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Abstract. Multiple kernel learning (MKL) allows the practitioner to optimize 
over linear combinations of kernels and shows good performance in many ap-
plications. However, many MKL algorithms require very high computational 
costs in real world applications. In this study, we present a framework which 
uses multiple kernel SVM classifiers as the base learners for stacked generaliza-
tion, a general method of using a high-level model to combine lower-level 
models, to achieve greater computational efficiency. The experimental results 
show that our MKL-based stacked generalization algorithm combines advan-
tages from both MKL and stacked generalization. Compared to other general 
ensemble methods tested in this paper, this method achieves greater perfor-
mance on predictive accuracy. 
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1 Introduction 

Ensembles of models are sets of models whose outputs are combined into a single 
output or prediction. Stacked generalization [1] is a heterogeneous ensemble method 
for combining multiple classifiers (base models) by learning a meta-level classifier 
based on the output of the base-level classifiers, estimated via cross-validation. When 
we choose the base learners for ensemble methods such as stacked generalization, 
Kernel based methods [5] [6] such as Support Vector Machines (SVMs) [4] could be 
one of the choices. Joachims et al. [24] show that combining two kernels is beneficial 
if both of them use different data instances as support vectors and achieve approx-
imately the same performance. Recent developments on SVMs and other kernel me-
thods have shown the need to consider multiple kernels. This provides flexibility and 
reflects the fact that typical learning problems often involve multiple, heterogeneous 
data sources.  

The reasoning is similar to combining different classifiers: instead of choosing a 
single kernel function, it is better to have a set and let an algorithm do the picking or 
combination step. MKL can be useful in two aspects: 
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• Since a kernel plays the role of defining the similarity between instances, different 
kernels correspond to different notions of similarity, and using a specific kernel 
may be a source of bias. To avoid this we can import a learning method to pick the 
best kernel or use a combination of a kernel set. In allowing a learner to choose 
from a set of kernels, a better solution can be found.  

• Different kernels may use inputs from different representations. Since different 
kernels may have different measures of similarity, combining kernels can be done 
to combine multiple information sources. 

There are many outstanding advantages of MKL. However, most MKL algorithms 
have some limitations in application. For instance, most MKL methods do not consid-
er the group structure between the combined kernels. In multiple kernels learning 
(MKL), increasing the number of candidate kernels leads to better accuracy, but also 
increases the training time significantly [3]. Our idea is: if we separate the kernel set 
into subsets, each subset of kernels can lead to a different combination of kernels. 
Using an ensemble method such as majority voting or stacked generalization, the 
outputs of each MKL model can be combined into a single prediction. In this case, 
fewer kernels are required to be handled by each base MKL learner of this ensemble 
model than the number of kernels need to be handled by using a single MKL model. 
Since stacked generalization is an ideal method for parallel computation, using MKL 
as the base learner, this stacking MKL method can combine more kernels and process 
more instances in a fixed time than using a single MKL model. MKL performs better 
than the single kernel method but has a high cost. By enforcing sparse coefficients, 
MKL also generalizes feature selection to kernel selection. Stacked generalization is 
an efficient algorithm to combine heterogeneous classifiers and it can also benefit 
from diversity of data distribution. Our target is to combine advantages from both 
methods. The idea of combining two ensemble methods is frequently used. For in-
stance, Wolpert et al. [15] present several ways that stacking can be used in agree-
ment with the bootstrap procedure to achieve a further improvement on the perfor-
mance of bagging for some regression problems. Kai et al. [16] also present ways of 
combining bagging and stacking for classification. 

 
Contributions: 

• In this paper, we combine the multiple kernel learning algorithms with stacked 
generalization (denoted as SMKL). Experimental results show that this algorithm 
can benefit from both methodologies. 

• Results also show that even without using parallel computation, SMKL can process 
more instances with the same number of kernels or combine more kernels with the 
same number of instances than MKL. This makes SMKL adaptable to real world 
applications.  

• We analyze this algorithm and compare it to other ensemble methods. A statistical 
explanation of how this method works is also given. 

Section 2 is about the background and related work. In section 3, we present the 
algorithm SMKL and present some discussion and related work about it. After these 
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developments, we present an experimental section (section 4) that illustrates the effi-
ciency of our algorithm and some concluding remarks. In section 5, we give a detailed 
analysis about ensemble methods using SVMs as a base learner. Section 6 is the con-
clusion followed by references. 

2 Related Theory and Work 

Stacked generalization [1] is a way of combining multiple models that have been 
learned for a classification task. This method has also been used for regression and 
unsupervised learning [14] [15].  

In the most common form of stacked generalization, the first step is to collect the 
output of each model into a new set of data. For each instance in the original training 
set, this data set includes all models’ predictions of that instance for every class along 
with its true classification. In the second step, this new data is treated as the data for 
another learning problem. A learning algorithm is employed to solve this problem. 

The key idea of MKL is to learn a linear combination of a given set of base kernels 
by maximizing the margin between the two classes or by maximizing kernel align-
ment. We can think of kernel combination as a weighted average of kernels and con-
sider the weight ߚ א Թା௉  and ∑ ௠௉௠ୀଵߚ ൌ 1, where P denotes the number of weights. 
Suppose one is given n ݉ ൈ ݉ symmetric kernel matrices ܭ௝, ݆ ൌ 1, … , ݊, and m class 
class labels ݕ௜ א ሼ1, െ1ሽ, ݅ ൌ  1,൉൉൉ , ݉. A linear combination of the n kernels under an ℓଵ norm constraint is considered: 

ܭ  ൌ ∑ ௝௡௝ୀଵܭ௝ߚ , ߚ ൒ ,׎ ԡߚԡଵ ൌ 1     (1) 

where ߚ ൌ ሺߚଵ, … , ௡ሻ்ߚ א Թ௡, and ׎ is the n dimensional  vector of zeros. 
Geometrically, different scaling of the feature spaces leads to different embeddings of 
the data in the composite feature space. The goal of MKL is to learn the optimal scal-
ing of the feature spaces and maximize the so-called “separability” of the two classes 
in the composite feature space. 

In kernel methods, the choice of a kernel function is critical, since it completely de-
termines the embedding of the data in the feature space. Ideally, this embedding should 
be learnt from the training data. In practice, a simplified version of this very challeng-
ing problem is often considered: given multiple kernels capturing different “views” of 
the problem, an “optimal” combination of them must be learned.  

Lanckriet et al. [9] have proposed to use the soft margin of SVM as a measure of 
separability, that is, to learn the weight ߚ by maximising the soft margin between the 
two classes. Bach et al. [10] have reformulated the problem and then proposed a SMO 
algorithm for medium-scale problems. Cortes et al. [22] discuss the suitability of the  
2-norm for MKL. In their paper they conclude that using the 1-norm improves the 
performance for a small number of kernels, but not for a large number of kernels. 
Meanwhile, the 2-norm increases the performance significantly for larger sets of can-
didate kernels and never decreases it.  

The performance improvement of MKL comes at a price. Learning the entire set of 
models and then combining their predictions is computationally more expensive than 
learning just one simple model. The computational complexity of MKL is very high 
for two major reasons: 1). Similar to normal kernel based methods, MKL needs to 
compute kernel functions for each sample-pair over the training set; 2). MKL needs to 
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optimize the classifier parameters and kernel weights in an alternative manner, thus 
learning global optimal parameters would incur intensive computation. More specifi-
cally, MKL that use optimization approaches to learn combination parameters have 
high computational complexity, since they are generally modeled as a semi definite 
programming (SDP) problem, a quadratically constrained quadratic programming 
(QCQP) problem, or a second-order cone programming (SOCP) problem. MKL can 
also be modeled as a semi-infinite linear programming (SILP) problem [10], which 
uses a generic linear programming (LP) solver and a canonical SVM solver in the 
inner loop. This method is more efficient than previous methods [10], but the compu-
tational complexity is still very high.  

In recent years, there has been an effort made to reduce the computational com-
plexity of SVM algorithm [25] [26]. For MKL, Chen et al. [27] have proposed a me-
thod by dividing the global problem with multiple kernels into multiple local prob-
lems, each of which is optimized in a local processor with a single kernel. In this pa-
per, we present an alternative method by combining stacked generalization with 
MKL. The following section will give the details of this framework. 

3 Stacked Generalization on Multiple Kernel SVMs 

Here we gave the detailed steps of the stacked generalization base on MKLs method 
as below: 

• Step1: Given a data set ܵ ൌ ሼሺݕ௡, ,௡ሻݔ ݊ ൌ 1, … , ܰሽ, where y୬ is the class value and 
and ݔ௡ is a vector representing the attribute values of the nth instance, randomly 
split the data into ܬ almost equal parts ଵܵ, … , ௃ܵ . Define ୨ܵ and ܵି௝= ܵ െ ௝ܵ  to be the 
the test and training sets for the jth fold of a ܬ-fold cross-validation.  
 

 

Fig. 1. This figure illustrates the j-fold cross-validation process in level-0; the level-1data set Sୡ୴ at the end is used to produce level-1 model M෩  
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• Step 2: Instead of choosing K learning algorithmsሼܼଵ, ܼଶ, … , ܼ௄ሽ directly as the 
level-0 generalizers, here we choose H number of kernels ܥ ൌ ሼܿଵ, ܿଶ, … , ܿுሽ. Di-
vide this set into K groups. Call the Multi-kernel algorithm as introduced in section 
II.b with each group of kernels to build the base learning algorithms ሼܼଵ, ܼଶ, … , ܼ௄ሽ. Invoke the kth algorithm on the data in the training set ܵି௝ to in-
duce a model ߊ௞ି ௝, for k=1,...,K. These are called level-0 models. For each in-
stance ݔ௡ in ௝ܵ, the test set for the jth cross-validation fold, let ܼ௞௡ denote the 

prediction of the model ߊ௞ି ௝ on ݔ௡ . At the end of the entire cross-validation 
process, the data set assembled from the outputs of the K models is: ܵ ஼௏ ൌሼሺݕ௡, ܼଵ௡, … , ܼ௄௡ሻ, ݊ ൌ 1, … , ܰሽ. These are the level-1 data.  

• Step3: Use the same Multi-kernel algorithm as in step 2 with all the kernels of ܥ ൌ ሼܿଵ, ܿଶ, … , ܿுሽ to be the learning algorithm ܸ௠as the level-1 generalizer. A 
model ܯ෩ can be derived for y as a function of (ܼଵ, … , ܼ௄). This is the level-1 
model. To complete the training process, the final level-0 models ܯ௞, k=1,...,K, are 
are derived using all the data in S.Now let us consider the classification process, 
which uses the models ܯ௞, k=1,...,K, in conjunction with ܯ෩. Let ݖ௞ denotes the 
prediction output vector of function ܼ௞. Given a new instance, models ܯ௞ produce 
a vector ሺݖଵ, … ,  ෩, whose output isܯ ௄ሻ. This vector is input to the level-1 modelݖ
the final classification result for that instance. 

This algorithm is presented in Fig.2 and Fig.1 gives its workflow. 
In this SMKL algorithm, we choose ܮܭܯሺܥ௞ሻ as the level-0 generalizers instead of 

of using common classifiers and we use ܮܭܯሺܥሻ as the level-1 generalizer. In the 
next sections we will discuss the relationship between the attributes used in the Meta 
learning set and the Meta learning algorithm used for learning the Meta model. 

 

Input: Learning set ܵ; Number of folds for meta-data gen-
eration J; Meta learning algorithms ܸ௠; Base learning al-
gorithms ሼܼଵ, ܼଶ, … , ܼ௄ሽ; Kernel set ܥ ൌ ሼܿଵ, ܿଶ, … , ܿுሽ; And Multi-
kernel Function ܮܭܯሺሻ. 
Output: Ensemble ܧ ܧ ൌ ൛ ׎ ଵܵ, ܵଶ, … , ௃ܵൟ ൌ ,ሺܵܽݐܽܦݐ݈݅݌ܵ ௠ܮ ሻܬ ൌ ,ଵܥሼ ׎ ,ଶܥ … , ௄ሽܥ ൌ ,ܥሺݐ݁ܵݐ݈݅݌ܵ  ሻܭ
for kൌ 1 to K do 
 ܼ௞ ൌ  ௞ሻܥሺܮܭܯ
end for ܸ௠ ൌ  ሻܥሺܮܭܯ
for jൌ 1 to J do 
 for kൌ 1 to K do 
௞௝ܯ  ൌ ܼ௞ሺܵ െ ௝ܵሻ 
 end for 
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௝௠ܮ ൌ ራ ൛൫ܯଵ௝ሺݔ௜ሻ, ,௜ሻݔଶ௝ሺܯ … ௄௝ܯ ሺݔ௜ሻ, ௌೕא௜൯ൟ௫೔ݕ  

end for ܮ௠ ൌ ራ ௝௠௃௝ୀଵܮ ௠ܯ  ൌ ܸ௠ሺܮ௠ሻ ሼܯଵ, ,ଶܯ … ௄ሽܯ ൌ ሼܼଵሺܵሻ, ܼଶሺܵሻ, … , ܼ௄ሺܵሻሽ ܧ ൌ ሺሼܯଵ, ,ଶܯ … ,௄ሽܯ  ௠ሻܯ
return ܧ 

 

Fig. 2. Algorithm of SMKL 

4 Experimental Result 

In this section, we validate the usefulness of the proposed stacked generation on MKL 
(SMKL) with experimental evidence on datasets.  

Table 1. Datasets details 

Datasets 
Table Column Head 

dim n_pts n_negative n_positive 
Abalone(6,12) 8 526 259 267 
Abalone(9,10) 8 1323 689 634 
Balance-scale(1,3) 4 576 288 288 
CMC(1,3) 9 1140 629 511 
Glass(1,2) 9 146 70 76 
Heart-statlog 13 270 150 120 
Ionosphere 34 351 126 225 
Liver-disorders 6 345 145 200 
Monk3 6 122 62 60 
Sonar 60 208 97 111 
Tae(1,2) 5 99 49 50 
Vehicle(1,2) 18 429 212 217 

Table 2. Kernels details 

1)Gaussian(2.1,1) 2)Polynomial(1) 3)Sigmoid(0.1) 
4)Exponential(10,10) 5)Spherical(10) 6)Gaussian(20,1) 
7)Circular(1) 8)Gaussian(100,10) 9)InverseMultiQuadric(1) 
10)Gaussian(10,10) 11)T-Student(1) 12)Gaussian(1,1) 
13)Linear 14)Spline 15)Chi-square(1) 
16)RationalQuadratic(10) 17)Polynomial(10) 18)HistogramIntersection  
19)ANOVA(1) 20)Distance(1) 21)Spherical(1) 
22)Wavelet(1,1) 23)Sigmoid(0.01) 24)Polynomial(0.1) 
25)Polynomial(2) 26)Gaussian(10,1) 27)Cauchy(1) 
28)RationalQuadratic(1) 29)T-Student(0.1) 30)InverseMultiQuadric(10) 

 
We use twelve real-world datasets from the UCI Repository of machine learning da-

tabases [7]. Details of these datasets are given in Table 1 while “dim” denotes feature 
number and “n_pts” denotes instance number. The numbers in the parentheses beside 
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the name of the datasets are the classes’ numbers which are chosen from the original 
datasets which is multi-class. For example, Abalone (6, 12) denotes the class No. 6 and 
No. 12 which are chosen from the original Abalone dataset.  

For the MKL method, Sonnenburg et al.’s algorithm [11] is used in our experiment 
so the multi-kernel method is modeled as a semi-infinite linear programming (SILP) 
problem for large scale MKL problem. To get robust performance on all kinds of data-
sets, 2-norm MKL algorithm [22] is used in our experiment. All experiments use 10 
folds cross validation.  

For stacked generalization and SMKL, we choose j=10 for the level_0 j-fold inner 
cross-validation process. 30 different kernels are chosen for MKL, SMKL and ensem-
ble methods using single kernel SVMs. Table 2 gives the details of these kernels. The 
format of these kernels is kernel_name (gamma, cost). For all kernels the epsilon is 1e-
5, and the coef0 is 0. For SMKL and Voting+MKL, we randomly divide the kernel set 
into a different number of groups and repeat this procession ten times for every cross 
validation to get the experimental result.  

4.1 Comparing SMKL with Other Ensemble Methods 

In this experiment, we first compare SMKL with all its base learners. Among the re-
sults, kernel number 18 (HistogramIntersection kernel) in the kernel list (TABLE II.) is 
the best of all base kernels using Nemenyi’s post-hoc test [23] method. Then we com-
pare SMKL with other ensemble methods. Table 3 gives the result. SVM(best) denotes 
using svm with the best kernel in our kernel list. Boosting_best denotes Adaboost [13] 
using SVM [3] with the kernel number 18 in our kernel list. Bagging_best denotes 
Bagging [12] using SVM [5] with kernel number 18 in our kernel list; Voting (30 ker-
nels) denotes Majority voting on the 30 single kernel SVMs; SSVM (30 kernels) de-
notes stacked generalization on the 30 single kernel SVMs; MKL (30 kernels) denotes 
MKL using 30 kernels. Voting+MKL denotes dividing the kernel sets into different 
groups randomly and then using MKL (30 kernels) on each group to generate the base 
models; finally majority voting is used to combine the generated base models.  

As Nemenyi’s post-hoc test [23] is a non-parametric statistical test for multiple 
classifiers and multiple domains, we performed this test on the results in Table 3. We 
rank the accuracies for each domain with different classifiers using the following 
formula to calculate the q value between different classifiers [23]. 

௜,௝ݍ  ൌ ோഢതതതିோണതതതതටೖሺೖశభሻల೙      (2) 

Where k is the number of classifiers and n is the number of datasets. The sums of the 
ranks of all tested classifiers are shown in Table 4. Therefore, we conclude that the 
difference between SMKL and other classifiers are significant and SMKL has better 
performance than all the other classifiers.  

4.2 Experiments about Computational Complexity 

In this experiment, we compare the running time of SMKL with MKL. m denotes  
the number of kernels and n denotes the number of instances. We report running time  
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Table 3. Experiment result of comparing SMKL with other methods 

 

Table 4. The rank of accuracies of all the datasets and classifiers (lower rank sum score is 
better) 

 

 
results (Athlon ™ II X2 240 2.81G processor, 2.75G RAM) in Table 5. SMKL_p de-
notes SMKL using parallel computing on level_0. 

Table 5 shows that even without using parallel computation on level_0, SMKL can 
process more instances with the same number of kernels or combine more kernels 
with the same number of instances than MKL. If we apply parallel computation on 
level_0, SMKL can get more efficiency on learning.  

Table 5. Running times in seconds for SMKL and MKL. (Left) Ionosphere data with fixed 
number of data points n and varying number of kernels m; (Right) Ionosphere data with fixed 
number of kernels m and varying number of data points n. 

Ionosphere, n=351 Ionosphere, m=12 
m SMKL SMKL_p MKL n SMKL SMKL_p MKL 
6 62 50 33 351 170 142 147.5 
12 170 142 147 702 432 291 459 
24 562 423 738 1404 1497 988 1779 
48 1135 997 3393 2808 9927 6519 19488 
96 3568 2781 * 5616 36253 27436 * 
192 * * * 11232 * * * 

Abalone(6,12) 92.21± 0.5 49.23± 0.0 91.64± 1.1 92.02± 0.7 92.21± 0.9 92.21± 0.4 92.21± 0.2 92.97± 0.9
Abalone(9,10) 60.31± 0.3 52.08± 0.0 60.39± 0.8 59.03± 1.1 61.00± 2.0 60.85± 0.7 61.53± 1.2 60.84± 0.8
Balance-scale 99.83± 0.1 54.86± 5.1 99.48± 0.2 98.26± 0.3 99.65± 0.1 96.88± 0.2 98.44± 0.4 99.83± 0.1
CMC 68.25± 0.3 55.18± 0.0 67.72± 1.7 67.28± 1.0 67.54± 0.4 64.30± 2.1 66.14± 0.7 66.75± 1.4
Glass 82.25± 1.2 47.94± 0.0 82.19± 3.7 80.82± 0.6 80.82± 1.5 78.08± 3.4 81.51± 2.0 82.19± 1.2
Heart-statlog 76.30± 4.9 55.56± 0.0 79.63± 1.8 55.56± 0.0 84.44± 1.1 83.33± 0.3 69.63± 3.2 83.33± 0.5
Ionosphere 92.59± 1.3 76.64± 6.9 92.88± 0.9 94.87± 0.7 94.30± 0.6 94.30± 1.4 94.87± 0.5 96.01± 0.7
Liver-disorders 69.86± 1.2 42.03± 0.0 67.83± 4.8 59.71± 3.0 72.17± 1.0 73.62± 0.9 70.43± 2.3 71.30± 0.4
Monk3 93.44± 0.6 50.82± 0.0 93.44± 0.4 89.34± 0.6 89.34± 0.5 90.98± 0.2 90.16± 0.7 91.80± 0.3
Sonar 87.02± 1.4 87.02± 1.1 87.02± 0.5 83.17± 0.9 87.50± 0.1 87.02± 0.2 86.06± 0.9 87.50± 0.3
Tae 72.73± 0.4 49.49± 0.0 74.75± 1.8 74.75± 2.7 71.72± 3.2 74.75± 2.2 76.77± 1.8 77.78± 0.3
Vehicle 61.07± 1.1 61.07± 0.5 64.59± 0.2 50.58± 5.7 64.57± 0.4 63.00± 1.0 49.65± 1.9 65.73± 0.4

1 2 3 4 5 6 7 8

Abalone(6,12) 4 10 9 8 6 6 6 2.5
Abalone(9,10) 9 10 5 7 2 3 1 4
Balance-scale 8 10 3 5 2 6 4 1
CMC 2.5 10 1 4 2.5 7 6 5
Glass 6 10 2.5 6 6 8 4 2.5
Heart-statlog 5 9.5 7 9.5 1 2.5 8 2.5
Ionosphere 8.5 10 6 2.5 4.5 4.5 2.5 1
Liver-disorders 5 10 6.5 9 2 1 4 3
Monk3 1.5 10 1.5 8 8 5 6 4
Sonar 9 4 4 7 1.5 4 6 1.5
Tae 9 10 4 4 6.5 4 2 1
Vehicle 6 5 2 9 3 4 10 1
Rank sums 71 107.5 48 75.5 40 51.5 58 27.5
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5 Discussions 

5.1 Ensemble Methods Using SVMs as Base Learners 

Although Evgeniou et al. [20] experimentally found that with accurate parameter 
tuning, single SVMs and ensembles of SVMs perform similarly, using ensemble me-
thods or multiple kernel methods is always a more stable and robust methodology 
than using a single model. The statistical reason is that when we learn a model on the 
learning data, the resulting model can have more or less good predictive performance 
on these learning data. However, even if this performance is good, this does not guar-
antee good performance on the unseen data. Therefore, when learning single models, 
although there are evaluation techniques that minimize this risk, we can easily end up 
with a bad model. By taking into account several models and averaging their predic-
tions, we can reduce the risk of selecting a very bad model. 

In several real-world problems, SVM ensembles are reported to give improvements 
over single SVMs [17] [18], but a few works also showed negative experimental re-
sults about ensembles of SVMs [19].  

The same situation occurs in our experiments. As shown in the experiment in sec-
tion 4.1, stacking multiple SVMs, MKL and SMKL all show better predictive perfor-
mance than all single SVMs while Voting+SVMs does not improve. Using the rela-
tive best single SVMs which is the kernel number 18 (in 30 kernels), bagging im-
proves the predictive performance a little but boosting totally fails on this model. 

We can give fundamental explanations to the above mentioned differences using 
the bias-variance analysis framework: the error of a learning algorithm can be divided 
into a part due to the functional form used by the algorithm (bias) and a part that is 
due to the instability of the algorithms (variance). Bagging, stacking and random fo-
rests reduce the variance part.  

Boosting mainly reduces the bias part, but also reduces the variance portion. It can 
be viewed as an incremental forward stagewise regression procedure with regulariza-
tion (Lasso penalty), which maximizes the margin between the two classes, much like 
the approach of support vector machines [21]. In boosting, when we increase the 
weights of examples that have not been correctly predicted by previous base models 
(or decrease the weights of the correctly predicted examples) and learn a new base 
model, the weight we increase may easily be above what the base learner needs be-
cause SVM is not a weak learner. Due to this, the complementary base models we try 
to generate by learning subsequent models may make the process hardly converge. In 
this situation, using SVM as the base learner for boosting may lead to worse perfor-
mance, such as the result shown in our experiment. (Table 3 and Table 4) 

Because of its simplicity, Voting allows for some theoretical analysis of its effi-
ciency. However, since it requires neither cross-validation nor level-learning, unless 
level-0 generalizers perform comparably to one another, Voting cannot be comparable 
to other ensemble methods as shown in our experiments (Table 3 and Table 4) 

Bagging reduces only the variance under the bootstrap assumption. On the other 
hand, SVMs can be strong, low-biased learners, but this property depends on the 
proper selection of the kernel and its parameters. If we can identify low-biased base 
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learners with a relatively high unbiased variance, bagging SVM can lower the error 
[17]. As shown in Table 3 and Table 4, kernel number 18 is selected as the best single 
SVM from the given kernel set, which means that we identify it as a low-biased base 
learner using cross-validation. Bagging SVM (kernel number 18) does improve the 
prediction performance as shown in Table 3 and Table 4.  

5.2 The Reason Why SMKL Works 

Although the idea of multiple kernel methods is similar to combining different clas-
sifiers, to be strict, MKL is not the same as traditional ensemble methods since it 
combines kernels instead of combining classifiers.  

Giorgio et al. [17] analyze the bias-variance decomposition of error in SVMs. The 
analysis shows that the minimum of the overall error, bias, net-variance, unbiased and 
biased variance occurs often in different SVM models. These different behaviors of 
different SVM models could be in principle exploited to produce diversity in multiple 
kernel learning. As we have already mentioned, different kernels correspond to differ-
ent notions of similarity of instances and may be using inputs coming from different 
representations. Thus by combining kernels, it is possible to combine multiple informa-
tion sources and decrease the bias created by specific kernels. Moreover, by enforcing 
sparse coefficients, MKL also generalizes feature selection to kernel selection. These 
are the reasons why MKL is always more robust and has better predictive performance 
than single kernel classifier. By using MKL models as base learners for heterogeneous 
ensemble methods such as stacked generalization or voting, we can get the benefit of 
combining kernels. In addition, the diversity of different MKL models still exists. 
Since stacked generalization chooses level-1 generalizer to get the benefit of this diver-
sity, using stacked generalization is a better choice than voting as the experiment result 
shows in Table 3 and Table 4 (compare Voting +MKL with SMKL). 

The principle of how SMKL works is similar to Random forests [13], one of the 
most successful ensemble approaches. Random forests combine two sources of diver-
sity of the base models: Variations in the learning data set (achieved through different 
bootstrap samples, as in bagging) and a randomized base-level learning algorithm. 
SMKL also combines multiple sources of diversity of the base models.  

5.3 About the Computational Complexity 

SMKL is ideal for parallel computation. The construction of each level-0 model 
proceeds independently; no communication with the other modeling processes is ne-
cessary. This feature makes SMKL applicable in the real world. Suppose the average 
computation time required for a MKL learning algorithm is t, SMKL requires g models 
and each model employs J-fold cross-validation. Assuming that time t is needed to 
derive each of the h level-0 models and the level-1 model, the learning time for SMKL 
is ܶ ൌ ሺ݄ሺܬ ൅ 1ሻ ൅ 1ሻݐ. From Table 5 we find that the increase of running time of 
MKL is much higher than that of SMKL when we increase the number of kernels or 
instances. Since the experiment in Table 5 is set on one computer, SMKL does not 
benefit greatly from parallel computation. Higher efficiency can be expected if we 
implement SMKL on parallel computation with more processors. 
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6 Conclusions and Future Work 

In this paper, we have introduced an approach which uses multiple kernel methods as 
base learners for stacked generalization process. The experimental results show that 
this method obtains the advantages from both the multiple kernel learning method and 
the stacked generalization method. Moreover, we have analyzed and compared many 
widely used ensemble methods which use kernel methods such as SVMs as base 
learners. Our future work includes implementation of this method for parallel compu-
tation with a large dataset and adopting more kernel functions, and testing the effect 
of kernel subsets arrangement in our method. Moreover, we will use further bias-
variance decomposition analysis on this method. 
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