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L-Systems: A Case Study in Producing Islamic
Patterns
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Abstract. The science of pattern formation deals with the visible, (statistically)
orderly outcomes of self-organization and the common principles behind similar
patterns in nature. Cell pattern formation has an important role in both artificial and
natural development. Different methods have been utilized for pattern formation
such as geometrical, Cellular Automata (CAs), and L-Systems. In this chapter, we
concentrate our aim on introducing the role of CAs and L-Systems in pattern for-
mation and how to extract optimum rules in terms of numbers and functionality for
this aim. Because a few works have been reported in the field of script generation,
we take generating Ma’qeli script and Holy words patterns, as a case study, in hand.
Results of this study show the superiority of the proposed method in comparison
with geometrical and fractal approaches in case of the time complexity in word pro-
duction, simplicity of extracted rules, and possible reusability of the CAs rules in
generating other script patterns in other languages. Moreover, the proposed method
is shape-resistance, which can be less seen in fractals and geometrical based pattern
formation.
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12.1 Introduction

According to Wolfram [9], there are no studies that cannot be modeled by cellu-
lar automata. Nowadays, the footstep of cellular automata, either synchronous or
asynchronous, can be found in different aspects of science [20] from modeling a
biological system [22] to produce a virtual social network [23]. Artificial models of
cellular development have been proposed over the years with the objective of un-
derstanding how complex structures and patterns can emerge from one or a small
group of initial undifferentiated cells [6]. This mathematical tool has the capability
of easing many proposed solutions and modeling them more intelligently.

On the other hand, an L-system (Lindenmayer system) is a parallel rewriting sys-
tem and a type of formal grammar. An L-system consists of an alphabet of symbols
that can be used to make strings, a collection of production rules that expand each
symbol into some larger string of symbols, an initial ‘axiom’ string from which to
begin construction, and a mechanism for translating the generated strings into ge-
ometric structures. Lindenmayer [12] used L-systems to describe the behavior of
plant cells and to model the growth processes of plant development. L-systems have
also been used to model the morphology of a variety of organisms [20] and can be
used to generate self-similar fractals such as iterated function systems.

In [11], ‘Game of Life’ with complex behaviors was characterized by simple syn-
chronous cellular automata’s rules. The main contribution towards this work was to
design a simple set of rules to study the macroscopic behavior of a population.
The Firing Squad [10], Firing Mob [16], and Queen Bee [7] are other games in
which synchronization problems are investigated adequately. Piwonska and Sere-
dynski [19] studied the impact of utilizing genetic algorithm on extracting optimum
rules for 2D cellular automata. They utilized optimum extracted rules with von Neu-
mann neighborhood in order to reconstruct several patterns. Chavoya et al. [5] con-
sider the problem of growing a solid French flag pattern in a 3D virtual space. They
proposed an artificial development model for 3D cell pattern generation based on
CAs. Cell replication is controlled by a genome consisting of an artificial regula-
tory network and a series of structural genes. The genome was evolved by a genetic
algorithm in order to generate 3D cell patterns through the selective activation and
inhibition of genes. Morphogenetic gradients were used to provide cells with posi-
tional information that constrained cellular replication in space.

Bentley et al. [4] describe a novel computer simulation that uses evolution to ex-
hibit some of the functions of cell walls raphid pennate diatom valves. The model
of valve morphogenesis used was based on theories that highlight the importance of
cytoskeletal elements in valve development. An ‘organic’ negative imprint is grown
in a grid-based system, using both local and global rules to dictate grid cell states.
Silica then diffuses out into all remaining grid cells. At each stage of development
the generated valves were consistent with observations on real diatom valve growth.
Simulated models are extremely useful for investigating, visualizing, and develop-
ing theories of morphogenesis. It is the intention of this work to inspire further
model-based experiments and to try to bridge the gap between the disparate fields
of computer science and biology for the exploration of morphogenesis. This model
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of diatom valve morphogenesis is interestingly similar to the negative technique
used by artists in batik painting.

In [13], scholars use cellular automata for modeling shell pigmentation of mol-
luscs. They found self-organization into stationary (Turing) structures, travelling
waves, chaos, and so-called class IV behavior during their research. Class IV be-
havior consists of a disordered spatio-temporal distribution of periodic and chaotic
patches, which differs from chaos in that it has no well-defined error propagation
rate. The calculations of the modes agree well with observations in natural shells.
Their results suggest evidence in nature for class IV behavior, a mode that had
so far been reported only as the result of simulations. Oya et al. [18] use single-
electron circuits to perform dendritic pattern formation with nature-inspired cellular
automata. They propose a novel semiconductor device in which electronic-analogue
dendritic trees grow on multilayer single-electron circuits. A simple cellular automa-
ton circuit was designed for generating dendritic patterns by utilizing the physical
properties of single-electron devices.

Another application of pattern formation, which is a highly demanded topic
among computer graphics researchers, is producing cultural-related motifs which
are still yet to mature due to their production complexities. Cellular automata show
their brilliant capability in this application too; as a result, much research has been
devoted to apply this mathematical tool for generating complex patterns [12]. Arata
et al. [3] made an effort on applying cellular automata with Margolus neighborhood
to model an interactive free-form scheme within a 3D Voxel space for designing vir-
tual clay objects. They assumed each Voxel is allocated a finite state automaton that
repeats state transitions according to the conditions of its neighbor Voxels. Type-
face and language’s script are other attractive patterns, which entices researchers to
bring their utility and attractiveness into focus. Xu et al. used a computational ap-
proach to digital chinese calligraphy and painting [24]. Ahuja et al. [2] utilized a
number of geometric shapes to tessellate the ‘Ali’ pattern. In [15] a prototype for
performing geometrical transformations was introduced with the aim of decoration
designs by the Kufic square scripts. Ma’qeli script is a sort of ancient Persian script
with amazing features (refer to Fig.12.1); however, a small number of its patterns
were produced by Minoofam and Bastanfard [14] utilizing synchronous cellular au-
tomata.

This chapter will review the basic foundation of CAs and L-Systems in pattern
formation especially those which are related to the cultural heritage. Then, it will
be concentrated on generating all forms of the Ma’qeli script with CAs and three
holy Islamic words using L-Systems with two clear reasons which one of these is
decidedly more glamorous than the other one. The glamorous reason deals with the
distinctive features of Persian script, i.e., it is cursive, it depends on the base line,
and it is the formal writing typeface of more than 150 million people. All of this has
overshadowed the less glamorous side of the reason, which deals with the tessellated
nature of Ma’qeli script. This reason seems to have been shown more adaption with
cellular automata rather than geometric methods. The focus of this study is not only
on generating Ma’qeli script pattern utilizing 2D asynchronous cellular automata
and Margolus neighborhood, but also on finding optimum set of rules for this sort
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Fig. 12.1 A miniature consists of Ma’qeli pattern of which means ‘Congratu-

lations’

of script which facilitates reusability possibilities in generating similar patterns. In
order to show the simplicity and efficiency of the proposed method, a set of experi-
ments is conducted in which the capability of both synchronous and asynchronous
cellular automata with 1D and 2D structures and different neighborhoods are ex-
amined. It was observed in the course of experiments that the contribution towards
this study has a number of advantages. First, this script, as a graphical primitive, has
the capability of being utilized in graphical applications such as computer games,
animations, and so forth [8]. Moreover, it will assist industrial applications to show
sentences on 7-segments or dot matrix monitors. In short term too, an improvement
of this research’s understanding can be used as an add-on for CAD software to make
it applicable in the domain of cultural heritages, handicrafts and the calligraphies
which are woven through the carpets.

The roadmap of this chapter is as follows. Section 2 describes preliminary defini-
tion and terminology. The proposed method is explained in Section 3. Experimental
results are depicted in Section 4, and finally this chapter is concluded in Section 5.
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Fig. 12.2 Six ‘Ali’ written
in Ma’qeli script in a coin
such that three are inscribed
in shape of hollows and
the others are embedded
between the hollows

12.2 Preliminary Definitions and Terminologies

The Ma’qeli script is a sort of Persian script which consists of 32 characters. How-
ever, it usually appears in 64 different letter’s shapes in four different groups of the
Initial, Medial, Final, and Isolated forms. The Ma’qeli characters are constructed
based on the squares which resemble the markings of a grid paper. There is no
curve in this script and both horizontal and vertical lines have odd length in a grid
paper. This kind of alphabet is generally utilized to tile shrines with words such as
Allah and Muhammad, and has an interesting appearance. In other words, tiling has
been done such that only some of these words can be seen in the first impression;
however, to look carefully, more words can be recognized in that geometrical object.
For instance, an observer could see only three ‘Ali’ in Fig. 12.2 at first glance, but
having a closer look will result in finding six embedded ‘Ali’ in the golden coin.

This interesting feature motivated us to explore whether this script could be effec-
tively used to generate graphical text patterns. Fig.12.3 shows all Persian alphabet
letters in Ma’qeli script.

As shown in Fig. 12.3, the characters with similar shapes are grouped together
and the only difference between members of these groups is in existence of addi-

tional diacritics including dots and lines, the and groups are
clarifying examples with respect to the former and the latter differences. Production
of a word pattern using the Ma’qeli script can be done by the following meta-rules:

• The positions of each letter with regard to the base line.
• Attaching adequate additional diacritics to letters
• The connection or separation of each letter to/from other ones in a word, and

space between each words.
• The expansion of letters and words in both vertical and horizontal directions.
• The square cells which fill a grid paper or tessellate a construction.
• Considering a white space before writing a word as the most important principle

of calligraphy.

A 2D asynchronous cellular automaton consists of cells arranged in a rectangular
array, in which space and time are discrete. Each cell has k finite discrete states with
varying values between 0 and k-1. At each discrete time step, the states of all cells
are updated asynchronously according to a local rule that depends only upon the
state of the cell and its neighbors. Although there is no limitation for defining neigh-
bors in two dimensions cellular automata, models of spatial processes usually use
one of the only three regular tessellations in the plane which are squares, hexagons,
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Fig. 12.3 Persian alphabet letters in Ma’qeli script [21]. The dashed lines show the base lines
of each letter.

or triangles. The orthogonal neighbors within squares are called the von Neumann
neighborhood (Fig. 12.4a), and those plus the diagonal neighbors are called the
Moore neighborhood (Fig. 12.4b and Fig. 12.4c). An alternative is the Margolus
neighborhood, which is used in Block Cellular Automata [17], and is implemented
with two n×n-cell blocked square tessellations. These two square tessellations are
offset from each another by one row and one column. Fig. 4d visualizes a specific
kind of Margolus neighborhood in which each block consists of 2×2-cell tessella-
tions.

12.3 Proposed Method

As is previously mentioned, letters, words, and sentences expand in two-dimension
and this demand inspires us to utilize 2D cellular automata. Since it is important
to establish a trade-off between the form of patterns and the number of produc-
tive rules, block cellular automata are utilized by dividing the lattice of cells into
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Fig. 12.4 Topologies analyzed in the paper are (a) squares with the von Neumann neigh-
borhood, (b) squares with the Moore neighborhood, (c) squares with the extended Moore
neighborhood, and (d) the Margolus neighborhood

non-overlapping blocks. Block cellular automata are useful for generating Ma’qeli
scripts, since they are straightforward to choose transition rules that obey writing
laws and apply them simultaneously and synchronously to a whole block at a time
rather than a single cell. In view of the fact that synchronous cellular automata si-
multaneously apply all transition rules to all blocks, the procedure of script genera-
tion encounters serious problems. In order to achieve a correct script generation, we
have to be aware of the fact that each rule must be executed in a correct time step.
Not only does this type of supervision make rule extraction process difficult, but also
it is impossible in some cases. Therefore, in present study we use asynchronous cel-
lular automata to ease both the pattern formation and the rule extraction process.

12.3.1 Ma’qeli Character Generation Using Margolus
Neighborhood

The proposed block scheme consists of Margolus neighborhood itself in which
the lattice is divided into 3×3-cell blocked square tessellations, in as much as all
Ma’qeli characters can be bounded by such block (Fig. 12.5). An extension to a
standard Margolus neighborhood is proposed which does not need to be shifted by
one cell on alternate timestamps and can generate preferable patterns in one times-
tamp. As shown in Fig. 3, 64 characters are just defined without any additional
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Fig. 12.5 Three samples related to the Ma’qeli alphabets which are (a) Gaf in the form of

(b) Lam in the form of and (c) Ha in the form of where its partition and
rule’s numbers are shown

diacritics. Taking into consideration all of the additional diacritics will result in 114
distinct Persian characters in four different groups. Fig. 12.5 illustrates three out of
114 characters, which are bounded by a 3×3-block.

In order to extract rules of each 3-cells embedded in a 3 × 3-block, binary weight

is utilized which is illustrated in Fig. 12.5c. In this example, the letter fills six
3×3-cells and the binary rules related to this block are 0, 0, 0, 260, 455, 74, 36,
56, and 8, respectively. As is obvious from Fig. 12.3 and Fig. 12.5, all of the 114
characters have their own rules, but extracting separated rules for them seems to be
not ideal. As the second contribution towards this study, these rules were decreased
down to total of 40 ones covering all 114 Ma’qeli characters. These rules are illus-
trated in Fig. 6 in which four rules are dedicated to put dot(s) on/under a letter.

12.3.2 Word and Sentence Generation Using Ma’qeli Patterns

In order to generate different words and construct sentences, additional restrictions
should be observed. For the reason that Persian script is cursive in the right to left
direction, connectivity rules must be obeyed in word generation, and the connection

side should be specified. Four letters family have no medial and final
forms, so they cannot be connected to other letters from left, see Fig. 12.3. It may,
however, be noted that other letters’ family do not have this limitation and can be
connected to other letters from both sides. With regard to the mentioned criteria, if
the current block contains a left connected letter, the next block commences with
no spaces; otherwise, the next block commences with one cell space. Considering a
base line is the most important precondition for generating a well-formed sentence.
To achieve this aim, three simple rules are added to each block’s rules which are
Considering a base line is the most important precondition for generating a well-
formed sentence. To achieve this aim, three simple rules are added to each block’s
rules which are Rule#, Start, and End.Rule# is symbolized by a number and is com-
posed of two parts itself in which the least significant digit shows the group of a
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Fig. 12.6 All 114 Ma’qeli script patterns are generated by means of (a) 36 body rules and (b)
four dot rules. The rule’s number, which is written below each 3×3-cells, presents the sum of
binary value of filled cells.

letter (Initial = 1, Medial = 2, Final = 3, and Isolated = 4) and other digit(s) shows
the alphabet placement of that letter.

The Start and the End rules are presented in the form of ij, where i (i = 0, 1, . . .,
8) shows the ith tessellate in the letter block, and j (j = 0, 1, . . . 8) shows the jth
cell in the ith tessellate. In fact, these rules regulate the initial and final cells of a
block location such that each letter places on the base line. As an example, Table 1
tabulates 12 rules of a block for producing the letter . The overall procedure
of generating a string using Ma’qeli script is as follows below:

12.3.3 Holy Word Formation Using L-Systems

Word formation using L-Systems is a kind of turtle graphics in which there are three
attributes including (I) a location, (II) an orientation, and (III) a pen, itself having at-
tributes such as color, width, and up versus down. The turtle moves with commands
that are relative to its position, such as "turn left 90 degrees". The pen carried by
the turtle can also be controlled, by enabling it, setting its color, or setting its width.
From these building blocks one can build more complex shapes like squares, trian-
gles, circles and other composite figures. Combined with control flow, procedures,
and recursion, the idea of turtle graphics is also useful in a Lindenmayer system for
generating words, as we take it in hand.

L-system grammars are very similar to the semi-Thue grammar. L-systems are
now commonly known as parametric L-systems, defined as a tuple G = (V , ω , P),
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Fig. 12.7 Different rules for producing the pattern of letter in Ma’qeli script

where V (the alphabet) is a set of symbols containing elements that can be replaced
(variables), ω (start, axiom or initiator) is a string of symbols from V defining the

Generating a string using Ma’qeli script

Input: An array of string, Table of rules

Output: A string in the form of Ma’qeli Script

Output Ma’qeli_Script (Input)

Begin

Step1: Get the current character and search through the alphabet file to examine whether
it is Persian or not

Step2: If the current character does not find in the alphabet file go to End

Step3: Scan the left and right neighborhoods of character in the string to find whether it
is connective or not

Step4: Based on output of Step 3, select the proper Rule number from rule’s table and
perform B0 - B8, Start, and End rules

Step5: If the character belongs to the set of space, isolated, final, put a space in output
by shifting current block with the amount of 1 cell

Step6: If there is any character go to Step 1.

End
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initial state of the system, and P is a set of production rules or productions defining
the way variables can be replaced with combinations of constants and other vari-
ables. A production consists of two strings, the predecessor and the successor. For
any symbol ‘A’ in V which does not appear on the left hand side of a production in
P, the identity production A → A is assumed; these symbols are called constants or
terminals. The rules of the L-system grammar are applied iteratively starting from
the initial state.

The grammars for producing ‘Allah’, ‘Muhammad’, and ‘Ali’ are as follows:

Case Allah

Variables= ’X’;

Constants = ’F’ ’f’ ’+’ ’-’;

Start = ’-FFFF-f-FFFF+f-F+f+F+F–fF-F-f-fffFF+FF–ffFF-FFFF+FF+FF+FFX’

Rules= ’X’ ’-ffffFFFF-f-FFFF+f-F+f+F+F–fF-F-f-fffFF+FF–ffFF-FFFF+FF+FF+FFX’

Angle=π/2;

Case Muhammad

Variables= ’X’;

Constants = ’F’ ’f’ ’+’ ’-’;

Start =’-FF+FF+FF+FFFFF-FF+FFF+Ff+FFF–fffFF-ffF–f-F-F+f+F+Ff-ffFF-FF-FF-FF–
ffFFF-FF+FF+ffff+FF+FFX’

Rules= ’-FF+FF+FF+FFFFF-FF+FFF+Ff+FFF–fffFF-ffF–f-F-F+f+F+Ff-ffFF-FF-FF-FF–
ffFFF-FF+FF+ffff+FF+FFX’

Angle= π/2;

Case Ali

Variables= ’X’;

Constants = ’F’ ’f’ ’+’ ’-’;

Start =’++FF+FF+FF–ffFFF-FFF–fff-FF+FF+FF-FF-FFFFF-FFFFX’

Rules=’X’ ’–fffffff-FF+FF+FF–ffFFF-FFF–fff-FF+FF+FF-FF-FFFFF-FFFFX’

Angle= π/2;
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Fig. 12.8 Persian poems, which are written using Ma’qeli script

Fig. 12.9 Persian poems, which are written using Ma’qeli script. These outputs are generated
in the ‘Microsoft Visual Studio.Net 2008’ environment.

12.4 Experimental Results

As is stated in the previous section, the proposed method has the capability of pro-
ducing sentences without any limitation using block cellular automata and Margo-
lus neighborhood such that the base line, as an underlying principle, is carefully
observed. Figures 12.8 and 12.9 illustrate two Persian poems, which are written us-
ing Ma’qeli script. In order to demonstrate the efficiency of the proposed method,
several experiments are conducted, and the capability of generating letters, words,
and sentences are examined by means of 1D and 2D synchronous cellular automata
with different rules and neighborhoods.
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Fig. 12.10 1D synchronous cellular automata in which the rules number 4 is utilized to pro-
duce Aleph’ environment

12.4.1 Ma’qeli Script Generation Using 1D Synchronous
Cellular Automata

1D elementary cellular automata are the simplest form of automata with different
applications; however, they have several problems in situation in which they are uti-
lized in generating Ma’qeli script. The most challenging reason is that they should

obey predefined rules. In this manner, Aleph, which is written in the form of is
the only letter that can be produced by this type of automata in which the rule’s num-
ber 4, 12, 36, 44, 68, 76, 100, 108, 132, 140, 164, 172, 196, 204, 228, or 236 needs
to be utilized. Figure 12.10 illustrates one cell with rule number 4 for generation
Aleph pattern.

Besides the mentioned limitation, this scheme has other shortcomings which are
extracting rules for each letter is time consuming and difficult. Also even by uti-
lizing the set of complicated rules, problems concerning the words production are
considerable. These problems occur as a result of similarity between letters, and
their different appearance form in a word.

12.4.2 Ma’qeli Script Generation Using 2D Synchronous
Cellular Automata

The nature of letters and weakness of 1D cellular automaton directed us to examine
2D cellular automata in which three neighborhoods including von Neumann, Moore,
and extended Moore are considered for generating Ma’qeli letters and words. Al-
though these neighborhoods have the capability of using in letter and word genera-
tion, they suffer from defects, which without loss of generality we describe them by
a sample.

The von Neumann neighborhood (see Fig. 12.4 a) can facilitate generating all
letters through the use of several rules, although it is not free from defects. As shown

in Fig. 12.11, the process of generating the pattern of letter faces a major
problem regarding the production of the underneath dot, along with the high time
complexity and a bad-formed illustration for this letter. This letter can be generated
by the following transitional rules:

Moreover, this neighborhood cannot produce words in view of the fact that the
word generation process needs to observe the location of each letter based on the
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Transitional rules for generation the pattern of letter using von Neumann neigh-
borhood

1.forn=1 to 2 do

a.if( N= =1) then S=1 do

// where N and S stand for North and South neigh-borhoods, respectively.

1.forn=1 to 5 do

a.if( E= =1) then W=1 do

//where E and W stand for East and West neigh-borhoods, respectively.

1.forn=1 to 2 do

a.if( S= =1) then N=1 do

Fig. 12.11 The process of generating the pattern of letter using von Neumann neigh-
borhoods.

Fig. 12.12 The process of generating the pattern of letter using Moore neighborhoods.

previous letter, which is impossible in a considerable number of cases using the
structure of von Neumann neighborhood. Despite the fact that the Moore neigh-
borhood checks more cells than von Neumann does, it is observed in the course of

experiments (Fig. 12.12) that it can produce Kufic form of letter but it still
suffers from same defects and can only reduce the steps of producing letters a bit.

This letter can be produced by the following transitional rules:
In order to resolve the mentioned weakness, the impact of using extended Moore

neighborhood is examined, in which the cellular automata can supervise 25 cells
simultaneously. In light of the fact that defined rules for this neighborhood have the
capability of regulating more cells, it seems to have got rarely eased the process of
word generation.

Minoofam and Bastanfard [14] utilized this neighborhood with the aim of sim-
ulating the holy word of ‘Muhammad’ with Ma’qeli script and this neighborhood.
They reported this procedure takes 25 steps of rule execution, and the results are
promising (see Fig 12.13a. In order to achieve this aim, they combined predefined
rules with XOR operator (⊗), which are as follows below: (Consider a central cell,
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Transitional rules for generation the pattern of letter using Moore neighborhood

1.1.if( N= =1) then

{

S=1;

SW=1; // where SW stands for South-West neigh-borhood

}

2.for i=1 to 5 do

if(E= =1) then

{

W=1;

NW=1; // where NW stands for North-West neighborhood

}

if(S= =1) then N=1;

Fig. 12.13 The procedure of generating (a) ‘Allah’ and (b) ‘Muhammad’ using Ma’qeli script
and extended Moore neighborhood

Ci, and apply the following rules to: E, W, N, and S stand for East, West, North, and
South neighborhood, respectively.)

Along the lines of that work, the rules for generating holy word of ‘Muhammad’
is produced by this experiment; however, it is observed that rule which is utilized

for generating the letter deforms the shape of letter which places at
the beginning of this word on account of similarity with other rules, see Fig. 12.13b.
Rules for producing holy word ‘Muhammad’ with XOR operator in Ma’qeli script
are as follows: (As the rule number 10 and rule number 15 follow the same structure,
procedure of generating holy word ‘Muhammad’ faces problem in step 15.)

With respect to the obtained results, it is reasonable to claim that the proposed
method has a considerable number of advantages over the observed competitive
methods. For instance, as the proposed method works based on the separated rules,
generating patterns of a word can be assigned to a parallel machine. Nevertheless,
for other neighbors an adequate algorithm should be design which in the current
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Rules for producing holy word ‘Allah’ with XOR (⊗)
operator in Ma’qeli script

1.1 Ei 1.13. Wi⊗WWi⊗NWWi⊗NNWWi

1.2. Si SWi 1.14. Si SWi SWWi WWi NWWi

1.3. Ei⊗ EEi ⊗NEEi 1.15. Si ⊗SS ⊗SSWWi ⊗SSEEi ⊗SWWi

1.4. Si ⊗SEi⊗SEEi ⊗EEi 1.16. Si⊗SSi⊗SSWi⊗SSWWi⊗SWWi⊗WWi⊗NWWi

1.5. Si⊗SSi⊗SSWi⊗SSWWi⊗SWWi 1.17. Si⊗SSi⊗SSEEi⊗SSWWi

1.6. Si⊗SSi⊗SSEi⊗SSEEi⊗SEEi⊗EEi 1.18. Si⊗SSi⊗WWi⊗NWWi⊗SWWi⊗SSWWi

1.7. Ei⊗EEi⊗NNEi⊗NEi 1.19. Si⊗SSi⊗SSWWi⊗SWWi⊗WWi

1.8. SEi⊗SEEi⊗EEi⊗NEEi 1.20. WWi⊗NWWi⊗NNWWi⊗SWWi⊗SSWW

1.9. SWi⊗SEi⊗SSi⊗SSEi⊗SSEEi⊗Ei 1.21. Ni⊗NWWi⊗WWi⊗SWWi⊗NNWWi

1.10. Ei⊗EEi⊗Ni⊗NEEi⊗NNEi⊗NNEEi 1.22. WWi⊗NWWi⊗NNWWi⊗Ni⊗NNi

1.11. Si⊗SSi⊗SSEi⊗SSEEi⊗SEEi⊗Ei⊗EEi 1.23. Si⊗SSi⊗WWi⊗NWWi⊗SWWi⊗SSWWi

1.12. Wi⊗WWi⊗NWi⊗NNWii 1.24. Si⊗SSi⊗WWi⊗SWWi⊗SSWWi

state, it seems to be impossible. Extendibility and rule extraction are two impor-
tant criteria for comparing letter generation algorithms. Extendibility means the ex-
tracted role can be applied to produce other languages letters or pattern with a bit
modification, and this issue can be seen in Margolus neighbor. As is shown in this
paper, the extracted rules for Von Neumann, Moore, and extended Moore neighbors
for generating letters as well as words are very complicated and in some cases are
not applicable for word generation. Therefore, it is reasonable mentioning that the
propose algorithm have simple rules and extendable.

Despite the fact that the obtained results are very favorable, and the proposed
method tends to have the capability of being utilized in generating similar pattern,
we should mention that the proposed method is not free from shortcomings. Initial

and final forms of and cannot be produced, albeit this problem can be
traced back to the predefined pattern for these letters in Ma’qeli script. If the size
of letters is allowed to be modified this problem can be solved adequately; however,
this alternation violates the infrastructure of this script.

Rules for producing holy word ‘Muhammad’ with
XOR (⊗) operator in Ma’qeli script

1.1 Ei 1.9. Ei⊗EEi⊗SEEi⊗SSEEi

1.2. Ni⊗NWi 1.10. Ei⊗EEi

1.3. Ei⊗EEi⊗SEEi 1.11. Si⊗SEi⊗SEEi

1.4. Ni⊗NNi⊗NNWi⊗NNWWi 1.12. Si⊗SSi⊗SSEi⊗SSEEi

1.5. Ni⊗NEi⊗NNEEi⊗EEi⊗SEEi 1.13. Ei⊗SEi⊗SSEi⊗SSEEi

1.6. Ei⊗NEi⊗NNEi⊗NNi⊗NNWi 1.14. Ei⊗EEi⊗SEEi⊗SSEEi

1.7. Ni⊗NNi⊗NNEi⊗NNEEi⊗NEEi⊗EEi⊗Ei 1.15. Ei⊗EEi

1.8. Ei⊗SEi⊗SSEi⊗EEi⊗SSEEi
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12.4.3 Holy Words Formation Using L-Systems

As is stated in the section 3.3, the proposed method has the capability of produc-
ing ‘Allah’, ‘Muhammad’, and ‘Ali’ using L-Systems. Figure 12.14 illustrates these
words, which are written in Ma’qeli script.

Fig. 12.14 Holy words formation using L-Systems (a) Allah, (b) Muhammad, and (c) Ali

Fig. 12.15 (a) Absolute complexity. (b) Relative Complexity [1].
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In order to demonstrate the efficiency of the proposed method, we calculate the
absolute and relative complexity. Then we rewrite the rules in compressed format.
For calculating absolute complexity, we count the length of the start and rule of each
grammar; then, let us relative complexity which is absolute complexity divided by
number of chars in Latin spelling of words. Therefore, we have absolute complexity
as follows:

• Allah: Start (59), Rule (63)
• Muhammad: Start (91), Rule (102)
• Ali: Start(53), Rule (59)

And, the relative complexities are as follows:

• Allah: Start (11.8), Rule (12.6)
• Muhammad: Start (11.375), Rule (12.75)
• Ali: Start(17.6666666667), Rule (19.6666666667)

Figure 12.15 shows these two kinds of complexities.

12.5 Conclusion

We design cellular automaton and L-Systems based algorithms for generating the
ancient Persian script Ma’qeli. We demonstrate how letters of the script can be pro-
duced using block cellular automata with Margolus neighborhood. We found a set
of optimal (in terms of generation time and richness of letters/words produced) rules
to generate complex Persian cursive words. The contribution towards this study has
a number of advantages, and has the capability of applying to several domains. First,
the script, as a graphical primitive, can be used in computer games and animations.
The script can also be used in industrial applications when displaying sentences in
7-segments or dot matrix monitors. We also envisage a possible usage in CAD soft-
ware in case of cultural heritages, handicrafts and the calligraphies woven through
the carpets. In order to demonstrate the efficiency of the proposed method, a set of
experiments is conducted on generating holy words ‘Allah’ and ‘Muhammad’ with
von Neumann, Moore, and Extended Moore neighborhoods so as to compare with
Margolus neighborhood. It was observed in the course of experiments that the pro-
posed method is simple for generating words and sentences, as it can produce each
letter with just one rule. In conclusion, it is worth mentioning that using L-Systems
can eliminate the overhead of constructing initial blocks in the proposed method.
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