

M. Sokolova and P. van Beek (Eds.): Canadian AI 2014, LNAI 8436, pp. 239–250, 2014.
© Springer International Publishing Switzerland 2014

Ensemble of Multiple Kernel SVM Classifiers

Xiaoguang Wang1, Xuan Liu1, Nathalie Japkowicz1, and Stan Matwin2,3

1School of Electrical Engineering and Computer Science, University of Ottawa, Canada
{Bwang009,Nat}@eecs.uottawa.ca,

Xliu107@.uottawa.ca
2Faculty of Computer Science, Dalhousie University, Canada

3Institute for Computer Science, Polish Academy of Sciences, Poland
Stan@cs.dal.ca

Abstract. Multiple kernel learning (MKL) allows the practitioner to optimize
over linear combinations of kernels and shows good performance in many ap-
plications. However, many MKL algorithms require very high computational
costs in real world applications. In this study, we present a framework which
uses multiple kernel SVM classifiers as the base learners for stacked generaliza-
tion, a general method of using a high-level model to combine lower-level
models, to achieve greater computational efficiency. The experimental results
show that our MKL-based stacked generalization algorithm combines advan-
tages from both MKL and stacked generalization. Compared to other general
ensemble methods tested in this paper, this method achieves greater perfor-
mance on predictive accuracy.

Keywords: multiple kernel learning, stacked generalization, ensemble learning.

1 Introduction

Ensembles of models are sets of models whose outputs are combined into a single
output or prediction. Stacked generalization [1] is a heterogeneous ensemble method
for combining multiple classifiers (base models) by learning a meta-level classifier
based on the output of the base-level classifiers, estimated via cross-validation. When
we choose the base learners for ensemble methods such as stacked generalization,
Kernel based methods [5] [6] such as Support Vector Machines (SVMs) [4] could be
one of the choices. Joachims et al. [24] show that combining two kernels is beneficial
if both of them use different data instances as support vectors and achieve approx-
imately the same performance. Recent developments on SVMs and other kernel me-
thods have shown the need to consider multiple kernels. This provides flexibility and
reflects the fact that typical learning problems often involve multiple, heterogeneous
data sources.

The reasoning is similar to combining different classifiers: instead of choosing a
single kernel function, it is better to have a set and let an algorithm do the picking or
combination step. MKL can be useful in two aspects:

240 X. Wang et al.

• Since a kernel plays the role of defining the similarity between instances, different
kernels correspond to different notions of similarity, and using a specific kernel
may be a source of bias. To avoid this we can import a learning method to pick the
best kernel or use a combination of a kernel set. In allowing a learner to choose
from a set of kernels, a better solution can be found.

• Different kernels may use inputs from different representations. Since different
kernels may have different measures of similarity, combining kernels can be done
to combine multiple information sources.

There are many outstanding advantages of MKL. However, most MKL algorithms
have some limitations in application. For instance, most MKL methods do not consid-
er the group structure between the combined kernels. In multiple kernels learning
(MKL), increasing the number of candidate kernels leads to better accuracy, but also
increases the training time significantly [3]. Our idea is: if we separate the kernel set
into subsets, each subset of kernels can lead to a different combination of kernels.
Using an ensemble method such as majority voting or stacked generalization, the
outputs of each MKL model can be combined into a single prediction. In this case,
fewer kernels are required to be handled by each base MKL learner of this ensemble
model than the number of kernels need to be handled by using a single MKL model.
Since stacked generalization is an ideal method for parallel computation, using MKL
as the base learner, this stacking MKL method can combine more kernels and process
more instances in a fixed time than using a single MKL model. MKL performs better
than the single kernel method but has a high cost. By enforcing sparse coefficients,
MKL also generalizes feature selection to kernel selection. Stacked generalization is
an efficient algorithm to combine heterogeneous classifiers and it can also benefit
from diversity of data distribution. Our target is to combine advantages from both
methods. The idea of combining two ensemble methods is frequently used. For in-
stance, Wolpert et al. [15] present several ways that stacking can be used in agree-
ment with the bootstrap procedure to achieve a further improvement on the perfor-
mance of bagging for some regression problems. Kai et al. [16] also present ways of
combining bagging and stacking for classification.

Contributions:

• In this paper, we combine the multiple kernel learning algorithms with stacked
generalization (denoted as SMKL). Experimental results show that this algorithm
can benefit from both methodologies.

• Results also show that even without using parallel computation, SMKL can process
more instances with the same number of kernels or combine more kernels with the
same number of instances than MKL. This makes SMKL adaptable to real world
applications.

• We analyze this algorithm and compare it to other ensemble methods. A statistical
explanation of how this method works is also given.

Section 2 is about the background and related work. In section 3, we present the
algorithm SMKL and present some discussion and related work about it. After these

 Ensemble of Multiple Kernel SVM Classifiers 241

developments, we present an experimental section (section 4) that illustrates the effi-
ciency of our algorithm and some concluding remarks. In section 5, we give a detailed
analysis about ensemble methods using SVMs as a base learner. Section 6 is the con-
clusion followed by references.

2 Related Theory and Work

Stacked generalization [1] is a way of combining multiple models that have been
learned for a classification task. This method has also been used for regression and
unsupervised learning [14] [15].

In the most common form of stacked generalization, the first step is to collect the
output of each model into a new set of data. For each instance in the original training
set, this data set includes all models’ predictions of that instance for every class along
with its true classification. In the second step, this new data is treated as the data for
another learning problem. A learning algorithm is employed to solve this problem.

The key idea of MKL is to learn a linear combination of a given set of base kernels
by maximizing the margin between the two classes or by maximizing kernel align-
ment. We can think of kernel combination as a weighted average of kernels and con-
sider the weight and ∑ 1, where P denotes the number of weights.
Suppose one is given n symmetric kernel matrices , 1, … , , and m class
class labels 1, 1 , 1, , . A linear combination of the n kernels under an ℓ norm constraint is considered:

 ∑ , , 1 (1)

where , … , , and is the n dimensional vector of zeros.
Geometrically, different scaling of the feature spaces leads to different embeddings of
the data in the composite feature space. The goal of MKL is to learn the optimal scal-
ing of the feature spaces and maximize the so-called “separability” of the two classes
in the composite feature space.

In kernel methods, the choice of a kernel function is critical, since it completely de-
termines the embedding of the data in the feature space. Ideally, this embedding should
be learnt from the training data. In practice, a simplified version of this very challeng-
ing problem is often considered: given multiple kernels capturing different “views” of
the problem, an “optimal” combination of them must be learned.

Lanckriet et al. [9] have proposed to use the soft margin of SVM as a measure of
separability, that is, to learn the weight by maximising the soft margin between the
two classes. Bach et al. [10] have reformulated the problem and then proposed a SMO
algorithm for medium-scale problems. Cortes et al. [22] discuss the suitability of the
2-norm for MKL. In their paper they conclude that using the 1-norm improves the
performance for a small number of kernels, but not for a large number of kernels.
Meanwhile, the 2-norm increases the performance significantly for larger sets of can-
didate kernels and never decreases it.

The performance improvement of MKL comes at a price. Learning the entire set of
models and then combining their predictions is computationally more expensive than
learning just one simple model. The computational complexity of MKL is very high
for two major reasons: 1). Similar to normal kernel based methods, MKL needs to
compute kernel functions for each sample-pair over the training set; 2). MKL needs to

242 X. Wang et al.

optimize the classifier parameters and kernel weights in an alternative manner, thus
learning global optimal parameters would incur intensive computation. More specifi-
cally, MKL that use optimization approaches to learn combination parameters have
high computational complexity, since they are generally modeled as a semi definite
programming (SDP) problem, a quadratically constrained quadratic programming
(QCQP) problem, or a second-order cone programming (SOCP) problem. MKL can
also be modeled as a semi-infinite linear programming (SILP) problem [10], which
uses a generic linear programming (LP) solver and a canonical SVM solver in the
inner loop. This method is more efficient than previous methods [10], but the compu-
tational complexity is still very high.

In recent years, there has been an effort made to reduce the computational com-
plexity of SVM algorithm [25] [26]. For MKL, Chen et al. [27] have proposed a me-
thod by dividing the global problem with multiple kernels into multiple local prob-
lems, each of which is optimized in a local processor with a single kernel. In this pa-
per, we present an alternative method by combining stacked generalization with
MKL. The following section will give the details of this framework.

3 Stacked Generalization on Multiple Kernel SVMs

Here we gave the detailed steps of the stacked generalization base on MKLs method
as below:

• Step1: Given a data set , , 1, … , , where y is the class value and
and is a vector representing the attribute values of the nth instance, randomly
split the data into almost equal parts , … , . Define and = to be the
the test and training sets for the jth fold of a -fold cross-validation.

Fig. 1. This figure illustrates the j-fold cross-validation process in level-0; the level-1data set S at the end is used to produce level-1 model M

M
~

)(
1

jM −

1c mc lc qc...

)(j
kM −

vc Hc...

)(j
KM −

)(S j−

1Z kZ KZ

Level_1

Level_0

cvS

 Ensemble of Multiple Kernel SVM Classifiers 243

• Step 2: Instead of choosing K learning algorithms , , … , directly as the
level-0 generalizers, here we choose H number of kernels , , … , . Di-
vide this set into K groups. Call the Multi-kernel algorithm as introduced in section
II.b with each group of kernels to build the base learning algorithms , , … , . Invoke the kth algorithm on the data in the training set to in-
duce a model , for k=1,...,K. These are called level-0 models. For each in-
stance in , the test set for the jth cross-validation fold, let denote the

prediction of the model on . At the end of the entire cross-validation
process, the data set assembled from the outputs of the K models is: , , … , , 1, … , . These are the level-1 data.

• Step3: Use the same Multi-kernel algorithm as in step 2 with all the kernels of , , … , to be the learning algorithm as the level-1 generalizer. A
model can be derived for y as a function of (, … ,). This is the level-1
model. To complete the training process, the final level-0 models , k=1,...,K, are
are derived using all the data in S.Now let us consider the classification process,
which uses the models , k=1,...,K, in conjunction with . Let denotes the
prediction output vector of function . Given a new instance, models produce
a vector , … , . This vector is input to the level-1 model , whose output is
the final classification result for that instance.

This algorithm is presented in Fig.2 and Fig.1 gives its workflow.
In this SMKL algorithm, we choose as the level-0 generalizers instead of

of using common classifiers and we use as the level-1 generalizer. In the
next sections we will discuss the relationship between the attributes used in the Meta
learning set and the Meta learning algorithm used for learning the Meta model.

Input: Learning set ; Number of folds for meta-data gen-
eration J; Meta learning algorithms ; Base learning al-
gorithms , , … , ; Kernel set , , … , ; And Multi-
kernel Function .
Output: Ensemble

 , , … , ,

 , , … , ,
for k 1 to K do

end for

for j 1 to J do
 for k 1 to K do

 end for

244 X. Wang et al.

, , … ,

end for

 , , … , , … , , , … ,
return

Fig. 2. Algorithm of SMKL

4 Experimental Result

In this section, we validate the usefulness of the proposed stacked generation on MKL
(SMKL) with experimental evidence on datasets.

Table 1. Datasets details

Datasets
Table Column Head

dim n_pts n_negative n_positive
Abalone(6,12) 8 526 259 267
Abalone(9,10) 8 1323 689 634
Balance-scale(1,3) 4 576 288 288
CMC(1,3) 9 1140 629 511
Glass(1,2) 9 146 70 76
Heart-statlog 13 270 150 120
Ionosphere 34 351 126 225
Liver-disorders 6 345 145 200
Monk3 6 122 62 60
Sonar 60 208 97 111
Tae(1,2) 5 99 49 50
Vehicle(1,2) 18 429 212 217

Table 2. Kernels details

1)Gaussian(2.1,1) 2)Polynomial(1) 3)Sigmoid(0.1)
4)Exponential(10,10) 5)Spherical(10) 6)Gaussian(20,1)
7)Circular(1) 8)Gaussian(100,10) 9)InverseMultiQuadric(1)
10)Gaussian(10,10) 11)T-Student(1) 12)Gaussian(1,1)
13)Linear 14)Spline 15)Chi-square(1)
16)RationalQuadratic(10) 17)Polynomial(10) 18)HistogramIntersection
19)ANOVA(1) 20)Distance(1) 21)Spherical(1)
22)Wavelet(1,1) 23)Sigmoid(0.01) 24)Polynomial(0.1)
25)Polynomial(2) 26)Gaussian(10,1) 27)Cauchy(1)
28)RationalQuadratic(1) 29)T-Student(0.1) 30)InverseMultiQuadric(10)

We use twelve real-world datasets from the UCI Repository of machine learning da-

tabases [7]. Details of these datasets are given in Table 1 while “dim” denotes feature
number and “n_pts” denotes instance number. The numbers in the parentheses beside

 Ensemble of Multiple Kernel SVM Classifiers 245

the name of the datasets are the classes’ numbers which are chosen from the original
datasets which is multi-class. For example, Abalone (6, 12) denotes the class No. 6 and
No. 12 which are chosen from the original Abalone dataset.

For the MKL method, Sonnenburg et al.’s algorithm [11] is used in our experiment
so the multi-kernel method is modeled as a semi-infinite linear programming (SILP)
problem for large scale MKL problem. To get robust performance on all kinds of data-
sets, 2-norm MKL algorithm [22] is used in our experiment. All experiments use 10
folds cross validation.

For stacked generalization and SMKL, we choose j=10 for the level_0 j-fold inner
cross-validation process. 30 different kernels are chosen for MKL, SMKL and ensem-
ble methods using single kernel SVMs. Table 2 gives the details of these kernels. The
format of these kernels is kernel_name (gamma, cost). For all kernels the epsilon is 1e-
5, and the coef0 is 0. For SMKL and Voting+MKL, we randomly divide the kernel set
into a different number of groups and repeat this procession ten times for every cross
validation to get the experimental result.

4.1 Comparing SMKL with Other Ensemble Methods

In this experiment, we first compare SMKL with all its base learners. Among the re-
sults, kernel number 18 (HistogramIntersection kernel) in the kernel list (TABLE II.) is
the best of all base kernels using Nemenyi’s post-hoc test [23] method. Then we com-
pare SMKL with other ensemble methods. Table 3 gives the result. SVM(best) denotes
using svm with the best kernel in our kernel list. Boosting_best denotes Adaboost [13]
using SVM [3] with the kernel number 18 in our kernel list. Bagging_best denotes
Bagging [12] using SVM [5] with kernel number 18 in our kernel list; Voting (30 ker-
nels) denotes Majority voting on the 30 single kernel SVMs; SSVM (30 kernels) de-
notes stacked generalization on the 30 single kernel SVMs; MKL (30 kernels) denotes
MKL using 30 kernels. Voting+MKL denotes dividing the kernel sets into different
groups randomly and then using MKL (30 kernels) on each group to generate the base
models; finally majority voting is used to combine the generated base models.

As Nemenyi’s post-hoc test [23] is a non-parametric statistical test for multiple
classifiers and multiple domains, we performed this test on the results in Table 3. We
rank the accuracies for each domain with different classifiers using the following
formula to calculate the q value between different classifiers [23].

 , (2)

Where k is the number of classifiers and n is the number of datasets. The sums of the
ranks of all tested classifiers are shown in Table 4. Therefore, we conclude that the
difference between SMKL and other classifiers are significant and SMKL has better
performance than all the other classifiers.

4.2 Experiments about Computational Complexity

In this experiment, we compare the running time of SMKL with MKL. m denotes
the number of kernels and n denotes the number of instances. We report running time

246 X. Wang et al.

Table 3. Experiment result of comparing SMKL with other methods

Table 4. The rank of accuracies of all the datasets and classifiers (lower rank sum score is
better)

results (Athlon ™ II X2 240 2.81G processor, 2.75G RAM) in Table 5. SMKL_p de-
notes SMKL using parallel computing on level_0.

Table 5 shows that even without using parallel computation on level_0, SMKL can
process more instances with the same number of kernels or combine more kernels
with the same number of instances than MKL. If we apply parallel computation on
level_0, SMKL can get more efficiency on learning.

Table 5. Running times in seconds for SMKL and MKL. (Left) Ionosphere data with fixed
number of data points n and varying number of kernels m; (Right) Ionosphere data with fixed
number of kernels m and varying number of data points n.

Ionosphere, n=351 Ionosphere, m=12
m SMKL SMKL_p MKL n SMKL SMKL_p MKL
6 62 50 33 351 170 142 147.5
12 170 142 147 702 432 291 459
24 562 423 738 1404 1497 988 1779
48 1135 997 3393 2808 9927 6519 19488
96 3568 2781 * 5616 36253 27436 *
192 * * * 11232 * * *

Abalone(6,12) 92.21± 0.5 49.23± 0.0 91.64± 1.1 92.02± 0.7 92.21± 0.9 92.21± 0.4 92.21± 0.2 92.97± 0.9
Abalone(9,10) 60.31± 0.3 52.08± 0.0 60.39± 0.8 59.03± 1.1 61.00± 2.0 60.85± 0.7 61.53± 1.2 60.84± 0.8
Balance-scale 99.83± 0.1 54.86± 5.1 99.48± 0.2 98.26± 0.3 99.65± 0.1 96.88± 0.2 98.44± 0.4 99.83± 0.1
CMC 68.25± 0.3 55.18± 0.0 67.72± 1.7 67.28± 1.0 67.54± 0.4 64.30± 2.1 66.14± 0.7 66.75± 1.4
Glass 82.25± 1.2 47.94± 0.0 82.19± 3.7 80.82± 0.6 80.82± 1.5 78.08± 3.4 81.51± 2.0 82.19± 1.2
Heart-statlog 76.30± 4.9 55.56± 0.0 79.63± 1.8 55.56± 0.0 84.44± 1.1 83.33± 0.3 69.63± 3.2 83.33± 0.5
Ionosphere 92.59± 1.3 76.64± 6.9 92.88± 0.9 94.87± 0.7 94.30± 0.6 94.30± 1.4 94.87± 0.5 96.01± 0.7
Liver-disorders 69.86± 1.2 42.03± 0.0 67.83± 4.8 59.71± 3.0 72.17± 1.0 73.62± 0.9 70.43± 2.3 71.30± 0.4
Monk3 93.44± 0.6 50.82± 0.0 93.44± 0.4 89.34± 0.6 89.34± 0.5 90.98± 0.2 90.16± 0.7 91.80± 0.3
Sonar 87.02± 1.4 87.02± 1.1 87.02± 0.5 83.17± 0.9 87.50± 0.1 87.02± 0.2 86.06± 0.9 87.50± 0.3
Tae 72.73± 0.4 49.49± 0.0 74.75± 1.8 74.75± 2.7 71.72± 3.2 74.75± 2.2 76.77± 1.8 77.78± 0.3
Vehicle 61.07± 1.1 61.07± 0.5 64.59± 0.2 50.58± 5.7 64.57± 0.4 63.00± 1.0 49.65± 1.9 65.73± 0.4

1 2 3 4 5 6 7 8

Abalone(6,12) 4 10 9 8 6 6 6 2.5
Abalone(9,10) 9 10 5 7 2 3 1 4
Balance-scale 8 10 3 5 2 6 4 1
CMC 2.5 10 1 4 2.5 7 6 5
Glass 6 10 2.5 6 6 8 4 2.5
Heart-statlog 5 9.5 7 9.5 1 2.5 8 2.5
Ionosphere 8.5 10 6 2.5 4.5 4.5 2.5 1
Liver-disorders 5 10 6.5 9 2 1 4 3
Monk3 1.5 10 1.5 8 8 5 6 4
Sonar 9 4 4 7 1.5 4 6 1.5
Tae 9 10 4 4 6.5 4 2 1
Vehicle 6 5 2 9 3 4 10 1
Rank sums 71 107.5 48 75.5 40 51.5 58 27.5

 Ensemble of Multiple Kernel SVM Classifiers 247

5 Discussions

5.1 Ensemble Methods Using SVMs as Base Learners

Although Evgeniou et al. [20] experimentally found that with accurate parameter
tuning, single SVMs and ensembles of SVMs perform similarly, using ensemble me-
thods or multiple kernel methods is always a more stable and robust methodology
than using a single model. The statistical reason is that when we learn a model on the
learning data, the resulting model can have more or less good predictive performance
on these learning data. However, even if this performance is good, this does not guar-
antee good performance on the unseen data. Therefore, when learning single models,
although there are evaluation techniques that minimize this risk, we can easily end up
with a bad model. By taking into account several models and averaging their predic-
tions, we can reduce the risk of selecting a very bad model.

In several real-world problems, SVM ensembles are reported to give improvements
over single SVMs [17] [18], but a few works also showed negative experimental re-
sults about ensembles of SVMs [19].

The same situation occurs in our experiments. As shown in the experiment in sec-
tion 4.1, stacking multiple SVMs, MKL and SMKL all show better predictive perfor-
mance than all single SVMs while Voting+SVMs does not improve. Using the rela-
tive best single SVMs which is the kernel number 18 (in 30 kernels), bagging im-
proves the predictive performance a little but boosting totally fails on this model.

We can give fundamental explanations to the above mentioned differences using
the bias-variance analysis framework: the error of a learning algorithm can be divided
into a part due to the functional form used by the algorithm (bias) and a part that is
due to the instability of the algorithms (variance). Bagging, stacking and random fo-
rests reduce the variance part.

Boosting mainly reduces the bias part, but also reduces the variance portion. It can
be viewed as an incremental forward stagewise regression procedure with regulariza-
tion (Lasso penalty), which maximizes the margin between the two classes, much like
the approach of support vector machines [21]. In boosting, when we increase the
weights of examples that have not been correctly predicted by previous base models
(or decrease the weights of the correctly predicted examples) and learn a new base
model, the weight we increase may easily be above what the base learner needs be-
cause SVM is not a weak learner. Due to this, the complementary base models we try
to generate by learning subsequent models may make the process hardly converge. In
this situation, using SVM as the base learner for boosting may lead to worse perfor-
mance, such as the result shown in our experiment. (Table 3 and Table 4)

Because of its simplicity, Voting allows for some theoretical analysis of its effi-
ciency. However, since it requires neither cross-validation nor level-learning, unless
level-0 generalizers perform comparably to one another, Voting cannot be comparable
to other ensemble methods as shown in our experiments (Table 3 and Table 4)

Bagging reduces only the variance under the bootstrap assumption. On the other
hand, SVMs can be strong, low-biased learners, but this property depends on the
proper selection of the kernel and its parameters. If we can identify low-biased base

248 X. Wang et al.

learners with a relatively high unbiased variance, bagging SVM can lower the error
[17]. As shown in Table 3 and Table 4, kernel number 18 is selected as the best single
SVM from the given kernel set, which means that we identify it as a low-biased base
learner using cross-validation. Bagging SVM (kernel number 18) does improve the
prediction performance as shown in Table 3 and Table 4.

5.2 The Reason Why SMKL Works

Although the idea of multiple kernel methods is similar to combining different clas-
sifiers, to be strict, MKL is not the same as traditional ensemble methods since it
combines kernels instead of combining classifiers.

Giorgio et al. [17] analyze the bias-variance decomposition of error in SVMs. The
analysis shows that the minimum of the overall error, bias, net-variance, unbiased and
biased variance occurs often in different SVM models. These different behaviors of
different SVM models could be in principle exploited to produce diversity in multiple
kernel learning. As we have already mentioned, different kernels correspond to differ-
ent notions of similarity of instances and may be using inputs coming from different
representations. Thus by combining kernels, it is possible to combine multiple informa-
tion sources and decrease the bias created by specific kernels. Moreover, by enforcing
sparse coefficients, MKL also generalizes feature selection to kernel selection. These
are the reasons why MKL is always more robust and has better predictive performance
than single kernel classifier. By using MKL models as base learners for heterogeneous
ensemble methods such as stacked generalization or voting, we can get the benefit of
combining kernels. In addition, the diversity of different MKL models still exists.
Since stacked generalization chooses level-1 generalizer to get the benefit of this diver-
sity, using stacked generalization is a better choice than voting as the experiment result
shows in Table 3 and Table 4 (compare Voting +MKL with SMKL).

The principle of how SMKL works is similar to Random forests [13], one of the
most successful ensemble approaches. Random forests combine two sources of diver-
sity of the base models: Variations in the learning data set (achieved through different
bootstrap samples, as in bagging) and a randomized base-level learning algorithm.
SMKL also combines multiple sources of diversity of the base models.

5.3 About the Computational Complexity

SMKL is ideal for parallel computation. The construction of each level-0 model
proceeds independently; no communication with the other modeling processes is ne-
cessary. This feature makes SMKL applicable in the real world. Suppose the average
computation time required for a MKL learning algorithm is t, SMKL requires g models
and each model employs J-fold cross-validation. Assuming that time t is needed to
derive each of the h level-0 models and the level-1 model, the learning time for SMKL
is 1 1 . From Table 5 we find that the increase of running time of
MKL is much higher than that of SMKL when we increase the number of kernels or
instances. Since the experiment in Table 5 is set on one computer, SMKL does not
benefit greatly from parallel computation. Higher efficiency can be expected if we
implement SMKL on parallel computation with more processors.

 Ensemble of Multiple Kernel SVM Classifiers 249

6 Conclusions and Future Work

In this paper, we have introduced an approach which uses multiple kernel methods as
base learners for stacked generalization process. The experimental results show that
this method obtains the advantages from both the multiple kernel learning method and
the stacked generalization method. Moreover, we have analyzed and compared many
widely used ensemble methods which use kernel methods such as SVMs as base
learners. Our future work includes implementation of this method for parallel compu-
tation with a large dataset and adopting more kernel functions, and testing the effect
of kernel subsets arrangement in our method. Moreover, we will use further bias-
variance decomposition analysis on this method.

References

1. Wolpert, D.H.: Stacked Generalization. Neural Networks 5, 241–259 (1992)
2. Kai, M.T., Ian Witten, H.: Issues in Stacked Generalization. Journal of Artificial Intelli-

gence Research 10, 271–289 (1999)
3. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and

the SMO algorithm. In: Proceedings of the 21st International Conference on Machine
Learning (2004)

4. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1999)
5. Scholkopf, B., Smola, A., Muller, K.: Kernel principal component analysis. Advances in

Kernel Methods: Support Vector Learning, 327–352 (1999)
6. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
7. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California,

School of Information and Computer Science, Irvine, CA (2010),
http://archive.ics.uci.edu/ml

8. Gehler, P.V., Nowozin, S.: Infinite kernel learning. Technical report, Max Planck Institute
for Biological Cybernetics (2008)

9. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72
(2004)

10. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the smo
algorithm. In: Proceedings of the 21st International Conference on Machine Learning,
pp. 41–48 (2004)

11. Sonnenburg, S., Raetsch, G., Schaefer, C., Scholkopf, B.: Large scale multiple kernel
learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

12. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
13. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
14. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)
15. Wolpert, D.H., Macready, W.G.: Combining stacking with bagging to improve a learning

algorithm. Technical Report SFI-TR-96-03-123, Santa Fe Institute, Santa Fe, New Mexico
(1996)

16. Kai, M.T., Witten, H.I.: Stacking Bagged and Dagged Models. In: ICML, pp. 367–375
(1997)

250 X. Wang et al.

17. Valentini, G., Dietterich, T.G.: Bias-Variance Analysis of Support Vector Machines for
the Development of SVM-Based Ensemble Methods. Journal of Machine Learning
Research 5, 725–775 (2004)

18. Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Pattern Classification Using Support
Vector Machine Ensemble. In: Proceedings of the International Conference on Pattern
Recognition, vol. 2, pp. 20160–20163. IEEE (2002)

19. Valentini, G., Dietterich, T.G.: Low Bias Bagged Support Vector Machines. In: Fawcett,
T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference, Machine
Learning, pp. 752–759. AAAI Press, Washington (2003)

20. Evgeniou, T., Perez-Breva, L., Pontil, M., Poggio, T.: Bounds on the Generalization
Performance of Kernel Machine Ensembles. In: Langley, P. (ed.) Proc. of the Seventeenth
International Conference on Machine Learning, pp. 271–278. Morgan Kaufmann (2000)

21. Friedman, J.H., Hastie, T., Tibshirani, R.J.: Additive logistic regression: a statistical view
of boosting. Technical report, Stanford University, Department of Statistics (1998)

22. Cortes, C., Mohri, M., Rostamizadeh, A.: L2 regularization for learning kernels. In:
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (2009)

23. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective.
Cambridge University Press (2011)

24. Joachims, T., Cristianini, N., Shawe-Taylor, J.: Composite kernels for hypertext categori-
sation. In: Proceedings of the 18th International Conference on Machine Learning (2001)

25. Alham, N.K., Li, M., Liu, Y.: A distributed SVM ensemble for image: Classification and
annotation. In: Proceedings of the 9th International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 1581–1584. IEEE, Piscataway (2012)

26. Chang, E.Y., Zhu, K., Wang, H.: PSVM: Parallelizing support vector machines on distri-
buted computers. Adv. Neural Inf. Process Syst. 20, 1–8 (2007)

27. Chen, Z.Y., Fan, Z.P.: Parallel multiple kernel learning: A hybrid alternating direction
method of multipliers. Knowledge and Information Systems (2013)

	Ensemble of Multiple Kernel SVM Classifiers
	1 Introduction
	2 Related Theory and Work
	3 Stacked Generalization on Multiple Kernel SVMs
	4 Experimental Result
	4.1 Comparing SMKL with Other Ensemble Methods
	4.2 Experiments about Computational Complexity

	5 Discussions
	5.1 Ensemble Methods Using SVMs as Base Learners
	5.2 The Reason Why SMKL Works
	5.3 About the Computational Complexity

	6 Conclusions and Future Work
	References

