
Chapter 10
Convex Hulls and Metric Gabriel Graphs

Luidnel Maignan and Frédéric Gruau

Abstract. The convex hulls construction is mostly known from the point of view
of 2D Euclidean geometry where it associates to a given set of points called seeds,
the smallest convex polygon containing these seeds. For the cellular automata case,
different adaptations of the definition and associated constructions have been pro-
posed to fit with the discreteness of the cellular spaces. We review some of these
propositions and show the link with the famous majority and voting rules. We then
unify all these definitions in a unique framework using metric spaces and provide
a general solution to the problem. This will lead us to an understanding of the con-
vex hull construction as a chase for shortest paths. This emphases the importance of
Voronoï diagrams and its related proximity graphs: Delaunay and Gabriel graphs.
Indeed, the central problem to be solved is that of connecting arbitrary sets of seeds,
in a local and finite-state way, while remaining inside the desired convex hull, i.e
by shortest paths. This is exactly what will be made possible by a suitable general-
ization of Gabriel graphs from Euclidean to arbitrary metric spaces and the study of
its construction by cellular automata. The general solution therefore consists of two
levels: a connecting level using the metric Gabriel graphs and a level completing
the convex hull locally as the majority rule does. Both levels can be generalized to
compute the convex hull, when the seeds are moving.

10.1 Notational and Naming Convention

In this chapter, the set of all cells of the space is denoted S. The neighborhood
of a cell x is denoted N(x) and does not include the cell x itself. A set of cells
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Fig. 10.1 Examples of Euclidean convex and non Euclidean convex shapes

together with a specified neighborhood is called the cellular space. Cells are some-
times called points. The value associated by a configuration c at a cell x is denoted
c(x). The configuration obtained at time t by a rule f is denoted ft , subscripts being
used to reduce the impact of repeating the timing information. Hence, ft (x) is the
value associated to a cell x at a time t by a rule f and the transition function of the
rule, for example the sum of all the values in the neighborhood, can be denoted as
ft+1(x) = ∑y∈N(x) ft(y). Note that we do not indicate explicitly what is the initial
configuration, letting it free to be initialized externally in some sense. Also, rules
are often called fields, similarly to electric field and magnetic field. A single cel-
lular automaton can be made of a certain number of fields, in which case they can
refers to each other in their transition function, and even to just computed values.
For example if there are two rules f and g, ft+1(x) might depend on gt+1(x) as long
as there are no circular definition and everything is well-defined. This is why we
need to be explicit about the timing information. This is a light notation related to,
although a bit more explicit than, the one used in multivariate differential calculus
for example.

10.2 Introduction

The convex hull construction is well known in the context of Euclidean geometry.
Its definition comes in two steps, one for the word “convex” and one for the added
word “hull”. A set of points is convex if and only if it contains entirely any seg-
ment joining any two of its points. As an exercise to link this definition with its
geometrical content, the reader should check, for each shape of Fig. 10.1, whether
the set of its inside points is convex or not by trying to exhibit a segment not entirely
contained in the shape while its extremities are in the shape. Note that some of the
convex shapes are polygons, and others are not.

Convex shapes are simple shapes in some interesting sense. In physics, or physics
simulations for example, detecting when two arbitrary shapes collide is difficult but
this detection is much easier when the shapes are convex. There are also situations
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where all the shapes that appear are necessarily convex, such as in a bumble bath,
etc. However, there are situations where the shapes are not convex, but we would
like to approximate it by a convex shape in order to make life easier. In this case,
we have an initial set of points, not necessarily convex, and we look for its convex
hull, i.e. the smallest convex set containing all the initial points. In the rest of this
chapter, these initial points will be called seeds. The question is how to compute the
convex hull of a set of seeds given as input.

A well known fact is that if there are finitely many seeds, their convex hull is a
polygon using these seeds as vertices and many classical algorithms exist to compute
this polygon as a list of vertices based on a set of seeds, everything being described
using a coordinate system. In contrast, this chapter considers the case where the
space is not the usual Euclidean space but a cellular space and the seeds are not
represented by coordinates but by a Boolean information holded by each cell and
representing whether the cell is a seed or not. So we do not assume any knowledge
of the classical algorithms but let us add a few words on why finite sets of seeds
have a polygonal convex hull in 2D Euclidean spaces.

The reason is the following: for the set of seeds to be convex, all the segments
joining them have to be in the set, so we consider now a set containing the seeds and
their pairwise segments. This new set in still not convex in general and we still need
to add all the segments joining the newly added points, and so on until no segment
is missing. The final result of this iterative adding process is indeed the minimal
convex set containing the seeds since only absolutely required segments have been
added. But all these additional points are strictly between the firstly added segments,
so the border of the convex hull is made of some of the firstly added segment with
the seeds as vertices. This is a very basic process, but it worths taking the time to
visualize it and to keep it in mind from the start.

In the context of cellular automata, the famous majority and voting rules and
some of their variations exhibit behaviors related to Euclidean convex hulls as de-
scribed in [7]. For instance, let us consider the majority rule where cells have two
states, either selected or not selected, and the rule selects a cell if at least 4 or its
neighbors are selected. If we denote by P the set of seeds and by the predicate
majot(x) the fact that the cell x is selected at time t by the rule majo, this behavior
can be written formally as:

majot+1(x) = x ∈ P ∨ card{y ∈ N(x) | majot(y)} ≥ 4 (10.1)

Figure 10.2 shows an evolution of this rule with a dense set of seeds as initial con-
figuration. Here, the Moore neighborhood is used, so each cell has 8 neighbors, and
the number 4 is 50% of the neighborhood, hence the name of the rule. So the num-
ber would be 2 for a Von Neumann neighborhood, 3 for hexagonal cells which have
6 neighbors, and so on. In all these cases, it is clear that the final result is visually
related to Euclidean convex hulls. To make this precise, different approaches have
been tried. The goal is not only to understand what sort of convex hull is computed
by the majority rule, but also to be able to compute such a convex hull for arbitrary
sets of seeds, which is unfortunately not the case for the majority rule.
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Fig. 10.2 Convergence to one global convex hull

We first describe the early angular point of view to this problem, describing the
obtained convex hull in terms of Euclidean convexity with a restriction on the al-
lowed angles in Sect. 10.3. This point of view takes into account the Euclidean
positions of the cells. In Sect. 10.4 and Sect. 10.5, we then describe a more general
approach describing everything in terms of shortest paths, i.e. in terms of distances,
i.e. in terms of metric space. In this case, the focus is on something more intrinsic
than the cells position, namely the graph of communication of the cells. We then
conclude in Sect. 10.6 by a summary the complete cellular automaton that works
for any set of seeds and for any cellular space.

10.3 The Angular Point of View

The first approach is to consider the positions of the cells in Euclidean space. If
we take an arbitrary cell and consider the vector leading to each of its 8 neigh-
bors, we can see that they match the directions of the sides of the convex polygon
obtained in Fig. 10.2. This idea can be extended to Von Neumann neighborhood
with 4 vectors, and to hexagonal cellular spaces with 6 vectors. The trick is there-
fore to change the definition of convexity and to allow a set to be called convex if
and only if it is Euclidean convex polygon and its sides follow one the admitted
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a Von Neumann: θ = 90 b Moore: θ = 45 c Hexagonal: θ = 60

Fig. 10.3 θ -convex hulls in cellular spaces

vector directions. The Von Neumann, Moore, and hexagonal cellular spaces thus al-
low directions whose angles are multiple of 90◦, 45◦and 60◦respectively. This con-
cept is called θ -convexity, and examples of θ -convex hull are shown in Fig. 10.3.
It might worth noting that, contrary to the Euclidean convex hull, the vertices of the
θ -convex hull polygon are not necessarily in the original set of points. Using this
definition, let us examine again the behavior the majority rule and see how arbitrary
sets of seeds can be handle.

10.3.1 Majority Rule and θ -Convexity

With the definition of θ -convexity, we have an explanation of the results of the evo-
lution depicted in Fig. 10.2. However this behavior is not the general case. When the
set of points is not dense enough, we might obtain a disconnected set, corresponding
to a collection of partial θ -convex hulls. In fact, it is not really a matter of density,
and if we take the initial configuration of Fig. 10.2 and move only one of the six
bottom seeds, we obtain the behavior shown in Fig. 10.4. In Fig. 10.2, the moved
seed is higher, allowing the partial convex hulls to merge into a bigger convex-hull.
So in general, the complete θ -convex hull is not obtained, and it is hard to describe
the final result by an other way than saying that this is the fixpoint of the majority
rule. But both of these issues will be addressed, firstly with the solution described
in the next section, and then further by changing the point of view from a angular to
a metrical one.

10.3.2 Complete θ -Convex Hull

In [5, 14], a cellular automaton is proposed that constructs the θ -convex hull of
an arbitrary set of seeds, with the little price that the seeds have to be already en-
closed in an arbitrary initial connected region. This rule improves this initial re-
gion by two stages that eventually transforms it into the θ -convex hull of the seeds.
The first stage is to reduce the region to ensure that it is smaller than the wanted
θ -convex hull. The second stage is to inflate the region just enough to exactly match
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Fig. 10.4 Convergence to many convex hulls

the wanted result. This second stage is simply a modified version of the majority
rule described earlier, which is enough because the result of the first stage is a con-
nected region. However, the transition from the first to the second stage requires a
mechanism that ensure a coherent global transition to the second stage, as it is not
desirable to be in the shrinking and growing stages at the same time. There are of
course some little technical difficulties, and the reader is redirected to the original
articles for more details. An example of initial configuration is shown in Fig. 10.5,
along with the result of the first and second stages on it.

10.4 The Metrical Point of View

The solution described in the previous section is a great improvement on the major-
ity rule since it handles an arbitrary set of seeds. However, one might ask whether it
is possible to get rid of the initial region and simply build the region from the seeds.
In the case of the Euclidean convex hull, we noted in Sect. 10.2, the definition of
the convex hull asks to add all required segments to the initial set of seeds in order

a Initial configuration b After Erosion c After Expansion

Fig. 10.5 Stages from wrapped seeds to their convex hull: The initial wrapping (a) is shrunk
into (b) and is then grown to convex hull (c)
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to obtain a convex set. This idea is the main anchor of the rest of the chapter, and it
is applied with a change of point of view.

In this new point of view, we forget about any position of the cells in some Eu-
clidean space and simply consider the graph of communication of the cells and its
structure. In this context, we can not talk about angles, but we can still talk about
distances between pairs of cells. Indeed, Euclidean convexity is a particular case of
metric convexity. This latter is defined over metric spaces, and replaces the word
segment in the definition of Euclidean convexity by the more general concept of
shortest path. Therefore, a set of points is metric convex if and only if it contains
entirely any shortest path joining any two of its points. As everything else in this
chapter will depend on this definition, let us be more precise by giving the formal
definition of metric spaces, shortest paths and metric convexity.

A metric space is a set of points M together with a distance function d, also
called metric function or metric, associating to each pair of points p0, p1 ∈ M a
real value d(p0, p1) ∈ R in a certain appropriate way that allows us to think of
d(p0, p1) as the distance between the points. The requirement to be appropriate is
that the function must be symmetric, i.e. d(p0, p1) = d(p1, p0), the function should
assign the value 0 for all and only for distances between a point and itself, i.e.
d(p0, p1) = 0⇔ p0 = p1, and whenever we make a detour via a third point, the total
distance should be greater or equal than the direct travel, i.e. d(p0, p1)+d(p1, p2)≥
d(p0, p2). This last requirement is the least trivial one. It is often called the triangle
inequality and is very important.

Given a path in a metric space, one can consider the length of this path by sum-
ming the distance between each pair of successive points of the path. Between two
arbitrary points p0 and p1, one may ask for the length of the shortest paths among
all possible linking paths and expect this value to match d(p0, p1). However, this
does not follow from the three previous requirements, but it is often convenient to
have this property. In this case, the metric of the space is said to be intrinsic, and
the space is called a length metric space. For example, Euclidean spaces and also
graphs with their natural notion of distance are both length metric spaces. In this
case, the triangle inequality really says something about the length of the shortest
paths, detours and direct travels.

In particular, it is possible to express the fact that a point z is on a shortest path
between two points x and y as a triangle equality: d(x,z)+d(z,y) = d(x,y), which
means that we do not make the path lengthier by making a detour via z. We say that
z is between x and y, or more explicitly that z is on a shortest path joining x and y.
We will use this triangle equality and, equivalently, the notion of betweenness many
times, and will denote it as z ∈ [x,y], which means that [x,y] = {z ∈ M | d(x,z)+
d(z,y) = d(x,y)}. This is called the interval between x and y. In the Euclidean case,
this set [x,y] is exactly the points of the segment joining x and y, but in our cellular
spaces where there might be many shortest paths between two cells, it corresponds
to the union of all these shortest paths.

After all these definitions, let us see what a metric convex hull looks like in our
cellular spaces. Firstly, in Fig. 10.6, the interval between two points of various cellu-
lar spaces are shown. The figure also shows the “Moore-

√
2” cellular spaces which
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a Von Neumann b Moore c Moore-
√

2 d Hexagonal

Fig. 10.6 Intervals for different cellular spaces and different metrics

correspond to the communication graph of the Moore cellular space with the length
of diagonal assigned the value

√
2 instead of just 1 as graph metric would imply.

This difference makes the horizontal and vertical edges shorter, and therefore more
preferable than diagonal one. This discards some paths of the Moore cellular space
as being shortest. The structure of the intervals dictates the structure of the metric
convex hulls. Examples of metric convex hulls are shown in Fig. 10.7. This shows
that the definition of metric convex hull is strictly more general than θ -convex hull
since the 90, 45, and 60-convex hull corresponds to the metric convexity in Von Neu-
mann, Moore-

√
2 and hexagonal cellular spaces respectively. Note that the Moore-√

2 can be constructed as the intersection of the Von Neumann and Moore metric
convex hull. This allows us to restrict our attention only to Von Neumann, Moore
and Hexagonal cellular spaces, i.e. we will always consider just plain graph metric,
i.e. the distance between a cell and one of its neighbor is always 1, even for Moore
diagonals. This sets precisely what our goal is: to understand the majority rule based
on metric convexity and to find a cellular automaton that computes this metric con-
vex hull for arbitrary sets of seeds. Because of the chosen level of generality, the
results will also be applicable for a large class of cellular spaces, including 3D and
higher dimensional cellular spaces, but those are unfortunately not very good as
paper examples.

10.4.1 Majority Rule and Metric Convexity

Coming back to what we already said, computing the convex hull is about adding all
the missing shortest paths. In fact, the majority rule can be understood in these terms.
To see that, let us consider the neighborhood N(x)∪{x} of the center cell x and the
distance function restricted to this neighborhood. If we take a such neighborhood

a Von Neumann b Moore c Moore-
√

2 d Hexagonal

Fig. 10.7 Convex hulls for different cellular spaces and different metrics
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Fig. 10.8 Distances between cells in a neighborhood

and take one cell y in it, we can assign to all cells z its distance d(y,z) to y as
depicted in Fig. 10.8. If y is the center x, then all of its neighbors are at distance 1 by
definition, as shown in the first, third, and sixth neighborhoods of Fig. 10.8. If y is a
neighbor of the center x, then the direct neighbors of y are at distance 1 from y and
any other cell z is at distance 2. Indeed, in this last case, the path (y,x,z) is a shortest
path of length 2. Now, what is the relation with the majority rule ? The answer is
that any time the majority rule selects a cell, it is because half of its neighborhood
is already selected as specified in Sect. 10.2. But this implies that there are two
selected cells of distance 2 apart from each other. This means that there is a shortest
path joining these two cells and passing through the center as we just pointed out.
Therefore the center has to be selected for the set of selected cells to have a chance
of being metric convex. This explains why the majority rule never produces more
than the convex hull, and evolves toward convexity.

Using this understanding, we can replace the majority rule with a more direct one
that checks for the existence of two selected cells in the neighborhood such that a
shortest path passes through the center:

convt+1(x) = x ∈ P ∨ ∃y0,y1 ∈ N(x);convt(y0)∧ convt(y1)∧ x ∈ [y0,y1]; (10.2)

Note that there are many ways to write this rule formally, but this one is the more
direct one with respect to our intention. Therefore, this formula remains unchanged
if we change the neighborhood in size or shape for example, while other ways of
writing it might need some adaptation.

With this rule, we obtain for example the evolution depicted in Fig. 10.9. The
conv rule has roughly the same global behavior than the majority rule presented
in the sense that it generally produces a set of partial convex hulls and that the
partial convex hulls can merge to form bigger convex hulls during the evolution.
However it has at least two benefits. Firstly, the conv rule is more precise than majo.
Indeed, it detects strictly more neighborhoods than the majority rule. As an example,
one can note that the initial configuration of Fig. 10.9 is a fixpoint for the majority
rule. Secondly, the final result has a clear property that can be expressed without
reference to fixpoints: any shortest path of length 2 between any two cells of the
selected region belongs to the selected region. The link with the convex hull is far
more obvious in this way.
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Fig. 10.9 Evolution of the conv rule with neighborhood radius 1

10.4.2 Complete Metric Convex Hulls

Now that we know how to obtain partial metric convex hulls, involving only shortest
paths of length at most 2, let us target the detection of shortest paths of arbitrary
length. Our first goal is, given two seeds, to select the shortest paths joining them,
i.e. all cells of their interval. A first idea might be to compute the distance of all
cells to all the seeds and then select the cells where the triangle equality is verified.
However we can not handle an arbitrarily large number of integers in each cell in
the cellular automata framework. The number of states of the cells has to be finite.

We can reduce this idea and only store in each cell one distance, the distance to
the closest seeds, modulo 3. This information is, in fact, enough to detect the middles
of the shortest path, and from them, the entire shortest path. A rough intuition for
the latter is given by the fact that, along any shortest path connecting two seeds,
the distance modulo 3 values stored in the cells is (0,1,2,0,1,2,0,2,1,0,2,1,0)
for instance. It is possible to locally distinguish between the middle and the non
middle cells, and from these middles, it is possible to join the seeds by following
the distance values in decreasing order (2,1,0). This is explained in more details in
Sect. 10.4.2.1.

In Sect. 10.4.2.2, we explain that this interval detection is, in fact, enough to solve
entirely the problem and we examine why this is the case. In fact, when many seeds
are involved, sufficiently many pairs of seeds are connected to allow the conv or
majo rules to complete the job. But the investigation of the detection of middles in
general cellular spaces of arbitrary dimensions leads to a trip through the notions of
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Voronoï diagram, Delaunay and Gabriel graphs in order to make the full connection
between the Euclidean and the cellular case, and is therefore postponed to Sect. 10.5.

10.4.2.1 Paths Joining Two Distant Seeds

As just explained, to connect two distant seeds, we need to compute some distance
information. The cellular automata framework only allows for a finite number of
state for the cells, so we can not store sets of integers, or even single arbitrarily
large integers. We are reduced to compute at each cell only one distance value, and
to compute it modulo 3: this distance value is the distance of the cell to its closest
seeds. We could have called this the distance rule, but we in fact call this the distance
field.

In the cellular automata case, this distance field corresponds to the computation
of the minimal distance modulo k, where k depends on properties of the complete
cellular automaton where the distance field is used. It is a very general notion that
can be used to solve many problems and can handle the motion of seeds and asyn-
chronicity to some extent for example. Its full description [10] is out of the scope of
this book chapter so we present only a reasonable restricted version of it to the case
of synchronous static seeds. In this case the value of k is 3.

In this restricted version, the idea is to begin with the value 0 on the seeds, and
the value 1 anywhere else as shown in the initial configuration of Fig. 10.10. From
this initial configuration, each cell increases its value at each transition until its value
becomes greater than one of its neighbor value1. This happens exactly when one of
the neighbors has a different value since all values only increases then stops at some
transition. Formally, the transition function is:

distt+1(x) =

⎧

⎪⎨

⎪⎩

0 if x ∈ P

distt(x)+ 1mod3 if x �∈ P∧∀y ∈ N(x); distt(y) = distt(x)

distt(x) if x �∈ P∧∃y ∈ N(x); distt(y) �= distt(x)

(10.3)

The meaning of this transition rule can be observed on Fig. 10.10. After the first
transition, all values are at 2, except the seeds, which kept their value 0, and the
cells around the seeds which kept their value 1 because of the presence of 0 in their
neighborhood. After the second transition, all cells values go to 0, except the seeds
(because they are seeds), the neighbors of the seeds (because of the presence of the
0 in their neighborhood while their value is 1) and the neighbors of the neighbors of
the seeds (because of the presence of 1 in their neighborhood while their value is 2).
So circles of cells of same distance value are constructed, and after some transitions,
the circles coming from different seeds eventually collide at different cells. The first

1 Note that because of the modulo three operation, one should only look at the differences
between values locally, i.e. in the neighborhood of a given cell. If this cell value is 1, then
the order is 0 < 1 < 2, but if this cell value is 0 or 2, the orders are respectively 2 < 0 < 1
and 1 < 2 < 0. So a cell of value v considers, in its local neighborhood, that the value
v−1mod 3 is less than its value and v+1mod 3 is greater than its value. This is the way
the comparisons have to be understood.
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cells where these collisions occur are those of interest: they are exactly at the middle
of the shortest paths between the seeds. In Fig. 10.10, this happens after the forth
transition. We can see that the distance values in the neighborhood of these middles
is special. Each of the middle cells can actually see that the distance pattern in its
neighborhood can only appear because of the presence of two seeds at opposite
directions.

In Fig. 10.11 theses middle cells are marked in light green. We need to express
the general middle detection rule more precisely of course. For a particular grid, it is
possible to build this rule by enumerating all local distance patterns corresponding
to middles, but expressing this detection rule for general cellular spaces appears to
be the main difficulty in the convex hull construction. So let us pretend that we can
do it and proceed to the final step. We will come back to the middle detection in the
next section.

So if we suppose that we can detect these middle cells, the rest of the evolution
is obtained easily and is depicted in Fig. 10.11. Once the middles are detected, we
can consider the neighbors of the middles. Let us consider one of them and call
it x. It has all required information to know if it belongs to the shortest path or
not. Indeed, it knows its distance value d(s,x) = distt(x) to the nearest seed s, the
distance value d(s,y) = distt(y) of the marked middle y, and the distance d(x,y) = 1.
It can thus determine whether it is between the seed and the middle, i.e. whether it
is on a shortest path joining s and y, i.e. x ∈ [s,y]. The triangle equality d(s,y) =
d(s,x)+d(x,y) to be checked is reduced to distt(y) = distt(x)+1 in this case. So if
y is marked as being in the convex hull and this reduced triangle equality is verified,
x can deduce that it has to belong to the convex hull too. Formally, we obtain the
following transition rule:

backt+1(x) = centt+1(x)∨∃y ∈ N(x); distt(y) = distt(x)+ 1mod3∧backt(y).
(10.4)

A more simple explanation of the behavior is that to go back to the seeds from
the middles, you have to follow the distance value in decreasing order, i.e. the cell
x takes the mark from the cell y if distt(x) = distt(y)− 1. Both views are simply
equivalent, they both describe a trajectory along the shortest possible paths back to
the seeds. It is interesting to note that anywhere the notion of shortest path is used,
it can somehow be reduced to the triangle equality. Coming back to Fig. 10.11, we
can see after 4 transition the detection of the middles of distance value 1, and then,
at the next configuration some cells of distance value 0 deduce that they have to be
in the convex hull from the presence of a marked cell in their neighborhood and the
differences in their distance value, and after that, the same thing happens to some
cells of distance value 2 at the next configuration, and so on. It worths checking the
distance values on Fig. 10.10 while consulting Fig. 10.11.

10.4.2.2 Pairwise Hull Construction

We now have a way to construct the convex hull of two seeds using one distance
field and some detections on it. When considering many seeds, we can obviously not
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Fig. 10.10 Distance fields from two particles

Fig. 10.11 Detected middles and paths back to both particles

build one distance field for each pair of seeds in the space, as we need the number
of states of the cells to be finite. However, a single distance field might allow for
the detection of middles of more than one pairs of seeds. This can be checked on
Fig. 10.12 which shows the evolution of the rules dist and back (using our yet-to-
be-defined detection of the middles cent) in the presence of many seeds. In the case
of this figure, we can even see that the result is connected. If this is always true
that the result of this pairwise construction is connected, then adding conv or majo

Fig. 10.12 Construction of pairwise convex hull
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rule to our previous construction is enough to complete to the complete convex hull.
It turns out to be the case from the results of the next section, and we can already
say that the final construction of the convex hull is therefore obtain using the dist,
cent, back, and conv. Although we used different colors to mark middles, and non
middle cells, they can all be marked in the same way is our static case. We therefore
use 7 states: i.e. one seed state, and for non-seed cells, there is a binary mark and a
modulo 3 value, so 2 * 3 = 6 other states. The binary mark is set to “true” either by
the middle detection, the back detection or the conv detection. This is a first possible
summary of our metric solution. But understanding why this is indeed a solution in
general is the same as understanding how the middles should be detected, which is
the subject of the next section. A more detailed summary is given in Sect. 10.6.

10.5 Detectable Middles and Metric Gabriel Graphs

10.5.1 Pairwise Construction in Euclidean Space

In order to understand the detection of the middles, let us look at the pairwise con-
struction described earlier in the context of Euclidean geometry. Figure 10.13 shows
very precisely what the result would be in this case, and has to be compared with
Fig. 10.12. The distance field would be continuous, and concentric circle would
grow similarly as seen in the cellular automata case. When the circles collide, some
middles showed in light green are detected, and the corresponding paths from these
middles back to the seeds can also be detected. The analogy allows us to use existing
tools build from Euclidean spaces to re-expressed the behavior of this construction:
we can use now the vocabulary of Voronoï regions and diagrams and two of its
associated proximity graphs: Delaunay and Gabriel graphs.

10.5.1.1 Voronoï Diagram and Distance Fields

The Voronoï diagram is a famous construction [1, 3]. It consists of associating to
each point of the space its closest seeds. After doing so, each seed has an associated
set of points, and this is called the Voronoï region of this seed. Some points have
many seeds at equal distance. If we highlight these points, the result is called the
Voronoï diagram and displays the borders of the Voronoï regions, the points where
the Voronoï regions are in contact.

Using the distance field implicitly means to have some relation with the Voronoï
regions and diagrams since the distance field associates to each cell of the space
the distance to the closest seeds. Cells that have more than one closest seeds are
those having special patterns of distance value in their neighborhood. This relation
is shown in Fig. 10.14a, where the Voronoï regions boundaries, a.k.a. the Voronoï di-
agram, is displayed in blue. Comparing this with the final configuration of Fig. 10.13
shows the relation with the circles of distance field.
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Fig. 10.13 Construction of pairwise convex hull in the Euclidean context

10.5.1.2 Delaunay Graphs as a Tentative

When using Voronoï diagrams, an associated construction is to consider adjacent
Voronoï regions. It is formalized in the notion of Delaunay graph which has for
vertices the seeds, and for edges the pairs for seeds whose Voronoï regions are ad-
jacent. For two regions two be adjacent, there must be at least one point having for
closest seeds the seeds of these two regions. This means that the edges of the De-
launay graph can also be described as the pairs of seeds such that there exists a disk
containing these two seeds, but having no other seed inside it. This other description
has the benefits not to refer explicitly to the Voronoï diagram. Whatever description
we use, Delaunay graph edges are strongly related to the pairs of seeds for which
we detect the middles in Fig. 10.14b. But if we compare with Fig. 10.13, we can see
that there are too many edges.

a b c

Fig. 10.14 Euclidean distance fields, Voronoï diagram, Delaunay and Gabriel graphs
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10.5.1.3 Gabriel Graphs and Middle Detection

In fact, since we detect the edges from their middles and theses middles are detected
from special distances patterns on the Voronoï diagram. This means that any edge
whose middle is not on the Voronoï diagram is not constructed. Removing those
non-detectable edges from Fig. 10.14b reduces it to Fig. 10.14c, and it comes out
that this resulting graph is also of great interest in applications relying on graphs in
Euclidean spaces: it is the Gabriel graph of our seeds. While edges of the Delaunay
graphs connect seeds of adjacent Voronoï region, the Gabriel graph retains only
edges that do not pass through the Voronoï region of another seed. This can be put
in another way which is the most known definition of this construction: there is an
edge between two seeds x and y if and only if there is a disc using the segment [xy]
as diameter and this disc does not contain any other seed. Given two seeds, such a
disc is called the Gabriel disc of these seeds and its center is called the Gabriel
center between these seeds. These Gabriel centers are exactly the middles that are
detected in Fig. 10.13, which makes Gabriel graphs very important for our purpose.

Gabriel graphs are proximity graphs introduced in [6] to study sets of geograph-
ical points. They are now used in many domains such as wireless [8] and sensors
networks for routing and communication management purpose. They also serve as
tools to study proximity of points in order to cluster them, in domains like data min-
ing, data and multivariate analysis [2], and machine learning [4, 12]. In computer
graphics [9, 13], they can help to convert a set of points into a 3D surfaces and to
obtain information about such surfaces. Their wide spread use is due to their numer-
ous properties. Indeed, they are related to Voronoï diagrams, Delaunay graphs as just
seen, but also to planar graphs, minimum spanning trees, nearest neighbor graphs,
and represent or contain optimal solutions for some classes of energy-minimizing
problem [8].

One particularly important property of Gabriel graphs is that they are always con-
nected. This is exactly the property what we need to ensure that the construction of
the convex hull is always complete, but for the cellular case. So our goal in the next
section is to see how this Euclidean construction fits to cellular spaces. In fact, some
adaptation will be required. So we will describe a new generalization of Gabriel
graphs that we call metric Gabriel graphs. The latter carries properties of Gabriel
graphs in any metric space, which allows them to be used in most considered cellu-
lar spaces in particular. This will provide us with the rule for the detection of middle
that we need in general for many cellular spaces.

10.5.2 (Metric) Gabriel Graphs in Cellular Spaces

10.5.2.1 Failure of the Original Definition

In this section, we show that the original Gabriel graph definition does not accom-
modate the particularities of the cellular space. We highlight the fact that the orig-
inal definition relies on many uniqueness properties of the Euclidean space, the
uniqueness of the segment linking two points for example. Cellular spaces do not



10 Convex Hulls and Metric Gabriel Graphs 199

a Hexagonal b Hexagonal c Von Neumann d Von Neumann

Fig. 10.15 Non-uniquenesses in hexagonal and Von Neumann communication graphs: (a,c)
lines indicate possible shortest paths, and crosses indicate many possible centers for the balls,
(b,d) the isolated point forms a diameter for the ball with any of the other points

have these uniqueness properties, so a generalization of the original definition is
needed.

Indeed, the connectedness of the original definition mainly relies, by definition,
on the existence of sufficiently many Gabriel discs and associated centers. In an
Euclidean space, for a given arbitrary disc and a given point on the border of this
disc, there is a unique diameter segment. Also, for any pair of points, there is a single
disc using these points as diameter. Unfortunately, considering cellular spaces, and
replacing the notion of disc by the metric notion of balls does not conserve these
uniqueness properties as shown in Fig. 10.15. A ball is given by a center point and a
radius and corresponds to the set of points of the space whose distance to the center
point is less or equal to the radius. Looking at (b) and (d), we can see that for a given
ball of arbitrary radius r, and one selected cell of its left border, there are many cells
on the right forming a diameter for the ball: any of them is at distance 2r from the left
cell and, as a consequence, has a shortest path joining it with the left cell and passing
through the center of the ball. In the same vein, a pair of cells is not a diameter for a
unique ball. Indeed, the uniqueness of this ball in Euclidean space is implied by the
uniqueness of the shortest path linking two points. When many shortest paths exist
between two points, they may have different middles, which leads to different balls,
all having the same radius, but each being centered at a different middle as shown
in (a) and (c).

Because of these differences between the Euclidean and cellular case, the orig-
inal Gabriel graph definition in terms of discs does not correspond to a connected
graph in the cellular case. Figure 10.16 gives an example of loss of connectedness
due to the fact that there might be no ball having only two seeds. In (a), every ball
containing two seeds contains an additional third seed, preventing the two points to
have a Gabriel edge. In (b), every ball containing two seeds of different lines con-
tains four additional seeds, preventing the lines to be belong to the same connected
Gabriel component, and so on.

10.5.2.2 Metric Gabriel Graphs

We therefore need to modify the definition to take into account these particularities
in a meaningful way. In [11], an examination of the nature of Gabriel graphs and
its transformation for arbitrary metric spaces is given and the following definition
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a Each point b Each line c Each diagonal d Subcase of (c)

Fig. 10.16 Hexagonal and square grid: the Gabriel graph is not connected. Grey seeds show
one of the connected components and gray balls give the reason of the non-connectedness.

of metric Gabriel graph is obtained: its vertices are the seeds as before, and two
seeds x and y have an edge connecting them if and only if there is a ball such that the
seeds contained in this ball can be partitioned in two sets X and Y with x ∈ X , y ∈Y
and d(X ,Y ) = 2r, r being the radius of the ball2. As before, such a ball if called a
metric Gabriel ball and its center a metric Gabriel center.

Compared to the original definition of Gabriel graphs, this definition deals with
the non-uniqueness of diameters by replacing the requirement of having two seeds
x and y such that d(x,y) = 2r (this means precisely that [xy] is a diameter) by the
requirement of having two sets of seeds X and Y such that d(X ,Y ) = 2r. The non-
uniqueness of balls for a given diameter is managed by requiring only the existence
of at least one metric Gabriel ball. This means that whenever diameters and balls
are unique, this definition is equivalent with the original one, as it is the case for Eu-
clidean spaces. In fact, metric Gabriel graphs correspond exactly to original Gabriel
graphs when the distance function is the Euclidean one. Moreover, metric Gabriel
graphs are always connected for any set of points in any arbitrary metric space.

So this corresponds exactly to what we want to construct with our detection of
middles. More precisely, metric Gabriel centers are precisely the detectable middles.
To detect them, we use a very useful relation between metric Gabriel graphs and
distance fields: in the same way a ball of radius r is a metric Gabriel ball when the
set of seeds that it contains can be separated in two sets of distance 2r, a distance
field neighborhood of radius r corresponds to that of a detectable middle when its
set of minimally valued cells can be separated in two sets of distance 2r. This does
not hold in arbitrary metric spaces but is true in cellular spaces.

Figures 10.17a and 10.17b give an example of this correspondence in the case of
an hexagonal cellular space with three seeds.

In Fig. 10.17a, the first configuration shows a cell, indicated with a little dot, that
is the center of a metric Gabriel ball. Indeed, the two seeds that it contains forms
a diameter, which can be checked by exhibiting a shortest path joining them and
passing through the center, or simply by checking that they have distance 8, while
the ball is of radius 4. When considering only the neighborhood of this cell, in the
second configuration, the only available information is the distance values computed

2 Another way to put it is that there is an edge between two seeds x and y if and only if there
is a ball such that x and y are at distance 2r and any other seed inside the ball is at distance
2r from x or from y.
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a Example of a metric Gabriel center

b Example of a cell which is not a metric Gabriel center

Fig. 10.17 Relation between distance fields, metric Gabriel balls, and union of balls

from the seeds, not the actual seeds position. Taking the minimally-valued cells in
this neighborhood of radius 1, we can see that they can be partitioned in two sets of
distance 2, which means that this partition forms a diameter for the neighborhood.
In fact, this neighborhood is a metric Gabriel ball for a dilation of the union balls of
of radius 3 centered at each of the three seeds, as shown in the third configuration.

In Fig. 10.17b, we can see the converse. The first configuration shows a cell,
indicated with a little dot, that is not a metric Gabriel center. Indeed, the two seeds
do not form a diameter for this ball. When considering only the neighborhood of this
cell, in the second configuration, there is no way to partition the three minimally-
valued cells of the neighborhood in two sets of distance 2.

To summarize, the distance field values in the neighborhood of a cell allows it to
detect whether it is a metric Gabriel center, and using this detection for the detection
of middle required in Sect. 10.4.2.1 and Sect. 10.4.2.2, we know that sufficiently
many pairs of seeds will be connected to obtained only one connected component
and construct the complete convex hull.

10.6 The Complete Cellular Automaton

We are now in position to write the complete cellular automaton constructing the
convex hull for arbitrary set of seeds, and for any cellular spaces3. It is simply a

3 For the sake of brevity, some parts are not sufficiently general to be used without modifica-
tion in all cellular spaces, but we believe that the main “understanding” is in this restriction
version. We hope that any reader who needs the extra missing piece of generality will be
able to guess it.
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Fig. 10.18 Local configurations of middle cells and middle edges in hexagonal grids

compound of all the building blocks we have introduced throughout the chapter, but
we now show explicitly how these building blocks needs to be linked:

distt+1(x) =

⎧

⎪⎨

⎪⎩

0 if x ∈ P;

distt(x)+ 1mod3 if x �∈ P∧∀y ∈ N(x); distt(y) = distt(x);

distt(x) if x �∈ P∧∃y ∈ N(x); distt(y) �= distt(x);

centt+1(x) =
∨

{

{z ∈ N(x) | distt(z) = distt+1(x)− 1} diam. 2 ;

∃y ∈ N(x);{z ∈ N(xy) | distt(z) = distt(xy)− 1.5} diam. 3 ;

backt+1(x) = centt+1(x)∨∃y ∈ N(x); distt(y) = distt(x)+ 1mod3∧backt(y);

convt+1(x) = backt+1(x) ∨ ∃y0,y1 ∈ N(x); convt(y0)∧ convt(y1)∧ x ∈ [y0,y1].

Here the metric Gabriel centers detection is written using two cases: one for di-
ameters of even length, and the other for the diameters of odd length. In the first
case, it is sufficient to look at the minimally-valued neighbors (those having value
distt+1(x)− 1) and to check if they can be separated in two sets of distance 2, i.e.
the diameter of the neighborhood. For the second case, the center is between two
cells x and y, and we need to look at the “neighborhood of the edge (x,y)” of ra-
dius 1.5. So N(xy) is a shorthand for N(x)∪N(y), and distt(xy) is a shorthand for
min(distt(x) + 0.5,distt(y) + 0.5) which is the distance of the edge to the closest
seeds. If the minimally-valued neighbors (those having value distt(xy)−1.5) can be
separated in two sets of distance 3 (the diameter of the neighborhood), then x is the
extremity of an edge-like metric Gabriel center. For concreteness, Fig. 10.18 shows
the set of minimally-valued neighbors that can be separated in two sets whose dis-
tance is the diameter for the case of the hexagonal cellular space. The first line is for
cell-centers, and the second line for edge-centers.

The evolution of this cellular automaton for hexagonal cellular space and with-
out the conv field was already shown in Fig. 10.12. The reader can now recheck the
detection of the middles in the light of our explanation of the relation with metric
Gabriel graphs, balls and centers. When it comes to the number of states, there are
two things to say. Firstly, when restricting to the content of this chapter, namely the
construction of the convex hull for a statis set of seeds, it is not useful to distinguish
between cells having been marked the cent, back and conv rules. These three detec-
tions can be reduced to one Boolean field summarizing the five reasons to be marked
as belonging to the convex hull: being a seed, being a cell-like metric Gabriel center,
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being a edge-like metric Gabriel center, being on the way back from a marked cell
and its closest seed, and being between two marked cells in the neighborhood:

markt+1(x) =
∨

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈ P;

{z ∈ N(x) | distt(z) = distt+1(x)− 1} diam. 2 ;

∃y ∈ N(x);{z ∈ N(xy) | distt(z) = distt(xy)− 1.5} diam. 3 ;

∃y ∈ N(x); distt(y) = distt(x)+ 1mod3∧markt(y);

∃y0,y1 ∈ N(x); markt(y0)∧markt(y1)∧ x ∈ [y0,y1].

This construction therefore requires 7 states: 3 states for the distances modulo 3,
multiplied by 2 states for the mark field, plus 1 special state for the seeds that always
have dist = 0 and mark = �. Its neighborhood radius is 2 because of the edge-like
metric Gabriel centers detection. Secondly, if one wants to consider moving seeds
for example, it is necessary to keep the distinction between the fields cent, back and
conv.
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