
Automatic Compositional Synthesis
of Distributed Systems

Werner Damm1 and Bernd Finkbeiner2

1 Carl von Ossietzky Universität Oldenburg
2 Universität des Saarlandes

Abstract. Given the recent advances in synthesizing finite-state controllers from
temporal logic specifications, the natural next goal is to synthesize more com-
plex systems that consist of multiple distributed processes. The synthesis of dis-
tributed systems is, however, a hard and, in many cases, undecidable problem.
In this paper, we investigate the synthesis problem for specifications that admit
dominant strategies, i.e., strategies that perform at least as well as the best al-
ternative strategy, although they do not necessarily win the game. We show that
for such specifications, distributed systems can be synthesized compositionally,
considering one process at a time. The compositional approach has dramatically
better complexity and is uniformly applicable to all system architectures.

1 Introduction

Synthesis, the automatic translation of specifications into implementations, holds the
promise to revolutionize the development of complex systems. While the problem
has been studied for a long time (the original formulation is attributed to Alonzo
Church [4]), recent years seem to have achieved the phase transition to practical tools
and realistic applications, such as the automatic synthesis of the AMBA bus proto-
col [1]. Tools like Acacia+ [3], Ratsy [2], and Unbeast [6] automatically translate a
specification given in linear-time temporal logic into finite-state machines that guaran-
tee that the specification holds for all possible inputs from the system’s environment.
Given the success of obtaining such finite-state controllers, the natural next step would
be to synthesize more complex systems, consisting of multiple distributed processes.
However, none of the currently available tools is capable of synthesizing systems with
as many as two processes. This is unfortunate, because a separation into multiple pro-
cesses is not only necessary to obtain well-structured and humanly understandable im-
plementations, but is in fact often a non-negotiable design constraint: for example, the
synchronization between different ECUs in a car involves explicit and time-consuming
bus communication; approximating the network of ECUs with a single process there-
fore usually produces unimplementable solutions.

The lack of tools for the synthesis of distributed systems is no accident. For most
system architectures, the distributed synthesis problem is undecidable [14], and for sys-
tem architectures where the problem is decidable, such as pipelines, the complexity has
been shown to be non-elementary in the number of processes. Experience with similar
problems with non-elementary complexity, such as WS1S satisfiability (implemented

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 179–193, 2014.
c© Springer International Publishing Switzerland 2014

180 W. Damm and B. Finkbeiner

in Mona [10]), suggests, however, that these results do not necessarily mean that the
synthesis of distributed systems is generally impossible. The specifications in the typ-
ical hardness arguments use the incomplete informedness of the processes to force the
processes into specific complex behaviors. For example, in the undecidability proof
due to Pnueli and Rosner, the specification forces the processes to simulate a Turing
machine. The question arises if such specifications are of practical interest in the devel-
opment of finite-state controllers. Can we obtain better complexity results if we restrict
the specifications to a “reasonable” subset?

The key idea to reduce the complexity is to work compositionally. Compositionality
is a classic concept in programming languages and verification where one ensures that
the results obtained for a process also hold for the larger system [15]; in the case of
synthesis, we want to ensure that the implementations found for individual processes
can be used to realize the larger multi-process system. Unfortunately, synthesis does not
lend itself easily to a compositional approach. In game-theoretic terms, synthesis looks
for winning strategies, i.e., strategies that ensure the satisfaction of the specification
under all circumstances. While the notion of winning is, in principle, compositional (if
each process guarantees a property no matter what the other processes do, then clearly
the system will guarantee the property as well), winning is too strong as a process re-
quirement, because properties can rarely be guaranteed by one process alone. Typically,
there exist input sequences that would prevent the process from satisfying the property,
and the processes in the environment cooperate in the sense that they do not produce
those sequences.

In this paper, we develop a synthesis technique for distributed systems that is based
on a weaker notion than winning: A strategy is dominant if it performs, in any situa-
tion, at least as well as the best alternative strategy. Unlike winning strategies, dominant
strategies are allowed to lose the game — as long as no other strategy would have won
the game in the same situation. In a distributed system, a dominant strategy requires
only a best effort – ensure the specification if you can – rather than a comprehensive
guarantee that the specification is satisfied. It turns out that, just like winning, dom-
inance is also a compositional notion. However, it is much more realistic to expect a
process to have a dominant strategy than it is to have a winning strategy. In cases where
the environment of the process behaves unreasonably, i.e., where it is made impossible
for the process to satisfy its specification, we no longer require the process to satisfy
the specification.

We call a specification that has a dominant strategy admissible. Intuitively, a specifi-
cation is admissible as long as we do not require a process to “guess” variables it cannot
see or to “predict” future inputs. Predicting future inputs is, of course, impossible; at
the same time, it is easy to choose, in retrospect for a specific sequence of inputs, an
alternative strategy that would have guessed correctly. Consider, for example, the LTL
specification ϕ = (a) ↔ b, where a is an input variable and b is an output variable.
By itself, ϕ is not admissible. Every specification can, however, be strengthened into an
admissible specification. For example, ϕ ∧ (b) is admissible.

As we show in the paper, there is a fundamental connection between admissibil-
ity and compositionality: a process has a dominant strategy if and only if there exists
a unique weakest environment assumption that would guarantee that the process can

Automatic Compositional Synthesis of Distributed Systems 181

ensure the satisfaction of the specification. We first exploit this connection in an incre-
mental synthesis algorithm: considering one process at a time, we compute the domi-
nant strategy and the unique environment assumption. For the remaining processes, we
replace the specification with the new assumption.

We then show that, for safety properties, true compositionality can be obtained by
synthesizing each process in isolation. Even without considering the environment as-
sumptions of the partner processes, the composition of the dominant strategies for
two subarchitectures is guaranteed to result in a dominant strategy for the composite
architecture.

Unfortunately, this property does not hold for liveness properties; the problem is that
each process may have a dominant strategy that waits for the other process to make
the first step. If such strategies are combined, they wait forever. We address this prob-
lem with a new notion of dominance, which we call bounded dominance. Intuitively,
bounded dominance compares the number of steps that a strategy takes to satisfy a live-
ness objective with a (constant) bound. The dominant strategy must meet the bound
whenever some alternative strategy would meet the bound. The composition of two
strategies that are dominant for some bound is again dominant for the same bound.

Finally, we describe how to combine incremental and compositional synthesis, and
how to localize the analysis based on an automatic decomposition of the specification
into subsets of relevant properties for each process.

2 Synthesis of Distributed Systems

We are interested in synthesizing a distributed system for a given system architecture
A and an LTL formula ϕ. A solution to the synthesis problem is a set of finite-state
strategies {sp | p ∈ P}, one for each process in the architecture, such that the joint
behavior satisfies ϕ.

Architectures. An architecture A is a tuple (P,V, inp, out), where P is a set of system
processes, V is a set of (Boolean) variables, and inp, out : P→ 2V are two functions that
map each process to a set of input and output variables, respectively. For each process p,
the inputs and outputs are disjoint, inp(p) ∩ out(p) = ∅, and for two different processes
p � q, the output variables are disjoint: out(p) ∩ out(q) = ∅. We denote the set of
visible variables of process p with V(p) = inp(p)∪ out(p). If P is singleton, we call the
architecture single-process; if P contains at least two processes, we call the architecture
distributed.

For two architectures A1 = (P1,V, inp1, out1) and A2 = (P2,V, inp2, out2) with
the same variables, but disjoint sets of processes, P1 ∩ P2 = ∅, we define the
parallel composition as the architecture A1||A2 = (P1 ∪ P2,V, p
→ if p ∈
P1 then inp1(p) else inp2(p), p
→ if p ∈ P1 then out1(p) else out2(p)).

Implementations. An implementation of an architecture consists of strategies S = {sp |
p ∈ P} for the system processes. A system process p ∈ P is implemented by a strategy,
i.e., a function sp : (2inp(p))∗ → 2out(p) that maps histories of inputs to outputs. A strategy
is finite-state if it can be represented by a finite-state transducer (Q, q0, δ : Q×2inp(p) →

182 W. Damm and B. Finkbeiner

Q, γ : Q → 2out(p)), with a finite set of states Q, an initial state q0, a transition function
δ and an output function γ.

The parallel composition sp||sq of the strategies of two processes p, q ∈ P is
a function sp||q : (2I)∗ → 2O that maps histories of the remaining inputs I =
(inp(p) ∪ inp(q)) \ (out(p) ∪ out(q)) to the union O = out(p) ∪ out(q) of the outputs:
sp||q(σ) = sp(αp(σ)) ∪ sq(αq(σ)), where αp(ε) = ε and αp(υ0υ1 . . . υk) = ((υ0 ∪ sq(ε)) ∩
inp(p))((υ1 ∪ sq(αq(υ0))) ∩ inp(p)) . . . ((υk ∪ sq(αq(υ1υ2 . . . υk−1))) ∩ inp(p)), and, anal-
ogously, αq(ε) = ε and αq(υ0υ1 . . . υk) = ((υ0 ∪ sp(ε)) ∩ inp(q))((υ1 ∪ sp(αp(υ0))) ∩
inp(q)) . . . ((υk ∪ sp(αp(υ1υ2 . . . υk−1))) ∩ inp(q)).

A computation is an infinite sequence of variable valuations. For a sequence γ =
υ1υ2 . . . ∈ (2V�out(p))ω of valuations of the variables outside the control of a process p,
the computation resulting from s is denoted by comp(s, γ) = (s(ε)∪υ1) (s(υ1∩ inp(p))∪
υ2) (s(υ1 ∩ inp(p)υ2 ∩ inp(p)) ∪ υ3)

Specification. We use ω-regular languages, which we also call properties, to specify
system behaviors. For a computation σ and an ω-regular language ϕ, we also write
σ |= ϕ if σ ∈ ϕ. To define ω-regular languages, we use automata or LTL formulas.

A strategy s : (2I)∗ → 2O is winning for a property ϕ, denoted by sp |= ϕ, iff, for
every sequence γ = υ1υ2 . . . ∈ (2V�O)ω of valuations of the variables outside the con-
trol of p, the computation comp(sp, γ) resulting from sp satisfies ϕ. We generalize the
notion of winning from strategies to implementations (and, analogously, the notions of
dominance and bounded dominance later in the paper), by defining that an implemen-
tation S is winning for ϕ iff the parallel composition of the strategies in S is winning
(for their combined sets of inputs and outputs).

Synthesis. A property ϕ is realizable in an architecture A iff there exists an implemen-
tation that is winning for ϕ. We denote realizability by A� ϕ.

Theorem 1. [12] The question whether a property given by an LTL formula is realiz-
able in an architecture with a single system process is 2EXPTIME-complete.

Theorem 2. [14] The question whether a property given by an LTL formula is re-
alizable in an architecture is undecidable for architectures with two or more system
processes.

3 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the following, we
only give a quick summary of the standard terminology, the reader is referred to [9] for
a full exposition.

A (full) tree is given as the set Υ∗ of all finite words over a given set of directions Υ.
For given finite sets Σ and Υ, a Σ-labeled Υ-tree is a pair 〈Υ∗, l〉with a labeling function
l : Υ∗ → Σ that maps every node of Υ∗ to a letter of Σ.

An alternating tree automaton A = (Σ, Υ,Q, q0, δ, α) runs on Σ-labeled Υ-trees.
Q is a finite set of states, q0 ∈ Q a designated initial state, δ a transition function
δ : Q × Σ → B+(Q × Υ), where B+(Q × Υ) denotes the positive Boolean combinations

Automatic Compositional Synthesis of Distributed Systems 183

of Q × Υ, and α is an acceptance condition. Intuitively, disjunctions in the transition
function represent nondeterministic choice; conjunctions start an additional branch in
the run tree of the automaton, corresponding to an additional check that must be passed
by the input tree. A run tree on a given Σ-labeled Υ-tree 〈Υ∗, l〉 is a Q ×Υ∗-labeled tree
where the root is labeled with (q0, l(ε)) and where for a node n with a label (q, x) and a
set of children child(n), the labels of these children have the following properties:

– for all m ∈ child(n) : the label of m is (qm, x ·υm), qm ∈ Q, υm ∈ Υ such that (qm, υm)
is an atom of δ(q, l(x)), and

– the set of atoms defined by the children of n satisfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity con-
dition is a function α from Q to a finite set of colors C ⊂ N. A path is accepted if the
highest color appearing infinitely often is even. The safety condition is the special case
of the parity condition where all states are colored with 0. The Büchi condition is the
special case of the parity condition where all states are colored with either 1 or 2, the
co-Büchi condition is the special case of the parity condition where all states are col-
ored with either 0 or 1. For Büchi and co-Büchi automata we usually state the coloring
function in terms of a set F of states. For the Büchi condition, F contains all states with
color 2 and is called the set of accepting states. For the co-Büchi condition, F contains
all states with color 1 and is called the set of rejecting states. The Büchi condition is
satisfied if some accepting state occurs infinitely often, the co-Büchi condition is satis-
fied if all rejecting states only occur finitely often. A Σ-labeled Υ-tree is accepted if it
has an accepting run tree. The set of trees accepted by an alternating automaton A is
called its languageL(A). An automaton is empty iff its language is empty.

A nondeterministic automaton is an alternating automaton where the image of δ con-
sists only of such formulas that, when rewritten in disjunctive normal form, contain at
most one element of Q × {υ} for every direction υ in every disjunct. A universal au-
tomaton is an alternating automaton where the image of δ contains no disjunctions. A
deterministic automaton is an alternating automaton that is both universal and nonde-
terministic, i.e., the image of δ has no disjunctions and contains at most one element of
Q × {υ} for every direction υ.

A word automaton is the special case of a tree automaton where the set Υ of direc-
tions is singleton. For word automata, we omit the direction in the transition function.

4 Dominant Strategies

In game theory, strategic dominance refers to a situation where one strategy is better
than any other strategy, no matter how the opponent plays. In the setting of reactive
synthesis, remorsefree dominance [5] was introduced in order to accommodate situa-
tions that simply make it impossible to achieve the specified objective. For example, a
module might have an input signal that resets its computation; if the reset signal is set
too frequently it becomes impossible to complete the computation. In such a situation,
we would expect the module to try to finish the computation as quickly as possible,
to have the best chance to complete the computation before the next reset, but would

184 W. Damm and B. Finkbeiner

forgive the module for not completing the computation if the resets have made it im-
possible to do so.

Dominance can be seen as a weaker version of winning. A strategy t : (2I)∗ → 2O

is dominated by a strategy s : (2I)∗ → 2O, denoted by t � s, iff, for every sequence
γ ∈ (2V�O)ω for which the computation comp(t, γ) resulting from t satisfies ϕ, the com-
putation comp(s, γ) resulting from s also satisfies ϕ. A strategy s is dominant iff, for all
strategies t, t � s. Analogously to the definition of winning implementations, we say
that an implementation S is dominant iff the parallel composition of the strategies in S
is dominant.

Finally, we say that a property ϕ is admissible in an architecture A, denoted by
A� ϕ, iff there is a dominant implementation.

Informally, a specification is admissible if the question whether it can be satisfied
does not depend on variables that are not visible to the process or on future inputs. For
example, the specification ϕ = (a) ↔ b, where a is an input variable and b is an
output variable is not admissible, because in order to know whether it is best to set b in
the first step, one needs to know the value of a in the second step. No matter whether
the strategy sets b or not, there is an input sequence that causes remorse, because ϕ is
violated for the chosen strategy while it would have been satisfied for the same sequence
of inputs if the other strategy had been chosen.

Consider an architecture with a single process p. For a property given as an LTL
formula, one can construct a nondeterministic parity tree automaton with an exponen-
tial number of colors and a doubly-exponential number of states in the length of the
formula, such that the trees accepted by the automaton define exactly the dominant
strategies. This can be done, following the ideas of [5], by first constructing a universal
co-Büchi word automatonA1 that accepts a sequence in (2V)ω iff it satisfies the specifi-
cation ϕ. The size ofA1 is exponential in the length of ϕ. This automaton will be used to
recognize situations in which the strategy satisfies the specification. Then, we construct
a universal co-Büchi word automaton A2 that accepts a sequence in (2V�out(p))ω iff it
does not satisfy the specification ϕ for any choice of the outputs in out(p). The size of
A2 is also exponential in the length of ϕ. This automaton will be used to recognize sit-
uations in which the strategy does not need to satisfy the specification because no other
strategy would either. Automata A1 and A2 are combined in a product construction
to obtain the universal co-Büchi word automaton A3, which accepts all sequences in
(2V)ω that either satisfy ϕ or have the property that ϕ would be violated for all possible
choices of the outputs out(p). The size ofA3 is still exponential in the length of ϕ. We
then build a universal co-Büchi tree automaton B1 of the same size as A3 that accepts
a 2out(p)-labeled 2inp(p)-tree iff the sequence along every branch and for every choice of
the values of the variables in V �V(p) is accepted byA3. ConvertingB1 into an equiv-
alent nondeterministic tree automaton B2 results in the desired nondeterministic parity
tree automaton with an exponential number of colors and a doubly-exponential number
of states in the length of the formula.

The synthesis of a dominant strategy thus reduces to checking tree automata empti-
ness and extracting a representation of some accepted tree as a finite-state machine.
This can be done in exponential time in the number of colors and in polynomial time
in the number of states [11]. For a matching lower bound, note that standard LTL

Automatic Compositional Synthesis of Distributed Systems 185

synthesis is already 2EXPTIME-hard [12]. Since every winning strategy is also domi-
nant, we can reduce the standard synthesis problem to the synthesis of dominant strate-
gies, by first checking the existing of a dominant strategy; if the answer is no, then no
winning strategy exists. If the answer is yes, we synthesize a dominant strategy and ver-
ify (which can be done in polynomial time) whether it is winning. If it is winning, we
have obtained a winning strategy, if not, then no winning strategy exists, because, oth-
erwise, the synthesized strategy would not dominate the winning strategy, and, hence,
would not be dominant.

Theorem 3. The problem of deciding whether a property given as an LTL formula is
admissible in a single-process architecture is 2EXPTIME-complete. A dominant strat-
egy can be computed in doubly-exponential time.

If the property is given as a deterministic automaton instead of as an LTL formula,
admissibility checking only takes exponential time, because the automata A1 and A2

have the same size as the property automaton.

5 Synthesis of Environment Assumptions

Standard compositional approaches for synthesis (cf. [7]) require the user to explicitly
state the assumptions placed by the individual components on their environment. These
assumptions need to be sufficiently strong so that each process can then be synthesized
in isolation, relying only on the assumptions instead of the actual (and yet to be synthe-
sized) implementation of the environment.

For admissible specifications, we can automatically construct the environment as-
sumption. Since the dominant strategy defines the greatest set of environment behaviors
for which the specification can be satisfied, the environment assumption is unique, and
can in fact be represented by an automaton.

Theorem 4. For an architecture A and a property ϕ such that A � ϕ, there ex-
ists a unique weakest environment assumption, i.e., a unique largest set of sequences
w(A, ϕ) ⊆ (2V�O)ω where O =

⋃
p∈P out(p), such that A � w(A, ϕ) → ϕ. If ϕ is given

as a deterministic parity word automaton, then there is a deterministic parity word
automaton for w(A, ϕ) with an exponential number of states. If ϕ is given as an LTL
formula, the number of states is doubly-exponential in the length of the formula.

Proof. We construct the deterministic parity automaton Aw(A,ϕ) for the weakest envi-
ronment assumption as follows. Applying Theorem 3, we compute a dominant strat-
egy s, represented as a transducer As = (Qs, qs,0, δs : Q × 2inp(p) → Q, γs : Q →
2out(p)). Assume ϕ is given as a deterministic parity automaton Aϕ = (Qϕ, qϕ,0, δϕ :
Q × 2V → Q, c). We combineAs and Aϕ to obtain the deterministic parity automaton
Aψ = (Q′, q′0, δ

′, c′) which recognizes all sequences that satisfy ϕ whenever the outputs
of the process are chosen according to As.

– Q′ = (Qs × Qϕ) ∪ {⊥},
– q′0 = (qs,0, q′ϕ,0),

186 W. Damm and B. Finkbeiner

For architectures A, B and properties ϕ, ψ:

A� ϕ
B� w(A, ϕ)

A||B� ϕ

For architecture A and property ϕ:

A� ϕ
w(A, ϕ)
A� ϕ

(a) Rule Inc-Synt (b) Rule A2R

Fig. 1. Rules Inc-Synt and A2R, implementing the incremental synthesis style

– δ′((qs, qϕ), i) = (q′s, q′ϕ) where q′s ∈ δs(qs, i ∩ inp(p)), q′ϕ ∈ δϕ(qϕ, i)} if i ∩ out(q) =
γ(q′s), and δ′((qs, qϕ), i) = ⊥, δ(⊥, i) = ⊥, otherwise.

– c′(qs, qϕ) = c(qϕ), c′(⊥) = 0.

The language ofAψ is the unique weakest environment assumption: suppose that there
exists an environment assumption ψ′ with L(Aψ) � ψ′, then there is a sequence γ in
ψ′ �L(Aψ) for which there exists a strategy t such that the computation resulting from
γ and t satisfies ϕ, while the computation resulting from γ and s does not satisfy ϕ. This
contradicts that s is dominant. ��

Theorem 4 can be used to synthesize a distributed system incrementally, i.e., by
constructing one process at a time and propagating the environment assumptions. This
synthesis style corresponds to the repeated application of Rule Inc-Synt, shown in Fig-
ure 1a: in order to prove the admissibility of a specification ϕ in an architecture A||B, we
show that ϕ is admissible in A, and the resulting environment assumption is admissible
in B. Once the full system has been synthesized, we verify that the remaining envi-
ronment assumption is true, which proves that the specification holds for all possible
inputs. This last step corresponds to an application of Rule A2R, shown in Figure 1b.

Theorem 5. Rules Inc-Synt and A2R are sound.

6 Compositional Synthesis for Safety Properties

With the incremental synthesis approach of Rules Inc-Synt and A2R, we reduce the
synthesis problem for the distributed system to a sequence of admissibility checks over
individual processes. The disadvantage of incremental synthesis is its inherent sequen-
tiality: we cannot consider processes in parallel; additionally, each application of Rule
Inc-Synt increases the size of the specification.

In this section, we introduce a compositional approach, where the processes are con-
sidered independently of each other. Figure 2a shows the compositional synthesis rule
Safety-Comp-Synt. In order to synthesize an implementation for specification ϕ in the
distributed architecture A1||A2, we check whether ϕ is admissible on both A1 and A2. If
ϕ is admissible on both A1 and A2, it is also admissible on A1||A2. For the final check
whether the specification is satisfied for all environment behaviors, we model check the
resulting dominant strategy. This last step corresponds to an application of Rule MC,
shown in Figure 2b.

Automatic Compositional Synthesis of Distributed Systems 187

For architectures A, B and safety property ϕ:

A� ϕ
B� ϕ

A||B� ϕ

For architecture A, property ϕ, and
a strategy s:

s |= ϕ
A� ϕ

(a) Rule Safety-Comp-Synt (b) Rule MC

Fig. 2. Rules Safety-Comp-Synt and MC, implementing the compositional synthesis style

Note that Rule Safety-Comp-Synt is restricted to safety properties. The rule is in
fact not sound for liveness properties. Consider ϕ = ((a) ↔ (c)) ∧ ((b) ↔
(c)), where a is the output of A1, b is the output of A2, and c is the output of
the external environment of A1||A2. A dominant strategy s1 for A1 is to wait for the
first b and then, in the next step, output a. Suppose there are, on some input sequence,
infinitely many c and some b, or only finitely many c, then s1 satisfies ϕ. On the other
hand, if there are infinitely many c but no b, then ϕ is violated no matter what strategy A1

chooses. Hence, s1 is dominant. Likewise, a dominant strategy for A2 is to wait for the
first a and then, in the next step, produce a b. However, A1||A2 does not have a dominant
strategy for ϕ, because we require A1||A2 to predict whether or not the environment will
set c to true infinitely often. Any strategy will fail this objective on at least some input
sequence; however, given such an input sequence there is always a strategy that makes
the correct prediction for that particular sequence.

In the following, we prove that Rule Safety-Comp-Synt is sound for safety prop-
erties. We will adapt Rule Safety-Comp-Synt to arbitrary properties in Section 7. The
reason for the soundness of Rule Safety-Comp-Synt is that the parallel composition of
two dominant strategies is again dominant.

Lemma 1. For a safety property ϕ it holds that if s1 is dominant for A1 and s2 is domi-
nant for A2, then s1||s2 is dominant for A1||A2.

Proof. Let O1,O2, and O12 be the output variables of the processes in A1, A2, and
A12, respectively, and let V be the set of variables in all three architectures. Suppose,
by way of contradiction, that there exists a sequence γ ⊆ (2V�O12)ω of valuations of
variables outside the control of the processes in A1||A2 such that the computation σ =
comp(s1||s2, γ) resulting from s1||s2 does not satisfy ϕ, but there exists a strategy t such
that the resulting computation σ′ = comp(t, γ) satisfies ϕ. We pick the smallest prefix
δ ·η of σ, where δ ∈ (2V)∗, η ∈ 2V such that every infinite extension of δ ·η violates ϕ but
there is an infinite extension σ′′ of δ that agrees with σ on the variables V �O12 outside
the control of the processes in A1||A2 and that satisfies ϕ. Such a prefix exists because
ϕ is a safety property. The prefix cannot be the empty sequence, because otherwise
all sequences that agree with σ on V � O12, including σ′, would violate ϕ. The last
position η of the prefix contains decisions of both s1 and s2. We make the following
case distinction:

– There is an infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(V�O1) = η∩(V�O1)
such that σ′′′ |= ϕ, i.e., the violation of ϕ is the fault of strategy s1. In this case, s1 is

188 W. Damm and B. Finkbeiner

not dominant, because the sequence that results from restrictingσ′′′ to the variables
V�O1 outside the control of A1 causes s1 to violate ϕ, while an alternative strategy,
producing the outputs of σ′′′, would satisfy ϕ.

– There is no infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(V�O1) = η∩(V�O1)
such that σ′′′ |= ϕ, i.e., the violation of ϕ is (at least also) the fault of strategy s2.
In this case, s2 is not dominant, because the sequence that results from restricting
σ′′ to the variables V � O2 outside the control of A2 causes causes s2 to violate ϕ,
while an alternative strategy, producing the outputs of σ′′, would satisfy ϕ.

Either case contradicts the assumption that s1 and s2 are dominant. ��
In light of the observation that Rule Safety-Comp-Synt cannot be generalized to live-

ness properties, it is not surprising that Lemma 1 does not hold for liveness properties
either. Consider the specification (a) ∧ (b), where a is the output of A1 and b is
the output of A2. A dominant strategy s1 for A1 is to wait for the first b and then, in the
next step, output a. The strategy guarantees the specification on all paths that have a b
somewhere; no strategy for A1 satisfies the specification on paths without a b. Likewise,
a dominant strategy for A2 is to wait for the first a and then, in the next step, produce
a b. The composition s1||s2, will, however, never output an a or b and therefore violate
the specification, despite the fact that even winning strategies exist, such as the strategy
that immediately outputs a and b.

Lemma 1 implies the soundness of Rule Safety-Comp-Synt. The soundness of Rule
MC is trivial, as the strategy s is guaranteed to satisfy the specification ϕ.

Theorem 6. Rules Safety-Comp-Synt and MC are sound.

7 Compositional Synthesis for Liveness Properties

We saw in the preceding section that the soundness of Rule COMP-SYNT breaks for
liveness properties, because the composition of two dominant strategies is not neces-
sarily also dominant. In this section, we propose an alternative notion of admissibility,
which we call bounded admissibility, which is preserved under composition.

We motivate bounded dominance with the example from Section 6. Consider again
the property ϕ = (a)∧ (b) where a is the output of A1 and b is the output of A2. We
introduced the dominant strategy s1 for A1, which waits for the first b before outputting
a. Strategy s1 is problematic, because it is dominant for A1, but does not result in a
dominant strategy s1||s2 for A1||A2, when combined with the corresponding strategy s2

for A2, which waits for the first a before outputting b.
The problem is that both s1 and s2 postpone their respective output indefinitely, be-

cause they both wait for the other strategy to start. Bounded dominance refines the val-
uation of the strategy by counting the number of steps it takes before a and b become
true. This number is compared to a fixed bound n, say n = 5. Strategy s1 is not dom-
inant with respect to bound n, because it may unnecessarily exceed the bound. There
is an n-dominant strategy s′1, which sets a in the very first step and therefore meets the
bound whenever possible, i.e., as long as b arrives within 5 steps. The corresponding
strategy s′2 for A2, which outputs b in the first step, is n-dominant for A2. Replacing s1

Automatic Compositional Synthesis of Distributed Systems 189

1

2 3

∗

¬a ¬b

¬a ¬b

Fig. 3. Universal co-Büchi automaton for the LTL formula ϕ = ((a) ∧ (b)). The states
depicted with double circles (2 and 3) are the rejecting states in F.

and s2 with s′1 and s′2 solves the problem: The combined strategy s1||s2 is n-dominant
for A1||A2.

We prepare the definition of bounded dominance by defining the measure of a com-
putation. The measure captures how quickly a strategy makes progress with respect to
a liveness property. We define the measure with respect to a representation of the spec-
ification as a universal co-Büchi automaton. Such an automaton can be produced with
standard LTL-to-Büchi translation algorithms, by first constructing a nondeterministic
Büchi automaton for the negation of the specification and then dualizing the automaton
to obtain a universal co-Büchi automaton for the complement language [13,8]. If the
specification is a conjunction of properties, the size of the automaton is linear in the
number of conjuncts: we apply the translation to the individual conjuncts, resulting in
automata with an exponential number of states in the length of the conjunct, and then
compose the automata by branching (universally) from the initial state into the other-
wise disjoint subautomata for the conjuncts.

Lemma 2. Let ϕ = ϕ1∧ϕ2∧. . .∧ϕn be an LTL formula that consists of a conjunction of
properties. There is a universal co-Büchi automaton that accepts exactly the computa-
tions that satisfy ϕ, such that the automaton consists of subautomata for the individual
conjuncts that only overlap in the initial state. The size of the automaton is exponential
in the length of the largest conjunct and linear in the number of conjuncts.

The automaton accepts a computation iff the number of visits to rejecting states is
finite on every path of the run tree. We define the measure of the computationσ, denoted
by measureϕ(σ) as the supremum of the number of visits to rejecting states over all paths
of the run tree of the automaton for ϕ. If there is no run tree, we set the measure to∞.

As an example, consider ϕ = ((a) ∧ (b)). The universal co-Büchi automaton
for ϕ is shown in Figure 3. The computation {a, b}ω has measure 0, because the run tree
only has a single path, labeled everywhere with state 1. The computation ∅{a}{a, b}ω has
measure 2: There are three paths, an infinite path labeled with state 1 everywhere, and
two finite paths, one labeled with state 1 followed by state 2, and one labeled with state
1, followed by two times state 3. The number of visits to rejecting states are thus 0, 1,
and 2, respectively, and the supremum is 2.

Let n be a fixed natural number. We say that a strategy t : (2I)∗ → 2O is dominated
with bound n (or short: n-dominated) by a strategy s : (2I)∗ → 2O, denoted by t�n s, iff,

190 W. Damm and B. Finkbeiner

For architectures A, B and
arbitrary property ϕ:

A�n ϕ
B�n ϕ

A||B�n ϕ

For architecture A, property ϕ given as
an LTL formula over V �

⋃
p∈P out(p), and

property ψ given as an LTL formula over V :

A�n ψ

A�n ϕ ∧ ψ
(a) Rule General-Comp-Synt (b) Rule Decomp

Fig. 4. Rules General-Comp-Synt and Decomp

for every sequence γ ∈ (2V�O)ω for which the measure of the computation comp(t, γ)
resulting from t is less than or equal to n, the measure of the computation comp(s, γ)
resulting from s is also less than or equal to n. A strategy s is n-dominant iff, for all
strategies t, t �n s. A property ϕ is n-admissible in an architecture A, denoted by A�n

ϕ, iff there is an n-dominant implementation.
If the universal automaton is a safety automaton, then dominance and n-dominance

are equivalent. Since the safety automaton does not have any rejecting states, the mea-
sure is either 0, if the property is satisfied, or ∞, if the property is violated and there
is, therefore, no run tree. Hence, the definitions of dominance and bounded dominance
agree for any choice of the bound.

As an example property that has a dominant strategy but no n-dominant strategy
for any bound n, consider (a) ↔ (b), where a is the input and b the output. This
property can be satisfied for every possible input by waiting for an a before setting the b.
For example, setting b in the step after the first a is observed is a winning and therefore
dominant strategy. However, this strategy, as well as any other strategy that waits for an
a before setting b, is not n-dominant for any choice of n: consider the situation where a
occurs exactly every n steps; then the measure of the strategy would be n + 1, while an
alternative strategy that produces a b every n steps has only measure n.

Note that bounded admissibility does not imply admissibility; any specification of
the form (a) ∧ (¬a) ∧ (¬a) ∧ ϕ, where a is an output, is 1-admissible, because it
is impossible to achieve a measure ≤ 1; obviously, there are formulas ϕ for which this
specification is not admissible.

Bounded dominance can be checked with a small variation of the construction from
Section 4: we simply modify the universal automaton A1, which verifies that strategy
sp achieves its goal, as well as the universal automatonA2, which checks whether any
alternative strategy would achieve the goal, by counting the number of visits to rejecting
states up to n.

Theorem 7. For a fixed bound n, the problem of deciding whether a property given
as an LTL formula is n-admissible in a single-process architecture is 2EXPTIME-
complete. An n-dominant strategy can be computed in doubly-exponential time.

Rule General-Comp-Synt, shown in Figure 4a, generalizes the compositional syn-
thesis approach from Rule Safety-Comp-Synt to general properties. Because Rule

Automatic Compositional Synthesis of Distributed Systems 191

General-Comp-Synt is based on bounded admissibility �n instead of standard ad-
missibility�, Lemma 1 now holds for general properties:

Lemma 3. For an arbitrary property ϕ it holds that if s1 is n-dominant for A1 and s2 is
n-dominant for A2, then s1||s2 is n-dominant for A1||A2.

The proof of Lemma 3 is analogous to the proof of Lemma 1. Lemma 3 implies the
soundness of Rule General-Comp-Synt.

Theorem 8. Rule General-Comp-Synt is sound.

8 Property Decomposition

Specifications are usually given as a conjunction of properties. The goal of property
decomposition is to avoid analyzing all properties in the synthesis of every process, and
instead only focus on a small set of “relevant” properties for each process.

In general, it is not sound to leave out conjuncts when checking the admissibility
of the specification for some process, even if, overall, every conjunct is “covered” by
some process. The problem is that the missing conjuncts may invalidate admissibility.
Consider, for example, the properties ϕ = (a ↔ b) and ψ = (c ↔ b), where
a is an input variable, and b and c are output variables. Individually, both ϕ and ψ are
admissible, but their conjunction ϕ ∧ ψ is not: in order to set the value of c correctly, a
dominant strategy would need to predict the future input a.

Conjuncts that do not refer to output variables enjoy, however, the following
monotonicity property: if ϕ does not refer to the output variables, then for every
(n-)admissible property ψ it holds that ϕ ∧ ψ is also (n-)admissible.

Theorem 9. Let ϕ be an LTL formula over V �
⋃

p∈P out(p), and ψ an LTL formula
over V. Then it holds that if ψ is (n-)admissible, then ϕ ∧ ψ is also (n-)admissible.

Proof. Suppose, by way of contradiction, that there is a strategy s : (2I)∗ → 2O that
is dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence γ ∈
(2V�O)ω of variable valuations that are not under the control of the process, such that the
computation resulting from t satisfies ϕ ∧ ψ and the computation resulting from s does
not. Since ϕ only refers to uncontrollable variables, the truth value of ϕ is determined
by γ; we therefore know that ϕmust also be satisfied by the computation resulting from
s. Hence, ψ must be violated on the computation resulting from s, while it is satisfied
by the computation resulting from t. This contradicts the assumption that s is dominant
for ψ.

For bounded admissibility assume, analogously, that there is a strategy s that is
n-dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence
γ ∈ (2V�O)ω such that measureϕ∧ψ(comp(t, γ)) ≤ n < measureϕ∧ψ(comp(s, γ)). Since
the subautomata for the conjuncts only intersect in the initial state, every path of the run
tree is, starting with the second state, either completely in the subautomaton for ϕ or in
the subautomaton for ψ. Since ϕ only refers to uncontrollable variables, the paths, and,

192 W. Damm and B. Finkbeiner

hence, the number of visits to rejecting states in the subautomaton of ϕ are the same
for comp(s, γ) as for comp(t, γ). Hence, there must be some path in the subautomaton
for ψ where comp(s, γ) visits rejecting states more than n times, while comp(t, γ) visits
rejecting states less than or equal to n times. This contradicts the assumption that s is
n-dominant for ψ. ��

Theorem 9 can be used to eliminate conjuncts that do not refer to output vari-
ables. This decompositional synthesis style corresponds to applications of Rule Decomp,
shown in Figure 4b.

9 The Compositional Synthesis Algorithm

Putting the results from the preceding sections together, we obtain the following synthe-
sis algorithm. For an architecture A = A1||A2|| . . . composed of multiple single-process
architectures and a specification ϕ, given as a conjunction ϕ = ϕ1 ∧ ϕ2 ∧ . . . ϕm of LTL
formulas, we do the following:

1. Applying Rule General-Comp-Synt, check for all subarchitectures Ai whether
Ai �n ϕ; if so, synthesize a dominant (or n-dominant, for liveness properties)
strategy.

– for this purpose, use Rule Decomp to identify a subset C ⊆ {1, 2, . . . ,m} of the
conjuncts such that Ai �n

∧
j∈C ϕ j, and

– compose the n-dominant strategies according to Lemma 3.
2. Apply Rule MC to check whether the resulting strategy satisfies ϕ. If yes, a correct

implementation has been found.

For specifications given as LTL formulas, the complexity of the compositional syn-
thesis algorithm is doubly-exponential in the length of the formula. Since the synthesis
of the strategies for the subarchitectures is independent of each other, the complexity
of finding the strategies is linear in the number of processes; the complexity of com-
posing the strategies and checking the resulting strategy is exponential in the number of
processes.

10 Conclusions

We have presented an approach for the synthesis of distributed systems from temporal
specifications. For admissible specifications, the complexity of our construction is dra-
matically lower than that of previously known algorithms. Since the synthesis method
is compositional, it can easily be parallelized. The constructed implementations are
modular and much smaller than those constructed by previous approaches that work on
a “flattened” state space. The construction is furthermore universally applicable to all
system architectures, including the large class of architectures for which the standard
synthesis problem is undecidable.

Automatic Compositional Synthesis of Distributed Systems 193

References

1. Bloem, R.P., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Automatic
hardware synthesis from specifications: A case study. In: Proc. DATE, pp. 1188–1193 (2007)

2. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthesizing ro-
bust systems with RATSY. In: Open Publishing Association (ed.) SYNT 2012, Electronic
Proceedings in Theoretical Computer Science, vol. 84, pp. 47–53 (2012)

3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer,
Heidelberg (2012)

4. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math., Upsala, pp.
23–25 (1963)

5. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer, Heidelberg (2011)

6. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

7. Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: Peled, D.A., Tsay, Y.-
K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 263–277. Springer, Heidelberg (2005)

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for
Technology Transfer 15(5-6), 519–539 (2013)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

10. Henriksen, J.G., Jensen, Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm,
A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110.
Springer, Heidelberg (1995)

11. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

12. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Proc. of ICTL
(1997)

13. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of 46th IEEE
Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Oc-
tober 23–25, pp. 531–540 (2005)

14. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. FOCS
1990, pp. 746–757 (1990)

15. de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol. 1536.
Springer, Heidelberg (1998)

	Automatic Compositional Synthesis of Distributed Systems
	1 Introduction
	2 Synthesis of Distributed Systems
	3 Preliminaries: Automata over Infinite Words and Trees
	4 Dominant Strategies
	5 Synthesis of Environment Assumptions
	6 Compositional Synthesis for Safety Properties
	7 Compositional Synthesis for Liveness Properties
	8 Property Decomposition
	9 The Compositional Synthesis Algorithm
	10 Conclusions
	References

