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3.1 Introduction

Optical coherence tomography (OCT) has developed rapidly since its potential for

applications in clinical medicine was first demonstrated in 1991 [1]. OCT performs

high-resolution, cross-sectional tomographic imaging of the internal microstructure

in materials and biologic systems by measuring backscattered or backreflected

light.

Mathematical models [2–11] have been developed to promote understanding of

the OCT imaging process and thereby enable the development of better imaging

instrumentation and data processing algorithms. One of the most important issues in

the modeling of OCT systems is the role of the multiple-scattered photons, an issue

which has become fully understood through the works of Thrane et al. [12] and

Turchin et al. [13] representing the most comprehensive modeling.

Experimental validation of models on realistic sample structures, e.g., layered

sample structures, would require manufacturing of complex tissue phantoms with

well-controlled optical properties. However, a useful alternative to validate the analyt-

ical predictions on such geometries is to apply a Monte Carlo (MC)-based simulation

model [14], because there are few limitations on which geometries may be modeled

using MC simulations. MC models for analyzing light propagation are based on
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simulating the radiative equation of transfer by tracing a large number of energy

packets each considered to represent a given component of the incident light energy

[15, 16]. Hence, as a numerical experiment, one has full control of all parameters.

The scope of this chapter is to present analytical and numerical models that are

able to describe the performance of OCT systems including multiple-scattering

effects in heterogeneous media. Such models, where the contribution to the OCT

signal from multiple-scattering effects is taken into account, are essential for the

understanding and in turn optimization of OCT systems. An analytical model based

on the extended Huygens–Fresnel (EHF) principle meeting these requirements is

presented here. An MC analysis is presented in order to handle the modeling of

heterodyne/coherent detection OCT systems with a radiative transfer-type photon

packet MC approach. Using this MC model results are obtained, which validate the

EHF model. In general, these models, analytical as well as numerical, may serve as

important tools for improving the interpretation of OCT images.

3.1.1 Modeling Light–Tissue Interactions Relevant to OCT

Since the first paper describing the use of the OCT technique for noninvasive cross-

sectional imaging in biological systems [1], various theoretical models of the OCT

system have been developed. The primary motivation for deriving an appropriate model

has been the potential optimization of the OCT technique leading to an improvement in

imaging capabilities and to the possibility of extracting physical parameters.

The first theoretical models were based on single-scattering theory [2, 3]. These

models are restricted to superficial layers of highly scattering tissue in which only

single scattering occurs. Single scattering or single backscattering refers to photons

which do not undergo scattering either to or from the backscattering plane of

interest, i.e., ballistic photons.

At larger probing depths, however, the light is also subject to multiple scattering.

The effects of multiple scattering have been investigated on an experimental basis

[5], by using a hybrid Monte Carlo/analytical model [6] and analysis methods of

linear systems theory [7], on the basis of solving the radiative transfer equation in

the small-angle approximation [8, 13], by using models based on the extended

Huygens–Fresnel (EHF) principle [9, 12, 17], and MC simulations [10, 14]. Note

that modeling using MC simulations is treated in greater detail in Sect. 3.4.2.

In the present context, the main objective is the analysis of multiple-scattering

effects. As shown by several investigations, the primary effects of multiple scattering

are a reduction of the imaging contrast and resolution of the OCT system. In Ref. [4],

the authors suggested solving the multiple-scattering problem by using the EHF

principle [9] known from atmospheric propagation of laser beams [18]. Their analysis

contains one important inaccuracy because in their end result, the ballistic component

is included twice leading to erroneous calculations. As a result, their analysis should

be applied with care. In addition, the effects of the so-called shower-curtain effect [18]

are not accounted for in their analysis. Thrane et al. [12] succeeded in applying

the EHF principle for the OCT geometry; see Sect. 4.2. Following their analysis,
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Feng et al. [17] aimed at expanding on the use of EHF in modeling the OCT

geometry. In particular, their aim is to simplify the analysis, but several mistakes

are introduced in the attempt: firstly, an imaginary lens is introduced with the purpose

of obviating the shower-curtain effect leading to errors in the final calculation of

the OCT signal. Secondly, an erroneous lateral coherence length is introduced,

i.e., the lateral coherence length should be calculated as resulting from reflecting

off a rough surface and not, as done in Ref. [17], a specular surface. Hence, their

model should be approached with caution.

A statistical optics approach to adequately model the effects of multiple scatter-

ing was proposed by Karamata et al. [19]. However, their analysis, based on

a heuristic argument, is misleading and incorrect. The main error is due to their

assumption regarding spatial coherence, where it is alleged that transverse spatial

coherence is not degraded due to multiple scattering. The argument used by

Karamata et al. [19] is valid only for the case of a focused beam reflecting off

a rough surface with no scattering medium in between the reflection site and the

collection aperture; see, for example, pages 210–211 of Ref. [20]. This is definitely

not the case for OCT in turbid media (i.e., tissue). The degradation of spatial

coherence of a beam propagating through a multiple-scattering media is well

known and documented in the literature; see Ref. [21] and references therein.

Therefore, the analysis given in Ref. [19] is not considered further, and the results

and conclusions should not be used in modeling light propagation in turbid media.

Turchin et al. [13] expanded the analysis of Dolin [8] to an OCT geometry. Their

analysis is based on the radiative transfer equation (RTE) in the small-angle

approximation, of which Arnush [22] first obtained the closed-form solution. It

should be noted that in this approximation, the solution of the RTE and the EHF is

identical [23, 24]. In general, the analysis of Ref. [13] is consistent with that of the

EHF model, which is presented below. However, technically there are two impor-

tant differences that need to be pointed out. Firstly, the choice of scattering phase

function in Ref. [13]: as in Ref. [12], the forward scattered part is modeled by

a Gaussian distribution, but additionally a small backscattered fraction is included.

This way of taking into account tissue backscattering was previously suggested by

Raymer et al. [25–27] and discussed by Yura et al. [24]. However, it was not

included in the EHF analysis of the OCT geometry [12], but it is incorporated

below. Hence the RTE [13] and EHF [12] descriptions are equivalent. Secondly,

Thrane et al. [12] present an analytical engineering expression for the OCT signal

current based on an accurate analytical approximation for the irradiance distribu-

tion in the backscatter plane (see Appendix for details). Turchin et al. [13] do not

use this approximation, and consequently their end results require numerical

computations, which yield highly accurate values for the OCT signal current.

They also obtain accurate results in the extraction of optical scattering properties

of the sample, which is further addressed in Sect. 3.5.1. Furthermore, it is noted that

the analysis of Turchin et al. [13] is restricted to the special case where the focusing

lens in the sample arm is in direct contact with the tissue being investigated. This is

in contrast to the analysis of Ref. [12] where the ABCD ray-matrix formalism was

used to readily include an arbitrary configuration of the sample arm. Finally, in
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contrast to the totally numerical results of Ref. [13], the multiple-scattering EHF

analysis presented below yields accurate analytical expressions for the OCT signal

for a wide range of optical configurations that both are amenable to physical

interpretation (see, e.g., [28]) and are desirable for use in parametric studies for

OCT system optimization.

Strictly speaking, the OCT model developed in Ref. [12] and further extended

here is based on the assumption that the detected signal return arises only from

photons that have been backscattered from a target layer selected by the coherence

gate of the light source. Backscattered photons from the bulk tissue between the light

source and the target layer have been assumed to be negligible in comparison with

photons arising from the tissue discontinuity. Realistically, photons backscattered

from the intervening bulk tissue whose optical path-length difference between the

reference light is within the coherence length will also be detected. Bulk

backscattered detected light contributes to the noise in the OCT signal because it

does not furnish any local information about the target layer. Yao andWang [29] used

a Monte Carlo-based technique to simulate the OCT signal from homogeneous turbid

medium. They considered a single mode fiber emitting a pencil beam that is in direct

contact with the turbid medium and divided the OCT signal return into two catego-

ries: one from a target imaging layer in the medium (Class I photons) and the other

from the intervening bulk tissue (Class II photons). The simulation results of Ref. [29]

reveal that these two classes of photons have very different spatial and angular

distributions which make OCT possible. The Class II signal has a much broader

spatial distribution than the Class I signal. Although the spatial distributions of both

signals broaden with probing depth, the Class II signal is broadened much faster than

the Class I signal, and thus, limiting the detection area will reject most of the Class II

signal. Additionally, Class II photons have a wider angular distribution than the

corresponding Class I photons, and a correspondingly larger fraction of Class II

photons that impinge on the detector area will not be effectively heterodyne coupled

with the reference light. For large probing depths, however, the simulation results for

the homogeneous turbid medium indicated that Class II signal photons will eventu-

ally become dominant. The actual crossover point is ultimately related to the effi-

ciency of Class II signal rejection, whether or not the medium contains refractive

index discontinuities, and the effects of Class II photon rejection due to imaging

configurations such as dynamic focusing. With these considerations in mind, the

extended Huygens–Fresnel-based OCT model developed in Ref. [12], updated to

incorporate the attenuating effects of tissue backscatter, is presented below.

3.1.2 Organization of this Chapter

The chapter is divided into three sections covering specific topics in modeling OCT

systems. In Sect. 3.2, an analytical model for the detected OCT signal is derived

based on the EHF principle. In Sect. 3.3, the effects of multiple scattering on the

detected Doppler OCT signal are investigated. In the field of biomedical optics,

Monte Carlo simulations have already proved their value. In Sect. 3.4, an advanced
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Monte Carlo model for calculating the OCT signal is presented, and comparisons to

the analytical model are made. In general, good agreement is obtained, thus

validating the EHF model. Section 3.5 overviews the impact of extracting optical

scattering properties from OCT images on the diagnostic potential of OCT.

3.2 Analytical OCT Model Based on the Extended
Huygens–Fresnel Principle

In the present section, a general theoretical description [12, 30, 31] of the OCT

technique when used for imaging in highly scattering tissue is presented, which is

valid for an arbitrary ABCD optical configuration. The description is based on the

EHF principle. In a standard OCT system [1] with diffuse backscattering from

the tissue discontinuity being probed, and a distance between the focusing lens and

the tissue, the so-called shower-curtain effect [18, 32] is present, which is

uniquely included in Ref. [12]. This effect is not described by previous ad hoc

theoretical models [9]. Furthermore, because the sample arm focusing lens in

Turchin et al. [13] is assumed to be in direct contact with the tissue being probed,

shower-curtain effects are not present in the geometry and hence not in their

analysis.

3.2.1 The Extended Huygens–Fresnel Principle

When an optical wave propagates through a so-called randommedium, e.g., tissue,

both the amplitude and phase of the electric field experience fluctuations caused by

small random changes in the index of refraction across the sample. For tissue [33]

it can in general be assumed that the depolarization term of the associated vectorial

wave equation can be neglected, if the wavelength of the radiation, l, is much

smaller than l0, where l0 is a measure of the smallest random inhomogeneities

in the medium [34, 35] (the structures that dominate light propagation in tissue,

e.g., cells, have a size of 2 mm or more). With this assumption, the wave equation

can be simplified to three scalar equations, one for each component of the field.

Letting U(R) denote one of the scalar components transverse to the direction of

propagation along the positive z-axis, the following scalar stochastic equation is

obtained:

∇2U þ k2n2 Rð ÞU ¼ 0, (3:1)

where k is the wave number, R is a point in space, and n(R) is the index of

refraction. Considering a random medium, n(R) acts as a stochastic variable for

different realizations of tissue with given macroscopic optical parameters.

Equation 3.1 cannot be solved exactly in closed form. Some early attempts to

solve Eq. 3.1 were based on the geometric optics approximation [36], which ignores

diffraction effects, and on perturbation theories widely known as the Born
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approximation and Rytov approximation [37]. An alternative method was devel-

oped, independent of each other, by Lutomirski and Yura [38] and by Feizulin and

Kravtsov [39]. This technique is called the extended Huygens–Fresnel (EHF)

principle. It extends the Huygens–Fresnel principle to deal with media that exhibit

a random spatial variation in the index of refraction. This principle follows directly

from Green’s theorem [40] and the Kirchhoff approximation [40] applied to the

scalar wave equation together with the use of a field reciprocity theorem. Yura and

Hanson [41, 42] have applied the EHF principle to paraxial wave propagation

through an arbitrary ABCD system in the presence of random inhomogeneities.

An arbitrary ABCD system refers to an optical system that can be described by

the so-called ABCD ray-transfer matrix [43]. For the present cases of interest,

the ABCD ray-transfer matrix is real, and the field in the output plane is then given

by [41]

U rð Þ ¼
ð
U0 pð ÞG p,rð Þdp (3:2)

where r and p are two-dimensional vectors transverse to the optical axis in the

output plane and input plane, respectively. The spatial integrals are to be carried out

over the entire plane in question. The quantity U0(p) is the field in the input plane,

and G(p,r) is the EHF Green’s function describing the response at r due to a point

source at p given by [38, 41]

G p,rð Þ ¼ G0 p,rð Þexp i’ p,rð Þ½ �, (3:3)

where G0(p,r) is Huygens–Fresnel Green’s function for propagation through an

ABCD system in the absence of random inhomogeneities and ’(p,r) is the

random phase of a spherical wave propagating in the random medium from

the input plane to the output plane. Huygens–Fresnel Green’s function G0(p,r) is
given by [41]

G0 p,rð Þ ¼ � ik

2pB
exp � ik

2B
Ap2 � 2p � rþ Dr2
� �� �

, (3:4)

where A, B, and D are the ray-matrix elements for propagation from the input plane

to the output plane.

3.2.2 Calculating the OCT Signal: Time Domain

A time-domain OCT system [1] is based on a broad bandwidth light source (SLD),

a Michelson interferometer with a movable reference mirror, and a photodetector.

The rotationally symmetric sample arm geometry of such an OCT system is

depicted in Fig. 3.1, where a lens with focal length f is placed at a distance

d from the tissue surface. The optical path length of the reference arm in the
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Michelson interferometer is matched to the optical depth of the focal plane,

whereby the configuration – due to backscattering – is probing the layer of the

tissue coinciding with the focal region.

For the wavelengths of interest in the NIR region and, e.g., in the case of human

skin, light scattering in the bulk tissue is predominantly taking place in the forward

direction [44]. Hence, the scattering phase function s(y,z) can be modeled as a sum

of a small-angle scattering phase function s1(y,z) that tends to zero for y > p/2 and
a constant but relative small isotropic term included to incorporate a backscattered

contribution [8, 13]:

s y, zð Þ ¼ 1� 2pb zð Þ½ �s1 y, zð Þ þ 2pb zð Þ, (3:5)

where pb(z) denotes the backscattering coefficient as a function of the depth. For

tissues, the quantity pb will normally be much smaller than unity, i.e., pb<<1; see,

for example, Ref. [13].

It was noted above that the EHF principle is based on the paraxial approximation

and therefore valid for small-angle forward scattering. In particular, it can be shown

that the paraxial approximation is valid up to 30�, i.e., 0.5 rad [43]. Because most

tissues are characterized by rms scattering angles below this limit, the EHF princi-

ple may be used to describe light propagation in tissue retaining both amplitude and

phase information. Also, the bulk tissue absorption is neglected in the present

calculation, because in the case of most tissues, the scattering essentially accounts

for the signal attenuation [44]. Basically including the absorption would result in an

overall exponential decay. Thus, bulk homogeneous tissue is characterized by

a scattering coefficient ms, a root-mean-square scattering angle yrms or asymmetry

parameter g [45], and a mean index of refraction n. Furthermore, the bulk tissue is

modeled as a material with scatterers randomly distributed over the volume of

interest.

Consider an optical field that is narrowband and non-monochromatic, i.e., the

spectral width of the light source Dn is much smaller than the center frequency n.
Light sources characterized as “broad band” in relation to OCT also fulfills this

condition. At a spatial coordinate p and time t, such an optical field may be

expressed in terms of a (temporally) slowly varying complex amplitude A(t)

Fig. 3.1 Sample arm

geometry of the OCT system
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where the characteristic temporal scale of the complex envelope amplitude A is

much less than 1/n0. In addition it is assumed that the reference field, UR, and the

incident sample field, USi, are of Gaussian shapes:

UR p, tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

pw2
0

exp � pj j2
2

1

w2
0

þ ik

f

� �" #vuut A tð Þexp ioRtþ ’R tð Þ½ �, (3:6)

USi p, tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps

pw2
0

exp � pj j2
2

1

w2
0

þ ik

f

� �" #vuut A tð Þexp iostþ ’s tð Þ½ �, (3:7)

where PR and PS are the powers of the reference and input sample beams,

respectively; w0 is the 1/e intensity radius of these beams in the lens plane,

k ¼ 2p /l; l is the center wavelength of the source in vacuum; oR and oS are

the angular frequencies of the reference and input sample beams, respectively;

and ’R and ’S are the phases of the reference field and input sample field,

respectively.

The mixing of the backscattered or reflected sample field US from the probed

layer with the reference field UR on the photodetector of the OCT system gives rise

to a heterodyne signal current i(z) [9]:

i zð Þ / g tð Þj jRe
ð
UR pð ÞU�

S pð Þdp
� �

, (3:8)

where the integration is taken over the area of the photodetector. Re[·] denotes the

real part, and t denotes the time difference between the propagation times of the

reference and sample beams. jg(t)j is the modulus of the normalized temporal

coherence function of the source.

Because a random medium is considered, the mean square heterodyne signal

current hi2(z)i should be calculated, which is proportional to the heterodyne signal

power. It can be shown to be given by [9, 18]:

i2 zð Þ	 
 ¼ 2a2 g tð Þj j2Re
ðð

GS p1, p2; zð ÞGR p1,p2ð Þdp1dp2
� �

, (3:9)

where

GR p1,p2ð Þ ¼ UR p1ð ÞU�
R p2ð Þ	 
 ¼ UR p1ð ÞU�

R p2ð Þ (3:10)

Gs p1,p2; zð Þ ¼ Us p1; zð ÞU�
s p2; zð Þ	 


(3:11)

are the mutual coherence functions of the reference and the reflected sample

optical fields in the mixing plane. The angular brackets denote an ensemble
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average over the statistical properties of the tissue. Physically, the heterodyne

mixing process takes place on the photosensitive surface of the detector in the

focal plane of the “mixing” lens. However, Fried [46] has shown mathematically

that one can identically compute the mean square heterodyne photocurrent in

a plane directly in front of the mixing lens at the side facing the sample, and,

accordingly, p1, p2 are two-dimensional vectors in this plane transverse to the

optical axis. The quantity a is a conversion factor for power to current and equals

(qe�/hn), where qe is the electronic charge, � the detector quantum efficiency, n the
optical center frequency, and h Planck’s constant. In the present analysis, without
loss of generality, the temporal coherence function is approximated with

a rectangular function of width tc, the coherence time of the source.

Details of the derivation of the mutual coherence function GS are given in

Appendix under the assumption that the forward propagated light can be considered

statistically independent from the backscattered light. To obtain a closed-form

expression including the intermediate ranges of propagation, the single-scattering

solution and the solution for large optical depths are interpolated, as outlined in

Appendix, yielding the following squared signal contribution from within the

coherence gate around the depth z:

i2 zð Þ	 

coh_gate �

2a2PRPSsb
p2ð

e�mszexp �r2=w2
H

� �
w2
H

þ 1� e�mszð Þe�2pbmszexp �r2=w2
S

� �
w2
S

� �2
dr,

(3:12)

where the effective backscattering cross section of the layer being probed is defined

as sb¼ 4ppbmslc/k
2. Here lc denotes the coherence length of the source given by ctc.

In Eq. 3.12 it is assumed that mslc<<1.

The quantities wH and wS are the 1/e irradiance radii in the target plane in the

absence and presence of scattering, respectively, given by [12]

w2
H ¼ w2

0 A� B

f

� �2

þ B

kw0

� �2

, (3:13)

w2
S ¼ w2

0 A� B

f

� �2

þ B

kw0

� �2

þ 2B

kr0

� �2

, (3:14)

where r0 denotes the lateral coherence length of the reflected sample field in the

plane in which the mixing calculated [12]

r0 zð Þ ¼
ffiffiffiffiffiffiffi
3

msz

s
l

pyrms

nB

z 1� 2pbð Þ
� �

: (3:15)
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Here the root-mean scattering angle, yrms, is related to the anisotropy

parameter g:

yrms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� gð Þ

p
: (3:16)

Performing the integration over the probed layer (see Fig. 3.1) in Eq. 3.12 and

simplifying, the following expression for the mean square heterodyne signal current

is obtained:

i2 zð Þ	 

coh_gate �

a2PRPssb
pw2

H

� e�2msz þ 4e�msze�2pbmsz 1� e�mszð Þ
1þ w2

S

w2
H

þ 1� e�mszð Þ2e�4pbmsz
w2
H

w2
S

2
6664

3
7775

¼ i2
	 


0
C zð Þ:

(3:17)

Assuming pb<<1, Eq. 3.17 reduces to

i2 zð Þ	 

coh_gate �

a2PRPssb
pw2

H

� e�2msz þ 4e�msz 1� e�mszð Þ
1þ w2

S

w2
H

þ 1� e�mszð Þ2 w
2
H

w2
S

2
6664

3
7775

¼ i2
	 


0
C zð Þ:

(3:18)

The quantity hi2i0 ¼ a2PRPSsb/p(wH)
2 is the mean square heterodyne signal

current in the absence of scattering, and the terms contained in the brackets are the

heterodyne efficiency factor C(z). The quantity C(z) is the reduction in the hetero-

dyne signal-to-noise ratio due to the scattering of the tissue. The first term in the

brackets of Eq. 3.17 represents the contribution due to single scattering. The third

term is the multiple-scattering term, and the second term is the cross term.

Physically, the cross term is the coherent mixing of the unscattered and the

multiple-scattered light. A comparison between the analytical approximation of

C(z), given in Eq. 3.17, and the exact numerical calculation is given in Ref. [47]

showing reasonable agreement. The validity of the above expression has been

explored by comparing the model with advanced Monte Carlo studies and confirms

that the analytical result provides a feasible model for investigating the qualitative

behavior of the OCT configuration; see Sect. 3.4.
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3.2.2.1 Dynamic Focusing: Diffuse Reflectance
If one applies dynamic focusing, the focal plane will ideally be arranged to move in

accordance with the position of the coherence gate. This situation can be analyzed

by setting fA ¼ B and A ¼ 1 in Eqs. 3.13 and 3.14:

wH ¼ f

kw0

,wS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
H þ 2f

kr0

� �2
s

, (3:19)

w2
H

w2
S

¼ 1

1þ 2w0

r0 zð Þ
 �2

: (3:20)

For lateral separations much less (greater) than the coherence length, r0(z), the
field can be considered to be mutually coherent (incoherent). Because of the diffuse

backscattering from the layer being probed, r0(z) is determined only by the

propagation back through the tissue from this layer to the mixing plane. As

a consequence, r0(z) is the lateral coherence length in the mixing plane of a point

source located in the tissue plane being probed. For the geometry of interest, it can

be shown [47] that

r0 zð Þ ¼
ffiffiffiffiffiffiffi
3

msz

s
l

pyrms

zþ nd zð Þ
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2pb

p
� �

(3:21)

where d(z) ¼ f � z/n, and yrms � [2(1 � g)]1/2. The second term in the brackets of

Eq. 3.21 indicates that the lateral coherence length increases with increasing

distance between the tissue surface and the mixing plane.

The dependence of the lateral coherence length on the position of the scattering

medium relative to the observation plane is the so-called shower-curtain effect

[18, 32]. In general, the shower-curtain effect implies that the lateral coherence

length obtained for the case when the scattering medium is close to the radiation

source is larger than for the case when the scattering medium is close to the

observation plane. Physically, this is due to the fact that a distorted spherical

wave approaches a plane wave as it further propagates through a non-scattering

medium. As a consequence, e.g., from a distance, one can see a person immediately

behind a shower curtain, but the person cannot see you. The effect is well known for

light propagation through the atmosphere as discussed by Dror et al. [32], but has

been omitted in previous theoretical OCT models [9]. However, due to the finite

distance between the focusing lens and the tissue, the effect is inevitably present in

practical OCT systems. Finally, the reflection characteristics of the tissue play

a vital role for the shower-curtain effect.

It is only in the very superficial layers of highly scattering tissue that it is possible

to achieve diffraction-limited focusing. In this region, the spot size is given by 2wH.

At deeper probing depths, the spot size is dependent on the scattering properties and
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given by 2wS. It is seen from Eqs. 3.20 and 3.21 that the spot size is degraded due to

multiple scattering when the probing depth is increased. This is illustrated in

Fig. 3.2, where the intensity pattern is shown as a function of the probing depth

z in the tissue using Eq. 3.72, thus illustrating spot size degradation in, e.g.,

microscopy.

From Eq. 3.18 an expression for the OCT signal for large optical depths can be

obtained as

i2 zð Þ	 
 / exp �4pbmszð Þ
ms 1� gð Þz3 ,msz >> 1: (3:22)

From this expression it is observed that the denominator is proportional to the

reduced scattering coefficient ms(1-g), while the numerator will be close to

1 for small values of pb. Consequently, if the signal for large optical depths is

observed, it cannot be expected to derive both ms and g from the measured depth

profiles.

3.2.2.2 Dynamic Focusing: Specular Reflectance
If, instead of diffuse backscattering, one had a specular reflection at the layer being

probed, the corresponding mutual coherence function for plane waves would apply.

Using this mutual coherence function and pb<<1, the following expression is

obtained for the heterodyne efficiency factor:

Fig. 3.2 The intensity pattern as a function of the probing depth z in the tissue (l ¼ 814 nm,

ms ¼ 10 mm�1, g ¼ 0.955 (yrms ¼ 0.3 rad), n ¼ 1.4, f ¼ 5 mm, w0 ¼ 0.5 mm)
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C zð Þ ¼ e�2msz þ 1� e�2msz
� �w2

H

w2
s

� �
(3:23)

and

r0 zð Þ ¼
ffiffiffiffiffiffiffiffiffi
1

2msz

s
l

pyrms
: (3:24)

It is obvious from Eq. 3.24 that the shower-curtain effect would not be present in

the case of specular reflection at the tissue discontinuity, in contrast to the case of

diffuse backscattering. However, it is important to note that it is diffuse backscat-

tering which actually occurs in the case of tissue.

3.2.2.3 Collimated Sample Beam
In the case of a collimated sample beam, the expressions for wH and wS in Eqs. 3.13

and 3.14 need to be rewritten:

w2
H ¼ lim

f!1
w2
0 1� d þ z=n

f

� �2

þ d þ z=n

kw0

� �2
" #

¼ w2
0 þ

d þ z=n

kw0

� �2

(3:25)

w2
S ¼ lim

f!1
w2
H þ 2 d þ z=nð Þ

kr0

� �2
" #

¼ w2
0 þ

d þ z=n

kw0

� �2

þ 2 d þ z=nð Þ
kr0

� �2

, (3:26)

where it has been used that A ¼ 1 and B ¼ d + z/n. In order to find the heterodyne

efficiency factor, these expressions must be inserted in Eq. 3.17, and moreover, the

expression for r0 should be chosen in accordance with the reflection characteristics
of the probed layer.

3.2.2.4 Numerical Results
In Fig. 3.3, the calculated heterodyne efficiency factorC(z) from Eq. 3.18 is shown

as a function of depth z of the tissue sample for typical parameters of human

skin tissue. The curves are shown for the cases of diffuse backscattering with

(dashed) and without (dash-dot) the shower-curtain effect included and for

the specular reflection (solid), respectively. In addition, the case of pure single

scattering (dotted) is included for comparison. At shallow depths single backscat-

tering dominates. Due to multiple scattering, the slope is changed and

C(z) becomes almost constant for three cases (curves 1�3). The important

difference is, however, that the change of slope occurs at different depths.

This is due to the shower-curtain effect leading to an appreciable
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enhancement of C(z) and with it the heterodyne signal, which is obtained

by comparing curves 1 and 2 in Fig. 3.3. Physically, this increase in the

heterodyne signal is due to an enhanced spatial coherence of the multiple-

scattered light.

In Fig. 3.4,C(z) from Eq. 3.18 is shown as a function of depth z for ms¼ 10mm�1

and three values of gwithin the range of validity of the EHF principle. The curves are
computed for the case of diffuse backscattering. This figure demonstrates the degree

of sensitivity of the heterodyne efficiency factor with respect to changes in the

asymmetry parameter. Moreover, in Fig. 3.5, C(z) from Eq. 3.18 is shown

as a function of depth z for g ¼ 0.95 and three values of ms within the range

of interest with respect to tissue [44]. The curves are again computed for the case

of diffuse backscattering. This figure demonstrates the degree of sensitivity of

the heterodyne efficiency factor with respect to changes in the scattering coefficient.

3.2.2.5 Choice of Scattering Function
In the present modeling of the OCT geometry, a Gaussian volume scattering

function [20] for the forward scattered part is used; see Eqs. 3.5 and 3.64. The

motivation for this choice of scattering function is the ability to obtain an accurate

analytical engineering approximation, valid for all values of the optical depth.

Using the Henyey–Greenstein scattering function [48], which is widely used in

approximating the angular scattering dependence of single-scattering events in

some biological media [44, 49], the corresponding analytical approximation is

not as accurate as for the case of a Gaussian scattering function. However,

a numerical computation using the exact expressions may be carried out instead.

Hence, both scattering functions may be used in the modeling of the OCT geometry

presented in this chapter.

Fig. 3.3 C(z) as a function of z for diffuse backscattering with the shower-curtain effect included
(curve 1) and for specular reflection (curve 3). Curve 2 is calculated for diffuse backscattering

without the shower-curtain effect, and curve 4 is the case of pure single backscattering;

l ¼ 814 nm, ms ¼ 20 mm�1, g ¼ 0.955 (yrms ¼ 0.3 rad), n ¼ 1.4, f ¼ 5 mm, w0 ¼ 0.5 mm

(From Ref. [12])
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3.2.2.6 Signal-to-Noise Ratio (SNR) and Estimation of the Maximum
Probing Depth

Without loss of generality, an OCT system with shot-noise-limited operation is

considered here for calculating the signal-to-noise ratio (SNR) with the purpose of

estimating the maximum probing depth. The only significant source of noise is the

shot noise caused by the reference beam. For a photoconductive detector, the mean

square noise power Np can then be expressed as [50]

Fig. 3.4 C(z) as a function of z for ms ¼ 10 mm�1 and three values of g. The curves are for the
case of a diffuse backscattering at the discontinuity and inclusion of the shower-curtain effect

(l ¼ 814 nm, n ¼ 1.4, f ¼ 5 mm, w0 ¼ 0.5 mm)

Fig. 3.5 C(z) as a function of z for g ¼ 0.95 and three values of ms within a range of interest with
respect to tissue. The curves are for the case of a diffuse backscattering at the discontinuity and

inclusion of the shower-curtain effect (l ¼ 814 nm, n ¼ 1.4, f ¼ 5 mm, w0 ¼ 0.5 mm)
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Np ¼ 2aqeG
2
caRlBwPR, (3:27)

where Rl is the resistance of the load, Gca the gain associated with the current

amplifier, and Bw the system bandwidth. The corresponding mean heterodyne

signal power S(z) is given by [46]

S zð Þ i2 zð Þ	 

G2

caRl (3:28)

where hi2(z)i is given by Eq. 3.17. Hence, the mean signal-to-noise ratio SNR(z) is
given by

SNR zð Þ ¼ S zð Þ
Np

¼ SNRð Þ0C zð Þ, (3:29)

where the signal-to-noise ratio in the absence of scattering (SNR)0 is given by

SNRð Þ0 ¼
�PS

2hnBw

sb
pw2

H

� �
: (3:30)

In the case of interest where the focal plane coincides with the probed layer, the

following expression for (SNR)0 is obtained:

SNRð Þ0 ¼
4pb�PS

hnBw

w0

f

� �2

, (3:31)

where it has been used that sb ¼ 4ppbmslc/k
2.

The maximum probing depth is of considerable interest in the characterization

and optimization of an OCT system when used for imaging in highly scattering

tissue. The maximum probing depth may be calculated by using the model

presented above. Details of the calculation are found in Ref. [31], where the

calculation of the maximum probing depth zmax is based on the minimum accept-

able SNR in the case of shot-noise-limited detection. In the calculations, a value of

3 is used as the minimum acceptable signal-to-noise ratio, i.e., SNR(zmax) ¼ 3.

An important conclusion of Ref. [31] is that, in general, zmax depends on the

focal length at small values of the scattering coefficient, but is independent of the

focal length at larger values of the scattering coefficient. A similar behavior is

observed for zmax as a function of ms and the 1/e intensity radius of the sample beam

being focused. This behavior is due to multiple scattering of the light in the tissue.

At scattering coefficients found in human skin tissue [44, 51], for example, it is

concluded that the maximum probing depth is independent of the focal length f.
This is an important conclusion because the depth of focus and the lateral resolution

of the OCT system may then be chosen independently of zmax. For example, if no

scanning of the focal plane in the tissue is desirable and, therefore, a large depth of
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focus has been chosen, the same maximum probing depth is obtained as for

a system with a short depth of focus where the focal plane is scanned to keep it

matched to the reference arm. This conclusion is not surprising or contrary to

assumptions already held in the field. However, the theoretical analysis in this

section provides a theoretical foundation for such statements. Moreover, this

agreement may also be taken as a further validation of the OCT model

presented here.

3.3 Doppler OCT Analysis

Noninvasive localization and measurement of blood flow is of great interest in

many medical applications, e.g., ophthalmology, dermatology, and gastroenterol-

ogy. Optical Doppler tomography (ODT) [52, 53] combines Doppler velocimetry

and optical coherence tomography. Thus, ODT is feasible for noninvasive localized

diagnostics of particle flow velocity in highly scattering media, and it is important

for functional imaging. In contrast to conventional OCT, where the reflectivity

profile of the sample is obtained by envelope detection of the interferometric signal,

ODT employs coherent phase-sensitive demodulation of the heterodyne detector

current to obtain depth profiles of blood flow velocity. Basically, depth-resolved

velocity estimates are obtained directly from the corresponding mean [52, 53] or

standard deviation [54, 55] of the observed Doppler-frequency spectrum.

In this section, the results of a theoretical analysis of ODT based on EHF with

multiple-scattering effects included are presented. Experiments by Yazdanfar

et al. [56] suggest the presence of multiple-scattering effects in ODT. Another

study also confirmed the impact of multiple-scattering effects estimating the impact

on the determination of flow parameters [57]. The purpose of the analysis below is to

determine how multiple scattering affects the estimation of the depth-resolved local-

ized flow velocity, i.e., to obtain the dependence of the mean and standard deviation

of the Doppler-frequency spectrum on the scattering properties of the medium.

3.3.1 Multiple-Scattering Effects in ODT

The ODT probe geometry being analyzed is shown in Fig. 3.6. In the absence of

multiple scattering, and if the scattering geometry is precisely known, an estimate

of the blood flow velocity at a given probing depth can be obtained as [52, 53]

V ¼ f Sl0
2n cos e

, (3:32)

where l0 is the center wavelength of the light source, n is the index of refraction of

blood, e is the angle between the incident light and the direction of blood flow, and

fS is the centroid frequency of each depth-resolved spectrum, which is used as

a measure of the corresponding backscattered Doppler frequency.
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In a multiple-scattering analysis of ODT, two effects must be taken into account:

(a) the incident light on a moving particle contains a stochastic distribution of wave

vectors at each optical frequency, and (b) in the round-trip propagation path to the

backscattering event, the light will accumulate a random series of Doppler shifts

due to the light being scattered by moving constituents along the path. Taking these

multiple-scattering effects into account, the following equation for the mean Dopp-

ler shift may be derived [58]:

f D dð Þ ¼ 2n cos e
l0

V dð Þexp � y2
	 


=2
� �þ V dð Þ 1� exp � y2

	 

=2

� �� �� �
, (3:33)

where hy2i ¼ mszy
2
rms. The quantities ms and yrms are the scattering coefficient

and root-mean-square scattering angle of blood, respectively, and the probing depth

z ¼ d/sine, where d is the transversal position in the vessel as indicated in Fig. 3.6.

Furthermore, V(d) is the flow velocity as a function of the transversal position in the

vessel, and V is the mean velocity of the flow along the propagation path to the

probing depth z. If multiple-scattering effects are neglected, Eq. 3.33 reduces to

Eq. 3.32 as expected. In addition, for a constant velocity profile where V ¼ V0 ,

Eq. 3.33 yields f D ¼ 2V0n cos e=l0 in agreement with Eq. 3.32, i.e., no multiple-

scattering effects are present in this case as expected [59]. In the case of laminar

flow in the vessel, the velocity and mean velocity profiles are given by [58]

V dð Þ ¼ V0 1� 1� d=að Þ2
h i

for 0 	 d 	 2a (3:34)

V dð Þ ¼ V0

d

a
1� d

3a

� �
, (3:35)

where a and V0 are the radius of the vessel and the flow speed at the center of the

vessel, respectively. In Fig. 3.7, the mean Doppler shift for laminar flow is shown

with and without multiple-scattering effects included using Eqs. 3.33 and 3.32,

respectively. The multiple scattering gives rise to a bias at the proximal end of the

Vd
z

εa

ε

Fig. 3.6 The ODT probe

geometry
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profile, which is in qualitative agreement with ODT measurements of a depth-

resolved retinal flow profile obtained by Yazdanfar et al. [56] and shown in Fig. 3.8.

Typical scattering parameters for blood [59] are used in Fig. 3.7 together with ODT

system parameters and vessel diameter from Ref. [56]. The bias increases with

larger ms and yrms (or smaller anisotropy factor). No such bias was predicted by

Lindmo et al. [59] because of their neglect of the stochastic distribution of wave

vectors incident on the backscattering particle.

Furthermore, the dependence of the standard deviation of the Doppler-frequency

spectrum on the scattering properties of the flowing medium is also obtained. Thus,

the following approximate expression of the standard deviation of the Doppler-

frequency spectrum valid for all values of msz is obtained [58]:

Df T dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 2D þ Df 2D0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 dð Þn2 sin 2e

l20
mszy

2
rms 2þ p dð Þ½ � þ Df 2D0

s
(3:36)

where DfD0 is the standard deviation of the Doppler-frequency spectrum in

the absence of multiple scattering as reported previously in Ref. [55] and DfD is
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Fig. 3.7 The mean Doppler

shift for laminar flow is

shown with (dashed) and
without (solid) multiple-

scattering effects included

using Eqs. 4.33 and 4.32,

respectively (l0 ¼ 832 nm,

e ¼ 80�, a ¼ 88 mm [56];

ms ¼ 150 mm�1,

yrms ¼ 0.141 rad. [59];

n ¼ 1.38 [91])

Fig. 3.8 Measurement of

depth-resolved retinal flow

profile taken (From Ref. [56]).

The arrow indicates the effect

of multiple scattering

3 Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems 113



the multiple-scattering contribution to the standard deviation of the ODT signal.

The quantity p(d) is given by [58]

p dð Þ ¼ V2
rms dð Þ þ V dð Þ2 � 4V dð ÞV dð Þ

V2 dð Þ , (3:37)

where Vrms(d) is the root-mean-square velocity of the flow along the propagation

path to the probing depth z and is given by [58]

Vrms dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d

ðd
0

V2 tð Þdt
s

: (3:38)

The standard deviation increases with larger ms and yrms (or smaller anisotropy

factor). As expected, a multiple-scattering contribution to the standard deviation

of the ODT signal is obtained, which is identically zero for a constant velocity

profile. This is in contrast to the work by Lindmo et al. [59], who arrived at

a nonzero contribution from multiple scattering for this case.

3.4 Advanced Monte Carlo Simulation of OCT Systems

In the present section, the derivation of a Monte Carlo (MC) model capable of

dealing with the heterodyne detection scheme. Adequate MC modeling may serve

as a numerical phantom for further theoretical studies in cases where analytical

modeling may be cumbersome.

It is important to note that the MC method only describes the transport of energy

packets along straight lines and therefore the approach is incapable of describing

coherent interactions of light. These energy packets are often referred to as photon

packets or simply photons, and this terminology is adopted here. However, it should

be emphasized that no underlying wave equation is guiding or governing these

photons. Accordingly, any attempt to relate these to real quantum mechanical

photons should be done with great care as argued in Ref. [60] commenting

on a suggested approach of including diffraction effects into MC simulations

[61, 62]. An MC photon packet represents a fraction of the total light energy, and

for some applications, especially continuous wave, it may be useful to think of

the path traveled by a photon as one possible path in which a fraction of the

power flows. A collection of photon packets may then be perceived as constituting

an intensity distribution due to an underlying field, and it can, accordingly,

seem tempting to infer behavior known to apply to fields upon photon packets.

Consider, as an example, that one wishes to determine whether the photon

packets are able to enter an optical fiber. It can then seem intuitively correct to

restrict the access of photons impinging on the fiber end to those which fall within

the numerical aperture of the fiber. However, such an angular restriction may not be

correct, because the individual photon packet does not carry information of the
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entire field and its phase distribution. It is therefore impossible to determine

whether a portion of the energy carried by a photon packet will enter the fiber

due to a mode match between the fiber mode and the field underlying the collective

intensity distribution of the photon packets. This discussion is treated in greater

detail in Ref. [14].

With the above discussion of MC photons in mind, it may seem futile to

investigate if MC simulation is applicable to estimate an OCT signal, which is

the result of heterodyne mixing, and thus depends upon the coherence properties of

the light. However, the problem may be reformulated to investigate whether or not

the effect of the lack of coherence information in an MC simulation may be

circumvented, or at least minimized. Others [63–66] have attempted to model

similar optical geometries by interpreting the heterodyne process as a rejection

process in which the detected photons must conform to a set of criteria on position

and angle. Such a set of criteria is referred to as a detection scheme. However, these

criteria were found by ad hoc considerations of the optical system, which may

easily lead to incorrect results as exemplified above. Instead a mathematical

derivation of the true criteria of the detection scheme will be given in the

present section.

3.4.1 Theoretical Considerations

In the following, the EHF principle is used to derive an important result: an

expression for the OCT signal depending on the intensity of the light only. This

is obtained by calculating the mixing of the reference and sample beams in the

plane conjugate to the plane in the sample probed by the system. The result is

surprising, because the expression for the OCT signal depends on the coherence

properties of the light [12]. However, it is shown that the formula used for

calculating the OCT signal in this particular plane is mathematically identical to

the result obtained in Ref. [12]. These results are valid for the, from a biomedical

point of view, important case of a signal arising from a diffusely reflecting discon-

tinuity embedded in a scattering sample. Note that this proves the viability of MC

simulation to model the OCT technique, because it is shown that only intensity, and

not field and phase, is necessary for this case.

The optical geometry of the sample arm is shown in Fig. 3.9, and it should be

noted that the enclosed section corresponds to the geometry used for the EHF

calculation in Sect. 3.2.2. An optical fiber end is positioned in the p-plane. The
fiber emits a beam, which hits the collimating lens L1. The focusing lens L2 is

positioned in the r-plane, and in this plane, the beam is a Gaussian beam with 1/e
width, w0, of the intensity. The beam is focused by L2 upon a diffusely reflecting

discontinuity positioned at the depth zf inside a scattering sample a distance d from

L2. The sample is taken to be a slab infinite in the transverse direction. The part of

the light that is reflected from the discontinuity propagates out through the sample,

through lenses L2 and L1 to the optical fiber, where it is collected. The lenses L1

and L2 have the focal length f and are taken to be identical, perfect, and infinite in
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radius. This means that the q- and p-planes are conjugate planes with magnification

unity. The purpose of using the 4 F geometry is to have a physical representation of

the conjugate plane to the probe plane. However, in Ref. [14] it is shown that the

OCT signal term calculated from the conjugate plane is mathematically equivalent

to the OCT signal calculated in the plane where the mixing physically takes place.

Accordingly, the important result of Eq. 3.40 below is not restricted to the 4 F

geometry. Hence, this proves the feasibility of using MC modeling in the analysis

of OCT systems.

The OCT signal is produced by the mixing of the light from the reference and

sample arms on the photodetector of the OCT system. Due to the symmetry of the

system, in Sect. 3.2.2 the EHF prediction of the mixing between signal and

reference beam was conveniently calculated at the r-plane. The mean square of

the signal current hi2i is given by Eq. 3.9 and rewritten according to the notation in

Fig. 3.9 to yield

i2 zð Þ	 
 ¼ 2a2 g tð Þj j2Re
ðð

GS p1,p2; zð ÞGR p1,p2; zð Þdp1dp2
� �


 Cr i20
	 


, (3:39)

where GR(r1, r2)¼ hUR(r1)UR*(r2)i ¼ UR(r1)UR*(r2) is the cross correlation of the

scalar reference field, GS(r1, r2) ¼ hUS(r1)US*(r2)i is the cross correlation of

the sample field, and r1 and r2 are vectors in the r-plane; see Fig. 3.9. Cr is the

heterodyne efficiency factor (defined in Eq. 3.17; subscript r refers to it being

calculated in the r-plane), which quantifies the reduction in signal due to scattering,
and hi02i is the OCT signal current in the absence of scattering.

It is important to note that by using the EHF principle, the investigation is

limited to the paraxial regime as discussed in Sect. 3.2.1. In addition, most tissues

are highly forward scattering in the near-infrared regime in which most OCT

systems operate. It is assumed that the coherence length of the light source is

short enough that signal powers from other reflections than the probed discontinuity

are negligible. On the other hand, the coherence length is assumed long enough so

that the temporal distortion of the sample field, or the path-length distribution of the

reflected photons, is assumed negligible compared to the coherence length of the

Fig. 3.9 Sample arm setup of the OCT system. The lenses L1 and L2 are considered to be

identical, perfect, and have infinite radius. The setup is essentially a 4 F system (From Ref. [14])
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light source. Assuming that the optical path length of the reference beam

and sample beam reflected from the discontinuity are perfectly matched, then

g(t) � 1. To obtain the best comparison with the EHF model, the MC model

presented in this section adopts this approximation.

The approximation of g(t) � 1 is a justified approximation for highly forward

scattering tissues [9]. However, it does render the EHF model unsuitable to inves-

tigate the effect of scattering on the axial resolution of an OCT system in general,

because the coherence gate due to the limited coherence length of the light source is

not incorporated. Others have suggested using MC simulation and the total optical

path length traveled by a photon packet to determine the influence of the coherence

gate [10, 29, 66]. While this may very well be a valid approach, it is clear from the

above discussion of photon packets and coherence that, how intuitively correct it

may seem, this may not be the case. However, no efforts have been published to

establish the meaning of a photon packet in such a temporal mixing of fields, so

future work is required to establish such a relation. It is the intention that the MC

model of the OCT signal presented in this chapter may be instrumental in such

studies.

The OCT signal depends upon the lateral cross correlation of the light from the

scattering sample, as indicated by Eq. 3.17, and the lateral coherence length r0 of
the sample field in the r-plane for a single layer in front of the discontinuity is

given by Eq. 3.21. With a nonzero lateral coherence length, r0, it is seen that the

OCT signal depends heavily upon the coherence properties of the field from

the sample. As discussed above, an MC simulation does not describe the

spatial coherence properties of light, and thus a direct simulation of Eq. 3.39 is

not possible. As in Sect. 3.2.2, it is assumed that the discontinuity is diffusely

reflecting, and this infers that the lateral coherence will be zero immediately

after reflection. The motivation for envisioning the system geometry considered

in Sect. 3.2.2 as part of a 4 F setup is to obtain a conjugate plane to the q-plane,
here the p-plane; see Fig. 3.9. Through the conjugate relation, it is given that, in

the absence of scattering, the lateral coherence length in the p-plane will also

be zero. Hence, the sample field will be delta-correlated [20] and the OCT

signal will only depend upon the intensities of the reference and sample field.

In Appendix B of Ref. [14], it is shown that within the paraxial regime, the

sample field is delta-correlated even in the presence of scattering. It is also

shown that the heterodyne efficiency factor calculated in the p-plane Cp is math-

ematically identical to the heterodyne efficiency factor calculated in the r-plane,
so that

Cp ¼
i2
	 

i20
	 
 ¼

ð
IR pð Þ IS pð Þh id2pð
IR pð Þ IS0 pð Þh id2p

¼ Cr, (3:40)

where IR is the intensity at the reference beam and IS, IS0 are the received intensities
of the sample beam with and without scattering, respectively. The quantity p is
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a vector in the p-plane; see Fig. 3.9. Equation 3.40 shows the viability of applying

an MC simulation to an OCT system provided a good estimate of the intensity

distribution of the sample field is achieved. This requires a method to simulate

a focused Gaussian beam, and a method for modeling such a beam using MC

simulation is discussed in Ref. [14]. Note that the identity proven in Eq. 3.40 is only

strictly valid within the approximations of the EHF principle and thus also within

the paraxial regime. However, for geometries with scattering that is not highly

forward, directed coherence effects are expected to be of even less importance, and

thus Eq. 3.40 should at least be a good first approximation even when the paraxial

approximation is not strictly valid.

3.4.2 Monte Carlo Simulation of the OCT Signal

In Sect. 3.4.1, it is shown that the heterodyne efficiency factor of the OCT

signal may be found using the knowledge of the intensity distributions of

the sample and reference fields in the p-plane (see Fig. 3.9), where the fiber end

is situated:

Cp ¼

ð
IR pð Þ IS pð Þh id2pð
IR pð Þ IS0 pð Þh id2p

: (3:41)

In the EHF principle, the effect of a scattering medium is treated as a random

phase distortion added to the deterministic phase of the light as it propagates

through the medium. In the derivation of Eq. 3.41 (see also Appendix B of Ref.

[14]), it is necessary to assume that the phase distortion added to the light

propagating towards the discontinuity is statistically independent from the phase

distortion added to the light propagating away from the discontinuity. It is impor-

tant to note that this assumption is inherently fulfilled by MC methods such as that

used by the MCML computer code [67]: a photon is traced through a dynamic

medium in the sense that the distance to the next scattering event and scattering

angle is a random variable independent upon the past of the photon. Hence, after

each stochastic event, the photon experiences a different realization of the sample.

Therefore, an ensemble averaging over the stochastic sample in Eq. 3.41 is

carried out through a single simulation. Moreover, to also obtain an averaging in

the modeling of the diffusely reflecting discontinuity, each reflected photon

must experience a new realization of the discontinuity. Thus, the macroscopic

intensity distribution of a Lambertian emitter [20] to sample the reflected angle

is used

Ir yrð Þ ¼ IT cos yr: (3:42)
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Here IT is reflected intensity at yr ¼ 0 and yr is the reflected angle. By following
the method outlined by Prahl et al. [68] of sampling a physical quantity using

a computer-generated pseudorandom numbers, the following relations are obtained:

yr ¼ arcsin xð Þ, (3:43)

’r ¼ 2px, (3:44)

where ’r is the azimuthal angle of the reflected photon and x and z are both random
numbers uniformly distributed between 0 and 1.

Accordingly, the method of simulating the OCT signal is carried out as follows.

The MC photon packet is launched from the focusing lens in the r-plane
(see Fig. 3.9), using the focusing method (new hyperboloid method, Ref. [14]).

The interfacing with specular surfaces, such as the sample surface and the propa-

gation through the scattering medium, is carried out using the MCML computer

code. When a photon packet is reflected off the diffusely reflecting discontinuity,1

Eqs. 3.43 and 3.44 are used to determine the direction of the photon after reflection.

As a photon exits the sample after interaction with the discontinuity, its position and

angle are used to calculate its position in the p-plane after propagation through the

4 F system. To evaluate Eq. 3.41 numerically, consider that the mth photon packet

exiting the medium contributes to the intensity at the point pm in the p-plane by the

amount

IS,m / wm

Dp2
, (3:45)

where wm is the energy, or weight, carried by the photon packet and Dp2 is

a differential area around pm. Using this and Eq. 3.41, the MC estimated heterodyne

efficiency factor CMC is then given by

CMC ¼

XM
m

IR pmð ÞIS,mDp2

i20
	 
 ¼

XM
m

IR pmð ÞWm

i20
	 
 , (3:46)

where IR(p) is the intensity distribution of the reference beam in the p-plane, and it

is noted that the reference beam has a Gaussian intensity distribution of width wf in

the p-plane. The signal in the absence of scattering hi02i may be either simulated or

calculated. The latter is straightforward, because with the conjugate relationship

between the p- and q-plane, the intensity distribution of the sample beam will be

identical to that of the reference beam in the absence of scattering.

1The reflection can also be treated as bulk backscattering; see, e.g., Ref. [28].
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Equation 3.46 reveals the important detection criterion of the MC simulation of

the OCT signal: a photon must hit the p-plane within the extent of the reference

beam. While detection schemes of previously published MC models of OCT also

incorporate that photons must hit the detector, the key element of this detection

scheme is the analytically derived size and necessary position in the p-plane.
Furthermore, contrary to these schemes, the model does not incorporate an angular

criterion that a photon packet must fulfill in order to contribute to the signal. It may

seem counterintuitive that photon packets contribute to the desired signal without

penalty regardless of the angle of incidence upon the fiber in the p-plane. However,
as demonstrated in Ref. [14], the inclusion of an angular criterion related to the

angular extent of the incident beam, or equivalently the numerical aperture of the

fiber, yields incorrect results.

3.4.3 Validation

3.4.3.1 Comparison to Experimental Data
The MC model has been verified by comparison to experimental data. In Ref. [12],

an experimental setup is described and from this experimental data are obtained.

The sample is an aqueous (refractive index 1.33) solution of microspheres

(refractive index 1.59; diameter 2.04 mm). The experiment is carried out with the

following parameters: source center wavelength l ¼ 814 nm, anisotropy g ¼ 0.929

(calculated from Mie theory [45] using the particle diameter and refractive index),

cuvette thickness z ¼ 0.5 mm, focal length f ¼ 16 mm, and beam radius

w0 ¼ 0.125 mm. Hence, the probe depth remains fixed at z ¼ 0.5 mm, and then

the scattering coefficient is varied by changing the particle concentration.

From the experimental data, the heterodyne efficiency C factor is derived. The

result is plotted in Fig. 3.10 showing C as a function of the scattering coefficient for

the above parameters. The measurements are shown as open circles (○) connected with

a straight dashed line. The MC data is shown as stars (*) connected with a solid line.

For reference, the single-scatter case is plotted as the dotted line. As indicated in

Fig. 3.10, good agreement between experiments and the MC model is obtained.

3.4.3.2 Beam Geometries for Numerical Comparison
A set of beam geometries has been selected for numerical comparison between the

EHF model and the MC model. These geometries are selected so that the two

approaches are compared for different degrees of focusing and distances between

the lens L2 and the sample. The selected cases are listed in Table 3.1 and are

referred to as cases 1 through 4, respectively.

For all cases the mean refractive index of the sample before the discontinuity and

the surroundings are assumed to be matched so that n0 ¼ n1 ¼ 1. The subject of the

investigation is the effect of scattering on the OCT signal. A difference in the

refractive index between the sample and the surroundings will impose a Snell’s law

refraction at the interface, which in turn imposes a focus distortion not treated in

the paraxial approximation (siny � y) and thus not described by the EHF model.
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Such a distortion will be difficult to separate from the effects of scattering and is

thus omitted here. As discussed in Ref. [14], there is only a severe distortion for

very tightly focused beams.

In all cases discussed in the following, the wavelength of the light is chosen to be

814 nm, which is one relevant wavelength for biomedical applications of

OCT. The sample is assumed to exhibit scattering described by a Gaussian

scattering function (see, e.g., Chap. 13 in Ref. [37]). The motivation for this

choice is to enable comparison to analytical models of the propagation of Gauss-

ian beams in random media [41] and the OCT signal (see Sect. 3.2.2), which both

applies the Gaussian scattering function. The comparisons presented here are

carried out for different degrees of scattering and for two relevant values of the

asymmetry parameter in tissue [44]: very highly forward scattering (g¼ 0.99) and

highly forward scattering (g ¼ 0.92). The value g ¼ 0.92 was the value of

the asymmetry factor in the experiments performed to validate the EHF model

by Thrane et al. [12]. With these two cases, the two approaches are compared

for a sample geometry where the paraxial approximation is well satisfied

Fig. 3.10 Heterodyne efficiency factor as a function of the scattering coefficient for an aqueous

solution of microspheres. Experimental data: open circles (○) connected with dashed line. MC

simulations: stars (*) connected with solid line. Dotted line shows single-scatter regime for

reference. Parameters used: source center wavelength l ¼ 814 nm, anisotropy g ¼ 0.929

(calculated from the particle diameter and refractive index), cuvette thickness z ¼ 0.5 mm, focal

length f ¼ 16 mm, and beam radius w0 ¼ 0.125 mm

Table 3.1 Beam geometries for the four cases

Case number f [mm] d [mm] z [mm] w0 [mm] w0/f

1 16.0 15.5 0.5 0.125 0.008

2 8 7.5 0.5 0.4 0.05

3 0.5 0.0 0.5 0.125 0.25

4 16.0 15.0 1.0 4 0.25
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and for a sample geometry, which is close to the limit of the paraxial

approximation. Accordingly, it is expected that the best agreement will be

found for g ¼ 0.99.

3.4.3.3 Comparison to Analytical Model
In Fig. 3.11, C is plotted for cases 1 through 4 as a function of the scattering

coefficient ms, and for reference the case of single backscattering, i.e., Csingle ¼
exp(�2msz), has been included. Three important observations may be made from

Fig. 3.11. Firstly, fine agreement between theMCmethod and the EHFmodel for the

four cases tested is observed. Thus, these plots are considered the validation of the

MC model. Alternatively, the MC results can be considered as the confirmation of

the EHF results. Secondly, it is inferred that the OCT signal for high optical depths is

a result of multiple-scattering effects in agreement with Sect. 3.2.2. This is seen by

Fig. 3.11 Heterodyne efficiency factors estimated using, respectively, the EHF model and the

MC method for two cases of g. (a–d) Show the estimated values for geometries 1, 2, 3, and 4 in

Table 4.1, respectively. The solid line and dotted line curves are the results of the EHF model for

g ¼ 0.99 and g ¼ 0.92, respectively. Dash-dot-dot and dashed curves are the results of the MC

simulations for g¼ 0.99 and g¼ 0.92, respectively.Diamonds (♦) and squares (■) mark the actual

data points obtained by the MC simulation method. For comparison, the exponential reduction in

signal due to scattering obtained by a single-scatter model is shown as a dash-dot curve
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comparing the single-scattering curve to the plots of the MC and EHF. Finally, an

important result of Sect. 3.2.2 was the inclusion of the so-called shower-curtain

effect [18]. It is an effect caused by multiple scattering and thus plays an important

role in calculating the OCT signal as the optical depth increases. Omitting this effect

leads to an underestimation of the OCT signal of several orders of magnitude. Due to

the good agreement between the EHF model (with the shower-curtain effect

included) and the MC model, the important result that the MC model inherently

takes the effect into account is obtained.

For cases where the approximation of the EHF model is well satisfied, the

observed deviation between the EHF and MC models is likely to be caused by

coherence effects in the intensity distribution of the sample field. Apparently, from

Fig. 3.11, the lack of coherence information leads to an underestimation of C, but

the specific cause for this has yet to be determined. C is by definition unity in the

absence of scattering, and for large optical depths, coherence effects are expected to

be negligible. Accordingly, the two models are expected to agree for small and

large values of the optical depth of the discontinuity, whereas some deviation is to

be expected in the intermediate region. As a highly forward scattering event

perturbs the field only to a small degree, it is expected to distort coherence effects

less than a more isotropic scattering case. In order to plot the relative deviation

as a function of the effective distortion of the coherence, the ratio CEHF/ CMC

is considered as a function of the transport reduced optical depth of the

discontinuity given by

Str ¼ mszf 1� gð Þ: (3:47)

The relative difference between the EHF model and the MC method behaves,

qualitatively, identical as a function of str independent of beam geometry and g.
This is illustrated in Fig. 3.12 for cases 2 (g ¼ 0.92 and 0.99), 3 (g ¼ 0.92), and

4 (g ¼ 0.92), respectively. The difference between the two approaches increases as

a function of str until str � 0.5 after which it levels off. This is mainly attributed to

the coherence effects in the intensity distribution discussed above. The more abrupt

behavior of the curve for geometry 4 is attributed to a higher numerical uncertainty

in the case, caused by a more tightly focused beam. According to the detection

scheme applied in these simulations, this implies that fewer photons will contribute

to the signal resulting in an increased variance. Therefore, due to the good agree-

ment between the results of the EHF model and MC simulations borne out

in Figs. 3.11 and 3.12, it is concluded that the MC simulation presented in

this section is a viable method of simulating the heterodyne efficiency factor of

an OCT signal.

3.5 Applications of Modeling in OCT

The interpretation of OCT images displaying structural information only may be

a difficult task, i.e., making adequate assessment of the imaged sample or tissue.
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An OCT signal, i.e., the detected envelope function of the A-scan, measured at a given

position in a nonabsorbing scattering medium is the result of the amount

of light reflected at the given position and the attenuation due to scattering when the

light propagates through the scattering medium. Therefore, in order to make images,

which give a direct measure of the amount of light reflected at a given position,

it is necessary to be able to separate reflection and scattering effects; see, e.g., Refs.

[47, 69] for details on the so-called true-reflection OCT imaging algorithm. Such kind

of post processing is similar to the correction for attenuation well known in ultrasonic

imaging. In that field, a mathematical model describing the relationship between the

received signal and the twomain acoustic parameters, backscatter and attenuation, has

been considered [70]. The model has then been used to guide the derivation of

a processing technique with the aim of obtaining ultrasonic images that faithfully

represents one acoustic parameter, such as backscatter [70].

Extraction of optical scattering parameters from OCT images is a method to

obtain more quantitative information from these images in order to improve the

diagnostics (see, e.g., Ref. [71]), i.e., an alternative method of functional imaging.

Accordingly, one may envisage a novel functional imaging method where, in

addition to tissue morphology, parameters such as the scattering parameters,

g and/or ms, or mean refractive index is obtained.

In the following, the viability of the suggested approach in OCT is briefly

overviewed. First, a method based on the modeling in Sect. 3.2 is discussed

showing that the method may be expanded to more than one layer and that optical

scattering properties may be successfully extracted. Finally, some examples

highlighting the extraction of optical scattering properties in tissues in vitro and

in vivo are given.

Fig. 3.12 The relative numerical difference between the results of the EHF model and the MC

model from Fig. 4.11 for a representative selection of the considered geometries. The ratio CEHF/

CMC is plotted for case 2 and g ¼ 0.99 with symbols (♦) and solid curve, for case 2 and g ¼ 0.92

with symbols (■) and dash-dot-dot curve, for case 3 and g ¼ 0.92 with symbols (▼) and dashed
curve, and for case 4 and g ¼ 0.92 with symbols (•) and dotted curve (From Ref. [14])
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3.5.1 Extracting Optical Scattering Properties from an
MC-Simulated Heterogeneous Multilayered Sample

It was shown in Sect. 3.2.2 that the mean square heterodyne signal current for light

reflected at depth z in the tissue may be expressed as hi2(z)i ¼ hi2(z)i0C(z), where
hi2(z)i0 is the mean square heterodyne signal current in the absence of scattering and

C(z) is the heterodyne efficiency factor, which includes all of the scattering effects.
The maximum of the envelope of the measured interference signal corresponds to

[hi2(z)i]½. In practice, ms and yrms may be obtained by fitting the expression for

[hi2(z)i]½ to a measured (or simulated) depth scan of the homogeneous backscat-

tering tissue. It is important to note that in addition to the system parameters l, f,
and w0, knowledge about the mean index of refraction n of the scattering medium is

necessary in order to perform the fitting. Otherwise, the refractive index should be

fitted as well as in Ref. [72].

For OCT images of tissue, a multilayered analytical OCT model with multiple-

scattering effects included is essential in order to extract optical scattering param-

eters. In this section, details are given of a method for multilayered extraction of

optical scattering parameters [69] by expanding the OCT model developed in

Sect. 3.2. Thus, the model makes it straightforward to model OCT imaging in

heterogeneous multilayered tissue together with different focusing conditions, i.e.,

dynamic focusing or fixed focus position.

3.5.1.1 Expressions for Two-Layered Medium
The analytical expressions for the OCT signal of the two layers are obtained from

the general expression given by Eq. 3.18. Note that the OCT signal is the root-mean-

square (rms) heterodyne signal current hi2(z)i½. In the case of dynamic focusing, hi2i0
is a constant proportional to the effective backscattering cross section of the sample.

For the first layer, characterized by the optical parameters ms1, yrms1, and n1, ms and
z in Eq. 3.18 are replaced by ms1 and z1, respectively, where z1 is the probing depth in
the first layer. The lateral coherence length r01(z) is then given by [69]

r01 z1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
3

ms1z1

s
l

pyrms1

n1f

z1

� �
: (3:48)

For the second layer, characterized by ms2, yrms2, and n2, z and msz in Eq. 3.18 are
replaced by z2 and ms1D1 + ms2z2, respectively, where D1 is the thickness of the first

layer and z2 is the probing depth in the second layer. Furthermore, for the second

layer, r02(z) is given by [69]

r02 z2ð Þ ¼
ffiffiffi
3

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2D1 þ ln1 z2 þ n2 f � D1

n1
� z2

n2

 �h in o2

n22D1 D2
1 þ 3D1z2 þ 3z22

� �
y2rms1ms1 þ n21z

3
2y

2
rms2ms2

vuuut : (3:49)
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3.5.1.2 Extracting the Optical Scattering Parameters from Layered
MC Model

The MC model presented in Sect. 3.3 is used as a numerical phantom. Hence, the

versatility of the MC model is demonstrated; for example, it may be used to

investigate the performance of the EHF model for sample geometries difficult to

produce in the laboratory. By using this model, depth scans of layered scattering

structures (tissue) may be obtained. In the present context, a layer is here defined as

a plane-parallel homogeneous region characterized by a scattering coefficient ms, an
anisotropy factor g, and an index of refraction n.

Next the two-layer EHF expression for the OCT signal is fitted to the

MC-simulated signal, the optical scattering properties ms and g of each of the two

layers are extracted, and the MC input values are compared with them. Strictly

speaking, the extracted g is the effective anisotropy factor given by the cosine of

yrms, where yrms is the rms scattering angle defined as the half-width at 1/e
maximum of a Gaussian curve fit to the main frontal lobe of the scattering phase

function of the sample [12]. Because the scattering phase function used in the MC

OCT model is also Gaussian, the extracted g values can be directly compared with

the MC input g values. The system parameters in this case are l ¼ 800 nm,

wo ¼ 0.4 mm, and f ¼ 8.0 mm. The first layer is 0.3 mm thick (D1) with

ms1 ¼ 5.0 mm�1 and g1 ¼ 0.99. The second layer is 0.9 mm thick with

ms2 ¼ 10.0 mm�1 and g2 ¼ 0.92. Without the loss of generality, the refractive

indices of the sample and the surroundings are matched and equal unity.

Table 3.2 shows the main result by comparing the input optical scattering

parameters used in theMC simulation to the extracted values including the relative

difference. The absolute relative differences between the extracted mean values

and the values used in the MC simulation follow a kind of structured pattern with

increasing values of ms2, and the “true” values are not contained within the

estimated standard deviations. This observation is an indication of a bias between

the EHF model and the MC simulations. On the other hand, the small relative

differences demonstrate the capability of the EHF OCT model to extract optical

scattering parameters from multilayered tissue. In general, the index of refraction

of each layer may also be extracted, but that is outside the scope of the present

analysis.

Table 3.2 The input parameters of the MC simulation together with the extracted parameters

obtained by using the EHF model and the relative difference (%). Leave-one-out cross-validation

[92] with respect to the MC data points has been used to estimate the standard deviations

Layer

MC input ms
[mm�1]

Extracted ms
[mm�1]

Rel. diff.

[%]

MC input

g- Extracted g-
Rel. diff.

[%]

1 5.000 4.98 � 0.05 �0.4 0.9900 0.974 � 0.007 �1.6

2 4.000 4.4 � 0.1 10 0.9200 0.940 � 0.003 2.2

2 6.000 6.3 � 0.1 5.0 0.9200 0.893 � 0.003 �2.9

2 8.000 8.2 � 0.1 2.5 0.9200 0.874 � 0.005 �5.0

2 10.00 9.9 � 0.2 �1.0 0.9200 0.864 � 0.006 �6.1
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Notice that ms and geff can only be separated if the optical depth of each layer is

sufficiently large that multiple scattering occurs. In case the optical depth is too

small, only single scattering occurs and therefore only ms can be extracted. For large
optical depths, i.e., totally diffused light, the EHF model predicts the OCT signal to

be determined by the reduced scattering coefficient, and hence, ms and geff cannot be
separated for this case (cf. Eq. 3.22, Sect. 3.2.2.1).

3.5.2 Extraction of Optical Scattering Properties from Tissues

As mentioned at the beginning of the present section, attenuation compensation is

widely accepted within ultrasonic imaging. Therefore, it has also been among the first

attempts to improve on OCT imagery. In fact, attenuation compensation is a method to

remove the attenuation caused by scattering in OCT images. This should improve the

diagnostic capabilities due to a better differentiation of different tissue types. There

have been few attempts to do attenuation compensation in OCT images of tissue by

using the single-scattering OCT model [73]. However, due to the fact that multiple-

scattered photons contribute to the OCT signal, the single-scattering OCT model is

insufficient for this purpose. Attenuation compensation was verified on a single-layer

phantom by using an OCT model taking multiple-scattering effects into account [74].

The optical scattering properties themselves, however, also contain information

about the tissue. For example, cell mitochondria are affected or changed in several

malignant conditions, and through these changes the scattering changes. Con-

versely, provided that information about the scattering properties can be obtained

with good accuracy and good (high) spatial resolution, new diagnostics can be

performed [71]. This fact is one important motivation for attempting to extract

optical scattering properties in order to improve the diagnostic potential of OCT.

By using the single-scattering OCTmodel [2], studies have been carried out with

the aim to extract only the scattering coefficient ms from OCT images of tissue. This

approach was applied in various important applications. For example, glucose

monitoring was investigated by using the single-scatter approach [75] and

expanded to include phase-sensitive OCT [76]. The anisotropy factor g may also

be extracted as demonstrated by Kodach et al. [77]. In their study, they showed that

monitoring this parameter might offer a contrast mechanism for changes in back-

scattering and, hence, indicate morphological changes. Determining optical scat-

tering properties of blood is also of high importance. Faber et al. [78, 79]

demonstrated that the optical absorption spectra of oxygenated and deoxygenated

hemoglobin, corrected for optical scattering, may be obtained by using spectral

OCT. The underlying OCT modeling was based on a single-scattering approach.

Important contributions have been made in in vitro characterization of athero-

sclerotic plaque by several groups. Studying in vitro samples with various stages of

atherosclerotic plaque, van der Meer et al. extracted the optical scattering coefficient

[80]. Although the model applied was based on a single-scattering model, their

findings provide important data on the optical scattering coefficient of these plaques.

A larger study also demonstrated that the scattering coefficient may provide valuable,
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additional information, thus improving diagnosis [81]. Some data for the scattering

coefficients reported in [81] correlate well with other findings, but some data showed

significant deviations: these deviations can, however, be explained by different

sample handling and fit to different models, respectively; see also below. In their

review paper, Kubo et al. [82] provided an excellent overview on sample handling,

extraction of optical parameters, and its diagnostic potential in the clinic. Because

OCT is established in cardiology, e.g., stent deployment, such added diagnostic

potential seems highly feasible.

Extraction of optical properties has also been investigated targeting other dis-

eases. Quantitative analysis of rectal cancer by spectral domain OCT was demon-

strated [83]. Their study involved 16 samples in vitro comprising 1,000

measurement: one half benign and one half malignant. In particular, their results

showed that the quantitative analysis of rectal tissue can be used as a promising

diagnostic criterion of early rectal cancer. This is noteworthy because early diag-

nosis has great value for clinical application and earlier onset of treatment. Oral

mucosal tissue has also been investigated [84] by using swept source OCT showing

promise for early diagnosis. Both studies were carried out under the assumption that

single scattering was sufficient to describe the light–tissue interaction. Woolliams

and Tomlins [85] claimed that multiple scattering is not affecting the OCT signal at

longer wavelengths, but this seems to have been dismissed by several other reports

showing clear evidence of the opposite fact. Their statement [85] might, however,

be correct with respect to their specific system (data fitting) or application (also

mentioned by the authors [85]). Note that for superficial lesions, multiple scattering

might be negligible; hence for such applications simplified modeling may suffice.

In general, multiple scattering is impacting the formation of the OCT signal

(A-scan). Provided an OCT model is used that takes into account multiple scatter-

ing, both ms and the anisotropy factor gmay be extracted. Extraction for a two-layer

geometry has been carried out [69, 86], where both ms and g were obtained for each
(tissue) layer. In Ref. [69] MC simulations were used as numerical phantom as

discussed in detail in the previous subsection.

Lee et al. [28] compared single-scattering and multiple-scattering models for

extracting optical scattering properties, and using calibrated scattering phantoms,

the validity of the single-scattering and multiple-scattering models for both highly

scattering and weakly scattering media was investigated. They showed, with

a proper correction for the confocal properties of the sample arm, both models

are appropriate to extract the scattering coefficients of weakly scattering media. For

highly scattering media, the multiple scattering must be taken into account, and the

multiple-scattering model provides much higher accuracy. In their study, they

applied the EHF model described in this chapter and in Ref. [12] modeling the

multiple scattering. They also investigated the scattering properties of in vitro rat

liver and in vivo human skin and concluded that the EHF model is useful for

quantitatively characterizing tissue scattering.

A number of in vitro studies have been reported. The characterization of

atherosclerotic plaque using a single, multiple-scattering layer model has been

reported [87]. The method of extracting the optical scattering properties was
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verified using well-controlled and calibrated, single-layer tissue-like phantoms. The

study provided the optical scattering properties in 1,300 nm range for lesions in

different stages including the anisotropy parameter. Based on the extracted param-

eters, normal tissue could be separated from malignant tissue. It should be noted

that some discrepancies occur between the reported values for the scattering

coefficients in Refs. [87, 80]. Possible explanations for the differences may be

due to different sample handling and fit to different models. The results reported in

both Refs. [87, 80] are encouraging although further studies are required to fully

establish these criteria and thereby demonstrate the feasibility of the method in this

particular area.

The EHF model, as described in the present chapter and Ref. [12], has been

validated and expanded by other groups. Most notably, the work of Kuo et al. [88]

concluded that multiple scattering had to be taken into account in the assessment of

arterial characteristics in human atherosclerosis. Moreover, they expanded the

extraction to also include polarization parameters, thus establishing a refined crite-

rion as compared to previous work; see, e.g., [87].

In Ref. [13], an excellent study comprising rigorous application of the RTE

modeling (small-angle approximation) in the extraction of optical parameters is

presented. First, the authors verified their modeling on a well-controlled tissue-like

phantom. By estimating covariance and confidence regions for the extracted optical

properties, they point to specific regimes of the OCT signal decay where extraction

is likely to fail. These regimes depend on both the optical properties and sample

beam geometry. Hence, their findings provide important insight of how to optimize

the OCT system for a specific application. The authors applied their method to

cervical tissue (cervical dysplasia 2–3 and leukoplakia). In their in vitro investiga-

tion, they demonstrated that cervical dysplasia 2–3 and leukoplakia could be

distinguished on the basis of the extracted optical scattering properties. Hence,

their excellent contribution should be an encouragement for expanding to other

clinical applications and finally in vivo applications.

In vivo studies are sparse; however, Kn€uttel et al. [72] took the approach of

extracting optical scattering properties using the EHF model [12] and

refractive index aiming at relating the effects of skin hydration to the optical

properties extracted from OCT images. Their investigation showed the applicability

of the approach and the potential in dermatology to provide new diagnostic

information.

3.6 Summary

Advanced models for describing the light–tissue interactions in optical coherence

tomography (OCT) systems have been reviewed. Firstly, an analytical model based

on the extended Huygens–Fresnel (EHF) principle is presented valid for the single-

and multiple-scattering regimes simultaneously. Because the model is based on the

general ABCD-matrix formalism, it is applicable to any sample arm geometry, and

it leads to closed-form solutions for the OCT heterodyne signal. Expressions for

3 Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems 129



static and dynamic focusing were presented. Furthermore, expressions for the

effects of multiple scattering on the detected OCT signal in Doppler OCT were

presented and reasonable agreement with experimental data shown. Notice that the

multiple-scattering EHF analysis presented here yields accurate analytical expres-

sions for the OCT signal for a wide range of optical configurations that both are

amenable to physical interpretation and are desirable for use in parametric studies

for OCT system optimization.

From the EHF model a mathematical proof may be established showing that

Monte Carlo (MC) simulations indeed may be used to model OCT system despite

the fact that the MC model is restricted to the calculation of intensities and

calculation of the OCT heterodyne signal involves the optical fields. Both the

analytical and the numerical model compared favorably to experimental data.

Moreover, good agreement between the analytical model and the MC simulations

was found over a large range of optical scattering parameters and sample arm

geometries.

Extraction of optical scattering parameters from OCT images is a method to

obtain more quantitative information from these images in order to improve the

diagnostics, i.e., an alternative method of functional imaging. Accordingly, one

may envisage a novel functional imaging method where, in addition to tissue

morphology, parameters such as the optical scattering parameters or mean refrac-

tive index are obtained. In addition, other functional parameters, such as polariza-

tion properties, can also be combined with the aforementioned scattering properties.

The optical scattering properties themselves contain information about the tissue.

For example, cell mitochondria are affected or changed in several malignant

conditions, and through these changes the scattering changes. Conversely, provided

that information about the scattering properties can be obtained with good accuracy

and good (high) spatial resolution, new diagnostics can be performed. A survey

highlighting important investigations aiming at bringing the modeling of the

light–tissue interaction into OCT diagnostics was presented. The examples spanned

theoretical/numerical in vitro and in vivo investigations. Although further work is

needed, it seems that, in addition to or in combination with other functional imaging

modalities, the extraction of optical scattering properties seems feasible and may

ultimately improve OCT imagery and its diagnostic potential.

Appendix: Calculation of GS

In the determination of the mutual coherence function GS in Eq. 3.9, the EHF

principle is applied in order to obtain a viable expression for US(p;z), i.e., the
reflected sample optical field. Using Eq. 3.2, US(p;z) is related to the reflected

sample field UB(r;z) in the probing plane, where r defines a two-dimensional vector

in this plane:

US p; zð Þ ¼
ð
UB r; zð ÞG r,p; zð Þdr: (3:50)
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Here G(r,p;z) is Green’s function response at p due to a point source at r, which

includes the effects of scattering in the intervening medium. Combining Eqs. 3.11

and 3.50 yields

GS p1, p2; zð Þ ¼
ðð

UB r1; zð ÞUB r2; zð ÞG r1, p1; zð ÞG� r2,p2; zð Þh idr1dr2, (3:51)

where r1, r2 are associated two-dimensional vectors in the transverse plane. For

simplicity in notation, the explicit dependence of the various quantities on z is

omitted in the following.

If the forward propagated light is assumed to be statistically independent from

the backscattered light, thereby neglecting coherent backscattering, the following

relation holds:

UB r1ð ÞU�
B r2ð ÞG r1, p1ð ÞG� r2, p2ð Þ	 
 ¼ UB r1ð ÞU�

B r2ð Þ	 

G r1,p1ð ÞG� r2,p2ð Þh i:

(3:52)

If, furthermore, diffuse backscattering is assumed from the layer being probed,

one gets [18, 89]

UB r1ð ÞU�
B r2ð Þ	 
 ¼ 4p

k2
d r1 � r2ð Þ IB r1ð Þh i, (3:53)

where d(r) is the two-dimensional Dirac delta function and IB(r1) is the mean

backscattered irradiance distribution in the plane of the discontinuity. Combining

Eqs. 3.51, 3.52, and 3.53 and simplifying yields

GS p1,p2ð Þ ¼ 4p
k2

ð
IB rð Þh i G r,p1ð ÞG � r,p2ð Þh idr: (3:54)

Using Eq. 3.3, the second term in the integral on the right-hand side of Eq. 3.54

may be written as

G r,p1ð ÞG� r,p2ð Þh i ¼ G0 r,p1ð ÞG�
0 r,p2ð ÞGpt rð Þ, (3:55)

where G0(r,p) is Huygens–Fresnel Green’s function when propagating from the

probing plane to the lens plane and Gpt is the mutual coherence function of a point

source located in the probing plane and observed in the lens plane given by

Gpt ¼ exp i f p1ð Þ � f p2ð Þf g½ �h i: (3:56)

The mutual coherence function Gpt contains the effects of the scattering inho-

mogeneities. Using Eq. 3.4, Green’s function G0(r,p) is given by
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G0 r,pð Þ ¼ � ik

2pBb
exp � ik

2Bb
Abr

2 � 2r � pþDbp
2

� �� �
, (3:57)

where Ab, Bb, and Db are the ray-matrix elements for back propagation to the

lens plane. These quantities are given by Ab ¼ D ¼ 1, Bb ¼ B ¼ d + z/n and

Db ¼ A ¼ 1 [39].

hIB(r)i in (3.54) is simply related to the incident mean irradiance distribution

hI(r)i in the probing layer dz around z by the following relation:

IB rð Þh i ¼ pbmsdz I rð Þh i (3:58)

The EHF principle yields that the mean irradiance distribution is given by [39]

I rð Þh i ¼ k

2pB

� �2ð
K rð Þexp ik

B
r � r

� �
Gpt rð Þd2r, (3:59)

where

K rð Þ ¼
ð
exp � ikA

B
r � P

� �
USi Pþ r=2ð ÞU�

Si P� r=2ð Þd2P, (3:60)

and r ¼ p1 � p2. With the considered OCT setup focusing at depth z, A ¼ 1 and

B ¼ f. The mutual coherence function Gpt can then be found to be [89]:

Gpt ¼ exp i f p1ð Þ � f p2ð Þ½ �f gh i ¼ exp �s 1� bf rð Þ� �� �
, (3:61)

where it has been assumed that the phase f is a normally distributed zero-mean

random process. The quantity s is the phase variance, and bf(r) is the normalized

phase autocorrelation function for a point source whose origin is at the probing

depth z. It can be shown [90] that the phase variance is equal to the optical depth,

s ¼ msz. The normalized phase autocorrelation function bf(r) is given by [89]

bf rð Þ ¼

ðL
0

dz0
ð1
0

s y; z0ð ÞJ0 kpsyð Þydy

ðL
0

dz0
ð1
0

s y; z0ð Þydy
, (3:62)

where J0 is the Bessel function of the first kind and of order zero, and

Ps ¼ Bb z0ð Þ
Bb

r, (3:63)
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where Bb(z
0) is the B-matrix element for back propagation from the probing depth

z to a distance z0 and s(y; z0) is the volume scattering or phase function with y being
the scattering angle. For the OCT geometry treated here Bb(z

0)¼ z0/n for 0	 z0 	 z,
L ¼ d + z, and s(y; z0) ¼ s(y) for 0 	 z0 	 z, and zero otherwise. As described in

Eq. 3.5, the phase function is modeled as a combination of a forward scattering term

and a small isotropic term. The forward part is modeled here as a Gaussian volume

scattering function, which in the small-angle approximation gives a phase function

of the following form:

s1 y, zð Þ ¼ exp �y2=y20
� �

, (3:64)

where g ¼ h cos yi � 1 � hy2i/2, and y0 ¼
ffiffiffiffiffiffiffiffiffi
y2
	 
q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� gð Þp

. Substituting

Eqs. 3.63 and 3.64 into Eq. 3.62 and performing the indicated integrations yield the

following equation for the normalized phase autocorrelation function:

bf rð Þ ¼
ffiffiffi
p

p
2

rf
r
erf r=rf

 �
1� 2pb½ �, (3:65)

where erf(·) denotes the error function and rf is the phase correlation length

given by

rf ¼ l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� gð Þp 1þ nd

z

� �
: (3:66)

Hence, the mutual coherence function Gpt is given by Eq. 3.61 with bf(r)
defined by Eq. 3.65. Thus, for specific values of both s and g, the mutual coherence-

function is completely determined, and for a given value of the initial

optical wave functionUSi, numerical results for the mean irradiance can be obtained

directly from Eq. 3.59. Here USi is given by Eq. 3.7, and the following

expression for the mean irradiance distribution is obtained at the probing depth

z in the tissue:

I rð Þh i ¼ PS

2p f=kw0ð Þ2
ð1
0

exp �x2=4
� �

xJ0 uxð ÞGpt xw0ð Þdx, (3:67)

where J0 is the Bessel function of the first kind of order zero and

u ¼ r

f=kw0

(3:68)

is a normalized transverse coordinate.

As indicated above, numerical results can readily be obtained. However, it is

useful to have an analytical approximation so that OCT system parameter studies

can be performed. Examination of Eq. 3.61 reveals for large values of the optical

depth that Gpt is nonzero for s{1 � bf(r)} less than the order unity, i.e., for bf(r)
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near unity. Expanding bf(r) in powers of r and retaining the first two nonzero

terms yield from Eq. 3.65 that bf(r) � (1 � r2/3(rf)
2)(1 � 2pb) from which it

follows that

Gpt � exp �2pbs� r2=r20
� �

, s >> 1, (3:69)

where the lateral coherence length, r0, is defined as r0¼ rf[(3/s)/(1� 2pb)]
1/2. It is

expected that the ballistic, i.e., unscattered, component of the irradiance pattern is

proportional to e�msz. Thus, by interpolation [12]

Gpt � exp �mszð Þ þ 1� exp �mszð Þ½ �e�2pbmszexp �r2=r20
� �

: (3:70)

Substituting Eqs. 3.7 and 3.70 into Eq. 3.59 and performing the integration yield

the following approximate expression for the mean irradiance distribution at the

probing depth z in the tissue:

I rð Þh i � PS

p
e�mszexp �r2=w2

H

� �
w2
H

þ 1� e�mszð Þe�pbmszexp �r2=w2
S

� �
w2
S

� �
: (3:71)

For pb<<1 the expression can be further simplified:

I rð Þh i � PS

p
e�mszexp �r2=w2

H

� �
w2
H

þ 1� e�mszð Þexp �r2=w2
S

� �
w2
S

� �
: (3:72)

The first term in the brackets on the right-hand side of Eq. 3.72 can be

interpreted to represent the attenuated distribution obtained in the absence of the

inhomogeneities, and the corresponding second term represents a broader halo

resulting from scattering by the inhomogeneities. The quantities wH and wS

are the 1/e irradiance radii in the absence and presence of scattering, respectively,

given by

w2
H ¼ w2

0 A� B

f

� �2

þ B

kw0

� �2

, (3:73)

w2
S ¼ w2

0 A� B

f

� �2

þ B

kw0

� �2

þ 2B

kr0

� �2

: (3:74)

For the OCT system in question,

wH ¼ f

kw0

, (3:75)
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wS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
H þ 2f

kr0

� �2
s

: (3:76)

From Eqs. 3.58 and 3.72, an expression for the intensity is obtained:

IB rð Þh i � pbmsdzPs

p
e�mszexp �r2=w2

H

� �
w2
H

þ 1� e�mszð Þexp �r2=w2
S

� �
w2
S

� �
: (3:77)

Substituting Eqs. 3.10, 3.6, 3.77, 3.54, 3.55, 3.57, and 3.70 into Eq. 3.9 and

performing the indicated Gaussian integrations over p1,p2 and simplifying finally

yield for pb<<1

i2 zð Þ	 
 � 8a2PRPSppbms g tð Þj j2dz
p2k2ð

e�mszexp �r2=w2
H

� �
w2
H

þ 1� e�mszð Þexp �r2=w2
S

� �
w2
S

� �2
dr:

(3:78)

Performing the integration over the probed plane in Eq. 3.12 and simpli-

fying, the following expression for the mean square heterodyne signal current is

obtained:

i2 zð Þ	 
 � 4a2PRPspbms g 2 z� lrð Þ=cð Þj j2dz
w2

H k
2

� e�2msz þ 4e�msz 1� e�mszð Þ
1þ w2

S

w2
H

þ 1� e�mszð Þ2 w
2
H

w2
S

2
6664

3
7775,

¼ i2
	 


0
C zð Þ

(3:79)

where lr is the traversed optical path length of the reference beam and c is the speed
of light in vacuum. In order to incorporate the total signal contribution obtained

from within the coherence gate of the sample volume, we finally integrate (3.79)

along the z-axis. This corresponds to a convolution with respect to the square

modulus of the temporal coherence function |g(z/c)|2. Assuming a rectangular

coherence function of width lc/c, where lc is the coherence length of the source,

and mslc <<1,
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i2 zð Þ	 

coh_gate �

a2PRPssb
pw2

H

� e�2msz þ 4e�msz 1� e�mszð Þ
1þ w2

S

w2
H

þ 1� e�mszð Þ2 w
2
H

w2
S

2
6664

3
7775

¼ i2
	 


0
C zð Þ

(3:80)

where sb ¼ 4ppbmslc/k
2 denotes the effective backscattering cross section of the

backscattering volume selected by the coherence gate. The quantity

hi2i0 ¼ a2PRPSsb/p(wH)
2 is the mean square heterodyne signal current in the

absence of scattering, and the term contained in the brackets is the heterodyne

efficiency factor C(z).
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