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Introduction

The workshop “Mirror Symmetry and Tropical Geometry” took place in Cetraro,
Italy on July 2–8, 2011. The idea was to bring together mathematicians and
physicists who worked on both topics or in related areas.

Homological Mirror Symmetry, here abbreviated as HMS, is the area of mathe-
matics revolving around several categorical equivalences connecting symplectic and
holomorphic (or algebraic) geometry. This mathematical approach to Mirror Sym-
metry goes back to the work of Maxim Kontsevich (1993). Further developments of
Kontsevich’s program was the subject of many talks at the workshop. This theme is
therefore present in several papers of this volume.

Works related to Homological Mirror Symmetry include the paper on HMS for
Landau–Ginzburg models by H. Ruddat, the paper of N. Sibilla on HMS for curves,
the paper of Kontsevich and Y. Soibelman on complex integrable systems, and
the paper by D. Favero, F. Haiden, and L. Katzarkov on the phantom categories
which appear in HMS. The variety of methods ranging from homological algebra
to delicate questions of symplectic topology and algebraic geometry illustrates the
complexity of the subject.

The second topic of the workshop was Tropical Geometry. Roughly speak-
ing, Tropical Geometry studies piecewise-linear objects which appear as certain
“degenerations” of the corresponding algebro-geometric objects. The relationship of
Tropical Geometry with Mirror Symmetry goes back to the work by Kontsevich and
Y. Soibelman (2000) where methods of non-archimedean geometry (in particular,
tropical curves) were used for the purposes of Homological Mirror Symmetry.
Combined with the subsequent work of Mikhalkin on a “tropical” approach to
Gromov–Witten theory and with the work of Gross, Siebert, and several others,
Tropical Geometry has become a useful tool for people working in Mirror Symme-
try.

On the other hand, “tropical” analogs of many notions of classical symplectic
and algebraic geometry are interesting and nontrivial objects by themselves. The
paper by G. Mikhalkin and I. Zharkov, which is devoted to the tropical analog of the
intermediate Jacobian, is a good illustration of this statement. Methods of tropical
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vi Introduction

geometry are also used in the paper by Kontsevich and Y. Soibelman devoted to the
study of Donaldson–Thomas invariants and corresponding wall-crossing formulas.

The volume also contains several papers which are related to the main topics
of the workshop in an indirect way. For example, the paper by S. Guillermou
and P. Schapira is devoted to the application of the microlocal theory of sheaves
developed by the second author jointly with M. Kashiwara to the displaceability
problem in symplectic topology. It should be compared with attempts of several
mathematicians to describe the Fukaya category (one of the main objects on the
“symplectic” side of Homological Mirror Symmetry) in terms of constructible
sheaves and corresponding dg-categories.

Two papers are devoted to various aspects of the moduli stacks of bundles. In
the paper by O. Ben-Bassat and E. Gasparim the stack of vector bundles on a
formal neighborhood of a rational curve in a surface is studied. In the paper by A.
Soibelman the “very good” property introduced by Beilinson and Drinfeld in their
work on the Geometric Langlands Program is generalized to the case of arbitrary
parabolic bundles on a curve and then applied to the additive Deligne–Simpson
problem.

A. Neitzke gives a nice review of his joint work with D. Gaiotto and G.
Moore on the construction of hyperkähler metrics. Their approach is based on the
thermodynamical Bethe Ansatz-type integral equation proposed by them, as well as
on the “Kontsevich–Soibelman wall-crossing formulas”. There are many interesting
and nontrivial analogies between the paper by Neitzke and the paper by Kontsevich
and Y. Soibelman in this volume.

S. Gukov and P. Sulkowski propose a way to quantize spectral curves. Then they
discuss the relationship of arising “quantum spectral curves” with the topological
recursion of Eynard–Orantin as well as with other topics such as A-polynomials of
knots.

The paper by M. Kapranov, O. Schiffmann, and E. Vasserot is devoted to the
Hall algebra of the “compactified Spec.Z/” interpreted as a curve. The “category of
vector bundles” on such an object is described in Arakelov terms, as the category of
metrized lattices. The (spherical) Hall algebra of this category is a shuffle algebra,
similar to Hall algebras of the corresponding categories for “usual” curves. The
relations in the algebra are described in terms for the (full) zeta-function.

We believe that the present volume represents a rather complete update about the
state of the art in the field, and we hope that it shall become an important reference
for graduate students and researchers who want to enter this exciting new field.
Papers in this volume represent a tiny portion of the variety of topics discussed at
the workshop. In order to give to the reader an idea about the latter we finish the
Introduction with the list of talks presented at the Cetraro workshop.
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Moduli Stacks of Bundles on Local Surfaces

Oren Ben-Bassat and Elizabeth Gasparim

Abstract We give an explicit groupoid presentation of certain stacks of vector
bundles on formal neighborhoods of rational curves inside algebraic surfaces. The
presentation involves a Möbius type action of an automorphism group on a space of
extensions.

1 Introduction

A fundamental question in algebraic geometry is to understand how rational maps
on a variety X affect the moduli of vector bundles on X, that is: suppose X and
Y birationally equivalent, then what is the relation between the various moduli
of vector bundles on X and Y ? Here we focus on the case of surfaces, in which
case rational maps are obtained by blowing up (possibly singular) points. Suppose
�WY ! X is the blow up of a point x in X , with ` D ��1.x/. Considering
pullbacks, one can then study the relative situation of the moduli of vector bundles
on X mapping into the moduli of vector bundles on Y . Since � is an isomorphism
outside ` clearly the heart of the question lies in the geometry of moduli of bundles
on a small neighborhood of `. This question was addressed from the point of view
of moduli spaces of equivalence classes of vector bundles in [15] for the case when
x is a smooth point, and the geometry of the local moduli was used to prove
the Atiyah–Jones conjecture for rational surfaces. In this paper we consider the
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2 O. Ben-Bassat and E. Gasparim

moduli stacks of vector bundles in formal neighborhoods of `, and give explicit
groupoid presentations of such moduli stacks. The stacky point of view, besides
clarifying several delicate issues about the local moduli also has the advantage that
it generalises to the case of singular surfaces, where ` is a line with self-intersection
`2 D �k < �1: We develop the study of stacks of bundles on (completions of the)
local surfaces Zk D Tot.O.�k// and give presentations of certain stacks of rank
2 bundles over these surfaces. The most interesting aspect of these presentations is
the “Möbius” transformation (17) discussed in Sect. 2.3.

2 Local Surfaces and Vector Bundles on Them

Notation 1. In this paper we will work with (associative, commutative, unital) C-
algebras. Therefore, affine scheme will mean the spectrum of such an algebra, and
all varieties, schemes, and formal schemes are considered over C. We will work
over the site of affine schemes or C-algebras with the faithfully flat topology. The
schemes we will consider are quasi-compact and quasi-separated. For any positive
integer k, we have the algebraic variety

Zk D Tot.OP1 .�k// D Spec
P1

 1M
iD0

OP1 .ik/

!

and ` Š P
1 its zero section, so that `2 D �k. Let I` be the sheaf of OZk ideals

defining `. We writeZ.n/

k for the nth infinitesimal neighborhood of ` and cZk D Z.1/
k

for the formal neighborhood of ` inZk . cZk D .`; limnOZk=I
n
` / is the formal scheme

given as the formal completion ofZk along `. It is a (an inductive or direct) limit in
the category of ringed spaces over P1. There is a presentation

Zk D
�
U
G
V
�
= �;

where we will always use the charts U D C
2 with coordinates .z; u/, and V D C

2

with coordinates .�; v/, with U \V D .C�f0g/�C where the equivalence relation
� is given by the change of coordinates .�; v/ D .z�1; zku/. Note that the zero
section ` is given in these coordinates by u D 0 in the U -chart and v D 0 in the
V -chart. It is easy to see that I` Š O.k/. In fact, I` is the line bundle associated to
the divisor �` and since u D �kv,

div.u/ D `C kf

where f is the fiber defined by � D 0. We similarly have

U .n/ D Spec.CŒz; u�=.unC1//
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and

V .n/ D Spec.CŒ�; v�=.vnC1//:

As above, we have

Z
.n/

k D
�
U .n/

G
V .n/

�
= �

and

Z
.1/
k D cZk D � OUG OV

�
= �

where OU and OV are the formal scheme completions of U and V along `.

Remark 1. Unless we explicitly state that n is finite, in each usage of the spaces
Z
.n/

k we are including the case that n D 1.

These presentations are helpful for describing vector bundles. For instance by
the answer to Serre’s famous question (proved by Seshadri [22] and in further
generality by Quillen [20] and Suslin [23]), U D Spec.CŒz; u�/ has no non-trivial
vector bundles; similarly this is true for U .n/ and OU by Theorem 7 of [10]. In
contrast, vector bundles on Z.n/

k were studied on [1–3,14]. All the schemes we have

mentioned up until now are Noetherian and cZk is a Noetherian formal scheme. If T
is an affine scheme such that Pic.T / is trivial then

Pic.cZk � T / ' Pic.Z.n/

k � T / ' Pic.P1 � T / ' Pic.P1/ ' ZI
we will use the symbol O.j / for the line bundle with first Chern class j coming
from P

1 in any of these spaces. If E is a rank 2 vector bundle of first Chern class
zero onZ.n/

k then the splitting type j � 0 ofE is the integer such that the restriction

of E to ` is isomorphic to O.j /˚O.�j /. For a vector bundle on Z.n/

k � T we say
that it has constant splitting type j if its splitting type is j over every t 2 T .C/.

For our explicit presentations of stacks, we will need the following basic results
about rank 2 bundles on Z.n/

k , which we generalize from [13].

Lemma 1. Let S be any scheme over C and E a rank 2 vector bundle on Z.n/

k � S
of constant splitting type j � 0. Then for any s 2 S.C/ there is an open subscheme
T of S containing s and such that the restriction of E to Z.n/

k � T has the structure
of an extension

0! O.�j /! Ej
Z
.n/
k �T ! O.j /! 0:

Proof. By [12], Theorem 3.3 Ej
Z
.n/
k �fsg can be written as an algebraic extension

0! O.�j /! Ej
Z
.n/
k �fsg ! O.j /! 0
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where j > 0. Consider the leftmost injective map as a nowhere vanishing element
of the space of global sectionsH0.Z

.n/

k �fsg; EjZ.n/k �fsg˝O.j //. The pushforward

�S�.Ej`�S ˝ O.j // is a vector bundle on S and we have chosen a non-zero point
in the fiber over s. Choose T 0 open in S and containing s and an extension of the
above section to an element of

H0.T 0; .�S�.Ej`�S ˝ O.j ///jT 0/ D H0.` � T 0; Ej`�T 0 ˝ O.j //

such that this chosen global extension does not vanish on ` � T 0 and hence does
not vanish on Z.n/

k � T 0, and passes through our chosen element of the fiber over s.
This gives us an injective map of constant rank leading to a short exact sequence on
Z
.n/

k � T 0

0! O.�j /! E
Z
.n/
k �T 0

! L! 0

where L is a line bundle on Z.n/

k � T 0 isomorphic to O.j / over every geometric
point of T 0. By the see–saw principle there is a T open in T 0 and containing S such
that the restriction of L toZ.n/

k �T 0 is isomorphic to O.j /. Therefore the restriction

of the above short exact sequence to Z.n/

k � T gives the desired result.

Remark 2. An alternate approach to the Lemma 1 is to start with any vector bundle
which has nowhere zero map of O.�j / to E over ` � T for some affine scheme T
and use the fact that H1.` � T; Im`�T / D 0 for m > 0 to extend this map order by

order to a map over Z.n/

k � T which must be nowhere zero.

Lemma 2. Let T be an affine scheme and E an algebraic extension of O
Z
.n/
k �T

modules

0! O.�j /! E ! O.j /! 0;

over Z.n/

k � T which splits over ` � T for j � 0 then, in the chosen coordinates E
can be described by a transition matrix of the form

�
zj p

0 z�j
�

on .U .n/ \ V .n// � T; where

p D
min.b.2j�2/=kc;n/X

iD1

j�1X
lDki�jC1

pi;lz
lui : (1)

and pi:l 2 O.T /.
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Proof. A Čech cohomology calculation (performed in Theorem 3.3 of [12]) shows
that

Ext1
Z
.n/
k

.O.j /;O.�j // D CŒz; z�1; u�=.unC1/
z�jCŒz�1; zku�=..zku/nC1/C zjCŒz; u�=.unC1/

by flat base change for the diagram

and the Leray spectral sequence for �
Z
.n/
k

we have

Ext1
Z
.n/

k �T
.��

Z
.n/

k

O.j /; ��
Z
.n/

k

O.�j // D H1.Z
.n/

k � T; ��Z.n/k .O.�2j ///

D H0.T;R1�T ���
Z
.n/
k

.O.�2j ///

D H0.T;OT ˝H1.Z
.n/

k ;O.�2j ///
D H0.T;OT ˝ Ext1

Z
.n/
k

.O.j /;O.�j ///: (2)

Remark 3. As a consequence of the above two Lemmas 2 and 1, we see that any
rank 2 vector bundle onZ.n/

k � T (or cZk � T ) takes a special form locally on T and
in this form it is clearly the restriction (completion) of a vector bundle on Zk . The
theorem on formal functions implies then that

7ExtiZk�T .V;W / Š ExtibZk�T .V;W /:
Notation 2. Let

N
.n/

j;k D f.i; l/jki� j C 1 � l � j � 1 and 1 � i � min.b.2j � 2/=kc; n/g:

Consider the algebraic variety over C

W
.n/

j;k D Spec
�
CŒ pi;l j .i; l/ 2 N.n/

j;k �
�
: (3)

For any fixed j; k it remains finite dimensional even for n D 1. If we pass to the C
points then we get

W
.n/

j;k .C/ D fp 2 Ext1
Z
.n/
k

.O.j /;O.�j // j pj` D 0g:
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Let

R
.n/

j;k D
b.2j�2/=kcM

iD1

j�1M
lDki�jC1

Czlui � O.U .n/ \ V .n//: (4)

of course R.n/j;k is the set of C points of W .n/

j;k but we distinguish them because of the

different notions of automorphisms of R.n/j;k and W .n/

j;k .

Remark 4. Note that in our chosen form of transition matrix from Eq. (1) we have
explicitly chosen p 2 R.n/j;k.

Definition 1. Consider the open cover fU .n/ �W .n/

j;k ; V
.n/ �W .n/

j;k g of Z.n/

k �W .n/

j;k .
We define E, sometimes called the big bundle, to be the bundle

E

#
Z
.n/

k �W .n/

j;k

on Zk �W .n/

j;k defined by transition matrix

�
zj p

0 z�j
�
2 H0..U .n/ \ V .n// �W .n/

j;k ;A ut.O˚2//:

Let T be an affine scheme and p a morphism from T toW .n/

j;k . We denote by Ep the
bundle (also described in Lemma 2) given by the pullback .id

Z
.n/
k

; p/�E of E via the
map

Z
.n/

k � T
.id

Z
.n/
k

;p/

! Z
.n/

k �W .n/

j;k :

Lemma 3 ([4, Thm. 4.9]). On the first formal neighborhood Z.1/

k , two bundles E
and E 0 with transition matrices�

zj p1
0 z�j

�
and

�
zj p01
0 z�j

�

respectively are isomorphic if and only if p01 D �p1 for some � 2 C
�.

Remark 5. It follows from this lemma that the coarse moduli space of bundles
on Z.1/

k coming from non-trivial extensions of O.j / by O.�j / is isomorphic to
P
2j�k�2.
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Example 1. On higher infinitesimal neighborhoods we need to consider far more
relations among extension classes then just projectivisation to obtain the moduli of
bundles. The simplest of such examples occurs in the case when k D 1 and j D 2,
so that our extension classes have the form

p D .p1;0 C p1;1z/uC p2;1zu2:

The set of equivalence classes of vector bundles is then C
3= � where the

equivalence relation is generated by

.p1;0; p1;1; p2;1/ � .�p1;0; �p1;1; �p02;1/ if .p1;0; p1;1/ ¤ .0; 0/; � ¤ 0;

.0; 0; p2;1/ � .0; 0; �p2;1/; � ¤ 0:

Note that p02;1 is does not depend on p, and that the quotient topology makes the
entire space the only open neighborhood of the split bundle, which is the image of
the origin in C

3.

2.1 Stacks of Vector Bundles

We now define the stack of bundles Mj .Z
.n/

k /, the main object we seek to
understand in this article.

Definition 2.

Mj .Z
.n/

k /WSchemes! Groupoids

given by

T 7! Hom.T;Mj .Z
.n/

k //

where

ob.Hom.T;Mj .Z
.n/

k // D frank 2 vector bundles on Z
.n/

k � T which have

splitting type j and first Chern class 0 for every

restriction to Z
.n/

k � ftg; t 2 T .C/g
(5)

and

mor.Hom.T;Mj .Z
.n/

k //.V1; V2/ D Isom.V1; V2/:
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This is a stack [17] with respect to the faithfully flat topology on schemes
(C-algebras). Notice that there is automatically a universal bundle E over Z.n/

k �
Mj .Z

.n/

k /. We can similarly define the stack Mj .cZk/. We similarly have the stacks

M.Z
.n/

k / of bundles where we drop the condition on splitting type.
There is an inverse (or projective) system of stacks of finite type over C:

	 	 	 !Mj .Z
.3/

k /!Mj .Z
.2/

k /!Mj .Z
.1/

k /!Mj .Z
.0/

k / DMj .P
1/ (6)

whose inverse limit in the category of algebraic stacks is Mj .cZk/. Alternatively we

can consider the inverse system Mj .Z
.�/
k / to be an pro-stack of pro-finite type. This

type of approximation is studied in [21]. It seems difficult to compute invariants of
the stacks Mj .Z

.n/

k / using only the definition above so we will find a more explicit
description below.

2.2 The Structure of Vector Bundle Isomorphisms

Consider the bundles Ep defined in Definition 1. There is a exact sequence

0! Hom.Ep;Ep0/! End.O.�j /˚ O.j //

�! Ext1.O.�j /˚ O.j /;O.�j /˚ O.j //! Ext1.Ep;Ep0/! 0. (7)

We now explain the structure of isomorphisms between families of bundles coming
from extensions by constructing an explicit splitting for the first non-trivial map in
this sequence. If the bundles Ep and Ep0 on Z.n/

k � T , given by maps

p; p0 W T ! R
.n/

j;k

are isomorphic (see Eq. (4)) then necessarily they have the same splitting type, and
in such case we can represent them by transition matrices on

.U .n/ \ V .n// � T

by

�
zj p

0 z�j
�

and

�
zj p0
0 z�j

�
respectively. An isomorphism between Ep and Ep0 is

given by a pair of invertible matrices

A D
�
aU bU

cU dU

�
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regular on U .n/ � T and

B D
�
aV bV
cV dV

�

regular on V .n/ � T , such that:

B

�
zj p

0 z�j
�
D
�

zj p0
0 z�j

�
A; (8)

or equivalently

B D
�

zj p0
0 z�j

�
A

�
z�j �p
0 zj

�

D
�
aU C z�j p0cU z2j bU C zj .p0dU � aUp/ � pp0cU

z�2j cU dU � z�j pcU

�
. (9)

Definition 3. We use the notation Y C to denote the terms in Y2O..U .n/\V .n//�T /
that are not regular on V .n/ � T and Y C;�2j denotes the terms in Y that are not
regular on V .n/ � T and have power of z greater than or equal to 2j .

Lemma 4. Suppose that j > 0. Then any isomorphism .A;B/ between Ep and

Ep0 on Z.n/

k � T has the form

.A;B/ D .MU ;MV /C .˚U .M/;˚V .M// (10)

where

M D .MU ;MV / 2 Aut
Z
.n/
k �T .O.j /˚ O.�j //:

MU D
�
a bU
cU d

�

and

˚U .M/ D
 
�.z�j p0cU /C �z�2j

�
zj .p0d � ap/� pp0cU

�C;�2j
0 .z�j pcU /C

!

depends only on p; p0 andM and satisfies

Œp0d � ap � z�j pp0cU � D 0 2 Ext1
Z
.n/
k �T

.O.j /;O.�j //: (11)
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Proof. First suppose that such an isomorphism exists, between Ep and Ep0 . Then
we have �

zj p0
0 z�j

�
A � B

�
zj p

0 z�j
�
D 0: (12)

The left hand side comes out to be�
p0cU C .aU � aV /zj dU p0 � aV p C zj bU � z�j bV
cU z�j � cV zj z�j .dU � dV / � cV p

�
: (13)

The lower left corner of (13) implies first of all that c must be a section c of O.2j /.
We need to arrange for the vanishing of all terms in (13). Therefore, we need to
solve the equations:

aU � aV D �z�j p0cU
zj bU � z�j bV D �dUp0 C aV p
dU � dV D zj cV p.

BecasueH1.Z
.n/

k �T;O/ vanishes, the first and third equations have solutions which
are unique up to global functions. Let

aU D a � .z�j p0cU /C

and

dU D d C .zj cV p/C:

These solve the first and third equation. If we substitute into the second equation,
it reads

zj bU � z�j bV D �.zj cV p/Cp0 C .�.z�j p0cU /C C z�j p0cU /p � dp0 C ap
D �dp0 C ap C z�j pp0cU .

(14)
This implies that

Œp0d � ap � z�j pp0cU � D 0 2 Ext1
Z
.n/
k �T

.O.j /;O.�j //:

Conversely, suppose that these conditions are satisfied by some a, d , c, p, and p0,
let us record the general form of an element of Isom

Z
.n/
k �T .Ep;Ep

0/. It remains only

to determine the expression for bU . By the assumptions we already know that

�
zj .p0d � ap/� pp0cU

�C;<2j
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is regular on V .n/ � T . Hence

bU D bU � z�2j
�
zj .p0d � ap/ � pp0cU

�C;�2j
:

Finally, since u divides p and p0, we know that A is invertible if and only if MU is
and therefore the isomorphism .A;B/ is invertible if and only if the automorphism
M is invertible.

Remark 6. We conclude that the expression of the element .A;B/ of Hom.Ep;Ep0/

under the decomposition (43)

Hom.Ep;Ep0/ D Hom.O.j /;O.�j // ˚ �.ker.d 1;�11 //˚  .ker.d 0;02 //

from the appendix is satisfied if we take b 2 Hom.O.j /;O.�j //;

 U .c/ D
��.z�j p0cU /C z�2j .pp0cU /

C;�2j

cU .z�j pcU /C
�

and

�U .a; d/ D
 
a �z�2j

�
zj .p0d � ap/�C;�2j

0 d

!
:

2.3 Bundle Isomorphism Viewed as an Equivalence Relation

Although we have worked out the structure of the space of isomorphisms between
two given bundles, this does not yet give a criterion for when two bundles are
isomorphic nor does it provide any understanding of the equivalence relation on
W

.n/

j;k given by isomorphisms of vector bundles. We show that there are algebraic

groups G.n/

j;k acting on W .n/

j;k so that the orbits of this action are identified with
the equivalence classes. This action (17) takes on the familiar form of a Möbius
transformation. Lange studied in [16] (see also Drézet [11]) the question of universal
bundles over the projectivized space of extensions. In a specific example we study
here a more difficult problem, the difference being that we do not remove the origin
and we consider all vector bundle isomorphisms, not just those that correspond to
scaling the extension. First we need to define the structure of a scheme on the sets
Aut

Z
.n/
k

.O.j /˚ O.�j // for n finite.

Definition 4. Consider the functors from schemes to sets given by

T 7! Aut
Z
.n/
k �T .O.j /˚ O.�j //:
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These functors are C-groups (sheaves of groups in the faithfully flat topology
on schemes) and are easily seen to be representable by reduced schemes. These
schemes are in fact affine, being defined inside the finite dimensional affine space

End
Z
.n/
k

.O.j /˚ O.�j //

defined with coordinates as in Remark 8 as the complement of the pre-image of 0
by the morphism

det0 W End
Z
.n/
k

.O.j /˚ O.�j //! O.Z
.n/

k /! Spec.CŒs�/:

sending s to the restriction of the determinant to `. When we pass to C points we
get the standard determinant followed by restriction to `

det0 W End
Z
.n/

k

.O.j /˚ O.�j //! O.Z
.n/

k /! O.Z
.0/

k / D C:

We denote these finite dimensional algebraic groups by G.n/

j;k . These form a directed
system of C-spaces (sheaf of sets for the faithfully flat topology on the category of
C-algebras) and their direct limit as a C-space (see [9] for this yoga) is representable
by an infinite dimensional algebraic variety,

eGj;k D G.1/
j;k

which has Aut
Z
.1/

k

.O.j /˚ O.�j // as its underlying set of C-points. In fact, eGj;k

is an infinite-dimensional algebraic group. The sequence G.�/
j;k

	 	 	 ! G
.3/

j;k ! G
.2/

j;k ! G
.1/

j;k ! G
.0/

j;k D AutP1 .O.j /˚ O.�j // (15)

is an pro-finite-type pro-scheme. We often write elements of Hom.T;G.n/

j;k/ as
matrices.

Consider the following direct sum decomposition of the vector space of functions

O
Z
.n/
k

.U .n/ \ V .n// D O
Z
.n/
k

.U .n/ \ V .n//� ˚O
Z
.n/
k

.U .n/ \ V .n//good

˚O
Z
.n/
k

.U .n/ \ V .n//	

where the sector named “good” corresponds to the terms appearing in Lemma 1,
and also

zjO
Z
.n/
k

.U .n/ \ V .n//	 � O.V .n//
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and

z�jO
Z
.n/
k

.U .n/ \ V .n//� � O.U .n//

q � qgood D q� C q	:

As in Eq. (8) we write elements of

Hom.T;G.n/

j;k/ � H0.Z
.n/

k � T;O˚2 ˚ O.2j /˚ O.�2j //

in the form

g D
�
a b

c d

�
: (16)

with b D .bU ; bV / and bU holomorphic on U .n/ � T , etc. First of all notice that the
group Hom.T;G.n/

j;k/ acts on the functions p on U .n/ \ V .n/ � T which vanish on
the zero section by the formula

gp D ap � zj bU
d � z�j pcU

: (17)

A special case (where b and c are taken to be zero) of this action was observed
for general varieties and bundles in [11]. For n finite, such functions vanishing
on ` belong to uCŒz; z�1�Œu�=.unC1/, in the case n D 1 such functions belong
to uCŒz; z�1�ŒŒu��. The action p 7! gp does not preserve the finite dimensional space
R
.n/

j;k which was written in (4). This means that we need to somehow correct the
morphism .g; p/ 7! gp: This will happen in the next definition.

Definition 5. Define a morphism

G
.n/

j;k � R.n/j;k ! R
.n/

j;k

by

.g; p/ 7! g � p D ap � zj bU
d � z�j pcU

�
�
ap � zj bU
d � z�j pcU

��
�
�
ap � zj bU
d � z�j pcU

�	
:

D
�
ap � zj bU
d � z�j pcU

�
good

(18)

This morphism will become one of the structure maps of a groupoid (see Eq. (40)).
It is not the action of a group.
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Consider

Ag.p/ D
 
a � .z�j pcU /C bU � z�2j

�
zj ..g � p/d � ap/ � p.g � p/cU

�C;�2j
cU d C .z�j cU .g � p//C

!
(19)

and

Bg.p/ D
 
aC .z�j pcU /C bV C

�
zj ..g � p/d � ap/ � p.g � p/cU

�C;<2j
cV d � .z�j cU .g � p//C

!
:

(20)

They are regular over U .n/ � T and V .n/ � T respectively because they satisfy
.Ag.p/; Bg.p// D .MU ;MV / from Lemma 4 in the case that p0 D g � p. That is
to say, they satisfy

Bg.p/

�
zj p

0 z�j
�
D
�

zj g � p
0 z�j

�
Ag.p/ (21)

and so the pair .Ag.p/; Bg.p// provides an isomorphism between Ep and Eg�p.
We have shown the following Lemma.

Lemma 5. There is a morphism

G
.n/

j;k �R.n/j;k ! R
.n/

j;k

.g; p/ 7! g � p (22)

such that for two bundles Ep and Ep0 of constant splitting type j ,

Isom
Z
.n/
k �T .Ep;Ep

0/ D fg 2 Hom.T;G.n/

j;k/ j g � p D p0g

D fg 2 Hom.T;G.n/

j;k/ j 11 is satisfiedg:
(23)

�
Consider the isomorphism

.Ag1.g2 � p/Ag2.p/; Bg1.g2 � p/Bg2.p//

between Ep and Eg1�.g2�p/. In Lemma 4, we defined an element

g1 �p g2 2 G.n/

j;k.C/

such that this isomorphism equals .Ag1�pg2 ; Bg1�pg2/. Similarly, the isomorphism
.Ag.p/

�1; Bg.p/�1/ between Eg�p and Ep corresponds to a an element

g.�1/p 2 G.n/

j;k.C/: (24)
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From here it is clear (since bothAe
G
.n/
j;k

.p/ andBe
G
.n/
j;k

.p/ are the identity matrix) that

g �p g.�1/p D eG.n/j;k D g
.�1/p �p g: (25)

Definition 6. Define g1 �p g2 and g.�1/p to be the elements ofG.n/

j;k.C/ correspond-
ing via Lemma 4 to the isomorphisms .Ag1.g2 �p/Ag2.p/; Bg1.g2 �p/Bg2.p// and
.Ag.p/

�1; Bg.p/�1/ described above.

The elements g1 �p g2 vary algebraically with g1 and g2 and give a morphism of
schemes

G
.n/

j;k �G.n/

j;k �W .n/

j;k ! G
.n/

j;k

.g1; g2; p/ 7! g1 �p g2.

The restriction to p D 0 in W .n/

j;k gives us back the standard multiplication but in
general this structure does depend on p.

Therefore by definition we have

Bg1.g2 � p/Bg2.p/ D Bg1�pg2.p/: (26)

(and also Ag1.g2 � p/Ag2.p/ D Ag1�pg2.p/). An immediate consequence of this
together with (21) is

g1 � .g2 � p/ D .g1 �p g2/ � p, (27)

and we also have

B.g1�.g3�p/g2/�pg3.p/ D Bg1�.g3�p/g2.g3 � p/Bg3.p/
D Bg1.g2 � .g3 � p//Bg2.g3 � p/Bg3.p/
D Bg1.g2 � .g3 � p//Bg2�pg3.p/ D Bg1�p.g2�pg3/.p/ (28)

and similarly forAg.p/. Because every isomorphism .A;B/ which takes one of our
chosen transition matrices corresponding to a bundleEp to another transition matrix

of the same form corresponds (7) to a unique g 2 Hom.T;G.n/

j;k/ we conclude that

.g1 �.g3�p/ g2/ �p g3 D g1 �p .g2 �p g3/: (29)

This will be used to verify the associativity of the groupoid structure. A direct
inspection of (18), (19) and (20) shows that identity matrix e

G
.n/
j;k

satisfies

e
G
.n/

j;k

� p D p (30)
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for any p and corresponds to the identity map from Ep to itself. Therefore we of
course have

e
G
.n/

j;k

�p g D g D g �p eG.n/j;k (31)

for any p.

3 An Explicit Groupoid in Schemes

In this section we describe an explicit groupoid in schemes and show that its
associated stack is isomorphic to the stack of rank 2 vector bundles of splitting
type j and first Chern class 0 on Z.n/

k .

3.1 Review of Groupoids in Schemes and Their Sheaf Theory

We begin with a review of the definition of a groupoid in schemes and the notion of
a sheaf on a groupoid in schemes. Recall that a groupoid

G D .A;R; s; t; m; e; �/
in schemes consists of schemes A (the atlas) and R (the relations), morphisms
s; t; m; e; �

(32)

and

which satisfy some conditions which we write below. Here

Rt �A sR D f.r1; r2/ 2 R � Rjt.r1/ D s.r2/g:

Let p1; p2 be the first and second projections

Rt �A sR
p1;p2�! R
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and let � be the diagonal

R �R � � R:

The morphisms then must satisfy

m ı .m; idR/ D m ı .idR;m/ (33)

on all composable elements of R �R �R,

t ım D t ı p2; s ım D s ı p1 (34)

on all composable elements of R �R

m ı .�; idR/ ı� D e ı s; m ı .idR; �/ ı� D e ı s (35)

on R, and also

m ı .idR; e ı t/ ı� D idR; m ı .e ı s; idR/ ı� D idR (36)

on R. Notice that for any scheme S that by taking the set of morphisms of schemes
from S into R and A one gets a pair of sets and these naturally form a groupoid in
sets using the obvious maps. We denote this groupoid in sets by

Hom.S;G /:

A (coherent/locally free of rank r) sheaf of modules on the groupoid consists of
a (coherent/locally free of rank r) sheaf S of OA modules on A together with an
isomorphism f of sheaves of OR modules over R

f W s�S ! t�S

which satisfies

p�2 f ı p�1 f D m�f (37)

and

e�f D id: (38)

To make sense of this equality, one must use the identities

s ı p1 D s ım; and t ı p2 D t ım:
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3.2 Stacks from Groupoids

Let G D .A;R; s; t; m; e; �/ be a groupoid in schemes.
We associate to it a stack ŒG � defined as the stack on the fppf site associated to

the prestack pre-ŒG � which associates to any test scheme T the groupoid in sets

pre-ŒG �.T / D Hom.T;G /:

Notice that such a morphism consists of a map from maps from T to A, and T to R
which satisfy the obvious compatibilities.

Remark 7. In the case that R D G � A and the groupoid structure is just given by
a group action of G on A, we may denote the associated quotient stack by ŒA=G�,
leaving the structure implicit.

There is an equivalence [17] of Abelian categories of coherent sheaves which
takes vector bundles to vector bundles

Coh.G /
Š�! Coh.ŒG �/: (39)

Definition 7. We denote by ŒS � the sheaf on ŒG � corresponding to a sheaf S on G
under the equivalence (39) given above.

3.3 Groupoid Presentations for Stacks of Rank 2 Bundles

We define a groupoid in schemes to be called G
.n/

j;k . The atlas of G .n/

j;k isW .n/

j;k and the

relations are G.n/

j;k �W .n/

j;k .
The arrow s is given by the projection

G
.n/

j;k �W .n/

j;k

s! W
.n/

j;k :

defined by

.g; p/ 7! p:

The arrow t is given by the map

G
.n/

j;k �W .n/

j;k

t! W
.n/

j;k : (40)

defined by

.g; p/ 7! g � p:
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where g � p is defined in Definition 5. The multiplication

m W .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /! G
.n/

j;k �W .n/

j;k

is given by

m..g1; g2 � p/; .g2; p// D .g1 �p g2; p/

where g1 �p g2 is defined in Definition 6.
The identity section is defined by

e.p/ D .id; p/

and the inverse is defined by

�.g; p/ D .g.�1/p ; g � p/

where g.�1/p was defined in Definition 5. The associativity condition (33) follows
from (29). The conditions (34), (36) and (35) follow from (27), (31), and (25).

We get an inverse system G .�/
j;k in the category of groupoids in schemes:

	 	 	 ! G
.3/

j;k ! G
.2/

j;k ! G
.1/

j;k ! G
.0/

j;k : (41)

and the inverse limit is eGj;k D G
.1/
j;k .

3.4 The Morphism Defined via the Big Bundle E

The big bundle E defines a morphism of stacks from W
.n/

j;k to Mj .Z
.n/

k / as follows.
Given an affine scheme T , we have a map

'T WHom.T;W .n/

j;k /! Hom.T;Mj .Z
.n/

k //

f 7! .id; f /�E

given by sending f to the pullback of E via the map

.id; f / W Z.n/

k � T ! Z
.n/

k �W .n/

j;k :
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Lemma 6. For each j � 0 the substacks

M
j .Z.n/

k / D
[

0
i
j
Mi .Z

.n/

k /

of M.Z
.n/

k / are given by

T 7!
n
E 2M.Z

.n/

k /.T /j�T �.E ˝ O.j //

is generated by global sections andR1�T �.E ˝ O.j // D 0
o
:

Proof. By Serre’s theorem, M.Z
.n/

k / is covered by the open substacks defined

T 7!
n
E 2M.Z

.n/

k /.T /j�T�.E ˝ O.j //

is generated by global sections andR1�T �.E ˝ O.j // D 0
o
:

In order to show the Lemma we can work locally in the site, and show the
equivalence using the prestacks pre-ŒG .n/

j;k �. First suppose that E has constant (in T )
splitting type less than or equal to j . Using Lemma 1, we can assume (after
shrinking T ) that is an extension of O.i/ by O.�i/ for 0 � i � j . Then E ˝ O.i/

is an extension of O.2i/ by O . Due to the fact that H1.Z
.n/

k � T;O/ D 0; the
resulting sequence on global sections is exact. Both of the line bundles O.2i/ and
O are generated by their global sections, and the fact that �T �.E ˝ O.i// and
therefore �T �.E ˝ O.j // is generated by its global sections follows. However,
H1.Z

.n/

k ;O.a// vanishes for a � 0 and therefore R1�T�.E ˝ O.j // vanishes.
Conversely, suppose that �T �.E ˝ O.j // is generated by global sections and
R1�T�.E ˝ O.j // D 0. The second condition implies (see Remark 8) that for
every geometric point t of T , the splitting type of the restriction of E to Z.n/

k � ftg
is less than or equal to j . Therefore,E belongs to M
j .Z.n/

k /.T /.

3.5 The Universal Bundle QE

We now construct the universal bundle on the groupoid

Z
.n/

k � G .n/

j;k :

The groupoid in question has atlasZ.n/

k �W .n/

j;k and relationsZ.n/

k �G.n/

j;k �W .n/

j;k . We
use the description of sheaves on groupoids in schemes given in Sect. 3.1. We start



Moduli Stacks of Bundles on Local Surfaces 21

with the big bundle E on Z.n/

k �W .n/

j;k which was defined in Definition 1. Consider
the map in

Isom
Z
.n/

k �G.n/j;k�W .n/

j;k

..id
Z
.n/

k

; t/�E; .id
Z
.n/

k

; s/�E/

given by the pair

.Ag.p/; Bg.p// 2 Aut
�
U .n/ �G.n/

j;k �W .n/

j;k ;O
˚2
�

� Aut
�
V .n/ �G.n/

j;k �W .n/

j;k ;O
˚2�

which was defined in Eqs. (19) and (20). We need to consider the pullbacks of the
isomorphism to

Z
.n/

k � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /

via the maps

.id
Z
.n/
k

; m/; .id
Z
.n/
k

; p1/; .idZ.n/k
; p2/

wherem;p1; p2 are the maps

.G
.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /! G
.n/

j;k �W .n/

j;k

given by

m..g1; g2 � p/; .g2; p// D .g1 �p g2; p/
p1 ..g1; g2 � p/; .g2; p// D .g1; g2 � p/

and

p2 ..g1; g2 � p/; .g2; p// D .g2; p/:

These pullbacks are described by the pairs of elements of

Aut

�
U .n/ � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /;O
˚2
�

and

Aut

�
V .n/ � .G.n/

j;k �W .n/

j;k /s �W .n/
j;k

t .G
.n/

j;k �W .n/

j;k /;O
˚2
�
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given by

.Ag1�pg2.p/; Bg1�pg2.p//;

.Ag1.g2 � p/; Bg1.g2 � p//;

and

.Ag2.p/; Bg2.p//

respectively. Therefore identity (37) follows from (26) while (38) follows from (30)
and consequently we have defined a vector bundle on the groupoid in accordance
with the description in Sect. 3.1.

3.6 The Equivalence of Stacks

Let us first mention groupoid presentations in the case of line bundles.
The stack of line bundles on the Z.n/

k is equivalent to

Z � Œ�=O.Z.n/

k /��:

For example when k D 1, n D 1 this stack is equivalent to

Z � Œ�=CŒŒx; y����:

In Sect. 3 we defined a groupoid in schemes

G
.n/

j;k D .G.n/

j;k �W .n/

j;k ;W
.n/

j;k ; m; e; �/;

the associated pre-stack pre-ŒG .n/

j;k � and the associated stack ŒG .n/

j;k � on the fppf site.

Theorem 3. The natural map W .n/

j;k !Mj .Z
.n/

k / given by the big bundle E which
was defined in Definition 1 induces an isomorphism of stacks

ŒG
.n/

j;k � ŠMj .Z
.n/

k /:

Furthermore, there is a vector bundle

Œ QE �
#

Z
.n/

k � ŒG .n/

j;k �
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whose pullback to Z.n/

k � W .n/

j;k is the big bundle E, and is identified via the above

isomorphism with the universal bundle E on Z.n/

k �Mj .Z
.n/

k /.

Here, ŒG .n/

j;k � is the stack associated to the groupoidG .n/

j;k . This association is reviewed
in Sect. 3.2.

Proof. We will prove this theorem by first defining a morphism of stacks over the
fppf site and then show that it is locally in the site an equivalence of categories.
Consider the morphism of pre-stacks

pre-F W pre-ŒG .n/

j;k �!Mj .Z
.n/

k /

by

pre-FT .f / D .idZ.n/k ; f /
� QE

where f is a morphism of groupoids from T to G
.n/

j;k . Because Mj .Z
.n/

k / is already
a stack over the fppf site, we get for free a morphism of the associated stacks over
the fppf site

F W ŒG .n/

j;k �!Mj .Z
.n/

k /:

In order to show that this is an equivalence we need only to show that it is locally
an isomorphism. Consider a vector bundleE on Z.n/

k � T for an affine C-scheme T
and write it somehow (it does not matter how) as an extension of O.j / by O.�j /
possibly after renaming T . Using Eq. (2) we have

Ext1
Z
.n/
k �T

.��
Z
.n/
k

O.j /; ��
Z
.n/
k

O.�j //

D H0.T;OT ˝ Ext1
Z
.n/
k

.O.j /;O.�j /// D Hom.T;W .n/

j;k /:

We can conclude that choosing (locally in the test schemes) the structure of an
extension gives maps from T to the atlas of G

.n/

j;k . It remains to show that the

ambiguity in such choices is given by maps from T to the relations of G .n/

j;k . Suppose

we have two maps p and p0 from T to W .n/

j;k . We need to show that

Isom
ŒG

.n/

j;k �.T /
.p; p0/ Š Isom

Z
.n/

k �T ..idZ.n/k ; p/
�
E; .id

Z
.n/

k

; p0/�E/:

We have already naturally identified these two sets in Lemma 4.

We can use some easy observations about the explicit presentation we have
established to give some properties of the stacks Mj .Z

.n/

k /. First of all G.n/

j;k and
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W
.n/

j;k are reduced, irreducible, affine algebraic varieties. Notice that s is a projection
and the map t factors as a Zariski open embedding followed by a projection

where the horizontal map is

.g; p/ 7! .g; g � p/:

The following could be concluded from the general construction of these stacks of
vector bundles using Quot schemes due to Laumon and Moret-Bailly but we can
give here a direct proof.

Corollary 1. For every finite n, the stack Mj .Z
.n/

k / is an Artin stack.

Proof. When n is finite thenG.n/

j;k andW .n/

j;k are smooth affine varieties of finite type.
By [17], Cor. 4.7, in order to conclude that it is an Artin stack, we need to show that
s and t are flat and that the morphism

.s; t/ W R! A � A

is separated and quasi-compact. Since n is finite, s and t are in fact smooth and
therefore certainly flat. Quasi-compactness is obvious since R is quasi-compact. To
see that .s; t/ is separated we need to see that the induced diagonal

R! R.s;t/ �A�A .s;t/R (42)

is closed. Notice that R.s;t/ �A�A .s;t/R is a closed subvariety of

G
.n/

j;k �G.n/

j;k �W .n/

j;k

defined by the equation

g1 � p D g2 � p:

The image of the diagonal (42) is therefore closed, being just the intersection inside

G
.n/

j;k �G.n/

j;k �W .n/

j;k
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of

R.s;t/ �A�A .s;t/R

with the closed subvariety

�
G
.n/
j;k

�W .n/

j;k :

where

�
G
.n/
j;k

� G.n/

j;k �G.n/

j;k

is the diagonal.

4 Applications

In a forthcoming article [5] we will use these groupoid presentations to calculate
the space of deformations of the moduli stacks Mj .Z

.n/

k /. To do this one must
calculate the cohomology of the tangent complex (thought of as a complex of
coherent sheaves) on these stacks. We then consider deformations of theZ.n/

k . These
include both classical and non-commutative deformations of the type considered in
[8, 24]. By considering stacks of vector bundles over universal families of these
deformations we get natural deformations of the stacks Mj .Z

.n/

k /. We investigate

the corresponding map from deformations of Z.n/

k to deformations of Mj .Z
.n/

k /.
This map is neither injective nor surjective. Such maps are well understood for the
case of curves (see for example [19]); whereas for surfaces such maps are only
understood in a few special cases, such as Mukai’s [18] description for the case of
K3 surfaces. In general such maps are quite mysterious for the case of surfaces.
Thus, it is interesting to look at the question in the intermediate case of formal
neighborhoods of curves inside surfaces.

Consider a proper algebraic surface X over C. By attaching the stacks Mj .cZk/
to M.X/ in the correct way one gets certain substacks Mj .Y / of the stack of vector
bundles on the blow up of X at some point. Consider the punctured space Zık D
Zk � ` and the punctured formal neighborhood cZkı which is defined in [7] using
Berkovich’s analytic geometry. Now let Y is any algebraic surface containing a
rational curve ` with `2 D �k, k > 0 then let Y ı D Y � `: Let M.Y / be the stack
of all vector bundles of rank 2whose restriction to ` has first Chern class zero, while
M.Y ı/ and M.cZkı/ are the stacks of all vector bundles of rank 2 on Y ı and cZkı
respectively. By taking stacks of vector bundles and using the main theorem of [7],
we get a fiber product diagram of stacks along with the substacks of splitting type j ,
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consisting of the above diagram with the solid arrows only. The dotted curved arrows
going up here exist only in the case that k D 1 and when the image of ` is a smooth
point under the contraction of `. Suppose we are in this case and � W Y ! X is the
contraction of `. Then the dotted arrows are sections of the arrows in the opposite
direction and are given by extending a bundle from Y ı D Y � ` Š X � fxg to a
bundle in M.X/ by taking the double dual of its pushforward and then pulling back
the bundle via � to Y (and similarly on the other side). This diagram is an algebraic
version of the holomorphic patching construction used in [15] and can be used to get
information about the relationship of Mj .Y / and M.Y � `/ from the relationship
of Mj .cZk/ and M.cZkı/. This version of patching using stacks is a much more
powerful construction, in particular avoiding all-together the use of framings, hence
eliminating the unnecessarily complicated issues of infinite dimensionality of the
space of reframings of each individual bundle. In this article we have focused on
a description of Mj .cZk/. The application to topological information will appear
in a forthcoming article [6] where we use the groupoid presentation to compute
homology, cohomology and homotopy groups of the stacks of bundles.

Another reason why using stacks of bundles is preferable for gluing purposes
over the construction via framings is that framings (in the sense of trivialising
sections) simply do not exist in general. For the case of a surface with a �1 line
it turns out to be possible to add framings to all holomorphic bundles, that is, every
bundle on OZ1 is trivial on OZı1 , so one can consider pairs of bundles together with
framings, and glue by identifying framings. However, for elements of Mj . OZk/ only
those satisfying j D 0 mod k are trivial on cZkı. This argument becomes even
more relevant if one considers curves inside threefolds. For instance over completioncW1 of the resolved conifold W1 D Tot.O.�1/˚ O.�1/ we can consider also rank
2 bundles with splitting .j;�j / and define stacks Mj .cW1/ but here only the trivial
bundle is frameable in the sense of [15].

Appendix A: Some Cohomology Groups

The ring of global functions on cZk is

O.cZk/ D CŒŒx0; x1; : : : ; xk��
ık�2X
iD0

kX
jDiC2

�
xixj � xiC1xj�1

�
,
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and for Z.n/

k one gets O.Z.n/

k / D O.Zk/=mnC1 where m is the ideal .x0; : : : ; xk/.
Note that here xi D ziu in terms of the original coordinates on U and U .n/. The
zeroth cohomology is the torsion-free O.cZk/ module

H0.cZk;O.s// D M
kiCs�l�0;l�0;i�0

Czlui � O. OU /:

Similarly, we have the O.Z.n/

k / module

H0.Z
.n/

k ;O.s// D
M

kiCs�l�0;l�0;n�i�0
Czlui � O.U .n//:

Remark 8. The set H0.Z
.n/

k ;O.s// is the C points of the spectrum of the polyno-
mial algebra freely generated over C by variables indexed by pairs .l; i/ such that
kiC s � l � 0; l � 0; n � i � 0. It is also easy to see thatH1.Z

.n/

k ;O.s// vanishes
for s � 0.

Appendix B: The Cohomology Spectral Sequence of
H om.E; F /

Consider a scheme Z covered by just two affine open sets U1 and U2 and two
rank 2 vector bundles E and F on Z which trivialize on the Ui . Assume also that
H1.Z;O/ D 0. The Čech complex for computing the cohomology of H om.E; F /
on Z looks like

HomU1.EjU1; F jU1/˚ HomU2.EjU2; F jU2/! HomU1\U2.EjU1\U2; F jU1\U2/:

If we choose local trivializations for EjU1; EjU2 and F jU1; F jU2 then the complex
becomes

HomU1.O
˚2;O˚2/˚ HomU2.O

˚2;O˚2/! HomU1\U2.O˚2;O˚2/

with differential

.A;B/ 7! GEA� BGF
where GE;GF are the transition matrices of E and F . On the other hand suppose
we know that E and F can be written on Z as extensions of line bundles L2 by L1.
By choosing local splittings the Čech complex becomes

EndU1.O
˚2/˚ EndU2.O

˚2/
D1! EndU1\U2.O˚2/
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D1.N1;N2/ D
�
g1 0

0 g2

�
N1 �N2

�
g1 0

0 g2

�
;

D2.M1;M2/ D
�
g1 pE
0 g2

�
M1 �M2

�
g1 pF
0 g2

�
:

ker.D1/
D2�! coker.D1/

Let us compute the cohomology groups

ker.D2/ D Hom.E; F / Š H0.X;H om.E; F //

and

coker.D2/ D Ext1.E; F / Š H1.X;H om.E; F //

in terms of the extension and cohomology groups of the Li . The filtration on
H om.E; F / reads

0 �H om.L2; L1/ �H om.E;L1/CH om.L2; F / �H om.E; F /

with associated graded pieces H om.L2; L1/, E nd.L1/ ˚ E nd.L2/, and
H om.L1; L2/. The associated spectral sequence computing the cohomology
H om.E; F / has an E1 term which looks like
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The E2 term looks like

The E3 term looks like

The first differential we consider is

H0.X;O/˚2 D End.L1/˚ End.L2/
d
1;�1
1! Ext1.L2; L1/:

It is the connecting map for the cohomology of the short exact sequence

0!H om.L2; L1/!H om.L2; F /CH om.E;L1/

! E nd.L1/˚ E nd.L2/! 0
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Consider the induced filtration on Hom.E; F / given by

0 � Hom.L2; L1/ � Hom.E;L1/C Hom.L2; F / � Hom.E; F /:

One has

Hom.E; F /

Hom.E;L1/C Hom.L2; F /
Š ker.d 0;02 / � Hom.L1; L2/;

and

Hom.E;L1/C Hom.L2; F /

Hom.L2; L1/
Š ker.d 1;�11 / � H0.X;O/˚2:

For any choices of splittings

Hom.E; F /
  ker.d 0;02 / � Hom.L1; L2/

and

Hom.E;L1/C Hom.L2; F /
� ker.d 1;�11 / � H0.X;O/˚2

we get a decomposition

Hom.E; F / D Hom.L2; L1/˚ �.ker.d 1;�11 //˚  .ker.d 0;02 //: (43)

We record formulas for d1;�11 and d0;02 in the case thatX D Z.n/

k �T for some affine
scheme T , L1 D O.�j /, L2 D O.j /, E D Ep , F D Ep0 .

d1;�11 W H0.X; .L1 ˝ L_1 /˚ .L2 ˝L_2 //! Ext1.L2; L1/

We compute

�
zj p0
0 z�j

��
a 0

0 d

�
�
�
a 0

0 d

��
zj p

0 z�j
�
D
�
0 dp0 � ap
0 0

�
:

Therefore the element of Ext1.L2; L1/ to which the pair .a; d/ maps is represented
by .dp0 � ap/j.U .n/\V .n//�T . The differential

d
1;�1
1 W H0.X;O˚2/! Ext1.O.j /;O.�j //

.a; d/ 7! dp0 � ap:
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In order to write down the next differential

d
0;0
2 W Hom.O.�j /;O.j //! Ext1.O.j /;O.�j //=image.d 1;�11 /,

we choose regular functions ˛U ; ıU on U and ˛V ; ıV on V such that

�z�j p0cU D ˛U � ˛V
zj pcU D ıU � ıV

so

d
0;0
2 .c/ D ıUp0 � ˛V p:
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An Orbit Construction of Phantoms,
Orlov Spectra, and Knörrer Periodicity

David Favero, Fabian Haiden, and Ludmil Katzarkov

1 Introduction

The notion of a phantom category is a recently coined term, referring to a nontrivial
triangulated or dg-category with vanishing Grothendieck group and/or Hochschild
homology. In this note, we refer to categories with vanishing Grothendieck group
as K-phantoms and categories with vanishing Hochschild homology and HH-
phantoms. When both of these invariants vanish, we follow [13], and refer to these
categories simply as phantoms.

The existence of phantom Fukaya–Seidel categories was conjectured in [10].
This conjecture was based on a combination of the seminal works of Donaldson,
Kotschick, and Okonek and van de Ven [11, 18, 20], who distinguished smooth
structures on Barlow surfaces and Del Pezzo surfaces of degree one using the moduli
space of instanton bundles. It was also inspired by the study of the behavior of
D-branes under phase transition following Witten and Aspinwall [4, 26].

By the homological mirror symmetry conjecture, it stands to reason that phantom
categories also appear as triangulated categories coming from algebraic geometry.
Indeed, the first example of such a category was revealed in [9] where the authors
construct an admissible subcategory of the derived category of coherent sheaves
on a Godeaux surface with vanishing Hochschild homology (an HH-phantom).
A different construction of an HH-phantom was provided in [3], and strengthened
in [13] which provides the first example of a phantom admissible subcategory of
a bounded derived category of coherent sheaves on a smooth projective variety. In
fact, in this example it is shown that both the Hochschild homology and all of the
algebraic K-groups of the admissible subcategory vanish. A different example of a
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geometric phantom is constructed in [8]. In that case the phantom is an admissible
subcategory of the derived category of a determinantal Barlow surface.

In this note we show that geometric phantom categories are not accidental
and can naturally appear in an infinite sequence of components of the moduli
of dg categories. We provide a basic but non-trivial set of examples of K-
phantom categories: matrix factorizations for odd-dimensional A2m-singularities.
An important property of our example is that its Orlov spectrum is not a consecutive
sequence of integers, a phenomenon connected to birational geometry in [7]. We
discuss how this example fits with results from string theory appearing in [2, 4] and
outline a description of geometric transformations which might produce phantoms
which we plan to explore in future work.

The content of the paper is arranged as follows. In Sect. 3 we discuss the
properties of the category MF.kŒŒx; y��; xnC1 C y2/, and show that it has vanishing
K0 group. In Sect. 4, we demonstrate that the Orlov Spectrum of this example is not
a consecutive sequence of integers for n > 7. In Sect. 5 we discuss the geometric
significance of phantom categories in a conjectural framework.

2 Adding Quadratic Terms to the Potential

Suppose .R;m/ is a regular local ring and f 2 m. Following Eisenbud [12] we
consider matrix factorizations

P0
p0�! P1

p1�! P0; p0p1 D f 	 1; p1p0 D f 	 1 (1)

where P0 and P1 are free R-modules of finite rank. Matrix factorizations form a
differential Z=.2/-graded category MF.R; f /, c.f. Orlov [21], and the homotopy
category H.MF.R; f // is triangulated. We will denote a quadruple as in (1) by
.P0; P1; p0; p1/.

The aim of this section is to discuss the relation between the categories

D D MF.R; f / and C D MF.RŒŒy��; f C y2/: (2)

We begin by describing an adjunction

F W D ! C ; G W C ! D (3)

with F left adjoint to G. The functor F assigns to an object .P0; P1; p0; p1/ of D
the object

�
.P0 ˚ P1/˝R RŒŒy��; .P0 ˚ P1/˝R RŒŒy��;

�
y p1
p0 �y

	
;

�
y p1
p0 �y

	�
(4)
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of C , to a morphism .f0; f1/ in degree 0 the morphism

��
f0 ˝ 1 0

0 f1 ˝ 1
	
;

�
f0 ˝ 1 0

0 f1 ˝ 1
	�

(5)

and to a morphism .f0; f1/ in degree 1 the morphism

��
0 f1 ˝ 1

f0 ˝ 1 0

	
;

�
0 f1 ˝ 1

f0 ˝ 1 0

	�
: (6)

The functorG maps an object .P0; P1; p0; p1/ of C to the object

.P0=yP0; P1=yP1; Np0; Np1/ (7)

of D , where Npi denote the induced maps, and to a morphism .f0; f1/, of either
degree, the induced morphism . Nf0; Nf1/. On an object .P0; P1; p0; p1/ ofC the counit
" is defined by

..1;�ep1/; .ep0; 1// 2 Hom.P0 ˚ P1; P0/˚ Hom.P0 ˚ P1; P1/ (8)

where

pi D Npi ˝ 1C epiy: (9)

On an object .P0; P1; p0; p1/ of D the unit 	 is defined by

��
1

0

	
;

�
0

1

	�
2 Hom.P0; P0 ˚ P1/˚ Hom.P1; P0 ˚ P1/: (10)

We note that

G.F.X// Š X ˚XŒ1� (11)

and thus for objects X; Y of D

HomC .FX;FY/ Š HomD.X;GFY/ (12)

Š
M
i2f0;1g

HomD.X; Y Œi �/ (13)

which shows that the full subcategory of C generated by objects in the image ofF is
the category of orbits under the action of Z=.2/ on D via the shift functor, c.f. [15].

We specialize to the case of a power series ring R D kŒŒx0; : : : ; xm�� over an
algebraically closed field k of characteristic zero. Under these assumptions, Knörrer
[17] shows that for an indecomposable objectX 2 H.D/ withX 6Š XŒ1� the object
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F.X/ is indecomposable as well, while for an indecomposable X with X Š XŒ1�

we have that F.X/ Š Y ˚ Y Œ1� for some indecomposable Y 2 H.C /. The same
property also holds for the functor G. Moreover, an object Y 2 H.C / is in the
essential image of F if and only if Y Š Y Œ1�.

3 The A2m Singularity

Let k be an algebraically closed field of characteristic zero and fix an even integer
n D 2m. Consider the category of matrix factorizations

C D MF.kŒŒx; y��; xnC1 C y2/ (14)

associated with the An curve singularity.
For 0 � i � nC 1 define matrix factorizations

Wi W R2
'i�! R2

'i�! R2 (15)

where R D kŒŒx; y�� and

'i WD
�

y xi

xnC1�i �y
	
: (16)

By [25] these are all the indecomposable objects and

W0 Š 0; Wi Š WnC1�i (17)

in the triangulated homotopy category H.C /. Moreover, for 0 < i < n C 1 there
are triangles

Wi �! Wi�1 ˚WiC1 �! Wi �! WiŒ1� (18)

as follows from [25].
We claim that

K0.C / D 0: (19)

Indeed, writing ŒX� 2 K0.C / for the K-theory class of an object X 2 C , we see
from (17) and (18) that ŒW0� D 0, ŒWi � D i ŒW1� for 0 < i < n C 1, so ŒW1� is a
generator. But .n � 1/ŒW1� D 0, and since WiŒ1� Š Wi we also have 2ŒW1� D 0, so
ŒW1� D 0, since n was assumed to be even.

We note that, by Knörrer periodicity (see [17]), C is equivalent to any of the
categories

MF.kŒŒx0; : : : ; xm��; xnC10 C x21 C : : :C x2m/ (20)
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with m odd. The relation to the corresponding category for even m is a special
instance of the discussion in the previous section with

D D MF.kŒŒx��; xnC1/; C D MF.kŒŒx; y��; xnC1 C y2/: (21)

Indecomposable objects of H.D/ are given by

Vi W kŒŒx��
xnC1�i

����! kŒŒx��
xi�! kŒŒx�� (22)

for 1 � i � n, see for example [21]. We have

F.Vi / D F.VnC1�i / D Wi; G.Wi / Š Vi ˚ VnC1�i D Vi ˚ Vi Œ1� (23)

so in this case the essential image of F is all of C , hence C is the orbit category of
D under the action of Z=.2/ via the shift functor.

Remark 1. Let A D MFgr.kŒŒX��; x
nC1/ denote the dg-category of graded matrix

factorizations of the An-singularity. The group Z acts on A via grading shift,
and the corresponding orbit dg-category, in the sense of [15], is equivalent to
MF.kŒŒX��; xnC1/ by a general result from [16]. The category A itself coincides
with the bounded derived category of finite-dimensional representations of an An
quiver, as was show in [22].

4 Comparison of Orlov Spectra

Let us recall the following definitions. For a more complete treatment see, [7, 23].
Let T be a triangulated category. For a full subcategory, I , of T we denote
by hI i the full subcategory of T whose objects are isomorphic to summands of
finite coproducts of shifts of objects in I . In other words, hI i is the smallest full
subcategory containing I which is closed under isomorphisms, shifting, and taking
finite coproducts and summands. For two full subcategories, I1 and I2, we denote
by I1 
 I2 the full subcategory of objects, T , such that there is a distinguished
triangle,

I1 ! T ! I2 ! I1Œ1�;

with Ii 2 Ii . Set

I1 ˘I2 WD hI1 
I2i;
hI i0 WD hI i;

and, for n � 1, inductively define,

hI in WD hI in�1 ˘ hI i:
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Similarly we define

hI i1 WD
[
n�0
hI in:

For an object, X 2 T , we notationally identify X with the full subcategory
consisting of E in writing, hXin. The reader is warned that, in some of the previous
literature, hI i0 WD 0 and hI i1 WD hI i. We follow the notation in [5, 7]. With our
convention, the index equals the number of cones allowed.

Definition 1. Let X be an object T . If there is an n with hXin D T , we set

U.X/ WD min fn � 0 j hXin D T g:

Otherwise, we set U.X/ WD 1. We call U.X/ the generation time of X .

Definition 2. Let X be an object of a triangulated category, T . The Orlov
spectrum of T , denoted OSpecT , is the set,

OSpecT WD fU.X/ j X 2 T ; U.X/ <1g � Z�0:

Let F W T ! R be an exact functor between triangulated categories. If every
object in R is isomorphic to a direct summand of an object in the image of F , we
say that F is dense.

Lemma 1. If F W T ! R is dense and X is a strong generator, then,

U.F.X// � U.X/:

Proof. If X is a generator of T with minimal generation time t , then T D hXit .
Now as F is an exact functor,

F.T / � hF.X/it :

Since every object of R is a summand of an objectF.T /, we see thatR D hF.X/it
and the formula follows.

Proposition 1. Let R be a complete regular ring. For any f 2 R one has:

OSpec.MF.R; f // D OSpec.MF.RŒŒy��; f C y2//

Proof. We demonstrate that,

U.X/ D U.F.X//:
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Notice that F is dense as, by Proposition 2.6 of [17], for any object, A 2
MF.RŒŒy��; f Cy2/, A˚AŒ1� is in the image of F . Meanwhile,G is dense by (11).
Therefore,

U.X/ D U.G.F.X// � U.F.X// � U.X/;

where the first equality follows from the (11) and the two inequalities are applica-
tions of Lemma 1. Therefore the map,

OSpec.MF.R; f //! OSpec.MF.RŒŒy��; f C y2//
U.X/ 7! U.F.X//;

provides an inclusion of Orlov spectra.
By the symmetry of the situation which follows from Knörrer Periodicity

(Theorem 3.1 of [17]), we have the other inclusion as well.

Remark 2. Proposition 1 can also be obtained as a consequence of viewing
MF.R; f / as a Z2-orbit category of MF.RŒŒy��; f C y2/ and applying Proposition
9.8 of [6].

Corollary 1. The category, MF.kŒŒx; y��; x2mC1/ has the following properties:

1. MF.kŒŒx; y��; x2mC1/ is a K-phantom i.e. K0.MF.kŒŒx; y��; x2mC1/ D 0
2. OSpec.MF.kŒŒx; y��; x2mC1/ D ˚0; 1; : : : ; ˙m

s


 � 1; : : : ; ˙m
2


 � 1;m � 1�
Proof. 1) was explained in the paragraph following (19). 2) Follows from
Proposition 1 and Theorem 4.14 of [7]

5 Conjectures

In this section, we propose that the following conjectual procedures could lead to
the creation of phantom categories:

1. Rational blow downs and smoothings of surfaces.
2. Degenerations and smoothings of threefolds.

These ideas were inspired by [9], which provided the first example of an HH-
phantom as a subcategory of the derived category of coherent sheaves on the
classical Godeaux surface. This led the third author to immediately conjecture that
the derived category of coherent sheaves on a Barlow surface would contain a
phantom subcategory in the stronger sense. This intuition was brought to fruition
in [8] for generic determinantal Barlow surfaces and was based on the following
rationale.

After blowing-up, a determinantal Barlow surface degenerates to a two sheeted
covering of P

1 �P1 with a singular ramification curve. These degenerations and



40 D. Favero et al.

blow-ups replace a cohomology class from h2;0 with one in h1;1. The new h1;1 class
is spanned by a single exceptional object. In the mirror this procedure creates a deep
singularity and the phantom subcategory, A � Db.cohX/, can be viewed through
Homological Mirror Symmetry, as the Fukaya–Seidel category of this singularity.

In general, from the perspective of [14], the Hochschild homology of the Fukaya–
Seidel category of a hypersurface singularity is computed as the hypercohomology
of a sheaf of vanishing cycles on the singular locus associated to the potential.
Therefore, the fact that the Fukaya–Seidel category contains an HH-phantom is
equivalent to the existence of a connected component of the singular locus whose
associated sheaf of vanishing cycles has trivial cohomology. Hence, we can look for
symplectic procedures which create such singular fibers.

Indeed, the required geometric procedures in the case of the Barlow surface,
appear naturally and robustly in physics where they are known as conifold and
extremal exoflop transitions [4,26]. Pushing the envelope, these procedures suggest
a general framework for producing phantom categories.

Let us consider an example appearing in [24]: a conic bundle over P2 with a
discriminant curve of degree 12. There is a degeneration consisting of a sequence
of exoflops [4], which reduces the intermediate Jacobian of this conic bundle to
zero. This is the analog of the transition which on the Barlow surface modifies
an h2;0 class into an h1;1 class. While the intermediate Jacobian is eliminated,
the singular fiber in the mirror has degenerated but not disappeared. However, all
the cohomology has Hodge degree .p; p/, hence the presence of an exceptional
collection forces the existence of an HH-phantom.

Conjecture 1. LetX be the threefold obtained from the conic bundle after degener-
ation and smoothing described above. There is a semi-orthogonal decomposition,

Db.cohX/ D hA ; E1; : : : ; E112i;

where A is a phantom category and Ei are exceptional objects.

Semi-orthogonal components have also been described as a categorical analog
of the Griffiths–Clemens component by Kuznetsov, see for example [19]. The conic
bundle above is not rational by [24]. Therefore, the example above indicates that
phantom categories, at least in some cases, can be a finer invariant than the classical
Griffith–Clemens component. This suggests a method to understanding birational
geometry for three dimensional conic bundles if the following conjecture holds:

Conjecture 2. For a generic three dimensional conic bundle over a rational surface,
there exists a deformation of the complex structure and resolution of singularities,
X , such that Db.cohX/ contains an admissible phantom subcategory.

This conjecture is based on ideas from [1,2]. Indeed, [1] provides a mirror symmetry
construction for conic bundles which can be degenerated as in [2] so that the mirror
still contains a deep singular fiber but whose Hodge cycles are all of type .p; p/.
In the example above the phantom subcategory corresponds to a component of the
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singular locus of this mirror given by an elliptic curve whose associated sheaf of
vanishing cycles F has trivial hypercohomology.

Conversely, the following conjecture follows from the Jordan–Hölder
property for semi-orthogonal decompositions conjectured by Kuznetsov see for
example, [19].

Conjecture 3. For any rational threefold, X , Db.cohX/ does not contain an
admissible phantom subcategory.
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Microlocal Theory of Sheaves and Tamarkin’s
Non Displaceability Theorem

Stéphane Guillermou and Pierre Schapira

Abstract This paper is an attempt to better understand Tamarkin’s approach
of classical non-displaceability theorems of symplectic geometry, based on the
microlocal theory of sheaves, a theory whose main features we recall here. If the
main theorems are due to Tamarkin, our proofs may be rather different and in the
course of the paper we introduce some new notions and obtain new results which
may be of interest.

1 Introduction

In [12], D. Tamarkin gives a totally new approach for treating classical problems of
non-displaceability in symplectic geometry. His approach is based on the microlocal
theory of sheaves, introduced and systematically developed in [3–5]. (Note however
that the use of the microlocal theory of sheaves also appeared in a related context
in [7–9].)

The aim of this paper was initially to better understand Tamarkin’s ideas and to
give more accessible proofs by making full use of the tools of [5] and of the recent
paper [2]. But when working on this subject, we found some new results which
may be of interest. In particular, we make here a systematic study of the category of
torsion objects.
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Let us first briefly recall the main facts of the microlocal theory of sheaves.
Consider a real manifold M of class C1 and a commutative unital ring k of finite
global dimension. Denote by Db.kM / the bounded derived category of sheaves of
k-modules on M . In [5], the authors attach to an object F of Db.kM/ its singular
support, or microsupport, SS.F /, a closed subset of T �M , the cotangent bundle to
M . The microsupport is conic for the action of RC on T �M and is involutive (i.e.,
co-isotropic). The microsupport allows one to localize the triangulated category
Db.kM/, and in particular to define the category Db.kM IU / for an open subset
U � T �M . This theory is “conic”, that is, it is invariant by the R

C-action
and is related to the homogeneous symplectic structure rather than the symplectic
structure.

In order to get rid of the homogeneity, a classical trick is to add a variable which
replaces it. This trick appears for example in the complex case in [10] where a
deformation quantization ring (with an „-parameter) is constructed on the cotangent
bundle T �X to a complex manifold X by using the ring of microdifferential
operators of [11] on T �.X � C/. Coming back to the real setting, denote by t a
coordinate on R, by .t I �/ the associated coordinates on T �R, by T �f�>0g.M � R/

the open subset f� > 0g of T �.M �R/ and consider the map

�WT �f�>0g.M � R/! T �M; .x; t I �; �/ 7! .xI �=�/:

Tamarkin’s idea is to work in the localized category Db.kM�RI f� > 0g/, the
localization of Db.kM�R/ by the triangulated subcategory Db

f�
0g.kM�R/ consisting
of sheaves with microsupport contained in the set f� � 0g. He first proves the useful
result which asserts that this localized category is equivalent to the left orthogonal
to Db

f�
0g.kM�R/ and that the convolution by the sheaf kft�0g is a projector on this
left orthogonal.

Let us introduce the notation Db.k
M / WD Db.kM�RI f� > 0g/ and, for a closed
subset A � T �M , let us denote by Db

A.k


M / the full triangulated subcategory of

Db.k
M / consisting of objects with microsupport contained in ��1A.
The first result of Tamarkin is a separability theorem. If A and B are two

compact subsets of T �M , F 2 Db
A.k



M /, G 2 Db

B.k


M /, and if A \ B D ;, then

HomDb.k
M /
.F;G/ ' 0.

The second result of Tamarkin is a Hamiltonian isotopy invariance theorem, up
to torsion, that is, after killing what he calls the torsion objects. An object F 2
Db.k
M / is torsion if there exists c � 0 such that the natural map F ! Tc�.F /
is zero, Tc�.F / denoting the image of F by the translation t 7! t C c in the t-
variable. Let I be an open interval of R containing Œ0; 1� and let ˚ D f'sgs2I be
a Hamiltonian isotopy (with '0 D id) such that there exists a compact set C �
T �M satisfying 'sjT �MnC D idT �MnC for all s 2 I . Tamarkin constructs a functor
� WDb

A.k


M /! Db

'1.A/
.k
M / such that �.F / is isomorphic to F modulo torsion, for

any F 2 Db
A.k



M /.
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From these two results he easily deduces that if A;B � T �M are com-
pact sets and if there exist F 2 Db

A.k


M /, G 2 Db

B.k


M / such that the map

RHomDb.k
M /
.F;G/ ! RHomDb.k
M /

.F; Tc.G// is not zero for all c � 0, then the
sets A and B are mutually non displaceable, that is, for any Hamiltonian isotopy ˚
as above and any s 2 I , A \ 's.B/ 6D ;.

Let us describe the contents of this paper.
In Sect. 2 we recall some constructions and results of [5] on the microlocal theory

of sheaves.
In Sect. 3 we recall the main theorem of [2] which allows one to quantize

homogeneous Hamiltonian isotopies and we also give some geometrical tools
linking homogeneous and non homogeneous symplectic geometry.

In Sect. 4 we study convolution of sheaves on a trivial vector bundleE DM �V
overM as well as the category Db.kE IU
/, the localization of the category Db.kE/
on U
 D E � V � Int.
ı0 / where Int.
ı0 / is the interior of the polar cone to a closed
convex proper cone 
0 in V . We prove in particular a separability theorem in this
category.

In Sect. 5 we introduce the Tamarkin category Db.k
M /, that is, the category
Db.kE IU
/ for E D M � R and 
0 D ft � 0g.

In Sect. 6 we make a systematic study of the category Ntor of torsion objects,
proving that this category is triangulated and also proving that, under some
hypothesis on the microsupport, an object is torsion if and only if its restriction
to one point is torsion (Theorem 6.12).

Finally, in Sect. 7 we give a proof of the Hamiltonian isotopy invariance theorem
of Tamarkin. The existence of the functor � mentioned above is now an easy
consequence on the results of [2], and one checks that this functor induces a
functor isomorphic to the identity functor modulo torsion. As already mentioned,
Tamarkin’s non displaceability theorem is an easy corollary of the preceding results.

Note that, for the purposes we have in mind, we do not need to consider the
unbounded derived category D.kM /, as did Tamarkin, but only its full triangulated
category Dlb.kM / consisting of locally bounded objects. Also note that our nota-
tions, as well as our proofs, may seriously differ from Tamarkin’s ones.

In future work, motivated by the papers of Fukaya–Seidel–Smith [1] and Nadler
[8], we plan to use the tools developed here to study sheaves associated with smooth
Lagrangian manifolds.

2 Microlocal Theory of Sheaves

In this section, we recall some definitions and results from [5], following its
notations with the exception of slight modifications. We consider a real manifold
M of class C1.
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Some Geometrical Notions ([5, § 4.2, § 6.2])

For a locally closed subset A of M , one denotes by Int.A/ its interior and by A its
closure. One denotes by�M or simply � the diagonal of M �M .

One denotes by � WTM ! M and �WT �M ! M the tangent and cotangent
bundles to M . If L �M is a (smooth) submanifold, we denote by TLM its normal
bundle and T �LM its conormal bundle. They are defined by the exact sequences

0! TL! L �M TM ! TLM ! 0;

0! T �LM ! L �M T �M ! T �L! 0:

One identifies M to T �MM , the zero-section of T �M . One sets PT �M WD T �M n
T �MM and one denotes by P�M W PT �M !M the projection.

Let f WM ! N be a morphism of real manifolds. To f are associated the tangent
morphisms

(1)

By duality, we deduce the diagram:

(2)

One sets

T �MN WD Ker fd D f �1d .T �MM/:

Note that, denoting by 
f the graph of f inM �N , the projection T �.M �N/!
M � T �N identifies T �
f .M �N/ and M �N T �N .

For two subsets S1; S2 � M , their Whitney normal cone, denoted C.S1; S2/, is
the closed cone of TM defined as follows. Let .x/ be a local coordinate system and
let .xI v/ denote the associated coordinate system on TM. Then

8<
:
.x0I v0/ 2 C.S1; S2/ � TM if and only if there exists a sequence

f.xn; yn; cn/gn � S1 � S2 � R
C such that xn

n�! x0, yn
n�! x0 and

cn.xn � yn/ n�! v0.
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For a subset S ofM and a smooth closed submanifoldL ofM , the Whitney normal
cone of S along L, denoted CL.S/, is the image in TLM of C.L; S/. If L D fpg,
we write Cp.S/ instead of Cfpg.S/.

Now consider the homogeneous symplectic manifold T �M : it is endowed with
the Liouville 1-form given in a local homogeneous symplectic coordinate system
.xI �/ on T �M by

˛M D h�; dxi:

The antipodal map aM is defined by:

aM WT �M ! T �M; .xI �/ 7! .xI ��/: (3)

If A is a subset of T �M , we denote by Aa instead of aM.A/ its image by the
antipodal map.

We shall use the Hamiltonian isomorphism H WT �.T �M/ ���! T .T �M/ given
in a local symplectic coordinate system .xI �/ by

H.h�; dxi C h�; d�i/ D �h�; @�i C h�; @xi:

Definition 2.1 (See [5, Def. 6.5.1]). A subset S of T �M is co-isotropic (one also
says involutive) at p 2 T �M if for any � 2 T �p T �M such that the Whitney normal
cone Cp.S; S/ is contained in the hyperplane fv 2 TT�M I hv; �i D 0g, one has
�H.�/ 2 Cp.S/. A set S is co-isotropic if it is so at each p 2 S .

When S is smooth, one recovers the usual notion.

Microsupport

We consider a commutative unital ring k of finite global dimension (e.g. k D Z).
We denote by D.kM/ (resp. Db.kM/) the derived category (resp. bounded derived
category) of sheaves of k-modules onM .

Recall the definition of the microsupport (or singular support) SS.F / of a sheaf
F .

Definition 2.2 (See [5, Def. 5.1.2]). Let F 2 Db.kM / and let p 2 T �M . One
says that p … SS.F / if there exists an open neighborhood U of p such that for
any x0 2 M and any real C1-function ' on M defined in a neighborhood of x0
satisfying d'.x0/ 2 U and '.x0/ D 0, one has .R
fxI'.x/�0g.F //x0 ' 0.

In other words, p … SS.F / if the sheaf F has no cohomology supported by “half-
spaces” whose conormals are contained in a neighborhood of p.

• By its construction, the microsupport is closed and is RC-conic, that is, invariant
by the action of RC on T �M .
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• SS.F / \ T �MM D �M.SS.F // D Supp.F /.

• The microsupport satisfies the triangular inequality: if F1 ! F2 ! F3
C1��!

is a distinguished triangle in Db.kM/, then SS.Fi / � SS.Fj / [ SS.Fk/ for all
i; j; k 2 f1; 2; 3g with j 6D k.

Theorem 2.3 (See [5, Th. 6.5.4]). Let F 2 Db.kM /. Then its microsupport SS.F /
is co-isotropic.

In the sequel, for a locally closed subset Z in M , we denote by kZ the constant
sheaf with stalk k on Z, extended by 0 on M nZ.

Example 2.4. (i) If F is a non-zero local system on a connected manifold M ,
then SS.F / D T �MM , the zero-section.

(ii) IfN is a smooth closed submanifold ofM and F D kN , then SS.F / D T �NM ,
the conormal bundle to N in M .

(iii) Let ' be C1-function with d'.x/ 6D 0 when '.x/ D 0. Let U D fx 2
M I'.x/ > 0g and let Z D fx 2 M I'.x/ � 0g. Then

SS.kU / D U �M T �MM [ f.xI�d'.x//I'.x/ D 0; � � 0g;
SS.kZ/ D Z �M T �MM [ f.xI�d'.x//I'.x/ D 0; � � 0g:

(iv) Let .X;OX/ be a complex manifold and let M be a coherent module over
the ring DX of holomorphic differential operators. (Hence, M represents
a system of linear partial differential equations on X .) Denote by F D
RHomDX

.M ;OX/ the complex of holomorphic solutions of M . Then
SS.F / D char.M /, the characteristic variety of M .

Functorial Operations (Proper and Non-characteristic Cases)

Let M and N be two real manifolds. We denote by qi (i D 1; 2) the i -th projection
defined onM �N and by pi (i D 1; 2) the i -th projection defined on T �.M �N/ '
T �M � T �N .

Definition 2.5. Let f WM ! N be a morphism of manifolds and let � � T �N be
a closed R

C-conic subset. One says that f is non-characteristic for� (or else, � is
non-characteristic for f , or f and � are transversal) if

f �1� .�/\ T �MN �M �N T �NN:

A morphism f WM ! N is non-characteristic for a closed R
C-conic subset � of

T �N if and only if fd WM �N T �N ! T �M is proper on f �1� .�/ and in this case
fdf

�1
� .�/ is closed and R

C-conic in T �M .
We denote by !M the dualizing complex on M . Recall that !M is isomorphic to

the orientation sheaf shifted by the dimension. We also use the notation !M=N for

the relative dualizing complex !M˝f �1!˝�1N . We have the duality functors
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DM . � / D RHom . � ; !M /; (4)

D0M . � / D RHom . � ;kM /: (5)

Theorem 2.6 (See [5, § 5.4]). Let f WM ! N be a morphism of manifolds, let
F 2 Db.kM/ and let G 2 Db.kN /.

(i) One has

SS.F
L
�G/ � SS.F / � SS.G/;

SS.RHom .q�11 F; q�12 G// � SS.F /a � SS.G/:

(ii) Assume that f is proper on Supp.F /. Then SS.RfŠF / � f�f �1d SS.F /.
(iii) Assume that f is non-characteristic with respect to SS.G/. Then the natural

morphism f �1G˝!M=N ! f Š.G/ is an isomorphism. Moreover SS.f �1G/[
SS.f ŠG/ � fdf �1� SS.G/.

(iv) Assume that f is smooth ( that is, submersive). Then SS.F / � M �N T �N
if and only if, for any j 2 Z, the sheaves Hj .F / are locally constant on the
fibers of f .

For the notion of a cohomologically constructible sheaf we refer to [5, § 3.4].

Corollary 2.7. Let F1; F2 2 Db.kM/.

(i) Assume that SS.F1/\ SS.F2/a � T �MM . Then

SS.F1
L˝F2/ � SS.F1/C SS.F2/:

(ii) Assume that SS.F1/\ SS.F2/ � T �MM . Then

SS.RHom .F1; F2// � SS.F1/a C SS.F2/:

Moreover, assuming that F1 is cohomologically constructible, the natural

morphism D0F1
L˝F2 ! RHom .F1; F2/ is an isomorphism.

The next result follows immediately from Theorem 2.6(ii). It is a particular
case of the microlocal Morse lemma (see [5, Cor. 5.4.19]), the classical theory
corresponding to the constant sheaf F D kM .

Corollary 2.8. Let F 2 Db.kM/, let 'WM ! R be a function of class C1 and
assume that ' is proper on supp.F /. Let a < b in R and assume that d'.x/ …
SS.F / for a � '.x/ < b. Then the natural morphism
R
 .'�1.� �1; bŒ/IF /! R
 .'�1.� �1; aŒ/IF / is an isomorphism.
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Corollary 2.9. Let I be a contractible manifold and let pWM � I ! M be the
projection. If F 2 Db.kM�I / satisfies SS.F / � T �M �T �I I , then F ' p�1Rp�F .

Proof. It follows from Theorem 2.6(iv) that the restriction F jfxg�I is locally
constant for any x 2M . Then the result follows from [5, Prop. 2.7.8]. ut
Corollary 2.10. Let I be an open interval of R and let qWM � I ! I be the
projection. Let F 2 Db.kM�I / such that SS.F / \ .T �MM � T �I / � T �M�I .M �
I / and q is proper on Supp.F /. Then we have isomorphisms R
 .M IFs/ '
R
 .M IFt/ for any s; t 2 I .

Proof. It follows from Theorem 2.6 that SS.Rq�.F // � T �I I . Hence, there exists
V 2 Db.k/ and an isomorphism Rq�.F / ' VI . (Recall that VI D a�1I V , where
aI ! pt is the projection and V is identified to a sheaf on pt .) Since we have
R
 .M IFs/ ' .Rq�.F //s the result follows. ut

Kernels ([5, § 3.6])

Notation 2.11. Let Mi (i D 1; 2; 3) be manifolds. For short, we write Mij WD
Mi � Mj (1 � i; j � 3) and M123 D M1 � M2 � M3. We denote by qi the
projection Mij ! Mi or the projection M123 ! Mi and by qij the projection
M123 ! Mij . Similarly, we denote by pi the projection T �Mij ! T �Mi or the
projection T �M123 ! T �Mi and by pij the projection T �M123 ! T �Mij . We
also need to introduce the map p12a , the composition of p12 and the antipodal map
on T �M2.

Let A � T �M12 and B � T �M23. We set

A �T �M2a
B D p�112 .A/\ p�12a3.B/

A
aıB D p13.A �T �M2a

B/

D f.x1; x3I �1; �3/ 2 T �M13I there exists .x2I �2/ 2 T �M2;

.x1; x2I �1; �2/ 2 A; .x2; x3I ��2; �3/ 2 Bg:
(6)

We consider the operation of composition of kernels:

ıWDb.kM12/ � Db.kM23/! Db.kM13/

.K1;K2/ 7! K1 ıK2 WD Rq13Š.q
�1
12 K1

L˝q�123 K2/:
(7)

Let Ai D SS.Ki/ � T �Mi;iC1 and assume that

8<
:

(i) q13 is proper on q�112 supp.K1/ \ q�123 supp.K2/,
(ii) p�112 A1 \ p�12a3A2 \ .T �M1

M1 � T �M2 � T �M3
M3/

� T �M1�M2�M3
.M1 �M2 �M3/:

(8)
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It follows from Theorem 2.6 that under the assumption (8) we have:

SS.K1 ıK2/ � A1 aıA2: (9)

Characteristic Inverse Images

Theorem 2.6 treats the easy cases of external tensor product or external Hom , non-
characteristic inverse images or proper direct image. In order to treat more general
cases we introduce some additional geometrical notions.

Let � be a smooth Lagrangian submanifold of T �M . The Hamiltonian isomor-
phism defines an isomorphism

T �� ' T�T �M:

Let j WL ,!M be the embedding of a smooth submanifold L of M . The Liouville
form defines an embedding

T �L ,! T �T �LM ' TT �

L M
T �M:

Now consider a morphism of manifolds f WM ! N and let us identify M to the
graph of f in M �N . For a subset B � T �N one sets:

f ].B/ D T �M \ CT �

M .M�N/.T
�
MM � B/: (10)

In local symplectic coordinate systems .xI �/ on M and .yI 	/ on N one has

8<
:
.x0I �0/ 2 f ].B/ if and only if there exist sequences fxngn �
M and f.ynI 	n/gn � B such that

xn ! x0, tf 0.xn/ 	 	n n�! �0 and jyn � f .xn/j 	 j	nj n�! 0.
(11)

For two closed R
C-conic subsets A and B of T �M one sets

A OC B D T �M \ C.A;Ba/: (12)

Here, C.A;Ba/ is considered as a subset of T �T �M via the Hamiltonian isomor-
phism and T �M is embedded into T �T �M via the Liouville form ˛M . In a local
coordinate system, one has

8<
:
.z0I �0/ 2 A OC B if and only if there exist sequences

f.xnI �n/gn in A and f.ynI 	n/gn in B such that xn
n�! z0,

yn
n�! z0, �n C 	n n�! �0 and jxn � ynj 	 j�nj n�! 0.

(13)
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Theorem 2.12 (See [5, Cor. 6.4.4, 6.4.5]). Let F1; F2 2 Db.kM/ and let G 2
Db.kN /. Then

SS.F1
L˝F2/ � SS.F1/ OC SS.F2/;

SS.RHom .F1; F2// � SS.F2/ OC SS.F1/a;

SS.f �1G/ [ SS.f ŠG/ � f ].SS.G//:

Non Proper Direct Images

We shall also need a direct image theorem in a non proper case.
Consider a constant linear map u of trivial vector bundles over M , that is, we

assume that Ei D M � Vi (i D 1; 2) and uWV1 ! V2 is a linear map. The map u
defines the maps described by the diagram

Note that for a subset A of T �E1 we have

u�.u
�1
d .A// D v�1d .v�.A//: (14)

Notation 2.13. Let uWE1 ! E2 be a constant linear map of trivial vector bundles
overM and let A � T �E1 be a closed subset. We set

u].A/ D v�1d .v�.A//: (15)

In Lemmas 2.14 and 2.15 below we use the notations
L

n Gn and
Q
n Gn for a

family fGngn2N in Db.kM /. We define it as follows. Let pWM � N ! M be the
projection. Then we have a uniqueG 2 Db.kM�N/ such that GjM�fng ' Gn, for all
n, and we set

L
n Gn WD RpŠG and

Q
n Gn WD Rp�G.

Lemma 2.14. Let M be a manifolds and let fUngn2N be an increasing sequence of
open subsets of M such that M DSn Un. Then, for any F 2 Db.kM /, we have the
distinguished triangles

M
n

FUn
id�s1���!

M
n

FUn ! F
C1��!; F !

Y
n

R
Un.F /
id�s2���!

Y
n

R
Un.F /
C1��!;
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where s1 is the sum of the natural morphisms FUn ! FUnC1
and s2 the product of

the natural morphisms R
UnC1
.F / ! R
Un.F / for n � 0 and the zero morphism

for n D �1.

Proof. These triangles arise from similar exact sequences of sheaves when F is a
flabby sheaf. The exactness can be checked easily on the stalks in the first case and
on sections over any open subset in the second case. ut
Lemma 2.15. Let f WM ! N be a morphism of manifolds and let fUngn2N be an
increasing sequence of open subsets of M such that M D S

n Un. Then, for any
F 2 Db.kM/, we have

SS.RfŠF / �
[
n

SS.RfŠ.FUn//; SS.Rf�F / �
[
n

SS.Rf�R
Un.F //:

Proof. We can check, similarly as in [5, Exe. V.7], that for any family fGngn2N in
Db.kN / we have SS.

L
n Gn/ [ SS.

Q
n Gn/ �

S
n SS.Gn/. Then the result follows

from Lemma 2.14 and the fact that RfŠ commutes with˚ and Rf� with
Q

. ut
The following result is due to Tamarkin [12, Lem. 3.3] but our proof is com-

pletely different.

Theorem 2.16. Let uWE1 ! E2 be a constant linear map of trivial vector bundles
over M and let F 2 Db.kE1/. Then SS.RuŠF / � u].SS.F //. The same estimate
holds with RuŠF replaced with Ru�F .

Proof. (i) By decomposing u by its graph, one is reduced to prove the result for
an immersion and for a projection. Since the case of an immersion is obvious,
we restrict ourselves to the case where E D M � V and uWE ! M is the
projection. Moreover the result is local onM and we may assume thatM is an
open subset in a vector space W .

(ii) We consider .x0I �0/ 2 T �M ' M �W � such that .x0I �0/ 62 u].SS.F //. We
will prove that .x0I �0/ 62 SS.RuŠF / [ SS.Ru�F /. If �0 D 0, then F jU�V ' 0
for some neighborhoodU of x0 and the result follows easily. Hence we assume
that �0 6D 0. Up to shrinkingM we may find an open cone C � W ��V � such
that .�0; 0/ 2 C and SS.F / \ ..M � V / � C/ D ;.

(iii) We choose an open convex cone 
 � W �V such that 
\.f0g�V / D f.0; 0/g
and 
ı � C . We also choose two sequences of points fzngn2N, resp. fz0ngn2N,
of W � V such that W � V is the increasing union of the cones 
n D zn � 
 ,
resp. 
 0n D z0n C 
 . By Lemma 2.15 it is enough to show

.SS.Ru�R

nF / [ SS.RuŠ.F
 0

n
///\ .M � .C \ .W � � f0g// D ;:

(iv) By Lemma 4.16 below SS.k
n/ � .W � V / � .�C/. Using D0M.k
n/ ' k
n
we deduce SS.k
n/ � .W � V / � C . Similarly SS.k
 0

n
/ � .W � V / � .�C/.

Since SS.F /\ ..M � V / � C/ D ;, Corollary 2.7 gives

.SS.R

nF /[ SS..F
 0

n
/// \ ..M � V / � C/ D ;:
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Since 
 \ .f0g � V / D f.0; 0/g the map uWM � V ! M is proper on all 
n
and 
 0n and the result follows from Theorem 2.6(ii).

ut
For a trivial vector bundle E DM � V we denote by

O�E WT �E ! T �M � V �; (16)

or O� if there is no risk of confusion, the natural projection. We say that a subset of
T �M � V � is a cone if it is stable by the multiplicative action of RC given by

� 	 .xI �; v/ D .xI��; �v/: (17)

We will be mainly concerned with the case where F 2 Db.kE/ has a microsupport
bounded by O��1E .A/ for some closed cone A � T �M � V �.

Let uWE1 D M � V1 ! E2 D M � V2 be a constant linear map of trivial vector
bundles overM and denote by

Qud WT �M � V �2 ! T �M � V �1 (18)

the map associated with u.

Corollary 2.17. Let uWE1 ! E2 be a constant linear map of trivial vector bundles
over M and let F 2 Db.kE1/. Assume that SS.F / � O��1E1 .A1/ for a closed cone
A1 � T �M � V �1 . Then SS.RuŠF / � O��1E2 Qu�1d .A1/. The same estimate holds with
RuŠF replaced with Ru�F .

Proof. We have v�. O��1E1 .A1// D A1 � V2 and this set is closed. We thus have

u]. O��1E1 .A1// D v�1d .v�. O��1E1 .A1/// D u�.u
�1
d .A1 � V1//

D Qu�1d .A1/ � V2 D O��1E2 Qu�1d .A1/:

ut

Localization

Let T be a triangulated category. Recall that a null system N is the set of objects
of a strictly full triangulated subcategory (where strictly full means full and with
the property that if one has an isomorphism F ' G in T with F 2 N , then
G 2 N ). The localization T =N is a well defined triangulated category (we skip
the problem of universes). Its objects are those of T and a morphism uWF1 ! F2
in T becomes an isomorphism in T =N if, after embedding this morphism in a

distinguished triangle F1 ! F2 ! F3
C1��!, one has F3 2 N .
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Recall that the left orthogonal N ?;l of N is the full triangulated subcategory of
T defined by:

N ?;l D fF 2 T IHomT .F;G/ ' 0 for all G 2 N g:

By classical results (see e.g., [6, Exe. 10.15]), if the embedding N ?;l ,! T admits
a left adjoint, or equivalently, if for any F 2 T , there exists a distinguished triangle

F 0 ! F ! F 00 C1��! with F 0 2 N ?;l and F 00 2 N , then there is an equivalence
N ?;l ' T =N .

Of course, there are similar results with the right orthogonal N ?;r .
Now let U be a subset of T �M and set Z D T �M n U . The full subcategory

Db
Z.kM/ of Db.kM / consisting of sheaves F such that SS.F / � Z is a strictly full

triangulated subcategory. One sets

Db.kM IU / WD Db.kM /=Db
Z.kM/;

the localization of Db.kM/ by Db
Z.kM /. Hence, the objects of Db.kM IU / are those

of Db.kM/ but a morphism uWF1 ! F2 in Db.kM/ becomes an isomorphism in
Db.kM IU / if, after embedding this morphism in a distinguished triangle F1 !
F2 ! F3

C1��!, one has SS.F3/\ U D ;.
For a closed subsetA of U , Db

A.kM IU / denotes the full triangulated subcategory
of Db.kM IU / consisting of objects whose microsupports have an intersection with
U contained in A.

Quantized Symplectic Isomorphisms ([5, §7.2])

Consider two manifolds M and N , two conic open subsets U � T �M and V �
T �N and a homogeneous symplectic isomorphism �:

T �N � V ���!
�
U � T �M: (19)

Denote by V a the image of V by the antipodal map aN on T �N and by � the
image of the graph of ' by idU �aN . Hence � is a conic Lagrangian submanifold
ofU �V a. A quantized contact transformation (a QCT, for short) above � is a kernel
K 2 Db.kM�N / such that SS.K/ \ .U � V a/ � � and satisfying some technical
properties that we do not recall here, so that the kernelK induces an equivalence of
categories

K ı � WDb.kN IV / ���! Db.kM IU /: (20)

Given � and q 2 V , p D �.q/ 2 U , there exists such a QCT after replacing U and
V by sufficiently small neighborhoods of p and q.
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Simple Sheaves ([5, §7.5])

Let � � PT �M be a locally closed conic Lagrangian submanifold and let p 2 �.
Simple sheaves along� at p are defined in [5, Def. 7.5.4].

When � is the conormal bundle to a submanifold N � M , that is, when the
projection �M j�W�! M has constant rank, then an object F 2 Db.kM/ is simple
along� at p if F ' kN Œd � in Db.kM Ip/ for some shift d 2 Z.

If SS.F / is contained in � on a neighborhood of �, � is connected and F is
simple at some point of �, then F is simple at every point of �.

The Functor �hom ([5, §4.4, §7.2])

The functor of microlocalization along a submanifold has been introduced by Mikio
Sato in the 70’s and has been at the origin of what is now called “microlocal
analysis”. A variant of this functor, the bifunctor

�homWDb.kM/op � Db.kM/! Db.kT �M/ (21)

has been constructed in [5]. Let us only recall the properties of this functor that we
shall use. For F;G 2 Db.kM/, with F cohomologically constructible, we have

R�M ��hom.F;G/ ' RHom .F;G/;

R�M Š�hom.F;G/ ' D0M .F /
L˝G

and we deduce the distinguished triangle

D0M .F /
L˝G ! RHom .F;G/! R P�M �.�hom.F;G/j PT �M/

C1��! : (22)

Let � � PT �M be a locally closed smooth conic Lagrangian submanifold and let
F 2 Db.kM/ be simple along�. Then

�hom.F; F /j� ' k�: (23)

3 Quantization of Hamiltonian Isotopies

In this section, we recall the main theorem of [2].
We first recall some notions of symplectic geometry. Let X be a symplectic

manifold with symplectic form !. We denote by Xa the same manifold endowed
with the symplectic form �!. The symplectic structure induces the Hamiltonian
isomorphism hWTX ���! T �X by h.v/ D �v.!/, where �v denotes the contraction



Microlocal Theory of Sheaves and Tamarkin’s Non Displaceability Theorem 57

with v (in case X is a cotangent bundle we have h D �H�1, where H is used in
Definition 2.1). To a vector field v on X we associate in this way a 1-form h.v/ on
X. For a C1-function f WX! R, the Hamiltonian vector field of f is by definition
Hf WD �h�1.df /.

A vector field v is called symplectic if its flow preserves !. This is equivalent to
Lv.!/ D 0 where Lv denotes the Lie derivative of v. By Cartan’s formula (Lv D
d �v C �v d ) this is again equivalent to d.h.v// D 0 (recall that d! D 0). The vector
field v is called Hamiltonian if h.v/ is exact, or equivalently v D Hf for some
function f on X.

Let I be an open interval of R containing the origin and let ˚ WX � I ! X be
a map such that 's WD ˚.	; s/WX ! X is a symplectic isomorphism for each s 2 I
and is the identity for s D 0. The map ˚ induces a time dependent vector field on X

v˚ WD @˚

@s
WX � I ! TX: (24)

The “time dependent” 1-form ˇ D h.v˚/WX�I ! T �X satisfies d.ˇs/ D 0 for any
s 2 I . The map ˚ is called a Hamiltonian isotopy if v˚;s is Hamiltonian, that is, if
ˇs is exact, for any s. In this case we can write ˇs D �d.fs/ for some C1-function
f WX � I ! R. Hence we have

@˚

@s
D Hfs :

The fact that the isotopy ˚ is Hamiltonian can be interpreted as a geometric
property of its graph as follows. For a given s 2 I we let �s be the graph of '�1s
and we let �0 be the family of �s’s:

�s D f.'s.v/; v/ I v 2 Xag � X � Xa;

�0 D f.'s.v/; v; s/ I v 2 Xa; s 2 I g � X � Xa � I:
Thus �s is a Lagrangian submanifold of X � Xa. Now we can see that ˚ is a
Hamiltonian isotopy if and only if there exists a Lagrangian submanifold� � X �
Xa � T �I such that, for any s 2 I ,

�s D � ı T �s I: (25)

(Here, the notation � ı � is a slight generalization of (6) to the case where the

symplectic manifolds are no more cotangent bundles.) In this case � is written

� D ˚�
˚.v; s/; v; s;�f .˚.v; s/; s/� I v 2 X; s 2 I� ; (26)

where the function f WX� I ! R is defined up to addition of a function depending
on s by v˚;s D Hfs .
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Homogeneous Case

Let us come back to the case X D PT �M and consider ˚ W PT �M � I ! PT �M such
that (

's is a homogeneous symplectic isomorphism for each s 2 I ,

'0 D id PT �M :
(27)

In this case ˚ is a Hamiltonian isotopy and there exists a unique homogeneous
function f such that v˚;s D Hfs . It is given by

f D h˛; v˚ iW PT �M � I ! R: (28)

Since f is homogeneous of degree 1 in the fibers of PT �M , the Lagrangian
submanifold� of PT �M � PT �M � T �I associated to f in (26) is RC-conic.

We say that F 2 D.kM/ is locally bounded if for any relatively compact open
subsetU �M we have F jU 2 Db.kU /. We denote by Dlb.kM / the full subcategory
of D.kM/ consisting of locally bounded objects.

Theorem 3.1 ([2, Th 4.3]). Consider a homogeneous Hamiltonian isotopy ˚

satisfying the hypotheses (27). Let us consider the following conditions on K 2
Dlb.kM�M�I /:

(a) SS.K/ � �[ T �M�M�I .M �M � I /,
(b) K0 ' k�,
(c) both projections Supp.K/ � M � I are proper,
(d) Ks ıK�1s ' K�1s ıKs ' k�, where K�1s D v�1RHom .Ks; !M � kM / and

v.x; y/ D .y; x/.
Then we have

(i) The conditions (a) and (b) imply the other two conditions (c) and (d).
(ii) There exists K satisfying (a)–(d).

(iii) Moreover such a K satisfying the conditions (a)–(d) is unique up to a unique
isomorphism.

We shall callK the quantization of˚ on I , or the quantization of the family f'sgs2I .

Non Homogeneous Case

Theorem 3.1 is concerned with homogeneous Hamiltonian isotopies. The next result
will allow us to adapt it to non homogeneous cases. Let ˚ WT �M � I ! T �M be
a Hamiltonian isotopy and assume
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�
there exists a compact set C � T �M such that 'sjT �MnC is the
identity for all s 2 I .

(29)

We denote by T �f�>0g.M �R/ the open subset f� > 0g of T �.M �R/ and we define
the map

�WT �f�>0g.M � R/! T �M; .x; t I �; �/ 7! .xI �=�/: (30)

We let �0. PT �M/ be the set of connected components of PT �M . Hence �0. PT �M/

consists of two points if dimM D 1 and one point if dimM > 1. See Remark 3.3
below.

Proposition 3.2 ([2, Prop. A.6]). There exist a homogeneous Hamiltonian isotopy
Q̊ W PT �.M � R/ � I ! PT �.M � R/ and C1-functions uWT �M � I ! R and

vW I � �0. PT �M/! R such that the following diagram commutes:

and

Q̊ ..xI �/; .t I �/; s/ D ..x0I � 0/; .t C u.xI �=�; s/I �//; for � > 0, (31)

Q̊ ..xI �/; .t I 0/; s/ D ..xI �/; .t C v.s; Œ.xI �/�/I 0//; (32)

where .x0I � 0=�/ D 's.xI �=�/. Moreover we have u.xI �=�; s/ D v.s; Œ.xI �=�/�/
for .xI �=�/ 62 C .

Remark 3.3. If dimM D 1, T �M nM has two connected components, and one has
to consider two functions v� and vC, one for each connected component. Hence, as
mentioned to us by Damien Callaque, Proposition A.6 of [2] should be corrected
accordingly. This has no consequence for the rest of the paper.

4 Convolution and Localization

Most of the ideas of this section are due to Tamarkin [12]. The reader will be aware
that our notations do not follow Tamarkin’s ones. We also give some proofs which
may be rather different from Tamarkin’s original ones.

In all this section, we consider a trivial vector bundle

qWE DM � V !M (33)
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and a trivial cone 
 DM � 
0 � E such that


0 is a closed convex proper cone of V containing 0 and 
0 6D f0g. (34)

The polar cone 
ı0 � V � is the closed convex cone given by


ı0 D f� 2 V �I h�; vi � 0g for all v 2 
0:

Many results could be generalized to general vector bundles and general proper
convex cones, but in practice we shall use these results with V D R and 
0 D ft 2
RI t � 0g. Recall that a subset in T �M � V � is a cone if it is invariant by the
diagonal action of RC (see (17)).

Definition 4.1. A closed cone A � T �M � V � is called a strict 
 -cone if A �
.T �M � Int
ı0 /[ T �MM � f0g.
Example 4.2. Assume V D R and M is open in R

n. Denote by .t I �/ the
coordinates on T �R and by .xI �/ the coordinates on T �M . Let 
0 D ft 2
RI t � 0g. Then a closed cone A � T �M � V � is a strict 
 -cone if, for any
compact subset C � M , there exists a 2 R; a > 0 such that � � aj�j for all
.xI �; �/ 2 A \ .��1M .C / � V �/.
Remark 4.3. If f WN ! M is a morphism of manifolds and A � T �M � V � is
a strict 
 -cone, then f � idV WN � V ! M � V is non-characteristic for O��1E .A/

(where O��1E is defined in (16)).

In the sequel, we consider the maps

q1; q2; sWV � V ! V;

q1.v1; v2/ D v1; q2.v1; v2/ D v2; s.v1; v2/ D v1 C v2:
(35)

If there is no risk of confusion, we still denote by q1; q2; s the associated maps
M � V � V !M � V .

We denote by ıM the diagonal embedding

ıM WM ,!M �M (36)

and if there is no risk of confusion, we still denote by ıM the associated map M �
V � V ,!M �M � V � V , that is, the map E �M E ,! E � E .

The maps s and ıM give rise to the maps:

T �.E �M E/
.ıM /d ���M �M�M T �.E �M E/

.ıM /����! T �.E � E/;
T �.E �M E/

sd � V �V�V T �.E �M E/
s��! T �E:

On T �E we have the antipodal map a, but there is another involution associated
with a and the involution .x; y/ 7! .x;�y/ on E . We denote by ˛ the involution of
T �E
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˛W .x; yI �; 	/ 7! .x;�yI ��; 	/ (37)

and for a subset A � T �E we denote by A˛ its image by this involution. We also
denote by ˛ the involution of T �M � V � defined by .xI �; 	/ 7! .xI ��; 	/. Hence
for A � T �M � V � we have, using the notation (16), O��1E .A˛/ D O��1E .A/˛ .

Convolution

Recall the notations (10) and (15).

Notation 4.4. For two closed subsets A and B in T �E , we set

A O? B WD s]ı]M .A � B/: (38)

In general, the calculation of A O?B is difficult. In Lemmas 4.5 and 4.7 below we
consider special situations in which this calculation is easy.

Lemma 4.5. Let A0 and B 0 be two closed cones in V �. Set A D T �M � V � A0
and B D T �M � V � B 0. Then

A O? B D A \ B: (39)

Proof. Using the hypothesis on A and B , it follows from (11) that

ı
]
M .A � B/ D T �M � V � V �A0 � B 0:

Then the result follows from Corollary 2.17. ut
Notation 4.6. Let A and B be two closed cones in T �M � V �. We set

AC
M
B D f.xI �; 	/ 2 T �M � V �I there exist �1; �2 2 T �x M such

that .xI �1; 	/ 2 A, .xI �2; 	/ 2 B and � D �1 C �2g:
(40)

Lemma 4.7. Consider two closed strict 
 -cones A and B in T �M � V �. Then
AC
M
B is also a strict 
 -cone and O��1E .A/ O? O��1E .B/ D O��1E .AC

M
B/.

In particular, if A \ B � T �MM � f0g, then

. O��1E .A/ O? . O��1E .B//˛/\ .T �MM � T �V / � T �EE:

Proof. The fact that AC
M
B is a strict 
 -cone follows easily from the definition.

By Remark 4.3, O��1E .A/� O��1E .B/ is non-characteristic for the inclusion ıM WM�
V � V ! M �M � V � V and we may replace ı]M by ıM;d ı�1M;� in (38). We find

ı
]
M . O��1E .A/ � . O��1E .B/// D O��1M�V �V .C1/, where
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C1 D f.xI �; 	1; 	2/ 2 T �M � V � � V �I there exist �1; �2 2 T �x M such

that .xI �1; 	1/ 2 A, .xI �2; 	2/ 2 B and � D �1 C �2g

and the result follows. ut
Using the notations (35), the convolution of sheaves is defined by:

Definition 4.8. For F;G 2 Db.kE/, we set

F ? G WD RsŠ.q�11 F
L˝q�12 G/ ' RsŠı�1M .F

L
�G/; (41)

F ?np G WD Rs�.q�11 F
L˝q�12 G/ ' Rs�ı�1M .F

L
�G/: (42)

The morphism k
 ! kM�f0g gives the morphism

F ?np k
 ! F: (43)

Recall the following result:

Proposition 4.9 (Microlocal Cut-Off Lemma [5, Prop. 5.2.3, 3.5.4]). Let F 2
Db.kE/. Then SS.F / � T �M � V � 
ı0 if and only if the morphism (43) is an
isomorphism.

If 
0 has a non-empty interior we have k
0 ' D0V .kInt
0 / and we deduce from
Corollary 2.7(ii) that

F ?np k
 ' Rs�R
M�V�Int
0.q
�1
1 F /: (44)

Following Tamarkin [12], we introduce a right adjoint to the convolution functor
by setting for F;G 2 Db.kE/

Hom�.G; F / WD Rq1�RHom .q�12 G; sŠF /: (45)

Hence for F1; F2; F3 2 Db.kE/, we have

RHom .F1 ? F2; F3/ ' RHom .F1;Hom�.F2; F3//: (46)

We use the notation:

i WE ! E denotes the involution .x; y/ 7! .x;�y/. (47)

Lemma 4.10. For F;G 2 Db.kE/ we have

Hom�.G; F / ' Rs�RHom .q�12 i�1G; qŠ1F /;

F ? G ' Rq1Š.s
�1F

L˝q�12 i�1G/:
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Proof. We only prove the first isomorphism, the second one being similar. We set
f WD .s;�q2/WE �M E ! E �M E , .x; v1; v2/ 7! .x; v1 C v2;�v2/. We find
f ı f D id, s D q1 ı f , q2 ı f D i ı q2. Since f is an isomorphism RHom
commutes with f �1 ' f Š. Since f ı f D id we have f �1 D f�. We deduce the
isomorphisms:

Hom�.G; F / ' Rq1�RHom .q�12 G; sŠF /

' Rq1�RHom .f �1q�12 i�1G; f ŠqŠ1F /

' Rq1�f �1RHom .q�12 i�1G; qŠ1F /

' Rs�RHom .q�12 i�1G; qŠ1F /:

ut
Proposition 4.11. For F1; F2; F3 2 Db.kE/ we have

.F1 ? F2/ ? F3 ' F1 ? .F2 ? F3/;
Hom�.F1 ? F2; F3/ ' Hom�.F1;Hom�.F2; F3//:

(48)

Proof. (i) The first isomorphism is proved in the same way as the associativity of
the composition of kernels: we check easily that both sides are isomorphic to

R�Š.q�11 .F1/
L˝q�12 .F2/

L˝q�13 .F3// where � WM � V 3 ! M � V is given by
�.x; v1; v2; v3/ D .x; v1C v2C v3/ and qi WM �V 3 !M �V is the projection
on the i th factor V .

(ii) We use the Yoneda embedding to prove the second isomorphism. We apply the
functor HomDb.kE/

.H; � / for any H 2 Db.kE/ to each term of this formula.
One gets an isomorphism in view of the adjunction isomorphism (46) and the
associativity of ? proved in (i).

ut
Proposition 4.12. Let qWE ! M and q0WM � V � V ! M be the projections.
For F;G;H 2 Db.kE/ we have

Rq�.RHom .F;Hom�.G;H/// ' Rq�.RHom .F ? G;H//; (49)

RqŠ..F ? G/
L˝H/ ' Rq0Š.q�11 F

L˝q�12 G
L˝s�1H/

' RqŠ.F
L˝.i�1G ? H//:

(50)

Proof. The first isomorphism follows by adjunction from (41) and (45), using q ı
q1 D q ı s. The second and third ones follow from the projection formula, the
identities q ı q1 D q0 D q ı s and Lemma 4.10. ut
Recall that the involution . � /˛ is defined in (37).
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Proposition 4.13. For F;G 2 Db.kE/ we have

SS.F ? G/ � SS.F / O? SS.G/;
SS.Hom�.G; F // � SS.F / O? SS.G/˛:

(51)

Proof. Both inclusions in (51) follow from (41), (38) and Theorems 2.12 and 2.16.
For the second one we also use Lemma 4.10 and SS.i�1G/a D SS.G/˛ . ut
Using (51) and (39), we get:

Corollary 4.14. Let F;G 2 Db.kE/ and assume that there exist closed cones
A0; B 0 � V � such that SS.F / � T �M � V � A0 and SS.G/ � T �M � V � B 0.
Then

SS.F ? G/ � T �M � V � .A0 \ B 0/;
SS.Hom�.G; F // � T �M � V � .A0 \ B 0/: (52)

Corollary 4.15. Let F;G 2 Db.kE/ and assume that there exist closed strict 
 -
cones A and B in T �M � V � such that SS.F / � O��1E .A/ and SS.G/ � O��1E .B/.
Let N be a submanifold of M and j WN � V !M � V the inclusion. Then

j�1Hom�.F;G/ 'Hom�.j�1F; j�1G/:

Proof. By Proposition 4.13 and Lemma 4.7, SS.Hom�.F;G// � O��1E .AC
M
B/ and

AC
M
B is a strict 
 -cone. By Remark 4.3, we deduce j ŠH ' j�1H ˝ !N�V jM�V

for H D F;G or Hom�.F;G/. This gives the first and last steps in the sequence
of isomorphisms, where we set j 0 D j � idV :

j�1Hom�.F;G/ ' j ŠRq1�RHom .q�12 F; sŠG/˝ !˝�1
N�V jM�V

' Rq1�j 0ŠRHom .q�12 F; sŠG/˝ !˝�1N�V jM�V
' Rq1�RHom .j 0�1q�12 F; j 0ŠsŠG/˝ !˝�1

N�V jM�V
' Rq1�RHom .q�12 j�1F; sŠj ŠG/˝ !˝�1N�V jM�V
'Hom�.j�1F; j�1G/:

ut

Kernels Associated with Cones

Recall that we consider a trivial vector bundle E D M � V and a trivial cone

 D M � 
0 satisfying (34). For another proper closed convex cone �0 � V such
that �0 � 
0, setting � DM � �0, we shall use the exact sequence of sheaves:
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0! k
n� ! k
 ! k� ! 0: (53)

Lemma 4.16. Let �0 � 
0 be closed convex proper cones. Then

SS.k
 / � T �MM � V � 
ı0 ;
SS.k
n�/ � T �MM � V � .�ı0 n Int.
ı0 //:

Proof. Since our sheaves are inverse images of sheaves on V we may as well
assume that M is a point. Since our sheaves are conic in the sense of [5, §5.5]
their microsupports are biconic. Now, a closed biconic subset A of V � V � satisfies
A � V � .A\ f0g� V �/. Hence we only have to check the inclusions at the origin.

Then the first inclusion follows from [5, Prop. 5.3.1].
For the second inclusion we use the Sato–Fourier transform .	/^WDb

RC
.kV / !

Db
RC
.kV �/ defined in [5, §3.7] (Db

RC
.kV / denotes the subcategory of complexes

with conic cohomology). We have .k
0 /
^ ' kInt
ı

0
and we deduce the distinguished

triangle

.k
0n�0 /
^ ! kInt
ı

0
! kInt�ı

0

C1��! :

Hence .k
0n�0 /^ ' kInt�ı

0 nInt
ı

0
Œ�1� and we conclude with [5, Prop. 5.5.5] which

implies SS.F /\ T �0 V D supp.F ^/ for F 2 Db
RC
.kV /. ut

We introduce the kernel:

L
 WD k
?WDb.kE/! Db.kE/: (54)

The morphism k
 ! kf0g induces a morphism of functors "WL
 ! idDb.kE/. By (48)
we have L
 ı L
 ' L
 . Hence, the pair .L
 ; "/ is a projector in Db.kE/op in the
sense of [6, Chap. 5]. It will be convenient to write L
 with the language of kernels
as in (7). We define 
C � E � E by


C D f.x; v; x0; v0/ 2 E � EI v � v0 2 
0g: (55)

Then

L
 ' k
C ı 	: (56)

In the sequel we set

U
 WD T �M � V � Int.
ı0 /;
Z
 WD T �E n U
: (57)
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Proposition 4.17. Let F 2 Db.kE/.

(i) SS.L
F / � U
 D T �M � V � 
ı0 .

(ii) Consider a distinguished triangle L
F ! F ! G
C1��!. Then SS.G/ � Z
 .

In particular, SS.L
F / � .T �M � V � @
ı0 /[ .SS.F / \ U
/.
(iii) Let G 2 Db

Z

.kE/. Then Rq�R

.G/ ' 0. In particular, R

.EIG/ ' 0.

Proof. (i) follows from (52) and Lemma 4.16.
(ii) Using the exact sequence (53), we have G ' k
nf0g ? F . Then the result again

follows from (52) and Lemma 4.16.
(iii) We set H D R

.G/ ' RHom .k
 ; G/. It follows from Theorem 2.12 that

SS.H/ � Z
 . Choose a vector � 2 Int.
ı0 / and consider the projection

� WM � V !M �R; �.x; v/ D .xI h�; vi/:

Since 
 is a proper cone, � is proper on suppH and we get by Theorem 2.6 that
SS.R��.H// � f� � 0g where .t I �/ are the coordinates on T �R. Moreover,
supp R��.H/ �M � ft � 0g.

Now it is enough to prove that R
 .U �RIR��.H// D 0, for any open subset U
ofM . Denote by pWU �R! R the projection and set QH D Rp�R��.H/. Although
p is not proper on supp. QH/, one easily checks that SS. QH/ � ft � 0; � � 0g and
this implies QH ' 0. (This is a special case of Corollary 2.8.) ut
The next lemma follows immediately from the adjunction formula (46).

Lemma 4.18. Let F;G 2 Db.kE/ and assume that L
F
���! F . Then we have

HomDb.kE/
.F;G/ ' R

 .EIHom�.F;G//.

Proposition 4.19. (a) Let F 2 Db.kE/. Then F 2 Db
Z

.kE/?;l if and only if the

natural morphism L
F ! F is an isomorphism.
(b) Let G 2 Db

Z

.kE/. Then L
G ' 0.

Proof. (a)-(i) Assume F ' L
F . LetG 2 Db
Z

.kE/ and setH WDHom�.F;G/.

Then H belongs to Db
Z

.kE/ by (52) and R

 .EIH/ ' 0 by Proposition 4.17.

Since F ' L
F , we get HomDb.kE/
.F;G/ D 0 by Lemma 4.18.

(a)-(ii) Assume that F 2 Db
Z

.kE/?;l and consider a distinguished triangle

L
F ! F ! G
C1��!. By (a)-(i) L
F also belongs to Db

Z

.kE/?;l . Hence so

does G. On the other hand, G 2 Db
Z

.kE/ by Proposition 4.17. Hence, G ' 0.

(b) Let G 2 Db
Z

.kE/ and consider a distinguished triangle L
G ! G !

H
C1��!. Since both G and H belong to Db

Z

.kE/, so does L
G. Since L
G

belongs to Db
Z

.kE/?;l , it is 0.

ut
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Remark 4.20. One can also consider the projector

R
 WDHom�.k
 ; � /WDb.kE/! Db.kE/: (58)

Then we obtain similar results to Propositions 4.17, 4.19 and Lemma 4.18 with R

instead of L
 . Note that the pair .L
 ;R
/ is a pair of adjoint functors:

HomDb.kE/
.L
F;G/ ' HomDb.kE/

.F;R
G/

' HomDb.kE/
.k
 ;Hom�.F;G//:

Note that k
 is cohomologically constructible. If we assume that Int.
/ 6D ;, then
D0k
 ' kInt.
/ and one deduces from Lemma 4.10 that

Hom�.k
 ;k
 / ' kInt.�
/ŒdV �; (59)

where dV is the dimension of V .

Projector and Localization

Recall thatE DM �V is a trivial vector bundle overM , 
0 is a cone satisfying (34)
and the setsU
 andZ
 are defined in (57). By definition Db.kE IU
/ is a localization
of Db.kE/ and we let Q
 WDb.kE/! Db.kE IU
/ be the functor of localization.

Proposition 4.21. (i) The functor L
 defined in (54) takes its values in
Db
Z

.kE/?;l and sends Db

Z

.kE/ to 0. It factorizes through Q
 and induces

a functor l
 WDb.kE IU
/! Db.kE/ such that L
 ' l
 ıQ
 .
(ii) The functor l
 is left adjoint to Q
 and induces an equivalence Db.kE IU
/ '

Db
Z

.kE/?;l .

This is visualized by the diagram

(60)

Proof. This follows from Proposition 4.19 together with the classical results on the
localization of triangulated categories recalled in Sect. 2 (see e.g., [6, Exe. 10.15]).

ut
In particular, we have for F;G 2 Db.kE/

HomDb.kE IU
 /.Q
.F /;Q
.G// ' HomDb.kE/
.L
 .F /;G/

' HomDb.kE/
.L
 .F /; L
.G//:

(61)
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There is a similar result to Proposition 4.21, replacing the functor L
 with the
functorR
 . The functorR
 takes its values in Db

Z

.kE/?;r and sends Db

Z

.kE/ to 0.

It factorizes throughQ
 and induces a functor r
 WDb.kE IU
/! Db.kE/ such that
R
 ' r
 ıQ
 .

We notice that, for F 2 Db
Z

.kE/?;l or G 2 Db

Z

.kE/?;r , we have

Hom�.F;G/ 2 Db
Z

.kE/?;r : (62)

By Proposition 4.17 (used with R
 instead of L
 ) we obtain in particular

Hom�.F;G/ 2 Db
U

.kM/: (63)

Notation 4.22. Let us set for short

Db.k
M / WD Db.kE IU
/;
Db.k
;lM / WD Db

Z

.kE/?;l ;

Db.k
;rM / WD Db
Z

.kE/?;r :

(64)

When M D pt, we set

Db.k
 / WD Db.k
pt/ (65)

and similarly with Db.k
;l / and Db.k
;r /.

Denote by pWE DM � V ! V the projection and denote by 
 
 the functor


 
. � / D RHom .k
 ; � /WDb.k
 /! Db.k/: (66)

We get the diagram of categories in which the horizontal arrows are equivalences

(67)

Note that by Lemma 4.18, for F 2 Db.k
;lM / or G 2 Db.k
;rM /, we have

RHomDb.k
M /
.F;G/ ' 
 
 ı Rp�Hom�.F;G/: (68)
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Embedding the Category Db.kM / into Db.k�

M
/

Recall that qWE !M denotes the projection and consider the functor

�
 WDb.kM/! Db.kE/; F 7! q�1F˝k
 :

Lemma 4.23. One has the isomorphism of functors L
 ı �
 ���! �
 .

Proof. One has

L
 ı �
.F / D RsŠ.q�11 k
˝q�12 .q�1F˝k
 //

' RsŠ.q�11 k
˝q�12 k
˝q�12 .q�1F //

' RsŠ.q�11 k
˝q�12 k
˝s�1.q�1F //
' RsŠ.q�11 k
˝q�12 k
 /˝q�1F
' k
˝q�1F:

ut
In the sequel, we consider �
 as a functor

�
 WDb.kM/! Db.k
M /: (69)

Proposition 4.24. The functor �
 in (69) is fully faithful.

Proof. Let F;G 2 Db.kM/. Then

HomDb.kE/
.k
˝q�1G;k
˝q�1F /

' HomDb.kM /
.G;Rq�RHom .k
 ; q�1F˝k
 //

' HomDb.kM /
.G;Rq�.q�1F˝k
 //:

Hence, it is enough to check the isomorphism

F ���! Rq�.q�1F˝k
 /: (70)

Denote by Qq the projection 
 !M . The isomorphism (70) reduces to

F ' R Qq� Qq�1F

and this last isomorphism follows from the fact that 
 is a closed convex cone, hence
is contractible (see for example [5, Prop. 2.7.8]). ut
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A Cut-Off Result

Recall that we consider a trivial vector bundle E D M � V and a trivial cone

 DM �
0 satisfying (34). We also recall that a subset of T �M �V � is a cone if it
is stable by the action (17). The map O� is defined in (16) and we have set (see (57)):

U
 D T �M � V � Int
ı0 :

By the equivalence l
 of Proposition 4.21, any object F 2 Db.kE IU
/ has a
canonical representative in Db.kE/ again denoted by F and we have F ' L
.F /.
By Proposition 4.17(i) we have SS.F / � U
 .

We first state a kind of cut-off lemma in the case where M is a point.

Lemma 4.25. Let V be a vector space and 
 � V a closed convex proper cone
containing 0. Set U
 WD V � Int
ı and Z
 WD T �V n U
 . Let F 2 Db

Z

.kV /?;l . We

assume that there exists a closed cone A � V � such that

(i) A � Int
ı [ f0g,
(ii) SS.F /\ U
 � V � A.

Then SS.F / � .SS.F /\ U
/ [ T �V V .

Proof. (i) Up to enlargingAwe may as well assume that SS.F /\U
 � V �IntA.
We set � D Aı. Hence � is a closed convex proper cone of V and we have

�ı n f0g � Int.
ı/; (71)

SS.F /\ U
 � V � Int.�ı/: (72)

We will prove that L�.F / satisfies the conclusion of the lemma as well as the
isomorphism L�.F /

���! F .
(ii) By (72) and Proposition 4.17(ii) we have

SS.F / � V � .@
ı [ Int.�ı//: (73)

By (52) we deduce

SS.L�F / � V � .�ı \ .@
ı [ Int.�ı///

D V � .Int.�ı/[ f0g/
� U
 [ T �V V:

(iii) It remains to see that F ' L�.F /. We consider the distinguished triangle

k�n
 ? F ! L�F ! L
F
C1��!. We have L
F ���! F . By (73), Lemma 4.16

and (52) we have
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SS.k�n
 ? F / � V � ..
ı n Int.�ı//\ .@
ı [ Int.�ı/// � Z
 ;

which shows that L�F ! F is an isomorphism in Db.kV IU
/. By Proposi-
tion 4.21 we obtain F ' L
.L�F /. But k
 ? k� ' k� and we get finally
F ' L�F .

ut
Now we extend Lemma 4.25 to the case of an arbitrary manifold M . We consider
a finite dimensional real vector space E D E 0 � E 00 with E 0 D R

d . We write
x D .x0; x00/ 2 E 0 � E 00 and x0 D .x01; : : : ; x0d / 2 R

d . We set U D� � 1; 1Œd�E 00.
We choose a diffeomorphism'W ��1; 1Œ ���! R such that d'.t/ � 1 for all t 2��1; 1Œ
and we define

˚ WU ���! E; ˚.x01; : : : ; x0d ; x00/ D .'.x01/; : : : ; '.x0d /; x00/:

Lemma 4.26. In the preceding situation, consider two closed convex proper cones

0 � E 00 and C1 � E� such that C1 � .E 0� � Int.
ı0 //[ f.0; 0/g. Then there exists
another closed convex proper cone C2 � E� such that C2 � .E 0� � Int.
ı0 // [
f.0; 0/g and

˚�˚
�1
d .U � C1/ � E � C2:

Proof. (i) We assume that Int.
ı0 / is non empty (otherwise the lemma is trivial).
Then a closed cone of E� is contained in .E 0� � Int.
ı0 //[ f.0; 0/g if and only
if it is contained in Ca;D WD R�0 	 .Œ�a; a�d � D/ for some a > 0 and some
compact subset D � Int.
ı0 /. Hence we may assume C1 D Ca;D .

(ii) Denote by .x0I � 0/ the coordinates on R
d � .Rd /�. We may assume that

E 00 D R
m and we denote by .x00I � 00/ the coordinates on E 00 � .E 00/�. The

change of coordinates ˚ given by y0i D '.x0i / (i D 1; : : : ; d ), y00 D
x00 associates the coordinates .yI 	/ D .y0; y00I 	0; 	00/ to the coordinates
.x01; : : : ; x0d ; x00I � 01; : : : ; � 0d ; � 00/ with

y0i D '.x0i /; 	0i D d'�1.x0i / 	 � 0i ; .i D 1; : : : ; d /;
y00 D x00; 	00 D � 00:

Since d'.t/ � 1, we get that ˚�˚�1d .U � Ca;D/ � E � Ca;D and we may
choose C2 D Ca;D .

ut
Theorem 4.27. Let F 2 Db

Z

.kE/?;l . We assume that there exists A � T �M � V �

such that

(i) A is a closed strict 
 -cone ( see Definition 4.1),
(ii) SS.F /\ U
 � O��1E .A/.

Then SS.F / � .SS.F /\ U
/ [ T �EE .
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Proof. Since the statement is local on M we may assume that M is an open subset
of a vector spaceW . Then A is a closed subset of M �W � � V �. For any x 2 M ,
Ax WD A \ .fxg �W � � V �/ is a cone satisfying

Ax � .W � � Int.
ı0 //[ f.0; 0/g:

For x0 2 M and for a given compact neighborhood C of x0 we may assume that
there exists a closed convex cone B of W � � V � such that Ax � B for any x 2 C
and

B � .W � � Int.
ı0 //[ f.0; 0/g:

We may assume x0 D 0 2 W . We choose an isomorphism W ' R
d so that

� � 1; 1Œd� C . Then we apply a change of coordinates as in Lemma 4.26, with
E 0 D W , E 00 D V , C1 D B , and we are reduced to Lemma 4.25 applied to the
vector space W � V and the cone 
 D f0g � 
0. ut

A Separation Theorem

The next result is a slight generalization of Tamarkin’s Theorem [12, Th. 3.2]. In
this statement and its proof, we write O� instead of O�E for short.

Theorem 4.28 (The separation theorem). Let A;B be two closed strict 
 -cones
in T �M � V �. Let F 2 Db

O��1.A/
.kE IU
/ and G 2 Db

O��1.B/
.kE IU
/. Assume that

A\ B � T �MM � f0g and that the projection q2WM � V ! V is proper on the set
f.x; v1 � v2/I .x; v1/ 2 suppG; .x; v2/ 2 suppF g. Then

Rq2�Hom�.l
 .F /; l
 .G// ' 0;

where l
 is defined in Proposition 4.21. In particular HomDb.kE IU
 /.F;G/ ' 0.

Proof. We set L D Hom�.l
.F /; l
 .G// and L0 D Rq2�L. By (62) we have L 2
Db
Z

.kE/?;r . By adjunction between Rq2� and q�12 we deduce L0 2 Db

Z
0
.kV /?;r . It

remains to check that SS.L0/ � Z
0 .
By Theorem 4.27 we have SS.F / � O��1.A/ and SS.G/ � O��1.B/. Then

Proposition 4.13 gives SS.L/ � O��1.A/ O? . O��1.B//˛ . Applying Lemma 4.7 we
get

SS.L/ \ .T �MM � T �V / � T �EE:

Using Lemma 4.10, the hypothesis implies that q2 is proper on suppL. We deduce
SS.L0/ � T �V V and thus L0 ' 0.
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Proposition 4.21 and Lemma 4.18 give the first two isomorphisms in the
sequence

HomDb.kE IU
 /.F;G/ ' HomDb.kE/
.F;G/

' HomDb.kE/
.k
 ; L/ ' HomDb.kV /

.k
0 ; L
0/ ' 0;

which proves the last assertion. ut

Kernels

We considerE DM � V , 
 D M � 
0 and a kernelK 2 Db.kE�E/. We introduce
the coordinates .x; y; x0; y0I �; 	; � 0; 	0/ on T �.E � E/ and we make the following
hypothesis

SS.K/ � f	C 	0 D 0g: (74)

We recall that L
 ' k
C ı 	, where 
C � E � E is defined in (55).

Proposition 4.29. Let K 2 Db.kE�E/ which satisfies (74). Then K ık
C '
k
C ıK . In particularK ı 	 sends Db.k
;lM / into itself. Moreover SS.K/

aıf	 < 0g �
f	 < 0g and SS.K/

aıf	 � 0g � f	 � 0g.
Proof. We define the projection � WM �V �M �V !M �M �V as the product
of idM�M with �0WV � V ! V , .y; y0/ 7! y � y0. Then the hypothesis (74) and
Corollary 2.8 giveK ' ��1.K 0/, whereK 0 D R��.K/. We also have by definition
k
C ' ��1.kM�M�
0 /. The base change formula applied to the Cartesian square

gives the first and third isomorphisms below:

K ık
C ' ��1.K 0 ? kM�M�
0 / ' ��1.kM�M�
0 ? K 0/ ' k
C ıK:

The last assertion follows from the hypothesis (74). ut
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5 The Tamarkin Category

We particularize the preceding results to the case where V D R and 
0 D ft 2
RI t � 0g. Hence, with the notations of (57), we have U
 D f� > 0g. As in Sect. 3
we denote by T �f�>0g.M �R/ the open subset f� > 0g of T �.M �R/ and we define
the map

�WT �f�>0g.M � R/! T �M; .x; t I �; �/ 7! .xI �=�/: (75)

We also use Notation 4.22. Moreover, for a closed subset A of T �M we set

Db
A.k



M / WD Db

��1.A/
.kM�RI f� > 0g/:

Lemma 5.1. Let A � T �M and F 2 Db
A.k



M /. Let A0 � T �M � R be given by

A0 D f.xI �; �/I � > 0; .xI �=�/ 2 Ag and consider F as an object of Db.k
;lM /.
Assume that �M is proper on A. Then A0 is a strict 
 -cone and SS.F / � O��1.A0/.
In particular supp.F / � �M .A/ � R.

Proof. The properness hypothesis gives A0 D A0 [ .�M .A/ � f� D 0g/ and this
implies the first assertion. Then Theorem 4.27 gives SS.F / � O��1.A0/[T �M�R.M�
R/. Hence, if .x; t I 0; 0/ 62 O��1.A0/, we have SS.F jU�R/ � T �U�R.U �R/ for some
neighborhood U of x. But L
F ' F and we deduce F jU�R D 0, which proves
.x; t I 0; 0/ 62 SS.F /. So we get SS.F / � O��1.A0/. ut
Example 5.2. (i) LetM D R endowed with the coordinate x and consider the set

Z D f.x; t/ 2M �RI �1 � x � 1; 0 � 2t < �x2 C 1g:

Consider the sheaf kZ and denote by .x; t I �; �/ the coordinates on T �.M�R/.
The set SS.kZ/ is given by

ft D 0;�1 � x � 1; � > 0; � D 0g [ f2t D �x2 C 1; � D x�; � > 0g
[fx D �1; t D 0; 0 � �� � �; � > 0g [ fx D 1; t D 0; 0 � � � �; � > 0g

[Z � f� D � D 0g:

It follows that, denoting by .xI u D �=�/ the coordinates in T �M , �.SS.kZ/\
.T �M � PT �R// is the set

fu D 0;�1 � x � 1g [ fu D x;�1 � x � 1g
[fx D �1;�1 � u � 0g [ fx D 1; 0 � u � 1g:

(ii) Let a 2 R and consider the set Z D f.x; t/ 2 M � RI t � axg. Then
�.SS.kZ// in T �M is the set f.xI u/I u D ag.

(iii) If G is a sheaf onM and F D G � ks�0, then �.SS.F // D SS.G/.
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The Separation Theorem

Using Lemma 5.1 we get the following particular case of Theorem 4.28:

Theorem 5.3 (See [12, Th. 3.2]). Let A and B be two compact subsets of T �M
and assume that A \ B D ;. Then, for any F 2 Db

A.k


M / and G 2 Db

B.k


M /, we

have HomDb.k
M /
.F;G/ ' 0.

6 Localization by Torsion Objects

In [12], Tamarkin introduces the notion of torsion objects, but does not study the
category of such objects systematically. Hence, most of the results of this section
are new.

In this section we set for short Z D .T �M/ � R � f� � 0g, a closed subset
of T �.M � R/. Recall that Db

Z.kM�R/ is the subcategory of F 2 Db.kM�R/ such
that SS.F / � Z. By Proposition 4.9 we have F 2 Db

Z.kM�R/ if and only if the
morphism (43) is an isomorphism, which reads

F ?np kM�Œ0;C1Œ ���! F: (76)

Define the map

Tc WM �R!M �R; .x; t/ 7! .x; t C c/:

For F 2 Db
Z.kM�R/ we deduce easily from (76)

F ?np kM�Œc;C1Œ ���! Tc�F: (77)

The inclusions Œd;C1Œ� Œc;C1Œ, for c � d , induce natural morphisms of
functors from Db

Z.kM�R/ to itself

�c;d WTc� ! Td�; c � d:

We have the identities:

Tc� ı Td� ' T.cCd/�; c; d 2 R; (78)

Te�.�c;d . � // D �eCc;eCd . � / D �c;d .Te�. � //; c � d; e 2 R; (79)

�c;d ı �d;e D �c;e; c � d � e: (80)

Definition 6.1 (Tamarkin). An object F 2 Db
Z.kM�R/ is called a torsion object if

�0;c.F / D 0 for some c � 0 (and hence all c0 � c).
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Let F 2 Db
Z.kM�R/ and assume that F is supported byM�Œa; b� for some compact

interval Œa; b� of R. Then F is a torsion object.

Remark 6.2. One can give an alternative definition of the torsion objects by using
the classical notion of ind-objects (see [6] for an exposition). An object F 2
Db
Z.kM�R/ is torsion if and only if the natural morphism F ! “lim�!

00
c

Tc�F is the
zero morphism.

We let Ntor be the full subcategory of Db
Z.kM�R/ consisting of torsion objects.

Lemma 6.3. Let F
u�! G

v�! H
w�! F Œ1� be a distinguished triangle in

Db
Z.kM�R/.

(i) If H belongs to Ntor, then there exist c � 0 and ˛WG ! Tc�F such that
�0;c.F / D ˛ ı u.

(ii) If there exist c � 0 and ˛WG ! Tc�F making the diagram

commutative, then H 2 Ntor.

Proof. (i) Choose c � 0 such that �0;c.H/ ' 0 and consider the diagram with
solid arrows

Since �0;c.HŒ�1�/ ' 0, we have �0;c.F / ıwŒ�1� D 0. Since Hom . � ; Tc�F / is
a cohomological functor we deduce the existence of ˛.

(ii) We apply Tc� twice and obtain morphisms of distinguished triangles:
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By hypothesis �0;c.H/ ı v D Tc�v ı Tc�u ı ˛ D 0. As above, we deduce the
existence of ˇ such that �0;c.H/ D ˇ ı w. Applying the morphism of functors
�0;c W id! Tc to ˇ we find

�0;c.Tc�H/ ı ˇ D Tc�ˇ ı �0;c.F Œ1�/:

We deduce:

�0;c.Tc�H/ ı �0;c.H/ D �0;c.Tc�H/ ı ˇ ı w D Tc�ˇ ı �0;c.F Œ1�/ ı w

D Tc�ˇ ı ˛Œ1� ı uŒ1� ı w D 0:

Using (78) we obtain �0;2c.H/ ' 0 so that H 2 Ntor.
ut

Theorem 6.4. The subcategory Ntor is a strictly full triangulated subcategory of
Db
Z.kM�R/.

Proof. It is clear that an object isomorphic to a torsion object is itself a torsion
object and that Ntor is stable by the shift functor. Hence it remains to check that if

F ! G ! H
C1��! is a distinguished triangle with F;G 2 Ntor then H 2 Ntor. We

choose c � 0 such that �0;c.F / D 0 and �0;c.G/ D 0 and we apply Lemma 6.3(ii)
to the diagram

ut
Corollary 6.5. For any F 2 Db

Z.kM�R/ and any c � 0, the cone of �0;c.F / is a
torsion object.

Proof. We apply Lemma 6.3(ii) to the commutative diagram

ut
The subcategory Db.k
;lM / of Db.kM�R/ is contained in Db

Z.kM�R/. So we can

define torsion objects in Db.k
;lM / or in the equivalent category Db.k
M /. We let N 

tor
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be the subcategory of torsion objects in Db.k
M /. Then Theorem 6.4 implies that
N



tor is a strictly full triangulated subcategory.

Definition 6.6. The triangulated category T .kM / is the localization of Db.k
M / by
N



tor. In other words, T .kM/ D Db.k
M /=N



tor.

By Corollary 6.5, �0;c.G/ becomes invertible in T .kM / for any G 2 Db.k
M /.
Hence for a morphism uWF ! G in Db.k
M / and for c � 0we can define �0;c.G/�1ı
uWF ! G in T .kM/. The family of �c;c0.G/’s defines an inductive system fTc�Ggc
and we have �0;c0.G/�1 ı �c;c0.G/ ı u D �0;c.G/

�1 ı u for c0 � c. This defines a
natural morphism:

lim�!
c!C1

HomDb.k
M /
.F; Tc�G/! HomT .kM /

.F;G/: (81)

Proposition 6.7. For any F;G 2 Db.k
M / the morphism (81) is an isomorphism.

Proof. (i) Let us first show that (81) is surjective. A morphism uWF ! G in

T .kM/ is given by F
v�! G0 s � G, where the cone of s is a torsion object. By

Lemma 6.3(i) there exist c � 0 and ˛WG0 ! Tc�G such that �0;c.G/ D ˛ ı s:

Hence we obtain u D �0;c.G/�1 ı˛ ıv in T .kM/. In other words u is the image
of ˛ ı v by (81).

(ii) Now we show that (81) is injective. We consider uWF ! Tc�G in Db.k
M /
such that �0c.G/�1 ı u D 0 in T .kM /. Then u D 0 in T .kM/ and this means
that there exists sWTc�G ! G0 such that the cone of s is a torsion object and
sıu D 0 in Db.k
M /. By Lemma 6.3(i) there exist d � 0 and ˛WG0 ! T.cCd/�G
such that �c;cCd .G/ D ˛ ı s:

We obtain �c;cCd .G/ ı u D ˛ ı s ı u D 0 which means that the image of u in
the left hand side of (81) is zero, as required.

ut
Recall the functor �
 in (69).
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Corollary 6.8. The composition Db.kM/
�
!Db.kM�RIU
/ ! T .kM/ is a fully

faithful functor.

Proof. For F;G 2 Db.kM /, the proof of Proposition 4.24 gives as well

HomDb.kM /
.G; F / ���! HomDb.kM�R/

.G � kŒ0;C1Œ; F � kŒc;C1Œ/

for any c � 0. Then the result follows from Proposition 6.7. ut

Strict Cones and Torsion

For a connected manifold M and F 2 Db
Z.kM�R/ we give a condition on SS.F /

which implies that F is torsion over any compact subset as soon as it is torsion at
one point.

We first give a preliminary result on M � I � R. We set E D R
2 and we take

coordinates .s; t I �; �/ on T �E . We fix ˛ > 0 and define the cone 
˛ D f.s; t/I t �
˛jsjg in E . We set U˛ D E � Int
 ı̨. We recall Proposition 4.9, reformulated
using (44): for F 2 Db.kM�E/, we have SS.F / � T �M � U˛ if and only if

F ?np kM�
˛ ' RsE�R
M�E�Int
˛ .q
�1
1 F / ���! F; (82)

where sE WM � E � E !M � E is the sum of E .

Proposition 6.9. Let I be an interval of R,M a manifold and qWM�I�R!M�
R the projection. Set 
 D I � Œ0;C1Œ. Let F 2 Db.kM�I�R/. We assume that there
exists a closed strict 
 -cone A � .T �I / � R such that SS.F / � T �M � O��1.A/.
Then, for any s1 < s2 2 I , Rq�.F˝kM�Œs1 ;s2Œ�R/ and Rq�.F˝kM��s1;s2��R/ are
torsion objects of Db

Z.kM�R/.

Proof. (i) We only consider G WD Rq�.F˝kM�Œs1 ;s2Œ�R/, the other case being
similar. We may restrict ourselves to a relatively compact subinterval of I
containing s1 and s2. Hence we may assume that SS.F / is contained in
T �M �f� � aj� jg for some a > 0. Then, applying Lemma 4.26 and changing
a if necessary, we may assume that I D R.

(ii) We set ˛ D a�1 so that 
 ı̨ D f� � aj� jg and SS.F / � T �M �
U˛ . Since SS.kM�Œs1;s2Œ�R/ � T �MM � T �R � T �RR, Corollary 2.7 gives
F˝kM�Œs1;s2Œ�R ' R
M��s1;s2��R.F / and the formula (82) gives

G ' Rq�RsE�R
M�D.q�11 F /;

where D D .E � Int
˛/ \ f.s; t; s0; t 0/I s1 < s C s0 � s2g. We consider the
commutative diagram
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where Qq.s; t; s0; t 0/ D .s; t; t 0/, Qq1.x; s; t; t 0/ D .x; s; t/ and Qs.x; s; t; t 0/ D
.x; t C t 0/. The adjunction between R.idM �Qq/Š and .idM �Qq/Š gives

G ' RQs�R.idM �Qq/�RHom .kM�D; .idM �Qq/Š Qq�11 F /Œ�1�
' RQs�RHom .kM � R QqŠkD; Qq�11 F /Œ�1�:

(83)

(iii) Through the isomorphism (82) the morphism �c.F / is induced by the mor-
phism kTc .E�Int
˛/ ! kE�Int
˛ , where Tc.s; t; s

0; t 0/ D .s; t; s0; t 0 C c/.
Using (83) it follows that �c.G/ is induced by the morphism uc WkTc .D/ ! kD .
Hence it is enough to see that the image of uc by R QqŠ is the zero morphism.
In the remainder of the proof we show that R QqŠkD and R QqŠkTc.D/ have disjoint
supports for c big enough.

(iv) For a given point .s; t; t 0/ 2 E �R we have Qq�1.s; t; t 0/\D D ; if t 0 < 0 and
otherwise

Qq�1.s; t; t 0/\D D fs0I s1 � s < s0 � s2 � s; t 0 � ˛js0jg
D �s1 � s; s2 � s� \ Œ�˛�1t 0; ˛�1t 0�:

This is ; or a half closed interval when t 0 is not in Is WDŒ�˛.s2�s/;�˛.s1�s/Œ.
It follows that supp.R QqŠkD/ is contained in D0 WD f.s; t; t 0/I t 0 2 Isg. The
support of R QqŠkTc.D/ is contained in T 0c .D0/, with T 0c .s; t; t 0/ D .s; t; c C t 0/.
Since Is is of length ˛.s2 � s1/ (independent of s) we obtainD0 \T 0c .D0/ D ;
for c > ˛.s2 � s1/.

ut
From now on, we consider a connected manifoldM and F 2 Db.kM�R/. We set


 DM � Œ0;C1Œ and we make the hypothesis

SS.F / � O��1.A/ for some closed 
 -strict cone A � .T �M/ �R. (84)

In particular F 2 Db
f��0g.kM�R/.

Lemma 6.10. Let F 2 Db.kM�R/ satisfying (84). We assume that there exists
x 2 M such that F jfxg�R is a torsion object in Db

f��0g.kR/. Then there exists a

neighborhoodU of x such that F jU�R is a torsion object in Db
f��0g.kU�R/.

Proof. (i) We may assume that M is an open set in some vector space V and
x D 0. We take coordinates .x; t I �; �/ on T �.M � R/. We may also assume
that SS.F / � f� � ajj�jjg for some a > 0 and that M contains the open ball
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of radius 1, say B . We set I D�� 1; 1Œ and take coordinates .sI �/ on T �I . We
define the homotopy hWB � I � R ! B � R, .x; s; t/ 7! .sx; t/. For s0 2 I
we set hs0 D h.	; s0; 	/.

(ii) We check that h�1.F jB�R/ satisfies the hypothesis of Proposition 6.9. We
have h�.x; s; t I �; �/ D .sxI t�; �/ and hd .x; s; t I �; �/ D .x; s; t I s�; hx; �i; �/.
Hence Kerhd is contained in f� D 0g. Since SS.F /\ f� D 0g is contained in
the zero-section, F is non-characteristic for h and we find

SS.h�1.F // � f.x0; s0; t 0I � 0; � 0; � 0/I � 0 D hx0; � 0i; � 0 � ajj� 0jj=js0jg:

On B � I we have js0j � 1 and jhx0; � 0ij � jj� 0jj. We deduce SS.h�1.F // �
f� 0 � aj� 0jg on B � I � R, as required.

(iii) We apply Proposition 6.9 to h�1.F / on B � I � R with s1 D 0, s2 D 1=2.
For J � I we set GJ D Rq�.h�1.F jB�R/˝kM�J�R/. We note that Gfsg '
h�1s .F jB�R/ for any s 2 I . We have the distinguished triangles on B �R

G�0;1=2� ! GŒ0;1=2� ! Gf0g
C1��!; GŒ0;1=2Œ ! GŒ0;1=2� ! Gf1=2g

C1��!;

where G�0;1=2� and GŒ0;1=2Œ are torsion by Proposition 6.9. Since h0 is the
contraction B � R ! f0g � R the hypothesis implies that Gf0g is torsion.
Hence GŒ0;1=2� is torsion by the first distinguished triangle and then Gf1=2g also
is torsion by the second one. Since h1=2 is a diffeomorphism from B � R to
U � R, where U is the ball of radius 1=2 we deduce that F jU�R is torsion.

ut
Lemma 6.11. Let F 2 Db.kM�R/ satisfying (84). We assume that there exists x0 2
M such that F jfx0g�R is a torsion object in Db

f��0g.kR/. Then F jfxg�R also is a

torsion object in Db
f��0g.kR/ for all x 2M .

Proof. We set I D� � 1; 1Œ and we choose an immersion i W I ! M such that
i.0/ D x0 and i.1=2/ D x. Then i�1F satisfies the hypothesis of Proposition 6.9 on
I�R. We let qW I�R! R be the projection. ThenF jfi.s/g�R ' Rq�.i�1F˝kfsg�R/
for any s 2 I . Now we have the distinguished triangles

Rq�.i�1F˝k�0;1=2��R/! Rq�.i�1F˝kŒ0;1=2��R/! i�1F jfx0g�R
C1��!;

Rq�.i�1F˝kŒ0;1=2Œ�R/! Rq�.i�1F˝kŒ0;1=2��R/! i�1F jfxg�R C1��!

and we conclude as in part (iii) of the proof of Lemma 6.10. ut
Theorem 6.12. Let M be a connected manifold and let F 2 Db.kM�R/ satisfy-
ing (84). Then the following assertions are equivalent:

(i) there exists x0 2 M such that F jfx0g�R is a torsion object in Db
f��0g.kR/,

(ii) for any relatively compact open subset U � M the restriction F jU�R is a
torsion object in Db

f��0g.kU�R/.
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Proof. We only need to prove that (i) implies (ii). By Lemmas 6.10 and 6.11 we
can find a finite cover of U , say fUig, i D 1; : : : ; n, such that F jUi�R is torsion.
We conclude with the remark that, for any two open subsets V;W � M , if F jV�R
and F jW�R are torsion, then so is F j.V[W /�R. Indeed we apply Lemma 6.3 to the

triangle F.V\W /�R ! FV�R ˚ FW�R ! F.V[W /�R
C1��! and the commutative

square

ut

7 Tamarkin’s Non Displaceability Theorem

We will explain here Tamarkin’s non displaceability theorem which gives a criterion
in order that two compact subsets of T �M are non displaceable.

In this section we consider a Hamiltonian isotopy ˚ WT �M � I ! T �M
satisfying (29), that is, there exists a compact set C � T �M such that 'sjT �MnC is
the identity for all s 2 I .

Let Q̊ W PT �.M � R/ � I ! PT �.M � R/ be the homogeneous Hamiltonian
isotopy given by Proposition 3.2 and Q� � T �.M � R � M � R � I / the conic
Lagrangian submanifold associated to Q̊ in (26). Let QK 2 Dlb.kM�R�M�R�I / be
the quantization of Q̊ given in Theorem 3.1.

Invariance by Hamiltonian Isotopy

For J � I a relatively compact subinterval of I , we introduce the kernel

KJ D Rq1234Š. QK˝kM�R�M�R�J / 2 Db.kM�R�M�R/;

where q1234 is the projection on the first four factors. We remark that QK and KJ

satisfy the hypothesis (74). Hence, by Proposition 4.29, composition with KJ

defines a functor

�J WDb.k
M /! Db.k
M /; F 7! KJ ıF: (85)

We note that Kfsg ' QKjM�R�M�R�fsg . We set for short �s D �fsg. We have
�0 ' id.
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Theorem 7.1. Let ˚ WT �M �I ! T �M be a Hamiltonian isotopy satisfying (29).
For s 2 I and J � I a relatively compact subinterval let �J ; �sWDb.k
M / !
Db.k
M / be the functors defined in (85). Then for A a closed subset of T �M and
F 2 Db

A.k


M / we have

(i) �s.F / 2 Db
's.A/

.k
M / for any s 2 I ,
(ii) �Œa;bŒ.F / and ��a;b�.F / are torsion objects for any a < b 2 I ,

(iii) for s 2 I , s � 0, there exist distinguished triangles

��0;s�.F /! �Œ0;s�.F /! F
C1��!; �Œ0;sŒ.F /! �Œ0;s�.F /! �s.F /

C1��!

and similar ones for s � 0. In particular we have a natural isomorphism
F ' �s.F / in T .kM/ for any s 2 I .

Proof. (i) We set Q�s D Q� ı T �s I . This is the graph of Q's . Hence

SS.�s.F // \ f� > 0g � Q�s ı ��1.A/ D Q's.��1.A// D ��1.'s.A//;

which proves the first statement.
(ii)–(iii) (a) We set QF D QK ıF which belongs to Dlb.k
M�I / by Proposition 4.29.

We have SS. QF /\f� > 0g � Q�ı��1.A/. As in Lemma 5.1 we defineA0 � T �M�R
by A0 D f.xI �; �/I � > 0; .xI �=�/ 2 Ag. Then A0 is a strict 
 -cone. It follows that
there exists a closed strict 
 -cone B � T �.M � I / � R such that Q� ı ��1.A/ �
O��1.B/\f� > 0g. Then Lemma 5.1 gives SS. QF / � O��1.B/[T �M�I�R.M�I�R/.
In particular QF jM�J�R satisfies the hypothesis of Proposition 6.9 for any relatively
compact subinterval J � I .

(b) We let qWM � I � R ! M � R be the projection. For a relatively compact
subinterval J � I we have �J .F / ' Rq�. QF˝kM�J�R/. Then (ii) follows from
Proposition 6.9. The triangles in (iii) are induced by the excision triangles associated
with the inclusions f0g � Œ0; s� and fsg � Œ0; s�. Then (ii) givesF � �� �Œ0;s�.F / ���!
�s.F / in T .kM /. ut

Application to Non Displaceability

Recall that two compact subsets A and B of T �M are called mutually non
displaceable if, for any Hamiltonian isotopy ˚ WT �M � I ! T �M satisfying (29)
and any s 2 I , A \ 's.B/ 6D ;. A compact subset A is called non displaceable
if A and A are mutually non displaceable. Let A and B be two compact subsets
of T �M , let F 2 Db

A.k

;l
M / and G 2 Db

B.k

;l
M /. Let q2WM � R ! R be the

projection. Recall that Hom�.F;G/ 2 Db.k
;rM / by (62). We deduce by adjunction
that Rq2�Hom�.F;G/ 2 Db.k
;r /. We shall consider the following hypothesis:

Rq2�Hom�.F;G/ is not torsion. (86)
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Theorem 7.2 (The Non Displaceability Theorem of [12, Th. 3.1]). Let A and
B be two compact subsets of T �M . Assume that there exist F 2 Db

A.k

;l
M / and

G 2 Db
B.k


;l
M / satisfying the hypothesis (86). Then A and B are mutually non

displaceable in T �M .

Proof. Assume ˚ is a Hamiltonian isotopy such that 's0.B/\A D ;. We consider
Q̊ W PT �.M�R/�I ! PT �.M�R/ and QK 2 Dlb.kM�R�M�R�I / as in the introduction

of this section.
We defineF 0; G0 2 Db.k
;lM�I / by F 0 D F�kI andG0 D QKıG. We let q23WM�

R � I ! R � I be the projection. We have F ' F 0jM�R�fsg and we set Gs D
G0jM�R�fsg. By Lemma 5.1 and Corollary 4.15, we haveHom�.F 0; G0/jM�R�fsg '
Hom�.F;Gs/. By Lemma 5.1 q23 is proper on the support of Hom�.F 0; G0/ and
we get

.Rq23�Hom�.F 0; G0//jM�R�fsg ' Rq2�Hom�.F;Gs/:

Since SS.Gs/ � ��1.'s.B//, Theorem 5.3 implies Rq2�Hom�.F;Gs0 / D 0.
By Proposition 4.13 and Lemma 4.7, the microsupport of Hom�.F 0; G0/ is

contained in O��1.C / for some strict 
 -cone C . Hence a similar inclusion holds
for the microsupport of Rq23�Hom�.F 0; G0/. Then Theorem 6.12 implies that
Hom�.F;Gs/ is torsion for all s 2 I . In particular Hom�.F;G/ is torsion, which
contradicts the hypothesis (86). ut
Corollary 7.3. Let A and B be two compact subsets of T �M . Assume that there
exist F 2 Db

A.k


M / andG 2 Db

B.k


M / such that HomT .kM /

.F;G/ 6D 0. Then A and
B are mutually non displaceable in T �M .

Proof. By Proposition 6.7, there exists c 2 R such that the morphism induced by
�c;d .G/, HomDb.k
M /

.F; Tc�G/! HomDb.k
M /
.F; Td�G/ is non zero for all d � c.

But Lemma 4.18 gives

HomDb.k
M /
.F; Tc�G/ ' H0

Œ0;C1Œ.RIRq2�Hom�.F; Tc�G//:

On the other hand we can see that Rq2�Hom�.F; Tc�G/ ' Tc�Rq2�Hom�.F;G/
and that �c;d .G/ induces �c;d .Rq2�Hom�.F;G// through this isomorphism. Hence
Rq2�Hom�.F;G/ is non torsion and we can apply Theorem 7.2. ut
Let A be a closed conic subset of T �M . We know by Corollary 6.8 that the functor

jM WDb
A.kM /! T .kM/; F 7! F � kŒ0;C1Œ (87)

is fully faithful. Applying Corollary 7.3 with F D G D jM .kM/ 2 T .kM/ and
A D B D T �MM , we get

Corollary 7.4. Assume M is compact. ThenM is non displaceable in T �M .
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In [12], Tamarkin applies the non displaceability Theorem 7.2 to prove that the
following sets are non displaceable.

Set X D P.C/n endowed with his standard real symplectic structure. Consider
the sets A WD P.R/n and B WD T D fz D .z0; : : : ; zn/I jz0j D : : : jznjg. Then A and
B are non displaceable and A and B are mutually non displaceable.
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1 Introduction

In recent years, it has been realized that a solution to a variety of different prob-
lems in theoretical and mathematical physics—matrix models, four-dimensional
supersymmetric gauge theory, quantum invariants of knots and 3-manifolds, and
topological strings—leads to what sometimes is referred to as the “quantization of
an algebraic curve.”

To be more precise, the classical phase space which is quantized in this problem
is the two-dimensional complex plane parametrized by the coordinates u and v

.u; v/ 2 C � C ; (1)

and equipped with the canonical holomorphic symplectic form

! D i

„du ^ dv : (2)

In this space, a polynomial A.u; v/ defines an algebraic curve

C W A.u; v/ D 0 ; (3)

which is automatically Lagrangian with respect to the holomorphic symplectic
form (2). A close cousin of this problem (that we consider in parallel) is obtained
by taking A to be a polynomial in the C�-valued variables

x D eu ; y D ev : (4)

In either case, the problem is to quantize the classical phase space C � C (resp.
C
� � C

�) with the symplectic form (2) and a classical “state” defined by the zero
locus of the polynomialA.

Classically, u and v have the Poisson bracket fv; ug D „ that follows directly
from (2). Quantization turns u and v into operators, Ou and Ov, which satisfy the
commutation relation

ŒOv; Ou� D „ : (5)

Therefore, quantization deforms the algebra of functions on the phase space into a
non-commutative algebra of operators. In particular, it maps a polynomial function
A.u; v/ (resp. A.x; y/) into an operator OA:

OA D OA0 C „ OA1 C „2 OA2 C : : : ; (6)

where OA0 
 A. Since Ou and Ov (resp. Ox and Oy) do not commute, there is no
unique way to write the perturbative expansion (6). After all, changing the order
of operators changes the powers of „. In practice, however, one often makes a
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choice of polarization, i.e. a choice of what one regards as canonical coordinates and
conjugate momenta. For example, in most of the present paper we make a simple
choice consistent with (5):

Ou D u ; Ov D „@u 
 „ @
@u
; (7)

where u plays the role of a “coordinate” and v is the “momentum.” With this or any
other choice, one has a natural ordering of operators in (6), such that in every term
momenta appear to the right of the coordinates. This leads to a “canonical” form of
the perturbative expansion (6) that we will try to follow in the present paper.

Starting with the classical curve (3) defined by the zero locus of A.u; v/ or
A.x; y/, our goal will be to construct the quantum operator OA, in particular, to
study the structure of its perturbative expansion (6). A priori, it is not even clear
if a solution to this problem exists and, if it does, whether it is unique. We
will answer these questions in affirmative and describe a systematic method to
produce “quantum corrections” OAk , for k � 1, solely from the data of A.u; v/
(resp. A.x; y/) by drawing important lessons from applications where this problem
naturally appears:

1. SUSY gauge theory: In N D 2 supersymmetric gauge theory, the curve (3) is
known as the Seiberg-Witten curve [48], and „ is related to the ˝-deformation
[44].

2. Chern–Simons theory: In Chern–Simons theory with a Wilson loop, the
polynomial A.x; y/ is a topological invariant called the A-polynomial and plays
a role similar to that of the Seiberg–Witten curve in N D 2 gauge theory [32].
The parameter „ is the coupling constant of Chern–Simons theory.

3. Matrix models: In matrix models, the curve (3) is called the spectral curve, and
„ D 1=N controls the expansion in (inverse) matrix size [12].

4. Topological strings: In topological string theory [2, 18], every curve of the
form (3) defines a (non-compact) Calabi–Yau threefold geometry in which
strings propagate, namely a hypersurface in .C�/2 � C

2:

A.x; y/ D zw : (8)

The parameter „ is the string coupling constant.
5. D-modules: There is also a mathematical theory of D-modules [35, 36, 38],

which studies modules over rings of differential operators, and in particular
operators with properties analogous to those which we expect from OA. Some
connections of this theory to the above mentioned physics systems were analyzed
in [15, 17, 18].

In all these applications, the primary object of interest is the partition function,
Z.u/, or, to be more precise, a collection of functions Z.˛/.u/ labeled by a choice
of root v.˛/ D v.˛/.u/ to Eq. (3):

Z.˛/.u/ D Z.u; v.˛/.u// : (9)
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The right-hand side of this expression is the partition function Z.u; v/, which is a
globally defined function on the Riemann surface (3) and which does not depend on
the choice of ˛. The existence of such a globally defined partition function is less
obvious in some of the above mentioned applications compared to others. In our
discussion below, we find it more convenient and often more illuminating to work
with Z.u; v/ rather than with a collection of functionsZ.˛/.u/.

From the viewpoint of quantization, the partition functionZ is simply the wave-
function associated to a classical state (3). It obeys a Schrödinger-like equation

OAZ D 0 ; (10)

and has a perturbative expansion of the form

Z D exp

 
1

„S0 C
1X
nD0

SnC1 „n
!
: (11)

The quantum operator OA in (10) is precisely the operator obtained by a quantization
ofA.u; v/ orA.x; y/, and the Schrödinger-like equation (10) will be our link relating
its perturbative expansion (6) to that of the partition function (11).

Indeed, recently a number of powerful methods have been developed that allow
to compute perturbative terms Sn in the „-expansion. In particular, insights from
matrix models suggest that the perturbative expansion of the partition function (11)
should be thought of as a largeN expansion of the determinant expectation value in
random matrix theory

Z D
D

det.u �M/
E
: (12)

This expectation value is computed in some ensemble of matrices M of size
N D „�1, with respect to the matrix measure DM e�TrV.M/=„, where V.M/ is a
potential of a matrix model. Then, by exploring the relation between perturbative
expansions of OA and Z, we argue that having a systematic procedure for computing
one is essentially equivalent to having a similar procedure for the other. In particular,
by shifting the focus to OA, we obtain the following universal formula for the first
quantum correction OA1:

OA1 D 1

2

�
@uA

@vA
@2v C

@uT

T
@v

�
A ; (13)

expressed in terms of the classical A-polynomial and the “torsion” T .u/ that
determines the subleading term in the perturbative expansion (11) of the partition
function:

S1 D �1
2

logT .u/ : (14)
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Usually, the torsion is relatively easy to compute, even without detailed knowledge
of the higher-order quantum corrections to (6) or (11) which typically require more
powerful techniques. For instance, in the examples coming from knot theory the
torsion T .u/ is a close cousin of the “classical” knot invariant called the Alexander
polynomial.

Furthermore, it is curious to note that, generically, for curves in C
� � C

� the
leading quantum correction (13) completely determines the entire quantum operator
OA when all „-corrections can be summed up to powers1 of q D e„ W

OA D
X

.m;n/2D
am;n q

cm;n Oxm Oyn ; (15)

in other words, when OA can be written as a (Laurent) polynomial in Ox, Oy, and q.
Here, D is a two-dimensional lattice polytope; in many examples D is simply the
Newton polygon ofA.x; y/. Indeed, the coefficients am;n are simply the coefficients
of the classical polynomial, A D P

am;nx
myn, which is obtained from (15) in the

limit q ! 1. On the other hand, the exponents cm;n can be determined by requiring
that (13) holds for all values of x and y (such that A.x; y/ D 0):

X
.m;n/2D

am;n cm;n x
myn D 1

2

�
@uA

@vA
@2v C

@uT

T
@v

�
A : (16)

For curves of low genus this formula takes even a more elementary form (79) which,
as we explain, is very convenient for calculations of OA. In Sect. 3 we will illustrate
how this works in some simple knot theory examples, and in Sects. 6 and 7 in several
examples from the topological string theory.

2 Topological Recursion Versus Quantum Curves

In this section, we collect the necessary facts about the perturbative structure of the
partition function (11) and the Schrödinger-like equation (10) that, when combined
together, can tell us how the polynomialA.u; v/ or A.x; y/ gets quantized,

A Ý OA : (17)

To the leading order in the „-expansion, OA is obtained from A simply by replacing
u and v by the quantum operators Ou and Ov. Then, with the choice of polarization as

1It seems that all polynomials A.x; y/ that come from geometry have this property. Why this
happens is a mystery.
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in (7) the Schrödinger-like equation (10) implies the following leading behavior of
the wave-function (11):

S0 D
Z

vdu for curves in C �C ; (18)

D
Z

logy
dx

x
for curves in C

� � C
� :

In fact, in any approach to quantization this should be the leading behavior of the
semi-classical wave function associated to the classical state A D 0. What about the
higher-order terms Sn with n � 1?

In the introduction we mentioned several recent developments that shed light on
the perturbative (and, in some cases, even non-perturbative) structure of the partition
function (11). One of such recent developments is the topological recursion of
Eynard–Orantin [28] and its extension to curves in C

� �C
� called the “remodeling

conjecture” [9, 41]. These techniques are ideally suited for understanding the
analytic structure of the quantization (17).

2.1 Topological Recursion

The starting point of the topological recursion [28] is the choice2 of a parametriza-
tion, i.e. a choice of two functions of a local variable p,

�
u D u.p/
v D v.p/

(19)

where u.p/ is assumed to have non-degenerate critical points. (In particular, for
curves of genus zero, both u.p/ and v.p/ can be rational functions. We are not
going to assume this, however, and, unless noted otherwise, much of our discussion
below applies to curves of arbitrary genus.) Then, from this data alone one can
recursively determine the perturbative coefficients Sn of the partition function (11)
via a systematic procedure that we explain below.

For example, as we already noted in (18) the leading term S0 is obtained by
integrating a 1-form differential � D vdu along a path on the curve A.u; v/ D 0.
When expressed in terms of the local coordinate p, this integral looks like

S0 D
Z p

� D
Z p

v.p/du.p/ ; (20)

and sometimes is also referred to as the anti-derivative of �. Then, the next-
to-the-leading term S1 is determined by the two-point function, or the so-called

2As will be explained in Sect. 2.3, this choice is related to the choice of polarization.
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annulus amplitude. For a curve C of genus zero it can be expressed in terms of the
parametrization data (19) by the following formula3

S1 D �1
2

log
du

dp
; (21)

whose origin and generalization to curves of arbitrary genus will be discussed in
Sect. 2.5. We recall that, according to (14), the term S1 contains information about
the “torsion”T .u/ and generically is all one needs in order to determine the quantum
curve OA when it has a nice polynomial form (15).

In a similar manner, the topological recursion of Eynard–Orantin [28] can be
used to determine all the other higher-order terms Sn, n � 2. Starting with the
parametrization (19), one first defines a set of symmetric degree-n meromorphic
differential forms W g

n D W
g
n .p1; p2; : : : ; pn/ on C n via a systematic procedure

that we shall review in a moment. Then, by taking suitable integrals and residues
one obtains respectively the desired Sn’s, as well as their “closed string” analogs
known as the genus-g free energies Fg:

u.p/ and v.p/ Ý W
g
n Ý Sn and Fg (22)

Specifically, motivated by the form of a determinant in (12), or a definition of
the Baker–Akhiezer function in [27, 28], we construct Sn’s as the following linear
combinations of the integrated multilinear meromorphic differentials:

Sn.p/ D
X

2g�1CkDn

1

kŠ

Z p

Qp
	 	 	
Z p

Qp„ ƒ‚ …
k times

W
g

k .p
0
1; : : : ; p

0
k/ ; (23)

where each differential form W
g

k of degree k is integrated k times.4 The base point
of integration Qp is chosen such that u. Qp/ ! 1 [28]. In turn, the multilinear
differentials W g

n are obtained by taking certain residues around critical points of
the “Morse function” u.p/, i.e. solutions to the equations

du.p/jp�

i
D 0 , @vAjp�

i
D 0 ; (24)

3Notice, our prescription here and also in Eq. (23) differs from that in [16]. As will be explained
below, these differences are important for overcoming the obstacles in [16] and reproducing the
“quantum” q-corrections in the quantization of the A-polynomial (17).
4For curves of genus one or higher one should consider more general Baker–Akhiezer function,
which in addition includes non-perturbative corrections represented by certain � -functions [27].
As the examples which we consider concern mostly curves of genus zero, we do not analyse such
corrections explicitly.
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where the standard shorthand notation @v 
 @
@v is used. Following [28], we shall

refer to these points as the “branch points” of the curve C in parametrization (19).
For each point p in the neighborhood of a branch point p�i there is a unique,
conjugate point Np, such that

u.p/ D u. Np/ : (25)

The next essential ingredient for the topological recursion is the differential 1-
form5 called the “vertex”:

!.p/ D �
v. Np/ � v.p/

�
du.p/ for curves in C � C ; (26)

D �
logy. Np/� logy.p/

�dx.p/

x.p/
for curves in C

� � C
� ;

and the 2-formB.p; q/ known as the Bergman kernel. The Bergman kernelB.p; q/
is defined as the unique meromorphic differential with exactly one pole, which is a
double pole at p D q with no residue, and with vanishing integral over AI -cyclesH
AI
B.p; q/ D 0 (in a canonical basis of cycles .AI ; BI / for C ). Thus, for curves

of genus zero the Bergman kernel takes a particularly simple form

B.p; q/ D dp dq

.p � q/2 ; (27)

and its form for curves of higher genus is presented in Sect. 2.5. A closely related
quantity is a 1-form, defined in a neighborhood of a branch point q�i

dEq.p/ D 1

2

Z Nq
q

B.�; p/ :

Finally, the last important ingredient is the recursion kernelK.q; p/,

K.q; p/ D dEq.p/

!.q/
: (28)

Having defined the above ingredients we can present the recursion itself. When
expressed in variables .u; v/, the recursion has the same form for curves in C�C as
it does for curves in C

��C�. It determines higher-degree meromorphic differentials
W

g
n .p1; : : : ; pn/ from those of lower degree. The initial data for the recursion are

one- and two-point correlators of genus zero, the former vanishing by definition and
the latter given by the Bergman kernel:

5For reasons that will become clear later, we choose a sign opposite to the conventions of [28].
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Fig. 1 A graphical representation of the Eynard–Orantin topological recursion

W 0
1 .p/ D 0 ; (29)

W 0
2 .p1; p2/ D B.p1; p2/ : (30)

It is also understood that W g<0
n D 0.

The other differentials are defined recursively as follows. For a set of indices J
denote pJ D fpi gi2J . Then, forN D f1; : : : ; ng and the corresponding set of points
pN D fp1; : : : ; png define

W
g
nC1.p;pN / D

X
q�

i

Resq!q�

i
K.q; p/

�
W

g�1
nC2 .q; Nq;pN /C

C
gX

mD0

X
J�N

W m
jJ jC1.q;pJ /W

g�m
n�jJ jC1. Nq;pN=J

�
;

(31)

where
P

J�N denotes a sum over all subsets J of N , cf. Fig. 1. These correlators
have many interesting properties. For example, anyW g

n .p1; : : : ; pn/ is a symmetric
function of pi . Furthermore, apart from the special case of g D 0 and n D 2, the
poles of W g

n .p1; : : : ; pn/ in variables pi appear only at the branch points. In addi-
tion, theAI -cycle integrals with respect to any pi vanish,

H
pi2AI W

g
n .p1; : : : ; pn/ D

0. For a detailed discussion of these and many other features of W g
n see [28].

Let us briefly illustrate how the recursion procedure works. First, from the
recursion kernel (28) and from the Bergman kernel (30) one finds the genus-1 one-
point correlator

W 1
1 .p/ D

X
q�

i

Resq!q�

i
K.q; p/W 0

2 .q; Nq/ : (32)
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Then, the following series (with gC n D 3) is determined

W 0
3 .p; p1; p2/ D (33)

D
X
q�

i

Resq!q�

i
K.q; p/

�
�
W 0
2 .q; p1/W

0
2 . Nq; p2/CW 0

2 . Nq; p1/W 0
2 .q; p2/

�
;

W 1
2 .p; p1/ D D

X
q�

i

Resq!q�

i
K.q; p/

�
�
W 0
3 .q; Nq; p1/C 2W 1

1 .q/W
0
2 . Nq; p1/

�
; (34)

W 2
1 .p/ D D

X
q�

i

Resq!q�

i
K.q; p/

�
W 1
2 .q; Nq/CW 1

1 .q/W
1
1 . Nq/

�
: (35)

Next, one finds a series W 0
4 ;W

1
3 ;W

2
2 ;W

3
1 with g C n D 4, and so on. In the end,

from each such series one can determine one more Sn using (23). For example, as
will be discussed in Sect. 2.5, S1 is obtained by integrating the Bergman kernel:

S1.p/ D 1

2
lim

p1!p2Dp

Z �
B.p1; p2/ � du.p1/ du.p2/

.u.p1/� u.p2//2

�
; (36)

and for curves of genus zero this formula reproduces the expression (21) proposed
earlier. At the next step, from the series of the multilinear differentials (33)–(35) one
finds the next term in the perturbative series (11):

S2.p/ D
Z p

W 1
1 .p1/C

1

3Š

Z p Z p Z p

W 0
3 .p1; p2; p3/ ; (37)

and so on.
While not of our immediate concern in this paper, for completeness we also

recall a definition of genus-g free energies Fg . For g � 2 they come6 from the
correspondingW g

1 :

Fg D 1

2g � 2
X
q�

i

Resq!q�

i
S0.q/W

g
1 .q/ ; (38)

6Notice, compared to the conventions of [28] we introduce an extra minus sign in our definition of
Fg in order to account for the sign of W g

1 originating from the sign in (26).
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where S0.q/ D
R q v.p/du.p/, while F0 and F1 are defined independently in a more

intricate way presented in [28]. Among various interesting properties of Fg the most
important one is their invariance under symplectic transformations of the spectral
curve.

Finally, since the relation between Sn and W g

k will be crucial for computing OA
from the classical curve A D 0 and its parametrization, let us briefly explain our
motivation behind (23). Recall, that the correlators W g

k .p1; : : : ; pk/ in (23) were
originally introduced [28] in a way which generalizes and, when an underlying
matrix model exists, reproduces connected contributions to the matrix model
expectation value

D
Tr
� 1

u.p1/ �M
�
	 	 	Tr

� 1

u.pk/�M
�E

conn
D
1X
gD0
„2g�2Ck W

g

k .p1; : : : ; pk/

du.p1/ : : : du.pk/

in an ensemble of matricesM of size N D „�1.7 Integrating both sides with respect
to all variables and then setting p1 D : : : D pk D p, we get

D�
Tr log

�
u.p/�M ��kE

conn
D
1X
gD0
„2g�2Ck

Z p

	 	 	
Z p

W
g

k .p
0
1; : : : ; p

0
k/:

Dividing both sides by kŠ and summing over k we get

D
det.u �M/

E
conn
D
1X
nD0
„n�1Sn.p/;

with Sn.p/ defined in (23). Whereas the left hand side represents the connected
expectation value, the right hand side plays the role of the free energy, so that

Z D
D

det.u �M/
E
D e 1

„

P
1

gD0 „nSn.p/:

This result is in agreement with (11) and (12) and provides the motivation for the
definition (23). From the matrix model point of view, the free energies Fg defined
in (38) encode the total partition function

h1i D
Z

DMe�
1
„

TrV.M/ D e
P

1

gD0 „2g�2Fg : (39)

From a string theory viewpoint, this partition function would correspond to closed
string amplitudes. In fact, in many instances relevant to Seiberg–Witten theory

7Strictly speaking, this equation holds for k > 2 and there are some corrections to the lowest order
terms with k D 1 and k D 2 [28].
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or topological strings, matrix models which encode corresponding partition func-
tions (39) have been explicitly constructed in [3, 24–26, 37, 46, 49].

2.2 Quantum Curves and Differential Hierarchies

Our next goal is to compare the results of the topological recursion to the structure
of the “quantum curve”

OA ' 0 ; (40)

where we used a shorthand notation “'” to write (10) in a form that makes a
connection with its classical limit A.x; y/ D 0 manifest, cf. [19]. In general, the
Schrödinger-like equation (10) and its abbreviated form (40) is either a q-difference
equation (for curves in C

� � C
�) or an ordinary differential equation (for curves in

C � C). In either case, we need to write it as a power series in „, which was the
expansion parameter in the topological recursion.

In practice, one needs to substitute the perturbative expansions (6) and (11) into
the Schrödinger-like equation (10),

� OA0 C „ OA1 C „2 OA2 C : : :� exp

 
1

„
1X
nD0

Sn „n
!
D 0 ; (41)

and collect all terms of the same order in „-expansion. This requires some algebra
(see [21] and Appendix 1), but after the dust settles one finds8 a nice hierarchy of
“loop equations”

nX
rD0

DrAn�r D 0 ; (42)

expressed in terms of symbols An�r of the operators OAn�r and in terms of
differential operators Dr . Specifically, each Dr is a differential operator of degree
2r ; it can be written as a degree-2r polynomial in @v 
 @

@v , whose coefficients are

8Once again, we point out that, when expressed in terms of variables u and v, most of our formulas
have the same form on any complex symplectic twofold with the holomorphic symplectic 2-
form (2). In particular, the hierarchy of differential equations (42) written in variables .u; v/ looks
identical for curves in C � C and in C

� � C
�. Of course, the reason is simple: it is not the

algebraic structure, but, rather, the symplectic structure that matters in the quantization problem.
For this reason, throughout the paper we write most of our general formulas in variables .u; v/ with
understanding that, unless noted otherwise, they apply to curves in arbitrary complex symplectic
twofold with the holomorphic symplectic 2-form (2).
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polynomial expressions in functions Sk.u/ and their derivatives. For example, the
first few differential operators look like

D0 D 1 ; (43a)

D1 D S 000
2
@2v C S 01@v ; (43b)

D2 D .S 000 /2

8
@4v C

1

6

�
S 0000 C 3S 000 S 01

�
@3v C

1

2

�
S 001 C .S 01/2

�
@2v C S 02@v ; (43c)

:::

and yield the corresponding equations, at each order „n in (42):

„0 W A D 0 ; (44)

„1 W
�S 000
2
@2v C S 01@v

�
AC A1 D 0 ; (45)

:::

„n W DnACDn�1A1 C : : :C An D 0 ; (46)

:::

The first equation is equivalent to the classical curve equation (3), provided S 00 

dS0
du D v which, in turn, leads to the expression (18) for S0.u/. The second

equation (45) is also familiar from (13) and (16), where the second order differential
operator D1 acting on A0 
 A was expressed in terms of the “torsion” T .u/. If we
know the partition function Z, then, at each order „n, the above equations uniquely
determine the correction OAn; or vice versa: from the knowledge of the total OA, at
each order „n, we can determine Sn (up to an irrelevant normalization constant).

More generally, the operators Dr are defined via the generating function

1X
rD0
„rDr D exp

 1X
nD1
„ndn

!
; (47)

where

dn D
nC1X
rD1

S
.r/
nC1�r
rŠ

.@v/
r : (48)

For example, the explicit expressions for small values of n
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d1 D 1

2
S 000 @2v C S 01@v ;

d2 D 1

6
S 0000 @3v C

1

2
S 001 @2v C S 02@v ;

d3 D 1

4Š
S
.4/
0 @4v C

1

3Š
S 0001 @3v C

1

2
S 002 @2v C S 03@v ;

lead to the formulas (43). More details and a derivation of the above hierarchy are
given in Appendix 1.

Our goal in the rest of the paper is to combine the steps in Sects. 2.1 and 2.2
into a single technique that can produce a quantum operator OA starting with a
parametrization of the classical curve (3), much as in the topological recursion:

u.p/ and v.p/ Ý OA : (49)

Basically, one can use the output of (22) as an input for (44)–(46) (written more
compactly in (42)) to produce a perturbative expansion (6).

2.3 Parametrizations and Polarizations

The quantization procedure (17) on one hand, and the topological recursion (22) on
the other come with certain inherent ambiguities which are not unrelated.

In quantization, one needs to split the coordinates on the phase space into
“canonical coordinates” and “conjugate momenta.” This choice, called the choice
of polarization, means that one needs to pick a foliation of the phase space by
Lagrangian submanifolds parametrized by a maximal set of mutually commut-
ing “coordinates” (with the remaining variables understood as their conjugate
momenta). In the problem at hand, the (complex) phase space is two-dimensional,
with the symplectic form (2),

! D i

„du ^ dv ; (50)

so that the ambiguity associated with the choice of polarization is described by one
functional degree of freedom, say, a choice of function f .u; v/ that one regards as
a “coordinate.” Thus, in most of the present paper we make a natural9 choice (7)
treating u as the “coordinate” and v as the momentum. Any other choice is related
to this one by a canonical transformation

9In most applications.
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v D @W

@u
; V D �@W

@U
(51)

that depends on a single function W .u; U /. By definition, the transformation
.u; v/ 7! .U; V / preserves the symplectic form !. For example,U D v and V D �u
corresponds to W .u; U / D uU .

Similarly, as we reviewed in Sect. 2.1, the ambiguity in the topological recursion
is also described by a single function u.p/ that enters the choice of parametriza-
tion (19). (The functional dependence of v.p/ is then determined, up to a discrete
action of the Galois group permuting branches v.˛/, by the condition A.u; v/ D 0.)
Indeed, starting with different parametrizations of the same classical curve (3) and
following (49) one arrives at different expressions for OA. To make a contact with the
choice of polarization, let us point out that part of its ambiguity is already fixed in the
topological recursion (since u.p/ is a function of a single variable, whereasW .u; U /
in (51) is a function of two variables). However, a transformation from u.p/ to U.p/
can be understood as a particular symplectic transformation .u; v/ 7! .U; V /, such
that U D f .u/ and V D v=f 0.u/. For example, a simple choice of f .u/ D u C c
with a constant c corresponds to

U D uC c ; V D v ; (52)

and does not affect OA. On the other hand, a similar “shift transformation” of the
momentum v,

Ov D „@u ! Ov D „@u C c„ (53)

is equivalent to Z.u/ ! ecuZ.u/ and, therefore, transforms the quantum operator
OA as

OA. Ox; Oy/ ! OA. Ox; qc Oy/ : (54)

This transformation plays an important role in our applications since it controls a
(somewhat ambiguous) constant term in S 01.

We also note that, with the choice of uniformization (19) and in the polarization
where p is the “coordinate” the quantum curve factorizes to the leading order in „

OA D
Y
˛

�„@p C f .˛/.p/
�C O.„/ : (55)

Then, to the leading order in „, various branches of the partition function (9) are
annihilated by the first order operators .„@p C f .˛/.p//, so that

Z.˛/ D e� 1
„

R
f .˛/.p/dp

�
1C O.„/

�
:
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2.4 Relation to Algebraic K-Theory

Now we come to a very important point, which could already have been emphasized
much earlier in the paper:

Not every curve C defined by the zero-locus of a polynomial A is “quantizable”!

Namely, one can always produce a non-commutative deformation of the ring of
functions on C �C or C� �C

�, which obeys (5) with „ as a formal parameter and,
therefore, at least formally gives (17). However, in physics, one is usually interested
in the actual (not formal) deformation of the algebra of functions with a parameter „
and, furthermore, it is important to know whether a state associated with a particular
Lagrangian submanifold in the classical phase space exists in the Hilbert space of
the quantum theory.

In the present case, this means that not every Lagrangian submanifold defined by
the zero locus of A.x; y/ corresponds to an actual state in the Hilbert space of the
quantum theory; the ones which do we call10 “quantizable.” Specifically, whether
the solution to the quantization problem exists or not depends on the complex
structure11 of the curve C , i.e. on the coefficients of the polynomial A.x; y/ that
defines it.

Following [32], we explain this important point in a simple example of, say, the
figure-8 knot. Relegating further details to the next section, let us take a quick look
at the classical curve

C W x4 � .1 � x2 � 2x4 � x6 C x8/y C x4y2 D 0 (56)

defined by the zero locus of the A-polynomial of the figure-8 knot (see Table 1).
This polynomial equation has a number of special properties, including integrality
of coefficients, symmetries (with respect to x ! 1=x and y ! 1=y), and so on.
More importantly, the classical curve (56) is quantizable.

10Notice, a priori this definition of “quantizability” has nothing to do with the nice property (15)
exhibited by many quantum operators OA that come from physical problems; one can imagine
a perfectly quantizable polynomial A.x; y/ in the sense described here, for which the quantum
corrections (6) can not be summed up into a finite polynomial of x, y, and q. We plan to elucidate
the relation between these two properties in the future work.
11At first, this may seem a little surprising, because the quantization problem is about symplectic
geometry and not about complex geometry of C . (Figuratively speaking, quantization aims to
replace all classical objects in symplectic geometry by the corresponding quantum analogs.)
However, our “phase space,” be it C � C or C� � C

�, is very special in a sense that it comes
equipped with a whole CP1 worth of complex and symplectic structures, so that each aspect of the
geometry can be looked at in several different ways, depending on which complex or symplectic
structure we choose. This hyper-Kähler nature of our geometry is responsible, for example, for the
fact that a curve C “appears” to be holomorphic (or algebraic). We put the word “appears” in quotes
because this property of C is merely an accident, caused by the hyper-Kähler structure on the
ambient space, and is completely irrelevant from the viewpoint of quantization. What is important
to the quantization problem is that C is Lagrangian with respect to the symplectic form (2).
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Table 1 Classical A-polynomial and its quantization in prominent examples

Model Classical curve Quantum operator

Airy v2 � u Ov2 � Ou
tetrahedron 1C y C xyf 1C q�1=2 Oy C q.f C1/=2 Ox Oyf
c D 1 model u2 � v2 C 2t Ou2 � Ov2 C 2t C„
conifold 1C x C y C et xy�1 1C q1=2 Ox C q�1=2 Oy C et Ox Oy�1

.p; q/ minimal vp � uq ‹

model
figure-8 .1� x2 � 2x4 � x6C x8/y .1� q4 Ox4/

� .1� q2 Ox2 � .q2 C q6/ Ox4 � q6 Ox6 C q8 Ox8/ Oy
knot �x4 � x4y2 �q3.1� q6 Ox4/ Ox4 � q5.1� q2 Ox4/ Ox4 Oy2

Preserving most of the nice properties of (56) we can make a tiny change to the
polynomialA.x; y/ to obtain a close cousin of C :

C 0 W x4 � .x�2 � x2 � 2x4 � x6 C x10/y C x4y2 D 0 (57)

To a naked eye, there is almost no difference between the curves C and C 0; indeed,
every obvious property of one is manifest in the other and vice versa. Nevertheless,
the curve (56) defined by the true A-polynomial of the figure-8 knot is quantizable,
whereas the counterfeit (57) is not. Why?

The reason, as explained in [32], is that all periods of the 1-form Im� must
vanish I




�
log jxjd.argy/ � log jyjd.argx/

�
D 0 ; (58)

and, furthermore, the periods of the 1-form Re� should be integer (or, at least,
rational) multiples of 2�i or, equivalently,

1

4�2

I



�
log jxjd log jyj C .argy/d.argx/

�
2 Q (59)

for all 
 2 H1.C ;R/. Indeed, these two conditions guarantee thatZ D exp
�
1
„S0C

: : :
� D exp

�
1
„
R p
� C : : :

�
is well-defined and, therefore, they represent the

necessary conditions for A.x; y/ D 0 to be quantizable.12 It is not difficult to verify
that these conditions are met for the curve (56) but not for the curve (57).

Notice, the constraints (58)–(59) are especially severe for curves of high genus.
Moreover, these constraints have an elegant interpretation in terms of algebraic K-
theory and the Bloch group of Q. To explain where this beautiful connection comes

12Notice, various choices discussed in Sect. 2.3 lead to expressions for � which differ by (non-
holomorphic) exact terms. For more details on change of polarization see e.g. [33].
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from, we start with the observation that the left-hand side of (58) is the image of the
symbol fx; yg 2 K2.C / under the regulator map13

r W K2.C /! H1.C ;R/ (60)

fx; yg 7! 	.x; y/

evaluated on the homology class of a closed path 
 that avoids all zeros and poles
of x and y. Indeed, the left-hand side of (58) is the integral of the real differential
1-form on C (with zeros and poles of x and y excluded),

	.x; y/ D log jxjd.argy/� log jyjd.argx/ ; (61)

which, by definition, is anti-symmetric,

	.y; x/ D �	.x; y/ ; (62)

obeys the “Leibniz rule,”

	.x1x2; y/ D 	.x1; y/C 	.x2; y/ ; (63)

and, more importantly, is closed

d	.x; y/ D Im

�
dx

x
^ dy

y

�
D 0 : (64)

For curves, the latter condition is almost trivial and immediately follows from
dimensional considerations, which is another manifestation of the “accidental”
extra structure discussed in the Footnote 11. In higher dimensions, however, the
condition (64) is very non-trivial and holds precisely when C is Lagrangian with
respect to (real / imaginary part of) the symplectic form (2).

We have learnt that the differential 1-form 	.x; y/ is closed. However, to meet
the condition (58) and, ultimately, to reformulate this condition in terms of algebraic
K-theory we actually want 	.x; y/ to be exact. In order to understand when this
happens, it is important to describe 	.x; y/ near those points on C where rational
functions x; y 2 C.C /� have zeros or poles. Let p be one of such points and let
ordp.x/ (resp. ordp.y/) be the order of x (resp. y) at p. Then, we have

1

2�

I
	.x; y/ D log j.x; y/p j (65)

where the integral is over a small circle centered at p and

13Defined by Beilinson [6] after Bloch [7].
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.x; y/p D .�1/ordp.x/ ordp.y/
xordp.y/

yordp.x/

ˇ̌̌
p

(66)

is the tame symbol at p 2 C .
One general condition that guarantees vanishing of (65) is to have fx; yg D 0 in

K2.C.C //˝ Q. Then, all tame symbols (66) are automatically torsion and 	.x; y/
is actually exact, see e.g. [39]. Motivated by this, we propose the following criterion
for quantizability:

C is quantizable ” fx; yg 2 K2.C.C // is a torsion class (67)

This criterion is equivalent [11] to having

x ^ y D
X
i

rizi ^ .1 � zi / in ^2 .C.C /�/˝Q (68)

for some zi 2 C.C /� and ri 2 Q. When this happens, one can write

	.x; y/ D d
 X

i

riD.zi /

!
D dD

 X
i

ri Œzi �

!
(69)

in terms of the Bloch–Wigner dilogarithm function,

D.z/ WD log jzjarg.1 � z/C Im.Li2.z// ; (70)

which obeys the famous 5-term relation

D.x/CD.y/CD.1 � xy/CD
� 1 � x
1 � xy

�
CD

� 1 � y
1 � xy

�
D 0 (71)

and dD.z/ D 	.z; 1 � z/. Note, the exactness of 	.x; y/ is manifest in (69),
which makes it clear that our proposed condition (67) incorporates (58). (The check
that (67) also incorporates (59) is similar and we leave it as an exercise to the reader.)

In our example of the A-polynomial for the figure-8 knot, we already claimed
that the curve (56) is quantizable. Indeed, the condition (68) in this example reads

x ^ y D z1 ^ .1 � z1/� z2 ^ .1 � z2/ (72)

where

x2 D z1z2 ; y D z21
1 � z1

D 1 � z2
z22

; (73)

so that z1 and z2 satisfy the “gluing condition” .z1 � 1/.z2 � 1/ D z21z
2
2.
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In practice, the condition (68) is much easier to deal with and, of course, the
appearance of the dilogarithm is not an accident. Its role in the quantization problem
and the interpretation of (67) based on Morse theory will be discussed elsewhere
[22].

2.5 The First Quantum Correction

As we emphasized earlier, the subleading term S1 contains a lot more information
than meets the eye; e.g. generically it determines much of the structure of the
quantum curve, if not all of it. Therefore, we devote an entire subsection to the
discussion of S1 and the first quantum correction to OA that it determines via (45).

In general, the correction S1 is defined as the integrated two-point function with
equal arguments

S1.p/ D 1

2

Z p Z p

!2.p1; p2/ :

The two-point function can be expressed in terms of the Bergman kernel with a
double pole removed [28]

!2.p1; p2/ D B.p1; p2/� du.p1/du.p2/�
u.p1/� u.p2/

�2 :
Generally, for curves of arbitrary genus, the Bergman kernel is given by a derivative
of a logarithm of the theta function of odd characteristic �odd associated to the
classical curve C [28, 41]

B.p1; p2/ D @p1@p2 log �odd
�
u.p1/� u.p2/

�
;

and it has only one (second-order) pole at equal values of the arguments. For curves
of genus zero this pole is the only ingredient of the Bergman kernel, see (27), and
in that case the above two-point function was used in (36) to get (21).

Let us discuss now how this result is modified for curves of higher genus. For
curves of genus one the Bergman kernel can be expressed as14

B.p1; p2/ D
�
}.p1 � p2I �/C �

Im �

�
dp1dp2 : (74)

14More generally, one can consider a generalized Bergman kernel [28], which differs from an
ordinary Bergman kernel by a dependence on an additional parameter �. In most applications,
including matrix models, one can set � D 0, which leads to the ordinary Bergman kernel given
above.
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The Weierstrass function } has the expansion

}.zI �/ D 1

z2
C g2

20
z2 C g3

28
z4 C O.z6/ ; (75)

where � and g2; g3 denote, respectively, the modulus and the standard invariants of
an elliptic curve. Using this expansion we get

Z p1
Z p2

!2.p1; p2/ D � log
u.p1/� u.p2/

p1 � p2
C �

Im �
p1p2 � g2

240
.p1 � p2/4 C O

�
.p1 � p2/6

�
:

In the limit p1 ! p2 D p the first term reproduces the genus zero result (21), while
the other contributions in the expansion of the function }.p1 � p2I �/ vanish. In
consequence, we are left with the quadratic correction to the genus zero result

S1.p/ D 1

2

Z p1
Z p2

!2.p1; p2/ D �1
2

log
du

dp
C �

2Im �
p2: (76)

As we already mentioned, for curves of higher genus the Bergman kernel also has
only one double pole at coinciding arguments. This implies that S1 for any genus
will have similar structure as we found for genus one, i.e. it will include the term (21)
plus some corrections.

The Bergman kernel, or the two-point function, are expressed above in terms of
uniformizing parameters p. Sometimes it is convenient to express them in terms
of the coordinate u which enters the algebraic equation (3) and the branch points
ai D u.p�i / determined in (24). For a curve of genus one there are four branchpoints
a1; : : : ; a4, and the corresponding two-point function has been found, using matrix
model techniques, in [5]. This result can also be obtained, see [8], using properties
of elliptic functions and rewriting the Bergman kernel given above, so that15

B.u1; u2/ D 1

2.u1 � u2/2
C .a3 � a1/.a4 � a2/

4
p
�.u1/

p
�.u2/

E.k/

K.k/
C

C 1

4.u1 � u2/2

�s .u1 � a1/.u1 � a4/.u2 � a2/.u2 � a3/
.u1 � a2/.u1 � a3/.u2 � a1/.u2 � a4/ C

C
s
.u1 � a2/.u1 � a3/.u2 � a1/.u2 � a4/
.u1 � a1/.u1 � a4/.u2 � a2/.u2 � a3/

�
;

15Taking the common denominator of the two square roots, the dependence on branch points in
numerator can be expressed in terms of symmetric functions of ai , which leads to the formula
presented in [16].
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where

�.u/ D .u � a1/.u � a2/.u� a3/.u � a4/

and

k2 D .a1 � a4/.a2 � a3/
.a1 � a3/.a2 � a4/

is the modulus of the complete elliptic functions of the first and second kind,K.k/
and E.k/, related to the parameter of the torus in (75) as � D i K.1 � k/=K.k/.

In particular, the above expression for Bergman kernel was used in [9, 41] to
determine several terms in the u-expansion of the two-point function, as well as a
few lower order correlators W g

n for mirror curves of genus one, for local P2 and
local P1 � P

1. Nonetheless, these results are not sufficient to determine corrections
OA1 or OA2 to the corresponding putative quantum curves, as the hierarchy of Eqs. (42)

requires the knowledge of the exact dependence of Sk on both u and v. We plan to
elucidate this point in future work.

3 Quantum Curves and Knots

As we already mentioned in the introduction, in applications to knots and 3-
manifolds the polynomial A.x; y/ is a classical topological invariant called the
A-polynomial. (For this reason, we decided to keep the name in other examples
as well and, for balance, changed the variables to those used in the literature on
matrix models and topological strings.) In this context, the quantum operator OA is
usually hard to construct (see [30, 31] for first indirect calculations and [19] for the
most recent and systematic ones); therefore, any insight offered by an alternative
method is highly desirable.

The study of such an alternative approach was pioneered in a recent work
[16], which focused on the computation of the perturbative partition function (11)
using the topological recursion of Eynard and Orantin [28]. Starting with a rather
natural16 prescription for the perturbative coefficients Sn in terms of W g

n , the
authors of [16] were able to match the perturbative expansion of the Chern–Simons
partition function e.g. for the figure-8 knot complement [21] up to order n D 4,
provided certain ad hoc renormalizations are made. It was also pointed out in
[16] that such renormalizations are non-universal, i.e. knot-dependent. Motivated
by these observations, we start with a different prescription for the Sn’s described

16The choice of the prescription in [16] automatically incorporates the symmetries of the SL.2;C/
character variety, in particular, the symmetry of the A-polynomial under the Weyl reflection x 7!
x�1 and y 7! y�1 .
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in Sect. 2.1, which appears to avoid the difficulties encountered in [16] and to
reproduce the SL.2;C/ Chern–Simons partition function in all examples that we
checked. In addition, we shift the focus to theA-polynomial itself, and describe how
its quantization (17) can be achieved in the framework of the topological recursion.

3.1 Punctured Torus Bundle �L2R2

We start with a simple example of a hyperbolic 3-manifold M that can be
represented as a punctured torus bundle over S1 with monodromy ' D �L2R2,
where

L D
�
1 0

1 1

�
; R D

�
1 1

0 1

�
(77)

are the standard generators of the mapping class group of a punctured torus,

 Š PSL.2;Z/. This 3-manifold has a number of nice properties. For example,
it was considered in [23] as an example of a hyperbolic 3-manifold whose SL.2;C/
character variety has ideal points for which the associated roots of unity are not˙1.

For this 3-manifoldM , the A-polynomial has a very simple form17

A.x; y/ D 1C ixC iyC xy ; (78)

and its zero locus, A.x; y/ D 0, defines a curve of genus zero. According to our
criterion (67), this curve should be quantizable. Indeed, this can be shown either
directly by verifying that all tame symbols .x; y/p are roots of unity or, alternatively
[51], by noting that the polynomialA.x; y/ is tempered, which means that all of its
face polynomials have roots at roots of unity. Either way, we conclude that the genus
zero curve defined by the zero locus of (78) is quantizable in the sense of Sect. 2.4.

Therefore, we can apply the formula (21) from Sect. 2.1 to compute the one-loop
correction S1.u/ or, equivalently, the torsion T .u/. In fact, we can combine (16)
and (21) to produce the following general formula

X
.m;n/2D

am;n cm;n x
myn D 1

2

�du

dp

��2 �d2u
dp2

@v � du

dp

dv

dp
@2v

�
A (79)

17In fact, this polynomial occurs as a geometric factor in the moduli space of flat SL.2;C/
connections for infinitely many distinct incommensurable 3-manifolds [23] that can be constructed
e.g. by Dehn surgery on one of the two cusps of the Neumann–Reid manifold (D the unique 2-
cover of m135 with H1 D Z=2 C Z=2 C Z C Z). Indeed, the latter is a two cusped manifold
with strong geometric isolation, which means that Dehn surgery on one cusp does not affect the
shape of the other and, in particular, does not affect the A-polynomial. As a result, all such Dehn
surgeries have the same A-polynomial A.x; y/ D 1C ixC iyC xy as the manifold m135.
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that allows to determine the exponents cm;n of the q-deformation (15) directly from
the data of the classicalA-polynomialA DPam;nx

myn and a parametrization (19).
In our present example, we can choose the following parametrization:

x.p/ D �1C ip

i C p ; y.p/ D p ; (80)

suggested by the form of (78). Substituting it into (79) uniquely determines the
values of the q-exponents cm;n and, therefore, the quantum operator (15):

OA D 1C iq1=2 Ox C iq�1=2 Oy C q Ox Oy : (81)

In order to fully appreciate how simple this derivation of OA is (compared to the
existent methods and to the full-fledged topological recursion) it is instructive to
follow through the steps of Sects. 2.1 and 2.2 that, eventually, lead to the same
result (81).

First, one needs to go through all the steps of the topological recursion.
Relegating most of the details to Sect. 7, where (78) will be embedded in a larger
class of similar examples (and dealing with various singular limits as presented in
Sect. 6), we summarize here only the output of (22):

S 00 D log
x � i
ix � 1 ;

S 01 D
i � x
2x C 2i ;

S 02 D
x.5i � 12x � 5ix2/

12.1C x2/2 ;

:::

which should be used as an input for (42). Indeed, from the first few equations
in (44)–(46) one finds the perturbative expansion (6) of the quantum operator OA:

OA1 D 1

2

�
i Ox � i Oy C 2 Ox Oy� ;

OA2 D 1

8

�
i Ox C i Oy C 4 Ox Oy� ;

OA3 D 1

48

�
i Ox � i Oy C 8 Ox Oy� ;

:::
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Fig. 2 Figure-8 knot

It does not take long to realize that the perturbative terms OAn come from the „-
expansion of the “quantum polynomial” (81) with q D e„. Pursuing the topological
recursion further, one can verify this to arbitrary order in the perturbative „-
expansion, thus, justifying that OA can be written in a nice compact form (15).

Hence, our present example provides a good illustration of how all these steps
can be streamlined in a simple computational technique (49) which, for curves of
genus zero, can be summarized in a single general formula (79).

3.2 Figure-8 Knot

The lesson in our previous example extends to more interesting knots and 3-
manifolds, sometimes in a rather trivial and straightforward manner and, in some
cases, with small new twists. The main conceptual point is always the same, though:
at least in all examples that “come from geometry,” the full quantum curve OA is
completely determined by the first few terms in the „-expansion, which can be easily
obtained using the tools of the topological recursion.

For example, let us consider the figure-8 knot complement, M D S3 n K , for
which the story is a little less trivial. The figure-8 knot is shown in Fig. 2. Much
like our first example in this section, M is a hyperbolic 3-manifold that also can be
represented as a punctured torus bundle with the monodromy

' D RL D
�
2 1

1 1

�
;

where L and R are defined in (77). Even though the classical curve (56) for the
figure-8 knot is hyper-elliptic, one can still easily find the torsion T .u/ needed
for (16). In fact, for curves associated18 with knots and 3-manifolds the torsion T .u/
is exactly what low-dimensional topologists call the Ray–Singer (or Reidemeister)
torsion of a 3-manifold M . To be more precise, the function T .u/ is the torsion of

18That is defined by the zero locus of the A-polynomial.
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M twisted by a flat SL.2;C/ bundle E� ! M determined by the representation
� W �1.M/ ! SL.2;C/ or, at a practical level, by the point � D .x; y/ on the
classical curve C .

In particular, T .u/ is a topological invariant of M D S3 nK and, therefore, can
be computed by the standard tools. For instance, when � is Abelian, the torsion T .u/
is related to the Alexander–Conway polynomial r.KI z/ [42, 50]:

p
T D r.KI x � x

�1/
x � x�1 (82)

that, for every knot K , can be computed by recursively applying a simple skein
relation19

r. /� r. / D zr. / ; (83)

and the normalization r. / D 1. Similarly, when � is non-Abelian (and
irreducible) the torsion looks like

T .x/ D
p
�.x/ ; (84)

where �.x/ is the Alexander polynomial of M twisted by the flat SL.2;C/ bundle
E�, cf. [29]. For example, for the figure-8 knot that we are interested in here, it has
the form [33, 47]:

�41 .x/ D �x�4 C 2x�2 C 1C 2x2 � x4 : (85)

Now we are ready to plug this data into our universal formula (16) and compute
the quantum operator OA or, at least, its first-order approximation. The computation
is fairly straightforward; indeed, from (84) and (85) we find

@uT

T
D 2.�1C x2 � x6 C x8/
1 � 2x2 � x4 � 2x6 C x8 (86)

and, by solving (56) we get y.˛/.x/ D 1�x2�2x4�x6Cx8
2x4

˙ 1�x4
2x2

p��.x/ which
immediately gives the second part of the input data for (16), namely

@uA

@vA
D �dv

du
D 2.2x�2 � 1C 2x2/p��.x/ : (87)

19For example, r31 .z/ D 1C z2 for the trefoil knot and r41 .z/ D 1 � z2 for the figure-8 knot.
Note, that our definition of T .u/ is actually the inverse of the Ray–Singer torsion, as defined
in the mathematical literature. This unconventional choice turns out to be convenient in other
applications, beyond knots and 3-manifolds.
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Then, once we plug these ingredients into (16) we come to our first surprise: we
find that there is no way to satisfy (16) with constant real numbers cm;n if for D
we simply take the Newton polygon of the classical curve (56). In other words, the
figure-8 knot is a good illustration of the following phenomenon (that rarely happens
in simple examples, but seems to be fairly generic in more complicated ones): one
may need to enlarge the domain D in order to solve (16). For the figure-8 knot, the
minimal choice is

A.x; y/ D .1� x4/x4 � .1� x4/.1� x2 � 2x4 � x6C x8/yC .1� x4/x4y2 (88)

and differs from (56) by an extra factor 1 � x4. Now, with this A.x; y/, the
formula (13) produces the set of coefficients cm;n or, equivalently, their “generating
function”

OA1 D .3�9 Ox4/ Ox4�.�2 Ox2�12 Ox4C24 Ox8C10 Ox10�12 Ox12/ OyC.5�7 Ox4/ Ox4 Oy2 ; (89)

which almost uniquely determines the full quantum A-polynomial for the figure-8
knot in Table 1:

OAD q3.1�q6 Ox4/ Ox4�.1�q4 Ox4/.1�q2 Ox2�.q2Cq6/ Ox4�q6 Ox6Cq8 Ox8/ OyCq5.1�q2 Ox4/ Ox4 Oy2 :

Indeed, if one knows that OA is in the general form (15), then the above expression
for OA1 determines almost all of the coefficients in OA, except for the factor q2 C q6
which is easily fixed by going to the next order in the recursion.

3.3 Torus Knots and Generalizations

For a .m; n/ torus knot, the classical curve (3) is defined by a very simple
polynomial [13]:

A.x; y/ D y � xmn : (90)

In fact, this curve is a little “too simple” to be an interesting example for quantization
since it has only two monomial terms, whose relative coefficient in the quantum
version

OA. Ox; Oy/ D Oy � qc Oxmn (91)

can be made arbitrary by a suitable canonical transformation, as discussed in
Sect. 2.3. (Indeed, one can attain arbitrary values of c even with the simple shift
transformation (53).) Another drawback of (90) is that, for general m and n, it
describes a singular curve.
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Both of these problems can be rectified by passing to a more general class of
examples,

A.x; y/ D y C P.x/ ; (92)

where P.x/ can be either a polynomial or, more generally, an arbitrary function
of x. Then, the A-polynomial (90) of .m; n/ torus knots (and its quantization (91))
can be recovered as a limiting case of this larger family, P.x/ ! �xmn. Another
important advantage of choosing generic P.x/ is that we can use (79) to find OA.

In practice, in order to implement the algorithm summarized in (49) and (79), it is
convenient to exchange the role of x and y. Hence, we will work with the “mirror”
version of (92):

A.x; y/ D x C P.y/ ; (93)

where P.y/ can be an arbitrary function of y. In general, the curve defined by the
zero locus of this function is a multiple cover of the x-plane. It admits different
parametrizations which, therefore, lead to different expressions for OA (related by
canonical transformations discussed in Sect. 2.3). However, one can always make a
natural choice of parametrization with

�
x.p/ D �P.p/
y.p/ D p (94)

Substituting this into (16) (or, equivalently, into (79)) we find

X
.m;n/2D

am;n cm;n x
myn D x

2
� y
2

dP.y/

dy
(95)

which, for generic P.y/, immediately determines the quantization of (93):

OA D q1=2 Ox C P �q�1=2 Oy� : (96)

Notice, in spite of the suggestive notation, P.y/ does not need to be a polynomial
in this class of examples. For instance, choosing P.y/ to be a rational function,

P.y/ D 1C iy

i C y (97)

from (96) we find the quantum curve,

q1=2 Ox C q1=2 C i Oy
iq1=2 C Oy ' 0 ; (98)
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which, after multiplying by iq1=2C Oy on the left and using the commutation relation
Oy Ox D q Ox Oy, agrees with the earlier result (81).

4 Examples with OA D Aclassical

In certain examples, it turns out that the quantum curve can be obtained from the
classical one simply by replacing u and v by Ou and Ov with no additional „ corrections
(and with our standard ordering conventions, cf. Sect. 1). There are examples of such
special curves in C � C as well as in C

� � C
�; e.g. from (96) it is easy to see that

A.x; y/ D xC 1=y is one example. In this section, for balance, we consider curves
with this property defined by a polynomial equation A.u; v/ D 0 in C � C. In
particular, we discuss in detail a family of examples related to the Airy function,20

in order to explain how our formalism works for curves embedded in C � C.
The Airy function (and its cousins) can be defined by a contour integral,

ZAi.u/ D
Z



dz

2�i
e� 1

„
S.z/ ; S.z/ D �uzC z3

3
(99)

over a contour 
 that connects two asymptotic regions in the complex z-plane where
the “action” S behaves as ReS.z/ ! C1. For such a contour 
 , we have the
following Ward identity:

0 D 1

2�i

Z



d
h
e�

1
„
S.z/
i
D 1

„
Z



dz

2�i

�
u � z2

�
e�

1
„
S.z/

which we can write in the form of the differential equation

�Ov 2 � u
�
ZAi.u/ D 0 (100)

where we used the definition of ZAi.x/ and

Ov 2ZAi.x/ D .„@u/
2

Z



dz

2�i
e� 1

„
S.z/ D

Z



dz

2�i
z2 e� 1

„
S.z/ : (101)

This simple, yet instructive, example is a prototype for a large class of models
where quantum curves are identical to the classical ones, i.e. OA D A.u; v/. Indeed,
let us consider a contour integral,

Z.u/ D
Z



dz

2�i
e� 1

„
S.z/ ; S.z/ D �uzC P.z/

20 In this model, computation of W g
n and their generating functions are also presented in [28].
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where 
 is a suitable contour in the complex z-plane, and P.z/ is a Laurent
polynomial. Then, following the same arguments as in the example of the Airy
function, we obtain the following Ward identity

Z



dz

2�i

�
u � P 0.z/� e� 1

„
S.z/ D 0

which translates into a differential equation OAZ.u/ D 0 with

OA D P 0.Ov/� Ou : (102)

The special choice of P 0.z/ D zp gives rise to .p; 1/ minimal model coupled to
gravity. In this case, the corresponding partition function has an interpretation of
the amplitude of the FZZT brane [40], and in the dual matrix model this partition
function is indeed computed as the expectation value of the determinant (12).
Recall, that a double scaling limit of hermitian matrix models with polynomial
potentials describes .p; q/ minimal models coupled to gravity, characterized by
singular spectral curves [14]:

A.u; v/ D vp � uq D 0 : (103)

In the simpler case of q D 1 discussed here the classical Riemann surface P 0.v/ �
u D 0, given by the „ ! 0 limit of the quantum curve (102), represents the semi-
classical target space of the minimal string theory. Below we discuss in detail how
the above OA arises from our formalism in the Airy case, p D 2.

4.1 Quantum Airy Curve

For a minimal model with .p; q/ D .2; 1/ the classical curve (103) looks like

A.u; v/ D v2 � u D 0 : (104)

It has two branches labeled by ˛ D ˙,

v D S 00 D ˙
p

u D v.˙/ ; (105)

and exchanged by the Galois transformation21

v! �v :

21By definition, the action of the Galois group preserves the form of the curve (104).
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This model provides an excellent example for illustrating how the hierarchy
of differential equations (Sect. 2.2) and the topological recursion (Sect. 2.1) work.
Because we already know the form of the quantum curve in this example, we start
by deriving the „ expansion of the Airy function using the hierarchy (42). Then,
we will show that this expansion is indeed reproduced by the topological recursion.
In examples considered later we will also illustrate the reverse process: from the
knowledge of Sk (computed from the topological recursion) we will determine the
form of the quantum curve.

In our calculations, we will use global coordinates, such as v or p, and avoid
using the coordinate u (that involves a choice of branch of the square root) except
for writing the final result. In particular, from the equation of the Airy curve (104)
we find the relation

v0 D dv

du
D �@uA.u; v/

@vA.u; v/
D 1

2v
(106)

that will be useful below.

4.1.1 Differential Hierarchy

First, we solve the hierarchy of equations that follow from the quantum curve (100):

OAZAi D
�„2@2u � u

�
ZAi D 0 : (107)

To solve this equation in variable u, already in the first step one would have to make
a choice of the branch (105). This would influence then all higher order equations
in the differential hierarchy, and eventually lead to two well-known variants of the
Airy function. Instead, we express the coefficients Sk in a universal way in terms of
v, so that a particular solution in terms of u can be obtained by evaluating v in the
final expression on either branch (105).

The first equation in the differential hierarchy is already given in (105), i.e. v D
S 00. The second equation (45) takes form

S 01@vA.u; v/C 1

2
S 000 @2vA.u; v/ D 0 ;

and implies

S 01 D �
v0

2v
D � 1

4v2
:

Solving further Eqs. (42) we find

S 02D
�1 � 8vv0

32v5
D � 5

32v5
; S 03D �

5.1C 10vv0/
128v8

D � 15

64v8
; S 04D �

1105

2048v11
:
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We can integrate these results taking advantage of (106) to find

Sk D
Z
S 0k
v0

dv : (108)

In particular, the first few terms look like

S0 D 2

3
v3 ; S1 D �1

2
log v ; S2 D 5

48v3
; S3 D 5

64v6
; S4 D 1105

9216v9
:

(109)

Finally, using (105) we can evaluate these expressions on either of the two branches
v.˙/ D ˙pu to find two asymptotic expansions of the Airy function (99) (often
denoted Bi and Ai),

Z
.˙/
Ai .u/ D

1

u1=4
exp

�
˙ 2u3=2

3„ ˙
5„

48u3=2
C 5„2
64u3

˙ 1105„3
9216u9=2

C : : :
�
; (110)

which indeed satisfy the second order equation (107).

4.1.2 Topological Recursion

Now we reconsider the Airy curve from the topological recursion viewpoint. The
classical curve can be parametrized as

�
u.p/ D p2
v.p/ D p

The conjugate point is simply Np D �p, and there is one branch-point at p D 0.
All ingredients of the recursion can be found in the exact form, in particular the
anti-derivative and the recursion kernel take the following form

S0.p/ D
Z p

� D 2

3
p3 ; K.q; p/ D 1

4q.p2 � q2/ :

The annulus amplitude gives

S1 D �1
2

log
du

dp
D �1

2
log.2v/ ;

which correctly reproduces S1 found in (109) (up to an irrelevant constant).
Now we apply the topological recursion to find the higher order terms Sk with

k � 2. These terms are computed as functions on the curve, i.e. as functions of the
parameter p, and can be expressed as rational functions of u and v. In particular we
find
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W 1
1 .p/ D �

1

16p4
; W 0

3 .p1; p2; p3/ D �
1

2p21p
2
2p

2
3

;

which implies

S2 D
Z p

W 1
1 .p/dpC 1

6

• p

W 0
3 .p1; p2; p3/dp1dp2dp3 D

5

48v3
:

In higher orders, we get

S3 D 5

64v6
; S4 D 1105

9216v9
:

These results agree with the expansion (109) obtained from the differential hier-
archy. It is clear that, had we not known the form of the quantum curve to start
with, we could compute the coefficients Sk using the topological recursion and
then apply the hierarchy of differential equations (42). This would reveal that all
quantum corrections OAk vanish, and the quantum curve indeed takes the form (107)
and coincides with the classical curve.

Let us also illustrate the factorization of the quantum curve (55) to the leading
order in „. In the polarization where p is the “coordinate,” the curve (107) takes the
form

OA D �„@p � 2p2��„@p C 2p2�C O.„/ :

Then, to the leading order, the two branches of the partition function are annihilated
by the operators .„@p � 22p/ and the solutions to these equations represent the two
variants of the Airy function (110):

Z D e˙ 2p3

3„

�
1C O.„/� D e˙ 2u3=2

3„

�
1C O.„/� :

5 c D 1 Model

The aim of this section is to analyze the so-called c D 1 model. As in the previous
section, however, it is instructive to start with a more a general class of models
associated with the contour integral

Z.u/ D
Z



dz

2�i
z
t
„ e�

1
„
S.z/ ; S.z/ D �uzC znC1

nC 1 :

This integral satisfies the following Ward identity
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Z



dz

2�i

�
t

z
C u � zn

�
z
t
„ e�

1
„
S.z/ D 0

that leads to the quantum curve

OA D t C Ov .Ou � Ov n/ :

In the special case n D 1 this reproduces the quantum curve of the c D 1 model:

OA D t C OvOu

where we used the freedom of shifting u by an arbitrary function of v to implement
a change of polarization Ou! OuC Ov, cf. Sect. 2.3. (Note that this shift does not affect
the commutation relations of Ou and Ov.) Another convenient choice of polarization is
implemented by a canonical transformation

Ou! 1p
2
.Ou � Ov/ ; Ov! 1p

2
.OuC Ov/

and leads to a perhaps more familiar representation of the quantum curve for the
c D 1 model:

OA D .OuC Ov/ .Ou � Ov/C 2t D Ou 2 � Ov 2 C 2t C „ : (111)

In what follows we consider this last form of the quantum curve. Note, in this
case the underlying classical curve is embedded in C � C by the equation

A.u; v/ D u2 � v2 C 2t D 0 ; (112)

and has two branches v.˛/ labeled by ˛ D ˙,

v.˙/.u/ D ˙
p

u2 C 2t : (113)

These branches are mapped to each other by a Galois transformation

v! �v ;

that does not change the form of the curve (112). We also note that

v0 D dv

du
D �@uA.u; v/

@vA.u; v/
D u

v
: (114)

The solution of the c D 1 model is well known. In particular, the associated
closed string free energies, for g � 2, are given by
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Fg D B2g

2g.2g � 2/
1

t2g�2
: (115)

Below we reexamine this model in the new formalism, in particular from the view-
point of open (rather than closed) string invariants. Since the quantum curve (111)
has only the first order quantum correction OA1 D 1, we start by verifying that it is
indeed correctly reproduced by the annulus amplitude (21) in our formalism. Then,
we follow the strategy employed in the previous section and show that higher order
amplitudes Sk, determined by the quantum curve equation, agree with those given
by the topological recursion. Equivalently, this guarantees that, had we computed
Sk first by applying the topological recursion to the classical curve (112) and then
determined the quantum curve using the hierarchy (42), we would indeed find OA
given in (111).

5.1 Differential Hierarchy

The differential hierarchy (42) starts with the equation which, as usual, specifies the
disk amplitude; integrating (113) we find that it takes the form

S0 D ˙
�1
2

u
p

u2 C 2t C t log.uC
p

u2 C 2t/
�
: (116)

The second equation in the differential hierarchy (45) implies that

S 01 D
A1 � v0

2v
D A1v � u

2v2
; (117)

with A1 D 1. The first (and the only) quantum correction A1 D 1 follows directly
from (111) as well as from the annulus amplitude which we compute below in (120).

To find the higher order amplitudes Sk we take advantage of the fact that all
higher order corrections to the quantum curve (111) vanish. Therefore, using the
fact that the first correction A1 D 1 is annihilated by all Dr>0, all higher order
equations in the hierarchy (42) take a simple form DnA D 0. Moreover, noting that
the classical curve is quadratic in v, the hierarchy of differential equations reduces to

0 D S 02@vAC 1

2

�
.S 01/2 C S 001

�
@2vA ;

0 D S 03@vAC
�S 002
2
C S 01S 02

�
@2vA ;

0 D S 04@vAC 1

2

�
.S 02/2 C S 003 C 2S 01S 03

�
@2vA ;

:::
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and solving these equations we get

S 01 D
v � u

2v2
;

S 02 D
�5u2 C 4uvC v2

8v5
; (118)

S 03 D �
.u � v/.3u � v/.2uC v/

16v8
;

S 04 D �
.u � v/.1105u3C 145u2v � 389uv2 � 21v3/

128v11
:

We stress that given here are global solutions; in order to restrict to a particular
branch one needs to substitute v D v.˙/ using (113). Making such a choice of
branch and expanding in u we find

S 0

1;˙
D ˙ 1

2
p
2t
� u

4t
� u2

4.2t/3=2
C u3

8t2
˙ 3u4

16.2t/5=2
� u5

16t3
C : : :

S 0

2;˙
D ˙ 1

8.2t/3=2
C u

8t2
� 13u2

16.2t/5=2
� u3

8t3
˙ 115u4

64.2t/7=2
C 3u5

32t4
C : : :

S 0

3;˙
D � 5

16.2t/5=2
C 5u

64t3
˙ 75u2

32.2t/7=2
� 15u3

64t4
� 875u4

128.2t/9=2
C 45u5

128t5
C : : :

S 0

4;˙
D � 21

128.2t/7=2
� 23u

128t4
˙ 1215u2

256.2t/9=2
C 19u3

32t5
� 29387u4

1024.2t/11=2
� 265u5

256t6
C : : :

Integrating these results term by term gives the u expansion of Sk. One can also find
the global representation of Sk in terms of u and v using the integral (108) and the
result (114); we determine such a global representation below.

5.2 Topological Recursion

Now we show how the above results can be reproduced using the topological
recursion. The curve (112) can be parametrized as

(
u.p/ D 2pt � 1

4p

v.p/ D 2ptC 1
4p

(119)

Note, this implies that a local parameter p can be expressed as

p D uC v

4t
:
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Having fixed the parametrization, we can compute the annulus amplitude (21)
and find that its derivative in this case is

S 01 D
v � u

2v2
: (120)

Comparing this with (117) we confirm that the first quantum correction to the
A-polynomial indeed reads

A1 D 1 ;

in complete agreement with (111).
The other ingredients of the topological recursion are as follows. There are two

branch points du.p�/ D 0 at

p� D ˙ i

2
p
2t
: (121)

Conveniently, there is a global expression for the conjugate point

p D � 1

8tp
; (122)

and the recursion kernel reads

K.q; z/ D 4q3

.1 � 8q2t/.q � z/.1 � 8qtz/ : (123)

The correlators contributing to (23) take form

W 1
1 .p/ D

64p3t

.1C 8p2t/4 ;

W 2
1 .p/ D

86016t.p7 � 24p9t C 64p11t2/
.1C 8p2t/10 ;

W 3
1 .p/ D

2883584p11t.135� 8784p2t C 133376p4t2 � 562176p6t3 C 552960p8t4/
.1C 8p2t/16 ;

and so on. Hence, using (23) we get the global representation

S2 D 2t.2t � 9.uC v/2/

6.2t C .uC v/2/3
; S3 D 20t.uC v/4.2t � .uC v/2/

.2t C .uC v/2/6
;

and derivatives of these functions with respect to u indeed agree with our earlier
results (118). Therefore, the results of the topological recursion are in excellent
agreement with (111). Again, had we not known the quantum curve to start with,
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we could reverse the order of the computation and from the knowledge of the
coefficients Sk determine

OA D u2 � .„@u/
2 C 2t C „ : (124)

Finally, we illustrate the factorization property (55) of the quantum curve in
p-polarization. In this polarization, the curve (111) gives rise to first order differen-

tial operators
�„@p � .1C8tp2/2

16p3

�
which (to the leading order in „) annihilate the two

branches of the partition function:

Z.˛/ D e˙ 1
„

�
� 1

32p2
C2t2p2Ct logp

��
1C O.„/

�
:

After substituting p D .u C v/=4t and v given by (113) we indeed reproduce the
leading behavior (116).

Let us also mention that fromW 2
1 and W 3

1 computed here one can determine the
“closed string” free energies (38). This computation reveals that

F2 D � 1

240t2
; F3 D 1

1008t4

in excellent agreement with the expected result (115), thereby, providing yet another
nice check of the topological recursion formalism.

6 Tetrahedron or Framed C
3

In this section we consider quantization of a classical curve that plays a very
important role simultaneously in two different areas: in low-dimensional topology
and in topological string theory.

One of the problems in low-dimensional topology is to associate quantum group
invariants to 3-manifolds (possibly with boundary). Topological string theory, on
the other hand, computes various enumerative invariants of Calabi–Yau threefolds
(possibly with extra branes). In both cases, the computation is usually done by
decomposing a 3-manifold (resp. a Calabi–Yau threefold) into elementary pieces,
for which the invariants are readily available. As basic building blocks, one can
take e.g. tetrahedra and patches of C3, respectively. Indeed, just like 3-manifolds
can be built out of tetrahedra, Calabi–Yau threefolds can be constructed by gluing
local patches of the C

3 geometry. For this reason, a tetrahedron might be called the
“simplest 3-manifold,” whereas C3 might be called “the simplest Calabi–Yau.”

Furthermore, in both cases the invariants associated to these basic building
blocks involve dilogarithm functions (classical and quantum). In quantum topology,
the quantum dilogarithm is the SL.2/ invariant associated to an ideal tetrahedron,
from which one can construct partition function of SL.2/ Chern–Simons theory
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Fig. 3 Mirror curve for C3

geometry

on a generic 3-manifold [19, 21]. Similarly, the partition function of a local toric
Calabi–Yau threefold (with branes) can be computed by gluing several copies of the
topological vertex associated to each C

3 patch [4] and, in the most basic case, the
answer reduces to the quantum dilogarithm function.

As in many other examples discussed in this paper, the exact solution to both of
these problems is determined by a quantization of a classical algebraic curve. The
complex curve associated to an ideal tetrahedron is simply the zero locus of the
A-polynomial A.x; y/ D 1 C x C y, cf. Sect. 3. In topological string theory, this
is the mirror curve for the C

3 geometry. More precisely, there is a whole family of
such curves labeled by the so-called framing parameter f , such that22

A.x; y/ D 1C y C xyf ; (125)

where x ; y 2 C
� and, as usual, x D eu and y D ev. The curve (125) can be

visualized by thickening the edges of the toric diagram of C3, as shown in Fig. 3.
Various choices of framing are related by symplectic transformations .x; y/ 7!
.xyf ; y/, under which closed string amplitudes Fg are invariant, while W g

n and Sk
transform as discussed in Sect. 2.3.

For integer values of f , the curve (125) is an f -sheeted cover of the x-
plane. There are various possible choice of parametrization of this curve, which
can be related by Galois transformations. In following subsections, we find the
corresponding quantum curves from several perspectives. First, in Sect. 6.1, we
choose one very natural parametrization and determine the corresponding quantum
curve for arbitrary f . Then, in Sect. 6.2 we set f D 2 and demonstrate how the
form of the quantum curve changes under a change of parametrization. Finally, in
Sect. 6.3, we discuss some special choices of framing, f D 0 and f D 1, for which
the topological recursion cannot be applied directly, but the answer can nevertheless
be obtained by treating f as a continuous parameter and considering limits of our
results for generic f .

22One can invert the curve equation [9, 10] to find the expansion y.x/ D �1 CP
1

kD1.�1/k.f C1/ .�kf Ck�2/Š

.�kf �1/ŠkŠ
xk (where the factorial function with negative argument is under-

stood as the appropriate 
 -function).
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6.1 General Framing

We wish to find a quantum version of the curve defined by the zero locus of (125),

C W 1C y C xyf D 0 : (126)

As we explained earlier, the answer depends on the choice of parametrization. Here
we make the most convenient choice(

u.p/ D log �1�p
pf

v.p/ D logp
(127)

such that x.p/ and y.p/ are rational functions. As one can easily verify, these
rational functions have trivial tame symbols (66) at all points p 2 C , which means
[43] that our K-theory criterion (67) is automatically satisfied and the curve (126)
should be quantizable for all values of f .

In fact, we can immediately make a prediction for what the form of the quantum
curve should be, by writing the classical curve (125) in the form A.x; y/ D x C
P.y/, withP.y/ D .1Cy/y�f . This is the same form as we considered in (93), and
the parametrization (127) is consistent with the one in (94). Therefore, (96) implies
that the quantization of (125) is

OA D 1C q�1=2 Oy C q.fC1/=2 Ox Oyf : (128)

This result, however, is based only on the first quantum correction (21) and the
assumption that all higher-other corrections can be summed up into factors of q.
Now we wish to show that this is indeed the case by a direct analysis of the higher
order corrections.

Our first task is to determine the subleading terms Sn in the wave-function (11)
associated to the curve (126). In order to use the topological recursion, we first need
to find the branch points. Solving Eq. (24) we find a single branch point at

x� D � f f

.1 � f /1�f ; y� D p� D f

1 � f : (129)

Note, this result is our first hint that special values of framing f D 0; 1 require
extra care: one can not simply set f D 0 or f D 1 from the start since for those
values (129) gives y� … C

�. In these exceptional cases, our strategy will be to carry
out all computations with f generic, and then set f D 0 or f D 1 only in the final
expressions.

The next ingredient we need is the location of the conjugate point p introduced
in (25). For the above curve, the value ofp cannot be found in closed form. However,
if we write
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p D p� C r ; (130)

we can find the conjugate point as a power series expansion in a local coordinate r

p D p� � r C 2.1 � f 2/r2

3f
� 4.1� f

2/2r3

9f 2

C 2.1� f /3.22C 57f C 57f 2 C 22f 3/r4
135f 3

C O.r5/ :

The remaining ingredients of the recursion are the following. Because the
curve (126) has genus zero, the Bergman kernel is given by a simple formula (27).
We also find ! and dEq.p/ and hence determine the recursion kernel (28). Using
local coordinates q and r centered at the branch point (130), the recursion kernel
has a q-expansion that starts with

K.q; r/ D f 2

2.1� f /4r2 q C
f .1C f /
2.1� f /3r2 C

Cf
�
2f 2r.�1C 2r/C 2r.1C 2r/C f .3 � 8r2/� q

6.1� f /4r4 C O.q2/ :

Even though we do not make much use of the anti-derivative, we mention that it can
be found in the exact form,

S0.r/ D �f
2

log
�
r C f

1 � f
�2 C log

�
r C f

1 � f
�

log
�1C .1 � f /r

1 � f
�

C Li2
�f C .1 � f /r
�1C f

�
;

expressed in a local coordinate r , cf. (130).
Using all these ingredients, the topological recursion leads to the following

results for the amplitudes (23):

S2 D �
f 2
� � 3C .�1C f /f �C .�1C f /f �3C f .�3C 2f /�y C .�1C f /4y2

24.�1C f /�f C .�1C f /y�3 ;

S3 D

"
fy.1C y/� � 2C 8f 2 � .�1C f /.1C y/

.2 � 2y C f .2C 7y C f .2 � 7y C 2f .1C y////�
#

48
�
f C .�1C f /y�6 ;

and so on. We again stress that we obtain these amplitudes in a closed form, defined
globally on the curve. Now, in turn, we can apply the hierarchy of Eqs. (42) to
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determine corrections OAk to the curve (125). To this end, we also need the following
derivatives

dy

dx
D � y1Cf

y C fxyf
;

d 2y

dx2
D fy.1C 2f /.2y C .1C f /xyf /

.y C fxyf /3
;

etc. Substituting the leading (20) and the subleading (21) terms

x@xS0 D logy ;

S1 D �1
2

log
y � f � fy
y.y C 1/ ;

into the hierarchy (42) we find the first few quantum corrections

OA1 D �1
2
.1C f C 2 Oy C f Oy/ ;

OA2 D 1

8

�
.1C f /2 C .2C f /2 Oy� ;

OA3 D � 1
48

�
.1C f /3 C .2C f /3 Oy� :

These corrections clearly arise from the „-expansion of e�.fC1/„=2Ce�.1Cf=2/„yC
xyf : Equivalently, choosing a slightly different overall normalization constant, the
quantum curve reads

OA D 1C q�1=2 Oy C q.fC1/=2 Ox Oyf ;

in perfect agreement with the original prediction (128).
Let us mention that one can also compute from the topological recursion

the coefficients Fg defined in (38). As shown in [10], for the mirror C
3 curve

this leads to the „-expansion of the square root of the MacMahon function, in
agreement with the closed topological string free energy. For more complicated
toric manifolds (like generalized conifolds analyzed in Sect. 7) the corresponding
constant contributions to the (closed) partition functions turn out to be given
by multiplicities of the MacMahon function. They are also reproduced by the
topological recursion computation, which in this case can be interpreted in terms
of a pant decomposition of the mirror curve, and mirrors A-model localization
computation [10].

We can also demonstrate that the form of the above quantum curve is consistent
with, and annihilates the B-brane partition function in the topological string
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theory, if conventions are adjusted appropriately. The B-brane partition function,
in arbitrary framing f , in the topological vertex formalism, can be represented as23

 f .x q
f / WD

X
�

.�1/f j�je f2 „�.�t /s�t .x qf / C���.e„; e„/

D
1X
�D0

.�1/.fC1/�e f2 „�.��1/e„�.fC1=2/x�
.1 � e„/ 	 	 	 .1 � e�„/

D
1X
�D0

.�1/.fC1/�q �
2C f

2 �.�C1/x�

.1 � q/ 	 	 	 .1 � q�/ ; (131)

where j�j is the total number of boxes in the partition �. As the Schur function s�t
with a single argument forces partitions involved to be effectively one-dimensional,
in the second line we changed the domain of summation to integers. Also note that
a general expression

�.�/ D j�j C
X
i

.�2i � 2i�i / (132)

in our case gives

�.�/ D �C
�X
iD1
.1 � 2i/ D ��.� � 1/ (133)

and �.�t / D �.�� 1/. The functions  f can be interpreted as framed invariants of
the unknot on the three-sphere. Let us now write  f .x qf / DP1�D0 a�, with

a� D .�1/.fC1/�q �
2C f

2 �.�C1/x�

.1 � q/ 	 	 	 .1 � q�/ : (134)

23We shifted the argument x by qf to match our conventions with the topological vertex ones.
Also note, that for framing f , one has

hTrUmi D ŒmC f m� 1�Š
mŒf m�ŠŒm�Š

;

where Œx�D qx=2 � q�x=2 is the q-number. Notice that for f D 0 it reduces to 1
mŒm�

, which is the
answer for zero framing leading to the dilogarithm. We do not know a product formula for

1X
mD1

ŒmC f m� 1�Š
mŒf m�ŠŒm�Š

xm :
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Then,

a�C1
a�
D �x .�1/

f q
1
2Cf .�C1/

.1 � q�C1/ ; (135)

so that

.1 � q�C1/a�C1 D �x.�1/f q 1
2Cf .�C1/a� (136)

Summing over �, we get

�
1 � Oy C qfC1=2 Ox.� Oy/f � f .x qf / D 0:

As we stressed before, there is a freedom of shifting the subleading S1 term in the
partition function by a linear term in u. To match to our conventions we define
Zf .x/ D x1=2 f .x q

f /, and commuting the additional x1=2 in the above equation
we find that

�
1C q�1=2.� Oy/C q.fC1/=2 Ox.� Oy/f �Zf .x/ D 0:

Therefore, up to a sign of Oy which also is a matter of convention, we reproduce the
quantum curve which we found in (128) in our formalism.

6.2 Framing f D 2

So far we discussed mirror curve forC3 geometry in an arbitrary framing f , but with
a special choice of parametrization. Now we do roughly the opposite, and discuss
how the form of the quantum curve depends on the choice of parametrization, but
with a particular choice of framing f D 2,

A.x; y/ D 1C y C xy2 : (137)

This curve has two branches y.˛/ labeled by ˛ D ˙, such that

y.˙/ D �1˙
p
1 � 4x

2x
:

We note that these two branches are mapped to each other by the Galois transfor-
mation

x 7! x ; y 7! 1

xy
(138)
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that preserves the form of the curve (137). From the equation of the curve we also
have

dy

dx
D �Ax

Ay
D � y2

1C 2xy
;

d 2y

dx2
D 2

AxAxy

A2y
� Axx
Ay
� A

2
xAyy

A3y
D 2y3.2C 3xy/

.1C 2xy/3
; (139)

d3y

dx3
D �6y

4.5C 14xyC 10x2y2/
.1C 2xy/5

:

6.2.1 Topological Recursion

Let us apply the topological recursion to the curve (137). We will consider two
different parametrizations related by the symplectic transformation (138). The first
parametrization which we consider is the natural one

(
u.p/ D logx.p/ D log �1�p

p2

v.p/ D logy.p/ D logp
(140)

It leads to a single branch point dx.p�/ D 0 with p� D �2. The conjugate of a
point p is

p D � p

1C p :

The recursion kernel (28) and the anti-derivative (20) can be found in the closed
form (here we use a local parameters q; r , defined such that p D p� C q):

K.q; r/ D .2 � q/2.q � 1/
2
�
q2.�1C r/C r2 � qr2� log.1� q/ ;

S0.q/ D log.q � 2/ log
�q � 1
q � 2

�C Li2.2 � q/ :

Computing the annulus amplitude and solving the topological hierarchy we find

S1 D �1
2

log
2C y

xy3
;

S2 D 4 � 10y � y2
24.2C y/3 ;
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S3 D �5y
2.1C y/

4.2C y/6 ; (141)

S4 D

�
y.1C y/.4096C y.8448C y.�22592C y.�25344
Cy.5122C y.162C 7y//////

	
5760.2C y/9 :

Computing derivatives and using the results (139), we get

S 01 D
1

2
� xy.3C y/
.2C y/.1C 2xy/

;

S 02 D �
xy2.�32C 16y C y2/
24.2C y/4.1C 2xy/

;

S 03 D �
.5xy3.�4 � 2y C 3y2/
4.2C y/7.1C 2xy/

; (142)

S 04 D �

"
xy2.8192C 17408y � 172672y2 � 298624y3C 37460y4
C144296y5 � 13486y6 � 226y7 � 7y8/

#

5760.2C y/10.1C 2xy/
:

Now, let us consider another parametrization, which is related to (140) by the
transformation y ! .xy/�1 given in (138), so that

(
u.p/ D logx.p/ D log �1�p

p2

v.p/ D logy.p/ D log �p
pC1

(143)

In this parametrization the Eq. (137) is also satisfied. Since we did not redefine x, the
expressions for the branch point p� D �2 and for the conjugatep D �p=.1Cp/ of
a point p are still the same as in the previous parametrization. The recursion kernel
and the anti-derivative in the present case read (again, using local coordinates q and
r vanishing at the branch point):

K.q; r/ D .2� q/2.1 � q/
2
�
q2.�1C r/C r2 � qr2� log.1� q/ ;

S0.q/ D �
�

log.q � 2/�2 C 1

2
log.q � 1/ log

� .q � 2/2
q � 1

�� Li2.2 � q/ :

Using the new parametrization we compute the annulus amplitude and solve
topological hierarchy to find

S1 D �1
2

log
�.1C y/2.2C y/

xy3
;
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S2 D � .1C y/.4C 18y C 13y
2/

24.2C y/3 ;

S3 D �5y
2.1C y/3
4.2C y/6 ; (144)

S4 D

"
y.1C y/.4096C y.16128C y.�3392C y.�67584
Cy.�77438C 13y.�1686C 259y//////

#

5760.2C y/9 :

Finally, computing derivatives we get

S 01 D �
xy.3C 2y/

.2C 3y C y2/.1C 2xy/
;

S 02 D
xy2.32C 80y C 47y2/
24.2C y/4.1C 2xy/

;

S 03 D
5xy3.1C y/2.4C 6y � y2/

4.2C y/7.1C 2xy/
; (145)

S 04 D
xy2 f4.x; y/

5760.2C y/10.1C 2xy/
;

where f4.x; y/ D �8192� 48128y C 65152y2C 644224y3C
C1095340y4C 612184y5 � 38354y6 � 90974y7C 3367y8:

Not surprisingly, the perturbative coefficients (141) and (144) are different in two
different parametrizations that we have considered. However, one can immediately
check that they are, in fact, related by the transformation (138). Therefore, as
expected, the entire partition function Z also enjoys the action of (138).

6.2.2 Quantum Curves

Once we found the coefficients S 0k of the perturbative expansion, we can plug our
results into the hierarchy (42) to produce the quantum corrections OAk and, hence,
the entire quantum curve OA. As usual, we start with the leading term

S 00 D logy ; (146)

which is the same in both parametrizations, and then use higher order amplitudes
computed above. We start with the first parametrization (140), in which the
derivatives of Sk summarized in (142). From the hierarchy of Eqs. (42) we get
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OA1 D �
�S 000
2
@2v C S 01@v

�
A0 D �3

2
� 2 Oy ;

OA2 D 9

8
C 2 Oy ;

OA3 D � 9
16
� 4
3
Oy :

These coefficients arise from the „-expansion of e�3„=2 C e�2„ Oy C Ox Oy2 and,
therefore, up to an overall normalization, the quantum curve (6) in this case reads

OA. Ox; Oy/ D 1C q�1=2 Oy C q3=2 Ox Oy2 ; (147)

in agreement with (128) for f D 2.
We can also consider the second parametrization (143). The leading term S 00 is

the same as (146), and the higher order perturbative corrections are given by (145).
This time, the hierarchy (42) leads to

OA1 D �3
2
� Oy ;

OA2 D 9

8
C Oy
2
;

OA3 D � 9
16
� Oy
6
:

These terms (up to an overall normalization) arise from the expansion of the
quantum curve

OA. Ox; Oy/ D 1C q1=2 Oy C q3=2 Ox Oy2; (148)

which is different from (147).
Finally, the present example gives us a good opportunity to illustrate how the

factorization (55) works for curves in C
� � C

�. Indeed, it is easy to see that to the
leading order in „ the quantum curve factorizes as

OA D 1C Ow � p C 1
p2
Ow2 C O.„/ D .p � Ow/.p C .p C 1/ Ow/C O.„/ ; (149)

where we used (140) and also introduced Ow D e
� p.pC1/

pC2 „@p . In this factorized
expression, the first factor .p � Ow/ annihilates the wave function

Z D e� 1
„

R
dp pC2

p.pC1/ logp
�
1C O.„/

�
D e 1

„

�
Li2.�p/Clogp�log.1Cp�1/

��
1C O.„/

�
:
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The exponent here indeed reproduces the leading order term in the partition
function, S0 D

R
v.p/du.p/, in the parametrization (140). On the other hand,

from the second factor p C .p C 1/ Ow in (149) one finds S0 in the second
parametrization (143).

6.3 Framing f D 0; 1

In the preceding subsections, we found the quantum curves for a tetrahedron (or
C
3) model with a generic framing, and also analyzed in excruciating detail the

case f D 2. The situation becomes more delicate for special values of framing
f D 0; 1 because in these cases the branch point (129) escapes “to infinity” and the
topological recursion can no longer be directly applied. However, as also stressed in
[10], one can still obtain meaningful results by treating f as a continuous parameter,
and taking the limit f ! 0; 1 in the end of the computation.

Let us analyze the case f D 0 from this viewpoint first. From the general
result (128) we conclude that for f D 0 the quantum curve should take the form

OAfD0 D 1C q�1=2 Oy C q1=2 Ox : (150)

The partition function Z associated to this operator is given by a version of the
quantum dilogarithm (183) and can be written as

ZfD0 D c 	 x1=2 .�x/ ; (151)

where c is some multiplicative factor which is not fixed by the q-difference
equation (10). This form of the partition function follows from the application
of the differential hierarchy (42) to the quantum curve (150), or can be seen
directly as follows. Assuming that the constant normalization factor c containsQ
k.�1/ D .�1/�.0/ and changing the signs in each factor of the product (183)

we see that

OyZfD0 D q1=2x1=2
1Y
kD1

1

�1 � xqkC1=2 D q
1=2.�1 � xq1=2/ZfD0 ; (152)

which is equivalent to the statement OAfD0ZfD0 D 0.
Now, let us compare the perturbative „-expansion of the partition function (151)

with what one might find from the topological recursion. The leading term is

S0 D
Z

log.�1 � x/
x

dx D i� logx � Li2.�x/ ;
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where the dilogarithm properly reproduces the leading term in (183). The next,
subleading contribution given by the annulus amplitudes is

S1 D i�

2
C 1

2
logx ;

and, again, it reproduces the corresponding factor x1=2 in (151). The higher order
terms Sk arise from the topological recursion as follows. First, notice that all W g

n

with n ¤ 1 vanish for f D 0. This immediately implies that all S2kC1 D 0

because only W g
n with even values of n contribute to S2kC1. On the other hand,

the correlators with n D 1, which remain non-zero in the f ! 0 limit, read

W 1
1 .p/ D

1

24p2
;

W 2
1 .p/ D �

7.6C 6p C p2/
5760p4

;

W 3
1 .p/ D

31.120C 240pC 150p2 C 30p3 C p4/
967680p6

:

Integrating these correlators (and including an appropriate integration constant in
S2) we find the following functions of x,

S2 D 1

24
Li0.�x/ ;

S4 D � 7

5760
Li�2.�x/ ;

S4 D � 31

967680
Li�4.�x/ ;

which, as expected, agree with the expansion (184). In topological string theory, this
partition function represents a B-brane amplitude in the C3 geometry.

In the second special limit, f ! 1, the situation is a little more subtle due to the
divergence of the correlators W g

2k . This, however, does not affect the leading terms
S0 and S1 which still can be computed by direct methods. The higher-order terms,
on the other hand, can be obtained from the hierarchy of Eqs. (42) applied to the
quantum curve (128) with f D 1:

OAfD1 D 1C q�1=2 Oy C q Ox Oy : (153)

From the topological string point of view, this choice of framing corresponds to an
anti-B-brane, whose partition function should be roughly the inverse of that for a
B-brane. Curiously, however, the hierarchy (42) applied to the above quantum curve
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reveals that the „-expansion of the free energy contains not only polylogarithms of
even order, but also polylogarithms of odd order. This expansion starts with

S0 D Li2.�x/ ; S1 D log x1=2CLi1.�x/ ; S2 D 11

24
Li0.�x/ ; S3 D 1

8
Li�1.�x/ ;

and can be summed up to a generating function

ZfD1 D c 	 x1=2
 .�x/ e

P
1

kD0
„
k

2kkŠ
Li1�k.�x/ D c 	 x1=2

 .�x/ e
� log.1Cxe„=2/

D c 	 x1=2
1Y
kD1

�
1C xe„.kC1=2/�:

As a check of this result we make an observation analogous to (152):

OyZfD1 D q1=2x1=2
1Y
kD1

� � 1 � xqkC3=2� D q1=2 ZfD1
�1 � xq3=2 ;

where we also identified the multiplicative factor c with
Q
k.�1/ D .�1/�.0/. After

multiplying both sides of this expression by the denominator 1C xq3=2 we recover
the quantum curve equation (153).

7 Conifold and Generalizations

There is a large class of toric Calabi–Yau manifolds, known as the generalized
conifolds, whose mirror curves have genus zero. They provide especially simple
and attractive examples, for which the corresponding quantum curves can be easily
determined using our technique. Toric diagrams for this class of manifolds arise
from a triangulation of a “strip,” as shown in Fig. 4. The corresponding mirror curves
are always linear in one of the variables. Therefore, up to a coordinate change, they
can be put in the form

A.x; y/ D B.x/C yC.x/ : (154)

With a suitable choice of framing, B.x/ and C.x/ can be written in a simple
product form B.x/ D Q

i .1 C Qix/ and C.x/ D Q
j .1 C QQjx/, where Qi and

QQj encode the Kähler parameters of the toric Calabi–Yau threefold. For this choice
of framing the partition function of generalized conifolds is always a product of
quantum dilogarithms, which can be easily recognized from the leading behavior

S0 D
Z

logy
dx

x
D
�X

j

Li2.� QQjx/
�
�
�X

i

Li2.�Qix/
�
:
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Fig. 4 An example of mirror curve for a generalized conifold

The higher-order „-corrections complete the dilogarithms here to quantum diloga-
rithms in the full partition function, generalizing the expansion (184) in an obvious
way. With this particularly nice choice of framing, it is also easy to extend the
computation (152) to find corresponding quantum curves.

For general framing, however, a derivation of the quantum curve along these lines
is by far non-obvious. It is this point where our results turn out to be very powerful
and allow to determine quantum curves in any framing in a straightforward and
systematic manner. Writing Eq. (154) with x and y interchanged, as

A.x; y/ D B.y/C xC.y/ ; (155)

essentially represents the same toric geometry and the same algebraic curve.
Equivalently, the curve A.x; y/ D 0 can be described as the zero locus of (93)
with P.y/ D B.y/=C.y/, and from (96) we immediately obtain

OA D B.q�1=2 Oy/C q1=2 Ox C.q1=2 Oy/ : (156)

Because the latter choice of the generalized conifold equation (linear in x) differs
from (154) by the exchange of x and y, the corresponding partition functions are
related by a Fourier transform. In particular, we mentioned earlier that for a specific
choice of framing24 the partition function Z is built out of quantum dilogarithms.
Since the quantum dilogarithm is self-similar under Fourier transform, it follows
that the convolution of a product of quantum dilogarithms is again a product of
quantum dilogarithms. Hence, the Fourier transform of the partition function should
also be a product of quantum dilogarithms. This can be verified directly using the
form of the quantum curve (156) and the hierarchy of Eqs. (42).

As a check of our result (156), we note that for B.y/ D 1C y and C.y/ D yf

we get

OAC3 D 1C q�1=2 Oy C q.fC1/=2 Ox Oyf ;

24In whichB.x/ and C.x/ have a product form B.x/ DQ
i .1CQix/ and C.x/ D Q

j .1C QQj x/.
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which correctly reproduces the quantum curve (128) of the C
3 geometry discussed

earlier in Sect. 6. As another example one can consider an ordinary conifold, whose
mirror curve in zero framing f D 0 reads

AfD0.x; y/ D 1C x C y CQx
y
;

where, as usual, Q is the (exponentiated) Kähler parameter. Similarly, for general
value of framing f , the mirror curve of the conifold is given by the zero locus of a
degree-f polynomial

Af .x; y/ D 1C xyf C y C Qxyf�1 ; (157)

which is manifestly in the form (155) with B.y/ D 1Cy and C.y/ D yf CQyf�1.
Therefore, from (156) we conclude that the quantization of this A-polynomial is

OAf D 1C q�1=2 Oy C q.fC1/=2 Ox Oyf CQqf=2 Ox Oyf �1 : (158)

Another special choice of framing f D 2 leads to the quantum curve (164) which
will be analyzed next to high order in topological recursion. Before we proceed
to this example, however, let us remind the reader that a particular form of the
quantum curve depends not only on the classical equation but also on the choice
of parametrization, as discussed in Sects. 2.3 and 6.2, and as will be also discussed
below. For example, the quantum curves (156), (158), and (164) all come from the
choice of parametrization (94).

Quantum curves for generalized conifolds were also studied recently in [1],
Beem et al. (Private communication, 2011). In particular, in [1] a different quan-
tization of the classical curve A.x; y/ D 0 was related to the Nekrasov–Shatashvili
limit [45] of the refined topological string partition function, where �1 D 0 and
�2 D „ (see also [20]). In that framework, the classical curves for generalized
conifolds and even more general examples are quantized25 by simply replacing x
and y with Ox and Oy (where all q-factors in OA can be absorbed in a normalization of
Ox, Oy, or Kähler parameters). In particular, the new interesting phenomena where the
numerical coefficients “split” into several powers of q, as in

A D 3x5 C : : : Ý OA D .q C q3 C q5/x5 C : : :

or where completely new terms appear upon quantization (as in OA D .1 � q3/x3 C
: : :) never happen in the framework of [1]. It is tempting to speculate that such
phenomena—that one encounters e.g. in quantization of A-polynomials for some
simple knots—can be accounted for by going from the Nekrasov–Shatashvili limit
�1 D 0, �2 D „ to the limit �1 D ��2 D „.

25We thank Mina Aganagic and Robbert Dijkgraaf for clarifying discussions on this.
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Fig. 5 Mirror curve for the
conifold geometry

7.1 Conifold in f D 2 Framing

In this section we analyze the ordinary conifold, whose mirror curve is shown in
Fig. 5. As in the case of C3 geometry, we wish to discuss a special choice of framing
(namely, f D 2) and study how a choice of parametrization affects the form of the
quantum curve.

For f D 2, the conifold mirror curve (157) takes the form

A.x; y/ 
 AfD2.x; y/ D 1C y C xy2 C Qxy ; (159)

and in the limit Q ! 0 reduces to the C
3 mirror curve (137) in the same framing.

In fact, the relation between these two models goes much further. For example, the
curve defined by the zero locus of (159) has two branches y.˛/ labeled by ˛ D ˙,

y.˙/ D �1 � Qx˙p.1C Qx/2 � 4x
2x

; (160)

which, as in the C
3 model, are exchanged by the Galois transformation (138):

.x; y/ 7!
�
x;
1

xy

�
: (161)

From the equation of the curve we also find the following formulae

dy

dx
D �Ax

Ay
D � QyC y2

1C QxC 2xy
; (162)

d2y

dx2
D 2AxAxy

A2y
� Axx
Ay
� A

2
xAyy

A3y

D 2y.QC y/�QCQ2x C .2C 3Qx/y C 3xy2
�

.1C QxC 2xy/3
;

d 3y

dx3
D � 6y.QC y/

.1C QxC 2xy/5

�
Q2.1C Qx/2 CQ.5C 11QxC 6Q2x2/y C

C.5C 21QxC 16Q2x2/y2 C 2x.7C 10Qx/y3 C 10x2y4
�
:

which will be useful to us later.
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7.1.1 Topological Recursion

The curve (159) is quadratic and, therefore, is a double cover of the x-plane. We
introduce two parametrizations of this curve which, just like the two branches (160),
are permuted by the Galois transformation (161).

The first parametrization is the obvious one

(
u.p/ D logx.p/ D log �1�p

p.pCQ/
v.p/ D logy.p/ D logp

(163)

and is motivated by writing (159) in the form (93) with P.y/ D .1Cy/=.QyCy2/.
Indeed, applying our general result (96) to this particular model we immediately
obtain

OA D 1C q�1=2 Oy C q3=2 Ox Oy2 C qQ Ox Oy ; (164)

which is also consistent with (158). As we pointed out earlier, however, this result
is based only on the elementary computation of the annulus amplitude S1, and now
we wish to verify that computing Sn and OAn to higher order does not lead to any
modifications and merely confirms the result (164).

The conifold curve (163) has two branch points

p� D �1�
p
1 �Q : (165)

Notice, in the Q ! 0 limit, the branch point with the minus sign reduces to the C
3

branch point p� D �2, whereas the other branch point runs away to p� D 0 … C
�.

The conjugate of a generic point p is given in a global form (the same around
both branch points)

p D �p �Q
1C p :

The recursion kernel and the anti-derivative can be found in the closed form

K.q; z/ D q.1C q/.q CQ/
2.z� q/.q CQC zC qz/ log

� �q�Q
q.1Cq/

� ;
S0.q/ D �1

2
log q

�
log q C 2 log

� q CQ
Q.1C q/

��C Li2.�q/� Li2.�q=Q/ ;

from which we can compute the annulus amplitude and solve the topological
hierarchy. We find

S1 D �1
2

log
�QC y.2C y/

xy2.QC y/2
�
;
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S2 D y.1 �Q/�11Q2 C 2Q.7� 5y/y � y2.�4C y.10C y//�
24.QC y.2C y//3 ; (166)

S3 D
.Q � 1/y.1C y/.QC y/.Q � y2/

.Q3 � 10y4 � 6Q2y.1C 3y/C Qy2.y2 � 26y � 6//
8.QC y.2C y//6 :

Now, let us consider another parametrization of the classical curve (159), related
to (163) by the transformation (161):

8<
:

u.p/ D logx.p/ D log �1�p
p.pCQ/

v.p/ D logy.p/ D log �p�Q
pC1

(167)

Since x is not affected by the transformation (161), we find the same two branch
points (165):

p� D �1�
p
1 �Q ;

whose behavior in the Q! 0 limit was discussed below Eq. (165).
In the new parametrization (167), the conjugate of a point p is given by the same

formula as in the previous parametrization (163):

p D �p �Q
1C p :

The recursion kernel and the anti-derivative can be also found in the closed form.
The kernel differs by a sign from the kernel in previous parametrization

K.q; z/ D q.1C q/.q CQ/
2.q � z/.q CQC zC qz/ log

� �q�Q
q.1Cq/

� ;
and, as everything else, in the Q ! 0 limit reduces to the recursion kernel of the
C
3 model. The formula for S0 can be also written explicitly, even though its form is

a little involved.
Computing the annulus amplitude and solving the topological hierarchy we now

find

S1 D �1
2

log
� .1C y/2.QC y.2C y//

xy2.QC y/2.Q � 1/
�
; (168)

S2 D
.1C y/.QC y/�Q3 CQ2.1C 2y.7C 5y//
Cy2.4C y.18C 13y//� Qy.6C y.2C y.10C 11y///�

24.Q � 1/.QC y.2C y//3 ;
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which should be compared to the analogous formulae (166) obtained in a different
parametrization / polarization.

7.1.2 Quantum Curves

Once we found the perturbative amplitudes Sk , we can compute their derivatives
and determine the form of the quantum curve from the hierarchy of Eqs. (42). With
the first choice of parametrization (163), we get

OA1 D � Oy
2
CQ Ox Oy C 3

2
Ox Oy2 ;

OA2 D 1

8
. Oy C 4Q Ox Oy C 9 Ox Oy2/ ;

OA3 D 1

48
.� Oy C 8Q Ox Oy C 27 Ox Oy2/ :

It is easy to see that these are precisely the coefficients which arise from the
perturbative „-expansion of the curve (164):

OA. Ox; Oy/ D 1C q�1=2 Oy C q3=2 Ox Oy2 C qQ Ox Oy ; (169)

which, in the Q! 0 limit, reduces to the quantum curve (147) of the C3 model (in
a similar parametrization).

In the second parametrization (167), computing the derivatives of Sk from (168)
and substituting the result into the hierarchy of loop equations (42) gives

OA1 D �1 � Oy
2
C 1

2
Ox Oy2 ;

OA2 D 1

2
C Oy
8
C 1

8
Ox Oy2 ;

etc. Up to an overall normalization, these coefficients arise from the „-expansion of
the quantum curve

OA. Ox; Oy/ D 1C q1=2 Oy C q3=2 Ox Oy2 C qQ Ox Oy : (170)

As expected, in the limit Q! 0 this expression reduces to (148).
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Appendix 1: A Hierarchy of Differential Equations

In this appendix we provide more details on the hierarchy of differential equa-
tions (42) arising from the quantum curve equation OAZ D 0. This hierarchy allows
to determine the quantum operator OA, order by order in „, from the knowledge of the
partition function Z it annihilates, or vice versa. We stress that the hierarchy (42)
takes the same form for curves embedded in C � C or C� � C

�, even though its
derivation in both cases is much different.

We recall that, in the classical limit, we consider curves embedded either in C�C
with coordinates .u; v/, or in C

� � C
� with coordinates .x D eu; y D ev/. The

classical curve is given by the polynomial equation

0 D A 
 A0: (171)

In the quantum regime we introduce the commutation relation ŒOv; Ou� D „ and use the
representation Ou D u; Ov D „@u. For C� coordinates we then have Ox D x D eu; Oy D
eOv D e„@u and Oy Ox D q Ox Oy, where q D e„. In what follows we denote derivatives
w.r.t u by 0 D @u D x@x .

To represent the quantum curves corresponding to (171) we use the following
expansions, respectively in C � C and C

� � C
� case

OA D
dX
jD0

aj .u;„/Ovj ; OA D
dX
jD0

aj .x;„/ Oyj ;

where, respectively,

aj .u;„/ D
1X
lD0

aj;l .u/„l ; aj .x;„/ D
1X
lD0

aj;l .x/„l :

We also reassemble contributions of fixed „ order into, respectively,

Al D Al.u; v/ D
dX
jD0

aj;l .u/v
j ; Al D Al.x; y/ D

dX
jD0

aj;l .x/y
j : (172)

Replacing classical variables in these expansions by quantum operators Ou; Ov or Ox; Oy,
ordered such that Ov or Oy appear to the right of Ou or Ox, defines corrections OAl to the
quantum curve (6). Using the above notation, the quantum curve equation can be
written, respectively in C � C and C

� �C
� case, as

OAZ.u/ D
� dX
jD0

aj .u;„/Ovj
�
Z.u/ D 0; OAZ.x/ D

� dX
jD0

aj .x;„/ Oyj
�
Z.x/ D 0;

(173)
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where

Z D exp
�1
„
1X
kD0
„kSk

�
: (174)

Hierarchy in the C
� Case: q-Difference Equation

The quantum curve equation gives rise to a hierarchy of differential equations which
arise as follows. Substituting the partition function (174) into (173) and dividing by
e„�1S0 results in

0 D
1X

j;lD0
aj;l„l ejS 0

0 exp
� 1X
nD1
„ndn.j /

�
; (175)

where dn.j / combine terms with a fixed power of „ in the expansion ofP
k „kSk

�
euCj„�

dn.j / D
nC1X
rD1

j r

rŠ
S
.r/
nC1�r .x/: (176)

For example

d1.j / D j 2

2
S 000 C jS 01;

d2.j / D j 3

6
S 0000 C

j 2

2
S 001 C jS 02;

d3.j / D j 4

4Š
S
.4/
0 C

j 3

3Š
S 0001 C

j 2

2
S 002 C jS 03;

and note that for each nwe have dn.0/ D 0. Let us now expand the exponent in (175)
and collect terms with fixed power of „

exp
� 1X
nD1
„ndn.j /

�
D
1X
rD0
„rDr .j /; (177)

so that, for example,

D0.j / D 1;

D1.j / D d1.j / D S 000
2
j 2 C S 01j;
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D2.j / D d2.j /C 1

2
d1.j /

2 D .S 000 /2

8
j 4 C 1

6

�
S 0000 C 3S 000 S 01

�
j 3

C 1
2

�
S 001 C .S 01/2

�
j 2 C S 02j;

D3.j / D d3.j /C d1.j /d2.j /C 1

6
d1.j /

3

D .S 000 /3

48
j 6 C

�S 000 S 0000
12

C .S 000 /2S 01
8

�
j 5

C 1

24

�
S 00000 C 6S 000 S 001 C 4S 0000 S 01 C 6S 000 .S 01/2

�
j 4 C

C1
6

�
3S 001 S 01 C .S 01/3 C S 0001 C 3S 000 S 02

�
j 3 C �S 002

2
C S 01S 02/j 2 C S 03j;

D4.j / D d4.j /C d1.j /d3.j /C 1

2
d2.j /

2

C1
2
d1.j /

2d2.j /C 1

4Š
d1.j /

4

D .S 000 /4

384
j 8 C 1

48

�
.S 000 /2S 0000 C .S 000 /3S 01

�
j 7

C : : :C 1

2

�
.S 02/2 C S 003 C 2S 01S 03

�
j 2 C S 04j:

Finally, expanding (175) in total power of „ and collecting terms with a fixed such
power „n, gives rise to a hierarchy of differential equations

0 D
X
j

ejS
0

0

nX
rD0

aj;rDn�r .j /: (178)

Now we use the fact that the disk amplitude in C
��C� case is S0 D

R
log.y/ dx

x
,

so S 00 D log.y/. Therefore ejS
0

0 D yj and we can write (178) in terms of corrections
Ak to the quantum curve (172). In particular the first equation in the hierarchy 0 DPd

jD0 aj;0yj D A0.x; y/ coincides with the classical curve equation (171). Now,
writing Dn�r .j / DPmDn�r;mjm, we can rewrite (178) as

0 D
nX
rD0

X
j;m

aj;rDn�r;mjmyj D
nX
rD0

X
j;m

aj;rDn�r;m.y@y/myj

D
nX
rD0

�X
m

Dn�r;m.y@y/m
�
Ar:
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The expression in the last bracket is nothing but the operator Dn�r .j / from (177)
with all j replaced by y@y D @v. Therefore we denote this operators by Dn�r .@v/,
or simply Dn�r ; for example

D1 D S 000
2
.y@y/

2 C S 01.y@y/;

etc. In terms of these new operators, the hierarchy of Eqs. (178) takes a particularly
simple form

0 D
nX
rD0

Dn�rAr ; (179)

as advertised in (42), and with Dn�r defined as in (177) with j replaced by @v.

Hierarchy in the C Case: Differential Equation

Now we show that the hierarchy of equations which arises for curves in C�C takes
the same form (42) as in C

� � C
� case, even though the explicit derivation of this

hierarchy is much different. Now Eq. (173) takes a form

0 D OAZ.u/ D
dX
jD0

1X
lD0

aj;l„lCj @juZ.u/;

and by induction we find that the last term can be written as @juZ D Z.@uCS 0/j S 0.
Then the factor of Z can be factored out of an entire expression, which results in

0 D
1X
lD0

h
a0;l„l C

d�1X
jD0

ajC1;l„l
�
„@u C

1X
kD0
„kS 0k

�j 1X
rD0
„rS 0r

i
: (180)

Recalling that S 00 D v, an explicit computation reveals that the last term in this
expression can be written as

�„@u C „S 0
�j„S 0 D vjC1 C „

�
S 000
j.j C 1/

2
vj�1 C S 01.j C 1/vj

�
C (181)

C„2
�
.S 000 /2

.j � 2/.j � 1/j.j C 1/
8

vj�3C �S 0000 C 3S 000 S 01� .j � 1/j.j C 1/6
vj�2C

C�S 001 C .S 01/2�j.j C 1/2
vj�1 C S 02.j C 1/vj

�
C O.„3/ D
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D
h
1C „

�S 000
2
@2v C S 01@v

�
C „2

� .S 000 /2
8

@4v C
S 0000 C 3S 000 S 01

6
@3v C

S 001 C .S 01/2
2

@2v

CS 02@v

�
C O.„3/

i
vjC1:

We see that a coefficient at each power „r above is nothing but Dr introduced
in (179), i.e. the operator defined in (177) with j replaced by @v. Therefore

�„@u C „S 0
�j„S 0 D 1X

rD0
„rDr :

Using a definition Ar from (172) we find that (180) takes form

0 D
X
r;lD0

dX
jD0

aj;l„l„rDrv
j D

X
r;l

„rClDrAl D
1X
nD0
„n
� nX
rD0

Dn�rAr
�
:

Therefore at order „n we get

0 D
nX
rD0

Dn�rAr ; (182)

with Dn�r defined as in (177) with j replaced by @v. This is the same equation as in
C
� � C

� case (179), and as already advertised in (42).

Appendix 2: Quantum Dilogarithm

In literature several representations of quantum dilogarithm can be found. We use
the following one

 .x/ D
1Y
kD1
.1 � xe„.k�1=2//�1 D (183)

D exp
�
�
1X
kD1

xk

k.e„k=2 � e�„k=2/
�
D

D
1X
kD0

xke
„k
2

kY
iD1

1

1 � ei„ ;

which has the following “genus expansion”
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log .x/ D 1

„S0.x/C S1.x/C „S2.x/C „
2S3.x/C „3S4.x/C „4S5.x/C : : :


 �1„Li2.x/C „
24

Li0.x/ � 7„3
5760

Li�2.x/

C 31„5
967680

Li�4.x/C : : : D (184)

D
1X
kD0
„k�1.1 � 21�k/Bk

kŠ
Li2�k.x/ : (185)

Note, all terms with even power of „ vanish. For terms � „k�1Bk with k D
3; 5; 7; : : : this is so, because B3 D B5 D B7 D : : : D 0. On the other hand,
the term with k D 1 is proportional to .1 � 21�1/ D 0, hence it vanishes as well.
Further details can be found e.g. in [21].
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1 Introduction

(1.1) The construction of the Hall algebra of an abelian category A is known
to produce interesting Hopf algebras of quantum group-theoretic nature. A
condition usually imposed to ensure that the Hall algebra has a compatible
comultiplication, is that A is hereditary (of homological dimension 1). There
are two main types of hereditary abelian categories which have been studied in
this respect.
First, if Q is a quiver, we can form the category A D Rep

Fq
.Q/ of (finite-

dimensional) representations ofQ over a finite field Fq . As discovered by Ringel
[22], the Hall algebra of Rep

Fq
.Q/ is related to the quantized Kac–Moody

algebra whose Dynkin diagram is Q. More precisely, it contains Uq.nC/, the
quantization of the unipotent subalgebra on the positive root generators from the
Kac–Moody root system.
Second, if X is a smooth projective curve over Fq , we can form the category
A D C oh.X/ of coherent sheaves on X . In this case the Hall algebra contains
the spaces of unramified automorphic forms on the groups GLr , r > 1 over
the function field K D Fq.X/, and the multiplication corresponds to forming
Eisenstein series [14]. One can also include “orbifold curves” GnnX where G is
a finite group of automorphisms of a curveX , see [23]. The algebras obtained in
this way include both quantum affine algebras [14, 23] and spherical Cherednik
algebras [25].

(1.2) The goal of the present paper is to begin the study of a third, more
arithmetic, type of Hall algebras. It is obtained by replacing a curve X=Fq by
the spectrum of the ring of integers in a number field, compactified at infinity by
the Archimedean valuations. In this paper we consider only the basic example of
Spec.Z/ D Spec.Z/ [ f1g. The role of rank n vector bundles for Spec.Z/ is
played by free abelian groupsL of rank n with a positive definite quadratic form
in L˝ R, see [10, 29, 30] as well as [18, 28] for a more general point of view of
Arakelov geometry. The “moduli space” of such bundles is the classical quotient
of reduction theory of quadratic forms

Bunn D GLn.Z/nGLn.R/=On:

Functions on Bunn are the same as automorphic forms on GLn.R/, see [9] for a
detailed study of precisely this situation.

(1.3) To describe our arithmetic analog of the Hall algebra, let Hn D C10 .Bunn/
be the space of smooth functions on Bunn with compact support. The spaceH DL

n Hn has a natural structure of an associative algebra, constructed in Sect. 3.
From the point of view of the automorphic form theory, the multiplication in
H is given by the parabolic pseudo-Eisenstein series map. If X is a curve over
Fq , the analogous map for unramified automorphic forms over the function field
Fq.X/ gives the multiplication in the Hall algebra ofX , see [14]. So in this paper
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we study the space H of automorphic forms on all the GLn.R/ as an associative
algebra in its own right.
We further concentrate on the subalgebra SH � H generated by H1 D
C10 .R>0/. Extending the terminology of [26], we call SH the spherical
Hall algebra of the “curve” Spec.Z/. From the point of view of spectral
decomposition [20], SH consists of automorphic forms expressible through
the Eisenstein–Selberg series [27], the simplest higher-dimensional analogs of
the nonholomorphic Eisenstein–Mass series on the upper half plane. This algebra
has an explicit space of generators, but relations among these generators are not
directly given.

(1.4) Our first main result describes SH as a Feigin–Odesskii-type shuffle algebra,
in a way similar to the results of [26] for the case of curves over a finite field.
However, in our case the shuffle algebra is based not on a rational, but on a
meromorphic function: the Riemann zeta function �.s/. This function, therefore,
encodes all the relations among the generators fromH1.
Quadratic relations in SH correspond to the classical functional equation for the
Eisenstein–Maass series, in a way similar to the case of function field considered
in [14]. One form of writing the relations is in terms of “generating functions”
(formalH -valued distributions) E.s/ depending on s 2 C. It has the form

E.s1/E.s2/ D ��.s1 � s2/
��.s1 � s2 C 1/E.s2/E.s1/;

where ��.s/ is the full zeta function of Spec.Z/ (the product of �.s/ with the
Gamma and exponential factors). This is discussed in Sect. 7.
Our second main result, Theorem 8.6, is that the space of the cubic relations (not
following from the quadratic ones) is identified with (an appropriate completion
of) the space spanned by nontrivial zeroes of �.s/. In other words, the space
spanned by the zeroes of �.s/ can be realized as a certain algebraic homology
space of the associative algebra H . This is remindful of (but different from)
the result of D. Zagier [32] who gave an interpretation of the zeta-space using
integrals of Eisenstein–Maass series over anisotropic tori associated to real
quadratic fields.

(1.5) After the first draft of this paper was written, we learned that M. Kontsevich
and Y. Soibelman [17] have recently considered the algebra H as well. Their
interest was in studying wall-crossing formulas in Bun, so our results practically
do not intersect. We are grateful to M. Kontsevich and Y. Soibelman for
explaining their work and providing us with the preliminary version of [17].

(1.6) M.K. would like to thank Universities Paris-7 and Paris-13 as well as the
Max–Planck Institut für Mathematik in Bonn for hospitality and support during
the work on this paper. His research was also partially supported by an NSF
grant.
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2 Vector Bundles on Spec.Z/

By a vector bundle on Spec.Z/ we will mean a triple E D .L; V; q/, where V is a
finite-dimensional R-vector space, q is a positive definite quadratic form on V , and
L � V is a Z-lattice of maximal rank. In this case, V becomes a Banach space with
norm kvk D pq.v/.

The rank ofE is defined as rk.E/ D dimR.V / D rkZ.L/. A morphism f W E 0 D
.L0; V 0; q0/ �! E D .L; V; q/ of vector bundles on Spec.Z/ is, by definition, a
linear operator f W V 0 ! V such that, first, f .L0/ � L and, second, kf k 6 1, i.e.,
we have q.f .v0// 6 q0.v0/ for each v0 2 V 0. In this way we get a category which we
denote Bun. All the Hom-sets in Bun are finite.

We denote by O D .Z;R; x2/ the trivial bundle of rank 1.
The dual bundle toE is defined asE_ D .L_; V �; q�1/, where q�1 is the inverse

quadratic form on the dual space. The tensor product of two bundles is defined as

E ˝ E 0 D .L˝Z L
0; V ˝R V

0; q ˝ q0/; .q ˝ q0/.v˝ v0/ WD q.v/q0.v0/:

In particular, we have the bundle Hom.E;E 0/ D E_ ˝ E 0. The corresponding
quadratic form on HomR.V; V

0/ takes f W V ! V 0 into tr.f t ı f /, where the
transpose is taken with respect to q; q0. We leave to the reader the proof of the
following:

Proposition 2.1. Let Ei D .Li ; Vi ; qi /, i D 1; 2; 3, be three vector bundles on
Spec.Z/. Then

HomBun.E1;Hom.E2;E3// � HomBun.E1 ˝ E2;E3/

as subsets in HomR.V1 ˝ V2; V3/. ut
Note the particular case of E1 D O . The proposition in this case reduces to the

inequality

kf k 6
p

tr.f t ı f /

for any linear operator f W V2 ! V3. We also see why the inclusion in the
proposition is not, in general, an equality. Indeed, for E1 D O , the Hom-set on the
left consists of integer points in the domain tr.f t ıf / 6 1, which is an ellipsoid. But
the Hom-set on the right consists of integer points in the domain kf k 6 1 which is
not an ellipsoid, if dim.V2/; dim.V3/ > 1.

We also have the symmetric and exterior product functors

Sr.E/ D .Sr
Z
.L/; Sr

R
.V /; Sr .q//; Sr .q/.v1 � 	 	 	 � vr / WD q.v1/ 	 	 	q.vr /;

�r.E/ D .�r
Z
.L/;�r

R
.V /;�r.q//; �r.q/.v1 ^ 	 	 	 ^ vr / WD det kB.vi ; vj /k:
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Here � is the product in the symmetric algebra, while B is the symmetric bilinear
form such that q.v/ D B.v; v/.

Let Bunn be the set of isomorphism classes of rank n vector bundles on Spec.Z/.
This set is a classical double quotient of the theory of automorphic forms:

Bunn

 � GLn.Z/nGLn.R/=On: (1)

Explicitly, the double coset of g1 2 GLn.R/ corresponds to the isomorphism class
of the bundle .Zn;Rn; .gt1/�1� .qst//, where

qst.x1; : : : ; xn/ D
nX
iD1

x2i

is the standard quadratic form on R
n and .gt1/�1� .qst/.x/ D qst..g

t1/�1.x// is the
quadratic form corresponding to the symmetric matrix .gt1/�1 	 g�11 .

We will also need an adelic version of (1). Let Af DQres
p Qp be the ring of finite

adeles of the field Q, let OZ D Q
p Zp � Af be the profinite completion of Z, and

A D R�Af be the full ring of adeles. ThenKn WD On�Qp GLn.Zp/ is a maximal
compact subgroup of GLn.A/.

Proposition 2.2. The embedding of GLn.R/ into GLn.A/ induces a bijection

Bunn ' GLn.Z/nGLn.R/=On
˛�! GLn.Q/nGLn.A/=Kn:

Proof. The statement is of course well known. We describe the inverse map
explicitly for later use. Let g D .g1; .gp// 2 GLn.A/, so g1 2 GLn.R/ and
gp 2 GLn.Qp/, with gp 2 GLn.Zp/ for almost all p. We associate to g a vector
bundle Eg D .Lg; Vg; qg/ on Spec.Z/ by putting:

Lg D Q
n \

\
p

gtp.Z
n
p/; Vg D R

n; qg D .gt1/�1� .qst/:

It is clear that E
gk ' Eg for 
 2 GLn.Q/, k 2 Kn, so we get a map

GLn.Q/nGLn.A/=Kn

ˇ�! Bunn :

By construction, ˇ˛ D Id; the fact that ˛ˇ D Id follows since Lg is a free abelian
group.

Example 2.3. Take n D 1. The set Bun1 formed by isomorphism classes of line
bundles, will be also denoted by Pic.Spec.Z//. This set is a group under tensor
multiplication. It is identified with R

�C, the multiplicative group of positive real
numbers. Explicitly, given E D .L; V; q/ with dimR.V / D 1, we associate to it the
number deg.E/ D 1=pq.lmin/ 2 RC, where lmin is one of the two generators of L.
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Conversely, for a 2 RC we denote by O.a/ D .Z;R; a�2 	 qst/ the corresponding
line bundle with deg.O.a// D a. The convention, compatible with (1) for n D 1, is
chosen so that for a � 0 the bundle O.a/ has many “global sections”, i.e., lattice
points l such that q.l/ 6 1.

Example 2.4. For any n, taking the top exterior power together with the isomor-
phism of Example 2.3, gives a map

Bunn
det�! Pic.Spec.Z//


�! RC:

Explicitly, E D .L; V; q/ is sent into 1=Vol.V=L/, the inverse of the covolume of
L with respect to the Lebesgue measure defined by q. We will denote this inverse
covolume by deg.E/ and call it the degree of E . We denote by Bunn;a the set of
isomorphism classes of bundles of rank n and degree a.

Consider the case n D 2 and take a D 1. In this case

Bun2;1 D SL2.Z/nSL2.R/=SO2

is identified with the quotient SL2.Z/nH, where H � C is the upper half-plane
Im.z/ > 0. More explicitly, consider the standard quadratic form on C given by
qst.z/ D jzj2. Then, for � 2 H, the lattice Z C Z� has, with respect to qst, the
covolume equal to Im.�/. We therefore associate to � the bundle

E� D
�
ZC Z�; C; qst= Im.�/1=2

� 2 Bun2;1 :

Lemma 2.5. For 
 2 SL2.Z/ we have E
.�/ ' E� , and this establishes an
identification SL2.Z/nH ! Bun2;1.

Proof. It is clear that E� ' E�C1. Let us show that E�1=� ' E� . Note that

Vol.C=L�1=� / D Im.�1=�/ D Im

� ��
j� j2

�
:

Notice also that multiplication by � defines an isomorphism of lattices

L�1=�
��! L� :

The determinant of the multiplication by � being j� j2, we conclude that this
multiplication defines an isomorphism

�
L�1=� ; C; qst= Im.�1=�/1=2� �! �

L�; C; qst= Im.�/1=2
�

of vector bundles over Spec.Z/.
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Let now

0! E 0 D .L0; V 0; q0/ i�! E D .L; V; q/ j�! E 00 D .L00; V 00; q00/! 0 (2)

be a sequence of vector bundles on Spec.Z/ and their morphisms.

Definition 2.6. We say that a sequence (2) is short exact (in Bun), if the following
hold:

(1) The induced sequences of vector spaces and abelian groups are short exact.
(2) The form q0 is equal to i�.q/, the pullback of q via i , defined by

.i�q/.v0/ D q.i.v0//; v0 2 V 0:

(3) The form q00 is equal to j�.q/, the pushforward of q via j , defined by

.j�q/.v00/ D min
j.v/Dv00

q.v/; v00 2 V 00:

An admissible monomorphism (resp. admissible epimorphism) in Bun is a mor-
phism which can be included into a short exact sequence as i (resp. j ).

Let us call a subbundle in E an equivalence class of admissible monomorphisms
E 0 ! E modulo isomorphisms of the source. For such a subbundleE 0 we have the
quotient bundle E=E 0 2 Bun.

Proposition 2.7. Let E D .L; V; q/ be a vector bundle on Spec.Z/. The following
sets are in bijection:

(i) Rank r subbundles E 0 � E .
(ii) Rank r primitive sublattices, i.e., subgroups L0 � L such that L=L0 has no

torsion.
(iii) Q-linear subspacesW 0 � L˝Z Q of dimension r .

Proof. The bijection between (ii) and (i) takes a primitive sublattice L0 into E 0 D
.L0; V 0; q0/, where V 0 D L0 ˝Z R and q0 D qjV 0 . The bijection between (iii) and
(ii) takes a subspace W 0 into the sublattice L0 D L \W 0.
Proposition 2.8. Let E D .L; V; q/ be a vector bundle on Spec.Z/. For any r 2
ZC and a 2 RC, the set of subbundles E 0 � E with rk.E 0/ D r and deg.E 0/ > a,
is finite.

Proof. Let W D L ˝Z Q. Consider first the case r D 1. If E 0 � E corresponds
to a one-dimensional subspace W 0 � W , then deg.E/ D 1=

p
q.w0/, where w0 2

W 0 \ L D L0 is one of two generators of this free abelian group of rank 1. Since
the number of w0 such that q.w0/ 6 a is finite, our statement follows.

Consider now the case of arbitrary r and use the Plücker embedding of the
Grassmannian G.r;W / into P.�r.W //. If W 0 � W is an r-dimensional subspace
with L0 D W 0 \ L, then �r.W 0/ � �r.W / is a one-dimensional subspace, and
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�r.W 0/ \ �r
Z
.L/ D �r

Z
.L0/ is a free abelian group of rank 1 and a primitive

sublattice in �r
Z
.L/. Further, �r

R
.V / is equipped with the quadratic form �r.q/,

and deg.E 0/ D 1=p�r.q/.� 0/, whereE 0 is the subbundle corresponding toW 0 and
� 0 2 �r

Z
.L0/ is one of the two generators. We thus reduce to the case of subbundles

of rank 1.

Let E 0 D .L0; V 0; q0/ and, E 00 D .L00; V 00; q00/ be two vector bundles on
Spec.Z/. We define Ext1.E 00; E 0/ to be the set of admissible short exact sequences
(2) modulo automorphisms of such sequences identical on E 0 and E 00.

Proposition 2.9. The set Ext1.E 00; E 0/ has a natural structure of a C1-manifold
isomorphic to the torus .R=Z/n

0n00

, where n0 D rk.E 0/ and n00 D rk.E 00/.

Proof. For any short exact sequence as in (2), the induced short exact sequence
of lattices necessarily splits. Let us fix a splitting L D L0 ˚ L00 and the induced
splitting V D V 0 ˚ V 00 of R-vector spaces, so that i and j become the canonical
embedding into and the projection from the direct sum. Let � be the set of positive
definite quadratic forms q on V such that i�q D q0 and j�q D q00. By definition,�
is a closed subset in the space of all positive definite quadratic forms on V and so
has a natural topology.

The group HomZ.L
00; L0/ is identified with the group of automorphisms of the

split exact sequence

0! L0 i�! L0 ˚ L00 j�! L00 ! 0

identical on L0; L00. Therefore this group acts on �, and we have Ext1.E 00; E 0/ D
�=HomZ.L

00; L0/.

Lemma 2.10. The map�
res�! HomR.V

0˝V 00;R/ which sends q into the induced
pairing between the summands V 0 and V 00, is a homeomorphism. This map takes
the action of the group HomZ.L

00; L0/ on � into its action on HomR.V
0 ˝ V 00;R/

by translations.

Proof. Fix a basis e1; : : : ; en0 of V 0, orthonormal with respect to q, and a basis
v1; : : : ; vn00 of V 00. Let B 0; B 00 be the symmetric bilinear forms on V 0; V 00 corre-
sponding to q0; q00, and let q be a quadratic form on V with corresponding symmetric
bilinear form B . Then the condition q 2 � means:

B.ei ; ej / D ıij D B 0.ej ; ej /;

B

�
vp �

n0X
�D1

B.vp; e�/ 	 e�; vq �
n0X
�D1

B.vq; e�/ 	 e�
�
D B 00.vp; vq/:

(3)

Indeed, the minimum in the definition of j�q is given by the orthogonal projection
to V 0 with respect to B , and the left hand side of the second formula above involves
exactly such projections.
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Denote by X the matrix kB.vp; e�/k of size n00 � n0, and let Y be the matrix
kB.vp; vq/k of size n00 � n00. From the first condition in (3) we see that a quadratic
form q with i�q D q0 is completely determined by the datum ofX and Y , while the
second equation implies that Y D B 00�X 	Xt , whereB 00 D kB 00.vp; vq/k. Therefore
q 2 � is indeed completely defined by X , which is the matrix representative of
res.q/. The action of elements of HomZ.L

00; L0/ in the matrices X is the action by
translation. This proves the lemma and Proposition 2.9.

Remark 2.11. More generally, one can consider data F D .L; V; q/ similar to the
above but where L is any finitely generated abelian group, V D L ˝Z R and q is
a positive definite quadratic form on V . They correspond to coherent sheaves on
Spec.Z/ locally free at infinity. We get in this way a category C oh¤1.Spec.Z//,
with admissible short exact sequences defined similarly to Definition 2.6. A more
systematic theory should enlarge C oh¤1.Spec.Z// by allowing a meaningful
concept of sheaves with torsion at 1. This will be done in a subsequent paper.
For example, sheaves supported at 1 can be described in terms of two positive
definite quadratic forms q 6 q0 on one R-vector space V , much in the same way
as representing a finite abelian p-group as quotient of two free Zp-modules of
the same rank. The role of elementary divisors is then played by the logarithms
log�i .q W q0/ 2 RC, of the eigenvalues of q with respect to q0.

3 The Hall Algebra

Let

Yn D GLn.R/=On

be the space of quadratic forms onRn. It is aC1-manifold of dimension n.nC1/=2.
It is well known that for large N the congruence subgroup

GLn.Z; N / D
˚

 2 GLn.Z/ W 
 
 1 mod N

�
acts on Yn freely, so GLn.Z; N /nYn is a C1-manifold. The set Bunn is the quotient
of this manifold by the finite group GLn.Z=N/ and therefore has a structure of a
C1-orbifold. In particular, we can speak about C1-functions on Bunn. They are
C1-functions on GLn.R/, left invariant under GLn.Z/ and right invariant underOn,
i.e., C1-automorphic forms in the classical sense. Let

Hn D C10 .Bunn/ D C10
�
GLn.Z/nGLn.R/=On

�
be the space of C1-functions on Bunn with compact support. In other words, an
element of Hn is a C1-function f W GLn.R/ ! C which is left GLn.Z/-invariant,
right On-invariant and such that Supp.f / � GLn.Z/ 	 K where K � GLn.R/ is a
compact subset.
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Consider the direct sum

H D
1M
nD0

Hn; H0 D C:

Let f 2 Hm; g 2 Hn. We define their Hall product f 
 g to be the function
BunmCn ! C given by the formula

.f 
 g/.E/ D
X
E0�E

deg.E 0/n=2deg.E=E 0/�m=2 	 f .E 0/g.E=E 0/; (4)

where the sum is over all subbundles E 0 � E of rank m.

Proposition 3.1. (a) For everyE the sum in (4) is actually finite, so f 
g is a well
defined function.

(b) f 
 g is again a C1-function with compact support.
(c) The operation f 
 g makes H into a graded associative algebra, with unit

1 2 H0.

We will call the algebra H the Hall algebra of Spec.Z/. In this paper will be
particularly interested in the subalgebra SH � H generated byH1 D C10 .RC/. We
will call SH the spherical Hall algebra, adopting the terminology of [26], where a
similar algebra was studied for the case of a curve over a finite field.

Remark 3.2. (a) The quantity

hE=E 0; E 0i D deg.E 0/n=2deg.E=E 0/�m=2 D p
deg Hom.E=E 0; E 0/

is the analog of the Euler form used by Ringel [22] to twist the multiplication in
the Hall algebra of representations of a quiver. In our case, as well as in the case
of curves over a finite field [14,26], twisting by this form simplifies the form of
commutation relations.

(b) One can get larger algebras by relaxing the condition of compact support to
that of sufficiently rapid decay at infinity. More generally, there are interesting
cases when f and g do not have rapid decay, but f 
 g still makes sense as a
convergent series.

(c) Hall algebras of exact categories were considered in [5, 12]. Note that Defini-
tion 2.6 defines on Bun a structure remindful of that of an exact category but
lacking additivity (Hom-sets do not form abelian groups), Such structures were
axiomatized in [3] under the name “proto-exact categories”.

Proof of Proposition 3.1. (a) Since f is with compact support, there is A > 1 such
that f .E 0/ D 0 unless deg.E 0/ 2 Œ1=A;A�. By Proposition 2.8 all but finitely
many E 0 � E have deg.E 0/ < A, so that the sum in (4) is indeed finite.

(b) To see that f 
 g is smooth, suppose that E1 and E2 are close to each other in
BunmCn. Then the corresponding latticesL1 andL2 are identified in a canonical
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fashion. Therefore the sets of subbundles E 01 � E1 and E 02 � E2 of rank m,
are identified, and so we have a bijection between the sets of summands in
.f 
 g/.E1/ and .f 
 g/.E2/. Next, the number of nonzero summands in both
sums is bounded by the same number by the continuity of f and g, so we can
view f 
 g as a sum of finitely many C1-functions.

To see that f 
 g has compact support, let ˙1 � Bunm be a compact set
supportingf , and˙2 be a compact set supportingg. For anyE1 2 ˙1,E2 2 ˙2

the set of E 2 BunmCn that can fit into a sequence (2), is a compact topological
space. Indeed, it is the image of a continuous map Ext1.E2;E1/ ! BunmCn,
whose source is a compact torus. Let F be the total space of the fibration over
˙1�˙2 with fiber over .E1;E2/ being Ext1.E2;E1/. Then F is compact, while
the support of f 
 g is contained in the image of F under a natural continuous
map into BunmCn.

(c) To prove associativity, let f 2 Hn1 , g 2 Hn2 , h 2 Hn3 . Then for E 2
Bunn1Cn2Cn3 we have

..f 
 g/ 
 h/.E/ D
X

E1�E2�E
d

n2Cn3
2

1 d
�n1Cn3

2

2 d
�n1�n2

2

3 	

f .E1/ 	 g.E2=E1/ 	 h.E=E2/;

where E1 runs over subbundles of E of rank n1 C n2, and E1 runs over
subbundles of E2 of rank n1, and we have denoted

d1 D deg.E1/; d2 D deg.E2=E1/; d3 D deg.E=E2/:

On the other hand

.f 
.g
h//.E/ D
X
E1�E

E0

2�E=E1

ı
n2Cn3

2

1 ı
�n1Cn3

2

2 ı
�n1�n2

2

3 	f .E1/ 	g.E 02/ 	h
�
.E=E1/=E

0
2

�
;

where we have denoted

ı1 D deg.E1/; ı2 D deg.E 02/; ı3 D deg..E=E1/=E 02/:

Let F be the set over which the first sum is extended, i.e., the set of admissible
filtrations E1 � E2 � E with rk.E1/ D n1 and rk.E2/ D n1 C n2. Similarly, let
F2 be the set over which the second sum is extended, i.e., the set of pairs .E1;E 02/,
where E1 � E is a subbundle of rank n1, and E 02 � E=E1 is a subbundle of rank
n2. We have a map � W F ! F 0 sending .E1 � E2 � E/ into .E1;E 02 WD E2=E1/.
The summand corresponding to any � 2 F is equal to the summand corresponding
to �.�/ 2 F 0. So our statement reduces to the following.
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Lemma 3.3. The map � is a bijection.

Proof. An element of F has the form

.L1; V1;Q1/ � .L2; V2; q2/ � .L; V; q/ D E;
where L1 � L2 � L is a filtration by primitive sublattices, and qi D qjVi , i D 1; 2.
An image of such an element by � is the pair

�
.L1; V1; q1/; .L

0
2; V

0
2 ; q
0
2/
�
, where

.L1; V1; q1/ is as above, while L02 D L2=L1 � L=L1, and q02 D � 0�.q2/, with
� 0 W V2 ! V2=V1 D V 02 being the canonical projection.

On the other hand, a general element of F 0 is a pair
�
.L1; V1; q1/; .L

0
2; V

0
2 ; q
0
2/
�
,

where .L1; V1; q1/ is as above, while L02 � L=L1 is an arbitrary primitive sublattice
of rank n2, and V 02 D L02˝R and q02 is the restriction to V 02 of the quotient quadratic
form ��.q/ for the projection � W V ! V=V1, i.e., q02 D .i 0/�.��q/. We have
therefore a Cartesian square of R-vector spaces

with �; � 0 surjective and i; i 0 injective. We claim that � 0�i�.q/ D i 0���.q/, and
hence �.F / D F 0. This is a particular case of the following base change property
for quadratic forms.

Proposition 3.4. Let

be a Cartesian square of R-vector spaces, such that i1; i2 are injective and j; j 0 are
surjective. Then for any positive definite quadratic form q onU we have the equality
j 0�i�1 q D i�2 j�q of quadratic forms on U 02.

Proof. Let u02 2 U 02. Then

.j 0�i�1 q/.u02/ D min
u2W j 0.u2/Du0

2

.i�1 q/.u2/ D min
u2W j 0.u2/Du0

2

q.i1.u2//:

Since the square is Cartesian, i1 identifies .j 0/�1.u02/ with j�1.i2.u02//, so the last
minimum is equal to

min
uW j.u/Di2.u0

2/
q.u/ D .j�q/.i2.u02//:

This finishes the proof of Lemma 3.3 as well as Proposition 3.1.
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Remark 3.5. One can extend the definition of the Hall algebra to the category
C oh¤1.Spec.Z// defined as in Remark 2.11, using the concept of admissible exact
sequences outlined there. The algebra thus obtained will be a semidirect product
of H and the Hall algebra of the category of finite abelian groups, similarly to
[15], §2.6.

4 The Mellin Transform

A standard tool in the theory of quantum affine algebras is the use of generating
functions, i.e., passing from a collection of coefficients .c˛/˛2Zn to the Laurent
series

F.t/ D
X
˛2Zn

c˛t
˛; t D .t1; : : : ; tn/ 2 .C�/n; t˛ D

Y
t˛�� : (5)

This is just the Fourier transform on the free abelian group Z
n, but understood in a

more pragmatic way: we do not necessarily restrict to unitary characters (they form
the real torus jti j D 1) but pay attention to the domains of convergence in the space
.C�/n of all characters.

A typical free abelian group to which the above is applied is, in the Hall
algebra approach, Pic.X/=ftorsiong D Z, where X is a smooth projective curve
over Fq , see [14, 26], In the present paper the corresponding role is played by
the group Pic.Spec.Z// D RC. The Fourier transform on R

nC is known as the
Mellin transform. We now give a summary of its properties from the same pragmatic
standpoint as above.

Unitary characters of RnC have the form

a D .a1; : : : ; an/ 7�! as D
Y

as�� ; s� 2 i R � C; as�� D es� log.a�/;

and the Haar measure is d�a D Q
da�=a� . Accordingly, the Mellin transform of a

function (or a distribution) f .a/ on R
nC is the integral

F.s/ D .Mf /.s/ D
Z
a2Rn

C

f .a/asd�a: (6)

Here, a priori, s 2 i Rn, but we are interested in allowing the si to vary in the
complex domain, i.e., in considering not necessarily unitary characters. The group
isomorphism

exp W Rn 
�! R
nC: (7)

transforms the Mellin integral into the standard Fourier integral on R
n.
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Example 4.1 (Paley–Wiener Theorem). If f .a/ has compact support, then
.Mf /.s/ converges for any s 2 C

n, i.e., Mf is an entire function, analogously to
the case of a Laurent series in (5) being a Laurent polynomial. Recall that an entire
function F.s/, s 2 C

n, is called a Paley–Wiener function, if there is a constant
B > 0 and, for every N > 0 there is a cN > 0 such that

jF.s/j 6 cN .1C ksk/�N eB �kRe.s/k:

This means, in particular, that F has a faster than polynomial decay on each vertical
subspace f�0 C iRn; �0 2 R

ng, while allowed to have exponential growth on any
horizontal subspace. We denote by PW .Cn/ the space of Paley–Wiener functions
on C

n. The Paley–Wiener theorem says:

Proposition 4.2. The Mellin transform M identifies C10 .RnC/ with PW .Cn/.

Proof. The classical formulation, see, e.g., [21], Vol. II, Thm. IX.11, is for the
Fourier transform of compactly supported functions on R

n. The case of the Mellin
transform reduces to this via exp.

An important point about series (5) is that one (meromorphic) function can have
different Laurent expansions in different regions, while the region of convergence of
each expansion is “logarithmically convex”, i.e., is the preimage of a convex open
set � � R

n under the map

� W .C�/n �! R
n; .ti / 7! .log jti j/:

We now review the corresponding features of Mellin expansions. Unlike in the case
of Laurent series, these features are less familiar, and a precise treatment involves
L. Schwartz’s theory of Fourier transform for distributions.

For a C1-manifold or orbifold M we denote by D ist.M/ D C10 .M/0 the
space of distributions on M . Let S .Rn/ be the space of Schwartz functions on R

n,
and D.Rn/ D S .Rn/0 � D ist.Rn/ be the dual space of tempered distributions,
see [21], Vol. I, §V.3. Recall that a C1-function lies in D.Rn/ if and only if it has
at most polynomial growth.

We define S .RnC/ and D.RnC/, the spaces of Schwartz functions and tempered
distributions on R

nC, by means of the group isomorphism exp of (7). For f 2
D.RnC/we define Mf to be the tempered distribution on iRn given by the Fourier–
Schwartz transform of f ı exp.

For a distribution f 2 D ist.RnC/ we denote by Temp.f / and call the tempering
set of f , the set of � 2 R

n such that f .a/ 	a� is a tempered distribution. It is known
(see [21], Vol. II, Lemma after Th. IX. 14.1) that Temp.f / is a convex subset in R

n.
We say that f is temperable, if Temp.f / has non-empty interior. For any convex
open set � � R

n we denote by U� D fs 2 C
nj Re.s/ 2 �g the corresponding tube

domain.
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Proposition 4.3. Let f is a temperable distribution on R
nC, and � be the interior

of Temp.f /. Then F.s/ D .M f /.s/ is an analytic function in U�, which has an at
most polynomial growth on each vertical subspace �0 C iRn, �0 2 �.

Proof. To see holomorphy, it is enough to assume that 0 is an interior point of
T .f / and to show that M f is holomorphic in an open neighborhood of iRn. For
a sequence of signs " D ."1; : : : ; "n/, "i 2 f˙1g let .RnC/" � R

nC be the domain
given by conditions a�ii > 1, and C

n
" � C

n be given by the condition "i Re.si / < 0.
Let M"f be the partial Mellin integral of f , taken over .RnC/". If s 2 C

n
" , then

the function as decays exponentially at the infinity of .RnC/". Therefore, if f is
a tempered distribution on R

nC (i.e., if 0 2 Temp.f /), then M"f extends to
a holomorphic function in C

n
" . If, moreover, 0 is an interior point of Temp.f /,

then M"f is holomorphic in additive translates C
n
" C � for � running in an open

neighborhood of 0 in R
n. Therefore M f D P

"M"f is holomorphic for Re.s/
running in some open neighborhood of 0, as claimed.

To see that M f has at most polynomial growth on each �0 C i Rn, it is again
enough to treat the case �0 D 0. The restriction of M f to i Rn is a tempered
distribution, the Fourier–Schwartz transform of f ı exp. As it is also a real analytic
function, it must be of polynomial growth.

Next, we discuss the inverse Mellin transform, i.e., the analog of the formula
which finds each coefficient c˛ in (5) as an integral of F.t/ times a monomial.
Formally, the inverse Mellin integral is defined by

f .a/ D .N�F /.a/ D 1

.2�i/n

Z
s2�0CiRn

F .s/a�sds: �0 2 �; a 2 R
nC; (8)

In our case, this integral should again be understood using Schwartz’s theory. More
precisely, we have:

Proposition 4.4. Let� � R
n be a convex open set andF.s/ be an analytic function

in U� with at most polynomial growth on each vertical subspace. Choose �0 2 �
and define f .a/ D .N�F /.a/ as a��0 times the inverse Fourier transform of g as a
tempered distribution on �0C i Rn ' R

n (the Fourier transform being transplanted
to R

nC via exp). Then N�F is independent on �0 2 �, and is a temperable
distribution on R

nC such that � � Temp.f / and M f D F .

We will call N�.F / the coefficient function of F in U�. Thus the existence of the
coefficient function presupposes that F grows at most polynomially on each vertical
subspace in U�. As usual with the Fourier transform, the coefficient function of the
product of analytic functions is the convolution (on the group R

nC) of the coefficient
functions of the factors.

Proof. To show independence, it is enough to assume 0 2 � and compare the
integrals (8) over i Rn and �0 C i Rn for �0 being close to 0 in �. Both functions
F.s/ and F.s C �0/ are tempered distributions on i Rn ' R

n and so have Fourier–
Schwartz transforms. Moreover, F.s C �0/ the sum of a Taylor series involving
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derivatives of F.s/ (evaluated on i Rn). So the Fourier transform of F.s C �0/ is
product of the Fourier transform of F.s/ and an exponential factor. This factor is
accounted for by the change in as in the integral (8), showing the independence.
The remaining claims follow from the inversion theorem for the Fourier–Schwartz
transform.

Let us note the particular case � D R
n.

Corollary 4.5. The Mellin transforms M and N defines mutually inverse isomor-
phisms between the following two spaces:

• D.RnC/abs, the space of absolutely tempered distributions, i.e., of distributions
f .a/ such that f .a/as is tempered for each s 2 C

n.
• O.Cn/pol, the space of entire functions in C

n with at most polynomial growth on
each vertical subspace.

ut
Note that an absolutely tempered distribution has actually exponential decay at

the infinity of RnC.
For future reference we recall two elementary properties of the Mellin/Fourier

transform. We denote by ıc 2 D.RC/ the delta function at c 2 RC.

Proposition 4.6. (a) Let F.s/ be analytic in U�, with the coefficient function
f .a/ D N�.F /. Then for any � D 1; : : : ; n we have

N�.s�F.s// D �a� d
da�

f .a/:

(b) Let � be an interval .c; c0/ � R, so U� is a strip in C. Let h.s/ be analytic
in U�, with coefficient function k.a/, a 2 RC. Consider the function of two
variables

F.s1; s2/ D h.s1 � s2/; .s1; s2/ 2 U Q� D fc < Re.s1 � s2/ < c0g

Then the coefficient function of F is found by

.N Q�F /.a1; a2/ D ı1.a1a2/ 	 k.a1/:

ut
Example 4.7. Let �.s/ be the Riemann zeta function, and

��.s/ D ��s=2
 .s=2/�.s/ (9)

be the zeta function of Spec.Z/. It is a meromorphic function on C with simple
poles at 0 and 1, satisfying ��.s/ D ��.1 � s/.

The function 
 .s/ has exponential decay on each vertical line �0CiR, as follows
from the Stirling formula. The function �.s/ has at most polynomial growth on each
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vertical line, see [4], Chap. 9. Therefore ��.s/ has exponential decay on each vertical
line and therefore has a well defined coefficient function in each of the three strips
of holomorphy: Re.s/ > 1, 0 < Re.s/ < 1 and Re.s/ < 0. The coefficient function
in Re.s/ > 1 is given by the classical formula of Riemann, see [4], §1.7:

.NRe.s/>1�
�/.a/ D �.a2/� 1; �.b/ WD

1X
nD�1

e�n2�b: (10)

It can be obtained by forming the convolution (onRC) of the distribution
P1

nD1 ı1=n,

of the function 2e�a2 and of the distribution ı1=p� . These three distributions are the

coefficient functions for �.s/ D P
1=ns, for 
 .s=2/ D 2

R1
0
e�a2asd�a and for

��s=2 respectively. The coefficient functions in the two other strips are obtained
by moving the contour past the poles of ��.s/ at s D 1 and s D 0 with residues
˙1=p� :

.N0<Re.s/<1�
�/.a/ D �.a2/ � 1 � 1

a
p
�
;

.NRe.s/<0�
�/.a/ D �.a2/C 1=p� � 1 � 1

a
p
�
:

5 The Zeta Function Shuffle Algebra

We recall the formalism of shuffle algebras of Feigin–Odesskii [7], see [15, 26] for
a more systematic discussion in the rational function case. We denote by Sn the
symmetric group of permutations of f1; : : : ; ng.

Let '.s/ be a meromorphic function on C. For any m; n > 0 let Sh.m; n/ be
the set of .m; n/-shuffles, i.e., permutations w 2 SmCn such that w.i/ < w.j /
whenever i < j and either both i; j 2 Œ1;m� or both i; j 2 ŒmC 1;mC n�. For any
w 2 Sh.m; n/ consider the following meromorphic function on C

mCn:

'w.s1; : : : ; smCn/ D
Y
i2Œ1;m�

j2ŒmC1;mCn�;
w.i />w.j /

'.si � sj /: (11)

Let O.Cn/ � M er.Cn/ be the spaces of all entire and meromorphic functions
on C

n (defined to be equal to C for n D 0). On the direct sum
L

nM er.Cn/ we
introduce the shuffle multiplication

sm;n WM er.Cm/˝M er.Cn/ �!M er.CmCn/; F ˝ F 0 7! FsF 0; (12)
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by the formula

.FsF 0/.s1; : : : ; smCn/

D
X

w2Sh.m;n/

w

�
F.s1; : : : ; sm/F

0.smC1; : : : ; smCn/
�
	 'w.s1; : : : ; smCn/: (13)

The following is then straightforward, as in [7].

Proposition 5.1. The shuffle multiplication s makes
L

nM er.Cn/ into a graded
associative algebra, with unit 1 2M er.C0/. ut

Assume further that the function ' satisfies the equation '.�s/'.s/ D 1, and,
moreover, is represented in the form

'.s/ D �.s/�1�.�s/ (14)

for some meromorphic function �.s/. For n > 0 let M er.Cn/Sn be the space of
symmetric meromorphic functions on C

n. On the direct sum
L

nM er.Cn/Sn , we
introduce the symmetric shuffle multiplication

?m;n WM er.Cm/Sm ˝M er.Cn/Sn �!M er.CmCn/SmCn ;

F ˝ F 0 7! F ? F 0; (15)

by the formula

.F ? F 0/.s1; : : : ; smCn/

D
X

w2Sh.m;n/

w

�
F.s1; : : : ; sm/F

0.smC1; : : : ; smCn/
Y
16i6m

mC16j6mCn

�.si � sj /
�
: (16)

Proposition 5.2. (a) The multiplication ? makes
L

nM er.Cn/Sn into a graded
associative algebra with unit.

(b) The correspondence

F.s1; : : : ; sn/ 7�! F.s1; : : : ; sn/
Y
i<j

�.si � sj /

defines an injective algebra homomorphism

�M
n

M er.Cn/Sn ; ?

�
,!

�M
n

M er.Cn/;s
�
:



Spherical Hall Algebra of Spec.Z/ 171

(c) Assume that �.s/ has no poles except, possibly, a first order pole at s D 0. Then
the graded subspace

L
n O.C

n/Sn is a subalgebra with respect to ?.

Proof. Parts (a) and (b) are proved straightforwardly, as in [7]. For (c), let us
indicate why

?1;1 W O.C/ � O.C/ �!M er.C2/

takes values in O.C2/ (the general case is similar). Writing �.s/ D cs�1Ch.s/ with
h entire, we have, for f; g 2 O.C/:

.f ? g/.s1; s2/ D �.s1 � s2/f .s1/g.s2/C �.s2 � s1/f .s2/g.s1/
D c

s1 � s2


f .s1/g.s2/� f .s2/g.s1/

� C (entire);

and the expression in square brackets, being an entire antisymmetric function,
vanishes on the diagonal s1 D s2.
Definition 5.3. (a) We call the shuffle algebra associated to ' the subalgebra

SH .'/ � L
n>0M er.Cn/ generated by the space O.C/ � M er.C1/. We

call the symmetric shuffle algebra associated to � the subalgebraSSH .�/ �L
n>0M er.Cn/Sn generated by O.C/.

(b) The Paley–Wiener shuffle algebra SH .'/PW , resp. the Paley–Wiener sym-
metric shuffle algebraSSH .�/PW , is defined as the subalgebra inSH .'/,
resp. SSH .�/, generated by the subspace PW .C/ � O.C/.

Thus, if ' and � are related by (14), then SH .'/ is isomorphic to SSH .�/

and SH .'/PW to SSH .�/PW If, further, � satisfies the condition (c) of
Proposition 5.2, then SSH .�/ is a subalgebra of

L
O.Cn/Sn .

We now specialize '.s/ to be the following meromorphic function:

˚.s/ D ��.s/=��.s C 1/: (17)

It is known as the global Harish–Chandra function (or the scattering matrix) for
Spec.Z/, cf. [16, §7]. The functional equation for �.s/ implies that˚.�s/˚.s/ D 1:
We also consider the function

�.s/ D ��.�s/.s � 1/.�s � 1/: (18)

It has just one simple pole at s D 0, with ressD0 �.s/ D 1, and zeroes at nontrivial
zeroes of �.s/ as well as at s D �1. We also have the identity

˚.s/ D �.s/�1�.�s/: (19)

Here is the main result of this paper, which will be proved in Sect. 6.
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Theorem 5.4. The Mellin transform M W SH1 D C10 .RC/

! PW .C/ extends

to an isomorphism of algebras SH ! SH .˚/PW ' SSH .�/PW .

The bigger algebra SSH .�/ ' SH .˚/ can be thus seen as a natural
completion of SH.

6 The Constant Term and Its Mellin Transform

The sum over shuffles appearing in the definition of the shuffle algebra turns out
to match quite exactly the sum over shuffles appearing in the classical formula for
the constant term of a (pseudo-)Eisenstein series, cf. [20], II.1.7. In this section we
perform a detailed comparison and obtain a proof of Theorem 5.4. Our comparison
can be organized into 5 steps:

(A) Taking the constant term of an automorphic form on GLn with respect to the
Borel subgroup Bn, defines a map CTn W Hn ! C1.RnC/.

(B) We denote by fCTn the twist of CTn by the analog of the Euler form (Iwasawa
Jacobian) to match the formula (4) for the Hall product. It is then adjoint to the
Hall multiplication map


1n D 
1;:::;1 W H˝n1 �! Hn

with respect to natural positive definite Hermitian scalar products on both sides.
This adjointness implies that the restriction of fCTn to SHn D Im.
1n/ is an
embedding SHn ! C1.RnC/.

(C) The standard principal series intertwiners for GLn give rise to integral operators

Mw W C10 .RnC/ �! C1.RnC/; w 2 Sn;

whose domain of definition can be extended to include more general functions.
The formula for the constant term of a pseudo-Eisenstein series then says:

fCTn0Cn00.f 0 
 f 00/ D
X

w2Sh.n0;n00/

Mw.fCTn0.f 0/˝ fCTn00.f 00//;

f 0 2 Hn0 ; f 00 2 Hn00 : (20)

(D) For f 2 SHn we define Chn.f / to be the Mellin transform of fCTn.f /. It is
verified to represent a meromorphic function on C

n. Taken together, the maps
Chn define then an embedding of vector spaces Ch W SH !L

nM er.Cn/.
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(E) Finally, one sees that the Mellin transform takes Mw to the operator on
M er.Cn/ taking a function F.s1; : : : ; sn/ to

.wF /.s1; : : : ; sn/ 	
Y
i<j

w.i />w.j /

˚.si � sj /;

and so Ch takes the Hall product into the shuffle product, by comparing (20)
with (13).

We now implement each step in detail.

A. The Constant Term

We will use both the real and the adelic interpretation of the componentHn of H :

Hn D C10
�
GLn.Z/nGLn.R/=On

� D C10
�
GLn.Q/nGLn.A/=GLn. OO/

�
:

Let B D Bn be the lower triangular Borel subgroup in GLn and U be the unipotent
radical of B . For f 2 Hn its constant term is the function CT.f / on R

nC defined in
either interpretation by:

CTn.f /.a1; : : : ; an/ D
Z

u2U.Z/nU.R/
f
�
u 	 diag.a1; : : : ; an/

�
du

D
Z

uA2U.Q/nU.A/
f
�
uA 	 diag.a1; : : : ; an/

�
duA; ai 2 RC:

(21)

Here du, resp. duA, is the Haar measure on U.R/, resp. U.A/, normalized so that
U.Z/nU.R/, resp. U.Q/nU.A/, has volume 1. Clearly, CTn.f / is a C1-function
on R

nC, bounded by max jf .g/j.
Proposition 6.1. For every f 2 Hn there is c 2 RC such that Supp.CTn.f // is
contained in the domain

a1 6 c; a1a2 6 c; 	 	 	 ; a1 : : : an�1 6 c;
1

c
6 a1 	 	 	an 6 c:

Proof. For .a1; : : : ; an/ 2 R
nC and u 2 U.R/ let V.a1; : : : ; anI u/ be the vector

bundle on Spec.Z/ associated to the class of u 	 diag.a1; : : : ; an/ in the double
quotient. This bundle has a canonical admissible filtration

V1 � V2 � 	 	 	 � Vn D V.a1; : : : ; anI u/
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with rk.Vi / D i and Vi=Vi�1 ' O.ai /. But given any vector bundle V on Spec.Z/,
there is c 2 RC such that for any admissible filtration V1 � 	 	 	 � Vn D V

with rk.Vi / D i , the numbers ai D deg.Vi=Vi�1/ satisfy the conditions of
Proposition 6.1. This follows from Proposition 2.8, and we can clearly find a
common c for bundles varying in a compact subset of Bunn.

B. Twisted Constant Term and Its Adjointness

Let

dg D
Qn
i;jD1 dgij

det.g/n
; d�a D

nY
iD1

dai
ai

be the standard Haar measures on GLn.R/ and R
nC. We introduce notation for the

factors in the Iwasawa decomposition:

GLn.R/ D U 	 RnC 	On; g D u 	 a 	 k; a D .a1; : : : ; an/:

We write a D a.g/, a� D a�.g/ etc. as functions of g 2 GLn.R/. Let dk be the
Haar measure on On of volume 1.

The Haar measure dg on GLn.R/ has, in Iwasawa coordinates, the well known
form

dg D ı.a/du 	 dk 	 d�a; (22)

where the Iwasawa Jacobian ı.a/ is defined by

ı.a/ D ın.a/ D
Y

16i<j6n

aj

ai
D

nY
iD1

a�nC2i�1i : (23)

See, e.g., [31], §4.1, Exercise 20 for upper-triangular matrices. We also write
ın.g/ D ın.a.g// for g 2 GLn.R/.

Let us make Hn and C10 .RnC/ � H˝n1 into pre-Hilbert spaces via the positive
definite Hermitian scalar products

.f1; f2/H D
Z

GLn.Z/nGLn.R/
f1.g/f2.g/dg; .'1; '2/

D 1

2n

Z
R
n
C

'1.a/'2.a/d
�a:



Spherical Hall Algebra of Spec.Z/ 175

More generally, in each case the scalar product makes sense whenever only one of
the arguments has compact support. Define the twisted constant term of f 2 Hn to
be the function

fCTn.f /.a1; : : : ; an/ D CT.f /.a1; : : : ; an/ 	 ı.a/1=2: (24)

Proposition 6.2. The map fCTn W Hn ! C1.RnC/ is adjoint to 
1n W H˝n1 ! Hn,
i.e., we have

.
1n.'/; f /H D .';fCTn.f //; ' 2 H˝n1 ; f 2 Hn:

Proof. This is standard, we provide details for convenience of the reader. For ' 2
C10 .RnC/ we define a function Q' on U nGLn.R/=On by

Q'.g/ D '.a1.g/; : : : ; an.g// 	 ı.g/�1=2:

Translating the (iterated) formula (4) for the Hall product, into group-theoretical
terms, we have

.
1n.'//.g/ D
X


2Bn.Z/nGLn.Z/

Q'.
g/

(a pseudo-Eisenstein series). The adjointness then follows from the expression of
dg in terms of the Iwasawa factorization:

.
1n.'/; f /H D
Z
g2GLn.Z/nGLn.R

f .g/
X


2B.Z/nGLn.Z/

Q'.
g/dg

D
Z
x2B.Z/nGLn.R/

f .x/ Q'.x/dx

defD
Z
x2B.Z/nGLn.R/

f .x/'.x/ı.x/�1=2dx

D 1

2n

Z
y2U.Z/nGLn.R/

f .y/'.y/ı.y/�1=2dy

D 1

2n

Z
z2U.R/nGLn.R/

Z
u2U.Z/nU.R/

f .uz/'.z/ı.z/�1=2dudz

(22)D 1

2n

Z
a2Rn

C

CTn.f /.a/'.a/ı.a/C1=2d�a D .';fCTn.f //:
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Corollary 6.3. The map fCTn W SHn ! C10 .RnC/ is injective.

Proof. By definition of SH as the subalgebra generated by H1, a non-zero element
f 2 SHn has the form f D 
1n.'/ for some ' 2 H˝n1 . We can regard ' as an
element of C10 .RnC/. To prove that fCTn.
1n.'// ¤ 0, we notice that by adjointness
and by the positivity of the scalar product on H , we have

�
';fCTn.
1n.'//

� D �
1n.'/;
1n.'/�H D .f; f /H > 0:

C. The Principal Series Intertwiners

We use the intertwiners in their adelic form, as this form accounts for the appearance
of the factors involving the Riemann zeta in the function ˚.s/ defining the shuffle
algebra, see (17).

Let An be the diagonal subgroup in GLn. We have the identification

R
nC D U.A/An.Q/

�
GLn.A/

ı
Kn; Kn D On

Y
p

GLn.Zp/:

For w 2 Sn let Uw D U \ .w�1Uw/. Using the above identification, we define the
operator

Mw W C10 .RnC/ �! C1.RnC/; .Mw'/.g/ D
Z

u2.U.A/\Uw.A//nU.A/
'.wug/du;

cf. [20], II.1.6. More generally, Mw.'/ can be defined if, for any g, the function
u 7! '.wug/ on the domain of integration has sufficiently fast decay (for example,
has compact support). Here is an example, to be used later.

We consider the following domain in C
n:

C
n
> D

˚
s D .s1; : : : ; sn/ W s� � s�C1 > 1; � D 1; : : : ; n

�
; (25)

where we put snC1 D 0. For w 2 Sn put

˚w.s/ D
Y

16i<j6n
w.i />w.j /

˚.si � sj /: (26)

Proposition 6.4. If s D .s1; : : : ; sn/ 2 C
n
>, then applying Mw to the function a 7!

as gives a convergent integral, and it is found as follows:

Mw.a
s/ D aw.s/˚w.s/:
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Proof. This is a version of the classical Gindikin–Karpelevich formula. More
precisely, the value of the adelic intertwiner is found as the Euler product of the
values of similarly defined local intertwiners (involving the integration over the
p-adic or real group). Each local integral is found by Gindikin–Karpelevich to
contribute the factor Y

16i<j6n
w.i />w.j /

�p.si � sj /
�p.si � sj C 1/ ;

where �p is the pth Euler factor of the Riemann zeta, or the Gamma factor for
p D 1.

For ' 0 2 C1.Rn0

C/ and ' 00 2 C1.Rn00

C / we define ' 0 ˝ ' 00 2 C1.Rn0Cn00

C / by

.' ˝ ' 00/.a1; : : : ; an0Cn00/ D ' 0.a1; : : : ; an0/' 00.an0C1; : : : ; an0Cn00/: (27)

We will use similar notation in other situations without special explanation.
Having now defined all the ingredients of the equality (20), we explain how it

is proved. This is again a standard argument, using the Bruhat decomposition of
a Grassmannian into cells labelled by shuffles, cf. [20], II.1.7 for the case of any
parabolic subgroup in any reductive group.

To give some details in our particular case, let n D n0 C n00 and Pn0;n00 � GLn
be the parabolic (block-lower-triangular) subgroup corresponding to .n0; n00/. We
denote Un0;n00 its unipotent radical and An0;n00 D GLn0 � GLn00 the Levi subgroup.
Then the Iwasawa decomposition implies that

�
GLn0.Q/nGLn0.A/=Kn0

� � �GLn0.Q/nGLn0.A/=Kn0

�

�! �

Un0;n00.A/An0;n00.Q/
��

GLn.A/
ı
Kn:

(28)

Given f 0 2 Hn0 , f 00 2 Hn00 , let f be the function on the right hand side of (28)
corresponding to the function

.g0; g00/ 7�! j det.g0/jn00=2 	 j det.g00/j�n0=2 	 f 0.g0/f 00.g00/
on the left hand side. Here jaj is the adelic norm of a. The Hall product f 0 
 f 00 is
then given by the parabolic pseudo-Eisenstein series

.f 0 
 f 00/.g/ D
X


2Pn0 ;n00 .Q/nGLn.Q/

f .
g/:

Now, writing

fCTn.f 0 
 f 00/.g/ D
Z

u2U.Q/nU.A/

X

2Pn0 ;n00 .Q/nGLn.Q/

f .
ug/ın.g/
1=2du;
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we notice that the Grassmannian Gr.n0;Qn/ D Pn0;n00.Q/nGLn.Q/ splits, under the
right U.Q/-action, into

�
n
n0

�
orbits (Schubert cells)

˙w D Pn0;n00.Q/nwU.Q/; w 2 Sh.n0; n00/:

Notice that for w 2 Sh.n0; n00/ we have Uw D U \ w�1Pn0;n00w. This means that
we can write each 
 2 ˙w uniquely in the form 
 D Pn0n00.Q/ 	 w 	 v for v 2
Uw.Q/nU.Q/ and so

fCTn.f 0 
 f 00/.g/ D
X

w2Sh.n0;n00/

Z
u2U.Q/nU.A/

X
v2Uw.Q/nU.Q/

f .wvug/ın.g/
1=2du

D
X

w2Sh.n0;n00/

Z
Qu2Uw.Q/nU.A/

f .wQug/ın.g/1=2d Qu;

and we identify the integral over Qu corresponding to w, with Mw.fCTn0.f 0/ ˝fCTn00.f 00//. Note that this argument shows, in particular, that Mw is indeed
applicable in this case as the domain of integration reduces to a compact one (since
all we did was re-partition the integral for fCTn.f 0 
 f 00/.g/, which was over a
compact domain to begin with). We leave the rest to the reader.

Let us note a version of the above statement for the constant term of the n-tuple
Hall product. The proof is similar.

Proposition 6.5. Let '1; : : : ; 'n 2 C10 .RC/ and ' D '1 ˝ : : :˝ 'n 2 C10 .RnC/.
Then

fCTn.
1n.'// D
X

w2Sn

Mw.'/:ut

D. The Mellin Transform of the Constant Term

For f 2 Hn we set Chn.f / DM .fCTn.f //.

Proposition 6.6. The Mellin integral for Chn.f / converges to an analytic function
in the region C

n
>.

Proof. The Mellin transform of fCTn.f /.a/ D ın.a/
1=2 CTn.a/ differs from

M .CTn.a// by a shift of variables, and our statement is equivalent to saying that
M .CTn.a// converges for

Re.s1 � s2/ > 0; Re.s2 � s3/ > 0; 	 	 	 ;Re.sn�1 � sn/ > 0; Re.sn/ > 0:

To see this, note that by Proposition 6.1 and of boundedness of CTn.f /, the integral
is bounded by
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const
Z c

a1D0

Z c

a1a2D0
	 	 	
Z c

a1:::anD0
a
s1�s2
1 .a1a2/

s2�s3 	 	 	 .a1 : : : an/sn

� d�a1d�.a1a2/ 	 	 	d�.a1 : : : an/:

Since
R c
0
asd�a converges for Re.s/ > 0, the claim follows.

Proposition 6.7. For any f 2 SHn, the function Chn.f / extends to a meromorphic
function on C

n.

Before giving the proof, we recall the properties of a classical type of Eisenstein
series due to Selberg [27].

For any s 2 C we denote by E.s/ the following function on Bun1:

E.s/ W E 7�! deg.E/s D exp.s 	 ln.deg.E///: (29)

The (formal) Hall product

E.s1/ 
 	 	 	E.sn/ D 
1n.as11 : : : asnn / (30)

is a series of functions on Bunn, known as the (primitive) Eisenstein–Selberg series,
see [27] and [13], §8.3.

Proposition 6.8. (a) The series (30) converges for s D .s1; : : : ; sn/ 2 C
n
>, to a

C1-function on Bunn.
(b) For any g 2 Bunn the function

�
E.s1/
	 	 	
E.sn/

�
.g/ extends to a meromorphic

function in the si , with position and order of poles independent on g.
(c) The twisted constant term of

�
E.s1/ 
 	 	 	 
 E.sn/

�
.g/ as a function on g is

given by

fCTn
�
E.s1/
 	 	 	
E.sn//.a1; : : : ; an

� D X
w2Sn

a
sw.1/
1 	 	 	asw.n/n

Y
i<j

w.i />w.j /

˚.si �sj /:

Proof. For (a), see, e.g., [13], §8.5, Remark, and take into account the Ringel twist
in the definition of 
 which translates the shifts by 1=2 into shifts by 1. See also [9],
Proposition 10.4.3 for a slightly weaker statement.

For (b), see [13], §8.6-7.
Finally, (c) follows by the formula (20) applied to the function as , s 2 C

n
> (the

application is legal because of the decay conditions) and then using Proposition 6.4.

Proof of Proposition 6.7. It is enough to assume that f D f1 
 	 	 	 
fn, where f� 2
H1 D C10 .RC/. Let F� DM .f�/ 2PW .C/ be the Mellin transform of f� . Then
f� D N .F�/, and the inverse Mellin integral (understood as in Proposition 4.4) can
be taken along any vertical line Re.s/ D �� .

Let us now choose �1; : : : ; �n such that ��C1� �� > 1 for each � D 1; : : : ; n� 1
and �n > 1. The equalities N .F�/ D f� then imply that
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f .g/ D 1

.2�i/n

Z
Re.s�/D��

F1.s1/ 	 	 	Fn.sn/
�
E.�s1/ 
 	 	 	 
 E.�sn/

�
.g/ds1 	 	 	 dsn:

Substituting the formula for the twisted constant term of
�
E.�s1/ 
 	 	 	 


E.�sn/
�
.g/ from Proposition 6.8(c) into the integral for f .g/, we represent fCTn.f /

as the inverse Mellin transform of the function

F.s1; : : : ; sn/ D
X

w2Sn

F1.sw.1// 	 	 	Fn.sw.n//
Y
i<j

w.i />w.j /

˚.sj � si /;

which is analytic in the region Re.s�C1/�Re.s�/ > 1. Further, if we take �1; : : : ; �n
such that ��C1 � �� > 1, �n > 1, then F is bounded on the vertical subspace
Re.s�/ D s� . Indeed, each Fi , being a Paley–Wiener function, decays exponentially
at the imaginary infinity. On the other hand, the lemma below shows that ˚.s/ is
bounded on vertical lines Re.s/ D �0 > 1. Therefore we can apply the Mellin
inversion (Proposition 4.4) to F and obtain that Chn.f / D M .fCTn.f // D
F.s1; : : : ; sn/ and so it is meromorphic.

Lemma 6.9. For every �0 > 1, the function ˚.�0 C i t/ is bounded, as a function
of t 2 R, and decays as jt j ! 1.

Proof. Indeed, for s D �0 C it, �0 > 1 we have

�.s/=�.sC 1/ D
1X
nD1

'.n/n�s�1;

where '.n/ D j.Z=n/�j is the Euler function. This is bounded by

X
n 	 n��0�1 D �.�0/:

Further, 
 . s
2
/=
 . sC1

2
/ decays at infinity as s�1=2, as it follows from the Stirling

formula.

E. Intertwiners and the Constant Term

We now study the action of the intertwiners Mw on the Mellin transform of the
constant term.

Proposition 6.10. For ' 2 C10 .RnC/ and any w 2 Sn we have

M .Mw.'//.s/ D M .'/.w.s// 	 ˚w.s/:
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Proof. Write ' as the inverse Mellin integral of a Paley–Wiener function F over
any vertical subspace � C iRn inside Cn>, and apply Proposition 6.4.

At this point, we can finish the proof of Theorem 5.4. It remains only to prove
that Ch is a homomorphism of algebras, i.e., that

Chn.f
0 
 f 00/ D Chn0.f 0/sChn00.f 00/; n D n0 C n00 (31)

for any f 0 2 SHn0 and f 00 2 SHn00 . Using the formula (20) for the left hand side
and the definition of the shuffle product s for the right hand side, we write this as
an equality of two sums over shuffles

X
w2Shn0;n00

M
�
Mw.fCTn0.f 0/˝fCTn00.f 00//

�
.s/

D
X

w2Shn0 ;n00

M
�fCTn0.f 0/˝fCTn00.f 00/

�
.w.s// 	 ˚w.s/: (32)

As f 0; f 00 belong to the subalgebra SH, we can write them as

f 0 D 
1n.' 0/; f 00 D 
1n.' 00/

for some ' 0 2 C10 .Rn
0

C/, ' 00 2 C10 .Rn
00

C /. By Proposition 6.5, we have

fCTn0.f 0/ D
X

w02Sn0

Mw0.' 0/;

and similarly for fCTn0.f 0/. Substituting this to the LHS of the putative equality
(32), we find that it is equal to

X
w2Sn

M .Mw.'//
6.10D

X
w2Sn

M .'/.w.s// 	 ˚w.s/; ' D ' 0 ˝ ' 00: (33)

On the other hand, writing s 2 C
n as .s0; s00/ with s0 2 C

n0

; s00 2 C
n00

, we have

M
�fCTn0.f 0/˝fCTn00.f 00/

�
.s/ D M .fCTn0.f 0//.s0/ 	M .fCTn00.f 00//.s00/;

and so the summand in the RHS of (32) corresponding to w 2 Shn0;n00 , is equal by
Proposition 6.5, to ˚w.s/ times
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X
w0

2Sn0

w00
2Sn00

M .' 0/.w0.s0// 	M .' 00/.w00.s00// 	 ˚w0.s0/˚w00.s00/

D
X

w0
2Sn0

w00
2Sn00

Mw0�w00.'/..w0 � w00/.s// 	˚w0�w00.s/;

and further summation over w gives the same result as (33). ut

7 Quadratic Relations and Eisenstein Series

Let

S D
1M
nD0

Sn; S0 D C;

be a graded associative algebra over C. The space of degree n relations among
elements of degree 1 is then

Rn D KerfS˝n1 �! Sng � S˝n1 : (34)

Here we are interested in quadratic relations (n D 2) for the algebra SH generated
by SH1 D H1 D C10 .RC/. Because of the analytic nature of elements of H it is
not reasonable to look for relations inside the algebraic tensor productH1˝H1 and
we consider a completion of it, namely the space

H1 ŐH1 WD D.R2C/abs

of absolutely tempered distributions on R
2C, see Corollary 4.5.

Proposition 7.1. If f 2 H1 Ő H1, then the series

O
1;1.f /.E/ D
X
E0�E

deg.E 0/1=2deg.E=E 0/�1=2f .deg.E 0/;

deg.E=E 0//; E 2 Bun2;

converges absolutely, defining a distribution O
1;1.f / on Bun2. The resulting linear
map O
1;1 W H1 ŐH1 ! D ist.Bun2/ extends the Hall multiplication 
1;1 W H1 ˝
H1 ! H2.

Proof. The points .˛; ˇ/ D .deg.E 0/; deg.E=E 0// lie on the hyperbola ˛ˇ D
deg.E/. An absolutely tempered distribution decays exponentially at the infinity
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of R
2C, in particular at the infinity of any such hyperbola. Now the number of

subbundles in E D .L; V; q/ of given degree ˛ D 1=a is one half the number
of primitive vectors in L of norm a. This number of all lattice vectors of norm a

grows linearly with a, so exponential decay of f ensures the convergence.

Remark 7.2. It is possible that one can extend H to a bigger algebra, consisting
of some analogs of absolutely tempered distributions on the Bunn, which have
sufficient decay at the infinity. Note that the concept of a tempered distribution on a
semisimple Lie group was introduced by Harish-Chandra [11].

We will therefore understand quadratic relations in SH is a wider sense, as
elements of the space

OR2 D Ker. O
1;1/ � H1 Ő H1: (35)

Let also R2 be the space of entire functions F 2 O.C2/pol such that

F.s1; s2/ C ˚.s1 � s2/F.s2; s1/ D 0: (36)

Proposition 7.3. The Mellin transform identifies OR2 with R2.

Proof. This follows from an instance of Eq. (31) for m D n D 1 but applied to
absolutely tempered distributions instead of functions with compact support. The
proof in the new case is the same, given the decay (to define the Hall product) and
the analyticity of the Mellin transform.

Note that R2 is a module over the ring O.C2/S2

pol of symmetric entire functions
of polynomial growth on vertical planes.

Example 7.4. Let P.s/ D s.s � 1/.s C 1/. Then the function

F1;1.s1; s2/ D P.s1 � s2/��.s1 � s2/

belongs to R2. Further, for any �1; �2 2 RC the function

F�1;�2 .s1; s2/ D .�
s1
1 �

s2
2 C �s21 �s12 /F1;1.s1; s2/

again lies in R2 by the remark above. Let

ra D P
�
a
d

da

� D a3
d3

da3
� a2 d

2

da2
:

The inverse Mellin transform of F1;1 is, in virtue of Proposition 4.6 and the Riemann
formula (10), equal to

�1;1.a1; a2/ D ı1.a1a2/ 	 ra1�.a21/ 2 OR2;
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and the inverse Mellin transform of F�1;�2 is the distribution

��1;�2 .a1; a2/ D �1;1.a1=�1; a2=�2/ C �1;1.a1=�2; a2=�1/ 2 OR2:

This gives a 2-parameter family of quadratic relations in SH.

Remark 7.5. This 2-parameter family of relations is analogous to the family of
relations

ŒO.mC 1/� 
 ŒO.n/� � qŒO.n/� 
 ŒO.mC 1/� D qŒO.m/� 
 ŒO.nC 1/�
� ŒO.nC 1/� 
 ŒO.m/�

in the Hall algebra of the category of vector bundles on P
1
Fq

, see [14], §5.2 or [2],
Lemma 16.

We now explain the relation of the above quadratic relations with the functional
equation for Eisenstein–Maas series

E.�; s/ D 1

2

X
.m;n/D1

Im.�/s

jmC n� j2s ; � 2 H; Re.s/ > 1;

see [9], §3.1. It is classical that E.�; s/ extends to a function meromorphic in the
entire s-plane and satisfying the functional equation

E.�; s/ D ��.2s � 1/
��.2s/

E.�; 1 � s/:

Further, the poles of E.�; s/ are all among the poles of the ratio of the ��-functions,
in particular, they do not depend on � .

On the other hand, recall (29) the function

E.t/ W Bun1 ! C; E 7�! deg.E/t :

Here t 2 C is a fixed complex number. This function does not lie in H1 D C10 .R/.
Nevertheless, the correspondence t 7! E.t/ can be seen as a kind of H -valued
distribution (“operator field”) on C (or, rather, on iR � C). That is, for any Paley–
Wiener functionG.t/ we have a well defined element

Z
iR

E.t/G.t/dt 2 H1:

This simply the function E 7! f .deg.E/�1/, where f D N .G/ 2 C10 .RC/.
Proposition 6.8(a) implies that for Re.t1 � t2/ > 0 the Hall product E.t1/ 


E.t2/ defined as a formal series, converges to a real analytic function on Bun2. This
function essentially reduces to the series E.�; s/ above. Indeed, let E� be the bundle
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of rank 2 and degree 1 corresponding to � as in Example 2.4. Rank 1 subbundles
E 0 D E 0m;n in E� are parametrized by pairs .m; n/ 2 Z

2 of coprime integers, taken
modulo simultaneous change of sign. Explicitly, the primitive sublattice L0m;n of
E 0m;n is spanned by mC n� , and we have

deg.E 0m;n/ D
Im.�/1=2

jmC n� j ; deg.E�=E
0
m;n/ D

jmC n� j
Im.�/1=2

:

Therefore

.E.t1/ 
 E.t2//.E�/ D E.�; .t1 � t2 C 1/=2/: (37)

This means that the productE.t1/
E.t2/ extends to a meromorphic function of t1; t2
(with values in the space of functions on Bun2) and we can write a formula looking
like “quadratic commutation relations” in H :

E.t1/ 
 E.t2/ � ˚.t1 � t2/E.t2/ 
 E.t1/ D 0: (38)

The two summands in (38) are given by series converging in different regions,
having no points in common, and the relations should be understood via analytic
continuation. This way of understanding commutation relations is quite standard in
the theory of vertex operators [8]. In our situation it is modified as follows.

In order to translate the relations (38) into actual elements of OR2, we can rewrite
them in the form “free of denominators”


1;1
˚
P.t1� t2/ 	��.t1� t2C1/ 	at11 at22 � P.t1� t2/ 	��.t1� t2/ 	at21 at12

� D 0: (39)

Here we write E.t1/ ˝ E.t2/ as the function .a1; a2/ 7! a
t1
1 a

t2
2 on Bun1 �Bun1 D

R
2C. We then “compare coefficients” in both sides of this equality at any �t11 �

t2
2 , �� 2

RC, by multiplying with ��t11 �
�t2
2 and integrating (performing the inverse Fourier-

Schwartz transform) along any vertical 2-plane, which we can choose separately for
each summand. This gives a family of distributions��1;�2 .a1; a2/ 2 OR2 which is the
same as in Example 7.4.

We can thus say that quadratic relations such as (38) are built into the very
definition of the shuffle algebra.

8 Wheels, Cubic Relations, and Zeta Roots

A. Wheels

Let �.s/ be a meromorphic function on C with a simple pole at s D 0 and no other
singularities. In this section we sketch a general approach to higher order relations
in the symmetric shuffle algebra SSH .�/ and illustrate it on the case of cubic
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relations in the shuffle algebra completion of the spherical Hall algebra SH, which
corresponds to

�.s/ D �.s/ D ��.�s/.s � 1/.�s � 1/:

Our approach is based on studying the following additive patterns of roots of �
which were introduced in [6] and used in the case when � is rational.

Definition 8.1. A wheel of length n for � is a sequence .s1; : : : ; sn/ of distinct
complex numbers such that

�.s2 � s1/ D 0; �.s3 � s2/ D 0; 	 	 	 ; �.sn � sn�1/ D 0; �.s1 � sn/ D 0:

Wheels .s1; : : : ; sn/ and .s1 C c; : : : ; sn C c/ for c 2 C, will be called equivalent.

In other words, equivalence classes of wheels are the same as ordered sequences

.z1; : : : ; zn/ 2 .C�/n; �.zi / D 0;
nX
iD1

zi D 0;
qX

iDp
zi ¤ 0; .p; q/ ¤ .1; n/:

Example 8.2. All wheels for �.s/ have length 3 or more. The sequences corre-
sponding to wheels of length 3 have, up to permutation, the form

.z1; z2; z3/ D .�; 1 � �;�1/;

where � runs over nontrivial zeroes of �.s/. Indeed, zeroes of � are of the form
s D � together with one more zero s D �1. So there are no pairs of them summing
up to 0 and the only triples summing to up 0 are as stated.

B. Relations and Bar-Complexes

Let S be a graded associative algebra as in Sect. 7. A systematic way of approaching
relations in S is via the bar-complexes

B�n D B�n .S/ D
�
S˝n1 ! 	 	 	 !

M
iCjCkDn

Si˝Sj˝Sk !
M
iCjDn

Si˝Sj ! Sn

�
:

Here i; j; k; : : : run over positive integers. The grading is such that S˝n1 is in degree
.�n/, while Sn is in degree .�1/. The differential is given by

d.s1 ˝ 	 	 	 sp/ D
p�1X
iD1
.�1/i�1s1 ˝ : : :˝ si�1 ˝ si siC1 ˝ siC2 ˝ : : :˝ sp;
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so that the condition d2 D 0 follows from the associativity of S . It is well known
that

H�i .B�n .S// D TorSi .C;C/n;

the part of the Tor-group which has degree n w.r.t. the grading induced from that
on S . In particular, the rightmost cohomology has the meaning of the space of
generators in degree n, and the previous one is interpreted as the space of relations
which have degree n with respect to the grading on the generators (which, a priori,
can be present in any degree).

As in (34), let Rn be the space of degree n relations among generators in degree
1. For instance, quadratic relations are found as R2 D H�2.B�2 /. The next case of
cubic relations corresponds to the complex

B�3 D
˚
S1 ˝ S1 ˝ S1; d�3�! .S2 ˝ S1/˚ .S1 ˝ S2/ d�2�! S3

�
:

We treat this case directly. Denote

R12 D R2 ˝ S1; R23 D S1 ˝R2 � S1 ˝ S1 ˝ S1:
We have then an inclusion R12 C R23 � R3 of subspaces in S˝31 . The left hand
side of this inclusion is, by definition, the space of those cubic relations which follow
algebraically from the quadratic ones. Thus the quotient

Rnew
3 D R3=.R12 CR23/

can be seen as the space of “new”, essentially cubic, relations.

Proposition 8.3. Assume that the multiplication map S1 ˝ S1 ! S2 is surjective.
Then Rnew

3 is identified with H�2.B�3 /, the middle cohomology space of B�3 .

Proof. Denote for short

V D S˝31 ; A D R12; B D R23; C D R3;
so that A;B � C � V . Under our assumption, the complex B�3 can be written as

V
ı�3�! .V=A/˚ .V=B/ ı�2�! V=C;

with ı�3 being the difference of the two projections, and ı�2 being the sum of the
two projections. It is a general fact that in such a situation the middle cohomology is
identified withC=.ACB/. Explicitly, if .vCA;wCB/ 2 Ker.ı�2/, then vCw 2 C .
The image of vC w in C=.AC B/ depends only on the class of .vC A;wCB/ in
Ker.ı�2/= Im.ı�3/. We leave the rest to the reader.
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C. Localization of the Bar-Complexes

We now apply the above to the two graded algebras

SSH .�/ � S WD
�M

n

O.Cn/Sn ; ?

�
:

By definition, these algebras coincide in degrees 0 and 1, and SSH .�/ is the
subalgebra in S generated by the degree 1 part which is S1 D O.C/. Accordingly,
the space of relations of any degree n among degree 1 generators in S and
SSH .�/ are the same. As in Sect. 7, we will look at relations as elements of
the completed tensor product. That is, for any two Stein manifolds M and N we
write

O.M/ Ő O.N / WD O.M �N/

and understand S
Ő n
1 D O.Cn/ accordingly. The version of the bar-complex of S

using Ő , has the form

B�n D
�
O.Cn/! 	 	 	 !

M
iCjCkDn

O.Cn/Si�Sj�Sk

!
M
iCjDn

O.Cn/Si�Sj ! O.Cn/Sn

�

Notice that each term of this complex is a module over the ring O.Cn/Sn of
symmetric entire functions, and the differentials, coming from multiplication in
S , are O.Cn/Sn -linear. This means that B�n is the complex of global section of
a complex of vector bundles B�n on the Stein manifold Symn.C/. Explicitly, for
i1 C : : :C ip D n we denote by

�i1;:::;ip W Symi1 .C/ � 	 	 	Symip .C/ �! Symn.C/

the symmetrization map (a finite flat morphism). Then

B�pn D
M

i1C:::CipDn
.�i1;:::;ip /� OQ

Symi� .C/; (40)

in particular, B�n is a complex of holomorphic vector bundles on Symn.C/. This
allows us to approach the cohomology of B�n (and, in particular, relations in S ) in
a more geometric way, by studying the cohomology of the fibers

B�n;T D B�n ˝OSymn.C/ OT
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of the complex B�n over various points T 2 Symn.C/. Now, our main technical
result is as follows.

Theorem 8.4. Let T D fs01; : : : ; s0ng 2 Symn.C/ be an unordered collection
of distinct points. Suppose that no subset of T (in any order) is a wheel. Then
B�n;T is exact everywhere except the leftmost term, where the cohomology is one-
dimensional.

Recall that similar exactness of all the bar-complexes B�n .S/ for a graded
algebra S means that S is quadratic Koszul. The wheels represent therefore local
obstructions to Koszulity for S .

D. Cubic Relations in SH and Zeta Roots

Before giving the proof of Theorem 8.4, let us explain how to apply it to the case
of cubic relations for � D �. Let � be a nontrivial zero of �.s/. Denote by W� �
Sym3.C/ the subset of points fs1; s2; s3g such that, after some renumbering of the
si we have s2 � s1 D �, s3 � s2 D 1 � � (such a renumbering is then unique). Let
W be the union of the W� over all nontrivial zeroes � of �.s/. The following is then
straightforward.

Proposition 8.5. (a) Each W� is a complex submanifold in Sym3.C/, isomorphic
to C, the symmetric function s1 C s2 C s3 establishing an isomorphism.

(b) For � ¤ �0 we have W� \W�0 D ¿.
(c) A point fs1; s2; s3g 2 Sym3.C/ lies in W , if and only if it is a wheel (in some

numbering). ut
Theorem 8.6. Let �.s/ D �.s/.
(a) The multiplication map S1 ŐS1 ! S2 is surjective, so, by Proposition 8.3, the

space

H�2.B�3/ D H0.Sym3.C/;H�2.B�3 //

is identified with the space of new cubic relations in S as well as in in
SSH .�/.

(b) The support of the coherent sheaf H�2.B�3 / is equal to W D F
W�. If � is a

simple root of �.s/, thenH�2.B�3 / ' OW� in a neighborhood of W�.

Remark 8.7. From the point of view of this section, a cubic relation in SSH

is an entire function F.s1; s2; s3/ 2 O.C3/ D S
Ő 3
1 mapped to the zero element

of S3 by the symmetric shuffle multiplication. On the other hand, from the more
immediate point of view of Sect. 7, a cubic relation in the spherical Hall algebra SH
is a distribution f .a1; a2; a3/ on R

3C D .Bun1/3, mapped to the zero distribution
on Bun3 by the Hall multiplication. The relation between f and F is that of the
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Mellin transform. Note that whenever f .a1; a2; a3/ is a relation, then so is the
rescaling f .˛a1; ˛a2; ˛a3/ for any ˛ 2 RC. Taking a weighted average of such
rescalings, i.e., a convolution

Z 1
0

f .˛a1; ˛a2; ˛a3/'.˛/d
�˛

corresponds, on the Mellin transform side, to multiplying F.s1; s2; s3/ by a function
of the form  .s1 C s2 C s3/. Since s1 C s2 C s3 is a global coordinate on each W�,
Theorem 8.6 admits the following striking interpretation: the space of new cubic
relations in SH modulo rescaling is identified with the space spanned by nontrivial
zeroes of �.s/.

This fact is also true (with a similar proof) for the Hall algebras corresponding to
arbitrary compactified arithmetic curves ( = spectra of rings of integers in number
fields) as well as (with an easier, more algebraic proof) for Hall algebras of smooth
projective curves X=Fq . Note that for X D P

1 there are no new cubic relations
[2, 14], while for X elliptic, new cubic relations were found in [24]. Our results
show that presence of cubic relations is a general phenomenon, holding for all curves
X=Fq of genus > 1.

We will give a detailed proof of Theorem 8.4 and a sketch of proof of
Theorem 8.6, which will be taken up and generalized in a subsequent paper.

E. Permuhohedra and the Proof of Theorem 8.4

Our approach, similar to that of [1,19], uses the permutohedron, which is the convex
polytope

Pn D Conv
�
Sn 	 .1; 2; : : : ; n/

� � R
n

of dimension .n � 1/. Thus vertices of Pn are the nŠ vectors .i1; : : : ; in/ for all
the permutations. It is well known that faces of Pn are in bijection with sequences
.I1; : : : ; Ip/ of subsets of f1; : : : ; ng which form a disjoint decomposition. We
denote ŒI1; : : : ; Ip� the case corresponding to .I1; : : : ; Ip/. Subfaces of ŒI1; : : : ; Ip�
correspond to sequences obtained by refining .I1; : : : ; Ip/, i.e., by replacing each
I� , in its turn, by a sequence .J�;1; : : : ; J�;q� / of subsets of I� forming a disjoint
decomposition. Thus, as a polytope,

ŒI1; : : : ; Ip� ' PjI1j � 	 � PjIp j; dimŒI1; : : : ; Ip� D n � p:
Let C �.Pn/ be the cochain complex of Pn with complex coefficients. The basis
of Cm.Pn/ is formed by the 1F , the characteristic functions of the m-dimensional
faces. We choose an orientation for each face. Then
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d.1F / D
X
F 0�F

"FF0 	 1F 0 :

Here the sum is over .mC 1/-dimensional faces F 0 containing F , and "FF0 D ˙1
is the sign factor read from the orientations of F and F 0.

On the other hand, (40) gives a natural basis of Bn�1�m
n;T labeled by the disjoint

union of the preimages

��1i1;:::;ip .fs01; : : : ; s0ng/; i1 C 	 	 	 ip D n:

For a subset I � f1; : : : ; ng let TI D fs0i ji 2 I g � T . Elements of each
��1i1;:::;ip .fs01; : : : ; s0ng/ are precisely the

.TI1 ; 	 	 	 ; TIp / 2 Symi1 .C/ � 	 	 	 � Symip .C/

for all sequences of subsets .I1; : : : ; Ip/, forming a disjoint decomposition of
f1; : : : ; ng. Denoting by eI1;:::;Ip the corresponding basis vector in Bn�1�m

n;T , we get
an isomorphism of graded vector spaces

B�n;T

�! C �.Pn/Œn�; eI1;:::;Ip 7! 1ŒI1;:::;Ip �: (41)

To see the differential in B�n;T from this point of view, consider the matrix

L D k�ijk; �ij D �.s0i � s0j /; 1 6 i; j 6 n; i ¤ j:

Let F � F 0 be a codimension 1 embedding of faces of Pn. That is, F 0 D
ŒI1; : : : ; Ip� and F is a minimal refinement of F 0, i.e., is obtained by replacing some
I� by .I 0; I 00/ where I 0; I 00 are nonempty sets forming a disjoint decomposition of
I� . We put

�FF0 D
Y
i 02I 0

i 002I 00

�i 0i 00 :

It is immediately so see that the �FF0 satisfy the multiplicativity property for any
pair of composable codimension 1 embeddings:

�FF0�F 0F 00 D �FF0 ; F � F 0 � F 00:

This implies that by putting

dL.1F / D
X
F 0�F

�FF0 	 "FF0 	 1F 0 ;

we obtain a differential dL in C �.Pn;C/with square 0. This is a certain perturbation
of the cochain differential for Pn. We then see easily:
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Proposition 8.8. The isomorphism (41) defines an isomorphism of complexes

B�n;T �!
�
C �.Pn/; dL

�
Œn�:

ut
Note that the perturbed differential dL can be written for any system L D

k�ijki¤j of complex numbers. Conceptually, L is a C-valued function on the root
system of type An�1. We simply refer to L as a matrix.

By a wheel for L we mean a sequence of i1; : : : ; im of indices such that

�i1;i2 D �i2;i3 D 	 	 	 D �ip�1;ip D �ip;i1 D 0:

Theorem 8.4 is now a consequence of the following result.

Proposition 8.9. Let L D k�ijki¤j be an n by n matrix without wheels. Then�
C �.Pn/; dL

�
is exact outside of the leftmost term, where the cohomology (kernel)

is one-dimensional.

Proof. For a face F D ŒI1; : : : ; Ip� of Pn we put

�F D
Y
�<�

Y
i2I�
j2I�

�ij: (42)

Then for an embedding F � F 0 of codimension 1 we have

�F D �F 0 	 �FF0 :

This means that we have a morphism of complexes

� W �C �.P /; dL� �! �
C �.P /; d

�
; �.1F / D �F 	 1F ;

where d is the usual cochain differential. As Pn is a convex polytope,
�
C �.P /; d

�
is exact outside the leftmost term, with H0 D C. We now analyze the kernel and
cokernel of � . For a face F of Pn as before we call the depth of P the number of
factors in (42) which are zero. In other words, we put

Z D f.i; j / W i ¤ j; �ij D 0g � f1; : : : ; ng2: (43)

Then the depth of F is the number

dpt.F / D #
˚
.i; j / 2 Z W 9� < � W i 2 I�; j 2 I�

�
: (44)

Note that if F is a subface of F 0, then dpt.F / > dpt.F 0/. Therefore we have a
descending chain of polyhedral subcomplexes
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P .r/ D
[

dpt.F />r
F � Pn; r > 0:

Lemma 8.10. (a) The complex Coker.�/ is isomorphic to the relative cochain
complex C �.Pn; P .1//.

(b) The complex Ker.�/ has a filtration with quotients isomorphic to the relative
cochain complexes C �.P .r/; P .rC1//, r > 1.

Proof. The matrix of � is diagonal in the chosen bases, and Im.�/ � C �.Pn/ is
spanned by the 1F , F 2 P .1/, which shows (a). As for (b), for each r > 0 we have
the cochain subcomplex C �.Pn/>r � C �.P / spanned by 1F with dpt.F / > r ,
with C �.Pn/>1 D Ker.�/. The quotient C �.Pn/>r=C �.Pn/>rC1 is identified with
C �.P .r/; P .rC1// in a way similar to (a). ut

Note that the weights of faces of Pn and the polyhedral subcomplexes P .r/ are
defined entirely in terms of the subset Z in (43) which can be, a priori, arbitrary.
Now, absense of wheels in L (or, what is the same, in Z) means that after an
appropriate renumbering of f1; : : : ; ng, any .i; j / 2 Z satisfies i < j . Such renum-
bering does not change the combinatorial type of any of the P .r/. Proposition 8.9 is
therefore a consequence of the following purely combinatorial fact.

Proposition 8.11. Let Z � f.i; j /j 1 6 i < j 6 ng be any subset of positive roots
for An�1. Then each polyhedral complex P .r/ is either empty or contractible.

Proof. For a permutation � 2 Sn let

O.�/ D ˚
.i < j /j �.i/ < �.j /�

be the set of order preserving pairs of � . Thus the weak Bruhat order on Sn is
given by

� 6 � iff O.�/ � O.�/:

Now, fir a face F � Pn we have

dpt.F / D min
Œ��2Vert.F /

jO.�/ \Zj: (45)

Indeed, for F D Œ�� a vertex this is precisely the definition (44), while for F D
ŒI1; : : : ; Ip� the minimum in the RHS of (45) is achieved for � arranging each I� in
the decreasing order and is equal to dpt.F /.

Let D D jZj. Then for r > d we have P .r/ D ;, while for r 6 d we have that
P .r/ contains at least the vertex Œe� corresponding to the unit permutation. Further,
by (45), the set Vert.P .r// � Sn is a “left order ideal” with respect to the weak
Bruhat order: with each � , it contains all � 6 � . This implies that P .r/ contracts
onto Œe�.

This finishes the proof of Theorem 8.4.



194 M. Kapranov et al.

F. Proof of Theorem 8.6 (Sketch)

(a) It is enough to prove that the map of the fibers B�22;T ! B�12;T over any T D
fs01; s02g 2 Sym2.C/ is surjective. If s01 ¤ s02 , it follows from Theorem 8.4, as
there are no wheels of length 2. Assume now that s01 D s02 D s0. The fiber of
p1;1�OC2 at fs0; s0g is then O.C/=m2

s0
, the space of first jets of sections of OC at

s0. Since�.s/ has a first order pole at 0with residue 1, for any analytic function
f .s1; s2/ we have

lim
s1;s2!s0

. O?1;1F /.s1; s2/ D 1

2

d

dt

ˇ̌̌
ˇ
tD0
F.s0 C t; s0 � t/:

This implies that the subspace ms0=m
2
s0

of jets vanishing at s, will map
surjectively onto the fiber of OSym2.C/ at fs0; s0g.

(b) For T D fs1; s2; s3g 2 Sym3.C/ let CT be the skyscraper sheaf at T . We have a
spectral sequence

E
ij
2 D TorSym3.C/

i .Hj .B�3 /;CT / H) Hj�i .B�3;T /: (46)

We analyze it backwards, using the information about the abutment to say
something about E2 and then about the Hj .B�3 /. Some parts of this analysis
involve straightforward computations which we omit, highlighting the concep-
tual points only.

First, let � � Sym3.C/ be the locus of T such that si D sj for some i ¤ j .
Note that W \ � D ;. Theorem 8.4 implies that for T … W [ � the abutment of
(46) is zero for j � i > �3 and this implies that bothH�2 andH�1 of B�3 are zero
outsideW [�.

Next, B�13 D OSym3.C/, so d�2.B�13 / is a sheaf of ideals there and therefore
H�1.B�3 / is the structure sheaf of an analytic subspace W � Sym3.C/. By the
above the support of W is contained in W [�.

Next, we analyze (46) in the case when T 2 W . The permutohedron P3 is a
hexagon, so for T … � the complex B�3;T is, by Proposition 8.8, the perturbed
cochain complex of this hexagon corresponding to the matrix L D k�ijk D k�.si �
sj /k. If T 2 W , then, after renumbering, we have �12 D �23 D �31 D 0, while
other �ij ¤ 0. >From this it is an elementary computation to find the dimensions of
the cohomology spaces of B�3;T to be

h�3 D 3; h�2 D 3; h�1 D 1:

This, shows that W contains W . Further, let � be a nontrivial zero of �.s/ of
multiplicity � and W� be the part of W supported on W�. We can then analyze the
last map in complex B�3 near T D f�C c; 1 � �C c;�1C cg 2 W� directly, using
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the family of perturbed differentials dL W C1.P3/! C2.P3/ with L D k�.si�sj /k
depending on fs1; s2; s3g near W�. This is again an elementary computation which
yields that W� is isomorphic to the �th infinitesimal neighborhood of W� in an
embedded surface. In particular, if � is a simple root, then W� D W� as an analytic
subspace.

This means that W D H�1.B�3 / is given locally in Sym3.C/ � � by two

equations and so dim TorSym3.C/
1 .H�1.B�3 /;CT / D 2 for any T 2 W . From the

equality h�2.B�3;T / D 3 and the spectral sequence (46) we then conclude that
dim.H�2.B�3 / ˝ CT / D 1, and so W � supp.H�2.B�3 //. The statement that
H�2.B�3 / D OW� near W� for a simple root �, uses an additional local calculation
which we omit. We also omit the analysis of the case T 2 � which shows that the
support of H�2.B�3 / does not meet �. ut
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Wall-Crossing Structures in Donaldson–Thomas
Invariants, Integrable Systems and Mirror
Symmetry

Maxim Kontsevich and Yan Soibelman

1 Introduction

1.1 DT-Invariants and Poisson Manifolds

The paper is devoted to the notion of wall-crossing structure and its constructions
and applications in various situations. It is motivated by our previous work on Mirror
Symmetry and Donaldson–Thomas invariants (see [30, 31, 35, 36]) where examples
of wall-crossing structures appeared for the first time.

We consider two types of wall-crossing structures in this paper: the one related
to the theory of Donaldson–Thomas invariants (DT-invariants for short) and the one
related to Mirror Symmetry. Since our main motivation is the former, let discuss it
in detail.

It was proposed in [30], Sect. 1.5 (see also [36], Sect. 7.2) that so-called
numerical Donaldson–Thomas invariants counting semistable objects in three-
dimensional Calabi–Yau categories (DT-invariants of 3CY categories for short)
introduced in loc.cit. encode a geometric object, which is a (formal) Poisson
manifold. Construction of the Poisson manifold relies on the wall-crossing formulas
(WCF for short) introduced in loc.cit.

Conversely, we suggested there that the DT-invariants can be recovered from that
formal Poisson manifold. Therefore, collections of DT-invariants satisfying WCF
are in one-to-one correspondence with a certain class of formal Poisson manifolds.
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Wall-crossing formulas of this type appear in physics (as samples of the
numerous literature on the subject we mention [2, 9, 11, 18–21]).

WCF can be naturally realized as identities in the group of (formal) Poisson
automorphisms of the Poisson torus naturally associated with the Grothendieck
group of the category. In the categorical framework wall-crossing formulas depend
on a choice of stability condition on the category. It was explained in [30], Sect. 2
that in fact wall-crossing formulas arise in a more general framework of stability
data on graded Lie algebras. The above-discussed case of 3CY categories endowed
with stability condition corresponds to the case of torus Lie algebras endowed with
the stability data given by the DT-invariants of the category.

On the other hand, in our work on Mirror Symmetry (see [31, 35]) a different
class of wall-crossing formulas appeared (later it was considered in [24, 25] in the
higher-dimensional case). They can be realized as identities in the group of (formal)
volume-preserving transformations of a complex torus. This type of formulas is
related to the counting of pseudo-holomorphic discs and hence does not depend on
the stability condition on the relevant Fukaya category.

Similarities between two types of wall-crossing formulas mentioned above lead
to a question: is there a structure which makes the formulas similar? The answer is
positive. We call it wall-crossing structure (WCS for short) in this paper.

Besides of the general formalism of WCS we also discuss several new situations
in which they appear, most notably, the case of complex integrable systems “with
central charge” (see [30] and Sect. 4.2 below). Those include Hitchin integrable
systems or Seiberg–Witten integrable systems. To make a link with the above-
mentioned categorical version of DT-invariants, we observe that in many cases the
(universal cover of the) base of complex integrable system can be thought of as a
subspace in the space of stability conditions on some 3CY category. In the case of
Hitchin integrable system this category is the Fukaya category of the local Calabi–
Yau threefold associated with the spectral curve. An interesting fact is that using
the geometry of the base of the integrable system we can construct a collection of
integers which are similar to DT-invariants (e.g. they satisfy WCF). It is natural to
expect that they coincide with the DT-invariants of the above-mentioned Fukaya
category.

More precisely, in this paper we are going to discuss three different ways to
produce collections of integer numbers which enjoy WCF (and subsequently define
WCS).

The first construction of the invariants is based on the count of certain gradient
trees on the base of the integrable system (they can be called “tropical DT-
invariants” because of that).

The second construction extracts DT-invariants from the geometry of the formal
neighborhood of a singular curve (“wheel of projective lines”) in a certain algebraic
variety. This variety is a compactification of the mirror dual to the total space of the
integrable system.

Finally, for a “good” non-compact Calabi–Yau threefold one can define DT-
invariants of its Fukaya category (we expect they can be defined for any Calabi–Yau
threefold). Moreover the moduli space of deformations of the Calabi–Yau threefold
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is naturally a base of a complex integrable system with central charge. Hypotheti-
cally the base can be embedded into the space of stability conditions on the Fukaya
category.

We conjecture (see Conjecture 1.2.1) that all three approaches agree in the cases
when they all can be applied.

In the case of non-compact Calabi–Yau threefolds, the formal Poisson manifold
mentioned at the beginning of this subsection is a “completion at infinity” of an
algebraic Poisson variety. In some examples this variety can be realized as the
moduli space of local systems on a punctured curve.

1.2 Three Constructions

Here we describe the above-mentioned three approaches (constructions) with more
details.

1. For a complex integrable system � W M ! B with central charge the following
geometry arises on its base B .

Denote by B0 � B an open dense subset parametrizing non-degenerate fibers
of � . There is a local system 
 ! B0 with fibers 
 b D H1.�

�1.b/;Z/. The
local system carries an integer skew-symmetric pairing. In general the pairing
can be degenerate, hence M is a Poisson manifold only.

There is a well-defined central charge Z 2 
 .B0; 
 _ ˝ C/, where 
 _ is
the dual local system. The central charge can be thought of as a local embedding
B0 ! 
 _b ˝ C.

Then (under some conditions on B) we assign to every generic point b 2 B0

and every 
 2 
 b an integer number ˝ trop
b .
/ 2 Z which we informally

call tropical DT-invariant. Our construction uses tropical trees on B with
external vertices at the smooth part of Bsing D B � B0, as well as wall-
crossing formulas from [30]. The construction is reminiscent to the attractor
flow story in supergravity (see [9]) recast in mathematical terms in [36]. Edges
of the tropical trees are also gradient lines of the functions on B given by
b 7! jZb.
/j2; 
 2 
 b .

2. Here we assume for simplicity that the skew-symmetric form on 
 is non-
degenerate, hence M is a holomorphic symplectic manifold (this assumption is
not necessary and will be relaxed in the main body of the paper). Let !2;0 denote
the holomorphic symplectic form. Also assume that the above integrable system
is endowed with a holomorphic Lagrangian section s W B ! M . Then we can
assign to the above data a filtered associative algebra of finite type over C (in fact
over Z). Roughly speaking, it is the algebra of endomorphisms (in the Fukaya
category of .M;Re.!2;0/) of the Lagrangian submanifold s.B/ with filtration
coming from areas of pseudo-holomorphic discs. Let M_ denotes the affine
scheme of finite type, which is the spectrum of this algebra. It can be thought
of as a mirror dual to the symplectic manifold .M;Re.!2;0//. Actual geometric
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construction goes along the lines of [31] and uses the corresponding WCF. Then
M_ is a complex symplectic manifold of the same complex dimension 2n.
Hypothetically, for a reductive groupG and the corresponding Hitchin integrable
system on a smooth projective curve, the space M_ can be identified with the
moduli space of LG-local systems on the same curve (Betti realization), where
LG is the Langlands dual group.

We will reconstruct the collection of integer numbers satisfying WCF using
the geometry of M_. Namely, with M_ one can canonically associate a ZPL-
space Sk WD Sk.M_/ called the skeleton which sits in the Berkovich spectrum of
M_ (see [31] and Sect. 6.5. below for the details). Hypothetically, each point b 2
B0 gives rise to a piecewise linear embedding ib W C� ' R2 � f0g ! Sk. In the
case of Hitchin integrable systems it can be interpreted in terms of the asymptotic
behavior of the monodromy of a connection depending on small parameter.

From the point of view of the geometry of M_ this embedding can be
interpreted such as follows. We have a (partial) Poisson compactification M_
of M_ by normal crossing divisors and a singular curve C which is a “wheel”
of projective lines CP1 in M_ � M_, and such that locally near C the space
M_ is isomorphic to a toric Poisson variety endowed with a wheel of one-
dimensional toric strata. The embedding ib gives rise to an element Zb 2
H1.U".C /\M_;Z/˝C, whereU".C / is a small tubular neighborhood of C . In
other words, we have a linear functionalZb W H1.U".C /\M_;Z/ ' 
b ! C.

Simple arguments from the deformation theory show that, after a choice of
Zb , deformations of the above local toric model are parametrized by collections
.˝MS

b .
//
2
b�f0g satisfying the Support Property from [30]. Moreover, varying
the point b 2 B0 we arrive to the collection of numbers satisfying WCF.

3. There is a class of algebraic complex integrable systems with central charge
associated with non-compact Calabi–Yau threefolds. The base of the integrable
system associated with a Calabi–Yau threefold X is (roughly) isomorphic to the
moduli space of deformations of X . It looks plausible that all Hitchin systems
arise in this way (see [12] for the A � D � E case). Hypothetically, any point
b 2 B0 gives rise to a stability condition on the category F .X/, the Fukaya
category of X . According to the general theory of [30, 34] with a stability
condition on F .X/ one can associate a collection ˝cat

b .
/ of “categorical” DT-
invariants of F .X/.

Conjecture 1.2.1. ˝ trop
b .
/ D ˝MS

b .
/ D ˝cat
b .
/.

This conjecture should be the guiding line for the paper.

Remark 1.2.2. For Hitchin system with the group SL.n;C/ Gaiotto, Moore and
Neitzke proposed an interpretation of the invariants ˝cat

b .
/ as counting invariants
of certain “networks” on the spectral curve of the Hitchin system (for n D 2 they are
geodesics of the quadratic differential defined by the point b 2 B0). The trees in the
definition of ˝ trop

b .
/ are different from the networks, since they are subsets of the
base B rather than of the spectral curve. We do not have a “counting” interpretation
for the numbers˝MS

b .
/.
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The concept of wall-crossing structure (WCS for short) underlying all three
constructions is discussed in the next section, starting with WCS in a vector space.
Intuitively, WCS is given by a collection of group elements parametrized by pairs
of points outside of codimension one “walls” and satisfying some consistency
conditions. We observe that WCS can be described in different ways, in particular,
as a sheaf of sets.

Furthermore, WCS is determined by simpler data, which we call initial data
for WCS. In the case of complex integrable systems with central charge discussed
later in the paper, the initial data are ultimately related to the behavior of the affine
structure on the base near the discriminant set Bsing. The above conjecture can be
reformulated as an equivalence of three wall-crossing structures defined in three
different ways.

1.3 Content of the Paper

After the detailed discussion of the Conjecture 1.2.1 let us briefly explain other
topics which we discuss in the paper.

Sections 2 and 3 are devoted to the concept of wall-crossing structure and
examples. We introduce several useful notions like e.g. support of WCS (this
concept is related to the Support Property from [30] which in turn controls the
support of DT-invariants). We introduce the notion of attractor flow (the latter goes
back to supergravity, see [9–11]) and define initial data in terms of trees with edges
which are trajectories of the attractor flow. The initial data can be thought of as a
space of “boundary values” which are assigned to “free ends” of attractor trees.

We start Sect. 4 with a brief discussion of complex integrable systems from the
point of view of Hodge theory. In fact we consider not only polarized integrable
systems but semipolarized as well. In the latter case fibers are semiabelian varieties
with polarized quotients. In the case of Hitchin the semipolarized integrable systems
appears when the Higgs field has singularities. Then we introduce the notion of a
complex integrable system with the central charge. We also explain the construction
of WCS and initial data for complex integrable systems with central charge. The
initial data are related to the behavior of the integrable system at the discriminant
set.

The approach to DT-invariants via wheels of projective lines is the subject of
Sect. 5. The idea which we have already discussed above is that DT-invariants can
be interpreted as “coordinates” on the moduli space of deformations of the formal
neighborhood of a wheel of projective lines in a Poisson toric variety.

The relationship of WCS and SYZ picture of Mirror Symmetry is discussed in
Sect. 6. Among other things we argue that the mirror dual to the total space of
an integrable system with central charge is an affine scheme of finite type over
Z. We also stress the role of canonical B-field, which is a 2-torsion. We explain
how the set up of Sect. 5 appears in this framework. Roughly speaking the mirror
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dual is a log Calabi–Yau whose skeleton is isomorphic to the base of the integrable
system. Wheel of lines is related to a choice of central charge.

Deformation theory of non-compact Calabi–Yau threefolds is the subject of
Sect. 7. We discuss there not only the smoothness of the moduli space but also
some plausible assumptions under which the Fukaya category and Donaldson–
Thomas invariants are well-defined. Moduli spaces of such deformations serve
as bases of the corresponding integrable systems. This gives a generalization of
the work [12] where the case of local Calabi–Yau threefolds associated with
ALE spaces was considered. We should also mention the papers [13, 14] which
initiated mathematical works on the relationship between Calabi–Yau threefolds
and complex integrable systems. In that case the authors considered compact
Calabi–Yau threefolds, differently from [12]. The corresponding complex integrable
systems and their relationship to WCS are discussed in Sect. 9.

Section 8 is essentially devoted to GL.r/ Hitchin integrable systems with
possibly irregular singularities (although it also contains other interesting topics like
deformation theory of complex Lagrangian manifolds in Sect. 8.2). In the case of
Hitchin integrable systems many structures discussed earlier for general complex
integrable systems admit non-trivial interpretations in terms of (irregular) spectral
curves. Our approach to the notion of irregular spectral curve is non-standard (in
particular it is quite different from the one in [4]). Roughly speaking, the spectral
curve is defined as an effective divisor in the Poisson surface obtained from the
compactified cotangent bundle of the initial curve by a series of blow-ups. The
existence of the smooth locus in the base of complex integrable system formed
by such spectral curves is related to the existence of a solution to additive Deligne–
Simpson problem (see Sect. 8.3). In that case the general machinery of Sect. 4 can
be applied.

We remark that Sect. 8.6 contains several interesting conjectures about the mirror
dual to the total space of GL.r/ Hitchin integrable system which are related to
different topics which we do not discuss here. In particular, the conjectures about
extension of the (twistor) family over C� of mirror duals to the whole line C relate
those mirror duals to WKB asymptotics of flat section of connections with a small
parameter and to the corresponding theory of resurgent functions. This relationship
has a flavor of “non-linear Hodge theory of infinite rank” and deserves further study.

In Sect. 9 we discuss WCS, attractor flow and DT-invariants in the framework of
compact Calabi–Yau threefolds. As we have already mentioned, the corresponding
complex integrable systems were studied by Donagi and Markman. They are
nonpolarized. In this framework one still expects the WCS but the initial data are
determined by the values of DT-invariants not only at conifold points (i.e. Bsing

in the above notation) but also by their values at the so-called attractor points.
The value of DT-invariants at a generic conifold point should be equal to 1. This
restriction is not completely clear from first principles. The values of DT-invariants
at the attractor points are arbitrary integers.

Section 10 is devoted to a version of WCS for the Lie algebra of volume-
preserving vector fields on an algebraic torus. This WCS arises naturally in Mirror
Symmetry, in the study of SYZ picture of mirror dual families of collapsing
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Calabi–Yau manifolds (see [24, 25, 31]). The formalism of WCS in this case is
a bit more complicated than the one developed in the main body of the paper.
Nevertheless, there are several surprising similarities between them. It is natural
to suggest that certain (not yet discovered) unified structure is hidden behind.

In the appendix we describe a cocycle with coefficients in Z=2Z associated with a
skew-symmetric form. It is used in the definition of the canonical B-field in Sect. 6.

Finally, we should say that the main goal of our paper is to describe the general
picture of the rich geometry of Wall Crossing Structures. We have tried to formulate
(sometimes in the form of conjectures and assumptions) of what should be true. As
a result, besides of proven theorems the paper contains many ideas and new projects.
On the other hand, many aspects of the story are not discussed (or just touched) in
this paper, in particular quantum versions of the results or the relation to canonical
bases in cluster algebras, etc.

2 Wall-Crossing Structures

Wall-crossing formulas presented in [30] are identities in certain pronilpotent groups
of automorphisms. It is convenient to axiomatize the corresponding structure, which
appears in a completely different situations. In particular it generalizes the notion of
stability data on a graded Lie algebra introduced in the loc.cit.

In this section 
 denotes a fixed finitely-generated free abelian group, i.e.

 ' Zk for some k 2 Z�0. The associated real vector space is 
R WD 
 ˝ R.
We will denote by g a fixed 
 -graded Lie algebra over Q,

g D
M

2


g
 :

2.1 Wall-Crossing Structures on a Vector Space

2.1.1 Nilpotent Case

Let us assume that the set

Suppg WD f
 2 
 j g
 ¤ 0g � 


is finite and is contained in an open half-space in 
R. In particular, all elements
of Supp g are non-zero, i.e. g0 D 0. Under our assumption the Lie algebra g is
nilpotent. Let us denote by G the corresponding nilpotent group. The exponential
map exp W g! G is a bijection of sets.

The finite union of hyperplanes 
? � 
 �R (“wall associated with 
”) will be
denoted by Wallg. Its complement has a finite number of connected components
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which are open convex domains in 
 �R . These components are exactly open strata in
the natural stratification of 
 �R associated with the finite collection of hyperplanes�

?
�

2Suppg. Notice that different elements 
 2 Supp.g/ can give the same

hyperplane,


?1 D 
?2 ” 
1 k 
2:

Definition 2.1.1. A (global) wall-crossing structure ((global) WCS for short) for g
is an assignment

.y1; y2/! gy1;y2 2 G

for any y1; y2 2 
 �R �Wallg which is locally constant in y1; y2, satisfies the cocycle
condition

gy1;y2 	 gy2;y3 D gy1;y3 8y2; y2; y3 2 
 �R �Wallg

and such that in the case when the straight interval connecting y1 and y2 intersects
only one of hyperplanes 
? then

log.gy1;y2 / 2
M

 0W
 0k


g
 0 :

It follows from the definition that we can associate with any stratum � of
codimension 1 (which is an open domain in 
? for some 
 2 Suppg) a “jump”

g� WD gy1;y2
where points y1; y2 are such that y1.
/ > 0; y2.
/ < 0, and the interval connecting
y1 with y2 intersects � and no other strata of codimension � 1 (hence this interval
does not intersect other hyperplanes in our collection, except 
?). Obviously, a
WCS is uniquely determined by the collection of jumps .g� /codim �D1, satisfying the
cocycle condition for each stratum of codimension 2.

2.1.2 Description in Terms of Sheaves and Groups

Notice that the complement 
 �R � Wallg contains two distinguished components
UC; U� (which are different iff g ¤ 0) consisting of points y 2 
 �R such that
y.
/ > 0 (resp. y.
/ < 0) for all 
 2 Suppg. Hence with any global WCS � D
.gy1;y2/ we can associate an element

gC;� WD gyC;y�
2 G ; y˙ 2 U˙:
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We will prove later in this section (see Theorem 2.1.6) that the map � 7! gC;�
provides a bijection between the set of wall-crossing structures and G (considered
as a set).

For any point y 2 
 �R we have a decomposition of g (considered as a vector
space) into the direct sum of three vector spaces

g D g.y/� ˚ g
.y/
0 ˚ g

.y/
C

corresponding to components g
 such that y.
/ 2 R is negative, zero or positive
respectively. Obviously all these subspaces are 
 -graded Lie subalgebras of g. We
denote by G.y/� ; G

.y/
0 ; G

.y/
C the corresponding nilpotent subgroups of G. Then it is

easy to see that the multiplication map

G.y/� �G.y/
0 �G.y/

C ! G ; .g�; g0; gC/ 7! g� 	 g0 	 gC
is a bijection. Hence any element g 2 G can be uniquely decomposed as the product

g D g.y/� g.y/0 g
.y/
C :

We denote by �y W G ! G
.y/
0 D G.y/� nG=G.y/

C the canonical projection to the

double coset. In the above notation we have �y.g/ D g
.y/
0 . We claim that there exists

a sheaf of sets on 
 �R with the stalk over y 2 
 �R given by G.y/
0 .

This is a particular case of the following general construction. Suppose we are
given:

(a) a topological space M ;
(b) a set S ;
(c) an assignment to any point m 2 M of a set Sm and a surjection �m W S ! Sm,

such that for any two elements s1; s2 2 S the set fm 2 M j�m.s1/ D �m.s2/g is
open in M .

Then the above data give rise to a sheaf of sets S on M in the following way.
Its étalé space S ét consists of pairs f.m; s0/jm 2 M; s0 2 Smg. A base of topology
is given by the sets Ws;U D f.m; s0/jm 2 U; s0 D �m.s/g, where s runs through the
set S and U runs through the set of open subsets of M .

One can easily prove the following result.

Lemma 2.1.2. The projection S ét !M; .m; s0/ 7! m is a local homeomorphism.

Using the standard equivalence between sheaves of sets and local homeomorphisms
(étale maps), we obtain

Corollary 2.1.3. The above construction gives rise to a sheaf of sets S such that
the stalk Sm is equal to Sm for any m 2M .
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Let us apply this lemma to the case M D 
 �R ; S D G;Sy D G
.y/
0 ; y 2 M

and the map �y W G ! G
.y/
0 D G.y/� nG=G.y/

C ; g 7! g
.y/
0 given by the canonical

projection to the double coset. It is easy to see that the openness condition from c)
is satisfied.

Definition 2.1.4. The corresponding sheaf of sets is called the sheaf of wall-
crossing structures and is denoted by WCSg.

Sheaf WCSg is constructible with respect to the natural stratification of 
 �R given
by the finite arrangement of hyperplanes 
? � 
 �R , where 
 2 Suppg.

Notice that if y 2 
 �R �Wallg then the stalk at y is G.y/
0 D f1g. If the point y

belongs to a stratum of codimension one (i.e. y lies on exactly one wall 
?) then the
Lie algebra of the corresponding stalk is G.y/

0 where Lie.G.y/
0 / D ˚
 0k
g
 0 . Finally,

the stalk at y D 0 is the whole group G.
It will be important for the future to study the space of sections of WCSg in the

following situation. Let l � 
 �R be a straight line intersecting UC and U�. We
endow l with the direction from UC to U� and require that it does not intersect
strata of codimension bigger or equal than 2. Let y1; : : : ; yn be the ordered along l
set of intersection points with walls. Then the set of sections 
 .l;WCSg/ is just the

product
Qn
iD1 G

.yi /
0 . The natural map

nM
iD1

g
.yi /
0 ! g

is a bijection, hence any element g 2 G can be uniquely decomposed into
the ordered product of elements of G.yi /

0 . We conclude that the set of sections

 .l;WCSg/ can be identified naturally with G.

Let us consider the following three sets:

(a) S1 D G;
(b) S2 D 
 .
 �R ;WCSg/;
(c) S3 being the set of all wall-crossing structures on 
 �R .

There are three maps S1! S2 ! S3! S1 given such as follows:

1. the map S1 ! S2 sends g 2 G to the section sg such that sg.y/ D g.y/0 ;
2. the map S2 ! S3 sends a section s 2 
 .
 �R ;WCSg/ to the unique WCS such that

for any straight interval connecting two points y1; y2, intersecting a hyperplane

? at one point y0 and not intersecting other hyperplanes, and such that

y.
1/ < 0; y2.
/ > 0

the transformation gy1;y2 coincides with s.y0/ 2 G.y0/
0 � G,

3. the map S3 ! S1 sends a WCS � to the corresponding element gC;� WD
gC;�.�/.
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It is clear that the maps S1 ! S2 and S3 ! S1 are well-defined. It is not obvious
that the map S2 ! S3 indeed takes values in the set of wall-crossing structures.

Proposition 2.1.5. The map S2 ! S3 is well-defined.

Proof. Our description of the map defines jumps g� for all strata of codimension
one. We need to check the cocycle condition in codimension 2. Let � be any stratum
of codimension 2. It lies in a finite collection of k � 2 different hyperplanes
.
?i /iD1;:::;k . Near � we have 2k open strata and 2k strata of codimension 1. Among
2k open strata we have two distinguished ones containing points y1; y2 respectively,
where

y1.
i / < 0; y2.
i / > 0 8i D 1; : : : ; k :

There are two paths (up to homotopy) connecting y1 and y2 contained in the union
of 2k open and 2k codimension one strata near � and intersecting each of the
hyperplanes .
?i /iD1;:::;k at one point. We want to prove that the composition of
jumps along one path coincides with the similar composition along another one. It
follows from the definition of the sheaf WCSg that both compositions coincide with

g
.y/
0 where y is any point in �. Hence the cocycle condition is satisfied. �

Theorem 2.1.6. The above three maps are bijections, and their composition is the
identity map.

We see that sets S1; S2; S3 are canonically identified with each other.

Proof. We split the proof into three lemmas.

Lemma 2.1.7. The map S1 ! S2 is a bijection.

This map is obviously injective, because the sg.0/ D g for any g 2 G. It is
surjective because the point 0 2 
 �R belongs to the closure of any stratum (which is
a conical set). Therefore any section is uniquely determined by its value at 0. This
proves first lemma.

Lemma 2.1.8. The composition S1 ! S2 ! S3 ! S1 is the identity map.

Given g 2 G let us choose a line l � 
 �R such that it intersects both sets UC
and U� and does not intersect strata of codimension greater or equal than 2. Let us
endow the line with the direction from UC to U�. Let us denote by y1; : : : ; ym the
ordered points of intersection of l with walls. Then g coincides with the ordered
product of g.yi /0 and hence g D gC;�. This proves the second lemma.

Lemma 2.1.9. The map S3 ! S1 is injective.

Observe that for any point y 2 
 �R which belongs to the stratum of codimension
1 (which is open in a wall) there exists a line l as in the previous lemma and such that
y 2 l . Because of our choice of the line, there exists a unique i0; 1 � i0 � m that
y D yi0 . We know that the element gC;� determines uniquely all elements g.yi /0 , in
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particular g
.yi0 /

0 D g.y/0 . We conclude that all jumps are determined uniquely by the
element gC;�. This means that the corresponding WCS is also determined uniquely.
This proves the third lemma. Combined together, the three lemmas give the proof
of the theorem. �.

Remark 2.1.10. The set of sections of the sheaf WCSg on any open U � 
 �R can be
described as the set of locally constant maps from the set of connected components
of intersections of codimension one strata with U to corresponding subgroups ofG,
which satisfy the cocycle condition near points of strata of codimension two. Also,
let U � 
 �R be an open convex subset. We define cones C˙.U / � 
R as cones
generated by 
 2 
 such that ˙y.
/ > 0 for all y 2 U . We denote by G˙.U / D
exp.˚
2C

˙
.U /g
 / the corresponding nilpotent Lie groups. Then 
 .U;WCSg/ '

G�.U /nG=GC.U /. There is also a description of the set 
 .U;WCSg/ similar to
the Definition 2.1.1. Namely, in the Definition 2.1.1 we consider pairs y1; y2 2
U �Wallg.

2.1.3 Pronilpotent Case

Let g D ˚
2
 g
 be a graded Lie algebra. We do not impose any restrictions on
Supp.g/. In particular we do not assume that the support belongs to a half-space in

R (cf. Sect. 2.1.1).

Let C � 
R WD 
 ˝ R be a convex cone. We assume that C is strict, which
means that the closure of C does not contain a line, or, equivalently, C is contained
in the positive octant (in some coordinates on 
R). Yet another equivalent condition:
there exists � 2 
 �R such that the restriction of � to the cone C is a proper map to
R�0.

In this case we define a pronilpotent Lie algebra gC as an infinite product

gC WD
Y


2C\
�f0g
g


and denote by GC the corresponding pronilpotent group. The exponential map
identifies gC and GC .

Lie algebra gC is the projective limit of nilpotent Lie algebras

g
.k/
C;� D

M

2C\
�f0g;�.
/
k

g
 D gC =m
.k/
C;�;

where

m
.k/
C;� D

M

2C\
;�.
/>k

g


is the Lie ideal in gC , and � 2 
 �R is the above function.
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Denote by G.k/
C;� D exp.g.k/C;�/ the corresponding nilpotent group and by pr.k/C;� W

GC ! G
.k/
C;� the natural epimorphism of groups.

Then the sheaf of sets WCSgC is defined as the projective limit of the sheaves
WCS

g
.k/
C�

. It follows from the end of the Remark 2.1.10 that for any open convex

subset U 2 
 �R the set of sections WCSgC .U / admits the following description:

(a) For any y1; y2 2 U which do not belong to .[
2C\.
�f0g/
?/\U we are given
an element gy1;y2 2 GC satisfying the cocycle condition.

(b) The projections of these elements to G
.k/
C;�.U / satisfy the condition from

Definition 2.1.1.

The latter condition informally means that the “jump” at the generic point of
the hyperplane H D 
? � 
 �R , where 
 2 C � f0g belongs to the subgroup
GC;H WD exp.

Q

 02C\
;.
 0/?DH g
 0/.

In the next definition we extend this picture to the case when the cone C is not
fixed in advance and can depend on a point of 
 �R .

Definition 2.1.11. Let g D ˚
2
 g
 be the graded Lie algebra, as before. We define
the sheaf WCSg on 
 �R such as follows: for any open subset U the set of sections

 .U;WCSg/ consists of a family of elements g.y; 
/ 2 g
 such that y 2 U; 
 2

 � f0g and y.
/ D 0 satisfying the following condition:

For any y 2 U there exists a neighborhood Uy � U and strict convex cone
Cy;Uy � 
R such that for any y1 2 Uy the element g.y1; 
/ ¤ 0 iff 
 ¤ 0 and

 2 Cy;Uy .

Furthermore, let us fix � 2 
 �R such that its restriction to the closure Cy;Uy is a
proper map to R�0. Then we require that for any k > 0 the map

y1 7! pr.k/Cy;Uy .exp.
X



g.y1; 
///; y1 2 Uy

is an element of the set of sections 
 .Uy;WCS
g
.k/
Cy;Uy ;�

/.

Notice that if Supp.g/ is finite and contained in an open half-space in 
R then the
above definition agrees with the one given in Sect. 2.1.2 We also have the following
pronilpotent analog of the Theorem 2.1.6.

Proposition 2.1.12. Assume that Supp.g/ � C � f0g, where C is the cone
described at the beginning of this subsection. Then the set of global sections
� D .g.y; 
// of WCSg is in the natural one-to-one correspondence with elements
of g 2 GC .

Proof. Follows from the nilpotent case. �

Having a section s 2 
 .U;WCSg/ for an open U � 
 �R we define its support
Supp.s/ � U � 
R as a minimal closed, conic in the direction of 
R set which
contains the set of pairs .y; 
/; y 2 
 �R ; 
 2 
 such that y.
/ D 0 and log.g.y/0 /
 2
g
 � f0g.
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2.2 Wall-Crossing Structure on a Topological Space

Let us consider the following data:

1. A Hausdorff locally connected topological space M (then we will speak about
WCS on M ).

2. A local system of finitely-generated free abelian groups of finite rank
� W 
 !M .

3. A local system of 
 -graded Lie algebras g D ˚
2
 g
 !M over the field Q.
4. A homomorphism of sheaves of abelian groups Y W 
 ! ContM , where ContM

is the sheaf of real-valued continuous functions onM .

Equivalently we can interpret Y locally as a continuous map from a domain in
M to 
 �R . Then we define the pull-back sheaf WCSg;Y WD Y �.WCSg/, where WCSg

is the sheaf of sets on 
 �R constructed in the previous subsection.

Definition 2.2.1. A (global) wall-crossing structure on M is a global section of
WCSg;Y . The support of WCS � is a closed subset of tot.
 ˝ R/ whose fiber over
any point m 2 M is described such as follows: it is a strict convex closed cone
Suppm;� � 
 m ˝ R which is equal to the support of the germ of WCSg;m at the
point Y.m/ 2 
 �m ˝ R associated with the section � .

This definition makes obvious the functoriality of the notion of WCS with respect
to pullbacks.

2.3 Examples of Wall-Crossing Structures

(1) Let us fix a free abelian group of finite rank 
 together with a 
 -graded Lie
algebra g D ˚
2
 g
 and a homomorphism of abelian groups Z W 
 ! C
(central charge). Then we take M D R=2�Z, and define on M constant local
systems with fibers 
 and g. We set Y�.
/ D Im.e�i�Z.
//, where � 2 R.
Then a WCS associated with this choice is the same as stability data on g in the
sense of [30]. Family of stability data from [30] parametrized by the topological
space M is the same as WCS on R=2�Z � Hom.
;C/ with constant local
systems 
 ; g and the above map Y .

(2) Let us fix 
; g; Z 2 Hom.
;C/ as in Example (1). Let OM D R=2�Z �
Hom.
;C/. We endow OM with constant local systems with fibers 
 and g
respectively.

The subset MZ D R=2�Z � fZg � OM is isomorphic to the one from
the previous example. Then interpreting WCS on MZ as the pullback sheaf
.YjMZ

/�.WCSg/ we conclude that this WCS can be extended to a neighborhood
of Z.

Thus we have a WCS for nearby central charges. Using compactness of the
circle R=2�Z we conclude that for any stability data on g with the central
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charge Z0 there exists a germ of universal family of stability data with central
charges in a neighborhood ofZ0. The above construction gives an alternative to
[30] way to define the notion of continuous family of stability data on a graded
Lie algebra. As a byproduct we can interpret wall-crossing formulas from [30]
in terms of WCS.

(3) Assume that in the Example (1) we have an involution 	 W g ! g which maps
g
 ! g�
 . Let us choose a local system on M D R=2�Z obtained from the
trivial local systems from Example (1) by identification � 7! � C � on R,

 7! �
 on 
 and x 7! 	.x/ on g. The corresponding WCS can be identified
with symmetric stability data on g from [30].

(4) Assume that 
 is endowed with an integer skew-symmetric form h�; �i. Let us
fix central charge Z and set g D ˚
2
 Q 	 e
 , where

Œe
1 ; e
2 � D .�1/h
1;
2ih
1; 
2ie
1C
2 :

We will call it the torus Lie algebra. All previous examples can be specified to
this case.

In this case one can encode the WCS as a collection of numbers˝.
/ which
are called DT-invariants for the torus Lie algebras and the central chargeZ. The
relation with Definition 2.1.11 is as follows:

g.ei� ; 
/ D
X

kj
;k�1

˝.
=k/

k2
e
 ;

where Z.
/ 2 ei�R>0

(5) The quantum version of the previous example deals with the Lie algebra g D
˚
2
 Q.q1=2/ 	 Oe
 where

Œ Oe
1 ; Oe
2 � D
qh
1;
2i=2 � q�h
1;
2i=2

q1=2 � q�1=2 Oe
1C
2 :

Here Oe
 D Oequant



q1=2�q�1=2 are the normalized generators of the quantum torus

Oequant

1 Oequant


2 D qh
1;
2i=2 Oequant

1C
2 . We will call it the quantum torus Lie algebra.

Remark 2.3.1. In the previous two examples each group GU contains a sub-
group Gadm

U of admissible [or quantum admissible in the Example (4)] series
(see [34] for the definition). Then in the definition of WCS we can require
that gm1;m2;U 2 Gadm

U . This leads to the integrality of the corresponding
DT-invariants.

(6) Let C be an ind-constructible 3CY category with the class map cl W K0.C / !

 (see [30] for the terminology and notation). Let G � Aut.C ; cl/ be a
subgroup which preserves a connected component Stab0.C ; cl/ � Stab.C ; cl/
of the set of constructible stability conditions on C . In particular G acts on 
 .
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We require thatG acts on Stab0.C ; cl/ freely and properly discontinuously, and
also that G contains the group Z generated by the shift functor Œ1�. Consider
M WD Stab0.C ; cl/. Notice that there exists a WCS on M with the constant
local systems 
 and g given in the Examples (4), (5) and Y D Im.e�i�Z/.
Then this WCS descends to M=G. In practice G is a stabilizer of Stab0.C ; cl/
in Aut.C ; cl/.

Mirror Symmetry predicts that the moduli space of Calabi–Yau threefolds
endowed with a square of a holomorphic volume form carries a local system of
3CY categories (Fukaya categories) endowed with stability condition. Thus we
expect that there exists the corresponding WCS on an appropriate topological
space (see Sects. 7.3 and 9.1 about that). The group G in this case is the
fundamental group of the above moduli space.

(7) Let .Q;W / be a quiver with polynomial potential (more generally, we can
consider a smooth algebra with potential). Then we constructed in [34] an
invertible series A (called quantum DT-series) in the quantum torus with
generators e
 ; 
 2 
C ˝ R ' C WD Rn�0, where 
C ' Zn�0 is the cone of
dimension vectors. By the Theorem 2.1.6 it defines a WCS on 
 �R .

LetZ W 
C ! C be a central charge. We assume that Y D Im.Z/ is positive
on C �f0g. Consider the straight line l � 
 �R given by t 7! Re.Z/C tIm.Z/ 2

 �R . Intersections of this line with the walls (i.e. points t 2 R for which there
exists 
 2 
C � f0g such that Re.Z.
//C tIm.Z.
// D 0) correspond to rays
˛ in the upper-half plane with vertex in the origin. The clockwise factorization
formula A D Q�!

˛ A˛ (see [30, 34]) can be interpreted as the previously
discussed product formula for the element gC;� 2 GC .

(8) In many examples it is natural to consider 
 -graded Lie algebras where 
 is
a finitely generated abelian group, possibly with torsion. For example, for the
Fukaya category F .X/ of a Calabi–Yau threefold X one should take 
 D
H3.X;Z/, which can have a non-zero torsion.

In such cases the considerations of the previous and this sections still work, if
we replace 
 by 
 free which is the quotient of 
 by the torsion subgroup 
 tors.
Then having the 
 -graded Lie algebra g we define the graded Lie algebra g
 free D
˚�2
 freeg

free
� where gfree

� D ˚
 mod 
 torsD�g
 .

3 Initial Data and Attractor Flow

Definitions and construction of this section, which might look a bit unmotivated, will
be used below in Sects. 4.5 and 9.3 when we will discuss the set of “initial values”
which determine DT-invariants associated with complex integrable systems.
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3.1 Initial Data

Let 
 be a free abelian group of finite rank endowed with a skew-symmetric integer
form h�; �i W V2


 ! Z. Let g WD 

 D ˚
2
 g
 be a 
 -graded Lie algebra over
a commutative ring of characteristic zero satisfying the condition Œg
1 ; g
2 � D 0 as
soon as h
1; 
2i D 0. E.g. the Lie algebras from examples 4), 5) in the previous
subsection satisfy this condition. We denote by 
0 the kernel of h�; �i. Then one has
a decomposition g D g
0˚g
�
0 , where g
0 D ˚
2
0g
 is a central subalgebra and
g
�
0 D ˚
2
�
0g
 is its complement. The skew-symmetric form h�; �i gives rise
to a homomorphism of abelian groups � W 
 ! 
 _. Then 
0 D Ker �. Since a WCS
in the abelian case of g
0 is something very simple (just a collection of elements of
g
 with support in a strict cone, we are going to discuss only the “non-trivial” part
which is the induced WCS for g
�
0 . In what follows we assume that if 
 2 
0
then g
 D 0.

Let us consider the “global” version of the above situation. Namely, assume we
are given a WCS, say, � , on a smooth manifold B0 such that the corresponding
local systems 
 ; g satisfy the same properties as 
; g above. More precisely, 
 is
endowed with an integer skew-symmetric pairing h�; �i such that if for b 2 B0 we
have h
1; 
2i D 0; 
i 2 
 b then for the corresponding components of gb we have
Œgb;
1 ; gb;
2 � D 0. Let 
 0 � 
 be the kernel of h�; �i. Then assume that if 
 2 
0;b
then gb;
 D 0; b 2 B0.

Now we will make an additional assumption on B0 which will be justified later
in the case of complex integrable systems (strange notation for B0 is also borrowed
from there). Namely, we assume that the homomorphism of sheaves Y interpreted
locally as a continuous map fromB0 to a real vector space, is a smooth submersion.
Moreover, we assume that B0 is endowed with a foliation such that locally near
b 2 B0 the leafM WD Mb containing b is identified via Y with an affine space over
the vector space �.
 R;b/.

For each leaf M let us define a smooth manifold M 0Z as the set of pairs
.m; 
/;m 2 M;
 2 
 m which satisfy the condition that 
 2 
 m � 
 0;m and
such that Y.m/.
/ D 0. Notice that dimM 0Z D dimM � 1.

We define a bigger set M 0 �M 0Z as the set of pairs

f.m; v/ 2 tot.
 R/jY.m/.v/ D 0g:

Clearly dimM 0 D dimM C rk 
 � 1.

Definition 3.1.1. The attractor flow onM 0 is defined by the vector field Pv D 0; Pm D
�.v/; v 2 
 m;R. It preserves the manifold M 0Z and hence induces the “integer”
attractor flow on it.

By our assumptions the vector field does not vanish onM 0Z.
Similarly we define .B0/0 and .B0/0Z as the union of above-defined sets over all

leavesM . The attractor flow extends to the both bigger manifolds.



214 M. Kontsevich and Y. Soibelman

Assume that we are given a WCS � on B0. Therefore we have a piecewise
constant map a W .B0/0Z ! tot.
 / which assigns to a point .b; 
/ the element
ab.
/ 2 g

b;

, which is the 
 -component of the corresponding section of WCSg;Y

(we identify naturally the latter with the logarithm of the corresponding element of
the pronilpotent group, see Proposition 2.1.12).

The discontinuity set Wa of the map a (this set is an analog of “walls of first
kind” from [30]) belongs to the set of pairs .b; 
/ 2 Supp� \ tot.
 /� tot.
 0/ such
that 
 D 
1 C 
2, with h
1; 
2i ¤ 0 (this condition implies that all vectors 
; 
1; 
2
do not belong to 
 0;b , while .b; 
i / 2 Supp� ; i D 1; 2). Clearly the discontinuity set
of the map a is a locally-finite hypersurface in .B0/0Z which is locally a pull-back of
a ZPL hypersurface in 
 _b ˝ R.

The set Supp� can be very complicated. For example in the case of SL2 Hitchin
integrable system considered in [19] the fibers of Supp� should coincide with cones
of invariant measures for singular foliations on surfaces given by real parts of certain
quadratic differentials.

We believe that in general the support of WCS has a “fractal” structure similar
to the following one. Let us consider the set of points .x; y/ 2 R2 such that either
x 2 R � Q; y D 0 or x D p

q
2 Q; .p; q/ D 1 and 0 � y � 1

q
. This is a closed

subset in R2, and fibers of the projection .x; y/ 7! x are compact convex sets.
Although Supp� could be complicated, it is natural to expect that one can find an

“upper bound” on it, which is a closed subset CC � .B0/0 � tot.
 R/ satisfying the
following properties:

(a) Fibers of CC under the natural projection tot.
 R/ ! B0 are strict convex
cones;

(b) The set CC is preserved by the “inverse attractor flow” Pv D 0; Pb D ��.v/; v 2

 b;R; t > 0.’

Suppose we know CC by some a priori (e.g. geometric) reasons. Then it gives
us an “upper bound” for the discontinuity set Wa. More precisely, let us define
WallC � CC as the set of pairs .b; 
/ such that 
 D 
1 C 
2 where 
1; 
2 2
CC \ .B0/0Z such that h
1; 
2i ¤ 0 (in particular it follows that 
1 and 
2 are non-
parallel vectors). Thus if Supp� � CC then Wa �WallC.

Proposition 3.1.2. The attractor flow is transversal to WallC at the interior of the
latter set.

Proof. It suffices to check the statement on a fixed leaf M . We can work locally
and assume that M is an affine space, 
 is a fixed lattice endowed with an
integer skew-symmetric form. Let fix 
 2 
 and consider the attractor flow
y 7! y C t �.
/; t > 0. On the discontinuity variety we have 
 D 
1 C 
2 and
.y C t �.
//.
m/ D 0;m D 1; 2. Then at the intersection point of the attractor flow
with the discontinuity subvariety we have y.
1/ C th
; 
1i D 0 for some (maybe
many) t > 0. Since h
; 
1i D �h
1; 
2i ¤ 0 we conclude that t is determined
uniquely. This implies the transversality and finishes the proof. �
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Notice that for each point .b; 
/ 2 .B0/0 there exists maximal possible tmax WD
tmax.b; 
/ 2 .0;C1� such that the trajectory 
 D const; b 7! b C �.
/t; t 2
Œ0; tmax/ does exist. The above trajectory considered for t 2 Œ0; tmax/ will be called
the maximal positive trajectory of the point .b; 
/.

Let us define an open subset T.B0/0Z
� .B0/0Z called the tail set consisting of

points .b; 
/ 2 CC such that their maximal positive trajectories with respect to the
attractor flow do not intersect the set WallC, belong to CC, and moreover the same
properties hold for all nearby points .b0; 
 0/ 2 .B0/0. There is a local system g

loc
over T.B0/0Z

with the fiber g
b;


over .b; 
/ 2 T.B0/0Z
.

Tail Assumption. For any open U � .B0/0 the subset of points .b; 
/ 2 U such
that their maximal positive trajectories intersect the tail set T.B0/0Z

, is dense in U .

Remark 3.1.3. Typically g
loc

is trivial of rank one. E.g. in Example (4) from the

previous subsection the fiber is Q, while in Example (5) it is Q.q1=2/.

Definition 3.1.4. The initial data of a WCS bounded by CC is the restriction of the
map a to T.B0/0Z

.

As we will explain below, under some additional conditions the initial data
uniquely determine its WCS. Moreover, in some cases one can reconstruct WCS
just from the knowledge of initial data. This explains the meaning of this notion.

3.2 Attractor Trees

In what follows we are going to consider metrized rooted trees with finitely many
edges oriented toward tails. Here “metrized tree” understood as a length metric
space. Internal vertices have outcoming valency at least 2, internal edges have finite
length, while tail edges can be infinite. Our convention is that the root vertex has
valency 1.

Let us assume the notation of the previous subsection.

Definition 3.2.1. An attractor tree is a metrized rooted tree T endowed with a
continuous map f W T !M to a leafM � B0 and a lift f 0 W T �fVerticesg !M 0Z.
We assume that f 0 maps edges of T to trajectories of the attractor flow, and the
metric on each edge of T is given by jdtj, where t is the time parameter for attractor
flow on its lifting. We assume that all tail edges are maximal positive trajectories
of the corresponding internal vertices of T . We assume the balancing conditionP

i 

out
i D 
 in is satisfied at each internal vertex v. Here 
 in is the speed of the

f 0-lift of the only edge incoming from v, and 
out
i are speeds of the f 0-lifts of all

outcoming edges. We assume that all 
out
i are pairwise distinct and there exist i1; i2

such that h
out
i1
; 
out
i2
i ¤ 0.

To an attractor tree T with a root b and root edge 
 we can assign its
combinatorial type in the following way. Namely, let us consider an abstract rooted
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tree T corresponding to T and a collection of velocities of all its edges, including
tails. The velocities can be treated as elements of 
 b via the parallel transport
along edges of T . Then the combinatorial type of T at .b; 
/ consists of the above
abstract tree and the above subset of velocities in 
 b . Varying .b; 
/ we conclude
that combinatorial types form a local system over .B0/0Z with countable fibers.

It is easy to see that for any combinatorial type at .b; 
/ an attractor tree with
this combinatorial type is uniquely determined by the collection fleg of lengths of
its inner edges e. Moreover the lengths le and the vector Y.b/ 2 
 �b;R satisfy a
system of linear equations with integer coefficients arising from the following two
conditions:

(a) Y.f .v//.f 0.u// D 0, where v is a vertex of T and u is a point on an edge
adjacent to v and sufficiently close to v;

(b) For any inner edge e connecting vertices v1 and v2 we have Y.f .v2// �
Y.f .v1// D �.f 0.u//le, where u is any point of e.

For a fixed attractor tree T with the root b and root edge 
 let us consider the
set of attractor trees with sufficiently close roots, combinatorial types and lengths.
This set (which can be thought of as a germ of the universal deformation of T )
can be identified with an open domain in the vector subspace of the vector space

 �b;R ˚ Rfinner edgesg defined by the above system of linear equations. In particular,
for any vertex v of T the point Y.f .v// runs through an open domain in a vector
subspace Hv � 
 �b;R defined over Q. In particular, we see that the set of roots of
attractor trees which are close to T and have the same combinatorial type is locally
an open domain in a vector subspace of 
 �b;R.

Definition 3.2.2. We say that attractor tree T is locally planar (this property will
depend on its combinatorial type only) if for each internal vertex v of T the
corresponding vectors 
out

i span a two-dimensional vector subspace in 
 v ˝ R.

Proposition 3.2.3. For an attractor tree T with the root b and the root edge 
 the
set of roots of all sufficiently close attractor trees of the same combinatorial type
has codimension � 1 if T is locally planar and has codimension � 2 otherwise
(this codimension is the same as codim.Hb/ in the above notation). Moreover in the
former case any sufficiently close attractor tree is uniquely determined by its root.

Proof. Let us call a vertex v of T non-planar if the vector 
out
i outcoming from

v span a vector space of dimension � 3. Let us prove the second part of the
Proposition. For that let us assume that T contains a non-planar vertex v0. Then
the set Y.f .v0// belongs to a vector subspace Hv0 � 
 �b;R of codimension � 3

defined over Q because of the conditions Y.f .v0//.
out
i / D 0. Consider the shortest

path v0  v1  : : : :  vn D b of vertices of T joined by edges. We will
prove by induction that for all 0 � i � n � 1 we have codim.Hvi / � 3. Then
codim.Hb/ D codim.Hvn/ � 2.

The induction step is given by the following lemma.



Wall-Crossing Structures in Donaldson–Thomas Invariants, Integrable Systems. . . 217

Lemma 3.2.4. Consider a germ of the universal deformation of a given attractor
tree T . For any edge e W w2 ! w1 connecting two internal vertices of a variable
tree Ts we have the following: if codim.Hw1 / � 3 then codim.Hw2 / � 3.

Proof of the Lemma. Let 
 D f 0.u/ 2 
 b denote the velocity of the edge e. Then
Y.f .w2// D Y.f .w1//�le�.
/, where le is the length of e. It follows that Y.f .w2//
belongs to a vector subspace of Hw1 C R 	 �.
/. If the latter subspace has codim
� 3 we are done. Assume that it has codimension 2. Then there exist two linearly
independent vector �1; �2 2 
 b such that this vector subspace is equal to �?1 \�?2 .
Let us denote by f
out

j g the set of velocities of edges outgoing from w2. Obviously 

belongs to this set. The covector Y.f .w2// is orthogonal to all vectors�1; �2; f
out

j g.
If the vector subspace in 
 b;R generated by the latter set has dimension � 3 the we
are done. Hence we can assume that it has dimension 2. Then 
 and all 
out

j are linear

combinations of �1 and �2. Since Y.f .w2// 2 WallC we know that there exist

out
j1
; 
out
j2

such that h
out
j1
; 
out
j2
i ¤ 0. It follows that h�1; �2i ¤ 0. Thus we have a

two-dimensional vector space generated by linearly independent vectors �1; �2 and
the vector 
 in this vector space such that h�i ; 
i D 0; i D 1; 2 (the latter follows
from the fact that �i.�.
// D 0; i D 1; 2). We conclude that 
 D 0. This proves the
Lemma and the second part of the Proposition.

In order to prove first part we assume that all vertices are locally planar. And then
we again proceed by induction by the number of vertices. The statement is obvious
for the tree which has only one vertex (root vertex) and one edge (the root edge
which coincides with the tail edge). Assume that T is planar and contains at least
one internal vertex. Let us choose a vertex v such that the only edges outcoming
from v are tails edges. Let us denote by 
 in; .
out

i / the velocities of edges attached
to v. Let us denote by T 0 the tree obtained from T by deleting the vertex v and
all outcoming tail edges, and extending the incoming edge by maximal positive
trajectory e of the attractor flow with velocity 
 in. In this way we obtain a map from
the germ of the universal deformation of T to the one of T 0. We claim that this is
a local homeomorphism. Indeed, the vertex Y.f .v// belongs to the codimension 2
vector subspace of 
 �R given by \i .
out

i /?. Hence the point Y.f .v//� l�.
 in/ (here
l is the length of the incoming edge) varies in the open domain of the hyperplane
.
 in/?. Therefore the point Y.f .v// is (locally) uniquely determined by the tree T 0
as the intersection point of the trajectory Y.f .e// � .
 in/? with \i .
out

i /?.
Notice that T 0 has one less vertex than T . Continuing by induction we reduce the

problem to the case of one root vertex and one edge. This completes the proof of
Proposition. �

From now on we assume that we are given an upper boundCC as in the previous
subsection.

Definition 3.2.5. We say that the attractor tree is bound by CC if the image of f 0
belongs to CC (then one can easily see that for any internal vertex v the f 0-lift of
the only outcoming edge starts on WallC).
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It follows from the properties of CC that the attractor tree is bound by CC if an
only if its tail edges are bound by CC.

Every attractor tree T has finitely many tail edges which are invariant with
respect to the (positive) attractor flow. Let us denote by T 0 the tree obtained by
deleting all tail edges. Every edge of such a tree joins two vertices.

Compactness Assumption.
There exists an open dense subset .B0/00Z � .B0/0Z with the following property:

for every .b; 
/ 2 .B0/00Z there exists a compact subset K.b;
/ � .B0/0 and an open
neighborhoodU of .b; 
/ such that for every attractor tree T with the root and root
edge in U the corresponding tree T 0 belongs to K.b;
/.

Mass Function Assumption.
There exists a morphism of sheaves X W 
 ! Cont.B0/ such that the pull-back

of X to .B0/0 considered as a continuous function in .b; v/ 2 tot.
 R/ decreases
(non-strictly) along the attractor flow v D const; Pb D i.v/ as long as .b; v/ 2 CC
and is strictly positive on the set CC � tot.
 0;R/ and strictly decreasing along the
flow on this set.

Imposing the above three assumptions (Tail, Compactness and Mass), let us
consider the graph G WD G.b; 
/ obtained as the union of all attractor trees with
the root at a fixed .b; 
/ 2 .B0/00Z. Then there are finitely many attractor trees
which form the graph and that the obtained graph is acyclic. Assume that the
root b runs through the set of generic points satisfying the condition Y.b/ 2 
?.
The Proposition 3.2.3 implies that G.b; 
/ is locally planar (with the obvious
generalization of the Definition 3.2.2 to graphs). The genericity here means that
Y.b/ belongs to the complement of the locally finite union of codimension � 2

subspaces of 
 �R .

Proposition 3.2.6. WCS with fixed g and the support belonging to CCZ WD CC \
.B0/0Z is uniquely determined by its initial data.

Proof. Fix a generic point .b; 
/ 2 CCZ . Let us consider the maximal acyclic
graph G described above. All its tails belong to T.B0/0Z

(otherwise we can enlarge
the graph). Then we reconstruct the value a.b; 
/ by induction, starting with the
restriction of the function a to T.B0/0Z

(initial data) and moving toward the point
.b; 
/ along the edges of G. Since G is acyclic, for any internal vertex .b0; 
 0/ we
can uniquely compute a.b0; 
 0/ from the axioms of WCS in two-dimensional case.
Finally we compute a.b; 
/ by induction. The Proposition is proved. �

Remark 3.2.7. Since the function a is locally-constant we can reconstruct WCS
from the knowledge of a on a dense open subset of .B0/0Z. We do not claim that
the procedure given in the proof of Proposition 3.2.6 produces the data a.m; 
/
which correspond to a WCS. The reason for that is that the procedure in the proof
ensures that the cocycle condition is satisfied for some (but possibly not all) strata
of codimension 2 (see the end of Sect. 2.1.1). We need more geometric conditions
in order to be sure that all strata of codimension 2 are taken into account.
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3.3 Initial Data for WCS in a Vector Space

We assume the set up and the notation of the beginning of the previous subsection,
i.e. we have a fixed lattice 
 with a fixed integer skew-symmetric form h�; �i, a
fixed 
 -graded Lie algebra g, etc. We also fix a closed strict convex cone C � 
R.
We define B0 D 
 �R and Y D id. We use the Poisson structure on 
 �R induced by
h�; �i. We set CC D f.b; v/ 2 .B0/0jb 2 B0; v 2 C; b.v/ D 0g.

Then the Tail Assumption is satisfied. Indeed for any 
 2 C \ .
 � 
0/ there
are only finitely many 
1; 
2 2 C \ .
 � 
0/ such that 
 D 
1 C 
2; h
1; 
2i ¤ 0.
Then the set of pointsfbj.b; 
/ 2 WallCg is a finite union of .rk 
 �2/-dimensional
hyperplanes in 
?, such that all of them are transversal to the flow Pb D �.
/.

Therefore for sufficiently large times the attractor flow does not intersect WallC.
This implies the following

Corollary 3.3.1. �0.T.B0/0Z
/ ' f
 2 C \ .
 � 
0/g.

In other words for any 
 2 
 � 
0 we have a unique connected component of
the (integer) tail set, which contains “sufficiently large” parts of rays in the direction
of 
 .

The Compactness Assumption follows from the finiteness of the set of combina-
torial types of attractor trees with given .b; 
/ and such that velocities of all edges
belong to C .

The Mass Function Assumption is more tricky. In order to construct “mass
function” X let us choose coordinates y1; : : : ; y2n; t1; : : : ; tm in 
R such that .yi /
are symplectic coordinates and .ti / are coordinates on the center 
0;R. Let us denote
by x1; : : : ; x2n; s1; : : : ; sm the dual coordinates on 
 �R . Let us also choose a bounded
strictly increasing smooth function f W R! R (e.g. f .x/ D arctan.x/).

Then we define

X.b; 
/ D
X
i1;i2

f .xi1 /yi2!
i1i2 C L.
/:

Here b D .x1; : : : ; x2n; s1; : : : ; sm/; 
 D .y1; : : : ; y2n; t1; : : : ; tm/ and L 2 
 �R is
a covector independent on b, .!ij/ is the symplectic form on 
 symp.

The condition PX.b; 
/ > 0 if Pb D �.
/ is satisfied for 
 2 
 � 
0 and arbitrary
L. Indeed, Pb is given Pxi1 D

P
i2
yi2!

i1i2 ; Psj D 0. It follows that PX.b; 
/ is strictly
positive. Moreover for sufficiently large L 2 C_ we will have X.b; 
/ > 0 for any

 2 C � f0g.

In the Remark 3.2.7 we warned the reader that for any initial data there exists
at most one corresponding WCS, but its existence is not guaranteed in general.
It follows from the Proposition 3.3.2 below that in the case of WCS in a vector
space there is no problem with the existence.

From the decomposition g D g
0 ˚ g
�
0 we obtain a similar decomposition
gC WD ˚
2C\
 g
 D g
0;C ˚ g
�
0;C . As we know a WCS on B0 D 
 �R
with the support in CC is the same as an element of the pronilpotent group
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G
�
0;C D exp.g
�
0;C /. The initial data is given by the restriction of the map
a to the tail set, which defines an embedding  W G
�
0;C !

Q

2C\.
�
0/ g
 .

Proposition 3.3.2.  is a bijection of sets.

Proof. Let us choose an additive map 	 W 
 ! Z such that 	.C � f0g/ �
R>0. Then G
�
0;C D lim �k GC;k , where each nilpotent group Gk WD GC;k is
defined similarly to GC;
�
0 by taking the exponent of the Lie algebra which is
the quotient by the ideal generated by g
 with 	.
/ > k; 
 2 .
 � 
0/ \ C .
Then we have a sequence of (compatible with respect to the index k) maps  k W
Gk ! Q


2C\.
�
0/;	.
/
k g
 . We will prove that  is a bijection by induction
in k. For k D 0 there is nothing to prove. Assume that  k�1 is a bijection.
Notice that the fiber of the natural projection Gk ! Gk�1 is a torsor over the
abelian Lie group exp.

Q

2C\.
�
0/;	.
/Dk g
 ). Similarly the fiber of the natural

projection
Q

2C\.
�
0/;	.
/
k g
 !

Q

2C\.
�
0/;	.
/
k�1 g
 is a torsor over the

Q-vector space
Q

2C\.
�
0/;	.
/Dk g
 . For a fixed point gk�1 2 Gk�1 we have an

isomorphism of torsors. This implies that  k is a bijection. �
Remark 3.3.3. Last part of the proof of the above proposition is very transparent
in the language of the factorization G D G.y/� G

.y/
0 G

.y/
C from the previous section:

multiplication of the left factor by an element from Centr.G.y/
0 / is equivalent to the

multiplication of the factor from G
.y/
0 by this element.

The above considerations imply the following alternative description of the initial
data for WCS in a vector space. For a 
 2 
 �
0 consider the Lie subalgebra g
 D
˚
 02C\.
�
0/;h
 0;
iD0g
 0 . Then we have a homomorphism of Lie algebras pr from
g
 onto the abelian Lie algebra g




ab D ˚
 02C\.
�
0/;
 0k
g
 0 . The restriction a.
/

of a.y; 
/ to the tail set is given by the 
 -component of the element log. g.�.
//0 /.

Indeed the element g.y/0 stabilizes for sufficiently large t as long as we follow the
attractor flow y 7! y C t �.
/.

In the framework of Sect. 2.3, Example (4) let us fix an isomorphism 
 ' ZI .
Then consider the initial data given by: ainit.
/ D 0; 
 … Z�1ei and ainit.kei / D 1

k2

otherwise. Here .ei /i2I is the standard basis in ZI . By the above Proposition 3.2.6
we have a unique WCS with these initial data and support in the cone C D RI�0.

Recall that for a lattice with a basis and an integer skew-symmetric form we can
construct a quiver Q with the set of vertices I and the number of arrows i ! j

equal to hei ; ej i. Let us choose a generic potentialW for this quiver.

Conjecture 3.3.4. The group element g D 1C : : : corresponding to the above WCS
coincides with the DT-series from [30].

Similarly, if we replace above 1
k2

by q1=2�q�1=2

k.qk=2�q�k=2/
and take the Lie algebra

from Example (5) (quantum torus) then conjecturally we obtain the quantum DT-
series from [30], Sect. 8 (up to multiplication by a central series in the generators
Oe
 ; 
 2 C \ 
0 � f0g, see [30] for the notation). Recall that it is related to the
theory of (quantum) cluster varieties. Finally, we remark that the canonical group
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element g corresponding to the WCS derived from a 3CY category in the formal way
by means of the transformation between positive and negative chambers does not
have to coincide with the motivic DT-series of that category (but the latter defines
some WCS and the corresponding canonical group element). The comparison is
sometimes possible in case if the category has a “good” set of generators (e.g. three-
dimensional spherical generators) which can serve as “initial data” in the categorical
framework.

4 Geometry of Complex Integrable Systems

Complex integrable system is usually understood as a holomorphic generically
surjective map � W .X; !2;0/ ! B of a complex analytic symplectic manifold of
dimension 2n to a complex analytic manifold of dimension n such that generic
fibers are holomorphic Lagrangian submanifolds. A generic fiber is acted locally
transitively by an abelian Lie algebra of dimension n. In many interesting situations
generic fibers are Zariski open subsets in complex abelian varieties. We can
compactify these fibers, and obtain a fibration by abelian varieties over an open
dense subset B0 � B . This will be the situation discussed in Sect. 4.1.1. In
Sect. 4.1.2 we will generalize the story to semiabelian case. The behavior of an
integrable system near the discriminant locus Bsing D B �B0 is more complicated,
although in the generic point of the discriminant one can find an explicit local
model (see Sect. 4.6). Our philosophy is that all the information necessary for the
construction of a wall-crossing structure (which is our principal goal) is already
encoded in the geometry of B0 (see e.g. Completeness Assumption in Sect. 4.4).
Hence in what follows we will use a slightly nonstandard terminology. Complex
integrable systems in the usual sense recalled above we will call full complex
integrable systems. Hence a full integrable system can have e.g. singular fibers.
Complex integrable systems in our sense has semiabelian fibers such that the first
integer homology of fibers form a local system of lattices.

4.1 Integrable Systems and Variations of Hodge Structure

4.1.1 Case of Pure Hodge Structure

Let .X0; !2;0/ be a complex analytic symplectic manifold of complex dimension
2n.1 Assume we are given an holomorphic map � W X0 ! B0 such that for any
b 2 B0 the fiber ��1.b/ is a complex Lagrangian submanifold of X0, which is in

1Many of the results below can be generalized to the case of smooth algebraic varieties.
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fact a torsor over an abelian variety endowed with a covariantly constant integer
polarization. We will call such data a (polarized) complex integrable system.

Let 
 be a local system of free abelian groups over B0 with a fiber 
 b WD
H1.�

�1.b/;Z/; b 2 B0. Polarization gives rise to a covariantly constant skew-
symmetric bilinear form h�; �i W V2


 ! ZB0 which induces a covariantly constant
symplectic form on 
 ˝ Q. In this case we will speak about local system of
symplectic lattices.

Then map 
 7! R


!2;0 gives rise to a morphism of sheaves of abelian groups

˛ WD
Z
!2;0 W 
 ! ˝1;cl

B0;hol
;

where˝1;cl
B0;hol

denotes the sheaf of holomorphic closed 1-forms on B0.

LetU � B0 be a simply connected domain. Let us choose a basis .
1; : : : ; 
2n/ of

 .U /. Then the homomorphism ˛ gives rise to a collection of holomorphic closed
1-forms ˛i D

R

i
!2;0; 1 � i � 2n which can be written on U as ˛i D dzi ; 1 � i �

2n; zi 2 O.U /. The collection of functions .z1; : : : ; z2n/ defines a holomorphic map
Z W U ! C2n. Let !ij D h
i ; 
j i and .!ij/i;j 2 Mat.2n;Q/ be the matrix inverse
to .!ij/i;j . It is easy to see that:

(1)
P

i;j !
ijdzi ^ dzj DPi;j !

ij˛i ^ ˛j D 0.

(2) the .1; 1/-form
p�1Pi;j !

ijdzi ^ d zj D
p�1Pi;j !

ij˛i ^ ˛j is positive
(hence it defines a Kähler metric on U ).

It follows from (2) that Z is an immersion. It follows from (1) that Z.U / is a
Lagrangian submanifold.

Recall the well-known fact that near each point b 2 B0 the structure of polarized
integrable system is determined by the triple .
 ; h�; �i; ˛/ satisfying (1) and (2).

Indeed, suppose we are given a symplectic lattice .
; h�; �i/ and a holomorphic
Lagrangian embedding of a neighborhood U of b to 
 _ ˝ C defined up to a shift,
such that for any b1 2 U and non-zero v 2 Tb1B0 we have ImhdZb1.v/; dZb1.v/i > 0.

Then the polarized integrable system � W .��1.U /; !2;0/! U is isomorphic (as
a polarized integrable system) to the “canonical local model” which is the polarized
integrable system with the fiber over b 2 U given by 
 n.
 ˝ C/=.TZ.b/Z.U //?
endowed with an obvious symplectic form and polarization (we are going discuss
the symplectic form in a more general case below in Sect. 4.1.2).

Alternatively the local model is given by the quotient of T �U by the action of 

given by .b; v/ 7! .b; vC ˛b.
//; b 2 U; 
 2 
; v 2 T �b U .

Remark 4.1.1. Locally, on the total space of the polarized integrable system one has
an action of a real compact torus 
 n.
 ˝R/ by holomorphic symplectomorphisms
preserving fibers, and each fiber is a torsor over this torus.

Notice that the local model for a polarized integrable system is endowed with
a holomorphic Lagrangian section (zero section). The isomorphism between our
integrable system and the local model is not unique. It is determined by a choice of
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holomorphic Lagrangian section over U . Gluing together local models we obtain a
new polarized integrable system � 0 W X 0 ! B0 with a Lagrangian section B0 !
X 0, which is canonically associated with the triple .
 ; h�; �i; ˛/ satisfying (1) and
(2). For any b 2 B0 the fiber .� 0/�1.b/ has a structure of abelian group (zero
is given by the Lagrangian section). The fiber ��1.b/ is a torsor over .� 0/�1.b/.
Isomorphism classes of polarized integrable systems with fixed .
 ; h�; �i; ˛/ are in
one-to-one correspondence with elements of the groupH1.B0;˝

1;cl
B0
=˛.
 //.

The data .
 ; h�; �i; ˛/ satisfying the conditions (1), (2) are equivalent to the
following data:

(a) A variation of polarized pure Hodge structure on B0 of weight �1 given by
.R1��ZX0/_. The Hodge filtration is given by

0 D F�2 � F�1 ' .R1��.OX0//� � F 0 D 
 ˝ OB0 :

(b) An isomorphism of vector bundles � W TB0 ! .F 0=F�1/� ' F�1.
This isomorphism satisfies certain conditions which can be derived from the
conditions (1), (2).

Remark 4.1.2. We can consider complex integrable systems with fibers which
are compact complex tori without polarization. In this case the local model is
determined by a submanifold Z.U / � 
 _ ˝ C such that dimU D 1

2
rk 
 and

for any b 2 U we have TZ.b/Z.U / \ 
 �R D 0, where 
 is a lattice of even rank
without skew-symmetric integer form.

4.1.2 Case of Mixed Hodge Structure

Definition 4.1.3. A semipolarized complex integrable system is given by a holo-
morphic fibration of a complex analytic symplectic manifold � W X0 ! B0 where
fibers are Lagrangian submanifolds which are semiabelian varieties with polarized
abelian quotients.

Our considerations in polarized case can be generalized to the semipolarized one.
Namely we have a local system of lattices 
 ! B0 which is endowed with an

integer skew-symmetric bilinear form h�; �i W V2

 ! ZB0 , possibly degenerate.

Similarly to the pure case it is given by 
 D .R1��ZX0/_.
This gives rise to an exact short sequence of local systems

0! 
 0 ! 
 ! 
 symp ! 0;

where 
 0 is the kernel of the skew-symmetric bilinear form h�; �i and 
 symp is the
symplectic quotient.

The local model is now given by a lattice 
 endowed with a skew-symmetric
form h�; �i W V2


 ! ZB0 and a local embedding Z W U ! 
 _ ˝ C, where U is
a small neighborhood of a point b 2 B0.
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Thus we have a local embedding Z W U ! 
 _ ˝ C such that the composition

TbU
dZ! 
 _ ˝ C ! 
 _0 ˝ C is surjection for any b 2 U and fibers of the

corresponding submersion U ! 
 _0 ˝ C are complex Lagrangian submanifolds
of the symplectic leaves in the Poisson manifold 
 _˝C (they are affine symplectic
spaces parallel to the fibers of the natural map 
 _ ˝ C ! 
 _0 ˝ C). Then Z.U /
is a family of Lagrangian submanifolds over a domain in 
 _0 ˝ C. The positivity
condition is also satisfied: the restriction of the pseudo-hermitian form i�1hv; vi�
to .dZb/.TbU / \ .
 symp/_ ˝ C; b 2 U is positive. Thus for any Z0 2 
 _0 ˝ C
we have the corresponding Lagrangian submanifold UjZ0 which is endowed with a
local system 
 symp ! UjZ0 of symplectic lattices satisfying the positivity property.
In other words, locally we have a family of (polarized) complex integrable systems
parametrized by 
 _0 ˝ C.

The same double coset formula as in the polarized case describes fibers of the
canonical local model of a semipolarized integrable system. The symplectic form
on [b2U fbg� .
 n
 ˝C=.TZ.b/Z.U //? is described such as follows. Its pull-back
to U � .
 ˝C/ is the restriction of the canonical 2-form on .
 _ ˝C/ � .
 ˝ C/
obtained by the skew-symmetrization of the canonical pairing between 
 and 
 _.

Alternatively, we observe that T �U is a 
 -covering of the local model, hence
the canonical symplectic structure on T �U descends to the local model giving the
above symplectic structure.

Similarly to the pure case we have locally a natural action of the connected
abelian Lie group 
 nKer.
 ˝ C ! 
 symp ˝ p�1R/ (which is a product of a
real torus and real vector space) by holomorphic symplectomorphisms, such that
fibers of the integrable system are torsors over this group.

Semipolarized integrable system gives rise to the following data:

(1) A local system 
 ! B0 of free abelian groups endowed with a skew-symmetric
pairing h�; �i WV2


 ! ZB0 . We denote by 
 0 the kernel of this pairing.
(2) A weight filtrationW�

W�3 D 0 � W�2 ' 
 0 � W�1 D 


(notice that W� is canonically determined by the pair .
 ; h�; �i/).
(3) A Hodge filtration

F �2 D 0 � F �1 � F 0 D 
 ˝OB0 :

(4) An isomorphism of holomorphic vector bundles � W TB0 ' .F 0=F�1/� �
.F 0/�.

The data (1)–(4) are required to satisfy the following properties:

(i) grW��2 .
 / is a variation of pure Hodge structure of weight �2 concentrated in
bidegree .�1;�1/.

(ii) grW��1 .
 / is concentrated in bidegrees .�1; 0/ and .0;�1/.
(iii) The pairing h�; �i induces a polarization on grW��1 .
 /.
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(iv) Locally and isomorphism � can be written as � D dZ, where Z is a local
embedding of B0 to 
 _ ˝ C as in the pure case.

Conversely, the data (1)–(4) satisfying the properties (i)–(iv) define a semipolar-
ized integrable system X 0 ! B0 endowed with a holomorphic Lagrangian section
B0 ! X 0. An integrable system without Lagrangian section is determined by
the associated integrable system with Lagrangian section (see Sect. 4.1.1) and a
cohomology class in H1.B0;˝

1;cl
B0
=˛.
 //.

Let now OX0 ! B0 be a fibration obtained from the initial semipolarized
integrable system X0 ! B0 by the fiberwise quotient by the natural action of
the torus 
0 ˝ C� ' .C�/r0 ; r0 D rk 
0. Then OX0 is a Poisson manifold. Its
symplectic leaves are total spaces of polarized integrable systems with bases which
are submanifolds of B0 obtained by fixing (locally) the value Zj
0 (e.g. in the case
of Hitchin systems with regular singularities we fix residues of the Higgs field at
singularities).

In other words we obtain a family of polarized integrable systems (with canonical
Kähler metrics on the base) which is parametrized (locally) by a domain in an affine
space parallel to 
 _0 ˝ C.

Remark 4.1.4. Traditionally people speak about integrable systems as Poisson
manifolds with symplectic leaves fibered by Lagrangian abelian varieties. The
notion of semipolarized integrable system gives rise to such a structure (if we forget
about polarization). But in a sense it is more precise. Namely, we have a variation
of mixed Hodge structure (not visible in the traditional approach). Furthermore, the
space of symplectic leaves carries locally a structure of an affine vector space. In
practice the holonomy of the local system 
 0 is finite (see Lemma 4.4.1 below).
Also, under some mild assumptions (which are usually satisfied in practice) an
integrable system in the traditional sense gives an integrable system in our sense
by means of a simple topological construction, see Sect. 4.2 below.

4.2 Integrable Systems with Central Charge

We are going to consider semipolarized integrable systems. Recall that the map Z
is defined locally up to a shift.

Definition 4.2.1. A central charge for a semipolarized integrable system � W X0 !
B0 is a holomorphic sectionZ 2 
 .B0; 
 _˝OB0/ such that the local isomorphism
� W TB0 ! .F 0=F�1/� composed with the natural embedding .F 0=F�1/� !
.F 0/� D 
 .B0; 
 _ ˝ OB0/ coincides with dZ (cf. (iv) in (4) in the previous
subsection).

In other words Z is a homomorphism 
 ! OB0 . Clearly dZ defines the only
non-trivial F�1-term of the Hodge filtration. For an integrable system with central
charge we can locally embed B0 as a submanifold in a vector space (not just an
affine space as before). Not every integrable system has a central charge.
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Theorem 4.2.2. If a semipolarized integrable system with holomorphic Lagrangian
section has central charge then Œ!2;0� D 0.

Proof. We keep the notation of Sect. 4.1. Locally we can identify (in C1 sense)
the total space ��1.U / with the product of U and T
 WD Ker.
 ˝ C !

 symp ˝ p�1R/=
 . Then the holomorphic symplectic form !2;0 is T
 -invariant
and its restriction to the tangent space at any point .b; 0/ of the Lagrangian section
is described such as follows. We have: T.b;0/.��1.U // ' Lie.T
 / ˚ TbU �
.
 ˝ C/ ˚ .
 _ ˝ C/. The canonical skew-symmetric form on the latter space
gives !2;0 after restriction to T.b;0/.��1.U //. Using the central chargeZ we define
a complex-valued C1 1-form ˇ on ��1.U / as the T
 -invariant 1-form, whose
restriction to T.b;0/.��1.U // is the restriction of the 1-form on .
 ˝C/˚.
 _˝C/
given by the pairing with .0;Z.b//. The direct calculation shows that dˇ D !2;0.
�

The above Theorem gives an obstruction to the existence of central charge.
We remark that the condition in the above Theorem that the integrable system has

Lagrangian section can be relaxed. Namely, let us recall that an integrable system
without Lagrangian section is determined by the associated system with Lagrangian
section and the “twist”, which is the cohomology class in H1.B0;˝

1;cl
B0
=˛.
 //.

There is a morphism of sheaves of abelian groups T
 ! ˝1;cl
B0
=˛.
 / overB0 (here

T
 D Ker.
 ˝ C! .
 symp ˝p�1R/=
 )) given by

0! T
 ! .
 ˝ C/=

˛! ˝

1;cl
B0
=˛.
 /:

Then one can easily generalize the above proof of the Theorem 4.2.2 to the case
when the above twist belongs to the image of an element from H1.B0;T
 /. This
generalization is useful for Hitchin integrable systems (see Sect. 8).

Let us now discuss the condition Œ!2;0� D 0 in several examples.

4.2.1 K3 Surfaces

Let � W X ! P1 be an elliptic fibration of a K3 surface, and let X0 ! B0

be the polarized integrable system obtained by throwing away singular fibers of
� . Then Œ!2;0

X0
� ¤ 0, hence the integrable system does not have a central charge.

More generally complex integrable systems with the total space being a compact
hyperkähler manifold do not have central charge.

4.2.2 Integrable Systems from Dimer Models

In [22] the authors defined a class of integrable systems X0 ! B0 for which X0

is birationally symplectomorphic to the torus .C�/2n endowed with the constant
symplectic form

P
i;j !

ijdlog zi ^ dlog zj . Then Œ!2;0
X0
� ¤ 0, hence such integrable

systems do not have central charge.
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4.2.3 Systems Birationally Equivalent to Those on Cotangent Spaces

Let � W X0 ! B0 be a semipolarized integrable system such X0 is birationally
symplectomorphic to a cotangent space T �M for some complex manifold M (e.g.
this is the case for Hitchin systems). We expect that under some mild conditions the
central charge does exist. More precisely we can pull-back from T �M the Liouville
form pdq, thus obtaining a meromorphic 1-form � on X0, such that d� D !2;0.
The restriction of � to a semiabelian fiber ��1.b/ is closed at generic points. In
particular we can define residues of �j��1.b/ at smooth components of the divisor of
poles of �. One can easily show that the residues are locally constant with respect
to b 2 B0. Hence we obtain a finite collection of residues. If all of them are equal to
zero then we can define the central charge Z W 
 0 7! R


 0 �, where 
 0 is any loop in

��1.b/ which sits in the complement to the divisor of poles and represents a class

 2 H1.�

�1.b/;Z/. Since all residues are zero, the integral does not depend on
the choice of representative 
 0. This class of integrable systems contains so-called
Seiberg–Witten integrable systems (see [13]).

4.2.4 Hitchin Integrable Systems

We will discuss this class of examples at length later in the paper. Let us just mention
now that for a large class of GL.n/ Hitchin integrable systems with singularities
(possibly irregular) one can define central charge. Hopefully it can be done for
Hitchin systems associated with any reductive group.

This example can be put in the framework of log-families of Lagrangian
submanifolds in non-compact Calabi–Yau threefolds (in the particular case of
Hitchin systems we have log-families of spectral curves). We are going to discuss
this class of examples later in Sects. 7, 8.

4.3 Families of Integrable Systems Without Central Charge

Suppose we are given an analytic family of full complex integrable systems �t W
.Xt ; !

2;0
t / ! Bt , where t 2 U and U is a complex analytic manifold. We assume

that there exist open dense subsets X0
t � Xt and B0

t � Bt such that the restriction
of �t to X0

t gives rise to a polarized integrable system �t W .X0
t ; !

2;0
t / ! B0

t . We
assume that [t2UXt forms a locally trivial bundle over U in the topological sense
(we do not assume that [t2UX0

t forms a locally trivial bundle over U ). We also
assume that for every t 2 U we have:H1.Xt ;Q/ D 0.

Let B D [t2UBt and B0 � B be the open dense subset [t2UB0
t . We define a

local system of lattices 
 ! B0 with fibers 
 b D H2.Xt ; �
�1
t .b/;Z/; b 2 B0

t . The
long exact sequence of the pair .Xt ; ��1t .b// gives rise to a short exact sequence

0! 
 0;b ! 
 b ! 

symp
b ! 0;
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where 
 0;b D H2.Xt ;Z/=Im.H2.�
�1
t .b/;Z// and 
 symp

b D Ker.H1.�
�1
t .b/;Z/!

H1.Xt ;Z// is a sublattice of finite index in a symplectic lattice H1.�
�1
t .b/;Z/,

hence itself symplectic. The we see that 
 carries a covariantly constant integer
skew-symmetric pairing with the kernel 
 0. Local system 
 0 is constant along
fibers of the projection B0 ! U .

Integration of !2;0t gives a linear functionalZ W 
 ! C. The restriction of Z to

 0 is constant along B0

t for any t 2 U . Hence it defines (locally near t 2 U ) a map

�0 W U ! 
 _0;b ˝ C D Ker.H2.Xt ;C/! H2.��1t .b/;C//; t 7! Œ!2;0t �

for an arbitrary b 2 B0
t . We assume that it is in fact a local open embedding.

Thus U can be thought of as base of the universal family of integrable systems.
This can be compared with Moser theorem which says that the universal family of
real symplectic structures on a symplectic manifold .X; !/ which are close to ! is
parametrized by an open neighborhood of Œ!� 2 H2.X;R/.

The assumption that �0 is a locally open embedding implies that .B0; 
 ; h�; �i; Z/
defines a semipolarized integrable system with the base B0. We warn the reader that
the total space of this integrable system is bigger (it has even a bigger dimensions if
dim.U / > 0) than [t2UX0

t , where X0
t D ��1t .B0

t /.

4.4 Finiteness of the Monodromy

Finally we discuss the monodromy of the local system 
 0, which is the kernel
of the skew-symmetric form. We assume that the integrable system has central
charge denoted by Z. Then we obtain a locally well-defined map Z W B0 !

 _0 ˝ C; Z 7! Zj
0 , where 
0 is a fiber of 
 0. We will assume that our integrable
system � W X0 ! B0 is algebraic, i.e. in the definition of complex integrable system
we have:X0 is a smooth algebraic symplectic variety, B0 is a smooth algebraic
variety and � is a regular map.

Lemma 4.4.1. For an algebraic semipolarized integrable system the monodromy
of the local system 
 0 is finite.

Proof. As we discussed in the previous subsection the local system 
 0 gives rise
to a variation of pure Hodge structure of weight �2. Hence it admits a polarization.
The monodromy preserves positive quadratic form (polarization) and is given by
integer transformations. Hence its elements have finite order. �

It follows from lemma that we have a map pB0 W B0 ! .
 _0 ˝ C/=G, where G
is a finite group. Fibers of pB0 are smooth algebraic varieties endowed with Kähler
metric.
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4.5 Local Model Near the Discriminant

We assume that our semipolarized integrable system X0 ! B0 has central charge
Z, and it is an open dense in a full complex integrable system X ! B .

Let us make the following

A1-Singularity Assumption.
We will assume that D D B � B0 is an analytic divisor. We will also assume

that there exists an analytic divisor D1 � D such that dimD1 � dimB0 � 2, the
complement D0 WD D �D1 is smooth, and such that our VMHS together with the
central chargeZ (see Definition 4.2.1) has the following local model nearD0:

1) There exist local coordinates .z1; ::; zn;w1; : : : ;wm/ near a point ofD0 such that
z1 is small andD0 D fz1 D 0g.

2) The map Z W B0 ! C2nCm ' 
 _ ˝ C is a multi-valued map given in
coordinates by

.z1; : : : ; zn;w1; : : : ;wm/ 7! .z1; : : : ; zn; @1F0; : : : ; @nF0;w1; : : : ;wm/;

where @i D @=@zi , and F0 is given by the formula

F0 D 1

2�i

z21
2

log z1 CG.z1; ::; zn;w1; : : : ;wm/;

and G is a holomorphic function. The Poisson structure on C2nCm in the
standard coordinates .x1; : : : ; x2nCm/ is given by the bivector

P
1
i
n @=@xi ^

@=@xiCn.
3) The function F0 (called prepotential) satisfies also a positivity condition coming

from the condition ihdZ; dZi > 0, which is satisfied for the restriction of dZ to
symplectic leaves Sc1;:::;cm WD f.z1; : : : ; zn;w1; : : : ;wm/jwi D ci g.

4) The monodromy of the local system 
 aboutD0 has the form � 7! �Ch�; 
i
 ,
where 
 is such that the pairing h
; �i 2 
 _ is a primitive covector.

The map Z is defined up to a linear change of coordinates

.z1; : : : ; zn; znC1; : : : ; z2n;w1; : : : ;wm/

7! .z1; : : : ; zn; znC1 C z1; znC2; : : : ; z2n;w1; : : : ;wm/;

where znCi D @iF0; 1 � i � n. This can be interpreted as a local system of complex
vector spaces endowed with a skew-symmetric form and a section. A choice of
branch of F0 allows us to identify the fibers of this local system with the standard
.C2nCm/� endowed the skew-symmetric form which is the product of the standard
symplectic form in .C2n/� with the trivial form in .Cm/�.

Remark 4.5.1. The A1-Singularity Assumption allows only the simplest possible
singularity at the discriminantD. There are other possibilities for such singularities.
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They are related to simply-laced Dynkin diagrams (Kodaira classification). We do
not discuss more complicated singularities in this paper for two reasons:

i) in many examples (e.g. GL.r/ Hitchin systems discussed later) they do not
appear;

ii) we do not understand fully the local geometry of other singularities.

4.6 WCS for Integrable Systems with Central Charge

We expect that for a large class of semipolarized integrable systems with central
charge (including all algebraic ones) there exists a canonical WCS.

More precisely, suppose we are given a semipolarized integrable system 
 !
B0 with the central charge Z. The local system 
 gives rise to a canonical local
system of torus (or quantum torus) Lie algebras g [see Sect. 2.3, Examples (4)
and (5)].

We will assume that the monodromy of 
 0 ! B0 is a finite group G (as we
have seen this is true in the case when B0 is algebraic). Central charge Z defines a
submersion pB0 W B0 ! .
 _0 ˝ C/=G. Fix a non-singular point Z0 of the orbifold
.
 _0 ˝C/=G and let M D B0

Z0
D p�1

B0
.Z0/. The restriction of the local system 
 0

to M is trivial. Let us also fix � 2 R. Set Y D Im.e�i�Z/. Then Y defines a local
embedding of every fiber M of pB0 into 
 �R as an affine symplectic leaf which is
parallel to .
 symp

R /�.
In order to construct WCS we would like to use the approach of Sect. 3. Recall

that in Sect. 3 we gave a definition of the attractor tree bound by a family of
cones CC. Finiteness of the number of attractor trees was guaranteed by several
assumptions, including the Mass Function Assumption. In this subsection we are
going to reverse the logic. More precisely, in the hypothetic WCS we have an a
priori idea of what are the relevant attractor trees.

Definition 4.6.1. We call attractor tree good if it is a locally planar attractor tree
in a fiber M of pB0 such that its tail edges hit transversally the discriminant D at
the locus D0, and the velocity of any tail edge is proportional to the corresponding
vector 
 (see part 4 of the A1-Singularity Assumption, Sect. 4.5).

Then one defines the family of convex conesCCmin as the minimal closed subset of
.B0/0 whose fibers under the natural projection to B0 are closed convex cones and
such that CCmin contains all velocities of the above-described good attractor trees. It
is not a priori clear that those conic fibers are strict cones.

We claim that the function X D Re.e�i�Z/ plays the role of the mass function
(see Sect. 3.3) and simultaneously gives a restriction on the velocities of good
attractor trees.

Lemma 4.6.2. Let us restrict X to a fiber M and identify the latter locally with a
symplectic leaf in 
 �R . Let us also fix v 2 
R � 
0;R. Then
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d

dt jtD0
X.mC t �.v/; v/ D �jj�.v/jj2 < 0;

where � W 
R ! 
 �R was defined in Sect. 3.1 and we understand the non-zero vector
�.v/ as an element of TmM (recall that M carries natural Kähler metric).

Proof. Follows from definitions. �

Corollary 4.6.3. The function X strictly decreases along the attractor flow. More-
over X.m; v/ > 0 at all inner points of a tail edge of a good attractor tree.

Proof. It suffices to show that X.m; v/ approaches 0 along a tail edge of a good
attractor tree. �

Corollary 4.6.4. The function X is positive on edges of good attractor trees.

Proof. By previous Corollary the result holds for tail edges. For other edges it
follows by induction using the balancing conditions

P
i 


out
i D 
 in. �

Consider now all functions OX.b; v/ where .b; v/ 2 .B0/0; Y.b/.v/ D 0 which
satisfy the properties:

(a) OX.b; v/ is linear in v and strictly decreases along the attractor flow.
(b) OX.b; v/ is strictly positive at inner points of tail edges of good attractor trees.

Every such function defines a closed subset in .B0/0 which is conic and convex in
the direction of 
R. Namely, we take CCOX D f.b; v/j OX.b; v/ � 0g. We define CC WD
\ OXCCOX , where the intersection is taken over all such functions. The Corollaries 4.6.3

and 4.6.4 hold for the functions OX.b; v/. Therefore CCmin � CC.

Conjecture 4.6.5. CC is a strict convex cone in the direction of 
R.

One can check that conjecture holds if 
 0 D 0. We will discuss a motivation of
a similar conjecture in the framework of Mirror Symmetry in Sect. 10.3.

Definition 4.6.6. Canonical initial data associate with the tail of a good attractor
tree with the velocity k
 (k � 1 and 
 is primitive), the element 1

k2
ek
 of the torus

Lie algebra.

The canonical initial data are motivated by interpretation of WCS via DT-
invariants (see Example (4), Sect. 2.3 and end of Sect. 3.3).

Conjecture 4.6.7. Assuming Conjecture 4.6.5, Compactness Assumption, Tail
Assumption and Mass Assumption, there is a unique WCS on R=�Z�B0 with the
support in CC and the canonical initial data.

In terms of DT-invariants for that WCS we have˝b.
/ D ˝b.�
/ for all generic
b 2 B0.

In practical terms this means that starting with DT-invariants equal to 1 which
we assign to the smooth locus of the discriminant divisor B � B0 we can assign
by induction DT-invariants ˝b.
/ 2 Z for any pair .b; �/ which does not belong
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to a wall and any 
 2 
b such that � D Arg.Zb.
//. The collection .˝b.
//

satisfy the wall-crossing formulas from [30]. Algorithm for the construction follows
from general considerations of Sects. 3.2. Namely, for a fixed .b; 
/ we determine
� D Arg.Zb.
//. Then we consider all good attractor trees on R=�Z�B0 such that
their root vertex is .b; �/ and the root edge is 
 .

Our assumptions imply that for generic b there are finitely many such trees. They
form a graph without oriented cycles (becauseX D Re.e�i�Zb/ is monotone along
attractor trajectories). Hence we can order edges of the graph is such a way that
the lowest numbering receive vertices in B � B0. Then we move from the lowest
order vertices to the vertex b using the WCF from [30] in order to calculate the DT-
invariant for the outcoming edges of the graph. Using it last time for the root edge

 we obtain˝b.
/. Finally, varying � and Z0 we arrive to the WCS on S1� � B0.

4.7 Metric on the Base

Recall the notation and assumptions of Sects. 4.4, and 4.5. We will assume that the
monodromy of the local system 
 0 is finite. Then we make the following

Completeness Assumption.
The map pB0 extends uniquely to a complex analytic map pB W B ! .
 _0 ˝

C/=G. Fibers of pB are metric completions of the fibers of pB0 .

Under the Completeness Assumption we can work with non-singular B0 and
then extend arising structures to the whole space B uniquely. We expect that the
Completeness Assumption holds in all realistic examples of full complex integrable
systems.

For anyZ0 2 .
 _0 ˝C/=G let us denote p�1
B0
.Z0/ by B0

Z0
and p�1B .Z0/ by BZ0 .

The Completeness Assumption means that the Kähler metric on B0
Z0

extends to BZ0
making it into a length space (the metric is singular onD \ BZ0).

SinceBZ0 is a metric completion ofB0
Z0

, it can be canonically reconstructed from
the latter as a topological space. Furthermore the complex structure on BZ0 can be
reconstructed from the one onB0

Z0
. Indeed we can extend it to the setBZ0�D1 using

the local model described in the previous subsection. Then we extend the complex
structure to the whole space BZ0 by the Hartogs principle, taking the direct image
of the sheaf on analytic function OBZ0�D1 . These considerations explain that the
WCS and the initial data can be canonically reconstructed from our semipolarized
integrable system on B0.

Next, for every Z0 2 .
 _0 ˝ C/=G such that Re.Z0/ D 0 (i.e. Z0 2 .
 _0 ˝
iR/=G) we define a real 1-form ˛Z0 on B0

Z0
by the following formula

˛Z0 D
X
i;j

!ijRe.zi /d Im.zj /:
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Here, locally on B0
Z0
� B0, we define functions zi .b/ WD Zb.
i /. In this definition

.
i /iD1;:::;2n; n D dimCB is a basis of a covariantly constant subspace V sympl �

 b ˝ Q; b 2 B0

Z0
such that V is complementary to 
 0;b ˝ Q, and .!ij/1
i;j
2n is

the inverse matrix to the symplectic pairing !ij D h
i ; 
j i.
It is immediate to check that ˛Z0 is well-defined and closed.
In general, we expect that the following holds.

Potential Assumption. There is a smooth function HZ0 on B0
Z0

such that
dHZ0 D ˛Z0 . Moreover, the functionHZ0 extends by continuity to BZ0 , and gives a
bounded below and proper map from BZ0 to R.

Let us give some motivations for the Potential Assumption under the A1-
Singularity Assumption from the Sect. 4.5.

One can check that the integral of ˛Z0 around a small loop around the divisor
D0 \ BZ0 � BZ0 vanishes, and that an antiderivative of ˛Z0 (defined a priori on
B0
Z0

near any point of D0 \ BZ0 ) extends continuously to D0 \ BZ0 .
It is natural to expect that H1.BZ0 ;C/ D H1.BZ0 �D1;C/ (at least it holds if

BZ0 is nonsingular analytic space because the removing of complex analytic subset
of codimension at least 2 does not change the fundamental group). There are good
reasons to expect thatBZ0 itself is simply connected (in fact contractible, see below).
Therefore, we conclude that ˛Z0 is exact, i.e. it can be written as ˛Z0 D dHZ0 for
some real-valued functionHZ0 on B0

Z0
. This function is strictly convex in the affine

structure given by Im.Z/ because its tensor of second derivatives coincides with the
metric tensor of the Riemannian metric gB0Z0

associated with the canonical Kähler

metric on B0
Z0

. By the A1-Singularity Assumption the function HZ0 continuously
extends to D0 \ BZ0 .

The boundedness an properness of HZ0 can be checked in special cases. For
example, let us consider Seiberg–Witten integrable system, which is a polarized
integrable system with central charge, fibers being the elliptic curves yC1=y�x2 D
2u parametrized by u 2 B0

Z0
D B0 D C � f�1; 1g. Then the metric completion

is BZ0 D B D C. The functionH WD HZ0 can be expressed as H D K � 2Im.F /,
where

K D p�1
X
i;j

!ijzi zj

is the potential of the Kähler metric on B0 and F is a holomorphic function on B0

such that

dF D
X
i;j

!ijzi zj :

One can check that dF D const 	 du.
In this example K is a transcendental function which is non-negative and grows

as u ! 1 as C juj 	 logjuj, where C > 0. We see that the summand K dominates
2Im.F /, and henceH is bounded from below and proper. We expect that the general
case is similar to this example.
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Remark 4.7.1. In general, the convexity of the function HZ0 on B0
Z0

and its
boundedness from below on BZ0 supports the idea that it has a unique global
minimum bmin

Z0
2 BZ0 for any Z0 satisfying the condition Re.Z0/ D 0.

Notice that the condition Re.Z0/ D 0 implies that the map b 7! Re.Zb/ 2
.
 b=
 0;b/

_˝R identifies locally B0
Z0

with an open domain in a symplectic vector
space. Therefore we can define a canonical Euler vector field EuZ0 on B0

Z0
. We

conjecture that the flow associated with EuZ0 extends to a continuous flow on BZ0
which contracts as t ! �1 the space BZ0 to the point bmin

Z0
. In particular this

conjecture implies that BZ0 is contractible.
If bmin

Z0
2 B0

Z0
then the arising local geometry is related to the theory of cluster

transformations. We will discuss it elsewhere.
In the example of SL2 Hitchin system with regular singularities on a smooth

projective curve C , fixing purely imaginary Z0 we obtain a complex integrable
system over the base BZ0 which consists of quadratic differentials with fixed
residues at their singularities, which are poles of second order. Then the point bmin

Z0
can be identified with the unique Strebel differential on the curve C .

5 Formal Neighborhood of a Wheel of Projective Lines
and Stability Data

Given a lattice 
 endowed with an integer skew-symmetric form h�; �i, we can
consider stability data on the graded Lie algebra g D ˚
2
�
0Q 	 e
 where
Œe
1 ; e
2 � D .�1/h
1;
2ih
1; 
2ie
1C
2 and 
0 D Ker h�; �i. The aim of this section
is to encode these data in terms of formal Poisson varieties endowed with some
additional structures. Small variation of the central charge Z W 
 ! C corresponds
to an isomorphic Poisson variety.

5.1 Wheels of Lines, Wheels of Cones and Toric Varieties

Let Y be a complex toric variety of dimension n. Then it is stratified by the orbits
of the action of the torus T ' .C�/n.

Definition 5.1.1. Wheel of lines in Y is a cyclically ordered collection of one-
dimensional T -orbits Fi ; i 2 Z=mZ; m � 3 such that each

a) F i ' P1 for any i .
b) F i�1 \ F i D fpig, where pi is a point;
c) F i \ F j D ; if ji � j j > 1;

Let 
 D Hom.T;C�/ be the group of characters. Each intersection point pi
is a zero-dimensional T -invariant stratum, hence it defines a closed strict rational
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convex cone Ci � 
 _ ˝ R of full dimension with interior points corresponding to
1-parameter subgroups which attract points of the open dense T -orbit of Y to points
pi . Clearly the collection of conesCi forms a wheel of cones in the following sense.

Definition 5.1.2. We will call wheel of cones a cyclically ordered collection of
real closed polyhedral strict convex cones of dimension n, Ci � 
 _ ˝ R; i 2
Z=mZ; m � 3 such that:

a) Ci \ CiC1 is a face of codimension one in Ci and CiC1, i 2 Z=mZ.
b) int.Ci/ \ int.Cj / D ; if i ¤ j (here int means the interior).

If Y is smooth then all Ci are isomorphic to octants, i.e. to Rn�0 (modulo the
action of GL.n;Z/). Let us denote Ci \ CiC1; i 2 Z=mZ by Ci;iC1.

We will call the wheel of cones admissible if it satisfies the following two
assumptions:

Connectedness Assumption.
For any i 2 Z=mZ the cone Ci is the convex hull of Ci�1;i [ Ci;iC1 and for

any i; j; ji � j j > 1 the convex hull of the pair Ci;iC1; Cj;jC1 contains all cones
CiC1; : : : ; Cj or all cones CjC1; : : : ; Ci .

We call it the Connectedness Assumption because it implies the following
property of the wheel of cones:

for any closed half-space ˛ � 
R such that 0 2 @˛ the set of indices i for which
Ci;iC1 belongs to ˛, forms an interval in Z=mZ.

Non-degeneracy Assumption.
\iC_i D f0g, where C_i D fx 2 
Rjy.x/ � 0; y 2 Cig is the dual cone.

One can check that wheel of cones (and hence toric varieties) satisfying the above
two assumptions do exist in any dimension n � 3. Indeed, let us consider a compact
rational polyhedron P � Rn�2 which contains the origin in the interior. Let vi ; i 2
Z=3Z be three cyclically ordered vectors in R2 which generate R2 and satisfy the
condition v1 C v2 C v3 D 0. Then we define the cone Ci as the convex hull of the
set fR�0.v˚ p/jp 2 P; v D vi or v D viC1g. One can check that in this way we
obtain the wheel of cones.

We denote by x
 2 O.T / the monomial corresponding to the vector 
 2 
 .
Then x
1x
2 D x
1C
2 . We identify the open orbit of T with T itself.

For a wheel of lines .Fi /i2Z=mZ we denote by OY WD OY[i F i the completion of Y
along [iF i . The following result will be used in the next subsection.

Theorem 5.1.3. For an admissible wheel of cones one has:

a) H0. OY ;O OY / D C.
b) H1. OY ;O OY / D

Q

2[1�i�m.Ci;iC1/

_\
 C 	 x
 :
c) Hi. OY ;O OY / D 0 for i � 2.

Proof. We are going to compute cohomology groups using a covering of OY , which
consists of formal neighborhoodsUi of Fi [fpig[FiC1. Then Ui;iC1 D Ui \UiC1
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is the formal neighborhood of FiC1 and Ui \Uj D ; for ji�j j > 1. Notice that the
schemes Fi and Fi [ fpig [ FiC1; i 2 Z=mZ are open affine subschemes of [iF i .

The Čech cochain complex associated with this covering has the formM
i2Z=mZ

O.Ui /!
M

i2Z=mZ

O.Ui;iC1/:

This makes (c) clear, since there are no non-trivial Čech i -cochains where i � 2.
Next we observe that the algebra of functions on the formal neighborhood of

pi is OO.Ui / ' Q

2C_

i \
 C 	 x
 . Similarly we define the completed vector space
OO.Ui;iC1/ D Q


2C_

i;iC1
\
 C 	 x
 . We will proceed by replacing the algebras of

functionsO.Ui /;O.Ui;iC1/ by the corresponding completed vector spaces of formal
series. After that we will explain how return to the actual algebras of functions.

In order to compute H0 we observe that by the Non-degeneracy Assumption
we see that only monomial x0 D 1 appears in H0. OY ;O OY /, hence (a) holds. More
generally, for any 
 we can compute the input of x
 toH0 andH1. For that we draw
a planar polygon with vertices corresponding to pi and edges corresponding to Fi .
We are interested in those points pi and lines Fi for which the monomial x
 appears
in the algebras O.Ui/ and O.Ui;iC1/ respectively. The union of the relevant vertices
and edges is an open subset of the polygon. Hence it can be one of the following
subsets:

i) empty subset;
ii) full polygon;

iii) an open interval which consists of a chain of 1 � k � m consecutive open
edges and k � 1 vertices;

iv) a disjoint union of at least two open intervals from (iii).

Case (i) is clear since x
 does not appear in the cohomology at all. The case (ii)
by the Non-degeneracy Assumption corresponds to 
 D 0, which gives the input to
bothH0 and H1.

In the case (iii) we have trivial input to H0 and one-dimensional input of x


to H1. Case (iv) is impossible by the Connectedness Assumption. Hence we have
proved (b) by replacing the algebras of functions by their completions. In order to
finish the proof it suffices to check that the following complex of vector spaces is
acyclic M

i2Z=mZ

OO.Ui /=O.Ui/!
M

i2Z=mZ

OO.Ui;iC1/=O.Ui;iC1/:

It follows from definitions thatO.Ui/ consists of such series f DP
2C_

i \
 f
x

 2

OO.Ui/ that Supp.f / is finite on rays parallel to the rays in C_i corresponding to
.n � 1/-dimensional faces Ci�1;i and Ci;iC1. Similarly O.Ui;iC1/ � OO.Ui;iC1/
consists of such series g D P


2C_

i;iC1
\
 g
x
 that Supp.g/ is finite on lines

parallel to C?i;iC1 � C_i;iC1.
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In order to describe quotient spaces in the above complex let us introduce some
notation. Let L be an oriented rational line in 
R with a positive primitive generator
l 2 L \ 
 . Let V � 
R=L be a closed strict polyhedral cone. We denote by � the
natural projection 
R ! 
R=L. We denote by F .V; l/ the vector space which is the
quotient of the vector space of such series f DP


2��1.V /\
 f
x
 that f
�nl D 0
for sufficiently large n by the subspace of series for which for a given 
 we have
f
˙nl D 0 for all sufficiently large n � 0. If we choose a splitting of the projection

 ! 
 \ L then

F .V; l/ ' f
X

�2.
 =
\L/\V
a�x

�ja� 2 CŒŒxl ��=CŒxl � ' C..xl //=CŒxl ; .xl /�1�g;

where xl is the monomial corresponding to the generator l .
Let us return to the proof. Let li be a generator of C?i;iC1 \ 
 ' Z which is

positive as a functional on Ci . Let Vi be the image of C_i;iC1 under the projection


R ! 
R=R 	 li . Then OO.Ui /=O.Ui/ ' F .Vi�1; li�1/˚F .Vi ;�li / and similarly
OO.Ui;iC1/=O.Ui;iC1/ ' F .Vi ; li / ˚ F .Vi ;�li /. From this explicit description it

is easy to see that the differential in the quotient complex is an isomorphism. This
completes the proof. �

5.2 Deformations of Formal Poisson Manifolds

Let us choose an admissible wheel of cones .Ci /i2Z=mZ . Suppose that the character
lattice 
 is endowed with an integer skew-symmetric form h�; �i W V2


 ! Z
with the kernel 
0 � 
 . Then the toric variety Y and its completion OY defined
in the previous subsection carry T -invariant Poisson structures. Both schemes are
stratified (by the closures of T -orbits in the case of Y and by their completions in
the case of OY ).

Conversely, suppose we have a free abelian group 
 endowed with a skew-
symmetric integer form h�; �i and a wheel of cones satisfying the Connectedness
and Non-degeneracy Assumptions. Recall that a toric variety is given by a T -torsor
together with a choice of fan. In what follows we are going to use the canonical
T -torsor Tcan WD Tcan.
; h�; �i/ which is the spectrum of the algebra with C-
linear basis e
 ; 
 2 
 and the multiplication rule e
e� D .�1/h
;�ie
C� (the
choice of this torsor is motivated by applications to the theory of DT-invariants).
Let us choose the fan which consists of cones Ci and their faces. We will denote the
corresponding toric variety by Ycan. Its completion along F can D [iF i;can will be
called canonical local toric model associated with the wheel of cones .Ci /i2Z=mZ

(or simply local toric model) and denoted by OYcan. Notice that all one-dimensional
T -orbits Fi;can � OYcan are endowed with distinguished coordinates given by e
i ,
where 
i 2 C_i \ 
 is a primitive vector such that Ci;iC1 � 
?i .
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In case of the local toric model we have a distinguished collection of rational
functions which are central with respect to the Poisson bracket and which are
parametrized by 
0. Namely, denote by DY � Y the canonical toric divisor (i.e.
the complement to the open T -orbit), and by D OY � OY its completion along F .
Let O OY .
D OY / be the sheaf of rational functions having poles at D OY . An element
e
 ; 
 2 
 defines a section s
 of this sheaf. In particular the map c W 
0 !

 . OY ;O OY .
D OY /�/; 
 7! s
 defines a homomorphism of 
0 to the abelian group of
invertible functions having poles atD OY . The image of c (equivalently the collection
.s
 /
2
0) is by definition our distinguished collection.

Next we would like to describe stratified formal Poisson varieties which are
locally isomorphic to the above local toric model and endowed with additional data
called decoration. We need some preparations for that.

Definition 5.2.1. A pair .Z ;D/ consisting of a (possibly formal) normal scheme
Z with a reduced divisor D such that all singularities of Z are contained in D is
called a local formal toric pair if the following condition is satisfied: for any closed
point x 2 D the pair . OZx; ODx/ obtained by the completion at x is isomorphic to
a similar pair . OZ tor

x ; ODtor
x /, where Z tor

x is a toric variety and Dtor
x is the canonical

toric divisor (i.e. the complement to the open orbit).

For any local formal toric pair the divisor D is canonically stratified, where
the stratification is induced by the canonical stratification of the corresponding
canonical toric divisorsDtor

x . All open strata are smooth.
With a zero-dimensional stratum fxg � D we associate a lattice 
x and a torsor

Tx over the torus Hom.
x;C�/. Namely,
x is the lattice of characters of the torus of
the corresponding local formal toric model. The torsorTx is defined such as follows.
Choose an isomorphism �x W . OZx; ODx/ ' . OZ tor

x ; ODtor
x /. It induces an isomorphism

of completed local algebras

O OZx
'

Y

2
x\Cx

C 	 x
 ' O OZ tor
x
;

where Cx � 
x ˝ R is a strict rational polyhedral cone.
Notice that there exists a natural homomorphism of groups

Gx WD Aut.O OZ tor
x
; J ODtor

x
/! Hom.
x;C�/;

where J ODtor
x
D Q
2
x\int.Cx/

C 	 x
 is the ideal of ODtor
x .

It is easy to describe the above homomorphism at the level of Lie algebras.
Namely,

Lie.Gx/ D
Y


2
x\Cx
.
 _x ˝ C/ 	 x
 ;
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where we interpret elements of 
 _x ˝ C as toric vector fields. Then the homomor-
phism is defined by taking the x0-component of the vector field. It follows that
Hom.
x;C�/ ' Gx=ŒGx;Gx� (quotient of the topological group Gx by the closure
of its commutant). The torsor Tx is the Hom.
x;C�/-torsor associated with the
naturalGx-torsor consisting of isomorphisms �x .

Similarly, for any one-dimensional closed stratumF ' CP1 ofD which contains
exactly two 0-dimensional strata x0; x1 one can define a lattice 
F and a torsor
TF over Hom.
F ;C

�/. It is easy to see that there is a canonical isomorphism
.
F ;TF / ' .
x;Tx/ where x D x0 or x D x1.

Definition 5.2.2. Suppose we are given a lattice 
 endowed with a skew-
symmetric form h�; �i WV2


 ! Z.
A decorated formal scheme is defined by the following data:

i) A formal Poisson scheme OX of pure dimension n D rk
 , endowed with a
normal Poisson divisor D OX � OX such that the pair . OX;D OX/ is a local formal
toric pair.

ii) The reduced (non-formal) scheme associated with OX is a wheel of parametrized
projective lines F D [k2Z=mZik.P1/ where each ik is an embedding of the
projective line such that pk D ik.1/ D ikC1.0/ is the only intersection point
of F k D ik.P1/ and F kC1 D ikC1.P1/. Moreover all points pk and lines F k

are strata of the canonical stratification of D OX .
iii) A homomorphism c OX W 
0 ! 
 . OX;O OX.
D OX/�/.
iv) For any k 2 Z=mZ isomorphisms 
pk ' 
 and Tpk ' Tcan.

We require that the data (i)–(iv) satisfy the following conditions:

a) for any k 2 Z=mZ there exists an isomorphism �k of the pair . OXpk ; OD OX;pk /
(completions at the point pk) with the completions at the corresponding point of
the corresponding local formal toric pair (see Definition 5.2.1), which identifies
the Poisson structures and compatible with the homomorphism c OX .

b) for any k 2 Z=mZ the composition of the isomorphisms

.
pk ;Tpk / ' .
;Tcan/ ' .
pkC1
;TpkC1

/

coincides with the composition of the isomorphisms

.
pk ;Tpk / ' .
F k ;TF k
/ ' .
pkC1

;TpkC1
/:

Remark 5.2.3. The local toric model OYcan carries a natural structure of decorated
formal Poisson scheme.

Next we would like to describe the deformation theory of decorated formal
Poisson schemes. For that we need to study local symmetries of the local toric model
preserving the structure of a decorated formal Poisson scheme. A toy-model of the
result can be illustrated by the following Proposition.
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Proposition 5.2.4. Let .
; h�; �i/ be a lattice endowed with an integer skew-
symmetric form, C � 
R be a closed rational strict convex cone such that
intC ¤ ;.

Let YC D Spec.˚
2C\
 Q 	 e
 /, where e
e� D .�1/h
;�ih
; �ie
C� be the
corresponding toric variety, and let OYC be its completion at 0 2 C , i.e. OYC D
Spf .

Q

2C\
 Q 	 e
 /. Consider the group of such automorphisms of OYC that:

1) they preserve the completion of the toric stratification;
2) they preserve the Poisson structure induced by h�; �i;
3) they preserve all elements e
 ; 
 2 
0 D Ker h�; �i considered as rational

functions on OYC ;
4) they are equal to id on the torsor Ty0 , where y0 is the only zero-dimensional

toric stratum.

Then this group is a pronilpotent proalgebraic with the Lie algebra isomorphic
to
Q

2C\.
�
0/ Q 	 e
 , which acts via fe
 ; �g.

We are not going to prove the Proposition, since we are not going to use it. Let
us explain informally its meaning. An automorphism of an affine Poisson variety or
its completion can act non-trivially on the Poisson center. Inner Poisson derivations
act trivially on the center. This explains the condition (3). The condition (4) allows
us to exclude infinitesimal symmetries identical on the center but not inner which
are given by flog e
 ; �g.

In a similar way we conclude that the sheaf of Lie algebras of infinitesimal
symmetries of the local model OYcan is naturally isomorphic to gcan D O OYcan

=Ocenter
OYcan

endowed with obvious Poisson bracket f�; �g. Here Ocenter
OYcan
D Ker f�; �g.

Theorem 5.2.5. We have:

1) H0. OYcan; gcan/ D 0.
2) H1. OYcan; gcan/ 'Q
2[i C_

i;iC1\.
�
0/ Q 	 e
 .

3) H�2. OYcan; gcan/ D 0.

Proof. Analogous to the proof of Theorem 5.1.3. The only difference is that
elements e
 ; 
 2 
0 are now excluded from considerations. �

The sheaf of pronilpotent Lie algebras gcan defines the deformation functor
Def gcan

from the category of commutative (not necessarily Arin) unital algebras
over Q to the category of groupoids: Def gcan

.R/ is the groupoid of exp.gcan Ő R/-
torsors over OYcan. Notice that such torsors can be identified with decorated formal
Poisson schemes OX . The above theorem implies the following result.

Proposition 5.2.6. The deformation functor Def gcan
is representable by an affine

scheme M WD M
;h�;�i;.Ci /i2Z=mZ (with the trivial stacky structure) which is
(non-canonically) isomorphic to the infinite-dimensional affine space over A

1 D
lim �N A

N over Q.
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There is an alternative description of M . Namely, letGi denotes the proalgebraic
group of automorphisms of the formal neighborhood Ui and Gi;iC1 be a similar
group for Ui;iC1 [we always assume that automorphisms are compatible with
identifications (i)–(iv)]. We have a chain of embeddings:

 - G1 ,! G1;2  - G2 ,! G2;3  - G3 ,! : : : :

Then the product group G D G1;2 � G2;3 � G3;4 � : : : is endowed (as a scheme)
with the free action of the group H D G1 � G2 � G3 � : : : � G � G (namely the
factors of Gi �GiC1 act on Gi;iC1 by left and right multiplication respectively). By
the above considerations with Lie algebras we conclude that the following holds.

Proposition 5.2.7. The scheme M is the scheme of orbits of the above action ofH
on G. It is also isomorphic to the double coset M ' Gdiagn.G �G/=H .

Remark 5.2.8. Suppose .C 0i /i2Z=m0Z be another admissible wheel of cones such
that for any j there exists i such that C 0j � Ci . Then there is natural embedding

M
;h�;�i;.Ci /i2Z=mZ !M
;h�;�i;.C 0

i /i2Z=m0Z
. Furthermore if under this embedding OX is

mapped into OX 0 then OX 0 is obtained from OX in the following way:

a) first we make a finite sequence of blow-ups of OX with centers at some strata (such
blow-ups will be automatically stratified);

b) then in the resulting formal scheme we choose a wheel of lines each of which is
a one-dimensional stratum, and take the completion along the wheel.

Notice that this procedure depends on purely combinatorial data.

5.3 Relation to Stability Data

Let .
; h�; �i/ be a lattice endowed with an integer skew-symmetric form h�; �i.
Stability data on the torus Lie algebra g D g
�
0 are given by a central charge
Z W 
 ! C and a collection of numerical DT-invariants˝.
/ 2 Q; 
 2 
 �
0 (see
[30] or Sect. 2.3, Example (1)). The Support Property ensures that[
2Supp.˝/R 	 
\
.KerZR � f0g/ D ;, where ZR W 
R ! C is the R-linear extension of Z. We will
assume in this subsection that rkZR D 2. In this case Z�R..R2/�/ � 
 �R is an
oriented two-dimensional vector space.

Definition 5.3.1. An admissible wheel of cones .Ci /i2Z=mZ is compatible with the
central charge Z W 
 ! C; rkZR D 2 if

a) for any i 2 Z=mZ the intersection li D .Ci;iC1 � @Ci;iC1/ \ Z�R..R2/�/ is an
open ray;

b) rays li ; i 2 Z=mZ go in the clockwise order with respect to the orientation in
Z�R..R2/�/.
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Proposition 5.3.2. In the above notation there exists an admissible wheel of cones
Ci ; i 2 Z=mZ compatible with Z and such that Supp.˝/ � [iC_i;iC1 � f0g �

R � KerZR.

Proof. Let us choose an isomorphism 
R ' Rn D R2 ˚ Rn�2 in such a way
that ZR becomes a projection .x1; : : : ; xn/ 7! x1 C ix2. Recall the example of the
admissible wheel of cones from Sect. 5.1. In that example [iC_i;iC1 � f0g contains
an open neighborhood of R2 � f0g in 
R and is disjoint from Rn�2 D KerZR.
It follows from the Support Property that for sufficiently large t > 0 the set
ıt .[iC_i;iC1/ contains Supp.˝/, where ıt .x1; x2; : : : ; xn/ D .x1; x2; tx3; : : : ; txn/.
Then the cones .ı�t /�1.Ci/; i 2 Z=mZ obtained by application of the map which is
inverse of conjugate to ıt form an admissible wheel of (non-rational) cones. Then
taking a small perturbation we obtain an admissible wheel of rational cones. This
completes the proof. �

We will need a stronger statement proof of which is analogous but lengthy and
hence omitted.

Proposition 5.3.3. For stability data on g
�
0 as above there exist an admissible
wheel of cones .Ci /i2Z=mZ as in the Proposition 5.3.2 as well as the following
data:

1) a cyclic decomposition R2 D V1;1[ : : :[V1;k1 [V2;1[ : : :[V2;k2 [ : : :[Vm;1[
: : : [ Vm;km;m � 3; ki � 1, where Vi;j are closed strict sectors such that two
consecutive sectors have a common edge, Z�1.@Vi;j � f0g/\ 
 D ;;

2) a cyclically ordered collection of closed strict convex cones C.Vi;j / � 
R

compatible with Z and such that Z.C.Vi;j // � Vi;j , the set Supp.˝/ belongs to
[i;j C.Vi;j /, and for any i; j the set C.Vi;j /� f0g belongs to int.C_i;iC1/.

Let us make a choice of sectors and cones as in the Proposition. Then our stability
data on g
�
0 give rise to the collection of elements

gi;j 2 exp.
Y


2C.Vi;j /\.
�
0/
Q 	 e
/ � Gi;iC1;

where the latter group was defined in the end of the previous subsection. Let us
associate with our stability data a point of M represented by the coset of the element
.g1;1g1;2 : : : g1;k1 ; g2;1 : : : g2;k2 ; : : : ; gm;1 : : : gm;km/.

Theorem 5.3.4. For given 
; h�; �i; Z W 
 ! C with rkZR D 2 the above map
provides a bijection from the set of stability data on g
�
0 with fixed central charge
Z to the set lim�!M
;h�;�i;.Ci /i2Z=mZ , where the inductive limit is taken with respect to
subdivision maps described in the Remark 5.2.8 over all admissible wheel of cones
.Ci/ compatible with Z.

Sketch of the proof. In what follows all chains of cones .Ci/will be compatible with
the central chargeZ. The proof will consist of several steps.



Wall-Crossing Structures in Donaldson–Thomas Invariants, Integrable Systems. . . 243

Step 1. The moduli space M
;h�;�i;.Ci /i2Z=mZ WD M.Ci / can be defined for admis-
sible wheels of non-rational cones via the double coset construction.

Step 2. For a special choice of cones Ci we can identify the space of stability data
on the Lie algebra g
�
0 with the central charge Z and Supp.˝/ � [iC_i;iC1
with M.Ci /. It can be done along the lines of the example with polyhedron in
Sect. 5.1. More precisely, let us fix a convex polygon in R2 which contains the
origin in the interior and has cyclically ordered vertices v1; v2; : : : ; vm. Let us fix
a convex bounded closed polyhedronP � Rn�2 which contains the origin in the
interior. Let us define a decomposition .R2/� � f0g D [i2Z=mZVi into the union
of semiclosed strict sectors defined by the condition Vi D fu 2 .R2/�ju.vi / >
u.vi�1/; u.vi / � u.viC1/g. We define strict convex cones C.Vi/ � .vi ˚ P/_ as
fu˚ wju 2 Vi ;w 2 P g. Then

[i .vi ˚ P/_ � f0g D tiC.Vi /:

For such a choice we have Ci;iC1 D R�0.vi ˚ P/ and Ci is the convex hull of
Ci�1;i ; Ci;iC1.
Below we will define a bijection between the space of stability data on the Lie
algebra g
�
0 with the central charge Z and Supp.˝/ � [iC_i;iC1 with M.Ci /.

First, let us introduce a collection of pronilpotent groups G.1/
i � Gi such that

Lie.G.1/
i / D

Q

2C.Vi /\.
�
0/ Q 	 e
 . Then following [30] we parametrize our

stability data by the collection of elements AVi � G
.1/
i ; i 2 Z=mZ. Namely,

we set AVi D
Q!
l�Vi Al , where the product is taken in the clockwise order over

the set of rays in Vi with vertex at 0, each factor is given by the formula Al DQ

2C.Vi /\.
�
0/;Z.
/2Vi T

˝.
/

 , and T
 W e� 7! .1 � e
/h
;�i.

Then in the double coset description of M.Ci / we take the orbit of the element
.idG;AV1 ; AV2 ; : : : ; AVm/ 2 G � G. It is easy to see that this gives the desired
bijection (cf. Proposition 5.2.5). In fact we have

Y
i

G
.1/
i ' Gdiagn.G �G/=H 'M :

Step 3. Let us introduce a partial order on the set of wheels C D .Ci/ compatible
with Z. Namely we say that C 0 D .C 0j / � C D .Ci/ if for any i there exists j
such that C 0j;jC1 � Ci;iC1 (equivalently, for any j there exists i such that C 0j �
Ci ). The partial order � gives rise to the category with objects C D .Ci/ such
that int.Ci/\R2 is non-empty, and morphisms defined by the partial order (poset
category). Then we observe that if C 0 � C then we have a natural embedding
M.Ci / !M.C 0

i /
(notice that we do not need cones to be rational for all that).

Step 4. Assume that C 0 � C , and for any i there exists j such that C 0j;jC1 D
Ci;iC1 and also we have [j C 0j D [iCi . Then the embedding from Step 3 is an
isomorphism of affine schemes.
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Step 5. For an admissible wheel of cones C D .Ci / there exist C 0 � C and
C 00 � C 0 such that the conditions from Step 4 hold and C 00 is a wheel of cones
from Step 2.
Let us comment on Step 5. In order to find C 00 one chooses the vertices vi ; 1 �
i � m of the polygon in Step 2 in such a way that vi … Ci;iC1 \ R2. Then one
replaces the polyhedron P from Step 2 by "P , where " is a sufficiently small
positive number.

Step 6. By previous steps an element from MC gives an element from MC 00 ,
hence the stability data on g
�
0 by Step 2. This concludes the sketch of the
proof. �

Assume we are given 
; h�; �i. Consider a continuous family of central charges
Zx; x 2 X , where X is a Hausdorff topological space and such that rkZx D 2 for
all x 2 X . Consider a family �x; x 2 X (non-necessarily continuous) of stability
data on g
�
0 with central charges Zx . Then we have the following result proof of
which is omitted.

Proposition 5.3.5. The family �x; x 2 X is continuous if and only if there exists
an open covering X D [˛U˛, collection of admissible wheels of cones C˛ D
.C˛;i / and points m˛ 2 MC˛ such that for any x 2 U˛ the stability condition
corresponding to m˛ and having central charge Zx is identified by Theorem 5.3.4
with �x .

Remark 5.3.6. In the case rkZR D 1 one can develop a similar theory by replacing
the formal neighborhood of a wheel of lines by the one for chains of lines (in some
interesting cases just one projective line is enough).

5.4 Toric-Like Compactifications

Let N be a smooth algebraic variety over a field k of characteristic zero, and N1

be a normal scheme over k which contains N as an open subscheme.

Definition 5.4.1. We say that N1 is a toric-like compactification of N if the pair
.N1;D/, whereD D N1 �N is a reduced divisor, is a local formal toric pair.

In what follows we assume that k D C, although this assumption can be relaxed.
Notice that N1 does not have to be proper. It follows from the definition that D is
stratified and its stratification is compatible with the local toric picture.

With each zero-dimensional stratum (point) x 2 D we can associate a free
abelian group (lattice), which in the obvious notation can be written as 
x D
H1..x ! N1/

�.N ! N1/�ZN / where ZN is the constant sheaf and the
arrows are natural embeddings. In the case k D C and analytic topology 
x D
H1.Bx \N ;Z/ ' Zdim N , where Bx is a small ball with the center in x.

Let F be a closed one-dimensional stratum whose complement to the union of
zero-dimensional strata is isomorphic to C�. Then one has a similarly defined lattice
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F ' ZdimN . In the complex analytic case one can define 
F D H1.UF \N ;Z/,
where UF is a tubular neighborhood of F . If x 2 F then by topological reasons we
have a canonical isomorphism 
x ' 
F .

Definition 5.4.2. A chain of lines F k; F k ¤ F kC1; 1 � k � m is given by a
sequence of one-dimensional strata with parametrization ik W P1 ' F k such that
ikC1.0/ D ik.1/; 0 � k � m � 1, and ik.0/; ik.1/ are the only zero-dimensional
strata of F k .

We will use the notation pk D ik.0/; k D 1; : : : ; m; pmC1 D im.1/.
The above considerations give us a chain of canonical isomorphisms of lattices


p1 ' 
F1 ' 
p2 ' 
F2 ' : : : ' 
Fm ' 
pmC1
. We denote the identified

lattices by 
 . We assume that 
 is endowed with a skew-symmetric pairing h�; �i WV2

 ! Z. We denote the kernel of this form by 
0.

Suppose that we are given an automorphismT W N ! N . Suppose furthermore
that there exist open subsets N � U1 � N1 and N � UmC1 � N1 such that p1 2
U1; pmC1 2 UmC1 and such that T extends to an isomorphism T W U1 ! UmC1.
Then T induces an isomorphism T 1;mC1 W 
p1 ' 
pmC1

.
Next we would like to formulate a list of assumptions under which we will

construct a point of the moduli space of decorated formal Poisson schemes. Namely
we assume that:

(a) N is endowed with a Poisson structure.
(b) Automorphism T preserves the Poisson structure.
(c) The isomorphism T1;mC1 coincides with the one obtained from the chain of

isomorphisms of lattices.
(d) We are given a homomorphism of abelian groups c W 
0 ! O.N /� whose

image belongs to the Poisson center.
(e) For any 1 � i � mC 1 there exists an isomorphism �i of the pair . ON1;pi ;

ODpi /

(completions at pi ) with the corresponding pair in the local formal toric model.
This is an isomorphism of formal Poisson schemes, where the local formal toric
model is endowed with the Poisson structure given by the skew-symmetric form
h�; �ii W V2


pi ! Z obtained from the skew-symmetric form h�; �i via the
canonical isomorphism 
pi ' 
 .

(f) For any 1 � i � mC 1 we are given an isomorphism gpi W Tpi ' Tcan such
that for any one-dimensional closed stratum F ' CP1 containing exactly two
0-dimensional strata fx0g; fx1g the following two compositions coincide:

.
x0 ;Tx0/
.id;gx0 /' .
;Tcan/

.id;g�1
x1

/' .
x1
;Tx1

/

and

.
x0 ;Tx0/'.
F ;TF /'.
x1
;Tx1

/:
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(g) For any 1 � i � mC 1 there exists �i (see e)) such that the pull-back ��i .c.
//
is a function of weight 
 on the open toric stratum.

(h) Let Ci � 
 _pi ˝ R; 1 � i � m be closed strict rational convex cones arising
from the toric-like stratification. Then (after identification T1;m W C1 ' Cm) we
obtain an admissible wheel of cones.

(i) The composition

Tp1

gp1' Tcan

g�1
pmC1' TpmC1

coincides with the Poisson isomorphism induced by T .

Under the above assumptions (a)–(i) let us consider the disjoint union of
completions t1
i
m ON1;F i

and then identify the formal neighborhood of1i 2 F i

with the one of 0iC1 2 F iC1 for 1 � i � m � 1 using the embeddings to N , and
finally the formal neighborhood of 1m 2 Fm with the one of 01 2 F 1 using the
isomorphism T 1;mC1. In this way we obtain an admissible wheel of cones endowed
with additional data giving us a point in the moduli space M
;h�;�i;.Ci /1�i�mC1

.

6 WCS and Mirror Symmetry

Considerations in this section will be mostly heuristic. We are going to explain how
the ideas of Mirror Symmetry in Strominger–Yau–Zaslow (SYZ for short) torus
fibration picture can be combined with previous considerations of this paper. This
will give us a WCS which conjecturally should coincide with the one constructed in
Sect. 4.

6.1 Reminder on Fukaya Categories

Let .X; !/ be a compact smooth symplectic manifold of dimension 2n and B 2
H2.X;R=2�Z/ ' Hom.H2.X;Z/;R=2�Z/ be the B-field. It is expected that for
a sufficiently large � > 0 the triple .X; �!;B) gives rise to a Z=2Z-graded A1-
category F .X; �!;B/ called the Fukaya category. Some objects of the Fukaya
category are pairs .L;E/ where L � X is an oriented Lagrangian submanifold
endowed with a spin structure such that BjL D 0, and E is a U.1/-local system on
L. Space of morphisms Hom..L1;E1/; .L2;E2// is labeled by intersection points
of L1 and L2. In order to define the A1-structure one needs to choose an almost
complex structure on X . Then higher composition maps are given by a properly
defined count of pseudo-holomorphic discs D “weighted“ by e�

R
D.��!CiB/. Not

every Lagrangian submanifold L can support an object of the Fukaya category. A
sufficient condition for that is the absence of pseudo-holomorphic discs of Maslov
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index 2 such that @D � L. More advanced picture which handles this problem was
developed in [16]. Convergence of series which defines higher composition maps
is another big issue, which is not proved by this time. Typically people avoid this
problem by working over Novikov ring of series in the above-mentioned weight. In
this case the approach can be made rigorous (see [16]). Furthermore, in the presence
of a top degree almost complex form one can define a Z-graded version of the
Fukaya category. In what follows we will assume that for “sufficiently large !” we
can define the Fukaya category F .X; !;B/ over the field of complex numbers. In
some sense this category depends holomorphically on Œ!�C iB 2 H2.X;C=2�iZ/.

Under appropriate conditions one can define a version of F .X; !;B/ called
wrapped Fukaya category in case when X is non-compact and endowed with a
proper map H W X ! Œ0;C1/ (see [1]). In that case Lagrangian submanifolds
supporting objects are non-compact, having “good” behavior “at infinity”. The
space Hom..L1;E1/; .L2;E2// is defined by means of intersection points L1 \
exp.t'H /.L2/, where 'H D fH; �g is the Hamiltonian vector field corresponding
to H .

6.2 SYZ Picture and Integrable Systems

Now suppose that we have a real integrable system � W .X; !/ ! B with a
Lagrangian section s W B ! X . Then over an open dense subset B0 of a smooth
n-dimensional manifold B we have a Lagrangian torus fibration with marked zero
points in the fibers. If X is non-compact then we assume that X is endowed with
a proper function H W X ! Œ0;C1/ mentioned in the previous subsection, and
that the function is a pull-back of a similar function on B . We will impose the
condition c1.TX/ D 0 2 H2.X;Z/, although it is not necessary for some of our
considerations.

The open submanifold B0 carries a Z-affine structure with local affine coor-
dinates xi ; 1 � i � n in a neighborhood of b 2 B0 which are determined
(up to a shift) by the condition dxi D

R

i
!, where f
ig1
i
n is a basis in


b D H1.�
�1.b/;Z/. The vector fields @=@xi generate a covariantly constant lattice

TZ � TB0. We will assume that B carries a metric gB which is complete and which
is Riemannian on B0. Then it gives rise to an isomorphism T �B0 ' TB0 of the
tangent and cotangent bundles. In particular we have a lattice T _Z � T �B0. Notice
that ��1.B0/ is canonically symplectomorphic to the total space of the Lagrangian
torus fibration .T �B0=T �Z ; !T �B0=T �

Z
/. The latter is in turn symplectomorphic to

the total space of the “rescaled” torus bundle .T �B0="T �Z ; "�1!T �B0=T �

Z
/. Using

the metric we endow ��1.B0/ with an almost complex structure J" compatible
with the rescaled symplectic form "�1! and the pull-back of the metric gB . The
structure J" is singular onX ���1.B0/. We can replace it by a non-singular almost
complex structure J " compatible with "�1!, and such that J " D J" outside of a
small ı D ı."/- neighborhood of X � ��1.B0/ such that lim"!0ı."/ D 0.
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Then as " ! 0 the J "-holomorphic curves converge to singular surfaces whose
�-images are graphs inB with edges which are gB -gradient lines of affine functions
(see a discussion of this result of Fukaya and Oh in [35]). At a vertex v of the
gradient graph the balancing condition is satisfied:

P
i 


i
v D 0, where 
iv denote

adjacent to v edges which are identified with the corresponding integer affine
functions.

In what follows we will assume that dimR.B � B0/ � 2 (cf. [35]). This
condition is closely related to the condition c1.TX/ D 0. Then for a generic
point b 2 B0 there is no gradient tree as above with the root at b and external
vertices at B � B0. Such trees correspond to limits of J "-holomorphic discs with
boundaries on ��1.b/. Indeed, the union of roots of such trees is a union of
countably many hypersurfaces in B . We can call them “walls”. The reader should
not mix them with walls in WCS for complex integrable systems (see Sect. 10
for discussion of these walls). Informally we can think that B0 locally looks as
a locally finite union of convex polyhedral domains separated by walls and each
polyhedral domain P gives a family of objects in the Fukaya category parametrized
by the tube domain Log�1.P / � .C�/n, where Log W .C�/n ! Rn is the tropical
map .z1; : : : ; zn/ 7! .logjz1j; : : : ; logjznj/. Then Arg.zi / correspond to U.1/-local
systems on fibers of � . According to the Mirror Symmetry philosophy there is
a complex variety X_ (mirror dual to X ) containing all parametrized families of
objects of the Fukaya category as open subsets. Crossing a wall which separates
polyhedral domains corresponds to a change of coordinates on X_. If gB is locally
given in affine coordinates by the Hessian matrix .@2H=@xi@xj / for some convex
function H , then edges of gradient graphs will be Z-affine segments in the dual
affine structure on B0.

6.3 The Case of Complex Integrable Systems

First, let us assume that we are given a polarized (full) integrable system � W
.X; !2;0/ ! B endowed with a holomorphic Lagrangian section s W B ! X .
Notice that codimR.B � B0/ � 2 automatically. Let us fix � 2 C� and take
!� D Re.��1!2;0/ as the real symplectic form on X . As the B-field we take
B� D Im.��1!2;0/ C Bcan, where Bcan 2 H2.X; �Z=2�Z/ ' H2.X;Z=2Z/ is
a “canonical” B-field defined in the Appendix.

Remark 6.3.1. Our choice of Bcan is motivated by the appearance of the factor
.�1/h
;�i in the theory of DT-invariants.

Recall (see Sect. 4.7) that under some natural assumptions there exists a proper
continuous functionH� W B0 ! Œ0;C1/ which gives the metric on the base.

Tube domains for mirror duals X_� in coordinate-free language belong to

Hom.
b;C�/; b 2 B0; 
b D H1.�
�1.b/;Z/. Hence they are endowed with a

symplectic structure associated with the polarization. The above-discussed changes
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of coordinates preserve the symplectic structure. Hence each X_� ; � 2 C� is a
holomorphic symplectic manifold. One can explain the symplectic structure in
a different way. Indeed the polarization on fibers of X ! B gives rise to a
canonical holomorphic line bundle L on X whose restriction on fibers X ! B

is ample (more precisely it is defined outside of the preimage of the discriminant
locus, but we expect that it extends to the whole space). The cohomology class
c1.L / 2 H2.X;Z/ can be interpreted as an element of the second Hochschild
cohomology of the above wrapped Fukaya categoryF .X; !�;B�/. Equivalently it is
a second Hochschild cohomology class of the derived category of coherent sheaves
on the mirror dual X_� . One can argue that this cohomology class is represented by
a non-degenerate holomorphic Poisson bivector field. Its inverse is our holomorphic
symplectic form.

Now we are ready to consider the semipolarized case. To simplify the exposition
we fix � D 1 and omit the B-field B from the notation.

Namely, let � W .X; !2;0/! B be a semipolarized integrable system with central
charge Z and holomorphic Lagrangian section. We assume that the monodromy
of the local system 
 0 ! B0 is trivial so all its fibers can be identified with
the fixed lattice 
0 (this can always be achieved by taking a finite cover, see
Lemma 4.4.1). Then we obtain a holomorphic family of complex integrable systems
.XZ0; !

2;0
XZ0
/ ! BZ0 parametrized by Z0 2 Hom.
0;C/. Our discussion of

the Fukaya categories make plausible the proposal that the holomorphic family
of the Fukaya categories gives rise to a holomorphic family of mirror duals
X_Z0 WD .XZ0;Re.!2;0XZ0 //

_ parametrized by Hom.
0;C/. We argue that X_Z0 carry a
holomorphic symplectic form.

The total space of this family will be denoted by X_.
In fact it is a pull-back via the map exp W Hom.
0;C/ ! Hom.
0;C�/ of an

algebraic family of smooth complex symplectic varieties X_;alg ! Hom.
0;C�/.
Here is an informal argument in favor of that. For each Z0 D Zj
0 we have

the corresponding polarized integrable system .XZ0; !
2;0
XZ0
/ ! BZ0 as discussed

before. Consider the real affine space ˛X0 � Hom.
0;C/ defined by the condition
Re.Z0/ D X0. This gives rise to a family of smooth symplectic manifolds
.XZ0;Re.!2;0XZ0 //, where Z0 2 ˛X0 . The cohomology class ŒRe.!2;0XZ0 /� is locally
constant along ˛X0 . Then by a Moser-type theorem (suitably adopted to non-
compact case) we conclude that all symplectic manifolds .XZ0;Re.!2;0XZ0 // can
be (non-canonically) identified up to symplectic isotopy. Notice that the B-field
depends on Im.Z0/. Therefore the corresponding Fukaya categories (and therefore
their mirror duals) depend only on Z modulo Hom.
0; 2�iZ/. The corresponding
Fukaya categories (and hence their mirror duals) are periodic, with respect to
the shifts, hence form a holomorphic family over the torus Hom.
0;C�/. The
algebraicity of this family is a conjecture, which we will discuss in a separate
subsection below in Sect. 6.5. A priori the dual variety is just a complex manifold
without an algebraic structure. The latter comes from additional considerations
related to the wrapped Fukaya category.
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From the above discussion we conclude that the total space of the family of
mirror duals is a complex Poisson varietyX_;alg (which we will call the mirror dual
to our complex integrable system) endowed with a Poisson map to Hom.
0;C�/
(hence fibers of this map are symplectic leaves). We will use the term “mirror dual”
being applied to the holomorphic family X_ ! Hom.
0;C/.

There is an alternative approach to the construction ofX_;alg which we are going
to explain below. Let BR � B be the closure of the set fb 2 B0jRe .Zb/j
0 D 0g.
Let XR D ��1.BR/ � X . Then XR is a coisotropic submanifold. Therefore it
carries a foliation with symplectic quotient which we will denote by X 0R. We have
the corresponding real integrable system ..X 0R; !X 0

R
/ ! BR. The fiber over b 2

B0
R WD BR \ B0 is isomorphic to the compact real torus .
b ˝ R/=
b . Notice that

the cohomology class Œ!X 0

R
� D 0 (i.e. our real integrable system is exact). We can

define the Fukaya category F .X 0R; !X 0

R
;B0can/, where B0can 2 H2.X 0R; �Z=2�Z/

is the canonical B-field associated with the integer skew-symmetric form on 
b .
Since .X 0R; !X 0

R
/ is an exact symplectic manifold and the pairing of exp.B0can/ with

the class of any pseudo-holomorphic curve belongs to exp.�iZ/ D f�1;C1g � Q,
we conclude that F .X 0R; !X 0

R
;B0can/ is defined over Q (again, we ignore here the

convergence problem). The torus .
0 ˝ R/=
0 acts on X 0R in the Hamiltonian way
preserving Lagrangian torus fibers of the projection to BR. By Mirror Symmetry
this corresponds to the holomorphic map .X 0R/_ ! Hom.
0;C�/.

Conjecture 6.3.2. The complex Poisson manifold .X 0R/_ is algebraic and endowed
with the map to Hom.
0;C�/. It is canonically isomorphic to the complex algebraic
Poisson variety X_;alg with its map to Hom.
0;C�/.

So far we have been discussing semipolarized integrable systems with fixed
holomorphic symplectic form. Let us consider the C�-family of holomorphic
symplectic forms !2;0� D !2;0=� on X . Then the corresponding mirror dual Poisson

varieties X_;alg
� ; � 2 C� form a local system of quasi-affine algebraic varieties over

C� (we will discuss it in Sect. 6.5). More precisely, recall that mirror duals were
constructed first by fixing Z0 D Zj
0 and then by looking at the result as a family
over either Hom.
0;C/ (this gives us a holomorphic family) or Hom.
0;C�/ (this
gives us an algebraic family). After the rescaling the symplectic form to !2;0=�, the
central charge Z gets replaced by Z=�, hence Z0 D Zj
0 gets replaced by Z0=�.
Hence in the construction of mirror duals we fix Z0=�. Taking the union of mirror
duals (for fixed �) we obtain the mirror dual Poisson varietyX_;alg

� . In fact they form
a holomorphic local system of algebraic varieties over C�. This can be proved by
using of the Moser-type arguments (in case when we deal with polarized integrable
systems having central charge one can identify the fibers directly). In a similar way
we obtain a holomorphic family over C� of complex Poisson manifoldsX_� each of
which is endowed with a holomorphic Poisson morphism to Hom.
0;C/. Clearly
the total space X_ of the latter family is the universal cover of the total space of the
former family X_;alg.
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Taking the fiber X_;alg
1 WD X

_;alg
�D1 we obtain a Poisson variety endowed with a

Poisson automorphism T W X_;alg
1 ! X

_;alg
1 , which is equal to id on the algebra of

central functions (the latter is isomorphic to O.Hom.
0;C�//) (cf. with Sect. 5.4).
Finally, let us remark that if the monodromy of the local system 
 0 ! B0 is a

finite group G then the above considerations still work and give us the mirror dual
Poisson variety X_;alg together with a Poisson morphism to Hom.
0;C�/=G (here

0 can be thought of as a fiber of the pull-back of 
 0 to the universal cover).

6.4 Wall-Crossing Structure from the Point of View
of Mirror Symmetry

Recall gB -gradient trees from Sect. 6.2. In the case of semipolarized integrable
systems with central charge and holomorphic Lagrangian section we have Kähler
metrics on the bases of the corresponding polarized integrable systems, hence
edges of the gradient trees are straight segments in the dual Z-affine structure (see
Sect. 6.2). In terms of the central charge, the dual affine structure for the symplectic
form Re.!2;0=�/; j�j D 1 is given by Y� WD Im.e�i�Z/ with fixed restriction of Y�
to 
0, where � D ei� 2 C�. As we briefly recalled in Sect. 6.2, the SYZ approach to
Mirror Symmetry (see more on that in [35]) gives rise to an inductive procedure of
constructing walls and changes of coordinates, starting with certain data assigned to
generic points of the discriminant B � B0. Namely, for a point b 2 B0 sufficiently
close to a generic point of the discriminant, one counts limiting pseudo-holomorphic
discs whose �-image on the base is a short gradient segment connecting the point b
with a point of B � B0.

The inductive procedure is a priori different from the one discussed above in
Sect. 4. Nevertheless in this case one can prove by induction (moving along the
oriented gradient tree from the discriminant to a given point) that the walls and the
changes of coordinates in Mirror Symmetry story of Sect. 6.2 coincide with those
in Sect. 4. In particular, the changes of coordinates preserve the Poisson structure
on X_Z0;Z0 2 Hom.
0;C/ and depend algebraically on the point of Hom.
0;C�/.
They can be interpreted as Poisson transformations of X_ identical on the Poisson
center.

The above discussion gives an alternative approach to WCS constructed in
Sect. 4. The initial data for which ˝.
/ D 1 (see Sect. 4) for A1-singularities
correspond to the count of pseudo-holomorphic discs in the standard A1-singularity
model (see e.g. [7, 31]).
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6.5 Algebraicity of the Mirror Dual

For simplicity we are going to discuss the case of polarized integrable systems. We
hope that our arguments can be extended to the semipolarized case. In particular,
the basis described below should be a basis in the algebra over O.Hom.
0;C�//.
One can speculate that it coincides with the canonical bases expected in the theory
of cluster varieties (see [17]).

As we discussed before, the mirror dual X_ to an exact real integrable system
� W .X; !/ ! B endowed with Lagrangian section s W B ! X and the B-field
which is a 2-torsion, is an algebraic variety defined over Q. More precisely, we
expect thatX_ is a quasi-affine (maybe formal) scheme of finite type over Z. In case
if there exists a proper continuous function H W B ! Œ0;C1/ which is (strictly)
convex with respect to the Z-affine structure on B0 and has “good” behavior at the
discriminant B �B0, we expect that X_ will be a Zariski open in the spectrum of a
finitely generated algebra R, which can be described such as follows.

For any t 2 R let Lt D exp.t'H .s.B/// � X be a Lagrangian submanifold
obtained from the zero section s.B/ by the Hamiltonian shift along the vector field
'H D fH; �g. Morally all Lt ; t 2 R should correspond to isomorphic objects
in the wrapped Fukaya category. More precisely, for t1 < t2 let us consider the
basis of the Floer complex CF.Lt1 ; Lt2 / given by intersection points Lt1 \ Lt2 . We
will assume that this intersection belongs to ��1.B0/. Convexity of H implies that
Maslov indices of all intersection points are zero. Hence the Floer differential is
trivial. The composition

mt1;t2;t3 W CF.Lt1 ; Lt2 /˝ CF.Lt2 ; Lt3 /! CF.Lt1 ; Lt3/

sends the tensor product of two basis elements to a finite Z-linear combination of
basis elements (this follows from the “energy considerations” with the functionH ).
Hence we obtain a directed Z-linear non-unital A1-precategory (see [35]) with
objects Lt ; t 2 R and Hom.Lt1 ; Lt2/ well-defined for t1 < t2 only.

Assume now thatH has a unique global minimum bmin 2 B0. It gives a common
intersection point of all Lt ; t 2 R, hence a canonical element it1;t2 2 Hom.Lt1 ; Lt2 /
which satisfies the property it1;t2 it2;t3 D it1;t3 . In this way we identify all objectsLt of
our precategory. Then we define the algebraR as the algebra of the endomorphisms
of any of them. The fact that R is finitely generated is not entirely obvious. One can
hope that it follows from more careful considerations with filtrations on R coming
from the functionH .

By Mirror Symmetry the zero section s.B/ corresponds to the sheaf OX_ (or
maybe a line bundle on X_) because Hom..s.B/;C/; .��1.b/; �// ' C for any
b 2 B0 and any U.1/-local system � on ��1.b/.

We conclude that R ' O.X_/, and parameterizations of open subsets of X_ by
the tube domains give rise to embeddings of R into the algebras of Laurent series
obtained by completions of O.Hom.
b;C�// with respect to closed strict convex
cones. In the case if our real integrable system comes from a complex polarized one
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with the central charge, the algebraic symplectomorphism T W X_1 WD X_ ! X_
corresponds to an automorphism of R. Being the mirror dual, the variety X_ �
Spec.R/ carries an algebraic volume element ˝X_ . We expect that there is a ZPL
map of B0 to the skeleton Sk.X_;˝X_/, where the skeleton is defined for the class
of logarithmic Calabi–Yau manifolds in a way slightly more general than in [31].

Definition 6.5.1 (cf. [23]). By a logarithmic Calabi–Yau manifold (log CY mani-
fold for short) we will understand a complex non-compact algebraic manifold Y 0

endowed with a nowhere vanishing algebraic top degree form ˝Y 0 which admits a
compactificationY by a simple normal-crossing divisorD such that˝Y 0 has poles
of order at most 1 on D D [iDi (i.e. ˝Y 0 is a log-form) and there exists a point
in Y � Y 0 and local coordinates .z1; : : : ; zn/ such that ˝Y 0 D V

1
i
n
dzi
zi

where

n D dimCY 0.

Having a log CY manifold Y 0 one can assign to it a ZPL topological space
Sk.Y 0/ of dimension n with linear structure called the skeleton of Y 0. The
construction basically copies the one from [35]. Namely, for any compactification
Y as in the above definition we define Sk.Y 0;Y / as the complement to f0g of
the set of such

P
i �iDi ; �i 2 R�0 that if �i > 0 then ˝Y 0 has pole at Di

and \i j�i>0Di ¤ ;g. Different choices of Y give rise to ZPL-isomorphisms of
Sk.Y 0;Y /. Hence we can use the notation Sk.Y 0/, and call it the skeleton of Y 0.
Integer points of Sk.Y 0/ correspond to certain divisorial valuations on the algebra
of rational functions on Y 0.

The notion of log CY manifold is analogous to the notion of maximally
degenerate proper Calabi–Yau manifold over a non-archimedean field (see [31,35]).
More precisely, for a proper Calabi–Yau manifold over a non-archimedean field we
defined in [31], Sect. 6.6 the notion of its skeleton. It is a compact ZPL topological
space of dimension less or equal then the dimension of the Calabi–Yau manifold.
The dimensions are equal if and only if the Calabi–Yau manifold is maximally
degenerate.

Definition 6.5.2. A log CY Y 0 of complex dimension n is called good if its
skeleton Sk.Y 0/ coincides with the closure of the set of points of Sk.Y 0/ each
of which has a neighborhood homeomorphic to a real n-dimensional ball.

In the language of compactifications by simple normal crossing divisors (s.n.c.
divisors for short) this means that for a subset of divisors Di1 ; : : : ;Dik ; k � n � 1
of the compactifying divisorD such that˝Y 0 has poles of degree 1 at each of them
and such that Di1 \Di2 \ : : : \Dik ¤ ;, there is another subset DikC1

; : : : ;Din of
divisors such that Dij � D and ˝Y 0 has poles of degree 1 at each of them, which
altogether satisfy the propertyDi1 \Di2 \ : : : \Din D fptg.

Also, if in the above notation k D n� 1 the intersectionDi1 \Di2 \ : : :\Din�1

is isomorphic to CP1 and the iterated residue of ˝Y 0 at the intersection coincides
with the form dz=z in the chosen coordinate z on CP1. This implies that Sk.Y 0/ is
an oriented topological pseudomanifold of dimension n with possible singularities
in codimension� 2.
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We remark that typically a log CY is good except of rather pathological
examples.

Definition 6.5.3. For a given good log CY Y 0 its s.n.c. compactification Y is very
good if each intersection Di1 \ Di2 \ : : : \ Din�1 as above contains exactly two
0-dimensional strata (points z D 0;1 2 CP1).

Then we claim that any very good compactification Y defines a natural Z-
linear structure on Sk.Y 0/ with singularities in codim � 2. For this we use the
isomorphisms of 
x ' 
F , where x 2 f0;1g � F ' CP1 (see Sect. 5.2). These
isomorphisms allow us to identify canonical Z-linear structures on n-dimensional
octants corresponding to the strata 0 and 1. The definition of very good s.n.c.
compactification and the construction of the corresponding Z-linear structure on
Sk.Y 0/ can be generalized in a straightforward way to the case of toric-like
compactifications.

Assume that we are given a proper toric-like compactification Y of a good
log CY Y 0 such that the form ˝Y 0 has poles of degree 1 at all components of
the divisor Y � Y 0. This compactification is very good in the above sense. One
can describe the corresponding singular Z-linear structure using the language of
non-archimedean analytic geometry as in [35]. Namely, let us extend scalars and
consider Y 0 as an algebraic variety over the non-archimedean field C..t//. Then
we have a continuous map from the Berkovich spectrum of the C..t//-analytic
space .Y 0/an to Sk.Y 0/. It is a non-archimedean n-dimensional torus fibration in
the sense of [31], Sect. 4 (see also [35]) outside of the codimension � 2 subset
of Sk.Y 0/. Hence it defines a Z-affine structure outside of this subset (see [31],
Sects. 4.1, 6.6 for more details). Since our variety was in fact defined over C (i.e.
the corresponding family is constant with respect to the parameter t), we see that
the Z-affine structure is in fact linear (i.e. it is a vector structure).

Let us return to our integrable system. Now for a point b 2 B0 which does
not belong to walls we define a valuation �b on R by taking the pull-back of the
valuation on Laurent series on the completed algebra of functions on the torus
given by the formula val.

P

 c
e
 / D minfYb.
/jc
 ¤ 0g. We expect that the

corresponding map � W B0 � fwallsg ! Sk.X_;˝X_/ extends to walls giving the
desired ZPL map ofB to the skeleton. We keep the same notation � for the extended
map. One can hope that it is a homeomorphism.

6.6 Relation to Chains of Lines

Suppose we have a polarized complex integrable systems with central charge
and a holomorphic Lagrangian section. Adding the parameter � 2 C� to the
considerations of the previous subsection we obtain a local systemX_� of symplectic
algebraic quasi-affine varieties endowed with algebraic volume forms ˝X_

�
(notice

that since 
0 D f0g there is no difference between X_� and X_;alg
� ). By functoriality
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of the skeleton we obtain a local system of skeleta Sk.X_� / WD Sk.X_� ;˝X_

�
/. The

symplectomorphism T W X_1 ! X_1 gives rise to a ZPL map T W Sk.X_1 / !
Sk.X_1 /.

For any point b 2 B0 we have a map  b WCR2 � f0g D eC� ! Sk.X_1 / � f0g
such that the deck transformation log � 7! log �C 2�i of the universal coveringeC�
goes to the automorphism T . Namely,  b.log �/ is defined as the image of the point
b 2 B0 under the above-defined map � for the polarized complex integrable system
.X; !

2;0

�
/ ! B (we identify Sk.X_� / with Sk.X_1 / using the holonomy of the local

system of skeleta over C�).
This map is piecewise linear with respect to the natural affine structure on

CR2 � f0g. Let us assume we have chosen a very good compactification ofX_1 . Then
it defines a Z-linear structure on Sk.X_1 / with conical singularities in codimension
� 2. It follows that for generic b 2 B0 the image of  b is disjoint from the locus of
singularities of the Z-linear structure. We will assume that this is the case. Moreover
we are going to assume that the point  b.0/ D  b.log 1/ does not belong to the
locus of nonlinearity of the ZPL map T W Sk.X_1 / ! Sk.X_1 / in the above Z-
linear structure (it suffices to assume that  b.0/ does not belong to any rational
hyperplane).

Consider the image under the map  b of the set flog �j0 � jIm log �j � 2�g.
This is the fundamental domain for the natural Z-action on the universal covering
QC�. We will make the following assumption.

Monodromy Assumption. Let f .t/; t 2 Œ0; 1� be a path t 7! log � D 2�it.
Then the holonomy of the Z-linear structure from f .0/ to f .1/ coincides with the
map on the tangent spaces induced by T .

Notice that the tangent map d b can be thought of as an R-linear map C !
T Z
 b.log �/;Sk.X_

1 /
˝ R WD 
 _ b.log �/ ˝ R in the obvious notation. Dualizing we obtain

an R-linear map Z b.log �/ W 
 b.log �/ ! C. The Monodromy Assumption implies
that after the identification 
 b.0/ D 
 b.2�i/ induced by the holonomy of the Z-
linear structure, the transformation T identifies the “central charges” Z b.0/ and
Z b.2�i/.

The image of the restriction of  b to the fundamental domain is compact
modulo the natural global action of the group R>0 on Sk.X_1 / � f0g. Hence we
can cover an open neighborhood of the image by a chain of rational convex
polyhedral cones, which are disjoint from the locus of singularities of the Z-
linear structure. Furthermore, we can shrink the cones and sequence of cones
C1; : : : ; CmC1; CmC1 D T .C1/ such that after the identification of C1 and CmC1 by
T we obtain an admissible wheel of cones (cf. Sect. 5.4, condition (h)). Arguments
here are similar to those in the proof of Proposition 5.3.2. This change of the
collection of cones can be interpreted in terms of a sequence of blow-ups and
blow-downs at toric strata of a toric-like compactification of X_1 . Hence in a certain
toric-like compactification of X_1 we obtain a chain of lines as in Sect. 5.4. We also
expect that in our situation there is a natural choice of the additional data needed for
obtaining a decorated formal Poisson scheme (see Definition 5.2.2).
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The above considerations can be generalized to the semipolarized case.
Recall that construction of Sect. 5.4 gives rise to certain stability data of algebro-

geometric origin on the graded Lie algebra g
�
0 . The above considerations relate
that construction to Mirror Symmetry.

6.7 Extension to � D 0

Suppose we are given a polarized complex integrable system � W .X; !2;0/ ! B

endowed with a holomorphic Lagrangian section s W B ! X . Let 
 ! B0 be
the corresponding local system of lattices over the complement to the discriminant.
Suppose we are given a class ˇ 2 H1.B0; 
 _ ˝ .R=2�Z// which comes from
the class ˇX 2 H2.X;R=2�Z/ which vanishes on s.B/ and on fibers of � . Let us
consider the holomorphic family of the Fukaya categories F .X;Re.!2;0=�/;B D
Im.!2;0=�/ C ˇX/. Then mirror duals X_� ; � 2 C� form a holomorphic family of
symplectic algebraic varieties over C. We denote the holomorphic symplectic form
on X_� by !X_

�
.

Definition 6.7.1. Dual integrable system is a complex integrable system Y ! B

such that its restriction to B0 is obtained by:

a) taking dual abelian varieties to fibers of �;
b) replacing (a) by the torsor corresponding to ˇ.

Notice that the definition of the dual integrable system does not depend on a
choice of polarization. The dual to a polarized integrable system is not polarized in
the proper sense. It is “fractionally polarized”, i.e. the corresponding cohomology
class is rational, and its positive integer multiple gives a polarization. The above
definition is not quite satisfactory since we ignore the discriminant locus B � B0.

Notice that there is a holomorphic Lagrangian section B0 ! Y of the dual
integrable system. Let us assume that it extends to the section B ! Y .

Conjecture 6.7.2. The above familyX_� of mirror duals endowed with holomorphic
symplectic forms �!X_

�
extends to � D 0 holomorphically in such a way that the

fiber at � D 0 is holomorphically symplectomorphic to the total space of the dual
integrable system.

In a similar way we can consider the case of semipolarized integrable system
� W X ! B with central charge, holomorphic Lagrangian section (in order to relate
our considerations to DT-invariants we can take ˇ D Bcan). In that case we start with
mirror duals to the integrable systems XZ0=� ! BZ0=� , where Z0=� 2 Hom.
0;C/
is fixed, and then combine them into a local system of complex Poisson manifolds
X_� endowed with holomorphic Poisson maps to Hom.
0;C/. Recall that by
Conjecture 6.3.2 the manifoldsX_� are expected to be pull-backs via the exponential
map Hom.
0;C/! Hom.
0;C�/ of Poisson algebraic varieties defined over Z and
fibered over Hom.
0;C�/. Then the above conjecture is formulated such as follows.
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Conjecture 6.7.3. The local system of Poisson manifolds X_� over C� extends
holomorphically (after rescaling the Poisson structure by 1=�) to � D 0. This
extension is compatible with the Poisson morphism to Hom.
0;C/. Furthermore,
the fiber at � D 0 is the total space of a (fractionally) semipolarized integrable
system Xdual ! B whose restriction to B0 has semiabelian Lagrangian fibers
with abelian quotients which are dual abelian varieties to the corresponding abelian
quotients of fibers of � .

This conjecture gives in particular a mathematical interpretation of the picture of
twistor family for the total space of the Hitchin system proposed in [19].

Two conjectures below are formulated for simplicity in the polarized case. There
are versions of them in the case of semipolarized integrable systems with central
charge and holomorphic Lagrangian section.

Conjecture 6.7.4. Let us fix a point b 2 B0 in the base of a complex integrable
system � W X0 ! B0 with abelian fibers endowed with a complex Lagrangian
section B0 ! X0. Let us fix a point ei� 2 S1 such that the pair .ei� ; b/ does not
belong to the wall inM D S1�B0. Then the constant family of complex symplectic
manifoldsX_

tei�
over an open ray l� D R>0e

i� can be extended to a C1 family over
the closed ray R�0ei� in such a way that the fiber at t D 0 is a real integrable system
over Sk� . Here Sk� is the skeleton of .X0/_

�Dei� .

Conjecture 6.7.5. For any ei� 2 S1 the corresponding Sk� is ZPL-manifold
isomorphic to B which is endowed with the affine structure derived from the
symplectic form Re.e�i�!2;0/ on X0.

Let us discuss their relationship of the Conjectures 6.7.4, and 6.7.5 with the
Conjecture 6.7.3 which predicts holomorphic extension at � D 0 of the local system
of holomorphic Poisson manifoldsX_� . Assuming such an extension let us consider
a holomorphic section � 7! f .�/ of the extended family over a small disc j�j < ".
Let us assume that f .0/ 2 ��1.B0/. Then the restriction of f to l� gives rise
to a real analytic path f�.t/ in X_

ei�
. Recall that there is an analytic cover map

X_� ! X
_;alg
� , where the latter is (again conjecturally) a quasi-affine algebraic

variety over Q.

Conjecture 6.7.6. For generic � the analytic path f� define a valuation val� on the
algebra O.X_;alg

ei�
/. This valuation depends only on the projection of f .0/ to B0 and

defines a point in Sk� . After a continuous extension to B we obtain in this way a
homeomorphismB ' Sk� for any � .

The monodromy of the local system of skeleta Sk� around S1 is given by the
ZPL-automorphism T discussed before in Sect. 6.6. In terms of chains of lines this
means that there is a finite decomposition [1
k
mC1Vk D S1 in the union of strict
semiclosed sectors such that two consecutive ones have a common ray, and such that
the limiting points at t D 0 of the above analytic paths f�.t/ are the same as long
as ei� 2 Vk . Furthermore, on the intersection V1 \ VmC1 we have an identification
of the corresponding skeleta given by the automorphism T 1;mC1.
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7 Wall-Crossing Structures and DT-Invariants
for Non-compact Calabi–Yau Threefolds

There is a class of non-compact Calabi–Yau threefolds which gives rise to complex
integrable systems with central charge (and hence to the corresponding wall-
crossing structures). Such Calabi–Yau manifolds admit compactifications by a
normal crossing divisor where the holomorphic volume form has poles of degree
at least one (such a variety is not a log CY since we allow poles of order strictly
bigger than one). This class of “good” Calabi–Yau threefolds include those of the
type fuv C P.x; y/ D 0g where P.x; y/ is a polynomial such that the equation
P.x; y/ D 0 defines a smooth affine curve. Presumably this class includes non-
compact Calabi–Yau threefolds associated with Hitchin systems (possibly with
irregular singularities) for all gauge groups generalizing [12].

7.1 Deformation Theory of Non-compact Calabi–Yau
Threefolds

Let X be a complex projective variety of complex dimension 3, and D D [iDi �
X be a normal crossing divisor such that algebraic variety X WD X � D has
a nowhere vanishing top degree form ˝

3;0
X which extends to X with poles of

order ni � 1 on Di . We will also fix an ample line bundle L on X which
defines a projective embedding of X . In this subsection we are going to discuss
the deformation theories related to the pair .X;D/ or the triple .X;D;L / (later we
will see that these deformation theories are equivalent, see Proposition 7.1.3). We
impose the following assumptions which will later guarantee that the global moduli
stack M.X;D;L / of deformations will be a smooth orbifold :

A1 H2;0.X/ D 0.
A2 There exists a component Di0 such that ordDi0˝

3;0
X � 2 and such that the

restriction homomorphismH1.X;Z/! H1.Di0 ;Z/ is an isomorphism.

Loosely speaking we are going to consider deformations ofX which preserve the
isomorphism class of the restriction of the ample line bundle LjDi0 (see Assumption
A2) as well as some “decoration” ofD, which consists of jets of order ni �1 at each
Di for which ni D ordDi˝

3;0
X > 1 (we skip a more precise formulation of the latter

condition).
We will see that the Assumption A2 implies that the deformed varieties carry

.3; 0/-forms with same orders of poles at the deformed smooth components Di .
The conditionKX D �

P
i niDi is preserved under deformations.

Let us now describe precisely the corresponding moduli problems. We will work
in analytic topology. Let TX;D WD TX;D;˝3;0

X
be the sheaf of holomorphic vector fields

onX satisfying the property that the contraction of such a vector field with˝3;0
X has
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poles of order 1 on each Di (i.e. the contraction is a logarithmic form). Then TX;D
is a sheaf of Lie subalgebras of the sheaf of graded Lie algebras of polyvector fields
�X;D (here k vector fields are placed in degree 1�k for k D 0; 1; 2; 3) which satisfy

the property that their contractions with ˝3;0
X are logarithmic forms. Recall that a

sheaf ofL1-algebras over a field of characteristic zero (e.g. Lie algebras or DGLAs)
gives rise to the corresponding formal deformation theory (see e.g. [29,37]). We will
denote the formal moduli space associated with an L1-algebra g by Mg.

Let us consider the following deformation theories:

(a) The one associated with the DGLA g0 D R
 .X; TX;D/. These are deforma-
tions of the pair .X;D/ preserving certain decoration onD.

(b) The one associated with the differential graded Lie algebra (DGLA for short)
g1 D R
 .X;�X;D; div

˝
3;0
X
/, where div WD div

˝
3;0
X

is the divergence operator

associated with the holomorphic volume form ˝
3;0
X . This deformation theory

does not have a straightforward geometric interpretation.
(c) The one associated with the DGLA subalgebra

g2 D R
 .X; TX;D
div

˝
3;0
X�! OX;D/:

These are deformations of the pair .X;D/ preserving the same decorations as in
a), but also this time preserving the section .˝3;0

X /�1 of the anticanonical bundle
�KX .

Here OX;D is the sheaf of functions onX such that being multiplied by˝3;0
X they

have pole of order at most one at D (i.e. they are degree zero polyvector fields from
�X;D).

Proposition 7.1.1. The moduli space Mg1 is naturally isomorphic to a formal
submanifold of the formal neighborhood of 0 2 H3.X;C/. The moduli space Mg2

is a formal submanifold of Mg1 .

Proof. DGLA g1 maps quasi-isomorphically to a DGLA

g01 WD R
 .X; .iX!X/�.Sym�.TXŒ1�/Œ�1�; div
˝
3;0
X
//

' R
 .X; .Sym�.TX Œ1�/Œ�1�; div
˝
3;0
X
//:

This follows form the classical result of Grothendieck that the complex of dif-
ferential log-forms on X endowed with de Rham differential embeds quasi-
isomorphically to .iX!X/�.˝�X; ddR/. Similarly the homomorphism of DGLAs

R
 .X; .Sym�.TX Œ1�/Œ�1�; div
˝
3;0
X
//! R
 .Xan; .Sym�.TXan Œ1�/Œ�1�; div

˝
3;0
X
//

relating Zariski and analytic topologies, is a quasi-isomorphism. The embedding
of the abelian DGLA CX Œ2� to the sheaf of DGLAs.Sym�.TXan Œ1�/Œ�1�; div

˝
3;0
X
/
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which maps 1X to .˝3;0
X /�1 is also a quasi-isomorphism. This implies that the

corresponding moduli space is a formal neighborhood of a point in the affine space
H3.X;C/ .

There is an obvious embedding of the complex of sheaves corresponding
to g2 into the one corresponding to g1. We need to check that it induces an
embedding at the level of hypercohomology. Contracting both complexes with˝3;0

X

we convert polyvector fields into logarithmic forms. Then g2 is quasi-isomorphic
to H

�.˝2

X
.logD/ ! ˝3

X
.logD/; d/. By Hodge theory this is embedded into the

hypercohomology H
�.˝�

X
.logD/; d/. Since g1 is quasi-isomorphic to an abelian

DGLA, the same is true for g2, and moreover Mg2 is a formal submanifold of Mg1

(see e.g. [27], Proposition 4.11(ii)). �

Consider the natural L1-morphism g2 ! g0.

Proposition 7.1.2. Under the Assumption A2 this morphism induces an isomor-
phism of the moduli space Mg2 !Mg0 .

Proof. Hodge theory implies that the morphism g2 ! g0 induces an epimorphism
on cohomology. Then it is easy to show that g0 is quasi-isomorphic to an abelian
DGLA (see e.g. [27], Proposition 4.11(iii)). Thus we have a surjection Mg2 !
Mg0 which is a smooth fibration. The tangent space to a fiber is isomorphic to
H0.X;OX;D/. By Assumption A2 it is trivial. This proves the Proposition. �

Now we would like to discuss the formal deformation theory which takes into
account the ample line bundle L .

Let At.L / denotes the sheaf of Lie algebras of infinitesimal symmetries of the
pair .X;L / (Atiyah algebra of L ). It fits into an exact short sequence

0! OX ! At.L /! TX ! 0:

Let us denote by Ati0 .L / the subsheaf of At.L / of infinitesimal symmetries
vanishing at the divisor Di0 from the Assumption A2. Then we have a short exact
sequence

0! OX.�Di0/! Ati0 .L /! TX;Di0
! 0;

where TX;Di0 � TX is a sheaf of vector fields vanishing identically onDi0 . One can
check that TX;D is a subsheaf of TX;Di0 . Let us define a sheaf of DGLAs g3 as the
fiber product of the morphisms

Ati0 .L /! TX;Di0
 TX;D

over TX;Di0 . Then we have an exact sequence of sheaves

0! OX.�Di0/! g3 ! TX;D ! 0:
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The sheaf of DGLAs g3 controls the deformation theory of X (together with
decorations on D) endowed with a line bundle such that the restriction of the line
bundle to Di0 is identified with LDi0

.

Proposition 7.1.3. The natural map Mg3 !Mg0 is an isomorphism.

Proof. There are natural maps to the tangent sheaf TX of both At.L / and TX;D .
The fiber product of these two maps is a sheaf of Lie algebras which we will denote
by AtX;D.L /. Let g4 D R
 .X;AtX;D.L // be the corresponding DGLA. The
moduli space Mg4 is smooth because Mg0 is smooth and there is a formal bundle
q W Mg4 ! Mg0 with fibers which are smooth with tangent spaces isomorphic to
H1.X;OX/ (for that we need the condition h2;0.X/ D 0 which is the Assumption

A1). Restricting AtX;D.L / toDi0 we obtain the map p WMg4 !3Pic.Di0 /L which
is the formal neighborhood of L in the Picard group thought of as the moduli space
of line bundles. This is an epimorphism at the level of tangent spaces since the
map H1.X;OX/ ! H1.Di0 ;ODi0 / is an isomorphism by Assumption A2. The

morphisms p and q give rise to an isomorphism Mg4 'Mg0 �3Pic.Di0/L . Notice
that the fiber of the map p over LjDi0 is isomorphic to the moduli space Mg3 . This
proves the desired isomorphism Mg3 'Mg0 . �

The above propositions imply that there are three canonically isomorphic formal
moduli spaces: Mg3 !Mg0 'Mg2 . The deformation theory associated with g3 is
convenient for the construction below of the global moduli space.

Assume L is an ample bundle. Let us choose N � 1 such L ˝N gives a
projective embedding of X . Then we can consider non-formal deformation theory
corresponding to the above formal deformation theory associated with g3. More
precisely, consider the scheme M 0 which parametrizes the following data:

(1) Smooth projective subvarieties X
0 � Pm�1;m D rkH0.X;L˝N / such that

rkH0.X
0
;O.k// D rkH0.X;L ˝kN/ for all sufficiently large k > 0. We also

assume that X
0

satisfy A1;A2.
(2) Normal crossing divisors D0 D [iD0i � X

0
together with a bijection between

the set of irreducible components of D0 and D.
(3) A chosen holomorphic volume element˝3;0

X 0 onX 0 WD X 0�D0 such that n0i WD
ordD0

i
˝3;0
X 0 D ni .

(4) For components Di with ni � 2 chosen isomorphisms Di ' D0i preserving
stratifications by other divisors as well as an isomorphism[ni�2Di ' [n0

i�2D
0
i

which is required to induce the above isomorphisms of individual divisors.
(5) Chosen isomorphisms O.1/jDi0 ' L˝NjDi0 .
(6) For any i such that ni � 2 and any x 2 Di a chosen isomorphism of the formal

neighborhood of x with the formal neighborhood of the corresponding (see (4))
x0 2 D0i , preserving stratifications by other divisors as well as holomorphic
volume elements, and defined up to the action of the formal completion of the
Lie subalgebra T div

X;D
� TX;D of vector fields with zero divergence. Moreover,

we require that the above formal isomorphisms can be chosen in such a way
that they depend locally algebraically in Zariski topology on x 2 [ni�2Di .
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Remark 7.1.4. The last condition can be formulated in terms of jet spaces.

The scheme M 0 is smooth by the above-discussed formal deformation theory.
The group GL.m/ acts on M 0 with finite stabilizers because 
 .X 0; T

X
0

;D
/ D 0.

Hence the quotient of M 0 by this action is a smooth Deligne–Mumford stack
(orbifold). Let us denote it by M . This will be the base of our complex integrable
system.

Remark 7.1.5. Locally in analytic topology a neighborhood of a point m 2 M

corresponding to .X
0
;D0/ is embedded as a maximal isotropic submanifold in the

Poisson manifoldH3.X 0/ by taking the cohomology class Œ˝3;0
X 0 � (the period map).

The Poisson structure on the third cohomology comes from the observation that
it is dual to Hom.
 0;C/, where 
 0 D H3.X

0;Z/=tors carries an integer skew-
symmetric intersection form.

Also we remark that one can generalize the above considerations by allowing
˝
3;0
X to extend to some componentsDi without zeros and poles.

7.2 WCS and Integrable Systems Associated
with the Moduli Space

By Remark 7.1.5 we see that M carries a local system 
 with the fiber over u 2M
given by H3.X

0;Z/=tors, where X 0 is the corresponding non-compact Calabi–Yau
threefold. The intersection form endows 
 with an integer skew-symmetric form
h�; �i while the period map can be interpreted as a central charge Z W 
 7! R



˝
3;0
X .

It gives rise to a holomorphic family of homomorphisms Zu W 
u ! C; u 2 M ,
so we have a local embedding of M into 
 _u ˝ C such that the image of Z is a
family of Lagrangian submanifolds in symplectic leaves of the Poisson structure
on 
 _u ˝ C dual to the 2-form h�; �i. As we discussed previously, this family of
Lagrangian manifolds is parametrized by the kernel of h�; �i and each Lagrangian
manifold is the base of a complex integrable system.

Proposition 7.2.1. The mixed Hodge structure on H3.X;C/ can have non-trivial
components in H1;2;H2;1;H2;2 only.

Proof. Since X is smooth we have W3H
3.X/ D H3.X/. Hence it suffices to show

that F 3H3.X/ D 0. Recall that the latter space can be defined as H3.R
 .X; 0!
0! 0! ˝3

X
.logD// which is equal to H0.X;˝3

X
.logD// ' H0.X;OX;D/ D 0

since ni0 > 1 by Assumption A2. �

After twisting by the Tate motive Z.1/ we obtain a variation of mixed Hodge
structure. It satisfies all the conditions from Sect. 4.1.2 except of (possibly) the
condition (3) (iii). By general reasons explained there it gives us a complex
integrable system with fibers being semiabelian varieties, a central charge and
holomorphic Lagrangian section. If the positivity condition (3) (iii) is satisfied, then
our complex integrable system is semipolarized.



Wall-Crossing Structures in Donaldson–Thomas Invariants, Integrable Systems. . . 263

Let us now discuss the positivity condition more precisely. The tangent space to
the base of each of the integrable systems is isomorphic to the image ofH1.X;˝2

X
/

in H1.X;˝2
X
.logD//. Then we need positivity of the restriction of the pseudo-

hermitian form on the latter space to the image of the former one. It is convenient
to dualize the above embedding. The dual space can be identified with the image of
the composition

H3.X;D/! H3.X/!H 3.X;˝0

X
! ˝1

X
/;

where H3.X;D/ ' H3.X/� is the cohomology of pair with complex coefficients
and H 3.X;˝0

X
/ D H2.X;˝1

X
/ ' .H1.X;˝2

X
//� since h3;0.X/ D 0 . One

can identify the image of the map H3.X;D/ ! H3.X/ with Ker.H3.X/ !
˚iH3.Di // using the long exact sequence of the cohomology of pair. Using Hodge
decompositions of H3.X/ andH3.Di/ we conclude that the positivity condition is
equivalent to the following

Positivity Assumption A3. For any non-zero differential form ˛ representing

an element of Ker
�
H1.X;˝2

X
/! ˚iH1.Di ;˝

2
Di
/
�

we have
R
˛ ^ ˛ > 0.

Remark 7.2.2. Assumption A3 holds e.g. for the compactification of the total space
of Hitchin system on P1 or in the case of Hitchin systems related to ALE spaces as
in [12].

We recall that having a Kähler metric we can enlarge B0 to the “full” base B
defining the latter as the completion of B0 with respect to the metric. We do not
know how to define the integrable system with the base B , but this is not necessary
for the construction of attractor trees and WCS.

Let us discuss the Assumption A3. The vector space
V2

H3.X;Q/ contains
an element ı which is the Künneth component of the diagonal. Then the vector

space
V2
.W3H

3.X;Q// D Im
�V2

H3.X;Q/!V2
H3.X;Q///

�
contains the

image of ı which we will denote by ı. Then A3 is essentially equivalent to
the claim that ı is non-degenerate and together with the Lagrangian vector
subspace Im

�
H2;1.X/! W3H

3.X;Q/˝ C
�

it defines the hermitian metric with
non-degenerate skew-symmetric part on the ambient vector space

Im
�
H3.X;C/! H3.X;C/

�
:

Since the latter is the tangent space to the base of our integrable system, we conclude
that it carries the Kähler metric.

In order to apply the algorithm of construction of WCS from Sect. 4.6 we also
need a family of cones. It is more natural to discuss that piece of data in the
framework of the Support Property for the DT-invariants of the Fukaya category
of X . But the very existence of the Fukaya category and an appropriate stability
condition is a non-trivial question. We are going to discuss it below.
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7.3 Fukaya Categories for Non-compact Calabi–Yau
Threefolds and Stability Conditions

We start with general remarks. Our definition of WCS is motivated by the theory of
Donaldson–Thomas invariants for the Fukaya category. Namely, for a “good” non-
compact Calabi–Yau threefold X one should have a well-defined Fukaya category
endowed with a stability condition, whose central charge is the period map of the
holomorphic 3-form. As we have already discussed in this section, this should give
us a family of polarized integrable systems whose bases sweep the moduli space of
deformations of X (equivalently, a semipolarized integrable system). The base of
each polarized integrable system is endowed with a Kähler metric. Furthermore, the
theory of DT-invariants from [30, 34] says that tangent spaces of points of the base
should carry strict convex cones (this is equivalent to the so-called Support Property
from [30]). We propose some sufficient conditions for the above picture to be true.
In particular we impose the Assumptions A1–A3 which give part of the desired
structures. In this subsection we discuss the conditions under which the Fukaya
category and a stability condition do exist. This gives additional to Assumptions
A1–A3 sufficient conditions forX to belong to a “good” class. On the other hand we
expect that for any Calabi–Yau threefold X , compact or non-compact, one should
be able to define collections of integers˝u.
/ parametrized by the open subspace in
the moduli space of deformations of X , and which coincide with the DT-invariants
of the Fukaya category of X endowed with an appropriate stability condition in the
case when the latter can be defined.

The content of this subsection is purely motivational.

(1) In order to have a well-defined Fukaya category F .X/ we need to ensure that
holomorphic discs cannot touch the divisorD.

(2) In order to have a stability condition on F .X/ we need to ensure compactness
of the space of special Lagrangian submanifolds (SLAGs) in a fixed homology
class.

Having (1) and (2) we can speak about virtual Euler characteristic of the moduli
spaces of SLAGs, hence to define DT-invariants. They should satisfy the wall-
crossing formulas from [30]. For that we need to ensure the Support Property from
[30].

Suppose we have ensured (2). We claim that the Support Property is satisfied by
the Assumption A2. Indeed we can choose logarithmic forms ˛i ; 1 � i � n on X
which are representatives of a basis in H3.X;R/. Then for points x 2 X which are
sufficiently close to D we have

jj˛i .x/jj � C.˛i /
s
j˝3;0.x/j2
j!1;1.x/j3 ;
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for any 1 � i � n. Here !1;1 is a chosen Kähler form on X , and we take any norm
jj � jj of the functional ˛i .x/. The inequality follows from the fact that the form
˝3;0 has poles of order at least one at any component Di of D, and there exists a
component Di0 where it grows faster. Then considerations from Remark 1 of [30]
can be applied in the non-compact case in the same way as in the compact one.
This gives the Support Property and strict convex cones in WCS constructed in the
previous subsection.

Now we turn to a discussion of (1). Let .X; !/ be a real symplectic manifold,
possibly non-compact. We fix an almost complex structure J which is integrable
outside of a compact subset and compatible with !. In other words, X is a complex
manifold “at infinity” and !.v; J.v//; v 2 TxX defines an almost Kähler form. If
we want the Fukaya category to be Z-graded we ask for a differential form˝X such
that ˝X has type .n; 0/ in the complex structure defined by J and does not have
zeros on X .

In order to ensure that no pseudo-holomorphic discs “go to infinity” one can
impose one of the following sufficient conditions:

(a) There exists smooth proper function f W X ! Œ0;C1/ with the property that
for sufficiently large c > 0 the hypersurface f D c is smooth (i.e. it does
not contain critical points of f ), and the Levy form of this hypersurface is non-
negative (it suffices to require that @@.f / � 0 outside of a compact). The desired
property of pseudo-holomorphic discs follows from the maximum principle.

(b) There is a compact manifoldX containingX and such that outside of a compact
it is an embedding of complex manifolds, and such that D D [iDi WD X � X
is a normal crossing divisor which satisfies the following positivity condition:

if a rational curve C � X contains a smooth component belonging to some Di

then its intersection index with D is non-negative.
If this condition is satisfied then a family of pseudo-holomorphic discs St in X

cannot converge as t ! 1 to a degenerate disc S such that S \ D ¤ ;. Indeed
the intersection index of St with D is zero. The same should be true for S since
the intersection index is a homological invariant. But S must have a component
intersecting some Di with strictly positive index, and possibly other components
which are rational curves belonging toD. Therefore the intersection index of S and
D is strictly positive. This contradiction shows that S cannot exist.

Condition (b) looks weaker than the condition (a) since it deals with rational
curves only. There is a class of examples where both (a) and (b) are satisfied. For
that class the function f is an extension to X of the function

f .x/ D
X
i

ni log

�
1

dist.x;Di /

�
C r.x/;

where D D P
i niDi as a divisor, x 7! dist.x;Z/ is the distance function to a set

Z, and r.x/ is a smooth function on X . Then @@.f / D ˛ �Pi ni ıDi , where ˛ is
a smooth .1; 1/-form on X which is non-negative outside of D, not equal to zero
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on D, and ıDi is the delta-distribution for the component Di . Since the integral of
the LHS is zero for any holomorphic curve in a neighborhood of D, we conclude
that the intersection index of D D P

i niDi with such a curve is non-negative.
Notice also that such a curve does not have to be rational.

Summarizing, if (a) or (b) are satisfied then one can hope that there exists well-
defined Fukaya category F .X; !/.

Now we turn to a discussion of the condition (2), which should lead to a well-
defined count of SLAGs. These considerations are purely heuristic. The idea is
to consider a flow on Lagrangian submanifolds of X defined by the differential
one form �.L/ WD dArg.˝X/jL. The direct computation shows that the function
vol.L/ D R

L
.˝X/jL decreases along the flow (it is the gradient flow with respect to

the L2-metric on differential 1-forms). Stable points of the flow are SLAGs. Thus
in order to achieve compactness of the space of SLAGs it is sufficient to ensure that
there exists a real-valued functionH with the following property:

if a compact Lagrangian L belongs to the set H � c where c is sufficiently big,
then the trajectory of L along the above flow also belongs to the same set.

Reason for that: ifH has a local maximum at x 2 L then a small shift of L along
the flow makes the maximum smaller. We discuss below sufficient conditions forH
to be a desired function. We expect that under some conditions on the volume form
there existsH with the desired property.

Since the above condition is local, one can assume that L is a real Lagrangian
manifold in a flat Kähler vector space with coordinates .zi ; zi /; 1 � i � n given by
zi D zi C

p�1P.z1; : : : ; zn/, where P is a real formal power series which starts
with terms of degree greater or equal than 3.

The top degree form is given by˝ D dz1^: : :^dzn.1CP1
i
n.aiC
p�1bi/ziC

O.z2//, where ai ; bi 2 R.
We are looking for a functionH which can be written as

H D c C
X
i

.Hi zi CHi zi /C
X
i;j

.Hijzi zj CH ijzi zj /C
X

ij

rijzi zj CO.z4/;

whereHij D Hji; rij D rji.

Local expression for Arg˝jL D ˝jL

˝jL
is
P

i bizi � 1
2

P
ij @iij.P /zj , where @ijk

denotes the partial derivative with respect to zi ; zj ; zk .
Normal vector field to L (i.e. the vector field of the flow) is given by

n D .p�1/�1
X
i

bi .@=@zi � @=@zi /

�1
2

X
ij

@iij.P /.@=@zi � @=@zi /:
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One can check that the partial derivative @H=@n D .dH; n/ is non-negative if

X
i

Im.Hi /C 2
X
i

Re.Hii/C
X
i

Re.rii/ � 0:

This inequality can be written in a more invariant way. Notice that the function
log. ˝

dz1^:::^dzn
/ is well-define up to a constant. Therefore its Poisson bracket (with

respect to the Poisson structure given by the Kähler form) is well-defined. Let us
denote by .ci /1
i
n the (non-negative) spectrum of the quadratic formH.2/ defined
by the quadratic part ofH (with respect to the Hermitian metric given by the Kähler
metric). Let � D P

ij @=@zi @=@zi be the Laplace operator defined by the Kähler
metric. Then the sufficient condition looks such as follows:

�.H/C Reflog

�
˝

dz1 ^ : : : ^ dzn

�
;H g �

X
i

ci � 0:

Moreover,if the inequality is strict for sufficiently large values ofH , then all SLAGs
belong to a compact subset of X . One can check that the strictness of the inequality
is not always achieved. A counter example is given by X D C� and ˝ D dz=z.
Then we have infinitely many SLAGs (circles) which “go to infinity” on the
corresponding cylinder. In this case the above inequality becomes an equality. One
can hope that if poles of ˝ at D have order greater or equal than 2, then the above
inequality is strict. In that case one can hope to have a stability condition on the
Fukaya category of X and well-defined count of SLAGs (hence the corresponding
DT-invariants in the case when X is a 3CY manifold).

8 Hitchin Integrable Systems for GL.r/

In this section C will denote a connected smooth projective irreducible curve over
C. Although we are going to discuss Hitchin systems with the gauge group GL.r/,
we hope that our constructions admit generalizations to arbitrary reductive groups.

8.1 Reminder on Non-singular Case

Let us recall some basics on Hitchin systems with non-singular Higgs fields
assuming that the genus of the curve C is bigger than 1. Recall that GL.r/-Higgs
bundle is a rank r vector bundle overC endowed with a morphism� W E ! E˝KC

(equivalently, a morphism TC ! End.E/) called the Higgs field. Here KC D T �C
is the canonical sheaf of C . The moduli space MHiggs.r; d / of stable Higgs bundles
of rank r and degree d on C is the total space of a polarized complex integrable
system. The base B D Q

1
i
r 
 .C;K
˝ i
C / carries a structure of vector space.
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The projection map � W MHiggs.r; d / ! B assigns to a pair .E; �/ a collection
.Tr �;Tr �2; : : : ;Tr �r/ 2 B . This map has the following geometric meaning. Higgs
bundle is the same as a coherent sheafE1 on T �C , which is pure and supported on a
compact curve S � T �C , called the spectral curve of .E; �/. The purity means that
E1 has no non-trivial subsheaves with zero-dimensional support. The direct image
of E1 under the canonical projection T �C ! C is isomorphic to E . Generically
S is smooth and E1 is the direct image of a line bundle on S . For given x 2 C
points of the intersection S \ T �x C correspond to eigenvalues of the linear map �x
understood as an endomorphism of Ex associated with a non-zero tangent vector to
C . The point �.E; �/ 2 B can be thought of as a collection of coefficients of the
characteristic equation p.x; y/ WD det.�x � y 	 idE/ D 0 which defines the spectral
curve S .

We denote by B0 � B the locus of smooth connected spectral curves. The fiber
��1.b/; b 2 B0 is a torsor over the Jacobian Jac.Sb/ of the corresponding spectral
curve Sb . It consists of line bundles on Sb of a certain degree. Therefore B0 can
thought of as a space of smooth connected projective curves S in an open complex
symplectic variety .T �C;!T �C / with the homology class rŒC � 2 H2.T

�C;Z/. Our
integrable system depends on degree d , but the associated integrable system over
B0 with holomorphic Lagrangian section (see Sect. 4.1.1) does not depend on d
and has as fibers Jacobians Jac.Sb/.

The above construction can be generalized. Namely, instead of T �C we can
consider an arbitrary complex symplectic surface Y and smooth compact curves
S � Y . More generally, one can replace Y by a higher-dimensional complex
quasiprojective symplectic manifold (more generally, Kähler manifold) and con-
sider smooth compact complex Lagrangian submanifolds in it. Then B0 is the
analytic space of such Lagrangian submanifolds. One can show that B0 is smooth
(see next subsection). The fiber of the integrable system over the Lagrangian
submanifold L 2 B0 is the Albanese variety Pic0.L/�. Later we are going to
generalize the above picture to the case of singular (possibly irregular) Higgs
fields �.

8.2 Smoothness of the Moduli Space of Deformations
of Complex Lagrangian Submanifolds

The reader can skip this subsection, since its results will not be used in the paper. We
also remark that more general smoothness results in the dg-setting were obtained in
[3]. Nevertheless we present a different approach which has some benefits on its
own.

In order to demonstrate smoothness we need the following result.

Proposition 8.2.1. Let L � X be a compact complex Lagrangian submanifold in
a quasiprojective symplectic manifoldX . Then the moduli space of deformations of
L is smooth (i.e. the deformation theory is unobstructed).
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Proof. The proof will consist of several steps.

Step 1. We start with general remarks about deformations in the case of charac-
teristic zero. If we study the formal deformation theory which is controlled by an
L1-algebra with (possibly) non-trivial cohomology in strictly positive degrees,
then the corresponding deformation functor from the category of Artin algebras
to sets is represented by a pro-Artin scheme, say, Y .
Let us now fix k > 0 and consider the formal deformation theory with the
deformation functor on Artin algebras given by R 7! Hom.Spec.CŒt �=.tk / ˝
R/; Y /. The corresponding moduli space is the formal neighborhood of the map
to the basis point in the formal scheme Hom.Spec.CŒt �=.tk//; Y /. More generally
we can consider any map f 2 Hom.Spec.CŒt �=.tk //; Y / and study its formal
deformation theory, thus getting a formal scheme Yf .
Let us now recall the following result due to Z.Ran (see [42]): Y smooth if and
only if for any k; f the tangent space to Yf at the point f is a free CŒt �=.tk/-
module.

Remark 8.2.2. This tangent space can be identified with space of such maps
Spec.CŒt �=.tk/ ˝ CŒs�=.s2// ! Y that their restriction to Spec.CŒt �=.tk /
coincides with f . The structure of CŒt �=.tk/-module on the tangent space
then comes from the natural action of the monoid CŒt �=.tk/ endowed with the
operation of multiplication. More precisely an element a.t/ of the monoid acts
on CŒt �=.tk/˝ CŒs�=.s2/ as t 7! t; s 7! a.t/s. The proof of Ran’s result in one
direction is straightforward: if Y is smooth then the tangent space to the scheme
Hom.Spec.CŒt �=.tk//; Y / is a free CŒt �=.tk /-module for any k � 1.

Step 2. Another general remark is that for any finite-dimensional Artin algebra R
one can speak about smooth projective varieties over Spec.R/. The degeneration
of Hodge-to-de Rham spectral sequence holds for such varieties. Indeed the de
Rham cohomology forms a free R-module. Hodge cohomology coincides with
de Rham cohomology at the marked point of Spec.R/. Then at the generic point
of Spec.R/ Hodge cohomology can only drop. But this is impossible, because
the spectral sequence implies that the rank of the de Rham cohomology must
also drop, but it is constant.

Step 3.

Lemma 8.2.3. Deformation theory of L as a complex Lagrangian submanifold
coincides with its deformation theory as a complex submanifold.

Proof of Lemma. Suppose R is a finite-dimensional Artin algebra. Consider a
family Ls; s 2 Spec.R/ of complex submanifolds of X . Then the restriction
of the holomorphic symplectic form !

2;0
X to each Ls is a closed 2-form. Let

us assume that it is non-trivial. Then we have a non-trivial family of de Rham
cohomology classes, which is equal to zero at the marked point of Spec.R/. By
Step 2 we arrive to the contradiction, since the family of such cohomology classes
must be constant.
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Step 4. Let us take R D Spec.CŒt �=.tk// and consider a family of complex
Lagrangian submanifolds Ls over Spec.R/ which coincides with the given L
at the marked point. Let us consider their first order infinitesimal deformations
as submanifolds, forgetting the Lagrangian structures. We are allowed to do that
by Step 3. But the first order deformations of a manifold are given by sections of
the normal bundles. Since L is Lagrangian the normal bundle can be identified
with the space of 1-forms on L. Hence the tangent space can be identified with
the space of (global) 1-forms on L � Spec.CŒt �=.tk//. By Step 2 this space does
not jump. This concludes the proof of the Proposition. �

8.3 Hitchin Systems with Irregular Singularities

Typically Hitchin systems on C are studied for at most logarithmic singularities of
the Higgs fields. The irregular case is less developed.

For any point x0 2 C we denote by Kx0 the field of Laurent series at x0, i.e.
Kx0 ' C..t//, where t is a coordinate on the formal disc centered at x0. The
algebraic closure Kx0 is the field of Puiseux series: Kx0 ' [N�1C..t1=N //. The
Galois group Gal.Kx0=Kx0/ is a topological group isomorphic to OZ. Its topological
generator acts on Kx0 as t1=N 7! e

2�i
N t1=N . Denote by OKx0

� Kx0 the ring of

integers, OKx0
' [N�1CŒŒt1=N ��.

Definition 8.3.1. A singular term at the point x0 2 C is an orbit of the Galois action
of OZ on the vector spaceKx0=OKx0

.

In a local coordinate t D x � x0 one can represent a singular term as a finite
sum c D P

�2Q<0
c�.x � x0/� considered modulo the action on coefficients of the

finite cyclic group Z=NZ given by c� 7! c�e
2�i�, where the number N called the

ramification index of the singular term is defined as the minimal N � 1 such that
all exponents � with c� ¤ 0 belong to 1

N
Z.

Definition 8.3.2. An irregular data on a smooth projective curve C is given by a
tuple fxigi2I ; fri;˛g; fNi;˛g; .c˛i /˛2Qi ; r/ where:

a) xi 2 C; i 2 I is a finite collection of distinct points ;
b) r � 1 is an integer number called rank;
c) a finite collection of distinct singular terms c˛i ; ˛ 2 Qi at every point xi ; to each

term we assign the multiplicity ri;˛ � 1, and we require that the singular term
has the ramification indexNi;˛.

We require that for each xi the following identity holds
P

˛ ri;˛Ni;˛ D r .

Remark 8.3.3. In the case of GL.r/-Hitchin system without singularities we can
add dummy marked points xi and set all c˛i D 0 and ri;˛ D r for all marked
points xi .
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Let us compactify T �C to T �C D T �C [ C1 where C1 ' C is the divisor
at infinity. The canonical holomorphic symplectic form !T �C has pole of order 2
at C1. Let us consider various smooth projective surfaces W together with regular
maps f W W ! T �C which are birational. We also demand that the pull-back
!W D f �.!T �C / has only poles but does not have zeros, and such that the
complement to the set of poles of !W is isomorphic (via the morphism f ) to T �C .
Equivalently, such W is obtained by a sequence of blow-ups : : : ! W2 ! W1 !
W0 D T �C , where Wi D Blpi .Wi�1/, and each point pi 2 Wi�1 is either a smooth
point of a divisor in Wi�1 where the form !Wi�1 has pole of order at least 2, or
the point pi is the intersection of two divisors where the form has poles of order
at least 1 (notice that in our case the situation when the orders of both poles are
equal to 1 is impossible). Such surfaces naturally form a projective system. The
set Irr1.f �1.C1// of irreducible components at which the symplectic forms !W
have poles of order 1 forms an inductive system of sets. It is easy to see that the
inductive limit of this system can be identified with the set of singular terms. More
precisely, to a non-zero singular term c represented by a formal germ Oc at x0 2 C
we associate a unique divisorD 2 Irr1.f �1.C1// on an appropriate blow-up, such
that the graph of d Oc intersects the divisor D at smooth point as long as x ! x0. If
c D 0 the corresponding divisor is the exceptional divisor of the blow-up of T �C
at the point .x0/1 2 C1 ' C corresponding to x0.

Given an irregular data .fxi g; fri;˛g; fNi;˛g; fc˛i g; r/ we consider a minimal
surface W as above such that the divisors corresponding to all singular terms are
contained in W . It is easy to see by induction in the number of blow-ups that
all elements of Irr1.f �1.C1// are disjoint smooth rational curves each of which
contains only one double point of the divisor f �1.C1/. The complement to this
double point is an affine line. Thus to a singular term � D .x0; c/we have associated
an affine line, which we will denote by A

1.�/.

Lemma 8.3.4. This affine line carries a naturally defined coordinate (i.e. it is
canonically identified with A

1).

Proof. Consider the 1-form, which is the pull-back of the Liouville 1-form ydx from
T �C . Take any rational curve transversal to A

1.�/. Then the residue of the 1-form
at the intersection point does not change if we vary the transversal curve. Indeed,
by Stokes theorem the comparison of residues reduces to the computation of the
integral of the symplectic form over a two-dimensional chain. The latter can be made
arbitrarily small. Hence the residue is well-defined and gives the desired coordinate.
�
Definition 8.3.5. An additive refined irregular data on C consist of:

a) an irregular data .fxi g; fri;˛g; fNi;˛g; fc˛i g; r/;
b) for any pair of indices i; ˛ a finite subset ˙i;˛ � A

1.xi ; c
˛
i / ' A

1 such that
j˙i;˛j � 1;

c) a map�i;˛ W ˙i;˛ ! fPartitionsg � f0g such that
P

z2˙i;˛ j�i;˛.z/j D ri;˛, where
for a partition � D .�1; : : : ; �k/ we use the notation j�j D �1C2�2C3�3C : : :.



272 M. Kontsevich and Y. Soibelman

We will often skip the adjective “additive” and will speak simply about refined
irregular data. In Sect. 8.4 we are going introduce multiplicative refined irregular
data.

The pair .˙i;˛;�i;˛/ can be thought of as a conjugacy class in gl.ri;˛;C/. More
precisely, ˙i;˛ corresponds to the set of eigenvalues, and the partition �i;˛.z/; z 2
˙i;˛ describes multiplicities of the corresponding Jordan blocks.

In the case of Hitchin system with regular singularities all c˛i D 0, all ri;˛ D r ,
and the above conjugacy classes in gl.r;C/ can be thought of as the conjugacy
classes of the residues of the Higgs field with has poles of order 1 at the marked
points.

With a refined irregular data we are going to associate a pair consisting of a
complex symplectic surface Y which contains T �C as a Zariski dense open subset
and homology class ˇ 2 H2.Y;Z/ (the fundamental class of the spectral curve).

Let us describe the construction. LetW be the above-described smooth projective
surface constructed for a given irregular data. Now we would like to take the
refinement into account. For each pair of indices i; ˛ and any z 2 ˙i;˛ � A

1 WD
A
1.xi ; c

˛
i / � W we will make a sequence of blow-ups ofW starting with the blow-

up at z. More precisely, let Di;˛ be the closure of A1. We consider a sequence of
blow-ups such that the center of each blow-up is a point on the strict transform
of Di;˛ corresponding to the point z. The number of elements in the sequence of
blow-ups is maxfkj.�i;˛.z//k ¤ 0g, where .�/k denotes the k-th component of the
partition �.

We denote by Y the resulting projective surface. The complement to the divisor
of poles of the holomorphic symplectic form is denoted by Y . If the irregular
data is non-empty then Y is strictly bigger than T �C , since it contains a chain
E1;i;˛;z; E2;i;˛;z; : : : of rational curves associated with triples .i; ˛; z/; z 2 ˙i;˛ . Here
E1;i;˛;z are exceptional divisors of the blow-ups at which the symplectic form is
regular. The numeration is chosen in such a way that E1;i;˛;z appears at the first
blow-up in case if at least one c˛i is non-zero. If all c˛i D 0 and z is the intersection
of the closure of vertical fiber T �xi C with an appropriate component of the divisor
W � T �C we add to the chain the closure T �xi C and call it E1;i;˛;z.

We illustrate the above discussion by the figure below. Notice that the numbers
0; 1; 2; 3 on the figure refer to the order of poles of the symplectic 2-form. The
figure contains divisors (and their intersection points) obtained at all steps of our
sequence of blow-ups. In order to see the final diagram of them, one should keep
all the divisors on the figure as well as only those intersection points which can be
reached from the “southwest corner” without crossing lines.
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The homology class ˇ 2 H2.Y;Z/ is uniquely determined by the following
intersection indices:

(a) ˇ 	 ŒEk;i;˛;z� D .�i;˛.z//k 2 Z�1;
(b) for generic x 2 C we require ˇ 	 ŒT �xi C � D r .

Now, having Y and ˇ we construct the integrable system in the natural way
explained in the end of Sect. 8.1. The base B consists of compact effective divisors
in Y of class ˇ. We call those divisors irregular spectral curves (cf. [4] in the non-
refined case). We will assume that the subspace B0 � B of smooth connected
curves is nonempty. This assumption seems to be satisfied almost always, e.g. in
case when the genus g.C / > 0 or in case if g.C / D 0 and Hitchin system with
regular singularities, provided the additive Deligne–Simpson problem (see e.g. [38])
has a solution.

The fiber over b 2 B0 is the Jacobian of the spectral curve Sb. The corresponding
complex integrable system is polarized and has a holomorphic Lagrangian section
(zero section). One can also consider a version of this construction, when one takes
as fibers the torsors over the Jacobians parametrizing line bundles of a given degree
d 2 Z. In this case the corresponding integrable system does not have in general a
Lagrangian section.

In the case when all partitions are of the type .1/ (i.e. j�i;˛.z/j D 1 for all i; ˛,
which is an analog of Hitchin system with regular singularities and semisimple
monodromy) we extend the above integrable system to a semipolarized one by
varying points z 2 ˙i;˛ . The projection of any smooth spectral curve to W is a
smooth curve intersecting transversally the divisor of 1-st order poles of !W . The
lattice 
 can be identified with the integer first homology of the punctured spectral
curve (punctures are intersection points with the preimage of the curve C1). This
is an example of the integrable system associated with a log-family of Lagrangian
subvarieties (in this case curves) in the cotangent bundle (see [28]). In Sect. 8.4.
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below we are going to describe an analog of the above construction in the case
when the restriction j�i;˛.z/j D 1 on the partitions is dropped.

Proposition 8.3.6. The base of the integrable system associated with refined
irregular data is an affine space.

Proof. Consider a unique line bundle L ! Y which is trivialized on C1 and
such that c1.L / D ˇ. More precisely we require that P:D:.c1.L // D .iY!Y /�.ˇ/
where iY!Y is the natural embedding and P:D: denotes the Poincaré dual. Then the
restriction of L to Y � Y is trivial and trivialized. Consider the space of sections
s 2 
 .Y ;L / such that sjY�Y D 1. This is an affine space. On the other hand it can
be identified with the base B by taking the divisor of zeros of s. This proves that B
is an affine space. �.

Example 8.3.7. In case of GL.r/-Hitchin system with logarithmic singularities
and semisimple monodromy the above construction can be also described such as
follows.

The base of the corresponding polarized integrable system is obtained via the
above-described procedure. We make blow-ups at all .xi /1 2 C1 corresponding
to xi 2 C ' C1. For each 1 � i � n we fix r distinct points on the exceptional
divisorDi ' A

1 corresponding to the eigenvalues of the residues of the Higgs field
at xi .

Let us consider curves˙ in Y which satisfy the following properties:

a) ˙ intersects each Di with the multiplicity 1 at each of the chosen r marked
points.

b) ˙ intersects each vertical fiber of T �C with intersection index r .
c) ˙ does not intersect the preimage of C1 under the blow-up.

The space of such curves forms an affine space which is the base of our Hitchin
system. The total space of the latter is birational to the twisted cotangent bundle to
the moduli space of vector bundles BunGL.r/;x1;:::;xn on C endowed with a choice of
a full flag at each point xi . The parameters of the twist correspond to eigenvalues of
the residues of Higgs fields at the marked points. We consider only the stable locus
in the moduli space of Higgs bundles with logarithmic singularities.

In case when we do not mark points on Di; 1 � i � n (i.e. we do not fix the
eigenvalues) we obtain a log family of spectral curves as in [28] which forms the
base of a semipolarized integrable system.

8.4 The Betti Version

Recall that Zariski open part B0 � B can be identified with the set of possible
irregular data for which the corresponding spectral curve is smooth. Recall that
an irregular data includes points z 2 ˙i;˛ representing eigenvalues of the residue
of the Higgs field at marked points xi . Let us vary each point z along the affine
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line where it naturally belongs in such a way that different points do not coincide.
Morally this variation corresponds to adding the local system 
 0 to the picture
(indeed fixing the eigenvalues of the monodromy as well as singular terms at marked
points corresponds to a choice of symplectic leaf). In this subsection we are going
to discuss the Betti version of the story (cf. also [4]).

Let us recall the formal classification of irregular connections over the formal
punctured disc or, equivalently, over the field K WD C..t//. Let E be an r-
dimensionalK-vector space endowed with a connection r W E ! E ˝˝1

K . Then
as a D-module .E;r/ admits a canonical decomposition

.E;r/ ' ˚˛.Ec˛ ;rc˛ /

over a finite collection of singular terms .c˛/. We denote the ramification index
of c˛ by N˛. More precisely the above decomposition can be described such as
follows. For each ˛ let us choose a representative c˛ 2 C..t1=N˛ // of the singular
term c˛ . Then each D-module .Ec˛ ;rc˛ / is isomorphic to the direct image of the
canonical N˛-covering Spec.C..t1=N˛ /// ! Spec.C..t/// of the D-module which
is the tensor product of a vector bundle of rank r˛ endowed with a connection with
regular singularities and a rank one D-module Mc˛ , which is also a vector bundle
with a connection r˛ , such that the generator m˛ 2 Mc˛ satisfies the condition
r˛.m/ D m˝ d.c˛/. We also have r DP˛ r˛N˛.

Let C be a smooth projective curve with marked points xi ; 1 � i � n and .E;r/
be an algebraic vector bundle with connection on the punctured curveC�fxi g1
i
n.
Let us choose a formal coordinate at each point xi . Then the formal expansions
of .E;r/ at the marked points give rise to a collection of singular terms .c˛i / as
well as to a collection of positive integers ri;˛; Ni;˛ derived from the above formal
classification. In this way we obtain the canonical irregular data associated with
.E;r/ (it is canonical in the sense that it does not depend on the choice of formal
coordinates at the marked points).

Irregular Riemann–Hilbert correspondence gives a topological description
(“Betti side”) of the complex analytic stack of algebraic vector bundles with
connection with prescribed irregular data (“de Rham side”). Namely with the
pair .E;r/; rkE D r we associate a local system of rank r (i.e. a locally constant
sheaf in analytic topology) on C � fxi g1
i
n endowed with the so-called Stokes
structure. The local system consists of analytic germs of flat sections of .E;r/. We
are going to recall the notion of Stokes structure on C following [27]. It describes
the local picture on a general curve C .

For any marked point xi and a generic ray xi C "ei' for sufficiently small " > 0
we have a filtration of the local system of flat sections by the exponential growth of a
section restricted to the ray. Terms of the filtration can be identified with intersection
points of our ray with the closed real analytic curve

� 7! exp.Re.c˛i .xi C "ei�///ei� ;

i.e. when � D '.
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Those filtrations are subject to the conditions described in [27]. They are called
a Stokes structure at xi . In particular, normalization of each curve is a circle S1xi ;˛
with the winding number about xi equals to Ni;˛. On the union [˛S1xi ;˛ we have
the associated graded local system. The rank of this local system is ri;˛. Collection
of Stokes structures for all points xi ; 1 � i � n is called the Stokes structure for
.E;r/.

Let us fix an irregular data. Then the result of Malgrange [39] says that there
is a one-to-one correspondence between algebraic connections on C � fxi g1
i
n
producing our irregular data and local systems on C � fxi g1
i
n endowed with the
Stokes structure with the singular terms and discrete parameters ri;˛; Ni;˛ derived
from the irregular data.

Recall that in Sect. 8.3 we also defined refined irregular data for the moduli space
of Higgs bundles (“Dolbeault side”). Now we would like to introduce a similar
notion on the Betti side.

Definition 8.4.1. Multiplicative refined irregular data are defined exactly in the
same way as additive irregular data with the only change that ˙i;˛ � C� � C D
A
1.C/.

A local system endowed with a Stokes structure defines a multiplicative refined
irregular data. Namely, the set ˙i;˛ is defined as the set of eigenvalues of the
auxiliary local systems on circles S1xi ;˛ and the partitions correspond to the sizes
of Jordan blocks.

Definition 8.4.2. Let us fix a multiplicative refined irregular data � on C . Denote
by MBetti.�/ the Artin stack over C of local systems of rank r on C � fxi g1
i
n
endowed with Stokes structure and such that the corresponding multiplicative
refined irregular data coincides with � (in particular the rank of the local system
on S1xi ;˛ is equal to the number ri;˛ from �).

We denote by M simp
Betti .�/ the algebraic space over C of isomorphism classes of

objects of MBetti.�/ which are simple as objects of the abelian category of local
systems endowed with Stokes structure. Equivalently, the corresponding holonomic
D-module on C � fxi g1
i
n is simple. The space M simp

Betti .�/ is smooth. By analogy
with the case of regular singularities we expect that it carries a symplectic structure.
Moreover we expect that it is a quasi-affine scheme. In order to explain the
latter point it is convenient to consider a larger Artin stack M 0Betti.�/ obtained by
weakening of some conditions in the definition of MBetti.�/. Recall that in the
definition of MBetti.�/ we required that the monodromies of local systems along
the circles S1xi ;˛ belong to certain conjugacy classes Ci;˛ WD Ci;˛.�/ � GL.ri;˛;C/.
In the definition of M 0Betti.�/ we relax this condition and say that the monodromies
belong to the closures C i;˛.

Let us denote byM coarse
Betti .�/ the affine scheme Spec.O.M 0Betti.�///.

Question 8.4.3. Is M simp
Betti .�/ an open subscheme of M coarse

Betti .�/?

Positive answer will imply thatM simp
Betti .�/ is a quasi-affine scheme.
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Here are some arguments in favor the positive answer to the Question 8.4.3 in
the case of regular singularities. First we observe that there are many functions on
M 0Betti.�/ given by traces of holonomies along closed loops. We claim that the sizes
of Jordan blocks of monodromies around points xi can be also detected. Let us
illustrate the claim by an example. Let y 2 C � fxi g1
i
n be a base point. Then
our local system gives rise to an r-dimensional representation � of the fundamental
group �1.C � fxig1
i
n; y/. Let us assume for simplicity that for some point xi0
the monodromy �.li0/ is unipotent of order k � 1, where li0 is a based loop which
is freely homotopic to a small loop surrounding xi0 . Then .�.li0/� id/k D 0. Hence
Tr
�
�.li0/ � id/k�.l/

� D 0 for any l 2 �1.C � fxi g1
i
n; y/. This equation gives
identities between traces of monodromies. Similar considerations can be applied toVi

�; 1 � j � k. In this way we recover information about sizes of Jordan blocks.
We expect that similar arguments work in general case.

The conclusion is that conjecturally for each multiplicative refined irregular data
� we have a smooth symplectic quasi-affine varietyM simp

Betti .�/. This variety depends
on continuous parameters which are eigenvalues of monodromies on S1xi ;˛ . Let us
allow the eigenvalues to vary in such a way that they do not coincide. The total
space should be a Poisson manifold. We can also enumerate the eigenvalues in the
following way.

Definition 8.4.4. A combinatorially refined irregular data is an irregular data
endowed with a collection of integers si;˛ � 1 and a collection of maps �i;˛ W
f1; : : : ; si;˛g ! fPartitionsg � f0g such that

P
1
j
si;˛ j�i;˛.j /j D ri;˛.

For a given combinatorially refined irregular data � we construct a larger moduli
space M simp;en

Betti .�/ (enumerated version of M simp
Betti .�/) whose set of C-points is the

disjoint union ofM simp
Betti .�/.C/, over the set pairs .�; f /; f D .fi;˛/, where each fi;˛

is a bijection ˙i;˛ ' f1; : : : ; si;˛g. Here we assume that the map �i;˛ ı f �1i;˛ D �i;˛
where �i;˛ are the maps from the definition of the combinatorially refined irregular
data � .

It is easy to see that the space M simp;en
Betti .�/ is fibered over the hypersurface

HBetti.�/ in
Q
i;˛..C

�/si;˛ �Diag/ given by the equation

Y
i;˛

Y
1
j
si;˛

�
ri;˛;j
i;˛;j D .�1/

P
i;˛.Ni;˛�1/ri;˛ :

This equation comes from the fact that the product of determinants of monodromies
around marked points xi is equal to 1. The appearance of the factor of �1 in the
RHS is due to the presence of coverings in the definition of Stokes structure.

Question 8.4.5. Is M simp;en
Betti .�/ a smooth Poisson quasi-affine scheme, with the

space of symplectic leaves identified with HBetti.�/?

We have not discussed above the origin of the symplectic structure on M simp
Betti .�/

(hence the Poisson structure on M simp;en
Betti .�/). The case of semisimple monodromy

and Laurent series (i.e. no fractional powers appear) was studied in [4].
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One can also define an affine scheme M coarse;en
Betti .�/ � M simp;en

Betti .�/ endowed with
a surjective map to the complex torus H Betti.�/ which is the closure of HBetti.�/ in
the ambient torus (in other words it is a shifted subtorus in

Q
i;˛.C

�/si;˛ given by the
above equation).

In order to define M coarse;en
Betti .�/ let us consider the moduli stack M 0;en

Betti.�/ of
the following structures: local systems on C � fxi g1
i
n endowed with the Stokes
structure and decompositions of the associated local systems on S1xi ;˛ into the direct
sums labeled by j; 1 � j � si;˛ . For each direct summand the monodromy has only
one eigenvalue �i;˛;j 2 C�. The unipotent part of the monodromy is dominated by
the partition �i;˛.j /. The latter means that the conjugacy class of the unipotent
part of the monodromy belongs to the closure of the unipotent conjugacy class
corresponding to �i;˛.j /. Finally we define M coarse;en

Betti .�/ WD Spec.O.M 0;en
Betti.�///.

The main point of this definition is to allow the eigenvalues �i;˛;j to coincide for
different values of j .

Remark 8.4.6. 1) The spaceM coarse;en
Betti .�/ seems to be an analog ofX -variety in the

theory of cluster varieties. Presumably one can also define an analog ofA-variety
(see [17]).

2) Rescaling c˛i 7! c˛i =�; � 2 C� gives rise to non-linear local systems over C� of
all versions of MBetti. Taking the fiber over � D 1 we see that it is endowed with
an automorphism given by the monodromy. This automorphism corresponds to
the Coxeter automorphism in the theory of cluster algebras.

8.5 Semipolarized Irregular Systems

First we would like to describe an additive analog M sm;irred;en
Dol .�/ of the space

M
sm;en
Betti .�/. Here the notation sm; irred means smooth, irreducible correspondingly

and refers to spectral curves. Let us comment on the notation. Suppose that the
genus g.C / > 1, and we are dealing with regular Hitchin system (i.e. there are no
marked points and the irregular data is empty). Then by Corlette–Simpson result
there is a one-to-one correspondence between simple local systems on C and stable
Higgs bundles of degree zero. Recall that Higgs bundles can be identified with
coherent sheaves on T �C with pure one-dimensional compact support. Under this
identification line bundles of a certain degree give a Zariski open subset in the
moduli space of stable Higgs bundles of degree zero. This observation motivates
our notation in the general case.

Recall (see Sect. 8.3) that with an (additive) refined irregular data � we can
associate a complex integrable system with central charge and zero section. Strictly
speaking we consider only an open part B0.�/ of the base consisting of smooth
irreducible spectral curves in the surface associated with � . Fibers are Jacobians
of spectral curves. Part of the refined irregular data consists of sets of points
˙i;˛ � A

1.xi ; c
˛
i /. In the case of Hitchin systems with regular singularities they

are eigenvalues of the residues of the Higgs field at marked points.
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Let us fix a combinatorially refined irregular data � . Similarly to the case of
M

simp;en
Betti .�/ we define the moduli space M sm;irred;en

Dol .�/ by allowing enumerated
points z D zi;˛;j 2 ˙i;˛ to vary along the corresponding affine lines A1.C/ D C in
such a way that they do not collide. The resulting space M sm;irred;en

Dol .�/ is the total
space of a family of polarized integrable systems parametrized by the hypersurface
HDol WDHDol.�/ in

Q
i;˛.C

si;˛ � Diag/ singled out by the equation

X
i;˛

X
1
j
si;˛

zi;˛;j ri;˛;j D 0:

This equation follows from the condition that sum of the residues of the Liouville
form restricted to the spectral curve vanishes.

Denote by B0 D B0.�/ the total space of the fibration over HDol whose fibers
are bases of the above polarized integrable systems. The projection p W B0 !
HDol is a smooth morphism of smooth algebraic varieties. Fiber p�1.h/; h 2 HDol

can be identified by the previous considerations with the moduli space of smooth
irreducible spectral curves in the appropriate surface Y D Y .h/. We will construct
a local system of lattices 
 ! B0 endowed with a covariantly constant integer
skew-symmetric pairing h�; �i W V2


 ! ZB0 and a central charge Z W 
 !
Oan
B0

in such a way that we obtain a semipolarized integrable system with central
charge. Moreover the local system 
 0 WD Ker h�; �i will be trivial, i.e. 
 0 ' 
0 ˝
ZB0 , where 
0 is a fixed lattice. The restriction Zj
 0 will be identified with the
composition B0 !HDol ,! Hom.
0;C/.

Let us explain how to define the dual local system 
 _ and the central charge.
Recall that an irregular spectral curve S contains pairwise disjoint effective divisors
Di;˛;zi;˛;j , where degDi;˛;zi;˛;j D j�i;˛.zi;˛;j /j D j�i;˛.j /j. These divisors are
intersections of S with the chain of rational curves Ek;i;˛;zDzi;˛;j defined in Sect. 8.2.

Then we define the fiber of 
 _ over S as the abelian group of 1-chains on
S whose boundaries are Z-linear combinations of divisors Di;˛;zi;˛;j considered
modulo the boundary of 2-chains. Clearly the abelian groups depend continuously
on parameters and hence define a local system. Also for any b 2 B0 we have a short
exact sequence

0! H1.Sb;Z/! 
 _b ! 
 _0 ! 0;

where


 _0 D Ker.f W ˚i;˛Zsi;˛ ! Z/;

where f W .ni;˛;j /1
j
si;˛ 7!
P

i;˛;j ni;˛;j ri;˛;j .
Dualizing we obtain local systems 
 and its trivial local subsystem 
 0. The

skew-symmetric pairing on 
 is the pull-back of the symplectic structure on
H1.S;Z/.
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Next we are going to describe the central charge. One observes that the fiber over
b 2 B0 of the local system 
 can be identified (up to torsion) with the quotient
H1.Sb �D;Z/=Pb , whereD D ti;˛Di;˛ is the union of the exceptional irreducible
divisors in the surface Y , where the pull-back of the symplectic form !T �C to Y �
T �C does not have poles, and Pb is the subgroup generated by 1-chains 
i;˛ sitting
in a small neighborhood in Sb of the intersection Sb\Di;˛ and such that the linking
number of 
i;˛ andDi;˛ is equal to zero. One observes that integrals of the pull-back
of the Liouville form ydx over the elements ofH1.Sb �D;Z/=Pb are well-defined.
This gives us the central charge Z.

The group of automorphisms of the tuple .B0; 
 ; h�; �i; Z/ contains a finite
subgroup

Q
m Symkm

. The latter is the product of symmetric groups with each factor
acting on points zi;˛;j which belong to the same affine line indexed by .i; ˛/ in such a
way that it permutes those points zi;˛;j which are endowed with the same partition.
The quotient by the group of automorphisms will be a semipolarized integrable
system with central charge and non-trivial local system of lattices 
 0.

8.6 Conjectures About Mirror Duals for Hitchin Systems

Fix a combinatorially refined irregular data � . The above considerations give rise to
a family of polarized integrable systems parametrized by a variety HDol.�/ which is
an open dense subset in Hom.
0;C/, as well as a semipolarized integrable system
which we denote by .X0.�/; !2;0.�// ! B0.�/ (all endowed with holomorphic
Lagrangian sections). For an individual polarized integrable system corresponding
to an irregular data � we have defined the full base B.�/ in terms of irregular
spectral curves (see Sect. 8.2), but our integrable systems so far have been defined
over the locus B0.�/ of smooth irregular spectral curves.

Conjecture 8.6.1. 1) There exists a full semipolarized complex integrable system
X.�/! B.�/ containing X0.�/! B0.�/ as an open dense complex integrable
subsystem.

2) The corresponding individual polarized integrable systemsX.�/Z0 ! B.�/Z0 in
the notation of Sect. 4.7 have full bases B.�/Z0 D B.�/ ' CdimC B.�/, where �
is determined by � and Z0 2 Hom.
0;C/.

3) The mirror dual X.�/_;alg to the integrable system X.�/! B.�/ in the sense of
Sect. 6.3 is an affine scheme which containsM simp;en

Betti .�/ as Zariski open subset.

Remark 8.6.2. Strictly speaking part (3) of the above conjecture should be cor-
rected. Recall that the algebraic mirror dual in Sect. 6.3 was fibered over the
algebraic torus Hom.
0;C�/. The variety M simp;en

Betti .�/ is fibered over the HBetti.�/

which is an open subset in a torsor over Hom.
0;C�/. This discrepancy should be
corrected by some twist. Probably this twist is related to the choice of the canonical
B-field Bcan which is 2-torsion.

Question 8.6.3. Does the mirror dual coincide with the Spec.O.M coarse;en
Betti .�///?
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Now we are going to discuss the family over C� related to the rescaling !2;0 7!
!2;0=�; � 2 C�. In the case of irregular Hitchin systems this rescaling corresponds
to the rescaling c˛i 7! c˛i =� of the singular terms. Assuming the above conjecture,
we obtain by taking the mirror dual, a holomorphic family of Poisson varieties
X
_;alg
� .�/ over C� containing M simp;en

Betti;� .�/ as open subvarieties. They are locally
constant in analytic topology on C�, hence we get a local system of algebraic
varieties.

Recall from Sect. 6.3 that we also have a complex analytic mirror dual X.�/_ !
Hom.
0;C/ which is obtained from X.�/_;alg ! Hom.
0;C�/ via the exponential
map. Introducing the parameter � we obtain a complex analytic family X�.�/_; � 2
C�. It contains the pull-back QM simp;en

Betti;� .�/ of the space M simp;en
Betti;� .�/ as an open

dense subset. We can also define a larger space fM coarse;en
Betti;� .�/ � fM simp;en

Betti;� .�/

(see Remark 8.6.2).
Recall Conjecture 6.7.3 (extension to � D 0). In our case it says that the analytic

family of Poisson varietiesX�.�/_ admits analytic extension to � D 0 with the fiber
at � D 0 isomorphic to Xdual.�/ (see Conjecture 6.7.3). In our case it is reasonable
to expect that Xdual.�/ ' X.�/ since Jacobians of spectral curves are principally
polarized abelian varieties.

Conjecture 8.6.4. The local system of Poisson varieties QM coarse;en
Betti;� .�/ admits an

analytic extension to � D 0 with the fiber at zero isomorphic to M sm;irred;en
Dol .�/.

The total space of the extended to � D 0 family should be a complex algebraic
variety if we endow fibers QM coarse;en

Betti;� .�/ with algebraic structures coming from
the de Rham description of fibers via inverse Riemann–Hilbert correspondence as
algebraic vector bundles endowed with irregular �-connections. Furthermore, the
de Rham description makes the above conjecture almost evident similarly to the
well-known case if Hitchin systems without singularities.

Let us describe explicitly the geometric meaning of a germ of holomorphic
section of the above analytic family at � D 0. Let us fix an additive refined
irregular data � on the curve C . In particular it gives us a positive integer r (the
rank). Consider a holomorphic vector bundle E of rank r over C � D", where
D" D f� 2 Cjj�j < "g and " > 0 is sufficiently small. We will think of it as a
familyE� of holomorphic vector bundles. Consider a relative alongC meromorphic
connection r such that:

(a) r has finite order poles at the marked points xi ; 1 � i � n;
(b) r has the pole of order 1 along C � f� D 0g.

In particular for all � 2 C� we have a meromorphic connection r� on the vector
bundle E� .

Using the formal classification of irregular connections we assign to each r�
irregular data with singular terms at the points xi . We require that they coincide
with the given irregular data after rescaling c˛i 7! c˛i =� of singular terms (here we
forget about the refinement).
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Let us choose an additive refined irregular data compatible with � . In other words
we choose points zi;˛;j � A

1.xi ; c
˛
i / ' C such that zi;˛;j1 ¤ zi;˛;j2 for j1 ¤ j2.

Moreover we assume that eigenvalues �i;˛;j of the monodromy of r� along the
circle S1xi ;˛ have the form

�i;˛;j D exp.
zi;˛;j
�
/:

Furthermore we assume that for any i; ˛; j the sizes of the Jordan blocks
with eigenvalues �i;˛;j as above form the partition �i;˛.j / coming from the
combinatorially refined irregular data � as as long as

zi;˛;j1 � zi;˛;j2
�

… 2�p�1Z

for j1 ¤ j2. We call the latter condition non-exceptionality condition. It depends
on the formal type of the irregular connection r� at xi and does not depend on the
Stokes structure.

Remark 8.6.5. One can generalize the above story by allowing the curve C and
irregular data to depend analytically on �. Then we will require that

�i;˛;j D exp.
zi;˛;j
�
CO.1//:

Under the above assumptions the limit lim�!0�r� does exist and defines a
meromorphic Higgs field ' (with poles at the points xi ) on the vector bundle
E0 WD Ej�D0. It defines the refined irregular data coinciding with the given one.
The closure S � Y of the non-compact spectral curve S0 given by det.� � yId/ D
0 � T �.C � fxi g1
i
n/ � Y is an irregular spectral curve in our sense.

Assume that S WD Sb is smooth and irreducible (i.e. it corresponds to a point
b 2 B0). There is a natural line bundle L ! S0 corresponding to .E0/jC�fxi g1�i�n

.
Extending it to S (the ambiguity for such an extension is a lattice of finite rank)
we obtain a line bundle L ! S , hence a point in Jacd .Sb/ D Jacd .S/ for some
degree d belonging to a fiber of the integrable system at � D 0. Suppose that for our
refined irregular data we have chosen � 2 C� such that non-exceptionality condition
holds for �; fzi;˛;j g. Then our connection r� defines a point f .�/ in the covering
QM coarse;en

Betti;� .�/ via taking the Stokes structure of .E�;r�/. The point f .�/ depends

holomorphically on � such that � ¤ 0 and � ¤ .zi;˛;j1 � zi;˛;j2 /=2�
p�1k; k 2

Z � f0g:
Conjecture 8.6.6. 1) Let us assume the Conjecture 8.6.4. Then the map � 7! f .�/

extends to a germ of an analytic curve at � D 0.
2) Moreover the value f .0/ is the point of the space M sm;irred;en

Dol .�/ corresponding
to the line bundle L ! S .
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Our definition of QM coarse;en
Betti .�/ is a bit artificial. Probably the following version

of it will behave better. Fix an irregular data 	 (no refinement is chosen). Consider
an Artin stack MBetti.	/ parametrizing local systems on C � fxi g1
i
n with Stokes
structures compatible with irregular data. We denote byM an

Betti.	/ the corresponding
analytic stack. Let us define an analytic stack QM an

Betti.	/ by adding the following
additional data: for each pair i; ˛ a choice of covariantly constant endomorphism
Li;˛ of the associated local system Ei;˛ on the circle S1xi ;˛ such that exp.Li;˛/ is
the monodromy automorphism for Ei;˛. In the case when all monodromies are
semisimple and have distinct eigenvalues the set of choices of “logarithms” Li;˛
for all i; ˛ is a torsor over the lattice Zf.i;˛;j /g. This stack can be thought of as a
replacement of QM coarse;en

Betti .�/ (the enumeration of eigenvalues is lost). We claim that
there exists another Artin stack MDR.	/ such that the (irregular) Riemann–Hilbert
correspondence gives an isomorphism of analytic stacks QM an

Betti.	/ ' M an
DR.	/.

In the example of connections with regular singularities the stack MDR.	/ is the
moduli stack of vector bundles onC endowed with meromorphic connections which
have first order pole at the marked points. Introducing the parameter � 2 C� as
above by rescaling the singular terms of the irregular data we obtain an algebraic
family MDR;� .	/ of Artin stacks. We believe that it can be extended as an algebraic
family of Artin stacks over C with the fiber at � D 0 being the stack MDol.	/

of semistable generalized Higgs bundles of type 	. The latter are roughly certain
coherent sheaves on the Poisson surface Y WD Y .	/ (see Sect. 8.3) with pure one-
dimensional support.

Let us discuss the analog of a combinatorial refinement in this setting. Assume
that for each pair i; ˛ we are given a finite unordered collection of partitions �i;˛;j

(possibly with repetitions) such the sum of weights
P

j j�i;˛;j j is equal to the
rank ri;˛ of Ei;˛. Then we pose the following condition: the conjugacy class of
the linear operator Li;˛ (considered as a linear endomorphism of the fixed fiber
of Ei;˛) belongs to the closure of the set of such linear operators that for each
of its eigenvalues �j the set of Jordan blocks with the eigenvalue �j defines a
collection of partitions which coincides with the given collection of partitions �i;˛;j .
This defines a closed substack of MDR.	/. Presumably one can define a similar
substack of MDol.	/. Introducing the parameter � we obtain as above a family of
Artin substacks over C. Finally we remark that Mirror Symmetry naturally gives us
an analytic family of analytic stacks M an

DR;� .	/ ' QM an
Betti;� .	/ over � 2 C� and its

limit at � D 0 given by M an
Dol.	/. Also the fiber over � ¤ 0 have some “remnants”

of the algebraic structure on MBetti;� .	/. The algebraic structures on MDR.	/ and
MDol.	/ familiar in Geometric Langlands Correspondence seem to play no role in
the case of Mirror Symmetry considered before.



284 M. Kontsevich and Y. Soibelman

8.7 Remarks About SL.r/ Case

In the case of SL.r/ Hitchin systems the above considerations have to be modified.
Namely, in the definition of the irregular data we impose an additional condition:
sum of all branches of the singular terms at each marked point xi is equal to zero
(modulo series which are regular at xi ).

This condition can be reformulated such as follows. For with each singular term
c˛i D

P
�2Q<0

a˛�;i .x � xi /� we associate its trace

Tr.c˛i / D Ni;˛ 	
X
�2Z<0

a˛�;i .x � xi /� 2 CŒ.x � xi /�1�:

Then the above condition says that for each 1 � i � n we have
P

˛ Tr.c˛i / D 0.
We can impose a similar condition for spectral curves. A spectral curve can be

thought of as a graph of a multivalued closed 1-form on C �fxig1
i
n. We demand
that the sum of all branches of the 1-form vanishes identically. Fix combinatorially
refined irregular data � . We denote by BSL.r/.�/ � B.�/ the subspace of spectral
curves S which satisfy the above condition.

Proposition 8.7.1. One has dimBSL.r/.�/ D dimB.�/ � g.C /, where g.C / is the
genus of C .

Proof. For any spectral curve in B.�/ the sum of branches of the corresponding
multivalued 1-form is a holomorphic 1-form onC . Also the space of 1-forms˝1.C /

acts on B.�/ by adding the graph of the 1-form. This gives an isomorphismB.�/ '
BSL.r/.�/ �˝1.C /. The result follows. �
Remark 8.7.2. In the case of Hitchin systems with regular singularities the above
condition means that the sum of eigenvalues of the singular part of the Higgs field
at each xi is equal to zero.

Considering the corresponding local system of symplectic lattices 
 symp (which
is the quotient of the bigger local system 
 ) we see that the fiber of 
 symp

S

is Prym.S/ WD Ker.H1.S;Z/ ! H1.C;Z//. The fibers are polarized but not
principally polarized. Another choice would be Coker.H1.C;Z/ ! H1.S;Z//.
The mirror duals to the integrable systems corresponding to these two choices are
different and should correspond to M SL.r/

Betti .�/ and M PGL.r/
Betti .�/.

8.8 Relation to Non-compact Calabi–Yau Threefolds

Having a spectral curve S � Y � Y as above and line bundles Li ! Y; i D 1; 2

such that the restrictions of Li ; i D 1; 2 to Y � S are trivialized and such that
L1 ˝ L2 ' OY .S/ we can construct a non-compact Calabi–Yau threefold (total
space of the conic bundle over Y ). Namely, let us fix a section t 2 
 .Y;L1 ˝L2/
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such that tjS D 0. Then we consider a subvarietyX of the total space tot.L1˚L2/

which consists of pairs .l1; l2/ 2 L1;y ˚ L2;y ; y 2 Y such that l1 	 l2 D t.y/.
Writing it in local coordinates as x1x2 D f .y1; y2/ we see that X carries a
well-defined nowhere vanishing holomorphic volume form ˝3;0

X locally given by
dx1
x1

dy1dy2. Then suchX satisfies the assumptionsA1–A3 from Sect. 7. Furthermore
the corresponding moduli space of deformations of X discussed in Sect. 7 is
essentially the same as the space B of spectral curves discussed in this section.
The fiber of the local system 
 is isomorphic to H3.X;Z/ modulo torsion. An
easy calculation with exact sequences of fiber bundles shows that if L1 is trivial
then H3.X;Z/ ' H2.Y; S;Z/. Then the symplectic lattice 
 symp is smaller than
H1.S;Z/, while the kernel lattice 
 0 is bigger than the one for the lattice described
in Sect. 8.5.

In the case when the monodromies along S1xi ;˛ are semisimple with non-
coinciding eigenvalues one can spell the above discussion in terms of log-families
of spectral curves. In particular there is an open dense part in the moduli space
of deformations of X which is isomorphic to the space of log-families of smooth
curves in T �C . In order to be in agreement with three-dimensional story we need
to go from GL.r/ Hitchin integrable systems to SL.r/ Hitchin integrable systems.
Then, as we discussed above, for each spectral curve Sb; b 2 B0

SL.r/.�/ the lattice



symp
b is isomorphic to H2.Y; S;Z/symp ' Prym.Sb/ ' H3.X;Z/=Ker.h�; �i/.

Periods of the restriction ydxjSb of the canonical 1-form can be identified with

periods of the holomorphic volume form ˝3;0
X .

Remark 8.8.1. The reader remembers that when discussing singular Hitchin sys-
tems we fixed the essentially irregular part of the Higgs field. Coefficients of those
fixed Puiseux series as well as the conformal structure on .C; fxig1
i
n/ can be
thought of “external” parameters for the integrable systems in question. In terms of
Calabi–Yau threefold X this means that we have extra parameters arising from the
full moduli space of deformations of X .

9 Wall-Crossing Structures for Compact Calabi–Yau
Threefolds and Split Attractor Flow

Let X be a compact complex Calabi–Yau threefold endowed with an ample line
bundle (polarization). We make a simplifying assumption that H1.X;Q/ D 0

(otherwise the considerations below should be changed slightly). The moduli stack
M WD MX of complex structures on X is a smooth Deligne–Mumford stack
(orbifold). The moduli stack L WD LX of pairs .X� ;˝

3;0
X�
/ parametrizing pairs

(complex structure � , holomorphic volume form) is a C�-bundlep W LX !MX . In
what follows we ignore those points of the stacks which have non-trivial stabilizers.
Thus we will often abuse the terminology and speak about moduli spaces, not stacks.
Locally LX is embedded into H3.X;C/ via the period map .X�;˝

3;0
X�
/ 7! Œ˝3;0

X�
�.
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It is known (see [13,14]) that LX is the base of non-polarized complex integrable
system with fibers given by intermediate Jacobians of the underlying Calabi–Yau
threefolds. Since X is compact the fibers in general are nonalgebraic. Instead
the fibers carry natural pseudo-Kähler metrics of signature .1; n/, where n D
1
2
rkH3.X/ � 1. This integrable system can be considered as a special case of the

one mentioned in Remark 4.1.2. The corresponding local system of lattices has as
fibers 
b D H3.X� ;Z/; b 2 LX , where p.b/ D � . It also has the central charge
Zb.
/ D

R


˝
3;0
X�

.
The only difference with the case of polarized integrable systems is that now we

do not have the positivity constraint on the skew-symmetric bilinear form on 
b.
On the other hand in this case one has a well-defined local system of the Fukaya

categories F .X�/ over MX . It is expected that a choice of point b 2 LX defines
a stability condition on F .X� /; � D p.b/ with the central charge Zb W 
b ! C
as above and for which semistable objects are SLAGs endowed with local systems.
Hence we can speak (cf. Sect. 7.3) about DT-invariants ˝b.
/; b 2 LX; 
 2 
b �
f0g. We conclude that there is a corresponding WCS (see Sect. 2.3, Example (6)).

Moreover, using this WCS we can construct a non-archimedean symplectic
orbifold X along the lines of Sect. 4.6. More precisely, the construction of Sect. 4.6
gives rise to a family X� ; � 2 C� of such orbifolds, but all of them are canonically
isomorphic due to the natural C�-action on LX .

We do not expect thatX is isomorphic to an open domain in an algebraic orbifold.
It is not even clear whether it is isomorphic to an open domain in a complex analytic
orbifold (the problem arises because of the expected overexponential growth of
˝b.
/ as j
 j ! 1. As a result, the second of the three approaches to DT invariants
discussed in the Introduction (namely the one with the wheels of lines, see Sect. 6.6)
cannot be applied.

Also the first named approach (via attractor flow and trees, see Sect. 3) should be
modified. More precisely, the initial WCS should in addition to what was discussed
in Sect. 4.6 (which are the values 1 for DT-invariants at generic conifold points)
depend on infinitely many integer parameters, which are values of DT-invariants
at so-called attractor points (see e.g. [9]). More precisely, in the compact case
the volume of X is finite, so it can be used to normalize the central charge. The
normalized function (considered as a function on the total space of the local system

 !MX ) has countably many minimal points. Their lifts toLX are called attractor
points (see Sects. 9.2, and 9.3 about the details).

At this time we do not know how to extract those additional data directly from
the geometry of the above-described integrable system over LX . In a sense the
additional data live “at the infinity” of the moduli space LX . Since we are lacking
the second approach to DT-invariants in the compact case, we have modify the
Conjecture 1.2.1 and only claim that the DT-invariants coming from the Fukaya
categories can be canonically reconstructed from the values of the “tropical” DT-
invariants at the attractor points.

Also, the string theory suggests (see e.g. [2]) that there exists a complex analytic
contact orbifold Y with dimY D dimX C1 (which is called in physics the twistor
space for the quaternion-Kähler moduli space of hypermultiplets). The orbifold X
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is a formal germ of a divisor at infinity of Y . The structure of Y is still a mystery,
but one can hope that Y can be used for the description of DT-invariants along the
lines of the second approach (via the wheels of lines).

9.1 Split Attractor Flow and Black Holes: Motivation
from Supergravity

As a physics motivation for our considerations we will briefly explain the concept
of the split attractor flow from the theory of supersymmetric black holes.

Let MCFT be the “moduli space” of unitaryN D 2 superconformal field theories.
It is believed that in case if there are no chiral fields of dimension .2; 0/ then
MCFT 'MA�MB , where for CFTs associated with a 3CY manifoldX the moduli
space MA is the space of complexified Kähler structures on X while MB is the
moduli space of complex structures on X .

Recall critical superstring theory in ten dimensions can degenerate to a family
of superconformal field theories with central charge Oc D 6 over a four-dimensional
flat space-time. The latter is R4 endowed with a singular metric satisfying Einstein
equation with matter. The metric has singularities at black holes. Assuming time
invariance we obtain a metric g on R3 n fx1; : : : ; xng, where xi are positions
of stationary black holes. This family can be interpreted as a map h W R3 n
fx1; : : : ; xng ! MCFT which satisfies together with the metric g a complicated
system of equations.

Let us assume that our CFT is of geometric origin and comes from a 3CY
manifoldX such thatH1;0.X/ D H2;0.X/ D 0. Assume that the Kähler component
of h is constant. Then according to [9, 10] (see also [11]) the set of pairs .h; g/ is in
one-to-one correspondence with the set of maps

� W R3 n fx1; : : : ; xng !MX

(here MX WD MB.X/ is the moduli space of complex structures on X ) coming
from the following ansatz. Namely, the map � is obtained by the projectivization
of the map O� W R3 n fx1; : : : ; xng ! L , where R3 n fx1; : : : ; xng is endowed
with the standard flat Euclidean metric (which is different from the metric g) and
L WD LX is the Lagrangian cone of the moduli space of deformations of X
endowed with a holomorphic volume form (it is locally embedded into H3.X;C/
via the period map). The cone L is the total space of a C�-bundle over MX . We
endow L with an integral affine structure via the local homeomorphism Im W L !
H3.X;R/; .�;˝3;0

� / 7! Im.Œ˝3;0
� �/, where � 2MX is a complex structure onX , and

˝3;0
� is the corresponding holomorphic volume form. Then the ansatz comes from

harmonic maps O� which are locally of the form Im ı O�.x/ DP
1
i
n


i
jx�xi j C v1,

where 
i ; 1 � i � n are elements of the charge lattice 
 D H3.X;Z/ ' H3.X;Z/
(their meanings are the charges of black holes) and v1 is the boundary condition “at
infinity” satisfying the constraint

P
1
i
nh
i ; v1i D 0 (see [9]). This gives us �.
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The image of � is an “amoeba-shaped” three-dimensional domain in MX .
Hypothetically, connected components of the moduli space of maps � with given
v1; 
i ; 1 � i � n have some cusps which are in one-to-one correspondence
with split attractor trees (see [9]). When we approach to such a cusp the 3d
amoeba degenerates to a split attractor tree. This is somehow similar to the
conventional “tropical” story, when holomorphic rational curves in Gromov–Witten
theory degenerate at cusps to the gradient trees on the base of SYZ torus fibration.
In fact edges of the split attractor tree are the gradient trajectories of the multivalued
function jF
 j2 D j

R


˝.3;0/j2=j R

X
˝.3;0/ ^˝.3;0/j considered as a function on MX .

Any edge is locally a projection of an affine line in L with the slope 
 2 
 . If
the split attractor flow (lifted from MX to L ) starting at v1 in the direction 
 hits
the wall of marginal stability where 
 D 
1 C 
2 C : : : C 
k;Arg.

R

i
˝.3;0// D

Arg.
R


˝.3;0//; 1 � i � k then all 
1; : : : ; 
k belong (generically) to a two-

dimensional plane.
We are going to explain below that using our wall-crossing formulas it is possible

to find all˝.
/ WD ˝.b; 
/; b 2 L ; 
 2 
; hImb; 
i D 0 starting with a collection
of integers ˝.b
; 
/ at the “generalized attractor points” given by conifold points
and points b
 2 � defined by the equation Im b
 D 
 . The points C�b
 2 MX

are external vertices of the split attractor trees. The wall-crossing formulas are used
at the internal vertices of the trees for the computation of ˝.b; 
/. The numbers
˝.b
; 
/ can be arbitrary.

9.2 Affine Structure on the Lagrangian Cone

Let us fix 
 2 
 . The wall of second kind associated with 
 (see [30]) is given
explicitly by the set

L
 D f.�;˝3;0
� / 2 L jhIm.Œ˝3;0

� �/; 
i D 0; hRe.Œ˝3;0
� �/; 
i > 0g:

(Notice that the condition hRe.Œ˝3;0
� �/; Im.Œ˝3;0

� �/i > 0 holds on L ). In what
follows we will locally identify L with the cone in H3.X;C/ and denote the point
corresponding to .�;˝3;0

� / simply by ˝3;0. We endow L with an integer affine
structure given locally ˝3;0 7! Im.˝3;0/ 2 H3.X;R/.

We define a multivalued function F
 WMX ! R�0 by the formula:

F
.˝
3;0/ D jh˝3;0; 
ijphRe.˝3;0/; Im.˝3;0/i :

(The RHS does not depend on a choice of the lift to L ).
We define the volume function v W L ! R>0 from the equality

hRe.˝3;0/; Im.˝3;0/i D �1
2i
h˝3;0;˝3;0i D v.˝3;0/2:
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The moduli space MX carries the Weil–Petersson metric. Let us recall its
definition. Let us fix a form ˝

3;0
X0

such that v.˝3;0
X0
/ D 1. The tangent space to L at

a point˝3;0
X0

can be identified with the term F 2.H3.X0;C// of the Hodge filtration,
which is decomposed into the direct sum H3;0.X0/ ˚ H2;1.X0/ by Hodge theory.
Hence the tangent space to M at the point ŒX0� is identified with H2;1.X0/. The
latter space carries a natural Hermitean norm. This gives the metric on the tangent
space TŒX0�MX .

Theorem 9.2.1. Let us fix a non-zero 
 2 
 . One can lift the gradient flow of
jF
 j2 to a flow on the wall L
 whose trajectories are straight lines with the slope

 in the affine structure given by Im.˝3;0/. More precisely, the integral curve
Px D grad jF
 j2.x/ near the point x.0/ D x0 2 MX coincides as unparametrized
curve with the image of the straight line Im.˝3;0

t / D Im.˝3;0
0 / C t
 , where

hIm.˝3;0
0 /; 
i D 0; hRe.˝3;0

0 /; 
i > 0, and ˝3;0
0 belongs to a C�-fiber over x0

of the bundle L !MX .

Proof. For any point x0 WD ŒX0� 2 M such that F
.x0/ ¤ 0 there is a unique lift
˝
3;0
0 2 L
 with v.˝3;0

0 / D 1. The tangent space Tx0M is identified with variations
˝
3;0
0 7! ˝

3;0
0 C ı˝3;0 such that ı˝3;0 2 H2;1.

Let us compute the variation of the function log jF
.˝3;0/j2 D logjh˝3;0; 
ij2 �
log hRe.˝3;0/; Im.˝3;0/i. We obtain:

ılog h˝3;0; 
i C ılog h˝3;0; 
i � ılog hRe.˝3;0/; Im.˝3;0/i

D 2Re.hı˝3;0; 
i/
h˝3;0

0 ; 
i � 2i Im.hı˝3;0;˝3;0
0 i/

h˝3;0
0 ;˝

3;0
0 i

:

The last term vanishes because ı˝3;0 belongs to H2;1. Since h˝3;0
0 ; 
i D

hRe.˝3;0
0 /; 
i > 0 and ılogjF
 j2 D ıjF
 j2=jF
 j2 we have:

ıjF
 j2 D aRe.hı˝3;0; 
i/

where a 2 R is a real constant depending on˝3;0
0 ; 
 .

Next we observe that by the Hodge decomposition the element 
 2 
 D
H3.X;Z/ � H3.X;R/ can be written as 
 D 
3;0 C 
3;0 C 
2;1 C 
2;1, where
the upper index denotes the .p; q/-Hodge component. By orthogonality condition
we conclude that ıjF
 j2 D aRe.hı˝3;0; 
1;2i/ D �aIm.hı˝3;0; i
2;1i/.

The RHS is by definition the pairing of two tangent vectors in Tx0MX ' H2;1

with respect to the Weil–Petersson metric. Hence grad jF
 j at x0 is proportional to
i
2;1. But i
2;1 is the projection of the tangent vector i.
3;0 C 
2;1/ at ˝3;0

0 2 L
whose imaginary part is 
=2 D Im.i
3;0 C i
2;1/ . This concludes the proof. �

In what follows we will need to know the behavior of the volume func-
tion v.˝3;0/ along the gradient trajectory of the function jF
 j2. We choose a
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parametrization of the trajectory such that Im. P̋ 3;0/ D 
 or equivalently that
P̋ 3;0 D 2i.
3;0 C 
2;1/.

Along the gradient trajectory we have:

d

dt
.log v/ D 1

2

d

dt
.log v2/ D Re

 
h˝3;0; P̋ 3;0i
h˝3;0;˝3;0i

!

D Re

 
h˝3;0; P̋ 3;0 � P̋ 3;0i/
h˝3;0;˝3;0i

!
D Re

 
h˝3;0;�2iIm. P̋ 3;0/i

�2iv2
!

D Re.h˝3;0; 
i/
v2

D h˝
3;0; 
i
v2

:

(In the course of the computations we use the Lagrangian property of L which
gives h˝3;0; P̋ 3;0i D 0, as well as the equality Im. P̋ 3;0/ D 
 ).

Therefore d
dt v D h˝3;0;
i

v D ˙F
 . Notice that if h˝3;0; 
i ¤ 0 then similarly to
the proof of Theorem 9.2.1 we have

d

dt
.jF
 j2/.˝3;0/ D jF
 j2.˝3;0/

�
 
2

Re.h P̋ 3;0; 
i/
h˝3;0; 
i � 2Re.h

P̋ 3;0; i˝3;0i
/

h˝3;0; i˝3;0i
!
:

Now we can use the formula P̋ 3;0 D 2i.
3;0 C 
2;1/.
Then 2i
3;0 D c˝3;0, where c 2 C. Hence the input of the summand 2i
3;0 to

the RHS of the above formula is

jF
 j2.˝3;0/

 
2

Re.ch˝3;0; 
i/
h˝3;0; 
i � 2Re.ch˝3;0; i˝3;0i/

h˝3;0; i˝3;0i

!
D 0:

(Notice that h˝3;0; 
i > 0 and h˝3;0; i˝3;0i > 0 by our assumptions, hence the
expression in the big brackets simplifies to 2Re.c/ � 2Re.c/ D 0).

Therefore in the RHS we have the contribution of the summand 2i
2;1 only. This
gives us

d

dt
.jF
 j2/ D jF
 j22Re.h2i
2;1; 
2;1i/

h˝3;0; 
i D 8jF
 j2 hRe.
2;1/; Im.
2;1/i
h˝3;0; 
i :

Using the formula d
dt v D h˝

3;0;
i
v we conclude that

d2v

dt2
D 4

v
hRe.
2;1/; Im.
2;1/i:
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Notice that properties of polarized Hodge structures imply that

hRe.
2;1/; Im.
2;1/i � 0 :

Recall that the gradient lines are projections of unparametrized straight lines (see
Theorem 9.2.1). Then our computations imply the following statement.

Proposition 9.2.2. The volume function v is concave in parameter t on the straight
line Im.˝3;0

t / D Im.˝3;0
0 /C t
 , where hIm˝3;0

0 ; 
i D 0.

Remark 9.2.3. Notice that in the above computations we could replace 
 by any
vector in 
R. Recall also that we can identify locally L with the real symplectic
vector space H3.X;R/ via the map Œ˝3;0� 7! Im Œ˝3;0� which introduces the affine
structure on L . The real two-dimensional subspace spanned by Im.Œ˝3;0

0 �/ and 
 is
isotropic. Then the Proposition 9.2.2 can be reformulated in geometric terms as a
statement that the function v gives rise to a (positive) concave homogeneous function
of degreeC1 on any real isotropic plane in H3.X;R/ .

The above considerations motivate the following definitions.

Definition 9.2.4. Let 
 2 
 D H3.X;Z/. We call ˝3;0

 2 L a 
 -attractor point if

Im.˝3;0

 / D 
 .

Since a lift of the gradient trajectory of jF
 j2 is a straight line in L , the critical
points of F
 can appear only in the limit t ! 1. Hence the limiting point in MX

is the projection of a 
 -attractor point. Thus we see that the projections of attractor
points are local minima of the multivalued functions F
 (in physics literature these
projections are called attractor points).

Moreover it is easy to see that critical points of F
 are all local minima and are
either projection of attractor points or belong to the locus F�1
 .0/. The equation
F
 D 0 defines a complex hypersurface in the (universal cover) of the space MX .
Points of this hypersurface are absolute minima of F
 , and moreover they form a set
of points where the function F
 is not differentiable.

We expect that for a generic gradient line of F
 on MX there are three
possibilities:

(1) The gradient line hits the projection of a 
 -attractor point.
(2) The gradient line reaches in finite time a point in the boundary of the metric

completion of MX with respect to the Weil–Petersson metric. This point is
called conifold point. We will assume that the conifold points form an analytic
divisor in the above completion (which is expected to be a complex analytic
space).

(3) The gradient line reaches in finite time a point in the locus F�1
 .0/.

Then for given 
 the universal covering of MX splits into a disjoint union of
three open domains corresponding to these three possibilities and a closed subset of
measure zero.
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The divisor of conifold points has (roughly) the following structure which we
explain in the framework of complex integrable systems. Consider a polarized
integrable system with central charge endowed with conical structure, i.e. with a
C�-action which rescales the central charge and preserves the discriminant. Taking
the quotient by the C�-action we obtain a local model for the divisor of conifold
points in the completion of MX . In particular we expect the typical singularity
will be of the type A1. In terms of X this means that we approach a point in the
completion of MX where X develops an ordinary double point with local equationP

1
i
4 x2i D 0.
We can restate these three possibilities in the language of straight lines on

LX . Let us fix 
 and consider in the universal cover of LX the ray (or interval)
Im.˝3;0

t / D Im.˝3;0
0 /C t
; t 2 Œ0; t0/, where hIm.˝3;0

0 /; 
i D 0, and t0 2 .0;C1�
is the maximal possible value of t for which the map t 7! ˝3;0

t is well-defined.
The case (1) means that t0 D C1. The restriction of the function v on the ray has

strictly positive derivative and the limit of the derivative as t ! C1 is non-zero:
limt!C1 dv

dt > 0.
In the case (2) we have t0 < C1 and limt!t0 dv

dt D 0.
We claim that in the case (3) that t0 < C1 but the limit of the derivative of

the function v is strictly negative as t ! t0. Indeed, the picture in MX means that
there exists finite t1 such that the derivative of v at t1 is equal to zero. It is easy to
see that although the gradient line of F
 stops at such point, we can continue the
corresponding ray in L to some t > t1. In terms of the gradient trajectories this
means that we consider another gradient trajectory of the function F
 and move
along it in the opposite direction (i.e. in the direction of increasing values of F
 ) for
t > t1. Therefore for t > t1 the derivative dv

dt becomes negative. By concavity of v
we conclude that we cannot extend the ray indefinitely, hence t0 < C1. We expect
that in this case the image of the corresponding interval in LX=R>0 is everywhere
dense. This property distinguishes the case (3) from the case (2) purely in terms of
affine geometry of LX (without use of function v).

9.3 Trees and Generalized Attractor Points

Let us discuss abstract attractor trees. Basically, it is the same as the tropical trees
discussed previously. The difference is in the notion of attractor point.

Suppose that L is a smooth C1-manifold which admits an open covering
L D [i2IUi with transition functions belonging to the group Aut.
; h�; �i/, where

 ' Z2n is a lattice endowed with the integer non-degenerate skew-symmetric
form h�; �i. We assume that each Ui endowed with the induced Z-linear structure is
isomorphic to an open cone in R2n. Notice that because we have a Z-linear structure
on L we can speak about integer points in L . Also the conical structure implies
that R>0 acts on L .
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Let us define a .2n�1/-dimensional manifoldL 0Z as the set of pairs .u; 
/, where
u 2 L ; 
 2 TuL �f0g such that in the above Z-linear local coordinates 
 is integer
and hu; 
i D 0. This definition is similar to the definition of M 0Z from Sect. 3.1. We
define the attractor flow on L 0Z by the formula Pu D 
; P
 D 0.

Definition 9.3.1. We define L 0;attr
Z � L 0Z as a set of points .u; 
/ such that the

trajectory of the attractor flow starting at .u; 
/ exists for all t 2 Œ0;C1/.
In local coordinates the projection to L of such a trajectory can be written as t 7!
ut WD uC t
 .

Definition 9.3.2. A generalized attractor point is a connected component of the
interior Int.L 0;attr

Z / � L 0Z.

Below we provide some explanations.
With any .u; 
/ 2 L 0;attr

Z we associate a map f.u;
/ W .0;C1/ ! L given by
t 7! t�1ut .

There are two possibilities:

(a) The limit limt!C1f.u;
/.t/ does exist. Then in local coordinates this limit is
equal to 
 . This condition is open in L 0Z. Generalized attractor points of this
type can be identified with 
 -attractor points from the previous subsection.

(b) The limit limt!C1f.u;
/.t/ does not exist.

In the case (a) the limit is an integer point in L . It is easy to see that for any
integer point u0 2 L the set of pairs .u; 
/ 2 L 0;attr

Z such that limt!C1f.u;
/.t/ D
u0 is a non-empty open connected subset in L 0Z (it is a star-shaped domain). Hence
we conclude that integer points in L give generalized attractor points. The inclusion
is not a bijection. The complement to the image corresponds to the interior of the
domain described in case (b). The latter can be thought of as the set of integer points
in the “boundary” of L . Such “integer boundary points” do appear in practice. For
example take L D LX and points .u; 
/ where u corresponds to the point in the
moduli space MX close to the cusp and 
 belongs to a Lagrangian sublattice in
H3.X;Z/ invariant under the monodromy. In the mirror dual picture such classes

 correspond to Chern classes of coherent sheaves on the dual Calabi–Yau with at
most one-dimensional support (D0–D2 branes in the language of physics).

Assume that we are given an open subset L 0;conif
Z � L 0Z which is preserved

by the attractor flow for t � 0 and is disjoint from L 0;attr
Z . For example in the

situation when L D LX described in the previous subsection we define L 0;conif
Z as

the interior of the set of points described in the case (2) there. As we mentioned in
Sect. 9.2 this probably means that the projection of the corresponding trajectory of
the attractor flow to L =R>0 is not everywhere dense.

We will be talking about metrized rooted trees below. As in [33] those are trees
with lengths assigned to edges. There are internal edges and tail edges. Internal
edges have finite (positive) length and tail edges have possibly infinite length. Also,
the root vertex is adjacent to exactly one edge.



294 M. Kontsevich and Y. Soibelman

Definition 9.3.3. A tropical tree in L is given by

a) A metrized rooted tree T with edges oriented toward tails.
b) A continuous map � W T ! L , smooth outside of vertices, with the following

properties:
outside of vertices the map t 7! .�.t/; �0.t// is a trajectory of the attractor

flow on L 0Z;
at each internal vertex v the following balancing condition is satisfied:

X
e2vout

�0.e/ D �0.ein.v//;

where vout denote the set of outcoming from v edges and ein.v/ is the only edge
incoming to v (the derivative �0.e/ is constant along the edge e);

each tail edge the map � is a trajectory of the attractor flow belonging either
to L 0;conif

Z or to L 0;attr
Z ;

for any vertex v directions �0 of all edges in the set vout are different and
belong to an open half-space in a rank 2 symplectic sublattice in the tangent
space T�.v/L ;

Having a tropical tree we can (and sometime will) interpret its edges as trajectories
in L 0Z.

Let � W T ! L be a rooted tropical tree in L . Abusing the notation we will
simply denote it by T . Suppose we are given a volume function v W L ! R>0 which
satisfies the Proposition 9.2.2 (i.e. it is concave along edges). Then the following
result holds.

Proposition 9.3.4. If the volume function increases along tail edges of T then it
increases along every edge (we consider orientation of the tree toward tails).

Let us define the function F W L 0Z ! R as the derivative along the attractor
flow of the pull-back of v under the natural projection. This function is an analog
of the multivalued function F
 from Sect. 9.2. The function F is invariant under the
R>0-action on L 0Z. Proposition 9.3.4 means that edges of any tropical tree belong
to the domain F > 0. Moreover, the concavity of the function v on edges and the
balancing condition imply that the value of F at the root vertex is strictly bigger
than the sum of limiting values of F on tail edges (cf. [11]). Such limiting values
are strictly positive for edges of the tree hitting attractor points and equal to zero for
conifold and “integer boundary points”.

Thus we see that the functionF imposes the “energy-like” restrictions on tropical
trees.

Our considerations with the function F motivates the following Finiteness
Assumption (cf. assumptions in Sect. 3.2):

For each point .u; 
/ 2 L 0Z outside of a set of measure zero the number of
tropical trees rooted at .u; 
/ is finite.

By analogy with Proposition 3.2.6 one can design a procedure which as
we expect produces the WCS on L starting with “initial data” given by
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integer numbers˝.u; 
/ assigned to generalized attractor points and irreducible
components of the divisor of conifold points. We assign arbitrary integers to
generalized attractor points and assign integers equal to 1 to conifold points with A1
singularities. Similarly to Sect. 3.2 this WCS can be understood as an integer-valued
function on L 0Z which discontinuous at polyhedral walls and satisfies the Support
Property and WCF from [30].

The procedure is similar to those described in Sects. 3.2 and 4.6.
By the Finiteness Assumption there are finitely many tropical trees in L rooted

at .u; 
/. The union of all such trees is a finite directed graphG WD G.u; 
/ without
oriented cycles because of monotonicity of the function F . Each inner vertex of G
belongs to a symplectic plane. Then we can start with a generalized attractor point
or conifold point with A1 singularity which are tails of T and move backward to
.u; 
/. We will use the wall-crossing formulas. Recall that they have the following
form

 �Y
T
˝.P;
out/


out D
�!Y

T
˝.P;
in/


 in ;

where P is a vertex of G and T ˝.P;
out/


out are symplectomorphisms of the two-
dimensional symplectic subspace in the tangent space at P corresponding to the
edges of G outcoming from P (similarly for incoming edges). Since we know by
induction the numbers˝.P; 
out/ for outcoming edges, we can calculate ˝.P; 
in/

from the wall-crossing formula and proceed further toward P . Finally, it gives us
the desired number˝.u; 
/.

Remark 9.3.5. As we already mentioned in Remark 3.2.7, there is no guarantee that
the result of the application of the above procedure is indeed a WCS. At some strata
of codimension 2 the cocycle condition can fail. The geometric structure of walls
on L is very involved, and we do not understand it completely. At the moment
we have the following (maybe too optimistic) picture: it is sufficient (and maybe
even necessary) to put the constraint ˝ D 1 at conifold points (assuming that all
conifold points have A1 singularities). The integer values of ˝ at all generalized
attractor points can be chosen arbitrarily. Then we obtain a WCS.

9.4 Remarks on the Support of DT-Invariants

Recall that in the definition of WCS we required an existence of a strict convex
cone. In the case of Calabi–Yau threefolds this property is called Support Property
(see [30]), since it gives a bound on the support of the function˝.u; 
/ (numerical
DT-invariants). Heuristic arguments in favor of that given in the Remark 1 [30] were
based on the following simple geometric fact. Let 	 be a closed 3-form on X . Then
there exist C WD C	 > 0 such that for any SLAG L we have j R

L
	j � C j R

L
˝3;0
X j.

Equivalently, we have a constraint on the homology class 
 D ŒL� 2 H3.X;Z/.
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The constant C depends in an essential way on the metric on X . In this subsection
we propose an alternative approach to the Support Property based entirely on the
affine geometry of L D LX . Namely, the volume function v gives us the following
constraint on the pair .u; 
/ such that ˝.u; 
/ ¤ 0: the derivative of v at u in the
direction 
 is positive. Recall that this property was deduced from three facts:

(i) the function v is a strictly positive function on L of homogeneity degree 1
with respect to the R>0 action;

(ii) the function v is concave on germs of two-dimensional isotropic subspaces in
L ;

(iii) the derivative of v along a trajectory in L 0;conif
Z is positive.

We claim that there are infinitely many perturbations of v which still obey (i)–
(iii). Namely, let us consider any smooth function ıv onL which is homogeneous of
degree 1 and such that Supp.ıv/=R>0 � L =R>0 is compact. Consider the function
v" WD vC"ıv. The compactness of Supp.ıv/=R>0 implies that the properties (i) and
(ii) are satisfied for sufficiently small ". The property (iii) follows from (ii). More
generally, any function v0 which satisfies (i) and (ii) and coincides with v outside
of a compact (modulo the action of R>0) satisfies also (iii). Here is a reason for
that: the condition of monotonicity of such a function is sufficient to check on parts
of the trajectories which are close to conifold points, where the function coincides
with v. For any function v0 satisfying (i)–(iii) let us consider the set Cv0 � tot.TL /

consisting of pairs .u; Pu/ such that hu; Pui D 0 and dvjTuL .Pu/ � 0. Let us define
Cuniv as the intersection of Cv0 over all v0 satisfying (i)–(iii). It is easy to see that
for any u 2 L the intersection Cuniv \ TuL is a strict closed convex cone in
the hyperplane u? WD Ker hu; �i. The above inductive construction implies that
Supp.˝.u; 
// � Cuniv.

10 Analog of WCS in Mirror Symmetry

10.1 Pair of Lattices, Volume Preserving Transformations
and WCS in a Vector Space

In the case of SYZ picture of Mirror Symmetry the construction of mirror dual
involves transformations which locally preserve the volume form rather than a
Poisson structure. In this case g is the Lie algebra of divergence-free vector fields
on Hom.
;C�/ and there is no distinguished skew-symmetric form on 
 . In
notation of Sect. 6.2 the lattice 
 is 
b , the first homology group of a fiber of
a real integrable system at a given point b 2 B0. Differently from the case of
symplectomorphisms when the dimension of the graded component is equal to 1
(see Sect. 2.3, Example (4)), we now have dim g
 D n � 1, where n D rk
 for

 ¤ 0. Explicitly, the Lie algebra of vector fields on the algebraic torus Hom.
;C�/
is spanned by elements x
@� where 
 2 
;� 2 
 _ satisfying the linear relations

x
@�1 C x
@�2 D x
@�1C�2 :
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Derivation @� is a constant vector field in logarithmic coordinates. The commutator
rule is given by

Œx
1@�1 ; x

2@�2 � D x
1C
2

�
.�1; 
2/@�2 � .�2; 
1/@�1

�
:

The subalgebra g of divergence-free vector fields is spanned by elements x
@� with
.�; 
/ D 0. It is obviously graded by the lattice 
 . Similarly to the symplectic (and
also Poisson) case (see the beginning of Sect. 3.1), the graded complement to g0 is a
Lie subalgebra g0 D ˚
¤0g
 in g (notice that an analogous property does not hold
for the Lie algebra of all vector fields).

One can generalize the above considerations to the following situation. Suppose
we are given two lattices 
1; 
2 and an integer pairing between them .�; �/ W 
2 ˝

1 ! Z. We do not assume that the pairing is non-degenerate. We denote by 
1;0 �

1 and 
2;0 � 
2 the corresponding kernels of the pairing.

Then we consider the Lie algebra g WD g
1;
2;.�;�/ spanned by elements x
@�
where 
 2 
1 and � 2 
2 such that .�; 
/ D 0, satisfying the same relations as
above. It contains the Lie subalgebra

g0 WD ˚
2
1�
1;0g
 :

The previous special case corresponds to 
1 D 
; 
2 D 
 _. In general, g can be
thought as the Lie algebra of divergence-free vector fields on a torus, preserving
a collection of coordinates and commuting with a subtorus action. Explicitly, if
we omit the condition .�; 
/ D 0 of being divergence-free, in some coordinates
.x1; : : : ; xaCbCc/ for a; b; c 2 Z�0 we get vector fields of the form

aCbY
iD1

x
ki
i 	 xj @=@xj ; .ki /1
i
aCb 2 ZaCb; aC 1 � j � aC b C c :

From the point of view of SYZ picture of Mirror Symmetry we have a real
integrable system X ! B with the dimension of the total space X equal to
2b. Moreover we have chosen a Lagrangian zero section as well as c other
Lagrangian sections (more precisely, a homomorphism from Zc to the abelian group
of Lagrangian sections). Also we assume that there is an a-dimensional space of
deformations of the above structure which is an a-dimensional vector subspace in
H2.X;R/ defined over Q. The mirror dualX_ is the complex manifold of complex
dimension b depending on a holomorphic parameters and carrying c line bundles.
The Mirror Symmetry preserves the parameter b and exchanges a and c.

Now we are ready to describe the analog of a WCS for Lie algebra g0.
The main difference with the formalism from 2.1 is that now walls are hyper-

planes in 
 �2;R WD 
 _2 ˝ R (and not in the dual space to the grading lattice 
1). We
define a wall as a hyperplane in 
 �2;R given by �?, where � 2 
2 � 
2;0 (one may
assume that � is primitive). With any wall H � 
 �2;R we associate a graded Lie
subalgebra
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gH WD
M

2
1

gH;
 � g0

spanned by x
@� such that .�; 
/ D 0 and 
 2 
1�
1;0. As in the Poisson case, this
Lie algebra is abelian. It is convenient to associate with any 
 as above a nonzero
constant vector field on the hyperplaneH equal to �.
/ WD .�; 
/ 2 
 _2 � 
 �2;R. In
SYZ picture the trajectories of this vector field are (possible) parts of tropical trees
corresponding to analytic discs with the boundary on a small Lagrangian torus, the
fiber of SYZ fibration.

Also with any Q-vector subspace V � 
 �2;R which is the intersection of two
walls we associate a graded Lie algebra gV (which is not a subalgebra of g0) such as
follows. As a 
1-graded vector space gV will be equal to the direct sum ˚H�V gH
over all walls containing V . The Lie bracket on gV is defined as follows. Let
.x
@�/H where 
 2 
1 � 
1;0; � 2 
2 � 
2;0 denotes the element x
@� 2 gH
considered as an element of gH � gV , whereH D �? is a wall containing V . Then
we define the Lie bracket by the formula:

Œ.x
1@�1 /H1; .x

2@�2 /H2� D .x
3@�3 /H3;

in case if Hi D �?i ; i D 1; 2; 3, 
3 D 
1 C 
2, �3 D .�1; 
2/�2 � .�2; 
1/�1 and
�3 … 
2;0. Otherwise, i.e. if �3 2 
2;0 (and as one can easily see �3 D 0), we define
the commutator to be equal to zero.

As in Sect. 2.1.3, we consider the pronilpotent case by choosing a strict convex
cone C � 
1 ˝ R, and working with gC WD Q


2
\C�
1;0 g
 . Then for a given
functional � W 
1 ! Z which is nonnegative and proper on the closure of C , we
consider finite-dimensional nilpotent quotients

g
.k/
C;� D ˚
2
1�
1;0j�.
/
kgC;
 D gC =m

.k/
C;�

wherem.k/
C;� WD

Q

2
1�
1;0W�.
/>k gC;
 is an ideal in gC .

Similarly we define the Lie algebras g.k/H;C;� . and g
.k/
V;C;� .

Let us fix finitely many walls Hi; i 2 I . We define the set WCSk.fHi gi2I ; C; �/
of wall-crossing structures for g

.k/
C;� which are supported on the union [i2IHi in

the following way. First we observe that the walls Hi; i 2 I give rise to the
natural stratification of 
 �2;R. Then an element WCSk.fHi gi2I ; C; �/ is a map which

associates an element g� of the group exp.g.k/Hi ;C;�/; i 2 I , where � � Hi is a co-
oriented stratum of codimension one in 
 �2;R (notice that � is an open subset ofHi ).

The only condition on this map says that for any generic closed loop f W R=Z!

 �2;R surrounding a codimension two stratum � � V; codimRV D 2, the product

of images of the corresponding elements exp.g�ti / in exp.g.k/V;C;�/ over the finite
sequence of intersection points f .ti / of the loop with walls Hi is equal to the
identity.
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Now we take the inductive limit of the sets WCSk.fHi gi2I ; C; �/ over all finite
collections fHi gi2I of walls and after that we take the projective limit over k.
The resulting set WCSg;C is our analog of WCS relevant to the Mirror Symmetry.
Analogously to Sect. 2 we can generalize our considerations and define WCSg;C

as a sheaf of sets on 
 �2;R and generalize even further assuming that 
1 and 
2 are
local systems of lattices on a topological space, say,M . Instead of the central charge
we now have a morphism of sheaves of abelian groups 
2 ! ContM . It is not clear
a priori why the sheaf WCSg;C is non-trivial, and how to introduce “coordinates”
on its stalk at zero. Although the structure we have defined is different from WCS
discussed in Sect. 2, we will abuse the language and still call it the wall-crossing
structure.

Next we would like to discuss an analog of the initial data.

Proposition 10.1.1. Let V D H1 \H2;Hi D �?i ; i D 1; 2 be an intersection of
two walls and 
 2 
1 � 
1;0 be a vector such that .�i ; 
/ D 0; i D 1; 2. Then the
natural map

M
H WV�H

gH;
 !
�
gV =ŒgV ; gV �

�



is injective.

Proof. Follows immediately from the formula for the bracket. �

Then we can define the analog of the initial data in the following two ways
depending on a choice of a sign. For any 
 2 
1 � 
1;0 and any H D �? such
that .�; 
/ D 0 we will construct elements a.k/;˙H .
/ 2 g

.k/
H;C;�;
 . Namely, it follows

from the above Proposition that for any stratum � � H as above such �.
/ belongs
to the closure � of the stratum � , the 
 -component of log.g� / does not depend on
� . We denote it by a.k/;CH .
/. Similarly we define a.k/;�H .
/ using the strata � such

that �
 2 � . Next we define elements a.k/;˙H 2 g
.k/
H;C;� as

P

 a

.k/;˙
H .
/. After that

we define elements a.k/;˙ 2 ˚Hg.k/H;C;� where the sum is taken over the set of walls
(notice that the sum is finite).

Conjecture 10.1.2. The set WCSk.C; �/ is identified via passing to initial data
a.k/;C with the set ˚Hg.k/H;C;� , where the sum is taken over all walls. Similar

statement is true for a.k/;�.

Finally, taking the projective limit over k we define the elements a˙. These
elements play a role of the initial data for the sheaf WCSg;C in a vector space.

Remark 10.1.3. Notice that for a fixed V there is a homomorphism gV ! g0 given
by the natural inclusions gH ! g0 for all H � V . Hence for a small open subset U
in 
1˝R we have a cocycle with values in exp.gC /. In plain terms, it is given by an
element gx1;x2 2 exp.gC / defined for two points x1; x2 2 U which do not belong to
any wall. Cocycle condition means that gx1;x2gx2;x3 D gx1;x3 . We see that we have a
picture similar to the one from Sect. 2. Hence we can use the above transformations
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in order to glue a Calabi–Yau manifold (possibly over a non-archimedean field)
from open coordinate charts.

In the passage from WCS to the glued manifold we lose some data. This point
is clear when we look at the initial data. Indeed if assume the above conjecture,
we see that the direct sum of all gH is “bigger” than g0. One can speculate that
the whole WCS contains the information sufficient for reconstruction of both mirror
dual Calabi–Yau manifolds. The initial data can be thought of as association of a
rational number to any triple .
; �; k/, where 
 2 
1 � 
1;0; � 2 
2 � 
2;0; k 2
Z�1 and 
; � are primitive vectors such that .
; �/ D 0. The rational number is
the coefficient of xk
@� 2 gH ;H D �? in the initial data. Notice that the above
conditions are symmetric with respect to the exchange of 
1 and 
2.

Remark 10.1.4. Notice that the Lie algebra g
1;
2;.�;�/ does not change if we replace

2 by a sublattice of finite index. Then at first sight it looks like that our WCS
depends on 
2 ˝ Q only. But one can recover a finer “integer” structure of the
WCS. At the level of the corresponding pronilpotent groups we consider subgroups

generated by the elements T
;� WD exp
�P

n�1
xn
@�
n

�
. In the case 
1 D 
2 and

.�; �/ D h�; �i being skew-symmetric, as in the Poisson case considered in Sect. 4,
we have similar transformationsT
 WD T
;
 D exp .fLi2.x
 /; �g/ (cf. Remark 2.3.1).

10.2 Pair of Local Systems of Lattices from Non-archimedean
Point of View

Recall the discussion in Sect. 6.2 of the geometry of the base of the real integrable
system which appears in SYZ picture of Mirror Symmetry.

Here we would like to recall the origin of the integrable system following [31,
35]. It can be approached either in the framework of Gromov–Hausdorff collapse
or using the language of non-archimedean geometry of Berkovich. In the former
approach we have a family Xt; t ! 0 of maximally degenerate polarized complex
Calabi–Yau manifolds. It was conjectured in [35] that for sufficiently small t the
manifoldXt contains an open subsetX 0t which is in Gromov–Hausdorff metric close
to the total space of the real integrable system �t W X 0t ! B0 over an open smooth
manifold B0 � B of some metric space B . The latter is the Gromov–Hausdorff
limit of Xt; t ! 0 (see [35] for details). The restriction of the metric to B0 is a
smooth Riemannian metric, which locally given by the matrix of second derivatives
of a convex function ˚ on B0 which satisfies the real Monge–Ampère equation
det.@2˚=@xi @xj / D const.

For any point b 2 B0 we can define the lattice 
1;b WD H2.Xt ; �
�1
t .b/;Z/ (the

latter stabilizes as t ! 0 along a ray). This family of lattice gives rise to a local
system 
 1 ! B0. It can be extended to a local system on S1t �B0.

It was conjectured in [35] (and hence was assumed in Sect. 6.2) that codim.B �
B0/ � 2. TypicallyB is a topological manifold homeomorphic to a sphere, complex
projective space or a torus.
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The approach via non-archimedean geometry gives rise to the non-archimedean
integrable system � W X an ! B (see [31]). Here X an is the compact polarized
analytic manifold (in the framework of Berkovich theory) over a non-archimedean
field K (typically K D C..t//) corresponding to the collapsing family Xt , and B
is a PL space called skeleton of X an.2 Furthermore, n WD dimRB D dimKX an,
and the projection � locally over B0 looks as the map .K�/n ! Rn given by
.z1; : : : ; zn/ 7! .logjz1j; : : : ; logjznj/. Conjecturally the skeleton coincides with the
Gromov–Hausdorff limit, hence the same notation. Thus B carries a (singular)
Z-affine structure, which is non-singular on the open smooth manifold B0. For
the “discriminant locus” Bsing D B � B0 we have (conjecturally) the condition
dim.Bsing/ � n � 2.

We are going to assume that the singularity of the singular integral affine structure
on B is of the Ak; k � 1 type at Bsing. Here the discriminant Bsing is a closed
subset of B , which contains an open dense topological submanifold Bsing

2 such that
dim.Bsing

2 / D n � 2 and dim.Bsing � Bsing
2 / � n � 3 and B is a PL manifold near

any point of Bsing
2 . Furthermore Bsing

2 locally looks as a topological submanifold in
Rn given in the standard coordinates .x1; : : : ; xn/ by the equations

x1 D f .x3; : : : ; xn/; x2 D 0;
where f .x3; : : : ; xn/ is a continuous function.

The integral affine structure on B � Bsing
2 in this local model coincides with

the standard one on the open set UC which is the complement to the closed set
x1 � f .x3; : : : ; xn/; x2 D 0. On the open subset U� which is the complement to
the closed subset x1 � f .x3; : : : ; xn/; x2 D 0 the integral affine structure is the
standard one in the coordinates x01 D x1 C k 	 maxf0; x2g; x02 D x2; : : : ; x0n D xn.

One can see that Bsing
2 belongs to a canonical germ of a hypersurface which

is (in the affine structure) an integer .n � 1/-dimensional hyperplane (outside of
Bsing) endowed with a locally constant integer vector field. In the local picture the
hyperplane is given by the equation x2 D 0, and the vector field is given by k 	
sign.f .x3; : : : ; xn/ � x1/@=@x1.

Recall that the approach with collapse gives a local system of lattices 
 1 ! B0.
In the non-archimedean picture we have 
 1;b D H2;Betti.X an; ��1.b/;Z/; b 2 B0,
where Hi;Betti denotes properly defined Betti homology of the analytic space X an

over the field K D C..t//.
There is a natural projection p W 
 1 ! T Z, where T Z WD T Z

B0
� TB0 is the

locally covariant lattice which defines the Z-affine structure onB0. Denoting
 1;0 D
Ker.p/ we obtain an exact sequence of lattices

0! 
 1;0 ! 
 1 ! T Z:

2In a recent paper [41] the notion of the skeleton was generalized to all K , including the case of
mixed and positive characteristic.
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In what follows we will assume that the local system 
 1;0 is trivial (this condition
is automatically satisfied in most of examples).

Remark 10.2.1. The above geometry (including the integrable systems �t W X 0t !
B0) arises also in the situation when in the non-archimedean integrable system � W
X an ! B the total space X an is non-compact but � is proper. In terms of Gromov–
Hausdorff collapse one can think of a family Xt ; t ! 0 of non-compact complex
manifolds endowed with complete Kähler metrics. The limiting metric on B0 is
given by the second derivatives of a convex function but this time not necessarily
obeying the real Monge–Ampère equation.

Remark 10.2.2. Let us assume that in the previous Remark the Kähler forms !t on
Xt have homology classes .logjt j/�1ˇ, where ˇ belong to the image of H2.Xt ;Z/
in H2.Xt ;R/ (this image does not depend on t when t is sufficiently small. Let
us assume that for any b 2 B0 the homomorphismH1.�

�1
t .b/;Z/! H1.Xt ;Z/ is

equal to zero (e.g. it is sufficient to assume thatH1.Xt ;Z/ D 0). Then we can define
a local system 
 1 ! B0 in the following way. Its fiber over b 2 B0 is the set of
pairs .
; v/, where 
 2 T Z

b D H1.�
�1
t .b/;Z/ ' Zn; n D dimCXt D dimRB

0, and
v 2 R is an element of Z-torsor ZC limt!0

R
ıt
.logjt j/�1!t . Here ıt is a 2-chain in

Xt with the boundary in ��1t .b/ such that the boundary @ıt is C1-close to a closed
geodesic in the torus ��1t .b/ representing homology class 
 . The existence of the
limit follows from the condition that !t is close to a semiflat metric, for jt j � 1.

Then we have a short exact sequence

0! 
 1;0 D ZB0 ! 
 1 ! T Z ! 0:

Now we discuss the origin of the local system 
 2. Let us first assume that the
non-archimedean field K carries a discrete valuation val.K�/ D Z � R. In this
case the base B0 carries a sheaf of affine functions with integer coefficients. Then
we define 
 2 to be this sheaf. We have a short exact sequence

0! 
 2;0 D ZB0 ! 
 2 ! .T Z/� ! 0:

Then we have the natural pairing 
 1 ˝ 
 2 ! T Z ˝ .T Z/� ! ZB0 . In general one
should consider Calabi–Yau manifolds over the field C..t1; : : : :; tm//;m D rk 
 2;0.
This can be thought of as a family of n-dimensional basesB0 endowed with Z-affine
structure and parametrized (locally) by a domain in 
 _2;0˝R. The total space of this
family of bases can be identified locally with a domain in 
 _2 ˝ R D 
 �2;R (cf.
Sect. 4.6). Therefore we can speak about the WCS on the total space of this family.

Recall that according to the general philosophy recalled in Sect. 6.2 in order
to construct the mirror dual to the Fukaya category of the Calabi–Yau manifold
near the cusp, we should count holomorphic discs with boundaries on fibers of the
SYZ fibration. From the non-archimedean point of view such discs become tropical
trees in n-dimensional bases B0 depending on parameters in 
 _2;0 ˝ R. In the next
subsection we are going to discuss such trees for a fixed value of the parameter in

 _2;0 ˝ R.
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10.3 Tropical Trees, Finiteness Assumption and WCS

We keep the notation of the previous subsection. In particularB denotes the base of
a non-archimedean integrable system. It is a PL space. We do not assume that the
valuation on the non-archimedean field K is integer. This means that we fix a Z-
affine structure on B0 corresponding to an arbitrary (not necessarily integer) point
in 
 _2;0˝R. In what follows we will not utilize 
 2. The reader should keep in mind
that our objects depend on parameters from 
 _2;0 ˝ R.

Definition 10.3.1. A tropical tree in B is an oriented toward the root metrized tree
T (see Sect. 3.2) endowed with a continuous map f W T � fTail verticesg ! B0

together with a continuous lift f 0 W T � fVerticesg ! tot.
 1/� tot.
 1;0/ such that
each edge lifts to a piece of the trajectory of the attractor flow

Pb D �.
/; P
 D 0; .b; 
/ 2 tot.
 1/ � tot.
 1;0/ � tot.
 1 ˝ R/:

We assume that at each internal vertex v we have the balancing conditionP
i 


out D 
 in (cf. Definition 3.2.1), and all 
out
i are pairwise distinct and there

are i1; i2 such that 
out
i1

is not parallel to 
out
i2

.

Furthermore we assume that the tail vertices belong to Bsing
2 and the germs of

edges near tail vertices belong to the above-described canonical hypersurface and
the speeds of the f 0-lifts of the tail edges are proportional (with minus sign) to the
canonical locally constant vector field described above.

Next we are going to discuss the analogs of the Finiteness Assumption (cf.
Sect. 9.3) as well as the existence of strict convex cones (cf. Conjecture 4.6.5). The
idea is to use “tropical metrics” on B0 which are non-singular as well as limits of
such, which can also contain ı-functions supported on “tropical effective divisors”.
We warn the reader that the conditions discussed below are still not sufficient for the
finiteness of the number of trees (which is a tropical analog of Gromov compactness
for pseudoholomorphic curves). Our conditions guarantee the existence of strict
convex cones, boundedness of lengths and finiteness of the number of tails of
tropical trees with the given generic root and the velocity of the root edge. One has
to put some extra constraints on the behavior of the affine structure or the “tropical
metric” at singularities of codimension � 3 in order to achieve the finiteness.
Hopefully it can be done. We expect that such conditions are implicit in [24, 25],
where the procedure for construction of the mirror dual Calabi–Yau gives a WCS in
our sense.

Recall that in complex geometry it is natural to consider non-negative .1; 1/-
currents as limits of sequences of Kähler metrics on a given manifold. There is
an analog of this notion in the non-archimedean geometry. More precisely, there a
sheaf of monoids Psh � Cont on X an of continuous plurisubharmonic functions
(see [5]). The sheaf of abelian groups Ph is defined as Psh \ .�Psh/. The
quotient Psh=Ph is by definition the sheaf of non-negative .1; 1/-currents. One
can define similar sheaves on B in the following way. For example, a continuous
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of plurisubharmonic function on an open subset of B is a continuous function on
this subset such that its pull-back to X an is a plurisubharmonic functions. A germ
of a non-negative .1; 1/-current at a point b 2 B0 � B is the same as a germ of a
convex (in the affine structure) function modulo a germ of affine function.

Having a non-negative .1; 1/-current � on B and a tropical tree T on B we can
define the integral

R
T
� 2 R�0, assuming that � is sufficiently regular (e.g. smooth)

near the root b0 of T . The reader can think of the integral as the limit of integrals
of non-negative .1; 1/-currents over holomorphic discs. Furthermore one can show
that this integral depends only on the velocity of T at b0 and hence gives rise to a
linear functional on 
 1;b0

. Therefore � defines a half-space where the velocities of
the tropical trees at roots must belong (at least at the points where � is smooth and
strictly convex). Moreover, for any such point b0 we can consider a small variation
�", e.g. by taking � C "	, where 	 is a an arbitrary smooth function supported in a
small neighborhood of b0. Similarly to Sect. 9.4 we can intersect the corresponding
half-spaces for all " > 0 and obtain a strict convex cone in T Z

b0
˝ R. But we need a

strict convex cone in 
 1;b0
˝ R. This can be achieved by considering variations of

� of more general type which change its cohomology class Œ�� 2 H2
Betti.X

an/˝R.
Therefore if there exists a non-negative .1; 1/-current � which is smooth and

strictly convex at any point of B0, then there exists a family of closed strict convex
cones Cb � 
 1;b ˝ R; b 2 B0 such that the velocities of tropical trees rooted at b
belong to Cb (cf. Conjecture 4.6.7). We call Support Property the existence of such
family of cones.

Assuming that such � does exist one can show that the total length of a tropical
tree with given root end the velocity of the root edge is bounded. Here the length
is measured with the respect to some auxiliary Riemannian metric on B0 obtained
from � by local considerations. This argument is not sufficient to guarantee the
analog of Finiteness Assumption, i.e. the finiteness of the number of tropical trees
with given root b 2 B0 and the velocity of the root edge 
 2 
 1;b � 
 1;0;b . The
finiteness can fail if there exists an infinite sequence of tropical trees with given
.b; 
/ and increasing numbers of tail edges. Hence we need to find a restriction
which guarantees the boundedness of the number of tail edges. In order to achieve
that we will need a smaller class of non-negative .1; 1/-currents. Namely they will
be smooth and strictly convex on B0 and satisfy the property that

R
l � � 1 for any

arbitrarily small piece l of the trajectory of the canonical locally-constant vector
field, such that l hits the discriminant.3 For such currents

R
T � gives an upper

bound for the number of tail edges of any tropical tree T . Together with the above-
discussed upper bound for the length of T it will imply the finiteness of the number
of tropical trees with fixed .b; 
/.

3In order to illustrate the latter condition consider delta-currents corresponding to compact curves
sitting at the preimage of Bsing

2 in the total space of the integrable system. The integral of such a
current over a holomorphic disc is bounded from below by the intersection index. Our assumption
is a “tropical” version of this fact.
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First let us make a simplifying assumption that B carries a ZPL-structure which
is compatible with Z-affine structure on B0 and such that Bsing D B � B0 is a
ZPL subset of B . In terms of the local model near Ak-singularities discussed above
this is equivalent to the fact that the function f .x3; : : : ; xn/ is piecewise-linear
with rational slopes. In such a situation we suggest to take as � the .1; 1/-current
associated with the Gromov–Hausdorff limit S of a family of ample effective
divisors St � Xt ; t ! 0 (we call S tropical effective divisor). Let us require S
contains Bsing, does not contain germs of the canonical hyperplanes x2 D 0 (see
the description of the local model), and the intersection number of S with any germ
of a trajectory of the canonical locally-constant vector field near a generic point of
B

sing
2 is greater or equal than one. More precisely such a germ can be understood as

the projection to B of a non-archimedean analytic disc D in X an. In the collapse
picture it is represented by a family of complex holomorphic discs Dt � Xt . Then
the above intersection number is defined as the usual intersection number St 	Dt for
jt j � 1.

Example 10.3.2. Let n D 2; k D 1. The tropical effective divisor S is the union of
three rays: S1 D fx1 D 0; x2 � 0g, S2 D fx1 D 0; x2 � 0g and S3 D fx1 C x2 D
0; x2 � 0g. The rays S1; S3 are taken with the multiplicity C1, while the ray S2 is
taken with the multiplicity C2. Here we use the focus–focus Z-affine structure on
R2 � f.0; 0/g which is the standard affine structure on R2 � fx2 D 0; x1 � 0g and
has as local affine coordinates .x1 Cmax.0; x2/; x2/ near the ray x2 D 0; x1 � 0.

Notice that S1 [ S2 (union as sets) is the limit as "! 0 of the family of straight
lines x1 D �"; x2 2 R in B0 D R2 � f.0; 0/g. Similarly S2 [ S3 is the limit of the
family of straight lines (in the Z-affine structure) given by .S2C.0; "//[.S3C.0; "//.
There are two types of germs of tropical discs: D˙ WD D˙;ı . Here D� is given by
f�ı < x1 � 0; x2 D 0g, and DC is given by f0 � x1 < ı; x2 D 0g, where
0 < ı � 1. Then one can easily check thatD� 	 .S1CS2/ D 1;D� 	 .S2CS3/ D 0.
Similarly,DC 	 .S1CS2/ D 0;DC 	 .S2CS3/ D 1. ThereforeD� 	S D DC 	S D 1,
where S D S1 C 2S2 C S3.

The following figure illustrates the Example.

S1

S2

S3

= limit of

If we have a tropical effective divisor S the above constraints on the intersection
numbers with germs of trajectories and � is the corresponding non-negative .1; 1/-
current then the integral

R
T
� is well-defined for any tropical tree T such the root

of T does not belong to S . Furthermore this integral gives an upper bound on the
number of tails of T . In order to have an upper bound for all tropical trees it is
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sufficient to find a collection .S˛/ of effective tropical divisors satisfying the above
constraint and such that \˛S˛ � Bsing. It is easy to find such a collection using the
ampleness of the corresponding divisors in Xt ; t ! 0.

We conclude that we can achieve (under the appropriate conditions) the Finite-
ness Assumption as well as the Support Property. Then using the analog of the
procedure described in the Sect. 4 we construct the WCS. After that, using a non-
negative .1; 1/-current which is smooth and strictly positive on B0, we can endow
B0 with the dual Z-affine structure. It can understood as the base of the canonical
non-archimedean integrable system which is glued from tube domains in the non-
archimedean torus .C..t//�/n (see [31]). The walls of the WCS become curved in
the new affine structure. The transformations corresponding to walls can be used in
order to modify the total space of the above-mentioned canonical integrable system.
As the result, we obtain a non-archimedean integrable system which can be extended
to the integrable system with the base B . Its total space can be thought of as the
analytic space corresponding to the mirror dual family X_t ; t ! 0.

Remark 10.3.3. The approach of [24, 25] gives an example of WCS discussed
above. In their case Bsing as a ZPL subset of B . Their notion of “slab” corresponds
to the notion of tropical effective divisor discussed above. What we call WCS
corresponds to the notion of “scattering diagram” in the loc.cit.

11 Appendix

11.1 Canonical B-Field

Let us consider a fibration � W X0 ! B0 whose fibers are compact tori, endowed
with a section. Denote by 
 the local system

�
R1��.Z/

�_
of first homology groups

of fibers. We assume that 
 is endowed with a skew-symmetric pairing h�; �i,
possibly degenerate. The goal of this subsection is to define a canonical cohomology
class in H2.X0;Z=2Z/ naturally associated with the pairing.

First, let us consider an individual fiber 
 . Skew-symmetric pairing on 
 gives a
symmetric pairing on
 ˝Z=2Z. Hence we can consider the groupV of polynomials
P of degree at most 2 on Z=2Z-vector space 
 ˝Z=2Z such that P.0/ D 0 and the
bilinear form .x; y/ 7! P.xC y/�P.x/�P.y/ is proportional (with the factor in
Z=2Z) to the form .x; y/ 7! hx; yi mod 2.

We have a short exact sequence

0! Hom.
;Z=2Z/! V ! Z=2Z! 0;

hence a dual sequence

0! Z=2Z! V _ ! 
 ˝ Z=2Z! 0:
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We have the natural map 
 ! 
 ˝ Z=2Z. Let W be the fiber product

W D lim.
 ! Z=2Z V _/:

Then we have a short exact sequence

0! Z=2Z! W ! 
 ! 0

Passing to the classifying spaces we obtain a fibration over the torus K.
; 1/
with the fiber being the Eilenberg–MacLane space K.Z=2Z; 1/. Going from the
local model to the global picture we obtain a fibration with the fiber K.Z=2Z; 1/
over X0. Its characteristic class is the desired class in H2.X0;Z=2Z/.
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Tropical Eigenwave and Intermediate Jacobians

Grigory Mikhalkin and Ilia Zharkov

Abstract Tropical manifolds are polyhedral complexes enhanced with certain kind
of affine structure. This structure manifests itself through a particular cohomology
class which we call the eigenwave of a tropical manifold. Other wave classes of
similar type are responsible for deformations of the tropical structure.

If a tropical manifold is approximable by a 1-parametric family of complex
manifolds then the eigenwave records the monodromy of the family around the
tropical limit. With the help of tropical homology and the eigenwave we define
tropical intermediate Jacobians which can be viewed as tropical analogs of classical
intermediate Jacobians.

1 Tropical Spaces and Tropical Manifolds

In this section we briefly recall basic concepts of tropical spaces relevant for our
paper. For more details we refer to [8, 9]. The main assumption we make is that our
the tropical space is regular at infinity.
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1.1 Tropical Spaces

A tropical affine n-space T
n is the topological space Œ�1;1/n (homeomorphic

to the nth power of a half-open interval) enhanced with a collection of functions
Opre D ff g, f W U ! T D Œ�1;1/. Here U � T

n is an open set and f is a
function that can be expressed as

f .x/ D max
j2A . jxC aj / (1)

for a finite set A � Z
n and a collection of numbers aj 2 T, such that the scalar

product jx is well-defined as a number in T (i.e. is finite or �1) for any x 2 U .
The collection of functions Opre is a presheaf which gives rise to a sheaf O of

regular functions on T
n (which we will also denote OTn indicating the space where

it is defined to avoid ambiguity). O is called the structure sheaf on T
n.

It is convenient to stratify the space Tn by

T
ı
I WD fy 2 T

n W yi D �1; i 2 I and yi > �1; i … I g;
where I � f1; : : : ; ng. Each T ıI is isomorphic to R

n�jI j and we set TI to be its
closure in T

n.
To write down a regular function (1) on R

n all we need is the integral affine
structure on R

n. This allows us to distinguish functions Rn ! R which are affine
with linear parts defined over Z. Thus the tropical structure on T

n can be thought of
as an extension of the integral affine structure in R

n where the overlapping maps
are compositions of linear transformations in R

n defined over Z with arbitrary
translations in R

n.
Given a subset U � T

N we say that a continuous map U ! T
M is integral

affine if it restricts to an affine map R
N ! R

M with integral linear part. We say that
a partially defined map h W TN Ü T

M is integral affine if it is defined on a subset
U � R

N and is integral affine there. Extending h whenever we can by continuity
we see that for each I � f1; : : : ; N g h is defined everywhere or nowhere on T

ı
I .

The automorphisms of a subset U � T
N are invertible integral affine maps

U ! U . For example, the automorphisms Aut.RN / Š GLN .Z/ Ë R
N form a

group of all integral affine transformations of R
N while Aut.TN / Š R

N only
consists of translations. We also note that automorphisms of Ts � R

N�s translate
an s-dimensional affine subspace of RN parallel to the Ts factor to another one with
the same property.

A convex polyhedral domain D in T
N is defined as the intersection of a finite

collection of half-spacesHk of the form

Hk D fx 2 T
N j jx � ag � T

N (2)

for some j 2 Z
N and a 2 R. The boundary @Hk is given by the equation jx D a.

A mobile face E of D is the intersection of D with the boundaries of some of its
defining half-spaces given by (2). The adjective mobile stands here to distinguish
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such faces among more general faces of X which we will define later and which are
allowed to have support in T

N X R
N , i.e. be disjoint from R

N � T
N . (They have

reduced mobility and are called sedentary).
The dimension of a convex polyhedral domain D is its topological dimension.

Observe that for each mobile face E ofD the intersection

Eı D E \ R
N

is non-empty. The intersection Eı is called the non-infinite part of a mobile face.
Each mobile face of D is a convex polyhedral domain itself (although perhaps of
smaller dimension).

We say two domainsD � T
N andD0 � T

M are isomorphic if there is an integral
affine mapTN Ü T

M which restricts to a homeomorphismD ! D0 (in particular,
it has to be defined everywhere on D).

We say that a convex polyhedral domainD � T
N is regular at infinity if for every

I � f1; : : : ; N g the intersection D \ .TıI / is either empty or is a .dimD � jI j/-
dimensional polyhedral domain in T

ı
I Š R

N�jI j.

Definition 1. An n-dimensional polyhedral complex Y DSD � T
N is the union

of a finite collection of convex n-dimensional polyhedral domains D, called the
facets of Y subject to the following property. For any collection fDj g of facets, their
intersection

T
Dj is a face of each Dj . Such intersections are called the (mobile)

faces of Y . Clearly they are themselves polyhedral domains in T
N .

We say that Y is regular at infinity if all its faces are regular at infinity.

In this paper we assume that all polyhedral complexes are regular at infinity.

Condition 1 (Balancing). Let E be an .n � 1/-dimensional mobile face in Y and
D1; : : : ;Dl � T

N be the facets adjacent to E . Take the quotient of RN by the
linear subspace parallel to Eı, the non-infinite part of E . The balancing condition
requires that

lX
kD1

�k D 0; (3)

where the �k are the outward primitive integer vectors parallel to the images of Dk

in this quotient.

A polyhedral complex Y � T
N is called balanced if all of its .n�1/-dimensional

faces satisfy the balancing condition.
More generally we can consider spaces that locally look like balanced polyhedral

complexes, i.e. admit a covering by open sets U˛ enhanced with open embeddings
(charts)

�˛ W U˛ ! Y˛ � T
N˛

where each Y˛ � T
N˛ is a balanced polyhedral complex. In this paper we assume

in addition that each Y˛ is regular at infinity.
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We may express compatibility of different charts by requiring that the corre-
sponding overlapping maps are induced by integral affine maps TN˛ Ü T

Nˇ . Or,
equivalently, we may use the structure sheaf and enhance each Y˛ � T

N˛ with the
sheaf OY˛ induced from OTN˛ . Its pull-back under �˛ is a sheaf on U˛. Two charts
�˛ and �ˇ are compatible if the corresponding restrictions to U˛ \ Uˇ agree.

We arrive to the following definition of a tropical space.

Definition 2 (cf. [9]). A tropical space is a topological space X enhanced with a
cover of compatible charts �˛ W U˛ ! Y˛ � T

N˛ to balanced polyhedral complexes
as above and which satisfies the finite type condition below.

The tropical space X is regular at infinity if it admits charts to polyhedral
complexes regular at infinity.

The charts induce a sheaf OX on X which we call the structure sheaf of X .

Condition 2 (Finite Type). The number of charts �˛ covering X is finite while
each chart is subject to the following property. If fxj 2 U˛g1jD1 is a sequence such

that �˛.xj / converges to a point y 2 T
N˛ then either the sequence fxj g converges

inside the topological spaceX or there exists a coordinate in T
N˛ such that its value

on y is �1 while its value on any point in �˛.U˛/ is finite.

It is easy to see that this finite type condition is a reformulation of the one
from [9].

1.2 Sedentary Points and Faces

Let D � T
N be a polyhedral domain. It is convenient to treat the intersections

D \ TI for I � f1; : : : ; N g also as its faces (at infinity). If we need to distinguish
such faces from the mobile ones we have defined before we call these new faces
sedentary.

Definition 3. We say that

EI WD E \ TI

is a face of D if E is a mobile face of D. The sedentarity of the face EI is s D jI j,
while its refined sedentarity is I .

Clearly, the mobile faces (defined previously) are the faces of sedentarity 0. If
Y � T

M is a polyhedral complex then we define a (possibly sedentary) face of Y
as a face of a facet in Y .

We will use the notation F �sj E when F is a face of E of codimension j and
sedentarity s higher. It is also convenient to introduce the following terminology.

Definition 4. A faceE of Y is called infinite if either it is not compact or it contains
a higher sedentary subface. Otherwise E is called finite (even if the sedentarity of
E itself is positive).
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Fig. 1 Mobile and sedentary
faces of a polyhedral domain
in T

N

Note that even though a face F � Y of sedentarity I may be adjacent to several
facets, it is always presented as

F D E \ T
I

for a unique mobile face E � Y which we call the parent of F (as long as Y is
regular at infinity). The set of faces of Y with the same parentE is called the family
of E . In case E is compact the regularity at infinity forces its family to have a very
simple combinatorial structure.

Proposition 1. Let E � Y be a compact mobile face containing a face of a
maximal sedentarity s. Then its family ˘.E/ forms a lattice poset (under �jj ),
isomorphic to the face poset of a simplicial cone of dimension s. The maximal
sedentary face in the poset is finite.

Note also that a face F of sedentarity I completely determines the integral affine
structure of its parent face E in the neighborhood of TI . Namely, we have the
following proposition.

Proposition 2. Let �I W TN ! T
I be the projection taking a point .x1; : : : ; xN /

to the point whose j -th coordinate is xj if j … I and �1 otherwise. The parent
face E of F is contained in ��1I .F /. Furthermore, for a small open neighborhood
U � TI we have

E \ U D ��1I .F /\ U:

In other words for a sufficiently small � > �1 we have .x1; : : : ; xN / 2 E

whenever �I .x1; : : : ; xN / 2 F and xj < � for any j 2 I . Thus the directions
parallel to the j -th coordinate in T

N for j 2 I are quite special for E . We orient
them toward the �1-value of the coordinate and call them divisorial directions,
see Fig. 1. Their positive linear combinations span the divisorial cone while all
linear combination span the divisorial subspace in R

N . The primitive integral vector
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along a divisorial direction (pointing towards �1 as the direction itself) is called a
divisorial vector.

One important observation is that the divisorial vectors are invariant with respect
to any integral affine automorphism of TjI j �TıI . Thus they are intrinsically defined
for F and so is the divisorial subspace which we denote by W div.

1.3 Tangent Spaces

Let y be a point in the relative interior of a face F of sedentarity I in a balanced
polyhedral complex Y � T

N . Let ˙.y/ be the cone in T
ı
I Š R

N�jI j consisting of
vectors u 2 T

ı
I such that yC �u 2 Y \TıI for a sufficiently small � > 0 (depending

on u). We denote the intersection of all maximal linear subspaces contained in˙.y/
by W 0.y/.

Clearly, the cones ˙.y/ can be canonically identified for all points y in the
relative interior of the same face, and so can be the vector spaces W 0.y/. We say
that ym 2 Y is a nearby mobile point to y if ym belongs to the relative interior of
the parent face to F .

Definition 5. For a point y 2 Y we define W.y/, the wave tangent space at y,
as W 0.ym/ for a nearby mobile point ym. The (conventional) tangent space T .y/
at y is defined as the linear span of ˙.y/ in T

ı
I Š R

N�jI j, where I is the refined
sedentarity of y.

Note that there are two essential distinctions in defining T .y/ and W.y/. To
define W.y/ we always move to a nearby mobile point ym. The space W 0.y/ itself,
is naturally a quotient of W.y/ by the divisorial subspace W div.y/.

On the other hand, for T .y/ we work in a vector space TıI , which is naturally the
quotient RN=W div.y/, but we take the linear span of the cone instead of the vector
space contained in it.

If we need to specify the space Y for the tangent space T .y/ we write TY .y/,
and similarly for W.y/. The following proposition is straightforward.

Proposition 3. An integral affine map h W TN Ü T
M induces linear maps dhW W

WY .y/! Wh.Y /.h.y// and dhT W TY .y/! Th.Y /.h.y// whenever h is well-defined
on y. We call these maps differentials of h.

The differentials are natural in the following sense. If g W TM Ü T
L is another

integral affine map defined on h.y/, then the induced differentials satisfy d.gıh/ D
.dg/ ı .dh/.

Let x 2 X be now a point in a tropical space.

Corollary 1. The tangent spaces WY˛ .�˛.x// (resp. TY˛ .�˛.x//) for different
charts �˛ are identified by the differentials of the overlapping maps. The resulting
spaces W.x/ and T .x/ are called the wave tangent space and the (conventional)
tangent space to the tropical space X at its point x.
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The tangent spaces T .x/ and W.x/ carry natural integral structure. We denote
the corresponding lattices by TZ.x/ and WZ.x/.

1.4 Polyhedral Structures

Sometimes a tropical space X comes with a structure of an (abstract) polyhedral
complex, which is not always the case.

Definition 6. We say that a tropical spaceX is polyhedral if there are finitely many
closed subsets�j 2 X (called facets) with the following properties.

• For each �j there exists a chart such that �j � U˛ and �˛.�j / is a facet of the
balanced polyhedral complex Y˛ � T

N˛ .
• For any collection f�j g of facets of X and any face �j in this collection the

intersection
T
�j is a face of �j .

Note that we may work with tropical polyhedral spaces in the same way as we
work with balanced polyhedral complexes in T

N . In particular, we can define in
the same way their faces (which will denote by �), both mobile and sedentary,
parent faces with their families, divisorial directions, and any other notion which is
intrinsically defined, that is stable under allowed integral affine maps. For instance,
Proposition 1 will read:

Proposition 4. Let X be a compact polyhedral tropical space. For every face � of
sedentarity s there is a unique (parent) face�0 of sedentarity 0 such that� �ss �0.
The cells of X with the same �0, the family of �0, form a lattice poset ˘.�0/

isomorphic to the face poset of a simplicial cone. Every face ofX belongs to exactly
one family poset ˘ . The maximal sedentary face �min in a poset is finite.

We will denote the k-skeleton of a polyhedral tropical space X (that is the union
of .� k/-dimensional faces) by Skk.X/. It is often convenient to take the covering
fU˛g by open stars of vertices. That is, each Uv is the union of relative interiors of
faces ofX adjacent to the vertex v. Then the relative interior of a face� is contained
in every Uv if v is a vertex of �.

Another useful feature of a compact polyhedral tropical space is that we can
define its first baricentric subdivision. For a finite cell we take an arbitrary point
in its interior for its baricenter. For an infinite cell we take for its baricenter the
baricenter of its unique most sedentary (necessarily finite, cf. Proposition 4) subface
(see Fig. 2). That is, we first choose baricenters of maximal sedentary faces and
then name them also as baricenters of any adjacent faces of lower sedentarity. The
subdivision of each face of X into simplices is constructed as usual by the flags of
its subfaces of minimal sedentarity.

The baricentric subdivision of X is not a polyhedral tropical space as we defined
it. It violates the regularity at infinity property. Nevertheless, it is very convenient
to have a triangulation of X . This enables us to define simplicial versions of the
(co)homology theories which are very useful for carrying out explicit calculations.
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Fig. 2 Baricentric
subdivision of an infinite cell.
The dotted faces have higher
sedentarity

1.5 Combinatorial Stratification

Notice that a polyhedral structure on a tropical space (if it exists) is in no way
unique. In this subsection we define a combinatorial stratification which is not
always polyhedral, but is naturally defined on any tropical space X .

Definition 7. We say that two points x; x0 2 X are combinatorially equivalent if
there exists a path connecting x to x0 along which both the dimension of the wave
tangent space W and the sedentarity remain constant. A combinatorial stratum of
the tropical space X is a class of combinatorial equivalence.

We will denote combinatorial strata of X by E and use the notation E � E 0 if
the stratum E lies on the boundary of E 0.

Example 1. Consider the circle El of length l , otherwise called a tropical elliptic
curve. El is a tropical space: we can present it as a tropical polyhedral space
by choosing, e.g., three distinct points so that they split El into three facets.
This subdivision is not unique as we can move these points around or consider a
subdivision into a larger number of facets. The combinatorial stratification for El is
trivial: it consists of a single stratum El .

Let two points x; y 2 U˛ � X belong to one chart � W U˛ ! Y of X and they
sit in some strata x 2 Ex and y 2 Ey . If Ex D Ey , that is if they belong to the
same stratum, one can canonically identify the tangent spaces T .y/ D T .x/ and
W.x/ D W.y/. The identification is natural in the following sense. If the points
also belong to another common covering open subset Uˇ it commutes with the
differentials induced by the overlapping map.

In other words, we get flat connections on the bundles T and W over each
combinatorial stratum of X .

Furthermore, if Ex � Ey then one has two natural maps

� W TZ.y/! TZ.x/ and � W WZ.x/! WZ.y/; (4)

(note the different directions) defined as follows. If I.�.y// D I.�.x// then any
face adjacent to �.x/ is contained in some face adjacent to �.y/ and � is given by
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inclusion. If I.�.y// ¤ I.�.x// (note that we must have I.�.y// � I.�.x//) then
� is the projection along the divisorial directions indexed by I.�.x// X I.�.y//.
The map � is given by inclusion of the linear spaces spanned by the corresponding
parent faces.

Again the maps � and � are natural in the sense that they commute with the
overlapping differentials.

1.6 Tropical Manifolds

First we recall a construction of a balanced polyhedral fan associated to a matroid
([1], see also e.g. [9, 11]).

A matroidM D .M; r/ is a finite set M together with a rank function r W 2M !
Z�0 such that we have the inequalities r.A [ B/C r.A \ B/ � r.A/C r.B/ and
r.A/ � jAj, where jAj is the number of elements in A, for any subsets A;B � M
as well as the inequality r.A/ � r.B/ whenever A � B . Subsets F � M such
that r.A/ > r.F / for any A � F are called flats of M of rank r.F /. Matroid M is
loopless if r.A/ D 0 implies A D ;.

The so-called Bergman fan of a loopless matroid M is a polyhedral fan ˙M �
R
jM j�1 constructed as follows. Choose jM j integer vectors ej � Z

jM j�1 � R
jM j�1,

j 2 M such that
P
j2M

ej D 0 and any jM j � 1 of these vectors form a basis of

Z
jM j�1. To any flat F �M we associate a vector

eF WD
X
j2F

ej 2 R
jM j�1:

For example, eM D e; D 0, but eF ¤ 0 for any other (proper) flat F . To any flag of
flats Fi1 � 	 	 	 � Fik we associate a convex cone generated by eFij . We define ˙M

to be the union of such cones, which is, clearly, an .r.M/� 1/-dimensional integral
simplicial fan. It is easy to check (cf. [1]) that it satisfies the balancing condition, so
that ˙M is a tropical space, called the Bergman fan ofM .

The matroid M is called uniform if r.A/ D jAj for any A � M . Note that the
Bergman fan of a uniform matroid is a complete unimodular fan in R

jM j�1 with jM j
maximal cones.

Definition 8. A tropical space X is called smooth, or a tropical manifold, if all its
charts �˛ are open embeddings to Y˛ D ˙M �Ts � T

jM j�1 �Ts for some loopless
matroidM and a number s � 0. (Here s is the maximal sedentarity in this chart and
n D r.M/� 1C s is the dimension of our tropical manifoldX .)

Tropical manifolds can be thought of as tropical spaces without points of
multiplicity greater than 1, see [9], thus we use the term smooth. Note that
smoothness is a property of the tropical space .X;OX/ alone, it does not involve
presentation of X as a polyhedral complex.
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2 Homology Groups

2.1 Singular Tropical Homology

Let x 2 X be a point in a tropical space. Choose a sufficiently small open set U 3 x
and an embedding � W U ! Y � T

N . Then for points y such that �.y/ lies in an
adjacent face to �.x/ we have a natural map between lattices in the tangent spaces
� W TZ.y/! TZ.x/, cf. (4).

Definition 9. The groupFk.x/ is defined as the subgroup of the kth exterior power
�k.TZ.x// generated by the products �.v1/ ^ 	 	 	 ^ �.vk/ with v1; : : : ; vk 2 TZ.y/
for a point y such that �.y/ lies in an adjacent face to �.x/ of the same sedentarity.
It is important that all k elements vj come from a single adjacent face. The group
F k.x/ is defined as Hom.Fk.x/;Z/.

The discussion at the end of Sect. 1.5 tells us that the groups Fk.x/ and Fk.y/

are canonically identified if x and y belong a single chart U˛ and lie in a single
stratum E of X . Furthermore, if for two points x; y, still in the same chart, we have
Ex � Ey , then there are natural homomorphisms

� W Fk.x/! Fk.y/: (5)

If three points x; y; z 2 U lie in the strata with incidence Ex � Ey � Ez then the
three corresponding maps (5) form a commutative diagram. In other words, if we
consider the set of strata in the U˛ � X as a category (under inclusions) then Fk

forms a contravariant functor from strata of U˛ to abelian groups (cf. Proposition 6).
We may interpret our data as a system of coefficients suitable to define singular

homology groups on X . Namely, we consider the finite formal sums

X
ˇ��;

where each � W �! X is a singular q-simplex which has image in a single chartU�
and is such that for each relatively open face �0 of � the image �.�0/ is contained
in a single combinatorial stratum E�0 of X . Slightly abusing the notations we’ll
identify the source and the image of � with the singular simplex � itself and say
that � D � j�0 is a face of � . Here ˇ� 2 Fk.E� \ U�/.

These chains form a complex C�.X IFk/ with the differential @ given by the
standard singular differential followed by the maps (5). We call such compatible
singular chains with coefficients in Fk tropical chains. The groups

Hp;q.X/ D Hq.C�.X IFp/; @/

are called the tropical homology groups.
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These homology groups is a version of singular homology groups of a topolog-
ical space X (after imposing the condition of compatibility of singular chains with
the charts and combinatorial strata).

A priori the groups Hp;q.X/ depend on the covering. Indeed, if we refine the
covering the tropical chains will be more restrictive. However the usual chain
homotopy arguments apply and show that the resulting homology groups are
canonically isomorphic. Thus we can conclude that the tropical homology groups
are independent of the covering fU˛g.

In case X has a polyhedral structure one can require the singular chains
to be compatible with the polyhedral face structure on X , rather than with its
combinatorial structure. Clearly, the homology groups defines by the two complexes
are canonically isomorphic. For polyhedral X there are other equivalent ways for
constructing tropical homology groups: simplicial, cellular. This is what we are
going to consider next.

2.2 Cellular and Simplicial Tropical Homology

We assume X is polyhedral and compact throughout this subsection. The main
advantage of dealing with cellular and simplicial chain groups is that they are finitely
generated. This will give an effective way to calculate the tropical homology.

Recall that X comes with a subdivision into convex polyhedral domains. We
define the cellular chain complex

C cell
q .X IFp/ D ˚Fp.�/ D ˚Hq.�; @�IFp.�//:

Here the direct sum is taken over all q-dimensional faces � of the subdivision. The
homologyHq.�; @�IFp.�// of the pair with constant coefficients equals Fp.�/

since each q-dimensional face � in X is topologically a closed q-disk (recall that
X is compact).

Our next step is to define the boundary homomorphism @ W C cell
q .X IFp/ !

C cell
q�1.X IFp/. The @ is the composition of the maps

Hq.�; @�IFp.�//! Hq�1.@�IFp.�//! Hq�1.@�; @�\Skq�2.X/IFp.�//;

(6)

the isomorphism

Hq�1.@�; @� \ Skq�2.X/IFp.�//! ˚Hq�1.�0; @�0IFp.�//; (7)

where the direct sum is taken over all .q � 1/-dimensional subfaces�0 � �, and

˚Hq�1.�0; @�0IFp.�//! ˚Hq�1.�0; @�0IFp.�
0//: (8)
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In (6) the first homomorphism is the boundary homomorphism of the pair .�; @�/
and the second one is induced by the inclusion of the pairs .�;;/ � .�; @�/.
The isomorphism (7) comes from the excision as the quotient space @�=.@� \
Skq�2.X// is homeomorphic to a bouquet of .q � 1/-dimensional spheres, one
sphere for each .q � 1/-dimensional subface �0 � �. Finally, the homomorphism
(8) is induced by (5).

The homology groups of the cellular chain complex .C cell� .X IFp/; @/ are called
the cellular tropical homology groups H cell� .X IFp/. If one has X covered by the
open stars of vertices we have the following identification.

Proposition 5. The cellular tropical homology groups H cell� .X IFp/ are canoni-
cally isomorphic to the (singular) tropical homology groupsH�.X IFp/.

Proof. As in algebraic topology with constant coefficients to prove this isomor-
phism we need to use cellular homotopy. Let us recall that by the cellular homotopy
argument the inclusion Skq.X/! X induces an epimorphism

Hj .Skq.X/IFp/! Hj .X IFp/ (9)

for j � q (which is an isomorphism for j < q). Note that even though Fp is not
a constant coefficient system, all cellular homotopy takes place within a single cell,
so the classical argument also holds here.

Consider the homomorphism (in singular homology groups) induced by the
inclusion of pairs .Skq.X/;;/ � .Sk.X/;Skq�1.X//

Hq.X IFp/! Hq.Skq.X/;Skq�1.X/IFp/ D C cell
q .X IFp/:

Its image consists of cycles by the construction of the boundary map in the short
exact sequence of the pair and thus it gives us a homomorphism

Hq.Skq.X/IFp/! H cell
q .X IFp/: (10)

Note that by cellular homotopy the kernel of (10) coincides with the kernel of (9)
for j D q. To see surjectivity of (10) we consider an element c 2 H cell

q .X IFp/.
Subdividing the faces ofX into simplices if needed we may represent c by a singular
chain in C�.Skq.X/IFp/, whose boundary @c is null-homologous in

C cell
q�1.Skq�1.X/;Skq�2.X/IFp/:

But Hq�1.Skq�2.X/IFp/ D 0 by the dimensional reason and thus @c must also
vanish in H cell

q�1.Skq�1.X/IFp/. Thus we may correct c (by adding to it a singular
chain in Skq�1.X/ whose boundary coincides with @c) to make it a cycle in
C�.X IFp/. ut

Next observation will be very useful when we define the cap product action by
the wave class.
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Lemma 1. Let 
 D P
ˇ�� be a cellular cycle in a compact tropical polyhedral

space X . Then each ˇ� is divisible by the divisorial vectors of�.

Proof. We only have to check this for infinite cells �. Since X is compact,� must
have a boundary face�q (of sedentarity one higher) for every divisorial direction q.
But the coefficient of @
 at �q comes only from the projection of ˇ� along q. ut

There is a simplicial variant of the tropical homology arising from the first
baricentric simplicial chains on X . (The baricentric subdivision of X was described
at the end of Sect. 1.4). Then we can consider the baricentric simplicial chain
complex with coefficients in Fp as a subcomplex C bar� .X IFp/ of C�.X IFp/.

Note that the cellular chain complex C cell� .X IFp/ can be viewed as a subcom-
plex of C bar� .X IFp/, where all coefficients on simplices of the same cell are taken
equal. Applying the standard chain homotopy arguments for constant coefficients
one can show that this inclusion

C cell� .X IFp/ ,! C bar� .X IFp/

is again a quasi-isomorphism. This allows us to identify both baricentric simplicial
and cellular homology with the tropical homology.

Remark 1. In [6] it is shown that in the case when X is a smooth projective
tropical manifold that comes as the limit of a complex 1-parametric family the
groups Hp;q.X/ can be obtained from the limiting mixed Hodge structure of the
approximating family. In particular, we have the equality

hp;q.Xt/ D rkHp;q.X/;

for the Hodge numbers hp;q.Xt / of a generic fiber Xt from the approximating
family.

Remark 2. In Sect. 6.2 we will show that there is a fairly small subcomplex of
C bar� .X IFp/, called konstruktor, which suffices to calculate the homology groups
Hp;q.X/ in the smooth projective realizable case.

2.3 Tropical Cohomology Groups

Finally we define tropical cochains C �.X IFp/ to be certain linear functionals
on charts/strata compatible Z-singular chains with values in

L
˛;E Fp.E \ U˛/.

Namely, if a simplex � lies in E \U˛ then we require the value of the cochain to lie
in Fp.E \U˛/. If � also lies in Uˇ, then its value in Fp.E \Uˇ/ should coincide
with its value in Fp.E \ U˛/ via the differential of the overlapping map.

Then one can define the differential as the usual coboundary followed by the
maps dual to (5)

ı˛.�/ D ˛.@�/ 2
M
���

Fp.��/! Fp.��/:
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Fig. 3 An open set in a polyhedral complex and the corresponding quiver. Here F1.U / Š Z
4

We can define the tropical cohomology groups

Hp;q.X/ D Hq.C �.X IFp/; ı/:

2.4 Sheaf/Cosheaf (Co)homology

To make connections with sheaf (co)homology theories we use the coefficient
systems Fp to define a constructible cosheaf with respect to the combinatorial
stratification of X . With a slight abuse of notations we denote this cosheaf also by
Fp . A cosheaf is a suitable notion to take homology, just like sheaf for cohomology.

First we construct the pre-cosheaf in each open chart U˛. Given an open set
U � U˛ we consider the poset formed by the connected components of intersections
of the strata of U˛ with U . The order is given by adjacency. This poset can be
represented by a quiver (oriented graph) 
 .U /. Each vertex v 2 
 .U / corresponds
to a connected component of the intersection U \E of the open set U and a stratum
E of U˛. A single stratum can produce several vertices in 
 .U /, see Fig. 3.

To each vertex v we associate the coefficient group Fp.v/ D Fp.E /. To an
arrow from v to w we associate the relevant homomorphism ivw W Fp.v/! Fp.w/
from (5). The groups Fp.v/ with maps ivw thus form a representation of the quiver

 .U /.

Definition 10. Fp.U / is the quotient of the direct sum
L

v2
 .U /Fp.v/ by the
subgroup generated by the elements a � ivw.a/ for all pairs of connected vertices
.v;w/, and all a 2 Fp.v/.

Note that an inclusionU �V �U˛ induces a morphism between the correspond-
ing quivers 
 .U / ! 
 .V / with isomorphisms at the corresponding vertices. This
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map clearly preserves the equivalence relation, and hence descends to the map
Fp.U / ! Fp.V /. Thus, we get a covariant functor from the open sets U � U˛
(with morphism given by inclusions) to free abelian groups U 7! Fp.U /. It is easy
to check that all sequences

M
i;j

Fp.Ui \ Uj /!
M
i

Fp.Ui/! Fp.U /! 0; (11)

where U D S
Ui , are exact. Thus the functor U 7! Fp.U / is a cosheaf (cf., e.g.

[2]) on the open set U˛.
To define the sheaf Fp we need a contravariant functorU 7! Fp.U /. Let 
 .U /

to be the directed graph as before with all arrows reversed. We set Fp.U / to be the
subgroups of

L
v2
 .U /Fp.v/, where the collections of elements fav 2 Fp.v/g

are compatible with all the morphisms dual to (5). Note that these collections are
precisely the ones annihilated by the elements a � ivw.a/ from the Definition 10,
and thus F p.U / D Hom.Fp.U /;Z/. Dualizing the exact sequences (11) we see
that the functor U 7! Fp.U / is a (constructible) sheaf on U˛.

Finally we can glue together the sheaves and cosheaves defined on all open charts
U˛ (see, e.g., [5], Ch. II, Exer. 1.22, for the sheaf version). We get a well defined
cosheaf Fk and sheaf F k on X as long as we have the isomorphisms  ˛ˇ between
the charts which satisfy  ˛ˇ ı  ˇ
 D  ˛
 (see Proposition 3).

The combinatorial strata of X form a category. Its objects are the strata
themselves. There is a unique morphism from E to E 0 if E � E , and no morphisms
otherwise. Our reasoning above can be formalized into the following general
statement.

Proposition 6. Suppose X has an open covering fU˛g and covariant functors F˛

for each U˛ from the combinatorial strata of U˛ to abelian groups which are
compatible on the overlaps in the sense of Proposition 3. Then gluing gives rise
to a constructible sheaf onX . Contravariant functors yields a constructible cosheaf
on X .

If the functors F˛ behave naturally with respect to refinements of the covering
fU˛g the resulting (co)sheaf F does not depend on the covering.

Finally we can use the sheaf-theoretic or Čech homology and cohomology for
cosheavesFp and sheaves Fp . The standard algebraic topology techniques identify
all these homology theories with the tropical (co)homology.

Proposition 7. There are natural isomorphisms

Hp;q Š Hq.X;Fp/ and Hp;q Š Hq.X;Fp/;

where on the right hand side are the sheaf-theoretic (co)homology groups.
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3 Tropical Waves

3.1 Waves and Cowaves

There is also another collection of sheaves and cosheaves that can be associated to
a tropical space X . Recall that for every point x 2 X we defined the wave tangent
spacesW.x/ in Sect. 1.3.

Definition 11. We define Wk.x/ as the exterior power �kW.x/. We also consider
the dual vector space W k.x/.

In any given chartU˛ theW.x/ can be canonically identified for points in a single
stratum E . Thus we may writeWk.E\U˛/ D Wk.x/ for any point x 2 E \U˛. For a
pair E � E 0 of two adjacent strata the map (4) induces the natural homomorphisms

� W Wk.E /! Wk.E
0/ and O� W W k.E 0/! W k.E /: (12)

By Proposition 6 the coefficient system Wk defines a constructible sheaf Wk on X ,
whereas the W k defines a cosheaf W k for every integer k � 0.

Definition 12. Tropical wave and cowave groups, respectively, are

Hq.X IWk/ and Hq.X IW k/: (13)

Again, we can think of these groups from the sheaf-theoretic point of view or
as stratum-compatible singular (co)homology with coefficients in the systems Wk

andW k .

Example 2. Let us consider a tropical genus 2 curve C with a simple double point.
The underlying topological space of C is a wedge of two circle, i.e. it is a graph
with a single vertex v and two edges that are glued to v, see Fig. 4.

The tropical structure in the interior of each edge is isomorphic to an open
interval of finite length in R (treated as the tropical torus T

� D T X f�1g). The
tropical structure at the vertex v is such that the four primitive vectors divide into
2 pairs of opposite vectors. This means that the chart at v is given by a map to R

2

such that a neighborhood of v in C goes to the union of coordinate axes and the four
primitive vectors near v go to the unit tangent vectors to those axes.

Thus, F1.v/ D Z
2 and W1.v/ D 0. On the other hand every point x in the

interior of either edge has the groups F1.x/ D Z and W1.x/ D R. The group
F0.x/ is always Z andW0.x/ D R for any point x. From the two term cell complex
one can easily calculate

H0.C IF0/ Š Z; H0.C IF1/ Š Z; H1.C IF0/ Š Z
2; H1.C IF1/ Š Z;

and

H0.C IW0/ Š R; H0.C IW1/ D 0; H1.C IW0/ Š R
2; H1.C IW1/ Š R

2:



Tropical Eigenwave and Intermediate Jacobians 325

Fig. 4 Nodal genus 2 curve

In general, F0 and W0 are constants, thus for p D 0 we recover the ordinary
topological homology and cohomology groups.

Proposition 8. We have H0;q D Hq.X IZ/, Hq.X IW 0/ D Hq.X IR/, H0;q D
Hq.X IZ/, Hq.X IW0/ D Hq.X IR/.

3.2 Pairing of F and W

The importance of the wave classes stems from their action on the tropical homology
via a natural bilinear map

\ W Hr.X IWk/˝Hq.X IFp ˝ R/! Hq�r .X IFpCk ˝ R/

which we are going to define now. On the chain level this map is just the standard
cap product between singular chains and cochains coupled with the wedge product
on the coefficients ^ W Wk ˝Fp ! FpCk ˝ R.

Let us clarify the meaning of the wedge multiplication. For a mobile point x 2 X
the wave tangent space W.x/ is naturally a subspace in T .x/ hence the product
makes sense on the nose. For any sedentary point x the wave space W.x/ naturally
projects (along the divisorial directions) to W 0.x/, which is a subspace of T .x/.
When taking the wedge product we first apply this projection.

In details, let ˛ be a compatible r-cochain with coefficients inWk and 
 DPˇ�

be a tropical q-chain with coefficients in Fp . For each singular simplex � we denote
by �0:::r its first r-face (spanned by the first r C 1 vertices of �) and by �r:::q its last
.q � r/-face. Then we set

˛ \ 
 D
X

.˛.�0:::r / ^ ˇ/�r:::q: (14)

Here we push the value of ˛ at the face �0:::r to the simplex � with the sheaf map
and then push the value of the result from � to �r:::q using the cosheaf map.

We will need the following local observation. Let us assume we live in a single
chart U˛.

Lemma 2. Let E 0 � E be a pair of adjacent strata in U˛. Then the diagram
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is commutative in the sense that for any ˛ 2 Wk.E 0/ and ˇ 2 Fp.E / one has
�.�.˛/ ^ ˇ/ D ˛ ^ �.ˇ/.
Proof. The wedge product is bilinear with respect to inclusion and quotient
(in fact, all) homomorphisms between free abelian groups. ut
Proposition 9. For each r � q the cap product (14) descends to a natural bilinear
map in homology

\ W Hr.X IWk/˝Hq.X IFp ˝ R/! Hq�r .X IFpCk ˝ R/:

Proof. The statement follows at once from the usual Leibnitz formula

.�1/r@.˛ \ 
/ D .ı˛/ \ 
 C ˛ \ @
:

Note that the wedge products in ı.˛ \ 
/ and .@˛/ \ 
 are taken in � and then
pushed to FpCk.�r:::Oi :::q/. On the other hand the wedge products in ˛\ ı
 are taken
in �0:::Oi :::q and then pushed to FpCk.�r:::Oi :::q/. But Lemma 2 allows us to identify the
results. ut

3.3 The Group H 1.X IW1 ˝ R/ and Deformations
of the Tropical Structure of X

In this section we assume that X is compact. Recall that X has a covering by charts
�˛ W U˛ ! Y˛ � T

N˛ . The transition maps on the overlaps are given by integral
affine maps  ˛ˇ W TN˛ Ü T

Nˇ .
As a topological space X can be presented as the quotient of the disjoint union

of its covering sets
F

˛.U˛/ by the following equivalence relation. We say two
points x 2 U˛ and y 2 Uˇ are equivalent if  ˛ˇ ı �˛.x/ D �ˇ.y/. Reflexivity of
equivalence says that  ˛ˇ D  �1ˇ˛ (as partially defined maps). Transitivity translates
as the cocycle condition, or as the composition rule,  ˇ
 ı  ˛ˇ D  ˛
 .

Conversely, given open subsets �˛.U˛/ � Y˛ � T
N˛ and a collection of integral

affine maps  ˛ˇ satisfying  ˛ˇ D  �1ˇ˛ and  ˇ
 ı  ˛ˇ D  ˛
 we can define a
topological space X as the quotient of

F
˛ �˛.U˛/ by the equivalence given by

the  ’s.
X will be a tropical space provided all subsets �˛.U˛/ remain open in the

quotient and X satisfies the finite type condition. Moreover we will get an
isomorphic tropical space if the  ˛ˇ are changed by a “coboundary” (twisted by
automorphisms  ˛ W TN˛ Ü T

N˛ for some ˛).
Let � be a class in H1.X IW1/. We can assume that the covering fU˛g is fine

enough so that � can be represented by a Čech 1-cocycle �˛ˇ 2 W.U˛ \ Uˇ/. We
can also assume that all U˛ and U˛ \Uˇ are connected. ThenW.U˛ \Uˇ/ consists
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of vectors parallel to all mobile strata in U˛ \ Uˇ. We can think of W.U˛ \ Uˇ/ as
a subspace in R

N˛ � T
N˛ via the map �˛, or in R

Nˇ � T
Nˇ via �ˇ .

By shrinking theU˛ if necessary it will also be convenient to assume that slightly
larger open subsets V˛ � U˛ do not contain any new strata other than those already
in the U˛. For instance if X is polyhedral we can take U˛ to be the open stars of
vertices, “shrunk” a little bit.

Now for � > 0 we modify the overlapping maps  ˛ˇ W TN˛ Ü T
Nˇ by

precomposing them with the translation by ��˛ˇ . Since �˛ˇ D ��ˇ˛ the new relation
is reflexive. Also since � is a cocycle the new maps ��˛ˇ satisfy the composition rule.
Thus they define a new equivalence relation and we call the corresponding quotient
space X�� the deformation of X .

Proposition 10. For � > 0, small enough,X�� is a tropical space.

Proof. We only need to show that X�� is of finite type and each of the U˛ is still an
open subset in X�� . For the latter it is enough to show that each U˛ \ Uˇ is open.
But this is clear since by condition that slight enlargements of U˛ contain no new
strata, no new strata can appear in U˛ \ Uˇ for small enough �. The argument for
the finite type condition is similar. ut

The deformed tropical space is especially easy to visualize in the polyhedral
case. Namely, X�� has the same combinatorial face structure, but the faces of
X�˛ themselves may have different shapes and sizes. For example if X is one-
dimensional, the lengths of the edges of X and X�˛ may be different.

4 Straight Classes

4.1 Straight Cycles in Tropical Homology

We start with a natural generalization of balanced polyhedral complexes in T
N to a

situation where a facet can have a weight. A weighted balanced polyhedral complex
Y � T

N is a union of a finite number of facets D as before, but now each D
is enhanced with an integer weight w.D/ 2 Z subject to the following weighted
balancing condition for every .n�1/-dimensional mobile faceE � Y . As in (3) we
consider all facets D1; : : : ;Dl � T

N adjacent to E and take the quotient of RN by
the linear subspace parallel toEı, the non-infinite part ofE . The weighted balanced
condition is

lX
kD1

w.Dk/�k D 0: (15)

We say that the weighted balanced complex Y is effective if the weights of all its
facets are positive.
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Just as balanced polyhedral complexes form local models for tropical spaces,
effective weighted balanced polyhedral complexes form models for weighted
tropical spaces.

Definition 13. A weighted tropical space is a topological space X enhanced with
a weight function w W X Ü N defined on an open dense set A � X and a sheaf
OX of functions to T such that there exists a finite covering of compatible charts
�˛ W U˛ ! Y˛ � T

N˛ with the following properties.

• Y˛ is an effective weighted balanced polyhedral complex in T
N˛ .

• For the relative interior Dı of any facet D � Y˛ we have ��1˛ .Dı/ � A while
the weight function w is constant on ��1˛ .Dı/ and equal to the weight of D.

• For each facet D � Y˛ there exists a Z-linear transformation ˚D W ZN˛ ! Z
N˛

of determinant w.D/ such that OX jDı\U˛ is induced by ˚�1D ı �˛.

We may reformulate the last condition of this definition by saying that each facet
D comes with a sublattice of index w.D/ of the tangent lattice TZ.x/, x 2 D. This
sublattice is locally constant and does not depend on the choice of charts. Note that
not every weighted balanced polyhedral complex in T

N is a weighted tropical space
in this sense as it is not always possible to consistently choose such a sublattice.
However no such sublattice for the facets ofZ is needed for the following definition.

Definition 14 (cf. [9,11]). LetX be a tropical space. A subspaceZ � X enhanced
with a weight function

w W Z Ü Z

defined on an open dense set A � Z is called a straight tropical p-cycle if for every
chart �˛ W U˛ ! Y˛ � T

N˛ of X there exists a weighted p-dimensional balanced
polyhedral complexZ˛ � T

N˛ such that �˛ W Z\U˛ ! Z˛ is an open embedding,
and for the relative interior Dı of any facet D � Z˛ we have ��1˛ .Dı/ � A. The
weight function w is constant on ��1˛ .Dı/ and equal to the weight of D.

Proposition 11. Each straight tropical p-cycle Z � X gives rise to a canonical
element ŒZ� 2 Hp;p.X/ in the tropical homology group of X .

Proof. We choose a sufficiently fine (topological) triangulation ofZ DS � so that
each p-simplex � from the triangulation lies in a single chart U˛ and in a single
combinatorial stratum E of X . In particular each � carries the weight w.�/ induced
from Z. An orientation of � defines the canonical volume element Vol� 2 FX

p .�/

given by the generator of �p.W Z
Z
.�// Š Z. Inverting the orientation of � will

simultaneously invert the sign of Vol� . Thus the product Vol� � is a well-defined
tropical chain in Cp.X IFp/. Then the weighted balancing condition for Z ensures
that


Z D
X
��Z

w.�/Vol� �
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is a cycle in Cp.X IFp/. Its class is clearly independent of the triangulation and
gives the desired element ŒZ� 2 Hp.X IFp/ D Hp;p.X/. ut
Definition 15. Elements of Hp;p realised by straight tropical cycles as in Propo-
sition 11 are called straight homology classes (or, in other existing terminology,
special or algebraic). They form a subgroup

H straight
p;p .X/ � Hp;p.X/:

Example 3. Recall that the tropical N -dimensional projective space TP
N may be

obtained by gluing N C 1 affine charts TN with the help of integral affine maps, cf.
e.g. [9]. A topological subspaceX � TP

N is called a projective tropical space if the
intersection ofX with any such chart is a balanced polyhedral complex. A projective
tropical space has a non-trivial straight homology class

ŒHX
p � 2 H straight

p;p .X/

(called the hyperplane section) in any dimension p D 0; : : : ; n D dimX .
To see this we start from the case X D TP

N . Consider the equations xj D cj ,
j D pC1; : : : ; n, cj 2 R, in a chartTN � TP

N . They define a p-dimensional linear
space parallel to a coordinate plane. We may take for Hp the topological closure of
this linear space in TP

N . Clearly, the homology class ŒHp� does not depend on the
choice of the T

N -chart or on permutation of coordinates in this chart. Furthermore,
H0 is a point and thus ŒH0� ¤ 0 in H0;0.TP

N / Š Z. Note that this also implies that
ŒHp� ¤ 0 in Hp;p.TP

N / as we may choose the transverse representatives Hp and
Hp0 so that Hp \Hp0 D HpCp0�N , cf. [11]. It is easy to show that any element of
H�;�.TPN / is generated by ŒHp�, p D 0; : : : ; N .

A similar construction can be made for general projective tropical spaces X �
TP

N . We take HX
p D HNCp�n \ X where HNCp�n is chosen to be transverse to

X with the help of translations in R
N . But in addition to those hyperplane sections

and their powersH�;�.X/ may have additional, more interesting, straight classes.

4.2 Straight Cowaves

A notion of straight classes exists also for cowaves. Once again, let Z � X be a
subspace such that each chart �˛ takes Z to a q-dimensional polyhedral complex in
T
N˛ (which we no longer assume balanced). We refer to such subspace of X as a

straight subspace.
In this subsection we assume that dimW.x/ D m for somem almost everywhere

on Z. In other words we assume that each open facet of Z sits in the m-skeleton
of X , but outside of the .m � 1/-skeleton of X . We call such straight subspaces
Z purely m-skeletal. For example Z is n-skeletal if no open facets of Z intersect
Skn�1.X/.



330 G. Mikhalkin and I. Zharkov

Definition 16. A coweight function on Z is a function

x 7! cow.x/ 2 W m.x/

defined on an open dense setA � Z. Here we assume that dimW.x/ D mwhenever
x 2 A, so we have W m.x/ � Z.

This is a dual notion to the weight function. But while the weight function was
integer-valued, here we do not have a canonical isomorphism between W m.x/ and
Z, it is only canonical up to sign.

Let x 2 A be inside of a facet of Z parallel to a q-dimensional affine space L
(in a chart �˛). As in the previous subsection, we may consider the volume element
VolL 2 Wq.x/ which is well-defined by the integer lattice in L and a choice of
orientation of L. Given this choice we have a well-defined map

� 7! cow.x/.� ^VolL/;

� 2 Wm�q.x/ and thus an element in W m�q.x/, a group that depends only on the
open facet of Z containing x. Thus any q-simplex � embedded to the same facet
and parallel to L defines a canonical chain with coefficients in W m�q.x/.

In particular, a triangulation of a coweighted purely m-skeletal q-dimensional
polyhedral pseudocomplex Y gives rise to a cowave chain in Cq.X IW m�q/. Such
cowave chains are called straight.

As in Proposition 11 we may associate a singular chain with the coefficients in
W m�q to Z by using a combinatorial stratification of Z.

Definition 17. A coweighted straight subspace Z � X is called cobalanced if the
resulting chain is a cycle. We may refine this into a local notion by saying that Z
is cobalanced at x 2 Z if x is disjoint from the support of the boundary of the
resulting special cowave cochain.

Note that once an orientation of W.x/ is chosen we may identify coweight and
weight at x.

Proposition 12. Suppose that a q-dimensional coweighted straight subspace Z is
purely m-skeletal and that x 2 Z belongs to a relative interior of a .q � 1/-
dimensional face (in a chart) with dimW.x/ D m. Then Z is cobalanced at x
if and only if Z is balanced at x.

Proof. Note that x must belong to the same combinatorial stratum of X as its
small open neighbourhood in Z, since Z is purely m-skeletal and dimW.x/ D
m. Thus W mjZ is locally trivial near x and we may translate coweights into
weights simultaneously for the whole neighbourhood with the help of an arbitrary
orientation of W.x/.

At the same time if dimW.x/ < m then the cobalancing condition is different
from the balancing condition. We believe that study of straight cowaves might be
useful, particularly in the context of mirror symmetry.
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5 The Eigenwave

5.1 The Eigenwave �

There is a canonical element � 2 H1.X IW1/ for every compact tropical space X .
Unfortunately, it does not have a preferred representative as a singular wave cocycle
in the case when X has points of positive sedentarity. Rather we shall represent it
in the quotient space C1.X IW1/=B

1
div.X IW1/ where the subspace B1

div.X IW1/ �
C1.X IW1/ will consist of certain coboundaries. Note that this ambiguity will not
cause us any problems with the cap product of � and the homology cycles because,
as we will see, taking product with elements in B1

div.X IW1/ annihilates any singular
cycle.

Let C0
div.X IW1/ � C0.X IW1/ be the subspace of 0-wave cochains whose values

on points x 2 X are in W div.x/. We let B1
div.X IW1/ � C1.X IW1/ consist of the

coboundaries of the cochains from C0
div.X IW1/. The elements 
 2 B1

div.X IW1/

are characterized by the property that on any singular 1-simplex � the values 
.�/
belong to the subspace W div.�/ � W.�/ spanned by the divisorial subspaces at the
boundary points of � .

We are ready to define the eigenwave class � 2 C1.X IW1/=B
1
div.X IW1/. Let

us first consider the case when all points of X have zero sedentarity, in particular
B1

div.X IW1/ D 0. In such case we define the value of � on a singular 1-simplex
� W Œ0; 1� ! X as �.1/ � �.0/. Recall that our singular chains are assumed to be
compatible with the combinatorial stratification of X so that �..0; 1// is contained
in a single combinatorial stratum and a single tropical chart. This means that the
difference �.1/ � �.0/ can be interpreted as a vector in the tangent space to this
stratum and therefore in W.�/.

Returning to the general case, if x 2 X is of positive sedentarity we choose
a nearby mobile point yx which maps to x under the projection along divisorial
directions. If x 2 X is mobile we set yx D x.

Definition 18. The element � 2 C1.X IW1/=B
1
div.X IW1/ is defined on a 1-simplex

� W Œ0; 1�! X as the vector w� WD y�.1/ � y�.0/ 2 W.�/.
Clearly the ambiguity in w� resulting from different choices of yx is confined to
B1

div.X IW1/. The next proposition asserts that � defines a class in H1.X IW1/,
which we call the eigenwave of X . We denote this class also by �, this should
not cause any confusion.

Proposition 13. ı� D 0.

Proof. By definition the value of ı� on a 2-simplex � is the sum of the values of
� on the three edges �1; �2; �3 of � . This is clearly zero (perhaps after applying the
maps � W W.�/! W.�/ in case some of the �i land in different strata). ut
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5.2 Action of the Eigenwave � and Its Powers on Tropical
Homology

The k-th cup powers of � are also (higher degree) wave classes �k 2 Hk.X IWk/.
One can define the value of �k on a k-simplex � modulo the ideal in Wk.�/

generated by theW div for all vertices in � . Namely, for an edge � � � let w� 2 W.�/
stand for the vector y�.1/ � y�.0/ 2 W.�/ pushed to W.�/. Then

�k.�/ D w�01 ^ 	 	 	 ^ w�k�1;k
DW w� 2 Wk.�/: (16)

Taking the cap product with �k D Œ�ksing� gives us the homomorphism:

�k\ W Hq.X IFp ˝ R/! Hq�k.X IFpCk ˝ R/: (17)

In case X is compact and polyhedral we consider its baricentric subdivision and
think of the Hq.X IFp/ as simplicial or cellular homology groups. The advantage
is that we can define the cap product with �k on the cycle level

�k W C cell
q .Fp/! C bar

q�k.FpCk ˝ R/: (18)

Below we give two different descriptions of the map (18) depending on the choice
of vertex ordering. The first result is a cycle in C bar

q�k.FpCk ˝ R/ while the second

one is still in C cell
q�k.FpCk ˝R/ � C bar

q�k.FpCk ˝ R/.
We recall the notion of the dual cells in the first baricentric subdivision of a

polyhedral complex. Let � 2 X be a q-cell. For any finite j -dimensional face
�0 � � of the sedentarity s.�0/ D s.�/ its dual cell O�0� in the baricentric
subdivision of� is defined as the union of all .q�j /-simplices in bar.�/ containing
the baricenters of� and�0. We can think of O�0� as a simplicial .q � j /-chain. The
orientations of the pair �0 and O�0� are taken to agree with the original orientation
of �.

Let 
 D P
ˇ�� be a cycle in C cell

q .X IFp/. Then according to Lemma 1 the
coefficients ˇ� for all � � X have to be divisible by the divisorial directions of �.
In particular, the wedge product of ˇ� with any element in ^k.W.�/=W div.�//

gives a well-defined element in FpCk.�/ ˝ R. We can also think of 
 DP
�2bar.�/ ˇ�� as an element in C bar

q .X IFp/.

Description 1. We label the vertices of each q-simplex � in bar.�/ according
to the dimension of the largest cells whose baricenters they represent (recall that
several faces of � of different sedentarity may have the same baricenter). In this
case the cycle �k \
 2 C bar

q�k.X IFpCk/ is supported on the dual subdivision inside
the q-skeleton of X .

Precisely, for every k-face �0 of � let w�0 2 Wk.�/ denote the volume element
associated to �0 as in (16). Clearly, w�0 equals the sum of all w�0:::k (taken with
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Fig. 5 The two descriptions of the wave action on a 2-cell � . The support of �sing \ � is red and
the framing is blue

appropriate signs) for the k-simplices �0:::k forming the baricentric triangulation
of �0. Then one can easily calculate from the definition of the cap product:

�k \ .
X

�2bar.�/

ˇ��/ D
X
�0	�

.w�0 ^ ˇ�/ O�0�; (19)

where the sum is taken over all k-dimensional faces of�. Note that higher sedentary
k-faces don’t appear in the sum because ˇ� vanishes when pushed to these higher
sedentary faces (Fig. 5).

Description 2. Here we label the vertices of each � in the opposite order to the
description 1. That is the baricenters with the smaller numbers correspond to the
larger faces. Now the cycle �k \ 
 2 C bar

q�k.X IFpCk/ is supported on the .q � k/-
skeleton of X .

Precisely, for every .q� k/-face�0 of� let Ow�0 2 Wk.�/ denote the polyvector
corresponding to the integration along the chain O�0�. Note that the faces �k:::q lie
in the .q � k/-faces of �. The polyvectors w�0:::k sum to Ow�0 for those simplices
� 2 bar.�/ whose faces �k:::q give the same simplex in bar.�0/. Then again from
the definition of the cap product we can write:

�k \ .
X

�2bar.�/

ˇ��/ D
X
�0	�

. Ow�0 ^ ˇ�/�0; (20)

where the sum is taken now over all .q � k/-dimensional faces of �.
It is straight forward to check that in both cases the resulting chain

�k \ .
X
�

X
�2bar.�/

ˇ��/

is a cycle.

Conjecture 1. Let X be a smooth compact tropical variety. Then for q � p
�q�p\ W Hq.X IFp ˝ R/! Hp.X IFq ˝ R/

is an isomorphism.
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We will prove the conjecture in the realizable case in Sect. 6.2 though we believe
that realizability assumption is not necessary. Certain amount of smoothness, on
the other hand, is essential. In the non-smooth case even the ranks of Hq.X IFp/

andHp.X IFq/ may not agree. A simple example is provided by the nodal genus 2
curve (see Example 2).

The action of the eigenwave � is trivial on straight tropical .p; p/-classes.

Theorem 1. If 
 2 H straight
p;p .X/ then � \ 
 D 0.

Proof. Any vector parallel to a simplex � of a special tropical cycle turns to zero
after the wedge product with the volume element of � . ut

6 Intermediate Jacobians

6.1 Tropical Tori

Let V be a g-dimensional real vector space containing two lattices 
1; 
2 of
maximal rank, that is V Š 
1;2 ˝ R. Suppose we are given an isomorphism
Q W 
1 ! 
 �2 , which is symmetric if thought of as a bilinear form on V .

Definition 19. The torus J D V=
1 is the principally polarized tropical torus with
Q being its polarization. The tropical structure on J is given by the lattice 
2. If, in
additionQ is positive definite, we say that J is an abelian variety.

Remark 3. The map Q W 
1 ! 
 �2 provides an isomorphism of J D V=
1 with
the tropical torus V �=
 �2 . The tropical structure on the latter is provided by the
lattice 
 �1 .

Remark 4. The above data .V; 
1; 
2;Q/ is equivalent to a non-degenerate real-
valued quadratic form Q on a free abelian group 
1 Š Z

g . The other lattice 
2 �
V WD 
1˝R is defined as the dual lattice to the image of 
1 under the isomorphism
V ! .V /� given by Q.

Let us take the free abelian group 
1 D Hq.X IFp/ Š Z
g with pC q D dimX ,

and p � q. We define the tropical intermediate Jacobian as the torus above together
with a symmetric bilinear form Q onHq.X IFp/.

The form Q is a certain intersection product on tropical cycles which we define
in two ways. The first definition is manifestly symmetric while the second definition
descends to homology. And then we show that the two definitions are equivalent.

Unfortunately we are not able to show in this paper that the form is non-
degenerate, though we believe that in the smooth and compact case this should be
true (cf. Conjecture 2).
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6.2 Intersection Product

Let X be a compact tropical space of dimension n. For a singular simplex � we
denote its relative interior by int.�/. We abuse the notation int.�/ to denote also its
image in X .

Definition 20. We say that a tropical chain
P
ˇ�� 2 Cq.X IFp/ is transversal to

the combinatorial stratification of X (or, simply, transversal) if for any simplex �
and any face � �k � we have

• int.�/ meets strata of X only of dimension .n � k/ and higher;
• if � lies in a sedentary stratum of X then ˇ� is divisible by all corresponding

divisorial directions.

Definition 21. We say that two transversal tropical chains
P
ˇ� 0� 0 2 Cq0.X IFp0 /

and
P
ˇ� 00� 00 2 Cq00.X IFp00/ form a transversal pair if the following holds. For

every pair of simplices � 0; � 00 from these chains and any choice of their faces
� 0 � � 0; � 00 � � 00, if the interiors int.� 0/; int.� 00/ lie in the same stratum E then
int.� 0/; int.� 00/ are transversal in the usual sense as smooth maps to E .

If a pair of simplices � 0; � 00 from the transversal pair have non-empty intersection
then all three submanifolds � 0; � 00; � 0 \ � 00 are supported on the same maximal
stratum E� 0\� 00 of X (and on no smaller strata). The oriented triple � 0; � 00; � 0 \ � 00
determines an integral volume element VolE�0

\�00
as well as its dual volume form

˝E�0
\�00

. By transversality, � 0 \ � 00 has dimension q0 C q00 � n. We can choose
a singular chain

P
� representing its relative fundamental class agreeing with the

orientation of � 0 \ � 00.
Let 
 0 D P

ˇ� 0� 0 2 Cq0.X IFp0 / and 
 00 D P
ˇ� 00� 00 2 Cq00.X IFp00/ be a

transversal pair of tropical chains. We define the following bilinear product with
values in the cowave chains:


 0 	 
 00 D
X

��� 0\� 00

˝E� .ˇ� 0 ^ ˇ� 00/ 	 � 2 Cq0Cq00�n.X IW n�p0�p00

/: (21)

Remark 5. Note that 
 0 	 
 00 has no support on infinite simplices � � � 0 \ � 00 since
the divisorial directions in W div.�/ divide both ˇ� 0 and ˇ� 00 .

Remark 6. If q0Cq00 < n or p0Cp00 > n then 
 0 	
 00 D 0 for dimensional reasons.
In what follows we will tacitly assume this is not the case.

From now on we assume that X is a compact smooth tropical space. Our goal
will be to show that in this case the above product descends to homology.

First we show that we can deform all cycles to a transverse position. Since the
question is local we can work in a chart �˛ W U˛ ! Y � T

N . The next lemma says
that we can move a tropical cycle 
 off a face E of Y , if it intersects it in higher
than expected dimension, not changing it outside the open star St.E/.



336 G. Mikhalkin and I. Zharkov

Lemma 3. Let 
 2 Cq.X;Fp/ be a (singular) tropical cycle in a tropical
n-dimensional manifold X and let E be an l-face of Y in a chart �˛ W U˛ !
Y � T

N . Then there exists a cycle 
 0 D P
ˇ�� 2 Cq.X IFp/ homologous to 


and such that for any .q � k/-face � of a simplex � we have int.�/ \ E D ;, i.e. �
is not supported on E whenever k C l < n. In addition, 
 0 satisfies to the following
properties:

• 
 \ .X X .U˛ \ St.E/// D 
 0 \ .X X .U˛ \ St.E///,
• the chain 
 � 
 0 is the boundary of a tropical .q C 1/-chain supported in U˛ \

St.E/,
• if E has positive sedentarity then any simplex � such that � \ E ¤ ; has its

coefficient ˇ� divisible by all divisorial vectors corresponding to E .

Proof. First let us consider the case when E is mobile. Working in a chart we can
assume Y is the Bergman fan for some loopless matroidM . Clearly, any matroidM
contains a uniform submatroidM0 �M of the same rank r.M/ (by submatroid we
mean a subset with the restriction of the rank function). Thus, we have a sequence
M0 � 	 	 	 �MjM j�r.M/ DM of submatroids ofM such thatMjC1 is obtained from
Mj by adding one element �jC1. We may form a matroidHj of rank r.Mj /� 1 by
setting a new rank function rHj on Mj , rHj .A/ D rM .A [ �jC1/� 1 for A �Mj .

The fan YMjC1
� R

jMj j maps to the fan YMj � R
jMj j�1 by projection along the

coordinate corresponding to the element �jC1. If the matroidHj has loops this map

�j W YMjC1
! YMj

is an isomorphism. Otherwise note that the Bergman fan YHj is a subfan of YMj .
Also we denote by Y 0MjC1

the subfan of YMjC1
containing only those cones whose

corresponding flags do not have two flats differing just by �jC1, see Fig. 6. Then
�j W Y 0MjC1

! YMj is a one-to-one map linear on the cones, cf. [11]. Indeed, �j
contracts precisely those cones of YMjC1

which are parallel to e�jC1
.

YM0 is a complete fan in R
r.M/�1 and the lemma is trivial since the coefficients

Fp D �p
Z
r.M/�1 are constant on all strata and we may deform 
 into a general

position (subdividing simplices in 
 if needed to keep the chain strata-compatible).
Inductively we suppose that the lemma holds for YMj and the matroidHj is loopless
and then prove that the lemma holds for YMjC1

.
We denote by St.e�jC1

/ the complement of Y 0MjC1
in YMjC1

. It really is the open
star of e�jC1

(in the coarsest face structure of YMjC1
). Note that St.e�jC1

/ Š YHj �R.
If E � St.e�jC1

/ we may use the inductive assumption for projections to YHj
(it has smaller dimension) together with a deformation along a generic vector field
parallel to e�jC1

.
If E 6� St.e�jC1

/, that is E is contained in Y 0MjC1
we have dim.�j .E//D

dim.E/ D l . Consider singular q-simplices from 
 with the interiors mapped to
St.E/ and such that their closures intersect E . These simplices form a chain 
E
which can be considered as a relative cycle modulo its boundary @
E . We have @
E\
E D ;. Furthermore, �j .@
E/ is a .q � 1/-cycle in the .n� 1/-dimensional tropical
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Fig. 6 The matroids MjC1;Mj and Hj and their corresponding fans. The fan Y 0

MjC1
is the

unshaded part of YMjC1
. The shaded part of YMjC1

is St.e�jC1
/

manifold YHj . By induction on dimension we may assume that �j .@
E/\ St.e�jC1
/

can be deformed in YHj to a cycle with simplices without faces of dimension larger
than q � nC l whose relative interiors are contained in E . As St.e�jC1

/ Š YHj �R
such deformation lifts to YMjC1

and can be extended to a deformation of 
 in YMjC1
.

By induction on j there exists a tropical chain bj 2 CqC1.YMj IFp/ such that
the relative interiors of k-faces of singular simplices of 
 0j D @Bj � �j .
/ are
disjoint from E . This assumption holds for any face structure on YMj , in particular
for the one compatible with YHj . Then the relative interiors of all q-dimensional

simplices are disjoint from YHj and we can form Qbj 2 CqC1.YMjC1
IFp/ and Q
 0j 2

CqC1.YMjC1
IFp/ by applying ��1j jYMj XYHj to bj and 
 0j . Note that @ Qbj � 
 � Q
 0j

must have the coefficients vanishing under �j , even though generated from the facets
of Y 0MjC1

. Such coefficients must be supported on St.e�jC1
/ and thus we may apply

the same reasoning as in the case of E � St.e�jC1
/.

Finally, let us now consider the sedentary case, that is letE be a sedentarity s face
of YM �Ts with s D jI j > 0. Let �j be the divisorial vectors, and let VJ WD ^j2J �j
denote the divisorial jJ j-polyvector for each J � I . We will need to deform 
 to

 0 so that no .q � s/-dimensional or smaller-dimensional face of a simplex � in 
 0
meets YM � f�1g (here f�1g 2 T

s is the point of sedentarity s). In YM � R
I

the groups Fp split into the direct sum ˚J�IF J
p , where F J

p consists of elements
divisible by the polyvector VJ , and no larger VJ 0 . (The splitting is not canonical,
it depends on a chart). Accordingly, we have a decomposition 
 D P

J�I 
J into
cycles.
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If J ¤ I , that is there exists j … J , we may push 
J from E with the help of
a vector field parallel to xj . Note that 
J remains a cycle after such deformation as
�j is not present in the coefficients of 
J . Thus by induction on sedentarity we may
assume J D I .

The cycle 
I has coefficients in F YM
p�s ˝ VI , and hence can be interpreted as a

relative cycle modulo @TI D T
I X R

I with coefficients in F Y M

p�s (as VI vanishes
on @TI and constant otherwise) and .T I ; @TI / is homeomorphic to the pair Rs�1 �
.R�0; f0g/ of a half-space and its boundary. Thus 
I may be deformed to a product
(after simplicial subdivision) of the relative fundamental cycle in the s-dimensional
half-space with some .q � s/-dimensional singular cycle. In particular, E will not
meet any codimension< s face of a q-simplex in a deformed cycle. ut
Remark 7. Let ˙ D S

� be an integral polyhedral fan (with its cones � oriented).
Then using the inclusion homomorphisms (5) we can form the complex C .p/

k WD
˚dim �DkFp.�/. In case˙ is a matroidal fan the statement of Lemma 3 is equivalent

to that the complex C .p/
� has only the highest homology.

Remark 8. When X is not smooth the statement of the Lemma is not true. For
example let X be a union of two 2-planes in R

4 intersecting in a point. Consider
an unframed path (that is cycle in C1.X IF0/ through the vertex which starts in one
plane and ends in the other plane. Any deformation of this path will still have to go
through the vertex.

Corollary 2. Let X be a tropical manifold. Then

1. Every class in Hq.X IFp/ is represented by a transversal cycle.
2. Every pair of classes in Hq0.X IFp0 / and Hq00.X IFp00 / is represented by a

transversal pair of cycles.
3. If 
 01; 
 02 are two cycles which represent the same class in Hq0.X IFp0/ and

both form transversal pairs with a cycle 
 00 2 Cq00.X IFp00/, then there is
b 2 Cq0C1.X IFp0 / which form a transversal pair with 
 00, and such that
@b D 
 01 � 
 02.

Proof. We may start from any tropical cycle and deform it to a transversal position
by applying Lemma 3 stratum by stratum starting from 0-dimensional faces and
then higher-dimensional strata. (Note that in a chart the open star of any face can
intersect only faces of higher dimension).

Suppose that we have two transversal cycles. Since any stratum E is a manifold
we can make interiors of faces of the simplices from these cycles transversal in E
by a small deformation with the help of the usual Sard’s theorem. In any chart this
deformation extends to a small deformation in St.E /. Making this procedure stratum
by stratum in the order of non-decreasing dimension we make any pair of cycles
transversal. A similar argument applies to the relative cycle in the last statement of
the corollary. ut

If p0Cp00Cq0Cq00 D 2n we can give a numerical value to the product 
 0 	
 00 by
integrating the .n�p0�p00/-form˝E� .ˇ� 0 ^ˇ� 00/ over the .q0Cq00�n/-simplex � .
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Indeed, since ˇ� 0 ^ ˇ� 00 is divisible by all divisorial directions corresponding to
sedentary faces of � D � 0 \ � 00, the integration can be carried over in the quotient
space to those (infinite) coordinates, thus giving a finite answer. Thus we define

Z

 0 	 
 00 WD

X
��� 0\� 00

Z
�

˝E� .ˇ� 0 ^ ˇ� 00/ 2 R: (22)

The most interesting case to us is when p0 C q0 D p00 C q00 D n. Assuming
q0 C q00 � n we can use the eigenwave action on one of the cycles in the pair to
make them of complementary dimensions, after which the integration becomes just
summing over the intersection points

h
 0; 
 00i WD
Z

 0 	 
 00 D

X
x2j
 0j\j
 00j

˝x.ˇ
0
x ^ ˇ00x /;

where ˇ0x; ˇ00x are the coefficients at � 0; � 00 for their intersection points x 2 � 0 \ � 00.
Proposition 14. Let 
 0 D P

ˇ� 0� 0 2 Cq0.X IFp0/ and 
 00 D P
ˇ� 00� 00 2

Cq00.X IFp00/ be a transversal pair of tropical cycles with p0 C q0 D p00 C q00 D n
and q0 C q00 � n. Let k WD q0 � p00 D q00 � p0 � 0. Then

h�k \ 
 0; 
 00i D
Z

 0 	 
 00:

Proof. First we need a representative of the cycle �k \ 
 0 such that it still forms
a transversal pair with 
 00. We fix first and second baricentric subdivisions of the
simplices � 0 in 
 0. Then by transversality of 
 00 we can assume that the intersection
of each � 0 with 
 00 is supported on the star skeleton of � 0. That is � 0\j
 00j consists of
the k-simplices of the first baricentric subdivision of � 0 spanned by the baricenters
of the q0 � k; : : : ; q0-dimensional faces � of � 0. We label the k-simplices in the first
baricentric subdivision of � 0 by the flags of its faces .�0 � 	 	 	 � �k/.

Then the result of the wave action (19) from Description 1 on ˇ� 0� 0 gives the
following chain (see Fig. 7)

X
�0	���	�k

.w�0	���	�k ^ ˇ� 0/7.�0 � 	 	 	 � �k/;

where w�0	���	�k 2 Wk.�� 0/ is the polyvector associated to the simplex .�0 � 	 	 	 �
�k/, and 7.�0 � 	 	 	 � �k/ is its star dual in the second baricentric subdivision (cf.
definition in Sect. 5.2). When intersected with 
 00 only the simplices .�0 � 	 	 	 � �k/
with maximal dimensional flags enter and we see that the result coincides with the
definition of

R

 0 	 
 00. ut

Proposition 15. Let X be smooth. Then the intersection product h ; i on cycles
descends to a pairing on homologyHq.X IFp/˝Hp.X IFq/! R.
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Fig. 7 Intersection in � 0:
j
 00j (in red), j�k \ 
 0j (in
blue)

Proof. Suppose that we have two homologous cycles 
 01 2 Cq.X IFp/ and 
 02 2
Cq.X IFp/. Let b 2 CqC1.X IFp/ be the connecting chain, i.e. @b D 
 01 � 
 02.
According to Corollary 2 we can assume that each of the three 
 01; 
 02; b forms a
transversal pair with a cycle 
 00 2 Cp.X IFq/.

It is clear that @.b 	 
 00/ coincides with the 
 01 	 
 00 � 
 02 	 
 00 on the interiors of
the maximal strata of X . Thus it is enough to show that b 	 
 00 has no boundary on
codimension 1 mobile strata of X (according to Lemma 3 the intersection has no
support on infinite simplices). This is local so we can work in a chart �˛ W U˛ !
Y � T

N .
Let E be a codimension 1 face of Y and let D1; : : : ;Dk be the adjacent facets at

E . We choose v1; : : : ; vk , the corresponding primitive vectors such that
Pk

iD1 vi D 0
(not just modulo the span of E). Let x be a point in the relative interior of E where
b intersects 
 00, and let �1; : : : ; �k be the intervals in the support of b 	 
 00 adjacent to
x. Each �i lies in Di . Let ˇ0i 2 Fp.Di / and ˇ00i 2 Fq.Di / be the coefficients of the
simplices of b and of 
 00, respectively, which intersect at the �i .

Since 
 00 is a cycle, we have
P

i ˇ
00
i D 0. We can write each

ˇ00i D vi ^ N̨ 00i C ˛00i ;
where N̨ 00i 2 Wq�1.E/ and ˛00i 2 Wq.E/.

Recall that our tropical space X is smooth. In particular, this means that the fan
at E modulo linear span of E is matroidal. That is,

Pk
iD1 vi D 0 is the only linear

relation among the vi ’s. This together with
P

i ˇ
00
i D 0 implies that

kX
iD1

˛00i D 0 and N̨ 001 D 	 	 	 D N̨ 00k DW N̨ 00:

Similarly,
P

i ˇ
0
i D 0 since @b cannot have support at x. Hence we can write

ˇ0i D vi ^ N̨ 0 C ˛0i ;
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with
P
˛0i D 0, ˛0i 2 Wp.E/ and N̨ 0 2 Wp�1.E/. Note that in the product

ˇ0i ^ ˇ00i D .vi ^ N̨ 0 C ˛0i / ^ .vi ^ N̨ 00 C ˛00i / D vi ^ . N̨ 0 ^ ˛00i C ˛0i ^ N̨ 00/

only the cross terms survive. Now we are ready to evaluate @.b 	 
 00/ at x:

X
i

˝�i Œvi ^ . N̨ 0 ^ ˛00i C ˛0i ^ N̨ 00/� D
X
i

˝�. N̨ 0 ^ ˛00i C ˛0i ^ N̨ 00/

D ˝�. N̨ 0 ^
X
i

˛00i C
X
i

˛0i ^ N̨ 00/ D 0:

ut
Finally we restrict to the case when both 
 0; 
 00 are cycles in Cq.X IFp/ with

pC q D n. Then 
 0 	 
 00 D 
 00 	 
 0. Indeed, assuming the orientation of � is chosen,
taking the product in the opposite order will result in the change of sign of the
volume form ˝E� according to the parity of p. On the other hand this parity will
also affect the coefficients product: ˇ0 ^ ˇ00 D .�1/pˇ00 ^ ˇ0, both effects cancel in
˝E� .ˇ

0 ^ ˇ00/. This observation combined with Propositions 14 and 15 lead to the
final statement.

Theorem 2. Let X be compact and smooth. The product on cycles (22) descends
to a symmetric bilinear form onHq.X IFp/ for any p C q D n.

Conjecture 2. This form is non-degenerate.

Appendix: Konstruktor and the Eigenwave Action
in the Realizable Case

Tropical Limit and the Steenbrink–Illusie Spectral Sequence

SupposeX is the tropical limit of a complex projective one-parameter degeneration
X ! ��. Then X is naturally polyhedral. We assume also that X is smooth. In
this case the refined stable reduction theorem [7] allows us assume the following
(see details in [6]).

• X is unimodularly triangulated. This means that the finite cells are unimodular
simplices and the infinite cells are products of unimodular simplices and
unimodular cones spanned by the divisorial vectors.

• The finite part of X is identified with the dual Clemens complex of the
degeneration with simple normal crossing central fiber Z D [Z˛ . This means
that the components of Z are labelled by vertices of zero sedentarity and their
intersections Z˛0 \ 	 	 	 \ Z˛k DW Z� are labelled by (finite) simplices � D
f˛0 : : : ˛kg of X of zero sedentarity.
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Theorem 3. Let X be a realizable smooth projective tropical variety. Then for
q�p

�q�p W Hq.X IFp/˝Q! Hp.X IFq/˝Q

is an isomorphism.

In this algebraic setting the eigenwave itself is an integral class in H1.X IW1/

(recall that W carries a natural lattice). Hence in the statement we can avoid
tensoring the tropical homology groups with R. However its proof relies on the
isomorphism in Theorem 4 which we can assert only over Q. Although we believe
that the theorem remains true over Z its proof may be more delicate.

We will prove the theorem by comparing the eigenwave action with the classical
monodromy action T W Hk.Xt ;Q/ ! Hk.Xt ;Q/, where Xt is a general fiber
in X . The idea that the monodromy can be represented by a cap product with
certain cohomology class appeared before in the Calabi-Yau case. The second
author [12] proved a related conjecture of Gross [3] that for toric hypersurfaces the
monodromy can be described as the fiber-wise rotation by a natural section of the
SYZ fibration. Later Gross and Siebert ([4], Sect. 5.1) explored the relation between
the monodromy and the cap product in the logarithmic setting.
Notations:

• � or �0 will always denote a finite face of X of sedentarity 0, in particular, a
simplex.

• H2l .�/Œ�r� D H2l .Z�;Q/, Tate twisted by Œ�r;�r�.
• H2l .k/Œ�r� D ˚H2l .�/Œ�r�, where� runs over all k-simplices in X as above.

First we recall the classical spectral sequence which calculates the limiting mixed
Hodge structure of the family X (see, e.g. [10], Chap. 11). This spectral sequence
(from now on referred to as the Steenbrink-Illusie’s, or SI for short) has the first
term

E1
r;k�r D

M
i�maxf0;rg

HkCr�2i .2i � r/Œr � i �;

and it degenerates at E2 abutting to homology of the smooth fiber Xt of Z with the
monodromy weight filtration.

Since all strata in Z are blow ups of projective spaces, the odd rows in
Steenbrink-Illusie’sE1 vanish. Removing those and making shifts in the even rows
we relabel the terms by

QE1
q;p WD E1

q�p;2p D
M

i�maxf0;q�pg
H2q�2i .2i C p � q/Œq � p � i �:
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The first differential d D d 0Cd 00 consists of the map d 0 induced by strata inclusion
and the Gysin map d 00:

d 0 W H2l .k/Œ�r�! H2l .k � 1/Œ�r�
d 00 W H2l.k/Œ�r�! H2l�2.k C 1/Œ�r � 1�:

For reader’s convenience we write the beginning of the QE1 term:

The monodromy operator � D 1
2�i

logT acts along the diagonals by the Tate twist
isomorphism H2l .k/Œ�r� ! H2l.k/Œ�r � 1� or by 0 if the corresponding group is
missing (cf. [10], Chap. 11).

Propellers

Next we will give a combinatorial description of the SI groups and the differential
in terms of propellers—the “local tropical cycles” in X .

Some more notations:

• Recall that �;�0; �00 always denote finite faces of X of sedentarity 0.
• We write � �k �0 or �0 �k �, if � is a face of �0 of codimension k.
• Linkl .�/ consists of sets Nq D fq1; : : : ; qlg where each qi is either a vertex or a

divisorial vector, such that the vertices of � together with elements of Nq span a
face (infinite, in case Nq contains divisorial vectors) adjacent to � of dimension l
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higher. We denote the corresponding face by f� Nqg and often drop the brackets
from the notation (e.g., as below) when they become cumbersome.

• Link0l .�/ � Linkl .�/ consists of those sets Nq D fq1; : : : ; qlg where qi are
allowed to be only vertices (not the divisorial vectors). In this case f� Nqg is finite.

• Vol� Nq is the integral volume element in the (oriented) face f� Nqg.
Let � be an oriented finite cell of sedentarity 0. One can naturally identify

(see [6] for details) the homology groups H2l .�/ with the space of local tropical
relative l-cycles around�. That is, we consider formal Q-linear combinationsX

Nq2Linkl .�/

� Nqf� Nqg

of (possibly infinite) cells f� Nqg �l � which are balanced along �. We call these
local cycles propellers and abusing the notation we continue denoting this group by
H2l .�/ (there is no Tate twist however).

Then one can identify the Gysin map d 00 W H2l .�/ ! H2l�2.�0/ with the
restriction of the propeller to a consistently oriented finite simplex �0 �1 �. Put
together

d 00.
X

Nq2Linkl .�/

� Nqf� Nqg/ D
X

q2Link01.�/

.
X

Nr2Linkl�1.�q/

�q Nr f�q Nrg/: (23)

The inclusion map d 0 W H2l.�/ ! H2l.�
0/, where �0 D � X v is consistently

oriented facet of �, is somewhat more tricky. Let c D P
Nq2Linkl .�/

� Nqf� Nqg be
an element in H2l.�/. For any Nq 2 Linkl .�/ let f�0 Nqg D f� Nq X vg be the
corresponding cell containing�0. Then the image of d 0c in H2l .�

0/ will beX
Nq2Linkl .�/

� Nqf�0 Nqg C
X

Nr2Linkl�1.�/

�vNrf�Nrg; (24)

where the coefficients �vNr 2 Q are chosen to make the result balanced along �0.
There is always a unique such choice (cf. [6]), namely, the �vNr can be read off from
the balancing condition for c along f�Nrg:

X
q

�q Nr
���!
.�0q/C �vNr

���!
.�0v/ D 0 mod f�0 Nrg; (25)

where
���!
.�0q/ means the divisorial vector q, or the vector from any vertex of �0 to q

(well defined mod �0) if q is a vertex, and same for
���!
.�0v/.

From now on we will not distinguish between the classical geometric Steenbrink-
IllusieE1 complex and its interpretation via complex of propellers. One of the main
results in [6] is the following statement.

Theorem 4 ([6]). QE2
q;p Š Hq.X IFp/˝Q.



Tropical Eigenwave and Intermediate Jacobians 345

Konstruktor

Now we provide another realization of the Steenbrink-Illusie’sE1 complex in terms
of specific tropical simplicial chains. The collection of these chains which we call
konstruktor forms a subcomplex of C bar� .X;F�/, and we can refer to Theorem 4 to
see that the inclusion is a quasi-isomorphism. A wonderful feature of the konstruktor
is that the eigenwave acts on its elements precisely as the monodromy operator �
acts on the terms in the Steenbrink-Illusie’s E1.

Let us fix the first baricentric subdivision ofX . We elaborate a little bit on already
used notation of the dual cell.

• For a pair � � �0 of finite simplices of sedentarity 0 in X , and Nq 2 Linkl .�/
we let O�0� Nq denote the dual cell to �0 in the face f� Nqg of X , that is the union of
all simplices in the baricentric subdivision containing baricenters of both �0 and
f� Nqg.

• In the summation formulae to follow we assume the terms with O�0� Nq are not
present if �0 is not a zero sedentarity finite face of f� Nqg.
Let � be a finite k-simplex of sedentarity 0 in X , and r � k a non-negative

integer. To any propeller, that is a local tropical l-cycle

c D
X

Nq2Linkl .�/

� Nqf� Nqg 2 H2l .�/

we associate a simplicial chain cŒ�r� 2 C bar
kCl�r .X;FlCr / as follows (note that cŒ0�

now has other meaning than just c):

cŒ�r� D
X

Nq2Linkl .�/

X
�0	�

dim�0Dr

.� Nq Vol�0 Nq/ O�0� Nq:

The orientation of O�0� Nq is consistent with the original orientation of� and the choice
of the volume element Vol�0 Nq . Clearly for each r between 0 and k the map

.	/Œ�r� W H2l .k/! C bar
kCl�r .X;FlCr /

is an injective group homomorphism. We denote its image in C bar
kCl�r .X;FlCr / by

Kl.k/Œ�r�.
Definition 22. The konstruktor is the subgroup of C bar� .X;F�/ generated by the
Kl.k/Œ�r� for all k, l and r . Note that Kl.k/Œ�r� intersect trivially for different
triples k; l; r .

Next we want to show that for each p the ˚rKp�r .� � p C 2r/Œ�r� is
indeed a subcomplex of C bar� .X;Fp/ isomorphic to the SI complex QE�;p1 . This
follows at once from comparing the SI differentials d Dd 0Cd 00 with the simplicial
boundary @.



346 G. Mikhalkin and I. Zharkov

Proposition 16. @.cŒ�r�/ D .d 0c/Œ�r�C .d 00c/Œ�r � 1�.
Proof. For the proof we need two linear algebra identities. Let � 0; � 00 be two
opposite faces in a unimodular simplex � D f� 0� 00g. Then one has

X
� 00	1� 00

Vol� 0� 00 D Vol� 0 ^Vol� 00 D
X
� 0	1� 0

Vol� 0� 00 ;

where, say, the left equality easily follows from the case when � 0 is a vertex. Here
all � 0 are oriented consistently with � 0, and all � 00 with � 00. We will need this identity
in the form X

�0	1�
Vol�0 Nq D

X
q2Link01.�/

Vol� NqXq; (26)

where � is a finite simplex and Nq 2 Linkl .�/. Note that the divisorial vectors
(if any) in Nq just multiply both sides of the identity for finite simplices.

The second identity involves a relation among the balancing coefficients �vNr from
(24) for c D P

� Nqf� Nqg. One can show (cf. [6]) that they satisfy a refined version
of (25). Namely, for�0 � � � f� Nqg we have

X
q

�q Nr
���!
.�0q/C

X
v2�X�0

�vNr
���!
.�0v/ D 0 mod f�0 Nrg

for faces �0 � � of codimension possibly higher than 1. Multiplying the above by
Vol�0 Nr we arrive at X

q2Link1.�/

�q Nr Vol�0q Nr D �
X

v2�X�0

�vNr Vol�0vNr : (27)

Now we are ready to proof the proposition. Let c D P
� Nqf� Nqg, then we can

write

cŒ�r� D
X

�0	k�r�Nq2Linkl .�/

.� Nq Vol�0 Nq/ O�0� Nq:

The topological boundary of each cell �0� Nq consists of two types:

• Type 1: cells in the form �00� Nq for faces �00 �1 �0 of f� Nqg. If the cell �0� Nq
includes divisorial directions then its coefficient Vol�0 Nq in cŒ�r� is divisible by
all divisorial vectors. Hence the type 1 part of the boundary @.cŒ�r�/ is, in fact,
supported on the faces�00� Nq for finite �00. Thus�00� Nq in the formulae below make
sense.

• Type 2: cells in the form�0� NqXv where v is a vertex or a divisorial vector in f� Nqg
which is not in �0.
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Fig. 8 d D d 0 C d 00 W H2.1/ ! H2.0/ ˚ H0.2/Œ�1� (Framing coefficient vectors are not to
scale)

Next we show that these two boundary types endowed with the framing correspond
to the d 00 and d 0 differentials in the SI complex, respectively, see Fig. 8.

Boundary of type 1:

X
�0; Nq

X
q2Nq
.� Nq Vol�0 Nq/1f�0qg� Nq C

X
Nq

X
�0	1�00	�

.� Nq Vol�0 Nq/ O�00� Nq

D
X

q2Link01.�/

0
BB@ X
�00	�q; �00 6	�
Nr2Linkl�1.�q/

.�q Nr Vol�00 Nr / O�00�q Nr C
X
�00	�Nr2Linkl�1.�q/

.�q Nr Vol�00 Nr /

1
CCA O�00�q Nr

D
X

q2Link01.�/

X
�00	�q

Nr2Linkl�1.�q/

.�q Nr Vol�00 Nr / O�00�q Nr :

Here in the second summand we used the identity (26) for the pair�0 � �00 Nq. From
(23) one can easily see that this coincides with .d 00c/Œ�r � 1�.�

Boundary of type 2:

X
q2Link1.�/

X
�0	�Nr2Linkl�1.�/

.�q Nr Vol�q Nr / O�0�Nr C
X
v2�

X
�0	�XvNq2Linkl .�/

.� Nq Vol�0 Nq/ O�0� NqXv

D
X
v2�

�0	�Xv

0
@ X
Nr2Linkl�1.�/

.�vNr Vol�vNr / O�0�Nr C
X

Nq2Linkl .�/

.� Nq Vol� Nq/ O�0� NqXv

1
A :

Here in the first summand we used the identity (27) for each �0; Nr with the sign
compensated by the orientation of O�0�Nr and the choice of Vol�vNr . Taking the sum of
(24) over all vertices v 2 � we easily identify the last expression with .d 0c/Œ�r�.

ut
Combining the above proposition with Theorem 4 we can conclude that the

konstruktor complex can be used to calculate the tropical homology groups
Hq.X IFp/:
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Corollary 3. The inclusion of the konstruktor ˚rKp�r .� � p C 2r/Œ�r� into the
complex C bar� .X IFp/ is a quasi-isomorphism for each p.

Finally, since all infinite cells in the konstruktor chains have coefficients divisible
by the divisorial directions we can use the explicit description (17) of the eigenwave
action on it. Then unveiling the konstruktor definition we arrive at the following.

Proposition 17. For any c 2 H2l .�/ one has � \ .cŒ�r�/ D cŒ�r � 1�.
Now we can combine all above observations to prove the claimed isomorphism

�q�p W Hq.X IFp/! Hp.X IFq/:

Proof (Proof of Theorem 3). The cap product action of the eigenwave �q�p on the
homology Hq.X;Fp/ can be induced from its action on the konstruktor, which is
a simplicial chain subcomplex. But it agrees there with the classical action of the
monodromy �q�p on theE1 term of the SI spectral sequence. On the other hand it is
well known that the �q�p induces an isomorphism on the associated graded pieces
with respect to the monodromy weight filtration onHpCq.Xt /, which are calculated
on the E2 term of the SI spectral sequence. ut
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Notes on a New Construction of Hyperkahler
Metrics

Andrew Neitzke

Abstract I briefly review a new construction of hyperkahler metrics on total spaces
of complex integrable systems, which we described in joint work with Davide
Gaiotto and Greg Moore. The key ingredient in the construction is a collection of
integers which govern “quantum corrections” to the metric, and which obey the
wall-crossing formula of Kontsevich and Soibelman. The construction is not yet
mathematically rigorous; I discuss some of what would be required to make it so.

1 Overview

In joint work with Davide Gaiotto and Greg Moore [1] we recently proposed
a new connection between hyperkähler geometry and the counting of BPS states
in supersymmetric field theory. While the story is motivated by physics, it leads to
a concrete new recipe for constructing complete hyperkähler metrics on the total
spaces of certain complex integrable systems.

The aim of this note is briefly to describe what this recipe is, and to comment on
some of the issues involved in converting it into an actual theorem.

Let us briefly describe some of the highlights.

• We begin with a collection of “integrable system data” described in Sect. 2.1
below. These data include a complex manifold B containing a divisor D. For
example, B could be the complex plane, and D some collection of points. The
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data also include a local system of lattices 
 over B0 D B n D, from which
we build a 2r-torus bundle M 0 over B0, with nontrivial monodromy around
D. Finally, we have a “central charge” homomorphism Z W 
 ! C, varying
holomorphically over B0. From these data we build a simple explicit hyperkähler
metric gsf on M 0. However, the metric gsf is incomplete, and our main interest
is in complete metrics.

• Naively we might hope to complete gsf by adding some degenerate torus fibers
over D, thus extending M 0 to M � M 0, in such a way that gsf will extend
to M . However, it seems that this is impossible: roughly speaking, gsf is too
homogeneous to have such an extension. Instead, we construct a new metric g on
M 0, which differs from gsf by certain “quantum corrections.”

• The quantum corrections are obtained by solving a certain explicit integral
equation, (21) below. The main new ingredient in this equation is a set of integer
“invariants”˝.
/, which should be examples of generalized Donaldson–Thomas
invariants in the sense of [2, 3]. In particular, the Kontsevich–Soibelman
wall-crossing formula for generalized Donaldson–Thomas invariants, as written
in [2], plays an important role in the construction. Indeed the original motivation
for this construction was an attempt to understand the physical meaning of the
formula of [2].

• Both the metrics gsf and g depend on a real parameter R > 0; in the limit as
R!1, the torus fibers of M 0 collapse, in either metric. The corrections g�gsf

are exponentially suppressed in R when we are away from D: so as R ! 1,
g looks very close to gsf except in a small neighborhood of the singular fibers.
Near the singular fibers the quantum corrections become large, and in particular
we expect that the corrected g can be extended over the singular fibers.

This description of g near the R ! 1 limit should be thought of as an
example of a more general picture of the geometry of Calabi–Yau manifolds
near their large complex structure limit, proposed by Gross–Wilson [4],
Kontsevich–Soibelman [5] and Todorov, motivated by the Strominger–Yau–Zaslow
picture of mirror symmetry [6].

• In many examples where our recipe can be applied, it turns out that the
hyperkähler metrics in question were already known to exist. The example we
have studied in most detail is that of rank-2 Hitchin systems with semisimple
ramification [7]. We briefly describe that example in Sect. 9 below.

• Our recipe has not really been tested so far, in the sense that nobody has tried hard
to use it to get new explicit information about interesting hyperkähler metrics. We
believe that this should be possible: at the very least it should be possible to get
a precise asymptotic series for g as R!1.

I thank Cesar Garza, Tom Sutherland, and the anonymous referee for very useful
comments and for correcting several errors in an earlier draft of this note.
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2 Integrable System Data

2.1 Data

Our construction begins with the following data:

Data 1: A complex manifold B, of dimension r (“Coulomb branch”).

Data 2: A divisor D � B (“discriminant locus”). Let B0 D B n D
(“smooth locus”). We use u to denote a general point of B0.

Data 3a: A local system 
g over B0, with fiber a rank-2r lattice, equipped
with a nondegenerate antisymmetric integer-valued pairing h; i.
Abusing notation we will also use h; i to denote the inverse pairing
on 
 �g (not necessarily integer-valued.)

Data 3b: A fixed lattice 
f (possibly trivial). We sometimes think of 
f as the
fiber of a trivial local system of lattices over B0.

Data 3c: A local system 
 of lattices over B0, given as an extension

0! 
f ! 
 ! 
g ! 0: (1)

The pairing h; i on 
g induces one on 
 which we also denote h; i.
The radical of this pairing is 
f.

Data 4: A homomorphism Z W 
 ! C, varying holomorphically over
B0. For any local section 
 of 
 we thus get a local holomorphic
functionZ
 on B0.

Data 5: A homomorphism �f W 
f ! R=2�Z.

These data are subject to several conditions:

Condition 1: Z
f is a constant function on B0 for any 
f 2 
f. (As a
consequence, the 
 �-valued 1-form dZ actually descends to

 �g ; we use this in formulating Condition 2.)
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Condition 2: hdZ ^ dZi D 0.

Condition 3: For any u 2 B0, the dZ
.u/ span T �u B0.

2.2 Integrable System

The above data are enough to determine an incomplete complex integrable system,
i.e. a holomorphic symplectic manifoldM 0 which is a fibration over a complex base
manifold B0, with fibers complex Lagrangian tori. We now describe M 0.

For any fiber 
u of 
 , let fTCharu.
; �f/ be the set of twisted unitary characters
of 
u, i.e. maps � W 
u ! R=2�Z obeying

�
 C �
 0 D �
C
 0 C �h
; 
 0i; (2)

agreeing with �f when restricted to 
f � 
u. TCharu.
; �f/ is topologically a torus
.S1/2r . Letting u vary, the TCharu.
; �f/ are the fibers of a torus bundle M 0 over
B0. Any local section 
 of 
 then gives a function “evaluation on 
 ,”

�
 WM 0 ! R=2�Z: (3)

These are the angular coordinates on the torus fibers of M 0.
Now we want to construct the complex structure and holomorphic symplectic

form on M 0. For this purpose note that we have canonical functions

Z
 WM 0 ! C; (4)

pulled back from the base B0. Differentiating gives a collection of 1-forms d�
 and
dZ
 on M 0, which are linear in 
 and vanish for 
 2 
f, and hence can be organized
into 
 �g -valued 1-forms d� and dZ. Then define the complex 2-form

!C D � 1

2�
hdZ ^ d�i: (5)

There is a unique complex structure on M 0 for which !C is of type .2; 0/. We call
this complex structure J.� D 0/, for a reason which will emerge momentarily.

The two-form !C gives a holomorphic symplectic structure on .M 0; J.� D 0//.
With respect to this structure, the projection � WM 0 ! B0 is holomorphic, and the
torus fibers M 0

u D ��1.u/ are compact complex Lagrangian submanifolds.
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2.3 Affine Structures

Although we do not use it explicitly in the rest of this note, it may be useful to
mention that our data determine an S1 worth of (symplectic) affine structures on
B0. Fix some # 2 R=2�Z. Then pick a patch U � B0 on which 
g admits a basis
of local sections, 
1; : : : ; 
2r , in which h; i is the standard symplectic pairing. Also
choose a local splitting � W 
g ! 
 of (1). Then the functions

fi D Re.ei#Z�.
i // (6)

are local coordinates on U (possibly after shrinking U ). The transition functions on
overlaps U \ U 0 are valued in Sp.2r;Z/ Ë R

2r (the Sp.2r;Z/ part comes from the
choice of basis of 
g, the R2r from the choice of splitting �.)

3 Semiflat Hyperkähler Metric

We now impose one more condition. Recall that a positive 2-form ! on a complex
manifold is a real 2-form for which !.v; Jv/ > 0 for all real tangent vectors v.

Condition 4: hdZ ^ d NZi is a positive 2-form on B0.

3.1 Semiflat Metric

Fix R 2 RC. M 0 carries a canonical 2-form,

!sf
3 D

R

4
hdZ ^ d NZi � 1

8�2R
hd� ^ d�i: (7)

This form is of type .1; 1/ in complex structure J.� D 0/ and positive. So the triple
.M 0; J.� D 0/; !sf

3 / determine a Kähler metric gsf on M 0. In fact this metric is
hyperkähler. As far as I know, the first place where this was shown is in [8] (albeit in
somewhat different notation); see also [9] for a more modern account. Alternatively,
though, the hyperkähler property is a consequence of the twistorial construction of
the metric which we will give below.

The superscript sf stands for “semi-flat”: this terminology first appeared in [4],
where it was used to refer to an important special case introduced in [10]. The reason
for the name is that gsf is flat when restricted to any torus fiber M 0

u, and M 0
u has half

the dimension of M 0.
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3.2 Twistorial Description of the Semiflat Metric

Let us now describe a different, “twistorial” way of constructing the metric gsf;
this alternative description is what we will generalize in our construction of the
quantum-corrected metric g below.

Any hyperkähler metric on a manifold M 0 determines—and is determined by—a
collection of holomorphic symplectic structures .M 0; J.�/;$.�// labeled by � 2
CP

1. In the general theory of hyperkähler manifolds all � are on the same footing.
However, for the hyperkähler manifolds we are describing in this note, the points
� D 0 and � D 1 will play a distinguished role. It is then convenient to expand
$.�/ as

$.�/ D � i
2�
!C C !3 � i

2
�!C (8)

where !C, !3 are respectively the holomorphic symplectic form and Kähler form,
both relative to the complex structure J.� D 0/.

In the particular case of the hyperkähler metric gsf, we have written these 2-forms
explicitly above in (5) and (7). We will now give an alternative description of the
holomorphic symplectic forms $.�/ corresponding to gsf, roughly by exhibiting
explicit holomorphic Darboux coordinates.

Let Tu denote the complex torus of twisted complex characters of 
u. Tu has
canonical C�-valued functions X
 (
 2 
u) obeying

X
X
 0 D .�1/h
;
 0iX
C
 0 ; (9)

and a Poisson structure

fX
;X
 0g D h
; 
 0iX
C
 0 : (10)

The Tu glue together into a local system over B0 with fiber a complex Poisson torus.
Let T denote the pullback of this local system to M 0.

Now we consider a section X sf of T , depending on an auxiliary parameter � 2
C
�. Locally this just means a collection of “coordinate” functions

X sf

 WM 0 �C

� ! C
� (11)

(defined by X sf

 D .X sf/�X
 , with 
 a local section of 
 ). We often write these

functions as X sf

 .�/, leaving the M 0 dependence implicit. X sf.�/ is given by a

simple closed formula:

X sf

 .�/ D exp

�
�R

Z


�
C i�
 C �R� NZ


	
: (12)
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Now a direct computation shows1

$ sf.�/ D 1

8�2R
hd logX sf.�/ ^ d logX sf.�/i: (13)

So the X sf

 .�/ are “holomorphic Darboux coordinates” on M 0, determining the

holomorphic symplectic structures for all � 2 C
�, and hence the hyperkähler metric

gsf. In short: knowing the functionsX sf

 .�/ is equivalent to knowing the hyperkähler

metric gsf.
A global way of thinking about this construction is to say that for each � 2

C
� we pull back the structure of holomorphic Poisson manifold from T to M 0,

using the section X sf.�/ of T .2 After pullback the Poisson structure is actually
nondegenerate, i.e. it arises from a holomorphic symplectic structure.

4 Instanton Corrections to X

We explained above how the semiflat section X sf can be used to construct the
holomorphic-symplectic forms $.�/ corresponding to the semiflat metric gsf. We
now want to construct a new, “quantum-corrected” section X . In the next section
we will use X to build a quantum-corrected metric g.

4.1 BPS Degeneracies and Riemann–Hilbert Problem

The key new ingredient determining the quantum corrections is:

Data 6: A function˝ W 
 ! Z.

For each local section 
 of 
 this gives a locally defined integer-valued
function ˝.
/ on B0. I emphasize that ˝ is not required to be continuous: indeed
Condition 7 below will imply that it is generally not continuous, but jumps in
a specific way (governed by the Kontsevich–Soibelman wall-crossing formula) at
real-codimension-1 loci in B0.

1Note that this computation uses Condition 2, the fact hdZ ^ dZi D 0—if we did not impose
this condition, then computing the right side of (13) would produce a term hdZ ^ dZi=�2 , which
would not match the form of $ sf.�/.
2Of course T is a local system of tori, not a single torus, so the last sentence does not strictly make
sense; but locally we can view X sf.�/ as a map into the space of local flat sections of T , which is
a single holomorphic Poisson torus.
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˝ should obey a simple parity-invariance condition:

Condition 5: ˝.
 I u/ D ˝.�
 I u/.

We can now formulate the key ingredient in our construction, a certain
Riemann–Hilbert problem. We need a little notation. Any 
 2 
u gives a birational
Poisson automorphism K
 of Tu, defined by

K �

 X
 0 D X
 0.1 � X
/h
;
 0i: (14)

K
 and K
 0 commute if and only if h
; 
 0i D 0. Define a ray associated to each

 2 
u,

`
 .u/ WD Z
.u/R�: (15)

Then to each ray ` running from the origin to infinity in the �-plane, associate a
certain birational Poisson automorphism of Tu (first written down in [2]),

S`.u/ WD
Y


 W`
 .u/D`
K ˝.
 Iu/

 : (16)

We call the ` for which S`.u/ ¤ 1 “BPS rays.” Finally, we define an
antiholomorphic involution � of Tu by

��X
 D X�
 : (17)

Now we can formulate the Riemann–Hilbert problem. Fix u 2 B0. We
seek a map

X WMu � C
� ! Tu (18)

with the following properties:

1. X depends piecewise-holomorphically on � 2 C
�, with discontinuities only at

the rays `
 .u/ for 
 2 
u with ˝.
 I u/ ¤ 0.
2. The limits X ˙ of X as � approaches any ray ` from both sides exist and are

related by

X C D S�1` ıX �: (19)

3. X obeys the reality condition

X .�1= N�/ D ��X .�/: (20)

4. For any 
 , lim�!0X
 .�/=X sf

 .�/ exists and is real.
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We expect that the X with these properties should be unique if it exists, by
analogy with what is known for similar Riemann–Hilbert problems appearing in
[11, 12].

4.2 Solving the Riemann–Hilbert Problem

To find a solution of these conditions we contemplate the integral equation

X
 .x; �/ D X sf

 .x; �/ exp

2
4� 1

4�i

X

 0

˝.
 0I u/h
; 
 0i
Z
`
 0 .u/

d� 0

� 0
� 0 C �
� 0 � �

� log.1 �X
 0.x; � 0//

3
5 : (21)

For any fixed x 2 M 0, (21) is a functional equation for the functions X
 .x; 	/ W
C
� ! C

�. We claim that if we find a collection of functions X
 obeying this
equation, they are a solution of our Riemann–Hilbert problem (in other words they
obey the 4 conditions set out in the last section).

A natural way to try to produce a solution of (21) is by iteration, beginning with
X D X sf. In [1] we sketch a proof that this iteration indeed converges for large
enough R, to the unique solution of (21), under “reasonable” growth conditions on
the ˝.
 I u/ (stated more precisely in [1]):

Condition 6: ˝.
 I u/ does not grow too quickly as a function of 
 for fixed u.

Let us make a few remarks about this:

• This approach to the Riemann–Hilbert problem was inspired by the treatment
of a similar problem in [11, 12]. At least morally speaking, ours is an
infinite-dimensional version of the one discussed there, with the group GL.K;R/
replaced by the group of symplectomorphisms of the torus T .

• Our arguments are not strong enough to give uniform convergence of the iteration
as we vary u, since ˝.
 I u/ and Z
.u/ depend on u; in particular, the correct
notion of “large enough R” may depend on u. Roughly speaking, the speed of
the convergence is set by the largest e�2�RjZ
 .u/j for which˝.
 I u/ ¤ 0.

• We did not give a complete proof that the X
 obey our asymptotic Condi-
tion 4; we expect though that it should be possible to prove it directly, at least for
large enough values of the parameterR, along similar lines to what was discussed
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in [11,12]. Essentially the idea is that for largeR the integrals in (21) have a finite
limit as � ! 0: this is easy to check directly if we replace X by X sf, and we
expect that this property should be preserved by the iteration.

• The X
 are “quantum-corrected” versions of the original functionsX sf

 . As with

the X sf

 , the X
 can be thought of as X
 D X �X
 for some section X of the

complex torus bundle T .

4.2.1 Sums Over Trees

We also give a formula for a solution X
 of (21) as a sum over certain iterated
integrals, as follows. (It is not clear at the moment whether this sum actually
converges or gives instead only an asymptotic series.)

We first introduce Q-valued invariants related to the ˝.
/ by a “multi-cover
formula” [2],

c.
/ D
1X
nD1

˝.
=n/

n2
: (22)

(Here we take ˝.
=n/ D 0 by definition whenever n does not divide 
 .) We
consider rooted trees, with edges labeled by pairs .i; j / (where i is the node closer
to the root), and each node decorated by some 
i 2 
 . Let T denote such a tree.
Define a weight attached to T by

c.T / D 1

jAut.T /j
Y

i2Nodes.T /

c.
i /
Y

.i;j /2Edges.T /

h
i ; 
j i: (23)

Let 
T denote the decoration at the root node of T . We define a function GT .x; �/

on (a patch of) M inductively as follows: deleting the root node from T leaves
behind a set of trees Ta, and

GT .x; �/ D 1

4�i

Z
`
T

d� 0

� 0
� 0 C �
� 0 � �X

sf

T
.x; � 0/

Y
a

GTa .x; �
0/: (24)

Then a formal solution of (21) can be given as

X
 .x; �/ DX sf

 .x; �/ exp

"X
T

h
; 
T ic.T /GT .x; �/

#
: (25)
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4.3 Wall-Crossing Formula

Define the “locus of marginal stability” by

W D fu W 9
1; 
2 with ˝.
1I u/ ¤ 0;˝.
2I u/ ¤ 0;Z
1.u/=Z
2.u/ 2 RCg � B0:
(26)

This W is a union of countably many components (“walls”) each of which has real
codimension 1 in B0. For our construction to work, the integers˝.
 I u/ must jump
as u crosses any of these walls. More precisely, they must jump in accordance with
the celebrated wall-crossing formula of Kontsevich and Soibelman [2]. We now
describe this formula, essentially following [2], with a few slight adaptations to our
context.

Let V be a strictly convex cone in C with apex at the origin. Then for any u … W ,
define

AV .u/ D
Y


 WZ
 .u/2V
K ˝.
 Iu/

 D

Y
`�V

S`.u/; (27)

where the product is taken in order of increasing argZ
.u/. AV .u/ is a birational
Poisson automorphism of Tu.3 KnowingAV .u/ is sufficient to determine the˝.
 I u/
for 
 with Z
.u/ 2 V ; thus we can think of AV .u/ as a sophisticated kind of
generating function.

Define a V –good path to be a path p � B0 along which there is no point u with
Z
.u/ 2 @V and ˝.
 I u/ ¤ 0. (So as we travel along a V –good path, no BPS rays
enter or exit V .)

Condition 7: If u and u0 are the endpoints of a V –good path p, then AV .u/
and AV .u0/ are related by parallel transport in T along p.

Condition 7 is essentially the wall-crossing formula of Kontsevich and
Soibelman [2]. It is strong enough to determine all ˝.
 I u/, if we have Data
1–4 and also know the ˝.
 I u0/ for some fixed u0. In fact, at first sight it might
seem to imply simply that˝.
 I u/ are locally constant functions of u on B0. This is
almost right: what it actually implies is that ˝.
 I u/ are locally constant functions
of u on B0 n W . The point is that when u hits W the order of the factors in the
product (27) is changed; as a result, forAV to remain constant, the individual factors
must in general also change. In other words, the ˝.
 I u/must jump.

3This statement needs a little amplification since the product in (27) may be infinite. One should
more precisely think ofAV .u/ as living in a certain prounipotent completion of the group generated
by fK
g
WZ
 .u/2V as explained in [2].
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Condition 7 determines precisely how the ˝.
 I u/ jump when u crosses some
component ofW . It is in this sense that it is a wall-crossing formula.

4.4 Absence of Unwanted Jumps in X

Under this condition, let us revisit the solution X of the Riemann–Hilbert problem,
and now vary the point u 2 B as well as � 2 C

�. We have already noted that for
any fixed u, X is discontinuous along the BPS rays. Letting u vary this becomes
the statement that X is discontinuous along the locus

L D ˚.u; �/ W 9
 2 
u with Z
.u/=� 2 R� and ˝.
 I u/ ¤ 0� � B0 � C
�: (28)

If Condition 7 is not obeyed, it is straightforward to show that these cannot be the
only discontinuities of X : there must be additional jumps when u meets the walls
of marginal stability W � B0. Such additional jumps would be a problem for our
construction of the corrected hyperkähler metric below.

On the other hand, if Condition 7 is obeyed, then we claimed in [1] that X
is actually continuous. This statement would follow directly from uniqueness of
the solution of our Riemann–Hilbert problem, since Condition 7 says that the two
Riemann–Hilbert problems we obtain by approaching the wall W from two sides
are actually the same.

5 Corrected Metric

5.1 Construction

Having defined the section X .�/ of T , we are ready to describe the corrected
hyperkähler metric g. The idea is similar to one we used above in our description of
gsf. Namely, for each � 2 C

�, we use X .�/ to pull back a holomorphic symplectic
structure $.�/ from T to M 0. As we have noted, X .�/ is not continuous; it has
jumps along the locus ��1.L/ � M 0 � C

�, given by (19). Fortunately this jump
is by composition with a Poisson morphism of T , and thus does not affect $.�/. So
$.�/ is continuous, and depends holomorphically on � 2 C

�. In order to define an
honest holomorphic symplectic structure, $.�/ should also be nondegenerate. One
expects this to be true at least for large enough R, since it is true for X sf and X
differs from X sf only by corrections that are exponentially suppressed at large R.

Now our key claim is that
$.�/ is of the form (8), where .!˙; !3/ are symplectic forms defining a

hyperkähler structure on M 0.
This is our construction of the new hyperkähler metric g on M 0.
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5.2 Twistor Space

Let us make a few comments about how the claim above is motivated. One obvious
necessary condition is $.�1=N�/ D $.�/. This follows from the reality condition
(20) (property 3 of the Riemann–Hilbert problem). We also need to see that $.�/

has only a simple pole at � D 0 (hence also at � D 1.) This follows from our
asymptotic condition on X (property 4 of the Riemann–Hilbert problem). So $.�/

indeed determines a complex 2-form !C and a real 2-form !3. Of course this is still
not enough to guarantee that these 2-forms fit together into an hyperkähler structure
on M 0. The most delicate point is to show that indeed they do.

For this we use the “twistor space” construction [13, 14]. We consider the space
Z D M � CP

1. The 2-form $ equips Z with a complex structure for which
the projection to CP

1 is holomorphic, and a fiberwise holomorphic symplectic form
(globally twisted by O.2/), obeying an appropriate reality condition. Moreover Z
has a family of distinguished holomorphic sections labeled by points x 2 M 0,
given by the tautological-looking formula sx.�/ D .x; �/. In this situation, the
twistor space construction promises us a hyperkähler metric on M 0, provided that
the normal bundleN.sx/ to each such section is a direct sum of copies of O.1/. This
condition on the normal bundle is the most delicate part of the story; we argue in
[1] that it is a consequence of the asymptotic conditions obeyed by the section X
as � ! 0.

5.3 Improvement of Singularities

So far we have described how to construct a “quantum-corrected hyperkähler
metric” g on M 0. The reader may be wondering why we have bothered to do
so much work. After all, we already had a perfectly good hyperkähler metric
gsf on M 0.

However, gsf has one important deficiency (in all but the most trivial examples):
it is incomplete. The reason for this incompleteness is the fact that gsf is defined
only on M 0, which has smooth torus fibers over all points of B0 � B, but does
not include fibers over points of the “singular locus” D � B. Typically one can
complete M 0 topologically to a natural M , with a projection � W M ! B, such
that the fiber over a point ofD is some kind of degenerate torus. One might then try
to extend gsf to a metric on the whole M . This however appears to be impossible.

One answer to the question “why is g better than gsf?” is that, if ˝ is chosen
appropriately, we expect that g does admit an extension to a metric on M , which
in many cases will be complete. So morally the statement is that the quantum
corrections “improve” the behavior of the metric near the singular locus D. We
will discuss an example in the next section.
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6 Ooguri-Vafa Metric

In [1] we discussed a model example of this phenomenon of improvement of
singularities. Fix some constant � 2 C (which enters the story in a trivial way:
it is safe to fix � D 1 if you prefer.) We choose our data as follows:

Data 1: B is the disc fjuj < j�jg.
Data 2: The discriminant locus isD D fu D 0g � B. So B0 is the punctured disc.
Data 3: 
 D 
g is a local system of rank-2 lattices over B0. With respect to a local

basis of sections .
m; 
e/, with h
m; 
ei D 1, the monodromy around the
puncture u D 0 is 
e ! 
e; 
m ! 
m C 
e . 
f is trivial.

Data 4: With respect to the same local basis of sections, Z
e .u/ D u, Z
m.u/ D
1
2�i
.u log u

�
� u/. Note that analytically continuing around u D 0 we get

Z
m ! Z
m C Z
e , consistent with the monodromy of 
 ; in other words
Z is really globally defined.

Data 5: Since 
f is trivial, �f is trivial.

Data 6: For all u, we have ˝.
 I u/ D
(
1 for 
 2 f
e;�
eg;
0 otherwise.

In this case our construction can be carried out very explicitly (for any value of
the parameter R): the integral equation (21) becomes simply an integral formula,
or said otherwise, the iterative procedure of finding a solution actually terminates
after a single step. So in this case we know the functions X
 exactly. Applying
our construction then yields an hyperkähler metric g on a torus fibration M 0 !
B0, which can be written down explicitly (it involves Bessel functions, but nothing
worse). This is worked out in detail in [1].

Moreover, g admits an explicit smooth extension to a fibration M ! B, where
M nM 0 consists of the fiber over u D 0, a nodal torus. This extended g coincides
with the well-known “Ooguri-Vafa metric,” first written down in [15]. So in this case
our construction is a new picture of the hyperkähler structure on this known space.

One important drawback of this example is that it is only local—it is incomplete
thanks to the boundary of the disc B, and (as far as I know) has no suitable extension
beyond this boundary. This drawback is eliminated in more interesting examples. On
the other hand this example is extremely simple and computable, thanks to the fact
that the 
 for which ˝.
 I u/ ¤ 0 generate an isotropic lattice for h; i. Sadly, this
virtue is also eliminated in more interesting examples.

7 More General Singular Loci

In more interesting examples we cannot so easily study the behavior of the metric
on M 0 near the singular loci on B. Nevertheless, we expect that the Ooguri–Vafa
metric just discussed gives a kind of local model for what happens generally near the
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most generic kind of singular locus. Namely, consider some component D0 � D,
where

• Z
0.u/! 0 for some specific 
0,
• ˝.
0I u/ D 1 for all u in a neighborhood ofD0,
• 
0 is primitive (i.e. there exists some 
 0 with h
0; 
 0i D 1),
• the monodromy of 
 aroundD0 is of “Picard–Lefshetz type”, i.e.


 ! 
 C h
; 
0i
0: (29)

The most essential difference between this situation and the Ooguri-Vafa metric we
just discussed is that we no longer require that ˝.
 I u/ D 0 for all 
 ¤ ˙
0. Still,
near D0 and for large enough R, the quantum corrections coming from the charge

0, with ˝.
0I u/ D 1, should dominate all others, and so g should become similar
to the Ooguri–Vafa metric. In particular, at least for large enoughR, g should admit
a smooth extension overD0. This remains to be rigorously understood. I emphasize
that it depends crucially on the condition ˝.
0I u/ D 1; otherwise we would have
no reason (either mathematical or physical) to expect such a smooth extension of g
to exist.

All of the above admits an extension to the case where 
0 is not primitive, but
rather is k times a primitive vector. In this case, instead of being smooth, we expect
that the completed .M ; g/ has some mild singularities: there should be k orbifold
singularities of typeAk�1 lying overD0. This is still a significant improvement over
the behavior of gsf.

The behavior of g near higher-codimension strata on D is more mysterious and
should be very interesting. At the moment it is not clear (at least to me) how to use
our construction to get really new information about it.

8 Pentagon

The next simplest example is already much more nontrivial. We fix a constant � 2
C
� (which enters the story in a trivial way: it is safe to fix � D 1 if you prefer.)

Data 1: B is the complex plane, coordinatized by u.
Data 2: The discriminant locus is D D fu D ˙2�3g � B. So B0 is the

twice-punctured plane.
Data 3: Introduce a family of complex curves

˙u D fy2 D z3 � 3�2zC ug � C
2: (30)

For u 2 B0, ˙u is a noncompact smooth genus 1 curve. Define 
u D
H1.˙u;Z/. 
u is a rank 2 lattice, the fiber of a local system 
 over B0. It
is equipped with the intersection pairing h; i. 
f is trivial.
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Fig. 1 The space B in the
example of Sect. 8, divided
into two chambers by a wall

Data 4: Introduce the 1-form � D y dz. � is a holomorphic 1-form on ˙u, which
would be meromorphic if extended to the compactification of ˙u (it has a
pole of order 6 at the point at infinity, with zero residue). Then for 
 2 
u,

Z.
/ D 1

�

I



�: (31)

Data 5: Since 
f is trivial, �f is trivial.
Data 6: B is divided into two domains Bin and Bout (also sometimes called

“strong coupling” and “weak coupling” respectively) by the locus

W D fu W Z.
u/ is contained in a line in Cg � B: (32)

See Fig. 1. Since Bin is simply connected we may trivialize 
 over Bin

by primitive cycles 
1, 
2 which collapse at the two points of D. We
choose them so that h
1; 
2i D 1. The set f
1; 
2g does not extend to
a global trivialization of 
 , since it is not invariant under monodromy.
However, the set f
1; 
2; 
1 C 
2;�
1;�
2;�
1 � 
2g is invariant under
the monodromy around infinity. Therefore the following definition of ˝
makes global sense:

For u 2 Bin; ˝.
 I u/ D
(
1 for 
 2 f
1;�
1; 
2;�
2g;
0 otherwise.

(33)

For u 2 Bout; ˝.
 I u/ D
(
1 for 
 2 f
1;�
1; 
2;�
2; 
1 C 
2;�
1 � 
2g;
0 otherwise.

(34)

All of our conditions on the data are more or less trivial to check. The most
interesting one is the wall-crossing formula (Condition 7). Here the question is:
choosing uin;out to be two nearby points on opposite sides of W , and choosing V to
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be a narrow sector which contains the rays `
1 .u/ and `
2.u/ both for u D uin and
for u D uout, do we have

AV .uin/ DK
1K
2

‹DK
2K
1C
2K
1 D AV .uout/: (35)

This identity is indeed true: it is the “pentagon identity” given in [2]. This identity
can easily be checked by hand. We remark in passing that (as also noted in [2]) this
identity is also closely related to the five-term identity of the dilogarithm function
and its quantum counterpart (see e.g. [16, 17].)

This example has the virtue that for every u only finitely many ˝.
 I u/
are nonvanishing. This may lead to some technical simplifications (although we
emphasize that there should be no essential difference between this case and the
case where there are infinitely many nonvanishing ˝.
 I u/, so long as the ˝.
 I u/
grow slowly enough with 
 ).

As we commented in the previous section, we expect that the metric g on M 0 in
fact extends to a complete metric on a space M , obtained from M 0 by adding nodal
torus fibers over the two points ofD, and that the metric around either of these nodal
fibers looks like the Ooguri-Vafa metric.

We believe that this complete metric actually has another name: it is the metric on
a certain moduli space of rank-2 Higgs bundles on CP

1 with an irregular singularity
at 1. This point of view is discussed at some length in [7]. Also, for any � 2
C
�, the complex manifold .M ; J.�// is isomorphic to a partial compactification

M
cyc
0;5 of M0;5, consisting of 5-tuples of points .z1; : : : ; z5/ on CP

1 where zi ¤ ziC1
(with i taken mod 5). Our description of this space is then closely related to the
discussion in [18].

9 Hitchin Systems

Finally I briefly describe a more geometric family of examples, considered in [7].
Fix a compact complex smooth curve NC . Fix n > 0 marked points zi 2 NC , and

let C D NC nfz1; : : : ; zng. Also fix parametersmi 2 C andm.3/
i 2 R=2�Z associated

to the marked points. Assume the mi and m.3/
i generic (in particular, the mi should

be linearly independent over Q.)

Data 1: B is the space of meromorphic quadratic differentials �2 on NC with double
poles at each zi , of residue m2

i . (So B is a complex affine space.) To stay
consistent with our previous notation we will use either u or �2 to denote a
point of B.

Data 2: D � B is the locus of �2 which have at least one non-simple zero. So B0
is the locus of �2 having only simple zeroes.

Data 3: Let T �C be the holomorphic cotangent bundle to C . For any fixed u 2 B,
consider the noncompact complex curve

˙u D f.z 2 C; � 2 T �z C/ W �2 D �2.z/g � T �C: (36)
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For u 2 B0,˙u is smooth. The obvious projection � W ˙u ! C is a double
covering, branched over the zeroes of �2.˙u has a natural compactification
Ṅu with a projection N� W Ṅu ! NC .
˙u is equipped with the involution � 7! ��. Define 
u to be the subgroup
of H1.˙u;Z/ odd under this involution. 
u is the fiber of a local system

 over B0. It is equipped with the intersection pairing h; i. 
f � 
 is the
radical of the pairing h; i, which has rank n. This radical does not undergo
any monodromy as we vary u, so we can think of 
f as a single fixed lattice
rather than a local system. Finally, 
g D 
 =
f.

Data 4: By slight abuse of notation let � denote the Liouville (tautological) 1-form
on T �C .
Then for 
 2 
u, define

Z.
/ D 1

�

I



�: (37)

Data 5: The 1-form � restricted to˙u extends meromorphically to Ṅu, with simple
poles at the two preimages of zi ; let zi̇ 2 Ṅu denote the preimage at which
� has residue ˙mi . The lattice 
f has one generator 
i;f for each puncture
zi , given by the sum of a counterclockwise loop around zCi and a clockwise
loop around z�i . We define �f by

�f.
i;f/ D m.3/
i : (38)

Data 6: The invariants˝.
 I u/ are defined in terms of the quadratic differential �2,
as follows.
For any # 2 R=2�Z, define a #-trajectory of �2 to be a real curve
c � C such that, for any real tangent vector v to c, �2.v ˝ v/ 2 e2i#

RC;
call a #-trajectory maximal if it is not properly contained in any other
#-trajectory. The maximal #-trajectories make up a singular foliation of
C , with three-pronged singularities at the zeroes of �2.
Define the mass of a maximal #-trajectory c to be

R
c j
p
�2j. A generic

maximal #-trajectory has infinite mass; we are interested in the exceptional
trajectories which have finite mass. Let a finite #-trajectory be a maximal
#-trajectory with finite mass, and a finite trajectory be a pair .c; #/ where
c is a finite #-trajectory. Finite trajectories come in two types:

• Saddle connections: these are finite trajectories c which “run from one
zero of �2 to another,” i.e., their boundary Nc n c consists of two points
(which are then necessarily zeroes of �2).

• Closed loops: these are finite trajectories c with the topology of S1.
When such a trajectory occurs it sits in a 1-parameter family of such
trajectories, sweeping out an open annulus on C .



Notes on a New Construction of Hyperkahler Metrics 369

Given a finite trajectory .c; #/, define its lift `.c; #/ to be the closure of
��1.c/ on ˙ . `.c; #/ has no boundary; it is a single loop if .c; #/ is a
saddle connection (it is enlightening to draw a picture to see why), and
the disjoint union of two loops if .c; #/ is a closed loop. The 1-form
e�i#� is real and nonvanishing on `.c; #/; hence it induces an orientation
on `.c; #/. Note that if .c; #/ is a finite trajectory then .c; # C �/ is as
well, and `.c; #/ differs from `.c; # C �/ only by orientation reversal.
By construction, `.c; #/ is invariant under the combination of the deck
transformation � 7! �� and orientation reversal.
For any 
 2 
u, let SC.
 I u/ be the set of all saddle connections .c; #/
with Œ`.c; #/� D 
 , and let CL.
 I u/ be the set of all isotopy classes of
closed loops .c; #/ with Œ`.c; #/� D 
 . Now finally we can define

˝.
 I u/ D #SC.
 I u/ � 2#CL.
 I u/: (39)

(The strange-looking coefficients C1 and �2 here are really necessary—
otherwise the wall-crossing formula (Condition 7) would not be satisfied!)

These data satisfy all of our Conditions 1–7. The most difficult to see are the
last two. Condition 6 follows from known results on quadratic differentials [19, 20]
which say˝.
 I u/ grows at most quadratically as a function of the coefficients of 
 .
The wall-crossing formula (Condition 7) follows from a sort of inversion of the logic
we have followed up to this point: namely, below we will give a direct description of
the complex spaces .M ; J.�// and the functions X
 .x; �/ thereon which solve the
Riemann–Hilbert problem and are continuous except at the BPS rays. The existence
of such functions X
 .x; �/ then implies the wall-crossing formula (following the
discussion of Sect. 4.4).

In [7] we argued that the hyperkähler space M in this example is a space of
solutions of Hitchin equations on NC , with gauge group PSU.2/, and with ramifi-
cation at the marked points zi (with semisimple residues). This is a much-studied
space, considered in particular in [21–24]. In particular, it is known that the
complex spaces .M ; J.�// are moduli spaces ofPSL.2;C/ connections on C , with
fixed eigenvalues of monodromy around zi , given by �˙ D exp.˙2�i.��1mi �
m
.3/
i � � Nmi//.
The X
 .x; �/ in this example are essentially functions considered earlier by

Fock–Goncharov in [25], themselves complexifications of the “shear coordinates”
familiar in Teichmüller theory. The main issue in identifying the Fock–Goncharov
coordinates with our X
 .x; �/ is to prove that the Fock–Goncharov coordinates
have the correct asymptotic behavior as � ! 0;1. This is accomplished by
applying the WKB approximation to a family of flat connections on C of the form
r.�/ D '=� CD C N'�.

There is a generalization of this story to encompass quadratic differentials with
poles of order greater than 2, also considered in [7]. This generalization in particular
includes the “pentagon” example of Sect. 8; it corresponds to considering quadratic
differentials '2 D .z3 � 3�2zC u/dz2 on CP

1, with order-7 poles at z D1.
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Finally, we have extended many aspects of this story to the case of Hitchin
equations with higher rank gauge group PSU.K/ [26]. In this case the coordinate
functions X
 involve more general coordinate systems than those which were
described explicitly by Fock–Goncharov in [25]; conjecturally the X
 exhaust the
set of cluster coordinate systems.

10 DT Invariants

Finally let us briefly consider another viewpoint on this story, which is really
where it began. The physical perspective on our construction makes clear that it
should be closely related to the theory of generalized Donaldson–Thomas invariants
(henceforth just “DT invariants.”) In this section I briefly sketch that relation and a
few examples.

10.1 The Dictionary

In the theory of DT invariants, one begins with a triangulated category D and
constructs the space Stab.D/ of Bridgeland stability conditions on D [27]. Under
some further conditions4 on D , one then expects to be able to construct DT
invariants depending on a point of Stab.D/ [2, 3], whose dependence on the point
of Stab.D/ is governed by the wall-crossing formula. In what follows I assume
some familiarity with this story and formulate the expected dictionary between the
hyperkähler data in our construction and the theory of DT invariants. Many aspects
of this dictionary are also described in Sect. 2.7 of [2].

We need a few technical preliminaries to “harmonize” the two sides first:

• On the hyperkähler data side: suppose given an example of our Data 1–6 obeying
our Conditions 1–7. Fix a basepoint u0 2 B0. Let QB0 denote the universal
cover of B0. Over this cover we may globally trivialize the local system 
 , thus
identifying all of its fibers with 
u0 . The fiberwise homomorphism Z W 
 ! C

can thus be thought of as a family of homomorphisms from the fixed lattice 
u0

to C, depending on a point Qu 2 fB0,
Z.Qu/ W 
u0 ! C: (40)

• On the DT theory side: suppose given an appropriate category D . Stab.D/ is a
complex Poisson manifold, carrying a natural “forgetful” map to Hom.K.D/;C/

4Which I am unfortunately not competent to summarize.
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which is a local Poisson isomorphism [27]. We will consider a single connected
component Stab0.D/ � Stab.D/.

We then have the following expected dictionary:

DT theory Hyperkähler data

K.D/ 
u0

Euler pairing h�; �i
Stability functions Z W K.D/! C Z.Qu/ W 
u0 ! C

DT invariants of D c.
/ 2 Q from (22)
A quotient of a Lagrangian L � Stab0.D/ B0

??? B

??? �f

This dictionary has one especially awkward feature: starting from the category D
it is not at all clear how to choose the complex Lagrangian submanifoldL. Because
of this problem, at the moment we do not really have a recipe which begins with
D alone and constructs a corresponding hyperkähler space. In particular examples
which we do understand, L always has some nice geometric meaning (see the
next section). It would be very interesting to understand how to get L in a purely
categorical way.

10.2 Examples

For many examples of our construction of hyperkähler metrics (probably in all
the examples that come from an underlying supersymmetric quantum field theory,
which includes all of the examples discussed so far in this note), we expect that
there is some triangulated category D , fitting into the above dictionary. Let us now
describe a few examples:

• Let D be the category of finite-dimensional modules over the Ginzburg dg
algebra of the A2 quiver. In recent work of Sutherland [28], one connected
component Stab0.D/ � Stab.D/ is identified with the universal cover of the
total space of a particular C

� bundle over the moduli space M1;1 of elliptic
curves. This result fits well into the above dictionary: indeed we claim that
the hyperkähler data corresponding to the category D is that of the “pentagon”
example of Sect. 8 above. The elliptic curves appearing in Sutherland’s picture
are the curves˙u of Sect. 8.

• Upcoming work of Bridgeland and Smith [29] is also relevant to this dictionary.
Begin with a real compact 2-manifold C , with n > 1 marked points. From

the combinatorics of ideal triangulations of the curve C , one can build an
associated quiver Q.C/, using a superpotential function first written down by
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Labardini–Fragoso [30].5 Let D.C / be the derived category of finite-dimensional
modules over the Ginzburg dg algebra of Q.C/. Bridgeland and Smith
show (roughly—for the precise statement see [29]) that there is a component
Stab0.D.C // � Stab.D.C //, such that a point of Stab0.D.C // corresponds to
a choice of complex structure on C and a meromorphic quadratic differential
thereon, with double poles at the marked points. Among other things, this
provides a family of nontrivial examples of categories D where one has a
geometric interpretation for at least a component of Stab.D/.

This result fits in well with the dictionary proposed above: it is consistent with
the idea that the categories D.C / correspond to the hyperkähler data described
in Sect. 9. Moreover, revisiting Sect. 9 we see that the mysterious Lagrangian
subspace L � Stab.D.C // appearing in the dictionary has a nice meaning here:
it corresponds to fixing a particular complex structure on C and a choice of
residues at the marked points on C .

Bridgeland and Smith also consider a generalization corresponding to
allowing meromorphic quadratic differentials with higher-order poles. This
generalization in particular gives another proof of Sutherland’s results from [28]
(by considering quadratic differentials on CP

1 with a single pole of order 7).
• More ambitiously, at least on physical grounds we expect that given a complete

non-compact Calabi–Yau threefold X , both sides of this dictionary should exist.
Roughly speaking, D D D.X/ should be an appropriate version of the Fukaya
category of X ; B should be the moduli space of complex structures in X ; 

should be H3.X;Z/; Z should be the period map; c.
/ should be DT invariants
counting special Lagrangian 3-cycles in X . The Lagrangian submanifold L is
the period domain of X ; the fact that it is Lagrangian is essentially Griffiths
transversality. Finally, the hyperkähler space M built by our construction is
some version of the family of intermediate Jacobians of X (I say “some version”
because we are dealing with non-compactX ).

The examples studied by Bridgeland and Smith, i.e. the examples of Sect. 9
above, also fall into this class. The Calabi–Yau threefold X.C/ in this case is a
conic bundle over the curve C , appropriately modified at the marked points; the
Fukaya category D.X.C // is equivalent to the category D.C /mentioned above.
This equivalence will also be explained in upcoming work of Bridgeland and
Smith.

(Incidentally, following through our various claims about the hyperkähler
space M in these examples, we see that on the one hand M should be a version
of the family of intermediate Jacobians of X.C/, while on the other hand M
should be the PSU.2/ Hitchin system on C , with ramification at the marked
points. So our claims would imply that these two integrable systems the same.
This equivalence is not really novel: a version of it without the marked points
was described in [32], a fact which gives us some additional confidence in our
whole picture.)

5This quiver and superpotential also appeared in the physics literature [31].
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For general X , it is not clear a priori that the DT invariants will grow slowly
enough to satisfy our Condition 6. Nevertheless, on physical grounds we would
expect the hyperkähler manifold M to exist for generalX .6 Thus we expect that
either the DT invariants do in fact grow slowly enough for us to prove that the
Riemann–Hilbert problem has a solution, or they grow more quickly but have
some hidden extra structure that allows the Riemann–Hilbert problem to have a
solution anyway.

• Finally let me describe a non-example. It is natural to ask: what if we let D
be the Fukaya category of a compact Calabi–Yau threefold X—will there be
corresponding hyperkähler data then? It seems that the answer is “yes”—we can
define the data by the same recipe as we use for non-compact X—but these
data would not satisfy precisely our Conditions 1–7. In particular, Condition 4
(positive definiteness) will certainly be violated. However, this violation is of
a rather controlled sort; there is just one negative direction. So, were this the
only difficulty, the expected consequence would be that the space M we obtain
is not hyperkähler but pseudo-hyperkähler, with one negative direction. (M in
this case is the family of intermediate Jacobians of X , fibered over the moduli
space of polarized complex structures on X . These intermediate Jacobians are
quotients ofH3;0˚H2;1.X/, and the negative direction is coming fromH3;0.X/;
it is related to the fact that when equipped with its “Griffiths” complex structure,
the intermediate Jacobian is not principally polarized.) However, there is also a
second, more serious difficulty: the invariants˝.
/ counting special Lagrangian
3-cycles in X are expected to grow very quickly as functions of 
 (roughly
˝.
/ � exp ck
k2), badly violating our Condition 6. As a result it is far
from clear whether our construction of hyperkähler metrics should be directly
applicable to this situation.

This difficulty is in some sense anticipated in the physics literature. Indeed,
physics does not predict directly that there is an hyperkähler manifold associated
to a compact Calabi–Yau threefold X . Rather it predicts the existence of a
quaternionic-Kähler manifold. As in the hyperkähler case, it should be possible
to construct the desired quaternionic-Kähler structure by beginning with a simple
“semi-flat” metric gsf and modifying it by quantum corrections.7 The semi-flat
metric in this case was first described by Ferrara and Sabharwal in [33], and was
recently discussed by Hitchin in [34]. The description of the quantum corrections
has been studied intensely in physics, with various interesting partial results. In
particular, some of the quantum corrections are expected to be precise analogues
of the ones we have described in the hyperkähler case, indeed related by a
“quaternionic-Kähler/hyperkähler correspondence” [35, 36]. However, one also
expects new quantum corrections in the quaternionic-Kähler case which do not

6The idea is that M is the moduli space of the IIB string theory formulated on the 10-manifold
X � S1 �R

2;1.
7In this case “semi-flat” means that gsf is locally invariant under a Heisenberg group of isometries,
replacing the torus group that appeared in the hyperkähler case.
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have an hyperkähler analogue. As far as I know, there are no examples yet of X
where all quantum corrections have been fully described.
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Mirror Duality of Landau–Ginzburg Models
via Discrete Legendre Transforms

Helge Ruddat

Abstract We recall the semi-flat Strominger–Yau–Zaslow (SYZ) picture of mirror
symmetry and discuss the transition from the Legendre transform to a discrete
Legendre transform in the large complex structure limit. We recall the reconstruc-
tion problem of the singular Calabi–Yau fibres associated to a tropical manifold
and review its solution in the toric setting. We discuss the monomial-divisor
correspondence for discrete Legendre duals and use this to give a mirror duality
for Landau Ginzburg models motivated from the SYZ perspective and Floer theory.
We mention its application for the construction of mirror symmetry partners for
varieties of general type and discuss the straightening of the boundary of a tropical
manifold corresponding to a smoothing of the divisor in the complement of a special
Lagrangian fibration.

1 Strominger–Yau–Zaslow Fibrations and the Mirror
of .C�/n

We give a summary of the semi-flat picture of mirror symmetry following [9, §6–8]
and discuss the example of an algebraic torus. Further references for the material
are [4, 10–12, 20, 30, 31] and most recently [22]. Hitchin [28] first noticed the
importance of the Legendre transform in this context while a Legendre transform
already appeared in [2, 27] in a closely related context without the awareness of
mirror symmetry and special Lagrangians.

Mirror symmetry has become intrinsic to the Calabi–Yau geometry by the work
of Strominger–Yau–Zaslow [37] (short: SYZ), suggesting to explain the mirror
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duality of two Calabi–Yau manifolds X , LX as a duality of torus fibrations. There
are supposed to be C1-maps

f W X ! B; Lf W LX ! B

with fibres homeomorphic to .S1/n for n D dimCX D dimR B , in fact if
f �1.b/ D V=� for a real vector space V with lattice � Š Z

n then Lf �1.b/ D
V �=�� where V � D Hom.V;R/;�� D Hom.�;Z/. Moreover, in the strong
form of Strominger–Yau–Zaslow, the fibres of f and Lf are required to be special
Lagrangian, so by definition the restriction to the fibres of the symplectic form !

and the imaginary part of a fixed holomorphic volume form ˝ vanish respectively.
The baseB carries the structure of a real affine manifold in two ways as follows. The
transitions between coordinate charts of B are going to be elements of GLn.Z/ËR

n

respectively.
One affine structure is determined by the complex structure of X and

alternatively also by the symplectic structure of LX . The other affine structure is
determined by the symplectic structure of X and alternatively also by the complex
structure of LX . Let � denote the vector field on f �1.b/ given as a lift of a tangent
vector N� at a point b 2 B then the contraction of ! (respectively im˝) by � yields
a one-form (respectively .n � 1/-form) on f �1.b/. That these are independent of
the lift chosen follows from f �1.b/ being special Lagrangian. McLean showed ([9,
§6.1]) that these two forms on f �1.b/ are both closed if and only if the infinitesimal
deformation N� of f �1.b/ preserves the special Lagrangian property (which is true
for a special Lagrangian fibration). Moreover, these two forms can be shown to be
Hodge-star dual on f �1.b/, so first order Lagrangian deformations correspond to
harmonic one-forms on the Lagrangian. McLean proves that the moduli space of
special Lagrangians is unobstructed [32, Thm. 3–4]. One deduces from this that B
is locally the moduli space of the fibres of f as well as Lf . The just constructed
maps descend to isomorphisms on cohomology

TB;b Š! H1.f �1.b/;R/;

TB;b Šim˝ H
n�1.f �1.b/;R/;

(1)

which give the tangent bundle two usually different flat connections. To distinguish
the two, we denote the manifoldB with the flat structure coming from f and! by LB
whereas the manifold with flat structure derived from f and im˝ keeps the nameB .
For either of these, we call a set of coordinates fyj g affine if @yj are flat with respect
to the respective flat structure. We also obtain a local systems of integral tangent
vectors �B � TB isomorphic to the integral cohomology Hn�1.f �1.b/;Z/ �
Hn�1.f �1.b/;R/ and similarly a system � LB � T LB . A set of coordinates @yj on B

(resp. LB) is called integral affine if @yj 2 �B (resp. in @yj 2 � LB ) and they form a

basis over Z. Thus, B and LB are real affine manifolds with coordinate transitions in
GLn.Z/ Ë R

n.
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We assume that the torus bundle f is oriented and obtain from the second
equation in (1), TB;b Š .H1.f �1.b/;R//� D H1.f

�1.b/;R/. Under this
isomorphism,�B becomesH1.f

�1.b/;Z/, so we haveX Š TB=�B as topological
manifolds. Alternatively, we may also use T �LB Š H1.f

�1.b/;R/ by means of the
first equation in (1) to reconstructX . We summarize

T �LB =�
�
LB Š! X Š

im˝
TB=�B: (2)

We can play the same game with Lf W LX ! B in place of f W X ! B and the
definition of SYZ mirror duality for X; LX is the statement that this is supposed to
yield identical affine manifolds B , LB with swapped roles, i.e. the flat structure on
B derives from the symplectic structure on LX and the flat structure on LB from the
holomorphic structure on LX , see Fig. 1.

The work of Gross and Siebert on mirror symmetry by means of toric
degenerations, starting out with [23], was motivated by reverse engineering X
and LX from B . The real difficulty arises when X; LX are intended to be compact
since then f; Lf need to have singular fibres and the affine structures need to have
singularities as well. We will not deal with singularities before Sect. 6 but we adopt
the point of view of reconstructing X and LX from B . In what we discussed so far,
at least topologically by (2), the reconstruction of X; LX is straightforward once we
know �B and � LB . In fact, this is a datum we need to fix in addition to B and LB .
This topological picture can be enhanced as follows. Given the real affine manifold
B , we have

(A) a canonical symplectic structure on LX WD T �B =��B locally given by ! DP
j d Nxj ^ dyj where yj are affine coordinates of B and Nxj D @yj ,

(B) a canonical complex structure on X WD TB=�B locally given by complex
coordinates zj D xj C iyj where yj are integral affine coordinates of B ,
xj D dyj and i D p�1. The holomorphic volume form is˝ D dz1^	 	 	^dzn.
We set wj D e2�izj .

Note that integrality of the coordinates only matters in (B). To obtain the
complementary parts, i.e., the symplectic structure on X and complex structure on
LX , one uses the structure of a Hessian metric g on B . We obtain Kähler manifoldX

and LX by applying (A), (B) on the respective dual side using g to identify the tangent
and cotangent bundle of B . More explicitly, g is locally given as gij D @yi @yj K for
some smooth strictly convex function K W B ! R. Mirror duality appears in this
setup in the disguise of the Legendre transform, see [9, Prop. 6.4]:

Definition 1. Given a real affine manifold B with Hessian metric g, the Legendre
transform is the real affine manifold LB which is homeomorphic to B with
coordinates given by Lyj WD @yj K (where yj are local affine coordinates on B and

K is a local potential defining g) and dual potential LK W LB ! R,

LK. Ly1; : : : ; Lyn/ D
X
j

Lyj yj �K.y1; : : : ; yn/:
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Note that also the integral structure dualizes: dual integral affine coordinates are
those that are the Legendre dual of integral affine coordinates.

The symplectic structure on X and the complex structure on LX is given
directly by

! D 2i@N@.K ı f / D i
2

P
gjkdzj ^ d Nzk;

Nzj D Nxj C i@yj K;
(3)

see [20, Prop 3.2], [9, Prop. 6.15].
The manifold X (resp LX ) is Ricci-flat (i.e., !n D c˝ ^ N̋ for some c 2 C) if

and only if det.@yi @yj K/ D det.g/ is constant as follows from (3).
We discuss the following integrated version of the two affine structures which

was pointed out to the author by Denis Auroux. It gives a hint at why mirror
symmetry would exchanges periods and Gromov–Witten-invariants. Moreover, it
leads towards Landau–Ginzburg potentials. Let X be a Calabi–Yau with Kähler
form ! and non-vanishing holomorphic volume form ˝ . The affine manifold B is
the moduli space of special Lagrangian tori in X , i.e., the moduli of manifolds L
homeomorphic to .S1/n with !jL D 0 and im˝jL D 0 (more generally one allows
for a phase � 2 R, i.e., im.ei�˝/jL D 0). Moreover, LX is given as the moduli space
of pairs .L;r/ where L is special Lagrangian and r is a flat U.1/-connection of
the trivial bundle with fibre C on L. The information of r is equivalent to a map of
groupsH1.L;Z/! U.1/. The local integral affine coordinates on the base are then
given as

yi D
R

i
!;

Lyi D
R

 �

i
im˝

(4)

where 
i 2 H2.X;L [ L0/ are cylinders traced out by a basis f
ig of H1.L;Z/

as we move L to L0 and 
 �i 2 Hn.X;L [ L0/ are traced out by a basis f
�i g of
Hn�1.L;Z/ as we move L to L0.

Example 1 (The Mirror Dual of .C�/n). The simplest example is X D .C�/n. Its
complex structure is indeed given as in (B) if we identify B D R

n, TB D R
n �R

n,
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Fig. 1 f˝; Lf˝ are logarithm
maps, f!; Lf! are moment
maps

� D Z
n where the latter is naturally contained in the second factor of TB . On the

universal covers of .C�/n and TB=� we set zj D xj C iyj where zj are standard
coordinates on C

n, yj are standard coordinates on B , xj D dyj and wj D e2�izj

are standard coordinates on .C�/n. We thus obtain

f W .C�/n ! B; .w1; : : : ;wn/ 7! �1
2�
.log jw1j; : : : ; log jwnj/ D .y1; : : : ; yn/:

The holomorphic volume from is given by (B) as follows, we additionally pick the
following symplectic form

˝ D 1
.2�i/n

dlog w1 ^ 	 	 	 ^ dlog wn D dz1 ^ 	 	 	 ^ dzn;

! D �1
.2�/2

P
j dlog rj ^ d�j DP

j dxj ^ dyj

where wj D rj e
i�j . This choice turns f into a special Lagrangian fibration with

yj D Lyj as follows directly from (4). It determines K D 1
2

P
y2j up to a constant

and g is the standard metric on B . We conclude from yj D Lyj and TB Š T �B , that

the SYZ mirror dual of ..C�/n;˝; !/ is ..C�/n;˝; !/.

The setup in this example is very special in the sense that the two sets of affine
coordinates on B coincide. It is easy to check that indeed ! D 2i@N@.K ı f /. More
generally, the situation can be diagrammed as in Fig. 1. As verified in [4], Prop. 4.2,
Lf! coincides with the moment map associated to ! and the natural fibrewise .S1/n-

action on LX D T �B =�� and similarly for f! . Moreover, as in the above example,
f˝ is expressible as the map �1

2�
log j 	 j componentwise in the complex coordinates

wj on X D TB=�.

Example 2 (Further Mirror Duals of .C�/n). While there aren’t any interesting
alternative algebraic choices for ˝ in the previous example, there is a variety of
choices for !: for each equivariant embedding

' W .C�/n ! .C�/mC1=C�; .w1; : : : ;wn/ 7! .
Qn
kD1 wa0kk W 	 	 	 W

Qn
kD1 wamkk /
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we can take ! D '�!FS where !FS is the Fubini–Study form on P
m D .CmC1 n

f0g/=C� (normalized by
R
P1
! D 1), i.e.,

��!FS D i

2�
@N@ log kzk2 (5)

for � W C
mC1 n f0g ! P

m the natural projection. We want to compute f! .
Let S2mC1 D fz j kzk D 1g denote the unit sphere in C

mC1. A straightforward
computation shows that

�
@N@ log kzk2�ˇ̌

S2mC1 D
�P

j dzj ^ d Nzj
�ˇ̌̌
S2mC1

: (6)

We represent S1 D fe2�i� j� 2 Rg, so Lie.S1/� D R
1
2�
@�� (2�@� is an integral

coordinate). In this basis, a moment map for the Hamiltonian diagonal action of S1

on C
mC1 with respect to the symplectic form i

2�

P
j dzj ^ d Nzj is

z 7! 1 � kzk2

(by setting the constant to 1), cf. [15, §2.3]. In particular, by (5), (6), !FS is the
symplectic reduction of the form i

2�

P
j dzj ^ d Nzj on C

mC1.
In order to obtain the desired moment map for !, one may proceed as in [15,

§6.6] as follows. The .S1/n action induced by ' on C
mC1 has moment map

.w0; : : : ;wm/ 7! �
mX
jD0
jwj j2aj

with respect to i
2�

P
j dwj ^d Nwj and a Lie algebra basis as above, cf. [15, Exc. 9].

The diagonal S1 action commutes with the .S1/n action and one can take successive
symplectic reductions. One deduces that the moment map of the natural .S1/n action
on .C�/n with respect to ! is

f! W .C�/n ! R
n; w 7! �

Pm
jD0 j'j .w/j2ajPm
jD0 j'j .w/j2

; (7)

see [15, §6.6], cf. [17, §4.2]. In particular, if we are given a projective toric variety
P� containing .C�/n as a dense orbit and given by a lattice polytope � � R

n, we
may choose the aj as the set of vertices of � which turns ' into the restriction
of the rational map P� ! P

m induced by linear system of OP�.1/ with the basis
of characters fzaj jaj is a vertex of �g. We denote the resulting map by '� and !�
denotes the symplectic form obtained from the '� by pulling back !FS as above. We
have im f! D � Int.�/ by [17, §4.2] which is bounded unlike in Example 1. Since
the complex manifold underlying the mirror is T� Int.�/=�, we have
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Fig. 2 K.y/ D 1
2
y2 and K.y/ D 1

4�
log.1C e�4�y/ D � R y

�1

e�4�u

1Ce�4�u du

the mirror dual of ..C�/n;˝; !�/ is a poly-annulus with cross-section
exp.2� Int.�//,

see also [4, Prop. 4.2]. We obtain the potential K relating !� and˝ most easily by
comparing (3) and (5), i.e., solving

2i@N@.K ı f˝/ D i

2�
@N@ log

mX
jD0
j'j j2

forK which yields

K.y1; : : : ; yn/ D 1

4�
log

� mX
jD0

'j .e
�2�y1 ; : : : ; e�2�yn /2

�
:

Alternatively, we could solve the system Lyi D @yi K where yi ; Lyi are as in (4). We
know yi D .f!/i from (7) and Lyi D �1

2�
log jwi j from Example 1. Checking back

the above K, we find that indeed

@yiK.y1; : : : ; yn/ D
Pm

jD0 @yi .'j .e�2�y1 ; : : : ; e�2�yn /2/
4�
Pm

jD0 'j .e�2�y1 ; : : : ; e�2�yn /2

D �
Pm

jD0.e�4�
Pm
kD0 ajkyk /aj iPm

jD0 'j .e�2�y1 ; : : : ; e�2�yn /2
D f!.e�2�y1 ; : : : ; e�2�yn /i :

The boundedness of im f! is reflected in the asymptotic behaviour of the potential
towards infinity, see e.g., Fig. 2 on the right.

Figure 2 shows the potentials for the construction of the mirror of C
� in

Examples 1 and 2 respectively. In the latter case ! is obtained via the map ' W C� !
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.C�/2; ' D f1g� idC� , i.e., a01 D 0; a11 D 1. This corresponds to taking� D Œ0; 1�
which is also the closure of all tangent slopes toK . Let us dwell on this for a moment
and motivate the next section. Consider the sequence of symplectic forms on C

�
given by !r� for r 2 N. This corresponds to taking the sequence of embeddings
'r� inducing a sequence of potentials Kr.y/ D 1

4�
log.1C e�4�ry/ D K.ry/ whose

normalization has the limit

lim
r!1

1

r
K.ry/ D

� �y for y � 0
0 for y � 0: (8)

Thus, looking at Fig. 2 on the right, the sequence of potentials approaches the
piecewise linear function indicated by the positive real axis and the dotted line.
Using this piecewise linear function, one can give a discrete version of the Legendre
transform as we do in the following section.

2 Large Volume and Large Complex Structure Limit

Theoretical physicists studied Calabi–Yau manifolds in order to construct conformal
field theories. To obtain such a theory from the more general concept of a quantum
field theory (also via a Calabi–Yau manifold), a certain function needs to vanish
(the ˇ-function, see [9], §3.2.6.2) which can be enforced by taking a large volume
limit. Since mirror symmetry is really about conformal field theories (at least by its
origin), taking certain limits is an important step for its understanding. There are
two related types of limits we are supposed to take, namely referring to (4),

R

i
! !1 large volume limit,R


 �

i
im˝ !1 large complex structure limit.

(9)

Both of these limits amount to rescaling the affine base manifold B . Note that these
interchange under mirror symmetry: a large volume limit on X turns into a large
complex structure limit on LX and vice versa.

We intend to take both limits simultaneously. One needs to be a bit careful about
how this works with the right choice of a potential: let us first rescale the coordinate
y in (B) by r and see how this changes everything. All data become r-dependant
which we indicate by making r an index. We set yr;j D ryj and have

zr;j D rzj ; @yr;j D
1

r
@yj ; �r D 1

r
� and ˝r D rn˝:

The potential is as before determined by ! and this in turn is determined by the
condition that the integral over a path scales by r : a priori, there are different ways
to obtain an r-dependant potential:
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·r

Ǩ

·r

·1
s

·r·s

K

Fig. 3 K.y/ D 1
4�

log.1C e�4�y/ and LK.y/ D 1
4�
..y C 1/log.y C 1/� ylog.�y//

1. The first option is to just take the pullback of K via yr;j D ryj . This is
K 0r .yr / WD K.1r yr / D K.y/. In terms of dual coordinates, this leads to Ly0j .yr / D
@yr;j K

0
r .yr / D 1

r
@yj K.y/ D 1

r
Lyj . 1r yr /. This is not what we want because it

means that while enlarging the y-coordinates, we shrink the Ly-coordinates.
2. The next option is pulling back the dual coordinates via yr;j D ryj , i.e.,

set Ly0r;j D Lyj . 1r y/. With the previous calculation, it is easy to see that this
corresponds to taking for the new potential the scaled pullback K0

r .yr / WD
rK 0r .yr /.

3. Finally, in order to actually take the large volume limit simultaneously as the
large complex structure limit, we need to scale the dual coordinates as well, i.e.,
Lyr;j D r Lyj . This is realized by rescaling the pullback potential even more by
taking Kr.yr/ WD r2K 0r .yr /.

There are two types of limits that typically occur: metric limits and algebraic limits,
for a discussion, see [9, 7.3.6.]. In some sense, these are represented by the two
potentials shown in Fig. 2. Note that if we choose K.y/ D y2=2 then Kr.yr/ D
y2r =2, so this potential remains invariant under taking the simultaneous limit. The
effect is that the base B of f! and f˝ becomes longer and longer as one approaches
the limit. Rescaling the metric to normalize the diameter yields B itself as a limit
the Calabi–Yaus. For an elliptic curve with potential y2r =2, the metric limit is thus
a circle, cf. [20], Conj. 5.4. We are interested in algebraic limits and for such, the
non-self-dual second potential in Fig. 2 is more relevant. Figure 3 illustrates how
the scaling of the potential (here by factor r) and the base coordinate (here by factor
s) influences the Legendre dual and dual potential. The diagram really only shows
part of all rescaling options where the remaining ones come from applying the given
ones on the dual side. In fact, in view of Fig. 3, the result of scaling by r on either
side results in scaling both potentials by r2 and both coordinates by r as we did in
(3). above. There is still the degree of freedom of scaling by s which has a reciprocal
effect on the dual. This explains why the limit we gave in (8) appears to be turned
into the limit r ! 0 now. In truth, it was a limit with respect to the parameter s. The
important point is that in algebraic examples, there is a non-trivial rescaling by s but
it is non-homogenous along the base, i.e., in some regions it looks like a contraction,
in others like an expansion. We will see this in the algebraic degeneration of an
elliptic curve as well as in the mirror duality of P1. It is really this rescaling which
yields a discretization of the Legendre transform. Before we give an example, we
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relate r to the algebraic coordinate: on TB=
1
r
�, we consider the two potentials

derived from Kr;K
0
r but modified by some inhomogeneously rescaling by some s.

These potentials lead to symplectic forms !;!0 via the first equation in (3) and we
have ! D r!0. Reparametrizing jt j D e�2�r for t a coordinate on the unit disk, we
get

!t D log jt j
�2� !0:

While !t is going to infinity as t ! 0, we will find that !0 is bounded.

Example 3 (Elliptic Curve). The elliptic curve has been considered from an SYZ
perspective many times before. We mostly follow [20], §6, see also [9], §8.4.1:
We fix n 2 N and consider the affine manifold B D R=nZ with y being the
standard coordinate on R and obtain the elliptic curve Xr D TB=

1
r
� with periods

1 and irn. The family parameter r can be complexified: either ad hoc by using
the complex coordinate t on the unit disc as before and then Xt D TB=

log.tn/
2�i

�

(note that we abuse notation here, we use the identification TB D C=nZ via
(B)) or more conceptually by invoking the B-field as in [9], §6.2.3. The limit for
t ! 0 can be filled by a cycle of P1s of length n. This turns the total space of
the family into a maximally unipotent degeneration.1 Siebert had the idea to use
log geometry to view the singular special fibre X0 as a (log) smooth Calabi–Yau.
Indeed, let us compute the logarithmic cotangent sheaf on X0, i.e., the restriction of
the relative logarithmic cotangent sheafKX0 D ˝1

X0
.logX0/ WD ˝1

X =O.logX0/jX0

with O D unit disk. For each irreducible component P1 of X0, we have KX0 jP1 D
˝1

P1
.log.f0g [ f1g// Š OP1 and locally at an intersection point the pair .X ;X0/

is .SpecCŒu; v�; V .t// with t D uv and thus

˝1
C2=Ct

.logV.t// D .OC2

du

u
˚ OC2

dv

v
/=OC2 .

du

u
C dv

v
/ Š OC2 :

We deduce KX0 Š OX0 , so X0 is a log elliptic curve. To obtain a nowhere
vanishing global section ˝ of KX0 we can just extend the local section du

u in a
standard chart of one of the components. There is a (degenerate) Strominger–Yau–
Zaslow fibration X0 ! B given as the compactification of the special Lagrangian
fibration (with respect to ˝ and !0) on the dense subset of X0 whose intersection
with each P

1 is C� D P
1n.f0g [ f1g/.

Let us discuss the potentialK and Kähler form. We already mentioned thatK D
y2=2 is not a useful choice here. In fact, Gross realized [20, §6], that if we take an
open cover ofX0 in X , the intersection of the nearby fibre with a neighbourhood of
a node approachesT.0;1/=�r for r !1whereas away from the nodes it approaches

1This means X is flat over the base such thatX D Xt0 for some t0 ¤ 0 and T 2 End.H�.X;Q//,
the monodromy operator around the special fibre at t D 0, satisfies .T � id/nC1 D 0 and .T �
id/nC1 ¤ 0 with n D dimX .
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TŒ0;0�=�r , so all the mass in the complex geometry goes to the nodes. Conversely, all
the mass in the symplectic geometry should leave any small neighbourhood of any
node. This of course depends on the choice of potential which we make as follows.

In general, we want to have a relatively ample line bundle L on X and sections
s0; : : : ; sm which are in bijection with the zero-dimensional strata (which are the
nodes of X0 in this example) v0; : : : ; vm in X0 whose vanishing locus is contained
in X0 and such that sj vanishes along precisely those components of X0 that do
not contain vj . In analogy to Example 2, we then define the family of two-forms
!r D i

2�
@N@ log

P
j jsj j2r on X that is fibrewise a symplectic form. Let ! denote

the two-form on X n X0 that restricts to ! log jt j
�2�

on the fibre Xt . Its normalization is

!0 D �2�
log jt j!.

In our example, this limit is the potential given by (8) on each P
1 component of

X0 (up to the addition of an affine function). Indeed, only two sj are non-vanishing
on this P1 and they give the potential on the right of Fig. 2. For concreteness, let us
refine the example by considering the family of Fermat elliptic curves in P

2 given
by z0z1z2 C t.z30 C z31 C z32/ D 0, then X is the blow-up of P2 in the base locus
of the family, X0 D fz0z1z2 D 0g, B D R=3Z, L can be chosen as O.1/ and
sj D zj . The upshot is: the potential on B becomes a piecewise affine function with
non-linearity at the three integral points of B=3Z corresponding to the equators of
the components of X0.

The example led us to the consideration of a piecewise affine potential in the
limit. We deal with a version of the Legendre transform for such potentials in the
next section. Moreover, so far we have been dealing only with the situation where all
fibres of the SYZ maps are smooth. Talking about compact manifolds with vanishing
first Chern class, this restricts one to the study of complex tori, e.g., the elliptic
curve just studied. For Hyperkähler manifolds or Calabi–Yau manifolds in the strong
sense,2 one has to allow singular torus fibres. The critical loci of these fibres play an
important role in the theory. There is another way of obtaining interesting geometry,
namely by allowing a boundary for the affine manifold over which the SYZ fibration
takes lower-dimensional tori as fibres, a typical situation for the compactifications
of moment maps from .C�/n.

3 Algebraic Limits and the Discrete Legendre Transform
of a Tropical Manifold

We have already seen in an example that an algebraic large complex structure
limit with simultaneous large volume limit leads to a discretization of the Legendre
transform. A general definition of this has been given in [24] for an affine manifold

2This means h�.X;OX / D h�.Sn;Q/ for n D dimX .
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Fig. 4 A polytope is dual to a fan with piecewise linear function. The piecewise linear function is
given up to addition of a linear function by its slope changes along the rays as given in the diagram

with (a certain type of) singularities that behave well with regard to the piecewise
affine potential. A discrete Legendre transform on a vector space had been known
before, see [3, §14]. We are going to give a natural extension to manifolds with
polyhedral boundary. The simplest example of a discrete Legendre transform is the
correspondence

�$ .˙; '/

of a polytope with a fan and piecewise linear convex function, well-known in toric
geometry, see [17], §3.4 as well as Fig. 4. The underlying manifolds are the polytope
� and a real vector space respectively. Note that ' now plays the role of the strictly
convex function LK, but we need to weaken the assumption on K; LK from strictly
convex as in the smooth case to just convex.3

The definition of a piecewise linear function ' associated to a polytope� can be
given as

'.n/ D maxfhn;mi jm 2 �g (10)

where h	; 	i denotes the pairing of a vector space with its dual space. If we take
K 
 0 for the piecewise linear function on the polytope, this coincides with the
previous definition since one can check (e.g. [3, §14]) that

LK. Ly/ D max
y
f
X
i

Lyiyi �K.y/g:

Note that [17] uses '.n/ D � inffhn;mi jm 2 �g. We should make a remark on
sign conventions here that also explains the minus sign in (7). Since our discussion
is governed by the Legendre transform and this associates to a point the tangent at
a convex function over the point, positive directions should get mapped to positive
directions under this transform unlike in [17] where concave functions are used.

3Confusingly in the discrete world (e.g. [17]), for a piecewise affine function on a polyhedral
complex the notion strictly convex is used for the property where the maximal cells coincide with
non-extendable domains of linearity of the function. This is actually the type of function we want.
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Fig. 5 An example of a discrete Legendre transform

The general construction of a discrete Legendre transform is obtained from
patching this example in both directions: assume we have an integral affine manifold
B , i.e., a real affine manifold with an atlas whose transition functions are in
Z
n Ì GLn.Z/. Moreover, we assume to have a polyhedral decomposition P of
B , i.e., P is a set of lattice polytopes each of which comes with an immersion
in B , the set P covers B , is closed under intersection in B and two polytopes in
P coincide if there image in B does. We also need a polarization ' which is a
section of PAC.B;R/=Aff.B;R/, the sheaf of piecewise affine convex functions on
B (piecewise with respect to P) with rational slopes modulo the sheaf of affine
functions on B (both with rational slopes). We require that the non-extendable
domains of linearity of ' coincide with the maximal cells in P . We also require
the boundary of B to be locally convex, more precisely, near each point in @B , the
pair .B; @B/ looks like an open subset of a lattice polytope with its boundary. Such
a triple .B;P; '/ is called a tropical manifold. The discrete Legendre transform
(DLT) associates another tropical affine manifold to .B;P; '/ and is a duality:

.B;P; '/ ! . LB; LP; L'/:

The dual is constructed as follows: The neighbourhood of each vertex v in P can
be identified with a neighbourhood of the origin of a fan ˙v and ' restricts to a
piecewise linear convex function on its support. Thus from the duality in Fig. 4,
we obtain a lattice polytope Lv. On the other hand, for each maximal cell � in P ,
again by the duality in Fig. 4, we obtain a fan L̇� with a piecewise linear function
L'� . Finally, LB is given by gluing all these polytopes and fans according to their
adjacency, see Fig. 5 for an example.

Example 4 (Duality of Cones as a DLT). Note that the duality of cones is a special
case of a DLT: Let � � R

n be a rationally generated polyhedral cone containing no
non-trivial linear subspace and

L� D fn 2 Hom.Rn;R/ j n.m/ � 0 for all m 2 �g:
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Taking trivial piecewise linear functions and for the polyhedral decompositions the
set of faces respectively gives a discrete Legendre transform

�  ! �L�:

Note that this is more general that the polytope-to-fan duality (e.g., Fig. 4) because
given a polytope�, we may take � to be

Cone.��/ D f.rm; r/ jm 2 ��; r 2 R�0g � R
n � R;

the cone over ��. Then .˙; '/, the DLT of �, is obtained from the dual cone
L� � Hom.Rn˚R;R/ as follows:˙ is the projection of the proper faces of L� under
the restriction

Hom.Rn ˚ R;R/ � Hom.Rn;R/

and the graph of ' is the section of this projection given by @ L� .

We will come back to this example later.
It is quite remarkable that the construction of the discrete Legendre transform

even works if the tropical manifold has singularities as long as the local monodromy
around the singularities respects the polyhedral decomposition, see [24]. The
discriminant loci inB and LB are then homeomorphic. Singularities are an important
feature of the story. If one wants to study compact Calabi–Yau manifolds, the baseB
of the SYZ fibration needs to be a homology sphere, see [24, Prop. 2.37]. Therefore,
the fibration needs to have singular fibres which are reflected in the base as singular
locus of the affine structure of codimension two. The singularities only affect the
affine structure, the underlying topological space will still be a topological manifold
(with boundary). The local monodromy on the tangent bundle TB around a branch
of the discriminant coincides with the monodromy in the cohomology of a nearby
smooth torus fibre for case (A) and the homology for (B). See [19] for a systematic
account on how to obtain a DLT from reflexive polytopes and nef partitions. For
further examples on affine manifolds with singularities, see [12, 29, 34, 39].

Before closing this section, we would like to introduce natural refinements of
the cell decompositions .B;P/ and . LB; LP/ that give topologically a common
refinement on the interiors of B and LB . This is given by the barycentric subdivision
(cf. [24, Def. 1.25] for the compact case and [38, Def. 3.2] for an alternative
definition in the non-compact case with the draw-down that doesn’t seem natural in
the context of SYZ fibrations). The definition we give requires that each unbounded
cell � 2 P has the property that the convex hull of its vertices conv.� Œ0�/ is a face
of � . This is satisfied in Fig. 5.

We define a triangulation Pbar of B , which introduces one new vertex in each
relative interior of a compact cell � 2 P . This vertex is the barycenter of the
cell and is defined as the average of the cell’s vertices vbar

� D 1

#�Œ0�
P

v2�Œ0� v where
�Œ0� denotes the set of vertices of � . We may use the same definition to associate a
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Fig. 6 The barycentric
subdivision of the left hand
side in Fig. 5 indicating by
bold lines how to obtain the
cell decomposition given by
its right hand side

barycenter to an unbounded cell, so for � unbounded we have vbar
� D vbar

conv� Œ0�
. We

then set

Pbar D fconvfvbar
�0
; : : : ; vbar

�k
g j �0 ¨ 	 	 	 ¨ �k; �i 2P; k � 0g [Pbar

unbounded

where conv means taking the convex hull and Pbar
unbounded will be empty if each cell

in B is bounded. It is defined as

Pbar
unboundedDfconvfvbar

�0
; : : : ; vbar

�k
gC

kX
iD1

R�0��i j �0 ¨ : : : ¨ �k; �i 2P; �i is unboundedg

where ��i is the sum of all primitive integral generators of the rays in �i , soPk
iD1R�0��i is a cone generated by such rays and its sum with convfvbar

�0
; : : : ; vbar

�k
g

should be read as a Minkowski sum (i.e., pointwise sum).
Note that indeed Pbar is a refinement of the polyhedral decomposition P of

B and, after removing the boundary respectively, topologically also of LP of LB ,
namely by respectively merging all cells in Pbar which contain a vertex that is in
P but not in Pbar. See Fig. 6 for an example.

4 The Degenerate Calabi–Yau Fibre and the Reconstruction
Problem

As in the case of the elliptic curve, the tropical manifold .B;P; '/ encodes a
degenerate fibre as follows [24]: each cell � 2P gives a projective toric variety

P� D ProjCŒCone.�/ \ .Zn ˚ Z/�

where Cone.�/ was defined in Example 4. This is functorial for inclusions of cells:
� � � ) P� � P� , so we may form the limit

LX0.B;P; '/ WD lim�!
�2P

P�
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which is called the degenerate Calabi–Yau in the cone picture. This should be
thought of as a degeneration of (A) in Sect. 1. Dually, concerning a degeneration
of (B), for each � 2 P , we may consider the fan along � by which we mean
the following. Let U� be a sufficiently small neighbourhood of the relative interior
of � . The image of f� 2 P j � � �g under the projection U� � U�=� (where
two points are identified if their difference is parallel to �) gives a neighbourhood
of the origin of a fan ˙� in R

n�dim � unique up to isomorphism. Let X˙� denote
the corresponding toric variety. This construction is contravariantly functorial for
inclusions: � � � ) X˙� � X˙� , so we may form

X0.B;P; '/ WD lim �
�2P

X˙�

which we call the degenerate Calabi–Yau in the fan picture. It is not hard to see that
in fact

X0.B;P; '/ D LX0. LB; LP; L'/

which should be compared to Fig. 1: indeed, there is a continuous map

f! W LX0.B;P; '/! B

by taking a direct limit over all moment maps f!� W P� ! � for each � 2 P , see
Example 2 for the definition of !� . This does not coincide with the limit map f!0
discussed in Example 3 but it is f!1 restricted to the central fibre. The meaning of
f! could be understood as this: suppose we have a nearby fibre Xt , then we can use
symplectic parallel transport to get a retraction map LXt ! LX0 and we can compose
this with f! to get a Lagrangian fibration LXt ! B . It is currently not clear how to
turn this into a special Lagrangian fibration. We have a diagram:

We have called X0.B;P; '/ and LX0.B;P; '/ Calabi–Yau. This is justified if its
canonical bundle is trivial. These spaces have a log structure would be entirely
encoded in P for the first and in ' for the second if were no singularities in the
affine structure. The singularities however contribute non-discrete moduli of the
log structure encoded in so-called slab functions, see [26]. We will not go into
defining log structures, but recall that in the case of the elliptic curve we constructed
a sheaf of log differential forms which was trivial. This generalizes as long as
the transition functions of B can be chosen in Z

n Ì SLn.Z/, i.e., B is orientable.
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The log differential forms restricted to each component P� of LX0.B;P; '/ are
just ˝k

P�
.logD�/; the differential forms with logarithmic poles along D� where

D� is the complement of the dense torus in P� . These sheaves glue to a sheaf
˝k WD ˝k

LX0.B;P;'/�= SpecC�
, though the gluing is non-trivial whenever singularities

appear (the dagger indicating the presence of a log structure), see [25, 35, §3.2]. If
B is orientable,˝n is trivial and a section gives a global holomorphic volume form
with logarithmic poles.

The reconstruction problem is the question of whether one can reconstruct
a smooth (or at most orbifold) Calabi–Yau Xt from its degeneration X0; more
precisely, whether we can lift X0 from a space over a point to a flat family X
over the unit disk whose non-zero fibres have at most orbifold singularities. In
general, so in presence of singularities, this is a very difficult problem towards
which Gross and Siebert accomplished a major break-through in [26] by proving
a canonical liftability to SpecC�t� assuming that the local monodromy of the
affine singularities of B cannot be factored (locally rigid). The parametrization
of the disk is also important and Gross and Siebert obtain the one trivializing the
Gauss–Manin connection (flat coordinates). Their proof is constructive and involves
wall-crossings. We will come back to this in a later section.

We now treat an easy case: Assume that B is a lattice polyhedron in R
n and P a

subdivision of it given by a piecewise linear function '. So in particular, we have no
singularities. It is not hard to see that the dual . LB; LP; L'/ also has the property that
it globally embeds in a vector space (the dual space). The DLT here can be worked
out as follows. Let �.B;P; '/ be the polyhedron in R

n ˚ R given as

�.B;P;'/ D f.m; r/ 2 R
n ˚ Rj'.m/ � rg

and let

˙.B;P;'/ D f0g [ fCone.�/ j � 2Pg

be the fan in R
n˚R where Cone.�/ denotes the closure of Cone.�/ in R

n˚R. We
define the piecewise linear function '.B;P;'/.m; r/ D r'.m/. We have a DLT

�.B;P;'/ $ .˙
. LB; LP; L'/; '. LB; LP; L'//

which is really just the classical toric story as in Fig. 4. The original DLT
.B;P; '/ $ . LB; LP; L'/ is contained in this as a “sub-DLT” by intersecting with
R
n�f1g. Moreover, this picture solves the reconstruction problem: The fan˙.B;P;'/

maps to the fan of A1 by the projection to the second factor Rn ˚ R � R, so we
have a map of toric varieties

f WX .B;P; '/ WD X˙.B;P;'/
! SpecCŒt �

such that f �1.0/ D X0.B;P; '/ and f �1.t/ is irreducible for t ¤ 0. In fact
f �1.t/ is isomorphic to the toric variety given by the asymptotic fan of .B;P; '/
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which is just the sub-fan of˙.B;P;'/ contained in R
n�f0g. So if this gives a smooth

toric variety, a general fibre of f is smooth. This is the total space description for
the fan picture.

There is a dual version, the cone picture LX . LB; LP; L'/ of the total space satisfying

LX . LB; LP; L'/ D X .B;P; '/:

Gross and Siebert use this cone picture description to prove the more general
reconstruction (non-embedded situation). Those familiar with toric geometry will
know that we have

LX .B;P; '/ D ProjCŒCone.�.B;P;'// \ Z
nC2�:

Let us recall how this works by gluing charts: To each vertex v of �.B;P;'/ we
associate the ringRv D CŒR�0.�.B;P;'/� v/\ .Zn˚Z/� which is naturally a CŒt �-
algebra by mapping t to the monomial given by the unique generator of the second
summand in Z

n ˚ Z (indeed, it is contained in �.B;P;'/ � v). The affine varieties
SpecRv will give an open cover of X . The intersection of two such, SpecRv and
SpecRw, is empty if no cell in P contains both v and w and otherwise for � being
the minimal cell containing both, we may localize the rings Rv and Rw by inverting
all elements that are sums of monomials with exponents contained in R�0.� � v/
(respectively R�0.� � w/). Denoting the resulting rings Rv;� and Rw;� , we have a
natural isomorphism Rv;� ! Rw;� induced by

R�0.�.B;P;'/ � v/C R.� � v/ D R�0.�.B;P;'/ � w/CR.� � w/:

All these isomorphisms are compatible and glue to give LX .B;P; '/ and a map
Lf W LX .B;P; '/ ! C such that Lf �1.0/ D LX0.B;P; '/. To see the latter, note

that we identify

ProjCŒCone.�/ \ .Zn ˚ Z/� Š ProjCŒCone.'.�// \ ..Zn ˚ Z/˚ Z/�: (11)

5 Compactifying Divisors and the Landau–Ginzburg
Potential

We have already dealt with the situation whereB has a boundary when we discussed
discrete Legendre transforms. We now want to match it with the discussion of SYZ
fibrations from Sect. 1. For this, let us consider the mirror dual of P

1. We have
already treated the mirror dual of C� with respect to its Fubini–Study-metric coming
from the embedding in P

1, we have

R
f˝ � C

� f!�! .0; 1/:
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The map f! naturally extends to P
1 ! Œ0; 1�. We may think of the compactifying

divisor D D f0g [ f1g as adding (partially) contracted SYZ fibres. In fact, we
contract the 1-cycle which we used to define our base coordinate via the first integral
in (4). Phrased differently, the holomorphic cylinders4 which we used to define
the base coordinate y on .0; 1/ becomes a holomorphic disk. By the maximum
principle, there are no holomorphic disks in C

�, but they do appear as we compactify
to P

1. It is insightful to interpret the presence of holomorphic disks from the point of
view of Floer theory, see [5] for a detailed account. We already mentioned that the
mirror LX of X D C

� can be considered as the moduli space of pairs .L;r/ where
L special Lagrangian tori with a U.1/-connection r on L � C. Fukaya–Oh–Ohta–
Ono [16] give an obstruction for the intersection Floer homology complex to be a
complex. If we are interested in the Floer homologyHF �.L ;L / of L D .L;r/
with itself, the obstruction is

m0.L / D
X

ˇ2�2.X;L/
�.ˇ/D2

nˇ.L /zˇ.L / (12)

where nˇ.L / is the (virtual) number of holomorphic disks of homotopy class
ˇ which contain a pre-determined general marked point in L, �.ˇ/ denotes the
Maslov index of ˇ and

zˇ.L / D exp.�
Z
ˇ

!/holr.@̌ / 2 C
� (13)

for holr.@̌ / the holonomy of r along @̌ . The important observation is that zˇ.L /

gives a holomorphic function on LX . Just note its similarity with the holomorphic
coordinate

wj D exp.2�i.xj C i
Z

j

!//

on LX given in Sect. 1. By [4], Lemma 3.1, the condition �.ˇ/ D 2 is equivalent
to ˇ:D D 1 where D is the compactifying divisor and the dot denotes the
algebraic intersection number. We learn that a partial compactification of X
yields a holomorphic function m0 on LX (assuming that (12) has finitely many
summands or converges). Motivated by physics, this function is called a Landau–
Ginzburg-potential (LG potential) and denoted W . The pair . LX;W / is called a
Landau–Ginzburg model (LG model). In fact more generally, an LG model will
simply be a variety with a flat holomorphic function to C as well as a restriction of
such to an open subset in the analytic topology. Coming back to the example of P1,
the two-point compactification of LX , we obtain a LG potential on

4It is possible to choose them holomorphic, in fact there is a natural choice.
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Fig. 7 The two holomorphic
disks giving the LG potential
of the mirror of P1

X D fw 2 C
� j e2�0 < jwj < e2�1g

given by W D e2�.w C 1
w/, see Fig. 7. We could have gotten rid of the factor e2�

had we rescaled m0. This generalizes to smooth toric Fano varieties, see [5], Prop.
2.5:

Proposition 1. Given a smooth projective toric Fano variety P�, the LG potential
on its mirror is given by

W D
X

��� is a facet

e�2�˛� zn�

where n� 2 Hom.Rn;R/ is the primitive integer inward normal vector to � , such
that � is given by intersecting the affine hyperplane n� C ˛� D 0 with �. Moreover,
zn� is the character associated to n� for the torus containing the poly-annulus which
is the mirror of the dense .C�/n in P�.

Note that we may also study non-compact Fanos, e.g., by embedding C
n in P

n, we
have that the mirror dual of Cn is the LG model

f.w1; : : : ;wn/ 2 .C�/n j 1 < jwi j < e2�g w1C:::Cwn�! C:

Let us now consider the large volume limit of this picture. By taking limr!1 r!, we
enlarge the mirror poly-annulus until it becomes all of .C�/n. The potential will also
move to infinity, but can be normalized similarly as we normalized the symplectic
form previously, see [4], §4.2. Under normalization, it remains the same and we
have in the large volume limit

the mirror dual of ..C/n;˝; !Pn/ is the LG model .C�/n
w1C:::Cwn�������! C.

Let us now see how we find the LG potential in the context of the discrete
Legendre transform, i.e., in the degeneration limit.
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Example 5 (LG Potential on the Mirror of P1). We consider the example of P
1

again, which is given by the cone picture

P
1 D LX0.Œ�1; 0�; ff�1g; f0g; Œ�1; 0�g; 0/

and the DLT of B D Œ�1; 0� is the fan of P1 with piecewise linear function ' whose
slope changes by 1 at the origin. We have for the mirror degenerate Calabi–Yau the
fan picture

X0 WD X0.Œ�1; 0�; ff�1g; f0g; Œ�1; 0�g; 0/D A
1 tf0g A1 D V.uv/ � A

2

We take the potential W0 D u C v, i.e., the standard coordinate on each A
1. The

reconstruction ofX0 is given by X D A
2 ! A

1; .u; v/ 7! uv. Let us view the same
from the perspective of the cone picture. We denote the DLT ofB by . LB; LP; L'/ and
may assume L'.0/ D 0. We have the monoid algebra

X D SpecCŒP �; P D �
. LB; LP; L'/ \ .Z˚ Z/:

Let e1; e2 be generators for the two summands of Z˚Z respectively. We set w D ze1

and t D ze2 . Since e2 2 P , CŒP � is a CŒt �-algebra giving the map SpecCŒP � !
SpecCŒt � D A

1: The generators of the P are e1 C '.e1/e2 and �e1 C '.�e1/e2, so
the generators of SpecCŒP � are wt'.e1/ and w�1t'.�e1/. Denoting these by u; v, we
have CŒP � D CŒu; v�. We claim that the sum uC v is the reconstruction of the LG
potential:

W D wt'.e1/ C w�1t'.�e1/:

Indeed this restricts toW0 onX0. Inserting the ' as given by (10) from� D Œ�1; 0�,
we get for t ¤ 0

W D wC w�1t

for the potential on Xt D V.xy � t/ Š C
�. Taking t D 1 reproduces the mirror of

P
1 constructed before Proposition 1 up to a factor of e2� and up to the restriction to

an annulus.

What we did for P1 here generalizes directly to the case of a general .B;P; '/,
see [13]. The potential W0 on a component P� of LX0.B;P; '/ is 0 if � is compact.
Otherwise, let rays.�/ denote the set of equivalence classes of (unbounded) extremal
rays of � up to translation. The potential on P� is given by

W0jP� D
X

.n0CR�0n/2 rays.�/

zn (14)

where .n0 C R�0n/ denotes a representative of an element in rays.�/ for which we
require n to be a primitive integral vector. Clearly zn doesn’t depend on the choice of
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representative. These local potentials glue to a LG potentialW0 on LX0.B;P; '/. See
[13] for a solution of the reconstruction problem for this potential. We again restrict
ourselves to the easy case: Let us assume that .B;P; '/ is embedded in R

n. Recall
from the end of Sect. 4 the local description of the total space LX D LX .B;P; '/

of the smoothing of LX0.B;P; '/. For each vertex v 2 P , we have an affine chart
SpecRv of LX . The reconstructed potentialW W LX ! C is given in each Rv by the
sum

W D
X

.n0CR�0n/2Sfrays.�/j�2Pg
znt'.nCn0/�'.n0/: (15)

It can be shown that '.nCn0/�'.n0/ is an invariant of the equivalence class of n0C
R�0n. Note that this indeed restricts to W0 on X0 making use of the identification
(11). It is also in line with the above example for the mirror of P1 where the sum
was u C v and we had '.n0/ D '.0/ D 0. More generally in the presence of
singularities of the affine structure, one needs to sum over all broken lines which we
have implicitly done here, too. Broken lines are an analogue of holomorphic disks
in tropical geometry. See [13, 21] for more details.

6 Mirror Duality for Landau–Ginzburg Models

We are now in the position to study a duality of Landau Ginzburg models. We
understood in the first section that the mirror dual of .C�/n is again .C�/n or
some analytic open subset thereof depending on the choice of symplectic form.
We understood in the previous section that partial compactifications on one side
lead to a LG potential on the other side. LG models are well-known to be the
mirror duals of projective Fano varieties, some of which are compactifications of
.C�/n, some others (possibly all) can be degenerated torically such that the mirror
is also obtained from the given discrete Legendre transform construction. However,
in principle, there is nothing stopping us from looking at partial compactifications
of .C�/n on both sides as in Fig. 5, e.g., the reader will meanwhile hopefully agree
with the slogan

the mirror dual of C
n w1C:::Cwn�������! C is C

n w1C:::Cwn�������! C.

The discrete Legendre transform underlying this slogan is the duality of very
simple cones, namely

R
n�0

DLT ! �Rn�0;
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more precisely, one R
n�0 sits in the dual space of the vector space containing the

other. While the DLT provides a very general framework for the construction of
very sophisticated Landau–Ginzburg models (e.g., with singularities in the affine
structure), we give here a simple and yet very useful subset of the wide range of
DLT duals.

Let us fix a free abelian group M Š Z
n, MR D M ˝Z R, N D HomZ.M;Z/,

NR D N ˝Z R. Consider a strictly5 convex rational polyhedral cone � � MR with
dim � D dimMR, and let L� � NR be the dual cone,

L� WD fn 2 NR j hn;mi � 0 for all m 2 �g:

We already explained in Example 4 that the duality � $ �L� constitutes a DLT. For
the simplicity of the exposition, we remove the minus sign from L� in the following
and call � $ L� and related constructions a DLT. Note that in this notation, the
previous slogan results from starting with the cone � D R�0e1˚ : : :˚R�0en where
e1; : : : ; en is a basis ofM . Note that if e1; : : : ; en were only a basis ofM˝ZQ but not
of M , we would already be studying an interesting duality of quotient singularities
(in fact this relates to the Berglund–Hübsch construction [6]), cf. [7]. Let us remain
in the smooth world. So since the corresponding toric varieties

LX0. L�/ D X0.�/ D X� D SpecCŒ L� \N�
LX0.�/ D X0. L�/ D X L� D SpecCŒ� \M�

are usually singular, we choose toric desingularizations by choosing fans ˙ and L̇
which are refinements of � and L� respectively, with ˙ and L̇ consisting only of
standard cones, i.e., cones generated by part of a basis forM or N .

We now obtain smooth toric varieties X˙ and X L̇ . However, the resolution has
broken the DLT property: ˙ is not the DLT of L̇ in general. This can be fixed as
follows. We may assume that we have chosen resolutions given by a piecewise linear
functions ', L' respectively. Then there are polytopes P � MR, LP � NR such that
we have DLTs

.�;˙; '/ $ LP
. L�; L̇ ; L'/$ P:

(16)

Moreover, these have the property that

Cone.P / \MR D �

Cone. LP /\NR D L�;

5This means it doesn’t contain a non-trivial linear subspace.
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where the overline means taking the closure and the cones are contained inMR˚R

(resp. NR ˚ R) so that intersection with MR (resp. NR) makes sense. Note that we
have the fan pictures X˙ D X0.�;˙; '/, X L̇ D X0. L�; L̇ ; L'/. By the construction

in the previous section, we obtain reconstructed potentials LW W LX .�;˙; '/ ! C,
W W LX . L�; L̇ ; L'/! C, which make sense to write down as elements

LW DPR�0n is a ray in L̇

n2N is primitive

znt L'.n/ 2 CŒCone. L�/ \ .N ˚ Z/� D CŒ L� \N�˝C CŒt �

W DPR�0m is a ray in˙
m2M is primitive

zmt'.m/ 2 CŒCone.�/ \ .M ˚ Z/� D CŒ� \M�˝C CŒt �:

So the potentials pull back from X� � A
1
t ; X L� � A

1
t respectively. For a fixed t , we

have diagrams

(17)

One needs to take a close look to observe that this duality is actually “balanced”
in the following sense. One might wonder what happens if one chooses a different
resolution˙new instead of˙ . ThenX˙ becomesX˙new but the potentialW remains
“the same” (being the pullback of the same potential onX� ). However, while on the
dual side X L̇ remains the same space, its potential LW changes to LWnew because
it is a sum over all rays in ˙new. So it is not possible to change only one side
by adding exceptional divisors. Of course, the geometry of X˙new might be very
different from that of X˙ , e.g., one of them might have a trivial canonical bundle
while the other has a more positive one. To ensure that the geometry of X˙ doesn’t
differ considerably from that of X� , we would want X˙ ! X� to be a crepant
resolution. Such does not always exist in the category of smooth schemes, however
it does exist in general in the category of orbifolds which should be the slightly more
general framework to be used here.

While the balancing argument just given is a weak one to rectify mirror
symmetry, we should actually argue by the discrete Legendre transform. There
are four DLTs in place three of which we have seen already, see Fig. 8. It has
been shown in [18] that there exists a (non-unique) DLT pair .B;P; '/ $
. LB; LP; L'/ which “dominates” the two DLTs given in (16). Most importantly, the
potentials constructed for X .B;P; '/, X . LB; LP; L'/ via the previous section agree
with W; LW respectively in the following sense: the space X .B;P; '/ relates
to X .�;P; '/ by a deformation, i.e., there is a flat family with general fibre
isomorphic to X .�;P; '/ and special fibre given by X .B;P; '/. Moreover this
family is birational to the trivial family with fibre X .�;P; '/ and the potential on
X .B;P; '/ is the pullback of the potential W from the trivial family.
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Fig. 8 Tropical manifolds and their relationships: DLT marks a discrete Legendre transform (up to
sign convention), s marks a subdivision, d marks a deformation/degeneration

The mirror duality of Landau–Ginzburg models given in (17) has been used
in [18] to construct mirror duals for varieties which are not necessarily Fano or
Calabi–Yau, e.g., for varieties of general type. A notion of mirror symmetry for
such varieties didn’t exist before the cited work had been started, so this relatively
simple construction for duals is already quite powerful, cf. [1, 8, 14]. Note also that
the famous mirror construction of Batyrev–Borisov is reproducible from this duality,
see [18]. Note that the potentials in loc.cit. had been permitted to have more general
coefficients, i.e.,

W D
X

R�0m is a ray in˙
m2M is primitive

cmzmt'.m/

for some (general) cm 2 C and similarly for LW (independently of the coefficients of
W ). This can be argued to make sense by changing the (complexified) symplectic
form on either side, recall from (13) that the monomials are integrals of the
symplectic form.

There is yet one flaw in the picture: The potential which we give in (15) is
the “naive potential”. It agrees with the Floer theoretic one in the Fano case by
Proposition 1, however X˙ , X L̇ are rarely Fano. More generally, there will be
non-rigid rational curves in X˙ or X L̇ and these cause disk bubbling and non-
geometric virtual counts of holomorphic disks (see [5]). Such give rise to (possible
infinitely many) additional Maslov index two holomorphic disks and thus terms in
the potential. To keep this under control, the authors of [13] required the boundary
of B and LB to be smooth. In fact they suggested to smooth the boundary by
trading “corners” in B (or LB) for singularities of the affine structure of B (or LB),
see Fig. 9.

The advantage is that the tropical potential (the generalization of (15) to affine
manifolds with singularities) for a smooth boundary ofB (or LB) seems to agree with
the Floer theoretic one. The additional terms arise from holomorphic disks attaching
to the singularities in the SYZ fibration and these can be accounted for tropically.
We shall study this for an example in the next section. Let us record here the main
result of [18] which supports the mirror duality (17) from a cohomological point of
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=

singularities
D

smooth boundary

Fig. 9 The cone picture of P2 and how to trade corners for singularities

view. For this, the general setup of (17) is restricted to the situation where � has the
special shape of a Gorenstein cone, i.e., there is a lattice polytope� such that

� D Cone.�/:

For this to make sense, we need to write MR as .M0 ˚ Z/˝Z R whereM0 Š Z
n�1

and � � M0 ˝Z R. Note that the existence of a toric crepant resolution X˙ ! X�
is equivalent with the existence of a triangulation P of � into simplices for which
the edges emanating from a vertex in each form a basis of M0. The authors of [18]
prove the following:

Theorem 1. Assume that� has at least one interior lattice point, P� D ProjCŒ�\
M� is smooth and that there is a projective crepant toric resolution X˙ ! X�
factoring through the blowup of the origin X˙ ! Bl0 X� ! X� then the blow-up
of the originX L̇ D Bl0 X L� ! X L� is a toric resolution. The diagram (17) specializes
to

where Tot.L / D Spec.Sym.L �1// denotes the total space of a line bundle. The
critical locus of LW is a hypersurface S � P� which is smooth if the coefficients of
LW were chosen general. The Kodaira dimension of S is

�.S/ D minfdim�0; n � 2g

where �0 is the convex hull of the lattice points in the interior of �. We have that

W �1.0/ D Dv1 [ : : : [Dvr [ QW0
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is normal crossings, QW0 is the strict transform of the zero fibre of W W X� ! C

and Dvi are toric exceptional divisors of X˙ ! X� projecting to the origin. They
are indexed by the lattice points in the interior of �. The critical set near the origin
LS D SingW �1.0/ supports the sheaf of vanishing cycles F LS D .�W;0C/Œ1� which

carries the structure of a cohomological mixed Hodge complex. Denoting

hp;q. LS;F LS / D dim GrFp H
pCq. LS;F LS /;

we have

hp;q.S/ D hd�p;q. LS;F LS /

where d D dimS D n � 2.

7 Moving the Compactifying Divisor and Corrected
Potentials

We already mentioned the concept of trading corners for singularities, see Fig. 9.
Geometrically this means the following: Recall that we started our discussion
with the mirror duality of .C�/n and continued by partially compactifying it to a
toric variety X˙ using a toric divisor D D X˙n.C�/n. The special Lagrangian
fibration (SYZ fibration) is still entirely given on .C�/n with parts of the torus fibres
contracting towards D. There are moduli of the pair .X L̇ ;D/ by moving D in its
equivalence class, in particular D becomes non-toric by doing so. It is not known
whether X L̇ nD for such a non-toric D still supports a special Lagrangian fibration
(using for˝ a section of˝n

X
L̇

.logD/). This is already unknown for the complement

of a smooth cubic in P
2. Nonetheless, we already have a good expectation of what

the affine base of such a special Lagrangian fibration should look like. In the case
of P2, we depicted it on the right of Fig. 9. See [33] for a treatment of the case of
a partial smoothing of the hyperplanes in P

2, see also [11]. What happens to the
mirror as we smooth D? We have a natural bijection between the components of
D and the terms in the potential of the mirror LW W X L̇ ! C, so by smoothing D,
we expect only one monomial to contribute to the mirror potential near D. On the
other hand, the special Lagrangian fibration on X L̇ nD—should such exist—or at
least the affine model for its base acquires singularities there are additional disks
attaching to these singularities and toD. It can be checked in simple Fano examples
that the monomials in the potential remain the same (up to changing coefficients)
when smoothing the toric boundary divisor. Summing over rays in (14) is replaced
by summing over broken lines in the presence of singularities [13], see Fig. 11.

The singularities emanate walls (indicated dashed in Fig. 11) into the affine
manifold which ought to contain the image of Maslov index zero holomorphic
disks under the SYZ map f˝ should such exist. These can be attached to the
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Fig. 10 The four DLTs for Tot.OP1 .�k//

sum of rays sum of broken lines

toric boundary

in from infinity
smoothing the

singularities move

Fig. 11 Fan pictures for the minimal crepant resolution of the singularity uv � z3 D 0 with and
without smoothing of the toric boundary divisor. Interpreted dually, these are cone pictures for a
degeneration of the singularity C2=�3 where �3 is a primitive third root of unity acting diagonally.
The monomials in the LG potential on this singularity remain the same when smoothing the toric
boundary divisor of the mirror dual: summing over rays becomes summing over broken lines

holomorphic disk touching D and give rise to further terms in the potential. As
long as D itself does not contribute such walls, the tropical potential obtained in
this way by counting broken lines is expected to be the correct potential meaning
that it agrees with the one given in (12). Moreover the smoothing of D makes W
proper as has been argued in [13]. The process of pulling in the corners is very ad
hoc and hasn’t been systematized yet. This will be treated in [36]. In non-Fano
cases, where Proposition 1 possibly fails, the right count of holomorphic disks
seems more accessible when the boundary divisor has been smoothed by means of
counting broken lines. We close this article by studying the corner-pull-in-process
in an example:

Example 6 (Corrected Potential for Tot.OP1 .�k// and Its Mirror). Let � D
Cone.�/ with � an interval of length k and ˙ be the unique subdivision giving
a crepant resolution of X� . Let L� be the dual cone of � and L̇ be the fan of
Tot.OP1 .�k// which resolves X L� . See Fig. 10 for a how the diagram in Fig. 8
visualizes for this setup. We start from the DLT pair .B;P; '/ $ . LB; LP; L'/ and
straighten out the boundary in these each at a time. See this process in Fig. 12. Even
though we started with very simple cones, we eventually obtain a fairly interesting
DLT pair whose singularities will feature scattering. The upshot of this example is
that the corrections that come to the potentials don’t impact the critical locus of the
potential. This can be deduced from the positions of the invariant directions of the
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Fig. 12 Flattening the boundary

singularities towards the direction of the boundary divisor in the respective cone
pictures. The critical loci together with the sheaf of vanishing cycles were the main
objects of study in [18].

Acknowledgements The author is indebted to Bernd Siebert, Denis Auroux and Mark Gross for
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Mirror Symmetry in Dimension 1
and Fourier–Mukai Transforms

Nicolò Sibilla

Abstract In this paper we will describe an approach to mirror symmetry for
appropriate one-dimensional DM stacks of arithmetic genus g � 1, called tcnc
curves, which was developed by the author with Treumann and Zaslow in Sibilla
et al. (Ribbon Graphs and Mirror Symmetry I, arXiv:1103.2462). This involves
introducing a conjectural sheaf-theoretic model for the Fukaya category of punc-
tured Riemann surfaces. As an application, we will investigate derived equivalences
of tcnc curves, and generalize classic results of Mukai on dual abelian varieties
(Mukai, Nagoya Math. J. 81, 153–175, 1981).

1 Introduction

As originally formulated by Kontsevich [12], Homological Mirror Symmetry (from
now on, HMS) relates the derived category of coherent sheaves on a Calabi–Yau
variety X , Db.Coh.X//, and the Fukaya category of a symplectic manifold OX , by
stating that if X and OX are mirror partners, then Db.Coh.X// Š Fuk. OX/. Since its
proposal, much work has been done towards establishing Kontsevich’s conjecture
in important classes of examples, see [23, 25, 29], and references therein.

One of the main obstacles for tackling Kontsevich’s conjecture is gaining a
sufficient understanding of the Fukaya category.1 Starting in 2009, in various talks,
Kontsevich has argued [13] that the Fukaya category of a Stein manifold should have
good local-to-global properties, and therefore conjecturally could be recovered as

1For foundational material on the Fukaya category, the reader should consult [9, 24].
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the global sections of a suitable sheaf of dg categories.2 This is in keeping with
previous work of Nadler and Zaslow who, in [18, 21], establish an equivalence
between the Fukaya category of exact Lagrangians in a cotangent bundle T �X ,
and the dg category of (complexes of cohomologically) constructible sheaves3 over
X , Sh.X/.

Following Kontsevich’s insight, in [32], joint with Treumann and Zaslow, we
equip the Lagrangian skeleton of a punctured Riemann surface ˙ with a sheaf of
dg categories, called CPM.�/,4 such that its local behavior is dictated by Nadler
and Zaslow’s work on cotangent bundles, while its global sections are conjecturally
quasi-equivalent to the Fukaya category of exact Lagrangians in ˙ , Fuk.˙/.5

Further, in [32], using this model as a stand in for the Fukaya category, we prove
a version of HMS in dimension 1 which pairs suitable stacky, degenerate elliptic
curves, called tcnc curves (see Sect. 3.1), and punctured symplectic tori.

In this paper we review the results contained in [32], by focusing on motivations
and examples, and keeping the presentation of the arguments as explicit and
concrete as possible. Then, we will apply this framework to investigate derived
equivalences of tcnc curves. A more detailed outline of the paper is given below.

In Sect. 2, after reviewing the necessary background, we define CPM.�/ as a
sheaf of dg categories on a suitable Grothendieck site of decorated ribbon graphs,
and open inclusions. The applications to mirror symmetry are explained in Sect. 3.
Given a tcnc curve C , we explain how to construct a ribbon graph D OC , which
arises as the skeleton of a punctured symplectic torus OC , and we prove that there
is an equivalence Perf.C / Š CPM. OC/. Granting the conjectural equivalence
CPM.D OC / Š Fuk. OC/, we obtain an HMS statement relating C and OC .

The HMS statement proved in [32] can be used to explore the algebraic geometry
of tcnc curves.6 In Sect. 4 we prove that, up to derived equivalence, tcnc curves
are classified by the sum of the orders of the isotropy groups at the nodes. This
generalizes work of Mukai on derived auto-equivalences of smooth elliptic curves
[17], and of Burban and Kreussler who considered the case of the nodal P1 [6].
From the stand-point of mirror symmetry, this result corresponds to the simple fact
that the Fukaya category of a punctured Riemann surface depends exclusively on
genus, and number of punctures.

2For relevant work in this direction, see also [19, 20, 26, 27].
3From now on, we will refer to objects in Sh.X/ simply as ‘constructible sheaves.’ See [11] for a
comprehensive introduction to the subject.
4CPM stands for ‘constructible plumbing model,’ as this framework can be more generally applied
to investigate the Fukaya category of a plumbing of cotangent bundles, for which see also [1].
5Lagrangian branes in Fuk.˙/ are further required to be, in a suitable sense, ‘adapted’ to the
skeleton, and thus in particular compact when 
˙ is. Also, when referring to the ‘Fukaya category,’
we shall mean the split closure of the category of twisted complexes over the Fukaya category, see
[24].
6See also [30,31]. In [30] we define an action of the mapping class group of a torus with n punctures
on Perf.Xn/, where Xn is a cycle of n projective lines.
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2 A Model for the Fukaya Category of Punctured Riemann
Surfaces

In this section we review the construction of CPM.�/. We will follow quite closely
the exposition of [32], but we shall gloss over many technical aspects of the
theory, for which we refer the reader to the original paper. Section 2.1 contains
a brief overview of definitions and results from microlocal sheaf theory which
will be needed later, and a preliminary, ‘local,’ definition of CPM.�/. Section 2.2
discusses a useful dictionary between category of sheaves, and categories of quiver
representations. In Sect. 2.3 we introduce the notion of chordal ribbon graph, and
give the full definition of CPM.�/, as a sheaf of dg categories over the Grothendieck
site of chordal ribbon graphs.

Before proceeding, it might be useful to clarify what we mean by sheaf of dg
categories. Recall that, after Tabuada [33], the category of small dg categories,
dgCat, can be equipped with a model structure. A sheaf on a site C with values
in a model category D is a pre-sheaf F , such that, whenever S D fUig is a covering
sieve for U 2 C, the diagram

F.U /! Œ˘iF.Ui/ � ˘i;jF.Uij/
!!! : : : �

is a homotopy limit in D. The sheaf property can be verified in practice quite easily,
using the following description of equalizers in dgCat.

Lemma 1. Let be a diagram in dgCat , and denote E the dg category
having

• as objects, pairs .C; u/, where C 2 C, and u W F.C / ! G.C/ is a degree zero,
closed morphism, which becomes invertible in the homotopy category,

• as morphisms, pairs .f;H/ 2 homk.C; C 0/ ˚ homk�1.F.C /;G.C 0//, with
differential given by d.f;H/ D .df ; dH� .u0F.f /�G.f /u//. The composition
is obvious.

Then E , endowed with the natural forgetful functor E ! C, is a homotopy equalizer
for F and G.

Proof. Lemma 1 depends on the availability of an explicit construction of the path
object P.C 0/ for C 0, which can be found in Lemma 4.1 of [34]. This allows us to
compute the homotopy equalizer in the usual way, by taking appropriate fibrant
replacements. We leave the details to the reader.

2.1 Microlocal Sheaf Theory in Dimension 1

Let X be a manifold, and let Sh.X/ be the category of constructible sheaves over
X . In [11], Kashiwara and Schapira explain how to attach to a constructible sheaf
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F 2 Sh.X/ a conical (i.e. invariant under fiberwise dilation) Lagrangian subset of
T �X , called singular support, and denoted SS.F/. Informally, SS.F/ is an invariant
encoding the co-directions along which F does not ‘propagate.’ Rather than giving
the general definition, for which we refer the reader to Sect. 5.1 of [11], we will
describe the singular support in the simpler set up which will be needed in the
following.

Assume that X is a one-dimensional manifold equipped with affine structure.
Let x be a point of X , and let f be an affine R-valued function on X around x. For
� > 0 sufficiently small let A be the sublevel set fy 2 X j f .y/ < f .x/ C �g and
let B be the sublevel set fy 2 X j f .y/ < f .x/ � �g. We define a functor �x;f W
Sh.X/! C-mod to be the cone on the natural map 
 .AIF jA/! 
 .BIF jB/:

Since every constructible sheaf F is locally constant in a deleted neighborhood of
x, this functor does not depend on � as long as it is sufficiently small. Clearly �x;f
depends only on x and df x . When .x; �/ 2 T �X we let �x;� denote the functor
associated to the point x and the affine function whose derivative at x is �.

Definition 1. For each F 2 Sh.X/ we define SS.F / � T �X , the singular support
of F , to be the closure of the set of all .x; �/ 2 T �X such that �x;�F ¤ 0.

Note that, as �x;� D �x;t �� when t > 0, the set SS.F / is conical. In fact, if
.x; �/ 2 SS.F / and t 2 R>0, then .x; t 	 �/ 2 SS.F /. Further, SS.F / is one-
dimensional and therefore a Lagrangian subset of T �X with its usual symplectic
form.

Definition 2. Suppose � � T �X is a conical Lagrangian. Define Sh.X;�/ �
Sh.X/ to be the full triangulated subcategory of sheaves with SS.F / � �.

Example 1. Let� D X[T �s1X[	 	 	[T �snX be the union of the zero section and the
cotangent spaces at finitely many points fs1; : : : ; sng. Then Sh.X;�/ is the category
of sheaves that are locally constant away from fs1; : : : ; sng.

If F is a sheaf in Sh.X;�/, and � ¤ 0, �x;� .F / 2 C-mod should be thought of
as the (microlocal) ‘stalk’ of F over .x; �/ 2 �nX . This suggests that sheaves with
singular support in � have a local nature over�, as well as over X . The locality of
Sh.X;�/ over X can be encoded in the claim that the assignment

U �open X 7! Sh�.U / WD Sh.U; T �U \�/;

defines a sheaf of dg categories over X . In an analogous fashion, in Definition 3 we
will introduce a sheaf of dg categories, denoted CPM.�/, which, in an appropriate
sense, is an extension of Sh�.�/ to �. In particular, we will have CPM.�/ Š
Sh.X;�/.

Let U � T �X be an open subset, and let P.X;U / be the Verdier quotient
of Sh.X/ by the thick subcategory of all sheaves F with SS.F / \ U D ¿ (see
[11], Sect. 6.1). Consider the full subcategory of P.X;U / spanned by sheaves F
with singular support in �, and denote it P�.X;U /. Both P.X;�/, and P�.X;�/,
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naturally define pre-sheaves of dg categories on T �X . We can therefore consider
the sheafification of P�.X;�/ over T �X , which we denote MSh�.�/.7
Definition 3. Define CPM.�/ to be the sheaf of dg categories over � obtained by
pulling back MSh.�/ along i , CPM.�/ Š i�MSh.�/.

2.2 Microlocal Sheaves and Quiver Representations

Assume that X is a one-dimensional manifold and � ,! T �X is a conical
Lagrangian subset. The category Sh.X;�/, and the sheaf CPM.�/ over �, can be
very explicitly described in terms of quiver representations.

Let us call the connected components of��X the spokes of�. They are divided
into two groups depending on which component of T �X�X they fall into. Using an
orientation of X we may label these groups “upward” and “downward.” The conic
Lagrangian� determines a partitionP� ofX into subintervals (which may be open,
half-open, or closed) and points. Let us describe this partition in case X D R, the
general case is similar. Each spoke of � is incident with a point x 2 R, which we
may order x1 < : : : < xk . We put fxi g 2 P� if xi is incident with both an upward
and a downward spoke. We put an interval I from xi to xiC1 in P� whose boundary
conditions are determined by the following rules

• If xi is incident with an upward spoke but not incident with a downward spoke,
then xi is included in I . Otherwise xi is not included in I .

• If xiC1 is incident with a downward spoke but not incident with an upward spoke,
then xiC1 is included in I . Otherwise xiC1 is not included in I .

We put .�1; x1/ in P� if x1 is incident with an upward spoke and .�1; x1� in
P� if x1 is incident with a downward spoke, and similarly we put .xk;1/ (resp.
Œxk;1/) in P� if xk is incident with a downward (resp. upward) spoke.

Define a quiver (that is, directed graph) Q� whose vertices are the elements
of P� and with and edge joining I to J (in that orientation) if the closure of J has
nonempty intersection with I . If there are n spokes then this is a quiver of typeAnC1
(i.e. shaped like the Dynkin diagram AnC1) whose edges are in natural bijection
with the spokes of �: an upward spoke corresponds to a left-pointing arrow and a
downward spoke to a right-pointing arrow.

Theorem 1. There is a natural equivalence of dg categories

Sh.M I�/ Š Rep.Q�/

If .x; �/ belongs to a spoke of � corresponding to an arrow f of Q�, then under
this equivalence the functor �x;� intertwines with the functor Cone.f /.

7Note that, if � W T �X ! X is the natural projection, then ��MSh.�/ Š Sh�.�/.
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Example 2. 1. Let ?+> � T �R be the union of the zero section, the fiber at 0; an
upward spoke at some x� < 0 and a downward spoke at some xC > 0: Then

Sh.R;?+>/ Š Rep.�  �  � ! � ! �/:

2. Let� D S1[T �x0S1 ,! T �S1 be the union of the zero section, and the cotangent
fiber at some x0 2 S1: Then

Sh.S1;�/ Š Rep.�� �/:

Proposition 1. LetM be a one-dimensional manifold and let�1 and�2 be conical
Lagrangians in T �M . Suppose that in each connected componentU of T �M �M ,
�1 \U and�2 \U have an equal number of components (i.e.�1 and�2 have an
equal number of spokes in each group). Then Sh.M I�1/ Š Sh.M I�2/.

Proof. For a general quiver Q, if a is an arrow let s.a/ and t.a/ denote the source
and target of a, respectively. A vertex v of Q is called a sink (resp. source) if all the
arrows incident to it have t.a/ D v (resp. s.a/ D v). If x is a sink or a source, then
Bernstein–Gelfand–Ponomarev [4] define a new quiver SxQ obtained by reversing
the orientation of all the arrows in Q incident to x.

Let Q be a quiver, and let x 2 Q be a sink or a source. It follows from [4] that
there is an equivalence of dg categories Rep.Q/ Š Rep.SxQ/: Thus, if Q1 and
Q2 are quivers with same underlying undirected graph, then Rep.Q1/ Š Rep.Q2/.
Proposition 1 follows by applying this theorem to quivers of the form Q�.

We conclude this section, by showing how Theorem 1 yields a very explicit
description of the sheaf CPM.�/. For concreteness, we focus on the example
X D S1 and � D S1 [ T �x0S1, the general case is similar. Denote RC and R�
respectively the up-ward and down-ward spoke of�. We shall describe the sections
of CPM.�/ on contractible open subsets U � �, and the assignment defining, on
objects, the restriction functors

ResU W CPM.�/ D Sh.X;�/ Š Rep.�� �/! CPM.U /:

The definition on morphisms will be obvious. This is sufficient to reconstruct
CPM.�/.

Assume that is an object in Rep.�� �/. Then

• if U � S1, CPM.U / Š C-mod, and ResU .M/ D V2,
• if U � RC, CPM.U / Š C-mod, and ResU .M/ D Cone.f /,
• if U � R�, CPM.U / Š C-mod, and ResU .M/ D Cone.g/,

• if x0 2 U , CPM.U / Š Rep.�  � ! �/, and ResU .M/ D V2 f V1
g! V2.
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2.3 Chordal Ribbon Graphs and CPM

Recall that a cyclic order R on a set S is a ternary relation on S , which allows us
to speak unambiguously about ordered triples, and satisfies the obvious properties
enjoyed by a set of points arranged on a circle. We shall define a graph to be a pair
.D; VD/, where D is a one-dimensional CW-complex, and VD is the set of 0-cells,
called vertices.

Definition 4. Let .D; VD/ be a graph in which every vertex has degree � 2. A
ribbon structure on .D; VD/ is a collection fRvgv2VD where Rv is a cyclic order
on the set of half-edges incident with v. We call a graph equipped with a ribbon
structure a ribbon graph.

Definition 5. A chordal ribbon graph is a pair .D;Z/ where

• D is a ribbon graph.
• Z is a closed, bivalent subgraph containing each vertex of X .
• Let Rv denote the ternary relation defining the cyclic order on the set of half-

edges incident with v. If e and f are the two half-edges of Z incident with v,
then there is at most one half-edge g so that .e; g; f / 2 Rv and at most one
half-edge h so that .f; h; e/ 2 Rv.

In particular, the last condition requires that each vertex of a chordal ribbon graph
has degree at most 4. We refer to Z as the zero section of the chordal ribbon
graph.

Let Chord denote the category whose objects are chordal ribbon graphs, and
where Hom..C;W /; .D;Z// is given by the set of open immersions j W C ,! D

with j.W / � Z and preserving the cyclic orders at each vertex. We endow Chord
with a Grothendieck topology in the evident way.

The simplest examples of chordal ribbon graph, called fishbones, are pairs of
the form .�;X \ �/, where X is a one-dimensional manifold, and � � T �X
is a conical Lagrangian subset. Section 2.1 gives a recipe for constructing a sheaf
CPM.�/ on any fishbone .�;X \ �/ (see Definition 3). As the full subcategory
of fishbones is a basis for the Grothendieck topology on Chord, we can make the
following definition.

Definition 6. Denote CPM W Chord ! dgCat the sheaf of dg categories on Chord
whose restriction to the sub-category of fishbones recovers Definition 3. We call
CPM.D;Z/ the constructible plumbing model of the chordal ribbon graph .D;Z/.

Chordal structure and restriction on valency are just convenient technical
assumptions which could be removed as CPM.�/ is expected not to depend on
them. More precisely, up to quasi-equivalence, the constructible plumbing model
of the chordal ribbon graph .D;Z/ should be a function solely of the ‘deformation
class,’ appropriately defined, of the ribbon graph D. A sketch of the full theory,
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which will take as input (suitably graded) ribbon graphs of any valency, is discussed
in the last part of [32]. Work is in progress to fill in the remaining details.8

Setting technical complications aside, let’s assume for the moment that CPM.�/
can be evaluated on a general ribbon graph. Then the expected relationship with
the Fukaya category can be formulated as in Conjecture 1 below. Recall that ribbon
graphs label cells in the moduli space of punctured Riemann surface (see e.g. [10,
22]). Further, if ˙ lies in the cell labeled by 
˙ , there is an embedding 
˙ ,! ˙ ,
and a nicely behaved retraction of ˙ onto 
˙ . In the language of Stein geometry,

˙ is the skeleton of ˙ .

Conjecture 1. Let ˙ be a punctured Riemann surface with skeleton 
˙ , then
CPM.
˙/ is quasi-equivalent to Fuk.˙/.

3 Homological Mirror Symmetry for tcnc Curves

In this section we will prove the main theorem of [32], which establishes a version
of homological mirror symmetry for a class of nodal, stacky, curves of genus g � 1,
introduced in Sect. 3.1 below. The proof of HMS will be discussed in Sect. 3.2, and
will make use of the model for the Fukaya category supplied by the sheaf CPM.�/.

3.1 tcnc Curves

Let P1.a1; a2/ be a projective line, with stacky points at 0, and 1, and isotropy
groups isomorphic, respectively, to Za1 , and Za2 .

9 We call P1.a1; a2/ a Beilinson–
Bondal (or, BB) curve.

Definition 7. A tcnc curve C is a connected, reduced DM stack of dimension 1,
with nodal singularities, such that its normalization QC �! C is a disjoint union of
n BB curves P1; : : : ; Pn. Further, if Z ,! C is the singular set, we require that
��1.Z/ interesects each Pi in at most two points.10

8In fact, any ribbon graph is deformation equivalent, in the above sense, to a ribbon graph admitting
chordal structure. This gives us a concrete, although not ‘functorial,’ way of computing the global
sections of CPM.�/ on a general ribbon graph up to quasi-equivalence.
9Note that our conventions differ from the ones commonly found in the literature. Weighted
projective lines, which are denoted P

1.a1; a2/, are usually defined as quotients of C2 � f0g by
C

� acting with weights a1; a2. According to the latter definition, if gcd.a1; a2/ ¤ 1, P1.a1; a2/
has non-trivial generic isotropy group. However, the two definitions agree if gcd.a1; a2/ D 1.
10The scheme-theoretic notions employed in the definition, such as ‘normalization,’ can be easily
adapted to DM stacks. We leave it to the reader to fill in the details.
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Z2

Z3

Z2

Z3

Fig. 1 Above is a picture of the tcnc curves considered in Example 3. The labels indicate the
isotropy subgroups at the stacky points

It follows from the definition, that the coarse moduli space of a tcnc curve must
have arithmetic genus g � 1, and thus be equal to a cycle of rational curves (i.e., a
Galois cover of a nodal P1), if g D 1, and to a chain of rational curves if g D 0.

A tcnc curve C is uniquely determined by its genus, together with a tuple of
positive integers, which we shall call the W -vector, and which specifies the orders
of the isotropy groups at points 0 and1, on the different irreducible components of
C . We will not give a formal definition of the W -vector, as it easier to see how this
works in an example.

Example 3. Consider the weighted projective plane P2.1; 2; 3/ D Œ.C3 � f0g/=C��,
where C� acts with weights 1; 2; 3.

• Let C ,! P
2.1; 2; 3/ be the sub-stack defined by the equation x0x1 D 0. C is a

tcnc curve of genus 0, and can be encoded in the W -vector .1; 2; 3/ 2 N
3. Note

that the reverse tuple .3; 2; 1/ is an equally valid W -vector for C .
• LetC 0 ,! P

2.1; 2; 3/ be defined by x0x1x2 D 0.C 0 has genus 1, and is described
by the W -vector .1; 2; 3/ 2 N

3. As before, because of the evident symmetries
of C 0, there are other viable choices of W -vector for C 0, such as for instance
.2; 3; 1/.

Definition 8. Denote C i
A the tcnc curve of genus i 2 f0; 1g, with W -vector A 2

N
m
>0.

Theorem 2 gives a description of the category of perfect complexes over a tcnc curve
which will play a key role in our proof of homological mirror symmetry.

Theorem 2. Let C be a tcnc curve with singular set Z,11 and normalization � W
QC ! C . Let �; � be two non overlapping sections of ��1.Z/ ! Z, then the

diagram

11Note that Z is a disjoint union of classifying stacks of the form ŒSpec.C/=�ai �.
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is an equalizer in dgCat.

We will not prove Theorem 2 in full generality. Instead, we show below, see
Theorem 3, that the analogous statement holds for all nodal curves. This in particular
implies Theorem 2 when C is an actual scheme, i.e. its W -vector is a tuple filled
with 1-s. The general case of Theorem 2 follows easily from here, but we refer the
reader to [32] for a complete proof.

Lemma 2. Let C be a nodal curve, with normalization QC �! C , then for every QF
vector bundle on QC and isomorphism u W ��. QF/! ��. QF/, the assignment:

U �open C 7! fs 2 QF.��1.U //ju.��.s// D ��.s/g;
defines a vector bundle QFu on C such that ��.Fu/ Š QF . Conversely, if F is a
vector bundle on C such that ��F Š QF , then F Š QFu for some isomorphism
u W ��. QF/! ��. QF/.
Proof. See Proposition 4.4 in [14].

Theorem 3. Let C be a nodal curve, with singular set Z, and normalization � W
QC ! C . Let �; � W Z ! C be two non-overlapping sections of ��1.Z/! Z, then

the diagram

is an equalizer in dgCat.

Proof. Recall that Perf.�/ satisfies Zariski descent, see Proposition 11 in [35]. As
a consequence, it is sufficient to prove the claim for affine C , and we will rectrict to
this case. Let E be the equalizer of the diagram

constructed according to the prescriptions of Lemma 1. Recall that the objects of E
are pairs . QF ; u/, where QF is an object ofDb.Coh. QC//, and u is a degree zero, closed

morphism �� QF u! �� QF , which becomes invertible in the homotopy category. The
morphisms of E are pairs .f;H/ 2 homk. QF ; QG/ ˚ homk�1.���� QF ; ���� QG/, and
the differential is given by d.f;H/ D .df ; dH � .u0��.f /� ��.f /u//.

Fix a natural equivalence ˛ W ���� Š ����. As Perf.C / is generated by line
bundles, and E is generated by objects of the form . QF ; u/ with QF a line bundle
on QC , it is sufficient to define a (quasi-)equivalence  between these two linear
sub-categories. Define  as follows,
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• if F is a line bundle on C , then  .F/ D .��F ; ����F ˛! ����F/,
• if F ;G are line bundles on C , and f 2 homk.F ;G/, then  .f / D .��f; 0/.
Consider a line bundle QF over QC . It follows from Lemma 2 that the set of
isomorphism classes of line bundles F on C such that ��F Š QF carries a transitive
action by .C�/jZj (given by pointwise rescaling the ‘compatibility’ isomorphisms u,
see Lemma 2). Further, the same is true for the set of isomorphism classes of objects
of . QG; v/ 2 E , such that . QG; v/ Š . QF ; u/ for some u 2 hom0.�� QF ; �� QF/. Essential
surjectivity follows from the fact that  defines a .C�/jZj-equivariant map between
these two sets of isomorphism classes.

We shall prove next that  is quasi-fully faithful, i.e. that the map between hom-
complexes defined by  induces an isomorphism in the homotopy category. Denote
HoE the homotopy category of E . It is sufficient to show that for all line bundles
F on C , and for all i 2 N,

 W Homi
C .OC ;F/.D Hi

C .F//
Š! Homi

HoE. .OC /;  .F//:

Note that, as C and QC are affine, cohomology vanishes in positive degree. It follows
that Homi

HoE. .OC /;  .F// D 0 for all i > 0.12 Further, in degree-zero, the hom-
space fits in the following short exact sequence

0! Hom0HoE. .OC /;  .F//! Hom0QC .O QC ; �
�F/! Hom0Z.�

�O QC ; ����F/! 0:

Thus, proving fully faithfulness boils down to showing exactness of

0! H0
C .F/

��

! H0
QC .�
�F/! H0

Z.�
���F/! 0: (1)

Now, (1) is obtained by taking global sections of the sequence

0! F ! ��.��F/! ������.��F/! 0;

which is exact (see the proof of Proposition 4.4 of [14]). Since C is affine, taking
global section is an exact operation, and this concludes the proof of Theorem 3.

3.2 Wheels, Dualizable Ribbon Graphs, and HMS

A wheel is a conical Lagrangian � in T �S1 that contains the zero section. We can
equip a wheel with canonical chordal structure, given by the pair .Z D S1;�/.

12Note that Hom1
HoE. .OC /;  .F// vanishes, since it is isomorphic to the quotient of

Hom0
Z.�

�O QC ; �
���F/ Š C by the image of the differential, which is easily seen to be surjective.
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Recall from Sect. 2.3 that a choice of orientation on S1 yields a subdivision of the
spokes of � into two groups, called respectively “upward” and “downward.” We
will denote a wheel with a1 upward spokes, and a2 downward spokes, �a1;a2 .

Theorem 4. If a1; a2 2 N>0, there is an equivalence Perf.P1.a1; a2// Š
Sh.S1;�a1;a2 /.

Proof. Theorem 4 is due to Bondal [5], who first suggested this should be inter-
preted as an instance of mirror symmetry. Partially inspired by Bondal’s insights,
Fang, Liu, Treumann and Zalow develop an approach to HMS for (stacky) toric
varieties [7, 8], which in particular implies this result, and is the starting point
for the project pursued in [32]. Note that when a1 D a2 D 1, this recovers
the classic result of Beilinson [3], according to which there is an equivalence
Db.Coh.P1// Š Rep.� � �/: In fact, Theorem 1 gives an equivalence Rep.� �
�/ Š Sh.S1;�1;1/.

Remark 1. Theorem 4 can be refined, by requiring that the equivalence intertwine
appropriate ‘stalk functors.’ More precisely, take i 2 f1; 2g, and let ji W Œ
=Zai � !
P
1.a1; a2/ be the inclusion. If � is a character of Zai , we denote Si� the following

composition

Si� W Perf.P1.a1; a2//
j�

i�! Perf.Œ
=Zai �/
��! C-mod:

We can label the upward (resp. downward) spokes of �a1;a2 with characters of Za2
(resp. Za1).

13 We denote Ri� the upward (i D 2), or downward (i D 1), spoke of
�a1;a2 labeled by �. Note that there is a restriction functor

Resi� W CPM.�a1;a2/ �! CPM.Ri�/ Š C-mod:

The claim is that we can define ˚ W Perf.P1.a1; a2// Š CPM.�a1;a2/ in such a way
that we get commutative diagrams of dg categories

The chordal ribbon graphs which are most relevant in the context of mirror
symmetry have special properties, and are called dualizable. Dualizable ribbon

13Both the set of characters and the set of up-/down-ward spokes come with natural cyclic orders
(the spokes inherit it from the ribbon structure on�a1;a2 ). The labelling cannot therefore be entirely
arbitrary, as it must preserve this cyclic order, see [32].
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graphs are obtained by gluing together wheels along matching sets of in- and out-
going edges. We will limit ourselves to explain the geometry of dualizable ribbon
graphs through concrete examples, while referring the reader to [32] for rigorous
definitions. Also, we will mostly consider trivalent dualizable ribbon graphs, as this
will somewhat simplify the exposition, and will not reduce generality in any serious
way (in fact, any chordal ribbon graph is, in an appropriate sense, ‘deformation
equivalent’ to a trivalent graph, cf. Footnote 8).

Let a 2 N>0, and denote Ra the chordal ribbon graph given by a disjoint
union of positive rays, with empty vertex set, and trivial chordal structure, Ra D
.
`
1 � i � aR>0;¿/. If �a1;a2 is a wheel, we can choose morphisms in Chord

Ra2
i�! �a1;a2

iC Ra1;

mapping homeomorphically the components of Ra1 , and Ra2 , respectively onto the
upward, and downward, spokes of �a1;a2 .

Example 4. 1. Let A D .1; 2; 3/ 2 N
3, and denote �0

A D .D0
A;ZA/ the chordal

ribbon graph obtained as the push-out of the following diagram in Chord,

That is, D0
A is the push-out of the underlying one-dimensional CW-complexes,

and is equipped with the unique chordal structure rendering the natural inclusions

�1;2 ,! �0
A  - �2;3

morphisms in Chord. Thus, ZA is the disjoint union of two circles. Note that
D0
A is the non-compact skeleton of a punctured curve of genus 0, endowed with

appropriate Stein structure.
2. Let A D .1; 2; 3/ 2 N

3, and let�1
A D .D1

A;ZA/ be the push-out of the following
diagram in Chord

The ribbon graph D1
A is isomorphic to the skeleton of a Stein torus with 6

punctures.
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Λ0
A Λ1

A

Fig. 2 The dualizable ribbon graphs considered in Example 4(1) and (2) are sketched above. We
have signaled the chordal basis by drawing it with a thicker line

Dualizable ribbon graphs are constructed by joining together wheels as in the
two examples above.14 Recall, after Proposition 1, that the sections of CPM.�/
on a wheel �ai ;aj depend exclusively on ai and aj . That is, we can assume that
�ai ;aj has any convenient shape, so long as we do not change these two integers.
As a consequence, given any dualizable ribbon graph, all the geometric information
which is required to compute the sections of CPM.�/ over it can be encoded in a
discrete set of data.

Namely, disregarding finer geometric features which do not affect the sections
of CPM.�/, dualizable ribbon graphs are identified by their genus, which is equal
to 0 or 1,15 and by a tuple of positive integers recording the number of edges
connecting the different connected components of the chordal basis, Z. This is
entirely analogous to the case of tcnc curves, which was discussed in Sect. 3.1.

Let i 2 f0; 1g, and let A D .a1; : : : ; am/ be a tuple of positive integers, and
denote �i

A any dualizable ribbon graph whose geometry fits these numerical data,
in the manner explained above.

Theorem 5 (HMS). There is an equivalence of dg categories

Perf.C i
A/ Š CPM.�i

A/:

Proof. There is a covering of �i
A given by wheels Wi D �ai ;aiC1

. Then, by the
sheaf property of CPM we have an equalizer diagram

CPM.C 0
A/! CPM.

a
Wi/ � CPM.

a
Wi \WiC1/:

14It is important to point out that, as shown in Fig. 2, in a dualizable ribbon graph the strands
joining together the components of the chordal basis cannot be (non-trivially) ‘braided.’ This can
be translated in appropriate conditions of coherency on the maps Rai ! �i . We refer the reader
to [32] for further details.
15The genus of a ribbon graph D can be described geometrically as the genus of any surface
in which D can be embedded, in a way compatible with the ribbon structure, as a deformation
retract. Thus D0

A in Example 4(1) has genus 0, while D1
A in Example 4(2), has genus 1. For a

formal, combinatorial definition of the genus of a ribbon graph, see [32].
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The theorem then follows immediately from Theorem 4 (and Remark 1), and
Theorem 2.

As discussed above, dualizable ribbon graphs �i
A arise as skeleta of punc-

tured curves of genus i with appropriate Stein structure. Granting Conjecture 1,
Theorem 5 can therefore be interpreted as a HMS statement, relating punctured
symplectic surfaces, and degenerate, nodal algebraic curves, having equal genus
i 2 f0; 1g. In particular, this confirms the well known mirror symmetry heuristics
according to which the mirror of a symplectic torus with n punctures should be a
cycle of n rational curves.16

4 Tcnc Curves and Fourier–Mukai Equivalences

The Fukaya category of a punctured Riemann surface ˙ should depend solely on
the symplectic geometry of ˙ , which is encoded in its genus, and in its number of
punctures.17 In view of Conjecture 1, this suggests that if D and D0 are (chordal)
ribbon graphs arising as skeleta of a unique punctured surface˙ equipped with two
different Stein structures, there should be an equivalence CPM.D/ Š CPM.D0/.

In this section we sketch a proof that this is indeed the case for dualizable ribbon
graphs, by introducing a simple graphical calculus which will enable us to construct
this equivalence in a step-by-step fashion. A precise statement of our theorem is
collected below. If n 2 N, we denote 1.n/ 2 N

n the tuple filled with 1-s. By slight
abuse of notation, we shall also denote .a; 1.n/; b/ a tuple of length 2 C n, of the
form .a; 1; 1; : : : ; 1; b/.

Theorem 6. If A D .a1; : : : ; am/ is a tuple of positive integers, there are
equivalences

1. CPM.�0
A/ Š CPM.�0

A0/, where A0 D .a1; 1.a2 C 	 	 	 C am�1/; am/,
2. CPM.�1

A/ Š CPM.�1
A0/, where A0 D 1.a1 C 	 	 	 C an/.

Our interest in this result depends on the fact that, using the dictionary provided
by Theorem 5, it can be translated in a statement regarding derived equivalences of
tcnc curves.

Corollary 1. If A D .a1; : : : ; am/ is a tuple of positive integers, there are
equivalences

1. Perf.C 0
A/ Š Perf.C 0

A0/, where A0 D .a1; 1.a2 C 	 	 	 C am�1/; am/,
2. Perf.C 1

A/ Š Perf.C 1
A0/, where A0 D 1.a1 C 	 	 	 C an/.

16Kontsevich announced related results in [13]. HMS for the nodal P1 is also treated in [15].
17Note that this is true, without further specifications, only if we are considering the Fukaya
category of compact Lagrangians in ˙ .
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Denote Xn a cycle of rational curves with n components. Corollary 1 implies in
particular that there is an equivalence Perf.Xn/ Š Perf.ŒX1=�n�/, where �n is the
group of n-th roots of unity, acting on X1 in the obvious manner, and ŒX1=�n� is the
quotient stack. As we shall explain, this result can be interpreted as a generalization
to the singular case of Mukai’s classic work on derived equivalences of smooth
elliptic curves (and, more generally, of principally polarised abelian varieties) [17].
Recall that Mukai shows that, if X andX_ are dual abelian varieties, there is a non-
trivial equivalence Db.Coh.X// Š Db.Coh.X_//, which he defines via a pull–
push formalism, by taking as kernel the universal bundle on the productX �X_.

As in the smooth case, the nodal projective line X1 is isomorphic to its dual X_1 ,
which is the moduli space of rank 1, degree 0, torsion-free sheaves over X1 [6].
Further, one can show that Xn, which is the n-fold cover of X1, parametrizes �n-
equivariant sheaves on X1 satisfying the properties just listed. In this perspective,
we can interpret the covering map Xn ! X1 as induced by ‘forgetting the
equivariant structure.’ Thus,Xn is isomorphic to the moduli space of rank 1, degree
0, torsion-free sheaves over the quotient stack ŒX1=�n� or, in other words, Xn is
dual, in the sense discussed above, to ŒX1=�n�.

The existence of an equivalence Perf.Xn/ Š Perf.ŒX1=�n�/ therefore fits well
with what we would expect based on the smooth case.18 Note that the case n D
1 was also studied by Burban and Kreussler [6], who use the theory of spherical
functors to define a non-trivial derived equivalenceDb.Coh.X1// Š Db.Coh.X1//
having the required properties.19

4.1 Elementary Moves

In this section we introduce a set of operations, called elementary moves, which
can be used to modify the geometry of chordal ribbon graphs while preserving the
global sections of CPM.�/. First, however, we spell out the behaviour of CPM.�/
on some especially simple chordal ribbon graphs, which can be used as building
blocks for all trivalent graphs in Chord.

Let E be a ribbon graph with empty vertex set, and underlying CW complex
homeomorphic to R. We can equip E with two distinct chordal structures .E;W /,
by setting either W D E , or W D ¿. In both cases, CPM.E;W / Š C-mod. Thus,
if .D;Z/ is a chordal ribbon graph, and feigi2I is the set of edges of D, restriction
to the edges yields stalk functors, indexed by I ,

18Note that any such equivalence would extend to an equivalence of the full derived categories, see
Theorem 1.2 in [2].
19In [30], extending results of [6], we defined an action of the mapping class group of a torus with
n punctures on Db.Coh.Xn//. The argument we shall describe below can be interpreted, roughly,
as defining an action of an appropriate version of the mapping class groupoid. For a definition of
spherical functor, see [28].
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e2
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Cone(f )

Cone(f )

Fig. 3 Up to isomorphism, there are only two chordal structures on a pitchfork, which are
represented above, and are denoted P1 and P2

Resi W CPM.D;Z/! C-mod Š CPM.ei /;

which generalize the ‘microlocal stalks’ discussed in Sect. 2.1. It is often convenient
to indicate an object L 2 CPM.D;Z/ by assigning the collection of its stalks
Resi .L/, which can be visualized as labels attached to the edges ei of D.

A pitchfork is a chordal ribbon graph P D .D;Z/, such that D is isomorphic
to the union of the real line R, and an upward spoke RC. As shown by Fig. 3
above, there are only two possible choices of chordal basis, which yield inequivalent
chordal ribbon graphs P1, P2. In either case, using Theorem 1, we can see that
the global sections of CPM.�/ are given by Rep.� ! �/. The edges of the
graphs represented in Fig. 3 are decorated with labels corresponding to an object

L D .V
f! W / 2 Rep.� ! �/. Thus, for instance, the picture indicates that

the stalk of L 2 CPM.P1/ D Rep.� ! �/ on any point lying on the edge e2, is
isomorphic to Cone.f /.

The set of the Elementary Moves, or EM-s, which we shall use in the proof
of Theorem 6, is given in the table below (Fig. 4). Note that the ribbon graphs
considered in Fig. 4 are obtained by gluing together pitchforks along common edges,
and thus we can easily compute the sections of CPM.�/ over them using Lemma 1.

For each elementary move EMi, let .Dli ; Zli / be the graph appearing on the
left of the ‘,’ symbol, and .Dri ; Zri / the graph appearing on the right. EM-
s preserve global sections of CPM.�/, and there is a preferred isomorphism
˚i W CPM.Dli ; Zli / Š CPM.Dri ; Zri /. We have labelled the edges of .Dli ; Zli /,
and .Dri ; Zri /, with the stalks ofL 2 CPM.Dli ; Zli /, and˚i.L/ 2 CPM.Dri ; Zri /,
respectively. This schematics gives enough information for reconstructing ˚i
entirely. In order to simplify notations, we have indicated the cone of a map
f W V ! W 2 C-mod simply by C.f /. Note that EM10 can be obtained simply by
iterating EM1. We have included it in Fig. 4 because in Sect. 4.2 it will be convenient
to apply this transformation directly, without factoring it into simpler EM-s.

Giving an explicit definition of the preferred equivalences ˚i , based on the
information contained in Fig. 4, is not hard and we omit the details. However, as
an example of the kind of arguments involved, it might be useful to discuss briefly
the case of EM1.
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L = V
f→ W

g→ X

VWX

C(f)C(g)
EM1 :

VX

C(f)

C(g)[−1]

C(gf)

L = V
f→ W

g→ X
h→ Y

VWX

C(f)C(g)
EM1′ :

VX

C(f)
C(g)[−1]

C(gf)

Y

C(h)
C(h)[−1]

C(hgf)

L = X
g→ W

f← V

VWX

C(g)

C(f)
EM2 :

WX

C(f)

C(g)

V

EM3 :

X

V [1]

Y [1]

W

V [1]

X

C(f) ∼= C(g)W

Y [1]

L = (V f→ W,Y
g→ X, u : C(f )

∼=→ C(g)). Denote C(g) c→ Y [1],

C(c ⊕ c′)

C(f ) c′→ V [1] the ‘boundary’ maps.

⇐⇒

⇐⇒

⇐⇒

⇐⇒

Fig. 4

Proof (The Definition of ˚1). Following the notations of Fig. 3, .Dr1 ; Zr1 / can
be constructed by gluing together edges e2 of P1, and e03 of P2. An object in

CPM.Dr1 ; Zr1/ is given therefore by a triple of the form .A
l! B;C

m! D; u W
C.l/

Š! C Œ1�/: Now, take L D .V
f! W

g! X/ in CPM.Dl1 ; Zl1 /. Since
C-mod is dg triangulated, there exist a natural morphism p W C.gf / ! C.g/,
and an isomorphism C.p/ Š C.f /. This follows from the very general fact that
triangulated dg categories satisfy an appropriate enhancement of the octahedral
axiom.20 However, for completeness, we construct p explicitly.

20In the closely related context of stable .1; 1/-categories, a parallel statement is proved in [16],
see Theorem 1.1.2.14: in fact, both statement and proof in [16] apply word for word to triangulated
dg categories as well.
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Consider the commutative diagram

Computing the co-cones of the vertical arrows, and using the availability of

functorial cones in triangulated dg categories,21 we obtain maps C.gf /Œ�1� p!
C.g/Œ�1�! C.f /. Both rows of the diagram are exact, that is, they are isomorphic

to mapping cone sequences. It follows that C.gf /Œ�1� p! C.g/Œ�1� ! C.f / is
exact as well. In particular, there is a natural isomorphism C.f / Š C.p/.

We define ˚1 on objects by setting

˚1.L/ D .V gf! X;C.gf /Œ�1� p! C.g/Œ�1�;C.gf / D! C.gf //:

The definition on morphisms is obvious, as the assignment relies on the repeated
application of the cone construction, and is therefore functorial. The fact that the
microlocal stalks of ˚1.L/ match the indications of Fig. 4 follows from the natural
identification C.f / Š C.p/.

Next, we show that ˚1 is a quasi-equivalence, by constructing a quasi-inverse

˚�11 . Let M D .A
l! B;C

m! D; u W C.l/
Š! C Œ1�/ be an object in

CPM.Dr1 ; Zr1/. Consider the map c W C Œ1� ! AŒ1� obtained by composing u�1
with the boundary map C.m/! AŒ1�. We have a diagram

As the rows are exact, functoriality of cones yields a map n, indicated with a dashed
arrow, which makes the diagram commute. Taking co-cones of the two rightmost
vertical arrows gives maps r W C.n/Œ�1� ! B , and s W A ! C.n/Œ�1�. Note that,
by construction, s ı r D m. The quasi-inverse ˚�11 sends the objectM to

˚�11 .M/ WD .A r! C.n/Œ�1� s! B/ 2 CPM.Dr1 ; Zr1 /:

We leave it to the reader to check that ˚�11 is a quasi-inverse to ˚1: this follows
again from a simple application of the octahedral axiom.

21See Sect. 5.1 of [35] for further details.
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Bn :An :

e1

e2

e3

e4

e′
1

e′
2

e′
3

e′
4

Fig. 5 The parameter n 2 N>0 indicates the number of strands in An, and loops in Bn

4.2 The Proof of Theorem 6

Figure 5 represents two different kinds of chordal ribbon graphs, which are denoted
An, and Bn, with n 2 N>0. All tri-valent dualizable ribbon graphs can be assembled
by gluing along their external edges a certain number of copies of graphs of type A
and B . In order to prove Theorem 6, it is therefore enough to show that for every
n there exists an equivalence ˚n W CPM.An/ Š CPM.Bn/, with the property that
˚n preserves the stalks on the 4 external edges ei , and e0i .22 In fact, starting with
any dualizable ribbon graph, we can turn it into a dualizable graph having weight
vector with entries all equal to 1 by successively replacing its subgraphs of type A
with subgraphs of typeB . The availability of the equivalences˚n insures that, while
doing so, we are not affecting the sections of CPM.�/ (up to isomorphism).

In defining the ˚n-s, we have to break down the algorithm just described in
yet smaller subroutines. For all n 2 N>0, we identify suitable subgraphs of An
isomorphic to the graphs appearing in Fig. 4, and we modify their geometry via
the appropriate elementary move. This gives rise to a new graph, which we can
manipulate in similar manner, until, after a finite number of steps, we achieve the
geometry ofBn. This procedure involves keeping track of what happens to the stalks
across EM-s, to make sure that our operations, which are local in nature, determine
equivalences at the level of global sections of CPM.�/. This can be easily done,
using the information on stalks given by Fig. 4.

The proof of Theorem 6 can therefore be reduced to a simple graphical calculus,
which is illustrated in Figs. 6 and 7 below, for the cases n D 2, and n D 3. At each
step we apply an elementary move, which is explicitly indicated over the symbol
‘,.’ It is important to notice that, in some of these steps, we are simultaneously
applying the same elementary move to two distinct subgraphs. The strategy for

22It might be surprising that the strands of An are ‘non-trivially braided.’ The existence of the
equivalence ˚n depends, in fact, in a crucial way on the choice of this particular geometry. Note
however that the chordal basis of a dualizable ribbon graph is a union of loops. Considered as
edges of the larger graph, the strands in a subgraph of type A can therefore be un-braided, cf. also
Footnote 14.
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⇐⇒ ⇐⇒EM1 EM2

Fig. 6 The case n D 2

⇐⇒
EM1′

⇐⇒
EM3

⇐⇒
EM2

Fig. 7 The case n D 3

proving the statement in the general case can be easily extrapolated from here, and
therefore we will not discuss it in any further detail.
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The Very Good Property for Moduli of Parabolic
Bundles and the Additive Deligne–Simpson
Problem

Alexander Soibelman

Abstract In “Quantization of Hitchin’s Integrable System and Hecke Eigen-
sheaves”, Beilinson and Drinfeld introduced the “very good” property for a smooth
complex equidimensional stack. They prove that for a semisimple group G over C,
the moduli stack BunG.X/ of G-bundles over a smooth complex projective curve
X is “very good”, as long as X has genus g > 1. In the case of the projective line,
when g D 0, this is not the case. However, the result can sometimes be extended to
the projective line and reductive group G D GL.n;C/, by introducing additional
parabolic structure at a collection of marked points and slightly modifying the
definition of a “very good” stack. Using the modified definition, we provide a
sufficient condition for the moduli stack of parabolic vector bundles over P

1 to
be very good, and use this property to study the space of solutions to the additive
Deligne–Simpson problem.

1 The Very Good Property

In [1] Beilinson and Drinfeld introduce the notion of a “very good” stack. They
require this property in order to avoid using derived categories in their study of
D-modules on the moduli stack BunG.X/ of G-bundles over X , where G is a
semisimple algebraic group and X is a smooth complex projective curve.

A smooth complex equidimensional stack Y will be called very good if

codimfy 2 Y jdim Gy D ng > n; for n > 0;
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whereGy is the automorphism group of y 2 Y . Beilinson and Drinfeld demonstrate
that BunG.X/ is very good when X has genus g > 1. However, in the g D 0 case,
when X D P

1, this is no longer true.
To approach the very good property in the genus g D 0 case, we introduce

additional parabolic structure at a finite collection of marked points. Furthermore,
we will consider this case for the group G D GL.n;C/.

Note that the reductive group GL.n;C/ contains C� as a central subgroup, so the
automorphism group of any GL.n;C/-bundle contains a one-dimensional subgroup
that acts by dilation on the fibers. Therefore, regardless of the curve X , the moduli
stack of parabolic bundles over X cannot be very good.

To remedy this, we will modify the definition of a very good stack. The stack Y
will be called almost very good if

codim fy 2 Y jdim Aut.y/ �m D ng > n; for n > 0;

where m is the maximal nonnegative integer such that dim Aut.y/ � m for all
y 2 Y .

It turns out that a sufficiently elaborate parabolic structure on a vector bundle is
enough to make the corresponding moduli stack of parabolic bundles over P1 almost
very good. This is equivalent to showing that the quotient of the moduli stack by the
classifying stack of C� is very good.

2 The Very Good Property for Moduli of Parabolic Bundles

Seshadri introduced the notion of parabolic structures on vector bundles in [17],
furnishing them with a stability condition analogous to the usual one for vector
bundles. Expanding upon this, Mehta and Seshadri proved the existence of a moduli
space of semistable parabolic bundles on a smooth projective curve of genus g � 2
in [16]. Since we do not require semistability, we define parabolic bundles in a
slightly different way from [16].

Parabolic bundles over an algebraic curve generalize vector bundles by defining
additional structure in the fibers over specified points. Namely, let X be a smooth
connected complex projective curve. In the future we restrict ourselves to the case
when X D P

1.
A parabolic bundle E over X consists of a vector bundle E over X , a collection

of distinct points .x1; : : : ; xk/ on X, and a flag Exi D Ei0 � Ei1 � 	 	 	 � Eiwi�1 �
Eiwi D 0 in the fiber over each such point xi . If D D .x1; : : : ; xk/ and w D
.w1; : : : ;wk/, we say that the parabolic bundle E has weight type .D;w/. If ˛0 D
rk E and ˛ij D dim Eij , for 1 � i � k and 1 � j � wi�1, we say that E has
dimension vector ˛ D .˛0; ˛ij /.

The isomorphism classes of parabolic bundles overX of weight type .D;w/ and
dimension vector ˛ form an algebraic stack. If one wishes to consider a moduli
scheme instead, one can introduce stability and semistability for parabolic bundles.
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One way of defining these notions is to introduce parabolic degree, using it to define
parabolic slope (see [16]).

To do this, additional numbers called weights are assigned to each subspace in
each flag. Since we do not limit ourselves to stable or semistable parabolic bundles,
we do not require weights to be part of the definition. Parabolic bundles without
weights are sometimes referred to as “quasi-parabolic” bundles.

In order to formulate our main result, we introduce two more definitions that
will specify which dimension vector give rise to very good parabolic bundles. Let
I D f0g [ f.i; j /j1 � i � k; 1 � j � wi�1g. For a dimension vector ˛ 2 Z

I , we
write: ı.˛/ D �2˛0 CPi ˛i1. We say that ˛ is in the fundamental region if

ı.˛/ � 0
�2˛ij C ˛ij�1 C ˛ijC1 � 0; for 1 � i � k and 1 � j � wi�1

(note that we assume ˛i0 D ˛0, for all i ). We now introduce our main result.

Theorem 1. The moduli stack of parabolic bundles of weight type .D;w/ and
dimension vector ˛ over P1 is “almost very good” if ˛ is in the fundamental region
and ı.˛/ > 0.

The proof of this theorem will be given in another publication.

3 Parabolic Bundles and Squids

Crawley-Boevey’s approach [3, 4] to the Deligne–Simpson problems involves
relating them to representations of an algebra called a squid. We introduce Crawley-
Boevey’s terminology and explain how his work relates to the special case of
Theorem 1 we will use to study solutions of the additive Deligne–Simpson problem.

Let .D;w/ be as before. Consider the quiver pictured below.

A squid SD;w is the quotient of the path algebra of this quiver by the relations
.�i0b0 C �i1b1/ci1 D 0, for xi D .�i0 W �i1/ 2 P

1. We consider representations
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of SD;w to be quiver representations in the standard complex coordinate spaces that
satisfy these relations. A squid representation is said to be Kronecker-preinjective if
�0b0 C �1b1 is surjective as a linear map for all .�0 W �1/ 2 P

1.
Let .d; ˛/ be the vector of dimensions of the spaces in a representation of SD;w.

That is, d is the dimension of the space at the vertex 1, while ˛0 C d is the
dimension of the space at vertex 0 and ˛ij is the dimension of the space at the
vertex Œi; j �. We will consider the case when d D 0, and the Kronecker-preinjective
squid representations reduce to just representations of the star-shaped quiver (which
is the quiver pictured above without the vertex1 and the arrows adjacent to it).

Consider the symmetrization of the Euler–Ringel form, defined on the standard
coordinate vectors �v, where v 2 I D f0g [ f.i; j /j1 � i � k; 1 � j � wi�1g, as:

.�v1 ; �v2 / D
8<
:

2 (if v1 D v2)
�1 (if an edge joins v1 and v2)
0 (otherwise)

It defines a generalized Cartan matrix, so we may interpret a subset of the dimension
vectors ˛ as roots of a Kac–Moody Lie algebra. The corresponding Weyl group is
generated by the reflections:

sv.˛/ D ˛ � .˛; �v/�v;

for all v 2 I . A dimension vector ˛ 2 Z
I�0 is in the fundamental region if it has

connected support and if .˛; �v/ � 0 for all v 2 I . That is, none of the coordinates
with respect to the basis consisting of the vectors �v are made smaller by reflections.
This is consistent with the definition of the fundamental region given in the previous
section and the definition given by Crawley-Boevey in [4].

Note that the fundamental region is part of �C_, where C_ is the dual to
the fundamental chamber for the Weyl group action on the Kac–Moody algebra
mentioned above (see [7] for details). Let q.˛/ be the quadratic form associated to
the symmetric form above, and let p.˛/ D 1 � q.˛/.

Also note that the vector ˛ can be used to define a product of partial flag varieties

Fl.˛/ D
Y
i

Fl.˛0; ˛i1; : : : ; ˛iwi /:

That is, ˛0 is the dimension of the ambient space C
˛0 , and for a fixed i , each ˛ij is

the dimension of the i th subspace in the flag. The group PGL.˛0/ acts diagonally on
F l.˛/, so it makes sense to discuss the very good property of the resulting quotient
stack. Indeed, when the underlying vector bundle is trivial, Theorem 1 gives us:

Theorem 2. The quotient stack PGL.˛0/nFl.˛/ is very good, if ˛ is in the
fundamental region and ı.˛/ > 0.

Theorem 2 may also be obtained from Crawley-Boevey’s results in [2] (see e.g.
Theorem 1.1), after noticing that F l.˛/ is the quotient of the space of star-shaped
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quiver representations of dimension ˛ with injective arrows by the group H.˛/ DQ
i;j GL.˛ij /, acting by conjugation on the arrows. In this case, the very good

property is equivalent to Crawley-Boevey’s inequality p.˛/ >
P

i p.ˇi /, for any
decomposition ˛ DPi ˇi into the sum of positive roots. The condition that ˛ is in
the fundamental region and ı.˛/ � 0 implies this inequality.

4 Applications to the Additive Deligne–Simpson Problem

The original version of the Deligne–Simpson problem was suggested in a letter from
Deligne to Simpson, who considered it in his paper [18]. It asks whether there exist
k complex n�nmatricesA1; : : : ; Ak from prescribed conjugacy classes C1; : : : ; Ck
such that A1 	 A2 	 	 	Ak D Id. We will consider this problem’s additive analogue,
studied by Kostov in [9–15], and Crawley-Boevey in [3], among others.

The additive Deligne–Simpson problem can be formulated in the following way:
Given k conjugacy classes C1; : : : ; Ck of complex matrices in gln, do there exist
A1 2 C1; : : : ; Ak 2 Ck such that

A1 C 	 	 	 C Ak D 0‹

One can interpret this problem in terms of local systems on P
1 with a collection

of k marked points. That is, the additive Deligne–Simpson problem is equivalent to
the problem of existence of logarithmic connections on a trivial bundle over P1 with
residues in C1; : : : ; Ck at the marked points. The multiplicative problem may be
obtained by instead considering the monodromy operators, corresponding to loops
around each of the marked points, for logarithmic connections on (not necessarily
trivial) vector bundles over P1.

There are several approaches to solving the Deligne–Simpson problem. In [8],
Katz describes an algorithm for the existence of rigid local systems, which Kostov
applies in [9–15] to determine when solutions to various cases of the Deligne–
Simpson problems exist. The algorithm, called the middle convolution algorithm,
proceeds by changing the rank of the local system by a number ı, called the defect,
dependent on C1; : : : ; Ck . Solutions exist for the original problem, as long as they
exist for the altered rank. This continues while ı < 0 or until one arrives at a
situation when solutions cannot exist. When ı becomes nonnegative, a nontrivial
existence theorem guarantees that there are solutions. In [3], Crawley-Boevey
proposes another approach to the additive Deligne–Simpson problem by examining
fibers of the moment map on the cotangent bundle to the space of representations of
the star-shaped quiver.

We relate the additive Deligne–Simpson problem for semisimple conjugacy
classes C1; : : : ; Ck to the very good property for PGL.˛0/nF l.˛/. Indeed, given
semisimple C1; : : : ; Ck one can write a dimension vector ˛, where ˛0 D n is the
size of the matrix in Ci and ˛ij is the dimension of the direct sum of the first j
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eigenspaces, ordered by dimensions from least to greatest. This defines a product of
partial flag varieties F l.˛/. As a consequence of Theorem 2, we have:

Theorem 3. If the conjugacy classesCi are semisimple, the corresponding quotient
stack PGL.˛0/nFl.˛/ is very good and the eigenvalues of all theCi add up to 0, then
the space of solutions of the additive Deligne–Simpson problem for C1; : : : ; Ck is a
nonempty, irreducible variety of dimension 2 	 dim Fl.˛/ � ˛20 + 1.

Applying Theorem 2 we obtain:

Corollary 1. If the conjugacy classes Ci are semisimple, ˛ is in the fundamental
region and ı.˛/ > 0, then the space of solutions of the additive Deligne–Simpson
problem is a nonempty, irreducible variety of dimension 2 	 dim Fl.˛/ � ˛20 + 1.

Remark 1. In the above corollary, ı.˛/ is actually equal to the defect ı that appears
in Katz’s middle convolution algorithm.

Remark 2. In [3], the condition p.˛/ >
P

i p.ˇi /, for any decomposition ˛ DP
i ˇi into the sum of positive roots (see [3]), is used in place of ˛ being in the

fundamental region and ı.˛/ > 0. While the former is both necessary and sufficient
for the existence of solutions to the additive Deligne–Simpson problem, the latter is
somewhat easier to check.

5 Further Discussion

We have seen that applying Theorem 1 in the case when the underlying vector
bundle is trivial yields a result (Theorem 2) that can be used to study the space of
solutions of the additive Deligne–Simpson problem. We hope that in the nontrivial
bundle case, the very good property for moduli of parabolic bundles may be used
to study solutions to the multiplicative Deligne–Simpson problem. Indeed, in the
semisimple case, the product of conjugacy classes C1 � 	 	 	 � Ck may be thought of
as a twisted cotangent bundle over Fl.˛/. The very good property for Fl.˛/ implies
that the moment map for the

Qk
iD1 GL.n;C/ action on C1 � 	 	 	 � Ck (the moment

map sends A1; : : : ; Ak to A1 C 	 	 	 C Ak) contains 0 in its image. Furthermore, the
very good property implies the fiber over 0 is an irreducible complete intersection.

In general, when the underlying vector bundles is not necessarily trivial, one
can also consider twisted cotangent bundles over moduli of parabolic bundles.
These twisted cotangent bundles relate to the Deligne–Simpson problems as they
parametrize pairs .E;r/, consisting of a parabolic bundle E and a logarithmic
connection r, defined on the underlying vector bundle, with residues at the marked
points compatible with the parabolic structure. Therefore, we hope that the very
good property may be used to obtain similar results for corresponding moment map
and, passing to monodromy, for the space of solutions to the multiplicative Deligne–
Simpson problem.
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It would also be interesting to extend the result of Theorem 1 to other semisimple
groups. By analogy with flag varieties, it is possible to define a parabolic structure
on G-bundles, when G is not GL.n;C/, by specifying parabolic subgroups Pi
at each marked point xi 2 P

1. Although there is no correspondence with quiver
representations for a general G, it may be possible to modify Beilinson and
Drinfeld’s original proof of the very good property for BunG . A key part of their
argument consists of showing that the global nilpotent cone Nilp.G/, the fiber over
0 in the Hitchin system, is Lagrangian. One can consider the parabolic analogue of
the Hitchin system, which has its own global nilpotent cone. It has been proved to
be Lagrangian in specific instances, such as for complete flags [5, 19] or rank 3 [6].
However, the author is unaware of a proof for the case of partial flags.
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