
Efficient Self-composition for Weakest
Precondition Calculi

Christoph Scheben and Peter H. Schmitt�

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

http://www.key-project.org/DeduSec/

Abstract. This paper contributes to deductive verification of language
based secure information flow. A popular approach in this area is self-
composition in combination with off-the-shelf software verification sys-
tems to check for secure information flow. This approach is appealing,
because (1) it is highly precise and (2) existing sophisticated software ver-
ification systems can be harnessed. On the other hand, self-composition
is commonly considered to be inefficient.

We show how the efficiency of self-composition style reasoning can be
increased. It is sufficient to consider programs only once, if the used ver-
ification technique is based on a weakest precondition calculus with an
explicit heap model. Additionally, we show that in many cases the num-
ber of final symbolic states to be considered can be reduced considerably.
Finally, we propose a comprehensive solution of the technical problem of
applying software contracts within the self-composition approach. So far
this problem had only been solved partially.

1 Introduction

In the last years, there has been an increasing interest, both in research and indus-
try, in checking programs for unintended leakage of secret information. Language-
based non-interference is one of the most prominent concepts promoted in this
area and a number of theories and tools have been developed to support it. In
Sect. 6 we will present a detailed summary of the different approaches and their
relation to our contribution. The approach we follow is called self-composition
as pioneered by [6,8]. To check that the high variables h̄ in program α do not
interfere with its low variables �̄ a syntactic variation α′ of α is considered by
replacing every program variable v by a new primed version v′. Then it has to be
proved that when program α;α′ is started in any state where the values of �̄ and
�̄′ coincide it terminates in a state where the values of �̄ and �̄′ again coincide.

The advantages of this approach are its high degree of precision and the fact
that off-the-shelf SMT-solvers or theorem provers can be harnessed. In our case

� This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties” within priority programme 1496 “Reliably Secure Software Systems – RS3”.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 579–594, 2014.
c© Springer International Publishing Switzerland 2014

http://www.key-project.org/DeduSec/

580 C. Scheben and P.H. Schmitt

we used KeY, a software verification system for full sequential Java. On the
other hand, disadvantages of the self-composition approach are that (1) naive
implementations are quite inefficient and (2) it does not easily lend itself to
modular verification.

The efficiency issue arises from two facts. Let n be the number of paths
through a program α.

1. Analysis based on self-composition consider the same program at least twice.
(Really naive analysis might consider the same program even 1 + n times.)

2. The self-composed program α;α′ has n2 final symbolic states in which the
low values have to be compared to each other.

As a first contribution we show that self-composition approaches based on
weakest precondition calculi [9] need to consider α only once: we show in Theo-
rem 1 that the problem can be rephrased in self-composition style such that the
weakest precondition of α;α′ can be constructed from the weakest precondition
of α, because α and α′ do not interfere with each other and the weakest precon-
dition of α′ and φ′ is the same as the one of α and φ except for the names of the
program variables.

As a second contribution, inspired by the compositional reasoning of security
type systems and specialized information flow calculi, we show that the number
of final symbolic states to be considered can be reduced considerably if α is com-
positional with respect of information flow. In this case only O(n) final symbolic
states have to be considered. Depending on the structure of the program, this
number can be reduced further up to O(log(n)).

The latter approach relies on compositional / modular reasoning: If program
α calls a block b, we (sometimes) do not want to look at its code but rather
use a software contract for b, a contract that had previously been established by
looking only at the code of b. This kind of modularization can also be applied
to methods instead of blocks and is essential for the scalability of all deductive
software verification approaches. With self-composition b is not only called in α,
but b′ is called in α′. This poses the technical problem of somehow synchronizing
the calls of b and b′ for contract application. This has already been pointed out
in the paper by Naumann [16], who also gave hints to a possible solution. Dufay,
Felty and Matwin [10] present a partial solution using ghost code, see Sect. 6.

As a third contribution we show how software contracts can be applied in self-
composition proofs based on weakest precondition calculi. An important feature
of our approach is the seamless integration of information flow and functional
reasoning allowing us to take advantage of the precision of functional contracts
also for information flow contracts, if necessary.

Structure. In the next two sections, we fix notation and recall the formalization of
conditional non-interference. Based on this, Sect. 4 discusses two efficiency prob-
lems with self-composition and presents two orthogonal approaches to overcome
these problems. Sect. 5 presents modular reasoning at the block level which the
second approach relies on. Sect. 6 discusses related work and Sect. 7 concludes
the paper.

Efficient Self-composition for Weakest Precondition Calculi 581

2 Notation

Assertions like pre- and postconditions are formulated in typed first order logic.
Among others, constant and function symbols are available for local program
variables as well as instance and static fields. Terms t and formulas φ are induc-
tively defined as usual. We use M to refer to interpretations of first order logic,
and tM, φM to denote the interpretation of term t and formula φ in M. The
data type heap is modeled by the theory of arrays [13,19]. The current heap of
a program is given by an implicit program variable heap. A state is a mapping
from program variables (including heap) to values of proper types. As a conse-
quence of the theory of arrays the values of the local variables x̄ together with
the value of heap completely determine the state of a program.

Let M be an interpretation and s a state. We denote by M←s the inter-
pretation which coincides with M except for the interpretation of the program
variables heap and x̄; these are interpreted according to s as heapM

←s

= s(heap)
and x̄M

←s

= s(x̄). As usual, a formula is said to be universally valid iff it is true
in every interpretation M.

φ[x ← x′] denotes the substitution of x by x′ in φ. We use φ[x ← x′, y ← y′] as
abbreviation for (φ[x ← x′])[y ← y′]. The weakest precondition [9] of a program
α and a postcondition φ is denoted by wp(α, φ). For simplicity we consider only
terminating programs. Hence, wp(α, φ) always exists.

In self-composition proofs any program variable x has a primed counterpart,
denoted by x′. Accordingly, α′ denotes the program which is constructed from
α by replacing all program variables by their primed counterpart. Similarly, φ′

denotes the formula constructed from φ by replacing all program variables by
their primed counterpart and the term t′ denotes the counterpart of t.

Let α be a program and let s1, s2 be states. In the following, “α started in s1
terminates in s2” is denoted by s1

α� s2.

3 Formalizing Conditional Non-interference

We use the following quite general, passive attacker model. In our setting attack-
ers may not only observe the values of program variables, but more generally
the values of so called observation expressions. Observation expressions can be
thought of as a generalization of side-effect free Java expressions:

Definition 1. An observation expression can be:

1. A program variable (including method parameters).
2. e.f for e an expression of type C and f a field declared in C.
3. e[t] if e is an expression of array type, and t of integer type.
4. op(e1, . . . , ek) if op is a data type operation and ei expressions of matching

type.
5. The usual conditional operator b ? e1 : e2 (e1, e2 have to be of the same

type).

582 C. Scheben and P.H. Schmitt

6. The sequence definition operator seq{i}(from, to, e). Its semantics is defined
by

(seq{i}(from, to, e))M

= 〈(e[i ← n])M, (e[i ← n+ 1])M, . . . , (e[i ← m− 1])M〉

if fromM = n < m = toM, and (seq{i}(from, to, e))M = 〈〉 else.

We denote the concatenation of two observation expressions R1 and R2 by R1;R2.

Attackers can observe the values of a set of (low) observation expressions in
the initial and final state of a program run: for any expression an attacker can
see the expression and the corresponding evaluation. An attacker can compare
observed values as by using the == operator of Java. Additionally we assume
that attackers know the program-code.

Let us describe this scenario a bit more formally. Let R be an observation
expression an let M be any interpretation. If s is the initial or the final state of
a program run, then attackers are able to observe the tuple (R,RM←s

), where
RM←s

= 〈eM←s

1 , . . . , eM
←s

k 〉 if R = 〈e1, . . . , ek〉. Thus, an attacker knows that
eM

←s

i is the value of the expression ei in state s (for 1 ≤ i ≤ k) and they
can compare any two values, eM

←s

i = eM
←s′

j , for any pair of initial or final
states s and s′. Knowing the program-code is formalized by the assumption that
attackers know which initial state of a program run relates to which final state.

Definition 2 (Agreement of states). Let R be an observation expression
and let M be an interpretation. Two states s, s′ agree on R in M, abbreviated
by agreeM(R, s, s′), iff RM←s

= RM←s′
.

Thus two states agree on R if an attacker cannot distinguish them.

Definition 3. Let R be an observation expression using the local variables x̄ and
the variable heap. Let heap2, x̄2 and heap′2, x̄

′
2 be two copies of these program

variables. We will use the following abbreviation

obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R)

≡ R[heap ← heap2, x̄ ← x̄2] = R[heap ← heap′2, x̄ ← x̄′2]

We note that for any interpretation M we have

obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R)M = tt iff agreeM(R, s2, s

′
2)

for s2(x̄) = x̄M2 , s2(heap) = heapM2 , s′2(x̄) = x̄′M2 , s′2(heap) = heap′M2 .

Definition 4 (Conditional Non-Interference). Let α be a program with pro-
gram variables heap and x̄, let R1, R2 be observation expressions and let φ be a
formula. Further, let heap and x̄ be the only program variables occurring in R1,
R2 and φ.

Efficient Self-composition for Weakest Precondition Calculi 583

Program α allows information to flow only from R1 to R2 when started in s1
under condition φ, denoted by flow(s1, α,R1, R2, φ), iff for all interpretations M
and all states s′1, s2, s

′
2 such that s1

α� s2 and s′1
α� s′2 we have

if φM←s1
= tt, φM←s′1 = tt and agreeM(R1, s1, s

′
1) then agreeM(R2, s2, s

′
2).

flow(α,R1, R2, φ) denotes the case that flow(s1, α,R1, R2, φ) holds for all states
s1.

We think of R1, R2 as the publicly observable information of a state of the
system. In the simplest case what goes into Ri is determined by explicit decla-
rations of which program variables and which fields are considered low. In more
sophisticated scenarios the Ri may be inferred from a multi-level security lattice
(see for instance [20]). Usually we will have R1 = R2. But, there are other cases:
to declassify an expression edecl, for instance, one would choose R1 = R2; edecl.

Lemma 1 (Compositionality of flow). Let α1, α2 be programs and let α1;α2

be their sequential composition. If flow(s1, α1, R1, R2, φ1), flow(s2, α2, R2, R3, φ2)
and (φ1 ⇒ wp(α1, φ2))

M←s1
= tt hold for all interpretations M and all states

s1, s2, s3 such that s1
α1� s2 and s2

α2� s3 then flow(s1, α1;α2, R1, R3, φ1) holds.

Proof. Let s′1, s′2, s′3 be a second set of states such that s′1
α1� s′2, s′2

α2� s′3, and
(φ1 ⇒ wp(α1, φ2))

M←s′1 = tt . Assume that the precondition φ1 holds in s1 and
s2. In other words, assume φM←s1

1 = tt and φM←s′1
1 = tt . Additionally, assume

agreeM(R1, s1, s
′
1). By (φ1 ⇒ wp(α1, φ2))

M←s1
= tt and (φ1 ⇒ wp(α1, φ2))

M←s′1

= tt we infer φM←s2

2 = tt and φM←s′2
2 = tt . In other words, we infer that φ2

holds in s2 and s′2. By flow(s1, α1, R1, R2, φ1) we get agreeM(R2, s2, s
′
2). Further,

by agreeM(R2, s2, s
′
2), φM←s2

2 = tt , φM←s′2
2 = tt and flow(s2, α2, R2, R3, φ2) we

get agreeM(R3, s3, s
′
3), as desired. �	

4 Efficient Self-composition

The Problem. We illustrate the efficiency issues of self-composition approaches
by an example. Consider the following program α:

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 if (l > 0) { l--; }

Let l be a low variable and let h be a high variable. Then α has no information
leak: the value of l after line 2 is the same as the initial value of l. Thus the
value of l after line 3 depends only on the initial value of l. The control flow
graph of α is sketched in Figure 1(a).

In the self-composition approach a copy α′ of α is constructed by replacing
all program variables by renamed ones. We decided to rename l to l2 and h to
h2. This leads to the following self-composed program α;α′:

584 C. Scheben and P.H. Schmitt

(a) (b)

Fig. 1. Sketch of the control flow graphs of (a) the original program and (b) the self-
composed program

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 if (l > 0) { l--; }
4 l2 = l2 + h2;
5 if (h2 != 0) { l2 = l2 - h2; }
6 if (l2 > 0) { l2 --; }

The control flow graph of α;α′ is sketched in Figure 1(b).
h does not interfere with l in α, iff α;α′ started in any state with l = l2

terminates in a state where l = l2 holds. Hence, in the self-composition approach
essentially the outcome of any path through α has to be compared to the outcome
of any path through α′. If n is the number of paths through α, this results in
O(n2) comparisons of the low variables. In contrast, specialized information flow
calculi, which consider α only once, have to check only the outcome of the n
paths through α. This is one reason why self-composition often is considered to
be inefficient. The other reason is that the computation of a weakest precondition
for α;α′ is at least twice as costly as the calculation of a weakest precondition
for α.

Reducing the Cost for the Weakest Precondition Calculation. We tackle the sec-
ond problem first by showing that it is possible to show non-interference in self-
composition style with the help of only one weakest preconditions calculation
on α.

Let heap2 and x̄2 be a set of fresh program variables. wp(α, heap = heap2∧x̄ =
x̄2) characterizes the initial state s such that α started in s terminates in the

Efficient Self-composition for Weakest Precondition Calculi 585

state described by heap2 and x̄2. Further we observe that wp(α′, φ′) = wp(α, φ)′

holds. Therefore, wp(α′, heap′ = heap′2 ∧ x̄′ = x̄′2) can be constructed from
wp(α, heap = heap2 ∧ x̄ = x̄2) by the renaming of heap, x̄, heap2 and x̄2 to
heap′, x̄′, heap′2 and x̄′2, respectively.

During the construction of wp(α, heap = heap2 ∧ x̄ = x̄2) fresh (skolem)
symbols might be introduced (see Sect. 5). Let c′ be a fresh (primed) sym-
bol for any fresh symbol c introduced during the construction of wp(α, heap =
heap2 ∧ x̄ = x̄2) such that c′ does not occur in wp(α, heap = heap2 ∧ x̄ = x̄2).
Let wp′(α′, heap′ = heap′2 ∧ x̄′ = x̄′2) denote the formula which results from
wp(α′, heap′ = heap′2 ∧ x̄′ = x̄′2) by renaming all fresh symbols to their primed
counterparts. Given these weakest preconditions, non-interference can be proved
as follows:

Theorem 1. Let α be a program with program variables heap and x̄, let R1, R2

be observation expressions and let φ be a formula. Let heap and x̄ be the only
program variables occurring in R1, R2 and φ. Let further heap′ and x̄′, heap2
and x̄2 and heap′2 and x̄′2 be three copies of the program variables of α; let α′

and φ′ be the primed counterparts to α and φ, respectively.
Let Ψα,x̄,R1,R2,φ be defined by

Ψα,x̄,R1,R2,φ ≡ (φ ∧ wp(α, (heap = heap2 ∧ x̄ = x̄2)))

∧ (φ′ ∧ wp′(α′, (heap′ = heap′2 ∧ x̄′ = x̄′2)))
∧ obsEq(x̄, heap, x̄′, heap′, R1)

⇒ obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2)

The formula Ψα,x̄,R1,R2,φ is universally valid iff flow(α,R1, R2, φ) holds.

Proof.
“⇒”: Let Ψα,x̄,R1,R2,φ be universally valid. We have to show flow(α,R1, R2, φ).
Consider an arbitrary structure M and let s1, s2, s′1, s′2 be the states given
by si(x̄) = x̄M

i , si(heap) = heapMi , s′i(x̄) = (x̄′
i)

M, s′i(heap) = (heap′i)
M.

According to Definition 4, we have to show that s1
α� s2, s′1

α� s′2, φM←s1
= tt ,

φM←s′1 = tt and agreeM(R1, s1, s
′
1) imply agreeM(R2, s2, s

′
2).

Assume s1
α� s2, s′1

α� s′2, φM←s1
= tt , φM←s′1 = tt and agreeM(R1, s1, s

′
1).

Then there exists a structure M′ such that (1) M′ differs from M only in the
interpretation of the fresh symbols and (2) the formulas wp(α, (heap = heap2 ∧
x̄ = x̄2)) and wp′(α′, (heap′ = heap′2∧ x̄′ = x̄′2)) hold in M′. Because φ and φ′ do
not contain fresh variables, φM←s1

= φM′←s1
= tt and φM←s′1 = φM′←s′1 = tt .

Therefore, the first two lines of Ψα,x̄,R1,R2,φ are valid in M′.
Further we get by the remark to Definition 3 that line 3 evaluates to true

iff agreeM
′
(R1, s1, s2) holds. Because obsEq(x̄, heap, x̄′, heap′, R1) does not con-

tain fresh variables, this is the case iff agreeM(R1, s1, s2) holds. Thus, the formula
obsEq(x̄, heap, x̄′, heap′, R1) is valid in M′. Now we get by the universal validity
of Ψα,x̄,R1,R2,φ that line 4 has to hold in M′, too. Again, by the remark to Def-
inition 3 agreeM

′
(R2, s2, s

′
2) holds and because obsEq(x̄2, heap2, x̄

′
2, heap

′
2, R2)

does not contain fresh variables agreeM(R2, s2, s
′
2) holds, too.

586 C. Scheben and P.H. Schmitt

(a) (b) (c)

Fig. 2. Reducing the verification overhead by compositional reasoning

“⇐”: Let flow(α,R1, R2, φ) hold. We have to show that Ψα,x̄,R1,R2,φ is universally
valid. Again, consider an arbitrary structure M and let s1, s2, s′1, s′2 be the states
given by si(x̄) = x̄M

i , si(heap) = heapMi , s′i(x̄) = (x̄′
i)

M, s′i(heap) = (heap′i)
M.

We have to show that Ψα,x̄,R1,R2,φ is valid in M.
Assume that the first three lines of Ψα,x̄,R1,R2,φ are valid in M (otherwise we

are already done). We have to show that obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2) is valid

in M, too. As before, we get by the validity of the first three lines that s1
α� s2,

s′1
α� s′2, φM←s1

= tt , φM←s′1 = tt and agreeM(R1, s1, s
′
1) hold. Therefore we get

by flow(α,R1, R2, φ) that agreeM(R2, s2, s
′
2) holds, too. As before, this implies

that obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2) holds in M. �	

Altogether we have shown that it is possible to prove non-interference in self-
composition style with the help of only one weakest precondition calculation
on α.

Note 1. Because wp(α, (heap = heap2 ∧ x̄ = x̄2)) occurs on the left hand
side of an implication, it may not be approximated in the usual manner by
a formula ψ such that ψ ⇒ wp(α, (heap = heap2 ∧ x̄ = x̄2)) holds. Instead,
wp(α, (heap = heap2 ∧ x̄ = x̄2)) ⇒ ψ needs to hold. Because we consider deter-
ministic programs, the usual wp-calculus can still be used to calculate ψ in the
following manner: instead of calculating a condition under which the state s2
given by heap2 and x̄2 is definitely reached we have to calculate a condition ψnot

under which s2 is definitely not reached. ψ is then the negation of ψnot. In other
words, wp(α, (heap = heap2 ∧ x̄ = x̄2)) and wp′(α′, (heap′ = heap′2 ∧ x̄′ = x̄′2))
in Theorem 1 have to be replaced by ¬wlp(α, (heap �= heap2 ∨ x̄ �= x̄2)) and
¬wlp ′(α′, (heap′ �= heap′2 ∨ x̄′ �= x̄′2)), respectively, if approximations are in-
volved. The intuition behind this replacement is that ψnot characterizes a set
Snot of initial states such that α started in any s ∈ Snot does not terminate in s2
and, thus, ψ characterizes a set S of initial states such that if there is an initial
state s1 such that α started in s1 terminates in s2, then s1 is an element of S.

Reducing the Number of Comparisons. The second problem, reducing the num-
ber of comparisons, can be tackled with the help of compositional reasoning, if
the structure of the program allows for it. Reconsider the initial example:

Efficient Self-composition for Weakest Precondition Calculi 587

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 // - - - - - - - - - - - - -
4 if (l > 0) { l--; }

As discussed above, the first part, lines 1 and 2, and the second part, line 4, are
non-interfering on their own. Therefore, by Lemma 1, the complete program is
non-interfering. As illustrated in Fig. 2, checking the two parts independently
from each other results in less verification effort: the control flow graph of each
self-composed part on its own contains only four paths. Thus, altogether only
eight comparisons have to be made to prove non-interference of the complete
program. Checking the complete program at once would require (about) 12 com-
parisons.1 We summarize the above observation in the following lemma.

Lemma 2. Let α be a program with m branching statements.
If α can be divided into m non-interfering blocks with at most one branching

statement per block, then non-interference of α can be shown with the help of
self-composition with 3m comparisons.

Proof. Using symmetry, for any block at most 3 paths have to be considered.
Hence, for m blocks 3m comparisons are sufficient.

Because a program with m branching statements has at least n = m+ 1 paths,
Lemma 2 shows that the verification effort of self-composition approaches can
be reduced from O(n2) comparisons to O(n), if the program under consideration
is compositional with respect to information flow. In the best case, a program
with m branching statements has Ω(2m) paths. In this case the verification
effort reduces to O(log(n)) comparisons, if the program under consideration is
compositional with respect to information flow.

Unfortunately, the separation is not always as nice as in the example above.
Consider for instance the following program:

if (l > 0) { if (l % 2 == 1) { l--; } }

The program can be divided into blocks b1 = if (l % 2 == 1) { l--; } and
b2 = if (l > 0) { b1 }. To conclude that b2 is non-interfering, it is necessary to
use the fact that b1 is non-interfering in the proof of b2. Unfortunately, the self-
composition approach does not easily lend itself to such compositional / modular
verification. In the next section the problem of compositional / modular reasoning
will be discussed.

5 Modular Self-composition with Contracts

In the context of functional verification, modularity is achieved through method
contracts. We want to extend this approach to the verification of information
flow properties. We define information flow contracts on the basis of [20]:
1 By symmetry the number of comparisons can be reduced further in both cases: in the

first case 2·(2+1) = 6 comparisons are sufficient, in the second case 4+3+2+1 = 10
comparisons are enough.

588 C. Scheben and P.H. Schmitt

Definition 5 (Information Flow Contract). An information flow contract
(in short: flow contract) to a block (or method) b with local variables x̄ :=
(x1, . . . , xn) of types Ā := (A1, . . . , An) is a tuple Cb,x̄::Ā = (Pre, R1, R2), where
(1) Pre is a formula which represents a precondition and (2) R1, R2 are obser-
vation expressions which represent the low expressions in the pre- and post-state.

A flow contract Cb,x̄::Ā = (Pre, R1, R2) is valid iff for all states s the predicate
flow(s, b, R1, R2,Pre) is valid.

The difficulty in the application of flow contracts arises from the fact that
flow contracts refer to two invocations of a block b in different contexts.

Example 1. Consider the example if (l>0) { l++; if (l % 2 == 1) { l--; } }
again, with blocks b1 = if (l % 2 == 1) { l--; } and b2 = if (l>0) { l++; b1 }. Let
Cb1,x̄::Ā = Cb2,x̄::Ā = (true, l, l) be flow contracts for b1 and b2. To prove Cb2,x̄::Ā by
self-composition,

wp(if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}, l = l′) (1)

has to be computed. Application of the wp-calculus yields:

≡ (
l > 0 ⇒ wp(b1, (l′ > 0 ⇒ wp(b′1, l = l′)[l′ ← l′ + 1]))[l ← l+ 1]

)

∧ (
l ≤ 0 ⇒ (l′ > 0 ⇒ wp(b′1, l = l′)[l′ ← l′ + 1])

)

∧ (
l > 0 ⇒ wp(b1, (l′ ≤ 0 ⇒ l = l′))[l ← l+ 1]

)

∧ (
l ≤ 0 ⇒ (l′ ≤ 0 ⇒ l = l′)

)

(2)

If l = l′ is valid, then the last three lines of (2) are obviously fulfilled. To see that
also the first line is fulfilled, Cb1,x̄::Ā needs to be used to remove the remaining
wp’s—but it is not obvious how this can be done, because the wp’s are nested.
A similar problem occurs if Theorem 1 is used to prove Cb2,x̄::Ā.

The main idea of the solution is a coordinated delay of the application of flow
contracts. The solution is compatible with the optimizations of Section 4 and
additionally allows the combination of flow contracts with functional contracts.

Let b be a block with the functional contract Fb,x̄::Ā = (Pre,Post ,Mod) con-
sisting of: (1) a formula Pre representing the precondition; (2) a formula Post
representing the postcondition; and (3) a term Mod representing the modifies
clause for b. We introduce the formula

Pre ∧ (Post ⇒ φ)[Substanon] (3)

Here, Substanon = (heap ← anon{heap,Mod , h}, x̄ ← x̄′) is an anonymising
substitution setting the locations of Mod (which might be modified by b) and
the local variables which might be modified to unknown values; h of type Heap
and x̄′ of appropriate types are fresh symbols. We require Pre to entail equations
heappre = heap and x̄pre = x̄ which store the values of the program variables
of the initial state in program variables heappre and x̄pre such that the initial
values can be referred to in the post-condition. Additionally, we require that Pre

Efficient Self-composition for Weakest Precondition Calculi 589

and Post entail a formula which expresses that the heap is wellformed. For the
sake of simplicity we do not handle exceptions here.

If b fulfills the contract Fb,x̄::Ā = (Pre,Post ,Mod), then formula (3) approxi-
mates wp(b, φ) in the following sense:

Lemma 3
Pre ∧ (Post ⇒ φ)[Substanon] ⇒ wp(b, φ)

is valid in any interpretation M.

Proof. See for example [12].

We introduce a new two-state predicate Cb(x̄, h, x̄
′, h′) with the intended

meaning that b started in state 〈x̄, heap〉 �→ 〈x̄, h〉 terminates in state 〈x̄, heap〉 �→
〈x̄′, h′〉. This predicate can be integrated into the approximation (3) of wp(b, φ)
as follows:

Pre ∧ (
Cb(x̄, heap, x̄

′, h′)
∧ (heap = h′ ∧ x̄ = x̄′)[Substanon]
⇒ (Post ⇒ φ)[Substanon]

)
(4)

where h′ of type Heap and x̄′ of types Ā are fresh function symbols. By Lemma 4
below, formula (4) implies wp(b, φ) and therefore is also a correct approximation
of wp(b, φ). The introduction of Cb(x̄, h, x̄

′, h′) (by approximating wp(b, φ) by
(4)) allows us to store the initial and the final state of b for a delayed application
of information flow contracts: as we show in Theorem 2 below, if two predicates
Cb(x̄1, h1, x̄

′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are true in a structure M, then they can

be approximated by an instantiation of a flow contract Cb,x̄::Ā = (Pre, R1, R2)
for b by

Pre[heap ← h1, x̄ ← x̄1] ∧ Pre[heap ← h2, x̄ ← x̄2]

⇒ (
obsEq(x̄1, h1, x̄

′
1, h

′
1, R1) ⇒ obsEq(x̄2, h2, x̄

′
2, h

′
2, R2)

)
.

(5)

Example 2. Let Fb1,x̄::Ā = (true, true, allLocs) be the trivial functional contract
for b1. Applied on our example, the first line of (2) can be simplified as follows.
First wp(b′1, l = l′)[l′ ← l′ + 1] can be approximated by (4) by

(Cb1(l
′, heap′, �′, h′)

∧ (heap′ = h′ ∧ l′ = �′)[heap′ ← h′
anon , l

′ ← �′anon]
⇒ (l = l′)[heap′ ← h′

anon , l
′ ← �′anon]

)[l′ ← l′ + 1]

(6)

≡ Cb1(l
′ + 1, heap′, �′, h′) ∧ h′

anon = h′ ∧ �′anon = �′ ⇒ l = �′anon (7)

Similarly, wp(b1, (l′ > 0 ⇒ φ′))[l ← l+ 1] can be approximated by

l′ > 0 ∧ Cb1(l + 1, heap, �, h) ∧ hanon = h ∧ �anon = � ⇒ φ′
anon (8)

590 C. Scheben and P.H. Schmitt

with φ′
anon = φ′[heap ← hanon , l ← �anon]. Therefore (2) can be approximated

by

l > 0 ⇒ (
l′ > 0 ∧ Cb1(l + 1, heap, �, h) ∧ hanon = h ∧ �anon = �

⇒ (Cb1(l
′ + 1, heap′, �′, h′)

∧ h′
anon = h′ ∧ �′anon = �′

⇒ �anon = �′anon
)

)

(9)

≡ l > 0 ∧ Cb1(l + 1, heap, �, h) ∧ hanon = h ∧ �anon = �

∧ l′ > 0 ∧Cb1 (l
′ + 1, heap′, �′, h′) ∧ h′

anon = h′ ∧ �′anon = �′

⇒ �anon = �′anon

(10)

Application of Cb1,x̄::Ā by Theorem 2 yields

≡ l > 0 ∧ hanon = h ∧ �anon = �

∧ l′ > 0 ∧ h′
anon = h′ ∧ �′anon = �′

∧ (l+ 1 = l′ + 1 ⇒ � = �′)
⇒ �anon = �′anon

(11)

which is obviously true if l = l′.

Formally, Cb(x̄, h, x̄
′, h′) is valid in structure M iff

wp(b, heap = h′ ∧ x̄ = x̄′)[x̄ ← x̄, heap ← h]

is valid in M. In the following we show that the above approach is sound.

Lemma 4. Let b be a block which fulfills the functional contract Fb,x̄::Ā =
(Pre,Post ,Mod).

wp(b, φ) is valid if (4) is valid.

Proof. Because of Lemma 3 it suffices to show that (4) is valid iff (3) is valid.
If (3) is valid then by simple propositional logic also (4) is valid. So, we assume

that (4) is valid and set out to show that (3) is true in an arbitrary structure M.
By assumption Pre is true in M. We assume Post [Substanon] is true in M with
the aim to show that φ[Substanon] is also true in M. Since the new constant
symbols h′ and x̄′ do not occur in Post [Substanon] we find a structure M′ that
differs from M only in the interpretation of these symbols such that in M′ both
Post [Substanon] and Cb(x̄, heap, x̄

′, h′) ∧ (heap = h′ ∧ x̄ = x̄′)[Substanon] are
true. This may be achieved by choosing M′ such that the state s2 presented
by (h′M′

, x̄′M′
) is the final state of b when started in the state s1 presented

by (heapM, x̄M). By validity of (4) we obtain that φ[Substanon] is true in M′.
Since φ[Substanon] does likewise not contain the new symbols it is also true in
the orignal structure M. �	

Efficient Self-composition for Weakest Precondition Calculi 591

Theorem 2. Let b be a block fulfilling the flow contract Cb,x̄::Ā = (Pre, R1, R2).
(5) is valid if Cb(x̄1, h1, x̄

′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are valid.

Proof. We need to show, that under the given assumptions the implication (5) is
true in any first-order structure M. So we assume that the left-hand side of (5) is
true in M, i.e. Pre[heap ← h1, x̄ ← x̄1]

M = tt and Pre[heap ← h2, x̄ ← x̄2]
M =

tt . By assumption Cb(x̄1, h1, x̄
′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are true in M, which

by definition says wp(b, heap = h′
1 ∧ x̄ = x̄′

1)[x̄ ← x̄1, heap ← h1]
M = tt and

wp(b, heap = h′
2 ∧ x̄ = x̄′

2)[x̄ ← x̄2, heap ← h2]
M = tt . The assumption that

the flow contract Cb,x̄::Ā = (Pre, R1, R2) is fulfilled implies via Theorem 1 that
Ψb,x̄,R1,R2,Pre is true in M. Inspection of this formula shows that in the present
situation it implies that obsEq(x̄1, h1, x̄

′
1, h

′
1, R1) ⇒ obsEq(x̄2, h2, x̄

′
2, h

′
2, R2) is

valid in M, as desired. �	

6 Related Work

The most popular approaches to check for non-interference of programs are ap-
proximative methods like security type systems (a prominent example in this
field is the JIF-System [14]), the analyses of the dependence graph of a program
for graph-theoretical reachability properties [11], specialized approximative in-
formation flow calculi based on Hoare like logics [1] and the usage of abstraction
and ghost code for explicit tracking of dependencies [17,7,21]. These approaches
are efficient, but do not have the precision of self-composition nor do they allow
for as fine-grained specifications as they are possible with the help of observation
expressions (Section 3). Nanevski, Banerjee and Garg [15] formalise information
flow properties in a higher-order logic and use Coq for the verification of those
properties. This approach seems to be extremely expressive, but comes with the
price of more and more complex interactions with the proof system.

Almost all so far mentioned approaches check for unconditional information
flow. There are only few approaches which study conditional information flow
and in particular information flow contracts. One of the first contributions on
conditional information flow was by Amtoft and Banerjee [2]. They developed a
Hoare logic for compositional intraprocedural analyses of conditional information
flow. This approach was the basis for a contribution on software contracts for
conditional information flow for SPARK Ada [4]. The latter approach works on a
relatively simple while-language including method calls. The handling of arrays
was added in a later contribution [3]. Object orientation is not supported. One
advantage of our approach is that information flow and functional contracts can
be combined easily. This results in arbitrary precision whereas [4] introduces
fixed over-approximations.

Finally self-composition [6,8] is a popular approach to state non-interference
and use off-the-shelf software verification systems to check for it, as we do. The
approach has been applied to full-fledged programming languages like Java.

To the best of our knowledge there are only very few contributions aiming
at an improvement of the efficiency of the self-composition approach. A very

592 C. Scheben and P.H. Schmitt

recent approach by Phan [18] uses bounded symbolic execution (symbolic exe-
cution without inductive invariants) and a formulation of (non-conditional) non-
interference based on symbolic traces which is quite near in spirit to the one
which we pioneered in [20] and which we reformulated for the wp-calculus in
Theorem 1. Phan found that with this formulation it is sufficient to symbolically
execute a program only once. Independently of [18], we found that the same
holds if the wp-calculus or Dynamic Logic is used (Section 4). Therefore, our ap-
proach is not restricted to bounded programs. Additionally, we showed how the
approach can be used to check for conditional non-interference and with more
fine grained specifications. Barthe, Crespo and Kunz [5] build product programs
to increase the level of automation in relational reasoning, which can also be
used for information flow verification, but their focus is mainly on increasing the
degree of automation and less on increasing efficiency.

Compositional / modular self-composition reasoning is also studied rarely: A
contribution by Naumann [16] duplicates each variable, field, parameter and
method body in the Java source code and uses standard JML method contracts
to state non-interference with the help of the duplicates. The contracts are ver-
ified with the help of ESC/Java2. This approach has the drawback that there
is no obvious translation of JML annotations from the non-duplicated source to
the duplicated source: an object invariant invariant (\sum Object o;; 1) < 10;
for instance might evaluate differently in the duplicated code than in the non-
duplicated one. The paper mentions vague how modularity on the method level
could be achieved, but thorough investigation is left for future work. Another con-
tribution by Dufay, Felty and Matwin [10] introduces new JML-keywords which
directly define relations between the program variables of two self-composed ex-
ecutions. In particular two keywords to distinguish the variables of the two runs
are defined. The approach uses ghost code to store the return value and the
values of parameters of the first run in order to use those values during the
application of non-interference contracts in the second run. As the authors men-
tion themselves, the approach is limited in case arrays are involved in method
invocations. We do not see how even more complex data structures or equiva-
lently complex heap manipulations can be tracked with ghost code. Hence, the
proposed usage of ghost code seems to be a serious limitation of the approach.
Resolving such limitations is mentioned as an aim of future work. Our approach
on compositional reasoning overcomes such limitations: it does not use additional
ghost code and is not limited by its usage.

7 Conclusions and Future Work

We presented two optimizations of self-composition style reasoning for weakest
precondition calculi with explicit heap model which overcome two of the main ef-
ficiency issues with self-composition reasoning. Firstly we showed in Theorem 1
how self-composition can be rephrased such that it is sufficient to consider a
program α only once in the weakest precondition calculation. The weakest pre-
condition for α′ can be extracted from the one of α by the renaming of program

Efficient Self-composition for Weakest Precondition Calculi 593

variables. Secondly we showed how the number of final states to be considered
by a self-composed program can be reduced considerably by compositional infor-
mation flow reasoning.

For the second optimization, compositional self-composition reasoning is
essential. We presented an approach how weakest precondition calculi can be
extended such that they can be used to construct fully modular and feasible
self-composition proofs. The approach can be extended to information flow loop
invariants. The main obstacle in the application of information flow loop in-
variants compared to flow contracts is that it has to be taken care that the
self-composed programs execute the loop body equally often. An important fea-
ture of our approach is that (1) approximations are involved only at points where
modular information flow reasoning is applied and (2) that our verification tech-
nique can get arbitrarily precise in those cases by the usage of preconditions and
sufficiently strong functional contracts, if necessary. Further, our approach does
not suffer from limitations of other approaches, like the ones of [10].

The presented approaches can easily be adopted to Dynamic Logic and other
Hoare like logics. We implemented them (including information flow loop
invariants) in the KeY-system on the basis of Java Dynamic Logic. Our im-
plementation can handle the full subset of Java which can be handled by the
non-extended KeY-system. This subset explicitly covers exceptions, object cre-
ation and static initialisation. It mainly does not cover concurrency, floating
point arithmetic and generics. The implementation has been tested on several
smaller case-studies. The tool itself as well as examples can be found on our
web-side (http://www.key-project.org/DeduSec/).

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: Proceedings POPL, pp. 91–102. ACM (2006)

2. Amtoft, T., Banerjee, A.: Verification condition generation for conditional infor-
mation flow. In: Proceedings of the 2007 ACM Workshop on Formal Methods in
Security Engineering, FMSE 2007, pp. 2–11. ACM, New York (2007)

3. Amtoft, T., Hatcliff, J., Rodríguez, E.: Precise and automated contract-based rea-
soning for verification and certification of information flow properties of programs
with arrays. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 43–63.
Springer, Heidelberg (2010)

4. Amtoft, T., Hatcliff, J., Rodríguez, E., Robby, Hoag, J., Greve, D.A.: Specification
and checking of software contracts for conditional information flow. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 229–245. Springer,
Heidelberg (2008)

5. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations,
CSFW 2004, pp. 100–115. IEEE CS, Washington (2004)

http://www.key-project.org/DeduSec/

594 C. Scheben and P.H. Schmitt

7. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution with
explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

8. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

10. Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with JML. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 116–130. Springer,
Heidelberg (2005)

11. Hammer, C., Krinke, J., Snelting, G.: Information flow control for Java based
on path conditions in dependence graphs. In: IEEE International Symposium on
Secure Software Engineering (ISSSE 2006), pp. 87–96. IEEE (March 2006)

12. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Semantics
of Algorithmic Languages. Lecture Notes in Mathematics, vol. 188, pp. 102–116.
Springer (1971)

13. McCarthy, J.: Towards a mathematical science of computation. In: Information
Processing, pp. 21–28 (1962)

14. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: POPL,
pp. 228–241 (1999)

15. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: 2011 IEEE Symposium on Security and
Privacy (SP), pp. 165–179 (May 2011)

16. Naumann, D.A.: From coupling relations to mated invariants for checking informa-
tion flow. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 279–296. Springer, Heidelberg (2006)

17. Pan, J.: A theorem proving approach to analysis of secure information flow using
data abstraction. Master’s thesis, Dept. of Computer Science and Engineering,
Chalmers U. of Technology (2005)

18. Phan, Q.-S.: Self-composition by symbolic execution. In: Imperial College Comput-
ing Student Workshop (ICCSW 2013), pp. 95–102, Schloss Dagstuhl (2013)

19. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2. Tr, U. of Iowa (2006)
20. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java

programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012)

21. van Delft, B.: Abstraction, objects and information flow analysis. Master’s thesis,
Institute for Computing and Information Science, Radboud Uni Nijmegen (2011)

	Efficient Self-composition for Weakest Precondition Calculi
	1 Introduction
	2 Notation
	3 Formalizing Conditional Non-interference
	4 Efficient Self-composition
	5 Modular Self-composition with Contracts
	6 Related Work
	7 Conclusions and Future Work
	References

