
Chapter 4
Efficient Batch LU and QR Decomposition
on GPU

William J. Brouwer and Pierre-Yves Taunay

4.1 Batch LU Decomposition

While comparatively expensive, direct solvers based around matrix decomposition
are used in various applications, for reasons of numerical stability, over iterative
solvers. The implementation presented shortly was originally devised for the
solution of many decoupled systems simultaneously [4], for what amounts to a
domain decomposition approach [6]. The LU decomposition also provides a viable
method for the calculation of the matrix determinant; after execution of an in-
place implementation, the determinant is available from the product of the diagonal
elements. This is particularly useful in condensed matter physics, specifically in
studies of the fractional quantum Hall effect based on construction of the Pfaffian
wave function, which requires O.N Š/ determinant evaluations [9, 10].

4.1.1 Theory

The decomposition of matrix A into lower L (elements ˛ij ) and upper U (elements
ˇij ) matrix,

LU D A; (4.1)

has the advantage of permitting the solution of linear systems in two steps,
comprised of forward and backward substitution procedures, for multiple right hand
sides in Ax D y. Crout’s approach to LU decomposition solves the set of equations
implicit to Eq. (4.1); these are:
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ˇij D aij �
i�1X

kD1

˛ikˇkj ; (4.2)

and

˛ij D 1

ˇjj

 
aij �

j �1X

kD1

˛ikˇkj

!
: (4.3)

Numerical stability relies on suitable choice of pivot, or dividing element in the
solution for ˛ij . Pivoting may be partial (a row interchange) or full (both row
and column); the former is implemented in this chapter. Following the approach
detailed in Numerical Recipes [5], the choice of the best pivot is made only after
both Eqs. (4.2) and (4.3) are solved for a given column, and thereafter the row swap
and a scaling performed. Recording the row permutations in a separate vector is
required for use with the solution of linear equations, in order that the right hand
side vector be subsequently rearranged to suit. Equations (4.2) and (4.3) give rise to
N 2 C N equations, whose overdetermined nature permits the setting of N elements
arbitrarily. A popular choice is to set the diagonal elements of ˛ to one, followed in
this chapter. Crout’s approach to LU decomposition is summarized in Algorithm 1.

4.1.2 GPU Implementation

With the foreknowledge that the decomposition will be applied in batch, the
mapping of computational thread to matrix is a seemingly reasonable strategy
for a GPU implementation. However, on the device this virtually eliminates the
possibility of coalesced loads from global memory, and thread cooperation via
shared memory, key requirements for good performance. At the other extreme,
mapping thread to matrix element would introduce significant overhead in the
form of synchronization, owing to dependencies between the loops described in
Algorithm 1. In a compromise between the two extremes, O.N / threads were
assigned to the operations for each matrix, and individual CUDA thread blocks
assigned one or more matrices to process. Referring to Algorithm 1, there are at least
two key points at which threads must cooperate. The first is the determination of
scaling information, lines 1–5, which may be considered a separate scope to lines 6
forward. This task is readily solved using parallel reduction, a well known primitive.
Turning attention to the main steps of the algorithm, lines 7–13 perform updates to
matrix elements above the diagonal, specifically column j . By assigning the index
of the loop at line 7 to thread index, increasingly more threads in this scope work
as the outer loop progresses; a brief summary of this scope as executed in CUDA
is detailed in Table 4.1. Within a warp, one may rely on SIMD execution, and thus
updated column elements are available to threads of higher indices when needed.
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Algorithm 1 LU decomposition with partial pivoting

As one might expect, matrices of side greater than a single warp require serialization
of warp execution, due to the unpredictable way in which instructions are scheduled
and dispatched within the Streaming Multiprocessor (SM), as illustrated in Fig. 4.1.
Some parallelism is regained by mapping matrix to warp, for this scope alone.

No such limitations pervade lines 14–20, where loop index is also mapped to
thread index, and column data is read from above the diagonal. Threads in this scope
update from diagonal downwards; however, barrier synchronization is necessary
before and after this scope. The particular column updated in a single iteration of
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Table 4.1 Global memory read[], shared memory read(), write{}, critical�
and arithmetic operations for several iterations and CUDA threads t_id of
algorithm lines 7–14

k t_id j =2 j =3 j =4 j =5

– 1 (1,2) (1,3) (1,4) (1,5)
0 1 �[1,0]*(0,2) �[1,0]*(0,3) �[1,0]*(0,4) �[1,0]*(0,5)
– 1 {1,2} {1,3}� {1,4}� {1,5}�

– 2 (2,3) (2,4) (2,5)
0 2 �[2,0]*(0,3) �[2,0]*(0,4) �[2,0]*(0,5)
1 2 �[2,1]*(1,3)� �[2,1]*(1,4)� �[2,1]*(1,5)�
– 2 {2,3} {2,4}� {2,5}�

– 3 (3,4) (3,5)
0 3 �[3,0]*(0,4) �[3,0]*(0,5)
1 3 �[3,1]*(1,4)� �[3,1]*(1,5)�
2 3 �[3,2]*(2,4)� �[3,2]*(2,5)�
– 3 {3,4} {3,5}�

– 4 (4,5)
0 4 �[4,0]*(0,5)
1 4 �[4,1]*(1,5)�
2 4 �[4,2]*(2,5)�
3 4 �[4,3]*(3,5)�
– 4 {4,5}

Warp Scheduler

Instruction Dispatch Instruction Dispatch

x32 x32

Warp 8 instruction 11

Warp 2 instruction 42

Warp 8 instruction 12

Warp 14 instruction 96

Warp 2 instruction 43

Warp 14 instruction 95

Fig. 4.1 An example of
instruction scheduling and
execution in a streaming
multiprocessor

the outer loop is cached in shared memory before line 7, and written back to global
after line 20. Shared memory buffers used for communication are declared using the
volatile keyword, to ensure that write operations are not optimized out during
compilation. Once the column update is complete, and working threads have written
elements q before line 20 to another shared memory buffer, parallel reduction is
employed in order to find the index of the pivot. Should the condition at line 21 be
satisfied, then a row swap is completed by threads, storing temporary elements in
registers. Thereafter, row elements are scaled by diagonal elements; once again loop
index k is mapped to thread. Barrier synchronization is employed before the end of
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Table 4.2 LU algorithm
executed on K40c GPU
device versus 16 Intel
E5-2670 (Sandy Bridge) CPU
threads

Batch size Matrix size K40c (s) CPU(s) mats./blk

800 256 1.5 1.5 1
1,600 128 0.33 0.45 1
8,000 64 0.20 0.30 2
16,000 32 0.05 0.11 4
64,000 16 0.03 0.15 8

the outer loop at line 29. An abbreviated listing of the main CUDA kernel is recorded
in Appendix 1, based around the float2 type, for processing complex data.

4.1.3 LU Results

An implementation of Algorithm 1 was written in C for execution on CPU, for
use with row-major storage format matrices and complex (single precision) floating
point data. This routine was compiled using a recent revision of the Intel compiler,
with flags -O3 -xHost to ensure the highest degree of optimization, taking
advantage of AVX hardware and instructions of the Sandy Bridge CPU. OpenMP
was used to distribute matrices to separate threads for processing. The main GPU
kernel as described and supporting routines including parallel reduction were
compiled using nvcc, CUDA revision 5.5, for compute architecture 3.5 and with
optimization flag -O3. Table 4.2 summarizes results, comparing execution times.
Profiling using nvvp revealed a total global memory bandwidth of approximately
62 GB/s (54.5 GB/s read + 7.5 GB/s write). Both CPU and GPU routines were
devoted to calculating the in-place LU decomposition alone. No permutations were
stored; however, the sign of the permutation was recorded in memory, as is necessary
for any subsequent calculation of matrix determinants. Crout’s algorithm when
executed on the K40c device experienced a 1.0–5.0x performance improvement over
a single Sandy Bridge CPU socket, running 16 threads. The super-linear scaling of
the CPU results was investigated further using tools from the Valgrind suite [8].
As expected, the effect had little correlation with cache performance; miss rates for
both instructions and data were negligible for all matrix and batch sizes considered.
However, profiling with callgrind did reveal that instructions devoted directly
to the LU calculation itself steadily increased as a fraction of the total instructions,
with matrix size. This fraction was as little as 60 % for a matrix of side 32,
increasing to almost 100 % for matrices of side 256. Similarly, the percentage of
instructions derived from other sources, particularly the Intel KMP interface for
thread management and CPU affinity decreased to negligible contributions, for
matrices of side 256.
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4.2 QR Decomposition

While also a method that may be applied in the solution of systems of linear
equations, the QR decomposition,

QR D A; (4.4)

generally takes preeminence in a popular approach to eigendecomposition, the QR
algorithm. In numerical implementations of the QR decomposition algorithm, the
upper diagonal matrix R is constructed by the action of operations on A. R can be
produced by one of several means, the most popular being Householder reflections,
or Givens rotations [3]. This chapter focuses on the latter, whereby successive
rotations Gi are applied, selectively eliminating elements below the diagonal of A,
and producing the upper diagonal matrix R. One such step for the first column
of a 3�3 complex matrix is illustrated in Eq. (4.5), where * denotes the complex
conjugate.
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0 c s
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33

3

5 (4.5)

4.2.1 Theory

4.2.1.1 Serial QR Decomposition

The kernel of rotation matrix Gi is a 2�2 matrix that operates on pairs of values
a D ai;j and b D aiC1;j in A, where elements c and s are chosen to eliminate the
lower element in the operation:

�
c s

�s� c

� �
a

b

�
D
�

r

0

�
: (4.6)

Bindel et al. [1] give expressions for suitable c and s in a variety of contexts; the
following are used in the remainder of this chapter for complex values, analogous
to those for real values:

c D ˙ jaj
pjaj2 C jbj2 ; (4.7)

s D ˙sgn.a/
bpjaj2 C jbj2 ; (4.8)
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where

sgn.a/ D
�

a=jaj if a ¤ 0

1 if a D 0
: (4.9)

The concatenation of all orthogonal operations Gi comprises the transpose of the
orthogonal matrix Q ie., using 0-based indexing,

QT A D
2

4
j DN �2Y

j D0

8
<

:

iDN �2Y

iDj

G
j
i

9
=

;

3

5 A D R (4.10)

where the superscript on G refers to the matrix column operated on during a
particular iteration.

4.2.1.2 Parallel QR Decomposition

Sameh and Kuck [7] developed a parallel scheme dedicated to matrices of even
side, in which the elimination process pictured in Eq. (4.5) can be carried in parallel
across multiple rows and columns. Multiple independent Givens rotations QQm;n can
be executed at the same time, where m and n refer to the row and column indices
of the eliminated element. The product of these matrices constructs the matrix OQi ,
which is applied at the i -th step of the algorithm:

OQi D
Y QQm;n: (4.11)

For a given step i , the matrices QQm;n can be multiplied in any order to obtain OQi ,
as they are a direct sum of plane rotations [7]. As a result, OQi is a block-diagonal
matrix, with Givens rotations matrices Gi on the diagonal, as pictured in Eq. (4.12).

OQi D

2
6666666666666664

1
: : :

1

ck;l sk;l

�sk;l � ck;l

: : :

cm;n sm;n

�sm;n� cm;n

1

3
7777777777777775

(4.12)

The scheme from Sameh and Kuck is completed in 2N � 3 steps, where N is the
rank of the matrix. The i -th transform is obtained by eliminating an entry in A at
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the row m and column n, where m and n are given by

m D
� fN � i; N � i C 1; : : : ; N � 1 � ı .i/g 1 � i � N � 1

fi � N C 2; i � N C 4; : : : ; N � 1 � ı .i/g N � i � 2N � 3
; (4.13)

and

n D

8
ˆ̂<

ˆ̂:

�
1; 2; : : : ; d i

2
e
�

1 � i � N � 1
�

i � N C 2; i � N C 3; : : : ; d i

2
e
�

N � i � 2N � 3

; (4.14)

with ı .i/ defined as

ı .i/ D
�

0 i odd
1 i even

: (4.15)

Though other elimination patterns are possible, this approach has been proven to be
one of the most efficient, both from a practical and mathematical point of view, as it
is easy to implement and asymptotically optimal [2].

At each step of the process, the total number of rotations performed simulta-
neously, Nrot, is obtained by counting the total number of columns n and rows m

affected:

Nrot D
� di=2e 1 � i � N � 1

di=2e � i C N � 1 N � i � 2N � 3
: (4.16)

An example of the entries successively eliminated by this algorithm is shown in
Fig. 4.2, for an 8�8 matrix. Numbers in the matrix correspond to the order in which
the associated matrix element is eliminated in the algorithm.

7
6 8
5 7 9
4 6 8 10
3 5 7 9 11
2 4 6 8 10 12
1 3 5 7 9 11 13

Fig. 4.2 Illustration of the
successive elimination
scheme in the QR parallel
decomposition algorithm, for
an 8�8 matrix
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Algorithm 2 Outer loop of the parallel QR decomposition

4.2.2 GPU Implementation

The previous observations made in Sect. 4.1.2 related to global and shared memory
accesses are also valid for the QR decomposition; therefore, each CUDA thread
block is assigned one or more matrices to process, and N threads operate on a
single matrix. The parallel QR algorithm is driven by an outer loop executed on
the CPU, as detailed in Algorithm 2. This routine calculates the number of CUDA
blocks to run in the x-dimension of the CUDA grid, initializes the orthogonal matrix
Q as the identity matrix, and calculates the total number of Givens rotations that
can be executed in parallel, based on Eq. (4.16). This number sets the z-dimension
of the CUDA grid, to ensure that a total of Nrot Givens rotations are applied in
parallel to the same matrix, at each iteration of the outer loop. Finally, each iteration
launches the CUDA kernel to be executed on the GPU, shown in Algorithm 3.
Each CUDA block in the x-dimension performs operations on multiple matrices
A, and accumulates the results in the corresponding matrix Q. All threads first
calculate the indices m; n of the entry to eliminate in their corresponding matrix.
Threads then load rows m � 1 and m, on lines 10 and 11, subsequently calculating
their corresponding Givens rotation, on line 14. Algorithm 4 details this operation:
multiple threads load the elements a and b defined in Eq. (4.6) through a shared
memory broadcast on lines 1 and 2. The components of the Givens rotation kernel,
c and s, are then evaluated on line 3 based on Eqs. (4.7) through (4.9). Turning
attention back to Algorithm 3, the threads perform the Givens rotation on their
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Algorithm 3 QR_KERNEL Core GPU kernel for the parallel QR decomposition

corresponding matrix with the APPLYGIVENS routine. The details of this function
are outlined in Algorithm 5. In the APPLYGIVENS routine, each thread within
a CUDA block operates on a single matrix element of the two rows loaded in
upperRow and lowerRow. The calculation presented in Eq. (4.6) is performed on
lines 5 and 6. The threads then store the data back in place, in global memory,
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Algorithm 4 CALCGIVENS Calculate the [c,s] values of a Givens rotation

Algorithm 5 APPLYGIVENS Apply the [c,s] Givens rotation to an array of matrices

on lines 7 and 8. Care is taken to introduce an exact zero for columns 1 through
n � 1 with the boolean condition myIndex> n on line 8, in order to avoid floating
point approximations. The remainder of the Algorithm 3—lines 16 through 18—
accumulates the rotations in the matrix Q. Note that the boolean condition on line 8
of Algorithm 5 does not apply to matrix Q, as can be discerned from the last line of
QR_Kernel in Appendix 2.

Memory optimizations are included in the QR kernel implementation. A few
constants, for example the current iteration number and the total batch size are stored
in constant memory to provide fast data access. The bandwidth-cost of copying
the data from the CPU to the GPU through a call to cudaMemcpyToSymbol()
does not impact the overall performance of the algorithm. Care is taken to avoid
non-coalesced global memory accesses by providing contiguous indices for global
memory loads and stores.
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Table 4.3 QR parallel decomposition algorithm executed on K40c GPU device
versus 16 Intel E5-2670 (Sandy Bridge) CPU threads, in ms

Batch size

Matrix side 1,000 10,000 100,000 Matrices per block

16 1.370 (14.3) 7.475 (6.03) 68.14 (3.26) 64
32 6.732 (4.82) 55.76 (2.86) 534.0 (1.83) 32
64 48.70 (2.5) 457.9 (1.73) 4,630 (0.87) 16
128 404.9 (1.69) 4,025 (0.81) – 8
256 3,172 (0.76) 32,151 (0.57) – 4

The number in parenthesis indicates the speedup over the QR serial decomposition
executed on the CPU

4.2.3 QR Results

A serial implementation of the QR decomposition algorithm as described in the
first paragraph of Sect. 4.2.1 was written in C for execution on the CPU. The
source code was compiled with the latest AVX optimizations available for Intel
processors, with flags -O3 -xHost. The core GPU kernel QR_Kernel was
compiled with the CUDA 5.5 revision of nvcc for compute architecture 3.5, and
with -O3 optimizations. The GPU method was tested on a Kepler K40c, while
the CPU implementation was executed on a single Sandy Bridge CPU socket
running 16 OpenMP threads. Benchmarking results are presented in Table 4.3.
The GPU implementation of the QR algorithm as outlined here demonstrates a
0.6–14.3x performance improvement over a comparable CPU routine. The Nvidia
profiler nvvp revealed a global memory bandwidth of 195 GB/s (97.5 GB/s read +
97.5 GB/s write).

Table 4.3 shows that the GPU results scale linearly at a constant matrix size.
However, the scaling is not linear with the matrix size, at constant batch size; this
effect can be attributed to a decreasing total number of matrices processed per
block, as the size of the matrices increase. Therefore, more blocks are scheduled
and executed on the GPU, resulting in a larger overhead. The QR GPU kernel as
described was revealed to be memory-bound by the Nvidia profiler. Thus, additional
optimizations to help the code scale with the matrix size may include increasing the
total work performed by individual CUDA threads, in order to keep the total number
of matrices processed per block constant. The super-linear behavior observed in the
CPU scaling results was deduced to share similar origins as those of the CPU LU
implementation.



4 Efficient Batch LU and QR Decomposition on GPU 81

4.3 Conclusion

This chapter has detailed new CUDA implementations of LU and QR decom-
position, for large batches of matrices of side less than 1,024 elements. The
kernels take advantage of several key GPU architectural features and display
highly favorable performance and scaling as compared to comparable CPU imple-
mentations. However, QR decomposition was relatively more performant than
LU decomposition, largely owing to the need for warp serialization and fairly
excessive synchronization in the latter. Performance for initial kernels was improved
significantly through introduction of several techniques guided by profiling. These
techniques included configuring cache and shared memory in software, as well as
optimizing thread blocksize and shared memory buffer size. Further optimizations
and alternative kernels for these important methods are the subjects of ongoing
work.
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Appendix 2
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