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Cellular Automata for Efficient Image and Video
Compression

Radu Dogaru and Ioana Dogaru

Abstract. This chapter focuses on applications of cellular automata for image and
video compression leading to high efficiency implementations (i.e. relatively simple
operators and algorithms, and extra functionality such as encryption, achieved with
no additional resources). First, a CA-based alternative to compressive sensing is
presented, assuming that an image sensor is available where pixels can be addressed
randomly. The key idea is to replace the traditional raster scan counter addressing
the sensing units, with a “chaotic counter” behaving like a pseudo-random number
generator but having in addition the binary synchronization property. Consequently,
only a fraction of all pixels (the most relevant) are rapidly scanned. A certain class
of hybrid CA (HCA) implements the chaotic counter. A recovery algorithm, imple-
mented in the receiving unit, reconstructs the missing (less relevant) pixels. Another
CA-based method presented herein is a vector-quantization method where color or
gray images are decomposed in binary bit-planes and compression is achieved by
replacing binary blocks within bit-planes with similar binary vectors from an in-
dexed dictionary, previously generated by a properly designed CA. Finally, aspects
of efficiently implementing the CA modules present in both schemes, are briefly
discussed.

1.1 Introduction and Motivation

In various applications (remote sensing, secure data transmission, compressive sens-
ing [1] some message (represented by the generic sequence of samples) must be
passed from a transmitter system (next abbreviated “Tx”) to a remote receiver
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(next abbreviated “Rx”) or storage medium with an efficient use of the bandwidth
or storage memory. In addition, in order to maintain data security certain encryption
algorithms may be also used. The problem as stated above is usually approached by
various methods form the mature areas of image and video compression and cryp-
tography. Yet, some applications require low power consumption and consequently
a simple mechanism is needed for encoding and decoding processes.

Cellular automata (CA) hold the promise [25] [6] [5] of a very convenient way
to achieve both compression and encryption with the benefit of using simple cir-
cuit models leading to low power consumption, as often desired when the source of
signal is a stand-alone sensor unit powered by battery or/and solar energy. In cryp-
tology, cellular automata are widely used [8], patents on cellular-automata random
number generators being among the first associated with CA applications [31].

In this chapter recent research results in this area are summarized, within a gen-
eral compression framework depicted in Figure 1.1. The particularity of our ap-
proach is to exploit complex dynamics emerging in Boolean cellular automata for
various tasks in compression and encryption, usually approached with computa-
tionally intensive algorithms using various arithmetic operations such as cosine and
other kind of transforms, multiplications etc. Locating useful emergent behaviors in
CA and their potential applications are topics described in more detail in [12] and
in a series of recent papers [13] [17].

The use of cellular automata in various stages of the compression and decom-
pression phases allows the avoidance of arithmetic operators such as multiplication,
summation etc. with a dramatic impact on the architectural complexity of the al-
gorithms implementation. Within this paper only the case of lossy compression is
considered, which is effective for image and video content associated to the mes-
sage. Also the focus is on algorithms that would lower the complexity of the Tx unit
(often a stand alone smart sensor with critical power consumption requirements).

As seen in Figure 1.1, in order to compress the string xt two stages (depicted here
as A and B) will be considered. As detailed next, they can be applied independently
(i.e. A only, or B only) or consecutively. In stage A, the redundancy present in the
original message is exploited to reduce the number N of original samples (i.e. im-
age pixels) into a smaller K number of representative samples. In the corresponding
A-stage of the receiver (Rx), the missing samples are recovered (with a certain loss)
using various interpolation schemes. Stage A is reminiscent of the compressive sam-
pling approach but the similarity is only at the functional level; while compressive
sampling approaches produce the K−sized vector sk as the result of multiplying the
message with an N ×K matrix with random (non-binary) elements, our approach
dubbed “chaotic scan” [19] simply picks some samples from the original message
without performing any arithmetic operation at all. It is the role of a cellular automa-
ton to select (by addressing) the K samples from the original message, as it will be
detailed in Section 1.2. Consequently, a highly intensive computational algorithm
(usually embedded into a sensor with low power consumption requirements) is re-
placed now with a much simpler implementation of a CA with n = log2 N cells
addressing the selection of K samples. In terms of FPGA implementation each CA
cell is allocated to one single LUT (basic computational unit in FPGA), a far more
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Fig. 1.1 A general framework for message compression and recovery

effective solution than implementing the matrix multiplication required by the com-
pressive sampling approach. It was shown [19] that using a ratio K/N = 5% ensures
a decent recovery of the original signal, while preserving the most important features
of the image (or video sequence). Consequently a compression of up to 20 times can
be achieved in the A-stage of the encoder with very little computational effort. More
computational effort is required in the A-stage of the Rx unit [19] [16] but in most
applications of interest the Rx is usually implemented on a desktop computer with
no critical requirementes, while the Tx is often an autonomous low-power sensor
where the issue of low complexity is critical.

An identical CA structure as the one used to scan the original message is required
in the Rx unit. In order to ensure the correct recovery of information, the CA in the
Rx unit must evolve (as a dynamic system) in synchrony with the CA used in the
Tx unit. This property is supported, as recently was demonstrated [14] by a proper
choice of particular CA rules. Such CA rules ensure both binary synchronization
and longest cycle properties. Binary synchronization means that the entire state of
the CA (n bits addressing the t sample of the original message) can be recovered
from one single bit per clock received from the Tx CA. Among various chaos syn-
chronization schemes [24] [27] presented in the literature this one is the most robust
and requires the less synchronization information. The longest cycle property means
that eventually all (or almost all, with an insignificant loss of samples) N samples
of the original message are addressed (much like a counting automaton, except the
pseudo-random ordering or scan) ensuring that, if desired, all information from the
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original message is preserved (yet scrambled) without compression i.e. K ∼= N. In
fact, the user-selected K parameter represents the number of cycles advanced by the
properly designed CA used in chaotic scan and can be traded off for the quality of
the reconstructed message.

Compared to the CA-based A-stage, in terms of functionality, the closest ap-
proach found in the literature seems to be the “holographic scan” [3] although the
implementation of this algorithm appears to be more complex than implementing a
cellular automaton. Other traditional approaches implementing stage-A are the use
of various image transforms (requiring intensive arithmetic computations) such as
DCT, Karhuenen-Loeve or PCA, kernel-PCA [26] [28] or neural auto-encoders [23].

Stage-B is basically a Vector Quantization (VQ) stage. Blocks of the original
message (or compressed, resulting from the A-stage) are m-sized vectors that would
be compared with codebook vectors in a D-sized dictionary (previously prepared
to optimize the compression efficiency for a class of messages). Consequently a
label (among all D possible) is selected indicating the closest codebook vector. Tra-
ditional approaches to VQ employ computationally intensive arithmetic operations
performed in fixed-point representations of the variables (including message sam-
ples). In contrast, our CA-based approach, to be detailed in Section 1.3, has two
simplifying features: i) the message is divided in binary bit-planes (i.e. binary
message sequences associated to one rank bit in the original sequence) as seen in
Figure 1.2 such that m-sized vectors are now m-bit binary words; ii) the codebook
is a list of m-sized binary vectors, generated by a 2-dimensional CA with a certain
rule. The CA rule may be obtained using a training approach (as detailed in this
chapter) or it can be the result of a selection process [21] [11]. In effect, computa-
tionally intensive arithmetic operators are replaced with simple logic operators and
the codebook is simply generated based on CA rule information only (there is no
need to send the entire codebook from Tx to Rx). In terms of performance (evaluated
here as the PSNR - Power to Signal Noise Ratio - between original and recovered
message) the CA-VQ approach is comparable to traditional image compression al-
gorithms (e.g. JPEG) and in fact is more effective for low bit-rates (under 0.25 bits
/ sample). An FPGA implementation is reported in [32].

Mixed approaches involve exploiting both A and B stages. For instance, one may
scan only K <N samples from the original message and submit to the VQ system an
incomplete m-sized vector (some bits are not specified since they belong to samples
that were not scanned). Still a codebook search can be performed for the best match
and the result is an improved compression rate (with an N/K factor) at a slightly
degraded PSNR performance.

In order to implement the proposed compression methods various technolo-
gies may be used. Of a particular interest is the possibility to embed compres-
sion algorithms into smart sensors with low power requirements. Consequently,
it is important to choose convenient synthesis solutions such that the whole al-
gorithm is described in a hardware description language (e.g. VHDL or Verilog).
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Fig. 1.2 Organization of signals in b binary sequences called bit-planes. Bitplane j is as-
sociated to the binary sequence s j

k,k = 1 . . .K. Each sample skis represented on b bits.sk =

[s0
k ,s

1
k , · · · ,sb−1

k ] with s j
kε{0,1}(binary).

In Section 1.4 an efficient method to implement CA systems in FPGA technologies
is briefly discussed in relation with the representation of the CA local rule using
Algebraic Normal Form (ANF).

1.2 An Alternative to Compressive Sensing Based on Cellular
Automata Scan

1.2.1 Principle of Chaotic Scan

This approach to message compression is a compact alternative to the compressive
sensing methods [1] and was first proposed in [19]. The simplified model is given
in Fig. 1.3, with regards to an image sensor. The idea may be further expanded
to any other kind of multi-dimensional sensor in order to reduce the number of
samples effectively transmitted from the sensor. The method is effective assuming
that adjacent elements in the image array are highly correlated.

The nonlinear dynamic system (discrete-time, discrete-state) present in both Tx
(encoding) and Rx (decoding) units can be any kind of automaton as long as it en-
sures certain properties to be detailed next. Since its role is to address (count) K pix-
els (or in general, K samples) from the N samples of the original message it will be
called next a “chaotic counter”. The term “chaotic” is a simplification from “pseudo-
random”, the above mentioned system implementing in fact a pseudo-random num-
ber generator. As discussed next in more detail, a convenient chaotic counter belongs
to a class of 1-dimensional cellular automata having all desired properties for such a
system. The contrast with a raster scanning counter is exemplified in Fig. 1.4. Here
only 5% of the pixels in the original image) were addressed sequentially during the
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Fig. 1.3 An alternative model for compressed sensing based on chaotic scan: Pixels in a sen-
sor array are chaotically selected by the chaotic counter. At receiving point a similar chaotic
counter, synchronized with the one in Tx, is recomposing the image form the serially re-
ceived pixel value while estimating its L-sized neighborhood. A small fraction of samples
from the Tx image suffices to recover a good quality replica of the original image with a
certain acceptable information loss.

counting process. While in the case of the raster scan a single image strip with no
meaningful content is obtained, the chaotic counter locates distant uncorrelated pix-
els (at apparently random locations) making the image content recognizable. Based
on the assumption that pixels in the neighborhood are often correlated, a simple re-
construction scheme is employed to recover the missing pixels. It consists in filling
a L× L window with the same intensity value (the one of the received pixel). As
seen in Fig. 1.4, when an optimal L is selected, this reconstruction scheme allows
the recovery of most the important semantic image content.

Consequently, the scanning process of K samples is given by the following low
complexity and easy to implement algorithm, where X(i, j) represents the original
square image message with N samples:

RESET the counting automaton
FOR k=1,..K
i=rand_i;
j=rand_j;
s(k) =X(i,j);
END
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Fig. 1.4 Image recovery with chaotic scan after receiving K = 0.05N pixels (5% of all N
pixels of the original image); Too small values of the recovery block size (L) makes the
received image difficult to read while using too large L values impede on image details.
Depending on the image content there is an optimal L value (here, L = 8) such that the
semantic content is best revealed.

Without loss of generality in the next we will use rand_i rand_j to denote the
reading of the next state of the counting automaton (split into n/2 bits for line “i”
and n/2 bits for column “j”).

1.2.2 Properties of the Chaotic Counters

In order to understand the properties required for the chaotic counter, we shall con-
sider it as a particular case of discrete-time, discrete-space dynamic system (au-
tomaton). Any such dynamic system, also called a nonlinear map is defined by a
feedback function F imposing a certain profile of the state space (partitioned into
certain attractors and their basins of attraction).
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Fig. 1.5 General structure of a nonlinear map or automaton in a digital implementation
(discrete-time, finite precision of n bits). In the case of cellular automaton, each bit is as-
sociated with a cell. The nonlinear mapping F induces a structure of the state space which is
partitioned in attractors, each attractor may also collect “transient states” associated with its
basin of attraction. The complexity of attractors is proportional with their length (maximal
length is L = 2n) and average distance between consecutive states.

Good chaotic counters must rely on:

i) The existence of a dominant long attractor cycle with a length L as close
as possible to the maximal length i.e. N = 2n; This property ensures that almost
all pixels in the original image are addressed. The existence of transients and of
many shorter cycles, imply some loss of pixels (samples) from the original message.
Recently, considering CA as a nonlinear dynamical systems [7] defined conservative
CA (definition applies to any automaton model as depicted in Fig. 1.5) as those
having the property that no state is a transient (or ephemeral) state. Both LFSR and
NLFSR (Linear or Non Linear Feedback Shift Register) used for long as pseudo-
random sequence generators have this property as well. The cellular automata in
this paper are conservative and consequently they have no transients;

ii) A “chaotic” character of the dominant longest cycle; A very long cycle is
not necessarily a random one. A good counter-example is the counting automaton
used in the traditional raster scan of images. It has a maximal cycle length L =N but
the transition from one state to the consecutive one is rather smooth, often only one
bit is changing. As discussed above we are interested in pseudo-random counting
automata ensuring consecutive distant “jumps” between the coordinates of pixels.
To characterize such behaviours, in [18] we introduced a randomness measure that
may be conveniently computed. We are in particular interested on the randomness
of the dominant cycle. The measure of randomness was defined observing that in
a “chaotic” automata the average Hamming distance between consecutive binary
vector states (as given by the n cell outputs) becomes n/2 instead of 1 for counters.
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Fig. 1.6 Exemplification of binary synchronization using two identical CA with n = 31 cells
and rule ID=13474665135 (5 cells neighborhood). Although the initial states of both trans-
mitter (Tx-CA) and receiver (Rx-CA) are different by driving the Rx-CA with 1 single bit
from Tx-CA ensures that after a synchronization period Ts the entire state of Rx-CA is iden-
tical to the state of Tx-CA.

Therefore, for any arbitrary cycle Cj of length Lj a scattering coefficient S j is defined
by averaging the Hamming distances between all consecutive binary vector states in

that cycle: S j =
1

nLj

L j

∑
k=1

n
∑

i=1
|xi (k)− xi (k− 1)| where k is the time index of consecu-

tive states in the cycle j. A degree of chaos λ j = 1− ∣
∣2S j − 1

∣
∣ is then defined such

that it becomes maximum if S j = 0.5 and zero for the extreme, non-chaotic cases
of both fixed points and period 2 cycles (with S j = 0 and S j = 1 respectively). The
degree of chaos may be regarded as qualitatively similar to the Lyapunov exponent
used in continuous-state systems to characterize chaotic behaviours. In our case its
largest value is λ j = 1 indicates the highest degree of randomness in a finite-length
cycle of an automata network;

iii) Binary synchronization property: Unlike traditional chaos synchronization
[24] in the case of binary synchronization sending only 1 bit from the Tx automaton
allows the recovery of the entire state (n bits) in a similar Rx automaton (as seen in
Fig. 1.6).

In this case the information needed to resynchronize the Rx is minimal and con-
sists of only 1 bit per clock cycle. Consequently it may be easily embedded and
recovered in various forms of modulation/demodulation. This property is not com-
mon to CA and it was first investigated for all elementary cellular automata (ECA)
in [18]. Within all 256 ECA we found that the binary synchronization property holds
only for the conservative rules ID=45 (and its 3 equivalents ID=75,89, and 101).
Further work [17] indicates that a precondition to achieve binary synchronization in
CA is the existence of an asymmetric cell (i.e. a cell that is sensitive to mirroring the
inputs from left to right with respect to the central cell). Also, in order to optimize
the dominant cycle length it was found [14] that a hybrid CA model with some of
the cells having inverted outputs has a better behavior and allows to design a cellular
automaton satisfying all 3 properties mentioned above.

Next, CA or automata systems fulfilling all the above three properties will be
mentioned as “good chaotic counters”. As seen in the next subsection, expanding
the neighborhood to 5 cells allows the identification of more CA rules holding the
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Fig. 1.7 Structure of HCA (left) and LFSR or NLFSR (right) chaotic counters. Unlike HCA,
binary synchronization can be used with LFSR/NLFSR only for the cells in the shift-register
area, i.e. without cryptographic protection. In the case of HCA cryptographic protection is
ensured since synchronization is only possible if the the Rx-CA structure (ID, mask vector)
is identical for the Tx-CA. Consequently, the key is given by the specific CA structure.

“good chaotic counter” property. The problem of locating good chaotic counters in
the very large space of all possible 232 rules for the 5-cell neighborhood CA is a
computationally demanding problem, and so far we solved it only for the case of up
to 4 inputs cell within a 5-cell neighborhood.

1.2.3 Designing Good Chaotic Counters as Hybrid Cellular
Automata

Ordinary chaotic maps (i.e. logistic, tent, etc.) cannot be used as good chaotic coun-
ters because their finite computing precision implementations often produce cycles
with only a very small fraction of state vectors (each addressing a pixel in the image
sensor array) belonging to the counting cycle. Consequently, only a small fraction of
the sensing elements will be addressed, compromising the information acquisition
process [15]. As discussed above, a hybrid cellular automaton model proved to be
very effective in ensuring the properties of a good chaotic counter. To explain the
HCA structure let us consider the case m = 3 (3 cells neighbourhood). It expands
naturally to a 5-cell or larger neighbourhood. Figure 1.7 presents the HCA automa-
ton structure compared to the widely known LFSR. Note that both of them may
be operated in either autonomous mode (as it is the case in the transmitter system
Tx) or with one input forced by the synchronization signal (as it is the case in the
receiving system Rx).
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The discrete-time dynamics of the hybrid cellular automata (HCA) is given by
the next equation, which applies synchronously to all n cells (a cell is identified by
an index i ∈ {1,2, ..n} ):

xT
i (t + 1) = mi ⊕Cell

(

xT
i−1 (t) ,x

T
i (t),x

T
i+1 (t)) , ID

)

(1.1)

where the upper index “T ” stands for the transmitting CA counter, ⊕ is the log-
ical XOR operator and Cell (u1,u2,u3, ID) is a Boolean function with 3 binary
inputs (u1,u2, and u3), also called the CA (local) rule. A periodic boundary con-
dition is assumed i.e. the leftmost cell (i = 1) is connected to the rightmost one
(i = n). The binary mask vector m = [m1,m2, ..,mn] can be optimized [14] (so far
our programs perform optimization in reasonable time for n ≤ 29) to obtain a max-
imal cycle length (r = L/2n → 1). The above equation (1.1) easily extends to larger
neighborhoods such as m =5 by adding 2 additional inputs to the cell, located on
the rightmost and leftmost positions (i-2, and i+2). For any neighborhood the rela-
tionship between inputs and the output local CA rule can be characterized in two
different ways while conversion functions are available via [30] :

a) Truth-Table (TT) representation: This is the most widely used representa-
tion. The rule is characterized by a binary vector Y = [yN−1,yN−2, ...,y0]. Its repre-
sentation in decimal basis is called a rule identifier (ID). The output yk is a binary
number assigned to the cell’s output when its inputs ordered as a binary vector
[un,un−1, ..,u1] are the binary representation of k;

b) Algebraic Normal Form (ANF): This form is described by a binary vector
C = [c0,c1, ...cN ] (using the method in [30] a unique conversion from Y to C and
vice-versa exists) such that its coefficients are multipliers of an algebraic represen-
tation on the GF2 exemplified next for the case of m=3 neighborhood:

y = c0 ⊕ c1u1 ⊕ c2u2 ⊕ c3u2u1k3u3 ⊕ c4u3 ⊕ c5u3u1 ⊕ c6u3u2 ⊕ c7u3u2u1 (1.2)

Note that in general (for any size m of the neighbourhood) ck is the multiplier of
a product (logical AND) of all input variables in a binary vector [un,un−1, . . . ,u1]
corresponding to 1 in the associated binary vector representing k. For example, in
the case of m = 3 for k = 5 = 1012 only the inputs corresponding to 1 in the input
string u3u2u1are selected to be multiplied resulting in the term c5u3u1.

The most important results of our research in designing HCA that are good
chaotic counters are summarized in Figure 1.8:

i) First, we have a number of HCA with 3 inputs where the ANF represen-
tation of the rules is given by the formula: y = mi ⊕ ua ⊕ ub ⊕ ucub where a,b,c
are cell position indexes such that a− b = b− c = h where h is an integer. In all
these cases a computationally intensive program is run to find the best mask (the
one maximizing the dominant cycle length L). For instance the HCA with rule
ID=1347465135 has the best mask found so far 19801 (decimal representation of
mask vector m = [m1,m2, ..,mn]) leading to L =N-1=131071 in the case of n =17
cells (i.e. addressing an image of size 512×1024). The problem with all HCA in the
above category is that they are conservative (no transient and possible to optimize
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Fig. 1.8 Cell rules in a 5-cell neighbourhood in order to obtain good HCA chaotic counters

for the longest cycle) only for an odd number of cells n; This will make them useful
in image and video only for sensing arrays with an aspect ratio of 2:1.

ii) Recently we were able to locate a good counting automaton within the class of
4 inputs positioned in a 5-cell neighbourhood. This automaton (ID=3335309004)
is conservative for any number of cells, including even ones, as required by the
commonly used square image sensors. A near-optimal mask for the case n =18 (i.e.
addressing a 512×512 pixels image) is 17855. For this mask L =261990=N−154.
The loss of 154 pixels is insignificant for such a compression scheme where the
number of scanned samples K << N

1.2.4 Message Recovery and Examples

It is assumed that in order to reconstruct the image Y a counting automaton similar
to the one used in the measurement process is available. Also, it is operated in syn-
chrony with the one available in the Tx unit. They would either start from the same
initial state or they may be synchronized using the binary synchronization property.
The recovery counting automata follows the same dynamics as in the measurement
process during the scanning of theK received samples.

The reconstruction algorithm is:
RESET the counting automaton
INITIALIZE all pixels in Y with 0.5;
FOR k=1,..K
i=rand_i; j=rand_j;

Y = Bi, js(k)+Y◦ (1−Bi, j) (1.3)

END
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Fig. 1.9 Various sliding bases and their associated radial basis functions

In the above, 1 is a square matrix with all unity elements, both Y and Bi, j are
matrices with the same size as the original image X and ◦ denotes element wise
matrix multiplication (i.e. if C = A◦B then ci, j = ai jbi j). Consequently the recovery
process is an iterative process given by recursive equation (1.3), with a total of at
most 2N multiplications (using a pice-wise linear basis function, the number of
multiplications can be further reduced). The sliding basis Bi,j is computed using a
radial basis kernel inspired from [20]. The detailed formulae and an example for 3
types of basis functions are given in Figure 1.9.

The sliding basis implements the equivalent of a fuzzy membership function with
a maximal value 1 on the position (i, j) of the current measurement (d = 0). Neigh-
boring pixels at distance d will correspond to the decaying amplitude of the kernel
function according to a radius parameter r to be determined. Such a radial basis
function is necessary to reconstruct the neighboring pixels that were not sampled
during the measurement process and it is expected to be in relationship with the
correlation model of the signal X.

In terms of recovery performance we estimate the PSNR (measured in dB) of
the reconstructed image Y (in this case the noise is the difference between original
and the reconstructed image) as a function of K. Such a curve may be also consid-
ered as a rate-distortion curve since the compression rate is proportional to K for a
given N.

In the following, the “Lena” image with N = 256× 256 samples (pixels) is con-
sidered. It was found that the choice of the basis function (among the 3 types men-
tioned in Fig. 1.9) has little influence on the PSNR value. Consequently, in order to
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reduce the computational effort, the type 3 basis (a piecewise-linear approximation
of the Gaussian) is the most suitable. The type-3 basis is 0 almost everywhere except
(2r+ 1)2 pixels. Consequently the number of multiplications required in equation
(1.3) reduces from 2N to only 2(2r+ 1)2.

The pre-computing of RB and its storage allows to avoid calculations of Bi, j for
each new measurement position as the counter automaton advances. In the case of
a fixed radius (e.g. choosing r = 2, for a similar reconstruction error as in [4]) the
number of multiplications in the recovery algorithm is of the order of 106 for K =
20000 (easily computed in less than 0.1 second on actual computers). For reference,
in [2] where an improved, highly effective reconstruction algorithm is considered,
more than 100 seconds are reported for a similar number of measurements. This
comparison indicates a significant speed-up of our image scan method with several
orders of magnitude, not only in the measurement but also in the reconstruction
phase, when compared to compressive sensing.

The Influence of Radius r: As expected, the radius r has a significant role on the
quality of the reconstructed image. It corresponds to L in the naïve reconstruction
scheme discussed in Fig. 1.4. As seen in Figure 1.10, for a given r the PSNR im-
proves almost linearly up to a value K, then it saturates. In order to avoid saturation
r must be smaller. But on the other hand, a small r is in contrast with a small K
because the sliding basis cannot provide good reconstruction of all pixels located in
the neighborhood of the measurement. The reconstructed image will look noisy (as
it happens for r = 1.5 in Fig. 1.10) but will improve when r = 3. Consequently, it
follows that r must adapt to the value of K. Based on experiments we propose the
following formula: r(K) = log2(N)− log2(K). Such a value may be used as a fixed
one in the recovery scheme but an adaptive radius is also possible, for instance by
updating the radius value any timeK becomes a power of 2. Experiments with both
schemes revealed no major quality differences in the reconstructed image, except
that the adaptive radius scheme would lead to more computational effort (recalcu-
lating the sliding basis each time the radius value changes).

Note that in the above experiments K = 5000 is about 7.6% of all pixels in the
original image corresponding thus to a compression rate of about 13 times or a rate
of 0.61 bpp (bits per pixel) assuming a coding of each pixel with 8 bits. In order
to provide a comparison with compressive sensing approaches, the same medical
image as in [4] is considered. While our method leads to a slight degradation in the
PSNR when compared to the above mentioned compressive sensing method (PSNR
= 24,1 dB for ours, instead of 26.5 dB in [4] for K= 10000 measurements) the
visual quality of reconstructed images is rather similar (Figure 1.11). Such a slight
degradation is acceptable given the important reduction in the overall complexity,
particularly the complexity of the sensing device.

Further improvements (i.e. obtaining a better PSNR for a given K) are expected,
at the expense of computational complexity, by introducing novel reconstruction
sliding bases, tailored to the nature of the images to be compressed. Though,
given the very low complexity of the compression stage such a method is suit-
able for embedding in various smart sensing devices with low power consumption
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Fig. 1.10 Influence of radius r and K on the quality of the reconstructed image; Here the
basis function is of type 3 (piecewise-linear) having the lowest computational complexity

requirements. The method can be applied for video sequences as well, and recent
work [29] suggests that it can help reduce the complexity of the motion detection
algorithms and may have other benefits given by the simplicity of adjusting the
scanning rate depending on the presence or absence of motion (low rate or small K
per frame for still or almost still images and higher rates when motion occurs). Fur-
thermore, given the longest cycle property one still has the choice to reconstruct the
original image without loss. In all cases (for any degree of compression) the chaotic
scan introduces a form of encryption (a key associated with the mask and the ID of
the cellular automaton must be known at the Rx unit, in order to properly recover
the original message) for free.

1.3 Image Compression Based on Dictionaries Generated by
Cellular Automata (CA-VQ)

1.3.1 The General Framework of Dictionary Based Compression

The main idea in this case is to use a properly designed cellular automaton to gener-
ate a codebook formed of a number D of m-sized binary vectors. The compression
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Fig. 1.11 The result of chaotic scan for K = 10000 and optimal radius r = 2.7

of the original message is done on a certain number b of bit-planes from the original
message (e.g. an image).

Within this section we consider the message signal to be identical to the original
one i.e. K =N. For each block, a search through the codebook reveals the best match
(associated to a label encoded with log2 D bits) and consequently in the decoding
stage (assuming the existence of the same codebook in the Rx unit) the initial block
is replaced with one of the D code-vectors in the codebook. Consequently, each bit-
plane may be treated independently i.e. algorithm parameters such as the CA rule
(ID) generating the codebook, its size D, the block size m, may be optimized such
that the bit error (Berr) for that specific bit-plane is minimized. In the following b=0
denotes the most significant plane, there is also an option in choosing the exact num-
ber b of bit-planes knowing that the most important in term of overall performance
(measured as the PSNR of the recovered image with respect to the original one) is
bit-plane 0. The compression performance in this case is always expressed in bits
per pixel (bpp). For instance, while using for each b =6 bit-planes m =64 (8× 8
blocks), D =64, the rate is computed with the following general formula:

bpp = (b log2 D)/m (1.4)

For the above particular values (quite usual with this compression scheme) a 0.56
bpp rate results. An exemplification of the encoding and decoding stages for the
CA-based dictionary VQ system is given in Figures 1.12 and 1.13.

1.3.2 Learning CA-Based Dictionaries and Performance
Evaluation of the CA-VQ System

As indicated above, the most important aspect in optimizing the CA-based com-
pression scheme is the choice of the CA structure and its rule, since it generates
the dictionary. In previous works [21] [11] a guided search through the space of
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Fig. 1.12 Encoding process using CA-generated dictionaries and binary vector quantization

Fig. 1.13 Decoding process using the CA-generated dictionaries
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all 1024 outer-totalistic two-dimensional CA with 5-cell (von Neumann) neighbor-
hood was done and several useful ID rules were proposed, maximizing the PSNR
for the a given compression rate. In the same work, various block sizes and number
of bit-planes were considered, typical values being D = 32 or 64 and m = 64 to 256
(for very high compression rates). Comparing our compression method to JPEG led
to the conclusion that CA-VQ gives better performance than JPEG for high com-
pression rates (bpp < 0.3) such compression rates being also associated with faster
computation.

Herein we present a different approach for choosing the rule of a CA code-
book suitable for compressing a class of images. Unlike in the previous approaches,
the local rule is no more restricted to outer-totalistic and although the same von-
Neumann neighborhood is used, the space of possible rules is now extremely large
(232 rules). Moreover, the CA rule can be individually tuned per each bit-plane.

The CA-based dictionary has the following structure: Given m and D (usually
both are powers of 2) the array size M of the 2-dimensional M×M square CA with
periodic boundary condition is determined as M =

√
Dm . For instance, if D = 64

and m = 64, the size of the dictionary CA is M = 64. The codebook is composed of
all square D blocks of m size each cropped from the emergent pattern obtained in
this CA after a certain number T of iterations when the initial state is an arbitrary
(but known at Rx) random binary state with equal number of bits in 0 and 1. The
initial state, the rule ID, and the number of iterations T may be regarded as a key of
the compression scheme providing a rudimentary form of encryption in addition to
the basic compression functionality.

The CA rule is obtained from a simplified learning process using a certain bit-
plane image (binary image) of arbitrary size. The original bit-plane image is per-
turbed using a uniform distribution i.e. a percentage α of its bits are flipped (1
becomes 0 and vice-versa) resulting in an input image for the 5 inputs CA cell (a
sliding 5-cell neighborhood is scanning all N pixels of the image as inputs, while
the central cell from the associated image is taken as the desired output. For each
of the 32 possible 5-bit entries (each encoded as an integer i in the associated truth
table) two numbers are stored: ni

0 indicating the number of times the desired output
was 0 and ni

1 the number of times the desired output was 1. For Ni occurrences of
the input code i it follows that ni

0 + ni
1 = Ni. Finally each output for the line i of the

truth table is assigned 1 if ni
1 > Ni/2 and 0 else. For the rare cases with Ni = 0, 1 or

0 is picked randomly with a probability 0.5 as the corresponding output in the truth
table. The resulting truth table is then associated with the cell ID, as shown in Fig.
1.14, where α = 0.12 was optimized such that the recovery scheme will minimize
the bit error on the most significant bit-plane. Given a choice for m and D, the CA
codebook is generated by running the CA with the previously determined ID for a
certain number of iterations.

The above strategy was motivated by the goal to have a cell ID such that the
resulting CA will converge to a stationary pattern preserving most of the relevant
details in the original bit-plane. A noisy input was found necessary in order to ensure
the diversity of input codes (5-bit words) necessary to construct the associated truth
table.
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Fig. 1.14 Generating a CA codebook via a learning mechanism and its use in a CA-VQ
compression scheme

As seen in Fig. 1.14, for a particular choice of the codebook size D = 16
and block size m = 16 (4 × 4 window) the running of the 16 × 16 CA with
ID=4276938880 for T = 10 iterations would reveal the codebook. A zoom of both
the original image (512× 512 pixels) and the recovered one using this codebook
for the most significant 4 bit-planes shows the typical losses of this compression
scheme. The PSNR is about 25 dB and the quality of the image is acceptable given
the rate of 1 bit per pixel. Further optimization of performance is still possible, for
instance the use of different, optimized codebooks, for each bit-plane, or a different
learning scheme.

In terms of computational complexity, the CA-VQ approach requires more com-
putational effort in the encoding stage and less effort in the decoding stage. It is an
opposite situation from the case of chaotic scan compression. For a message with
N bits and a particular bit rate (codebook size D and block size m) assuming that
the codebook is calculated and stored, the compression process requires compar-
isons (between blocks and code-words in the codebook) being more effective for
large block sizes and small dictionaries (also ensuring highest compression but low-
est reconstruction quality). The above compares not so favorably to simply reading
K < N samples in the chaotic scan method. But on the other hand, the complexity of
the CA-VQ compression process still remains linear in the number of pixels, being
much lower than for traditional compression methods. The decompression stage in
CA-VQ is m times faster (i.e. N/m operations of reading the codebook) and involves
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Fig. 1.15 Distribution of bit errors on each of the 4 bit-planes used in the CA-VQ compres-
sion scheme for the particular example shown in Fig. 1.14

no comparison. This situation compares favorably to the relatively large number
of operations (multiplications) required by the basis-based recovery scheme of the
chaotic scan method.

1.4 Hardware Description and Synthesis of CA Using Algebraic
Normal Form

In the above, two different image (or video) compression approaches were proposed,
both based on Cellular Automata (CA). Since CA is an important part of both al-
gorithms, it is important to find convenient and efficient ways to implement them
in various technologies. While usual PCs or microcontrollers may be used to im-
plement the cellular automata, maximal speed and efficiency is achieved when CA
models are implemented in a fully parallel fashion. Particularly, when the aim is of
implementing the above algorithms as part of a low-power smart sensing device it
is of interest to provide CA code for hardware description languages.

In [9] we provide a convenient methodology to generate VHDL representations
using the Algebraic Normal Form conversion discussed previously. The result would
be a fully integrated sensor system with encryption, compression and other capabil-
ities, as discussed in [19]. Such a sensor would perform compressed sensing using
a different, computationally more efficient approach.

A detailed description of our FPGA implementations is also given in [10]. Spe-
cific to all of them is the development of a software module, called next CA-
description module and written in C++ to automatically generate the VHDL code
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used for the usual synthesis steps. The same code may be used for FPGA designs as
well as for dedicated VLSI chips. The CA-description module inputs a description
of the CA (neighborhood size, rule, mask, number of cells, etc.) in a user-friendly
manner and generates VHDL modules to be used in various hardware implementa-
tions of the above mentioned algorithms. The key issue in generating the most im-
portant part of the VHDL code is the very good correspondence between the ANF
description and the possibility to express it in a few VHDL line codes. A particular
example is give next: A one-dimensional CA is defined as having 7 cells, a certain
mask vector (1100010) and ID=101. The resulting VHDL line describing the entire
HCA is:

REG<= “1111111” xor c xor a xor (b and a) xor mask;
The above corresponds to the following particular form of the ANF representa-

tion:
y = 1⊕ u3⊕ u1 ⊕ u2u1 (1.5)

The above variable REG represents the entire CA array and the variables a,b,c
are constructed to represent shifted versions of REG according to specific neighbor-
hood to be implemented.

So far the CA-description module can implement either 3-cell neighborhoods or
5-cell neighborhoods for the HCA model (the traditional, homogeneous CA model
is a particular case of HCA with all 0 elements in the mask vector). Various FPGA
target devices were considered and in all cases the resulted implementation was
found to be very efficient. For instance, in the case of Xilinx FPGA’s 1 LUT was
assigned for HCA designs with up to 3 inputs and mask vector while 2 LUTs suf-
fice to implement an entire cell (including its local memory) in the maximal case
considered so far of 5 cell neighborhoods. Similarly, for FPGA devices from Altera
(Cyclone II EP2C35F672C6 device on the DE2 board provided by the University
Program) one basic computational unit (LE – logic element) is assigned for 3-inputs
HCA cells and 2 times more for the case of 5-inputs. Note the very efficient allo-
cation of one cell per FPGA logic register. The above results confirm that cellular
automata with very large number of cells (n = 33216 in the case of the chip on the
DE2 board) can be easily realized in low cost series FPGA. The same VHDL de-
scription may be used to generate part of specialized sensor chips (e.g. in addition
to low power image sensors e.g. [22]) using an ASIC design flow.
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