
Formalizing and Verifying a Modern Build Language

Maria Christakis1, �, K. Rustan M. Leino2 , and Wolfram Schulte3

1 Department of Computer Science, ETH Zurich, Switzerland
maria.christakis@inf.ethz.ch

2 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

3 Microsoft, Redmond, WA, USA
schulte@microsoft.com

Abstract. CLOUDMAKE is a software utility that automatically builds executable
programs and libraries from source code—a modern MAKE utility. Its design gives
rise to a number of possible optimizations, like cached builds, and the executables
to be built are described using a functional programming language. This paper
formally and mechanically verifies the correctness of central CLOUDMAKE algo-
rithms.

The paper defines the CLOUDMAKE language using an operational semantics,
but with a twist: the central operation exec is defined axiomatically, making it
pluggable so that it can be replaced by calls to compilers, linkers, and other tools.
The formalization and proofs of the central CLOUDMAKE algorithms are done
entirely in DAFNY, the proof engine of which is an SMT-based program verifier.

1 Introduction

Building binary versions of software from source code is a central part of software engi-
neering. For larger projects, this is much more involved than just invoking a compiler on
a set of source files. One cares about making the process repeatable and efficient (e.g.,
by rebuilding only those artifacts whose sources have changed since the last build). To
facilitate a good build process, it is essential to keep track of which artifacts depend
on which other artifacts. A well-known utility for building software is MAKE, where
the dependencies are given by users [3]. Realizing that the desired output artifact is
a function of the source artifacts, the VESTA-2 system provides a functional program-
ming language with which to describe the build recipe [4]. The correctness of the build
system and any optimizations it performs is vital to the whole software development
organization, so it makes sense to spend the effort required to ensure the correctness of
the system.

CLOUDMAKE is a MAKE-like utility for building target artifacts from source artifacts.
In this paper, we describe and formally verify the basic algorithm used by CLOUDMAKE

and a key optimization it employs. Build recipes in CLOUDMAKE are, like in VESTA-2,
captured by programs written in an eponymous functional programming language. The
extensible nature of CLOUDMAKE owes to a primitive operation called exec, which,
given a set of dependencies, invokes an external build tool to derive a set of artifacts.

� The work of this author was mostly done while visiting Microsoft Research.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 643–657, 2014.
c© Springer International Publishing Switzerland 2014

644 M. Christakis, K.R.M. Leino, and W. Schulte

Because this operation is monitored by CLOUDMAKE, the range of available optimiza-
tions is greater than for MAKE. CLOUDMAKE is currently deployed at Microsoft, but it
is not our intent in this paper to report on that experience. We are instead highlight-
ing that the formalization and verification of the CLOUDMAKE algorithms is done in an
industrial context since CLOUDMAKE affects a crucial part of software development at
Microsoft and has a large number of users.

On the way to formally verifying the algorithms of CLOUDMAKE, our work con-
tributes in two additional ways. First, we define CLOUDMAKE by an operational se-
mantics, but with a twist: the extensible operation exec is described axiomatically, thus
allowing a confined range of external tools to be invoked by exec. We believe that other
pluggable systems can be defined in a similar way. Second, the kind of tool we use
for the formalization and proof is to this day still to be considered novel in light of how
other semantics and optimizations have been proved (famously, cf. COMPCERT [10]): we
use an SMT-based program verifier, namely DAFNY [5]. We use the functional subset of
the DAFNY language to describe CLOUDMAKE’s algorithms, and we state and prove the-
orems using methods (otherwise known as procedures or subroutines) with code (see,
e.g., [6,7]). In effect, this means the human verifier may provide various hints to make
the proofs go through, but the human verifier never invokes any prover commands ex-
plicitly as would have been the case in an interactive proof assistant like COQ [1] or
ISABELLE [13]. As a result, we perceive our tool chain as leading to a net reduction in
human effort for the proof.

We proceed as follows. Sec. 2 shows the use and operation of CLOUDMAKE through
a simple example. We define the formal semantics of the CLOUDMAKE language in
Sec. 3, which also gives the basic algorithm and proves that it correctly allows parallel
builds. We develop an optimized version of the algorithm in Sec. 4, highlighting the
proof structure and typical or interesting parts of the proof. To give a sense of the effort
involved in obtaining the correct theorems, we give a few statistics about the proofs
in Sec. 5. The full proofs are available online1. We discuss related work in Sec. 6 and
conclude in Sec. 7.

2 CloudMake

Syntactically, CLOUDMAKE is a purely functional subset of JAVASCRIPT. We show its
abstract syntax in Fig. 1. In CLOUDMAKE, all variables are single assignment, and all
global variables are evaluated on first use (whereas in JAVASCRIPT global variables are
evaluated in declaration order).

We illustrate CLOUDMAKE and its potential for optimization by building a calculator.
The calculator is written in C; it consists of source files calc.c, add.c, sub.c, and
header file num.h, all found in the same directory. Given functions cc and ln (defined
later) for invoking the C compiler and linker, respectively, a simple CLOUDMAKE script
introduces a variable declaration for each tool call:

1 The versions as of this writing are available at http://rise4fun.com/Dafny/n7Dm ,
http://rise4fun.com/Dafny/5iMO , and http://rise4fun.com/Dafny/GGnEP , and we
are maintaining any updated versions in the open-source DAFNY test suite at
http://dafny.codeplex.com .

http://rise4fun.com/Dafny/n7Dm
http://rise4fun.com/Dafny/5iMO
http://rise4fun.com/Dafny/GGnEP
http://dafny.codeplex.com

Formalizing and Verifying a Modern Build Language 645

Program ::= Stmt∗

Stmt ::= VarStmt | ReturnStmt
VarStmt ::= var id = Expr;
ReturnStmt ::= return Expr;
Expr ::= Lit | id | Expr InfixOp Expr | PrefixOp Expr | Expr ? Expr : Expr

| Expr (Expr∗) | Expr .id | Expr[Expr] | LambdaExpr
Lit ::= false | true | undefined | number | string | path | ObjLit | ArrLit
ObjLit ::= {Binding∗}
Binding ::= id:Expr
ArrLit ::= [Expr∗]
InfixOp ::= && | || | + | - | * | >= | . . .
PrefixOp ::= - | !
LambdaExpr ::= id+ ⇒Expr

Fig. 1. The abstract grammar of the CLOUDMAKE language, which is a subset of JAVASCRIPT.
We use | to separate alternatives, ∗ to denote 0 or more repetitions, and + to denote 1 or more
repetitions; other punctuation is suggestive of the concrete syntax. Note that calls to the primitive
operation exec are denoted as any other function invocations.

var main = ln("calc.exe", [calc, add, sub])
var calc = cc("calc.c", ["num.h"])
var add = cc("add.c", ["num.h"])
var sub = cc("sub.c", ["num.h"])

Evaluating this program consists in evaluating variable main. Evaluating the right-
hand side of the main declaration requires the values of calc, add, and sub. Evaluating
these requires evaluating cc on each source file, which produces the corresponding ob-
ject files represented by paths calc, add, and sub. The derived object files are passed to
the pending linker invocation in the main declaration, which then creates the executable
calc.exe. While there is no internal mutable state, CLOUDMAKE modifies external state
(the system state), in this case, the file system. Despite this, the evaluation in CLOUD-
MAKE can still be done safely in parallel, as discussed in Sec. 3.3.

Functions cc and ln are defined with calls to the primitive operation exec:

var cc = (src, deps) ⇒ exec({ tool: "//bin/cl", args: [src],
deps: deps.add(src),
exps: [src.changeExtension(".obj")] })[0]

var ln = (exe, objs) ⇒ exec({ tool: "//bin/link", args: objs,
deps: objs, exps: [exe]) })[0]

This operation is key for the extensibility of CLOUDMAKE: any external tool may be
invoked as part of a build (e.g., compilers, linkers, documentation generators, installers).
The primitive exec takes as argument an object of the form:

{ tool: . . ., args: . . ., deps: . . ., exps: . . . }

where tool denotes the path of the tool to invoke, args are the arguments passed to
the tool, deps are the paths of the artifacts that the tool is allowed to read, and exps
describe the artifacts that the tool must produce2. If the evaluation of exec succeeds, it

2 In the actual implementation of CLOUDMAKE, exec takes many more arguments, e.g., the
current working directory, the environmental variables used by the tool, the expected return
codes, etc.

646 M. Christakis, K.R.M. Leino, and W. Schulte

returns paths to artifacts exps in the order specified by the argument. Note that tools
like cl and link must comply with the axiomatization of exec in order to preserve the
correctness of the CLOUDMAKE algorithms.

The formal semantics of CLOUDMAKE makes it possible to reason about build speci-
fications. For example, we can prove that the program above has the same net effect on
the system state as the following program does (where map is defined as usual):

var main = ln("calc.exe",
["calc.c", "add.c", "sub.c"].map(c ⇒ cc([x], ["num.h"])))

Moreover, CLOUDMAKE enables a number of optimizations, like cached, staged, incre-
mental, and distributed builds, only the first of which is discussed in this paper. As an
example of an optimization, imagine a scenario in which one builds the above calcula-
tor, modifies calc.c, and rebuilds. In this case, most dependency-based build systems
first evaluate main in the above program, and then, based on computed dependencies
and additional time-stamp or content-hash information, determine that (only) calc.c
must be recompiled before the linker is called for a second time with the new calc.obj
artifact and the add.obj and sub.obj artifacts in the cache. Instead of four tool calls,
a cached build for this scenario requires only two such calls. Some existing build sys-
tems can be fragile when it comes to cached builds since it is easy to miss a dependency
or get time stamps wrong. CLOUDMAKE uses content-based hashing for sources and
fingerprints for derived artifacts, and enforces that all cached artifacts do exist in the
system state. As a result, we can prove that CLOUDMAKE cached builds are equivalent
to clean builds, see Sec. 4. Optimizations like this can improve performance substan-
tially. In fact, incremental builds with caching reduce the build time of a major product
shipped by Microsoft up to 100 times.

3 Formal Semantics

In this section, we define the formal semantics of CLOUDMAKE. We do so using the
syntax of DAFNY, explaining its less obvious constructs as we go along. Because we do
not have space to explain everything, we sometimes omit or simplify various details.

3.1 Domains

Programs The abstract syntax of CLOUDMAKE is modeled in the usual way of defining
an algebraic datatype corresponding to each non-terminal in the grammar. For example,
we define CLOUDMAKE’s expressions in DAFNY along the following lines:

datatype Expr =
exprLiteral(lit : Literal) | exprIdentifier(id : Identifier) | . . .
exprIf(cond : Expr, ifTrue : Expr, ifFalse : Expr) |
exprInvocation(fun : Expr, args : seq〈Expr〉) | . . .
exprError(r : Reason)

In addition to the various expression forms in Fig. 1, we add a special “error” expres-
sion, which we use to signal evaluation errors.

Formalizing and Verifying a Modern Build Language 647

For every datatype constructor C, DAFNY defines a discriminator C?, and the user-
defined names of constructor parameters define destructors. For example, if e is an Expr
and e.exprIf? evaluates to true, then e denotes a CLOUDMAKE if-then-else expression
and e.cond denotes its guard subexpression.

Note that DAFNY builds in finite sequences, so seq〈α〉 denotes the type of sequences
of elements of type α. In other places, where ordering is irrelevant, we use set〈α〉,
which denotes a finite set.

For some components in the CLOUDMAKE grammar, the internal structure is irrele-
vant, so we simply define them as uninterpreted types:

type Path
type Artifact

System State. CLOUDMAKE is a strict higher-order functional language, which can also
read and write global system state during evaluation. The system state is represented as
a finite map from Path to Artifact, which we roll into a record (because we will add
more components of the state later on):

datatype State = StateCons(m : map〈Path, Artifact〉)
We define function GetSt(p, st) as st.m[p], which returns the artifact for path p, and
function DomSt(st) to return the domain of state st.

The system state can be written, but only in restricted ways. For one, it can only be
extended—once a mapping for a path (to an artifact) has been added, it can never be
changed. Also, only the exec operation can extend the state, which it does determinis-
tically by reading some set of dependency artifacts. Abstractly speaking, from a given
state A , there exists some infinite map A∗ such that any state of any CLOUDMAKE

program executing from A will be a finite subset of A∗ . We can therefore imagine an
oracle that, for a given path p and state A , tells us the artifact to which A∗ maps p .

Every path in the domain of a reachable state must have received its artifact at some
point, either being authored by the user or being built by the system. In the latter case,
the artifact was built from other artifacts already in the state. We capture this property
by saying that in a valid state, all the paths follow some well-founded order:

predicate ValidState(st : State)
{ forall p • p ∈ DomSt(st) =⇒ WellFounded(p) }

predicate WellFounded(p : Path)

The definition of WellFounded is not important until the proof of consistency of our
axiomatization, see Sec. 3.4.

We now define a relation Extends(st, st’) on states. It says that st’ extends st,
and that any mapping added conforms to the oracle:

predicate Extends(st : State, st’ : State) {

DomSt(st) ⊆ DomSt(st’) ∧
(∀ p • p ∈ DomSt(st) =⇒ GetSt(p, st’) = GetSt(p, st)) ∧
(∀ p • p 	∈ DomSt(st) ∧ p ∈ DomSt(st’) =⇒ GetSt(p, st’) = Oracle(p, st))

}

648 M. Christakis, K.R.M. Leino, and W. Schulte

A property about the oracle is that state extension, which conforms to the oracle,
preserves the predictions of the oracle. This is the only property of the oracle that we
need for now, so we formulate it as a lemma:

function Oracle(p : Path, st : State) : Artifact
lemma OracleProperty(p : Path, st0 : State, st1 : State)

requires Extends(st0, st1);

ensures Oracle(p, st0) = Oracle(p, st1);

The antecedent of the lemma is stated in a precondition (keyword requires) and its
conclusion is stated in a postcondition (keyword ensures). This terminology comes
from the fact that lemmas are actually methods—that is, code procedures—in
DAFNY [6,7]. The proof of the lemma would go into the method body, but we omit
it for now. We will prove it once we also give a function body that defines Oracle.

We can now prove that Extends is transitive:

lemma Lemma_ExtendsTransitive(st0 : State, st1 : State, st2 : State)

requires Extends(st0, st1) ∧ Extends(st1, st2);
ensures Extends(st0, st2);

{

forall p { OracleProperty(p, st0, st1); }
}

The proof of this lemma invokes the oracle property for every path p. The DAFNY verifier
works hard for us and supplies all other details of the proof.

3.2 Evaluation

We give the operational semantics by defining an interpreter. The central function of
interest is eval, which reduces an expression to a value, while passing the system state.
Figure 2 shows an excerpt of eval. It shows that literals evaluate to themselves and
that, depending on the evaluation of its guard, an if-then-else evaluates to one of its
arguments or to the error rValidity. Note that a var in a DAFNY expression context
is simply a let binding, and the left-hand side can be a pattern like Pair(a, b), which
let-binds a and b such that Pair(a, b) equals the right-hand side.

The most interesting case is invocation. It evaluates the expression expr.fun and
those in expr.args. Each such evaluation starts from the same state, st, and the result
is a set sts’’ of next-states. Hence, for example, any side effects on the system state
caused by the evaluation of expr.fun are not available during the evaluation of the ar-
guments, allowing for parallelism in CLOUDMAKE. Two states are compatible if they
map paths in their common domain to the same artifacts. A test is performed (func-
tion Compatible) to see if the set of next-states are compatible. If they are not, an
rCompatibility error is returned; but if they are, the next-states are combined and, if
the function denotes exec and the arguments are valid for exec, then function exec is
called.

We declare function exec as follows:

function exec(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State) :
Tuple〈set〈Path〉, State〉

Formalizing and Verifying a Modern Build Language 649

function eval(expr : Expr, st : State, env : Env) : Tuple〈Expr, State〉
requires ValidEnv(env);

{
if expr.exprLiteral? then

Pair(expr, st)

. . .
else if expr.exprIf? then

var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue then
eval(expr.ifTrue, st’, env)

else if cond’.exprLiteral? ∧ cond’.lit = litFalse then
eval(expr.ifFalse, st’, env)

else
Pair(exprError(rValidity), st)

. . .
else if expr.exprInvocation? then

var Pair(fun’, st’) := eval(expr.fun, st, env);

var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);
var sts’’ := {st’} ∪ sts’;
if ¬Compatible(sts’’) then

Pair(exprError(rCompatibility), st)
else

var stCombined := Combine(sts’’);

if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? then
if fun’.lit.prim.primExec? then

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) then

var ps := exec(args’[0].lit.str, args’[1].lit.paths,
args’[2].lit.strs, stCombined);

Pair(exprLiteral(litArrOfPaths(ps.fst)), ps.snd)
else

. . . // various rValidity error cases

}

Fig. 2. Three cases from CLOUDMAKE’s expression evaluation. Function evalArgs essentially
maps eval over the expressions given as its second argument.

where cmd is the command to be executed (e.g., "//bin/cl" and its arguments), deps
are the paths of all the artifacts that the command is allowed to read (e.g., "calc.c"
and "num.h"), and exps (for “expectations”) are the artifacts that a successful invo-
cation of the command has to return (e.g., "calc.obj"). The result value contains
a possibly updated state along with the set of paths to the expected artifacts (e.g.,
"//derived/8208/calc.obj"). (For brevity, we assume that all calls to exec succeed;
to model the possibility of failure, exec would return an error code that eval would
pass on.)

In our interpreter, we do not give function exec a body. Instead, we axiomatize the
properties of exec using an unproved lemma:

650 M. Christakis, K.R.M. Leino, and W. Schulte

lemma ExecProperty(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State)

requires ValidState(st) ∧ deps ⊆ DomSt(st) ∧ Pre(cmd, deps, exps, st);
ensures

var Pair(paths, st’) := exec(cmd, deps, exps, st);

Extends(st, st’) ∧
(∀ e • e ∈ exps =⇒ Loc(cmd, deps, e) ∈ paths) ∧
Post(cmd, deps, exps, Restrict(deps, st’));

These properties say that exec produces an extension st’ of st and that the result value
contains a path for every expectation. The definition of Post (not shown here) also
says that those paths are in the extension. Note that ExecProperty has a precondition
whereas exec does not. This is because the correctness theorem we show next only
needs to consider those behaviors that emanate from this precondition.

The use of Loc requires more explanation. It determines the paths that will hold the
derived artifacts. These are to be thought of as being placed in some temporary storage
that is not directly accessible. The CLOUDMAKE program can use these paths as stated
dependencies of other exec calls. In order for exec to be implementable, it is crucial
that Loc be injective (but it need not be onto).

3.3 Race Freedom

We are now ready to show the first correctness theorem. It says that an evaluation of
a CLOUDMAKE program will not result in an rCompatibility error. In other words,
the compatibility test in eval will always succeed. This means that the evaluation of a
function and its arguments can be done safely in parallel.

To verify in DAFNY that a method satisfies a (pre- and postcondition) specification,
the specification is included in the signature of the method and any necessary proof hints
are placed inline with the code, “intrinsically”. To verify that a function satisfies a spec-
ification, the proof style tends to be different: typically, the specification is stated and
verified as a separate lemma. We follow this “extrinsic” style here, where EvalLemma
gives the property of eval to be verified. In this style, the structure of the proof of the
lemma tends to mimic that of the function; in fact, sometimes it even repeats some of
the computation, if for no other reason than to give names to subexpressions that are
mentioned in the proof.

Figure 3 gives the race-freedom theorem as it pertains to expressions, along with
an excerpt of its proof, showing the same three cases we showed for function eval in
Fig. 2.

The case for literals is trivial, so nothing needs to be done in that branch of the proof.
In the case for if-then-else expressions, it is easy to see that the proof structure matches
that of function eval. The proof invokes the induction hypothesis for the various subex-
pressions of the if-then-else and then uses the transitivity of Extends to complete the
proof. Note that invoking another lemma or the induction hypothesis is just like making
a (possibly recursive) call in the proof.

The proof case for exec is similar, but uses more lemmas. Not surprisingly, it also
uses the axiomatized property of exec. Note that, other than manually spelling out the
required lemma invocations, the myriad of “boring” proof details are all taken care of
automatically by the DAFNY verifier.

Formalizing and Verifying a Modern Build Language 651

lemma EvalLemma(expr : Expression, st : State, env : Env)

requires ValidState(st) ∧ ValidEnv(env);
ensures

var Pair(expr, st’) := eval(expr, st, env);
Extends(st, st’) ∧
(expr.exprError? =⇒ expr.r = rValidity);

{
if expr.exprLiteral? {

} . . . else if expr.exprIf? {
EvalLemma(expr.cond, st, env);
var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue {
EvalLemma(expr.ifTrue, st’, env);
Lemma_ExtendsTransitive(st, st’, eval(expr.ifTrue, st’, env).snd);

} else if cond’.exprLiteral? ∧ cond’.lit = litFalse {
EvalLemma(expr.ifFalse, st’, env);
Lemma_ExtendsTransitive(st, st’, eval(expr.ifFalse, st’, env).snd);

} else { }
} . . . else if expr.exprInvocation? {

EvalLemma(expr.fun, st, env);

var Pair(fun’, st’) := eval(expr.fun, st, env);
EvalArgsLemma(expr, expr.args, st, env);
var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);

var sts’’ := {st’} ∪ sts’;
if Compatible(sts’’) {

var stCombined := Combine(sts’’);

Lemma_Combine(sts’’, st);
if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? {

if fun’.lit.prim.primExec? {

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) {

var cmd, deps, exp :=
args’[0].lit.str, args’[1].lit.paths, args’[2].lit.strs;

ExecProperty(cmd, deps, exp, stCombined);
var Pair(_, stExec) := exec(cmd, deps, exp, stCombined);

Lemma_ExtendsTransitive(st, stCombined, stExec);
. . .

}

Fig. 3. Theorem that justifies parallel builds of the arguments to exec. More precisely, the theorem
shows that eval will never result in an rCompatibility error, which means that the recursive
calls to eval do not produce conflicting artifacts, that is, do not build different artifacts for any
result path.

3.4 Consistency of Axiomatization

Our proofs make use of the axiomatized properties of exec. With any axiomatization,
there is a risk of inadvertently introducing an inconsistency in the formalization. There-
fore, we prove the existence of functions exec, Oracle, and WellFounded that satisfy

652 M. Christakis, K.R.M. Leino, and W. Schulte

the properties we axiomatized. We achieve this in DAFNY by introducing a refinement
module where we give bodies to these functions and to the previously unproved lemmas
we used to state axioms.

We build up the well-founded order on paths by computing well-founded certificates,
which order the paths. (Note, these certificates, like the other things we describe in this
subsection, are not part of the CLOUDMAKE algorithms; although they could in principle
be built, they are used only to justify the consistency of our axiomatization.) We define
our previously introduced predicate WellFounded to say that there exists a certificate:

datatype WFCertificate = Cert(p : Path, certs : set〈WFCertificate〉)
predicate CheckWellFounded(p : Path, cert : WFCertificate)

decreases cert;

{
cert.p = p ∧
(∀ d • d ∈ LocInv_Deps(p) =⇒ ∃ c • c ∈ cert.certs ∧ c.p = d) ∧
(∀ c • c ∈ cert.certs =⇒ CheckWellFounded(c.p, c))

}
predicate WellFounded(p : Path)
{ ∃ cert • CheckWellFounded(p, cert) }

Function LocInv_Deps gives the inverse function for the second argument of Loc (re-
call from Sec. 3.2 that Loc is injective). Note, DAFNY’s inductive datatypes guarantee
that certificates are well-founded, but the data structure itself does not provide any or-
dering on paths. It is the CheckWellFounded predicate that gives the necessary proper-
ties of paths; the certificates are used to prove the termination of the recursive calls of
CheckWellFounded. (In a system like COQ [1] with inductive constructions, the predi-
cate itself can be used as an inductive structure.)

Next, we define a function RunTool to model an actual tool, like a compiler, or rather,
a collection of tools:

function RunTool(cmd : string, deps : map〈Path, Artifact〉, exp : string) : Artifact

Argument cmd says which tool to invoke and exp says which of the tool’s outputs we
are interested in. Note that RunTool does not take the entire system state as a parameter.
Instead, it takes a path-to-artifact mapping whose domain is exactly those paths that the
tool invocation is allowed to depend on. By writing this as a function without a precon-
dition, we are modeling tools that are deterministic and always return some artifact. To
allow for tools that fail, perhaps because they need more dependencies than are given,
we can think of RunTool sometimes as returning some designated error artifact.

We define function exec to invoke RunTool for each expectation exp in exps. The
essential functionality is this:

var p := Loc(cmd, deps, exp);
if p ∈ DomSt(st) then st else

SetSt(p, RunTool(cmd, Restrict(deps, st), exp), st)

where Restrict(deps, st) returns st with its domain restricted to deps.
Function Oracle(p, st) returns an arbitrary artifact if p is not well-founded; other-

wise, it uses Skolemization (again, remember that this is for the proof only) to obtain a
certificate cert for p and returns the following:

Formalizing and Verifying a Modern Build Language 653

var cmd, deps, e := LocInv_Cmd(p), LocInv_Deps(p), LocInv_Exp(p);

RunTool(cmd, CollectDependencies(p, cert, deps, st), e)

where CollectDependencies recursively calls the oracle to obtain artifacts for the de-
pendencies of p.

From these definitions, we can prove that exec does have the properties stated by
ExecProperty. The proof is about 250 lines. One main lemma of the proof says that the
calls above to CollectDependencies and Restrict return the same state map. A major
wrinkle in the proof deals with the case when the path p given to exec already exists in
the domain of the state, in which case it is necessary to prove that this is indeed what
the oracle would have said.

4 Cached Builds

In this section, we formally verify the correctness of cached builds, a key optimization
employed by CLOUDMAKE. This optimization effectively reduces the build times of
CLOUDMAKE by making use of the fact that code changes software developers typically
make between successive versions of a program are small, especially in comparison to
the size of the modified program.

Cached builds enable the reuse of artifacts that have already been derived during
previous, similar builds. The theorems that we show here say that cached builds are
equivalent to clean builds, that is, building a program without using cached artifacts is
indistinguishable from any cached build, and that, starting from any consistent cache, a
cached build never fails due to the cache being inconsistent and the new state also has
a consistent cache.

The state is now extended with a cache component represented as a hash map from
paths. The cache is consistent when for each hashed path there exists a matching derived
artifact in the system state:

predicate ConsistentCache(stC : State) {
∀ cmd, deps, e • Hash(Loc(cmd, deps, e)) ∈ DomC(stC.c) =⇒

Loc(cmd, deps, e) ∈ DomSt(stC.m)

}

To verify the equivalence of cached and clean builds, we implement a wrapper
around function exec described in the previous section. Specifically, the wrapper checks
whether all expectations of a given command exist in the cache. If this is the case, it
returns the paths to these expectations, otherwise it calls the previous, axiomatized ver-
sion of exec to derive the expectations of the command, and then it consistently updates
the cache by caching each derived expectation:

function execC(cmd : string, deps : set〈Path〉, exps : set〈string〉, stC : State) :
Tuple〈set〈Path〉, State〉

{

if ∀ e | e ∈ exps • Hash(Loc(cmd, deps, e)) ∈ DomC(stC) then
var paths := set e | e ∈ exps • Loc(cmd, deps, e);
Pair(paths, stC)

else

654 M. Christakis, K.R.M. Leino, and W. Schulte

var Pair(expr’, st’) := exec(cmd, deps, exps, stC);

var stC’ := UpdateC(cmd, deps, exps, st’);
Pair(expr’, stC’)

}

Note that for these proofs, we had to thread a new boolean useCache parameter
through the definitions of the previous section and adjust the theorems proved before
accordingly.

5 Proof Experience and Proof Statistics

Our file ParallelBuilds.dfy contains a formalization of the basic CLOUDMAKE al-
gorithm, a proof that subexpressions of invocation expressions can be done in any or-
der or in parallel, and a proof that the axioms used for these are consistent. Our file
CachedBuilds.dfy contains a formalization of caches, proves again (but this time in the
context of caches) that subexpressions of invocations can be done in any order or in par-
allel, proves a theorem that the cache handling maintains the correspondence of states,
but does not again prove the consistency of axioms (which are essentially the same as
before, except for the addition of the boolean useCache parameter that says whether or
not to ignore the cache). Currently missing among the lemmas in CachedBuilds.dfy
is a proof that the arguments of an invocation are considered valid in the cached ver-
sion just when they are considered valid in the non-cached version. Finally, our file
ConsistentCache.dfy shows that, starting from any consistent cache, a cached build
never fails due to an rInconsistentCache error and the new state also has a consistent
cache. Moreover, a consistent-cache state is reachable from any state by deleting all
cache entries of the latter state.

The following table shows file sizes and verifier running times (in seconds) for the
three files.

number of lines verification time
ParallelBuilds.dfy 835 237
CachedBuilds.dfy 1321 194
ConsistentCache.dfy 659 40

The times are in seconds on a 2.4 GHz laptop with eight logical cores, averaged over
three runs (with a variation of less than 10 seconds among different runs). The file
CachedBuilds.dfy is much larger because the proofs require much more manual guid-
ance; however, we have not tried to clean up these proofs, which could make them
shorter.

To develop the formalization and proofs, we used the DAFNY IDE [8] in Visual Stu-
dio, and found it to do a good job with verification-result caching and continuous back-
ground verification. The biggest annoyance we found (and saw a lot of) was time-outs.
In such cases, we were not given much useful information from the verifier, and we had
to wait longer (more than 10 seconds) to be given anything at all. The time-outs were
mostly due to missing parts of the proof—once the proof was in place, verification times
were usually low. To reduce frustrating waits, we divided up the proof in pieces—this
can sometimes lead to good modularization, but in some cases it can become tedious.

Formalizing and Verifying a Modern Build Language 655

It seems that the proving system should be able to do such restructuring automatically
and behind the scenes. To reduce the information available to the prover—in hopes of
reducing the ways in which the automatic prover can get lost in its proof search—we
also sometimes turned off the automatic induction and several times marked functions
as “opaque”, a recent feature in DAFNY that hides the definition of the functions unless
the proof requests the definition to be revealed. In general, after having verified the ba-
sic algorithm used by CLOUDMAKE, we found the verification process to be incremental
and require less effort.

The formalization presented in this paper has contributed to the development of
CLOUDMAKE. In particular, we found parts of the English specification document for
CLOUDMAKE either inadequate or more complex than necessary for our theorems to
hold. Our work has led to identifying and fixing such mistakes in this document, for
example in the evaluation of statements and the specification of exec. Moreover, we
substantially simplified the formalization for cached builds while threading the cache
through our proofs.

6 Related Work

There are almost as many build systems as there are programming languages (since em-
bedded, domain-specific build systems have been developed for almost all languages).
But only a few such systems remain in active use. Here are the ones that had an im-
pact on CLOUDMAKE. MAKE [3] introduced dependency-based builds, which are key
to CLOUDMAKE’s optimizations. VESTA-2 [4] used, for the first time, a functional pro-
gramming language to describe dependencies, which are computed based on finger-
prints instead of time stamps like in MAKE. VESTA-2 also introduced caching based on
fingerprints. Moreover, Google’s build language and Facebook’s BUCK3 had an impact
on CLOUDMAKE’s incremental and distributed builds.

Build optimizations, akin to compiler optimizations, should be correctness preserv-
ing. However, such optimizations are typically difficult to verify since the proof must
demonstrate that the semantics of the original program is equivalent to the semantics of
the transformed program. Early compiler verification showed the equivalence of source
and target programs with commutative diagrams [11] and presented the first mechani-
cally verified compiler [12]. Other work of formally verifying the correctness of com-
piler optimizations was done by Lerner et al. [9]. The recent rise in the power of proof
tools revitalized the area of compiler and optimizer verification. The most notable ex-
ample is the COMPCERT project [10], which involved developing and proving correct
a realistic compiler for a large subset of C, usable for critical embedded systems. A
formal proof of correctness of function memoization has been done in the interactive
proof assistant ACL2 [2].

7 Conclusion

We have formally presented and mechanically verified the central algorithms of CLOUD-
MAKE, a modern build language whose design allows for a number of possible opti-
mizations. We have defined the CLOUDMAKE language using a pluggable operational

3 http://facebook.github.io/buck/

http://facebook.github.io/buck/

656 M. Christakis, K.R.M. Leino, and W. Schulte

semantics: the primitive operation exec is defined axiomatically and can be used to call
any tool as part of a build as long as the tool complies with the axiomatization. To define
the CLOUDMAKE semantics and verify its algorithms, we have used the SMT-based pro-
gram verifier DAFNY. Given that CLOUDMAKE is a functional language, we have found
it sufficient to use only the functional subset of the DAFNY language in our proofs.
A limitation of our work is that we have not targeted verification of the CLOUDMAKE

implementation, but only of its algorithms.
In the future, we plan on proving the equivalence of more optimized builds, like

staged and incremental builds, to clean builds. A staged build uses dependency infor-
mation from the last successful build to reduce the number of exec operations. Specif-
ically, there are two stages in a staged build. First, we do a “lazy” build during which
exec operations are not evaluated but are, instead, used to compute a dependency graph.
For any given exec, this graph shows which other exec operations must be evaluated
first for the given exec to succeed, that is, which dependency artifacts of the given exec
must be previously derived by other exec operations, recursively. Second, we traverse
the dependency graph top-down and evaluate all the exec operations we postponed dur-
ing the first stage. In practice, we only evaluate those exec operations that correspond to
the changed system state between two successive builds. The main difference between
staged and incremental builds is that during the second stage of an incremental build,
the dependency graph is traversed bottom-up instead of top-down. We already have
such a proof for staged builds, but we still aspire to formalize and prove the bottom-up
algorithm of incremental builds, which is the optimization mostly used by CLOUDMAKE.

By verifying these algorithms, we are ensuring that nothing can go wrong during
such optimized builds. Our work already affects many product groups at Microsoft that
rely on these optimizations to speed up the build times of large software products.

Acknowledgments. We are grateful to Michał Moskal for suggestions on the proofs
presented here. We also thank Valentin Wüstholz for his comments on drafts of this
paper.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer
(2004)

2. Boyer, R.S., Hunt Jr., W.A.: Function memoization and unique object representation for
ACL2 functions. In: ACL2 Theorem Prover and its Applications, pp. 81–89. ACM (2006)

3. Feldman, S.I.: Make—A program for maintaining computer programs. Software—Practice
and Experience 9(4), 255–265 (1979)

4. Heydon, A., Levin, R., Mann, T., Yu, Y.: Software Configuration Management Using Vesta.
Monographs in Computer Science. Springer (2006)

5. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg
(2010)

6. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)

Formalizing and Verifying a Modern Build Language 657

7. Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 2–16. Springer, Heidelberg (2013)

8. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In: Workshop
on Formal-IDE (to appear, 2014)

9. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler
optimizations. In: PLDI, pp. 220–231. ACM (2003)

10. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115 (2009)

11. McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions. In: Proceed-
ings of Applied Mathematica. Mathematical Aspects of Computer Science, vol. 19, pp. 33–
41. American Mathematical Society (1967)

12. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic. Machine
Intelligence 7, 51–72 (1972)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

	Formalizing and Verifying a Modern Build Language
	1 Introduction
	2 CloudMake
	3 Formal Semantics
	3.1 Domains
	3.2 Evaluation
	3.3 Race Freedom
	3.4 Consistency of Axiomatization

	4 Cached Builds
	5 Proof Experience and Proof Statistics
	6 Related Work
	7 Conclusion
	References

