hypothesis is true; later Elliott [19] remarked that the
latter condition can be removed, and (independently) Hlawka [44] obtained the
following unconditional

Theorem 5. For any real number ˛ ¤ 0 the sequence ˛� , where � ranges through
the set of positive ordinates of the nontrivial zeros of �.s/ in ascending order, is
uniformly distributed modulo one. In particular, the ordinates of the nontrivial zeros
of the zeta-function are uniformly distributed modulo one.

Proof. We need some deeper results from zeta-function theory. We start with a
theorem of Landau [59] who proved, for x > 1,

X
0<�<T

x� D ��.x/ T
2�
CO.logT /; (19)

where the summation is over all nontrivial zeros � D ˇ C i� and �.x/ is the von
Mangoldt �-function, defined by (15); if x 2 .0; 1/ one has to replace �.x/ by
x�. 1

x
/ because of the symmetrical distribution of nontrivial zeros. (We shall give a

proof of Landau’s formula in the following section!) Let x > 1. In view of (19) and
the Riemann–von Mangoldt-formula (12) it follows that

1

N.T /

X
0<�<T

x�  logx

logT
: (20)

To avoid the assumption of the Riemann hypothesis we observe that

jx 1
2Ci� � xˇCi� j � maxfxˇ; x 1

2 gj exp
��
1
2
� ˇ� logx

� � 1j
� maxfxˇ; x 1

2 g logx jˇ � 1
2
j:

Thus,

1

N.T /

X
0<�<T

jx 1
2Ci� � xˇCi� j � max

˚
x; x

1
2

�j logxj
N.T /

X
0<�<T

jˇ � 1
2
j: (21)

In the sequel the implicit constants may depend on x. Next we shall use a result of
Littlewood [65], namely

X
0<��T

jˇ � 1
2
j  T log logT: (22)

It should be noted that Selberg [78] improved upon this result in replacing the right-
hand side by T by integration of his density theorem

N.�; T / T 1�
1
4 .�� 12 / logT (23)
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for the number N.�; T / of hypothetical zeros � D ˇ C i� with 0 < � � T and
ˇ > � , i.e.,

X
0<��T

jˇ � 1
2
j D

Z 1

1
2

N.�; T / d�  T:

Both estimates indicate that most of the zeta zeros are clustered around the critical
line.10

Inserting this in (21) and using (12) leads to

1

N.T /

X
0<��T

�
x
1
2Ci� � xˇCi�

�
 log logT

logT
:

Thus, it follows from (20) that also

1

N.T /

X
0<��T

x
1
2Ci�  log logT

logT
:

Letting x D zm with some real number z > 1 andm 2 Z, we deduce

1

N.T /

X
0<��T

exp.im� log z/ log logT

logT
;

which tends to zero as T !1. Hence, it follows from Weyl’s criterion, Theorem 3,
that the sequence of numbers ˛� with ˛ D log z

2�
is uniformly distributed modulo

one. ut
Elliott’s paper [19] is from 1972; it is a transcript of a talk he had given at a meeting
on number theory at Oberwolfach in 1968. The main focus of his work, however,
was on the frequency of negative values of the Legendre symbol. Elliott’s approach
is based on the following formula (in slightly different notation)

X
j�nj<T

exp.i!�n/ D 2Re
Z T�

0

exp.i!y/ dN.y/

D 2Re

�
i!

Z T�

0

S.y/ exp.i!y/ dy

�
CO.logT /;

10A different approach to results around the sum of terms jˇ� 1
2
j is due to Kondratyuk [54] based

on a variant of the Carleman–Nevanlinna theorem.
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where S.t/ WD 1
�

arg �. 1
2
C i t/ is the argument of the zeta-function on the critical

line11 and ! ¤ 0 is a fixed real number. Using a conditional asymptotic formula
for the second moment of S.t/ (under assumption of the Riemann hypothesis) due
to Selberg (unpublished), Rademacher’s theorem follows. This is followed by an
added note saying

In a lecture given at the same meeting in Oberwolfach, Professor Selberg indicated that
he had improved his result concerning arg �. 1

2
C i t / to give unconditional information

concerning the distribution of the values of �.s/ in regions centred on the line � D 1
2
.

In particular it is possible with a suitable interpretation to give an unconditional form of
Theorem 2.

In this quotation Theorem 2 is exactly the same statement as in Theorem 5 above.
The paper [45] by Hlawka is from 1975 and does not include a reference to Elliott’s
paper. Hlawka’s approach is slightly different; his proof is more or less identical
to our reasoning above. A last word about the reception of these papers. It seems
that Elliott [19] was unaware of Rademacher’s work [73] since he does not cite his
paper. On the contrary, Hlawka [45] quotes Rademacher’s paper but not the one
by Elliott. In his Zentralblatt review Hlawka wrote that he learned about Elliott’s
previous result by his colleague Bundschuh.12 It should be mentioned that Hlawka
[45] also gave a multidimensional analogue of the above theorem. Another proof of
the uniform distribution modulo one of the ordinates was given by Fujii [24]; this
paper contains as well further related results.

It is a long-standing conjecture that the ordinates of the nontrivial zeros are
linearly independent over the rationales. So � C � 0 should never equal another
ordinate of a zeta zero. Of course, one should not expect any algebraic relation for
the zeta zeros, hence it is reasonable to expect the converse. Ingham [47] observed
an interesting impact on the distribution of values of the Möbius �-function. Let
M.x/ DPn�x �.n/, where �.n/ is defined by

�.s/�1 D
Y
p

�
1 � 1

ps

�
D
1X
nD1

�.n/

ns
;

the latter identity being valid for Re s > 1. It is not difficult to deduce that �.n/ D
.�1/r if n is squarefree and r denotes the number of prime divisors of n; otherwise,
�.n/ D 0. Ingham showed that, if the ordinates of the nontrivial zeros are indeed
linearly independent over the rationals, then lim supx!1M.x/x�

1
2 D C1 and

lim infx!1M.x/x�
1
2 D �1 which should be compared with (24) below.

Since �.n/ 2 f0;˙1g one may interpret M.x/ as the realization of a one-
dimensional symmetric random walk starting at zero. It was Denjoy [14] who argued

11Defined by continuous variation from the principal branch of the logarithm on the real axis.
12“Der Referent [Hlawka] wurde von Herrn Bundschuh aufmerksam gemacht, daß auch P.D.T.A.
Elliott (. . . ) diese Tatsache bemerkt hat”.
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as follows. Assume that fXng is a sequence of random variables with distribution
P.Xn D C1/ D P.Xn D �1/ D 1

2
. Define

S0 D 0 and Sn D
nX

jD1
Xj ;

then fSng is a symmetrical random walk in Z with starting point at 0. By the theorem
of Moivre-Laplace this can be made more precise. It follows that

lim
n!1P

n
jSnj < cn1

2

o
D 1p

2�

Z c

�c
exp

�
�x

2

2

�
dx:

Since the right-hand side above tends to 1 as c !1, we obtain

lim
n!1P

n
jSnj  n

1
2C"

o
D 1

for every " > 0. We observe that this might be regarded as a model for the value-
distribution of Möbius �-function. The law of the iterated logarithm in order to get
the strong estimate for a symmetric random walk

lim
n!1P

n
jSnj  .n log logn/

1
2

o
D 1:

This suggests for M.x/ the upper bound .x log logx/
1
2 which is pretty close to the

so-called weak Mertens hypothesis stating

Z X

1

�
M.x/

x

�2
dx  logX:

The latter bound implies the Riemann hypothesis and that all zeros are simple. On
the contrary, Odlyzko and te Riele [71] disproved the original Mertens hypothesis
[67], i.e., jM.x/j < x 1

2 , by showing

lim inf
x!1

M.x/

x
1
2

< �1:009 and lim sup
x!1

M.x/

x
1
2

> 1:06I (24)

for more details see the notes to Sect. 14 in Titchmarsh [85].
Landau’s formula and variations have been used, in particular by Fujii in a

series of papers, in order to evaluate discrete moments of the zeta-function or its
derivative near or at its zeros, e.g.

P
0<�<T �

0. 1
2
C i�/ with very precise error

terms under assumption of the Riemann hypothesis (see [27]). Furthermore, Fujii
[28] investigated the sequence � C � 0 where both � and � 0 range through the set
of positive ordinates of zeta zeros (in ascending order). Assuming the Riemann
hypothesis, he obtained an asymptotic formula for
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X
0<�;� 0<T

�C� 0<T

xi.�C� 0/ � �.x/2

x

T 2

8�2
C xiT

logx

T .logT /2

4�2i

with an explicit error term. Since the number of terms � C � 0 < T is asymptotically

equal to T 2.logT /2

8�2
, it follows that the sequence of � C � 0 is uniformly distributed

modulo one. This has been used by Egami and Matsumoto [17] to motivate a related
conjecture on distances between different pairs of zero ordinates in order to show
that a certain multiple zeta-function has a natural boundary.

5 Questions Around the Distribution of Values of �.s/

Bounds for the Riemann zeta-function rely heavily on estimates for certain expo-
nential sums. In order to see that consider the Dirichlet polynomial obtained from
the defining series for �.s/, i.e.,

X
n�x

1

ns
D 1C

X
1<n�x

1

n�
exp.�i t logn/;

where we have written s D �C i t . One may hope to estimate �.�C i t/ by finding a
good bound for this Dirichlet polynomial; of course, we exclude here any treatment
of the tail of the series expansion. By partial summation it suffices to consider
the latter sum in case of � D 0. Replacing the logarithm logn by an appropriate
polynomial P of sufficiently high degree, the problem is reduced to an estimation
of the exponential sum

X
1<n�x

1

n�
exp.�i tP.n//:

This type of quantity was already treated by Weyl [100] when he was generalizing
Bohl’s theorem from the case of linear polynomials to arbitrary polynomials. The
works of Hardy and Littlewood [38,39] had been following this line of investigation
(see [85], Chap. V); exponential sums have found further applications in their
approach to the Waring problem by introducing the circle method. In 1921, Weyl
[101] pushed his method further to deal with exponential sums associated with the
zeta-function and obtained stronger bounds for �.1 C i t/. Later Vinogradov gave
another, in the case of the zeta-function more powerful method to bound exponential
sums which led him to the still best known zero-free region so far (see [85], Chap. V
for more details).

Studies on the general distribution of values of the zeta-function started with the
research of Bohr and his school. In fact Bohr and his contemporaries were using
Diophantine approximation in order to prove that the zeta-function assumes large
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and small values. For the sake of simplicity, let us consider the truncated Euler
product

Y
p�x

�
1 � 1

ps

��1
I (25)

by observing ps D p� exp.i t logp/ one may use a multi-dimensional version
of Kronecker’s approximation theorem in order to find some real number � such
that the values 1

2�
t logp are close to 1

2
modulo one for all primes p � x

which in turn implies that pit is close to �1. This leads to a small value for the
truncated Euler product and thereby proves that inf j�.s/j D 0 in the half-plane
of absolute convergence although �.s/ does not vanish (see [85], Chap. VIII for
details). Inside the critical strip the situation is more subtle since (25) does not
converge any longer to �.s/. Nevertheless, by mean-square approximation this idea
can be transported in some way to deduce similar results for �.s/ on and around
vertical lines �CiR inside the critical strip. A central role is played by the following
extension of Kronecker’s approximation theorem due to Weyl [100]: Let a1; : : : ; aN
be real numbers, linearly independent over Q, and let � be a subregion of the
N -dimensional unit cube with Jordan content � .13 Then

lim
T!1

1

T
meas f� 2 .0; T / W .�a1; : : : ; �aN / 2 � mod 1g D �:

Moreover, suppose that the curve

f!.�/g WD .f!1.�/g; : : : ; f!N .�/g/;

is uniformly distributed mod 1 in RN (extending the discrete and one-dimensional
definition from Sect. 2 in a natural way). Let D be a closed and Jordan measurable
subregion of the unit cube in RN and let˝ be a family of complex-valued continuous
functions defined on D . If ˝ is uniformly bounded and equicontinuous, then

lim
T!1

1

T

Z T

0

f .f!.�/g/1D.�/ d� D
Z
D
f .x1; : : : ; xN / dx1 : : : dxN

uniformly with respect to f 2 ˝ , where 1D.�/ is equal to 1 if !.�/ 2 D mod 1,
and 0 otherwise. A proof of Weyl’s theorem can be found in his paper [98] as well
as in Karatsuba and Voronin [52]. In [41], Sect. 23.6, Hardy and Wright state a
multi-dimensional analogue of Kronecker’s theorem and comment on this result as
one of those mathematical theorems which assert (. . . ) that what is not impossible
will happen sometimes however improbable it may be. Outside mathematics this is

13Note that the notion of Jordan content is more restrictive than the notion of Lebesgue measure.
But, if the Jordan content exists, then it is also defined in the sense of Lebesgue and equal to it.
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known as “ Murphy’s law”. The unique prime factorization of integers implies the
linear independence of the logarithms of the prime numbers over the field of rational
numbers. Thus, in some sense, the logarithms of prime numbers behave like random
variables and everything that can happen will happen!

Exploiting this idea, and sometimes further methods, namely addition of convex
sets, Bohr and his school obtained plenty of remarkable and beautiful results on the
value-distribution of the zeta-function, e.g. that the set of values of �.� C i t/ is
dense in C as t ranges through R for any fixed 1

2
< � � 1 (see [85], Chap. XI).

Notice that the problem whether the values taken by the zeta-function on the critical
line lie dense in the complex plane is still unsolved.

However, the most spectacular statement in the value-distribution theory of the
Riemann zeta-function was found by Voronin [93] in 1975 who discovered the
following remarkable approximation property of the zeta-function: Let 0 < r < 1

4

and g.s/ be a non-vanishing continuous function defined on the disk jsj � r , which
is analytic in the interior of the disk. Then, for any " > 0, there exists a real number
� > 0 such that

max
jsj�r

ˇ̌
�
�
s C 3

4
C i�� � g.s/ˇ̌ < "I

moreover, the set of all � 2 Œ0; T � with this property has positive lower density with
respect to the Lebesgue measure. This is the so-called universality theorem since it
allows the approximation of a huge class of target functions by a single function,
namely the Riemann zeta-function. Also here a key role in Voronoin’s proof
is played by Weyl’s refinement of Kronecker’s approximation theorem. Besides
Voronin’s original proof there is a probabilistic approach to universality due to
Bagchi, Reich, Laurinčikas and further developed by many others (see [62, 82]).
In this method the pointwise ergodic theorem due to Birkhoff replaces the use of
Weyl’s uniform distribution theorem in Voronin’s approach.

It was Edmund Landau [60] who started in his invited talk at the occasion of
the fifth International Mathematical Congress held at Cambridge in 1912 a new
direction in the value distribution theory of the zeta-function. He announces this
line of investigation as follows:

Now let me discuss some different investigations about �.s/. Given an analytic function, the
points for which this function is 0 are very important; however, of equal interest are those
points where the function assumes a given value a. It is easy to prove that �.s/ takes any
value a. But where do the roots of �.s/ D a lie?14

Notice that for Landau the distribution of the roots of

�.s/ D a

14“Ich komme jetzt zu einigen anderen Untersuchungen über �.s/. Es sind bei einer analytischen
Funktion die Punkte, an denen sie 0 ist, zwar sehr wichtig; ebenso interessant sind aber die Punkte,
an denen sie einen bestimmten Wert a annimmt. Zu beweisen, dass �.s/ jeden Wert a annimmt, ist
ein leichtes. Wo liegen aber die Wurzeln von �.s/ D a?”
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is for each complex value a equally important. These roots are called a-points and
will be denoted by �a D ˇa C i�a. In the following year Landau [9] proved that
there is an a-point near any trivial zero s D �2n for any sufficiently large positive
integer n, which we shall call trivial. One can show that the trivial a-points are not
uniformly distributed modulo one (since they lie too close to the trivial zeros �2n,
see [64]). All other a-points are said to be nontrivial. For any fixed a, there exist
left and right half-planes free of nontrivial a-points (see formula (28), resp. [9]).
Moreover, Landau [9] obtained an asymptotic formula for the number Na.T / of
nontrivial a-values with imaginary part �a satisfying 0 < �a � T , namely,

Na.T / D T

2�
log

T

2�eca
CO.logT /; (26)

as T ! 1, where ca D 1 if a ¤ 1, and c1 D 2. Here and in the sequel the
a-points are counted according to multiplicities and the multiplicity of an a-point
�a D ˇaCi�a is therefore bounded byO.log.3Cj�aj//. The paper [9] of Bohr et al.
is of special interest in our context: it was published exactly 100 years ago, when in
Göttingen Weyl was proving his powerful criterion, Theorem 3, and Landau was at
the same time professor at Göttingen. This very paper consists of three independent
chapters, the first belonging essentially to Bohr, the second to Landau, and the third
to Littlewood; it had been submitted in November 1913, the same year as Weyl
proved his powerful criterion for uniform distribution modulo one.15 The asymptotic
formula (26) extends the Riemann–von Mangoldt-formula for the number N.T / of
nontrivial zeros to arbitrary a-points and shows that the main term is independent
of a. Finally, Landau [9] proved that almost all a-points are clustered around the
critical line provided the Riemann hypothesis is true. The latter assumption was
removed by Levinson [64] who showed that all but O.Na.T /= log logT / of the
a-points �a D ˇa C i�a with imaginary part in �a 2 .T; 2T / satisfy

jˇa � 1
2
j < .log logT /2

logT
: (27)

His reasoning is based on the identity

2�
X

T<�a�TCU
ˇa>�b

.ˇa C b/ D
Z TCU

T

log j�.�b C i t/ � aj dt

�U log j1 � aj CO.logT /

with some real constant b (as follows from Littlewood’s lemma).

15And we shall make use of both results later on!
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In some literature, density theorems showing that most of the zeros of �.s/
lie close to the critical line were interpreted as an indicator for the truth of the
Riemann hypothesis, however, this is only correct if the quantitative difference to
the clustering of arbitrary a-points is taken into account (as, for example, (23) vs.
Levinson’s theorem above). We illustrate this observation with a quotation from
Levinson [64]:

In his recent book (. . . ) Edwards states that the clustering of the zeros of �.s/ near � D
1=2, first proved by Bohr and Landau (. . . ), is the best existing evidence for the Riemann
Hypothesis. Titchmarsh (. . . ) also emphasizes with italics the clustering phenomenon of the
zeros of �.s/. It will be shown here that for any complex a the roots of �.s/ D a cluster at
� D 1=2 and so, in this sense, the case a D 0 is not special. However, (. . . ) it is clear that
the clustering for the case a D 0 is more pronounced than for a ¤ 0. . .

The books in question are [16] and [85] by Edwards and Titchmarsh, respectively. It
seems that Landau’s conditional results on the distribution of a-points have been
forgotten. As Levinson pointed out, a general clustering of a-points around the
critical line is true, not only for zeros. However, in the case of zeros the quantity
of those zeros which do not lie inside this cluster set are smaller than for any other
a-points.

6 Generalizing Landau’s Theorem and Applications

Landau’s formula, resp. theorem (19) has been extended and generalized in different
ways. For instance, Kaczorowski et al. [51] introduced weights in order to obtain an
error term of more flexible shape. We aim at an application to the distribution of
a-points, hence our generalization is completely different: Following [83] we start
with

Theorem 6. Let x be a positive real number¤ 1. Then, as T !1,

X
0<�a<T

x�a D .˛.x/ � x�. 1
x
//
T

2�
CO�T 1

2C"�;

where ˛.x/ and �.x/ equal the Dirichlet series coefficients in (29) and (30),
respectively, if x D n or x D 1=n for some integer n � 2, and zero otherwise.

The implicit constant in the error term may depend here and elsewhere on x. The
theorem gives an explicit formula with a-points in place of zeros. The case a D 0

was first treated by Landau [59]; later improvements, resp. generalizations are due
to Gonek [33], Fujii [25–27] (with an improved uniform error estimate), and Murty
and Murty [69] (for L-functions from the Selberg class). For the special case a D 2
Hille [43] proved that the coefficients f .n/ of the Dirichlet series for .�.s/ � 2/�1
count the number of representations of n as a product of integers strictly greater
than one; this allows a simple computation of the arithmetical function n 7! ˛.n/

via the convolution � log D ˛ 
 f . For other values of a the author is not aware of
any number-theoretical meaning of ˛.
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In order to generalize Landau’s formula (19) we shall use some ideas from
Garunkštis and Steuding [30].

Proof. First we assume a ¤ 1. Since �.s/ � a has a convergent Dirichlet series
representation for sufficiently large Re s, it follows that there exists a half-plane
Re s > B which is free of a-points. In order to compute such an abscissa B
explicitly, we assume � WD Re s > 1 and estimate

j�.s/� 1j �
X
n�2

n�� <
Z 1
1

u�� du D 1

� � 1:

Thus,

�.s/� a ¤ 0 for � > 1C 1

ja � 1j : (28)

Consequently, as shown by Landau [61], the inverse .�.s/ � a/�1 has a convergent
Dirichlet series expansion in the same half-plane. After multiplying with the
convergent Dirichlet series for � 0.s/, we end up with

� 0.s/
�.s/� a D

X
n�2

˛.n/

ns
I (29)

In case of a D 0 this equals the logarithmic derivative of the zeta-function

� 0

�
.s/ D �

X
n�2

�.n/

ns
(30)

which plays a central role in Landau’s proof of Theorem 6 in the special case a D 0
as well as in proofs of other explicit formulae in prime number theory. Notice that
˛.n/ D ��.n/ if a D 0. Moreover, we observe that both series have no constant
term since the series for � 0.s/ has not. By partial summation it follows that the
abscissa of convergence and the abscissa of absolute convergence of an ordinary
Dirichlet series differ by at most one. Hence, the abscissa of absolute convergence
of the Dirichlet series (29) is less than or equal to B WD 2 C ja � 1j�1 (see [40]).
In view of (26) for any positive T0 we can find some T 2 ŒT0; T0 C 1/ such that
the distance between T to the nearest ordinate �a of the a-points is bounded by
.logT /�1. Moreover, let b WD 1 C .logT /�1. Then only finitely many a-points
lie to the left of the vertical line Re s D 1 � b. Finally, note that the logarithmic
derivative of �.s/ � a has simple poles at each a-point with residue equal to the
order. Hence

X
0<�a<T

x�a D 1

2�i

Z
R
xs

� 0.s/
�.s/� a ds;
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where R denotes the counterclockwise oriented rectangle with vertices B C i; B C
iT; 1 � b C iT; 1 � b C i and the error term arises from possible contributions of
a-points outside R. We rewrite

Z
R
xs

�0.s/

�.s/� a ds D
( Z BCiT

BCi
C
Z 1�bCiT

BCiT
C
Z 1�bCi

1�bCiT
C
Z BCi

1�bCi

)
xs

�0.s/

�.s/� a ds D
4X

jD1

Ij ;

say. We start with the vertical integral on the right-hand side. Interchanging
summation and integration we find

I1 D
X
n�2

˛.n/

Z BCiT

BCi

�x
n

�s
ds D i˛.x/T CO.1/;

where ˛.x/ equals the coefficient ˛.n/ in the Dirichlet series expansion (29) if x D
n or x D 1=n, and ˛.x/ D 0 otherwise (i.e., x ¤ n; 1=n for all 2 � n 2 N).

Next we consider the horizontal integrals. Recall the functional equation,

�.s/ D �.s/�.1� s/ ; where �.s/ D 2.2�/s�1 sin �s
2
� .s/:

By Stirling’s formula, we find

�.� ˙ i t/ � jt j 12�� j�.1� � � i t/j;

uniformly in � , as jt j ! 1. This in combination with the Phragmén-Lindelöf
principle yields the bound

�.� C i t/ t�.�/C";

where

�.�/
8<
:

0 if � > 1;
1
2
.1 � �/ if 0 � � � 1;
1
2
� � if � < 0:

Using the partial fraction decomposition for the logarithmic derivative (as in [30]),
we get

I2 D �
�Z 1

�.logT /�1
C
Z B

1

�
x�CiT

� 0.� C iT /
�.� C iT /� a d�  xT

1
2C" C xBT ":

Next we evaluate the vertical integral on the left-hand side Re s D 1 � b of the
contour. It is not difficult to show
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�.� C i t/� t
1
2��

log t
(31)

(otherwise consult Lemma 4 in [30]). Hence, the left-hand side has absolute value
larger than 1=2 for t � t0. For such values of t we may expand the logarithmic
derivative into a geometric series

� 0.s/
�.s/� a D

� 0

�
.s/

1

1 � a=�.s/ D
� 0

�
.s/

0
@1CX

k�1

�
a

�.s/

�k1A :

This gives

I3 D O.1/�
Z 1�bCiT

1�bCi t0
xs
� 0

�
.s/

0
@1CX

k�1

�
a

�.s/

�k1A ds:

In view of (31) we find

Z 1�bCiT

1�bCi t0
xs
� 0

�
.s/
X
k�1

�
a

�.s/

�k
ds  x1�bT .logT /

X
k�1

�
logT

T
1
2

�k

 x1�bT 1
2 .logT /2:

Using the functional equation, we get in view of (30)

�
Z 1�bCiT

1�bCi t0
xs
� 0

�
.s/ ds D

Z 1�bCiT

1�bCi t0
xs
�
� 0

�
.1 � s/ � �

0

�
.s/

�
ds

D �ix1�b
X
n�2

�.n/n�b
Z T

t0

.xn/it dt C

Cix1�b
Z T

t0

xit .log t
2�
CO.t�1// dt:

The first term on the right-hand side equals ix�. 1
x
/T C O.1/ whereas the second

term can be bounded by logT=j logxj. Finally, the remaining horizontal integral is
independent of T , hence I4  1C xB . Thus we arrive at

X
0<�a<T

x�a D ˚˛.x/ � x�. 1
x
/
� T
2�
COx

�
T

1
2C"�:

In order to have the asymptotic formula uniform for all T we add an error of size
O.logT /. This proves the theorem for a ¤ 1. If a D 1, we consider the function
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`.s/ D 2s.�.s/� 1/ D 1C
X
n�3

�
2

n

�s

and its logarithmic derivative

`0

`
.s/ D log 2C � 0.s/

�.s/� 1 :

Applying contour integration to this logarithmic derivative yields the asymptotic
formula for a D 1. ut

The above reasoning with x D 1 and a more careful treatment of the error term
leads to the asymptotic formula (26) for Na.T /.

Next, using our new explicit formula, we shall generalize the result on the
uniform distribution modulo one from the zeros to a-points:

Theorem 7. For any complex number a and any real ˛ ¤ 0, the sequence
of numbers ˛�a (with �a denoting the ordinates of the a-points) are uniformly
distributed modulo one.

In view of our generalization of Landau’s theorem the proof of the latter result is
straightforward.

Proof. Recall Levinson’s theorem [64] from the previous section that all but
O.Na.T /= log logT / of the a-points �a D ˇa C i�a with imaginary part in �a 2
.T; 2T / satisfy (27). More precisely, let ı.T / D .log logT /2= logT ; then Levinson
showed that the number of a-points �a D ˇa C i�a for which jˇa � 1=2j > ı and
T < �a < 2T is bounded by T logT= log logT . This yields

X
T<�a�2T

jˇa � 1
2
j D

8̂
<
:̂

X
T<�a�2T
ˇa�1=2>ı

C
X

T<�a�2T
jˇa�1=2j�ı

C
X

T<�a�2T
ˇa�1=2<�ı

9>=
>; jˇa �

1
2
j

 T logT

log logT
C T .log logT /2:

Using this with 2�kT in place of T and adding the corresponding estimates over all
k 2 N, we deduce

X
0<�a�T

jˇa � 1
2
j  T logT

log logT
D o.Na.T //: (32)

Since

exp.y/� 1 D
Z y

0

exp.t/ dt  jyjmaxf1; exp.y/g;
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we find, for x ¤ 1,

jx 1
2Ci�a �xˇaCi�a j � xˇa j exp.. 1

2
�ˇa/ logx/�1j � jˇa� 1

2
jmaxfxˇa ; x 1

2 gj logxj:

Hence,

1

Na.T /

X
0<�a�T

jx 1
2Ci�a � xˇaCi�a j � X

Na.T /

X
0<�a�T

jˇa � 1
2
j;

where X D maxfxB; 1gj logxj and B is the upper bound for the real parts of the
a-points. In view of (32) we have

1

Na.T /

X
0<�a�T

�
x
1
2Ci�a � xˇaCi�a� X

log logT
:

Recall Theorem 6,

X
0<�a<T

xˇaCi�a  T I

here and in the sequel we drop the dependency on x since only the limit as T !1
is relevant. Hence, we obtain

1

Na.T /

X
0<�a�T

x
1
2Ci�a  1

log logT
:

Let x D zm with some positive real number z ¤ 1 and m 2 N. Then, after dividing
the previous formula by x

1
2 , we may deduce

lim
T!1

1

Na.T /

X
0<�a�T

exp.im�a log z/ D 0

Now Weyl’s criterion, Theorem 3, implies that the sequence of numbers 1
2�
�a log z

is uniformly distributed modulo one. ut
We shall give a new application of Theorem 7. Given sequences of monotonically

increasing positive real numbers a D .an/n and b D .bk/k , both being uniformly
distributed modulo one, Akbary and Murty [1] showed that then also the union of
both, namely the sequence a [ b WD .an; bk/n;k is uniformly distributed modulo
one. Here the sequence .an; bk/n;k is ordered according to the absolute value of its
elements. The easy proof is as follows. Denote byNa.x/ the number of elements an
from a satisfying an � x. Then,
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1

Na[b.x/

ˇ̌
ˇ̌
ˇ̌
X

an;bk�x
e.m.an; bk//

ˇ̌
ˇ̌
ˇ̌ D 1

Na.x/CNb.x/

ˇ̌
ˇ̌
ˇ̌
X
an�x

e.man/C
X
bk�x

e.mbk/

ˇ̌
ˇ̌
ˇ̌

� 1

Na.x/

ˇ̌
ˇ̌
ˇ
X
an�x

e.man/

ˇ̌
ˇ̌
ˇC

1

Nb.x/

ˇ̌
ˇ̌
ˇ̌
X
bk�x

e.mbk/

ˇ̌
ˇ̌
ˇ̌ :

Hence, Weyl’s criterion, Theorem 3, implies the assertion. As a consequence, we
may deduce from Theorem 7 the following

Corollary 1. Let M 2 N and ˛1; : : : ; ˛M be arbitrary positive real numbers and
a1; : : : ; aM be arbitrary complex numbers. Then the sequence

[1�m�M.˛m�am/ D f˛1�a1 ; : : : ; ˛M �aM g

is uniformly distributed modulo one. In particular, the ordinates of the zeros
of P.�.s// are uniformly distributed modulo one, where P is any non-constant
polynomial with complex coefficients.

The application to P.�.s// follows from the factorization P.�/ D Q
j .� � aj /

with certain complex numbers aj by the fundamental theorem of algebra and an
application of the uniform distribution modulo one of the union of the imaginary
parts of the aj -points.

7 Discrepancy and Further Concluding Remarks

We conclude with a few further problems related to applications of uniform
distribution modulo one in the context of the Riemann zeta-function. Already
Weyl noticed that the appearing limits are uniform which has been studied ever
since under the notion of discrepancy. This topic has important applications, for
instance, in billiards where we may ask how soon an aperiodic ray of light will
visit a given domain? First results for effective billiards are due to Weyl [99],
interesting and surprising results on square billiards have recently been discovered
by Beck [2] showing that the typical billiard path is extremely uniform far beyond
what one might expect. Also important in this setting are effective versions of the
inhomogeneous Kronecker approximation theorem from the introductory section
as, for example, [94]. In the case of the zeros of the Riemann zeta-function first
estimates for the discrepancy were already given by Hlawka [45]; using the Erdös-
Turán inequality he proved

sup
0�˛�1

1

N.T /

ˇ̌
]
˚
0 < � < T W f� 1

2�
logXg � ˛N.T /�ˇ̌ logX

log logT
;
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valid forX > 1 and all sufficiently large T , where C is an explicit positive constant;
the right-hand side can be replaced by logX

logT if the Riemann hypothesis is assumed.
Further results in this direction are due to Fujii in a series of papers [23, 24, 29],
Akbary and Murty [1], and Ford, Soundararajan, respectively. In Zaharescu [21,
22] connections to Montgomery’s pair correlation conjecture and the distribution of
primes in short intervals are established. In all these investigations the dependency
of the error term in Landau’s explicit formula on x is relevant. Improvements of the
explicit formula with an error terms that is uniform in x were given in particular by
Fujii [25, 26] and Gonek [32, 33].

The most natural question seems to be whether the uniform distribution modulo
one is a common feature for all arithmetical L-functions. There is no precise
definition of an L-function. M.N. Huxley said “What is a zeta-function (or an
L-function)? We know one when we see one”. Therefore it seems natural to consider
classes ofL-functions. The Selberg class provides a rather general axiomatic setting
for L-functions (see [79] and [82] for its definition); the most simple examples
are Dirichlet L-functions to residue class characters (or L-series as in the above
quotation). These L-functions share many patterns with the Riemann zeta-function
and for those it was already noticed by Hlawka [44] that the results for the zeta-
function carry over without any difficulty. However, the situation for L-functions
associated with modular forms is more delicate; Hlawka finishes his investigations
with the following words:

The investigations can be generalized to L-series as well as to Dedekind zeta-functions.
(. . . ) It would be interesting to extend this to other zeta-functions as, for example,

P �.n/

ns
,

where � is the well-known Ramanujan function.16

The Ramanujan function n 7! �.n/ provides the Fourier coefficients of the
modular discriminant; the associated L-function is the prototype of a degree two
element of the Selberg class arising from a modular form. Akbary and Murty [1]
proved conditionally uniform distribution modulo one for the non-trivial zeros of
L-functions L.s/ from a certain class containing the Selberg class; however, their
condition is a conjecture on power moments, resp. an analogue of Levinson’s bound,
namely the so-called average density hypothesis claiming that

X
0��<T

ˇ> 12

�
ˇ � 1

2

� D o.NL.T //; (33)

where the nontrivial zeros of L.s/ are denoted by ˇ C i� and their number up to
height T is counted by NL.T /. Such an estimate implies that the zeros are clustered
around the critical line. In the case of L-functions to modular forms Akbary and
Murty [1] succeeded to prove (33), however, different to Hlwaka’s statement, for

16“Die Überlegungen lassen sich auf L-Reihen wie auf die Dedekindsche Zetafunktion übertragen.
(. . . ) Interessant wäre es, dies auf andere Zetafunktionen, wie z.B. auf die

P �.n/

ns
auszudehnen, wo

� die bekannte Ramanujansche Funktion ist.”
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Dedekind zeta-function the uniform distribution modulo one of the zeros has been
proved only in the case of Abelian number fields K=Q (since in this case the
Dedekind zeta-function splits into a product of more simple L-functions). Obvious
question are whether Condition (33) can be proved in general and what can be
done with respect to a-points. A certain progress here is due to Jakhlouti et al.
[49] who considered an extension of Theorem 7 to L-functions with polynomial
Euler products, and Garunkštis et al. [31] obtained an analogue for certain Selberg
zeta-functions. The distribution of a-points of an L-function from the Selberg class
has been started already with Selberg’s influential paper [79]; further results in this
direction are in particular due to Gonek et al. [34].
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48. Ivić, A.: The Theory of Hardy’s Z-Function. Cambridge University Press, Cambridge (2013)
49. Jakhlouti, M.-T., Mazhouda, K., Steuding, J.: Distribution uniform modulo one of the a-values

of L-functions in the Selberg class (submitted)
50. Jolissaint, P.: Loi de Benford, relations de récurrence et suites équidistribuées. Elem. Math.

60, 10–18 (2005)
51. Kaczorowski, J., Languasco, A., Perelli, A.: A note on Landau’s formula. Funct. Approx.

Comment. 28, 173–186 (2000)
52. Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. de Gruyter, Berlin (1992)
53. Koksma, J.F.: Ein mengentheoretischer Satz über die Gleichverteilung modulo 1. Compositio

Math. 2, 250–258 (1935)
54. Kondratyuk, A.A., Carleman-Nevanlinna, A.: Theorem and summation of the Riemann zeta-

function logarithm. Comput. Methods Funct. Theory 4, 391–403 (2004)
55. Kontorovich, A.V., Miller, S.J.: Benford’s law, values of L-functions and the 3xC1 problem.

Acta Arith. 120, 269–297 (2005)
56. Korobov, N.M.: Estimates of trigonometric sums and their applications. Uspehi Mat. Nauk

13, 185–192 (1958) (Russian)
57. Kronecker, L.: Die Periodensysteme von Funktionen reeller Variablen, pp. 1071–1080.

Berichte d. K. Preuß. Ak. d. Wiss, Berlin (1884)
58. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)
59. Landau, E.: Über die Nullstellen der Zetafunktion. Math. Ann. 71, 548–564 (1912)
60. Landau, E.: Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der

Riemannschen Zetafunktion. Proceedings of Fifth International Mathematics Congress, vol.
1, pp. 93–108 (1913)

61. Landau, E.: Über den Wertevorrat von �.s/ in der Halbebene � > 1. Nachr. Ges. Wiss.
Göttingen 36, 81–91 (1933)
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On the Energy of Graphs

Irene Triantafillou

Abstract The energy of a graph, E.G/, is the sum of the absolute values of its
eigenvalues. The energy concept has received a high interest over the last decade,
at first due to its various applications in chemistry and then in its own right. This
paper focuses on some of the most important results on the bounds for the energy
of general graphs and the energy of bipartite graphs. Some known bounds for the
change in the energy of a graph after deleting a vertex or an edge are also considered.

Keywords Energy of graphs • Graph energy change • Bipartite graphs

1 Introduction and Preliminaries

Let A.G/ be the adjacency matrix of a simple, finite, undirected graph, G, with
vertex set V.G/ and edge set E.G/. The set of the eigenvalues f�1; �2; : : : ; �ng of
A.G/ is the spectrum of G. As the adjacency matrix is symmetric, its eigenvalues
are real and have a sum equal to zero.

According to the interlacing theorem [22]: If G is a graph with spectrum
�1 � �2 � � � � � �n and the spectrum of the graph obtained upon deleting a vertex
u1, G � u1, is �1 � �2 � � � � � �n�1, then the spectrum of G � u1 is “interlaced”
with the spectrum of G, and

�1 � �1 � �2 � �2 � � � � � �n�1 � �n: (1)

Another important property of the eigenvalues of a graphG is: The number of closed
walks of length k inG equals

P
i �

k
i , the kth spectral moment ofA.G/. In particular,

the trace of A2 is:

I. Triantafillou (�)
Department of Mathematics, National Technical University of Athens,
Zografou Campus, 15780 Athens, Greece
e-mail: eirini_triantafillou@hotmail.com

Th. M. Rassias and L. Tóth (eds.), Topics in Mathematical Analysis and Applications,
Springer Optimization and Its Applications 94, DOI 10.1007/978-3-319-06554-0__31,
© Springer International Publishing Switzerland 2014

699

mailto:eirini_triantafillou@hotmail.com


700 I. Triantafillou

X
i

�2i D 2m; (2)

and since
P

i �i D 0,

X
i<j

�i�j D �m: (3)

A graph, G, is singular if the adjacency matrix, A.G/, is a singular matrix. The
nullity, �.G/, of a singular graph G is the algebraic multiplicity of the eigenvalue
zero in the graph’s spectrum.

A strongly regular graph with parameters .v; k; �; �/ is a graph with v vertices,
such that each vertex has precisely k neighbors, every pair of its adjacent vertices
has � common neighbors, and every pair of non-adjacent vertices has � common
neighbors.

A 2 � .v; k; �/-design is a family of k blocks of a set of v points, such that each
2-set of points lies in exactly � blocks.

A semiregular bipartite graph is a bipartite graph whose vertices in the same
class of bipartition have the same degree.

The concept of graph energy was first defined by Gutman in [9] and it emerged
from the idea of Hückel energy in theoretical chemistry. Coulson [4] provided the
following integral formula for the energy of a graph,E.G/:

E.G/ D 1

�

Z 1
�1

�
n� ix	0.ix/

	.ix/

�
dx; (4)

where 	.x/ is the characteristic polynomial of graph G, and 	0.x/ its derivative.
The energy of a graph, G, is defined as the sum of the absolute values of its

eigenvalues:

E.G/ D
nX
iD1
j�i j : (5)

In Sect. 2 of this paper, we focus on some of the most important bounds for the
energy of a general graph and of a bipartite graph, in terms of a graph’s vertices,
edges, degree sequence, and spectral moments. In Sect. 3, we cite several known
bounds for the change in energy upon deleting a vertex or edge. We conclude this
paper with some additional bounds for the energy of bipartite graphs.

We denote the complete graph of order n by Kn and the complete r-partite
graph by Kt;t;:::;t . The path and cycle with n vertices are denoted by Pn and Cn,
respectively. By Tn we denote the tree and by Sn the star graph of order n.
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2 Graph Energy Bounds

The calculation of the energy of certain graphs, such as the path, the cycle, or the
complete graph, is straightforward as their spectrum is known. In this section, we
focus on some of the most important bounds for the energy of general graphs and
the energy of bipartite graphs.

McClelland considers the n vertices and m edges of a graph G for the following
energy bounds:

Theorem 1 ([19]). For an .n;m/-graphG,

q
2mC n.n � 1/ jdetAj2=n � E.G/ �

p
2mn: (6)

The upper bound is obtained by the use of the Cauchy–Schwartz inequality to
.1; 1; : : : ; 1/ and .j�1j ; j�2j ; : : : ; j�nj/, so that

E.G/ � pn
sX

i

�2i : (7)

Since
P

i �
2
i D 2m, we get the desired result.

For the lower bound, Eq. (2) and the arithmetic-geometric means inequality is
used in

E2.G/ D
 X

i

j�i j
!2
D
X
i

j�i j2 C 2
X
i<j

ˇ̌
�i�j

ˇ̌
: (8)

The upper and lower bound of Ineq. (6) can be improved for singular graphs, by
taking into account only the nonzero eigenvalues:

Proposition 1 ([9]). Let G be a graph on n vertices, and nullity �.G/. Then,

E.G/ �p2.n� �.G//m: (9)

Proposition 2 ([2]). Let G be a graph on n vertices, and nullity �.G/. Then,

E.G/ � n � �.G/: (10)

In regard to the edges of a graph, a lower and upper bound for the energy of a
graph was given:

Theorem 2 ([3]). Let G be a graph with m edges. Then,

2
p
m � E.G/ � 2m: (11)
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On the left side equality holds if and only if G is a complete bipartite graph and
equality on the right side if and only if G consists of m copies of the complete
graphK2.

The lower bound of the above inequality can be easily derived by using Eqs. (2)

and (3) in E2.G/ DPn
iD1 �2i C 2

ˇ̌
ˇPi<j �i�j

ˇ̌
ˇ :

The upper bound takes into consideration that the maximum number of vertices
of a graph with m edges is 2m (this impliesm copies of the complete graphK2).

If G is a graph with no isolated vertices, then a lower bound with reference to its
vertices is given by the following theorem.

Theorem 3 ([10]). Let G be a n-vertex graph, with no isolated vertices. Then,

E.G/ � 2pn � 1: (12)

IfG is connected, thenm � n�1 and by using the left side of Ineq. (11),E.G/ �
2
p
m � 2pn � 1: The proof is analogous if G is disconnected.

From Ineq. (12), it is obvious that the star graph has minimum energy among all
n-vertex graphs with no isolated vertices.

An upper bound for a graph with n vertices was given by Koolen and Moolton:

Theorem 4 ([12]). Let G be a graph with n vertices. Then,

E.G/ � 1

2
n
�p
nC 1� ; (13)

with equality if and only if G is a strongly regular graph with parameters�
n;

nCpn
2
;
nC2pn

4
;
nC2pn

4

�
.

and later an upper bound for a bipartite graph with n vertices was provided by the
same authors:

Theorem 5 ([13]). Let G be a n-vertex bipartite graph. Then,

E.G/ � 1p
8
n
�p

nCp2
�
: (14)

Equality holds if and only if n D 2v and G is the incidence graph of a

2 � �v; vCpv
2
;
vC2pv

4

�
-design.

In order to prove Ineq. (14), the following bound was taken into account:

Theorem 6 ([13]). Let G be a bipartite graph with n > 2 vertices, and m � n
2

edges. Then,

E.G/ � 2
�
2m

n

�
C
vuut.n � 2/

"
2m � 2

�
2m

n

�2#
: (15)
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Moreover, equality holds in (15) if and only if at least one of the following statements
is true:

1. n D 2m and G D mK2:

2. n D 2t; m D t2 and G D Kt;t :

3. n D 2u; 2
p
m < n < 2m, and G is the incidence graph of a symmetric

2 � .u; k; �/-design with k D 2m
n

and � D k.k�1/
u�1 :

In the above theorem, Eq. (2) and the symmetry of the spectrum of the bipartite
graph G are considered, in order to get:

n�1X
iD2

�2i D 2m � 2�21: (16)

By the use of the Cauchy–Schwartz inequality to .1; 1; : : : ; 1/, .j�2j ; : : : ; j�n�1j/,
we get:

n�1X
iD2
j�i j �

q
.n � 2/.2m� 2�21/: (17)

It follows that

E.G/ � 2�1 C
q
.n � 2/.2m� 2�21/: (18)

Since the function F.x/ WD 2x C p.n� 2/.2m� 2x2/ decreases on the intervalq
2m
n
< x � pm and 2m � n, the result is obtained.

In order to get Ineq. (14), we only need to consider that Ineq. (15) is maximized

whenm D n2Cnp2n
8

: For a general graph Ineq. (15) is written:

Theorem 7 ([12]). Let G be a graph with n vertices and m edges. If 2m � n, then

E.G/ �
�
2m

n

�
C
vuut.n � 1/

"
2m �

�
2m

n

�2#
: (19)

Moreover, equality holds in (19) if and only if G Š n
2
K2, or G Š Kn, or G is a

noncomplete connected strongly regular graph with two nontrivial eigenvalues both

having absolute values equal to

r
2m�. 2mn /

2

n�1 .

An upper bound for the energy of a graph in terms of its vertex degree sequence is:

Theorem 8 ([28]). If G is a graph with n vertices, m edges, and vertex degree
sequence d1; d2; : : : ; dn then
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E.G/ �
sPn

iD1 d 2i
n

C
s
.n � 1/

�
2m �

Pn
iD1 d 2i
n

�
: (20)

Equality in (20) holds if and only if G is either n
2
K2 (if n D 2m),

Kn .if m D n.n � 1/=2/, or a noncomplete connected strongly regular graph with

two nontrivial eigenvalues both with absolute value

s�
2m �

�
2m
n

�2�
=

�
n� 1

�

or nK1 .if m D 0/.
For the proof of Ineq. (20), as in the proof of Ineq. (15), the Cauchy–Schwartz

inequality is applied to .1; 1; : : : ; 1/, .j�2j ; : : : ; j�nj/, to get

E.G/ � �1 C
q
.n� 1/.2m� �21/ (21)

and the inequation �1 �
qPn

iD1 d
2
i

n
[27] is taken into account. In a similar way, the

following bound for bipartite graphs was proved by also considering the symmetry
of the spectrum of bipartite graphs.

Theorem 9 ([28]). If G is a bipartite graph with n > 2 vertices, m edges, and
vertex degree sequence d1; d2; : : : ; dn, then

E.G/ � 2
sPn

iD1 d 2i
n

C
s
.n � 2/

�
2m� 2

Pn
iD1 d 2i
n

�
: (22)

Equality in (22) holds if and only if G is either n
2
K2, a complete bipartite graph,

or the incidence graph of a symmetric 2 � .v; k; �/-design with k D 2m
n

and

� D k.k�1/
v�1 , .n D 2v/, or nK1.

The 2-degree sequence, ti , of a vertex ui 2 V.G/ is the sum of degrees of the
vertices adjacent to ui .

An upper bound in terms of a graph’s degree sequence and 2-degree sequence is:

Theorem 10 ([26]). Let G be a nonempty graph with n vertices, m edges, degree
sequence d1; d2; : : : ; dn and 2-degree sequence t1; t2; : : : ; tn. Then,

E.G/ �
sPn

iD1 t2iPn
iD1 d 2i

C
s
.n � 1/

�
2m �

Pn
iD1 t2iPn
iD1 d 2i

�
: (23)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kn:

3. G is a nonbipartite connected p-pseudo-regular graph with three distinct

eigenvalues

�
p;

q
2m�p2
n�1 ;�

q
2m�p2
n�1

�
where p >

q
2m
n
:
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For the proof of Ineq. (23), the Cauchy–Schwartz inequality is applied to get the

function F.x/ WD x Cp.n � 1/.2m� x2/ and since �1 �
rPn

iD1 t
2
iPn

iD1 d
2
i

the result is

obtained.
For bipartite graphs Ineq. (23) is written:

Theorem 11 ([26]). Let G D .X; Y / be a nonempty bipartite graph with
n > 2 vertices, m edges, degree sequence d1; d2; : : : ; dn, and 2-degree sequence
t1; t2; : : : ; tn. Then,

E.G/ � 2
sPn

iD1 t2iPn
iD1 d 2i

C
s
.n � 2/

�
2m � 2

Pn
iD1 t2iPn
iD1 d 2i

�
: (24)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m:
3. G is a connected .px; py/-pseudo-semiregular bipartite graph with four distinct

eigenvalues

�p
pxpy;

q
2m�2pxpy

n�2 ;�
q

2m�2pxpy
n�2 ;�ppxpy

�
; where

p
pxpy >q

2m
n
:

Theorem 12 ([18]). LetG be a nonempty simple graph with n vertices andm edges
and let �i be the sum of the 2-degrees of vertices adjacent to vertex vi . Then,

E.G/ �
sPn

iD1 �2iPn
iD1 t2i

C
s
.n � 1/

�
2m �

Pn
iD1 �2iPn
iD1 t2i

�
: (25)

Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kn:

3. G is a non-bipartite connected graph satisfying �1
t1
D � � � D �n

tn
and has three

distinct eigenvalues

�
p;

q
2m�p2
n�1 ;�

q
2m�p2
n�1

�
where p D �1

t1
D � � � D �n

tn
>

q
2m
n
:

For Ineq. (25), �1 �
rPn

iD1 �
2
iPn

iD1 t
2
i

is taken under consideration.

For bipartite graphs the above theorem can be written:

Theorem 13 ([18]). Let G D .X; Y / be a nonempty bipartite graph with n > 2

vertices andm edges. Then,

E.G/ � 2
sPn

iD1 �2iPn
iD1 t2i

C
s
.n � 2/

�
2m � 2

Pn
iD1 �2iPn
iD1 t2i

�
: (26)
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Equality holds if and only if one of the following statements holds:

1. G Š n
2
K2:

2. G Š Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m:
3. G is a connected bipartite graph with V D fv1; v2; : : : ; vsg [
fvsC1; vsC2; : : : ; vng such that �1

t1
D � � � D �s

ts
and �sC1

tsC1
D � � � D �n

tn
, and

has four distinct eigenvalues

�p
pxpy;

q
2m�2pxpy

n�2 ;�
q

2m�2pxpy
n�2 ;�ppxpy

�
;

where px D �1
t1
D � � � D �s

ts
, py D �sC1

tsC1
D � � � D �n

tn
and
p
pxpy >

q
2m
n
:

An upper bound that involves a graph’s spectral moments is:

Theorem 14 ([15]). Let G be a nonempty graph on n vertices. If

rPn
iD1 �

2
iPn

iD1 t
2
i

�
�
M2k

n

� 1
2k , where k is a positive integer, then the inequality

E.G/ �
sPn

iD1 �2iPn
iD1 t2i

C .n� 1/ 2k�1
2k

 
M2k �

�Pn
iD1 �2iPn
iD1 t2i

�k! 1
2k

(27)

holds. Moreover, equality in 27 holds if and only if G is either n
2
K2, Kn, or a

non-bipartite connected graph satisfying �1
t1
D � � � D �n

tn
and has three distinct

eigenvalues

�
p;

�
M2k�p2k
n�1

� 1
2k

;�
�
M2k�p2k
n�1

� 1
2k
�

, where p D �1
t1
D � � � D �n

tn
>

�
M2k

n

� 1
2k

:

If G is a bipartite graph, Ineq. (27) is written:

Theorem 15 ([15]). Let G D .X; Y / be a nonempty bipartite graph with n > 2

vertices and m edges. If

rPn
iD1 �

2
iPn

iD1 t
2
i

�
�
M2k

n

� 1
2k

, where k is a positive integer, then

the inequality

E.G/ � 2
sPn

iD1 �2iPn
iD1 t2i

C .n � 2/ 2k�1
2k

 
M2k � 2

�Pn
iD1 �2iPn
iD1 t2i

�k! 1
2k

(28)

holds. Moreover, equality in (28) holds if and only if G is either n
2
K2,

Kr1;r2 [ .n � r1 � r2/K1, where r1r2 D m, or a connected bipartite
graph with V D fv1; v2; : : : ; vsg [ fvsC1; vsC2; : : : ; vng such that �1

t1
D

� � � D �s
ts

and �sC1

tsC1
D � � � D �n

tn
, and has four distinct eigenvalues
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�p
pxpy;

�
M2k�2.pxpy/k

n�2

� 1
2k

;�
�
M2k�2.pxpy/k

n�2

� 1
2k

;�ppxpy
�
; where px D �1

t1
D

� � � D �s
ts

, py D �sC1

tsC1
D � � � D �n

tn
and
p
pxpy >

�
M2k

n

� 1
2k :

In regard to the k-degree dk.v/ of a vertex v 2 G, which is defined as the number
of walks of length k of G starting at v, the next upper bound was given:

Theorem 16 ([11]). Let G be a connected graph with n .n � 2/ vertices and m
edges. Then,

E.G/ �
vuut
P

v2V.G/ d 2kC1.v/P
v2V.G/ d 2k .v/

C
vuut.n � 1/

 
2m �

P
v2V.G/ d 2kC1.v/P
v2V.G/ d 2k .v/

!
: (29)

Equality holds if and only if G is the complete graphKn, or G is a strongly regular

graph with two nontrivial eigenvalues both with absolute value

r
2m�

�
2m
n

�2
n�1 :

If G is a bipartite graph, the above inequality is:

Theorem 17 ([11]). Let G be a connected bipartite graph with n .n � 2/ vertices
andm edges. Then,

E.G/ � 2
vuut
P

v2V.G/ d 2kC1.v/P
v2V.G/ d 2k .v/

C
vuut.n � 2/

 
2m � 2

P
v2V.G/ d 2kC1.v/P
v2V.G/ d 2k .v/

!
: (30)

Equality holds if and only if G is the complete bipartite graph or G is the incidence
graph of a symmetric 2 � .v; k; �/-design with k D 2m

n
, n D 2v and � D k.k�1/

v�1 .

3 Graph Energy Change

In this section, we consider the change in the energy of a graph G when a vertex or
an edge is deleted. Whereas when we remove a vertex u, the energy of the induced
subgraph G � u always decreases, for the subgraph G � e, which is obtained upon
deleting an edge e, it has been proved that the energy may increase, decrease, or
stay the same [5].

By the interlacing theorem it can be easily shown that:

E.G � u/ � E.G/: (31)

For singular graphs, Ineq. (31) is improved if the null spread of a vertex u,
�u.G/ D �.G/ � �.G � u/ [7], is taken into consideration:
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Theorem 18 ([24]). Let G D .V;E/ be a graph and u 2 V . If nu.G/ D �1, then

E.G � u/ � E.G/� .j�l j C j�mj/; (32)

where �l and �m are the smallest nonnegative and the largest nonpositive eigen-
value, respectively.

In the case where G is a connected graph of nullity �.G/ D n � 2, the equality
holds if and only if G is a star graph and u is the center vertex of the graph.

Theorem 19 ([24]). Let G D .V;E/ be a graph and u 2 V . If nu.G/ D 0, then

E.G � u/ � E.G/� j�i j (33)

where �i is either the smallest nonnegative or the largest nonpositive eigenvalue
of G.

In a similar way, Ineq. (31) can be improved to also include non-singular graphs.
For example:

Let G D .V;E/ be a graph and u 2 V . Let m.G/ be the multiplicity of a
nonnegative eigenvalue � for G, m.G � u/ be the multiplicity of � for G � u,
andmu.G/ D m.G/�m.G � u/ be the vertex spread of �. Then by the interlacing
inequalities,

Theorem 20. Let G D .V;E/ be a graph and u 2 V . If mu.G/ D 0, then

E.G � u/ � max fE.G/� �l ; E.G/� j�mjg (34)

where �l (resp. �m) is the smallest positive (resp. largest negative) eigenvalue of G.

Since the energy of a graph decreases with the removal of a vertex, it is clear that
if H is an induced subgraph of graph G, then

E.H/ � E.G/: (35)

If we examine the subgraph G � e, obtained by deleting edge e from a graph
G, we find that the change in energy does not always decrease. In fact, it may
increase or stay the same. For example, let us consider the complete bipartite graph
K2;2 with nonzero eigenvalues �2; 2 in its spectrum. Then if we delete an edge
e, the subgraph K2;2 � e is the path P3, with nonzero eigenvalues �p2 and

p
2

in its spectrum. Thus, the energy decreases upon deleting an edge. However, for
the complete bipartite graph K2;3 with known nonzero eigenvalues

p
6, �p6, the

energy increases if we remove an edge as we find the spectrum of the subgraph
K2;3 � e to be f2:136; 0:662; 0;�0:662;�2:136g :

It has been shown that:
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Proposition 3 ([24]). Let Kp;q be a complete bipartite graph, with p C q > 4.
Then, if we remove an edge e:

E.Kp;q � e/ D 2
q
pq � 1C 2p.p � 1/.q � 1/: (36)

By Ineq. (11),

E.Kp;q � e/� E.Kp;q/ � 2
�q

pq � 1C 2
p
.p � 1/.q � 1/�ppq

�
; (37)

and the energy of the complete bipartite graph increases after removing an edge.
To obtain Ineq. (36) the symmetry of the graph’s spectrum is considered for its

four nonzero eigenvalues �1 � �2 � �3 � �4, so that the graph’s characteristic
polynomial is written:

xpCq�4.x4 � .�21 C �22/x2 C �21�22/: (38)

By Eq. (2) and the trace of A4, we obtain the desired conclusion.
For complete multipartite graphs:

Theorem 21 ([1]). Let G D Kt1;t2;:::;tk be a complete k-partite graph, with k � 2,
ti � 2, for i D 1; : : : ; k. Then for every edge e,

E.Kt1;t2;:::;tk � e/ � E.Kt1;t2;:::;tk /: (39)

Another example of a graph that increases its energy after an edge is removed is
the singular hypercubeQn (the hypercube with even vertices).

Theorem 22 ([24]). Let Q2k be a singular hypercube. If Q2k � e is its subgraph
after removing edge e, then:

E.Q2k � e/ � E.Q2k/: (40)

For Ineq. (40), the following lemma is considered for the adjacency matrix of

the hypercube: A.Qn/ D
�
A.Qn�1/ I2n�1

I2n�1 A.Qn�1/

	
, where I2n�1 denotes the identity

matrix:

Lemma 1 ([23]). For a partitioned matrix C D
�
A X

Y B

	
, where both A and B are

square matrices, we have:

X
j

sj .A/C
X
j

sj .B/ �
X
j

sj .C /; (41)

where sj .�/ denote the singular values of a matrix.
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Let G � fmg denote the graph obtained from G by deleting all m edges of a
subgraph H but keeping all vertices of H . If G1 and G2 are two graphs without
common vertices, let G1˚G2 denote the graph with vertex set V.G1/[ V.G2/ and
edge set E.G1/[ E.G2/. Hence, A.G1 ˚G2/ D A.G1/C A.G2/:
Theorem 23 ([5]). If F is a cut set of a simple graph G, then

E.G � F / � E.G/: (42)

To obtain Ineq. (42), Lemma 1 is applied to A.G/ D
�
A.H/ X

XT A.K/

	
, where H

andK are two complementary induced subgraphs ofG, such thatG�F D H˚K .

Theorem 24 ([8]). Let A and B be two n � n complex matrices. Then

nX
iD1

si .AC B/C �
nX
iD1

si .A/C
nX
iD1

si .B/; (43)

where sj .�/ denote the singular values of a matrix.
Moreover equality holds if and only if there exists a unitary matrix P such that

PA and PB are both positive semi-definite.

Theorem 25 ([6]). Let H be an induced subgraph of a graph G. Then,

E.G/� E.H/ � E.G � fmg/ � E.G/C E.H/: (44)

Moreover,

1. ifH is nonsingular, then the left equality holds if and only ifG D H˚ .G�H/:
2. the right equality holds if and only if m D 0.

For the left side of Ineq. (44) Theorem 24 is applied to

A.G/ D
�
A.H/ XT

X A.G �H/
	
D
�
A.H/ 0

0 0

	
C
�
0 XT

X A.G �H/
	
; (45)

where X represents edges connectingH and G �H .
For the right side of Ineq. (44) the same theorem is applied to

A.G � fmg/ D A.G/C
��A.H/ 0

0 0

	
: (46)

It has been shown that:

Theorem 26 ([5]). For any simple graph G with at least one edge,

E.G/ � 2: (47)
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Since the complete graphK2 is an induced subgraph ofG, by Ineq. (35) the proof
of the above bound is trivial.

Corollary 1 ([6]). Let e be an edge of a graphG. Then the subgraph with the edge
set feg is induced and nonsingular, hence

E.G/ � 2 � E.G � feg/ � E.G/C 2: (48)

Moreover,

1. the left equality holds if and only if e is an isolated edge of G.
2. the right equality never holds.

From Ineq. (48), it is clear that:

1. if e is an edge of a connected graph G such that E.G/ D E.G � feg/C 2, then
G D K2:

2. there are no graphsG such that E.G � feg/ D E.G/C 2:

4 Energy of Bipartite Graphs

We conclude this paper with some additional bounds for the energy of bipartite
graphs.

Theorem 27 ([2]). If G is a connected bipartite graph of rank r , then

E.G/ �
p
.r C 1/2 � 5: (49)

Theorem 28 ([2]). Let G be a bipartite graph with at least four vertices. If G is
not full rank, then

E.G/ � 1C rank.G/: (50)

Theorem 29 ([21]). Let G be a bipartite graph with 2N vertices. Then,

E.G/ � 2m
r
m

q
; (51)

where q DPN
iD1 �4i . The equality holds if and only if G D NK2 or G is the direct

sum of isolated vertices and complete bipartite graphs Kr1;s1 ; : : : ; Krj ;sj such that
r1s1 D � � � D rj sj :

It has been shown [21] that Ineq. (51) remains also true if G is a bipartite graph
with 2N C 1 vertices.



712 I. Triantafillou

Fig. 1 The graph Bn;m
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•
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•

Fig. 2 The graph Grst

LetBn;m be the bipartite .n;m/-graph with two vertices on one side, one of which
is connected to all vertices on the other side, as illustrated in Fig. 1.

Theorem 30 ([17]). Bn;m .n � m � 2.n � 2// is the unique graph with minimal
energy in all bipartite connected .n;m/-graphs.

An n-vertex graph G is said to be hypoenergetic if E.G/ < n: It has been shown
[20] that almost all graphs are hyperenergetic (E.G/ > 2.n � 1//; which implies
that there are but a few hypoenergetic graphs.

Theorem 31 ([25]). Let G Š Kn1;n2 , n1 ¤ n2. Then G is hypoenergetic.

Since the spectrum ofKn1;n2 is known, the proof of the above theorem is trivial.

Theorem 32 ([16]). The complete bipartite graph K2;3 is the only hypoenergetic
connected cycle-containing (or cyclic) graph with maximum degree� � 3:

Let Grst be a graph of order n constructed as shown in Fig. 2, by identifying
the center of a star K1;t with a vertex of a complete bipartite graph Kr;s , where
r C s C t D n.

Theorem 33 ([25]). Among the complete bipartite graphs with pendent vertices
attached, some are hypoenergetic.

It is well known [14] that the graph G Š Grst has a nullity of �.G/ D n � 4. By
Ineq. (9) and after some calculations, it can be easily shown that the graph Grst is
hypoenergetic for t � r > s � 5:
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Implicit Contractive Maps in Ordered Metric
Spaces

Mihai Turinici

Abstract In Part 1, we show that most of the implicit contractions introduced
by Wardowski [Fixed Point Theory Appl., 2012, 2012:94] are Matkowski type
contractions. In Part 2, some limit type extensions are obtained for the fixed point
result (involving implicit contractions) due to Altun and Simsek [Fixed Point Theory
Appl., Volume 2010, Article ID 621469]. Moreover, the connections with a lot of
related statements in the area due to Agarwal, El-Gebeily, and O’Regan [Appl. Anal.
87:109–116, 2008] are also discussed. Finally, in Part 3, a non-limit counterpart of
these results is given, under the same general context.

Keywords Metric space • Convergent and Cauchy sequence • Fixed point
• Picard operator • Wardowski function • Limit and non-limit implicit
contraction • Boyd-Wong and Matkowski admissible function

1 Wardowski Type Contractions

1.1 Introduction

Let in the following X be a nonempty set. Call the subset Y of X , almost singleton
(abbreviated: asingleton), if [y1; y2 2 Y H) y1 D y2]; and singleton, if, in
addition, Y is nonempty; note that, in this case, Y D fyg, for some (uniquely
determined) y 2 X . By a sequence in X we mean any map n 7! x.n/ WD xn
from N D f0; 1; : : :g to X ; also written as .xnIn � 0/; or, simply, .xn/. Further, let
us say that .yi I i � 0/ is a subsequence of .xnIn � 0/ if .yi D xn.i/I i � 0/, where
.n.i/I i � 0/ is a sequence in N with n.i/!1 as i !1.
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By a metric over X , we mean any map d W X � X ! RC WD Œ0;1Œ, supposed
to be symmetric [d.x; y/ D d.y; x/, 8x; y 2 X ], triangular [d.x; z/ � d.x; y/C
d.y; z/, 8x; y; z 2 X ], and reflexive-sufficient .x D y iff d.x; y/ D 0/; in this case,
.X; d/ is called a metric space.

(A) Having this pair, we introduce a d -convergence and a d -Cauchy structure on
X as follows. Given the sequence .xn/ in X and the point x 2 X , we say that .xn/,

d -converges to x (written as: xn
d�! x) provided d.xn; x/! 0 as n!1; i.e.,

8" > 0, 9i D i."/: n � i H) d.xn; x/ < ";

or, equivalently:

8" > 0, 9i D i."/: n � i H) d.xn; x/ � ";
The set of all such points x will be denoted limn.xn/; it is an asingleton, by the
properties of d.:; :/. If limn.xn/ is nonempty, then .xn/ is called d -convergent.

By this very definition, we have the hereditary property:

xn
d�! x implies yi

d�! x;

for each subsequence .yi I i � 0/ of .xnIn � 0/:
(1)

Moreover, it is clear that

Œxn D u; 8n � 0� implies xn
d�! u: (2)

As a consequence, the convergence structure .
d�!/ has all regularity properties

required in Kasahara [13].
Further, call the sequence .xn/, d -Cauchy when d.xm; xn/ ! 0 as m; n ! 1

with m < n; i.e.,

8" > 0, 9j D j."/: j � m < n H) d.xm; xn/ < ";

or, equivalently,

8" > 0, 9j D j."/: j � m < n H) d.xm; xn/ � ".
As before, we have the hereditary property

.xn/ is d -Cauchy implies .yi / is d -Cauchy;
for each subsequence .yi I i � 0/ of .xnIn � 0/: (3)

Finally, call .xnIn � 0/, d -semi-Cauchy, when d.xn; xnC1/ ! 0; and strong d -
semi-Cauchy, provided (d.xn; xnCi /! 0, as n!1, for each i � 1). Clearly, the
metrical properties of d give

(8 sequence): d -Cauchy H) strong d -semi-Cauchy” d -semi-Cauchy.

In addition, each d -convergent sequence is d -Cauchy, as it can be directly seen.
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(B) Let again .X; d/ be a metric space. In the following, a useful property is
described for the d -semi-Cauchy sequences in X which are not d -Cauchy. Let us
say that the subset� of R0C WD�0;1Œ is .>/-cofinal in R0C, when: for each " 2 R0C,
there exists 
 2 � with " > 
 . Further, given the sequence .rnIn � 0/ in RC and
the point r 2 RC, let us write

rn ! rC (respectively, rn ! r CC), if rn ! r and
rn � r (respectively, rn > r), for all n � 0 large enough.

Proposition 1. Suppose that .xnIn � 0/ is a sequence in X with

(a01) rn WD d.xn; xnC1/ > 0, for all n � 0
(a02) .xnIn � 0/ is d -semi-Cauchy but not d -Cauchy.

Further, let � be a .>/-cofinal part of R0C. There exist then a number b 2 �,
such that: for each � 2�0; b=3Œ, a rank j.�/ � 0, and a couple of rank-sequences
.m.j /I j � 0/, .n.j /I j � 0/, may be found, with

j � m.j / < n.j /; d.xm.j /; xn.j // > b; 8j � 0 (4)

j � j.�/ H) rm.j /; rn.j /�1; rn.j / < � < b=3 (5)

n.j / �m.j / � 2; d.xm.j /; xn.j /�1/ � b; 8j � j.�/ (6)

.uj .0; 0/ WD d.xm.j /; xn.j //I j � 0/ is a sequence in R0C
with uj .0; 0/! b CC as j !1 (7)

.uj .p; q/ WD d.xm.j /Cp; xn.j /Cq/I j � j.�// is a sequence in R0C
with uj .p; q/! b as j !1; 8p; q 2 f0; 1g: (8)

Proof. By definition, the d -Cauchy property of our sequence writes:

8" 2 R0C, 9k D k."/: k � m < n H) d.xm; xn/ � ".
As � is a .>/-cofinal part in R0C, this property may be also written as

8
 2 �, 9k D k.
/: k � m < n H) d.xm; xn/ � 
 .

The negation of this property means: there exists b 2 � such that, 8j � 0:

A.j / WD f.m; n/ 2 N �N I j � m < n; d.xm; xn/ > bg ¤ ;:

Having this precise, denote, for each j � 0,

m.j / D min Dom.A.j //, n.j / D minA.m.j //.

The couple of rank-sequences .m.j /I j � 0/, .n.j /I j � 0/ fulfills (4); hence, the
first half of (7). On the other hand, letting j.�/ � 0 be such that

ri WD d.xi ; xiC1/ < � < b=3, for all i � j.�/,
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it is clear that (by (4), the first part), that (5) and (6) hold too. This yields (by the
triangular inequality), for all j � j.�/;

b < d.xm.j /; xn.j // � d.xm.j /; xn.j /�1/C rn.j /�1 � b C rn.j /�1I

so, passing to limit as j !1 gives the second half of (7). Finally, 8j � j.b/,

d.xm.j /; xn.j /C1/ � d.xm.j /; xn.j //C rn.j /;
d.xm.j /; xn.j /C1/ � d.xm.j /; xn.j //� rn.j / > 2b=3:

This gives the case .p D 0; q D 1/ of (8). The remaining alternatives (modulo
.p; q// of this relation are obtained in a similar way.

(C) Let X be a nonempty set. Further, take some T 2 F .X/. [Here, given the
nonempty sets A and B , F .A;B/ stands for the class of all functions f W A! B;
when A D B , we write F .A;A/ as F .A/.] Denote Fix.T / D fz 2 X I z D T zg;
each element of this set is called fixed under T . For many practical and theoretical
reasons, it is useful to determine whether Fix.T / is nonempty; and, if this holds,
to establish whether T is fix-asingleton (i.e.: Fix.T / is asingleton); or, equivalently:
T is fix-singleton (in the sense: Fix.T / is singleton); A similar problem is to be
formulated with respect to the iterates T k , where k � 1.

Concerning the posed problem, the following concepts establish the directions
under which the investigation be conducted (cf. Rus [29, Chap. 2, Sect. 2.2]):

(1a) We say that T is a Picard operator (modulo d ) if, for each x 2 X ,
.T nxIn � 0/ is d -convergent (hence, d -Cauchy); so that, limn.T

nx/ is a
singleton

(1b) We say that T is a strong Picard operator (modulo d ) if, for each x 2 X ,
.T nxIn � 0/ is d -convergent (hence, d -Cauchy); and z WD limn.T

nx/ is an
element of Fix.T /

(1c) We say that T is a globally strong Picard operator (modulo d ) when it
is a strong Picard operator (modulo d ) and T is fix-asingleton (hence, fix-
singleton).

The general sufficient conditions for such properties are being founded on
orbital properties (in short: o-properties). Call the sequence .znIn � 0/ in X ,
T -orbital, when it is a subsequence of .T nxIn � 0/, for some x 2 X .

(1d) We say that .X; d/ is o-complete, provided (for each o-sequence): d -Cauchy
implies d -convergent

(1e) Call T , .o; d/-continuous if: whenever .zn/ is o-sequence and zn
d�! z then

T zn
d�! T z.

If the orbital properties are ignored, then each o-convention becomes an ordinary
one. For example, we say that .X; d/ is complete, when each d -Cauchy sequence

is d -convergent. Likewise, T is termed d -continuous, provided zn
d�! z implies

T zn
d�! T z.
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(D) Finally, the specific conditions for such properties are represented by “func-
tional” metric contractions. Call T , .d; '/-contractive (for some ' 2 F .RC/),
when

(a03) d.T x; Ty/ � '.d.x; y//, 8x; y 2 X , x ¤ y.

The functions to be considered here are to be taken according to the lines below.
Call ' 2 F .RC/, regressive if ['.0/ D 0 and '.t/ < t , 8t > 0]; the class of all

these will be denoted as F .re/.RC/, For any ' 2 F .re/.RC/ and any s 2 R0C,
put

(a04) �C'.s/ D inf">0 ˚.sC/."/; where ˚.sC/."/ D sup'.�s; s C "Œ/;
(a05) �C'.s/ D supf'.s/;�C'.s/g.
By this very definition, we have the representation (for all s 2 R0C)

�C'.s/ D inf">0 ˚ŒsC�."/I where ˚ŒsC�."/ D supf'.Œs; s C "Œ/: (9)

From the regressive property of ', these limit quantities are finite; precisely,

0 � '.s/ � �C'.s/ � s; 8s 2 R0C: (10)

The following additional properties will be useful for us:

Lemma 1. Let ' 2 F .re/.RC/ and s 2 R0C be arbitrary fixed. Then,

i) lim supn.'.tn// � �C'.s/, for each sequence .tn/ in RC with tn ! sC; hence,
in particular, for each sequence .tn/ in RC with tn ! s CC

ii) there exists a sequence .rn/ in R0C with rn ! sC and '.rn/! �C'.s/.

Proof. i) Given " > 0, there exists a rank p."/ � 0 such that s � tn < s C ", for
all n � p."/; hence

lim sup
n

.'.tn// � supf'.tn/In � p."/g � ˚ŒsC�."/:

It suffices taking the infimum over " > 0 in this relation to get the desired fact.
ii) When�C'.s/ D 0, the written conclusion is clear, with .rn D sIn � 0/; for, in

this case, '.s/ D 0. Suppose now that �C'.s/ > 0. By definition,

8" 2�0;�C'.s/Œ; 9ı 2�0; "ŒW �C'.s/�" < �C'.s/ � ˚ŒsC�.ı/ < �C'.s/C":

This tells us that there must be some r in Œs; s C ıŒ with

�C'.s/� " < '.r/ < �C'.s/C ":

Taking a sequence ."n/ in �0;�C'.s/Œwith "n ! 0, there exists a corresponding
sequence .rn/ in R0C with rn ! sC and '.rn/! �C'.s/.
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We say that ' 2 F .re/.RC/ is Boyd–Wong admissible at s 2 R0C, provided
�C'.s/ < s. Denote by BW.'/ the set of all such points; i.e., BW.'/ D fs 2
R0CI�C'.s/ < sg. We say that ' 2 F .re/.RC/ is almost Boyd–Wong admissible
(in short: a-BW-adm), when

BW.'/ is .>/-cofinal inR0C: for each " > 0 there exists 
 2 BW.'/with " > 
 .

Further, let us say that ' 2 F .re/.RC/ is compatible, provided

(a06) for each sequence .rnIn � 0/ in R0C, with rnC1 � '.rn/, 8n � 0, we must
have rn ! 0.

If both these properties hold, we say that ' 2 F .re/.RC/ is compatible almost
Boyd–Wong admissible; in short, c-a-BW-adm. Two basic examples of such objects
are given below.

I) We say that ' 2 F .re/.RC/ is Boyd–Wong admissible, when BW.'/ D R0C;
i.e., by the adopted conventions,

(a07) �C'.s/ < s (or, equivalently:�C'.s/ < s), for all s > 0.

(This concept is related to the developments in Boyd and Wong [8]; we do not give
details.) In particular, ' 2 F .re/.RC/ is Boyd–Wong admissible provided it is
upper semicontinuous at the right on R0C:

�C'.s/ D '.s/, (or, equivalently:�C'.s/ � '.s/), 8s 2 R0C.

Note that this is fulfilled when ' is continuous at the right on R0C; for, in such a
case, �C'.s/ D '.s/, 8s 2 R0C.

Now, if ' 2 F .re/.RC/ is Boyd–Wong admissible, then it is trivially shown to
be almost Boyd–Wong admissible. Concerning the compatibility question, we have

Lemma 2. Let ' 2 F .re/.RC/ be Boyd–Wong admissible. Then, ' is compatible;
hence, a fortiori, compatible almost Boyd–Wong admissible.

Proof. Let .rnIn � 0/ be a sequence in R0C with rnC1 � '.rn/, 8n � 0. As
' 2 F .re/.RC/, .rn/ is strictly descending in RC; hence, r WD limn.rn/ exists in
RC and [rn > r , 8n]. We have (again via ' 2 F .re/.RC/) rnC1 � '.rn/ < rn,
8n � 0. This, along with rn ! r as n ! 1, yields limn '.rn/ D r ; wherefrom
�C'.r/ D r ; contradiction. Hence, r D 0, as desired.

II) Call ' 2 F .re/.RC/, Matkowski admissible, provided

(a08) ' is increasing and Matkowski ('n.t/! 0 as n!1, 8t > 0).

Here, 'n stands for the n-th iterate of ', 8n. (The proposed convention is related
to the developments in Matkowski [16].) Note that, for each ' 2 F .re/.RC/,
this property is quite distinct from the preceding one (Boyd–Wong admissible), as
simple examples show. However, as a completion of the above statement, we do
have

Lemma 3. Let ' 2 F .re/.RC/ be Matkowski admissible. Then, necessarily, ' is
compatible and almost Boyd–Wong admissible.
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Proof. i) Let .rnIn � 0/ be a sequence in R0C with rnC1 � '.rn/, 8n � 0. As
' 2 F .re/.RC/, .rn/ is strictly descending in RC; hence, r WD limn rn exists in
RC and [rn > r , 8n]. Further, as ' is increasing, this yields r < rn � 'n.r0/,
8n; so, by the Matkowski property, we get r D 0; hence, ' is compatible.

ii) Let � WD � .'/ stand for the subset of all r > 0 where ' is discontinuous at r .
By a well-known property of such functions (cf. Natanson, [18, Chap. 8, Sect. 1]),
� is at most denumerable. Denote, for simplicity, � D R0C n � . Each r 2 �
is a (bilateral) continuity point of '; and then, �C'.r/ D '.r/ < r ; so that,
' is Boyd–Wong admissible at r . Moreover, as � is dense (hence, all the more,
.>/-cofinal) in R0C, ' is almost Boyd–Wong admissible.

(E) The usefulness of these concepts is to be judged from the following fixed
point statement in the area, referred to as: BWM-caa theorem. Let .X; d/ be a metric
space; and T 2 F .X/ be a selfmap of X .

Theorem 1. Supposed that T is .d; '/-contractive, for some compatible almost
Boyd–Wong admissible function ' 2 F .re/.RC/. In addition, suppose that .X; d/
is complete. Then, T is a global strong Picard operator (modulo d ).

A proof of this result will be given a bit further. For the moment (see the preceding
developments), two particular cases are of interest for us:

Case 1. Each Boyd–Wong admissible function ' 2 F .re/.RC/ is compatible
almost Boyd–Wong admissible. Then, BWM-caa theorem is just the 1969 one
in Boyd and Wong [8]; referred to as: Boyd–Wong theorem. For example, such
a property holds when ' is linear (i.e.: '.t/ D ˛t , t 2 RC, for some ˛ 2 Œ0; 1Œ);
in this case, the above result is nothing else than the 1922 Banach’s contraction
mapping principle [5].

Case 2. Any Matkowski admissible function ' 2 F .re/.RC/ is compatible
almost Boyd–Wong admissible. Then, BWM-caa theorem is just the 1975 one
in Matkowski [16]; referred to as: Matkowski theorem.

(F) Let � .X; d/ stand for the class of all globally strong Picard (modulo
d ) operators. An interesting local type problem concerning these data is that of
determining the subclass of all T 2 � .X; d/, fulfilling an evaluation like

d.x;Fix.T // � ˚.d.x; T x//, for all x 2 X ;

where the function ˚ 2 F .RC/ depends on T . This is a Hyers–Ulam stability
question related to the considered class. A solution to this problem is obtainable
for a limited family of contractions described by means of the list in Rhoades [28].
Some related facts may be found in the 1998 monograph by Hyers et al. [11]; see
also the 2010 volume edited by Pardalos et al. [21, Part I].

Now, these particular cases of the BWM-caa theorem found some interesting
applications in operator equations theory; so, they were the subject of various
extensions. For example, a natural way of doing this consists in taking implicit
“functional” contractive conditions like

(a09) F.d.T x; Ty/; d.x; y// � 0, 8x; y 2 X , x ¤ y;
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where F W R2C ! R [ f�1;1g is an appropriate function. Some partial details
about the possible choices of F may be found in the 1976 paper by Turinici
[32]. Recently, an interesting contractive condition of this type was introduced in
Wardowski [41]. It is our aim in the following to show that, concerning the fixed
point question, a reduction to Matkowski theorem is possible for most of these
contractions. For the remaining ones, we provide a result where some specific
requirements posed by Wardowski are shown to be superfluous.

1.2 Left-Continuous Wardowski Functions

Call F W RC ! R [ f�1g, a semi-Wardowski function, provided

(b01) F is reflexive-sufficient: F.t/ D �1 if and only if t D 0
(b02) F is strictly increasing: t < s H) F.t/ < F.s/.

As a consequence of these facts, the lateral limits

F.t � 0/ WD lims!t� F.s/, F.t C 0/ WD lims!tC F.s/
exist, for each t > 0; in addition,

�1 < F.t � 0/ � F.t/ � F.t C 0/ <1; 8t > 0: (11)

Note that, in general, F is not continuous. However, by the specific properties of the
monotone functions, we have (cf. Natanson [18, Chap. 8, Sect. 1]):

Proposition 2. Suppose that F W RC ! R [ f�1g is a semi-Wardowski function.
Then, there exists a denumerable subset � WD �.F / 	 R0C, such that

F.t � 0/ D F.t/ D F.t C 0/, for each t 2 R0C n�. (12)

In addition, the following property of such objects is useful for us.

Lemma 4. Let F W RC ! R [ f�1g be a semi-Wardowski function. Then,

8t; s 2 RC W F.t/ < F.s/ H) t < s: (13)

Proof. Take the numbers t; s 2 RC according to the premise of this relation.
Clearly, s > 0; and, from this, the case t D 0 is proved; hence, we may assume that
t > 0. The alternative t D s gives F.t/ D F.s/; in contradiction with F.t/ < F.s/.
Likewise, the alternative t > s yields (as F is strictly increasing) F.t/ > F.s/;
again in contradiction with F.t/ < F.s/. Hence, t < s; and the conclusion follows.

(A) Now, let us add one more condition (upon such functions)

(b03) F is coercive: F.t/! �1, when t ! 0C; i.e.: F.0C/ D �1.

When F satisfies (b01)–(b03), it will be referred to as a Wardowski function.
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Lemma 5. Suppose that F W RC ! R[ f�1g is a Wardowski function. Then, for
each sequence .tn/ in R0C,

F.tn/! �1 implies tn ! 0. (14)

Proof. Suppose that this is not true: there must be some " > 0 such that

for each n, there existsm > n, such that: tm � ".
We get therefore a subsequence .sn WD ti.n// of .tn/ such that sn � " (hence,F.sn/ �
F."/), 8n. This, however, contradicts the property F.sn/ ! �1 (obtained via
F.tn/! �1); hence, the conclusion.

(B) Suppose that F W RC ! R [ f�1g is a Wardowski function; and let a > 0

be fixed in the sequel. Denote, for each t � 0,

(b04) M.a; F /.t/ D fs � 0I aC F.s/ � F.t/g, '.t/ D supM.a; F /.t/.

Note that, from (b01),M.a; F /.t/ is nonempty, for each t � 0; and M.a; F /.0/ D
f0g [hence '.0/ D 0]. In addition, for each t > 0 one has, by a preceding fact,

s 2 M.a; F /.t/ H) F.s/ < F.t/ H) s < t I

wherefrom, again for all t > 0,

M.a; F /.t/ � Œ0; t Œ; whence, '.t/ � t . (15)

Moreover, as F is (strictly) increasing,

0 � t1 � t2 H) M.a; F /.t1/ �M.a; F /.t2/ H) '.t1/ � '.t2/I (16)

so that, ' is increasing on RC.
A basic problem to be posed is that of determining sufficient conditions under

F such that the (increasing) function ' be regressive Matkowski. The following
answer is available.

Proposition 3. Suppose that the Wardowski function F W RC ! R[f�1g fulfills

(b05) F is left-continuous: F.t � 0/ D F.t/, 8t > 0.

Then, the associated (increasing) function ' is regressive and Matkowski.

Proof. There are two steps to be passed.

Step 1. Let t > 0 be arbitrary fixed; and put u WD '.t/. If u D 0, we are done; so,
without loss, we may assume that u > 0. By the very definition of this number,

aC F.s/ � F.t/, for all s 2 Œ0; uŒ.
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So, passing to limit as .s ! u�), one gets (by the left continuity of F )

aC F.u/ � F.t/; i.e.: aC F.'.t// � F.t/. (17)

This in turn yields F.'.t// < F.t/; whence '.t/ < t . As t > 0 was arbitrarily
chosen, it follows that ' is regressive.

Step 2. Fix some t > 0; and let the iterative sequence .tn/ be given as [t0 D t ,
tnC1 D '.tn/; n � 0]. If tn D 0, for some index n � 1, we are done; so, without
loss, one may assume that [tn > 0, 8n � 1]. By the relation above,

aC F.tnC1/ � F.tn/, [hence, a � F.tn/ � F.tnC1/], 8n.

Adding the first n inequalities, we derive

na � F.t0/� F.tn/ [hence: F.tn/ � F.t0/� na], 8n;

so that, passing to limit as n!1, one gets F.tn/! �1. This, by a preceding
auxiliary statement, gives tn ! 0. As t > 0 was arbitrarily chosen, it results that
' has the Matkowski property, as claimed.

(C) Let .X; d/ be a metric space; and T 2 F .X/, a selfmap ofX . Given the real
number a > 0 and the Wardowski function F W RC ! R [ f�1g, let us say that
T is .a; F /-contractive, if

(b06) aC F.d.T x; Ty// � F.d.x; y//, 8x; y 2 X , x ¤ y.

Our first main result is

Theorem 2. Suppose that T is .a; F /-contractive, for some a > 0 and some left-
continuous Wardowski function F W RC ! R [ f�1g. In addition, let .X; d/ be
complete. Then, T is a globally strong Picard map (modulo d ).

Proof. By a preceding statement, the associated increasing function ' 2 F .RC/ is
regressive Matkowski. On the other hand, the imposed contractive hypothesis tells
us that T is .d; '/-contractive. This, along with Matkowski theorem, gives us all
conclusions we need.

(D) Given k > 0, let us say that F W RC ! R [ f�1g is k-regular, provided

(b07) tkF .t/! 0, as t ! 0C.

As a direct consequence of the above result, we have, formally,

Theorem 3. Suppose that T is .a; F /-contractive, for some a > 0 and some left-
continuous Wardowski function F W RC ! R [ f�1g; supposed to be k-regular,
for some k 2�0; 1Œ. In addition, let .X; d/ be complete. Then, T is a globally strong
Picard map (modulo d ).



Implicit Contractive Maps in Ordered Metric Spaces 725

For a different proof, we refer to the developments below. Note that all examples
in Wardowski [41] are illustrations of this last result; such as

(b08) F.0/ D �1; F.t/ D log.˛t2 C ˇt/C � t , t > 0,
(b09) F.0/ D �1; F.t/ D .�1/.t�ı/, t > 0;

here, log is the natural logarithm and ˛; ˇ; � > 0, ı 2�0; 1Œ are constants. The case
ı D 1 of the last example is not reducible to this particular statement. However, it is
possible to handle it with the aid of the first main result; we do not give details.

1.3 Discontinuous Wardowski Functions

Let us now return to the general setting above. As the preceding facts show, the left
continuity requirement upon F is essential for the first main result to be deduced
from Matkowski theorem. In the absence of this, the reduction argument above does
not work; and then, the question arises as to what extent is our first main result
retainable in such an extended setting. Strange enough, a positive answer to this is
still available, via standard metrical procedures.

Let .X; d/ be a metric space; and T 2 F .X/ be a selfmap of X . Our second
main result is (cf. Turinici [39]):

Theorem 4. Suppose that T is .a; F /-contractive, for some a > 0 and some
Wardowski function F W RC ! R [ f�1g. Then, T is globally strong Picard
(modulo d ).

Proof. From the .a; F /-contractive condition, it results that

T is a strict contraction: d.T x; Ty/ < d.x; y/, 8x; y 2 X , x ¤ y. (18)

This firstly gives us that Fix.T / is a singleton. As a second consequence,

T is nonexpansive: d.T x; Ty/ � d.x; y/, 8x; y 2 X ; (19)

hence, in particular, T is d -continuous on X . So, it remains only to prove that T
is strong Picard (modulo d ). Let x0 be arbitrary fixed in X ; and put (xn WD T nx0;
n � 0). If xk D xkC1 for some k � 0, we are done; so, without loss, one may
assume that

(c01) �n WD d.xn; xnC1/ > 0, for all n � 0.

Part 1. By the contractive condition, we have

aC F.�nC1/ � F.�n/, [hence, a � F.�n/� F.�nC1/], 8n.
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Adding the first n inequalities, one gets

na � F.�0/� F.�n/ [hence: F.�n/ � F.�0/� na], 8n;

so that, passing to limit as n!1, one derives F.�n/! �1. This, along with
a preceding auxiliary fact, gives �n ! 0; hence, .xnIn � 0/ is d -semi-Cauchy.

Part 2. Let� WD �.F / stand for the subset of all s 2 R0C whereF is discontinuous
at s; note that, by a preceding auxiliary fact, it is (at most) denumerable. This
tells us that � WD R0C n � is dense in R0C; hence, all the more, .>/-cofinal
in R0C. Assume by contradiction that .xn/ is not d -Cauchy. By an auxiliary
statement about d -semi-Cauchy sequences, there exists then a number b 2 �,
such that: for each � 2�0; b=3Œ, a rank j.�/ � 0, and a couple of rank-sequences
.m.j /I j � 0/, .n.j /I j � 0/, may be found with the properties (4)–(8). By the
contractive condition, we have

aC F.d.xm.j /C1; xn.j /C1// � F.d.xm.j /; xn.j ///; 8j:

Passing to limit as j !1 one gets, from the choice of b,

aC F.b/ � F.b/; hence, a � 0.

The obtained contradiction tells us that .xn/ is d -Cauchy.

Part 3. By the completeness assumption, xn
d�! z as n!1, for some (uniquely

determined) z 2 X . As T is d -continuous (see above), yn WD T xn
d�! T z. On

the other hand, .yn D xnC1In � 0/ is a subsequence of .xn/; and this yields (as
d= metric) z D T z. Hence, T is a strong Picard operator (modulo d ); and the
proof is complete.

Let again .X; d/ be a metric space; and T 2 F .X/ be a selfmap of X . From the
second main result, we have formally

Theorem 5. Suppose that T is .a; F /-contractive, for some a > 0 and some
Wardowski function F.:/; supposed to be k-regular, for some k 2�0; 1Œ. In addition,
let .X; d/ be complete. Then, T is global strong Picard (modulo d ).

This result is, essentially, the one in Wardowski [41]. For completeness reasons,
we shall provide its proof, with some modifications.

Proof. (Theorem 5) As in the second main result, we only have to establish that T
is strong Picard (modulo d ). Let x0 be arbitrary fixed in X ; and put (xn WD T nx0;
n � 0). If xk D xkC1 for some k � 0, we are done; so, without loss, one may
assume that .�n WD d.xn; xnC1/In � 0/ is a sequence in R0C. By the contractive
condition,

aC F.�nC1/ � F.�n/, [hence, a � F.�n/� F.�nC1/], 8n.
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Adding the first n inequalities, one gets

na � F.�0/ � F.�n/ [hence: F.�n/ � F.�0/� na], 8n. (20)

This firstly gives F.�n/! �1; wherefrom, by a preceding auxiliary fact, �n ! 0;
hence, .xnIn � 0/ is d -semi-Cauchy. Secondly, the same relation yields

na�kn � ŒF .�0/� F.�n/��kn ; 8n: (21)

By the convergence property of .�nIn � 0/ and the k-regularity of F , the limit of
the right-hand side is zero; so, given ˇ > 0, there must be some rank i D i.ˇ/ with

ŒF .�0/ � F.�n/��kn � ˇ; 8n � i:

Combining with the same relation above yields (after transformations)

�n � .ˇ=an/1=k , for all n � i .

This, along with convergence of the series
P

n�1 n�1=k tells us that so is the seriesP
n �n; wherefrom, .xnIn � 0/ is d -Cauchy. The last part is identical with the one

of our second main result; and conclusion follows.

Note, finally, that all these conclusions are extendable to the framework of quasi-
ordered metric spaces under the lines in Agarwal et al. [1]; see also Turinici [36].

2 Limit Implicit Contractions

2.1 Introduction

Let X be a nonempty set, and d.:; :/ be a (standard) metric over it. Call the relation
.�/ on X , quasi-order, provided it is reflexive (x � x, for all x 2 X ) and transitive
(x � y and y � z imply x � z); the structure .X; d;�/ will be referred to as
a quasi-ordered metric space. We say that the subset Y of X is .�/-asingleton, if
[y1; y2 2 Y , y1 � y2] imply y1 D y2; and .�/-singleton, if, in addition, Y is
nonempty. Clearly, in the amorphous case .�/ D X � X , .�/-asingleton (resp.,
.�/-singleton) is identical with asingleton (resp., singleton); but, in general, this
cannot be true.

Now, take some T 2 F .X/. Assume in the following that

(a01) T is semi-progressive:X.T;�/ WD fx 2 X I x � T xg ¤ ;
(a02) T is increasing: x � y implies T x � Ty.

We have to determine circumstances under which Fix.T / be nonempty; and, if this
holds, to establish whether T is fix-.�/-asingleton (i.e.: Fix.T / is .�/-asingleton);
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or, equivalently: T is fix-.�/-singleton (in the sense: Fix.T / is .�/-singleton); a
similar problem is to be formulated with respect to the iterates T k , where k �
1. Note that the introduction of a quasi-order structure over X yields rather deep
modifications of the working context. This is shown from the list of basic concepts
to be considered (cf. Turinici [38]):

(1a) We say that T is a Picard operator (modulo .d;�/) if, for each x 2 X.T;�/,
.T nxIn � 0/ is d -convergent (hence, d -Cauchy); so that, limn.T

nx/ is a
singleton

(1b) We say that T is a strong Picard operator (modulo .d;�/) when, for each
x 2 X.T;�/, .T nxIn � 0/ is d -convergent (hence, d -Cauchy); and z WD
limn.T

nx/ is an element of Fix.T /
(1c) We say that T is a Bellman Picard operator (modulo .d;�/) when, for each

x 2 X.T;�/, .T nxIn � 0/ is d -convergent (hence, d -Cauchy); and z WD
limn.T

nx/ is an element of Fix.T /, with T nx � z, for all n � 0
(1d) We say that T is a globally strong (resp., Bellman) Picard operator (modulo

.d;�/) when it is a strong (resp., Bellman) Picard operator (modulo .d;�/)
and T is fix-.�/-asingleton (hence, fix-.�/-singleton).

In particular, when .�/ D X � X , the list of such notions is identical with
the one we already encountered; because, in this case, X.T;�/ D X .

The sufficient (regularity) conditions for such properties are being founded
on ascending orbital concepts (in short: a-o-concepts). Namely, call the
sequence .znIn � 0/ in X , ascending, if zi � zj for i � j ; and T -orbital,
when it is a subsequence of .T nxIn � 0/, for some x 2 X ; the intersection of
these notions is just the precise one.

(1e) Call .X; d/, a-o-complete, provided (for each a-o-sequence) d -Cauchy H)
d -convergent

(1f) We say that T is .a � o; d/-continuous, if (.zn/=a-o-sequence and zn
d�! z)

imply T zn
d�! T z

(1g) Call .�/, .a � o; d/-self-closed, when the d -limit of each d -convergent a-o-
sequence is an upper bound of it.

When the orbital properties are ignored, these conventions may be written in the
usual way; we do not give details.

Concerning these concepts, the following simple fact is useful for us:

Proposition 4. Suppose that T is globally Bellman Picard (modulo .d;�/). Then,
.X.T;�/;�/ is a Zorn quasi-ordered structure, in the sense:

i) each x 2 X.T;�/ is majorized by an element z 2 Fix.T / � X.T;�/
ii) any w 2 Fix.T / is .�/-maximal in X.T;�/: w � x 2 X.T;�/H) x � w.

Proof. i) Evident, by definition.
ii) Let w 2 Fix.T / and x 2 X.T;�/ be such that w � x. By the preceding fact, we

have x � z, for some z 2 Fix.T /. This yields w � z; and then, as T is fix-.�/-
asingleton, w D z; whence (combining with the conclusion above) x � w.
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This auxiliary statement shows the important role of global Bellman Picard
operators within the above operator classes. Note that the introduced concept is
related to the well-known Bellman integral inequality; cf Turinici [37].

The final lot of (regularity) conditions for our problem are of metrical-contractive
type. Denote, for x; y 2 X :

H.x; y/ D maxfd.x; T x/; d.y; Ty/g, L.x; y/ D .1=2/Œd.x; Ty/C d.T x; y/�,
G1.x; y/ D d.x; y/; G2.x; y/ D maxfG1.x; y/;H.x; y/g,
G3.x; y/ D maxfG2.x; y/; L.x; y/g D maxfG1.x; y/;H.x; y/; L.x; y/g.

Given G 2 fG1;G2;G3g, ' 2 F .RC/, we say that T is .d;�IG; '/-contractive if

(a03) d.T x; Ty/ � '.G.x; y//, 8x; y 2 X , x � y.

The regularity conditions imposed upon ' are of the type discussed in the
preliminary part. Namely, call ' 2 F .re/.RC/, Boyd–Wong admissible, provided
�C'.s/ < s, 8s 2 R0C; and Matkowski admissible, if [' is increasing and
'n.t/ ! 0 as n ! 1, for all t > 0]. The union of these properties will be
referred to as: ' 2 F .re/.RC/ is Boyd–Wong–Matkowski admissible; in short:
BWM-admissible.

The following Extended BWM theorem is our starting point.

Theorem 6. Suppose that T is .d;�IG; '/-contractive, for some mapping G 2
fG1;G2;G3g and some BWM-admissible function ' 2 F .re/.RC/. In addition, let
.X; d/ be a-o-complete. Then,

i) If T is .a � o; d/-continuous, then it is globally strong Picard (modulo .d;�/)
ii) If .�/ is .a � o; d/-self-closed, then T is a globally Bellman Picard operator

(modulo .d;�/).
As before, a proof of this result will be given a bit further. For the moment, some

particular cases will be discussed.

Case 1. Suppose that ' is Boyd–Wong admissible. Then, if G D G1, Extended
BWM theorem is a quasi-order extension of the Boyd–Wong theorem [8]. In
particular, when ' is linear ('.t/ D ˛t , t 2 RC, for some ˛ 2 Œ0; 1Œ), this
version of Extended BWM theorem gives the statement in Ran and Reurings
[26]; see also Nieto and Rodriguez-Lopez [19].

Case 2. Suppose that ' is Matkowski admissible. IfG D G3, then Extended BWM
theorem is a particular case of the one in Turinici [38], (expressed in terms
of convergence structures); cf. O’Regan and Petruşel [20]. On the other hand
when the orbital properties are ignored, then, i) if G D G3 and .�/ is an order,
Extended BWM theorem is just the 2008 statement in Agarwal et al. [1], ii) if
G D G1, Extended BWM theorem is the 1986 result in Turinici [37]; which, in
turn, extends, when .�/ D X �X , the Matkowski theorem [16].

The obtained variants of Extended BWM theorem found some basic applications
to existence results for linear and nonlinear operator equations; see the quoted
papers for details. As a consequence, the question of extending this result is useful
from both a theoretical and a practical perspective. A statement of this type was
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given (in the ordered framework) by Altun and Simsek [4], via “implicit” type
contractive conditions like

(a04) F.d.T x; Ty/; d.x; y/; d.x; T x/; d.y; Ty/; d.x; Ty/; d.T x; y// � 0, for
all x; y 2 X with x � y;

where F W R6C ! R is a function. However, it does not include in a complete
manner the already quoted 2008 “explicit” statement above; so, we may ask whether
this is possible in some way. It is our aim in the following to show that a positive
answer to the posed question is available. Precisely, a “limit” type extension of the
Altun–Simsek result is formulated, so as to include the results above. Further aspects
occasioned by these developments are also discussed.

2.2 Main Result

Let .X; d;�/ be a quasi-ordered metric space; and T 2 F .X/ be a selfmap of X ;
supposed to be semi-progressive and increasing.

(A) Denote, for each x; y 2 X
(b01)M1.x; y/ D d.T x; Ty/, M2.x; y/ D d.x; y/, M3.x; y/ D d.x; T x/,
M4.x; y/ D d.y; Ty), M5.x; y/ D d.x; Ty/, M6.x; y/ D d.T x; y/,
M .x; y/ D .M1.x; y/;M2.x; y/;M3.x; y/;M4.x; y/;M5.x; y/;M6.x; y//,
M 1.x; y/ D .M2.x; y/;M3.x; y/;M4.x; y/;M5.x; y/;M6.x; y//.

Given F 2 F .R6C; R/, let us say that T is .d;�IM IF /-contractive, provided

(b02) F.M .x; y// � 0, for all x; y 2 X with x � y, x ¤ y.

The class of functions F appearing here is described under the lines below.

(2a) Call F 2 F .R6C; R/, compatible, provided:

(b03) for each couple of sequences .rnIn � 0/ in R0C and .snIn � 0/ in RC
with
F.rn; rn�1; rn�1; rn; sn�1; 0/ � 0, 8n � 1, and jsn�1 � rn�1j � rn, 8n � 1,
we must have rn ! 0 (hence, sn ! 0)

(2b) Let us say that F 2 F .R6C; R/ is (3,4)-normal, in case

(b04) F.r; r; 0; 0; r; r/ > 0, for all r > 0.

The next properties will necessitate some conventions. Take some point (in
R6C) W D .w1;w2;w3;w4;w5;w6/; as well as a rank j 2 f1; 2; 3; 4; 5; 6g. We
say that the sequence .tn WD .tn1 ; tn2 ; tn3 ; tn4 ; tn5 ; tn6 /In � 0/ in R6C is

I) j-right at W , if tni ! wi , i ¤ j , tnj ! wj CC
II) j-point at W , if tni ! wi , i ¤ j , tnj D wj , 8n.

(2c) Given b > 0, call the function F , 2-right-lim-positive at b, if lim supn F.t
n/ >

0, for each 2-right at .b; b; 0; 0; b; b/, sequence .tnIn � 0/ in .R0C/6. The class
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of all these b > 0 will be denoted as Pos.2 � right � limIF /. In this case,
we say that F is almost 2-right-lim-positive, if� WD Pos.2�right� limIF /
is .>/-cofinal in R0C [for each " 2 R0C there exists 
 2 � with " > 
]; and
2-right-lim-positive, if � D R0C.

(2d) Given b > 0, call the functionF , 4-point-lim-positive at b, if lim supn F.t
n/ >

0, for each 4-point at .b; 0; 0; b; b; 0/ sequence .tnIn � 0/ in .R0C/6. The class
of all these b > 0 will be denoted as Pos.4 � point � limIF /. In this case,
we say that F is 4-point-lim-positive, if this last set is identical with R0C.

(B) Having these precise, we may now pass to our first main result:

Theorem 7. Assume that T is .d;�IM IF /-contractive, for some function F 2
F .R6C; R/, endowed with the properties: compatible, (3,4)-normal, almost 2-right-
lim-positive, and 4-point-lim-positive. In addition, let .X; d/ be a-o-complete.
Then,

i) If T is .a � o; d/-continuous, then it is globally strong Picard (modulo .d;�/)
ii) If .�/ is .a � o; d/-self-closed, then T is a global Bellman Picard operator

(modulo .d;�/).
Proof. We first check the fix .�/-asingleton property of T . Let z1; z2 2 Fix.T / be
such that z1 � z2 and z1 ¤ z2. By the contractive condition,

F.�; �; 0; 0; �; �/ � 0; where � WD d.z1; z2/ > 0:

This, however, is in contradiction with F being (3,4)-normal; and our claim follows.
It remains now to establish that T is a strong/Bellman Picard operator (modulo
.d;�/). Let x0 2 X.T;�/ be arbitrary fixed; and put .xn D T nx0, n � 0/; clearly,
.xnIn � 0/ is ascending-orbital (by the general conditions imposed upon T ). If
xn D xnC1 for some n � 0, we are done; so, without loss, one may assume that

xn ¤ xnC1 (hence, rn WD d.xn; xnC1/ > 0), 8n.

Step 1. Denote for simplicity .sn WD d.xn; xnC2/In � 0/; it is a sequence in RC.
By the contractive condition attached to .xn�1; xn/ we have

F.rn; rn�1; rn�1; rn; sn�1; 0/ � 0; 8n � 1: (22)

Combining with the evaluation (8n � 1)

jsn�1 � rn�1j D jd.xn�1; xnC1/ � d.xn�1; xn/j � d.xn; xnC1/ D rn; (23)

one gets (via F =compatible) that

(d.xn; xnC1/ > 0, 8n, and) d.xn; xnC1/! 0 as n!1; (24)

hence (by definition), .xnIn � 0/ is d -semi-Cauchy.
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Step 2. As F is almost 2-right-lim-positive,� WD Pos.2�right�limIF / appears
as .>/-cofinal in R0C. We show that .xnIn � 0/ is d -Cauchy. Suppose not; then,
by a preliminary statement, there exists a number b 2 �, such that: for each
� 2�0; b=3Œ (fixed in the sequel), a rank j.�/ � 0, and a couple of rank-sequences
.m.j /I j � 0/, .n.j /I j � 0/, may be found with the properties (4)–(8). By the
very definition of �, F is 2-right-lim-positive at b. On the other hand, by the
working hypothesis above,

.t
j
3 WD rm.j /I j � 0/ and .tj4 WD rn.j /I j � 0/

are sequences in R0C with t j3 ; t
j
4 ! 0 as j !1: (25)

Moreover, taking (7) into account, yields

.t
j
2 WD d.xm.j /; xn.j //I j � 0/

is a sequence in R0C with t j2 ! b CC as j !1: (26)

Finally, by the relation (8), one gets

.t
j
1 WD d.xm.j /C1; xn.j /C1/I j � j.�//; and
.t
j
5 WD d.xm.j /; xn.j /C1/I j � j.�//; .tj6 WD d.xm.j /C1; xn.j //I j � j.�//

are sequences in R0C with t j1 ; t
j
5 ; t

j
6 ! b as j !1:

(27)
Now, by (7) again, the contractive condition applies to .xm.j /; xn.j //, for all j �
0; and yields:

F.t
j
1 ; t

j
2 ; t

j
3 ; t

j
4 ; t

j
5 ; t

j
6 / � 0; 8j � 0:

This gives lim supj F .t
j
1 ; t

j
2 ; t

j
3 ; t

j
4 ; t

j
5 ; t

j
6 / � 0; hence, F is not 2-right-lim-

positive at b; contradiction.
Step 3. As .xnIn � 0/ is an ascending-orbital d -Cauchy sequence, there exists, by

the a-o-completeness property of .X; d/, some point z 2 X with xn
d�! z as

n ! 1. So, if T is .a � o; d/-continuous, yn WD T xn
d�! T z as n ! 1.

In addition, as .yn D xnC1In � 0/ is a subsequence of .xnIn � 0/, we have

yn
d�! z as n ! 1; hence, (as d=metric), z D T z. Suppose now that .�/ is

.a � o; d/-self-closed; note that, as a consequence, xn � z, 8n. Two cases may
occur.

Case 3-1. There exists a sequence of ranks .k.i/I i � 0/ with k.i/ ! 1 as
i ! 1 in such a way that xk.i/ D z (hence xk.i/C1 D T z), for all i . This,
and .xk.i/C1I i � 0/ being a subsequence of .xnIn � 0/, gives z 2 Fix.T /.

Case 3-2. There exists some rank h � 0 such that

(b05) n � h H) .xn � z and/ xn ¤ z.



Implicit Contractive Maps in Ordered Metric Spaces 733

Suppose by contradiction that z ¤ T z; i.e.: b WD d.z; T z/ > 0. From the
imposed assumptions, F is 4-point-lim-positive at b. On the other hand, the semi
d -Cauchy and convergence properties above give (for all n � h)

.tn2 WD d.xn; z/In � h/; and

.tn3 WD d.xn; xnC1/In � h/; .tn6 WD d.xnC1; z/In � h/
are sequences in R0C with tn2 ; t

n
3 ; t

n
6 ! 0 as n!1:

(28)

Further, the same convergence relation assures us that

9n.b/ � h W 0 < d.xn; z/ < b=2; 8n � n.b/:

Combining with the evaluation

jd.xn; T z/� bj � d.xn; z/ < b=2; 8n � n.b/;

we get

.tn1 WD d.xnC1; T z/In � n.b//; .tn5 WD d.xn; T z/In � n.b//
are sequences in R0C with tn1 ! b; tn5 ! b if n!1: (29)

The contractive condition applies to .xn; z/ (for all n � h); and yields

F.tn1 ; t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / � 0; 8n � n.b/I

where .tn4 D bIn � 0/. This gives lim supn F.t
n
1 ; t

n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / � 0; hence, F

is not 4-point-lim-positive at b; contradiction. So, necessarily, z 2 Fix.T /; and
the proof is thereby complete.

2.3 Explicit Versions

In the following, we show that certain explicit counterparts of the main result include
the (already exposed) BWM-caa theorem and Extended BWM theorem; this, among
others, provides the promised proof of both these.

Let us say that A 2 F .R5C; RC/ is 5-semi-altering, if it is increasing and
continuous in all variables. In the following, three such functions will be used:

(c01) G1.t1; t2; t3; t4; t5/ D t1, G2.t1; t2; t3; t4; t5/ D maxft1; t2; t3g,
G3.t1; t2; t3; t4; t5/ D maxft1; t2; t3; .1=2/.t4 C t5/g, .t1; t2; t3; t4; t5/ 2 R5C.

Let .X; d;�/ be a quasi-ordered metric space; and T 2 F .X/ be a selfmap of
X ; supposed to be semi-progressive and increasing. Denote, for each x; y 2 X ,

M1.x; y/ D d.T x; Ty/, M2.x; y/ D d.x; y/, M3.x; y/ D d.x; T x/,
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M4.x; y/ D d.y; Ty), M5.x; y/ D d.x; Ty/, M6.x; y/ D d.T x; y/,
M .x; y/ D .M1.x; y/;M2.x; y/;M3.x; y/;M4.x; y/;M5.x; y/;M6.x; y//,
M 1.x; y/ D .M2.x; y/;M3.x; y/;M4.x; y/;M5.x; y/;M6.x; y//.

Given G 2 fG1;G2;G3g and  2 F .RC/, let us say that T is .d;�IG;M 1I /-
contractive if

(c02) d.T x; Ty/ �  .G.M 1.x; y///, 8x; y 2 X , x � y, x ¤ y.

Note that the introduced convention amounts to saying that T is .d;�IM IF /-
contractive, where the associated to .G; / function F 2 F .R6C; R/ is taken as

(c03) F.t1; : : : ; t6/ D t1 �  .G.t2; : : : ; t6//; .t1; t2; : : : ; t6/ 2 R6C.

We want to determine under which conditions about  is our main result applicable
to .X; d;�/ and the function F .

(A) Remember that  2 F .re/.RC/ is called compatible, when

(c04) for each sequence .rnIn � 0/ in R0C, with rn �  .rn�1/, 8n � 1, we must
have rn ! 0.

Also,  2 F .re/.RC/ is called almost Boyd–Wong admissible, when: for each
" > 0 there exists b 2�0; "Œ such that �C .b/ < b.

Sufficient conditions for such properties were already given. Here, we just note
that, either of the functions below fulfills both these:

(3a)  2 F .re/.RC/ is Boyd–Wong admissible: �C .s/ < s, for each s > 0
(3b)  2 F .re/.RC/ is Matkowski admissible:

 is increasing and [ n.t/! 0 as n!1, for each t > 0].

Proposition 5. Let the function  2 F .re/.RC/ be compatible and almost Boyd–
Wong admissible. Then, the associated to .G; / function F is compatible, (3,4)-
normal, almost 2-right-lim-positive, and 4-point-lim positive.

Proof. The argument will be divided into several steps.

Part 1 (F is compatible). Let .rn/ 	 R0C, .sn/ 	 RC be sequences fulfilling

(c08) F.rn; rn�1; rn�1; rn; sn�1; 0/ � 0 and jsn�1 � rn�1j � rn, 8n � 1.

From sn�1 � rn�1 C rn � 2maxfrn�1; rng, 8n � 1, we have, for all n � 1,

G1.rn�1; rn�1; rn; sn�1; 0/ D rn�1;
Gk.rn�1; rn�1; rn; sn�1; 0/ D maxfrn�1; rng; k 2 f2; 3g:

This, along with  2 F .re/.RC/, yields (for any choice of G), rn �
 .rn�1/,8n � 1; wherefrom (as  is compatible) rn ! 0 as n ! 1; and
the claim follows.

Part 2 (F is (3,4)-normal). Let r > 0 be arbitrary fixed. By definition,

Gk.r; 0; 0; r; r/ D r; k 2 f1; 2; 3gI
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so that

F.r; r; 0; 0; r; r/ D r �  .G.r; 0; 0; r; r// D r �  .r/ > 0I

and, from this, we are done.
Part 3 (F is almost 2-right-lim-positive). As  is almost Boyd–Wong admissible,

for each " > 0 there exists r 2�0; "Œwith�C .r/ < r . We show that the function
F defined above is 2-right-lim-positive at r . Let .tni In � 0/, i 2 f1; 2; 3; 4; 5; 6g,
be sequences in R0C with (as n!1)

tni ! r , i 2 f1; 5; 6g; tni ! 0, i 2 f3; 4g; tn2 ! r CC.

By definition, there exists some rank n.r/ such that, for all n � n.r/,

G1.t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / D tn2 > r; Gk.tn2 ; tn3 ; tn4 ; tn5 ; tn6 / � tn2 > r; k 2 f2; 3gI

and, as G is continuous in its variables,

G.tn2 ; t
n
3 ; t

n
4 ; t

n
5 ; t

n
6 /! G.r; 0; 0; r; r/ D r I

hence, summing up,

G.tn2 ; t
n
3 ; t

n
4 ; t

n
5 ; t

n
6 /! r CC; as n!1:

As a consequence,

lim supn F.t
n
1 ; t

n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / �

r � lim infn  .G.tn2 ; t
n
3 ; t

n
4 ; t

n
5 ; t

n
6 // � r ��C .r/ > 0I

and this proves our assertion.
Part 4 (F is 4-point-lim-positive). Let r > 0 be arbitrary fixed. We have to show

that F is 4-point-lim-positive at r . Let .tni In � 0/, i 2 f1; 2; 3; 4; 5; 6g, be
sequences in R0C with .tn4 D r In � 0/; and (as n!1)

tni ! r , i 2 f1; 5g; tni ! 0, i 2 f2; 3; 6g.
There exists some rank n.r/ in such a way that

.8n � n.r// W tni < 3r=2; i 2 f1; 5gI tni < r=2; i 2 f2; 3; 6g:

Combining with the choice of .tn4 In � 0/ yields, for all n � n.r/,

G1.t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / D tn2 < r=2I

hence  .G1.tn2 ; t
n
3 ; t

n
4 ; t

n
5 ; t

n
6 // D  .tn2 / < tn2 < r=2I

Gk.t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / D r; k 2 f2; 3g:
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This yields, in case G D G1,

lim sup
n

F.tn1 ; t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / � r � r=2 D r=2 > 0I

and, in case G 2 fG2;G3g,

lim sup
n

F.tn1 ; t
n
2 ; t

n
3 ; t

n
4 ; t

n
5 ; t

n
6 / D r �  .r/ > 0:

As a consequence of these, the claim follows; and the argument is complete.

Now, by simply combining the obtained fact with our main result above, one gets
the so-called Comp-almost Boyd–Wong theorem:

Theorem 8. Suppose that T is .d;�IG;M 1I /-contractive, for some semi-
altering G 2 fG1;G2;G3g and some compatible almost Boyd–Wong admissible
function 2 F .re/.RC/. In addition, assume that .X; d/ is a-o-complete. Then,

i) If T is .a � o; d/-continuous, then it is globally strong Picard (modulo .d;�/)
ii) If .�/ is .a � o; d/-self-closed, then T is a globally Bellman Picard operator

(modulo .d;�/).
(B) The following particular cases are of interest:

Case 1. Assume that .�/ D X � X . Then, if G D G1, Comp-almost Boyd–Wong
theorem is just BWM-caa theorem; and, if G D G3, Comp-almost Boyd–Wong
theorem yields a direct extension of the statement in Hardy and Rogers [9].

Case 2. Passing to the general case (modulo .�/), note that any BWM-admissible
function is compatible and almost Boyd–Wong admissible. Then, Comp-almost
Boyd–Wong theorem is just Extended BWM theorem.

2.4 Global Aspects

In the following, a certain “global” version of the main result is given. As before,
.X; d;�/ is a quasi-ordered metric space; and T 2 F .X/ is a selfmap of X ;
assumed to be semi-progressive, increasing.

Let F 2 F .R6C; R/ be compatible [see above]. For an application of the
main result, it will suffice that F be (in addition) (3,4)-normal, almost 2-right-
lim-positive, and 4-point-lim-positive. We shall try to assure this under the global
condition

(d01) F is lower semicontinuous (in short: lsc) on R6C: lim infn F.tn1 ; : : : ; t
n
6 / �

F.a1; : : : ; a6/, whenever tni ! ai , i 2 f1; : : : ; 6g.
Note that, in such a case, the 2-right-lim-positive property is obtainable from

(d02) (F is (3,4)-normal): F.r; r; 0; 0; r; r/ > 0, 8r > 0.
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On the other hand, the 4-point-lim-positive property is holding, as long as

(d03) (F is (2,3,6)-normal):F.r; 0; 0; r; r; 0/ > 0, 8r > 0.

An application of our main result yields the following practical statement:

Theorem 9. Assume that T is .d;�; F /-contractive, for some compatible lsc F 2
F .R6C; R/ which is both (3,4)-normal and (2,3,6)-normal. In addition, assume that
.X; d/ is a-o-complete. Then, conclusions of the main result are retainable.

The following particular case is of interest. Assume that (in addition to the lsc
property) the global condition holds

(d04) F is .2; : : : ; 6/-decreasing: F.t1; :/ is decreasing in each argument, 8t1 2
RC.

Then, the compatibility condition upon F is deductible from:

(d05) F is almost-compatible: for each sequence .rn/ in R0C, with F.rn; rn�1;
rn�1; rn; rn C rn�1; 0/ � 0, 8n � 1, we must have rn ! 0.

In particular this last condition is deductible from

(d06) F is  -compatible (F.u; v; v; u; u C v; 0/ � 0 H) u �  .v/) for some
compatible function  2 F .re/.RC/.

This is just the main result in Altun and Simsek [4]; obtained (under a different
approach) with the lsc condition upon F being substituted by a continuity assump-
tion upon the same.

Now, technically speaking, this last condition was introduced so as to be
applicable for functions F attached to couples .G; / (see above); where the
compatible  2 F .re/.RC/ is either increasing or continuous. In the former case,
F is .2; : : : ; 6/-decreasing; but, not in general lsc. In the latter case, F is neither
lsc nor .2; : : : ; 6/-decreasing. As a consequence of this, no variant of the Comp-
almost Boyd–Wong theorem involving such functions is deductible from the above
statement. Further aspects may be found in Popa and Mocanu [25]; see also Vetro
and Vetro [40].

Finally, note that these techniques are applicable as well to coincidence point
results. In this case, it is possible to include the statement in Akkouchi [2]; we do
not give further details.

3 Non-limit Approach

3.1 Introduction

In the following, a non-limit approach for the results above is being performed, so
as to give a complementary perspective about these.
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Let .X; d/ be a metric space; and T be a selfmap of X . As before, we have
to determine whether Fix.T / is nonempty; and, if this holds, to establish whether
T is fix-asingleton; or, equivalently: T is fix-singleton. A similar problem is to be
formulated with respect to the iterates T k , where k � 1.

The specific directions under which this problem is to be solved were already
listed in the previous context involving (amorphous) metrical structures. Sufficient
general conditions for getting such properties are being founded on the orbital
concepts (in short: o-concepts) we just introduced. The specific conditions for the
same involve contractive properties, expressed as follows. LettingC 2 F .R3C; RC/
be a function, we say that T is .d; C /-contractive, if

(a01) d.T x; Ty/ � C.d.x; y/; d.x; T x/; d.y; Ty//, 8x; y 2 X .

The class of such functions C.:/ to be considered may be described along the
following lines. Let � be a .>/-cofinal part of R0C. We say that C 2 F .R3C; RC/
is Q3-normal (modulo�), if it satisfies

(1a) the global conditions:

(a02) C.w; 0; 0/ < w, for all w > 0
(a03) u; v > 0 and u � C.v; v; u/ imply u � v;

(1b) the local conditions: 8r > 0, 9e.r/ > 0, 9h.r/ 2�0; rŒ, such that:

(a04) u; v 2 Œr; r C e.r/Œ, u � v H) C.v; v; u/ � h.r/
(a05) u; v 2�0; e.r/Œ H) C.u; v; r/ � h.r/;

(1c) the �-local condition: 8r 2 �, 9e.r/ > 0, 9h.r/ 2�0; rŒ, such that:

(a06) u 2�r; r C e.r/Œ; v;w 2�0; e.r/Œ H) C.u; v;w/ � h.r/.
When the .>/-cofinal part � of R0C is generically taken, the resulting property

will be referred to as: C 2 F .R3C; RC/ is almost Q3-normal. And, if � D R0C, we
say that C 2 F .R3C; RC/ is Q3-normal.

The following answer (referred to as: Reich theorem) to the posed problem is
now available:

Theorem 10. Suppose that T is .d; C /-contractive, for some Q3-normal function
C 2 F .R3C; RC/. In addition, assume that .X; d/ is o-complete. Then, T is a
globally strong Picard operator (modulo d ).

In particular, when the orbital concepts are ignored, this result is just the one
in Turinici [33]. As precise there, the quoted statement was constructed by taking
as model the 1972 Reich’s contribution [27]; this is a strong motivation for us to
introduce our convention. Further aspects may be found in Turinici [31].

Now, a natural way of extending these explicit results is by considering implicit
functional contractive conditions like

(a07) F.d.T x; Ty/; d.x; y/; d.x; T x/; d.y; Ty/; d.x; Ty/; d.y; T x// � 0,
8x; y 2 X , x ¤ y;



Implicit Contractive Maps in Ordered Metric Spaces 739

where F W R6C ! R is an appropriate function. Some concrete examples may
be found in Akkouchi and Popa [3], or Berinde and Vetro [6]; see also Nashine
et al. [17]). Concerning this aspect, note that in almost all papers based on implicit
techniques—including the ones we just quoted—it is asserted that the starting point
in the area is represented by the contributions due to Popa [22–24]. Unfortunately,
these affirmations are not true; see in this direction the “old” implicit approaches
in Turinici [32, 34]. It is our aim in the following to give a (non-limit type)
extension of these results to the realm of quasi-ordered metric spaces; which,
in addition, includes the explicit statements above. As a matter of fact, further
structural extensions of these developments are possible; we do not give details.

3.2 Main Result

Let X be a nonempty set. Take a metric d.:; :/ on X as well as a quasi-order .�/
over the same; the structure .X; d;�/ will be then called a quasi-ordered metric
space. Further, let T 2 F .X/ be a selfmap of X ; supposed to be semi-progressive
and increasing. The specific directions under which the fixed point problem is
to be solved were already listed in the previous context involving quasi-ordered
metrical structures. Sufficient general conditions for getting such properties are
being founded on the ascending-orbital concepts. (in short: a-o-concepts) we just
introduced. The specific conditions for the same involve contractive properties,
expressed as follows. GivenF 2 F .R6C; R/, we say that T is .d;�IF / contractive,
provided

(b01) F.d.T x; Ty/; d.x; y/; d.x; T x/; d.y; Ty/; d.x; Ty/; d.T x; y// � 0, for
all x; y 2 X with x � y, x ¤ y.

The class of such functions is to be described as follows. Let� be a .>/-cofinal part
ofR0C (for each " > 0, there exists 
 2 � with " > 
). We say that F 2 F .R6C; R/
is P6-normal (modulo�), provided it satisfies

(2a) the global conditions

(b02) w > 0) F.w;w; 0; 0;w;w/ > 0
(b03) u; v > 0, p � uC v, F.u; v; v; u; p; 0/ � 0) u � v;

(2b) the local conditions: 8r > 0, 9a.r/ 2�0; rŒ such that

(b04) u; v 2 Œr; r C a.r/Œ, u � v, p � uC v) F.u; v; v; u; p; 0/ > 0
(b05) t; p 2�r �a.r/; rCa.r/Œ, u; v; q 2�0; a.r/Œ) F.t; u; v; r; p; q/ > 0;

(2c) the �-local condition: 8r 2 �, 9a.r/ 2�0; rŒ such that

(b06) t; p; q 2�r � a.r/; r C a.r/Œ; u 2�r; r C a.r/Œ, v;w 2�0; a.r/Œ )
F.t; u; v;w; p; q/ > 0.
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When the .>/-cofinal part� ofR0C is generically taken, the resulting property
will be referred to as: F 2 F .R6C; R/ is almost P6-normal. And, if � D R0C,
we say that F 2 F .R6C; R/ is P6-normal.

Our first main result can be stated as follows.

Theorem 11. Suppose that T is .d;�; F /-contractive, where F 2 F .R6C; RC/ is
almost P6-normal. In addition, assume that .X; d/ is a-o-complete. Then,

i) If T is .a � o; d/-continuous, then it is globally strong Picard (modulo .d;�/)
ii) If .�/ is .a � o; d/-self-closed, then T is a globally Bellman Picard operator

(modulo .d;�/).
Proof. First, we prove the fix-.�/-asingleton property for T . Let z1; z2 2 Fix.T / be
such that z1 � z2 and z1 ¤ z2; hence, r WD d.z1; z2/ > 0. From the contractive
condition, we get F.r; r; 0; 0; r; r/ � 0; in contradiction with the first global
property of F ; hence, the claim. It remains to establish that T is a strong/Bellman
Picard operator (modulo .d;�/). Take some x0 2 X.T;�/ and consider the
sequence .xn WD T nx0In � 0/; it is ascending and orbital. If xn D xnC1 for some
n � 0, the conclusion follows. So, without loss, one may assume that

xn ¤ xnC1 (hence, rn WD d.xn; xnC1/ > 0), for all n � 0.

I) Denote for simplicity .sn WD d.xn; xnC2/In � 0/; it is a sequence in RC.
Again by the contractive condition,

F.rnC1; rn; rn; rnC1; sn; 0/ � 0; 8n � 0: (30)

On the other hand, the triangle inequality gives (8n � 0)

sn D d.xn; xnC2/ � d.xn; xnC1/C d.xnC1; xnC2/ D rn C rnC1: (31)

Combining with the second global property of F , one gets rnC1 � rn, 8n � 0. The
sequence .rnIn � 0/ (in R0C) is then decreasing; hence r WD limn.rn/ exists and
rn � r , for all n � 0. Suppose by contradiction that r > 0; and let the quantity
a.r/ 2�0; rŒ be the one given by the first local property of F . By definition, there
may find some rank n.r/ � 0, such that

n � n.r/) rn; rnC1 2 Œr; r C a.r/Œ: (32)

By the first local property in question, we thus have

F.rnC1; rn; rn; rnC1; sn; 0/ > 0; 8n � n.r/I (33)

which contradicts, for n � n.r/, a previous relation involving these data. Hence,
r D 0; i.e.,

rn WD d.xn; xnC1/! 0; as n!1I (34)

or, in other words: .xnIn � 0/ is d -semi-Cauchy.
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II) We now claim that .xnIn � 0/ is d -Cauchy. Suppose that this is not true.
From the imposed hypothesis upon F , there exists a .>/-cofinal subset � of R0C,
such that F is P6-normal (modulo �). This, by a preliminary statement involving
d -semi-Cauchy sequences, assures us that there exists a number 
 2 �, such that:
for each � 2�0; 
=3Œ, there may be found a rank j.�/ � 0, and a couple of rank-
sequences .m.j /I j � 0/, .n.j /I j � 0/, with the properties (4)–(8). Let a.
/ be
the number given by the �-local condition upon F at 
 ; and take � 2 Œ0; 
=3Œ

according to 0 < � < a.
/=3. From the contractive condition, we have

F.d.xm.j /C1; xn.j /C1/; d.xm.j /; xn.j //; rm.j /; rn.j /;
d.xm.j /; xn.j /C1/; d.xm.j /C1; xn.j // � 0; 8j � j.�/:

On the other hand, by the relations in the quoted preliminary statement,

0 < rn.j /�1 � rm.j / < � < .1=3/a."/ < a."/; 8j � j.�/: (35)

This yields (for the same ranks j )

d.xm.j /; xn.j //� rm.j / � rn.j / �
d.xm.j /C1; xn.j /C1/ � d.xm.j /; xn.j //C rm.j /C rn.j /; (36)


 < d.xm.j /; xn.j // � d.xm.j /; xn.j /�1/C rn.j /�1 � 
 C rn.j /�1; (37)

d.xm.j /; xn.j //� rn.j / � d.xm.j /; xn.j /C1/ � d.xm.j /; xn.j //C rn.j /; (38)

d.xm.j /; xn.j // � rm.j / � d.xm.j /C1; xn.j // � d.xm.j /; xn.j //C rm.j /: (39)

From these facts, it easily follows, 8j � j.�/

d.xm.j /C1; xn.j /C1/; d.xm.j /; xn.j /C1/; d.xm.j /C1; xn.j // 2
�
 � a.
/; 
 C a.
/Œ; d.xm.j /; xn.j // 2�
; 
 C a.
/Œ: (40)

Taking into account the �-local property for F , one has

F.d.xm.j /C1; xn.j /C1/; d.xm.j /; xn.j //; rm.j /; rn.j /;
d.xm.j /; xn.j /C1/; d.xm.j /C1; xn.j // > 0; 8j � j.�/:

This, however, is in contradiction with a previous relation involving these quantities;
so that .xnIn � 0/ is d -Cauchy, as claimed.

III) Since .X; d/ is a-o-complete, xn
d�! z, for some z 2 X . If T is .a � o; d/-

continuous, yn WD T xn
d�! T z as n ! 1. In addition, as .yn D xnC1In � 0/ is

a subsequence of .xnIn � 0/, we have yn
d�! z as n ! 1; hence (as d=metric),

z D T z. Suppose now that .�/ is .a�o; d/-self-closed; note that, as a consequence,
xn � z, 8n. Two cases may occur.
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Case 1. There exists a sequence of ranks .k.i/I i � 0/ with k.i/ ! 1 as
i ! 1 in such a way that xk.i/ D z (hence xk.i/C1 D T z), for all i . This,
and .xk.i/C1I i � 0/ being a subsequence of .xnIn � 0/, gives z 2 Fix.T /.

Case 2. There exists some rank h � 0 such that

(b07) n � h H) xn ¤ z.

Suppose by contradiction that z ¤ T z; hence, r WD d.z; T z/ > 0. From the
contractive property, we must have

F.d.xnC1; T z/; d.xn; z/; d.xn; xnC1/; r; d.xn; T z/; d.xnC1; z// � 0; 8n � h:

On the other hand, let a.r/ 2�0; rŒ be the quantity given by the second local
property of F . From the d -semi-Cauchy property and the convergence relation
involving .xnIn � 0/, there exists some rank n.r/ � 0, such that

0 < d.xn; xnC1/; d.xn; z/; d.xnC1; z/ < .1=3/a.r/ < a.r/; 8n � n.r/: (41)

Moreover, from the triangle inequality, we have

r � d.xn; z/ � d.xn; T z/ � r C d.xn; z/; 8n � 0I

so that (combining with the preceding relation)

d.xn; T z/; d.xnC1; T z/ 2�r � a.r/; r C a.r/Œ;8n � n.r/: (42)

These, along with the quoted local property of F , give

F.d.xnC1; T z/; d.xn; z/; d.xn; xnC1/; r; d.xn; T z/; d.xnC1; z// > 0; 8n � n.r/I

in contradiction, for n � n.r/, with a preceding relation involving these data.
Therefore, z D T z; and this completes the argument.

The developments above allow a direct extension to the class of generalized
metric spaces. Precisely, let X be a nonempty set. By a generalized metric on
X , we mean, any map d W X � X ! RC [ f1g; supposed to be symmetric
[d.x; y/ D d.y; x/, 8x; y 2 X ], triangular [d.x; z/ � d.x; y/ C d.y; z/,
8x; y; z 2 X ], and reflexive-sufficient [d.x; y/ D 0 iff x D y]. In other words,
d.:; :/ has all the properties of a metric; but its values may be infinite; in this case,
the structure .X; d/ will be called a generalized metric space. Some basic examples
are to be found in Luxemburg [15] and Jung [12]; and an interesting application
of these to approximate multipliers/centralizers may be found in Bodaghi et al.
[7]. Another basic example is represented by the so-called Thompson’s metric [30],
constructed over convex cones in a normed space. A general fixed point theory over
such structures may be found in the 1997 book by Hyers et al. [10, Chap. 5]; further
extensions and some applications to projective Volterra integral equations may be
found in Turinici [35].
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Now, let .�/ be a quasi-order on X ; the resulting structure will be called a quasi-
ordered generalized metric space. Further, let T 2 F .X/ be increasing and

(b08) T is finitely semi-progressive: X.T;�I1/ WD fx 2 X I x � T x;

d.x; T x/ <1g is nonempty.

An extension of the main result above to such a framework is now possible, by the
described argument; we do not give details.

3.3 Particular Case

Let .X; d;�/ be a quasi-ordered metric space. Further, let T 2 F .X/ be a selfmap
of X ; supposed to be semi-progressive and increasing.

(A) Concerning the main result above, a basic particular case is the one
characterized as the associated function F does not depend on its last two variables.
The obtained problem can be stated under the lines below. Given E 2 F .R4C; R/,
we say that T is .d;�IE/ contractive, provided

(c01) E.d.T x; Ty/; d.x; y/; d.x; T x/; d.y; Ty// � 0 for all x; y 2 X with
x � y, x ¤ y.

The class of such functions is introduced as follows. Let � be a .>/-cofinal part of
R0C. We say that E 2 F .R4C; R/ is P4-normal (modulo�), provided it satisfies

(3a) the global conditions

(c02) w > 0 H) E.w;w; 0; 0/ > 0
(c03) u; v > 0, E.u; v; v; u/ � 0 H) u � v;

(3b) the local conditions: 8r > 0, 9a.r/ 2�0; rŒ such that

(c04) u; v 2 Œr; r C a.r/Œ, u � v H) E.u; v; v; u/ > 0
(c05) t 2�r � a.r/; r C a.r/Œ, u; v 2�0; a.r/Œ H) E.t; u; v; r/ > 0;

(3c) the �-local condition: 8r 2 �, 9a.r/ 2�0; rŒ such that

(c06) t 2�r � a.r/; r C a.r/Œ; u 2�r; r C a.r/Œ, v;w 2�0; a.r/Œ )
E.t; u; v;w/ > 0.

When the .>/-cofinal part� ofR0C is generically taken, the resulting property
will be referred to as: E 2 F .R4C; R/ is almost P4-normal. And, if � D R0C,
we say that E 2 F .R4C; R/ is P4-normal.

By the preceding developments, we directly get our second main result:

Theorem 12. Suppose that T is .d;�; E/-contractive, where E 2 F .R4C; R/
is almost P4-normal. In addition, assume that .X; d/ is a-o-complete. Then,
conclusions of the first main result are retainable.
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(B) This setting is the most appropriate one to make a comparison with Reich
theorem. The following intermediary statement is useful for our purpose.

Theorem 13. Suppose that T is .d;�IC/-contractive, for some almost Q3-normal
function C 2 F .R3C; RC/. In addition, assume that .X; d/ is a-o-complete. Then,
conclusions of the first main result are retainable.

Proof. By definition, there exists a .>/-cofinal part � of R0C such that C is
Q3-normal (modulo�). Let E 2 F .R4C; R/ be defined as

E.t; u; v;w/ D t � C.u; v;w/, .t; u; v;w/ 2 R4C;

it will be referred to as the associated to C function. We show that E is P4-normal
(modulo�); and, from this, all is clear (by the preceding statement).

i) Let w > 0 be arbitrary fixed. By the first global property of C , one has
E.w;w; 0; 0/ D w � C.w; 0; 0/ > 0.

ii) Let u; v > 0 be such that E.u; v; v; u/ � 0. By definition, this yields u �
C.v; v; u/; and then, the second global property of C gives u � v.

iii) Let r > 0 be given. By the first local property of C , there exist e.r/ > 0,
h.r/ 2�0; rŒ, with: u; v 2 Œr; r C e.r/Œ and u � v imply C.v; v; u/ � h.r/. This
yields

E.u; v; v; u/ D u � C.v; v; u/ � r � h.r/ > 0I

so, E fulfills the first local property, with a.r/ D e.r/.
iv) Let r > 0 be arbitrary fixed. By the second local property of C , there exist

e.r/ > 0, h.r/ 2�0; rŒ, such that: u; v 2�0; e.t/Œ H) C.u; v; r/ � h.t/. Denote

a.r/ D .1=2/minfe.r/; r � h.r/g; (hence, a.r/ < r � h.r/).
For each t 2�r � a.r/; r C a.r/Œ, u; v 2�0; a.r/Œ, we then get

E.t; u; v; r/ D t � C.u; v; r/ > r � a.r/� h.r/ > 0I

whence, E fulfills the second global property.
v) Let r 2 � be arbitrary fixed. By hypothesis, there exist e.r/ > 0, h.r/ 2�0; rŒ,

such that, the relation below holds

u 2�r; r C e.r/Œ and v;w 2�0; e.t/Œ imply C.u; v;w/ � h.t/.
Denote (as before) a.r/ D .1=2/minfe.r/; r�h.r/g. Then, for each .t; u; v;w/
with t 2�r � a.r/; r C a.r/Œ, u 2�r; r C a.r/Œ, v;w 2�0; a.r/Œ,

E.t; u; v;w/ D t � C.u; v;w/ > r � a.r/� h.r/ > 0I

so that, E fulfills the �-local property. This ends the argument.

Note, finally, that this result includes both the Boyd–Wong theorem and the
Matkowski theorem for the class of quasi-ordered metric spaces. On the other hand,
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by an appropriate choice of our data, the obtained theorem includes the“altering"
fixed point statement in Khan et al. [14]. Further aspects may be found in the paper
by Turinici [34].
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Higher Dimensional Continuous Wavelet
Transform in Wiener Amalgam Spaces

Ferenc Weisz

Abstract Norm convergence and convergence at Lebesgue points of the inverse
wavelet transform are obtained for functions from the Lp and Wiener amalgam
spaces.

Keywords Continuous wavelet transform • Wiener amalgam spaces
• 
-summability • Inversion formula

1 Introduction

A general method of summation, the so-called 
-summation method, which is
generated by a single function 
 and which includes all well-known summability
methods, is studied intensively in the literature (see, e.g., Butzer and Nessel [2],
Trigub and Belinsky [22], Gát [8], Goginava [9], Simon [19] and Weisz [26, 27]).
The means generated by the 
-summation are defined by

�
T f .x/ WD
Z
Rd




��t1
T1
; : : : ;

�td
Td

�
Of .t/e2�{x�t dt:

In Feichtinger and Weisz [6, 7, 25] we have proved that under some conditions of
the Fourier transform of 
 , the 
-means �
T f converge to f almost everywhere or
at Lebesgue points and in norm as T !1, whenever f is in the Lp.Rd / space or
in a Wiener amalgam space.
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There is a close connection between summability of Fourier transforms and the
inverse of the continuous wavelet transform. Using the summability results we
can obtain convergence results for the inverse continuous wavelet transform. The
continuous wavelet transform of f with respect to a wavelet g is defined by

Wgf .x; s/ D hf; TxDsgi .x 2 R
d ; s 2 R; s ¤ 0/;

where Ds is the dilation operator and Tx the translation operator. Under some
conditions on g and � the inversion formula holds for all f 2 L2.Rd /:

Z 1
0

Z
Rd

Wgf .x; s/TxDs�
dxds

sdC1
D Cg;�f;

where the equality is understood in a vector-valued weak sense (see Daubechies [5]
and Gröchenig [11]). The convergence of this integral is an important problem. In
fact, there are several results on the convergence of the inverse continuous or discrete
wavelet transform (see, e.g., [1,3,4,13–16,30–32]). In this paper we summarize the
results about the convergence of

lim
S!0;T!1

Z T

S

Z
Rd

Wgf .x; s/TxDs�
dxds

sdC1

including the case when T D1.

2 Wiener Amalgam Spaces

Let us fix d � 1, d 2 N. For a set Y ¤ ;, let Yd be its Cartesian product Y�� � ��Y
taken with itself d-times. For x D .x1; : : : ; xd / 2 Rd and u D .u1; : : : ; ud / 2 Rd

set u � x WD Pd
kD1 ukxk and jxj D kxk2. We briefly write Lp.Rd / or Lp.Rd ; dx/

instead of Lp.Rd ; �/ space equipped with the norm (or quasi-norm)

kf kp WD
�Z

Rd

jf jp d�
�1=p

.0 < p � 1/

with the usual modification for p D 1, where � is the Lebesgue measure. The
`p.Z

d / .1 � p � 1/ spaces containing sequences are defined in the usual way.
The set of sequences .ak; k 2 Zd / with the property limjkj!1 ak D 0 is denoted by
c0.Z

d / and it is equipped with the `1.Zd / norm.
Set logC u D max.0; log u/. A function f is in the set Lp.logL/k.Rd /

.1�p<1/ if

kf kLp.logL/k WD
�Z

Rd

jf jp.logC jf j/k d�
�1=p

<1:

Of course, if k D 0, then Lp.logL/k.Rd / D Lp.Rd /.
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The space of continuous functions with the supremum norm is denoted by C.Rd /
and we will use C0.Rd / for the space of continuous functions vanishing at infinity.
Cc.R

d / denotes the space of continuous functions having compact support.
A measurable function f belongs to the Wiener amalgam space W.Lp; `q/.Rd /

.1 � p; q � 1/ if

kf kW.Lp;`q/ WD
0
@X
k2Zd
kf .� C k/kq

LpŒ0;1/d

1
A
1=q

<1;

with the obvious modification for q D 1. If we replace here the space LpŒ0; 1/d

by Lp.logL/kŒ0; 1/d , then we get the definition of W.Lp.logL/k; `q/.Rd /.
W.Lp; c0/.R

d / is defined analogously .1 � p � 1/. The space W.L1; `1/.Rd /
is called the Wiener algebra.

Let us introduce another type of Wiener amalgam spaces. Let .i1; : : : ; id / be a
permutation of .1; : : : ; d /. A function f belongs to the space WK.Lp; `1/.Rd /
.1 � p � 1/ if

kf kWK.Lp;`1

/

WD sup
.i1;:::;id /

 
sup
ni12Z

Z ni1C1

ni1

� � � sup
nid 2Z

Z nidC1

nid

jf .x/jp dxid � � �dxi1
!1=p

<1:

If we replace jf .x/jp by jf .x/jp.logC jf .x/j/k in the previous integral, then we get
the definition of WK.Lp.logL/k; `1/.Rd /. In the one-dimensional case the WK

spaces are the same as the usual W spaces. A function f 2 WK.Lp; `1/.Rd /
belongs to the space WK.Lp; c0/.R

d / .1 � p � 1/ if for all � > 0 there exists
K 2 N such that



f 1.Œ�K;K�d /c



WK.Lp;`1

/
< �:

The space WK.Lp.logL/k; c0/.Rd / is defined analogously. We say that a function
f 2 WK.Lp; `1/.Rd / is in the space WK.Lp; c1/.R

d / .1 � p � 1/ if for all
� > 0 there exists K 2 N such that for all fixed xi2 ; : : : ; xid

f .x/ 1.Œ�K;K�/c .xi1 /




W.Lp;`1

/.R;dxi1 /
< �;

where .i1; : : : ; id / is an arbitrary permutation of .1; : : : ; d /. Obviously, Cc.Rd / 	
WK.Lp; c1/.R

d /.
It is easy to see that W.Lp; `p/.Rd / D Lp.Rd /,

WK.Lp1 ; `1/.Rd / � WK.Lp2; `1/.Rd / .p1 � p2/;
W.Lp1 ; `q/.R

d / � W.Lp2 ; `q/.Rd / .p1 � p2/;
W.Lp; `q1 /.R

d / 	 W.Lp; `q2 /.Rd / .q1 � q2/
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.1 � p1; p2; q1; q2 � 1/. Thus

W.L1; `1/.Rd / 	 Lp.Rd / 	 W.L1; `1/.Rd / .1 � p � 1/ :
For all 1 � p � 1,

W.Lp; `1/.Rd / � WK.Lp; `1/.Rd /

W.Lp.logL/k; `1/.Rd / � WK.Lp.logL/k; `1/.Rd /:

Moreover, for 1 � p < r � 1,

WK.Lp.logL/d�1; `1/.Rd / � C0.Rd /;
WK.Lp.logL/d�1; `1/.Rd / � WK.Lr ; `1/.Rd / � Lr.Rd /;

WK.Lp; `1/.Rd / � WK.Lp.logL/d�1; `1/.Rd / � Lp.logL/d�1.Rd /;

WK.Lp; `1/.Rd / � Lp.Rd /:

3 Convergence of the Inverse Wavelet Transform
as S ! 0; T ! 1, S; T 2 RC

3.1 �-Summability of Fourier Transforms

The Fourier transform of f 2 L1.Rd / is given by

Of .x/ WD
Z
Rd

f .t/e�2�{x�t dt .x 2 R
d /;

where { D p�1. Suppose that f 2 Lp.Rd / for some 1 � p � 2. The Dirichlet
integrals �T f and �S;T f are introduced by

�T f .x/ WD
Z
jvj�T

Of .v/e2�{x�v dv D
Z
Rd

f .x � u/DT .u/ du .T > 0/

and

�S;T f .x/ WD
Z
S<jvj�T

Of .v/e2�{x�v dv .S; T > 0/:

It is known (see, e.g., Grafakos [10]) that for f 2 L2.Rd /
lim

S!0;T!1 �S;T f D f in the L2-norm: (1)

In the one-dimensional case this convergence holds almost everywhere and in the
Lp-norm for all f 2 Lp.R/ with 1 < p <1.
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We have shown in [23] that the Dirichlet kernel Dt satisfies jDt j � C td and

Dt.u/ WD
Z
fjvj�tg

e2�{u�v dv D juj�d=2td=2Jd=2.2�jujt/;

where

J�.t/ D .t=2/�p
� � .� C 1=2/

Z 1

�1
e{ts.1 � s2/v�1=2 ds .� > �1=2; t > 0/

are the Bessel functions (see Stein and Weiss [20] or Weisz [27]).
Using a summability method, we obtain more general convergence results. To

define a general summability method, the so-called 
-summability, let 
0 be even
and continuous on R, differentiable on .0;1/ and 
.u/ WD 
0.juj/. We suppose that

 2 L1.Rd / and

Z 1
0

.r _ 1/d j
 00.r/j dr <1:

For T > 0 the 
-means of a function f 2 Lp.Rd / .1 � p � 2/ are defined by

�
T f .x/ WD
Z
Rd


0

� jvj
T

�
Of .v/e2�{x�v dv:

It is easy to see that

�
T f .x/ D
Z
Rd

f .x � u/K

T .u/ du;

where

K

T .u/ D

Z
Rd


0

� jvj
T

�
e2�{u�v dv D T d O
.T u/:

On the other hand,

K

T .u/ D

�1
T

Z
Rd

Z 1
jvj


 00
�
t

T

�
dt e2�{u�v dv D �1

T

Z 1
0


 00
�
t

T

�
Dt.u/ dt:

If O
 2 L1.Rd /, then we can extend the 
-means by

�
T f WD f 
K

T .T > 0/

for all f 2 W.L1; `1/.Rd /, where 
 denotes the convolution. This summation
contains all well-known summability methods, such as the Fejér, Riesz, Weierstrass,
Abel, Picard, Bessel, etc. summability methods.
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3.2 Norm Convergence of the �-Summability

The following two results about the norm convergence of �
T f were proved by
Feichtinger and Weisz [6, 23].

Theorem 1 ([6]). If 1 � p; q <1, 
 2 L1.Rd /, O
 2 L1.Rd / and f 2 W.Lp; `q/
.Rd /, then

lim
T!1 �



T f D 
.0/f in the W.Lp; `q/-norm:

The same holds for C0.Rd /, W.C; `q/.Rd / and for W.Lp; c0/.Rd /.

Theorem 2 ([23]). If 1 � p <1, 1 < q <1, 
 2 L1.Rd / and

ˇ̌
ˇ O
.x/

ˇ̌
ˇ � C jxj�d�� .x ¤ 0/

for some � > 0, then for all f 2 W.Lp; `q/.Rd /,

lim
T!0 �



T f D 0 in the W.Lp; `q/-norm:

The same holds for C0.Rd /, W.C; `q/.Rd / and for W.Lp; c0/.Rd /.

Of course, the conditions of Theorem 2 imply O
 2 L1.Rd /. The theorem is not
true for the L1.Rd / space, because if f; O
 � 0, then

Z
Rd

ˇ̌
�
T f .x/

ˇ̌
dx D

Z
Rd

ˇ̌
ˇ̌
Z
Rd

f .t/T d O
 .T .x � t// dt
ˇ̌
ˇ̌ dx D kf k1




 O





1

and this does not tend to 0.

3.3 Almost Everywhere Convergence of the �-Summability

First we introduce the concept of Lebesgue points. A point x 2 Rd is called a
Lebesgue point of f if

lim
h!0

1

.2h/d

Z h

�h
: : :

Z h

�h
jf .x C u/� f .x/j du D 0:

It is known that almost every point x 2 Rd is a Lebesgue point of all functions f
from the space W.L1; `1/.Rd / (see Feichtinger and Weisz [7]).
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Theorem 3 ([7]). Suppose that 
 2 L1.R/ and
ˇ̌
ˇ O
.x/

ˇ̌
ˇ � C jxj�d�� .x ¤ 0; � >0/.

Then

lim
T!1 �



T f .x/ D 
.0/f .x/

for all Lebesgue points of f 2 W.L1; `1/.Rd /.
The limit of �
T f .x/ as T ! 0 is equal to 0 at each point.

Theorem 4 ([23]). Suppose that 
 2 L1.R/, and
ˇ̌
ˇ O
.x/

ˇ̌
ˇ � C jxj�d�� .x ¤ 0;

� > 0/. Then

lim
T!0 �



T f .x/ D 0

for all x 2 Rd and f 2 W.L1; c0/.Rd /.
One can show easily that for all 1 � p; q <1

W.L1; c0/.R/ � W.Lp; c0/.R/;W.Lp; `q/.R/; Lp.R/:

3.4 Multi-Dimensional Continuous Wavelet Transform

Translation and dilation of a function f are defined, respectively, by

Txf .t/ WD f .t � x/ and Dsf .t/ WD jsj�d=2f .s�1t/;
where t; x; ! 2 Rd ; s 2 R; s ¤ 0.

The continuous wavelet transform of f with respect to a wavelet g is defined by

Wgf .x; s/ WD jsj�d=2
Z
Rd

f .t/g.s�1.t � x// dt D hf; TxDsgi;

.x 2 R
d ; s 2 R; s ¤ 0/ when the integral does exist. A function f is radial if

there exists a one-variable function � such that f .x/ D �.jxj/. We suppose that
g; � 2 L2.Rd / are radial functions. Then Og and O� are also radial functions. Set
�.jxj/ WD Og.x/ and �.jxj/ WD O�.x/. Suppose that

Z 1
0

ˇ̌
ˇ Og.s!/ O�.s!/

ˇ̌
ˇ ds
s
D
Z 1
0

ˇ̌
ˇ�.s/�.s/

ˇ̌
ˇ ds
s
<1 (2)

for some fixed j!j D 1 and let

Cg;� WD
Z 1
0

�.s/�.s/
ds

s
:
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We define also

Cg WD
Z 1
0

j�.s/j2 ds
s

and C� WD
Z 1
0

j�.s/j2 ds
s
:

By Hölder’s inequality if Cg and C� are both finite, then so is Cg;� . Plancherel’s
theorem is well known for Fourier transforms: if f; g 2 L2.R/, then

hf; gi D
D Of ; OgE and kf k2 D




 Of




2
:

The analogues of these results remain true for continuous wavelet transforms, too
(see, e.g., Daubechies [5] and Gröchenig [11]).

Theorem 5. Suppose that g 2 L2.Rd / is a radial function such that Cg < 1.
If f 2 L2.Rd /, then

Z 1
0

Z
Rd

ˇ̌
Wgf .x; s/

ˇ̌2 dx ds
sdC1

D Cgkf k22:

Theorem 6. Suppose that g; � 2 L2.Rd / are radial functions such that Cg < 1
and C� <1. If f1; f2 2 L2.Rd /, then

Z 1
0

Z
Rd

Wgf1.x; s/W�f2.x; s/
dx ds

sdC1
D Cg;� hf1; f2i :

Here in the last theorem we have to suppose that Cg and C� are both finite, it is
not enough that Cg;� is finite (see [29]). However, if g; � 2 L1.Rd /\L2.Rd /, then
it is enough to suppose the weaker condition Cg;� 2 C.

Under the above conditions, i.e., g; � 2 L2.Rd / are radial functions such that Cg
and C� are finite, the inversion formula holds for all f 2 L2.Rd /:

Z 1
0

Z
Rd

Wgf .x; s/TxDs�
dxds

sdC1
D Cg;�f;

where the equality is understood in a vector-valued weak sense (see, e.g.,
Christensen [3], Chui [4], Daubechies [5] or Gröchenig [11]). The convergence
of the integral on the left-hand side is very important, so we will investigate the
convergence of

�S;T f WD
Z T

S

Z
Rd

Wgf .x; s/TxDs�
dxds

sdC1
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and

�Sf WD
Z 1
S

Z
Rd

Wgf .x; s/TxDs�
dxds

sdC1
;

where 0 < S < T <1 and S ! 0 and T !1. In the next sections we investigate
the almost everywhere and norm convergence of �S;T f and �Sf .

3.5 Convergence of �S;T f

The one-dimensional version of the next theorem is due to Rao et al. [16] and the
higher dimensional version to the author [28].

Theorem 7 ([16, 28]). Assume that g; � 2 L2.Rd / \ L1.Rd / are radial functions
such that (2) holds. If f 2 L2.Rd /, then

lim
S!0;T!1 �S;T f D Cg;�f in the L2-norm:

In the one-dimensional case this convergence holds almost everywhere and in the
Lp-norm for all f 2 Lp.R/ with 1 < p <1.

In the proof of this theorem we have shown that

�S;T f .t/ D
Z 1
0

�.s/�.s/�s=T;s=Sf .t/
ds

s
.f 2 L2.Rd //:

Then the theorem follows from (1) (see [28]). Under much more stronger conditions,
if g; � 2 C1.Rd /, another version of the norm convergence was proved by Wilson
[30, 31] for all f 2 Lp.Rd / .1 < p <1/.

Supposing more conditions about g and � , Li and Sun [15] extended this result as
follows. We call h a radial log-majorant function if h is radial, positive, decreasing
as a function on .0;1/ and h.�/ ln.2C j�j/ 2 L1.Rd /. It is easy to see that in this
case h 2 L2.Rd /\L1.Rd / and even h 2 W.L1; `1/.Rd /. Let

C 0g;� WD �
Z
Rd

.g 
 �/.x/ ln jxj dx:

Theorem 8 ([15]). Suppose that the radial functions g and � have radial log-
majorants,

R
Rd
.g 
 �/.x/ dx D 0 and C 0g;� is finite.

1. If 1 < p <1 and f 2 Lp.Rd /, then

lim
S!0;T!1 �S;T f D C

0
g;�f in the Lp-norm:
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2. If 1 � p <1 and f 2 Lp.Rd /, then

lim
S!0;T!1�S;T f .x/ D C

0
g;�f .x/

for all Lebesgue-points of f .

Of course, under some conditions, Cg;� coincides with C 0g;� (see Rubin and
Shamir [17] and Saeki [18]). In special case (amongst others if f is bounded and
continuous), 2 was proved by Holschneider and Tchamitchain [12]. In the next
theorem we do not suppose that g; � 2 W.L1; `1/.Rd /, instead we suppose more
smoothness and that g; � 2 L1.Rd / \ L2.Rd /, and we show similar results for
functions from the Wiener amalgam spaces. Let d0 D dd=2e, the upper integer part
of d=2.

Theorem 9 ([23]). Assume that g; � 2 L1.Rd / are radial functions, � and � are
d0-times differentiable, �.j / and �.j / .j D 0; : : : ; d0/ are bounded,

ˇ̌
�.j /.r/

ˇ̌
;
ˇ̌
�.j /.r/

ˇ̌ � Cr˛ .0 < r � 1; j D 0; : : : ; d0=2/ (3)

for some ˛ > 0,

Z 1
0

ˇ̌
�.j /.r/

ˇ̌2
rd�1 dr <1;

Z 1
0

ˇ̌
�.j /.r/

ˇ̌2
rd�1 dr <1 .j D 0; : : : ; d0=2/

lim
u!1�

.j /.r/rd=2�3=2 D 0; lim
u!1 �

.j /.r/rd=2�3=2 D 0 .j D 0; : : : ; .d0 � 1/=2/:

1. If 1 � p <1, 1 < q <1 and f 2 W.Lp; `q/.Rd /, then

lim
S!0;T!1�S;T f D Cg;�f in the W.Lp; `q/-norm:

The same holds for C0.Rd /, W.C; `q/.Rd / and for W.Lp; c0/.Rd /.
2. If f 2 W.L1; c0/.Rd /, then

lim
S!0;T!1�S;T f .x/ D Cg;�f .x/

for all Lebesgue-points of f .

The first parts of Theorems 8 and 9 do not hold for the L1.Rd / space (i.e., p D
q D 1), even in the one-dimensional case. The key point of the proof is that we can
lead back the problem to the summability of Fourier transforms:

�S;T f D �
1=Sf � �
1=T f
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for all f 2 W.L1; `1/.Rd /, where


.�/ WD 
0.j�j/ WD
Z
j�j�s

�.s/�.s/
ds

s
;

Moreover, we have verified in [23] that 
; O
 2 L1.Rd / and

ˇ̌
ˇ O
.x/

ˇ̌
ˇ � C jxj�d�˛=4 .x ¤ 0/ :

The theorem follows from the results of Sects. 3.2 and 3.3.
Note that 
.0/ D Cg;� is finite, because

ˇ̌
Cg;�

ˇ̌ �
Z 1
0

j�.r/j j�.r/j dr
r
D
Z
0<r�1

j�.r/j j�.r/j dr
r

C
Z
r>1

j�.r/j j�.r/j rd�1 dr <1:

Obviously, the conditions of Theorem 9 imply that g; � 2 L2.R
d /, thus the

assumptions of Theorem 7 are satisfied in this case, too.
If g 2 L1.Rd / \L2.Rd /, Og.0/ D 0 and

Z
Rd

jxj˛ jg.x/j dx <1

for some 0 < ˛ � 1, then

j�.j!j/j D j Og.!/j D
ˇ̌
ˇ̌Z

Rd

g.x/
�
e�2�{x�! � 1� dx

ˇ̌
ˇ̌

� 2�
Z
fxWjx�!j�1g

jg.x/j jx � !j dx C 2
Z
fxWjx�!j�1g

jg.x/j dx

� 2�
Z
fxWjx�!j�1g

jg.x/j jx � !j˛ dx C 2
Z
fxWjx�!j�1g

jg.x/j jx � !j˛ dx

� 2� j!j˛
Z
Rd

jg.x/j jxj˛ dx:

Thus (3) is true for j D 0. Some inequalities with respect to �S;T f can be found
in [23].



758 F. Weisz

3.6 Convergence of �S f

The convergence of �Sf is different from that of �S;T f . In this section we will
prove more general results for �Sf . In [28] we have also shown that

�Sf .t/ D
Z 1
0

�.s/�.s/�s=Sf .t/
ds

s
.f 2 L2.Rd //:

This implies

Theorem 10 ([28]). Assume that g; � 2 L2.Rd /\L1.Rd / and Og and O� are radial
functions such that (2) holds. If f 2 L2.Rd /, then

lim
S!0 �Sf D Cg;�f in the L2-norm:

In the one-dimensional case this convergence holds almost everywhere and in the
Lp-norm for all f 2 Lp.R/ with 1 < p <1.

Under the same conditions as in Theorem 9,

�Sf D �
1=Sf (4)

for all f 2 L1.Rd /. Opposite to Theorems 8 and 9, now we obtain convergence of
�Sf in the L1-norm.

Theorem 11 ([15]). Suppose that the radial functions g and � have radial log-
majorants,

R
Rd
.g 
 �/.x/ dx D 0 and C 0g;� is finite.

1. If 1 � p <1 and f 2 Lp.Rd /, then

lim
S!0 �Sf D C

0
g;�f in the Lp-norm:

2. If 1 � p <1 and f 2 Lp.Rd /, then

lim
S!0 �Sf .x/ D C

0
g;�f .x/

for all Lebesgue-points of f .

This result was also shown in Saeki [18] for 1 < p <1.

Theorem 12 ([23]). Assume the same conditions as in Theorem 9.

1. If f 2 L1.Rd /, then

lim
S!0 �Sf D Cg;�f in the L1-norm:
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2. If f 2 L1.Rd /, then

lim
S!0 �Sf .x/ D Cg;�f .x/

for all Lebesgue-points of f .

We can generalize these theorems as follows. If we suppose a little bit more about
� , then we obtain sharper results. Equation (4) holds for all f 2 Lp.Rd /, as � 2
L1.R

d /\L1.Rd /, and for all f 2 W.Lp; `q/.Rd /, as � 2 W.L1; `1/.Rd / .1�p;
q <1/. The next theorem follows from this.

Theorem 13 ([23]). Besides the conditions of Theorem 9 assume that � 2 L1.Rd /
and 1 � p; q <1.

1. If f 2 Lp.Rd /, then

lim
S!0 �Sf D Cg;�f in the Lp-norm:

If in addition � 2 W.L1; `1/.Rd /, then the convergence holds in theW.Lp; `q/-
norm for all f 2 W.Lp; `q/.Rd /.

2. If f 2 Lp.Rd /, then

lim
S!0 �Sf .x/ D Cg;�f .x/

for all Lebesgue-points of f . If in addition � 2 W.L1; `1/.Rd /, then the
convergence holds at each Lebesgue-point of f 2 W.L1; `q/.Rd /.

4 Convergence of the Inverse Wavelet Transform in
Pringsheim’s Sense, as S ! 0; T ! 1, S; T 2 R

d
C

4.1 �-Summability of Fourier Transforms
in Pringsheim’s Sense

In this section we investigate the convergence in Pringsheim’s sense, i.e., if S; T 2
RdC and S ! 0; T ! 1, in other words, Sj ! 0; Tj ! 1 for all j D 1; : : : ; d .
Now we define the Dirichlet integral by

�T f .x/ WD
Z T1

�T1
: : :

Z Td

�Td
Of .u/e2�{x�u du
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.T D .T1; : : : ; Td / 2 RdC/. Then

lim
T!1 �T f D f in the Lp.Rd /-norm

for all f 2 Lp.Rd /, 1 < p < 1 (see, e.g., Grafakos [10] or [27]), but there is no
almost everywhere convergence for �T f .T 2 R

dC/. Using a summability method,
we can generalize these results again. Let 
 D 
1�� � ��
d and 
j 2 L1.R/\C0.R/
for all j D 1; : : : ; d . The 
-means of f 2 Lp.Rd / .1 � p � 2/ are defined by

�
T f .x/ WD
Z
Rd

0
@ dY
jD1


j

��tj
Tj

�1
A Of .t/e2�{x�t dt:

Then

�
T f .x/ D
Z
Rd

f .x � t/K

T .t/ dt D f 
K


T .x/ .x 2 R
d ; T 2 R

dC/

and

K

T .x/ D

Z
Rd

0
@ dY
jD1


j

��tj
Tj

�1
A e2�{x�t dt D

0
@ dY
jD1

Tj O
j
�
Tjxj

�
1
A

.x 2 Rd /. If O
 2 L1.Rd /, then we can extend this definition in the following way:

�
T f WD f 
K

T .T 2 R

dC/

for all f 2 W.L1; `1/.Rd /. Note that 
 2 L1.Rd / and O
 2 L1.Rd / imply 
 2
C0.R

d /.

4.2 Norm Convergence of the �-Summability
in Pringsheim’s Sense

The analogues of Theorems 1 and 2 can be formulated as follows.

Theorem 14 ([6]). If 1 � p; q < 1, 
j 2 L1.R/ and O
j 2 L1.R/ for all j D 1;

: : : ; d , then

lim
T!1 �



T f D 
.0/f in the W.Lp; `q/-norm

for all f 2 W.Lp; `q/.Rd /. The same holds for C0.Rd /, W.C; `q/.Rd / and for
W.Lp; c0/.R

d /.
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If at least one coordinate of T , say Ti , tends to zero, then �
T f ! 0 in the
Lp.R

d /-norm.

Theorem 15 ([24]). If 1 � p <1, 1 < q <1, 
j 2 L1.R/ and

ˇ̌
ˇb
j .x/

ˇ̌
ˇ � C jxj�2 .x ¤ 0/

for all j D 1; : : : ; d , then

lim
Ti!0

Tj !0;1;jD1;:::;d;j¤i

�
T f D 0 in the W.Lp; `q/-norm

for all f 2 W.Lp; `q/.Rd /. The same holds for C0.Rd /, W.C; `q/.Rd / and for
W.Lp; c0/.R

d /.

Similarly to Theorem 2, this theorem does not hold for the L1.R/ space, either.

4.3 Almost Everywhere Convergence of the �-Summability
in Pringsheim’s Sense

The strong maximal function is defined by

Msf .x/ WD sup
x2I

1

jI j
Z
I

jf j d� �
x 2 R

d
�
;

where f 2 Lloc
1 .R

d / and the supremum is taken over all rectangles I 	 Rd with
sides parallel to the axes. A point x 2 Rd is called a strong Lebesgue point of f if
Msf .x/ is finite and

lim
h!0

1Qd
jD1.2hj /

Z h1

�h1
: : :

Z hd

�hd
jf .x C u/� f .x/j du D 0:

It is known that almost every point x 2 Rd is a Lebesgue point of all functions
f from the space WK.L1.logL/d�1; `1/.Rd / � L1.logL/d�1.Rd /; Lp.Rd /, 1 <
p � 1 (see Feichtinger and Weisz [7, 25]).

Theorem 16 ([25]). Suppose that 
j 2 L1.R/ and
ˇ̌
ˇb
j .x/

ˇ̌
ˇ � C=jxj2 .x ¤ 0/ for

all j D 1; : : : ; d . Then

lim
T!1 �



T f .x/ D 
.0/f .x/

for all strong Lebesgue points of f 2 WK.L1.logL/d�1; `1/.Rd /.
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For the almost everywhere convergence of �
T f as T ! 0, we obtained the
following results in [24].

Theorem 17 ([24]). Suppose that 
j 2 L1.R/ and
ˇ̌
ˇb
j .x/

ˇ̌
ˇ � C=jxj2 .x ¤ 0/ for

all j D 1; : : : ; d . Then

lim
Ti!0

Tj !0;1;jD1;:::;d;j¤i

�
T f D 0 a.e.

for all f 2 WK.L1.logL/d�1; c0/.Rd /.

One can show easily that

WK.L1.logL/d�1; c0/.Rd / � W.Lp; c0/.Rd /;W.Lp; `q/.Rd /;
L1.logL/d�1.Rd /; Lp.Rd / (5)

for 1 < p <1; 1 � q <1. We can show everywhere convergence of the 
-means
as well.

Theorem 18. Suppose that 
j 2 L1.R/,
ˇ̌
ˇb
j .x/

ˇ̌
ˇ � C=jxj2 .x ¤ 0/ for all

j D 1; : : : ; d and Msf .x/ is finite. Then

lim
Ti!0

Tj !0;1;jD1;:::;d;j¤i

�
T f .x/ D 0

for all x 2 Rd and f 2 WK.L1; c1/.R
d /.

4.4 Continuous Wavelet Transform in Pringsheim’s Sense

In the one-dimensional case we suppose either that g and � are even functions or

Z 1
�1

ˇ̌
ˇ Og.s/ O�.s/

ˇ̌
ˇ dsjsj <1: (6)

Here we will consider rather the second version. The continuous wavelet transform
of f with respect to a wavelet g is defined by

Wgf .x; s/ WD jsj�1=2
Z
R

f .t/g.s�1.t � x// dt D hf; TxDsgi;

.x 2 R; s 2 R; s ¤ 0/ when the integral does exist.
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In this section instead of the functions g and � , we consider the Kronecker
product of the one-dimensional functions gj and �j , j D 1; : : : ; d . The continuous
wavelet transform of f with respect to the wavelets gj is defined now by

Wgf .x; s/ WD
0
@ dY
jD1
jsj j�1=2

1
A
Z
Rd

f .t/

0
@ dY
jD1

gj .s
�1
j .tj � xj //

1
A

dt D
*
f;

dY
jD1

Txj Dsj gj

+
;

where x 2 Rd ; s D .s1; : : : ; sd / 2 Rd ; sj ¤ 0, Dsj f .t/ WD jsj j�1=2f .s�1j t/.
Furthermore, let us define

Cg;� WD
dY
jD1

Z 1
�1
Ogj .sj / O�j .sj / dsjjsj j D

dY
jD1

Cgj ;�j ;

Cg WD
dY
jD1

Z 1
�1

ˇ̌ Ogj .sj /ˇ̌2 dsjjsj j D
dY
jD1

Cgj

and

C� WD
dY
jD1

Z 1
�1

ˇ̌ O�j .sj /ˇ̌2 dsjjsj j D
dY
jD1

C�j :

The analogues of the Plancherel’s theorem read as follows.

Theorem 19. Suppose that gj 2 L2.Rd / and Cgj < 1 for all j D 1; : : : ; d .
If f 2 L2.Rd /, then

Z
Rd

Z
Rd

ˇ̌
Wgf .x; s/

ˇ̌2 dx dsQd
jD1 s2j

D Cgkf k22:

Theorem 20. Suppose that gj ; �j 2 L2.R
d /, Cgj < 1 and C�j < 1 for all

j D 1; : : : ; d . If f1; f2 2 L2.Rd /, then

Z
Rd

Z
Rd

Wgf1.x; s/W�f2.x; s/
dx dsQd
jD1 s2j

D Cg;� hf1; f2i :

In case gj ; �j 2 L1.Rd / \ L2.Rd / it is enough to suppose that Cgj ;�j is finite
for all j D 1; : : : ; d (see [29]). Under the same conditions as in Theorem 20, the
inversion formula holds again in vector-valued weak sense, for all f 2 L2.Rd /
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Z
Rd

Z
Rd

Wgf .x; s/

0
@ dY
jD1

Txj Dsj �j

s2j

1
A dxds D Cg;�f:

For the convergence of the inverse continuous wavelet transform we will consider

�S;T f WD
Z
S1�js1j�T1

� � �
Z
Sd�jsd j�Td

Z
Rd

Wgf .x; s/

0
@ dY
jD1

TxjDsj �j

s2j

1
A dxds

and

�Sf WD
Z
S1�js1j

� � �
Z
Sd�jsd j

Z
Rd

Wgf .x; s/

0
@ dY
jD1

TxjDsj �j

s2j

1
A dxds;

where S D .S1; : : : ; Sd /; T D .T1; : : : ; Td / 2 RdC, 0 < Sj < Tj <1 and S ! 0

and T !1 in the Pringsheim’s sense, i.e. each Sj ! 0 and Tj !1.

4.5 Convergence of �S;T f in Pringsheim’s Sense

The next result can be proved similarly to Theorem 7.

Theorem 21 ([28]). Assume that gj ; �j 2 L2.R/ \ L1.R/ satisfy (6) for all
j D 1; : : : ; d . If f 2 Lp.Rd / with 1 < p <1, then

lim
S!0;T!1�S;T f D Cg;�f in the Lp-norm:

The conditions of the theorem imply

�S;T f .t/ D
Z 1
�1

: : :

Z 1
�1

0
@ dY
jD1

Ogj .sj /b�j .sj /
sj

1
A �s1=T1;:::;sd =Td Is1=S1;:::;sd =Sd f .t/ ds

for all f 2 Lp.Rd /, 1 < p <1.
To formulate the corresponding version of Theorem 8 let us introduce

C 0g;� WD .�2/d
dY
jD1

Z 1
�1
.gj 
 �j /.s/ ln jsj ds D

dY
jD1

C 0gj ;�j :

Theorem 22 ([21]). Suppose that gj and �j have log-majorants,
R1
�1.gj 
 �j /

.s/ ds D 0 and C 0gj ;�j is finite for all j D 1; : : : ; d .
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1. If 1 < p <1 and f 2 Lp.Rd /, then

lim
S!0;T!1 �S;T f D C

0
g;�f in the Lp-norm:

2. If f 2 Lp.Rd / with 1 < p <1 or f 2 L1.logL/d�1.Rd / \L1.Rd /, then

lim
S!0;T!1 �S;T f D C

0
g;�f a.e.

Now we define


j .�j / D
Z
j�j j�jsj j

bgj .sj / b�j .sj / dsjjsj j
for all j D 1; : : : ; d and let 
 WD 
1 � � � � � 
d . The corresponding 
-means are
denoted by �
T .T 2 RdC/. Under the conditions of the next theorem, we have shown

in [24] that 
j ; b
j 2 L1.R/,
ˇ̌
ˇb
j .x/

ˇ̌
ˇ � C jxj�2 .x ¤ 0/

and

�S.1/;S.2/f D
X

�i2f0;1g
.�1/�1C���C�dCd �


1=S
.2��1/

1 ;:::;1=S
.2��d /

d

f

for all f 2 W.L1; `1/.Rd /.
Theorem 23 ([24]). Assume that gj ; �j 2 L1.R/ \ L2.R/, bgj and b�j are
differentiable, bgj 0 and b�j 0 are bounded,

ˇ̌ bgj .x/ˇ̌ ; ˇ̌b�j .x/ˇ̌ � C jxj˛ .0 < jxj � 1/

for some ˛ > 1=2 and for all j D 1; : : : ; d .

1. If 1 � p <1, 1 < q <1 and f 2 W.Lp; `q/.Rd /, then

lim
S!0;T!1�S;T f D Cg;�f in the W.Lp; `q/-norm:

The same holds for C0.Rd /, W.C; `q/.Rd / and for W.Lp; c0/.Rd /.
2. If f 2 WK.L1.logL/d�1; c0/.Rd /, then

lim
S!0;T!1 �S;T f D Cg;�f a.e.
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3. If f 2 WK.L1.logL/d�1; `1/.Rd / \WK.L1; c1/.R
d /, then

lim
S!0;T!1�S;T f .x/ D Cg;�f .x/

for all strong Lebesgue-points of f .

For some spaces contained in WK.L1.logL/d�1; c0/.Rd / we refer to (5). As we
mentioned after Theorem 9, the function gj satisfies the conditions of Theorem 23
if gj 2 L1.R/ \L2.R/, bgj .0/ D 0 and

Z
R

.1C jxj/ ˇ̌gj .x/ˇ̌ dx <1:

4.6 Convergence of �S f in Pringsheim’s Sense

Theorem 21 holds in this case, too.

Theorem 24 ([28]). Assume that gj ; �j 2 L2.R/ \ L1.R/ satisfy (6) for all
j D 1; : : : ; d . If f 2 Lp.Rd / with 1 < p <1, then

lim
S!0 �Sf D Cg;�f in the Lp-norm:

Now the operator �S can be expressed by

�Sf .t/ D
Z 1
�1

: : :

Z 1
�1

0
@ dY
jD1

Ogj .sj /b�j .sj /
sj

1
A �s1=S1;:::;sd =Sd f .t/ ds

for all f 2 Lp.Rd /, 1 < p <1.

Theorem 25 ([21]). Suppose that gj and �j have log-majorants,
R1
�1.gj 
 �j /

.s/ ds D 0 and C 0gj ;�j is finite for all j D 1; : : : ; d .

1. If 1 < p <1 and f 2 Lp.Rd /, then

lim
S!0 �Sf D C

0
g;�f in the Lp-norm:

2. If f 2 L1.logL/d�1.Rd /\L1.Rd /, then the convergence holds in the L1-norm

lim
S!0 �Sf D C

0
g;�f a.e.

Under the conditions of Theorem 23, �S can be characterized as

�Sf D �
1=S1;:::;1=Sd f (7)

for all f 2 L1.Rd /.
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Theorem 26 ([24]). Assume the same conditions as in Theorem 23.

1. If f 2 L1.Rd /, then

lim
S!0 �Sf D Cg;�f in the L1-norm:

2. If f 2 WK.L1.logL/d�1; `1/.Rd / \L1.Rd /, then

lim
S!0 �Sf .x/ D Cg;�f .x/

for all strong Lebesgue-points of f .

Note that

WK.L1.logL/d�1; `1/.Rd / � L1.logL/d�1.Rd /; Lp.Rd / .1 < p � 1/:

If � 2 L1.Rd / \ L1.Rd /, then (7) holds for all f 2 Lp.Rd /, if � 2 W.L1; `1/
.Rd /, then for all f 2 W.Lp; `q/.Rd / .1 � p; q <1/. The next theorem follows
from this.

Theorem 27 ([23]). Besides the conditions of Theorem 23 assume that 1 � p;

q <1 and �j 2 L1.Rd / for all j D 1; : : : ; d .

1. If f 2 Lp.Rd /, then

lim
S!0 �Sf D Cg;�f in the Lp.Rd /-norm:

If in addition �j 2 W.L1; `1/.R/, then the convergence holds in the
W.Lp; `q/.R

d /-norm for all f 2 W.Lp; `q/.Rd /.
2. If f 2 L1.logL/d�1.Rd /, then

lim
S!0 �Sf .x/ D Cg;�f .x/

for all strong Lebesgue-points of f . If in addition �j 2 W.L1; `1/.R/, then
the convergence holds at each strong Lebesgue-point of f 2 WK.L1.logL/d�1;
`1/.Rd /\W.L1; `q/.Rd /.
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Abstract In this chapter, by the use of the methods of weight functions and
techniques of Real Analysis, we provide a general multidimensional Hilbert-type
integral inequality with a non-homogeneous kernel and a best possible constant
factor. The equivalent forms, the reverses and some Hardy-type inequalities are
obtained. Furthermore, we consider the operator expressions with the norm, some
particular inequalities with the homogeneous kernel and a large number of particular
examples.
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1 Introduction

Suppose that p > 1; 1
p
C 1

q
D 1; f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/,

jjf jjp D
�Z 1

0

f p.x/dx

� 1
p

> 0;
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jjgjjq > 0. We have the following Hardy–Hilbert’s integral inequality (cf. [1]):

Z 1
0

Z 1
0

f .x/g.y/

x C y dxdy <
�

sin.�=p/
jjf jjpjjgjjq; (1)

where the constant factor �
sin.�=p/ is the best possible. If am; bn � 0; a D famg1mD1 2

lp; b D fbng1nD1 2 lq ,

jjajjp D
( 1X
mD1

apm

) 1
p

> 0;

jjbjjq > 0, then we have the following discrete Hardy–Hilbert’s inequality with the
same best constant �

sin.�=p/ W
1X
mD1

1X
nD1

ambn

mC n <
�

sin.�=p/
jjajjpjjbjjq: (2)

Inequalities (1) and (2) are important in Analysis and its applications (cf. [1–6]).
In 1998, by introducing an independent parameter � 2 .0; 1�, Yang [7] gave an

extension of (1) for p D q D 2. In 2009 and 2011, Yang [3,4] gave some extensions
of (1) and (2) as follows: If �1; �2 2 R D .�1;1/; �1 C �2 D �; k�.x; y/ is a
nonnegative homogeneous function of degree�� in R2C, with

k.�1/ D
Z 1
0

k�.t; 1/t
�1�1dt 2 RC D .0;1/;

	.x/ D xp.1��1/�1;  .y/ D yq.1��2/�1.x; y 2 RC/;

f .x/; g.y/ � 0, satisfying

f 2 Lp;	.RC/ D
(
f I jjf jjp;	 WD

�Z 1
0

	.x/jf .x/jpdx
� 1
p

<1
)
;

g 2 Lq; .RC/; jjf jjp;	; jjgjjq; > 0, then we have

Z 1
0

Z 1
0

k�.x; y/f .x/g.y/dxdy < k.�1/jjf jjp;	 jjgjjq; ; (3)

where the constant factor k.�1/ is the best possible. Moreover, if k�.x; y/ is finite
and k�.x; y/x�1�1.k�.x; y/y�2�1/ is strict decreasing with respect to x > 0.y > 0/,
then for am;bn � 0,
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a D famg1mD1 2 lp;	 D
8<
:aI jjajjp;	 WD

( 1X
nD1

	.n/janjp
) 1

p

<1
9=
;;

b D fbng1nD1 2 lq; , jjajjp;	; jjbjjq; > 0, we have

1X
mD1

1X
nD1

k�.m; n/ambn < k.�1/jjajjp;	 jjbjjq; ; (4)

where the constant factor k.�1/ is still the best possible.
Clearly, for� D 1; k1.x; y/ D 1

xCy , �1 D 1
q
; �2 D 1

p
, (3) reduces to (1), while (4)

reduces to (2). Some other results including multidimensional Hilbert-type integral
inequalities are provided by Yang et al. [8], Krnić and Pečarić [9], Yang and Rassias
[10, 11], Azar [12], Arpad and Choonghong [13], Kuang and Debnath [14], Zhong
[15], Hong [16], Zhong and Yang [17], Yang and Krnić [18], and Li and He [19].

In this chapter, by the use of the methods of weight functions and techniques of
real analysis, we give a general multidimensional Hilbert-type integral inequality
with a nonhomogeneous kernel and a best possible constant factor. The equivalent
forms, the reverses and some Hardy-type inequalities are obtained. Furthermore, we
consider the operator expressions with the norm, some particular inequalities with
the homogeneous kernel and a large number of particular examples.

2 Some Lemmas

If i0; j0 2 N.N is the set of positive integers), ˛; ˇ > 0, we put

jjxjj˛ WD
 

i0X
kD1
jxk j˛

! 1
˛

.x D .x1; : : : ; xi0 / 2 Ri0 /;

jjyjjˇ WD
 

j0X
kD1
jykjˇ

! 1
ˇ

.y D .y1; : : : ; yj0 / 2 Rj0/:

Lemma 1. If s 2 N;�;M > 0;�.u/ is a nonnegative measurable function in .0; 1�,
and

DM WD
(
x 2 RsCI 0 < u D

sX
iD1

� xi
M

�� � 1
)
;

then we have the following expression (cf. [6]):
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Z
� � �
Z
DM

�

 
sX
iD1

� xi
M

��!
dx1 � � �dxs

D
Ms� s

�
1
�

�
�s�

�
s
�

�
Z 1

0

�.u/u
s
� �1du:

(5)

In view of (5) and the conditions, it follows that

(i) for

RsC D
(
x 2 RsCI 0 < u D

sX
iD1

� xi
M

�� � 1.M !1/
)
;

we have

Z
� � �
Z

Rs
C

�

 
sX
iD1

� xi
M

��!
dx1 � � �dxs

D lim
M!1

Ms� s
�
1
�

�
�s�

�
s
�

�
Z 1

0

�.u/u
s
� �1duI

(6)

(ii) for

fx 2 RsCI jjxjj� � 1g

D
(
x 2 RsCI

1

M�
< u D

sX
iD1

� xi
M

�� � 1.M !1/
)
;

setting �.u/ D 0�u 2 �0; 1
M�

��
, we have

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
�

 
sX
iD1

� xi
M

��!
dx1 � � �dxs

D lim
M!1

Ms� s
�
1
�

�
�s�

�
s
�

�
Z 1

1
M�

�.u/u
s
� �1duI

(7)

(iii) for

fx 2 RsCI jjxjj� � 1g

D
(
x 2 RsCI 0 < u D

sX
iD1

� xi
M

�� � 1

M�

)
;
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setting �.u/ D 0�u 2 � 1
M� ;1

��
, we have

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
�

 
sX
iD1

� xi
M

��!
dx1 � � �dxs

D
Ms� s

�
1
�

�
�s�

�
s
�

�
Z 1

M�

0

�.u/u
s
� �1du:

(8)

Lemma 2. For s 2 N;� > 0, " > 0, we have

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
jjxjj�s�"� dx1 � � �dxs D

� s
�
1
�

�
"�s�1�

�
s
�

� ; (9)

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
jjxjj�sC"� dx1 � � �dxs D

� s
�
1
�

�
"�s�1�

�
s
�

� : (10)

Proof. By (7), it follows

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
jjxjj�s�"� dx1 � � �dxs

D
Z
� � �
Z
fx2Rs

C

Ijjxjj��1g

8<
:M

"
sX
iD1

� xi
M

��# 1
�

9=
;
�s�"

dx1 � � �dxs

D lim
M!1

Ms� s
�
1
�

�
�s�

�
s
�

�
Z 1

1
M�

.M u1=�/�s�"u
s
� �1du

D
� s
�
1
�

�
"�s�1�

�
s
�

� :

By (8), we find

Z
� � �
Z
fx2Rs

C

Ijjxjj��1g
jjxjj�sC"� dx1 � � �dxs

D
Z
� � �
Z
fx2Rs

C

Ijjxjj��1g

8<
:M

"
sX
iD1

� xi
M

��# 1
�

9=
;
�sC"

dx1 � � �dxs

D
Ms� s

�
1
�

�
�s�

�
s
�

�
Z 1

M�

0

.M u1=�/�sC"u
s
� �1du D

� s
�
1
�

�
"�s�1�

�
s
�

� :
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Hence, we have (9) and (10). The lemma is proved.

Note. By (9) and (10), for ı D ˙1, we have the following unified expression:

Z
� � �
Z
fx2Rs

C

Ijjxjjı��1g
jjxjj�s�ı"� dx1 � � �dxs D

� s
�
1
�

�
"�s�1�

�
s
�

� : (11)

Definition 1. If x D .x1; : : : ; xi0/ 2 Ri0C; y D .y1; : : : ; yj0/ 2 Rj0
C , h.u/ is a

nonnegative measurable function in RC; � 2 R, ı 2 f�1; 1g, then we define two
weight functions !ı.�; y/ and$ı.�; x/ as follows:

!ı.�; y/ W D jjyjj�ˇ
Z

R
i0
C

h.jjxjjı˛jjyjjˇ/
dx

jjxjji0�ı�˛

; (12)

$ı.�; x/ W D jjxjjı�˛
Z

R
j0
C

h.jjxjjı˛jjyjjˇ/
dy

jjyjjj0��ˇ

: (13)

By (6), we find

!ı.�; y/ D jjyjj�ˇ
Z

R
i0
C

h
�
Mı

hPi0
iD1

�
xi
M

�˛i ı˛ jjyjjˇ
�

Mi0�ı�
hPi0

iD1
�
xi
M

�˛i i0�ı�

˛

dx

D jjyjj�ˇ lim
M!1

Mi0� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

0

h.M ıu
ı
˛ jjyjjˇ/

M i0�ı�u
i0�ı�
˛

u
i0
˛ �1du

D jjyjj�ˇ lim
M!1

Mı�� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

0

h.M ıu
ı
˛ jjyjjˇ/u ı�

˛ �1du:

Setting v D Mıu
ı
˛ jjyjjˇ in the above integral, in view of ı D ˙1, we obtain

!ı.�; y/ D K2.�/ WD � i0
�
1
˛

�
˛i0�1�

�
i0
˛

�k.�/; (14)

where k.�/ D R1
0
h.v/v��1dv.

By (6), setting v DM jjxjjı˛u
1
ˇ , we find

$ı.�; x/ D jjxjjı�˛
Z

R
j0
C

h

�
M jjxjjı˛

hPj0
jD1

� yj
M

�ˇi 1ˇ�

Mj0��
hPj0

jD1
� yj
M

�ˇi j0��
ˇ

dy
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D jjxjjı�˛ lim
M!1

Mj0� j0
�
1
ˇ

�
ˇj0�

�
j0
ˇ

�
Z 1

0

h
�
M jjxjjı˛u

1
ˇ

�

Mj0��u
j0��
ˇ

u
j0
ˇ �1du

D jjxjjı�˛ lim
M!1

M�� j0
�
1
ˇ

�
ˇj0�

�
j0
ˇ

�
Z 1

0

h
�
M jjxjjı˛u

1
ˇ

�
u
�
ˇ�1du

D K1.�/ WD
� j0

�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�k.�/: (15)

Lemma 3. As the assumptions of Definition 1, for k.�/ 2 RC, p 2 Rnf0; 1g; 1
p
C

1
q
D 1, setting

QI WD
Z
n
x2R

i0
C

Ijjxjj

ı
˛�1

o jjxjjı��

ı"
p �i0

˛

"Z
n
y2R

j0
C

Ijjyjjˇ�1

o h
�jjxjjı˛jjyjjˇ� jjyjj�C

"
q �j0

ˇ dy

#
dx;

(16)

then we have

" QI � QK.�/C o.1/."! 0C/; (17)

where QK.�/ WD L.˛; ˇ/k.�/;

L.˛; ˇ/ WD
� j0

�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

� � i0
�
1
˛

�
˛i0�1�

�
i0
˛

� : (18)

Moreover, if there exists a constant ı0 > 0, such that for any Q� 2 .� � ı0; � C
ı0/; k. Q�/ 2 R, then we have

" QI D QK.�/C o.1/."! 0C/: (19)

Proof. For " > 0, setting Q� D � C "
q

and

H.jjxjjı˛/ WD jjxjjıQ�˛
Z
n
y2R

j0
C

Ijjyjjˇ�1
o h
�jjxjjı˛jjyjjˇ� jjyjjQ��j0ˇ dy;

in view of (16), it follows

QI D
Z
n
x2R

i0
C

Ijjxjjı˛�1
o jjxjj�ı"�i0˛ H

�jjxjjı˛�dx:
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Putting

�.u/ D h.jjxjjı˛M u
1
ˇ /M Q��j0u

1
ˇ .Q��j0/;

by (8), we find

H.jjxjjı˛/ D jjxjjıQ�ˇ
Mj0� j0

�
1
ˇ

�
ˇj0�

�
j0
ˇ

�

�
Z 1

Mˇ

0

h.jjxjjı˛M u
1
ˇ /M Q��j0u

1
ˇ .Q��j0/u

j0
ˇ �1du

D jjxjjıQ�˛
M Q�� j0

�
1
ˇ

�
ˇj0�

�
j0
ˇ

�
Z 1

Mˇ

0

h.jjxjjı˛M u
1
ˇ /u

Q�
ˇ�1du:

Setting v D jjxjjı˛M u
1
ˇ in the above, it follows

L.jjxjjı˛/ D
� j0

�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
Z jjxjjı˛
0

h.v/v Q��1dv:

Putting �.u/ D M�ı"�i0u 1
˛ .�ı"�i0/H.Mıu

ı
˛ /, for ı D 1, by (7), we obtain

QI D lim
M!1

Mi0� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

1
M˛

M�"�i0u
1
˛ .�"�i0/H.M u

1
˛ /u

i0
˛ �1du

D lim
M!1

M�"� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

1
M˛

H.M u
1
˛ /u

�"
˛ �1du

D � i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
Z 1
1

H.t/t�"�1dt.t D M u
1
˛ /I

for ı D �1, by (8), we still find that

QI D Mi0� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

M˛

0

M "�i0u
1
˛ ."�i0/H.M�1u

�1
˛ /u

i0
˛ �1du

D M"� i0
�
1
˛

�
˛i0�

�
i0
˛

�
Z 1

M˛

0

H.M�1u
�1
˛ /u

"
˛�1du

D � i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
Z 1
1

H.t/t�"�1dt.t D M�1u �1
˛ /:
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Hence, we find

" QI D "L.˛; ˇ/
Z 1
1

t�"�1
Z t

0

h.v/v Q��1dvdt

D "L.˛; ˇ/
�Z 1

1

t�"�1
Z 1

0

h.v/v Q��1dvdt

C
Z 1
1

t�"�1
Z t

1

h.v/v Q��1dvdt
	

D "L.˛; ˇ/
�
1

"

Z 1

0

h.v/v Q��1dvdt C
Z 1
1

�Z 1
v

t�"�1dt
�
h.v/v Q��1dv

	

D L.˛; ˇ/
�Z 1

0

h.v/v Q��1dvdt C
Z 1
1

h.v/v

�
�� "

p

�
�1
dv

	
: (20)

By Fatou lemma (cf. [20]), it follows

lim
"!0C

" QI D L.˛; ˇ/ lim
"!0C

�Z 1

0

h.v/v Q��1dvdt C
Z 1
1

h.v/v

�
�� "

p

�
�1
dv

	

� L.˛; ˇ/
�Z 1

0

lim
"!0C

h.v/v Q��1dvdt

C
Z 1
1

lim
"!0C

h.v/v

�
�� "

p

�
�1
dv

	
D L.˛; ˇ/k.�/;

and then (17) follows.
Moreover, for 0 < " < ı0 minfjpj; jqjg; Q� 2 �� � 1

2
ı0; � C 1

2
ı0
�
, since

h.v/v Q��1 � h.v/v.�� 12 ı0/�1.v 2 .0; 1�/;

0 �
Z 1

0

h.v/v.��
1
2 ı0/�1 � k

�
� � 1

2
ı0

�
<1;

h.v/v Q��1 � h.v/v.�C 1
2 ı0/�1.v 2 Œ1;1//;

0 �
Z 1
1

h.v/v.�C
1
2 ı0/�1 � k

�
� C 1

2
ı0

�
<1;

by Lebesgue control convergence theorem (cf. [20]), it follows that

Z 1

0

h.v/v Q��1dv D
Z 1

0

h.v/v��1dv C o1.1/."! 0C/;
Z 1
1

h.v/v
.�� "

p /�1dv D
Z 1
1

h.v/v��1dv C o2.1/."! 0C/:
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Then by (20), (19) follows. The lemma is proved.

Lemma 4. As the assumptions of Definition 1, if p 2 Rnf0; 1g; 1
p
C 1

q
D 1, f .x/ D

f .x1; : : : ; xi0/ � 0, g.y/ D g.y1; : : : ; yj0/ � 0, then

(i) for p > 1, we have the following inequality:

J1 WD
(Z

R
j0
C

jjyjjp��j0ˇ

Œ!ı.�; y/�
p�1

 Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx
!p
dy

) 1
p

�
(Z

R
i0
C

$ı.�; x/jjxjjp.i0�ı�/�i0˛ f p.x/dx

) 1
p

I (21)

(ii) for 0 < p < 1, or p < 0, we have the reverse of (21).

Proof. (i) For p > 1, by Hölder’s inequality with weight (cf. [21]), it follows

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx

D
Z

R
i0
C

h.jjxjjı˛jjyjjˇ/
"
jjxjj.i0�ı�/=q˛ f .x/

jjyjj.j0��/=pˇ

#" jjyjj.j0��/=pˇ

jjxjj.i0�ı�/=q˛

#
dx

�
(Z

R
i0
C

h.jjxjjı˛jjyjjˇ/
jjxjj.i0�ı�/.p�1/˛

jjyjjj0��ˇ

f p.x/dx

) 1
p

�
( Z

R
i0
C

h.jjxjjı˛jjyjjˇ/
jjyjj.j0��/.q�1/ˇ

jjxjji0�ı�˛

dx

) 1
q

D Œ!ı.�; y/�
1
q jjyjj

j0
p ��
ˇ

�
( Z

R
i0
C

h.jjxjjı˛jjyjjˇ/
jjxjj.i0�ı�/.p�1/˛

jjyjjj0��ˇ

f p.x/dx

) 1
p

: (22)

Then by Fubini theorem (cf. [20]), we have

J1 �
( Z

R
j0
C

"Z
R
i0
C

h.jjxjjı˛jjyjjˇ/
jjxjj.i0�ı�/.p�1/˛

jjyjjj0��ˇ

f p.x/dx

#
dy

) 1
p

D
( Z

R
i0
C

"Z
R
j0
C

h.jjxjj˛jjyjjˇ/ jjxjj
.i0�ı�/.p�1/
˛

jjyjjj0��ˇ

dy

#
f p.x/dx

) 1
p
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D
( Z

R
i0
C

$ı.�; x/jjxjjp.i0�ı�/�i0˛ f p.x/dx

) 1
p

: (23)

Hence, (21) follows.
(ii) For 0 < p < 1, or p < 0, by the reverse Hölder’s inequality with weight (cf.

[21]), we obtain the reverse of (22). Then by Fubini theorem, we still can obtain
the reverse of (21). The lemma is proved.

Lemma 5. As the assumptions of Lemma 4, then

(i) for p > 1, we have the following inequality equivalent to (21):

I WD
Z

R
j0
C

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/g.y/dxdy

�
(Z

R
i0
C

$ı.�; x/jjxjjp.i0�ı�/�i0˛ f p.x/dx

) 1
p

�
(Z

R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy

) 1
q

I (24)

(ii) for 0 < p < 1, or p < 0, we have the reverse of (24) equivalent to the reverse
of (21).

Proof. (i) For p > 1, by Hölder’s inequality (cf. [21]), it follows

I D
Z

R
j0
C

jjyjj
j0
q �.j0��/
ˇ

Œ!ı.�; y/�
1
q

"Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx
#

�
�
Œ!ı.�; y/�

1
q jjyjj.j0��/�

j0
q

ˇ g.y/

	
dy

� J1
(Z

R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy

) 1
q

: (25)

Then by (21), we have (24).
On the other hand, assuming that (24) is valid, we set

g.y/ WD jjyjjp��j0ˇ

Œ!ı.�; y/�p�1

 Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx
!p�1

; y 2 Rj0C:
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Then it follows

J
p
1 D

Z
R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy:

If J1 D 0, then (21) is trivially valid; if J1 D 1, then by (23), (21) keeps the
form of equality (D1/. Suppose that 0 < J1 <1. By (24), we have

0 <

Z
R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy D J p1 D I

�
( Z

R
i0
C

$ı.�; x/jjxjjp.i0�ı�/�i0˛ f p.x/dx

) 1
p

�
( Z

R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy

) 1
q

<1:

It follows

J1 D
(Z

R
j0
C

!ı.�; y/jjyjjq.j0��/�j0ˇ gq.y/dy

) 1
p

�
(Z

R
i0
C

$ı.�; x/jjxjjp.i0�ı�/�i0˛ f p.x/dx

) 1
p

;

and then (21) follows. Hence, (21) and (24) are equivalent.
(ii) For 0 < p < 1, or p < 0, by the same way, we can obtain the reverse of (24)

equivalent to the reverse of (21). The lemma is proved.

3 Main Results and Operator Expressions

Setting

˚ı.x/ WD jjxjjp.i0�ı�/�i0˛ ;

�.y/ WD jjyjjq.j0��/�j0ˇ .x 2 Ri0C; y 2 Rj0
C/;

by Lemmas 3–5, it follows

Theorem 1. Suppose that ˛; ˇ > 0; � 2 R; h.v/ � 0,
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k.�/ D
Z 1
0

h.v/v��1dv 2 RC;

K.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k.�/;

ı 2 f�1; 1g; p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .x/ D f .x1; : : : ; xi0/ � 0, g.y/ D

g.y1; : : : ; yj0/ � 0,

0 < jjf jjp;˚ı D
(Z

R
i0
C

˚ı.x/f
p.x/dx

) 1
p

<1;

0 < jjgjjq;� D
(Z

R
j0
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/ W

I D
Z

R
j0
C

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/g.y/dxdy < K.�/jjf jjp;˚ı jjgjjq;� ; (26)

J WD
(Z

R
j0
C

jjyjjp��j0ˇ

 Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx
!p
dy

) 1
p

< K.�/jjf jjp;˚ı I (27)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (26) and (27) with the same best constant factor K.�/.

Proof. (i) For p > 1, by the conditions, we can prove that (22) takes the form of
strict inequality for a.e. y 2 Rj0

C . Otherwise, if (22) takes the form of equality

for a y 2 Rj0
C , then there exist constants A and B , which are not all zero, such

that

A
jjxjj.i0�ı�/.p�1/˛

jjyjjj0��ˇ

f p.x/ D B jjyjj
.j0��/.q�1/
ˇ

jjxjji0�ı�˛

a.e. in x 2 Ri0C: (28)
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If A D 0, then B D 0, which is impossible; if A ¤ 0, then (28) reduces to

jjxjjp.i0�ı�/�i0˛ f p.x/ D Bjjyjjq.j0��/ˇ

Ajjxjji0˛
a.e. in x 2 Ri0C;

which contradicts the fact that 0 < jjf jjp;˚ı <1. In fact, by (9) (for "! 0C/,
it follows

Z
R
i0
C

jjxjj�i0˛ dx �
Z
n
x2R

i0
C

Ijjxjj˛�1
o jjxjj�i0˛ dx D1:

Hence (22) still takes the form of strict inequality. By (14) and (15), we
obtain (27).

Similarly to (25), we still have

I � J
(Z

R
j0
C

jjyjjq.j0��/�j0ˇ gq.y/dy

) 1
q

: (29)

Then by (29) and (27), we have (26). It is evident that by Lemma 5 and the
assumptions, inequalities (27) and (26) are also equivalent.

For " > 0, we set Qf .x/; Qg.y/ as follows:

Qf .x/ WD
(
0; 0 < jjxjjı˛ < 1;
jjxjjı

�
�� "

p

�
�i0

˛ ; jjxjjı˛ � 1;

Qg.y/ WD
(
jjyjj�C

"
q�j0

ˇ ; 0 < jjyjjˇ � 1;
0; jjyjjˇ � 1:

In view of (11) and (10), it follows

jj Qf jjp;˚ı jj Qgjjq;�

D
( Z

n
x2R

i0
C

Ijjxjjı˛�1
o jjxjj�i0�ı"˛ dx

) 1
p
(Z

n
y2R

j0
C

Ijjyjjˇ�1
o jjyjj�j0C"ˇ dy

) 1
q

D 1

"

(
� i0

�
1
˛

�
˛i0�1�

�
i0
˛

�
) 1

p

8<
:

� j0

�
1
ˇ

�

ˇj0�1�
�
j0
ˇ

�
9=
;

1
q

:

If there exists a constant K � K.�/, such that (26) is valid when replacing
K.�/ by K , then in particular, by (16) and (17), we have
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QK.�/C o.1/ � " QI

D "
Z

R
j0
C

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/ Qf .x/ Qg.y/dxdy

< "Kjj Qf jjp;˚ı jj Qgjjq;�

D K
(

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
) 1

p

8<
:

� j0

�
1
ˇ

�

ˇj0�1�
�
j0
ˇ

�
9=
;

1
q

;

and then we find K.�/ � K." ! 0C/. Hence K D K.�/ is the best possible
constant factor of (26).

By the equivalency, we can prove that the constant factor K.�/ in (27) is
the best possible. Otherwise, we would reach a contradiction by (29) that the
constant factor K.�/ in (26) is not the best possible.

(ii) For 0 < p < 1, or p < 0, by the same way, we still can obtain the equivalent
reverses of (26) and (27). For " > 0, we set Qf .x/; Qg.y/ as the case of p > 1.
If there exists a constantK � K.�/, such that the reverse of (26) is valid when
replacingK.�/ by K , then in particular, by (16) and (19), we have

QK.�/C o.1/ D " QI

D "
Z

R
j0
C

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/ Qf .x/ Qg.y/dxdy

> "Kjj Qf jjp;˚ı jj Qgjjq;�

D K
(

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
) 1

p

8<
:

� j0

�
1
ˇ

�

ˇj0�1�
�
j0
ˇ

�
9=
;

1
q

;

and then we find K.�/ � K." ! 0C/. Hence K D K.�/ is the best possible
constant factor of the reverse of (26). By the equivalency, we can prove that the
constant factor K.�/ in the reverse of (27) is the best possible. Otherwise, we
would reach a contradiction by the reverse of (29) that the constant factorK.�/
in the reverse of (26) is not the best possible. The theorem is proved.

In particular, for ı D 1 in Theorem 1, we have

Corollary 1. Suppose that ˛; ˇ > 0; � 2 R; h.v/ � 0,

k.�/ D
Z 1
0

h.v/v��1dv 2 RC;

K.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k.�/;
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p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .x/ D f .x1; : : : ; xi0/ � 0, g.y/ D g.y1; : : : ; yj0/ � 0,

0 < jjf jjp;˚1 D
(Z

R
i0
C

˚1.x/f
p.x/dx

) 1
p

<1;

0 < jjgjjq;� D
( Z

R
j0
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/:

I D
Z

R
j0
C

Z
R
i0
C

h.jjxjj˛jjyjjˇ/f .x/g.y/dxdy < K.�/jjf jjp;˚1 jjgjjq;� ; (30)

J WD
(Z

R
j0
C

jjyjjp��j0ˇ

 Z
R
i0
C

h.jjxjj˛jjyjjˇ/f .x/dx
!p
dy

) 1
p

< K.�/jjf jjp;˚1 I (31)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (30) and (31) with the same best constant factor K.�/.

For i0 D j0 D ˛ D ˇ D 1 in Corollary 1, we have

Corollary 2. Assuming that � 2 R; k.�/ 2 RC; p 2 Rnf0; 1g; 1
p
C 1

q
D 1, we set

'.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1.x; y > 0/:

If f .x/ � 0, g.y/ � 0,

0 < jjf jjp;' D
�Z 1

0

'.x/f p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1;

then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k.�/ W

Z 1
0

Z 1
0

h.xy/f .x/g.y/dxdy < k.�/jjf jjp;' jjgjjq; ; (32)
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�Z 1
0

yp��1
�Z 1

0

h.xy/f .x/dx

	p
dy

� 1
p

< k.�/jjf jjp;' I (33)

(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, we have the equivalent reverses of (32) and (33)
with the same best constant factor.

As the assumptions of Theorem 1, for p > 1, in view of J < K.�/jjf jj˚ı , we
can give the following definition:

Definition 2. Define a multidimensional Hilbert-type integral operator

T W Lp;˚ı .Ri0C/! Lp;�1�p .R
j0C/ (34)

as follows: For f 2 Lp;˚ı .R
i0C/; there exists a unique representation

Tf 2 Lp;�1�p .R
j0C/;

satisfying

.Tf /.y/ WD
Z

R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/dx.y 2 Rj0
C/: (35)

For g 2 Lq;� .R
j0
C/, we define the following formal inner product of Tf and g as

follows:

.Tf; g/ WD
Z

R
j0
C

Z
R
i0
C

h.jjxjjı˛jjyjjˇ/f .x/g.y/dxdy: (36)

Then by Theorem 1, for p > 1; 0 < jjf jjp;˚ı ; jjgjjq;� < 1, we have the
following equivalent inequalities:

.Tf; g/ < K.�/jjf jjp;˚ı jjgjjq;� ; (37)

jjTf jjp;�1�p < K.�/jjf jjp;˚ı : (38)

It follows that T is bounded with

jjT jj WD sup
f .¤
/2Lp;˚ı .R

i0
C

/

jjTf jjp;�1�p
jjf jjp;˚ı

� K.�/:

Since the constant factorK.�/ in (38) is the best possible, we have
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jjT jj D K.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

k.�/: (39)

4 A Corollary for ı D �1

Corollary 3. Suppose that ˛; ˇ > 0; �; � 2 R; � C � D �; k�.x; y/ � 0 is a
homogeneous function of degree ��,

k�.�/ WD
Z 1
0

k�.1; v/v
��1dv 2 RC;

K�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k�.�/;

p 2 Rnf0; 1g, 1
p
C 1

q
D 1;˚.x/ WD xp.i0��/�i0 ; F .x/ D F.x1; : : : ; xi0/ � 0,

g.y/ D g.y1; : : : ; yj0/ � 0,

0 < jjF jjp;˚ D
( Z

R
i0
C

˚.x/F p.x/dx

) 1
p

<1;

0 < jjgjjq;� D
(Z

R
j0
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/ W
Z

R
j0
C

Z
R
i0
C

k�.jjxjj˛; jjyjjˇ/F.x/g.y/dxdy < K�.�/jjF jjp;˚ jjgjjq;� ; (40)

( Z
R
j0
C

jjyjjp��j0ˇ

 Z
R
i0
C

k�.jjxjj˛; jjyjjˇ/F.x/dx
!p
dy

) 1
p

< K�.�/jjF jjp;˚ I
(41)
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(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, then we still have the equivalent reverses
of (40) and (41) with the same best constant factor K�.�/.

In particular, for i0 D j0 D ˛ D ˇ D 1; '1.x/ WD xp.1��/�1, if F.x/ � 0,
g.y/ � 0,

0 < jjF jjp;'1 D
�Z 1

0

'1.x/F
p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1;

then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k�.�/ W

Z 1
0

Z 1
0

k�.x; y/F.x/g.y/dxdy < k�.�/jjF jjp;'1 jjgjjq; ; (42)

�Z 1
0

yp��1
�Z 1

0

k�.x; y/F.x/dx

	p
dy

� 1
p

< k�.�/jjF jjp;'1 I (43)

(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, we have the equivalent reverses of (42)
and (43) with the same best constant factor k�.�/.

Proof. For ı D �1 in Theorem 1, setting h.u/ D k�.1; u/ and jjxjj�˛f .x/ D F.x/,
since � D � � � , by simplifications, we can obtain (40) and (41) (for p > 1/. It is
evident that (40) and (41) are equivalent with the same best constant factor K�.�/.
By the same way, we can show the cases in 0 < p < 1 or p < 0. The corollary is
proved.

Remark 1. Inequality (42), (43) is equivalent to (32), (33). In fact, Setting x D
1
X
; h.u/ D k�.1; u/ in (32), (33), replacing X�f . 1

X
/ by F.X/, by simplification,

we obtain (42), (43). On the other hand, by (42), (43), we can deduce (32), (33).

5 Two Classes of Hardy-Type Inequalities

If h.v/ D 0.v > 1/, then

h.jjxjjı˛jjyjjˇ/ D 0.jjxjjı˛ > jjyjj�1ˇ /;

by Theorem 1, we have the following first class of Hardy-type inequalities:
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Corollary 4. Suppose that ˛; ˇ > 0; � 2 R; h.v/ � 0,

k1.�/ WD
Z 1

0

h.v/v��1dv 2 RC;

H1.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k1.�/;

ı 2 f�1; 1g; p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .x/ D f .x1; : : : ; xi0 / � 0, g.y/ D

g.y1; : : : ; yj0/ � 0,

0 < jjf jjp;˚ı D
(Z

R
i0
C

˚ı.x/f
p.x/dx

) 1
p

<1;

0 < jjgjjq;� D
(Z

R
j0
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor H1.�/:

Z
R
j0
C

"Z
n
x2R

i0
C

Ijjxjjı˛�jjyjj�1ˇ
o h.jjxjjı˛jjyjjˇ/f .x/dx

#
g.y/dy

< H1.�/jjf jjp;˚ı jjgjjq;� ;
(44)

(Z
R
j0
C

jjyjjp��j0ˇ

 Z
n
x2R

i0
C

Ijjxjjı˛�jjyjj�1ˇ
o h
�jjxjjı˛jjyjjˇ� f .x/dx

!p
dy

) 1
p

< H1.�/jjf jjp;˚ı I
(45)

(ii) If 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k1. Q�/ 2 R, then we still have the equivalent reverses
of (44) and (45) with the same best constant factor H1.�/.

For i0 D j0 D ˛ D ˇ D 1; ı D 1 in Corollary 4, we have

Corollary 5. Assuming that � 2 R; k1.�/ 2 RC; p 2 Rnf0; 1g; 1
p
C 1

q
D 1, we set

'.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1.x; y > 0/:

If f .x/ � 0, g.y/ � 0,



Multidimensional Hilbert-Type Integral Inequalities and Their Operators Expressions 789

0 < jjf jjp;' D
�Z 1

0

'.x/f p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1;

then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k1.�/ W

Z 1
0

 Z 1
y

0

h.xy/f .x/dx

!
g.y/dy < k1.�/jjf jjp;' jjgjjq; ; (46)

(Z 1
0

yp��1
"Z 1

y

0

h.xy/f .x/dx

#p
dy

) 1
p

< k1.�/jjf jjp;' I (47)

(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k1. Q�/ 2 R, we have the equivalent reverses of (46) and (47)
with the same best constant factor k1.�/.

If k�.x; y/ D 0.x < y/, by (42) and (43), we have

Corollary 6. Assuming that �; � 2 R; �C � D �,

k
.1/

� .�/ WD
Z 1

0

k�.1; v/v
��1dv 2 RC;

p 2 Rnf0; 1g; 1
p
C 1

q
D 1, '1.x/ WD xp.1��/�1, if F.x/ � 0, g.y/ � 0,

0 < jjF jjp;'1 D
�Z 1

0

'1.x/F
p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1;

then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k.1/� .�/ W

Z 1
0

�Z 1
y

k�.x; y/F.x/dx

	
g.y/dy < k

.1/

� .�/jjF jjp;'1 jjgjjq; ; (48)

�Z 1
0

yp��1
�Z 1

y

k�.x; y/F.x/dx

	p
dy

� 1
p

< k
.1/

� .�/jjF jjp;'1 I (49)
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(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for
any Q� 2 .� � ı0; � C ı0/, k.1/� . Q�/ 2 R, we have the equivalent reverses of (48)

and (49) with the same best constant factor k.1/� .�/.

If h.v/ D 0.0 < v < 1/, then

h.jjxjjı˛jjyjjˇ/ D 0.jjxjjı˛ < jjyjj�1ˇ /;

by Theorem 1, we have the following second class of Hardy-type inequalities:

Corollary 7. Suppose that ˛; ˇ > 0; � 2 R; h.v/ � 0,

k2.�/ WD
Z 1
1

h.v/v��1dv 2 RC;

H2.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k2.�/;

ı 2 f�1; 1g; p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .x/ D f .x1; : : : ; xi0 / � 0, g.y/ D

g.y1; : : : ; yj0/ � 0,

0 < jjf jjp;˚ı D
(Z

R
i0
C

˚ı.x/f
p.x/dx

) 1
p

<1;

0 < jjgjjq;� D
(Z

R
j0
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor H2.�/ W

Z
R
j0
C

"Z
n
x2R

i0
C

Ijjxjjı˛�jjyjj�1ˇ
o h
�jjxjjı˛jjyjjˇ� f .x/dx

#
g.y/dy

< H2.�/jjf jjp;˚ı jjgjjq;� ;
(50)

( Z
R
j0
C

jjyjjp��j0ˇ

 Z
n
x2R

i0
C

Ijjxjjı˛�jjyjj�1ˇ
o h.jjxjjı˛jjyjjˇ/f .x/dx

!p
dy

) 1
p

< H2.�/jjf jjp;˚ı I
(51)
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(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k2. Q�/ 2 R, then we still have the equivalent reverses
of (50) and (51) with the same best constant factor H2.�/.

For i0 D j0 D ˛ D ˇ D 1; ı D 1 in Corollary 7, we have

Corollary 8. Assuming that � 2 R; k2.�/ 2 RC; p 2 Rnf0; 1g; 1
p
C 1

q
D 1, we set

'.x/ D xp.1��/�1;  .y/ D yq.1��/�1.x; y > 0/:

If f .x/ � 0, g.y/ � 0,

0 < jjf jjp;' D
�Z 1

0

'.x/f p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1:

then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k2.�/ W

Z 1
0

 Z 1
1
y

h.xy/f .x/dx

!
g.y/dy < k2.�/jjf jjp;' jjgjjq; ; (52)

( Z 1
0

yp��1
"Z 1

1
y

h.xy/f .x/dx

#p
dy

) 1
p

< k2.�/jjf jjp;' I (53)

(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k2. Q�/ 2 R, we have the equivalent reverses of (52) and (53)
with the same best constant factor k2.�/.

If k�.x; y/ D 0.x > y/, by (42) and (43), we have

Corollary 9. Assuming that �; � 2 R; �C � D �,

k
.2/

� .�/ WD
Z 1
1

k�.1; v/v
��1dv 2 RC;

p 2 Rnf0; 1g; 1
p
C 1

q
D 1, '1.x/ WD xp.1��/�1, if F.x/ � 0, g.y/ � 0,

0 < jjF jjp;'1 D
�Z 1

0

'1.x/F
p.x/dx

� 1
p

<1;

0 < jjgjjq; D
�Z 1

0

 .y/gq.y/dy

� 1
q

<1;
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then (i) for p > 1, we have the following equivalent inequalities with the best
possible constant factor k.2/� .�/ W

Z 1
0

�Z y

0

k�.x; y/F.x/dx

	
g.y/dy < k

.2/

� .�/jjF jjp;'1 jjgjjq; ; (54)

�Z 1
0

yp��1
�Z y

0

k�.x; y/F.x/dx

	p
dy

� 1
p

< k
.2/

� .�/jjF jjp;'1 I (55)

(ii) for 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for
any Q� 2 .� � ı0; � C ı0/, k.2/� . Q�/ 2 R, we have the equivalent reverses of (54)

and (55) with the same best constant factor k.2/� .�/.

6 Multidimensional Hilbert-Type Inequalities
with Two Variables

Suppose that ui .si /; u0i .si / > 0; ui .a
C
i / D 0; ui .b�i / D 1.�1 � ai < bi �

1; i D 1; : : : ; i0/, u.s/ D .u1.s1/; : : : ; ui0 .si0 //; vj .tj /; v
0
j .tj / > 0; vj .c

C
j / D

0; vj .d
�
j / D 1 .�1 � cj < dj � 1; j D 1; : : : ; j0/,

v.t/ D .v1.t1/; : : : ; vj0.tj0//,

Q̊
ı.s/ WD jju.s/jj

p.i0�ı�/�i0
˛h

˘
i0
iD1u0i .si /

ip�1 ; Q�.t/ WD jjv.t/jj
q.j0��/�j0
˛h

˘
j0
jD1v0j .tj /

iq�1 :

Setting x D u.s/; y D v.t/ in Theorem 1, for

F.s/ WD ˘i0
iD1u

0
i .si /f .u.s//; G.t/ WD ˘j0

jD1v
0
j .tj /g.v.t//;

we have

Theorem 2. Suppose that ˛; ˇ > 0; � 2 R; h.v/ � 0,

k.�/ D
Z 1
0

h.v/v��1dv 2 RC;

K.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

� j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k.�/;

ı 2 f�1; 1g; p 2 Rnf0; 1g, 1
p
C 1

q
D 1, F.s/ D F.s1; : : : ; si0 / � 0, G.t/ D

G.t1; : : : ; tj0/ � 0,
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0 < jjF jjp; Q̊ı D
( Z
fs2Ri0 Iai<si<big

Q̊
ı.s/F

p.s/ds

) 1
p

<1;

0 < jjGjjq; Q� D
(Z
ft2Rj0 Icj <tj <dj g

Q�.t/Gq.t/dt

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/ W
Z
ft2Rj0 Icj <tj <dj g

Z
fs2Ri0 Iai<si<big

h.jju.s/jjı˛jjv.t/jjˇ/F.s/G.t/dsdt

< K.�/jjF jjp; Q̊ı jjgjjq; Q� ;
(56)

( Z
ft2Rj0 Icj <tj <dj g

jjv.t/jjp��j0
ˇ

˘
j0
jD1v0j .tj /

�Z
fs2Ri0 Iai<si<bi g

h.jju.s/jjı˛ jjv.t/jjˇ/

F .s/ds

�p
dt

) 1
p

< K.�/jjF jjp; Q̊ı I
(57)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (56) and (57) with the same best constant factor K.�/.

In particular, for i0 D j0 D ˛ D ˇ D 1,

Q	ı.s/ WD .u.s//p.1�ı�/�1

Œu0.s/�p�1
; Q .t/ WD .v.t//q.1��/�1

Œv0.t/�q�1
;

0 < jjF jjp; Q	ı D
(Z b

a

Q	ı.s/F p.s/ds

) 1
p

<1;

0 < jjGjjq; Q D
(Z d

c

Q�.t/Gq.t/dt

) 1
q

<1;

(i) if p > 1, then we have the following equivalent inequalities with the best
possible constant factor k.�/ W

Z d

c

Z b

a

h.uı.s/v.t//F.s/G.t/dsdt < k.�/jjF jjp; Q	ı jjGjjq; Q ; (58)
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( Z d

c

.v.t//p��1v0.t/
 Z b

a

h.uı.s/v.t//F.s/ds

!p
dt

) 1
p

< k.�/jjF jjp; Q	ı I
(59)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (58) and (59) with the same best constant factor k.�/.

In particular, for �; � > 0; ui .si / D s
�
i ; u
0
i .si / D �s

��1
i ; ui .0C/ D 0; ui .1/ D

1.ai D 0; bi D 1; i D 1; : : : ; i0/, Ou.s/ D .s
�
1 ; : : : ; s

�
i0
/; vj .tj / D t

�
j ; v
0
j .tj / D

�t
��1
j ; vj .0

C/ D 0; vj .1/ D 1.cj D 0; dj D 1; j D 1; : : : ; j0/, Ov.t/ D
.t
�
1 ; : : : ; t

�
j0
/, and

Q̊
ı.s/ D 1

�i0.p�1/
O̊
ı.s/; O̊ı.s/ WD jjOu.s/jj

p.i0�ı�/�i0
˛�

˘
i0
iD1s

��1
i

�p�1 ;

Q�.t/ D 1

�j0.q�1/
O�.t/; O�.t/ WD jj Ov.t/jj

q.j0��/�j0
˛�

˘
j0
jD1t

��1
j

�q�1

in Theorem 2, we have

Corollary 10. Suppose that ˛; ˇ; �; � > 0; � 2 R; h.v/ � 0,

k.�/ D
Z 1
0

h.v/v��1dv 2 RC;

K.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k.�/;

ı 2 f�1; 1g; p 2 Rnf0; 1g, 1
p
C 1

q
D 1, F.s/ D F.s1; : : : ; si0 / � 0, G.t/ D

G.t1; : : : ; tj0/ � 0,

0 < jjF jjp; O̊ı D
(Z

R
i0
C

O̊
ı.s/F

p.s/ds

) 1
p

<1;

0 < jjGjjq; O� D
(Z

R
j0
C

O�.t/Gq.t/dt

) 1
q

<1:
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(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor 1

�i0=q�j0=p
K.�/ W

Z
R
j0
C

Z
R
i0
C

h.jjOu.s/jjı˛jj Ov.t/jjˇ/F.s/G.t/dsdt

<
1

�i0=q�j0=p
K.�/jjF jjp; O̊ı jjGjjq; O� ;

(60)

(Z
R
j0
C

jj Ov.t/jjp��j0ˇ ˘
j0
jD1t

��1
j

 Z
R
i0
C

h.jjOu.s/jjı˛jj Ov.t/jjˇ/

F.s/ds

�p
dt

) 1
p

<
1

�i0=q�j0=p
K.�/jjF jjp; O̊ı I

(61)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (60) and (61) with the same best constant factor 1

�i0=q�j0=p
K.�/.

In particular, for i0 D j0 D ˛ D ˇ D 1,

O	ı.s/ WD sp.1�ı��/�1; O .t/ WD tq.1���/�1;

0 < jjF jjp; O	ı D
�Z 1

0

O	ı.s/F p.s/ds

� 1
p

<1;

0 < jjGjjq; O D
�Z 1

0

O .t/Gq.t/dt

� 1
q

<1;

(i) if p > 1, then we have the following equivalent inequalities with the best
possible constant factor 1

�1=q�1=p
k.�/ W

Z 1
0

Z 1
0

h.s�ıt�/F.s/G.t/dsdt <
1

�1=q�1=p
k.�/jjF jjp; O	ı jjGjjq; O ; (62)

�Z 1
0

tp���1
�Z 1

0

h.s�ıt�/F.s/ds

�p
dt

� 1
p

<
1

�1=q�1=p
k.�/jjF jjp; O	ı I (63)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k. Q�/ 2 R, then we still have the equivalent reverses
of (62) and (63) with the same best constant factor 1

�1=q�1=p
k.�/.
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For ı D �1; h.u/ D k�.1; u/, jju.s/jj�˛F.s/ D f .s/, � D � � � and

Q̊ .s/ WD jju.s/jj
p.i0��/�i0
˛h

˘
i0
iD1u0i .si /

ip�1

in Theorem 2, by simplifications, we have

Corollary 11. Suppose that ˛; ˇ > 0; �; �; � 2 R; �C � D �; k�.x; y/.� 0/ is
a homogeneous function of degree �� in R2C, with

k�.�/ D
Z 1
0

k�.1; v/v
��1dv 2 RC;

K�.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k�.�/;

p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .s/ D f .s1; : : : ; si0 / � 0, G.t/ D G.t1; : : : ; tj0/ � 0,

0 < jjf jjp; Q̊ D
(Z
fs2Ri0 Iai<si<big

Q̊ .s/f p.s/ds

) 1
p

<1;

0 < jjGjjq; Q� D
( Z
ft2Rj0 Icj <tj <dj g

Q�.t/Gq.t/dt

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/ W
Z
ft2Rj0 Icj <tj <dj g

Z
fs2Ri0 Iai<si<big

k�.jju.s/jj˛; jjv.t/jjˇ/f .s/G.t/dsdt

< K�.�/jjf jjp; Q̊ jjGjjq; Q� ;
(64)

( Z
ft2Rj0 Icj <tj <dj g jjv.t/jj

p��j0
ˇ ˘

j0
jD1v

0

j .tj /

 Z
fs2Ri0 Iai <si<big k�.jju.s/jj˛; jjv.t/jjˇ/

� f .s/ds

�p
dt

) 1
p

< K�.�/jjf jjp; Q˚ I
(65)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, then we still have the equivalent reverses
of (64) and (65) with the same best constant factor K�.�/.
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In particular, for i0 D j0 D ˛ D ˇ D 1,

Q	.s/ WD .u.s//p.1��/�1

Œu0.s/�p�1
; Q .t/ D .v.t//q.1��/�1

Œv0.t/�q�1
;

0 < jjf jjp; Q	 D
( Z b

a

Q	.s/f p.s/ds

) 1
p

<1;

0 < jjGjjq; Q D
(Z d

c

Q�.t/Gq.t/dt

) 1
q

<1;

(i) if p > 1, then we have the following equivalent inequalities with the best
possible constant factor k�.�/ W

Z d

c

Z b

a

k�.u.s/; v.t//f .s/G.t/dsdt < k�.�/jjf jjp; Q	 jjGjjq; Q ; (66)

( Z d

c

.v.t//p��1v0.t/
 Z b

a

k�.u.s/; v.t//f .s/ds

!p
dt

) 1
p

< k�.�/jjf jjp; Q	 I
(67)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, then we still have the equivalent reverses
of (66) and (67) with the same best constant factor k�.�/.

In particular, for ui .si / D ln si ; u0i .si / D s�1i ; ui .1C/ D 0; ui .1/ D 1.ai D
1; bi D 1; i D 1; : : : ; i0/, U.s/ D .ln s1; : : : ; ln si0/; vj .tj / D ln tj ; v0j .tj / D
t�1j ; vj .1

C/ D 0; vj .1/ D 1.cj D 1; dj D 1; j D 1; : : : ; j0/, V.t/ D
.ln t1; : : : ; ln tj0/, and

Q̊ .s/ D O̊ .s/ WD jjU.s/jj
p.i0��/�i0
˛�

˘
i0
iD1si

�1�p ;

Q�.t/ D O�.t/ WD jjV.t/jj
q.j0��/�j0
˛�

˘
j0
jD1tj

�1�q

in Corollary 10, we have

Corollary 12. Suppose that ˛; ˇ > 0; �; �; � 2 R; �C � D �; k�.x; y/.� 0/ is
a homogeneous function of degree �� in R2C, with

k�.�/ D
Z 1
0

k�.1; v/v
��1dv 2 RC;
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K�.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

k�.�/;

p 2 Rnf0; 1g, 1
p
C 1

q
D 1, f .s/ D f .s1; : : : ; si0 / � 0, G.t/ D G.t1; : : : ; tj0/ � 0,

0 < jjf jjp; O̊ D
(Z
fs2Ri0 I1<si<1g

O̊ .s/f p.s/ds

) 1
p

<1;

0 < jjGjjq; O� D
( Z
ft2Rj0 I1<tj <1g

O�.t/Gq.t/dt

) 1
q

<1:

(i) If p > 1, then we have the following equivalent inequalities with the best
possible constant factor K.�/ W
Z
ft2Rj0 I1<tj <1g

Z
fs2Ri0 I1<si<1g

k�.jjU.s/jj˛; jjV.t/jjˇ/f .s/G.t/dsdt

< K�.�/jjf jjp; O̊ jjGjjq; O� ;
(68)

( Z
ft2Rj0 I1<tj <1g

jjV.t/jjp��j0
ˇ

˘
j0
jD1t�1j

 Z
fs2Ri0 I1<si<1g

k�.jjU.s/jj˛; jjV.t/jjˇ/

� f .s/ds
�p
dt

) 1
p

< K�.�/jjf jjp; O̊ I
(69)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, then we still have the equivalent reverses
of (68) and (69) with the same best constant factor K�.�/.

In particular, for i0 D j0 D ˛ D ˇ D 1,

Q	.s/ D O	.s/ WD .ln s/p.1��/�1

s1�p
; Q .t/ D O .t/ WD .ln t/q.1��/�1

t1�q
;

0 < jjf jjp; O	 D
�Z 1

1

O	.s/f p.s/ds

� 1
p

<1;

0 < jjGjjq; O D
�Z 1

1

O .t/Gq.t/dt

� 1
q

<1;
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(i) if p > 1, then we have the following equivalent inequalities with the best
possible constant factor k�.�/ W

Z 1
1

Z 1
1

k�.ln s; ln t/f .s/G.t/dsdt < k�.�/jjf jjp; O	 jjGjjq; O ; (70)

�Z 1
1

.ln t/p��1
1

t

�Z 1
1

k�.ln s; ln t/f .s/ds

�p
dt

� 1
p

< k�.�/jjf jjp; O	 I (71)

(ii) if 0 < p < 1, or p < 0, there exists a constant ı0 > 0, such that for any
Q� 2 .� � ı0; � C ı0/, k�. Q�/ 2 R, then we still have the equivalent reverses
of (70) and (71) with the same best constant factor k�.�/.

7 Some Particular Examples on the Norm

Example 1. For h.v/ D j ln vj�
.1Cv/� .� � 0; �; � > 0;�C � D �/, we have

k.�/ D k�.�/ WD
Z 1
0

j ln vj�
.1C v/� v

��1dv:

Since j ln vj�
.1Cv/�=2 v

�
2 ! 0.v ! 0C or v ! 1/, there exists a constant number

L > 0, such that

0 <
j ln vj�

.1C v/�=2 v
�
2 � L.v 2 RC/:

Then it follows that

0 < k�.�/ � L
Z 1
0

v.�=2/�1dv
.1C v/�=2 D LB

��
2
;
�

2

�
<1;

and k� .�/ 2 RC. We find

k0.�/ D
Z 1
0

1

.1C v/� v
��1dv D B.�; �/: (72)

For � � 0, we obtain

k�.�/ D
Z 1

0

.� ln v/�v��1

.1C v/� dv C
Z 1
1

.ln v/�v��1

.1C v/� dv

D
Z 1

0

.� ln v/�

.1C v/�
�
v��1 C v��1� dv
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D
Z 1

0

.� ln v/�
1X
kD0

 
��
k

!�
vkC��1 C vkC��1�dv

D
1X
kD0

 
��
k

!Z 1

0

.� ln v/�
�
vkC��1 C vkC��1�dv:

Setting t D � ln v, we find

k�.�/ D
1X
kD0

 
��
k

!Z 1
0

t .�C1/�1

e�t .kC�/ C e�t .kC�/�dt

D � .� C 1/
1X
kD0

 
��
k

!�
1

.k C �/�C1 C
1

.k C �/�C1
	
:

(73)

In view of Theorem 1 and (39), we have

jjT jj D K�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

k� .�/:

(74)

Example 2. For h.v/ D j ln vj�
1Cv� .� � 0; �; � > 0;�C � D �/, we have

k.�/ D l� .�/ WD
Z 1
0

j ln vj�
1C v� v

��1dv:

Since j ln vj�
.1Cv�/1=2 v

�
2 ! 0.v ! 0C or v ! 1/, there exists a constant number

L > 0, such that

0 <
j ln vj�

.1C v�/1=2 v
�
2 � L.v 2 RC/:

Then it follows that

0 < l� .�/ � L
Z 1
0

v.�=2/�1dv
.1C v�/1=2

D L

�

Z 1
0

u.�=2�/�1dv
.1C u/1=2

D L

�
B
� �
2�
;
�

2�

�
<1;
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and l� .�/ 2 RC. We find

l0.�/ D
Z 1
0

1

1C v� v
��1dv D �

� sin
�
��
�

� : (75)

For � � 0, we obtain

l� .�/ D
Z 1

0

.� ln v/�v��1

1C v� dv C
Z 1
1

.ln v/�v��1

1C v� dv

D
Z 1

0

.� ln v/�

1C v�
�
v��1 C v��1�dv

D
Z 1

0

.� ln v/�
1X
kD0
.�1/k �vk�C��1 C vk�C��1�dv

D
1X
kD0
.�1/k

Z 1

0

.� ln v/�
�
vk�C��1 C vk�C��1�dv:

Setting t D � ln v, we find

l� .�/ D
1X
kD0

.�1/k
Z 1
0

t .�C1/�1

e�t .k�C�/ C e�t .k�C�/� dt

D � .� C 1/
1X
kD0
.�1/k

�
1

.k�C �/�C1 C
1

.k�C �/�C1
	
:

(76)

In view of Theorem 1 and (39), we have

jjT jj D L�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

� j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

�

l� .�/:

(77)

Example 3. For h.v/ D j ln vj�
.maxf1;vg/� .� � 0; �; � > 0;�C � D �/, we have

k.�/ D
Z 1
0

j ln vj�
.maxf1; vg/� v

��1dv

D
Z 1

0

.� ln v/�v��1dv C
Z 1
1

.ln v/�

v�
v��1dv

D
Z 1

0

.� ln v/�
�
v��1 C v��1�dv:
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Setting t D � ln v, we find

k.�/ D
Z 1
0

t�

e�.��1/t C e�.��1/t � e�t dt

D
Z 1
0

t .�C1/�1
�
e��t C e��t �dt

D � .� C 1/
�

1

��C1
C 1

��C1

�
2 RC: (78)

In view of Theorem 1 and (39), we have

jjT jj D K.�/ D
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

�

� .� C 1/
�

1

��C1
C 1

��C1

�
:

(79)

Example 4. For h.v/ D j ln vj�
j1�vj� .� � 0; �; � > 0;�C � D � < 1/, we have

k.�/ D Qk�.�/ WD
Z 1
0

j ln vj�
j1� vj� v

��1dv:

We find

Qk0.�/ D
Z 1
0

v��1

j1 � vj� dv

D
Z 1

0

.1 � v/��v��1dv C
Z 1
1

v��1

.v � 1/� dv

D
Z 1

0

.1 � v/.1��/�1v��1dv C
Z 1

0

.1 � u/.1��/�1u��1du

D B.1 � �; �/CB.1 � �;�/: (80)

For � � 0, we obtain

Qk�.�/ D
Z 1

0

.� ln v/�v��1

.1 � v/� dv C
Z 1
1

.ln v/�v��1

.v � 1/� dv

D
Z 1

0

.� ln v/�

.1 � v/�
�
v��1 C v��1� dv:
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Setting 0 < ı < minf�; �g, since .� ln v/�vı ! 0.v ! 0C/, there exists a
constant L > 0; such that 0 < .� ln v/�vı � L.v 2 .0; 1�/, and then it follows

0 < Qk�.�/ � L
Z 1

0

v��ı�1 C v��ı�1
.1 � v/� dv

D L.B.1 � �; � � ı/C B.1 � �;�� ı/:

Hence Qk�.�/ 2 RC, and

Qk� .�/ D
Z 1

0

.� ln v/�
1X
kD0

.�1/k
 
��
k

!�
vkC��1 C vkC��1�dv

D
1X
kD0

.�1/k
 
��
k

!Z 1

0

.� ln v/�
�
vkC��1 C vkC��1�dv:

Setting t D � ln v, we find

Qk�.�/ D
1X
kD0

.�1/k
 
��
k

!Z 1
0

t .�C1/�1

e�t .kC�/ C e�t .kC�/� dt

D � .� C 1/
1X
kD0

.�1/k
 
��
k

!�
1

.k C �/�C1 C
1

.k C �/�C1
	
:

(81)

In view of Theorem 1 and (39), we have

jjT jj D QK�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

Qk�.�/.� � 0/:

(82)

Example 5. For h.v/ D j ln vj�
jv��1j .� > 0;�; � > 0;�C � D �/, we have

k.�/ D Ok�.�/ WD
Z 1
0

j ln vj�
jv� � 1jv

��1dv:
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We find

Ok1.�/ D
Z 1
0

.ln v/v��1

v� � 1 dv

D 1

�2

Z 1
0

.ln u/u.�=�/�1du

u � 1 D Œ �

� sin
�
��
�

� �2:
(83)

For � > 0, we obtain

Ok�.�/ D
Z 1

0

.� ln v/�v��1

1 � v� dv C
Z 1
1

.ln v/�v��1

v� � 1 dv

D
Z 1

0

.� ln v/�

1 � v�
�
v��1 C v��1� dv

D
Z 1

0

.� ln v/�
1X
kD0

�
vk�C��1 C vk�C��1�dv

D
1X
kD0

Z 1

0

.� ln v/�
�
vk�C��1 C vk�C��1�dv:

Setting t D � ln v, we find

Ok�.�/ D
1X
kD0

Z 1
0

t .�C1/�1

e�t .k�C�/ C e�t .k�C�/�dt

D � .� C 1/
1X
kD0

�
1

.k�C �/�C1 C
1

.k�C �/�C1
	
2 RC:

(84)

In view of Theorem 1 and (39), we have

jjT jj D OK�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

Ok�.�/:

(85)

Lemma 6. If C is the set of complex numbers and C1 D C [ f1g, zk 2
CnfzjRez � 0, Imz D 0g.k D 1; 2; : : : ; n/ are different points, the function f .z/
is analytic in C1 except for zi .i D 1; 2; : : : ; n/, and z D 1 is a zero point of f .z/
whose order is not less than 1, then for ˛ 2 R, we have
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Z 1
0

f .x/x˛�1dx D 2�i

1 � e2�˛i
nX

kD1
ResŒf .z/z˛�1; zk�; (86)

where 0 < Im ln z D arg z < 2� . In particular, if zk.k D 1; : : : ; n/ are all poles of
order 1, setting 'k.z/ D .z� zk/f .z/.'k.zk/ ¤ 0/, then

Z 1
0

f .x/x˛�1dx D �

sin�˛

nX
kD1

.�zk/
˛�1'k.zk/: (87)

Proof. By Pan et al. [22, p. 118], we have (86). We find

1 � e2�˛i D 1 � cos 2�˛ � i sin 2�˛

D �2i sin�˛.cos�˛ C i sin�˛/

D �2iei�˛ sin�˛:

In particular, since f .z/z˛�1 D 1
z�zk

.'k.z/z˛�1/, it is obvious that

ResŒf .z/z˛�1;�ak� D zk
˛�1'k.zk/ D �ei�˛.�zk/

˛�1'k.zk/:

Then by (86), we obtain (87). The lemma is proved.

Example 6. For s 2 N, 0 < a1 < � � � < as , we set

h.v/ D 1Qs
kD1.v�=s C ak/

.0 < � < �/

By (87), setting u D v�=s , we find

k.�/ D ks.�/ WD
Z 1
0

1Qs
kD1

�
v�=s C ak

�v��1dv

D s

�

Z 1
0

1Qs
kD1 .uC ak/

u
s�
� �1du

D �s

� sin
�
�s�
�

�
sX

kD1
a
s�
� �1
k

sY
jD1.j¤k/

1

aj � ak 2 RC: (88)

In view of Theorem 1 and (39), we have
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jjT jj D Ks.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

ks.�/:

(89)

Example 7. For c > 0; 0 < � < � , We set

h.v/ D 1

v� Cpcv�=2 cos � C c
4

.0 < � < �/:

Putting z1 D �
p
c

2
ei� , z2 D �

p
c

2
e�i� , by (87), it follows

k.�/ D c� .�/ WD
Z 1
0

v��1

v� Cpcv�=2 cos � C c
4

dv

D 2

�

Z 1
0

u
2�
� �1

u2 Cpcu cos � C c
4

du

D 2

�

Z 1
0

u
2�
� �1

.u � z1/.u � z2/
du

D 2�

� sin
�
2��
�

�
"�p

c

2
ei�
� 2�

� �1 p
c

2.e�i� � ei� /

C
�p

c

2
e�i�

� 2�
� �1 p

c

2.ei� � e�i� /

#

D
�p

c

2

� 2�
� 2� sin �

�
1� 2�

�

�
� sin � sin

�
2��
�

� 2 RC: (90)

In view of Theorem 1 and (39), we have

jjT jj D C�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

c� .�/:

(91)
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Example 8. We set

h.v/ D .minfv; 1g/�
.maxfv; 1g/�C� .� > �minf�; �g; � C � D �/:

Then we find

k.�/ D
Z 1
0

.minfv; 1g/�v��1
.maxfv; 1g/�C� dv D

Z 1

0

v�C��1dv C
Z 1
1

v��1dv
v�C�

D �C 2�
.� C �/.�C �/ 2 RC: (92)

In view of Theorem 1 and (39), we have

jjT jj D K�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

�C 2�
.� C �/.�C �/ :

(93)

Example 9. We set

h.v/ D ln

�
b C v�
aC v�

�
.0 � a < b; 0 < � < �/:

We find

k.�/ D
Z 1
0

ln

�
b C v�
aC v�

�
v��1dv

D 1

�

Z 1
0

ln

�
b C v�
aC v�

�
dv�

D 1

�

�
v� ln

�
b C v�
aC v�

�
j10

C�
Z 1
0

�
1

aC v� �
1

b C v�
�
v�C��1dv

	

D b � a
�

Z 1
0

u
�
1C �

�

�
�1

.uC a/.uC b/du:
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For a > 0, by (87), we have

k.�/ D .b � a/�
� sin�

�
1C �

�

�
 
a
�
�

b � a C
b
�
�

�b C a

!

D
�
b
�
� � a �

�

�
�

� sin
�
��
�

� 2 RC: (94)

By using the simple way, we still can obtain (94) for a D 0.

In view of Theorem 1 and (39), we have

jjT jj D K.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
;q

�
b
�
� � a �

�

�
�

� sin
�
��
�

� :

(95)

Example 10. We set

h.v/ D e��v� .�; �; � > 0/:

Setting u D �v� , we find

k.�/ D
Z 1
0

e��v� v��1dv D 1

�e�=�

Z 1
0

e�uu
�
� �1du

D 1

���=�
�

�
�

�

�
2 RC: (96)

In view of Theorem 1 and (39), we have

jjT jj D K.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1� . i0

˛
/

# 1
;q

1

���=�
�
��
�

�
:

(97)

Example 11. We set

h.v/ D arctan �v�� .� > 0; 0 < � < �/:
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We find

k.�/ D
Z 1
0

v��1.arctan�v�� /dv

D 1

�

Z 1
0

.arctan�v�� /dv�

D 1

�

�
.arctan�v�� /v� j10 C

Z 1
0

��v����1

1C .�v�� /2 dv
	

D �
�
�

2�

Z 1
0

1

1C u
u
�
1
2� �

2�

�
�1
du

D �
�
�

2�

�

sin�
�
1
2
� �

2�

� D �
�
� �

2� cos
�
��
2�

� 2 RC;
(98)

In view of Theorem 1 and (39), we have

jjT jj D K.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

�
�
� �

2� cos�
�
�
2�

� :
(99)

Example 12. We set

h.v/ D csc h.�v�/ D 2

e�v
� � e��v� .� > 0; � > � > 0/;

where csc h.u/ D 2
eu�e�u is hyperbolic cosecant function [23]. We find

k.�/ D a� .�/ WD
Z 1
0

v��1 csc h.�v�/dv

D
Z 1
0

2v��1

e�v
� � e��v� dv

D
Z 1
0

2v��1e��v� dv
1 � e�2�v� D 2

Z 1
0

v��1
1X
kD0

e�.2kC1/�v� dv

D 2
1X
kD0

Z 1
0

v��1e�.2kC1/�v� dv:
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Setting u D .2k C 1/�v� , we obtain

a� .�/ D 2

���=�

1X
kD0

1

.2k C 1/�=�
Z 1
0

u
�
� �1e�udu

D 2

���=�
�

�
�

�

�" 1X
kD1

1

k�=�
�
1X
kD1

1

.2k/�=�

#

D 2

���=�
�

�
�

�

��
1 � 1

2�=�

�
�

�
�

�

�
2 RC; (100)

where, �
�
�
�

�
DP1kD1 1

k�=�

�
�
�
> 1

�
(�.�/ is the Riemann’s zeta function [24]).

In view of Theorem 1 and (39), we have

jjT jj D A�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

a� .�/:

(101)

Example 13. We set

h.v/ D sec h.�v�/ D 2

e�v
� C e��v� .�; �; � > 0/;

where sec h.u/ D 2
euCe�u is hyperbolic secant function. We find

k.�/ D b�.�/ WD
Z 1
0

v��1 sec h.�v�/dv

D
Z 1
0

2v��1dv
e�v

� C e��v� D
Z 1
0

2v��1e��v� dv
1C e�2�v�

D 2

Z 1
0

v��1
1X
kD0
.�1/ke�.2kC1/�v� dv

D 2

1X
kD0
.�1/k

Z 1
0

v��1e�.2kC1/�v� dv:



Multidimensional Hilbert-Type Integral Inequalities and Their Operators Expressions 811

Setting u D .2k C 1/�v� , we obtain

b�.�/ D 2

���=�

1X
kD0

.�1/k
.2k C 1/�=�

Z 1
0

u
�
� �1e�udu

D 1

���=�2.�=�/�1
�

�
�

�

�
&

�
�

�

�
2 RC;

(102)

where

&

�
�

�

�
D
1X
kD0

.�1/k
.2k C 1/�=�

�
�

�
> 0

�
:

In view of Theorem 1 and (39), we have

jjT jj D B�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

b� .�/:

(103)

Example 14. We set

h.v/ D cothh.�v� /� 1 D e�v
� C e��v�

e�v
� � e��v� � 1

D 2e��v�

e�v
� � e��v� .� > 0; � > � > 0/;

where cothh.u/ D euCe�u

eu�e�u is hyperbolic cotangent function. We find

k.�/ D c� .�/ WD
Z 1
0

v��1.cothh.�v�/ � 1/dv

D
Z 1
0

2e��v� v��1

e�v
� � e��v� dv D

Z 1
0

2e�2�v� v��1

1 � e�2�v� dv

D 2
Z 1
0

v��1
1X
kD0

e�2.kC1/�v� dv

D 2
1X
kD1

Z 1
0

v��1e�2k�v� dv:
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Setting u D 2k�v� , we obtain

c� .�/ D 2

���=�

1X
kD1

1

.2k/�=�

Z 1
0

u
�
� �1e�udu

D 1

���=�2.�=�/�1
�

�
�

�

�
�

�
�

�

�
2 RC: (104)

In view of Theorem 1 and (39), we have

jjT jj D C�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
q

c� .�/:

(105)

Example 15. We set

h.v/ D 1 � tanh.�v� / D 1 � e
�v� � e��v�
e�v

� C e��v�

D 2e��v�

e�v
� C e��v� .�; �; � > 0/;

where tan h.u/ D euCe�u

eu�e�u is hyperbolic tangent function. We find

k.�/ D d�.�/ WD
Z 1
0

v��1.1 � tanh.�v�//dv

D
Z 1
0

2e��v� v��1

e�v
� C e��v� dv D

Z 1
0

2e�2�v� v��1

1C e�2�v� dv

D 2
Z 1
0

v��1
1X
kD0
.�1/ke�2.kC1/�v� dv

D 2
1X
kD1

.�1/k�1
Z 1
0

v��1e�2k�v� dv:

Setting u D 2k�v� , we obtain

d�.�/ D 2

���=�

1X
kD1

.�1/k�1
.2k/�=�

Z 1
0

u
�
� �1e�udu

D 1

���=�2.�=�/�1
�

�
�

�

�
�

�
�

�

�
2 RC; (106)
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where, �. �
�
/ WDP1kD1 .�1/k�1

k�=�
.

In view of Theorem 1 and (39), we have

jjT jj D D�.�/ WD
"

� j0
�
1
ˇ

�
ˇj0�1�

�
j0
ˇ

�
# 1
p

�
"

� i0
�
1
˛

�
˛i0�1�

�
i0
˛

�
# 1
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Note. The following references [24–31] provide an extensive theory and applica-
tions of Analytic Number Theory relating to Riemann’s zeta function that will
provide a source study for further research on Hilbert-type inequalities.
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