
Moduli Stacks of Bundles on Local Surfaces

Oren Ben-Bassat and Elizabeth Gasparim

Abstract We give an explicit groupoid presentation of certain stacks of vector
bundles on formal neighborhoods of rational curves inside algebraic surfaces. The
presentation involves a Möbius type action of an automorphism group on a space of
extensions.

1 Introduction

A fundamental question in algebraic geometry is to understand how rational maps
on a variety X affect the moduli of vector bundles on X, that is: suppose X and
Y birationally equivalent, then what is the relation between the various moduli
of vector bundles on X and Y ? Here we focus on the case of surfaces, in which
case rational maps are obtained by blowing up (possibly singular) points. Suppose
�WY ! X is the blow up of a point x in X , with ` D ��1.x/. Considering
pullbacks, one can then study the relative situation of the moduli of vector bundles
on X mapping into the moduli of vector bundles on Y . Since � is an isomorphism
outside ` clearly the heart of the question lies in the geometry of moduli of bundles
on a small neighborhood of `. This question was addressed from the point of view
of moduli spaces of equivalence classes of vector bundles in [15] for the case when
x is a smooth point, and the geometry of the local moduli was used to prove
the Atiyah–Jones conjecture for rational surfaces. In this paper we consider the

O. Ben-Bassat (�)
University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter,
Woodstock Road, Oxford, OX2 6GG, UK
e-mail: oren.benbassat@gmail.com

E. Gasparim
Imecc - Unicamp, Cidade Universitária, Campinas, SP, 13083-859, Brasil
e-mail: etgasparim@gmail.com

R. Castano-Bernard et al. (eds.), Homological Mirror Symmetry and Tropical Geometry,
Lecture Notes of the Unione Matematica Italiana 15,
DOI 10.1007/978-3-319-06514-4__1,
© Springer International Publishing Switzerland 2014

1

mailto:oren.benbassat@gmail.com
mailto:etgasparim@gmail.com


2 O. Ben-Bassat and E. Gasparim

moduli stacks of vector bundles in formal neighborhoods of `, and give explicit
groupoid presentations of such moduli stacks. The stacky point of view, besides
clarifying several delicate issues about the local moduli also has the advantage that
it generalises to the case of singular surfaces, where ` is a line with self-intersection
`2 D �k < �1: We develop the study of stacks of bundles on (completions of the)
local surfaces Zk D Tot.O.�k// and give presentations of certain stacks of rank
2 bundles over these surfaces. The most interesting aspect of these presentations is
the “Möbius” transformation (17) discussed in Sect. 2.3.

2 Local Surfaces and Vector Bundles on Them

Notation 1. In this paper we will work with (associative, commutative, unital) C-
algebras. Therefore, affine scheme will mean the spectrum of such an algebra, and
all varieties, schemes, and formal schemes are considered over C. We will work
over the site of affine schemes or C-algebras with the faithfully flat topology. The
schemes we will consider are quasi-compact and quasi-separated. For any positive
integer k, we have the algebraic variety

Zk D Tot.OP1 .�k// D Spec
P1

 1M
iD0

OP1 .ik/

!

and ` Š P1 its zero section, so that `2 D �k. Let I` be the sheaf of OZk ideals

defining `. We writeZ.n/

k for the nth infinitesimal neighborhood of ` and cZk D Z.1/

k

for the formal neighborhood of ` inZk . cZk D .`; limnOZk=I
n
` / is the formal scheme

given as the formal completion ofZk along `. It is a (an inductive or direct) limit in
the category of ringed spaces over P1. There is a presentation

Zk D
�
U
G
V
�
= �;

where we will always use the charts U D C2 with coordinates .z; u/, and V D C2

with coordinates .�; v/, with U \V D .C�f0g/�C where the equivalence relation
� is given by the change of coordinates .�; v/ D .z�1; zku/. Note that the zero
section ` is given in these coordinates by u D 0 in the U -chart and v D 0 in the
V -chart. It is easy to see that I` Š O.k/. In fact, I` is the line bundle associated to
the divisor �` and since u D �kv,

div.u/ D `C kf

where f is the fiber defined by � D 0. We similarly have

U .n/ D Spec.CŒz; u�=.unC1//
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and

V .n/ D Spec.CŒ�; v�=.vnC1//:

As above, we have

Z
.n/

k D
�
U .n/

G
V .n/

�
= �

and

Z
.1/

k D cZk D � OUG OV
�
= �

where OU and OV are the formal scheme completions of U and V along `.

Remark 1. Unless we explicitly state that n is finite, in each usage of the spaces
Z
.n/

k we are including the case that n D 1.

These presentations are helpful for describing vector bundles. For instance by
the answer to Serre’s famous question (proved by Seshadri [22] and in further
generality by Quillen [20] and Suslin [23]), U D Spec.CŒz; u�/ has no non-trivial
vector bundles; similarly this is true for U .n/ and OU by Theorem 7 of [10]. In
contrast, vector bundles on Z.n/

k were studied on [1–3,14]. All the schemes we have

mentioned up until now are Noetherian and cZk is a Noetherian formal scheme. If T
is an affine scheme such that Pic.T / is trivial then

Pic.cZk � T / ' Pic.Z.n/

k � T / ' Pic.P1 � T / ' Pic.P1/ ' ZI
we will use the symbol O.j / for the line bundle with first Chern class j coming
from P1 in any of these spaces. If E is a rank 2 vector bundle of first Chern class
zero onZ.n/

k then the splitting type j � 0 ofE is the integer such that the restriction

of E to ` is isomorphic to O.j /˚O.�j /. For a vector bundle on Z.n/

k � T we say
that it has constant splitting type j if its splitting type is j over every t 2 T .C/.

For our explicit presentations of stacks, we will need the following basic results
about rank 2 bundles on Z.n/

k , which we generalize from [13].

Lemma 1. Let S be any scheme over C and E a rank 2 vector bundle on Z.n/

k � S
of constant splitting type j � 0. Then for any s 2 S.C/ there is an open subscheme
T of S containing s and such that the restriction of E to Z.n/

k � T has the structure
of an extension

0! O.�j /! Ej
Z
.n/
k �T ! O.j /! 0:

Proof. By [12], Theorem 3.3 Ej
Z
.n/
k �fsg can be written as an algebraic extension

0! O.�j /! Ej
Z
.n/
k �fsg ! O.j /! 0
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where j > 0. Consider the leftmost injective map as a nowhere vanishing element
of the space of global sectionsH0.Z

.n/

k �fsg; EjZ.n/k �fsg˝O.j //. The pushforward

�S�.Ej`�S ˝ O.j // is a vector bundle on S and we have chosen a non-zero point
in the fiber over s. Choose T 0 open in S and containing s and an extension of the
above section to an element of

H0.T 0; .�S�.Ej`�S ˝ O.j ///jT 0/ D H0.` � T 0; Ej`�T 0 ˝ O.j //

such that this chosen global extension does not vanish on ` � T 0 and hence does
not vanish on Z.n/

k � T 0, and passes through our chosen element of the fiber over s.
This gives us an injective map of constant rank leading to a short exact sequence on
Z
.n/

k � T 0

0! O.�j /! E
Z
.n/
k �T 0

! L! 0

where L is a line bundle on Z.n/

k � T 0 isomorphic to O.j / over every geometric
point of T 0. By the see–saw principle there is a T open in T 0 and containing S such
that the restriction of L toZ.n/

k �T 0 is isomorphic to O.j /. Therefore the restriction

of the above short exact sequence to Z.n/

k � T gives the desired result.

Remark 2. An alternate approach to the Lemma 1 is to start with any vector bundle
which has nowhere zero map of O.�j / to E over ` � T for some affine scheme T
and use the fact that H1.` � T; Im`�T / D 0 for m > 0 to extend this map order by

order to a map over Z.n/

k � T which must be nowhere zero.

Lemma 2. Let T be an affine scheme and E an algebraic extension of O
Z
.n/
k �T

modules

0! O.�j /! E ! O.j /! 0;

over Z.n/

k � T which splits over ` � T for j � 0 then, in the chosen coordinates E
can be described by a transition matrix of the form

�
zj p

0 z�j
�

on .U .n/ \ V .n// � T; where

p D
min.b.2j�2/=kc;n/X

iD1

j�1X
lDki�jC1

pi;lz
lui : (1)

and pi:l 2 O.T /.
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Proof. A Čech cohomology calculation (performed in Theorem 3.3 of [12]) shows
that

Ext1
Z
.n/
k

.O.j /;O.�j // D CŒz; z�1; u�=.unC1/
z�jCŒz�1; zku�=..zku/nC1/C zjCŒz; u�=.unC1/

by flat base change for the diagram

and the Leray spectral sequence for �
Z
.n/
k

we have

Ext1
Z
.n/

k �T .�
�
Z
.n/

k

O.j /; ��
Z
.n/

k

O.�j // D H1.Z
.n/

k � T; ��
Z
.n/

k

.O.�2j ///

D H0.T;R1�T ���
Z
.n/
k

.O.�2j ///

D H0.T;OT ˝H1.Z
.n/

k ;O.�2j ///
D H0.T;OT ˝ Ext1

Z
.n/
k

.O.j /;O.�j ///: (2)

Remark 3. As a consequence of the above two Lemmas 2 and 1, we see that any
rank 2 vector bundle onZ.n/

k � T (or cZk � T ) takes a special form locally on T and
in this form it is clearly the restriction (completion) of a vector bundle on Zk . The
theorem on formal functions implies then that

7ExtiZk�T .V;W / Š ExtibZk�T .V;W /:

Notation 2. Let

N
.n/

j;k D f.i; l/jki� j C 1 � l � j � 1 and 1 � i � min.b.2j � 2/=kc; n/g:

Consider the algebraic variety over C

W
.n/

j;k D Spec
�
CŒ pi;l j .i; l/ 2 N.n/

j;k �
�
: (3)

For any fixed j; k it remains finite dimensional even for n D 1. If we pass to the C
points then we get

W
.n/

j;k .C/ D fp 2 Ext1
Z
.n/
k

.O.j /;O.�j // j pj` D 0g:
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Let

R
.n/

j;k D
b.2j�2/=kcM

iD1

j�1M
lDki�jC1

Czlui � O.U .n/ \ V .n//: (4)

of course R.n/j;k is the set of C points of W .n/

j;k but we distinguish them because of the

different notions of automorphisms of R.n/j;k and W .n/

j;k .

Remark 4. Note that in our chosen form of transition matrix from Eq. (1) we have
explicitly chosen p 2 R.n/j;k.

Definition 1. Consider the open cover fU .n/ �W .n/

j;k ; V
.n/ �W .n/

j;k g of Z.n/

k �W .n/

j;k .
We define E, sometimes called the big bundle, to be the bundle

E

#
Z
.n/

k �W .n/

j;k

on Zk �W .n/

j;k defined by transition matrix

�
zj p

0 z�j
�
2 H0..U .n/ \ V .n// �W .n/

j;k ;A ut.O˚2//:

Let T be an affine scheme and p a morphism from T toW .n/

j;k . We denote by Ep the
bundle (also described in Lemma 2) given by the pullback .id

Z
.n/
k

; p/�E of E via the
map

Z
.n/

k � T
.id

Z
.n/
k

;p/

! Z
.n/

k �W .n/

j;k :

Lemma 3 ([4, Thm. 4.9]). On the first formal neighborhood Z.1/

k , two bundles E
and E 0 with transition matrices�

zj p1
0 z�j

�
and

�
zj p0

1

0 z�j
�

respectively are isomorphic if and only if p0
1 D �p1 for some � 2 C�.

Remark 5. It follows from this lemma that the coarse moduli space of bundles
on Z.1/

k coming from non-trivial extensions of O.j / by O.�j / is isomorphic to
P
2j�k�2.
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Example 1. On higher infinitesimal neighborhoods we need to consider far more
relations among extension classes then just projectivisation to obtain the moduli of
bundles. The simplest of such examples occurs in the case when k D 1 and j D 2,
so that our extension classes have the form

p D .p1;0 C p1;1z/uC p2;1zu2:

The set of equivalence classes of vector bundles is then C3= � where the
equivalence relation is generated by

.p1;0; p1;1; p2;1/ � .�p1;0; �p1;1; �p0
2;1/ if .p1;0; p1;1/ ¤ .0; 0/; � ¤ 0;

.0; 0; p2;1/ � .0; 0; �p2;1/; � ¤ 0:

Note that p0
2;1 is does not depend on p, and that the quotient topology makes the

entire space the only open neighborhood of the split bundle, which is the image of
the origin in C3.

2.1 Stacks of Vector Bundles

We now define the stack of bundles Mj .Z
.n/

k /, the main object we seek to
understand in this article.

Definition 2.

Mj .Z
.n/

k /WSchemes! Groupoids

given by

T 7! Hom.T;Mj .Z
.n/

k //

where

ob.Hom.T;Mj .Z
.n/

k // D frank 2 vector bundles on Z
.n/

k � T which have

splitting type j and first Chern class 0 for every

restriction to Z
.n/

k � ftg; t 2 T .C/g
(5)

and

mor.Hom.T;Mj .Z
.n/

k //.V1; V2/ D Isom.V1; V2/:
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This is a stack [17] with respect to the faithfully flat topology on schemes
(C-algebras). Notice that there is automatically a universal bundle E over Z.n/

k �
Mj .Z

.n/

k /. We can similarly define the stack Mj .cZk/. We similarly have the stacks

M.Z
.n/

k / of bundles where we drop the condition on splitting type.
There is an inverse (or projective) system of stacks of finite type over C:

� � � !Mj .Z
.3/

k /!Mj .Z
.2/

k /!Mj .Z
.1/

k /!Mj .Z
.0/

k / DMj .P
1/ (6)

whose inverse limit in the category of algebraic stacks is Mj .cZk/. Alternatively we

can consider the inverse system Mj .Z
.�/
k / to be an pro-stack of pro-finite type. This

type of approximation is studied in [21]. It seems difficult to compute invariants of
the stacks Mj .Z

.n/

k / using only the definition above so we will find a more explicit
description below.

2.2 The Structure of Vector Bundle Isomorphisms

Consider the bundles Ep defined in Definition 1. There is a exact sequence

0! Hom.Ep;Ep0/! End.O.�j /˚ O.j //

�! Ext1.O.�j /˚ O.j /;O.�j /˚ O.j //! Ext1.Ep;Ep0/! 0. (7)

We now explain the structure of isomorphisms between families of bundles coming
from extensions by constructing an explicit splitting for the first non-trivial map in
this sequence. If the bundles Ep and Ep0 on Z.n/

k � T , given by maps

p; p0 W T ! R
.n/

j;k

are isomorphic (see Eq. (4)) then necessarily they have the same splitting type, and
in such case we can represent them by transition matrices on

.U .n/ \ V .n// � T

by

�
zj p

0 z�j
�

and

�
zj p0
0 z�j

�
respectively. An isomorphism between Ep and Ep0 is

given by a pair of invertible matrices

A D
�
aU bU

cU dU

�
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regular on U .n/ � T and

B D
�
aV bV
cV dV

�

regular on V .n/ � T , such that:

B

�
zj p

0 z�j
�
D
�

zj p0
0 z�j

�
A; (8)

or equivalently

B D
�

zj p0
0 z�j

�
A

�
z�j �p
0 zj

�

D
�
aU C z�j p0cU z2j bU C zj .p0dU � aUp/ � pp0cU

z�2j cU dU � z�j pcU

�
. (9)

Definition 3. We use the notation Y C to denote the terms in Y2O..U .n/\V .n//�T /
that are not regular on V .n/ � T and Y C;�2j denotes the terms in Y that are not
regular on V .n/ � T and have power of z greater than or equal to 2j .

Lemma 4. Suppose that j > 0. Then any isomorphism .A;B/ between Ep and

Ep0 on Z.n/

k � T has the form

.A;B/ D .MU ;MV /C .˚U .M/;˚V .M// (10)

where

M D .MU ;MV / 2 Aut
Z
.n/
k �T .O.j /˚ O.�j //:

MU D
�
a bU
cU d

�

and

˚U .M/ D
 
�.z�j p0cU /C �z�2j �zj .p0d � ap/� pp0cU

�C;�2j
0 .z�j pcU /C

!

depends only on p; p0 andM and satisfies

Œp0d � ap � z�j pp0cU � D 0 2 Ext1
Z
.n/
k �T .O.j /;O.�j //: (11)
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Proof. First suppose that such an isomorphism exists, between Ep and Ep0 . Then
we have �

zj p0
0 z�j

�
A � B

�
zj p

0 z�j
�
D 0: (12)

The left hand side comes out to be�
p0cU C .aU � aV /zj dU p0 � aV p C zj bU � z�j bV
cU z�j � cV zj z�j .dU � dV / � cV p

�
: (13)

The lower left corner of (13) implies first of all that c must be a section c of O.2j /.
We need to arrange for the vanishing of all terms in (13). Therefore, we need to
solve the equations:

aU � aV D �z�j p0cU
zj bU � z�j bV D �dUp0 C aV p
dU � dV D zj cV p.

BecasueH1.Z
.n/

k �T;O/ vanishes, the first and third equations have solutions which
are unique up to global functions. Let

aU D a � .z�j p0cU /C

and

dU D d C .zj cV p/C:

These solve the first and third equation. If we substitute into the second equation,
it reads

zj bU � z�j bV D �.zj cV p/Cp0 C .�.z�j p0cU /C C z�j p0cU /p � dp0 C ap
D �dp0 C ap C z�j pp0cU .

(14)
This implies that

Œp0d � ap � z�j pp0cU � D 0 2 Ext1
Z
.n/
k �T .O.j /;O.�j //:

Conversely, suppose that these conditions are satisfied by some a, d , c, p, and p0,
let us record the general form of an element of Isom

Z
.n/
k �T .Ep;Ep0/. It remains only

to determine the expression for bU . By the assumptions we already know that

�
zj .p0d � ap/� pp0cU

�C;<2j
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is regular on V .n/ � T . Hence

bU D bU � z�2j �zj .p0d � ap/ � pp0cU
�C;�2j

:

Finally, since u divides p and p0, we know that A is invertible if and only if MU is
and therefore the isomorphism .A;B/ is invertible if and only if the automorphism
M is invertible.

Remark 6. We conclude that the expression of the element .A;B/ of Hom.Ep;Ep0/

under the decomposition (43)

Hom.Ep;Ep0/ D Hom.O.j /;O.�j // ˚ �.ker.d 1;�11 //˚  .ker.d 0;02 //

from the appendix is satisfied if we take b 2 Hom.O.j /;O.�j //;

 U .c/ D
��.z�j p0cU /C z�2j .pp0cU /

C;�2j

cU .z�j pcU /C
�

and

�U .a; d/ D
 
a �z�2j �zj .p0d � ap/�C;�2j
0 d

!
:

2.3 Bundle Isomorphism Viewed as an Equivalence Relation

Although we have worked out the structure of the space of isomorphisms between
two given bundles, this does not yet give a criterion for when two bundles are
isomorphic nor does it provide any understanding of the equivalence relation on
W

.n/

j;k given by isomorphisms of vector bundles. We show that there are algebraic

groups G.n/

j;k acting on W .n/

j;k so that the orbits of this action are identified with
the equivalence classes. This action (17) takes on the familiar form of a Möbius
transformation. Lange studied in [16] (see also Drézet [11]) the question of universal
bundles over the projectivized space of extensions. In a specific example we study
here a more difficult problem, the difference being that we do not remove the origin
and we consider all vector bundle isomorphisms, not just those that correspond to
scaling the extension. First we need to define the structure of a scheme on the sets
Aut

Z
.n/
k

.O.j /˚ O.�j // for n finite.

Definition 4. Consider the functors from schemes to sets given by

T 7! Aut
Z
.n/
k �T .O.j /˚ O.�j //:
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These functors are C-groups (sheaves of groups in the faithfully flat topology
on schemes) and are easily seen to be representable by reduced schemes. These
schemes are in fact affine, being defined inside the finite dimensional affine space

End
Z
.n/
k

.O.j /˚ O.�j //

defined with coordinates as in Remark 8 as the complement of the pre-image of 0
by the morphism

det0 W End
Z
.n/
k

.O.j /˚ O.�j //! O.Z
.n/

k /! Spec.CŒs�/:

sending s to the restriction of the determinant to `. When we pass to C points we
get the standard determinant followed by restriction to `

det0 W End
Z
.n/

k

.O.j /˚ O.�j //! O.Z
.n/

k /! O.Z
.0/

k / D C:

We denote these finite dimensional algebraic groups by G.n/

j;k . These form a directed
system of C-spaces (sheaf of sets for the faithfully flat topology on the category of
C-algebras) and their direct limit as a C-space (see [9] for this yoga) is representable
by an infinite dimensional algebraic variety,

eGj;k D G.1/

j;k

which has Aut
Z
.1/

k

.O.j /˚ O.�j // as its underlying set of C-points. In fact, eGj;k

is an infinite-dimensional algebraic group. The sequence G.�/
j;k

� � � ! G
.3/

j;k ! G
.2/

j;k ! G
.1/

j;k ! G
.0/

j;k D AutP1 .O.j /˚ O.�j // (15)

is an pro-finite-type pro-scheme. We often write elements of Hom.T;G.n/

j;k/ as
matrices.

Consider the following direct sum decomposition of the vector space of functions

O
Z
.n/
k

.U .n/ \ V .n// D O
Z
.n/
k

.U .n/ \ V .n//� ˚O
Z
.n/
k

.U .n/ \ V .n//good

˚O
Z
.n/
k

.U .n/ \ V .n//�

where the sector named “good” corresponds to the terms appearing in Lemma 1,
and also

zjO
Z
.n/
k

.U .n/ \ V .n//� � O.V .n//
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and

z�jO
Z
.n/
k

.U .n/ \ V .n//� � O.U .n//

q � qgood D q� C q�:

As in Eq. (8) we write elements of

Hom.T;G.n/

j;k/ � H0.Z
.n/

k � T;O˚2 ˚ O.2j /˚ O.�2j //

in the form

g D
�
a b

c d

�
: (16)

with b D .bU ; bV / and bU holomorphic on U .n/ � T , etc. First of all notice that the
group Hom.T;G.n/

j;k/ acts on the functions p on U .n/ \ V .n/ � T which vanish on
the zero section by the formula

gp D ap � zj bU
d � z�j pcU

: (17)

A special case (where b and c are taken to be zero) of this action was observed
for general varieties and bundles in [11]. For n finite, such functions vanishing
on ` belong to uCŒz; z�1�Œu�=.unC1/, in the case n D 1 such functions belong
to uCŒz; z�1�ŒŒu��. The action p 7! gp does not preserve the finite dimensional space
R
.n/

j;k which was written in (4). This means that we need to somehow correct the
morphism .g; p/ 7! gp: This will happen in the next definition.

Definition 5. Define a morphism

G
.n/

j;k � R.n/j;k ! R
.n/

j;k

by

.g; p/ 7! g 	 p D ap � zj bU
d � z�j pcU

�
�
ap � zj bU
d � z�j pcU

��
�
�
ap � zj bU
d � z�j pcU

��
:

D
�
ap � zj bU
d � z�j pcU

�
good

(18)

This morphism will become one of the structure maps of a groupoid (see Eq. (40)).
It is not the action of a group.
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Consider

Ag.p/ D
 
a � .z�j pcU /C bU � z�2j �zj ..g 	 p/d � ap/ � p.g 	 p/cU �C;�2j

cU d C .z�j cU .g 	 p//C
!

(19)
and

Bg.p/ D
 
aC .z�j pcU /C bV C

�
zj ..g 	 p/d � ap/ � p.g 	 p/cU

�C;<2j
cV d � .z�j cU .g 	 p//C

!
:

(20)

They are regular over U .n/ � T and V .n/ � T respectively because they satisfy
.Ag.p/; Bg.p// D .MU ;MV / from Lemma 4 in the case that p0 D g 	 p. That is
to say, they satisfy

Bg.p/

�
zj p

0 z�j
�
D
�

zj g 	 p
0 z�j

�
Ag.p/ (21)

and so the pair .Ag.p/; Bg.p// provides an isomorphism between Ep and Eg�p.
We have shown the following Lemma.

Lemma 5. There is a morphism

G
.n/

j;k �R.n/j;k ! R
.n/

j;k

.g; p/ 7! g 	 p (22)

such that for two bundles Ep and Ep0 of constant splitting type j ,

Isom
Z
.n/
k �T .Ep;Ep0/ D fg 2 Hom.T;G.n/

j;k/ j g 	 p D p0g

D fg 2 Hom.T;G.n/

j;k/ j 11 is satisfiedg:
(23)

�
Consider the isomorphism

.Ag1.g2 	 p/Ag2.p/; Bg1.g2 	 p/Bg2.p//

between Ep and Eg1�.g2�p/. In Lemma 4, we defined an element

g1 	p g2 2 G.n/

j;k.C/

such that this isomorphism equals .Ag1�pg2 ; Bg1�pg2/. Similarly, the isomorphism
.Ag.p/

�1; Bg.p/�1/ between Eg�p and Ep corresponds to a an element

g.�1/p 2 G.n/

j;k.C/: (24)
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From here it is clear (since bothAe
G
.n/
j;k

.p/ andBe
G
.n/
j;k

.p/ are the identity matrix) that

g 	p g.�1/p D eG.n/j;k D g
.�1/p 	p g: (25)

Definition 6. Define g1 	p g2 and g.�1/p to be the elements ofG.n/

j;k.C/ correspond-
ing via Lemma 4 to the isomorphisms .Ag1.g2 	p/Ag2.p/; Bg1.g2 	p/Bg2.p// and
.Ag.p/

�1; Bg.p/�1/ described above.

The elements g1 	p g2 vary algebraically with g1 and g2 and give a morphism of
schemes

G
.n/

j;k �G.n/

j;k �W .n/

j;k ! G
.n/

j;k

.g1; g2; p/ 7! g1 	p g2.

The restriction to p D 0 in W .n/

j;k gives us back the standard multiplication but in
general this structure does depend on p.

Therefore by definition we have

Bg1.g2 	 p/Bg2.p/ D Bg1�pg2.p/: (26)

(and also Ag1.g2 	 p/Ag2.p/ D Ag1�pg2.p/). An immediate consequence of this
together with (21) is

g1 	 .g2 	 p/ D .g1 	p g2/ 	 p, (27)

and we also have

B.g1�.g3�p/g2/�pg3.p/ D Bg1�.g3�p/g2.g3 	 p/Bg3.p/
D Bg1.g2 	 .g3 	 p//Bg2.g3 	 p/Bg3.p/
D Bg1.g2 	 .g3 	 p//Bg2�pg3.p/ D Bg1�p.g2�pg3/.p/ (28)

and similarly forAg.p/. Because every isomorphism .A;B/ which takes one of our
chosen transition matrices corresponding to a bundleEp to another transition matrix

of the same form corresponds (7) to a unique g 2 Hom.T;G.n/

j;k/ we conclude that

.g1 	.g3�p/ g2/ 	p g3 D g1 	p .g2 	p g3/: (29)

This will be used to verify the associativity of the groupoid structure. A direct
inspection of (18), (19) and (20) shows that identity matrix e

G
.n/
j;k

satisfies

e
G
.n/

j;k

	 p D p (30)
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for any p and corresponds to the identity map from Ep to itself. Therefore we of
course have

e
G
.n/

j;k

	p g D g D g 	p eG.n/j;k (31)

for any p.

3 An Explicit Groupoid in Schemes

In this section we describe an explicit groupoid in schemes and show that its
associated stack is isomorphic to the stack of rank 2 vector bundles of splitting
type j and first Chern class 0 on Z.n/

k .

3.1 Review of Groupoids in Schemes and Their Sheaf Theory

We begin with a review of the definition of a groupoid in schemes and the notion of
a sheaf on a groupoid in schemes. Recall that a groupoid

G D .A;R; s; t; m; e; �/
in schemes consists of schemes A (the atlas) and R (the relations), morphisms
s; t; m; e; �

(32)

and

which satisfy some conditions which we write below. Here

Rt �A sR D f.r1; r2/ 2 R � Rjt.r1/ D s.r2/g:

Let p1; p2 be the first and second projections

Rt �A sR
p1;p2�! R
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and let � be the diagonal

R �R � � R:

The morphisms then must satisfy

m ı .m; idR/ D m ı .idR;m/ (33)

on all composable elements of R �R �R,

t ım D t ı p2; s ım D s ı p1 (34)

on all composable elements of R �R

m ı .�; idR/ ı� D e ı s; m ı .idR; �/ ı� D e ı s (35)

on R, and also

m ı .idR; e ı t/ ı� D idR; m ı .e ı s; idR/ ı� D idR (36)

on R. Notice that for any scheme S that by taking the set of morphisms of schemes
from S into R and A one gets a pair of sets and these naturally form a groupoid in
sets using the obvious maps. We denote this groupoid in sets by

Hom.S;G /:

A (coherent/locally free of rank r) sheaf of modules on the groupoid consists of
a (coherent/locally free of rank r) sheaf S of OA modules on A together with an
isomorphism f of sheaves of OR modules over R

f W s�S ! t�S

which satisfies

p�
2 f ı p�

1 f D m�f (37)

and

e�f D id: (38)

To make sense of this equality, one must use the identities

s ı p1 D s ım; and t ı p2 D t ım:
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3.2 Stacks from Groupoids

Let G D .A;R; s; t; m; e; �/ be a groupoid in schemes.
We associate to it a stack ŒG � defined as the stack on the fppf site associated to

the prestack pre-ŒG � which associates to any test scheme T the groupoid in sets

pre-ŒG �.T / D Hom.T;G /:

Notice that such a morphism consists of a map from maps from T to A, and T to R
which satisfy the obvious compatibilities.

Remark 7. In the case that R D G � A and the groupoid structure is just given by
a group action of G on A, we may denote the associated quotient stack by ŒA=G�,
leaving the structure implicit.

There is an equivalence [17] of Abelian categories of coherent sheaves which
takes vector bundles to vector bundles

Coh.G /
Š�! Coh.ŒG �/: (39)

Definition 7. We denote by ŒS � the sheaf on ŒG � corresponding to a sheaf S on G
under the equivalence (39) given above.

3.3 Groupoid Presentations for Stacks of Rank 2 Bundles

We define a groupoid in schemes to be called G
.n/

j;k . The atlas of G .n/

j;k isW .n/

j;k and the

relations are G.n/

j;k �W .n/

j;k .
The arrow s is given by the projection

G
.n/

j;k �W .n/

j;k

s! W
.n/

j;k :

defined by

.g; p/ 7! p:

The arrow t is given by the map

G
.n/

j;k �W .n/

j;k

t! W
.n/

j;k : (40)

defined by

.g; p/ 7! g 	 p:
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where g 	 p is defined in Definition 5. The multiplication

m W .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /! G
.n/

j;k �W .n/

j;k

is given by

m..g1; g2 	 p/; .g2; p// D .g1 	p g2; p/

where g1 	p g2 is defined in Definition 6.
The identity section is defined by

e.p/ D .id; p/

and the inverse is defined by

�.g; p/ D .g.�1/p ; g 	 p/

where g.�1/p was defined in Definition 5. The associativity condition (33) follows
from (29). The conditions (34), (36) and (35) follow from (27), (31), and (25).

We get an inverse system G .�/
j;k in the category of groupoids in schemes:

� � � ! G
.3/

j;k ! G
.2/

j;k ! G
.1/

j;k ! G
.0/

j;k : (41)

and the inverse limit is eGj;k D G
.1/

j;k .

3.4 The Morphism Defined via the Big Bundle E

The big bundle E defines a morphism of stacks from W
.n/

j;k to Mj .Z
.n/

k / as follows.
Given an affine scheme T , we have a map

'T WHom.T;W .n/

j;k /! Hom.T;Mj .Z
.n/

k //

f 7! .id; f /�E

given by sending f to the pullback of E via the map

.id; f / W Z.n/

k � T ! Z
.n/

k �W .n/

j;k :
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Lemma 6. For each j � 0 the substacks

M	j .Z.n/

k / D
[

0	i	j
Mi .Z

.n/

k /

of M.Z
.n/

k / are given by

T 7!
n
E 2M.Z

.n/

k /.T /j�T �.E ˝ O.j //

is generated by global sections andR1�T �.E ˝ O.j // D 0
o
:

Proof. By Serre’s theorem, M.Z
.n/

k / is covered by the open substacks defined

T 7!
n
E 2M.Z

.n/

k /.T /j�T�.E ˝ O.j //

is generated by global sections andR1�T �.E ˝ O.j // D 0
o
:

In order to show the Lemma we can work locally in the site, and show the
equivalence using the prestacks pre-ŒG .n/

j;k �. First suppose that E has constant (in T )
splitting type less than or equal to j . Using Lemma 1, we can assume (after
shrinking T ) that is an extension of O.i/ by O.�i/ for 0 � i � j . Then E ˝ O.i/

is an extension of O.2i/ by O . Due to the fact that H1.Z
.n/

k � T;O/ D 0; the
resulting sequence on global sections is exact. Both of the line bundles O.2i/ and
O are generated by their global sections, and the fact that �T �.E ˝ O.i// and
therefore �T �.E ˝ O.j // is generated by its global sections follows. However,
H1.Z

.n/

k ;O.a// vanishes for a � 0 and therefore R1�T�.E ˝ O.j // vanishes.
Conversely, suppose that �T �.E ˝ O.j // is generated by global sections and
R1�T�.E ˝ O.j // D 0. The second condition implies (see Remark 8) that for
every geometric point t of T , the splitting type of the restriction of E to Z.n/

k � ftg
is less than or equal to j . Therefore,E belongs to M	j .Z.n/

k /.T /.

3.5 The Universal Bundle QE

We now construct the universal bundle on the groupoid

Z
.n/

k � G .n/

j;k :

The groupoid in question has atlasZ.n/

k �W .n/

j;k and relationsZ.n/

k �G.n/

j;k �W .n/

j;k . We
use the description of sheaves on groupoids in schemes given in Sect. 3.1. We start
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with the big bundle E on Z.n/

k �W .n/

j;k which was defined in Definition 1. Consider
the map in

Isom
Z
.n/

k �G.n/j;k�W .n/

j;k

..id
Z
.n/

k

; t/�E; .id
Z
.n/

k

; s/�E/

given by the pair

.Ag.p/; Bg.p// 2 Aut
�
U .n/ �G.n/

j;k �W .n/

j;k ;O
˚2
�

� Aut
�
V .n/ �G.n/

j;k �W .n/

j;k ;O
˚2�

which was defined in Eqs. (19) and (20). We need to consider the pullbacks of the
isomorphism to

Z
.n/

k � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /

via the maps

.id
Z
.n/
k

; m/; .id
Z
.n/
k

; p1/; .idZ.n/k
; p2/

wherem;p1; p2 are the maps

.G
.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /! G
.n/

j;k �W .n/

j;k

given by

m..g1; g2 	 p/; .g2; p// D .g1 	p g2; p/
p1 ..g1; g2 	 p/; .g2; p// D .g1; g2 	 p/

and

p2 ..g1; g2 	 p/; .g2; p// D .g2; p/:

These pullbacks are described by the pairs of elements of

Aut

�
U .n/ � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /;O
˚2
�

and

Aut

�
V .n/ � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /;O
˚2
�
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given by

.Ag1�pg2.p/; Bg1�pg2.p//;

.Ag1.g2 	 p/; Bg1.g2 	 p//;

and

.Ag2.p/; Bg2.p//

respectively. Therefore identity (37) follows from (26) while (38) follows from (30)
and consequently we have defined a vector bundle on the groupoid in accordance
with the description in Sect. 3.1.

3.6 The Equivalence of Stacks

Let us first mention groupoid presentations in the case of line bundles.
The stack of line bundles on the Z.n/

k is equivalent to

Z � Œ	=O.Z.n/

k /��:

For example when k D 1, n D 1 this stack is equivalent to

Z � Œ	=CŒŒx; y����:

In Sect. 3 we defined a groupoid in schemes

G
.n/

j;k D .G.n/

j;k �W .n/

j;k ;W
.n/

j;k ; m; e; �/;

the associated pre-stack pre-ŒG .n/

j;k � and the associated stack ŒG .n/

j;k � on the fppf site.

Theorem 3. The natural map W .n/

j;k !Mj .Z
.n/

k / given by the big bundle E which
was defined in Definition 1 induces an isomorphism of stacks

ŒG
.n/

j;k � ŠMj .Z
.n/

k /:

Furthermore, there is a vector bundle

Œ QE �
#

Z
.n/

k � ŒG .n/

j;k �
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whose pullback to Z.n/

k � W .n/

j;k is the big bundle E, and is identified via the above

isomorphism with the universal bundle E on Z.n/

k �Mj .Z
.n/

k /.

Here, ŒG .n/

j;k � is the stack associated to the groupoidG .n/

j;k . This association is reviewed
in Sect. 3.2.

Proof. We will prove this theorem by first defining a morphism of stacks over the
fppf site and then show that it is locally in the site an equivalence of categories.
Consider the morphism of pre-stacks

pre-F W pre-ŒG .n/

j;k �!Mj .Z
.n/

k /

by

pre-FT .f / D .idZ.n/k ; f /
� QE

where f is a morphism of groupoids from T to G
.n/

j;k . Because Mj .Z
.n/

k / is already
a stack over the fppf site, we get for free a morphism of the associated stacks over
the fppf site

F W ŒG .n/

j;k �!Mj .Z
.n/

k /:

In order to show that this is an equivalence we need only to show that it is locally
an isomorphism. Consider a vector bundleE on Z.n/

k � T for an affine C-scheme T
and write it somehow (it does not matter how) as an extension of O.j / by O.�j /
possibly after renaming T . Using Eq. (2) we have

Ext1
Z
.n/
k �T .�

�
Z
.n/
k

O.j /; ��
Z
.n/
k

O.�j //

D H0.T;OT ˝ Ext1
Z
.n/
k

.O.j /;O.�j /// D Hom.T;W .n/

j;k /:

We can conclude that choosing (locally in the test schemes) the structure of an
extension gives maps from T to the atlas of G

.n/

j;k . It remains to show that the

ambiguity in such choices is given by maps from T to the relations of G .n/

j;k . Suppose

we have two maps p and p0 from T to W .n/

j;k . We need to show that

Isom
ŒG

.n/

j;k �.T /
.p; p0/ Š Isom

Z
.n/

k �T ..idZ.n/k ; p/
�
E; .id

Z
.n/

k

; p0/�E/:

We have already naturally identified these two sets in Lemma 4.

We can use some easy observations about the explicit presentation we have
established to give some properties of the stacks Mj .Z

.n/

k /. First of all G.n/

j;k and
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W
.n/

j;k are reduced, irreducible, affine algebraic varieties. Notice that s is a projection
and the map t factors as a Zariski open embedding followed by a projection

where the horizontal map is

.g; p/ 7! .g; g 	 p/:

The following could be concluded from the general construction of these stacks of
vector bundles using Quot schemes due to Laumon and Moret-Bailly but we can
give here a direct proof.

Corollary 1. For every finite n, the stack Mj .Z
.n/

k / is an Artin stack.

Proof. When n is finite thenG.n/

j;k andW .n/

j;k are smooth affine varieties of finite type.
By [17], Cor. 4.7, in order to conclude that it is an Artin stack, we need to show that
s and t are flat and that the morphism

.s; t/ W R! A � A

is separated and quasi-compact. Since n is finite, s and t are in fact smooth and
therefore certainly flat. Quasi-compactness is obvious since R is quasi-compact. To
see that .s; t/ is separated we need to see that the induced diagonal

R! R.s;t/ �A�A .s;t/R (42)

is closed. Notice that R.s;t/ �A�A .s;t/R is a closed subvariety of

G
.n/

j;k �G.n/

j;k �W .n/

j;k

defined by the equation

g1 	 p D g2 	 p:

The image of the diagonal (42) is therefore closed, being just the intersection inside

G
.n/

j;k �G.n/

j;k �W .n/

j;k
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of

R.s;t/ �A�A .s;t/R

with the closed subvariety

�
G
.n/
j;k

�W .n/

j;k :

where

�
G
.n/
j;k

� G.n/

j;k �G.n/

j;k

is the diagonal.

4 Applications

In a forthcoming article [5] we will use these groupoid presentations to calculate
the space of deformations of the moduli stacks Mj .Z

.n/

k /. To do this one must
calculate the cohomology of the tangent complex (thought of as a complex of
coherent sheaves) on these stacks. We then consider deformations of theZ.n/

k . These
include both classical and non-commutative deformations of the type considered in
[8, 24]. By considering stacks of vector bundles over universal families of these
deformations we get natural deformations of the stacks Mj .Z

.n/

k /. We investigate

the corresponding map from deformations of Z.n/

k to deformations of Mj .Z
.n/

k /.
This map is neither injective nor surjective. Such maps are well understood for the
case of curves (see for example [19]); whereas for surfaces such maps are only
understood in a few special cases, such as Mukai’s [18] description for the case of
K3 surfaces. In general such maps are quite mysterious for the case of surfaces.
Thus, it is interesting to look at the question in the intermediate case of formal
neighborhoods of curves inside surfaces.

Consider a proper algebraic surface X over C. By attaching the stacks Mj .cZk/
to M.X/ in the correct way one gets certain substacks Mj .Y / of the stack of vector
bundles on the blow up of X at some point. Consider the punctured space Zı

k D
Zk � ` and the punctured formal neighborhood cZkı which is defined in [7] using
Berkovich’s analytic geometry. Now let Y is any algebraic surface containing a
rational curve ` with `2 D �k, k > 0 then let Y ı D Y � `: Let M.Y / be the stack
of all vector bundles of rank 2whose restriction to ` has first Chern class zero, while
M.Y ı/ and M.cZkı/ are the stacks of all vector bundles of rank 2 on Y ı and cZkı
respectively. By taking stacks of vector bundles and using the main theorem of [7],
we get a fiber product diagram of stacks along with the substacks of splitting type j ,
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consisting of the above diagram with the solid arrows only. The dotted curved arrows
going up here exist only in the case that k D 1 and when the image of ` is a smooth
point under the contraction of `. Suppose we are in this case and � W Y ! X is the
contraction of `. Then the dotted arrows are sections of the arrows in the opposite
direction and are given by extending a bundle from Y ı D Y � ` Š X � fxg to a
bundle in M.X/ by taking the double dual of its pushforward and then pulling back
the bundle via � to Y (and similarly on the other side). This diagram is an algebraic
version of the holomorphic patching construction used in [15] and can be used to get
information about the relationship of Mj .Y / and M.Y � `/ from the relationship
of Mj .cZk/ and M.cZkı/. This version of patching using stacks is a much more
powerful construction, in particular avoiding all-together the use of framings, hence
eliminating the unnecessarily complicated issues of infinite dimensionality of the
space of reframings of each individual bundle. In this article we have focused on
a description of Mj .cZk/. The application to topological information will appear
in a forthcoming article [6] where we use the groupoid presentation to compute
homology, cohomology and homotopy groups of the stacks of bundles.

Another reason why using stacks of bundles is preferable for gluing purposes
over the construction via framings is that framings (in the sense of trivialising
sections) simply do not exist in general. For the case of a surface with a �1 line
it turns out to be possible to add framings to all holomorphic bundles, that is, every
bundle on OZ1 is trivial on OZı

1 , so one can consider pairs of bundles together with
framings, and glue by identifying framings. However, for elements of Mj . OZk/ only
those satisfying j D 0 mod k are trivial on cZkı. This argument becomes even
more relevant if one considers curves inside threefolds. For instance over completioncW1 of the resolved conifold W1 D Tot.O.�1/˚ O.�1/ we can consider also rank
2 bundles with splitting .j;�j / and define stacks Mj .cW1/ but here only the trivial
bundle is frameable in the sense of [15].

Appendix A: Some Cohomology Groups

The ring of global functions on cZk is

O.cZk/ D CŒŒx0; x1; : : : ; xk��
ık�2X
iD0

kX
jDiC2

�
xixj � xiC1xj�1

�
,
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and for Z.n/

k one gets O.Z.n/

k / D O.Zk/=mnC1 where m is the ideal .x0; : : : ; xk/.
Note that here xi D ziu in terms of the original coordinates on U and U .n/. The
zeroth cohomology is the torsion-free O.cZk/ module

H0.cZk;O.s// D M
kiCs�l�0;l�0;i�0

Czlui � O. OU /:

Similarly, we have the O.Z.n/

k / module

H0.Z
.n/

k ;O.s// D
M

kiCs�l�0;l�0;n�i�0
Czlui � O.U .n//:

Remark 8. The set H0.Z
.n/

k ;O.s// is the C points of the spectrum of the polyno-
mial algebra freely generated over C by variables indexed by pairs .l; i/ such that
kiC s � l � 0; l � 0; n � i � 0. It is also easy to see thatH1.Z

.n/

k ;O.s// vanishes
for s � 0.

Appendix B: The Cohomology Spectral Sequence of
H om.E;F /

Consider a scheme Z covered by just two affine open sets U1 and U2 and two
rank 2 vector bundles E and F on Z which trivialize on the Ui . Assume also that
H1.Z;O/ D 0. The Čech complex for computing the cohomology of H om.E; F /
on Z looks like

HomU1.EjU1; F jU1/˚ HomU2.EjU2; F jU2/! HomU1\U2.EjU1\U2; F jU1\U2/:

If we choose local trivializations for EjU1; EjU2 and F jU1; F jU2 then the complex
becomes

HomU1.O
˚2;O˚2/˚ HomU2.O

˚2;O˚2/! HomU1\U2.O˚2;O˚2/

with differential

.A;B/ 7! GEA� BGF
where GE;GF are the transition matrices of E and F . On the other hand suppose
we know that E and F can be written on Z as extensions of line bundles L2 by L1.
By choosing local splittings the Čech complex becomes

EndU1.O
˚2/˚ EndU2.O

˚2/
D1! EndU1\U2.O˚2/
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D1.N1;N2/ D
�
g1 0

0 g2

�
N1 �N2

�
g1 0

0 g2

�
;

D2.M1;M2/ D
�
g1 pE
0 g2

�
M1 �M2

�
g1 pF
0 g2

�
:

ker.D1/
D2�! coker.D1/

Let us compute the cohomology groups

ker.D2/ D Hom.E; F / Š H0.X;H om.E; F //

and

coker.D2/ D Ext1.E; F / Š H1.X;H om.E; F //

in terms of the extension and cohomology groups of the Li . The filtration on
H om.E; F / reads

0 �H om.L2; L1/ �H om.E;L1/CH om.L2; F / �H om.E; F /

with associated graded pieces H om.L2; L1/, E nd.L1/ ˚ E nd.L2/, and
H om.L1; L2/. The associated spectral sequence computing the cohomology
H om.E; F / has an E1 term which looks like
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The E2 term looks like

The E3 term looks like

The first differential we consider is

H0.X;O/˚2 D End.L1/˚ End.L2/
d
1;�1
1! Ext1.L2; L1/:

It is the connecting map for the cohomology of the short exact sequence

0!H om.L2; L1/!H om.L2; F /CH om.E;L1/

! E nd.L1/˚ E nd.L2/! 0
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Consider the induced filtration on Hom.E; F / given by

0 � Hom.L2; L1/ � Hom.E;L1/C Hom.L2; F / � Hom.E; F /:

One has

Hom.E; F /

Hom.E;L1/C Hom.L2; F /
Š ker.d 0;02 / � Hom.L1; L2/;

and

Hom.E;L1/C Hom.L2; F /

Hom.L2; L1/
Š ker.d 1;�11 / � H0.X;O/˚2:

For any choices of splittings

Hom.E; F /
  ker.d 0;02 / � Hom.L1; L2/

and

Hom.E;L1/C Hom.L2; F /
� ker.d 1;�11 / � H0.X;O/˚2

we get a decomposition

Hom.E; F / D Hom.L2; L1/˚ �.ker.d 1;�11 //˚  .ker.d 0;02 //: (43)

We record formulas for d1;�11 and d0;02 in the case thatX D Z.n/

k �T for some affine
scheme T , L1 D O.�j /, L2 D O.j /, E D Ep , F D Ep0 .

d1;�11 W H0.X; .L1 ˝ L_
1 /˚ .L2 ˝L_

2 //! Ext1.L2; L1/

We compute

�
zj p0
0 z�j

��
a 0

0 d

�
�
�
a 0

0 d

��
zj p

0 z�j
�
D
�
0 dp0 � ap
0 0

�
:

Therefore the element of Ext1.L2; L1/ to which the pair .a; d/ maps is represented
by .dp0 � ap/j.U .n/\V .n//�T . The differential

d
1;�1
1 W H0.X;O˚2/! Ext1.O.j /;O.�j //

.a; d/ 7! dp0 � ap:
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In order to write down the next differential

d
0;0
2 W Hom.O.�j /;O.j //! Ext1.O.j /;O.�j //=image.d 1;�11 /,

we choose regular functions ˛U ; ıU on U and ˛V ; ıV on V such that

�z�j p0cU D ˛U � ˛V
zj pcU D ıU � ıV

so

d
0;0
2 .c/ D ıUp0 � ˛V p:
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