Secure Cloud Computing

Wolfgang A. Halang!, Maytiyanin Komkhao?, and Sunantha Sodsee?

! Chair of Computer Engineering, Fernuniversitit in Hagen, Germany
wolfgang.halang@fernuni-hagen.de
2 Faculty of Science and Technology,
Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
maytiyanin.k@rmutp.ac.th
8 Faculty of Information Technology,
King Mongkut’s University of Technology North Bangkok, Thailand
sunanthas@kmutnb.ac.th

Abstract. The security risks of cloud computing include loss of control
over data and programs stored in the cloud, spying out these data and
unnoticed changing of user software by the cloud provider, malware in-
trusion into the server, eavesdropping during data transmission as well
as sabotage by attackers able to fake authorised users. It will be shown
here how these security risks can effectively be coped with. Only for
preventing the cloud provider from wrong-doing no technical solution is
available. The intrusion of malware into cloud servers and its malicious
effects can be rendered impossible by hardware-supported architectural
features. Eavesdropping and gaining unauthorised access to clouds can
be prevented by information-theoretically secure data encryption with
one-time keys. A cryptosystem is presented, which does not only work
with one-time keys, but allows any plaintext to be encrypted by a ran-
domly selected element out of a large set of possible ciphertexts. By
obliterating the boundaries between data items encrypted together, this
system removes another toehold for cryptanalysis.

Keywords: Cloud computing, malware prevention, hardware-based se-
curity, security by design, eavesdropping, unbreakable encryption.

1 Introduction

Cloud computing means providing services such as data storage, data process-
ing and file repository by a central server to remote users via the Internet. Since
already in the 1960ies mainframe computers with so-called time-sharing operat-
ing systems were connected via telecommunication lines to user terminals, cloud
computing is half a century older than its name and the present hype about it.
At that time, the security risks associated with this kind of centralised comput-
ing were not so severe, however, as they are today. These risks include loss of
control over data and programs stored in the cloud, spying out these data and
unnoticed changing of user software by the cloud provider, malware intrusion
into the server, eavesdropping during data transmission as well as sabotage by
attackers able to fake authorised users.

S. Boonkrong et al. (eds.), Recent Advances in Information and 305
Communication Technology, Advances in Intelligent Systems and Computing 265,
DOI: 10.1007/978-3-319-06538-0 30, (© Springer International Publishing Switzerland 2014

306 W.A. Halang, M. Komkhao, and S. Sodsee

In this paper, it will be shown how these security risks can effectively be
coped with. Only for preventing the cloud provider from wrong-doing no tech-
nical solution is available. The intrusion of malware and its malicious effects
are made impossible by hardware-supported architectural features. Eavesdrop-
ping and gaining unauthorised access to a cloud is prevented by information-
theoretically secure data encryption with one-time keys.

The technical security measures outlined herein are all not new, but there are
consistently disregarded for decades by mainstream academic computer science
as well as by the IT industry. The reasons for this disregard are up to speculation.
Maybe, it is just ignorance or the inability to take notice of published results.
But for academic circles it could also be the unwillingness to recognise certain
problems as solved preventing further research with its possibility to publish
more papers. The branch of the IT industry supplying malware detection soft-
ware and related tools would simply lose its complete business. The suppliers
of computers want to sell new computers before the old ones cease function-
ing, and the customers of operating systems, which as software never wear out,
need to be convinced by errors and new features to buy new operating system
versions. Hence, of each generation of new hardware and operating systems not
more than only slight improvements with respect to security can be expected to
allow for many more generations to be marketed. And, finally, we should not for-
get those who are interested in spying out personal data such as secret services,
governments and big corporations.

2 Spying and Sabotage by the Cloud Provider

If one uses a cloud as a data depository, only, and encrypts the data in an
unbreakable way as, for instance, outlined in Section 4, then the cloud provider
can neither spy out these data nor modify them without being noticed. The
provider could just destroy the data which, however, does not make any sense.

There is on-going research, e.g. [1], on the possibility to enable processing of
encrypted data without the need to decrypt them first. To carry out a dyadic op-
eration f on two arguments x and y encrypted with the function e this requires,
for instance, the existence of an operator g, such that

gle(x),e(y)) = e(f(z,y))

holds. This constraint is extremely restrictive. For most combinations of e and f
no g will exist. If for a given f a g could exist, then the encryptions allowing this
will most likely be rather weak and, hence, easily breakable. Furthermore, to be
able to apply an operator g, it must always be known where in a ciphertext the
encryptions of two arguments can be found. This offers another point of depar-
ture for cryptanalytic attack. In Section 4 it will be shown that the locations of
encrypted values should and can be blurred as well.

As a result, one has no other means than to trust the cloud provider if one
wants to process data in a cloud. This should not be a problem if the cloud is

Secure Cloud Computing 307

operated by the own organisation. A trustable cloud provider could also be a co-
operative society in which one is a member. An example for this is DATEV e.G.
(www.datev.de) in Nuremberg, which was founded in 1966 by tax accountants,
lawyers, chartered accountants and their clients and which has presently some
40,000 members.

3 Hardware-Supported Malware Prevention

The easiest approach to prevent malware intrusion into cloud servers is just to
run the server software on classical mainframe computers, because up to now
malware and hackers have never succeeded in entering such a machine [13]. Thus,
security updates have almost never been required for their operating systems and
their most important subsystems.

An analysis of the various intruders, particularly in form of programs and
executable Internet content with malicious intentions, which are making their
way into differently designed computers, reveals that they are based on some
common principles of operation. If these operation principles are thwarted by
appropriate measures, malware is prevented from spreading and from launching
its destructive effects. There is a single measure, which already makes any form
of malware intrusion impossible, viz. separation of program and data memory.
The now for two thirds of a century predominant and thoughtlessly perpetuated
Von Neumann architecture with its minimalistic principles is totally inadequate
for systems that need to be secure, as it does not separate data from instructions
and, thus, does not permit to protect both kinds of information properly. The
Harvard architecture, on the other hand, provides this separation throughout
and, therefore, represents an adequate construction principle. It is interesting to
note that the Harvard architecture is even older than Von Neumann’s, and that
it actually dates back to Konrad Zuse’s first working computer Z1 of 1936. In [2]
it was shown that the Harvard architecture can be emulated on Von Neumann
computers. It is remarkable to note that this emulation could be implemented
with just a single logic gate with two inputs, as shown in Fig. 1.

The constructive security measures discussed in the sequel are less restrictive
than the Harvard architecture. Nevertheless, they disable the operation princi-
ples of all known malevolent programs in effective ways. In devising them, great
importance was attached to the presented solutions being simple and easy to
duplicate, in order to be understood and applied without any problems by the
users of computers, as unnecessary complexity is the enemy of any effort towards
enhancing security.

Software with malicious intentions often interferes with application programs
or even with operating system routines in order to manipulate them for its
destructive purpose or to deactivate software-implemented security functions.
Here a memory segmentation measure as developed in [3] takes effect. It reliably
prevents unauthorised accesses to the storage areas of operating system and ap-
plication programs. To this end, a hardware-supervised segmentation of memory
is employed, which protects program code against modifications not permitted
by a hardware-implemented write-protection.

308 W.A. Halang, M. Komkhao, and S. Sodsee

<

N
v
-

Am Let the main storage be divided into the
lower half for program storage and the
CPU upper half for data storage. If the pro-
cessor tries to fetch an instruction (indi-
cated by its output line M1) from data
NMI storage (indicated by an address with the
R most significant address line Am active),
(Reset) then the circuitry shown causes a non-
maskable interrupt or a processor reset.

Fig. 1. Emulating the Harvard architecture on a Von Neumann computer

In contrast to programs, data are subject to frequent modifications. Therefore,
a hardware-implemented write-protection as above is not feasible for handling
reasons. Data can be protected against programs for spying out and modifica-
tion, however, by a context-sensitive memory allocation scheme [4]. Applying this
measure, any unauthorised access to data is precluded. To this end, a system’s
mass storage, in particular the data area, is further subdivided by a partitioning
into context-dependent segments. In an installation mode it is precisely specified
which accesses to these segments are permitted to the programs. This is oriented
at the data to be protected and not the programs, i.e. in general to each program
there exist several data segments separated from one another. In other words,
this method permits memory references to any application program and oper-
ating system service only by means of using access functions write-protected by
hardware, which release the storage areas required for the respective application
case for writing and reading or just for reading accesses.

In order not to endanger the advantages of memory areas write-protected by
hardware measures during the installation phases of programs, it is necessary to
accommodate service programs and their databases also in areas write-protected
by hardware and separated from the program area. During installation phases, a
hardware device according to [5] constructively excludes attackers from gaining
administrator rights by authenticating an authorised person by biometrical or
other means.

Destructive programs and software-based aggression from the Internet often
use components of digital systems, which they would not need for their feigned
nominal functions. Here the hardware-supported security measure detailed in
[6] takes effect. It lets any program, any interpretable file and any executable
Internet content first disclose which resources are required for execution. The
disclosure of a program’s nominal functions enables to install boundary values for
systems and to supervise their operation. By this and, at any instant, by locking
all resources not needed at that time by means of hardware, it is warranted that
the desired nominal functionality is observed.

Secure Cloud Computing 309

{23 HD1D 3 HD20 HD31
©:1:| n (security-information)s @rml (user-programs)i (datay

,,,,,,,,,,,,,,,,,,,,,,, e ==

——==

programs?
and datan

E
P

security-]
function o ||, 7| mmuo ¢ [RAMD
[—
userl authenti-i N\)
orl = fication-1 profilesl seculilly-D <:> processor
administrator unity 14 unito
[— resource 20
t control-0 .
unit] .
—

_resource no

Fig. 2. Hardware-supported security measures

Utilising the measures outlined above, computers are effectively protected
against inadmissible accesses, and become immune to intruders and espionage.
This holds in particular for still unknown attack patterns or malware, too, be-
cause there is no more need for databases of malicious code or attack prototypes,
which become obsolete within hours anyway due to the swift spreading of current
malware via the Internet. In addition, separation and structuring considerably
facilitates the maintainability of computers. Systems protected by the mentioned
measures exhibit, on the basis of disclosing their nominal functions, of the per-
manent supervision against set bounds, of the context-sensitive allocation of data
and of the impossibility to attack operating systems and application programs,
a degree of robustness which allows them to maintain their functionality despite
some failing application programs. In essence, with their features

— Data and instructions are separated throughout.

— Authentications are not influenceable by software.

Protection systems are not attackable themselves; their implementation is

proven correct and safely protected against modifications not permitted.

— The protection of systems cannot be put out of effect during the installation
phases of application programs or of operating system components as well.

— All storage levels (main memory, mass storage etc.) are protected throughout
against unauthorised accesses by means of authentication-dependent virtual
address spaces.

— Constraints and nominal functionalities of programs are defined in installa-
tion phases, and permanently supervised during operation. Their observance
is guaranteed under real-time conditions.

— To protect data against effects of software errors or malicious interpretable
files, and to enable context-sensitive memory allocation, programs can be
instantiated with access functions.

— Requests arriving from the outside are always placed first in separate and
enclosed data areas to be preprocessed there.

310 W.A. Halang, M. Komkhao, and S. Sodsee

these measures guarantee, with reference to [11], the observance of the protection
objectives

Privacy: unauthorised gain of information is made impossible, i.e. spying out
of data is obviated,

Integrity: unauthorised modification of information is precluded,

Availability: unauthorised influence on the functionality is precluded and

Attributability: at any point in time the responsible persons can be identified
with certainty.

4 Information-Theoretically Secure Data Encryption

In information and communication technology, increasingly datasets of any size
are exchanged between computers in form of streams via data networks. This
holds particularly for the communication between cloud servers and cloud clients.
To guarantee the confidentiality of such messages’ contents, a plentitude of meth-
ods for the encryption of the data streams was developed [10]. Currently used
encryption methods usually employ the same keys during longer periods of time,
lending themselves to cryptanalytic attacks. It was shown, for instance, that
the rather widespread asymmetrical RSA-cipher with 768 bits long keys has at
least theoretically been broken. The symmetrical cryptosystem DES is already
regarded as unsafe, too. Other ciphers such as 3DES or AES are still being
considered safe, but only because the presently available computing power is in-
sufficient to carry out simple brute-force attacks. In some countries law requires
to deposit the keys used with certain agencies. Thus, these countries’ secret
services do not need any cryptanalysis whatsoever to spy out encrypted data.

In consequence, only perfectly secure one-time encryption is feasible in the
long run. Perfect security is achieved, if encryption of a plaintext yields with
equal probability any possible chiphertext, and if it is absolutely impossible
to conclude from the ciphertext to the plaintext. According to the theorem of
Shannon [12] fundamental for information theory, a cryptosystem is only then
regarded as perfectly safe, if the number of possible keys is at least as large as
the number of possible messages. Hence, also the number of keys is at least as
large as the one of possible ciphertexts which, in turn, must be at least as large
as the number of possible plaintexts.

Based on these considerations, in the sequel a cryptosystem is presented, which
does not only work with one-time keys. It allows any plaintext to be encrypted
by a randomly selected element out of a large set of possible ciphertexts, and
it obliterates the boundaries between data items encrypted together. Thus, it
is impossible to conclude from boundaries between data items in ciphertexts to
the boundaries of data items in the plaintexts, removing another toehold for
cryptanalysis.

The general operational principle of cryptosystems can be described mathe-
matically as follows. Let sequences of message symbols (plaintext) sg, s1,
from an arbitrary alphabet S to be transmitted. Messages are encrypted by the
sender with an encryption function and, after transmission, decrypted by the

Secure Cloud Computing 311

receiver with the inverse decryption function. Generally, both functions are pub-
lically known according to Kerckhoffs’ principle [8], but parameterised with a
secret key K, which is agreed upon by the the communicating units via a confi-
dential and authentic channel. In dependence upon this key a sequence of states

oir1 = f(or, K) (1)

is generated both in the sender and the receiver at discrete points in time ¢t > 0
with the state transfer function f, and a key stream

2t = g(or, K)

is generated with the key stream generation function g. The initial state og may
be known publically, or may also be derived from the key K. With the key
stream, plaintext is then transformed in a state-dependent way by the invertible
mapping

Ct = h(Zt, St) (2)

to ciphertext, which is decryptable by applying the inverse mapping
St = hil(zt, Ct).

The key stream sequence must be as similar to a genuine random sequence as pos-
sible. In case of self-synchronising stream ciphers, the determination of the state
o+1 additionally depends on the last-generated cipher symbols ¢, ..., ci—141
with fixed [, [> 1.

It is a common feature of all known cryptosystems that they subject the data
elements to be transmitted, may that be bits, alphanumerical characters or bytes
containing binary data, may they be single or in groups, always as unchanged
entities to encryption. The information-theoretical model of cryptosystems ac-
cording to Shannon [12] is founded on this restrictive basic assumption as well.
Consequently, information such as the boundaries between data elements and
their number perpetuates observably and not encrypted into the ciphertext: as a
rule, to any plaintext symbol there corresponds exactly one ciphertext symbol.
Since even block ciphers seldom work with data entities exceeding 256 bits, the
symbols in plaintexts and in ciphertexts are ordered in the same sequences or,
at least, their positions lie very close together. Thus, corresponding symbols in
plain- and ciphertext can rather easily be associated with one another, which
considerably facilitates code breaking.

A solution of this problem [7] is based on the observation that, ultimately,
in the technical realisation of all cryptosystems the symbols of the plaintext
alphabets (or modifications thereof) and of the ciphertext alphabets are all rep-
resented by binary encodings. Correspondingly, for encryption the most general
among all possible forms of replacing one bit pattern by another one is utilised.
In course of this encryption, particularly the boundaries between the plaintext
symbols are blurred, the binary positions of several plaintext symbols are func-
tionally interrelated with each other, and for any bit pattern to be encrypted an
encryption is randomly selected out of a corresponding set.

312 W.A. Halang, M. Komkhao, and S. Sodsee

The encryption according to [7] differs from the state of the art outlined above
as follows. A state sequence is generated similar to Eq. (1). In every state oy,
however, a number m; of bit positions to be encrypted is determined according
to an arbitrarily selectable method. The parameter m; can — and should — be
different from the number of bit positions, with which the plaintext alphabet is
encoded, whereby the boundaries between the plaintext symbols are annihilated.
Then, for m; bit positions each, an encryption with n > m; bit positions is
determined by means of a state-dependent relation

R, € {0,1}™ x {0,1}™

Here, the parameter n may not be smaller than my, as information would get
lost otherwise, and it should not be equal to m; either, in order to prevent
the disadvantages mentioned above. Contrary to the function h of Eq. (2), the
relation R; does not need to be a mapping: it is even desirable that with every
element in {0,1}™ as many elements of {0,1}" as possible are related by Ry,
allowing to randomly select among them one as encryption. Moreover, every
element in {0,1}" should be a valid enciphering of an element in {0,1}™*, to
completely exhaust the encryption possibilities available. Unique decryptability
is given, when the inverse relation is a surjective (onto) mapping:

R :{0,1}" — {0,137,

Contrary to Kerckhoffs’ principle, this decryption function is not known publi-
cally — and the relation R; used for encryption is not only publically unknown,
but no function either. Publically known is only, that R, Lis a totally arbitrary
mapping among all possible ones mapping the finite set {0,1}™ onto another
finite set {0,1}™*.

The conditions mentioned above already hamper to a very large extent break-
ing a data encryption performed according to [7]. A decryption would only be
possible, if an attacker had such an amount of ciphertexts available as required by
pertaining analyses — totally disregarding the necessary computational power.
The following further measures prevent, however, that sufficiently long enci-
pherings, generated with a certain choice of a parameter set and an encryption
relation, arise in the first place.

During operation, an encryption unit can — at randomly selected points in
time — sufficiently often vary the parameter m; between 1 and the length of an
input register and, thus, modify the encryption relation correspondingly. The
unit as well as an inversely constructed and working decryption unit can co-
ordinate sporadic modifications of the encryption using a protocol. In order to
transmit between the units as few details on the encryption relation as possible
for confidentiality reasons, just the instants of re-parametrisations ought to be
co-ordinated. The respective new parameter values and identifiers of the en- and
decryption relations to be applied should, however, be generated in both units
with synchronously running algorithms. Random number generators based on
chaos-theoretical principles [9], for instance, are very suitable for this purpose.

By selecting the parameters m; # k and n > my it is inherently achieved, that
it cannot be concluded in an easy way anymore from the boundaries between

Secure Cloud Computing 313

the symbols in a ciphertext to the boundaries of the symbols in the plaintext
data stream. For n > my, the set of possible encryption elements is embedded
in a considerably larger image set, significantly impeding code analysis for an
attacker. The number of all possible relations Ry C {0,1}™* x {0, 1}", for which
R;l is a surjective mapping, amounts to ,, E;!mt)!. For the choice my = 17 and
n = 24, considered to be practically feasible, this is in the order of magnitude of
10946:701 different relations — an extremely big number. The set of these relations
comprises, among others, all possibilities to permutate bits in their respective

positions, to insert n — m; redundant bits, which may each have an arbitrary of
n

both possible values 0 or 1, at positions in the output bit patterns as

gn—my

well as to functionally interrelate the values of the bit positions of the encryption
elements in a fully general way.

5 Conclusion

The security risks brought about by cloud computing have been identified. If
clouds are just used as data depositories and unbreakable encryption is employed,
then cloud providers can neither spy out these data nor modify them without
being noticed. The on-going research on enabling the processing of encrypted
data without having to decrypt them is doomed to failure since the conditions,
under which this might be possible, are too restrictive by far. Therefore, in this
respect the only choices are not to use cloud computing, to trust the provider
or to own the cloud.

Currently applied cryptosystems to secure confidential data transmission to
or from clouds have either already been broken or are expected to be broken
soon. Also, their keys need to be deposited with government agencies in some
countries. Therefore, to prevent eavesdropping and gaining unauthorised access
to clouds, information-theoretically secure one-time encryption is the method of
choice. It was shown that encryption with one-time keys can even be enhanced
by encrypting any plaintext by a randomly selected element out of a large set
of possible ciphertexts. Blurring the boundaries between data items encrypted
together, it is made impossible to conclude from boundaries between data items
in ciphertexts to the boundaries of data items in the plaintexts. Thus, a toehold
for cryptanalysis left open by a silent assumption in Shannon’s communication
theory is eliminated. The operation principles of malware — present and future
— intruding both cloud servers and client computers can easily thwarted if one
resorts to hardware-supported measures, whereas software-based ones can in-
herently not meet the expectations. The simple measure of separating program
and data memories, i.e. the Harvard architecture, is fully effective. Perpetuating
the inadequate Von Neumann architecture any longer is dangerous and does not
make sense. If the Harvard architecture should be considered too restrictive, it
is also possible to efficiently harden the Von Neumann architecture with several
hardware-based security features. For the majority of these features, here it was
referred to patent applications of the year 2000 [3,4,6], which were not granted

314 W.A. Halang, M. Komkhao, and S. Sodsee

later. The patent office showed the applicants that they had re-invented the
wheel, and could prove that similar ideas had been published already decades
before. Fourteen years have passed since then, but the ignorance of the profes-
sional circles persists.

References

1. Fahrnberger, G.: SecureString 2.0 — A Cryptosystem for Computing on Encrypted
Character Strings in Clouds. In: Eichler, G., Gumzej, R. (eds.) Networked Informa-
tion Systems. Fortschr.-Ber. 10, 826, pp. 226-240. VDI Verlag, Diisseldorf (2013)

2. Halang, W.A., Witte, M.: A Virus-Resistent Network Interface. In: Gérski, J. (ed.)
SAFECOMP 1993, pp. 349-357. Springer, Heidelberg (1993)

3. Halang, W.A., Fitz, R.: Speichersegmentierung in Datenverarbeitungsanlagen zum
Schutz vor unbefugtem Eindringen. German patent application DE 100 31 212 A1l
(2000)

4. Halang, W.A., Fitz, R.: Kontextsensitive Speicherzuordnung in Datenverar-
beitungsanlagen zum Schutz vor unbefugtem Ausspdhen und Manipulieren von
Daten. German patent application DE 100 31 209 A1l (2000)

5. Halang, W.A., Fitz, R.: Gerdtetechnische Schreibschutzkopplung zum Schutz dig-
italer Datenverarbeitungsanlagen vor Eindringlingen wéhrend der Installation-
sphase von Programmen. German patent 10051941 since 20 October (2000)

6. Halang, W.A.| Fitz, R.: Offenbarendes Verfahren zur Uberwachung ausfiihrbarer
oder interpretierbarer Daten in digitalen Datenverarbeitungsanlagen mittels
gerdtetechnischer Einrichtungen. German patent application DE 100 55 118 Al
(2000)

7. Halang, W.A., Komkhao, M., Sodsee, S.: A Stream Cipher Obliterating Data Ele-
ment Boundaries. Thai Patent Registration (2014)

8. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires. 9. Serie
(1883)

9. Li, P.: Spatiotemporal Chaos-based Multimedia Cryptosystems. Fortschr.-Ber. 10,
777. VDI-Verlag, Diisseldorf (2007)

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

11. Rannenberg, K., Pfitzmann, A., Miller, G.: Sicherheit, insbesondere mehrseitige
IT-Sicherheit. In: Mehrseitige Sicherheit in der Kommunikationstechnik, pp. 21-29.
Addison-Wesley, Bonn (1997)

12. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28, 656-715 (1949)

13. Spruthm, W.G., Rosenstiel, W.: Revitalisierung der akademischen Grofirechner-
ausbildung. Informatik Spektrum 34(3), 295-303 (2011)

	Secure Cloud Computing
	1 Introduction
	2 Spying and Sabotage by the Cloud Provider
	3 Hardware-Supported Malware Prevention
	4 Information-Theoretically Secure Data Encryption
	5 Conclusion
	References

