
Precise Predictive Analysis

for Discovering Communication Deadlocks
in MPI Programs

Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma

Department of Computer Science, University of Oxford, UK

Abstract. The Message Passing Interface (MPI) is the standard API
for high-performance and scientific computing. Communication dead-
locks are a frequent problem in MPI programs, and this paper addresses
the problem of discovering such deadlocks. We begin by showing that
if an MPI program is single-path, the problem of discovering communi-
cation deadlocks is NP-complete. We then present a novel propositional
encoding scheme which captures the existence of communication dead-
locks. The encoding is based on modelling executions with partial orders,
and implemented in a tool called MOPPER. The tool executes an MPI
program, collects the trace, builds a formula from the trace using the
propositional encoding scheme, and checks its satisfiability. Finally, we
present experimental results that quantify the benefit of the approach
in comparison to a dynamic analyser and demonstrate that it offers a
scalable solution.

1 Introduction

The Message Passing Interface (MPI) [17] is the lingua franca of high-perfor-
mance computing (HPC) and remains one of the most widely used APIs for
building distributed message-passing applications. Given MPI’s wide adoption
in large-scale studies in science and engineering, it is important to have means
to establish some formal guarantees, like deadlock-freedom, on the behaviour of
MPI programs.

In this work, we present an automated method to discover communication
deadlocks in MPI programs that use blocking and nonblocking (asynchronous)
point-to-point communication calls (such as send and receive calls) and global
synchronization primitives (such as barriers). A communication deadlock (re-
ferred to simply as “deadlock” in this paper), as described in [19], is “a situation
in which each member process of the group is waiting for some member process
to communicate with it, but no member is attempting to communicate with it”.

Establishing deadlock-freedom in MPI programs is hard. This is primarily due
to the presence of nondeterminism that is induced by various MPI primitives
and the buffering/arbitration effects in the MPI nodes and the network. For
instance, a popular choice in MPI programs to achieve better performance (as
noted in [25]) is the use of receive calls with MPI ANY SOURCE argument; such calls

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 263–278, 2014.
c© Springer International Publishing Switzerland 2014

264 V. Forejt et al.

are called “wildcard receives”. A wildcard receive in a process can be matched
with any sender targeting the process, thus the matching between senders and
receivers is susceptible to network delivery nondeterminism. MPI calls such as
probe and wait are sources of nondeterminism as well. This prevalence—and
indeed, preference—for nondeterminism renders MPI programs susceptible to
the schedule-space explosion problem.

Additional complexity in analysing MPI programs is introduced when control-
flow decisions are based on random data, or when the data communicated to
wildcard receives is used to determine the subsequent control-flow of the pro-
gram. We call the programs that do not bear this complexity single-path MPI
programs. As many MPI programs are implemented as single-path programs,
we focus on verifying deadlock-freedom in programs where nondeterminism is
caused only by wildcard receives and where any control flow that could affect
inter-process communication is deterministic.

The rationale for focussing on single-path programs is also found in numerous
other domains. For instance, the single-path property is the basis of recent work
on verifying GPU kernels [15].

Popular MPI debuggers and program verifiers such as [16,11,14,10] only offer
limited assistance in discovering deadlocks in programs with wildcard receives.
The debuggers concern themselves exclusively with the send-receive matches
that took place in the execution under observation: alternate matches that could
potentially happen in the same execution are not explored, nor reasoned about.

On the more formal side, tools such as model checkers can detect bugs
related to nondeterministic communication by exploring all relevant match-
ings/interleavings. However, such tools suffer from several known shortcomings.
In some cases, the model has to be constructed manually [21], while some tools
have to re-execute the entire program until the problematic matching is discov-
ered [24,26]. These limitations prevent such tools from analysing MPI programs
that are complex, make heavy use of nondeterminism, or take long to run.

In contrast to established tools, we analyse MPI programs under two different
buffering modes: (i) the zero-buffering model, wherein the nodes do not provide
buffering and messages are delivered synchronously, and (ii) the infinite-buffering
model, under which asynchronously sent messages are buffered without limit.
These two models differ in their interpretation of the MPI Wait event. Under the
zero-buffering model, each wait call associated with a nonblocking send blocks
until the message is sent and copied into the address space of the destination
process. Under the infinite-buffering model, each wait call for a nonblocking send
returns immediately (see Section 2).

Contribution. This paper presents two new results for single-path MPI pro-
grams. First, we demonstrate that even for this restricted class of programs, the
problem of deadlock detection is NP-complete (Section 3).

Second, we present a novel MPI analyser that combines a dynamic verifier with
a SAT-based analysis that leverages recent results on propositional encodings of
constraints over partial orders [1].

Precise Predictive Analysis for Discovering Communication Deadlocks 265

Our tool operates as follows: the dynamic verifier records an execution trace
in the form of a sequence of MPI calls. Then, we extract the per-processmatches-
before partial order on those calls (defined in Section 2), specifying restrictions
on the order in which the communication calls may match on an alternative
trace. We then construct a sufficiently small over-approximate set of potential
matches [20] for each send and receive call in the collected trace. Subsequently,
we construct a propositional formula that allows us to determine whether there
exists a valid MPI run that respects the matches-before order and yields a dead-
lock. In our implementation of the propositional encoding, the potentially match-
ing calls are modelled by equality constraints over bit vectors, which facilitates
Boolean constraint propagation (BCP) in the SAT solver, resulting in good solv-
ing times.

Our approach is sound and complete for the class of single-path MPI programs
we consider (modulo the buffering models which we implement): that is, our tool
reports neither false alarms nor misses any deadlock. Our experiments indicate
significant speedup compared to the analysis time observed when using ISP [25]
(In-situ Partial Order), which is a dynamic analyser that enumerates matches
explicitly.

For programs that are not single-path, our approach can still be used as a
per-path-oracle in a dynamic verifier or model checker that explores the relevant
control-flow paths. Finally, we believe that the presented encoding for MPI pro-
grams has a wider applicability to other popular programming languages that
provide message passing support, such as Erlang or Scala.

The paper is organized as follows: We begin by outlining the related work
and then introduce the necessary definitions in Section 2. In Sections 3 and 4
we present the complexity results for the studied problem and present our SAT
encoding. Then in Section 5 we present the evaluation of our work.

Related Work. Deadlock detection is a central problem in the CCS commu-
nity. As an instance, DELFIN+ [8] is a model checker for CCS that uses the
A∗ algorithm as a heuristic to detect errors early in the search. Process algebra
systems, like CCS and CSP, appear to be a natural fit to analyse MPI pro-
grams. However, to the best of our knowledge, no research exists that addresses
the problem of automatically building CSP/CCS models from MPI programs
and analysing them using CSP/CCS tools. Tools such as Pilot [2] support the
implementation of CSP models using MPI.

Petri nets are another popular formalism for modelling and analysing dis-
tributed systems. McMillan presented a technique to discover deadlocks in a
class of Petri nets called 1-safe Petri nets (featuring finite trace prefixes) and
proved the problem to be NP-complete. Nevertheless, we are not aware of any
polynomial-time reduction between this problem and the problem we study.

The work in [3,27] presents a predictive trace analysis methodology for multi-
threaded C/Java programs. The authors of [27] construct a propositional encod-
ing of constraints over partial orders and pass it to a SAT solver. They utilize
the source code and an execution trace to discover a causal model of the system
that is more relaxed than the causal order computed in some of the prior work

266 V. Forejt et al.

in that area. This allows them to reason about a wider set of thread interleav-
ings and detect races and assertion violations which other work may miss. The
symbolic causal order together with a bound on the number of context switches
is used to improve the scalability of the algorithm. In our work, the concept of
context switch is irrelevant. The per-process matches-before relation suffices to
capture all match possibilities precisely, and consequently, there are neither false
positives nor false negatives. The tool presented in [1] addresses shared-variable
concurrent programs, and is implemented on top of the CBMC Bounded Model
Checker [4].

MCAPI (Multicore Communications API) [12] is a lightweight message pass-
ing library for heterogeneous multicore platforms. It provides support for a sub-
set of the calls found in MPI. For instance, MCAPI does not have deterministic
receives or collective operations. Thus, the class of deadlocks found in MCAPI
is a subset of the class of deadlocks in MPI. Deniz et al. provide a trace analysis
algorithm that detects potential deadlocks and violations of temporal assertions
in MCAPI [5]. The discovery of potential deadlocks is based on the construction
of AND Wait-for graphs and is imprecise. The work in [13,7] discovers assertion
violations in MCAPI programs. While both present an order-based encoding,
the work in [7] does not exploit the potential matches relation, and thus yields
a much slower encoding [13].

Huang et al. [13] present an order-based SMT encoding using the potential
matches relation. The encoding is designed to reason about violations of asser-
tions on data, and does not allow to express the existence of deadlocks. The
paper furthermore shows that the problem of discovering assertion violations on
a trace is NP-complete. Due to the inherent difference of the problems studied,
our proof of NP-completeness is significantly more involved than the one of [13].
In particular, for a 3-CNF formula with n clauses, their work uses n assertions,
where each assertion itself is a disjunction of propositions (corresponding to the
literals in a clause of the 3-CNF formula). In our case, the satisfiability of all
clauses needs to be expressed by a possibility to form a single match.

TASS [23] is a bounded model checker that uses symbolic execution to verify
safety properties in MPI programs that are implemented using a strict subset
of C. It is predominantly useful in establishing the equivalence of sequential and
parallel versions of a numerically-insensitive scientific computing program. TASS
may report false alarms and the authors indicate that the potential deadlock
detection strategy does not scale when nondeterministic wildcard receives are
used [23].

2 Preliminaries

In this section we introduce the necessary definitions and formulate the problem
we study in this paper. For brevity, we refer to single-path MPI programs as
MPI programs.

MPI Programs. An MPI program is given as a collection of N processes,
denoted by P1, . . . , PN . We denote the events in process i by ai,j , where j denotes

Precise Predictive Analysis for Discovering Communication Deadlocks 267

the index (i.e. the position within the process) at which the event a occurs. We
use the terms “event” and “MPI call” interchangeably. We define the per-process
order �po on events as follows: ai,j �po bk,� if and only if events ai,j and bk,� are
from the same process (that is, i = k), and the index of a is lower or equal to
the index of b (that is, j ≤ �).

The list of MPI calls/events that we permit to occur in an MPI program is as
follows. A nonblocking (resp. blocking) send from Pi to Pj indexed at program
location k ≤ |Pi| is denoted by nS i,k(j) (resp. bS i,k(j)). Similarly, a nonblocking
(resp. blocking) receive call, nRi,k(j) (resp. bRi,k(j)), indicates that Pi receives
a message from Pj . A wildcard receive is denoted by writing ∗ in place of j.
We write just S and R when the distinction between a blocking or nonblocking
call is not important. The nonblocking calls return immediately. A blocking
wait call, which returns on successful completion of the associated nonblocking
call, is denoted by Wi,k(hi,j), where hi,j indicates the index of the associated
nonblocking call from Pi. A wait call to a nonblocking receive will return only
if a matching send call is present and the message is successfully received in the
destination address. By contrast, a wait call to a nonblocking send will return
depending on the underlying buffering model. According to the standard [17] a
nonblocking send is completed as soon as the message is copied out of the sender’s
address space. Thus, under the zero-buffering model the wait call will return only
after the sent message is successfully received by the receiver since there is no
underlying communication subsystem to buffer the message. In contrast, under
the infinite-buffering model the sent message is guaranteed to be buffered by the
underlying subsystem. We assume, without any loss of generality, that message
buffering happens immediately after the return of the nonblocking send in which
case the associated wait call will return immediately.

Let Bi,j be a barrier call at process i. Since barrier calls (in a process) synchro-
nise uniquely with a per-process barrier call from each process in the system, all
barrier matches are totally ordered. Thus, we use Bi,j(d) to denote the barrier
call issued by the process i that will be part of the d-th system-wide barrier call.
The process i issuing the barrier blocks until all the other processes also issue
the barrier d. When the program location is not relevant, we replace it by “−”.

Let C be the set of all MPI calls in the program, and Ci the set of MPI calls
in Pi, i.e., the set of MPI calls that Pi may execute. A match is a subset of C
containing those calls that together form a valid communication. A set containing
matched send and receive operations, or a set of matched barrier operations, or
a singleton set containing a wait operation are all matches.

Furthermore, we define a matches-before partial order �mo which captures a
partial order among communication operations in Ci. We refer the reader to [25]
for complete details on the matches-before order. This order is different for the
zero-buffering and infinite-buffering model. For the zero-buffering model, it is
defined to be the smallest order satisfying that for any a, b ∈ C, a ≺mo b if
a ≺po b and one of the following conditions is satisfied:

– a is blocking;

– a, b are nonblocking send calls to the same destination;

268 V. Forejt et al.

– a is a nonblocking wildcard receive call and b is a receive call sourcing from
Pk (for some k), or a wildcard receive;

– a is a nonblocking call and b is the associated wait call.

When a is a nonblocking receive call sourcing from Pk and b is a nonblocking
wildcard receive call and the MPI program is at a state where both the calls
are issued but not matched yet, then a ≺mo b is conditionally dependent on
the availability of a matching send for a (as noted in [25]). Due to its schedule-
dependent nature, we ignore this case in the construction of our encoding. In
our experience, we have not come across a benchmark that issues a conditional
matches-before edge.

In the case of the infinite-buffering model, the only change is that the last
rule does not apply when a is the non-blocking send; this corresponds to the
fact that all nonblocking sends are immediately buffered, and so all the waits for
such sends return immediately.

Since the only difference between the finite- and infinite-buffering model is
the way the order ≺mo is defined, most of the constructions we present apply
for both models. When it is necessary to make a distinction, we will point this
out to the reader.

Semantics of MPI Programs. We now define the behaviour of MPI programs.
The current state q = 〈I,M〉 of the system is described by the set of calls I that
have been issued, and a set of calls M ⊆ I that were issued and subsequently
matched. To formally define a transition system for an MPI program, we need
to reason about the calls that can be issued or matched in q. The first is denoted
by the set Issuable(q), which is defined as

Issuable(〈I,M〉) = {x | ∀y ≺po x : y ∈ I ∧ ∀y ≺mo x : if y ∈ B, then y ∈ M}
where B is the set of all blocking calls from C, i.e., it contains all waits, barriers
and blocking sends and receives. We call a set m ⊆ I \ M of calls ready in
q = 〈I,M〉 if for every a ∈ m and every s ≺mo a we have s ∈ M . We then define

Matchable(q) = {{a, b} ready in q | ∃i, j a = Si,−(j), b = Rj,−(i/∗)} ∪
{{a} ready in q | ∃i : a = Wi,−(hi,−)} ∪
{{a1, · · · , aN} ready in q | ∃d ∀i ∈ [1, N] : ai = Bi,−(d)}

The semantics of an MPI program P is given by a finite state machine S(P) =
〈Q, q0,A, δ〉 where
– Q ⊆ 2C×2C is the set of states where each state q is a tuple 〈I,M〉 satisfying

M ⊆ I, with I being the set of calls that were so far issued by the processes
in the program, and M being the set of calls that were already matched.

– q0 = 〈∅, ∅〉 is the starting state.
– A ⊆ 2C is the set of actions.
– δ ⊆ Q×A → Q is the transition function which is the union of two sets of

transitions (i) issue transitions, denoted by →i, and (ii) match transitions,
denoted by →m.

Precise Predictive Analysis for Discovering Communication Deadlocks 269

• 〈I,M〉 α−→i 〈I ∪ α,M〉, if α ⊆ Issuable(〈I,M〉) and |α| = 1.

• 〈I,M〉 α−→m 〈I,M ∪ α〉, if α ⊆ Matchable(〈I,M〉).
We then use q

α−→ q′ to denote that (q, α, q′) ∈ δ.

The set of potential matches M is defined by M =
⋃

q∈Σ Matchable(q), where
Σ ⊆ Q is the set of states that can be reached on some trace starting in q0.

A trace is a sequence of states and transitions, q0
α0−→ q1

α1−→ . . .
αn−1−−−→ qn

beginning with q0 such that qi
ai−→ qi+1 for every 0 ≤ i < n.

The Deadlock Detection Problem. A state 〈I,M〉 is deadlocking if M �= C
and it is not possible to make any (issue or match) transition from 〈I,M〉. A trace
is deadlocking if it ends in a deadlocking state. In this paper, we are interested
in finding deadlocking traces and the problem we study is formally defined as
follows.

Definition 1. Given an MPI program P, the deadlock detection problem asks
whether there is a deadlocking trace in S(P).

3 Complexity of the Problem

In this section we prove the following theorem.

Theorem 1. The deadlock detection problem is NP-complete, for both the finite-
and infinite-buffering model.

The membership in NP follows easily. All traces are of polynomial size, because
after every transition, new elements are added to the set of issued or matched
calls, and maximal size of these sets is |C|. Hence, we can guess a sequence
of states and actions, and check that they determine a deadlocking trace. This
check can be performed in polynomial time, because the partial order�mo can be
computed in polynomial time, as well as the sets Issuable(q) and Matchable(q),
for any given state q.

Proving the lower bound of Theorem 1 is more demanding. We provide a
reduction from 3-SAT; the reduction applies to both finite- and infinite-buffering
semantics, because it only uses the calls whose semantics is the same under
both models. Let Ψ be a 3-CNF formula over propositional variables x1, . . . , xn

with clauses c1, . . . , cm. We create processes Ppos i, Pnegi and Pdeci for each
1 ≤ i ≤ n. As the names suggest, communication in process Ppos i (or Pnegi)
will correspond to positive (or negative) values of xi. The process Pdeci will
ensure that at most one of Ppos i and Pnegi can communicate before a certain
event, making sure that a value of xi is simulated correctly.

Further, for each 1 ≤ j ≤ m we create a process Pcj , and we also create three
distinguished processes, P v , P r and P s . Hence, the total number of processes
is 3 · n+m+ 3.

The communication of the processes is defined in Figure 1. In the figure, the
expression ∀ck�xi : bSpos,−(ck) is a shorthand for several consecutive sends, one

270 V. Forejt et al.

Ppos i Pneg i Pdeci Pcj P v P r P s

bSposi,1(deci) bS negi,1(deci) bRdeci,1(∗) bRcj ,1(∗) bS v,1(r) bRr,1(∗) bRs,1(c1)

∀ck�xi : ∀ck�¬xi : bSdeci,2(v) bS cj,2(s) bRv,2(∗) bRr,2(s)
...

bS posi,−(ck) bSnegi,−(ck) bRdeci,3(∗) bRcj ,3(∗)
... bRs,m(cm)

bRcj ,4(∗) bRv,m+1(∗) bS s,m+1(r)

Fig. 1. The MPI program P(Ψ). Here i ranges from 1 to n, and j ranges from 1 to m.

to each Pck such that xi ∈ ck. The order in which the calls are made is not
essential for the reduction.

To establish the lower bound for Theorem 1, we need to prove the following.

Lemma 1. A 3-CNF formula Ψ is satisfiable if and only if the answer to the
deadlock detection problem for P(Ψ) is yes.

The crucial observation for the proof of the lemma is that for a deadlock to
occur, the call bS s,m+1(r) must be matched with bRr ,1(∗): in such a case, the
calls bRr ,2(s) and bS v ,1(r) cannot find any match. In any other circumstance a
deadlock cannot occur, in particular note that any Sposi,−(ck), and Snegi,−(ck)
can find a matching receive, because there are exactly 3 sends sent to every Pck.

For bS s,m+1(r) and bRr ,1(∗) to form a match together, calls bRs,j(cj), 1 ≤ j ≤
m, must find a match before P v starts to communicate. To achieve this, having
a satisfying valuation ν for Ψ , for every 1 ≤ i ≤ n we match bSposi,1(deci) or
bSnegi,1(deci) with bRdec,1(∗), depending on whether xi is true or false under ν.
We then match the remaining calls of Ppos i or Pnegi, and because ν is satisfying,
we know that eventually the call bS cj ,2(s) can be issued and matched with
bRs,j(cj), for all j.

On the other hand, if there is no satisfying valuation for Ψ , then unless for
some i both the calls bSposi,1(deci) and bSnegi

(deci) find a match, some bS cj,2(s)
(and hence also bRs,j(cj)) remains unmatched. However, for both bSposi,1(deci)
and bSnegi

(deci) to match, bSdeci,2(v) must match some receive in P v , which
violates the necessary condition for the deadlock to happen, i.e. that P v does
not enter into any communication.

4 Propositional Encoding

In this section we introduce a propositional encoding for solving the deadlock
detection problem. Intuitively, a satisfying valuation for the variables in the
encoding provides a set of calls matched on a trace, a set of unmatched calls
that can form a match, and a set of matches together with a partial order on
them, which contains enough dependencies to ensure that the per-process partial
order is satisfied.

Precise Predictive Analysis for Discovering Communication Deadlocks 271

We will restrict the presentation to the problem without barriers, since barri-
ers can be removed by preprocessing, where for barrier calls Bi,−(d) and Bj,−(d)
and for any two calls a and b such that a ≺mo Bi,−(d) and Bi,−(d) ≺mo b we
assume a ≺mo b. The barrier calls can then be removed without introducing
spurious models.

Our encoding contains variables ma and ra for every call a. Their intuitive
meaning is that a is matched or ready to be matched whenever ma or ra is
true, respectively. Supposing we correctly identify the set of matched and issued
calls on a trace, we can determine whether a deadlock has occurred. For this to
happen, there must be some unmatched call, and no potential match can take
place (i.e. for any potential match, some call was either used in another match,
or was not issued yet). Thus, we must ensure that we determine the matched
and issued calls correctly. We impose a preorder on the calls, where a occurs
before b in the preorder if a finds a match before b. To capture the preorder, we
use the variables tab to denote that a matches before b, and sab which stipulate
that a call a matches a receive b and hence they must happen at the same time;
note that this applies in the infinite buffering case as well.

Finally, we must ensure that tab and sab correctly impose a preorder. We use a
bit vector clka of size �log2 |C|� for every call a, denoting the “time” at which the
call a happens, and stipulate that clka < clk b (resp. clka = clk b) if tab (resp. sab)
is true.

As part of the input, our encoding requires a set M
+ ⊇ M containing sets

of calls which are type-compatible (i.e. all α that can be contained in some
Matchable(q) if we disregard the requirement for α to be ready). The reason for
not starting directly with M is that the problem of deciding whether a given
set α is a potential match, i.e. whether α ∈ M, is NP-complete. This result can
be obtained as a simple corollary of our construction for Lemma 1. Hence, in
any practical implementation we must start with M

+, since computing the set
M is as hard as the deadlock detecting problem itself. We will give a reasonable
candidate for M+ in the next section.

The formal definition of the encoding is presented in Figure 2. In the figure, S
and R are the sets containing all send and receive calls, respectively, Imm(a) =
{x|x ≺mo a, ∀z : x �mo z �mo a ⇒ z ∈ {x, a}} stands for the set of immediate
predecessors of a, and M

+(a) =
⋃{b | ∃α ∈ M

+ : a, b ∈ α} \ {a} is the set of
all calls with which a can form a match. Further, clka = clk b (resp. clka < clk b)
are shorthands for the formulae that are true if and only if the bit vector for a
encodes the value equal to (resp. lower than) the value of the bit vector for b.
The formula constructed contains O(|C|2) variables, and its size is in O(|C|3).

Correctness of the Encoding. The correctness of the encoding is formally
established by Lemmas 2 and 4.

Lemma 2. For every deadlocking trace there is a satisfying assignment to the
variables in the encoding.

Proof. Given a deadlocking trace, we construct the satisfying assignment as fol-
lows. We set ma to true if and only if a is matched on the trace, and ra true if

272 V. Forejt et al.

Partial order
∧

b∈C

∧

a∈Imm(b)

tab (1)

Unique match for send
∧

(a,b)∈M+

∧

c∈M+(a),c �=b

(
sab → ¬sac

)
(2)

Unique match for receive
∧

(a,b)∈M+

∧

c∈M+(b),c �=a

(
sab → ¬scb

)
(3)

Match correct
∧

a∈R

(
ma →

∨

b∈M+(a)

sba
) ∧

∧

a∈S

(
ma →

∨

b∈M+(a)

sab
)

(4)

Matched only
∧

α∈M+

(
sα →

∧

a∈α

ma

)
(5)

No match possible
∧

α∈M+

(∨

a∈α

(ma ∨ ¬ra)
)

(6)

All ancestors matched
∧

b∈C

(
rb ↔

∧

a∈Imm(b)

ma

)
(7)

Not all matched
∨

a∈C
¬ma (8)

Match only issued
∧

a∈C

(
ma → ra

)
(9)

Clock equality
∧

(a,b)∈M+∩(S×R)

(
sab → (clka = clkb

)
(10)

Clock difference
∧

a,b∈C

(
tab → (clka < clk b)

)
(11)

Fig. 2. The SAT encoding for the deadlock detection. Here, empty conjunctions are
true and empty disjunctions are false.

and only if it is matched or if for every b ≺mo a, mb is true. This makes sure the
conditions (6)–(9) are satisfied.

We assign sab to true if and only if {a, b} occurs as a match on the trace.
This ensures satisfaction of conditions of (2)–(5). Further, let α1α2 . . . be the
sequence of actions under which match transitions are taken on the trace. We
stipulate tab if a ∈ αi and b ∈ αj for i < j. We also set clka = i for every a ∈ αi

and every i. This ensures satisfaction of the remaining conditions. ��
The following lemma follows easily from conditions (2) and (3).

Lemma 3. In every satisfying assignment to the variables in the encoding we
have that for every a, if sab and sab′ are true, then b = b′, and also if sba and
sb′a are true, then b = b′.

Lemma 4. For every satisfying assignment to the variables in the encoding
there is a deadlocking trace.

Precise Predictive Analysis for Discovering Communication Deadlocks 273

Proof. Given a satisfying assignment, we construct the trace as follows. Let A
be the set of all sends and waits such that a ∈ A if and only if ma is true, and let
a1 . . . aK be an ordered sequence of elements in A such that for any ai and aj ,
if clkai < clkaj , then i < j. We further define a sequence θ = α1 . . . αK , where
every αi contains ai, and if ai is a send, then αi also contains the unique receive bi
such that saibi is true. Such bi always exists, and is unique by Lemma 3. By (10)
the sequence θ satisfies that whenever a ∈ αi and b ∈ αj and clka < clk b, then
i < j. Moreover, for any c we have that the proposition mc is true if and only if
c occurs in some αi; this follows by the construction of A and by (4) and (5).

We define a trace from the sequence θ by stipulating that it visits the states

qi = 〈Ii,Mi〉 = 〈 {y | ∃x �po y : x ∈
⋃

1≤�≤i

α�} ,
⋃

1≤�≤i

α� 〉

for 0 ≤ i ≤ K, where the part of the trace from qi to qi+1 is defined to be

qi
{bi,1}−−−−→i 〈Ii∪{bi,1},Mi〉 {bi,2}−−−−→i . . .

{bi,n}−−−−→i 〈Ii∪{bi,1, . . . bi,ni},Mi〉 αi+1−−−→m qi+1

for {bi,1, . . . , bi,ni} = {y | ∃x �po y : x ∈ αi+1} \ {y | ∃x �po y : x ∈ ⋃
1≤�≤i α�},

and where if bi,j ≺po bi,�, then j < �.
We now argue that the sequence above is indeed a valid trace in S(P). Firstly,

q0 = 〈∅, ∅〉. Let i be largest number such that the sequence from q0 up to qi is a
valid trace. Let j be largest number such that the extension of this trace from qi
up to 〈I,M〉 = 〈Ii ∪ {bi,1, . . . bi,j},Mi〉 is a valid trace. We analyse the possible
values of j, showing that each leads to a contradiction.

– Suppose 0 ≤ j < ni. First, note that bi,j+1 �∈ I ∪ M , because bi,j+1 does
not occur in {y | ∃x �po y : x ∈ ⋃

1≤�≤i α�}. We need to show that bi,j+1 ∈
Issuable(〈I,M〉).
If a ≺po bi,j+1, then by the definition of the sequence bi,1, . . . bi,ni the element
a has been issued already. Further, if a ≺mo bi,j+1, then by (1) we have that
tabi,j+1 is true, and so clka < clk bi,j+1 . By the conditions (7) and (9) we have
that ma is true, and so a must occur in some α�. We have argued that if
clka < clk bi,j+1 , then a ∈ α� for � ≤ i, and so a ∈ M .
Hence by definition bi,j+1 ∈ Issuable(〈I,M〉).

– Suppose j = ni. We have argued above that for every element b ∈ αi+1 and
every a ≺mo b we have a ∈ M . Also, b ∈ I\M , and so αi+1 is ready in 〈I,M〉.
Finally, we defined αi+1 to be either a singleton set containing a wait, or a set
containing compatible send and receive, hence, αi+1 ∈ Matchable(〈I,M〉).

Finally, we argue that the trace is deadlocking. By (8) and the construction
of the sequence θ we have that MK � C. We show that from qK = 〈IK ,MK〉 it is
not possible to make a match transition, even after possibly making a number of
issue transitions. This proves that there is a deadlocking trace. Suppose that it

is possible to make a match transition, and let us fix a suffix qK
{b1}−−−→i q̂1

{b2}−−−→i

q̂2 . . .
{bn}−−−→i q̂n

α−→m q̄. Note that because q̂n = 〈IK ∪ {b1, . . . , bn},MK〉, for

274 V. Forejt et al.

the transition under α to exist it must be the case that for any b ∈ α and any
a ≺mo b we have a ∈ MK . But then by (7) all b ∈ α satisfy that rb is true. Then
by (6) we get that there is b ∈ α for which mb is true, and so b ∈ MK , which
contradicts that the match transition under α can be taken in q̂n. ��

5 Implementation and Experimental Results

The MOPPER deadlock detection tool takes as input an MPI program and
outputs the result of the deadlock analysis. MOPPER first compiles and exe-
cutes the input program using ISP (In-Situ Partial order) [24]. The ISP tool
outputs a canonical trace of the input program, along with the matches-before
partial order �mo. MOPPER then computes the M

+ overapproximation as fol-
lows. The intial M+ is obtained by taking the union of all sets whose elements
are type-compatible (i.e., singleton sets containing a wait call, sets of barrier
calls containing individual calls from each process, and sets containing Si,−(j)
together with Rj,−(i/∗)), and then refining the set by removing the sets which
violate some basic rules implied by �mo. Formally, the M

+ we use is the largest
set satisfying

M
+ = {{a, b} | a = Si,−(j), b = Rj,−(i/∗),

∀a′ ≺mo a ∃ b′ ��mo b : {a′, b′} ∈ M
+,

∀b′ ≺mo b ∃ a′ ��mo a : {a′, b′} ∈ M
+}

∪ {{a} | a = Wi,l(hj)}
∪ {{a1, · · · , aN} | ∀i ∈ [1, n], ai = Bi,−} .

The partial order �mo and the over-approximation of M (M+) are then used
by MOPPER to construct the prepositional formula as explained in the previous
section. This prepositional formula is then passed to the SAT solver, and when
the computation finishes, the result is presented to the user, possibly with a
deadlocking trace.

Our experiments were performed on a 64-bit, quad-core, 3GHz Xeon ma-
chine with 16GB of memory, running Linux version 3.5. MOPPER uses ISP
version 0.2.0 [24] to generate the trace and MiniSat version 2.2.0 [6] to
solve the propositional formula. All our benchmarks are C MPI programs
and the sources of the benchmarks and the MOPPER tool can be found
at http://www.cprover.org/mpi.

We compare the performance of MOPPER with the dynamic verifier that is
integrated in ISP. We instruct ISP to explore the matches exhaustively with
a time-out of two hours. We use a time-out of 30 minutes for MOPPER. We
also compare the bounded model checker TASS [23] with MOPPER; TASS is
configured to time-out after 30 minutes.

The results of the experiments are tabulated in Table 1. The table presents the
results under different buffering assumptions only for those benchmarks where
buffering had an impact. Note that the MOPPER running time does not in-
clude the time it takes to generate the trace with ISP; the MOPPER numbers

http://www.cprover.org/mpi

Precise Predictive Analysis for Discovering Communication Deadlocks 275

do include the constraint generation and SAT solving time. Comparison of the
execution time of both tools is meaningful only when the benchmarks are single-
path. For the benchmarks where this is not the case MOPPER only explores a
subset of the scenarios that ISP explores.

To estimate the degree of match nondeterminism in the collected program
trace, we introduce a new metric ρ = |M+|/mcount, wheremcount is the number
of send and receive matches in the trace. Benchmarks with a high value of ρ have
a large set of potential matches. Since the metric relies on potential matches, ρ
could be greater than 1 even for a completely deterministic benchmark.

Benchmarks. The benchmarks Diffusion2d and Integrate mw are a part of the
FEVS benchmark suite [22]; these benchmarks exhibit high degree of nondeter-
minism, as indicated by their value of ρ. The Diffusion2d benchmark solves the
two-dimensional diffusion equation. In Diffusion2d, each node communicates its
local computation results with its neighbouring nodes which are laid out in a
grid fashion. The Integrate mw benchmark estimates the integral of a sine or
a cosine function in a given range. The integration tasks are dynamically al-
lotted to worker nodes by a master node. Due to this dynamic load balancing
by the master node, Integrate mw is not a single-path MPI program. In order
to make Integrate mw a single path benchmark, we modified the source to im-
plement static load balancing. In this single-path variant of the Integrate mw
benchmark, the schedule space grows as n!/n where n is the number of processes.

The benchmarks Floyd and Gauss Elimination are from [28] and both are
single-path MPI programs. Floyd implements the all-pairs shortest path algo-
rithm and employs a pipelined communication pattern where each process com-
municates with the process immediately next in a ranking.

Monte is a benchmark from [9] that implements the Monte Carlo method
to compute the value of pi. It is implemented in a classic master-worker com-
munication pattern with dynamic load balancing. We have run this benchmark
without modification and thus cannot claim the results to be complete.

We have a set of 10 synthetic benchmarks with various deadlocking patterns
that are not discovered by the MPI runtime even after repeated runs. Among
them, we include only the DTG (dependence transition group [24]) benchmark.
The benchmark has seemingly unrelated pair of matches at the start state that do
not commute. Thus, selecting one match-pair over the other leads to a deadlock.
A run of ISP with optimization fails to discover the deadlock, however, when
the optimization is turned off, ISP discovers the deadlock after 3 runs.

A pattern similar to DTG exists in the Heat-errors benchmark [18]. This
benchmark implements the solution of the heat conduction equation. ISP dis-
covers the deadlock (when this benchmark is run on eight processes) in just over
two hours after exploring 5021 interleavings. The same deadlock is detected in
under a second by MOPPER.

For comparison of MOPPER with TASS we used the 64-bit Linux binary of
TASS version 1.1. Since TASS accepts only a limited subset of C, our exper-
imentation with TASS is restricted to only few benchmarks, namely Integrate
and the synthetic benchmarks. With these few benchmarks, the scalability of

276 V. Forejt et al.

Table 1. Experimental Results

MOPPER ISP

B’mark #Calls Procs ρ B Dla #Vars #Clauses time #Runs time

sDTG† 16 5 1.33
0 ✔ 266 739 0.01 3 0.08
∞ 483 1389 0.01 3 0.08

sGauss Elim
92 8 1.86 0 2.7K 8.4K 0.01 1 0.27

188 16 1.93 0 6.3K 19.9K 0.02 1 0.36
380 32 1.97 0 14.3K 45.2K 0.04 1 0.58

sHeat
152 8 1.8 0 ✔ 8.9K 27.2K 0.03 >2.5K TO
312 16 1.84 0 ✔ 20K 60.9K 0.06 >2.5K TO
632 32 1.86 0 ✔ 44.9K 136.9K 0.18 >2.5K TO

sFloyd

120 8 7 ∞ 14K 51K 1.4 >20K TO

256 16 7.53
0 35.09K 128K 16.37 >20K TO
∞ 34.6K 127.2K 32.5 >20K TO

528 32 7.8
0 79.34K 292K 161.26 >20K TO
∞ 78.28K 288.5K 122.39 >20K TO

sDiffusion2d
52 4 2.82 ∞ 2.9K 9.6K 0.01 90 29.1

108 8 5.7 ∞ 13.6K 49.9K TO >10.5K TO
sPingping 2370 4 2.0 ⊗ 336K 1.16M 1.15 >1k TO

mIntegrate

28 4 3.0 ⊗ 1.9K 6K 0.01 6 0.04
36 8 4.0 ⊗ 1.8K 6.2K 0.05 5040 216.72
46 10 5.0 ⊗ 3.2K 11.6K 20.4 >13K TO
76 16 7.0 ⊗ 10.7K 40.5K TO >13K TO

Monte
35 4 2.42 ∞ 1K 3K 0.00 6 0.76
75 8 4.6 ∞ 3.6K 12.3K 0.43 5040 1928.28

155 16 8.7 ∞ 15.6K 58K TO >5.4K TO
a Deadlock present † ISP misses the deadlock under optimized run
s single-path ⊗ Buffering model irrelevant m Modified to single-path

TASS cannot be evaluated in an objective manner. We observed, however, that
the potential deadlock detection of TASS on our benchmarks was particularly
slow: the analysis of Integrate with TASS timed out when run for ten processes.
On the synthetic benchmarks, TASS was one order of magnitude slower than
MOPPER.

Discussion. Our results show that the search for deadlocks using SAT and our
partial-order encoding is highly efficient compared to an existing, state-of-the-art
dynamic verifier. However, there is room for improvement in several directions.
Our encoding times out on three benchmarks. To address the time-out problem,
we can restrict our analysis to calls that match within a window enclosed by
barriers. Additionally, we can further refine M

+ by discovering additional con-
straints under which matches really take place. Furthermore, our benchmarks
(and MPI programs in general) contain a high degree of communication symme-
try (groups of processes that follow the same control flow). We conjecture that
by exploiting this symmetry we can successfully perform a sound reduction of

Precise Predictive Analysis for Discovering Communication Deadlocks 277

the trace (i.e., without missing deadlocks). We also aim to support a larger class
of MPI programs by (i) extending the encoding for nondeterministic calls such
as waitsome and waitany, and (ii) covering data-dependent MPI programs.

6 Conclusion

We have investigated the problem of deadlock detection for a class of MPI pro-
grams with no control-flow nondeterminism. We have shown that finding a dead-
lock in such programs is NP-complete. We have further devised a SAT-based
encoding that can be successfully used to find deadlocks in real-world programs.
We have implemented the encoding as part of a new tool, called MOPPER, and
have provided an evaluation on benchmarks of various sizes. Our experiments
show that the tool outperforms the state-of-the-art model checker in the area.

There are several directions in which our tool can be improved, such as han-
dling larger subset of the MPI language, or reducing the size of the traces. We
plan to investigate these in our future work.

Acknowledgements. The authors would like to thank Martin Brain, Alex
Horn and Saurabh Joshi for helpful discussions on the topic.

The authors were in part supported by EPSRC H017585/1 and J012564/1, the
EU FP7 STREP PINCETTE and ERC 280053. G. Narayanaswamy is a Com-
monwealth Scholar, funded by the UK government. V. Forejt is also affiliated
with Masaryk University, Czech Republic.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model
checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

2. Carter, J.D., Gardner, W.B., Grewal, G.: The Pilot library for novice MPI pro-
grammers. In: PPoPP, pp. 351–352. ACM (2010)

3. Chen, F., Serbanuta, T.F., Rosu, G.: jPredictor: A predictive runtime analysis tool
for Java. In: ICSE, pp. 221–230. ACM (2008)

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

5. Deniz, E., Sen, A., Holt, J.: Verification and coverage of message passing multicore
applications. ACM Trans. Design Autom. Electr. Syst. 17(3), 23 (2012)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Elwakil, M., Yang, Z.: Debugging support tool for MCAPI applications. In:
PDATAD, pp. 20–25. ACM (2010)

8. Gradara, S., Santone, A., Villani, M.L.: DELFIN+: An efficient deadlock detection
tool for CCS processes. J. Comput. Syst. Sci. 72(8), 1397–1412 (2006)

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI. MIT Press (1999)
10. Haque, W.: Concurrent deadlock detection in parallel programs. Int. J. Comput.

Appl. 28(1), 19–25 (2006)

278 V. Forejt et al.

11. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: SC, p. 30 (2012)

12. Holt, J., Agarwal, A., Brehmer, S., Domeika, M., Griffin, P., Schirrmeister, F.:
Software standards for the multicore era. IEEE Micro 29(3), 40–51 (2009)

13. Huang, Y., Mercer, E., McCarthy, J.: Proving MCAPI executions are correct using
SMT. In: ASE, pp. 26–36. IEEE (2013)

14. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: An MPI anal-
ysis and checking tool. In: PARCO. Advances in Parallel Computing, vol. 13,
pp. 493–500. Elsevier (2003)

15. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying
GPU kernels by test amplification. In: PLDI, pp. 383–394. ACM (2012)

16. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in
MPI programs. Concurrency and Computation: Practice and Experience 14(11),
911–932 (2002)

17. Message Passing Interface, http://www.mpi-forum.org/docs/mpi-2.2
18. Mueller, M.S., Gopalakrishnan, G., de Supinski, B.R., Lecomber, D., Hilbrich, T.:

Dealing with MPI bugs at scale: Best practices, automatic detection, debugging,
and formal verification,
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131

19. Natarajan, N.: A distributed algorithm for detecting communication deadlocks.
In: Joseph, M., Shyamasundar, R.K. (eds.) FSTTCS 1984. LNCS, vol. 181,
pp. 119–135. Springer, Heidelberg (1984)

20. Sharma, S., Gopalakrishnan, G., Mercer, E., Holt, J.: MCC: A runtime verification
tool for MCAPI user applications. In: FMCAD, pp. 41–44 (2009)

21. Siegel, S.F.: Model checking nonblocking MPI programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

22. Siegel, S.F., Zirkel, T.K.: FEVS: A functional equivalence verification suite for high-
performance scientific computing. Mathematics in Computer Science 5(4), 427–435
(2011)

23. Siegel, S.F., Zirkel, T.K.: The Toolkit for Accurate Scientific Software. Technical
Report UDEL-CIS-2011/01, Department of Computer and Information Sciences,
University of Delaware (2011)

24. Vakkalanka, S.: Efficient dynamic verification algorithms for MPI applications.
PhD thesis, University of Utah, Salt Lake City, UT, USA, AAI3413092 (2010)

25. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

26. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: SC, pp. 1–10. IEEE (2010)

27. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for con-
current programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 256–272. Springer, Heidelberg (2009)

28. Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., Voelker,
G.: MPIWiz: subgroup reproducible replay of MPI applications. In: PPoPP,
pp. 251–260. ACM (2009)

http://www.mpi-forum.org/docs/mpi-2.2
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131

	Precise Predictive Analysisfor Discovering Communication Deadlocksin MPI Programs
	1 Introduction
	2 Preliminaries
	3 Complexity of the Problem
	4 Propositional Encoding
	5 Implementation and Experimental Results
	6 Conclusion
	References

