

D. Aveiro, J. Tribolet, and D. Gouveia (Eds.): EEWC 2014, LNBIP 174, pp. 46–60, 2014.
© Springer International Publishing Switzerland 2014

A New Action Rule Syntax for DEmo MOdels
Based Automatic worKflow procEss geneRation

(DEMOBAKER)

Carlos Figueira1 and David Aveiro1,2,3

1 Exact Sciences and Engineering Centre, University of Madeira,
Caminho da Penteada 9000-105 Funchal, Portugal

2 Center for Organizational Design and Engineering,
INESC-INOV Rua Alves Redol 9, 1000-029 Lisboa, Portugal

3 Madeira Interactive Technologies Institute,
Caminho da Penteada 9020-105 Funchal, Portugal

carlos.figueira.oelabuma@gmail.com, daveiro@uma.pt

Abstract. The current way of specifying Action Rules in the Design and
Engineering Methodology for Organizations (DEMO) is ambiguous and leads
to incomplete specifications that do not contain enough ontological information
so that we can more systematically convert DEMO models to comprehensive
Business Process Management and Notation (BPMN). With our proposal we
now can specify – still at an ontological level – much more needed details and
essential information for a more complete and close to automatic generation of
BPMN models. Action rules are also the perfect spot to already specify
functional and implementation requirements for the information systems
supporting the Workflow Management System running such BPMN models.
Thus we also contribute to bridge the huge gap between DEMO models and
important implementation issues that arise at design time and should
immediately be specified together with ontological elements.

Keywords: enterprise engineering, BPMN, BPM, DEMO, meta model, action
model, action rules, syntax, workflow, information systems, requirements.

1 Introduction

Most IT projects fail to meet final user's expectations. From [1], where some case
studies were made, a recent survey with 800 IT managers [2] [3], found that 63% of
software development projects failed, 49% suffered budget overruns, 47% had higher
than expected maintenance costs and 41% failed to deliver the expected business value
and user's expectations. From these case studies, it was found that some of the common
causes of software failures are: the lack of clear, well-thought-out goals and
specifications, poor management and poor communication among costumers, designers
and programmers [4], unrealistically low budget requests, and underestimates of time
requirements, use of new technologies maybe for which the software developers don't
have adequate experience and expertise and refusal to recognize or admit that a project

 A new Action Rule Syntax for DEmo MOdels 47

is in trouble [1]. DEMO [5] is a renowned enterprise engineering method associated
with a sound set of theories aiming to contribute to solve these serious problems.
However many open ends exist. For example, the produced models are used mostly for
isolated efforts of organizational analysis and providing support for discussing changes
initiatives. And one of its main aspect models – the Action Model – is barely used in
practice [6], although the founder of DEMO himself says it's probably the most
important model and where all essential model information can be found and all the
other 3 aspect models can be derived from [5].

Research presented in this paper is integrated in a wider research project aiming to
develop a software platform to support collaborative and semantic web based
production of organizational models and diagrams that specify organizational
processes, human and software responsibilities, information flows, procedures and
other kinds of organizational artifacts. Such models should consist in a continuously
and collaboratively updated “picture” of the reality of an enterprise that guides its
collaborators in: (1) the perception of the global “organizational self” [7] (2) the
execution of their operational work and (3) the creative process of changing the
organization itself [8], including or not the change or implementation of software and
related information technology. Other widespread approaches such as ArchiMate [9]
and BPMN [10] suffer highly from the lacking of a solid formal theory behind them
and from ambiguous semantics [11] [12]. Our DEMO based approach, grounded in
solid theory, aims to allow the generation of models that capture vital information of
organizational responsibilities and information flows, normally neglected in other
approaches. From these models – that have a very high-level of abstraction and are
easy to share and comprehend – we aim to systematically derive increasingly detailed
models down to runnable workflows and program code or manual work instructions.
All models and all model artifacts are to be formally connected with each other in a
coherent and semantically strong way, bringing immense power to our approach. Our
prototype software platform is inspired on the Universal Enterprise Adaptive Object
Model (UEAOM) [13] and is supported by the Semantic MediaWiki (SMW)
software, to allow the integrated management and adaptation of: (1) enterprise
models, (2) their representations, (3) their underlying meta-models, i.e., their abstract
syntax, (4) the representation rules, i.e., the concrete syntax for the respective models,
and (5) automated or semi-automated generation of: (i) runnable workflows; (ii)
formal requirements for software to support such workflow and (iii) program code.
All this for different modelling languages and also different versions of these
languages, with an initial focus on DEMO and BPMN the most widespread standard
used for workflow management systems. One of the components of our software
prototype is called DEMOBAKER, having as a main goal to provide an efficient and
standardized way of converting DEMO models into totally compliant BPMN models
having clear semantics, an issue lacking in traditional BPMN approaches. In this
paper we present an important step in this direction. Namely, we propose an improved
meta-model for DEMO's Action Model also presented in the form of a new Action
Rule Syntax. We focus on the problem that the current way of specifying Action Rules
in DEMO is ambiguous and leads to incomplete specifications that do not contain
enough ontological information so that we can convert DEMO models to
comprehensive BPMN models. With our proposal we now can specify – still at an
ontological level – much more needed details and essential information for a more

48 C. Figueira and D. Aveiro

complete and close to automatic generation of BPMN models. Action rules are also
the perfect spot to already specify functional and implementation requirements for the
information systems supporting the Workflow Management System running such
BPMN models. Thus we also contribute to bridge the huge gap between DEMO
models and important implementation issues that arise at design time and should
immediately be specified together with ontological elements. We use the EU-rent case
taken from [14] to exemplify and validate our contribution.

2 Research Method

According to A. R. Hevner [15] [16], Design Science Research – the Information
Systems Research paradigm that we adopt – should be seen as a group of three closely
related cycles of activities. These activities are depicted on Figure 1. Hevner claims
that the individual application of these three activities in an isolated way does not
constitute good design science research. Only the conjunction of the three can actually
render good design science research with a valid output. In our research, and
regarding the relevance cycle depicted on Figure 1, we identified a clear problem of
ambiguity and lack of concise and essential information on current DEMO's action
rule syntax. So an opportunity to devise a more sound and comprehensive syntax was
at hand. Regarding the Rigor cycle, our research was supported by all the theoretical
foundations grounding DEMO as well as the UEAOM patterns. The most important
cycle is the Design cycle itself, out of which resulted our proposal of a new meta-
model for DEMO's Action Model. An exhaustive and thorough evaluation was done
with many iterations of this cycle where we would be adding new elements to
DEMO's Action Meta Model and instantiating our new syntax with the EU-rent case
and evaluating if it allowed to specify maximum ontological information in a concise
and comprehensive way, normally not the case in DEMO's current standard Action
Models. While instantiating and increasing the complexity of EU-rent case's action
rules to a more realistic level, some times we found some concept in the meta-model
should be unary, some other times other concepts should be binary, and, at other
times, we found we would need to specify new concepts at meta-level like: atomic
action and flow. So the proposal presented in this paper is the result of a long and
thorough process of conceptual evolution and comprehensive instantiation, thus
following the tenets of Design Science Research.

Fig. 1. Design science research cycles [17]

 A new Action Rule Syntax for DEmo MOdels 49

3 Background and Theoretical Foundations

3.1 DEMO's Operation, Transaction and Distinction Axioms

In the Ψ-theory [17] – on which DEMO is based – the operation axiom [5] states that,
in organizations, subjects perform two kinds of acts: production acts that have an
effect in the production world or P-world and coordination acts that have an effect on
the coordination world or C-world. Subjects are actors performing an actor role
responsible for the execution of these acts. At any moment, these worlds are in a
particular state specified by the C-facts and P-facts respectively occurred until that
moment in time. When active, actors take the current state of the P-world and the C-
world into account. C-facts serve as agenda for actors, which they constantly try to
deal with. In other words, actors interact by means of creating and dealing with C-
facts. This interaction between the actors and the worlds is illustrated in Figure 2. It
depicts the operational principle of organizations where actors are committed to deal
adequately with their agenda. The production acts contribute towards the
organization's objectives by bringing about or delivering products and/or services to
the organization's environment and coordination acts are the way actors enter into and
comply with commitments towards achieving a certain production fact [18].

According to the Ψ-theory's transaction axiom the coordination acts follow a certain
path along a generic universal pattern called transaction [5]. The transaction pattern has
three phases: (1) the order phase, were the initiating actor role of the transaction
expresses his wishes in the shape of a request, and the executing actor role promises to
produce the desired result; (2) the execution phase where the executing actor role
produces in fact the desired result; and (3) the result phase, where the executing actor
role states the produced result and the initiating actor role accepts that result, thus
effectively concluding the transaction. This sequence is known as the basic transaction
pattern, illustrated in Figure 3, and only considers the “happy case” where everything
happens according to the expected outcomes. All these five mandatory steps must
happen so that a new production fact is realized. In [18] we find the universal
transaction pattern that also considers many other coordination acts, including
cancellations and rejections that may happen at every step of the “happy path”.

Fig. 2. Actor's Interaction with Production
and Coordination Worlds [5]

Fig. 3. Basic Transaction Pattern [5]

50 C. Figueira and D. Aveiro

Even though all transactions go through the four – social commitment –
coordination acts of request, promise, state and accept, these may be performed
tacitly, i.e. without any kind of explicit communication happening. This may happen
due to the traditional “no news is good news” rule or pure forgetfulness which can
lead to severe business breakdown. Thus the importance of always considering the
full transaction pattern when designing organizations. Transaction steps are the
responsibility of two specific actor roles. The initiating actor role is responsible for
the request and accept steps and the executing actor role is responsible for the
promise, execution and state steps. These steps may not be performed by the
responsible actor as the respective subjects, may delegate on another subject one or
more of the transaction steps under their responsibility, although they remain
ultimately responsible for such actions [18].

The distinction axiom from the Ψ-theory states that three human abilities play a
significant role in an organization's operation: (1) the forma ability that concerns
datalogical actions; (2) the informa that concerns infological actions; and (3) the
performa that concerns ontological actions [5]. Regarding coordination acts, the
performa ability may be considered the essential human ability for doing any kind of
business as it concerns being able to engage into commitments either as a performer or
as an addressee of a coordination act [18]. When it comes to production, the performa
ability concerns the business actors. Those are the actors who perform production acts
like deciding or judging or producing new and original (non derivable) things, thus
realizing the organization's production facts. The informa ability on the other hand
concerns the intellectual actors, the ones who perform infological acts like deriving or
computing already existing facts. And finally the forma ability concerns the datalogical
actors, the ones who perform datalogical acts like gathering, distributing or storing
documents and or data. The organization theorem states that actors in each of these
abilities form three kinds of systems whereas the D-organization supports the
I-organization with datalogical services and the I-organization supports the
B-organization (from Business=Ontological) with informational services [19].

3.2 Business Process Management (BPM) and Its Notation – BPMN

As stated in [20], “Business Process Management (BPM) is the discipline that describes
structured methods and techniques used to make a business process more efficient
adaptive and effective for accomplishing a specific task within an organization” BPM
techniques and methods also allow the identification and modification of existing
processes in order to align them to future possibilities of change. BPMN, stands for
Business Process Model and Notation and consists in a method for graphically
representing the steps of a business process similar to a flowchart approach. The BPMN
notation was specifically designed to allow the specification of the coordination of the
sequence of organizational processes and the way that messages flow between activities,
processes and participants.

 A new Action Rule Syntax for DEmo MOdels 51

3.3 Universal Enterprise Adaptive Object Model

The Universal Enterprise Adaptive Object Model (UEAOM) is a recent proposal from
[13], consisting in a conceptual schema inspired in the the Adaptive Object Model
(AOM) [21], a software architecture pattern for systems in which classes, attributes,
relationships and behaviors of applications are represented as metadata, allowing
them to be changed in runtime environment.

Fig. 4. UEAOM - simplified version

Figure 4 presents a simplified version of the original UEAOM, with the core classes
only. A brief explanation and exemplification of the core classes relevant for the
contributions of this paper follows. LANGUAGE – used to specify which languages are
permitted in the diagram editor. Example: «DEMO v3.5». MODEL KIND – each
language can have multiple model kinds, used to specify which kinds of models are
permitted for a certain language in the Diagram Editor. Example: «Construction Model
v3.5». DIAGRAM KIND – each model can have multiple Diagram kinds, used to
specify which kind of Diagrams are permitted in the Diagram Editor for a certain model
kind. Example: The Actor Transaction Diagram «ATD v3.5». ORGANIZATION
ARTIFACT KIND (OAK) – used to specify which kinds of organization artifacts can be
used in models. Example: «ELEMENTARY ACTOR ROLE v3.5». ORGANIZATION
ARTIFACT KIND RELATION KIND (OAKRK) – used to specify which kinds of
relations are permitted between OAKs. Example: «TRANSACTION KIND.executed
by.ELEMENTARY ACTOR ROLE v3.5». ORGANIZATION ARTIFACT (OA) – used
to specify a concrete organization artifact instance of a particular OAK. Example: «A01 -
rental starter» is an instance of ELEMENTARY ACTOR ROLE v3.5. ORGANIZATION
ARTIFACT RELATION (OAR) – used to specify a concrete organization artifact
relation instance of a certain OAKRK. Example: «CAR PICK UP.executed by.RENTAL
STARTER». ORGANIZATION ARTIFACT KIND ELEMENT KIND (OAKEK) – used

52 C. Figueira and D. Aveiro

to specify an element kind of an organization artifact kind. Example: Transaction Name
is an element of the Organization Artifact Kind Transaction. ORGANIZATION
ARTIFACT ELEMENT (OAE) – used to specify instances of an OAKEK. Example: the
string “rental start” hat is the name given to a particular transaction that is an instance of
the Organization Artifact Kind Transaction.

4 From DEMO to BPMN Workflow with Precise Semantics

The major goal of the DEMOBAKER project is to allow the conversion of UEAOM
based DEMO models into compliant UEAOM based BPMN processes. Looking at
DEMO models, we concluded that Action Rules would be the main source of
information for this conversion process, as they specify, for all transactions, all
agendum for each of the internal actors of the organization, that is all coordination
facts that they have to respond to and then which conditions have to be verified, facts
created, etc. After several experiments of converting DEMO models to BPMN models
we found that we had to discard several ambiguous elements from BPMN – e.g., the
message element that easily becomes redundant with tasks – and arrived at the
following conversion rules – one of the main contributions of this paper – so that each
DEMO concept has a 1 to 1 correspondence to a BPMN concept. We use the format:
DEMO concept < > BPMN concept. Because DEMO has a strong semantics with a
comprehensive meta-model, these proposed rules imply that, by using the few BPMN
elements we select, we have a more precise semantics for BPMN compared to an
unrestricted use of it or to using BPMN as a starting point to model enterprise
processes.

Transaction < > Pool – each transaction is represented on BPMN as a Pool, and
inside of this pool we can only have its related coordination and production acts/facts.
Each transaction must start with a start event and finish with an end event. The start
event must be triggered by another transaction. The end event can occur due to
several reasons, for example, due to a revoke request act realized by a certain actor.

Actors < > Lane – Actors initiate and/or execute transactions, so each transaction
has two lanes, one for the initiator and another for the executor and all events depicted
inside a lane are of the responsibility of the respective actor.

Flows and Conditions < > Tasks – Flows, conditions and their evaluations (in
action rules) are all represented on BPMN as tasks. Tasks have an input and an output
flow. Each actor is responsible for the tasks depicted in their respective lane.

Coordination-Facts/Production-Facts < > Signals – Coordination and
production facts correspond to signals, meaning that they are used as throw and catch
signals. This is a key conversion rule and a very important contribution of our
research. In this manner we can “isolate” the specification of each transaction and
their respective rules in a pool and the occurrence of certain facts will possibly enact
one or more transactions at the same time. This provides a high degree of flexibility,
modularization and paralelism.

 A new Action Rule Syntax for DEmo MOdels 53

5 New DEMO Action Rule Syntax

As already mentioned, to present our proposal of a new DEMO Action Rules Syntax,
we use the case EU-rent from [14]. In Figure 5 we find one of the action rules from this
case. And this one is a perfect example on how Action Rules are “the neglected son” of
DEMO. In real life, many different conditions and facts have to be verified before one
can proceed to accept the drop-off of a car. In this action rule specification, the only
verified fact is if the branch where the car is delivered is the same as the contracted one.
But no action is specified for the case it is not. Also, in this rule we find a common
problem in DEMO's Action Rule Meta-Model: what is the meaning of the construct
with? We find it in many action rules and, apparently, with different functions: creating
new facts, verifying new facts, etc. Indeed, in the most current public version of DEMO,
it is assumed that “the syntax and the formal semantics of the action rules need to be
elaborated yet” [22]. We agree that it is valuable to have models that abstract from
infological and datalogical aspects as well as implementation issues, like DEMO's
Construction Model, Process Model and State Model do. However, DEMO models can
never be fully independent of implementation and resource constraints arising from the
organization's reality. Rather, at most, they are implementation abstracted [23]. We
claim that Action Rules are the perfect spot to make the bridge between the
implementation world and the most implementation abstracted views of an organization
– like that of transactions and actor roles of the Actor Transaction Diagram. We claim
this because, while thinking on the flow and requirements for the action of actor roles,
we inevitably need to think about necessary fact evaluations, information requests, data
storing etc. So why not specify immediately such items while devising DEMO action
rules? In this manner, the ontological model of an organization fully guides the
specification of relevant infological, datalogical actions, as well as implementation
requirements. We present, in Figure 6, the action rule that is the final result of the
evolution of the simple action rule from Figure 5. This rule is already structured
according to the new syntax we propose and is the result of several iterations of the next
steps – that follow design science research method mentioned in Section 2: (1) devising
new meta-model constructs for DEMO's Action Model and (2) evaluating their
applicability and comprehensiveness by instantiating all the action rules of the EU-rent
case. For step 1 we would create instances of UEAOM classes OAK, OAKRK and
OAKEK, thus, specifying the meta-model. For step 2 we would create instances of
UEAOM classes OA, OAR and OAE, that is, creating an Action Model following the
specified meta-model. For space reasons we present only the action rule of Figure 6,
which is already enough to explain and justify our proposal. This rule example shows
many elements necessary for BPMN specification. The BPMN model resulting from
our conversion rules – shown in Figure 7 – depicts the steps of the respective transaction
and different kinds of infological and datalogical actions while still being totally
abstracted from the implementation. The already mentioned design science research
cycle of creation of, both the UEAOM instantiation for the meta-model specification
and the instantiation for the full action rule specification of the EU-rent case, continued,
until an instantiation gathered in a comprehensive way all the necessary information to
have a real-life BPMN process fully specified, excluding implementation details. In our
BPMN example we find all needed information, namely, all relevant ontological,
infological and datalogical steps regarding the process of dropping the car at a branch.

54 C. Figueira and D. Aveiro

Fig. 5. Action Rule example

Figure 8 shows the UEAOM instantiation that consists in the new Action Meta-Model
we propose and the explanation of each of its elements is now due. Due to the UEAOM
following the AOM pattern and also the type square pattern, the explanation that
follows could appear confusing, having too many instantiations. But the reader just
needs to keep in mind that these patterns provide immense power of adaptability to
systems in runtime due to the fact that instances of classes of an AOM may be
themselves types or “classes” and that instances of AOM classes may, in turn, have
instance kind relationships between them.

The first instance of the UEAOM class OAK that we need is, of course, the one
specifying the action rule concept type itself. It has an associated OAKEK instance
for its identification that we call action rule id. In our example, an instance of the
UEAOM class OA would be action rule AR05. Being that the AR05 string or value is
an instance of an OAE, itself instance of the OAKEK action rule id. This rule AR05
is, itself, an instance – at model level – of the just before mentioned OAK instance
action rule – in turn, at meta-model level. To the reader that had no knowledge of the
type square pattern. These several “double instantiations” described in the previous
sentences constitute an example of 4 AOM instances/objects, forming such a type
square, where, on one side we have a type and a property type (part of the type) and
on the other side of the square we have an instance of the type containing a value,
itself instance of the respective property.

Fig. 6. Action Rule example following the new syntax

 A new Action Rule Syntax for DEmo MOdels 55

Fig. 7. BPMN diagram for Transaction T04 - car drop off

Fig. 8. UEAOM based Action Rule Meta-Model specification

56 C. Figueira and D. Aveiro

Next, we needed to specify which actor role has the responsibility of executing this
rule. Thus we needed to specify an instance of class OAKRK, that we call executing
actor, relating the action rule OAK with the actor role OAK. In our example, an
instance of an OAR that would be an instance at model level of the OAKRK
executing actor (in turn, at meta-model level) would be the the OAR relating AR05
with actor role A01, named rental starter. We also needed to specify the fact that
triggers an action rule. For that we specified the OAK AR-Component-When, also
needing an identifier, specified as the OAKEK arcw-id. In our example the instance is
ARCW01. Next, we need to specify to which action rule this AR-Component-When is
related to. Thus the specification of the following OAKRK: when component part of
action rule. An instance of an OAR in our example would be the one relating
ARCW01 to AR05. The OAK AR-Component-Enacting-Transaction serves to specify
facts that trigger an action rule. In our example, an OA instance that is an instance of
this OAK instance is: ARCET01. This complexity is needed as an action rule can be
triggered by one or more c-facts of different transactions. The OAKRK enacting
transaction component part of when component serves to relate the previous OAK
with the when component OAK. In our example, an instance of an OAR instance of
this OAKRK would be the OAR relating ARCET01 with ARCW01. The OAK
Relation Kind “enacting transaction” specifies the relation between the OAK AR-
Component-Enacting-Transaction and the OAK transaction. In our example, an
instance of an OAR instance of this OAKRK would be the OAR relating ARCET01
with transaction T04 named car drop-off. The OAKEK “enacting transaction C-
Fact” serves to specify which fact (out of the possible 21 facts of the universal
transaction pattern) of the related transaction triggers the execution of this action rule.
In our example we have the OAE stated. All the above instances of classes OAK,
OAKRK and OAKEK are needed to precisely specify, at meta-model level, the
structure of the initial part of an action rule. The above mentioned instances of classes
OA, OAR and OAE specify at model level the following part of our example action
rule: “when car drop-off of [rental] is stated.

Similar reasonings were followed for all other OAKs, OAKRKs and OAKEKs that
we specify and are presented in Figure 8. We now only justify their specification. We
need to specify the OAK condition. Conditions are evaluated by what we called
Flows (If, While), explained later. A condition has to be of a certain (OAKEK)
condition type, namely: AND, OR, NOT, or EXPRESSION. In the first three cases the
condition is actually a composite condition where we have a boolean operator
followed by a (OAKRK) sub-condition. In the last case the condition will actually be
an atomic condition in the form of a boolean expression. In our example in Figure 6,
we would have, as instance of class OA, the atomic condition: ARCC01 with
expression the actual drop-off branch of [rental] is [contracted_branch]. In the case
we have composite conditions (in fact a tree of conditions) each non-root condition
needs to specify that they are sub-condition of condition. Imagining we would have a
NOT condition with the previous example being the expression, we would have an
OAR specifying that ARCC02 is a sub-condition of ARCC01, where the condition
type OAE associated with the OA ARSC02 would be: NOT. Having the conditions
specified we need to specify in which context they are evaluated. This happens in two

 A new Action Rule Syntax for DEmo MOdels 57

kinds of flow component. Both the (OAK) if and the (OAK) while components
evaluate a condition specified by the (OAKRK) evaluated condition. We specify to
which action rule they belong thanks to OAKRK flow component of action. In our
example we would have the OAR: ARCIF01 evaluating the condition ARCC01. The
foreach flow has an action for each of its type of element. An if component is
composed by its respective (OAK) then and (OAK) else components. In our example:
the OAK ARCT01 being the then component part of if component ARCIF01 and the
OAK ARCE01 as the else component part of if component ARCIF01. Finally we
needed to specify actions of the action rule itself, thus the OAK AR-Component-
Action. Actions always belong to some component, relation specified by OAKRK
action component part of component. In our example: There is an OAR specifying the
OA ARCA01 as being the action component part of component OA ARCW01 (the
when component of action rule AR05). An action component can be followed by
another action and such precedences are specified by the OAKRK previous action. In
this manner we can “program” actions sequentially. For instance and based on our
example: The OA ARCA05 that has as previous action the OA ARCA04. When an
actor will perform an action, some fact can be created and that relation is specified by
the OAKRK fact creation. Since actions can proceed other actions or may be the first
action for a certain component, we had the need to be able to specify this
differentiation. Thus we specified the OAKEK precedence type where the allowed
values for the OAE are strings FIRST or AFTER. To specify if the action component
in question is an atomic action or a block of actions or a flow we need OAKEK action
type. In our example the OA ARCA04 is the FIRST action of the then component and is
of type BLOCK, that is, it just specifies that we will have a block of actions executed.
The OA ARCA05 is the FIRST ATOMIC action of the action block ARCA04. An atomic
action can be of many types and this is specified by OAKEK atomic action type. As we
can see in Figure 8 there are datalogical, infological and ontological acts as options. In
our example: the OA ARCA05 has its OAE with value WRITE_DATA. OAKEK action
description serves to specify/describe in a formal/informal way the atomic action in
question. In our example we have the OAE penalty charge == false. An action can also
have specific requirements still abstracted from implementation or implementation-
dependent. Thus the OAKEKs generic requirement and implementation requirement. As
an example of a generic requirement we could specify that a certain action of type
PRODUCE_DATA “is mandatory” which means that the actor has to really get or
produce such data from somewhere. An example of an implementation requirement
would be “obtain record from the government driving license system's web service”

We could produce an OFD (the DEMO option for specifying meta-models) for
another alternative view (other than the UEAOM instantiation) of our newly proposed
meta-model for DEMO Action Rules. Due to lack of space and taking in account that
we are kind of specifying what we could call the organization programming language
we choose to present, in Figure 9, our newly proposed syntax using the Backus-Naur
Form (BNF) notation, which summarizes our main contribution of this paper.

58 C. Figueira and D. Aveiro

Fig. 9. New Action Rule Syntax

6 Discussion, Conclusions and Future Work

When one really starts to specify details, still at infological and datalogical levels,
things can get really complex. By looking at the full model of the EU-Rent case [14],
one can see that it's only on the rule that handles the promise of the rental end
transaction, that the payment transaction is requested (possibly with incurring fines).
Imagine that the renter would drop off the car by mistake in a branch different from
the contracted one. After dropping off the car at the garage he or she would get quite a
surprise, at the branch desk, when having to pay the fine. It makes much more sense
that the action rule that handles the state c-fact of the car drop-off transaction
evaluates if the drop-off branch is correct and already informs the renter of the fine he
would have to pay if he wishes to proceed. This gives him or her a chance of not
proceeding and maybe leave this branch and deliver the car on the correct branch. Just
this example shows that, while modeling DEMO transactions, one should already
have in mind implementation issues that will affect transaction design. Depending if
(1) there is a garage attendant and then the rental desk handles the payment or if (2)
there is just the garage attendant himself which takes care of both the car drop-off and
penalty payments; this will have a profound impact on the design of the action rules
and maybe even on transaction design itself. In this later case one could “fuse” the
current car drop-off and rental end transactions. In the more complete action rule we
present on this paper, we see that an apparently simple rule was in fact “forgetting”
lots of complexity in terms of conditions to be verified and the creation of many
original facts (e.g., flags regarding the fines) that are themselves, very relevant actions
to be correctly and comprehensively implemented in a BPMN flow in the correct spot

 A new Action Rule Syntax for DEmo MOdels 59

of the flow, like we depict in Figure 7. We started off with the purpose of
automatically generating runnable BPMN models from DEMO models. With this end
in mind, we had first to solve the problem of lack of semantics in BPMN. Hence, we
selected a few BPMN concepts (out of the many ambiguous ones available) and
assigned to them clear and precise semantics thanks to the the set of 1 to 1 conversion
rules from DEMO to BPMN that we propose. But in the middle of the process we
found yet another problem: the main information source in DEMO to generate BPMN
flows – the Action Rules Specification of the Action Model – was not precise enough
nor had clear semantics itself. We then took the endeavor of, following Design
Science Research tenets, solving that problem by applying the Universal Enterprise
Adaptive Object Model to specify a more complete and comprehensive Meta-Model,
i.e., abstract syntax, for the Action Rules. After several instantiations of our ideas and
evaluation of their applicability by the instantiation of all EU-rent case action rules
with each new version of our Meta-Model, we kept on improving it to the stage as
presented in this paper. Some very relevant contributions of the new syntax are that
we are kind of finding the primitives for what we call organization programming
language, still at an implementation abstracted level, in a way that we can produce
much more comprehensive BPMN models, more close to being ready to be runnable,
compared to other existing approaches. The current version of the syntax has several
aspects to improve still. Namely when we have an atomic action that is a C-ACT, we
must have an additional OAKEK to specify to which transaction this C-ACT
corresponds, so that the Workflow engine can throw the right signal to activate the
right BPMN pool. In fact one of the next lines of future work, besides polishing up
missing details in our new syntax, is the creation of a parser that takes, as an input,
action rules following our proposed syntax and outputs a runnable BPMN workflow
that can be automatically imported to a well-known Open Source Workflow System
where we can easily implement (or connect to) the needed database tables, queries
and web forms for data production/input, following the requirements formally or
informally specified in each atomic action of the action rules.

We also have one small contribution to the formal specification of the Universal
Transaction Pattern. All coordination acts need to have different names. For example,
in the current pattern, revoking a request is different from revoking a promise. So the
allow and refuse acts – which in the current pattern have the same name for the 4
stanard c-acts – should also be differentiated according to if they correspond to
allowing the revoke of a request or of a promise, for example. All the new names of c-
acts we propose can be found on our new syntax and the official transaction pattern
should have the names of these same acts changed accordingly.

References

1. Dalal, S., Chhillar, R.S.: Case Studies of Most Common and Severe Types of Software
System Failure. International Journal of Advanced Research in Computer Science and
Software Engineering 2 (2012)

2. Shull, F., Basili, V., Boehm, B., Brown, A.W., Costa, P., Lindvall, M., Port, D., Rus, I.,
Tesoriero, R., Zelkowitz, M.: What We Have Learned About Fighting Defects. In:
Proceedings of 8th International Software Metrics Symposium, pp. 249–258 (2002)

60 C. Figueira and D. Aveiro

3. Zeller, A., Hildebrandt, R.: Simplifying and Isolating Failure–Inducing Input. IEEE
Transactions on Software Engineering (2002)

4. Dalal, S., Chhillar, R.S.: Role of Fault Reporting in Existing Software Industry. CiiT
International Journal of Software Engineering and Technology (July 2012)

5. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
6. Dumay, M., Dietz, J.L.G., Mulder, H.: Evaluation of DEMO and the Language/Action

Perspective after 10 years of experience. In: Proceedings of LAP 2005 (2005)
7. Aveiro, D., Silva, A.R., Tribolet, J.: Towards a G.O.D. Organization for Organizational

Self-Awareness. In: Albani, A., Dietz, J.L.G. (eds.) CIAO! 2010. LNBIP, vol. 49,
pp. 16–30. Springer, Heidelberg (2010)

8. Aveiro, D., Rito Silva, A.: Extending the Design and Engineering Methodology for
Organizations with the Generation Operationalization and Discontinuation Organization.
In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 226–241.
Springer, Heidelberg (2010)

9. The Open Group: ArchiMate® 2.1 Specification,
http://pubs.opengroup.org/architecture/archimate2-doc/

10. Object Management Group: BPMN 2.0, http://www.omg.org/spec/BPMN/2.0/
11. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process

models in BPMN. Information and Software Technology 50, 1281–1294 (2008)
12. Ettema, R., Dietz, J.L.G.: ArchiMate and DEMO – Mates to Date? In: Albani, A., Barjis,

J., Dietz, J.L.G. (eds.) CIAO! 2009. LNBIP, vol. 34, pp. 172–186. Springer, Heidelberg
(2009)

13. Aveiro, D., Pinto, D.: Universal Enterprise Adaptive Object Model. Presented at the 5th
International Conference on Knowledge Engineering and Ontology Development (KEOD),
Vilamoura, Portugal (September 2013)

14. Jan, L.G.: Dietz: DEMO 3 - Way of Working (2009)
15. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. Management Information Systems Quarterly 28, 75–106 (2004)
16. Hevner, A.: A Three Cycle View of Design Science Research. Scandinavian Journal of

Information Systems 19 (2007)
17. Dietz, J.L.G.: Is it PHI TAO PSI or Bullshit? Presented at the Methodologies for

Enterprise Engineering Symposium, Delft (2009)
18. Dietz, J.L.G.: On the Nature of Business Rules. In: Dietz, J.L.G., Albani, A., Barjis, J.

(eds.) CIAO! 2008 and EOMAS 2008. LNBIP, vol. 10, pp. 1–15. Springer, Heidelberg
(2008)

19. Dietz, J.L.G., Albani, A.: Basic notions regarding business processes and supporting
information systems. Requirements Eng. 10, 175–183 (2005)

20. BPM Tutorial - TechTarget,
http://searchsoa.techtarget.com/tutorial/BPM-Tutorial

21. Yoder, J.W., Balaguer, F., Johnson, R.: Architecture and design of adaptive object-models.
SIGPLAN Not. 36, 50–60 (2001)

22. Dietz, J.L.G.: DEMO-3 Models and Representations (2009), http://www.demo.nl
23. Pombinho, J., Aveiro, D., Tribolet, J.: The Role of Value-Oriented IT Demand

Management on Business/IT Alignment: The Case of ZON Multimedia. In: Harmsen, F.,
Proper, H.A. (eds.) PRET 2013. LNBIP, vol. 151, pp. 46–60. Springer, Heidelberg (2013)

	A New Action Rule Syntax for DEmo MOdels Based Automatic worKflow procEss geneRation (DEMOBAKER)
	1 Introduction
	2 Research Method
	3 Background and Theoretical Foundations
	3.1 DEMO's Operation, Transaction and Distinction Axioms
	3.2 Business Process Management (BPM) and Its Notation – BPMN
	3.3 Universal Enterprise Adaptive Object Model

	4 From DEMO to BPMN Workflow with Precise Semantics
	5 New DEMO Action Rule Syntax
	6 Discussion, Conclusions and Future Work
	References

