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Abstract. In this paper, we discuss three wrapper multi-label feature
selection methods based on the Random Forest paradigm. These vari-
ants differ in the way they consider label dependence within the feature
selection process. To assess their performance, we conduct an extensive
experimental comparison of these strategies against recently proposed
approaches using seven benchmark multi-label data sets from different
domains. Random Forest handles accurately the feature selection in the
multi-label context. Surprisingly, taking into account the dependence be-
tween labels in the context of ensemble multi-label feature selection was
not found very effective.

Keywords: Feature Selection, Multi-label Learning, Ensemble Meth-
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1 Introduction

The problem of single-label classification is concerned with learning from a set of
examples X, where each example is associated with a single label A from a finite
set of disjoint labels L of size L, with L > 1. If L = 2, then the learning task is
called binary classification, while if L > 2, then it is called multi-class classifica-
tion. On the other hand, the task of learning a mapping from an instance x € X
to a set of labels Y € L is referred to as a multi-label classification. Multi-label
classification is a challenging problem that emerges in several modern appli-
cations such as text categorization, gene function classification, and semantic
annotation of images [3,24]. The issue of learning from multi-label data has re-
cently attracted significant attention from many researchers and a considerable
number of approaches have been proposed [5,17,25]. Basically, they can be sum-
marized into two categories: (a) algorithm adaptation methods and (b) problem
transformation methods. Algorithm adaptation methods extend specific learning
algorithms to handle multi-label data directly. Problem transformation methods,
on the other hand, transform the multi-label learning problem into either several
binary classification problems, such as the Binary Relevance (BR) approach, or
one multi-class classification problem, such as the Label Powerset (LP) approach.
The single-label classification problems are then solved with a commonly used
single-label classification approach and the output is transformed back into a
multi-label representation.
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The identification of relevant subsets of random variables among thousands
of potentially irrelevant and redundant variables is a very important topic of
pattern recognition research that has attracted much attention over the last
few years. In traditional single-label learning, feature selection algorithms use
information from labeled data to find the relevant subsets of variables, i.e., those
that conjunctively prove useful to construct an efficient classifier from data. It
enables the classification model to achieve good or even better solutions with a
restricted subset of features [10]. As in the single-label case, multi-label feature
selection had been widely studied and have encountered some success in many
applications [9,16,20].

Although considerable attention has been given on the problem of using Ran-
dom Forest (RF) to estimate the feature importance for traditional supervised
[4], unsupervised [11,12,8] and semi-supervised [1] learning, little attention has
been given to exploiting the power of this ensemble method with a view to iden-
tify and remove the irrelevant features in a multi-label setting. The way internal
estimates are used to measure variable importance in RF paradigm [4] have
been influential in our thinking. In this study, we propose and experimentally
evaluate three wrapper multi-label feature selection methods, which use the RF
paradigm. The main idea is to run three variants of RF for Multi-label learning
(BRRF, RFLP and RFPCT) and then exploit the RF permutation importance
measure [4] to evaluate the goodness of a feature. BRRF, for Binary Relevance
Random Forest and RFLP, for Random Forest Label power-Set, consists of the
two problem transformation approaches BR and LP, to previously transform the
multi-label data into single-label data, which is then used to perform a Random
Forest. However, RFPCT [15] (Random Forest of Predictive Clustering Trees)
is another extension of RF that uses as base classifier PCT [2], a decision tree
predicting multiple target attributes at once. We would like to mention that
feature selection using RFPCT was initially proposed in [13], nonetheless, it was
evaluated on a single biological data set and only compared to a trivial random
feature ranking algorithm in [14]. To the best of our knowledge, this study is
the first attempt to compare several RF-based feature selection methods in the
context of multi-label classification.

Empirical results on seven multi-labeled datasets will be presented to answer
the following questions: (1) Is there any benefit of exploiting label dependence
structure in the context of multi-label feature selection as suggested by several
authors [9,25]7 (2) How can we extend the RF approach to address the multi-
label feature selection problem? (3) Are these RF-based methods competitive
with other state-of-the-art feature selection methods?

The rest of the paper is organized as follow: Section 2 reviews recent studies
on multi-label feature selection and ensemble methods. Section 3 introduces the
three RF-based multi-label feature selection methods and describes how variable
importance used in RF can be extended in multi-label context. Experiments
using conventional benchmark data sets are presented in Section 4. We raise
several issues for future work in Section 5 and conclude with a summary of our
contributions.
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2 Related Work

In this section, we briefly review the multi-label feature selection and multi-label
ensemble learning approaches that appeared recently in the literature.

2.1 Multi-Label Feature Selection

In multi-label classification, most feature selection tasks have been addressed
by extending the techniques available for single-label classification using the
bridge provided by multi-label transformations. These methods propose a pre-
vious transformation of multi-label data to single-label data, i.e., to binary data
or multi-class data using respectively the BR or the LP approach. Thus, when
the BR strategy is used, it is straightforward to employ a filter approach on each
binary classification task, and then combining somehow the results (by an aver-
aging for example). In this context, different feature importance measures have
been used, such as Information Gain [20] and ReliefF' [20]. Since each label is
treated independently, these methods fail to consider the correlation among dif-
ferent labels. On the other hand, methods which perform feature selection using
the same evaluation measures according to the LP approach take into account
the label correlation [7,20]. Furthermore, the PMU approach in [16] is considered
as the first filter approach that takes into account label interactions in evaluating
the dependency of given features without resorting to problem transformation.
The proposed method is presented as a multivariate mutual information-based
feature selection method for multi-label learning that naturally derives from
mutual information between a set of features and a set of labels.

In contrast to these previous filter approaches, Gu el al. propose an embedded-
style feature selection method for multi-label learning called CMLFS [9]. CMLFS
(for Correlated Multi-Label Feature Selection) is based on LaRank SVM, which
is among state-of-the-art multi-label learning methods. In the proposed method,
the goal is to find a subset of features, based on which the label correlation
regularized loss of label ranking is minimized. Although this method considers
correlation among labels, it optimizes a set of parameters during feature selection
process to tune the kernel function of multi-label classifier making it impractical
from the viewpoint of computational cost [16].

2.2 Multi-Label Ensemble Learning

The ensemble methods for multi-label learning are developed on top of the com-
mon problem transformation or algorithm adaptation methods. The most well
known problem transformation ensembles are the RAKEL system by Tsoumakas
et al. [21] and ensembles of classifier chains (ECC) [18]. RAKEL (for RAndom
k-labELsets) is an ensemble of LP classifiers. It proposes breaking the initial set
of labels into a number m of small-sized random subsets, called k-labelsets (k is
the labelset size) and employing LP to train a corresponding classifier. A simple
voting process determines the final classification set. In this manner, RAKEL take
into account correlation between labels, and at the same time, avoid the weakness
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of LP methods, by reducing the the number of labels handled by the LP classi-
fiers. On the other hand, ECC are ensemble methods that are based on classifier
chain CC. The algorithm use p classifier chains Cy, Cs, ..., Cy; where in each C;
a random subset of instances is chosen as training data and the order of learners
is performed using a random sequence of labels. For the multi-label classifica-
tion of an unlabeled instance, the decisions of all CC classifiers are gathered and
combined. A threshold is used to choose the final multi-label set. Both RAKEL
and ECC are ensemble methods based on problem transformation algorithms. In
algorithm adaptation category, RFPCT [15] is a standard Random Forest, which
uses PCT [2] as base learner. PCT is an algorithm adaptation decision tree ca-
pable of predicting multiple target attributes at once.The induction process in
PCT uses the sum of the Gini indices throughout all labels to identify the best
separation at each node. In RFPCT, each tree makes multi-label predictions, and
then predictions are combined using a majority or a probability voting scheme.
The diversity among trees is promoted using two strategies; bootstrap sampling
of training data and random selection of feature subsets.

3 Ensemble Feature Selection for Multi-Label Learning

RF has several desirable characteristics for feature selection: It is robust, exhibits
high-quality predictive performance, does not overfit and handles simultaneously
categorical and continuous features [4]. Furthermore, RF have proved to be ef-
ficient in traditional supervised [4], semi-supervised [1], and unsupervised [8]
feature selection process. This section introduces and experimentally evaluates
three wrapper multi-label feature selection methods, which use the RF paradigm.
In this way, we discuss three variants of RF for Multi-label learning Random
forest of predictive clustering trees (RFPCT), Binary Relevance Random For-
est (BRRF), and Random Forest Label Power-set (RFLP); and then exploit the
RF permutation importance measure [4] to evaluate the goodness of a feature.
Before introducing the proposed methods, we recall how RF with permutation
based out-of-bag (oob) measures feature importance.

The variable importance measure in RF is based on the decrease of predictive
performance when values of a descriptive variable in a node of a tree are per-
muted randomly. Basically, a bootstrap is used as training set to create trees in
the forest. In each bootstrapped data set, almost 33% are left oob, i.e., they are
not used for the construction of the i'* corresponding model h® (i € {1,...,T}).
We refer to them as Oob;. Thus, these patterns can be used to estimate non
biased feature relevancies. In every tree grown in the forest, the values of the ft*
feature in the Oob; data, is randomly permuted to form Oob{ , and the tree h? is
used to predict the labels of the new oob patterns. The predictive performance
of each tree h' is evaluated on the untouched oob data and the permuted ver-
sions of the oob data. The importance of the f** variable is then calculated as
the relative increase of the error that is obtained when its values are randomly
permuted (c.f. Equation 1). The average of this number over all trees in the
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forest is the raw importance score for variable f. We note that the greater the
value of the importance measure, the more relevant is the feature,

L. e(hi(0ob!)) — e(hi(Oob;))
> e(hi(Ooby)) (1)

z=1
where T is the size of the forest and e is the error measure function.

Given a label space £ = (A1, Ag2,...,Ar) and a data set D that consists of
N instances each taking the form (z;,y;) where x; = (2;1,...,2;p) iS a vector
of M descriptive attributes and y; € L is the subset of labels associated to x;
(represented by a binary feature vector (y;1,...,yir) € {0,1}¥), we present, in
the sequel, the three used variants of RF for multi-label learning and describe
how variable importance used in RF can be extended in this context.

Binary Relevance Random Forest (BRRF) - This method transforms the
multi-label dataset D into many single-label datasets, one for each individual
label in A\; € L. After this transformation, a RF is created for each label A;. The
relevance of each feature according to each individual label is measured using the
above Equation 1 for which e is the traditional single-label classification error.
Finally, the average of the score of all features across all labels is considered.
BRRF, focuses on each label individually and does not take into account label
dependence.

Random Forest Label Power-set (RFLP) - In this method the multi-label
feature selection problem is handled using Power-set strategy. This approach
reduces the multi-label dataset D to a multi-class dataset by treating each dis-
tinct label set as an unique multi-class label. To avoid creating too many calsses
with few instances, that may issue an overfitting and an imbalance multi-class
problems the Pruned Problem Trans formation as in [7] was used; patterns with
too rarely occurring labels are simply removed from the training set by consid-
ering label sets with a predefined minimum occurrence 7. A RF could be now
performed and the above described feature selection procedure will be naturally
applied using in Equation 1 the traditional single-label classification error e. In
this way, this approach directly takes into account label correlation.

Random Forest Predictive Clustering Tree (RFPCT) - In contrast to
both previous approaches (BRRF and RFLP) for which the RF grows many clas-
sification trees using a CART as a base classifier, RFPCT [15] is an extension
of RF that use a randomized variant of the non Pruned Predictive Clustering
Tree (PCT) [2], as a base classifier. In this approach, the multi-label data D is
handled directly and is then able to provide an intuitive way for taking into
account relationships between labels. Nevertheless, it is noteworthy that BRRF
and RFPCT perform comparably for classification (see [15] for more details).
The feature selection problem with RFPCT follows the same procedure de-
scribed above. Feature relevance is measured on each PCT tree, and then aver-
aged over all the trees in the forest. However, since PCT is an adaptation method
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devoted to learning simultaneously all the labels, the RF-based feature evalua-
tion procedure requires an appropriate multi-label error measure e in Equation
1 instead of the ordinary classification error used for BRRF and RFLP. As sug-
gested in [13,14], the multi-label error measure e used in each tree is obtained
by averaging the individual classification errors across the L labels.

4 Performances Analysis

In this section, we investigate the effectiveness of the aforementioned RF-based
feature importance measures for multi-label feature selection and compare their
performances against two recent multi-label feature selection methods on seven
benchmark data sets.

4.1 Data Sets and Evaluation Protocol

Seven benchmark multi-label data sets, mostly obtained from the Mulan‘s repos-
itory [22], were used to assess the performance of feature selection algorithms.
We selected these data sets as they have already been used in various empirical
studies and cover different application domains: Biology, semantic scene analy-
sis, music emotions and text categorization. Table 1 shows, for each data set, the
number of examples (N), the number of features (M), where b indicates that the
feature values are binary and n indicates that the feature values are numeric; the
number of labels (L), the Label Cardinality (LC), which is the average number
of single-labels associated with each example; the Label Density (LD), which is
the normalized cardinality; and the number of Distinct Combinations (DC) of
labels.

Table 1. Description of the multi-label data sets used in the experiments

Data Domain N M L LC LD DC
Emotions Music 593 72n 6 1.869 0.311 27
Enron Text 1702 1001 b 53 3.378 0.064 753
Genbase Biology 662 1186 b 27 1.252 0.046 32
Medical Text 978 1449 b 45 1.245 0.028 94
Scene Image 2407 294 n 6 1.074 0.179 15
Slashdot-f Text 3782 1079 b 22 1.180 0.041 156
Yeast Biology 2417 103 n 14 4.237 0.303 198

We compared the three RF-based multi-label feature selection methods to
two recently proposed ones: PPT-MI [7] and PMU [16]. PPT-MI is a multi-label
feature selection method using the Pruned Problem Transformation (PPT) to
improve the LP approach followed by a sequential forward selection with the
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Mutual information (MI) as search criterion. PMU is a filter approach that takes
into account label interactions in evaluating the dependency of given features
without resorting to problem transformation. It is presented as a multivariate
mutual information-based feature selection method for multi-label learning that
naturally derives from mutual information between selected features and a set of
labels. The classification performance of the five feature selection methods was
measured using RAKEL multi-label classification algorithm [21]. We evaluated
the performance of the methods using a 3-fold cross validation. In order to get
reliable statistics over the performance metrics, the experiments were repeated
5 times. So the results obtained are averaged over 15 iterations which allows us
to apply statistical tests in order to discern significant differences between the
compared methods. Note that the LIBSVM (with linear kernel) is employed as
the binary learner for classifier induction to instantiate RAKEL. The number of
models m in RAKEL is set to min(2 x L, 100) for all datasets [17], the size of the
label-sets k to half the number of labels (L/2) [17] and the threshold value to 0.5.
For PMU and PPT-MI, the numeric data sets are discretized using the Equal-
width interval scheme, as suggested by the authors in [16]. Furthermore, the
three variants of RF of multi-label learning (BRRF, RFLP and RFPCT) are tuned
similarly. The number of variables to split on at each node and the committee
size are set to /M, and 100, respectively.

In the multi-label classification problem, performance can be assessed by sev-
eral evaluation measures. Here, we employed the subset accuracy measure (also
called multi-label classification accuracy) defined as follow:

Subset Accuracy(h |T pA ZI (i) = Vi) (2)

where ) is the set of true labels and h(z;) is the set of predicted labels. |Te| is
the cardinality of test data set and I(true) =1 and I(false) =0

This metrics takes values in the interval [0; 1]. The greater the value, the better
the algorithm performance. Note that the subset accuracy implicitly takes into
account the label correlations. It is therefore a very strict evaluation measure as
it requires an exact match of the predicted and the true set of labels.

4.2 Comparison Results

This section presents the results obtained from our empirical study and concludes
on the applicability and performance of RF for multi-label feature selection.
Figure 1 plots the classification performance in terms of subset accuracy averaged
over the 5x3 runs of the above five compared approaches against the 50 most
important features. Due to space limitation, we only show experimental results
for the four largest data sets. As may be observed, BRRF outperforms the other
methods by generally achieving the highest subset accuracy values. On the other
hand, RFLP perform the worst.

For the sake of completeness, we also averaged the subset accuracy aver-
aged over the 15 runs for different numbers of selected features for an extensive
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Fig. 1. Subset accuracy averaged over the 5x3 runs vs. different numbers of selected
features on the four largest data sets

statistical analysis. The averaged metrics of the five feature selection methods over
the top 50 features are depicted in Table 2. In order to better assess the results ob-
tained for each feature selection algorithm on each metric, we adopt in this study
the methodology proposed by [6] for the comparison of several algorithms over
multiple datasets. In this methodology, the non-parametric Friedman test is
firstly used to evaluate the rejection of the hypothesis that all the approaches
perform equally well for a given risk level. It ranks the algorithms for each data
set separately, the best performing algorithm getting the rank of 1, the second
best rank 2 etc. In case of ties it assigns average ranks. Then, the Friedman
test compares the average ranks of the algorithms and calculates the Friedman
statistic. If a statistically significant difference in the performance is detected,
we proceed with a post hoc test. The Nemenyi test is used to compare all the
classifiers to each other. In this procedure, the performance of two classifiers is
significantly different if their average ranks differ more than some critical dis-
tance (CD). The critical distance depends on the number of algorithms, the
number of data sets and the critical value (for a given significance level p) that
is based on the Studentized range statistic (see [6] for further details). In this
study, based on the values in table 2, the Friedman test reveals statistically
significant differences (p < 0.1) for each metric. Furthermore, we present the
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Fig. 2. Average rank diagram comparing the feature selection algorithms in terms of
subset accuracy

result from the Nemenyi posthoc test with average rank diagram as suggested
by Demsar [6]. This is given on Figure 2. The ranks are depicted on the axis,
in such a manner that the best ranking algorithms are at the rightmost side
of the diagram. The algorithms that do not differ significantly (at p = 0.1) are
connected with a line. The critical difference CD is shown above the graph (here
CD=2.0791).

Table 2. Subset accuracy averaged over the 5x3 runs and the 50 most important
features for all algorithms and all data sets. Bottom row of the table presents the
average rank of Subset accuracy mean used in the computation of the Friedman test

Data BRRF RFLP RFPCT PMU PPT-MI
Emotions 0.266+£0.05 0.25340.04 0.260£0.05 0.245+0.04 0.24840.05
Enron  0.046+0.01 0.0244-0.00 0.022+0.01 0.029+0.01 0.01940.01
Genbase 0.808=£0.02 0.650+0.03 0.781£0.02 0.775+0.02 0.744+0.01
Medical 0.431£0.03 0.402+0.02 0.417£0.05 0.329+0.04 0.366+0.02
Scene 0.547+£0.01 0.496+0.02 0.535£0.01 0.614+0.01 0.457+0.01
Slashdot 0.257£0.00 0.12540.05 0.180£0.03 0.1964+0.01 0.249+0.01
Yeast 0.15740.01 0.155£0.01 0.155£0.01 0.139+0.01 0.152+0.01
Av Rank  1.1429 3.5714 2.8571 3.4286 4.0000

From Figure 2, we observe that BRRF performs significantly better than PMU,
RFLP and PPT-MI, which seem to have equivalent performances. Although the
average rank exhibit clear differences, the test doesn’t allow us to conclude
whether RFPCT is equivalent to BRRF or to the worst three methods. The Frei-
dman test we use is known to be overly conservative. So to further exploit these
rank comparisons, we compared, on each data set and for each pair of methods,
the subset accuracy values obtained over the 15 iterations by using the paired
t-test (with @ = 0.1). The results of these pairwise comparisons are depicted in
Table 3 in terms of ”Win-Tie-Loss” statuses of all pairs of methods; the three
values in each cell (4,7) respectively indicate how times many the approach
i is significantly better/not significantly different/significantly worse than the
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approach j. Following [6], if the two algorithms are, as assumed under the null-
hypothesis, equivalent, each should win on approximately n/2 out of n data sets.
The number of wins is distributed according to the binomial distribution and the
critical number of wins at & = 0.1 is equal to 6 in our case. Since tied matches
support the null-hypothesis we should not discount them but split them evenly
between the two classifiers when counting the number of wins; if there is an odd
number of them, we again ignore one.

In Table 3, each pairwise comparison entry (¢, j) for which the approach 7 is
significantly better than j is boldfaced. The analysis of this table reveals that
the approach that is never beaten by any other approach is BRRF.

Overall, these experiments confirm the ability of RF, that showed promising
results for multi-label classification in [17], to rank the relevant features accu-
rately in a multi-label context. More specifically, they suggest a relative superi-
ority of the feature selection method built using the BRRF approach, compared
with the ones that use RFPCT and RFLP. Indeed, it is more effective to use a
RF that treats each label independently (i.e., BRRF) rather than exploiting the
underlying dependencies between labels (i.e., RFPCT and RFLP) for evaluat-
ing feature importance in a multi-label setting. However, it was expected that
methods that take the interaction among labels into consideration (i.e., RFPCT
and RFLP) would show better results than the ones using the BR approach (i.e.,
BRRF). Nevertheless, this observation corroborate the previous finding in [20],
namely that ignoring correlation among labels within the feature selection pro-
cess doesn’t affect the quality of the multi-label classification.

The superiority of BRRF compared to the remaining RF-based approaches
(RFLP and RFPCT) in the feature selection process could be further motivated
by the following reasons:

— The RFLP approach is based on the LP algorithm which suffers from class
size issues, i.e., the large number of label sets appearing in the training set
(class values for the single-label classifier of LP), makes the learning task
quite hard as many of these label sets are usually associated with very few
training examples [21] giving rise to a poor feature importance estimation
in a wrapper way. Although the Pruned Problem Transformation were used
to avoid this problem of creating too many rarely classes in RFLP, the latter
remains inefficient and does not give competitive results.

— With RFPCT, the classification error does not vary significantly when the
values of a specific feature are randomly permuted. Indeed, we noticed that
the label errors often compensate each other. This is why the classification
error vary moderately after shuffling a variable. This issue worsen as the
number of labels is increased. To confirm this observation from an exper-
imental point of view, we analyzed the average gap between classification
error before and after the variable shuffling in Equation 1. We observed er-
ror variations of the magnitude of 10~7 on the data sets with a large number
of labels (e.g. Enron, Medical).
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Table 3. Pairwise t-test comparisons of FS methods in terms of Subset accuracy. Bold
cells (4, j) highlights that the approach 4 is significantly better than j according to the
sign test at v = 0.1.

BRRF RFLP RFPCT PMU PPT-MI
BRRF - 7/0/0 5/2/0 6/0/1 7/0/0
RFLP  0/0/7 —  0/4/3 2/1/4 4/1)2
RFPCT 0/2/5 3/4/0  —  2/2/3 5/1/1
PMU  1/0/6 4/1/2 3/2/2 —  3/1/3
PPT-MI 0/0/7 2/1/4 1/1/5 3/1/3  —

5 Conclusion

This work proposed and experimentally evaluated three wrapper multi-label
feature selection methods, which use the RF paradigm: BRRF, RFLP and RF-
PCT. These extensions differ in the way they consider label dependence within
the feature selection process. The performance of the methods were compared
against recently proposed approaches using seven benchmark multi-label data
sets emerging from different domains. The result of this evaluation is three-fold:
1) Random Forest handles accurately the feature selection in a multi-label con-
text and; 2) Surprisingly, BRRF appears more suitable for multi-label feature
selection, as taking into account relationships between labels was not shown
remarkably effective for multi-label feature selection using the RF paradigm.
Future work will be conducted to assess the stability of the feature selection
methods [19] when noise is added to the data. We will also investigate the effec-
tiveness of using label-specific feature selection [23] in the multi-label learning
process. This is currently being undertaken and will be reported in due course.
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