
Log Analysis for Data Protection Accountability

Denis Butin and Daniel Le Métayer

Inria, Université de Lyon, France
{denis.butin,daniel.le-metayer}@inria.fr

Abstract. Accountability is increasingly recognised as a cornerstone of
data protection, notably in European regulation, but the term is fre-
quently used in a vague sense. For accountability to bring tangible ben-
efits, the expected properties of personal data handling logs (used as
“accounts”) and the assumptions regarding the logging process must be
defined with accuracy. In this paper, we provide a formal framework
for accountability and show the correctness of the log analysis with re-
spect to abstract traces used to specify privacy policies. We also show
that compliance with respect to data protection policies can be checked
based on logs free of personal data, and describe the integration of our
formal framework in a global accountability process.

1 Context and Motivation

The principle of accountability, introduced three decades ago in the OECD’s
guidelines [18], has been enjoying growing popularity over the last few years in
the field of data protection. A consortium was set up in 2009 with precisely the
definition and analysis of accountability as one of its primary goals [8]. At the
European level, the Article 29 Working Group published an opinion dedicated
to the matter recently [1] and the principle is expected to be enshrined in the
upcoming European data protection regulation [12]1

The key idea behind the notion of accountability is that data controllers (Eu-
ropean terminology for entities collecting personal data, denoted DC from now
on) should not merely comply with data protection rules but also be able to
demonstrate compliance — “showing how responsibility is exercised and making
this verifiable”, as stated by the Article 29 Working Group [1]. The motivation
underlying this general principle is that data subjects (DS) disclosing personal
data to a DC lose control over it and require strong guarantees regarding actual
handling.

Crucially, accountability is more than an impediment to companies: it can help
them clarify their internal processes and level of compliance with legal rules (or
their own policies). In addition, a solid accountability process puts a company
in a better position to demonstrate its compliance in case of dispute.
1 The latest draft of this regulation, adopted by the European Parliament’s Civil

Liberties Committee last October, further strengthens accountability requirements
(articles 5 and 22).

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 163–178, 2014.
c© Springer International Publishing Switzerland 2014

164 D. Butin and D. Le Métayer

Nevertheless, a downside to the generality of this concept is that it is too
frequently used in a vague sense — at least, by lawyers and decision makers.
Some clarity is provided by Bennett’s nomenclature [9], which distinguishes three
types of accountability: accountability of policy, of procedures and of practice.
The strongest variant is accountability of practice, which holds that DC ought to
demonstrate that their actual data handling complies with their obligations. In
the case of accountability of policy, they must be able to show that they actually
have defined a privacy policy; in the case of accountability of procedures, they
must be able to show that they have put in place appropriate procedures to meet
their policy. Ideally, the three types of accountability should be implemented:
having a privacy policy in place is obviously a minimal requirement and the
procedures should support good practices. However, in order to implement the
accountability of practices and ensure that it can really improve the protection
of DS, a number of key questions must be addressed:

– A clear definition should be provided of the “accounts” which are at the core
of the concept of accountability. For accountability of practice, execution
logs are natural candidates, but what should be kept in the logs is an essen-
tial and non-trivial issue. Obviously, enough information should be recorded
to make accountability possible; but it is also necessary to comply with an-
other principle of data protection, data minimization: only the personal data
necessary for a given purpose should be recorded. Actually, one of the argu-
ments against the use of accountability of practice is that the logs required
to implement it could in fact represent an additional source of risks for per-
sonal data. As illustrated in our work [4], designing the contents of the logs
is therefore far from obvious: intuitive solutions typically include too much
data or omit information necessary for effective compliance.

– A clear definition of the accountability process has to be provided, showing
how accounts are built and analyzed. For the accountability process to be
worthwhile, accounts (here: logs) should reflect actual system execution and
the verdict returned by the analysis procedure ought to be reliable. Overall,
the guarantees provided by the whole process should be detailed to avoid
misleading representations by DC or misplaced expectations from DS.

If the above issues are not properly handled, accountability may either repre-
sent illusory protections (and low-cost greenwashing for DC) or even additional
sources of personal data leaks.

In this paper, we argue that formal methods can play a crucial role in ad-
dressing the above issues. In this context, however, they have to be used in a
“light” way for several reasons. First, not all data protection obligations can be
described formally. For instance, the notion of purpose, which is central in the
European Data Protection Directive, cannot be defined in mathematical terms.
Similarly, break-glass rules [16], which are necessary in certain areas such as
health data processing (e.g. to allow unauthorized physicians to access personal
data in emergency situations), are not well-suited to formalisation. Furthermore,
the goal of the accountability process is not to establish a formal proof of com-
pliance for a system (which would be completely out of reach in practice) but

Log Analysis for Data Protection Accountability 165

rather to be able to detect potential misbehaviour. One challenge in this area
is therefore the integration of formal methods in an otherwise informal process
and the definition of clear interactions between both worlds.

Another issue to be addressed in a formal accountability framework is the
gap between two different levels of abstraction. The privacy 2 policy defined or
understood by DS (or by lawyers) applies to abstract notions, such as “home ad-
dress” or “health data”, whereas actual logs typically include lower-level details
such as system memory addresses or duplication of data.

Considering the above objectives and challenges, the contributions of this
paper are threefold:

– We provide a framework for accountability of practice based on “privacy
friendly” logs, showing that compliance with respect to data protection poli-
cies can be checked based on logs which do not contain any personal data.

– We show the correctness of the log analysis with respect to abstract traces
that are used to specify privacy policies.

– We describe the integration of the formal framework in the overall account-
ability process and identify the complementary procedures and manual ver-
ifications that are necessary to complement the log analysis.

We first introduce privacy policies and their abstract representation (§2), be-
fore specifying “personal-data-free” logs (§3). The core accountability properties,
i.e. the guarantees provided by the log analysis, are presented in §4. The integra-
tion of the formal framework in a global accountability process is outlined in §5.
We then provide a survey of related work (§6), followed by an outline of future
work and conclusive remarks (§7). An extended version of this paper is available
in a technical report [6].

2 Privacy Policies and Abstract Events

The first stage of any data protection accountability process is the definition of
privacy policies. In practice, a policy can be defined by the DC and accepted by
the DS or result from a negotiation phase. In any case, it should comply with
applicable laws. We do not consider the legal validity of the policies here nor
their origin and assume that any personal data received by a DC is associated
with a policy. The fact that the data is sent with a policy by the DS implies
that she provides her consent for the use of her data in the conditions expressed
by the policy. The fact that the DC accepts the data with the policy is taken
as a commitment from his side to comply with the policy. In practice, a policy
specifies what can be done with categories of data defined in a way which makes
sense to DS, for instance “age”, “postal address”, or “profession”. A first and
major requirement of our accountability framework is that the privacy policy
should always remain attached to the associated data (which is sometimes called
2 In this paper, we use the expressions “privacy” and “data protection” interchangeably

even though, from a legal point of view, they refer to two different protection regimes.

166 D. Butin and D. Le Métayer

the sticky policy approach) because it will serve as a reference point for evaluating
whether the DC has fulfilled his obligations.

As we want to check compliance with respect to privacy policies, we consider
traces and logs on the side of the DC in this paper.

Definition 1 (Privacy policy). Privacy policies are defined as tuples:

P olicy = P urposes × T ime × T ime × Contexts × F wP olicy

In π ∈ P olicy, π = (ap, dd, rd, cx, fw), ap is the set of authorised purposes of
data use. Purposes are taken from a set of admissible values (taken as constants
here, possibly structured as an ontology). The deletion delay dd is the delay after
which the data must be deleted by the DC. The rd parameter specifies the delay
for the DC to comply with requests by the DS, for instance regarding the deletion
of personal data. The set cx defines the contexts in which the data can be used.
Contexts is the set of constants here which could represent external parameters
such as time or location. The data forwarding policy is defined by the value of
fw; it is equal either to ↑ (in which case no forwarding at all to third parties is
possible) or to ↓ (all forwarding is allowed). We sometimes use the notation π.ap,
π.dd, etc. to access the fields of a policy tuple. An example policy in this for-
mat could be π = ({Marketing, Statistics}, 180d, 60m, {Location_Europe}, ↑).
This policy stipulates that data can be used exclusively for the purposes of
Marketing and Statistics, that all data must be deleted no later than 180 days
from its disclosure, that requests by the DS must be complied with within 60
minutes, that data can only be used for a location context equal to Europe and
that any forwarding to third parties is forbidden.

We do not attempt to include all complexities of existing policy languages
here. The above format should rather be seen as a proof-of-concept example to
illustrate our overall approach.

2.1 Abstract Events

Having defined privacy policies, we now introduce the list of abstract events, so-
called because they describe events at the level of personal data, abstracting away
from system internals such as memory addresses. Abstract events are expressed
intuitively with regard to the format of privacy policies. Mirroring the design of
privacy policies mentioned above, this list of events illustrates an instantiation of
our framework; it can be extended easily3. All abstract events carry a timestamp
t as their first argument.

– (Disclosure, t, or, ds, θ, v, π) — the initial reception by the DC of personal
data of origin or (the origin is the entity which sent the data), type θ (e.g.
a person’s age or postal address) and value v related to DS ds, with an
associated sticky policy π. Depending on the value of or, the data can be
sent by ds or by a third party.

3 For example with update events — one could add a modification index to states to
manage them. Notifications events could also be added.

Log Analysis for Data Protection Accountability 167

– (DeleteReq, t, or, ds, θ) — a request received by the DC and sent by or to
delete personal data of owner ds and type θ.

– (AccessReq, t, ds, θ) — a request received by the DC and sent by ds to access
her own data.

– (Delete, t, ds, θ) — a deletion of the data of ds of type θ by the DC.
– (DeleteOrder, t, tp, ds, θ) — a request sent by the DC to the third party tp

to delete the data of ds of type θ.
– (Forward, t, rec, ds, θ, v, π) — the forwarding by the DC of the data of ds

of type θ and value v to the recipient rec, which can be either a third party
or the DS (to grant her access to her own data following an access request),
with policy π attached.

– (Use, t, ds, θ, purpose, reason) — the use by the DC of the data of ds of type
θ for a specific purpose and reason. The purpose element is taken from an
ontology, while the reason is a textual description, used by a human for
informal verification as discussed in §5.

– (BreakGlass, t, et, bgt, bgc) — the occurrence of a break-glass event of type
bgt in circumstances bgc, where the affected entities and data types are
couples (ds, θ) members of the set et. In practice, bgc is a textual description,
similarly to reason in Use events.

– (Context, t, ct) — the switching of the current context to ct. To simplify, the
context is just modeled by a simple value here but it could very well be a
structure to account for different external parameters (such as time, location,
etc.).

Definition 2 (Trace). A trace σ is a sequence of abstract events.

In order to define the notion of compliant trace, we need to introduce abstract
states.

Definition 3 (Abstract state). The abstract state of a system is a function
SA : Entity × T ype −→ T ime × Entity × V alue × P olicy × P (Entity × N) ×
P (BGtype × BGcircumstances × T ime)

(ds, θ) �→ (t, or, v, π, receivers, bg)

The abstract state associated with each DS ds and type of personal data
θ includes the origin or (the entity from which the most recent version of the
value of the data emanated from), the data’s value v, the sticky policy π (current
policy) and the set of receivers (all third parties who have received the data
together with the corresponding event index in the trace). Information about
break-glass events is collected by triples bgn = (bgt, bgc, timebg), where bgt is a
break-glass event’s type, bgc its circumstances and timebg its time. bg is a set
of such triples, including all break-glass events that occurred so far for this DS
and data type. SA is expanded with SA(Context) = ct ∈ Context, where ct is
the current context.

We use the notation Σ[(ds, θ) → (t, or, v, π, r, bg)] to denote a state Σ′ similar
to Σ except that Σ′(ds, θ) = (t, or, v, π, r, bg). The semantics of an event at

168 D. Butin and D. Le Métayer

SA ((Disclosure, t, or, ds, θ, v, π), j) Σ = Σ[(ds, θ) → (t, or, v, π,∅,∅)]

SA((Delete, t, ds, θ), j)Σ = Σ[(ds, θ) →⊥]

SA((F orward, t′, rec, ds, θ, v, π), j)Σ =
if rec �= ds then Σ[(ds, θ) → (t, or, v, π, receivers ∪ {(rec, j)}, bg)]
with (t, or, v, π, receivers, bg) = Σ(ds, θ) else Σ

SA((BreakGlass, t′, et, bgt, bgc), j)Σ =
if (ds, θ) ∈ et then Σ[(ds, θ) → (t, or, v, π, receivers, bg ∪ {(bgt, bgc, t′)})]
with (t, or, v, π, receivers, bg) = Σ(ds, θ) else Σ

SA((Context, t, ct), j)Σ = Σ[Context → ct]

SA(σi, j)Σ = Σ for the other events. Even though those events do not impact the
abstract state, they either introduce commitments for the DC (e.g. DeleteReq) or
allow him to fulfill his obligations (e.g. DeleteOrder).

Fig. 1. Abstract event semantics

a given position j in a trace are given by the function SA: (Event × N) →
AbstractState → AbstractState defined in Fig. 1.

Disclosure initialises all abstract state variables, while Forward adds a third
party, together with its event index, to the receivers set, unless the recipient is
the DS herself (i.e. the DS is granted access to her own data), in which case the
state is unchanged. BreakGlass events only modify the state if they occur for
the ds and θ under consideration.

The current state after the execution of a trace σ = [e1, . . . , en] is defined as
FA(σ, 1)Σ0 with ∀ ds, θ, Σ0(ds, θ) =⊥ and:

FA ([], n) Σ = Σ

FA ([e1, . . . , em], n) Σ = FA ([e2, . . . , em], n + 1) (SA(e1, n)Σ)

We set StateA(σ, i) = FA(σ|i, 1)Σ0, with σ|i = σ1 . . . σi the prefix of length i
of σ.

Furthermore, let EvT ime be a function such that EvT ime(σi) = ti with
σi = (X, ti, . . .), ti ∈ T ime. Having defined abstract events, traces and event
semantics, we can now define the compliance of a trace with respect to the
policy attached to the data received by a DC.

2.2 Trace Compliance Properties

The following compliance properties are stated ∀ i ∈ N, ∀ ds, ∀ θ:

A1: No personal data should appear in an abstract state after its global deletion
delay has expired: StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg) =⇒
EvT ime(σi) ≤ t + π.dd

Log Analysis for Data Protection Accountability 169

A2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and deletion: σi = (Delete, t′, ds, θ) ∧ StateA(σ, i−1)(ds, θ) =
(t, or, v, π, receivers, bg) =⇒ ∀ (tp, l) ∈ receivers, ∃ k | ∃ t′′ | σk =
(DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with α = max{n | (tp, n) ∈ receivers}

A3: Deletion requests are fulfilled before expiration of the request fulfillment
delay: σi = (DeleteReq, t′, or, ds, θ) ∧ StateA(σ, i − 1)(ds, θ) = (t, or, v, π,
receivers, bg) =⇒ ∃ k | ∃ t′′ | σk = (Delete, t′′, ds, θ) ∧ t′ < t′′ ≤ t′ + π.rd

A4: A4 is defined similarly to A3 for access requests, where the granting of
access is a Forward event with rec = ds.

A5: Data is only used for purposes defined in the policy: σi = (Use, t′, ds, θ,
purpose, reason) ∧ StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg)
=⇒ purpose ∈ π.ap

A6: All contexts in which data is used in the trace are authorised in the policy:
σi = (Use, t′, ds, θ, purpose, reason) ∧ StateA(σ, i − 1)(Context) = ct ∧
StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg) =⇒ ct ∈ π.cx

A7: If the policy forbids all forwarding, there is none:
σi = (Forward, t′, rec, ds, θ, v, π) ∧ rec = ds ∧ StateA(σ, i − 1)(ds, θ) =
(t, or, v, π, receivers, bg) =⇒ π.fw = ↑

Definition 4 (Trace compliance). A trace σ is compliant (CompliantA(σ))
if it satisfies all of the above properties A1, . . . , A7.

This concludes our formalisation of abstract events. The next section intro-
duces log events, which are closer to system operations and include internals
such as memory references. Defining such events and their compliance will ulti-
mately allow us to relate abstract events and log events to express accountability
properties (§4).

3 Log Specification and Compliance

Abstract events are useful to express privacy policies at a level which makes
sense for DS. However the expected guarantees concern the actual behaviour of
the system, which can be checked based on its execution log. We start by defin-
ing log events and continue with the associated concrete states and compliance
properties.

3.1 Log Events

There are two main differences between trace events and log events. First, log
events correspond to a small number of general purpose low-level operations,
such as receiving data, sending it, reading it, copying it, deleting it or external
events. The semantics of these events are passed through parameters (in most
cases, the second one, such as Disclosure). Second, log event operations apply
to the machine state, which is a function from references (i.e. memory addresses)
to values; as opposed to abstract event operations, which apply directly to high-
level data.

170 D. Butin and D. Le Métayer

The format of the logs is a key design choice for an accountability architec-
ture. As discussed in [4], this choice is far from obvious. In our framework, it
is guided by two factors: the privacy policies which have to be verified and the
aforementioned data minimization principle. Actually, we choose a radical op-
tion here, which is to avoid recording in the logs any value v of personal data 4.
We show in the next section that this choice does not prevent us from meeting
the expected accountability requirements.

The list of log events follows. All log events carry a timestamp t, and events
without descriptions have the same meaning as the corresponding abstract event.

– (Receive, Disclosure, t, or, ds, θ, π, ref)
– (Receive, DeleteReq, t, or, ds, θ)
– (Receive, AccessReq, t, ds, θ)
– (Copy, t, ref, ref) — a copying of data by the DC from one system reference

to another.
– (Delete, t, ref) — a deletion of the data of ds with reference ref by the DC.
– (Send, DeleteOrder, t, tp, ds, θ)
– (Send, V al, t, rec, ref) — an unspecified sending of data from the DC to a

recipient rec, which can be a third party or ds in case she is granted access
to her own data.

– (Read, t, ref, purpose, reason) — the use by the DC of the data of ds of
reference ref for a specific purpose and reason.

– (External, BreakGlass, t, et, bgt, bgc)
– (External, Context, t, ct)

Logs are to traces as log events are to abstract events:

Definition 5 (Log). A log is a sequence of log events.

In the same way that we defined abstract states and semantics, we now define
concrete states and the semantics of concrete events.

Definition 6 (Concrete state). The concrete state of a system is defined by
the function SC : Reference −→ T ime × T ype × Entity × Entity × P olicy ×
P(Entity × N) × P(BGtype × BGcircumstances × T ime)

ref �→ (t, θ, ds, or, π, receivers, bg)

Here Reference is the set of memory addresses; the other parameters are
defined as for abstract states. SC is expanded with SC(Context) = ct ∈ Context.

The semantics of an event at a position j in a log are given by a function
(LogEvent × N) → ConcreteState → ConcreteState defined as in Fig. 2.

Note that data values are not manipulated explicitly here; e.g. in the concrete
(Receive, Disclosure, . . .) event above, the value of the data of type θ is stored
in system memory at address ref . The Copy event does not modify the state
associated to ref but the one associated to ref ′, since ref ′ is overwritten.
4 Nevertheless, the couple (ds, θ) to which v is associated is still recorded.

Log Analysis for Data Protection Accountability 171

SC((Receive, Disclosure, t, or, ds, θ, π, ref), j)Σ = Σ[ref → (t, θ, ds, or, π,∅,∅)]

SC((Copy, t, ref, ref ′), j)Σ = Σ[ref ′ → Σ(ref)]

SC((Delete, t, ref), j)Σ = Σ[ref →⊥]

SC((Send, V al, t′, rec, ref), j)Σ =
if rec �= ds then Σ[ref → (t, θ, ds, or, π, receivers ∪ {(rec, j)}, bg)]
with (t, θ, ds, or, π, receivers, bg) = Σ(ref) else Σ

SC((External, BreakGlass, t′, et, bgt, bgc), j)Σ =
if (ds, θ) ∈ et then Σ[ref → (t, θ, ds, or, π, receivers, bg ∪ {(bgt, bgc, t′)})]
with (t, θ, ds, or, π, receivers, bg) = Σ(ref) else Σ

SC((External, Context, t, ct), j)Σ = Σ[Context → ct]

SC(Li, j)Σ = Σ for the other events.

Fig. 2. Concrete event semantics

The current concrete state StateC(L) after the execution of a log L is defined
recursively from SC , like StateA(σ) was previously defined from SA. One can
now express useful functions based on the current state at a position i in a log:

– The Locations function returns the set of references associated to data of a
certain datatype from ds:
Locations(L, i, ds, θ) = {ref | StateC(L, i)(ref) = (_, θ, ds, _, _, _, _)}

– The AllReceivers function returns the set of all third parties that store some
data of a certain datatype from ds, with the associated event index at which
they received the data: AllReceivers(L, i, ds, θ) = {(tp, k) | ∃ ref |
StateC(L, i)(ref) = (_, θ, ds, _, _, receivers, _) ∧ (tp, k) ∈ receivers}

Furthermore, as for abstract events, let EvT ime be a function such that
EvT ime(Li) = ti when Li = (. . . , ti, . . .). Using these functions, we can now
express compliance for logs.

3.2 Log Compliance Properties

Because logs reflect actual system executions and involve lower-level operations
such as copies of data in memory addresses, it is necessary to also define the
meaning of compliance in terms of logs. The following log compliance properties
are stated ∀ i ∈ N, ∀ ref, ∀ ds, ∀ θ:

C1: No personal data should appear in an abstract state after its global deletion
delay has expired: StateC(L, i−1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒
EvT ime(Li) ≤ t + π.dd

172 D. Butin and D. Le Métayer

C2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and its deletion: Li = (Delete, t′, ref) ∧ StateC(L, i − 1)
(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ ∀ (tp, l) ∈ receivers, ∃ k | ∃ t′′ |
Lk = (Send, DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with α = max{n | (tp, n)
∈ receivers}

C3: Delete requests are fulfilled before expiration of the request fulfillment de-
lay: Li = (Receive, DeleteReq, t′, or, ds, θ) ∧ StateC(L, i − 1)(ref) =
(t, θ, ds, or,
π, receivers, bg) =⇒ ∀ r ∈ Locations(L, i, ds, θ), ∃ k | ∃ t′′ | Lk = (Delete,
t′′, r) ∧ t′ < t′′ ≤ t′ + π.rd

C4: C4 is defined similarly to C3 for access requests.
C5: Data is only used for purposes defined in the policy: Li = (Read, t′, ref,

purpose, reason) ∧ StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg)
=⇒ purpose ∈ π.ap

C6: All contexts in which data is used in the trace are authorised in the policy:
Li = (Read, t′, ref, purpose, reason) ∧ StateC(L, i − 1)(Context) = ct ∧
StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ ct ∈ π.cx

C7: If the policy forbids all forwarding, there is none:
Li = (Send, V al, t′, rec, ref) ∧ rec = ds ∧
StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ π.fw = ↑

Definition 7 (Log compliance). A log L is compliant (CompliantC(L)) if it
satisfies all of the above properties C1, . . . , C7.

4 Accountability Properties

To relate abstract privacy policies to actual log verifications, it is necessary
to introduce two abstraction relations: a relation between abstract states and
concrete states and a relation between traces and logs.

We first introduce the relation between abstract states and concrete states:

Definition 8 (State abstraction). AbstractS(ΣC , ΣA) holds if and only if
{(ds, θ) | ∃ r, ΣC(r) = (t, θ, ds, or, π, receivers, bg)} = Domain(ΣA) and
∀ r, ∀ ds, ∀ θ, ΣC(r) = (t, θ, ds, or, π, receivers, bg) ⇐⇒
∃ v | ΣA(ds, θ) = (t, or, v, π, receivers, bg).

The relation AbstractL denotes that a trace is an abstraction of a log:

Definition 9 (Log abstraction). AbstractL(L, σ) holds if and only if there
exists a function Map such that Map : N → P(N) | ∀ r ∈ [1, |σ|], Map(r) =
∅ ∧ ∀ r, s ∈ [1, |σ|], ∀ r′ ∈ Map(i), ∀ s′ ∈ Map(j), r < s =⇒ r′ < s′ and for
all i ∈ [1, |σ|] and for all j ∈ [1, |L|], the properties in Fig. 3 are true.

Log Analysis for Data Protection Accountability 173

Map(i) = {j} ∧ σi = (Disclosure, t, or, ds, θ, v, π) ⇐⇒
Lj = (Receive, Disclosure, t, or, ds, θ, π, ref) ∧
AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (DeleteReq, t, or, ds, θ) ⇐⇒
Lj = (Receive, DeleteReq, t, or, ds, θ) ∧ AbstractS(StateC(L, j−1), StateA(σ, i−1))

Map(i) = {j} ∧ σi = (AccessReq, t, ds, θ) ⇐⇒
Lj = (Receive, AccessReq, t, ds, θ) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = J ∧ σi = (Delete, t, ds, θ) ⇐⇒
∀ r ∈ Locations(L, min(J), ds, θ), ∃ j ∈ J |
Lj = (Delete, t, r) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (DeleteOrder, t, tp, ds, θ) ⇐⇒
Lj = (Send, DeleteOrder, t, tp, ds, θ) ∧ AbstractS(StateC(L, j −1), StateA(σ, i−1))

Map(i) = {j} ∧ σi = (F orward, t, rec, ds, θ, v, π) ⇐⇒
Lj = (Send, V al, t, rec, ref) with StateC(L, j − 1)(ref) =
(t′, θ, ds, or, π, receivers, bg) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (Use, t, ds, θ, purpose, reason) ∧
StateA(σ, i − 1)(Context) = ct ⇐⇒
Lj = (Read, t, ref, purpose, reason) with StateC(L, j − 1)(ref) =
(t′, θ, ds, or, π, receivers, bg) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1)) ∧
StateC(L, j − 1)(Context) = ct

Fig. 3. Log abstraction definition

Using this Abstract function, it is now possible to express the core correctness
property relating traces and logs:

Property 1 (Correctness).

CompliantC(L) ∧ AbstractL(L, σ) =⇒ CompliantA(σ)

This property shows that the abstract meaning of the policies (which can be
understood by users) reflect the actual properties of the logs. It also makes it
possible to abstract the log into a trace and analyse the trace instead of the log.

Proof outline: Since CompliantA(σ) is defined as the conjunction of the seven
trace compliance hypotheses Ai defined in §2, it is equivalent to show that they
all hold. We do not detail all proofs here but present the strategy and an archety-
pal example5. Generally speaking, starting with the premise of a given Ai, one
wants to reach the corresponding conclusion, assuming the ad hoc log compli-
ance property Ci and AbstractL(L, σ). Abstract events can be mapped back to
5 See [6] for more details.

174 D. Butin and D. Le Métayer

one or more concrete events; for instance, in case of deletion, all references for a
given ds and θ must be deleted, giving rise to multiple concrete Delete events.
The corresponding log compliance property is then used. Often, to use the log
compliance property in question, information about states is needed and can be
obtained through the state abstraction used in the predicates. For instance, in
the case of A7, concluding that π.fw =↑ via C7 implies reasoning over the con-
crete state associated to the reference parameter of the (Send, V al, . . .) event;
indeed, the event itself does not carry the associated policy, unlike its abstract
version Forward, but the state mapping is realised through AbstractL(L, σ).

The case of A2 is typical: its assumptions are σi = (Delete, t′, ds, θ) ∧
StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg). We assume AbstractL(L, σ).
Let J = Map(i). The part of AbstractL(L, σ) relative to Delete yields ∀ r ∈
Locations(L, min(J), ds, θ), ∃ j ∈ J | Lj = (Delete, t′, r) ∧ AbstractS(StateC
(L, j−1), StateA(σ, i−1)), Since StateA(σ, i−1)(ds, θ) = (t, or, v, π, receivers, bg),
we get, in particular, ∀ r ∈ Locations(L, min(J), ds, θ), ∃ j ∈ J | StateC(L, j −
1)(r) = (t, θ, ds, or, π, receivers, bg). C2 can now be used, and gives ∀ (tp, l) ∈
receivers, ∃ k | ∃ t′′ | Lk = (Send, DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with
α = max{n | (tp, n) ∈ receivers}. Using AbstractL(L, σ) again for DeleteOrder
yields the desired conclusion: ∀ (tp, l) ∈ receivers, ∃ k′ | Map(k′) = {k} | σk′ =
(DeleteOrder, t′′, tp, ds, θ) with k′ ∈]α, j′[and α = max{n | (tp, n) ∈ receivers}.
In this case, it is critical to establish a correspondence between abstract and con-
crete states to be able to reason over the receivers set that features in the conclusion
of both properties. In the case of A6 and C6, context equivalence is used.

RaceConditions: From the perspective of a DS, it is essential that all copies of data
are actually deleted in the end, whether they are local or remote. The following
property guarantees that all deletion requests are eventually fulfilled on all levels:
Property 2 (Absence of Race Conditions). All deletion requests are fulfilled after
a finite delay, provided the log is compliant and of finite length.

Proof Outline: We assume L = L1 . . . Ln to be a log of length n, ds and θ
fixed. All deletion requests are fulfilled after a finite delay. Indeed, assume ∃ i ∈
[1, n] | Li = (Receive, DeleteReq, t, or, ds, θ), Li ∈ L and A = Locations(L, i,
ds, θ). By contradiction, the following alternatives are impossible:
– Assume there exists a local copy of the initial data which is never deleted, i.e.

∃ ref ∈ A | ∀ s ∈ [1, n], Ls = (Delete, t′, ref) ∧ Ls = (Copy, t′′, ref ′, ref)
with ref ′ /∈ Locations(L, i, ds, θ) — this contradicts C3.

– Assume there is a third party whom the data was shared with and who
never received a DeleteOrder, i.e. ∃ α ∈ AllReceivers(L, i, ds, θ) and ∀ r ∈
[1, n], Lr = (Send, DeleteOrder, t, α, ds, θ). Because of the above, we know
∃ k | Lk = (Delete, t′, ref) with ref ∈ A — this contradicts C2.

– Assume the data was received by the DC from a third party T P after its ini-
tial versions were deleted locally at time t′, i.e. ∃ t′′ | (Receive, Disclosure, t′′,
T P, ds, θ, π, ref) ∧ t′′ > t′. This contradicts C2’s guarantee the deletion or-
der to T P was sent out before t′, since the deletion order makes the data
unavailable to T P at time t′′.

Log Analysis for Data Protection Accountability 175

On the other hand, there is no guarantee that data for a given θ is deleted at
the end of a trace if no deletion request exists for it. Indeed, successive disclosures
with ever-growing global deletion delays π.dd do not contradict C1.

5 Accountability Process

The formal framework presented in this paper contributes to the three types of ac-
countability introduced in §1: it can be used to provide precise definitions of privacy
policies and to build log analysers to check the compliance of a log with respect to
the privacy policies of the data collected by the DC. Actual log files can be parsed
and converted by log abstraction to traces that can be mechanically checked as
in [4]. In addition, it suggests a number of manual checks and procedural measures
required to complement the log analysis and make it fully effective. In practice, as
we argued in [5], a true accountability process should impose that these manual
checks are carried out by independent auditors.

The additional manual checks suggested by the formal framework fall into two
categories:

– General verifications on the architecture of the system: the goal of these
verifications is to convince the auditor that the log reflects the actual execu-
tion of the system. In general it will not be possible to check this property
formally because it will be out of the question to build a formal model of
an entire system just for the purpose of accountability. However, the for-
mal framework provides clear guidelines about the guarantees that the DC
should provide (in informal or semi-formal ways, for example in the form
of diagrams and design documentation). Basically, each type of log event
leads to specific assumptions which have to be met by the logging tool and
demonstrated by the DC: for example any operation involving the receipt,
copy or transfer of personal data should be appropriately recorded in the
log, each use of personal data should be associated with a precise purpose
recorded in the log, etc.

– Specific verifications depending on the outcome of the log analysis: the log
contains references to pieces of information that may have to be checked by
the auditor. For example, the reason argument of Read events can take the
form of a piece of text explaining in more detail the justification for the use
of the data6. Similarly, the parameters associated with break-glass events
can be checked to confirm that they provide sufficient justifications for the
breach of a privacy property7.

It should be clear that the objective of an audit in the context of accountability
is not to provide a one hundred per cent guarantee that the system is compliant.
The general philosophy is that a good accountability process should make it more
difficult for DC to breach the rules and also to cover up their misbehaviour. In
6 These descriptions can be recorded in a library and provided through specific func-

tions; they are useful to complement and define more precisely the purpose argument.
7 Each break-glass event is associated with a set et of affected entities and data types.

176 D. Butin and D. Le Métayer

practice, auditors (or controllers of Data Protection Authorities8) do not attempt
to check all log entries for all collected data: they rather choose to explore logs
selectively to check specific types of data9. In our model, the correctness property
of §4 defines a condition to be met by such a log analyser. Despite the fact that
a full application of formal verifications is out of reach in this context, we believe
that the formal approach followed here can bring significant benefits in terms of
rigour in the definition of the objectives and the procedures to reach them.

6 Related Work

Accountability in computer science is generally associated with very specific
properties. An example of a formal property attached to accountability is non-
repudiation: Bella and Paulson [2] see accountability as a proof that a participant
took part in a security protocol and performed certain actions. The proof of non-
repudiation relies on the presence of specific messages in network history.

Several frameworks for a posteriori compliance control have already been de-
veloped. Etalle and Winsborough [11] present a logical framework for using logs
to verify that actions taken by the system are authorized. Cederquist et al. [7]
introduce a framework to control compliance of document policies where users
may be audited and asked to justify actions. Jagadeesan et al. [15] define account-
ability as a set of mechanisms based on “after-the-fact verification” by auditors
for distributed systems. As in [19], blame assignment based on evidence plays a
central role in this framework. Integrity (the consistency of data) and authentica-
tion (the proof of an actor’s identity) are integral to the communication model.
Together with non-repudiation [2], these technical concepts are often seen as
pillars of the concept of accountability in computer science literature.

On the practical side, Haeberlen [14] outlines the challenges and building
blocks for accountable cloud computing. Accountability is seen as desirable both
for customers of cloud services and service providers. The building blocks of
accountability are defined as completeness, accuracy and verifiability. Technical
solutions to enable these characteristics on cloud computing platforms have been
devised by the authors.

Work presented in [17] proposes criteria for acceptable log architecture de-
pending on system features and potential claims between the parties.

Finally, current legal perspectives on accountability are surveyed in [13].

7 Conclusions

Considering the ever-growing collection and flow of personal data in our digital
societies, a priori controls will be less and less effective for many reasons, and ac-
countability will become more and more necessary to counterbalance this loss of ex
ante control by DS. Another major benefit of accountability is that it can act as an
incentive for DC to take privacy commitments more seriously and put appropriate
8 Such as the CNIL in France.
9 Typically, sensitive data or data for which they have suspicions of breach.

Log Analysis for Data Protection Accountability 177

measures in place, especially if audits are conducted in a truly independent way
and possibly followed by sanctions in case of breach. As pointed out by De Hert,
“the qualitative dimension of accountability schemes may not be underrated” [10].

However, the term “accountability” has been used with different meanings by
different communities, very often in a broad sense by lawyers and in very specific
technical contexts by computer scientists. This paper aims to reconcile both
worlds, by defining precisely the aspects which can be formalised and showing
how manual checks can complement automatic verifications.

The language used here to express privacy policies and the sets of events are
typical of the most relevant issues in this area, but they should obviously be
complemented to be used as a basis for an effective accountability framework.
In order to implement such a framework, several issues should be addressed:
– The security (integrity and confidentiality) of the logs should be ensured.

This aspect, which has not been discussed here, has been addressed by pre-
vious work [3, 20, 21].

– A suitable interface should be provided to the auditors for a selective search
of the logs based on an analyser meeting the requirements defined in §4.
This interface must provide convenient ways for the auditor to reach the
documents that need complementary verifications.

– More complex data manipulation operations should be considered, including
for example the merging of different pieces of personal data or anonymization
techniques. The privacy policy language should be extended to allow the DS
to specify the rules associated with the result of such operations.

Last but not least, it is also possible to reduce even further the amount of data
stored in the logs by ensuring that not only the values of personal information
are not recorded in the logs, but also the identity of the DS and the type of
data (the (ds, θ) pair in the formal model). Indeed, the only role of this pair in
the model is to establish a link with the privacy policy and it could as well be
anonymized through a hash function. The fact that our formal model can be
used to implement an effective accountability framework without recording any
extra personal data makes it possible to counter the most common objection
against accountability in the context of personal data protection. This argument
is especially critical for Data Protection Agencies, for which such a “personal-
data-free” accountability framework could significantly ease day-to-day checks.
It can also be a key argument for DC reluctant to create new logs which may
represent additional security risks. For these reasons, we hope this work can pave
the way for future wider adoption of effective accountability of practice.

Acknowledgement. This work was partially funded by the European project
PARIS / FP7-SEC-2012-1 and the Inria Project Lab CAPPRIS (Collaborative
Action on the Protection of Privacy Rights in the Information Society).

References
1. Article 29 Data Protection Working Party: Opinion 3/2010 on the principle of

accountability (2010)

178 D. Butin and D. Le Métayer

2. Bella, G., Paulson, L.C.: Accountability Protocols: Formalized and Verified. ACM
Trans. Inf. Syst. Secur. 9(2), 138–161 (2006)

3. Bellare, M., Yee, B.S.: Forward Integrity for Secure Audit Logs. Tech. rep., Uni-
versity of California at San Diego (1997)

4. Butin, D., Chicote, M., Le Métayer, D.: Log Design for Accountability. In: 2013
IEEE Security & Privacy Workshop on Data Usage Management, pp. 1–7. IEEE
Computer Society (2013)

5. Butin, D., Chicote, M., Le Métayer, D.: Strong Accountability: Beyond Vague
Promises. In: Gutwirth, S., Leenes, R., De Hert, P. (eds.) Reloading Data Protec-
tion, pp. 343–369. Springer (2014)

6. Butin, D., Le Métayer, D.: Log Analysis for Data Protection Accountability (Ex-
tended Version). Tech. rep., Inria (2013)

7. Cederquist, J., Corin, R., Dekker, M., Etalle, S., den Hartog, J., Lenzini, G.: Audit-
based compliance control. Int. J. Inf. Secur. 6(2), 133–151 (2007)

8. Center for Information Policy Leadership: Data Protection Accountability: The
Essential Elements (2009)

9. Bennett, C.J.: Implementing Privacy Codes of Practice. Canadian Standards As-
sociation (1995)

10. De Hert, P.: Accountability and System Responsibility: New Concepts in Data Pro-
tection Law and Human Rights Law. In: Managing Privacy through Accountability
(2012)

11. Etalle, S., Winsborough, W.H.: A Posteriori Compliance Control. In: Proceedings
of the 12th ACM Symposium on Access Control Models and Technologies, SAC-
MAT, pp. 11–20. ACM (2007)

12. European Commission: Proposal for a Regulation of the European Parliament and
of the Council on the Protection of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of such Data (2012)

13. Guagnin, D., Hempel, L., Ilten, C.: Managing Privacy Through Accountability.
Palgrave Macmillan (2012)

14. Haeberlen, A.: A Case for the Accountable Cloud. Operating Systems Review 44(2),
52–57 (2010)

15. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a Theory of Account-
ability and Audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 152–167. Springer, Heidelberg (2009)

16. Joint NEMA/COCIR/JIRA Security and Privacy Committee (SPC): Break-Glass:
An Approach to Granting Emergency Access to Healthcare Systems (2004)

17. Le Métayer, D., Mazza, E., Potet, M.L.: Designing Log Architectures for Legal
Evidence. In: Proceedings of the 8th International Conference on Software Engi-
neering and Formal Methods, SEFM 2010, pp. 156–165. IEEE Computer Society
(2010)

18. Organisation for Economic Co-operation and Development: OECD Guidelines on
the Protection of Privacy and Transborder Flows of Personal Data (1980)

19. Schneider, F.B.: Accountability for Perfection. IEEE Security & Privacy 7(2), 3–4
(2009)

20. Schneier, B., Kelsey, J.: Secure Audit Logs to Support Computer Forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

21. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an Encrypted and
Searchable Audit Log. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004 (2004)

	Log Analysis for Data Protection Accountability
	1 Context and Motivation
	2 Privacy Policies and Abstract Events
	2.1 Abstract Events
	2.2 Trace Compliance Properties

	3 Log Specification and Compliance
	3.1 Log Events
	3.2 Log Compliance Properties

	4 Accountability Properties
	5 Accountability Process
	6 Related Work
	7 Conclusions
	References

