Cliff Jones
Pekka Pihlajasaari
Jun Sun (Eds.)

FM 2014:
Formal Methods

19th International Symposium
Singapore, May 12-16, 2014
Proceedings

LNCS 8442

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8442

Cliff Jones Pekka Pihlajasaari Jun Sun (Eds.)

FM 2014
Formal Methods

19th International Symposium
Singapore, May 12-16, 2014
Proceedings

@ Springer

Volume Editors

Cliff Jones

Newcastle University

School of Computing Science
Newcastle, UK

E-mail: cliff.jones@ncl.ac.uk

Pekka Pihlajasaari

Data Abstraction (Pty) Ltd
Johannesburg, South Africa
E-mail: pekka@data.co.za

Jun Sun

Singapore University of Technology and Design
Information System Technology and Design, Singapore
E-mail: sunjun @sutd.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-319-06409-3 e-ISBN 978-3-319-06410-9
DOI 10.1007/978-3-319-06410-9

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936206

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Message from the Organising Committee

Welcome to FM-2014! Welcome to Singapore! This is the nineteenth in a se-
ries of symposia organized by Formal Methods Europe, this is its first time in
Asial The conference is jointly organized by three Singapore universities NUS,
NTU, SUTD and a French-Singapore joint research lab IPAL. FM week is May
12-16, 2014 at the NUS, with a strong core technical program. Additionally
six workshops and five tutorials focusing on specific formal methods for various
application areas will be held early in FM week. I would like to express my
heart-felt thanks to Programme Committee Cliff Jones, Pekka Pihlajasaari and
Jun Sun; Doc Symposium Chair: Annabelle Mclver; Workshop Chair: Shengchao
Qin; Publicity Chairs: Jonathan Bowen, Kenji Taguchi; Tutorial Chair: Richard
Paige; and Financial/Local Chair: Yang Liu; local organising committee mem-
bers: Guangdong Bai, Manman Chen, Jianqgi Shi, Ling Shi, Yan Liu as well as
the workshop organisers, tutorial presenters and many student helpers, for their
hard work to make FM-2014 successful.

February 2014 Jin Song Dong

VI Preface

Message from Programme Committee Chairs

FM-2014 is the 19** symposium in a series that began life as “VDM Europe” in
1987 and, in 1993, became “Formal Methods Europe”. The nod to Europe in
these names marked the initial funding support from the European Union but
is now purely historical with “FME” being today an international organisation
and the renowned FM symposia attracting papers from across the globe. For
the Programme Committee (PC) chairs of the Singapore event, it has been a
privilege to play a part in continuing the success of a series that has consistently
focussed on applicable formal methods.

This Singapore event is only the second to take place outside of Europe (the
first was in 2006 at McMaster University in Canada). Placing a conference in a
completely new geographical location poses some risks so the PC was delighted
to receive a strong set of over 150 submitted papers; for the Main Stream 38
papers were selected and seven for the Industry Stream. In both cases, we felt
that we were able to set the very highest standard. The overall acceptance rate
is 29%.

We were extremely happy to gain ready acceptance to our invitation from
three excellent invited speakers:

— Zhenjiang Hu from Japan’s National Institute of Informatics is one of the
leading researchers in the new field of bidirectional model transformations.

— Gerwin Klein has led NICTA’s formal verification part of the Trustworthy
Embedded Systems project and was the leader of the L4.verified and L4pilot
projects.

— Jim Woodcock has made numerous contributions to the application of indus-
trial-scale software engineering and formal methods.

Dines Bjgrner was one of the co-founders of this series of symposia and has done
an enormous amount to promote formal methods in general and to help FME
in particular (anyone who attended FM-99 in Toulouse will never forget the
experience!). We decided therefore to create a special role for his “Distinguished
Lecture”.

John Fitzgerald was chair of FME for the gestation period and birth of FM-
2014 and we should like to express our thanks both to the committee and to John
in particular for his many years of unstinting service to our community. Nor has
he forgotten one of the most important roles of any leader —that of finding (and
persuading) a worthy successor— and we Ana Cavalcanti the very best for her
period as Chair of FME.

The volume in your hands provides a scientific guarantee of a successful sym-
posium. The vibrant city-state of the Lion and its famous hospitality will, we
believe, do the rest to ensure that FM-2014 in Singapore will provide its own
memorable experience to participants.

Our warm thanks go to the members of the PC and their reviewers. Without
them, the selection of papers would have been overwhelming and sterile. The
enormous breadth of background in their comments resulted in the discovery of

Preface VII

a number of gems that could otherwise have been overlooked. Of course the PC
would have nothing to work on but for the authors who submit interesting and
relevant papers and it is to them we express our final thanks.

February 2014 Cliff Jones
Pekka Pihlajasaari

Jun Sun

Organisation

We are grateful to Formal Methods Europe (FME), National University of Sin-
gapore (NUS), Nanyang Technological University (NTU), Singapore University
of Technology and Design (SUTD) and the French-Singapore joint research lab
TPAL for organizing FM 2014. Our special thanks to the faculty, students, and
staff, who volunteered their time in the Organizing Committee.

General Chair

Jin Song Dong National University of Singapore, Singapore

Program Committee Chairs

Cliff B. Jones Newcastle University, UK

Pekka Pihlajasaari Data Abstraction (Pty) Ltd, South Africa

Jun Sun Singapore University of Technology and Design,
Singapore

Doctoral Symposium Chair

Annabelle McIver Macquarie University, Australia

Workshop Chair

Shengchao Qin University of Teesside, UK

Publicity Chairs

Jonathan Bowen London South Bank University, UK
Kenji Taguchi AIST, Japan

Tutorial Chair

Richard Paige University of York, UK

X Organisation

Financial /Local Chair

Yang Liu

Program Committee

Bernhard Aichernig
Richard Banach
Juan Bicarregui

Jon Burton

Andrew Butterfield
Ana Cavalcanti
Marsha Chechik
Yu-Fang Chen
Wei-Ngan Chin
Cristina Cifuentes
Jim Davies

Frank De Boer
Ewen Denney

Dino Distefano

José Luiz Fiadeiro
John Fitzgerald
Marie-Claude Gaudel
Jaco Geldenhuys
Dimitra Giannakopoulou
Stefania Gnesi
Wolfgang Grieskamp
Lindsay Groves

Jim Grundy

Stefan Gruner

Anne E. Haxthausen
Tan J. Hayes
Constance Heitmeyer
Jane Hillston
Michael Holloway
Shinichi Honiden
Ralf Huuck

Daniel Jackson

Cliff Jones

Rajeev Joshi

Peter Gorm Larsen
Gary T. Leavens

Nanyang Technological University, Singapore

Graz University of Technology, Austria

University of Manchester, UK

Rutherford Appleton Laboratory, UK

Praxis, UK

Trinity College Dublin, Ireland

York University, UK

University of Toronto, Canada

Academia Sinica, Taiwan

National University of Singapore, Singapore

Oracle, USA

University of Oxford, UK

CWI, The Netherlands

SGT/NASA Ames, USA

Facebook and University of London, UK

Royal Holloway, University of London, UK

Newcastle University, UK

LRI, Université Paris-Sud and CNRS, France

Stellenbosch University, South Africa

NASA Ames, USA

ISTI-CNR, Italy

Google, USA

Victoria University of Wellington, New Zealand

Intel Corporation, USA

University of Pretoria, South Africa

Technical University of Denmark, Denmark

University of Queensland, Australia

Naval Research Laboratory, USA

University of Edinburgh, UK

NASA, USA

National Institute of Informatics, Japan

NICTA, Australia

MIT, USA

Newcastle University, UK

Laboratory for Reliable Software, Jet
Propulsion Laboratory, USA

Aarhus School of Engineering, Denmark

University of Central Florida, USA

Yves Ledru

Michael Leuschel
Brendan Mahony
Tom Maibaum
Annabelle McIver
Dominique Mery
Peter Miiller
Tobias Nipkow
Colin O’Halloran
Jose Oliveira
Pekka Pihlajasaari
André Platzer
Zongyan Qiu

Ken Robinson
Andreas Roth
Abhik Roychoudhury
Augusto Sampaio
Steve Schneider
Emil Sekerinski
Xiaoyu Song

Ketil Stoelen

Jing Sun

Jun Sun

Axel Van Lamsweerde
Marcel Verhoef
Willem Visser
Chao Wang

Alan Wassyng
Pamela Zave
Lijun Zhang
Hongjun Zheng

Additional Reviewers

Abal, Tago

Ait Ameur, Yamine
Albarghouthi, Aws
Aliakbary, Sadegh
Almeida, Jose Bacelar
Andrews, Zoe
Atanasiu, Radu-Florian
Banach, Richard
Bezirgiannis, Nikolaos

Organisation XI

Laboratoire d’Informatique de Grenoble -
Université Joseph Fourier, France

University of Diisseldorf, Germany

DSTO, Australia

McMaster University, Canada

Macquarie University, Australia

Université de Lorraine, LORIA, France

ETH Ziirich, Switzerland

TU Miinchen, Germany

QinetiQ Ltd., UK

Universidade do Minho, Portugal

Data Abstraction (Pty) Ltd, South Africa

Carnegie Mellon University, USA

Peking University, China

The University of New South Wales, Australia

SAP Research, Germany

National University of Singapore, Singapore

Federal University of Pernambuco, Brazil

University of Surrey, UK

McMaster University, Canada

Portland State University, USA

SINTEF, Norway

The University of Auckland, New Zealand

Singapore University of Technology and Design

Université Catholique de Louvain, Belgium

Chess, The Netherlands

Stellenbosch University, South Africa

Virginia Tech, USA

McMaster University, Canada

AT&T Laboratories—Research, USA

Technical University of Denmark, DK

MathWorks, USA

Bicarregui, Juan

Blanchette, Jasmin Christian
Bobot, Francois

Bodeveix, Jean-Paul
Bonakdarpour, Borzoo
Brekling, Aske

Bryans, Jeremy W.
Bucchiarone, Antonio
Carvalho, Gustavo

XII Organisation

Castro, Pablo
Ciancia, Vincenzo
Clark, Allan
Coleman, Joey
Costea, Andreea
Couto, Luis
Davies, Jim
Demasi, Ramiro
Dobrikov, Ivaylo
Dunne, Steve
Duran, Francisco
Eldib, Hassan
Fantechi, Alessandro
Galpin, Vashti
Gherghina, Cristian
Gheyi, Rohit
Ghorbal, Khalil
Gilmore, Stephen
Gretz, Friedrich
Gurfinkel, Arie
Hague, Matthew
Hahn, Moritz
Hallerstede, Stefan
Hansen, Dominik
Henriques, David
Holik, Lukas
Ishikawa, Fuyuki
Isobe, Yoshinao
Janicki, Ryszard
Jansen, David N.

Jeannin, Jean-Baptiste

Joebstl, Elisabeth
Joshi, Rajeev
Jorgensen, Peter
K.R., Raghavendra
Kassios, Ioannis
Kiniry, Joseph
Krautsevich, Leanid
Krenn, Willibald
Krings, Sebastian
Krishnan, Paddy
Kusano, Markus
Le, Duy Khanh
Le, Quang Loc

Le, Ton Chanh

Lepri, Daniela

Li, Guangyuan

Li, Qin

Li, Yi

Liu, Yang

Lluch Lafuente, Alberto
Loos, Sarah

Lorber, Florian
Loreti, Michele
Lgvengreen, Hans Henrik
Martins, Joao G.
Meinicke, Larissa
Merz, Stephan
Miyazawa, Alvaro
Monahan, Rosemary
Moreira, Nelma
Morgan, Carrol
Morgan, Carroll
Murray, Toby
Miiller, Andreas
Nickovic, Dejan
Olivier, Martin
Payne, Richard
Pereira, David
Pierce, Ken

Quesel, Jan-David
Refsdal, Atle
Robinson, Peter
Rogalewicz, Adam
Runde, Ragnhild Kobro
Safilian, Aliakbar
Sakamoto, Kazunori
Santosa, Andrew Edward
Schewe, Sven
Schulze, Uwe
Seehusen, Fredrik
Seidl, Helmut
Serbanescu, Vlad
Sharma, Asankhaya
Sighireanu, Mihaela
Simmonds, William
Singh, Neeraj
Solhaug, Bjgrnar
Solms, Fritz

Song, Lei

Sousa Pinto, Jorge
Steggles, Jason
Tanabe, Yoshinori
Tarasyuk, Anton

Ter Beek, Maurice H.

Timm, Nils

Tiran, Stefan
Treharne, Helen
Trung, Ta Quang
Turrini, Andrea
Vakili, Sasan

van der Storm, Tijs

Organisation

Vu, Linh H.
Wang, Chen-Wei
Wang, Hao
Wasowski, Andrzej
Watson, Bruce
Wei, Wei

Yang, Zijiang

Yi, Jooyong
Yoshioka, Nobukazu
Zeyda, Frank
Zhang, Chenyi
Zhang, Lu

XIIT

Table of Contents

Validity Checking of Putback Transformations in Bidirectional
Programming.
Zhengiang Hu, Hugo Pacheco, and Sebastian Fischer

Proof Engineering Considered Essential
Gerwin Klein

Engineering UToPiA: Formal Semantics for CML
Jim Woodcock

40 Years of Formal Methods: Some Obstacles and Some Possibilities? . . .
Dines Bjgrner and Klaus Havelund

A Refinement Based Strategy for Local Deadlock Analysis of Networks
Of CSP Processesouiiin e

Pedro Antonino, Augusto Sampaio, and Jim Woodcock

Algebraic Principles for Rely-Guarantee Style Concurrency Verification
To0ls oo
Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Definition, Semantics, and Analysis of Multirate Synchronous AADL . ..
Kyungmin Bae, Peter Csaba Olveczky, and José Meseguer

TrRUSTFOUND: Towards a Formal Foundation for Model Checking
Trusted Computing Platforms,
Guangdong Bai, Jianan Hao, Jianliang Wu, Yang Liu,
Zhenkai Liang, and Andrew Martin

The VerCors Tool for Verification of Concurrent Programs
Stefan Blom and Marieke Huisman

Knowledge-Based Automated Repair of Authentication Protocols
Borzoo Bonakdarpour, Reza Hajisheykhi, and Sandeep S. Kulkarni

A Simplified Z Semantics for Presentation Interaction Models..........
Judy Bowen and Steve Reeves

Log Analysis for Data Protection Accountability
Denis Butin and Daniel Le Métayer

Automatic Compositional Synthesis of Distributed Systems............
Werner Damm and Bernd Finkbeiner

16

22

42

62

78

94

XVI Table of Contents

Automated Real Proving in PVS via MetiTarski 194
William Denman and César Munoz

Quiescent Consistency: Defining and Verifying Relaxed

Linearizability 200
John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan,
Oleg Travkin, and Heike Wehrheim

Temporal Precedence Checking for Switched Models and Its Application

to a Parallel Landing Protocol 215
Parasara Sridhar Duggirala, Le Wang, Sayan Mitra,
Mahesh Viswanathan, and César Murnioz

Contracts in Practice i 230
H.-Christian FEstler, Carlo A. Furia, Martin Nordio,
Marco Piccioni, and Bertrand Meyer

When Equivalence and Bisimulation Join Forces in Probabilistic
AUtomatao 247
Yuan Feng and Lijun Zhang

Precise Predictive Analysis for Discovering Communication Deadlocks

in MPI Programs e 263
Vojtéch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and
Subodh Sharma

Proof Patterns for Formal Methods. 279
Leo Freitas and Iain Whiteside

Efficient Runtime Monitoring with Metric Temporal Logic: A Case
Study in the Android Operating System 296
Hendra Gunadi and Alwen Tiu

IscasMc: A Web-Based Probabilistic Model Checker 312
Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and
Lijun Zhang

Invariants, Well-Founded Statements and Real-Time Program Algebra .. 318
lan J. Hayes and Larissa Meinicke

Checking Liveness Properties of Presburger Counter Systems Using
Reachability Analysis............ i 335
K. Vasanta Lakshmi, Aravind Acharya, and Raghavan Komondoor

A Symbolic Algorithm for the Analysis of Robust Timed Automata 351
Piotr Kordy, Rom Langerak, Sjouke Mauw, and
Jan Willem Polderman

Table of Contents XVII

Revisiting Compatibility of Input-Output Modal Transition Systems.... 367
Ivo Krka, Nicolds D’Ippolito, Nenad Medvidovié, and
Sebastian Uchitel

Co-induction Simply: Automatic Co-inductive Proofs in a Program
Vi er o 382
K. Rustan M. Leino and Michat Moskal

Management of Time Requirements in Component-Based Systems 399
Yi Li, Tian Huat Tan, and Marsha Chechik

Compositional Synthesis of Concurrent Systems through Causal Model
Checking and Learning, 416
Shang-Wei Lin and Pao-Ann Hsiung

Formal Verification of Operational Transformation 432
Yang Liu, Yi Xu, Shao Jie Zhang, and Chengzheng Sun

Verification of a Transactional Memory Manager under Hardware
Failures and Restarts i 449
Ognjen Mari¢ and Christoph Sprenger

SCJ: Memory-Safety Checking without Annotations 465
Chris Marriott and Ana Cavalcanti

Refactoring, Refinement, and Reasoning: A Logical Characterization
for Hybrid Systems. 481
Stefan Mitsch, Jan-David Quesel, and André Platzer

Object Propositions i 497
Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and
Hannes Mehnert

Flexible Invariants through Semantic Collaboration 514
Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and
Bertrand Meyer

Efficient Tight Field Bounds Computation Based on Shape
Predicateso 531

Pablo Ponzio, Nicolds Rosner, Nazareno Aguirre, and Marcelo Frias

A Graph-Based Transformation Reduction to Reach UPPAAL States
Faster ..o 547
Jonas Rinast, Sibylle Schupp, and Dieter Gollmann

Computing Quadratic Invariants with Min- and Max-Policy Iterations:
A Practical Comparisonoiiutn i 563
Pierre Rouzx and Pierre-Loic Garoche

XVIII Table of Contents

Efficient Self-composition for Weakest Precondition Calculi............
Christoph Scheben and Peter H. Schmitt

Towards a Formal Analysis of Information Leakage for Signature
Attacks in Preferential Elections
Roland Wen, Annabelle Mclver, and Carroll Morgan

Analyzing Clinical Practice Guidelines Using a Decidable Metric
Interval-Based Temporal Logic..........
Morteza Yousef Sanati, Wendy MacCaull, and
Thomas S.E. Maibaum

A Modular Theory of Object Orientation in Higher-Order UTP
Frank Zeyda, Thiago Santos, Ana Cavalcanti, and Augusto Sampaio

Formalizing and Verifying a Modern Build Language
Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte

The Wireless Fire Alarm System: Ensuring Conformance to Industrial
Standards through Formal Verification..............................
Sergio Feo-Arenis, Bernd Westphal, Daniel Dietsch,
Marco Mumniz, and Ahmad Siyar Andisha

Formally Verifying Graphics FPU: An Intel® Experience
Aarti Gupta, V. Achutha Kirankumar M., and Ragnish Ghughal

MDP-Based Reliability Analysis of an Ambient Assisted
Living System
Yan Liu, Lin Gui, and Yang Liu

Diagnosing Industrial Business Processes: Early Experiences...........
Suman Roy, A.S.M. Sajeev, and Srivibha Sripathy

Formal Verification of Lunar Rover Control Software Using UPPAAL . ..
Liyjun Shan, Yuying Wang, Ning Fu, Xingshe Zhou, Lei Zhao,
Liyjng Wan, Lei Qiao, and Jianzin Chen

Formal Verification of a Descent Guidance Control Program of a Lunar
Lander
Hengjun Zhao, Mengfei Yang, Naigjun Zhan, Bin Gu,
Liang Zou, and Yao Chen

Author Index

Validity Checking of Putback Transformations
in Bidirectional Programming

Zhenjiang Hu'!, Hugo Pacheco?, and Sebastian Fischer?

! National Institute of Informatics, Japan
2 Cornell University, USA
3 Christian-Albrechts University of Kiel, Germany

Abstract. A bidirectional transformation consists of pairs of transfor-
mations —a forward transformation get produces a target view from a
source, while a putback transformation put puts back modifications on
the view to the source— satisfying sensible roundtrip properties. Ex-
isting bidirectional approaches are get-based in that one writes (an arti-
fact resembling) a forward transformation and a corresponding backward
transformation can be automatically derived. However, the unavoidable
ambiguity that stems from the underspecification of put often leads to
unpredictable bidirectional behavior, making it hard to solve nontriv-
ial practical synchronization problems with existing bidirectional trans-
formation approaches. Theoretically, this ambiguity problem could be
solved by writing put directly and deriving get, but differently from pro-
gramming with get it is easy to write invalid put functions. An open
challenge is how to check whether the definition of a putback transfor-
mation is valid, while guaranteeing that the corresponding unique get
exists. In this paper, we propose, as far as we are aware, the first safe
language for supporting putback-based bidirectional programming. The
key to our approach is a simple but powerful language for describing
primitive putback transformations. We show that validity of putback
transformations in this language is decidable and can be automatically
checked. A particularly elegant and strong aspect of our design is that
we can simply reuse and apply standard results for treeless functions and
tree transducers in the specification of our checking algorithms.

1 Introduction

Bidirectional transformations (BXs for short) [6,10,16], originated from the view
updating mechanism in the database community [1,7,12], have been recently at-
tracting a lot of attention from researchers in the communities of programming
languages and software engineering since the pioneering work of Foster et al. on a
combinatorial language for bidirectional tree transformations [10]. Bidirectional
transformations provide a novel mechanism for synchronizing and maintaining
the consistency of information between input and output, and have seen many
interesting applications, including the synchronization of replicated data in dif-
ferent formats [10], presentation-oriented structured document development [17],
interactive user interface design [22] or coupled software transformation [20].

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 1-15, 2014.
© Springer International Publishing Switzerland 2014

2 Z. Hu, H. Pacheco, and S. Fischer

A bidirectional transformation basically consists of a pair of transformations:
the forward transformation get s is used to produce a target view v from a source
s, while the putback transformation put s v is used to reflect modifications on
the view v to the source s. These two transformations should be well-behaved in
the sense that they satisfy the following round-tripping laws.

put s (get s) = s GETPUT
get (put s v) = v PuTGET

The GETPUT property requires that not changing the view shall be reflected as
not changing the source, while the PUTGET property requires all changes in the
view to be completely reflected to the source so that the changed view can be
computed again by applying the forward transformation to the changed source.

Example 1. As a simple example’, consider a forward function getAs that selects
from a source list all the elements that are tagged with A:

getAs [] =1
getAs (A a:ss) = a: getAs ss
getAs (B b: ss) = getAs ss

and a corresponding putback function putAs that uses a view list to update A
elements in the original source list:

ptas(] 1 =[]

putAs [] (v:vs)=Awv:putAs|] vs
putAs (A a: ss) (] = putAs ss []
putAs (A a:ss) (v:vs) = Awv:putAs ss vs
putAs (B b: ss) vs = B b: putAs ss vs

where we use the view to replace A elements, impose no effect on B elements,
and stop when both the source and view lists are empty. We also deal with the
cases when the view and the source lists do not have sufficient elements. O

Bidirectional programming is to develop well-behaved BXs in order to solve
various synchronization problems. A straightforward approach to bidirectional
programming is to write two unidirectional transformations. Although this ad-
hoc solution provides full control over both get and putback transformations and
can be realized using standard programming languages, the programmer needs
to show that the two transformations satisfy the well-behavedness laws, and a
modification to one of the transformations requires a redefinition of the other
transformation as well as a new well-behavedness proof.

To ease and enable maintainable bidirectional programming, it is preferable
to write just a single program that can denote both transformations, which has
motivated two different methods. One is to allow users to write the forward

! We will use a Haskell-like notation [18] throughout paper, and assume that our
definitions are typed with the same (abstract) data types of Haskell’98.

Validity Checking of Putback Transformations in Bidirectional Programming 3

transformation in a familiar (unidirectional) programming language, and de-
rive a suitable putback transformation through bidirectionalization techniques
[13,21,27,29]. The other is to instruct users to write a program in a particu-
lar bidirectional programming language [3,4,10,14,15,23,24], from which both
transformations can be derived. The latter languages tend to invite users to write
BXs as they would write get functions, but may provide eventually different put
strategies via a fixed set of combinators.

In general, a get function may not be injective, so there may exist many
possible put functions that can be combined with it to form a valid BX. Recall
the definition of putAs from Example 1; we could define another reasonable
putback function for getAs by changing the second and third equations to:

putAs [] (vivs)=Awv:B c:putds[] vs
putAs (A a: ss) (] = putAs (B a: ss) []

such that an additional B-tagged constant value c is added after each view value
v and excessive A values are converted to B values.

This unavoidable ambiguity of put is what makes bidirectional programming
challenging and unpredictable in practice. In fact, there is neither a clear con-
sensus on the best requirements even for well-studied domains [5], nor a general
way to specify which put should be selected. The effectiveness of existing bidirec-
tional programming methods comes from limiting the programmers’ knowledge
and control of the putback transformation, to keep bidirectional programming
manageable. Unfortunately, this makes it hard (or impossible) for programmers
to mold the bidirectional behavior, and severely hinders the applicability of ex-
isting BX tools in solving practical nontrivial synchronization problems.

One interesting fact is that while get usually loses information when mapping
from a source to a view, put must preserve information when putting back from
the view to the source, according to the PUTGET property. So, a natural question
is: what if we replace the traditional get-based bidirectional programming style
by a putback-based bidirectional programming style? This is, writing put and
deriving get (or, in other words, specifying the intended putback transformation
that best suits particular purposes, and deriving the forward transformation.)

Theoretically, it has been shown in [8,9] that, for a putback transformation
put, if there exists a forward transformation get then such forward transforma-
tion is unique. Practically, however, there is little work on put-based bidirectional
programming. This is not without reason: as argued in [9], it is far from being
straightforward to construct a framework that can directly support putback-
based bidirectional programming. One of the challenges is how to check whether
the definition of a put is in such a valid form that guarantees that the corre-
sponding unique get exists. In contrast to programming get, it is easy to write
invalid put functions. For instance, if we change the first equation for putAs to:

putAs (A a:ss) (v:vs)=Aa:Av:putAs ss vs

then we will end up with an invalid put for which there is no get that forms a
well-behaved BX. This raises the question of how to statically check the validity
of put.

4 Z. Hu, H. Pacheco, and S. Fischer

In this paper, we propose (as far as we are aware) the first safe language
for supporting putback-based bidirectional programming. We propose to adopt
a hybrid compositional approach, keeping the design of well-behaved primitive
putback transformations separated from the design of compositional methods
for gluing smaller BXs. In this approach, a set of primitive BXs is prepared, and
a new BX is defined by assembling the primitive transformations with a fixed set
of general combinators. This approach has two main advantages. First, a com-
prehensive set of useful generic combinators [3,4,10,14,15,23,24] already exists
and can be used without further development. Second, since these combinators
are rather limited in specifying sophisticated bidirectional behavior, it is practi-
cally useful to be able to write primitive BXs, that are often easily determined,
designed and implemented for particular domain-specific applications.

The key to our approach is a suitable language for describing primitive put-
back transformations. We choose a general first-order functional language and
require putback functions definable in the language to be affine (each view vari-
able is used at most once) and in the treeless form (no intermediate data struc-
tures are used in a definition). In fact, this class of functions has been considered
elsewhere in the context of deforestation [28], where treeless functions are used
to describe basic computation components, and has a close relationship with
theories of tree transducers [19]. As will be demonstrate later, this language
is sufficiently powerful to specify various putback functions over algebraic data
structures and, more importantly, validity of putback transformations in the
language can be automatically checked.

The rest of this paper is organized as follows. Section 2 begins by briefly re-
viewing the basic put-based bidirectional programming concepts and properties
that play an important role in our language design. Section 3 then introduces our
PpL language for specifying primitive putback functions, and Section 4 propose
our checking algorithms for validating putback functions (and deriving forward
transformations as a side effect). Section 5 discusses related work and Section 6
provides our conclusions together with possible directions for future work.

2 Putback-Based Bidirectional Programming

Let us briefly review the basic concepts and results from [8,9] that clarify the
essence of putback-based programming and play an important role in our validity
checking. Calculational proofs of all the results can be found in [8].

First of all, we define validity of a putback transformation put as follows.

Definition 1 (Validity of Putback Transformations). We say that a put
is valid if there exists a get such that both GETPUT and PUTGET are satisfied.

One interesting fact is that, for a valid put, there exists at most one get
that can form a BX with it. This is in sharp contrast to get-based bidirectional
programming, where many puts can be paired with a get to form a BX.

Lemma 1 (Uniqueness of get). Given a put function, there exists at most
one get function that forms a well-behaved BX.

Validity Checking of Putback Transformations in Bidirectional Programming 5

To facilitate the validity checking of put without mentioning get, we introduce
two new properties on put whose combination is equivalent to GETPUT and
PurGET.

— The first, that we call view determination, says that equivalence of updated
sources produced by a put implies equivalence of views that are put back.

Vs, s, v,0.putsv = put s v = v = v/ VIEWDETERMINATION

Note that the view determination implies that put s is injective (with s =).

— The second, that we call source stability, denotes a slightly stronger notion
of surjectivity for every source:

Vs.dv.putsv = s SOURCESTABILITY

Actually, these two laws together provide an equivalent characterization of the
validity of put. The following theorem will be the basis for our later presented
algorithms for checking of validity of put and deriving get.

Theorem 1 (Validity). A put function is valid if and only if it satisfies the
VIEWDETERMINATION and SOURCESTABILITY properties.

For the context of this paper, we are assuming that all functions are total —in
the pure mathematical sense— between an input type and an output type.

3 Defining Putback Functions

In this section, we design a language for describing putback functions, such that
the validity of putback functions written in our language can be automatically
checked and the corresponding get functions can be automatically derived.

As explained in the introduction, we adopt a hybrid compositional approach,
keeping separate the design of well-behaved primitive putback transformations
and the design of compositional methods for gluing primitive bidirectional trans-
formations. We will focus on the former —designing the language for specifying
various primitive putback functions (with rich update strategies) over algebraic
data structures— while existing generic combinators [3,4,10, 14, 15,23, 24] can
be reused to glue them together into larger transformations.

3.1 PbpL: A Putback Function Definition Language

We introduce PDL, a treeless language for defining primitive put functions. By
treeless, we mean that no composition can be used in the definition of a put
function. It is a first-order functional programming language similar to both
Wadler’s language for defining basic functions for fusion transformation [28§]
and the language for defining basic get functions of Matsuda et al. [21], with a
particularity that it also supports pattern expressions in source function calls.
The syntax of PDL is given in Figure 1. A program in our language consists of
a set of putback function definitions, and each definition consists of a sequence

Z. Hu, H. Pacheco, and S. Fischer

Rule Definition

r == f ps p» = e putback
Pattern
P == Cp1 ... pn constructor pattern
| z@p look-ahead variable
| = variable
Expression
e == C e ... e, constructor application
| = variable
| f zs @ function call (no nested calls)

where C € C is of arity n, f € P and x € X.

Operational Semantics (Call-by-Value):
fpspo=e€R
eryr1 - enlrn 30, f psO pub=frsry, edlu

(Fun)

(Con)Celu.enUCrlu.rn frsrpdu

where “ef” denotes the expression that is obtained by replacing any variable
z in e with the value 0(x), and v1,. .., v, denote values; values are expressions
that consist only of constructor symbols in C.

Fig. 1. Putback Definition Language (P denotes putback function symbols, C denotes

constructor symbols, X denotes variables)

of putback rules. A putback rule, as the name suggests, is used to put view

information back into the source, and has the form:

fospy=e

It describes how f adapts the source ps to e, when the view is of the form p,,.

We make the following additional considerations:

— For the patterns ps and p,, in addition to traditional variable and constructor

patterns, we introduce look-ahead variable patterns mainly for the purpose
of abstracting constant patterns using variables. For example, we can write
the constant pattern [] as zs@[], which allows us to syntactically distinguish
whether an empty string appearing in the right-hand side is newly created
or passed from the input.

We require the body expression e to be in an extended structured treeless
form [28]. That is, a function call should have shape f zs x,, where z; is
a variable in the source pattern p, and x, is a variable in the view pattern
Py, and at least one of x5 and x, is strictly smaller that its original pattern.
This means that a recursive call of a putback function updates components
of the source with the components of the view, and it may appear inside a
constructor application, but never inside another function call.

Validity Checking of Putback Transformations in Bidirectional Programming 7

— We assume that each rule is affine, i.e., every variable in the left-hand side
of a rule occurs at most once in the corresponding right-hand side.

Definition 2 (Putback Transformation in PpL). A putback transformation
18 a total function defined by a set of putback rules.

We can see that putAs in Example 1 is almost a putback transformation in
PDL, except that some arguments of recursive calls are an empty list instead of
a variable. This can be easily resolved by using a look-ahead variable.

Example 2. The following putAs is defined in PDL.

putAs [] [] =[]

putAs (ssQ[]) (v:wvs) = A v:putds ss vs

putAs (A a: ss) (vsQ[]) = putAs ss vs

putAs (A a:ss) (v:vs) = A v:putAs ss vs

putAs (B b: ss) vs = B b: putAs ss vs 0

Let us demonstrate with more examples that PDL is powerful enough to de-
scribe various putback transformations (functions).

Ezample 3 (Fully Updating). The simplest putback function uses the view to
fully update the original source, or in other words, to fully embed the view to
the source. This can be defined in PDL as follows.

updAll s v="v O

Ezample 4 (Updating Component). We may use the view to update the first or
second component of a source pair, or say, to embed the view to first or second
component of a source pair:

updF'st (Pair y) v = Pair vy
updSnd (Pair © y) v = Pair z v O

Ezample 5 (Updating Data Structure). We may use the view to update the last
element of a non-empty source list?:

updLast [s] v = [v]
updLast (s : ss) v = s: updLast ss v

For this particular example, we consider the type of non-empty lists because
otherwise updLast would not be total, since there is no rule for putting a view
element back into an empty source list. (Il

2 A non-empty list type can be defined as AT = Wrap A | NeCons A A, but for
simplicity we abuse the notation and write our example using regular lists.

8 Z. Hu, H. Pacheco, and S. Fischer

Two remarks are worth making. First, all putback rules in PDL should meet
the syntactic constraints as discussed before; those that do not satisfy these
constraints are not considered to be a putback rule. For instance, the following
rule is not a putback rule, because s appears twice in the right hand side.

putSyntacBad s v = putSyntacBad s s

Second, a putback transformation defined in PDL may not be valid. For instance,
the putback transformation defined by

putInvalid s v = s

which completely ignores the view v. The function putInvalid is invalid in the
sense there is no actual get function that can be paired with it to form a valid
BX. In this paper we will show that the validity of any putback transformation
in PDL can be automatically checked.

3.2 Properties of Putback Transformations in PDL

Putback transformation in PDL enjoy two features, which will play an important
role in our later validity checking.

First, some equational properties on PDL putback transformations can be
automatically proved by induction. This is because putback transformations are
structured in a way such that any recursive call is applied to sub-components
of the input. In fact, such structural and total recursive functions fall in the
category where validity of a specific class of equations is decidable [11]. More
specifically, the following lemma holds.

Lemma 2 (Validity of Equational Properties). Let put be a putback trans-
formation. Validity of any equational property in the following form

put €1 e2 =p
is decidable, where ey and ey are two expressions and p is a pattern.

Note that the equational property that can be dealt with by the above lemma
requires its right hand side to be a simple pattern, this is, a constructor term
without (recursive) function calls.

Second, PDL putback transformations are closed under composition. This fol-
lows from the known fact that compositions of functions in treeless form are
again functions in treeless form [28] and these function can be automatically
derived. Usually, treeless functions are defined in a more general form:

I'pi...pn=c¢

where a function can have an arbitrary number of inputs. So, a putback trans-
formation in PDL is a special case which has two predefined (source and view)
inputs. The following lemma can be easily obtained, and will be used later.

Validity Checking of Putback Transformations in Bidirectional Programming 9

Lemma 3 (Putback Transformation Fusion). Let put be a putback trans-
formation and f be a one-input treeless function. Then a new putback transfor-
mation put’ can be automatically derived from the following definition.

put’ s v=rput s (f v)

4 Validity Checking

Given a put function in PDL, we will now give an algorithm to check whether
it is valid. According to Theorem 1, we need to check two conditions: view
determination of put and source stability of put. Additionally, we need to check
that put is a total function, what in PDL can be easily done by checking the
exhaustiveness of the patterns for all the rules. To simplify our presentation, we
will consider putback transformations that are single recursive functions.

4.1 View Determination Checking

First, let us see how to check injectivity of put s. Notice that FV(p,) C FV(e) is
a necessary condition, where FV(e) denotes a set of free variables in expression
e. This is because if there is a view pattern variable v that does not appear in e,
then we can construct two different views, say v; and vy, such that they match
py but differ in the part of the code matching v and satisfy put s v1 = put s vy
for any s matching ps. For instance, the following view embedding rule

putNolnj (A s)v=A4s

will make putNolnj non-injective because, for any two views v; and vy, we have
putNoInj (A s) vy = putNolnj (A s) va =A s

In fact, the above necessary condition is also a sufficient condition. Following
[21], we can prove the following stronger lemma.

Lemma 4 (Injectivity Checking). Let put be a putback transformation in
PpL. Then put s is injective, for any s, if and only if FV(p,) C FV(e) holds
for any putback rule put ps p, = e.

However, proving that put s is injective, for any s, is not sufficient to guarantee
that put satisfies view determination. For example, consider a putback function
that sums two natural numbers:

bad Z v =
bad (S s) v= 2.8 (bad s v)

Even though bad s is injective, we can easily find a counter-example showing
that bad is not view deterministic:

bad Z (S Z) =S Z
bad (S 2) Z =8 Z

10 Z. Hu, H. Pacheco, and S. Fischer

where different views S Z and Z lead to the same source S Z. In fact, there is
no (functional) left inverse get such that get (bad s v) = v.

This requires finding a more general method to check the view determination
property. Let us first take a closer look at the view determination property:

Vs s vv.putsv =puts v = v =1

Since put must map different views to different sources, this property is equiva-
lent to stating that the inverse mapping from the result of putback to the input
view is be functional (or single-valued), i.e., a relation that returns at most one
view for each source. This hints us to divide the checking problem into two steps
for a given putback transformation put: (1) deriving such an inverse mapping,
say Rput, and (2) checking that R, is single-valued.

Deriving Inverse Mapping from put

Consider a putback transformation put defined by a set of putback rules, ignoring
rules in the form:

put ps py = put Pl py

for which view determination trivially holds. Now the inverse mapping R from
the result of put to its input view can be defined by inverting the remaining
putback rules put ps p, = e, i.e.,

Rput e=p, iff put p,p, =e

Example 6. As a concrete example, recall the putAs function from Example 2.
We can automatically derive the following “relation” Rpyias.

putAs H = H
putAs (A v:putAs ss vs) = v:vs
putAs (putAs ss vs) =0:vs
Rputas (B b: putAs ss vs) = vs

It covers all the putback rules except for the rule putAs (A a: ss) (vs as []) =
putAs ss vs. O

The above derived R,,; would be a bit unusual, in that put could appear on
the left-hand side. In fact, each equation can be normalized into the form:

Rput p=e

where p is a pattern and e is an expression as in PDL. The idea is to eliminate
recursive calls put z; x, by introducing a new pattern variable 2/, = put x5 x,
(and thus Ry o, = x), and replacing put x5 z, by «/, in the left-hand side and
Zy by Rpue @ in the right-hand side of the equation.

Validity Checking of Putback Transformations in Bidirectional Programming 11

Ezample 7. After normalization, we can transform the Rp,:as from Example 6
into the following.

putAs H = H

putAs (Av:ss’) =v: Rpuas ss'
putAs (Av:ss’) =v: Rpuas ss'
putAs (B b: 33/) = RputAs ss'

After removing duplicated rules, we get the following final Rpyias.

RputAs H = H
Rputas (Av:ss’) =v: Rpuras s8'
Rputas (B b:ss’) = Rpyras ss' 0

Checking Single-Valuedness of the Mapping

First, it is easy to show that the derived R can always be translated into a (finite
state) top-down tree transducer [26] where each rule has the form Ry, p = e
and all free variables in e are those in p and appear exactly once. This conclusion
relies on the assumption that view variables are used exactly once in the right
side of putback rules, as implied by the affinity syntactic constraint and the
necessary injectivity of put s.

Note that, in general, R,,; may not be a function, by containing overlapping
patterns that may return different view values for the same source. For instance,
our inversion algorithm will produce the following non-deterministic relation for
the putback definition of bad:

Rbad n =N
Rpad (S n) = Rpaa n

where Rpqq (S 0) = S 0 from the first equation, and Rpaq (S n) = 0 from the
second equation (followed by the first equation).

If the derived Ry,; returns at most one view value for every source value,
then it corresponds directly (modulo removal of possibly overlapping but similar
patterns) to a get in a treeless function similar to PpL. This is equivalent to
stating that the corresponding tree transducer is single-valued, a problem that
is fortunately known to be decidable in polynomial time [26].

Lemma 5 (Single-valuedness of get). It is decidable if the relation Ry de-
rived from a putback function put in PDL is a function.

4.2 Source Stability Checking

With the Ry, relation derived in the previous section in hand, checking source
stability of a putback function put amounts to proving that, for any source s,
the GETPUT property holds:

put s (Rpur 8) = s

12 Z. Hu, H. Pacheco, and S. Fischer

Algorithm: Validity Checking of Putback Transformation
Input: A program P = (R, F,C,X) for putback definitions in PDL.

Procedure:

check the syntactic constraints for each rule r in R;
{* check totality: *}
check pattern exhaustiveness for each putback definition in R;

for each f ps p, =e € R do
begin
{* check view determination: *}
check injectivity: FV(p,) C FV(e);
derive and normalize Ry;
check view determination: Ry is single-valued;
{* check source stability: *}
define pr s v = f s (Ry v);
fusion pr s v = f s (Ry v) to be a new putback transformation;
check property pr s s = s inductively;
end;
return True if all the checks are passed, and False otherwise.

Fig. 2. Validity Checking Algorithm

Note that GETPUT implies in particular SOURCESTABILITY. Above that, at this
point we only know that R,,; is functional, but not that it constitutes a valid
get function, i.e., that it is totally defined for all sources. This single proof also
gives us that result.
The proof can be conducted as follows. First, we introduce a new (partial)
function pr defined as:
prxy=put z (Rpu y)

Since Ryt is in the treeless form, it follows from Lemma 3 that pr is a putback
transformation in PDL. Now by Lemma 2, we know that pr s s = s is inductively
provable. That is, put s (Rput) = s is inductively provable, which is what we
want.

Lemma 6 (Source Stability Checking). Let put be a putback function in
PDL and Rpy: be a treeless function. Then it is decidable if put is source stable.

4.3 Checking Algorithm

Figure 2 summarizes our checking algorithm. The input is a program defining a
set of putback definitions F using a set of rules R with a set of data constructors
C and a set of variables C. The checking algorithm will return True if all the
putback definitions are valid, and return False otherwise.

Validity Checking of Putback Transformations in Bidirectional Programming 13

Theorem 2 (Soundness and Completeness). The putback checking algo-
rithm is sound, in that if putback functions pass the check then they are valid,
and complete, in that there are no putback functions defined in PDL that are
valid but do not pass the check.

Proof. Tt directly follows from Lemmas 4 and 6. |

5 Related Work

The pioneering work of Foster et al. [10] proposes one of the first bidirectional
programming languages for defining views of tree-structured data. They recast
many of the ideas for database view-updating [1,7] into the design of a language
of lenses, consisting of a get and a put function that satisfy well-behavedness
laws. The novelty of their work is by putting emphasis on types and totality
of lens transformations, and by proposing a series of combinators that allow
reasoning about totality and well-behavedness of lenses in a compositional way.
The kinds of BXs studied in our paper are precisely total well-behaved lenses.

After that, many bidirectional languages have been proposed. Bohannon et
al. [4] propose a language of lenses for relational data built using standard SPJ
relational algebra combinators and composition. Bohannon et al. [3] design a
language for the BX of string data, built using a set of regular operations and a
type system of regular expressions. Matching lenses [2] generalize the string lens
language by lifting the update strategy from a key-based matching to support
a set of different alignment heuristics that can be chosen by users. Pacheco and
Cunha [23] propose a point-free functional language of total well-behaved lenses,
using a simple positional update strategy, and later [24] they extend the match-
ing lenses approach to infer and propagate insertion and deletion updates over
arbitrary views defined in such point-free language. Hidaka et al. [13] propose
the first linguistic approach for bidirectional graph transformations, by giving a
bidirectional semantics to the UnCal graph algebra. All the above existing bidi-
rectional programing approaches based on lenses focus on writing bidirectional
programs that resemble the get function, and possibly take some additional pa-
rameters that provide limited control over the put function.

Since these get-based languages are often state-based, they must align the
updated view and the original source structures to identify the modifications on
the view and translate them to the source accordingly. Although for unordered
data (relations, graphs) such alignment can be done rather straightforwardly,
for ordered data (strings, trees) it is more problematic to find a reasonable
alignment strategy, and thus to provide a reasonable view update translation
strategy. Our results open the way towards put programming languages, that
in theory could give the programmer the possibility to express all well-behaved
update translation strategies (for a given class of get functions).

In his PhD thesis, Foster [9] discusses a characterization of lenses in terms
of put functions. However, he does so only to plead for a forward programming
style and does not pursue a putback programming style. In [8], we independently

14 Z. Hu, H. Pacheco, and S. Fischer

review classes of lenses solely in terms of their putback functions, rephrasing ex-
isting laws in terms of simple mathematical concepts. We use the built-in search
facilities of the functional-logic programming language Curry to obtain the get
function corresponding to a user-defined put function. Furthermore, in [25], a
monadic combinator library for supporting putback style bidirectional program-
ming is proposed. None of them considers mechanisms to ensure the validity of
user-defined put functions and especially totality of the transformations. In the
current paper, we explore the putback style to demonstrate that it can be ad-
vantageous and viable in practice, and illustrate a possible way to specify valid
(total) put functions and correctly derive (total) get functions.

6 Conclusions and Future Work

In this paper, we have proposed a novel linguistic framework for supporting a
putback-based approach to bidirectional programming: a new language has been
designed for specifying primitive putback transformations, an automatic algo-
rithm has been given to statically check whether a put is valid, and a derivation
algorithm has been provided to construct an efficient get from a valid put. Our
new framework retains the advantages of writing a single program to specify a
BX but, in sharp contrast to get-based bidirectional programming, allows pro-
grammers to describe their intended put update strategies in a direct, predictable
and, most importantly, unambiguous way.

The natural direction for future work is to consider extensions to PDL to sup-
port a larger class of BXs, while retaining the soundness and completeness of the
validity checking algorithms. It remains open to prove results about the com-
pleteness (in terms of expressiveness) of (practical) putback-based programming,
i.e., identifying classes of get functions for which concrete putback definition lan-
guages can specify all valid put functions.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557-575 (1981)

2. Barbosa, D.M.J., Cretin, J., Foster, J.N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: ICFP 2010, pp. 193-204. ACM (2010)

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: POPL 2008, pp. 407-419. ACM (2008)

4. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: PODS 2006, pp. 338-347. ACM (2006)

5. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Transactions on Database Sys-
tems 33(4) (2008)

6. Czarnecki, K., Foster, J.N., Hu, Z., Lammel, R., Schiirr, A., Terwilliger, J.: Bidi-
rectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260-283. Springer, Heidelberg (2009)

7. Dayal, U., Bernstein, P.: On the correct translation of update operations on rela-
tional views. ACM Transactions on Database Systems 7, 381-416 (1982)

Validity Checking of Putback Transformations in Bidirectional Programming 15

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Fischer, S., Hu, Z., Pacheco, H.: “Putback” is the Essence of Bidirectional Pro-
gramming. GRACE Technical Report 2012-08, National Institute of Informatics,
36 p. (2012)

Foster, J.: Bidirectional Programming Languages. Ph.D. thesis, University of Penn-
sylvania (December 2009)

Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
2007)

(Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469-484. Springer,
Heidelberg (2001)

Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486-524 (1988)

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: ICFP 2010, pp. 205-216. ACM (2010)

Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011,
pp. 371-384. ACM (2011)

Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL 2012, pp. 495-508.
ACM (2012)

Hu, Z., Schiirr, A., Stevens, P., Terwilliger, J.F.: Dagstuhl Seminar on Bidirectional
Transformations (BX). SIGMOD Record 40(1), 35-39 (2011)

Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89-118 (2008)

Hutton, G.: Programming in Haskell. Cambridge University Press (2007)
Kiihnemann, A.: Comparison of deforestation techniques for functional programs
and for tree transducers. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS,
vol. 1722, pp. 114-130. Springer, Heidelberg (1999)

Lammel, R.: Coupled Software Transformations (Extended Abstract). In: SETS
2004 (2004)

Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007, pp. 47-58. ACM (2007)

Meertens, L.: Designing constraint maintainers for user interaction (1998),
manuscript available at, http://www.kestrel.edu/home/people/meertens
Pacheco, H., Cunha, A.: Generic point-free lenses. In: Bolduc, C., Desharnais, J.,
Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 331-352. Springer, Heidelberg (2010)
Pacheco, H., Cunha, A., Hu, Z.: Delta lenses over inductive types. In: BX 2012.
Electronic Communications of the EASST, vol. 49 (2012)

Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-
tional programming. In: PEPM 2014, pp. 39-50. ACM (2014)

Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time.
Theor. Comput. Sci. 106(1), 135-181 (1992)

Voigtlander, J.: Bidirectionalization for free! (pearl). In: POPL 2009, pp. 165-176.
ACM (2009)

Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344-358. Springer, Heidelberg (1988)
Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007, pp. 164-173.
ACM (2007)

http://www.kestrel.edu/home/people/meertens

Proof Engineering Considered Essential

Gerwin Klein

NICTA* and UNSW, Sydney, Australia

first-name.last-name@nicta.com.au

Abstract. In this talk, I will give an overview of the various formal
verification projects around the evolving seL.4 microkernel, and discuss
our experience in large scale proof engineering and maintenance.

In particular, the presentation will draw a picture of what these ver-
ifications mean and how they fit together into a whole. Among these
are a number of firsts: the first code-level functional correctness proof of
a general-purpose OS kernel, the first non-interference proof for such a
kernel at the code-level, the first binary-level functional verification of
systems code of this complexity, and the first sound worst-case execution-
time profile for a protected-mode operating system kernel.

Taken together, these projects produced proof artefacts on the order
of 400,000 lines of Isabelle/HOL proof scripts. This order of magnitude
brings engineering aspects to proofs that we so far mostly associate with
software and code. In the second part of the talk, I will report on our
experience in proof engineering methods and tools, and pose a number
of research questions that we think will be important to solve for the
wider scale practical application of such formal methods in industry.

1 The sell4 Verification

This extended abstract contains a brief summary of the sel.4 verification and
proof engineering aspects. A more extensive in-depth overview has appeared
previously [13].

The seL4 kernel is a 3rd generation microkernel in the L4 family [17]. The
purpose of such microkernels is to form the core of the trusted computing base
of any larger-scale system on top. They provide basic operating system (OS)
mechanisms such as virtual memory, synchronous and asynchronous messages,
interrupt handling, and in the case of seL.4, capability-based access control. The
idea is that, using these mechanisms, one can isolate software components in
time and space from each other, and therefore not only enable verification of such
components in isolation and in higher-level programming models, but even forego
the formal verification of entire components in a system altogether, and focus
on a small number of trusted critical components instead, without sacrificing
assurance in the critical properties of the overall system [3]. This general idea
is not new. For instance, it can be found for simpler separation kernels in the

* NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 16-21, 2014.
© Springer International Publishing Switzerland 2014

Proof Engineering Considered Essential 17

MILS setting [2]. For modern systems, some of the untrusted components will
be an entire monolithic guest OS such as Linux. That is, the microkernel is used
not only for separation, but also as a full virtualisation platform or hypervisor.

This setting provides the motivation for the formal verification of such ker-
nels: they are at the centre of trust for the overall system — if the microkernel
misbehaves, no predictions can be made about the security or safety of the over-
all system running on it. At the same time, microkernels are small: roughly on
the order of 10,000 lines of C code. The sel.4 verification shows that this is now
within reach of full formal code-level verification of functional and non-functional
properties, and with a level of effort that is within a factor of 2-5 of normal high
quality (but not high assurance) software development in this domain. With fur-
ther research in proof engineering, automation, and code and proof synthesis, we
think this factor can be brought down to industrially interesting levels, and in
specific cases, can even be made cheaper than standard software development.

Apart from its scale, two main requirements set the verification of seL.4 apart
from other software verification projects: a) the verification is at the code level
(and more recently even at the binary level), and b) it was a strict requirement of
the project not to sacrifice critical runtime performance for ease of verification.

The second requirement is crucial for the real-world applicability of the result.
Especially in microkernels, context switching and message passing performance
is paramount for the usability of the system, because these will become the most
frequently run operation not just of the kernel, but of the entire system. The mere
idea of the first generation of microkernels has famously been criticised for being
prohibitive for system performance and therefore ultimately unusable [24]. Time
has shown this argument wrong. The second generation of microkernels have
demonstrated context switching and message passing performance on par with
standard procedure calls as used in monolithic kernels [17]. The third generation
has added strong access control to the mix without sacrificing this performance.
Such microkernels now power billions of mobile devices, and therefore arguably
have more widespread application than most (or maybe all) standard monolithic
kernels. All this rests on the performance of a few critical operations of such
kernels, and it is no wonder that the field seems obsessed with these numbers.
Using simplifications, abstractions or verification mechanisms that lead to one
or two orders of magnitude slow-down would be unacceptable.

The first requirement — code-level verification instead of verification on high-
level models or manual abstractions — was important to achieve a higher degree
of assurance in the first place, and later turned out to be indispensable for main-
taining the verification of an evolving code base. The various separate verification
projects around sel.4 took place over a period of almost a decade, but they fully
integrate and provide machine-checked theorems over the same code base (except
the worst-case execution-time (WCET) analysis, which uses different techniques).
Whenever the code or design of the kernel changes, which happens regularly, it is
trivial and automatic to check which parts of the verification break and need to be
updated. This would be next to impossible if there was a manual abstraction step
involved from the artefact the machine runs to the artefact the proof is concerned

18 G. Klein

with. It has often been observed that even light-weight application of formal meth-
ods brings significant benefit early in the life cycle of a project. Our experience
shows that strong benefits can be sustained throughout the much longer mainte-
nance phase of software systems. As I will show in the talk, maintaining proofs
together with code is not without cost, but at least in the area of critical high-
assurance systems changes can now be made with strong confidence, and without
paying the cost of full expensive re-certification.

The talk will describe the current state of the formal verification of the sel.4
kernel, which is conducted almost exclusively in the LCF-style [10] interactive
proof assistant Isabelle/HOL [20]. The exceptions are binary verification, which
uses a mix of Isabelle, HOL4 [23] and automatic SMT solvers, and the WCET
analysis, which uses the Chronos tool, manual proof and model checking for the
elimination of infeasible paths.

In particular, the verification contains the following proofs:

— functional correctness [14] between an abstract higher-order logic specifica-
tion of sel.4 and its C code semantics, including the verification of a high-
performance message-passing code path [13];

— functional correctness between the C code semantics and the binary of the
seL4 kernel after compilation and linking [21], based on the well-validated
Cambridge ARM semantics [7];

— the security property integrity [22], which roughly says that the kernel will
not let user code change data without explicit write permission;

— the security property non-interference [19,18], which includes confidentiality
and together with integrity provides isolation, which implies availability and
spacial separation;

— correct user-level system initialisation on top of the kernel [5], according to
static system descriptions in the capability distribution language capDL [15],
with a formal connection to the security theorems mentioned above [13];

— a sound binary-level WCET profile obtained by static analysis [4], which is
one of the key ingredients to providing temporal isolation.

Verification can never be absolute; it must always make fundamental assump-
tions. In this work we verify the kernel with high-level security properties down
to the binary level, but we still assume correctness of TLB and cache flushing
operations as well as the correctness of machine interface functions implemented
in handwritten assembly. Of course, we also assume hardware correctness. We
give details on the precise assumptions of this verification and how they can be
reduced even further elsewhere [13].

The initial functional correctness verification of seL4 took 12 person years of
work for the proof itself, and another 12-13 person years for developing tools,
libraries, and frameworks. Together, these produced about 200,000 lines of Is-
abelle/HOL proof scripts [14].

The subsequent verification projects on security and system properties on top
of this functional correctness proof were drastically cheaper, for instance less than
8 person months for the proof of integrity, and about 2 person years for the proof
of non-interference [13]. During these subsequent projects, the sel.4 kernel evolved.

Proof Engineering Considered Essential 19

While there were no code-level defects to fix in the verified code base, changes in-
cluded performance improvements, API simplifications, additional features, and
occasional fixes to parts of the non-verified code base of sel.4, such as the initiali-
sation and assembly portions of the kernel. Some of these changes were motivated
by security proofs, for instance to simplify them, or to add a scheduler with sep-
aration properties. Other changes were motivated by applications the group was
building on top of the kernel, such as a high-performance data base [11].

This additional work increased the overall proof size to roughly 400,000 lines
of Isabelle proof script. Other projects of similar order of magnitude include the
verified compiler CompCert [16], the Verisoft project [1] that addressed a whole
system stack, and the four colour theorem [8,9].

While projects of this size clearly are not yet mainstream, and may not become
mainstream for academia, we should expect an increase in scale from academic to in-
dustrial proofs similar to the increase in scale from academic to industrial software
projects. There is little research on managing proofs and formal verification on this
scale, even though we can expect verification artefacts to be one or two orders of
magnitude larger than the corresponding code artefacts. Of course, we are not the
first to recognise the issue of scale for proofs. All of the other large scale verification
projects above make note of it, as did previous hardware verifications [12].

We define a large scale proof as one that no single person can fully understand
in detail at any one time. Only collaboration and tool support make it possible
to conduct and check such proofs with confidence.

Many of the issues faced in such verification projects are similar to those in
software engineering: there is the matter of merely browsing, understanding, and
finding intermediate facts in a large code or proof base; there are dependencies
between lemmas, definitions, theories, and other proof artefacts that are similar
to dependencies between classes, objects, modules, and functions; there is the
issue of refactoring existing proofs either for better maintainability or readability,
or even for more generality and additional purposes; and there are questions of
architecture, design, and modularity in proofs as well as code. Some of the proof
structure often mirrors the corresponding code structure, other parts do not
necessarily have to do so. For large scale proofs, we also see issues of project
management, cost and effort estimation, and team communication. These again
have similarities with software engineering, but also have their unique challenges.

Based on our experience in the verification projects mentioned above, the
following research questions would be interesting and beneficial to solve.

1. What are the fundamental differences and similarities between proof engi-
neering and software engineering?

2. Can we estimate time and effort for a specific proof up front, and with
which confidence? Related questions are: can we predict the size of the proof
artefacts a project will produce? Are they related to effort? Can we predict
the complexity or difficulty of a proof given artefacts that are available early
in the project life cycle, such as initial specifications and/or code prototypes?

3. Which technical tools known from traditional software development could
make an even higher impact on proof engineering? Emerging prover IDEs [25]

20

G. Klein

for instance can provide more semantic information than typical program-
ming IDEs, and refactoring tools can be more aggressive than their code
counterparts because the result is easily checked.

. Are there more fundamental ways in which proof irrelevance, formal abstrac-

tion, and modularity can be exploited for the management of large scale proofs?

. Can concepts such as code complexity or technical debt be transferred to

proofs in a useful way?

. Are there fundamental aspects of proof library design that are different to soft-

ware libraries? What are the proof and specification patterns?

. Empirical software engineering has identified a number of “laws” that sta-

tistically apply to the development of large software projects [6]. Which of
these continue to hold for proofs? Are there new specific correlations that
hold for large scale proofs?

Some of these questions do already receive some attention, but not yet to the

degree required for making significant broader progress in this area.

This is clearly just a subjective subset of research question in this space. As

software engineering has done for code development, we think that addressing
such questions for large scale proofs will have a positive impact not only on
the industrial feasibility of large verification projects, but also on the everyday
development of smaller proofs.

References

10.

. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., Tsyban,

A.: Balancing the load — leveraging a semantics stack for systems verification.
JAR: Special Issue Operat. Syst. Verification 42(2-4), 389-454 (2009)

. Alves-Foss, J., Oman, P.W., Taylor, C., Harrison, S.: The MILS architecture for

high-assurance embedded systems. Int. J. Emb. Syst. 2, 239-247 (2006)

. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the

presence of large untrusted components. In: Klein, G., Huuck, R., Schlich, B. (eds.)
5th SSV, Vancouver, Canada, USENIX (October 2010)

. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Timing

analysis of a protected operating system kernel. In: 32nd RTSS, Vienna, Austria,
pp. 339-348 (November 2011)

. Boyton, A., et al.: Formally verified system initialisation. In: Groves, L., Sun, J.

(eds.) ICFEM 2013. LNCS, vol. 8144, pp. 70-85. Springer, Heidelberg (2013)

. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering: Em-

pirical Observations, Laws and Theories. Pearson, Addison Wesley (2003)

. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-

struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243-258. Springer, Heidelberg (2010)

. Gonthier, G.: A computer-checked proof of the four colour theorem (2005),

http://research.microsoft.com/en-us/people/gonthier/4colproof . pdf

. Gonthier, G.: Formal proof — the four-color theorem. Notices of the American

Mathematical Society 55(11), 1382-1393 (2008)
Gordon, M.J.,; Milner, R.. Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Proof Engineering Considered Essential 21

Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.I., Alonso, G.:
RapiLog: Reducing system complexity through verification. In: EuroSys, Prague,
Czech Republic, pp. 323-336 (April 2013)

Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification
of pentium® 4 floating-point divider. In: Margaria, T., Melham, T.F. (eds.)
CHARME 2001. LNCS, vol. 2144, pp. 196-211. Springer, Heidelberg (2001)
Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems (TOCS) 32(1), 2:1-2:70 (2014)

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: sel4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT,
USA, pp. 207-220. ACM (October 2009)

Kuz, 1., Klein, G., Lewis, C., Walker, A.: capDL: A language for describing capability-
based systems. In: 1st APSys, New Delhi, India, pp. 31-36 (August 2010)

Leroy, X.: Formal certification of a compiler back-end, or: Programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) 33rd POPL,
Charleston, SC, USA, pp. 42-54. ACM (2006)

Liedtke, J.: Towards real microkernels. CACM 39(9), 70-77 (1996)

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: IEEE Symp. Security & Privacy, San Francisco, CA, pp. 415429
(May 2013)

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS,
vol. 7679, pp. 126-142. Springer, Heidelberg (2012)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, Seattle, Washington, USA, pp. 471-481. ACM (June 2013)

Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL.4
enforces integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325-340. Springer, Heidelberg (2011)

Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Munoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28-32. Springer, Heidelberg
(2008)

Tannenbaum, A., Torwalds, L.: LINUX is obsolete. Discussion on comp.os.minix
(1992), https://groups.google.com/forum/#!topic/comp.os.minix/wlhwl6QWltI
Wenzel, M.: Isabelle/jEdit - a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 468-471. Springer, Heidelberg (2012)

https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI

Engineering UToPiA

Formal Semantics for CML

Jim Woodcock

Department of Computer Science
University of York
jim.woodcock@york.ac.uk

Abstract. We describe the semantic domains for Compass Modelling
Language (CML), using Hoare & He’s Unifying Theories of Program-
ming (UTP). CML has been designed to specify, design, compose, sim-
ulate, verify, test, and validate industrial systems of systems. CML is
a semantically heterogeneous language, with state-rich imperative con-
structs based on VDM, communication and concurrency based on CSP,
object orientation with object references, and discrete time based on
Timed CSP. A key objective is to be semantically open, allowing further
paradigms to be added, such as process mobility, continuous physical
models, and stochastic processes. Our semantics deals separately with
each paradigm, composing them with Galois connections, leading to a
natural contract language for all constructs in all paradigms. The result
is a compositional formal definition of a complex language, with the indi-
vidual parts being available for reuse in other language definitions. The
work backs our claim that use of UTP scales up to industrial-strength
languages: Unifying Theories of Programming in Action (UToPiA).

1 Introduction

The COMPASS Modelling Language (CML) is a new language, developed for the
modelling and analysis of systems of systems (SoS), which are typically large-
scale systems composed of independent constituent systems [27]. The COMPASS
project is described in detail at http://www.compass-research.eu/. CML is
based on a combination of VDM [11], CSP [22], and Circus [26,17,18,10|. Broadly
speaking, a CML model consists of a collection of types, functions, channels and
processes. Each process encapsulates a state and operations in the style of VDM
and interacts with the environment via synchronous communications in the style
of CSP. The main elements of the basic CML language with state, concurrency,
and timing are described in Table 1. Additionally, CML is object oriented.

We start in Sect. 2 with a description of UTP and its theory of alphabetised re-
lations. We give a practical illustration of UTP in Sect. 3 with a novel description
of separation logic in UTP, which forms the theory of object references in CML.
In Sect. 4, we describe the theories used in the semantics of CML and explain
how informally they fit together. The underpinnings of the formal explanation
are given in Sect. 5, where we introduce a meta-theory of Galois connections.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 22-41, 2014.
© Springer International Publishing Switzerland 2014

http://www.compass-research.eu/

Engineering UToPiA 23

Table 1. The CML language

deadlock STOP termination SKIP
divergence CHAOS miracle MIRACLE
assignment (v := e) specification statement w : [pre, post |
simple prefix a — SKIP prefixed action a — P
guarded action [g] & P sequential composition P ; Q
internal choice P 1M @ external choice P O @
parallel composition P ||_. @ interleaving P ||| Q
abstraction P\ A recursion p X e P(X)
wait Wait(n) timeout P 1> Q
untimed timeout P > Q interrupt P A\ Q
timed interrupt P A Q starts by P startsby(n)
ends by P endsby(n) while b * P

Sects 6-8 build progressively on top of the basic theory of relations: imperative
designs, reactive processes, and timed reactive processes. Each theory is linked
back to its predecessor using a Galois connection.

The main contribution of this paper is to present a semantics of CML. Our
style provides a natural contract language for all language constructs, including
nonterminating reactive processes. The result is a compositional formal definition
of a complex language, with individual parts being available for reuse. Our work
shows that the use of UTP scales up to industrial-strength languages.

2 Unifying Theories of Programming

UTP [9] sets out a long-term research agenda summarised as follows. Researchers
propose programming theories and practitioners use pragmatic programming
paradigms; what is the relationship between them? UTP, based on predicative
programming [8], gives three principal ways to study such relationships: (i) by
computational paradigm, identifying common concepts; (ii) by level of abstraction,
from requirements, through architectures and components, to platform-specific
implementation technology; and (iii) by method of presentation—denotational,
algebraic, and operational semantics and their mutual embeddings.

UTP presents a theoretical foundation for understanding software and systems
engineering. It has been already been exploited in areas such as component-based
systems [29], hardware [19,30], and hardware/software co-design [3], but UTP
can also be used in a more active way as a domain-specific language for construct-
ing domain-specific languages, especially ones with heterogeneous semantics. An
example is the semantics for Safety-Critical Java [6,5]. The analogy is of a theory
supermarket, where you shop for exactly those features you need, while being
confident that the theories plug-and-play together.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in the Z
notation [28]. Each programming construct is formalised as a relation between an
initial and an intermediate or final observation. The collection of these relations

24 J. Woodcock

forms a theory of a paradigm, which contains three essential parts: an alphabet,
a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied. Names are chosen for any relevant external observations
of behaviour. For instance, programming variables z, y, and z would be part
of the alphabet. Theories for particular programming paradigms require the
observation of extra information; some examples are: a flag that says whether
the program has started (ok); the current time (clock); the number of available
resources (res); a trace of the events in the life of the program (ir); a set of
refused events (ref), or a flag that says whether the program is waiting for
interaction with its environment (wait). The signature gives syntactic rules for
denoting objects of the theory. Healthiness conditions identify properties that
characterise the theory, which can often be expressed in terms of a function ¢ that
makes a program healthy. There is no point in applying ¢ twice, since we cannot
make a healthy program even healthier, so ¢ must be idempotent: P = ¢(P).
The fixed-points of this equation are then the healthy predicates.

An alphabetised predicate (P, @, ..., true) is an alphabet-predicate pair, such
that the predicate’s free variables are all members of the alphabet. Relations
are predicates in which the alphabet comprises plain variables (z, y, z, ...)
and dashed variables (2, o/, ...); the former represent initial observations,
and the latter, intermediate or final observations. The alphabet of P is denoted
aP, and may be divided into its before-variables (inaP) and its after-variables
(outaP). A homogeneous relation has outaP = inaP’, where inaP’ is the set
of variables obtained by dashing all variables in the alphabet inaP. A condition
(b, c,d,...,true) has an empty output alphabet. Standard predicate calculus op-
erators are used to combine alphabetised predicates, but their definitions must
specify the alphabet of the combined predicate. For instance, the alphabet of a
conjunction is the union of the alphabets of its components.

A distinguishing feature of UTP is its concern with program correctness, which
is the same in every paradigm in [9]: in every state, the behaviour of an implemen-
tation implies its specification. Suppose aP = {a, b, a’,b'}, then the universal
closure of P is simply Va, b, a’, b’ e P, denoted [P]. Program correctness for
P with respect to specification S is denoted S C P (S is refined by P), and is
defined as: SC P iff [P = S].

UTP has an infix syntax for the conditional, P <1b[> @, and it is defined
(bAP)V (mbAQ),if ab C aP = aQ. Sequence is modelled as rela-
tional composition: two relations may be composed, providing that the alpha-
bets match: P(v') ; Q(v) = Juy ® P(w) A Q(w), if outaP = ina@’ = {v'}.
If A={zy,...,2} and e C A, the assignment z :=4 e of expression e to
variable z changes only z’s value: 2 :=4 ¢ = (¢'=eAy =y A--- N2 =2).
There is a degenerate form of assignment that changes no variable, called “skip”:
Iy = (v =v),if A={v}. Nondeterminism can arise in one of two ways: ei-
ther as the result of run-time factors, such as distributed processing; or as the
under-specification of implementation choices. Either way, nondeterminism is
modelled by choice; the semantics is simply disjunction: P11 Q = PV Q.

Engineering UToPiA 25

Variable blocks are split into the commands var z, which declares and intro-
duces z in scope, and end x, which removes z from scope. In the definitions, A
is an alphabet containing z and z’.

varz = (JxeIly) endy = (Jz' eIl ,)

The relation var x is not homogeneous, since it does not include z in its alphabet,
but it does include z’; similarly, end x includes z, but not z’.

The set of alphabetised predicates with a particular alphabet A forms a com-
plete lattice under the refinement ordering (which is a partial order). The bottom
element is denoted 1 ,, and is the weakest predicate true; this is the program
that aborts, and behaves quite arbitrarily. The top element is denoted T4, and
is the strongest predicate false; this is the program that performs miracles and
implements every specification. Since alphabetised relations form a complete lat-
tice, every construction defined solely using monotonic operators has a complete
lattice of fixed points. The weakest fixed-point of the function F' is denoted by
w F'| and is simply the greatest lower bound (the weakest) of all the fixed-points
of F. This is defined: pF = [1{ X | F(X) C X }. The strongest fixed-point
vF is the dual of the weakest fixed-point.

3 Separation Logic in UTP

We present separation logic as an example of a programming theory in UTP.
Separation logic was originally conceived as an extension of Hoare logic for rea-
soning about programs that use pointers [16,21], although it is also applicable
to reasoning about the ownership of resources and about virtual separation be-
tween parallel programs with shared state. To understand the problem being
addressed, consider the assignment rule in Hoare logic.

{ple/z]} z:=e{p}

We use this rule to calculate the precondition for z := 10 to achieve a postcon-
dition z =10 Ay =0 as (z = 10 A y = 0)[10/z], which is simply y = 0.

Now suppose that z is a reference variable denoting an address in memory,
not a simple value. Let the expression [z] be the value obtained by dereferencing
x; that is, by looking up the address and reading its contents, which could be
a constant, another address, or a record combining a mixture of both. Refer-
ence variables are created on the heap, which is memory set aside for dynamic
allocation. Two reference variables can be aliases for the same address, so that
modifying the value addressed by a reference variable will implicitly modify the
values associated with all aliases, and this may be surprising. As a result, aliasing
makes it particularly difficult to understand, analyse, and optimise programs.

Consider the assignment [z] := 10 and the postcondition [z] = 10 A [y] = 0.
We calculate the precondition ([z] = 10 A [y] = 0)[10/[z]], which simplifies to
[y] = 0. So the before-value of [z] is unimportant and the before-value of [y]
must be 0; providing the latter holds, the assignment makes the postcondition

26 J. Woodcock

true; but what if x and y point to the same address? Afterwards, this address
must be both 10 and 0; this can mean only that the standard rule for assignment
is unsound in the presence of aliasing. The problem can be fixed in an ad hoc
way by adding the precondition that there is no aliasing.

Separation logic is specifically designed to overcome this problem. We show
how to give a semantics in UTP to separation logic and its characteristic frame
rule that allows compositional reasoning about reference variables and the heap.
In UTP, we avoid using an environment to describe the current state of a pro-
gram; instead, we identify a program variable with its meaning as a mathematical
variable. We extend this by adding an observation variable to represent the heap.
Instead of talking about memory addresses, we abstract a little and discuss ob-
ject identifiers and field names. For example, if we have an object type with two
fields int and next, then an observation of our heap could be the function:

{(01,int) — 3, (02, int) — 4, (03, int) > 2,
(01, next) — o0g, (02, next) — os, (03, next) — null}

If our reference variable z has the object identifier 0, as its reference, then
this heap describes a linked list that represents the sequence (3,4,2). In what
follows, we treat the object identifier and field name pair as though it were
simply an object identifier. Let Obj be the set of object identifiers and Val be
the set of values (constants or object identifiers, or the special null value); then
hp : Obj - Val represents the state of the heap. Heap predicates constrain hp;
they do not make sense unless all their reference variables are defined to be on
the heap. We formalise this as a healthiness condition. Let fv(P) be the set of
free program variables mentioned in P.

Definition 1 (Heap predicate SL1). P is a healthy heap predicate providing
it is a fixed point of the function: SLI(P) = P A fv(P) C dom hp. SL1-healthy
predicates are called simply “heap predicates”. O

Definition 2 (Compatible join). Define the compatible join of two heaps as:
hp@(hl,hz) = domh1ﬂdomh2:®/\hp:hluh2. O

The key operator in separation logic is the separating conjunction. In its defini-
tion, we use the shorthand: p;, = p[h/hp]; later, we also use Q} = Q[h, b’ /hp, hp'].

Definition 3 (Separating conjunction). The binary operator x (pronounced
“star” or “separating conjunction”) asserts that the heap can be split into two
disjoint parts where its two arguments hold, respectively.

pxqg = Jhy,hy @ hp & (hy, he) A ppy A qny |
We introduce a healthiness condition on relations on heaps.

Definition 4 (Frame property SL2). Suppose that the heap can be partitioned
into subheaps hy and hy and that all of Q’s reference variables are on the hy

Engineering UToPiA 27

subheap: hp @ (hi,ha) A fu(Zﬁl) C domhy. Then Q is independent of the
heaplet hy if it is a fixed point of the function:
SL2QI) = QI AThj e by’ ® (W,) A Q)

hp
SL2-healthy predicates are said to have the frame property. |

In the standard account of separation logic, the frame property is proved as
a theorem of the operational semantics of the programming language, but we
make it a basic healthiness condition. The set of healthy predicates must then be
shown to be closed under (the denotational semantics of) the program operators.
Frame-property-healthy predicates support modular reasoning in separation
logic. To demonstrate this, we define Hoare triples and prove the frame rule.
First, the notion of refinement in UTP is given in the following definition.

Definition 5 (Refinement). Suppose Q) and P are heap relations; then @ is
a refinement of P, written P T @, providing that every observation of Q) is also
an observation of P. That is, PC Q = [Q = P]. O

Definition 6 (Hoare triple). The correctness of a program @ is a refinement
assertion: {p} Q {r}= (p=1")C Q, providing [p = fv(Q) Cdomhp]. O

Now we are ready for the central result in separation logic, the frame rule,
which is the basis for the logic’s local reasoning technique. This says that if
a program () can execute safely in a local state satisfying p, then it can also
execute in any bigger state satisfying p * s and that its execution will not affect
this additional part of the state, and so s will remain true after execution.

Theorem 1 (Frame Rule)

{p}Q{r} B
{prs} Q{r=s} [fv(Q) Nfv(p) = 0]

Proof: See Fig. 1. |

Separation logic also has a separating implication (*, known as “magic wand”)
that asserts that extending the heap with a disjoint part that satisfies its first
argument results in a heap that satisfies the second argument.

Definition 7. p *q = Vhi,hy ® i ® (hp, ha) A pn, = qn, O
Lemma 1 (Galois)

((p*q) = 7)npun iff p=(q *r) if domhNdomhp =0 O
The heaplet z — v asserts that the heap is a singleton map:
Definition 8 (Heaplet). 2 +— p, v = hp = {z — v} O

In practice, we drop the subscript and write simply z — v. If we do not care
what the value is on the heap, then we write z —

Now we return to verifying the assignment. Here is the rule in separation
Hoare logic for assignment:

28 J. Woodcock

|_

Shys hp' ® (hi, h2), Thy
Fhp' ® (hi, h2) A Ty A Shy

[

, , [H—R]
Shz,hp ® (hlth)vrhi
Fdhi,ho e hp/ ® (hl,hz) N Thy N Shy
R [#-def]
Shz,hp ® (hlth)vrh{
E(r* 8)p,
(rx s)p [=-L, thin-L]

}7‘/ h/
phushz»hp/ ® (hi»hQ)» th?phl A th = Ty
Fo(r*xs hp!

sy -
phushz»hp/ ® (h{»hQ)» thv [php A th = rhp’]
E(r*8)p,
- (v , [Hoare-def]
{php} th {Thp }7ph173h25 hp/ ® (h{a h2)a th

E(r*8)y,
, (rx o) L, B
{phP} ng {Thp }7ph175h273h{ L4 hp/ ® (hi7h2) A th
- (’f' * S)h ’ ’
i ' Qs L]
{php } th {Thp }» hp ® (h, h2)7ph1»5h27 Qh?
E (7% 8)py
» (rx) LA
{prp} Qup {7hp }, 301, he @ hp ® (ha, ha) A pny A Shys @y
E(r* 8)y,
i (xS i [#-def]
{php} th {rhp }a(p*s)hpthg
E(r* 8)y,
(r*)y [V-R, =R, A-L]

{pro} Qi {rnp)
Fl(p*) A ng = (1% 8)npr]
(P} Q1 7o}

F{ s} Qi {(rx) }

[Hoare-def]

Fig. 1. Proof of the frame rule

Engineering UToPiA 29

{e=)x(@—e) xp)fao=c{p}

For our assignment [z] := 10, a suitable postcondition is: z — 10 * y — 0, which
gives us a precondition of

(z—)x((z—10) *(z—10%y—0))

A sufficient condition is that y — 0, which follows directly from Lemma 1.

Further healthiness conditions are needed for a complete treatment of sep-
aration logic; in particular, heaps must be internally consistent for successful
evaluation of heap variables.

4 Linking Paradigms

Currently, CML contains several language paradigms.

1. State-Based Description. The theory of designs provides a nondetermin-
istic programming language with pre- and postcondition specifications as
contracts. The concrete realisation is VDM.

2. Concurrency and Communication. The theory of reactive processes pro-
vides process networks communicating by message passing. The concrete
realisation is CSP,; with its rich collection of process combinators.

3. Object Orientation. This theory is built on designs with state-based de-
scriptions structured by sub-typing, inheritance, and dynamic binding, with
object creation, type testing and casting, and state-component access [4].

4. References. The theory of heap storage and its manipulations supports a
reference semantics based on separation logic described in Sect. 3.

5. Time. The theory of timed traces in UTP supports the observation of events
in discrete time. It is used in a theory of Timed CSP [24].

The semantic domains are each formalised as lattices of relations ordered by
refinement. Mappings exist between the different semantic domains that can
be use to translate a model from one lattice into a corresponding model in
another lattice. For example, the lattice of designs is completely disjoint from
the lattice of reactive processes, but the mapping R maps every design into a
corresponding reactive process. Intuitively, the mapping equips the design with
the crucial properties of a reactive process: that it has a trace variable that
records the history of interactions with its environment and that it can wait
for such interactions. A vital healthiness condition is that this trace increases
monotonically: this ensures that once an event has taken place it cannot be
retracted—even when the process aborts.

But there is another mapping that can undo the effect of R: it is called H,
and it is the function that characterises what it is to be a design. H puts re-
quirements on the use of the observations ok and ok’, and it is the former
that concerns us here. It states that, until the operation has started properly
(ok is true), no observation can be made of the operation’s behaviour. So, if

30 J. Woodcock

the operation’s predecessor has aborted, nothing can be said about any of the
operation’s variables, not even the trace observation variable. This destroys the
requirement of R that says that the trace increases monotonically.

This pair of mappings form a Galois connection [20], and they exist between all
of CML’s semantic domains. One purpose of a Galois connection is to embed one
theory within another, and this is what gives the compositional nature of UTP
and CML, since Galois connections compose to form another Galois connection.
For example, if we establish a Galois connection between reactive processes and
timed reactive processes (see Section 7), then we can compose the connection
between designs and reactive processes with this new Galois connection to form
a connection between designs and timed reactive processes.

This apparently obscure mathematical fact, that there is a Galois connection
between designs and relations, is of great practical value. One of the most impor-
tant features of designs is assertional reasoning, including the use of Hoare logic
and weakest precondition calculus. Assertional reasoning can be incorporated
into the theory of reactive processes by means of R. Consider the Hoare triple
p{ @} r, where p is a precondition, r is a postcondition, and @ is a reactive
process. We can give this the following meaning: (R(p - r’) C @): a refinement
assertion. The specification is R(p F 7’); here the precondition p and the post-
condition 7 have been assembled into a design (note that r becomes a condition
on the after-state; this design is then translated into a reactive process by the
mapping R. This reactive specification must then be implemented correctly by
the reactive process). Thus, reasoning with pre- and postconditions can be
extended from state-based operations to cover all operators of the reactive lan-
guage, including non-terminating processes, concurrency, and communication.

This is the foundation of the contractual approach used in COMPASS: pre-
conditions and postconditions (designs) can be embedded in each of the semantic
domains and this brings uniformity through a familiar reasoning technique [25].

5 Galois Connections

Our fundamental notion is that of a Galois connection on lattices [20], although
much of what we say applies equally to posets.

Ezample 1 (Arithmetic). Consider the following inequation: z + y < z, for
z,y,2 : Z. We can shunt the variable y to the other side without changing
its validity: z < z — y. Writing L(n) = n + y and R(n) = n — y, we summarise
this arithmetic law: L(z) < z iff © < R(z). This law is an example of a shunting
rule that is often useful in manipulating arithmetic expressions. O

Definition 9 (Galois connection). A Galois connection between two lattices
(S,5) and (T,C) is a pair of functions (L, R) with L: S — T (the left adjoint)
and R: T — S (the right adjoint) satisfying, for all X in S and Y in T

LX)JY if X JR(Y)

In much of what follows, the lattices share the same order. a

Engineering UToPiA 31

We depict a Galois connection as a diagram. Suppose that S is a lattice with
order relation J, T is a lattice with order 3, L : S — T, R : T — §,
and that (L, R) is a Galois connection. Then we denote this by the diagram

L
(S,3J)=(T,3). There is an alternative definition of a Galois connection, with
R

L(X) as the strongest element Y with X J R(Y), and R(Y) as the weakest
element X with L(X) J Y, providing that L and R are monotonic. We formalise
this in the following law.

Law 51 (Alternative Galois Connection)

(L, R) is a Galois connection between lattices S and T
Prop. 51.1 L, R monotonic
iff Prop. 51.2 Lo RJdidr
Prop. 51.3 idgs J Ro L

The function L o R is strengthening and the function R o L is weakening. O

Law 52 (Pseudo-inverse). For any Galois connection (L,R), each function is
a pseudo-inverse of the other:

Law 52.1 L=LoRolL
Law 52.2 R=RoLoR O

An interesting specialisation of a Galois connection is when the function L
is surjective; that is, when ran L = T, where T is the set of elements in the
right-hand lattice. As we see below in Law 53, L’s surjectivity is equivalent to
R’s injectivity, which in turn is equivalent to the existence of a left inverse for
R, which turns out to be L itself. This special case is known as a retract (L is
a retraction of R); elsewhere, it is known variously as a Galois injection or a
Galois insertion. If it is R that is surjective, then L will be injective and R will
be its left inverse; this special case is known as a coretract. If both functions are
surjective, then they are also both injective and this very special case is known
as a Galois bijection. Such structures are still of practical interest, such as the
Galois bijection between logarithms and natural exponents.

Definition 10 (Retract and Coretract). For any Galois connection (L, R):

Def 10.1 (L, R) is a retract if Lo R =idr (Galois insertion)
Def 10.2 (L, R) is a coretract if R o L =1idg (Galois injection) O

We are nearly ready to give a collection of useful equivalences about retracts
and coretracts, but first we need one more definition. Recall that if F' is mono-
tonic, then [(P C Q) = (F(P) C F(Q))]. If the implication also holds in the
opposite direction, then F' is an order similarity.

Definition 11 (Order Similarity). ' : S — S is an order similarity if, for
cvery P, Q: 8- (F(P) C F(Q)) = (P C Q). 0

32 J. Woodcock

Another term for a function being monotonic is that is it order preserving; an-

other term for the converse is that the function is order reflecting; the pair of

implications is then termed an order embedding or an order monomorphism.
This now gives us four equivalent ways of characterising a retract.

Law 53 (Retract Property)

(L, R) is a retract

iff (Law 53.1) L is surjective

iff (Law 53.2) R is injective

iff (Law 53.3) R is an order similarity O

Similarly, there are four equivalent ways of characterising a coretract.
Law 54 (Coretract Property)

(R, L) is a coretract

iff (Law 54.1) R is surjective

iff (Law 54.2) L is injective

iff (Law 54.3) L is an order similarity |

There are four more useful properties of Galois connections between complete
lattices. The first two tell us that it is necessary to have only one of the two func-
tions, since the other can be determined uniquely. The second two properties are
about distribution through the lattice operators: L is a complete join-morphism
R is a complete meet-morphism.

Law 55 (Galois Connection Properties). For any Galois connection (L, R)
on complete lattices S and T, we have:

Law 55.1 R uniquely determines L L(P)=[|{ Q€ S|PLC R(Q)}
Law 55.2 L uniquely determines R R(Q)=||[{Pe T|LP)C Q}
Law 55.3 L preserves lubs LUX)=|{LP) | PeX}

Law 55.4 R preserves glbs RMIY)=THR@Q|QeY} O

The last two properties in Law 55 are interesting because they link the lattice
operators involved in a Galois connection. A theory consists of a set of predicates
over a particular alphabet ordered in a lattice that is accompanied by a signature
that describes the operators of the theory. There may be other similar operators
in the signatures of the two theories involved in the Galois connection, and the
links between them can be investigated as morphisms in a similar way to those
for the lattice operators. For example, in the Galois connection between designs
and reactive processes, each theory has an imperative assignment, and we would
expect that them to be related so that (z 1= y) = R(z :=4 y).

The following definition describes the links that might be made by L between
the function symbol F' in the two lattice signatures and by a set of such functions.

Engineering UToPiA 33

Definition 12 (X-morphism)

L is an F-morphism Lo Fg = Fpo L
L is an Fz-morphism Lo Fs T FpoL
L is an F'5-morphism Lo Fg J FpoL
L is a X-morphism L is an F-morphism, for all F in X O

If the Galois connection is a retract, then there is a very precise relationship
between F' in the two lattices and L.

Law 56 (Retract Morphism). If (L, R) is a retract and L is an F-morphism,
then Fg = R o Fp o L. O

A dual property exists for a coretract.

Law 57 (Coretract Morphism). If (L, R) is a coretract and R is an F-
morphism, then Fg = R o Fp o L. O

We can use these morphisms to calculate a function in one lattice in terms of
another. For example, suppose that L is an F' morphism, then we can calculate
the strongest definition for Fr in terms of Fg and the functions L and R. This
is described in the following lemma.

Lemma 2 (Strongest Solution). F#(Y) = L o Fs o R(Y) is the strongest
solution for Fr in Fg(X) J Ro Fr o L(X) O

This concludes our brief description of Galois connections and their properties.
A more detailed description can be found in [20].

6 Designs

In the theory of relations, the following inequality holds:
true ; z :=0 # true

So, if we follow an aborting execution (semantics true) by an assignment, then
the result is not abort. Operationally, this is as though a non-terminating loop
can simply be ignored, and this is not how we expect real programs to behave.
The solution to this problem is to find a subset of the relational theory in which
the equality does hold. We introduce a new observation variable ok, which is
used to record information about the start and termination of programs. The
required equation holds for predicates in this set.

The predicates in this set are called designs. They can be split into precondition-
postcondition pairs like those in B [1], VDM [11], and refinement calculi [13,2,14].
In designs, ok records that the program has started, and ok’ records that
it has terminated; they never appear in code or in preconditions and postcondi-
tions. In implementing a design, we are allowed to assume that the precondition

34 J. Woodcock

holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that the program terminates. If the
precondition does not hold, or the program does not start, we are not committed
to establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition @, for predicates P and @ not
containing ok or ok’, is written (P F @) and defined as (ok A P = ok’ A Q). If
the program starts in a state satisfying P, then it will terminate, and on termina-
tion @ will be true. Refinement of a design involves weakening the precondition
or strengthening the postcondition in the presence of the precondition:

Law 61. Refinement of designs
PiFQEPFEQ = [PLANQ= Q] AN[P1= P U

Designs satisfy two healthiness conditions. A relation P is HI-healthy iff
P = (ok = P), so observations cannot be made before the program has started.
A consequence is that R satisfies the left-zero and unit laws: true ; R = true
and IT, ; R = R. The second healthiness condition is P = P ; J, where
J = (ok = ok’) A II. This states that P must be monotonic in ok’: it can-
not require nontermination, so even abort can terminate.

H is the composition of H1 and H2 (they commute). Designs are exactly
those relations that are H-healthy. So what exactly is the connection between
designs and mere relations? We look for a Galois connection between the lattice
of nondeterministic programs provided by the theory of relations and the lattice
with the same signature provided by the theory of designs. These two theories
lie at the heart of CML. We start by defining the left adjoint, which we call Des.
This maps pure relations into the lattice of designs: Des : Relations — Designs.
Both lattices are ordered by refinement.

The semantics of nondeterministic programs in Relations excludes a treatment
of termination (as evidenced by the inequality above), so when we map a relation
R into a design, we have to decide how to handle the termination question. R
can have no description of when it terminates, and its correctness against a
specification must be judged with the assumption that it terminates; this is
exactly a statement of partial correctness. We encode both these decisions using
the healthiness condition for designs, H, together with the requirement that the
program must terminate.

Definition 13 (Des). Des(R) = H(R A ok') O

H2(P) = P;J J = (ok = ok") AN I (aP \ {0k, ok’})
A key property of this definition is known as J-splitting:
P;J = P/v(PtA ok

Law 62 (Des Design). Des(R) = truet R O

Engineering UToPiA 35

The right adjoint is called Rel, and it maps from Designs into Relations. Its job
is to throw away the information about initiation and termination in a design to
extract the underlying relation. It does this by considering only the case that the
design is started and finishes properly: Rel(D) = D[true, true/ ok, ok’]. There is
a shorthand for this particular substitution: D.

Definition 14 (Rel). Rel(D) = D"

Law 63 (Rel Design). Rel(P+ Q)=P = @

This pair of functions form a Galois connection: (Designs, J) %:(Relations,).
e
Theorem 2 ((Des, Rel) Galois connection)
(Des, Rel) is a Galois connection O
The Galois connection (Des, Rel) is a coretract.
Lemma 3 (Des injective)
Des is injective (I

Lemma 4 ((Des, Rel) Properties)

1. Rel is surjective
2. (Des, Rel) is a coretract
3. Des is an order similarity: (Des(R) C Des(S)) =(RZ S)

Proof. Since Des is injective. O

7 Reactive Processes

Reactive processes in UTP [9, Chap. 8] have four pairs of observation variables:
ok, wait, tr, ref and their dashed counterparts. Three states are described by
ok’ and wait’: (1) ok’ A wait’, the process is in a stable intermediate state;
(ii) ok” A = wait’, the process is in a stable final state; and (iii) — ok, the process
is in an unstable state. The corresponding undashed conditions refer to the
process’s predecessor’s state. The history of events engaged in by the process’s
predecessors is recorded in the trace tr; the events engaged in by the process
itself are recorded in tr’ — tr. (The definedness of this expression is the topic of a
healthiness condition below.) At any moment, the process will have certain events
enabled and others disabled; ref’ described the events currently being refused
by the process. (The ref variable is the odd man out, as it serves no purpose
other than to make a reactive process a homogeneous relation. Its status is the
subject of a healthiness condition not discussed here; see [9, Chap. 8].)

36 J. Woodcock

Reactive processes satisfy three healthiness conditions. The first, R1 en-
sures that events, once they occur, cannot be retracted: tr < tr’. The second,
R2, ensures that a process’s behaviour is oblivious to the history of events:
P(tr,tr")y = P({), tr’ — tr). The third makes sure that sequential composition
behaves appropriately: P = IT <l wait > P, where

Ir= (- 0k Atr <tr')V (ok' Atr' =tr A ref’ =ref)

CSP processes are reactive processes that satisfy two additional healthiness con-
ditions: CSP1 = R1 o H1 and CSP2(P) = P ; J. Here,

J = (ok = ok') N wait’ = wait A tr' = tr A ref’ = ref

The fact that the two CSP conditions are the reactive analogues of the two
design healthiness conditions allows the semantics of basic CML to be given as
compositions. We formalise this notion by setting out the key Galois connection
between designs and reactive processes.

The healthiness conditions R2 and R3 commute with H1 and H2. This means
that they preserve designs. R1, on the other hand, does not commute with HI1:

H1 o R1(P) = ok = P A (tr < tr')
R1 o H1(P) = (ok = P) A (tr < tr')

In fact, R1 o H1 = CSP1. For this reason, it is interesting to study the rela-
tionship between R1 and H, which, as we see below, turns out to be a retract.

Theorem 3. (H, R1) is a Galois connection. O

The Galois connection (H, R1) is a retract, since H is injective on CSP processes,
with R1 as its left inverse. We prove this in the next lemma.

Lemma 5. H is injective. O
To complete the proof, we need two small lemmas.

Lemma 6. CSP= R1o H.]
Lemma 7 ((H,R1) is a Galois connection)

1. R1 is surjective
2. (R1,H) is a retract (Galois insertion)
3. H is an order similarity (H(P) C H(Q)) = (P C Q)

Proof. Since H is injective. |

Engineering UToPiA 37
8 Timed Reactive Processes

Our semantic domain consists of traces with embedded refusal sets, which is close
to Lowe and Ouaknine’s timed testing model [12], which records the passing of
time with an explicit tock event and allows refusal experiments to be made only
before tocks. We do not observe the tock event directly and so tock ¢ Y. Instead,
we observe the passage of time through the refusal experiments. At the end of
each time interval either a refusal experiment is made or the empty refusal set is
recorded. If we let X be the universe of events, then the traces that we can observe
are drawn from the following set: timedTrace = (X + P(X))*. This defines the
set of all finite sequences where each element is either an event or a refusal set.
For example, the trace (a, b, {b, c}, 0, c) represents the observation: (i) the trace
(a, b) occurred in the first time interval; (ii) at the end of this trace, the process
refused the set of events {b, c}; (iii) no events were observed during the second
time interval; (iv) at the end of the second time interval, no events were refused;
(v) the third time interval is incomplete, but the trace (c) was observed so far.
Notice that timed testing traces are able to record quite subtle information.
Consider the behaviour of a process P, with a universe of events including only
a and b. P never offers to engage in b, but offers to engage in a during every
other time interval. Here is a possible trace of P: ({a, b}, {b}, {a, b},{b},{a, b}).

We define some simple operators on timed traces. The function events(t)
throws away the refusal sets in ¢, leaving just the trace of events. The function
refsduring(t) collects together the set of refusal sets in ¢, throwing away ordering
information and the event component. The function refusals(t) calculates all the
events that are refused at some point during the trace ¢.

Definition 15. Let A C X, a € X and t € timedTrace. Then

events(t) =1t X
refsduring(t) = ran(t > P(X))
refusals(t) = | refsduring(t)

The trace precedence relation ¢ < u holds when ¢ contains less information than
u, either because t is a prefix of u, or the refusal sets in ¢ are subsets of the
similarly positioned refusal sets in u, or a combination of the two conditions.

Definition 16 (Testing trace precedence). Let a € ¥, X C Y C X and
t,u € timedTrace. Then

Y
(a) ™t
(X) ™t

]
<> u ift=u
(Y)Y wift=u

A TA I)\

For example (a, {b}, ¢,{d, e}) = (a,{b,d}, ¢, {d, e}> This is a stronger relation
than the usual preﬁx relation on event traces, <
A similar result holds for the refusals over testing traces:

38 J. Woodcock

Lemma 8 (Precedence refusals). t < u A a € refusals(t) = a €
refusals(u).
Proof by induction on t. |

Observations of CML consist of: ok, ok’, wait, wait’, which are inherited from
reactive processes; rt, rt’, which are timed testing traces; and v, v/, which are the
vectors of programming variables. A derived variable, ¢t = rt’ — rt, describes the
events of the trace carried out by the current process. There are five healthiness
conditions.

The first requirement is that ¢t is well-defined. This requires that the obser-
vation of 7t prefixes the observation of rt’. RT1 ensures that a process cannot
alter the part of the trace that has already been observed; all it may do is append
to rt.

Definition 17 (RT1)
RTI(P)=PArt<rt

Our next healthiness condition is similar to R2: it controls the use of the trace
variable to make sure that P is not sensitive to the behaviour of its predecessors.

Definition 18. RT2(P) = P[(), tt'/rt, rt’] O

The healthiness condition RT3 is a modified form of R3. Changes to the internal
state of a process are permitted by RT3, but should remain unobservable until
some interaction takes place (cf. [3]). This inability to observe internal interaction
has the consequence that a choice between two processes cannot be resolved by
internal state changes, but only external events or the termination of one of the
processes.

Definition 19 (RT3)

RT3(P) = RT1(true t wait’ A tt' = () < wait > P
Our fourth healthiness condition corresponds to CSP1.
Definition 20. RT4(P) = RT1(— ok) VvV P. O
Our fifth healthiness condition is similar to CSP2.
Definition 21 (RT5). RT5(P)=P; J. O
Lemma 9 (RT functions are commuting monotonic idempotents)

1. RT1-RT5 are all monotonic idempotents.
2. RT1-RT5 all commute.

Definition 22 (RT)

RT = RT10 RT20 RT30 RT40 RTS

Engineering UToPiA 39

The trace variable #r and the refusal variable ref in basic CML are replaced by
the single timed trace r¢ in timed CML. We establish a Galois connection that
links these variables by specifying one of the adjuncts and then calculate the
other. We choose the left adjoint L : Timed — Reactive, as it is easy to specify
since it forgets all the information about time represented in r¢ and rt’.

Definition 23

L(P) =
Irt,rt’ e P A (tr = events(rt)) A (tr' = events(rt’))
A (ref = last(refsduring(rt)) A (ref’ = last(refsduring(rt’))

As we know, one adjoint in a Galois connection uniquely determines the other.
We can think of R(Q) as finding a schedule for the events and refusals in @, but
which schedule would be appropriate? The answer is provided by the calculation
needed for R.

Definition 24
R(Q) = THP|LP)2Q}

This is the weakest possible schedule.
L and R can be used to check properties of CML processes, to structure them
into architectural patterns, and as part of system development techniques.

9 Conclusion

Our initial work on Galois connections for timed reactive processes opens up
some interesting avenues of work.

If P is a fixed point of R o L, then it is time insensitive. This may be an
important structural property.

Sherif [23] uses a similar Galois connection as an architectural pattern for
real-time systems. In his work, a CircusTime process is translated into a timeless
Circus process that interacts with a set of clocks; collectively, they implement
the timed specification. The strategy for translating the specification is based
on using the left adjoint to forget timing information, whilst introducing the
required clock interactions.

A recommended development strategy for Handel-C programs on FPGAs is to
ignore timing properties initially and produce a network of communicating pro-
cesses with the required basic functionality [19]. Once this is completed, commu-
nications and state assignments should then be scheduled synchronously. Handel-
C is similar to CML and Circus, and so the scheduling could be carried out as a
translation based on our right adjoint R.

The work described in this paper is being mechanised in Isabelle/HOL [15],
using Foster’s UTP embedding [7]. The work is inspired by previous mechanisa-
tions, such as [18].

40 J. Woodcock

Acknowledgements. This work is supported by EU Framework 7
Integrated Project Comprehensive Modelling for Advanced Systems of
Systems (COMPASS, Grant Agreement 287829). For more information
see http://www.compass-research.eu. Simon Foster, Will Harwood, and
Andy Galloway made helpful comments on parts of this paper; Samuel Canham
and Jeremy Bryans contributed to work on the semantic domain for timed reac-
tive processes; Ana Cavalcanti made contributions throughout; John Fitzgerald
and Peter Gorm Larsen provided continuous inspiration; thanks are due to all
of them.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Back, R.J.R., Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer (1998)

3. Butterfield, A., Gancarski, P., Woodcock, J.: State visibility and communication
in Unifying Theories of Programming. In: Chin, W.-N.; Qin, S. (eds.) TASE 20009,
Third IEEE Int. Symp. on Theoretical Aspects of Software Engineering, pp. 47-54.
IEEE Computer Society (2009)

4. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software
and System Modeling 4(3), 277-296 (2005)

5. Cavalcanti, A., Wellings, A.J., Woodcock, J.: The Safety-Critical Java memory
model formalised. Formal Asp. Comput. 25(1), 37-57 (2013)

6. Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical
Java in Circus. In: Wellings, A.J., Ravn, A.P. (eds.) The 9th International Work-
shop on Java Technologies for Real-time and Embedded Systems, JTRES 2011,
York, United Kingdom, September 26-28, pp. 20-29. ACM (2011)

7. Foster, S., Woodcock, J.: Unifying Theories of Programming in Isabelle. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming. LNCS, vol. 8050, pp.
109-155. Springer, Heidelberg (2013)

8. Hehner, E.C.R.: Retrospective and prospective for Unifying Theories of Program-
ming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 1-17.
Springer, Heidelberg (2006)

9. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)

10. Circus homepage, http://www.cs.york.ac.uk/circus/ (accessed February 27,
2014)

11. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall (1986)

12. Lowe, G., Ouaknine, J.: On timed models and full abstraction. Electr. Notes Theor.
Comput. Sci. 155, 497-519 (2006)

13. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)

14. Morris, J.M.: A Theoretical Basis for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming 9(3), 287-306 (1987)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

16. O’'Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1-19.
Springer, Heidelberg (2001)

http://www.compass-research.eu
http://www.cs.york.ac.uk/circus/

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

Engineering UToPiA 41

Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electr. Notes Theor. Comput. Sci. 187, 107-123 (2007)

Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3-32 (2009)

Perna, J.I., Woodcock, J.: UTP semantics for Handel-C. In: Butterfield, A. (ed.)
UTP 2008. LNCS, vol. 5713, pp. 142-160. Springer, Heidelberg (2010)

Priestley, H.A.: Ordered sets and complete lattices. In: Blackhouse, R., Crole, R.L.,
Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Pro-
gram Construction. LNCS, vol. 2297, pp. 21-78. Springer, Heidelberg (2002)
Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science, LICS
2002, Copenhagen, Denmark, July 22-25, pp. 55-74. IEEE Computer Society
(2002)

Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)

Sherif, A.: A Framework for Specification and Validation of Real-Time Systems
using Circus Actions. PhD thesis, Centro de Informaticé, Universidade Federal de
Pernambuco (2006)

Wei, K., Woodcock, J., Burns, A.: Timed Circus: Timed CSP with the Miracle. In:
ICECCS, pp. 55-64 (2011)

Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.) UTP
2008. LNCS, vol. 5713, pp. 202-217. Springer, Heidelberg (2010)

Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184-203.
Springer, Heidelberg (2002)

Woodcock, J., Cavalcanti, A., Fitzgerald, J.S., Larsen, P.G., Miyazawa, A., Perry,
S.: Features of CML: A formal modelling language for systems of systems. In: 7th
International Conference on System of Systems Engineering, SoSE 2012, Genova,
Ttaly, July 16-19, pp. 445-450. IEEE (2012)

Woodcock, J., Davies, J.: Using Z—Specification, Refinement, and Proof. Prentice-
Hall (1996)

Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In: But-
terfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 238-257. Springer, Heidelberg
(2010)

Zhu, H., Yang, F., He, J.: Generating denotational semantics from algebraic se-
mantics for event-driven system-level language. In: Qin, S. (ed.) UTP 2010. LNCS,
vol. 6445, pp. 286-308. Springer, Heidelberg (2010)

40 Years of Formal Methods

Some Obstacles and Some Possibilities?

Dines Bjgrner! and Klaus Havelund?*

! Fredsvej 11, DK-2840 Holte, Danmark
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark
bjorner@gmail .com
www.imm.dtu.dk/~dibj
2 Jet Propulsion Laboratory, Calif. Inst. of Techn., Pasadena, California 91109, USA
klaus.havelund@jpl.nasa.gov
www.havelund.com

Dedicated to Chris W. George

Abstract. In this “40 years of formal methods” essay we shall first delin-
eate, Sect. 1, what we mean by method, formal method, computer sci-
ence, computing science, software engineering, and model-oriented and
algebraic methods. Based on this, we shall characterize a spectrum
from specification-oriented methods to analysis-oriented methods. Then,
Sect. 2, we shall provide a “survey”: which are the ‘prerequisite works’
that have enabled formal methods, Sect. 2.1, and which are, to us, the,
by now, classical ‘formal methods’, Sect.2.2. We then ask ourselves the
question: have formal methods for software development, in the sense of
this paper been successful? Our answer is, regretfully, no! We motivate
this answer, in Sect. 3.2, by discussing eight obstacles or hindrances to the
proper integration of formal methods in university research and educa-
tion as well as in industry practice. This “looking back” is complemented,
in Sect. 3.4, by a “looking forward” at some promising developments —
besides the alleviation of the (eighth or more) hindrances!

1 Introduction

It is all too easy to use terms colloquially. That is, without proper definitions.

1.1 Some Delineations

Method: By a method we shall understand a set of principles for selecting and
applying techniques and tools for analyzing and/or synthesizing an artefact. In
this paper we shall be concerned with methods for analyzing and synthesizing
software artefacts.

* The work of second author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 42-61, 2014.
© Springer International Publishing Switzerland 2014

www.imm.dtu.dk/~dibj
www.havelund.com

40 Years of Formal Methods 43

We consider the code, or program, components of software to be mathematical
artefacts.! That is why we shall only consider such methods which we call formal
methods.

Formal Method: By a formal method we shall understand a method whose tech-
niques and tools can be explained in mathematics. If, for example, the method
includes, as a tool, a specification language, then that language has a formal syn-
tax, a formal semantics, and a formal proof system. The techniques of a formal
method help construct a specification, and/or analyse a specification, and/or
transform (refine) one (or more) specification(s) into a program. The techniques
of a formal method, (besides the specification languages) are typically software
packages.

Formal, Rigorous or Systematic Development: The aim of developing software,
either formally or rigorously or systematically? is to [be able to] reason about
properties of what is being developed. Among such properties are correctness
of program code with respect to requirements and computing resource usage.

Computer Science, Computing Science and Software Engineering: By computer
science we shall understand the study of and knowledge about the mathematical
structures that “exist inside” computers.

By computing science we shall understand the study of and knowledge about
how to construct those structures. The term programming methodology is here
used synonymously with computing science.

By engineering we shall understand the design of technology based on scientific
insight and the analysis of technology in order to assess its properties (including
scientific content) and practical applications.

By software engineering we shall understand the engineering of domain descrip-
tions (D), the engineering of requirements prescriptions (R), the engineering of
software designs (S), and the engineering of informal and formal relations (|=3)
between domain descriptions and requirements prescriptions (D = R), and do-
main descriptions & requirements prescriptions and software designs (D, S E R).
This delineation of software engineering is based (i) on treating all specifica-
tions as mathematical structures*, and (ii) by (additional to these programming
methodological concerns) also considering more classical engineering concerns
[16].

! Major “schools” of software engineering seem to not take this view.
2 We may informally characterize the spectrum of “formality”. All specifications are
formal. Furthermore,
— in a formal development all arguments are formal;
— in a rigorous development some arguments are made and they are formal,
— in a systematic development some arguments are made, but they are not necessarily
formal, although on a form such that they can be made formal.
Boundary lines are, however, fuzzy.
3 BEA reads: B is a refinement of A.
4 In that sense “our” understanding of software engineering differs fundamentally from

that of for example [108].

44 D. Bjgrner and K. Havelund

Model-oriented and Algebraic Methods: By a model-oriented method we shall
understand a method which is based on model-oriented specifications, that is,
specifications whose data types are concrete, such as numbers, sets, Cartesians,
lists, maps.

By an algebraic method, or as we shall call it, property-oriented method we shall
understand a method which is based on property-oriented specifications, that is,
specifications whose data types are abstract, that is, postulated abstract types,
called carrier sets, together with a number of postulated operations defined in
terms of axioms over carrier elements and operations.

1.2 Specification versus Analysis Methods

We here introduce the reader to the distinction between specification-oriented
methods and analysis-oriented methods. Specification-oriented methods, also re-
ferred to as specification methods, and typically amongst the earliest formal
methods, are primarily characterized by a formal specification language, and in-
clude for example VDM [18, 66, 19, 67, 39, 40], Z [114] and RAISE/RSL [46, 45, 12—
14]. The focus is mostly on convenient and expressive specification languages
and their semantics. The main challenge is considered to be how to write simple,
easy to understand and elegant/beautiful specifications. These systems, how-
ever, eventually got analysis tools and techniques. Analysis-oriented methods,
also referred to as analysis methods, on the other hand, are born with focus
on analysis, and include for example Alloy [63], Astrée [23], Event B [2], PVS
[106, 92, 91, 107], Z3 [22] and SPIN [60]. Some of these analysis-oriented meth-
ods, however, offer very convenient specification languages, PVS [91] being an
example.

2 A Syntactic Status Review

Our focus is on model-oriented specification and development approaches.
We shall, however, briefly mention the property-oriented, or algebraic ap-
proaches also.

By a syntactic review we mean a status that focuses publications, formal
methods (“by name”), conferences and user groups.

2.1 A Background for Formal Methods

The formal methods being surveyed has a basis, we think, in a number of seminal
papers and in a number of seminal textbooks.

Seminal Papers: What has made formal software development methods pos-
sible? Here we should like to briefly mention some of the giant contributions
which are the foundation for formal methods. There is John McCarthy’s work,
for example [82, 83|: Recursive Functions of Symbolic Expressions and Their
Computation by Machines and Towards a Mathematical Science of Computa-
tion. There is Peter Landin’s work, for example [77, 78, 25]: The Mechanical

40 Years of Formal Methods 45

Evaluation of Expressions, Correspondence between ALGOL 60 and Church’s
Lambda-notation and Programs and their Proofs: an Algebraic Approach. There
is Robert Floyd’s work, for example [42]: Assigning Meanings to Programs.
There is John Reynold’s work, for example [99]: Definitional Interpreters for
Higher-order Programming Languages. There is Dana Scott and Christopher
Strachey’s work, for example [104]: Towards a Mathematical Semantics for
Computer Languages. There is Edsger Dijkstra’s work, for example [36]: A
Discipline of Programming. There is Tony Hoare’s work, for example [56, 57]:
An Axiomatic Basis for Computer Programming and Proof of Correctness of
Data Representations.

Some Supporting Text Books: Some monographs or text books “in line” with
formal development of programs, but not “keyed” to specific notations, are:
The Art of Programming [72-74, Donald E. Knuth, 1968-1973], A Discipline of
Programming [36, Edsger W. Dijkstra, 1976], The Science of Programming [47,
David Gries, 1981], The Craft of Programming [100, John C. Reynolds, 1981]
and The Logic of Programming [55, Eric C.R. Hehner, 1984].

2.2 A Brief Technology and Community Survey

We remind the reader of our distinction between formal specification methods
and formal analysis methods.

A List of Formal, Model-oriented Specification Methods: The foremost speci-
fication and model-oriented formal methods are, chronologically listed: VDM °
[18, 66, 19, 67, 39, 40] 1974, Zz5 [114] 1980, RAISE/RSL"® [46, 45, 12-14]
1992, and B? [1] 1996. The foremost analysis and model-oriented formal methods
(chronologically listed) are: Alloy [63] 2000 and Event-B [2] 2009. The main
focus is on the development of specifications. Of these VDM, Z and RAISE orig-
inated as rather “purist” specification methods, Alloy and Event-B from their
conception focused strongly on analysis.

A List of Formal, Algebraic Methods: The foremost property-oriented formal
methods (alphabetically listed) are: Cafe0BJ [44], CASL!? [32] and Maude [29].
The definitive text on algebraic semantics is [101]. It is a characteristic of al-
gebraic methods that their specification logics are analysis friendly, usually in
terms of rewriting.

A List of Formal Analysis Methods: The foremost analysis methods'! can be
roughly “classified” into three classes: Abstract Interpretation, for example:
Astrée [23]; Theorem Proving, for example: ACL2 [71, 70], Coq [8], Isabelle/HOL

® Vienna Development Method.

S Z: Zermelo.

" Rigorous Approach to Software Engineering.

8 RAISE Specification Language.

9 B: Bourbaki.

10 Common Algebraic Specification Language.

1 In addition to those of formal algebraic methods.

46 D. Bjgrner and K. Havelund

[88], STeP [21], PVS [107] and Z3 [22]. Model-Checking, for example: SMV [2§]
and SPIN/Promela [60]. Shallow program analysis is provided by static analysis
tools such as Semmle!?, Coverity'3, CodeSonar!4 and KlocWork [109]'5. These
static analyzers scale extremely well to very large programs, unlike most other
formal methods tools; they are a real success from an industrial adoption point
of view. However, this is at the price of the limited properties they can check;
they can usually not check functional properties: that a program satisfies its
requirements.

Mathematical Notations: Why not use “good, old-fashioned” mathematics as a
specification language? W. J. Paul [87, 93, 34] has done so. Y. Gurevich has put
a twist to the use of mathematics as a specification language in his ‘Evolving
Algebras’ known now as Abstract Algebras [96].

Related Formal Notations: Among formal notations for describing reactive sys-
tems we can mention: CSP® [58] and CCS'7 [85] for textually modeling con-
currency, DC'® [116] for modeling time-continuous temporal properties, MSC'®
[62] for graphically modeling message communication between simple processes,
Petri Nets [97, 98] for modeling arbitrary synchronization of multiple processes,
Statecharts [48] for modelling hierarchical systems, and TLA+%° [76] and STeP?!
[80, 81] for modeling temporal properties.

Workshops, Symposia and Conferences: An abundance of regular workshops,
symposia and conferences have grown up around formals methods. Along (rough-
ly) the specification-orientation we have: VDM, FM and FME?? symposia [17]; Z, B,
ZB, ABZ, etc. meetings, workshops, symposia, conferences, etc. [24]; SEFM?3 [75];
and ICFEM** [61]. One could wish for some consolidation of these too numerous
events. Although some of these conferences started out as specification-oriented,
today they are all more or less analysis-oriented. The main focus of research
today is analysis.

And along the pure analysis-orientation we have the annual: CAV2®, CADE?S,
TACAS??, etcetera conferences.
12
13
14
15

WWW.semmle.com

WWw.coverity.com

www.grammatech. com/codesonar
www.klocwork.com

16 csP: Communicating Sequential Processes.

17 ¢cs: Calculus of Communicating Systems.

18 pg: Duration Calculus.

19 MSC: Message Sequence Charts.

20 TLA+: Temporal Logic of Actions.

21 5TeP: Stanford Temporal Prover.

22 FM: Formal Methods and FME: FM Europe.

23 SEFM: Software Engineering and Formal Methods.
24 1CFEM: Intl.Conf. of Formal Engineering Methods.
25 cAV: Computer Aided Verification.

26 CADE: Computer Aided Deduction.

TACAS: Tools and Algorithms for the Construction and Analysis of Systems.

www.semmle.com
www.coverity.com
www.grammatech.com/codesonar
www.klocwork.com

40 Years of Formal Methods 47

User Groups: The advent of the Internet has facilitated method-specific “home
pages”: Alloy: alloy.mit.edu/alloy/, ASM: www.eecs.umich.edu/gasm/ and
rotor.di.unipi.it/AsmCenter/, B: en.wikipedia.org/wiki/B-Method, E-
vent-B: www.event-b.org/, RAISE: en.wikipedia.org/wiki/RAISE, VDM:
www.vdmportal.org/twiki/bin/view and Z: formalmethods.wikia.com/wi-
ki/Z notation.

Formal Methods Journals: Two journals emphasize formal methods: Formal As-
pects of Computing?® and Formal Methods in System Design? both published
by Springer.

2.3 Shortcomings

The basic, model-oriented formal methods are sometimes complemented by some
of “the related” formal notations. RSL includes CSP and some restricted notion
of object-orientedness and a subset of RSL has been extended with DC [53,
51]. VDM and Z has each been extended with some (wider) notion of object-
orientedness: VDM++ [38], respectively object Z [112].

A general shortcoming of all the above-mentioned model-oriented formal meth-
ods is their inability to express continuity in the sense, at the least, of first-
order differential calculus. The IFM conferences [4] focus on such “integrations”.
[Haxthausen, 2000] outlines integration issues for model-oriented specification
languages [52]. Hybrid CSP [54, 115] is CSP + differential equations + interrupt!

2.4 A Success Story?

With all these books, publications, conferences and user-groups can we claim
that formal methods have become a success — an integral part of computer
science and software engineering? and established in the software industry? Our
answer is basically no! Formal methods®® have yet to become an integral part
of computer science & software engineering research and education, and the
software industry. We shall motivate this answer in Sect. 3.2.

3 More Personal Observations

As part of an analysis of the situation of formal methods with respect to research,
education and industry are we to (a) either compare the various methods,
holding them up against one another? (b) or to evaluate which application areas

28 1ink.springer.com/journal/165

29 1ink.springer.com/journal/10703

30 An exception is the static analysis tools mentioned earlier, which can check whether
programs are well formed. These tools have been widely adopted by industry, and
must be termed as a success. However, these tools cannot check for functional correct-
ness: that a program satisfies the functional requirements. When we refer to formal
methods here we are thinking of systems that can check functional correctness.

springerlink.bibliotecabuap.elogim.com/journal/165
springerlink.bibliotecabuap.elogim.com/journal/10703

48 D. Bjgrner and K. Havelund

each such method are best suited for, (c) or to identity gaps in these methods,
(d) or “something else”! We shall choose (d): “something else”! (a) It is far too
early — hence risky — to judge as to which methods will survive, if any! (b) It is
too trivial — and therefore not too exciting — to make statements about “best
application area” (or areas). (c) It is problematic — and prone to prejudices —
to identify theoretical problems and technical deficiencies in specific methods. In
a sense “survivability” and “applicability” (a—c) are somewhat superficial issues
with respect to what we shall instead attempt. It may be more interesting, (d), to
ruminate over what we shall call deeper issues — “hindrances to formal methods”
— such which seems common to all formal methods.

3.1 The DDC Ada “Story”

In 1980 a team of six just-graduated MScs started the industrial development of a
commercial Ada compiler. Their (MSc theses) semantics description (in VDM+CSP)
of Ada were published in [20, Towards a Formal Description of Ada]. The project
took some 44 man years in the period 1 Jan. 1980 to 1 Oct. 1984 — when the
US Dod, in Sept. 1984, had certified the compiler. The six initial developers
were augmented by 3 also just-graduated MScs in 1981 and 1982. The “formal
methods” aspects of the development approach was first documented in [10,
ICS’77] — and is outlined in [20, Chapter 1]. The project staff were all properly
educated in formal semantics and compiler development in the style of [10], [18]
and [19]. The completed project was evaluated in [30] and in [90].

Now, 30 years later, mutations of that 1984 Ada compiler are still around!
From having taken place in Denmark, a core DDC Ada compiler product group
was moved to the US in 19903! — purely based on marketing considerations.
Several generations of Ada have been assimilated into the 1981-1984 design.
Several generations of less ‘formal methods’ trained developers have worked and
are working on the DDC-l Inc. Legacy Ada compiler systems. For the first 10
years of the 1984 Ada compiler product less than one man month was spent per
year on corrective maintenance — dramatically below industry “averages”!

The DDC Ada development was systematic: it had roughly up to eight (8) steps
of “refinement”: two (2) steps of domain description of Ada (approx. 11.000 lines),
via four (4) steps of requirements prescription for the Ada compiler (approx.
55.000 lines), and two (2) steps of design (approx. 6.000 lines) and coding of
the compiler itself. Throughout the emphasis was on (formal) specification. No
attempt was really made to express, let alone prove, formal properties of any
of these steps nor their relationships. The formal/systematic use of VDM must
be said to be an unqualified formal methods success story.3? Yet the published
literature on Formal Methods fails to recognize this [113].

31 Cf. DDC-I Inc., Phoenix, Arizona http://www.ddci.com/
32 The 1980s Ada compiler “competitors” each spent well above 100 man years on their
projects — and none of them are “in business” today (2014).

http://www.ddci.com/

40 Years of Formal Methods 49

The following personal observations can be seen in the context of the more than
30 years old DDC Ada compiler project.

3.2 Eight Obstacles to Formal Methods

If we claim “obstacles”, then it must be that we assume on the background of,
for example, the “The DDC Ada Story” that formal methods are worthwhile, in
fact, that formal methods are indispensable in the proper, professional pursuit of
software development. That is, that not using formal methods in software devel-
opment, where such methods are feasible??, is a sign of a immature, irresponsible
industry.

Summarizing, we see the following eight obstacles to the research, teaching and
practice of formal methods: 1. A History of Science and Engineering "“Obstacle”,
2. A Not-Yet-Industry-scaled Tool Obstacle, 3. An Intra-Departmental Obstacle, 4.
A Not-Invented-Here Obstacle, 5. A Supply and Demand Obstacle, 6. A Slide in
Professionalism Obstacle, 7. A Not-Yet-Industry-attuned Engineering Obstacle and
8. An Education Gap Obstacle. These obstacles overlap to a sizable extent. Rather
than bringing an analysis built around a small set of “independent hindrances”
we bring a somewhat larger set of “related hindrances” that may be more familiar
to the reader.

1. A History of Science and Engineering Obstacle: There is not enough research
of and teaching of formal methods. Amongst other things because there is a lack
of belief that they scale — that it is worthwhile.

It is worthwhile researching formal software development methods. We must
strive for correct software. Since it is possible to develop software formally and
such that it is correct, etcetera, one must study such formal methods. It is
worthwhile teaching & learning formal software development methods. Since it
is possible to develop software formally and such that it is correct, etcetera,
one ought teach and learn such formal methods, independently of whether the
students then proceed to actually practice formal methods.

Just because a formal method may be judged not yet to be industry-scale is
no hindrance to it being researched taught and learned — we must prepare our
students properly. The science (of formal methods) must precede industry-scale
engineering.

This obstacle is of “history-of-science-and-engineering” nature. It is not really
an ‘obstacle’, merely a fact of life, something that time may make less of a
“problem”.

2. A Not-Yet-Industry-scaled Tool Obstacle: The tool support for formal methods
is not sufficient for large scale use of these methods.

The advent of the first formal specification languages, VDM [18] and Z [114],
were not “accompanied” by any tool support: no syntax checkers, nothing! Aca-
demic programming was done by individuals. The mere thought that three or
more programmers need collaborate on code development occurred much too late

33 ‘Feasibility’ is then a condition that may be subject to discussion!

50 D. Bjgrner and K. Havelund

in those circles. As a result propagation of formal methods appears to have been
significantly stifled. The first software tools appear to not having been “industry
scale”.

It took many years before this problem was properly recognized. The Euro-
pean Community’s research programmers have helped somewhat, cf. RAISE3,
Overture?® and Deploy3S. The VSTTE: Verified Software: Theories, Tools
and Experiments3 initiative aims to advance the state of the art in the science
and technology of software verification through the interaction of theory develop-
ment, tool evolution, and experimental validation.

It seems to be a fact that industry will not use a formal method unless it is
standardized and “supported” by extensive tools. Most formal method specifica-
tion languages are conceived and developed by small groups of usually university
researchers. This basically stands in the way of preparing for standards and for
developing and later maintaining tools.

This ‘obstacle’ is of less of a ‘history of science and engineering’, more of a
‘maturity of engineering’ nature. It was originally caused by, one could say, the
naivety of the early formal methods researchers: them not accepting that tools
were indeed indispensable. The problem should eventually correct “itself”!

3. An Intra-Departmental Obstacle: There are two facets to this obstacle. Fields
of computer science and software engineering are not sufficiently explained to
students in terms of mathematics, and formal methods, for example, specified
using formal specifications; and scientific papers on methodology are either
not written, or, when written and submitted are rejected by referees not un-
derstanding the difference between computer sciences and computing science —
methodology papers do not create neat “little theories”, with clearly identifiable
and provable propositions, lemmas and theorems.

It is claimed that most department of computer science &3® software engi-
neering staff are unaware of the science & engineering aspects of each others’
individual sub-fields. That is, we often see software engineering researchers and
teachers unaware of the discipline of, for example, Automata Theory & Formal
Languages, and abstraction and modeling (i.e., formal methods). With the un-
awareness manifesting itself in the lack of use of cross-discipline techniques and
tools. Such a lack of awareness of intra-department disciplines seems rare among
mathematicians.

Whereas mathematics students see their advisors freely use the specialized,
though standard mathematics of relevant fields of their colleagues, computer
science & software engineering students are usually “robbed” of this cross-
disciplinarity. What a shame!

34
35
36

spd-web.terma.com/Projects/RAISE/

www.overturetool.org/

www.deploy-project.eu/

57 https://sites.google.com/site/vstte2013/

38 We single quote the ampersand: ‘&’ between A and B to emphasize that A & B is
one subject field.

spd-web.terma.com/Projects/RAISE/
www.overturetool.org/
www.deploy-project.eu/
https://sites.google.com/site/vstte2013/

40 Years of Formal Methods 51

Whereas mathematics is used freely across a very wide spectrum of classical
engineering disciplines, formal specification is far from standard in “classical”
subjects such as programming languages and their compilers, operating systems,
databases and their management systems, protocol designs, etcetera. Our field
(of informatics) is not mature, we claim, before formal specifications are used in
all relevant sub-fields.

4. A Not-Invented-Here Obstacle: There are too many formal methods being de-
veloped, causing the “believers” of each method to focus on defining the method
ground up, hence focusing on foundations, instead of stepping on the shoulders
of others and focus on the how to use these methods.

Are there too many formal specification languages? It is probably far too early
to entertain this question. The field of formal methods is just some 45 years old.
Young compared to other fields.

But what we see as “a larger” hindrance to formal methods, whether for spec-
ification or for analysis, is that, because of this “proliferation” of especially spec-
ification methods, their more widespread use, as was mentioned above, across
“the standard CS&SE courses” is hindered.

5. A Supply and Demand Obstacle: There is not a sufficiently steady flow of
software engineering students all educated in formal methods from basically all
the suppliers.

There are software houses, “out there”, on several continents, in several coun-
tries, which use formal methods in one form or another. A main problem of theirs
is twofold: the lack of customers which demand “provably correct” software, and
the lack of candidates from universities properly educated in formal methods.
A few customers, demanding “provably correct” software, can make a “huge”
difference. In contrast, there must be a steady flow of “more-or-less” “unified
formal methods”-educated educated graduates. It is a “catch-22” situation.

In other fields of classical engineering candidates emerge from varieties of
universities with more-or-less “normalized” , easily comparable, educations. Not
so in informatics: Most universities do not offer courses based on formal methods.
If they do, they either focus on specification or on analysis; few covers both.

We can classify this obstacle as one of a demand/supply conflict.

6. A Slide in Professionalism Obstacle: Todays masters in computing science
and software engineering are not as well educated as were those of 30 years ago.

The project mentioned in Sect. 3.1 cannot be carried out, today (2014), by
students from my former university. From three, usually 50 student, courses,
over 18 months, there is now only one, and usually a 25 student, one semester
course in ‘formal methods’, cf. [12-14]. At colleague departments around Europe
one can see a similar trend: A strong center for partial evaluation [68] existed for
some 25 years and there are now no courses and hardly any research taking
place at Copenhagen University in that subject. Similarly another strong center
for foundations of functional programming has been reduced to basically a one
person activity at another Danish university. The “powers that be” have, in their
infinite wisdom, apparently decided that courses and projects around Internet,

52 D. Bjgrner and K. Havelund

Web design and collaborative work, courses that are presented as having no
theoretical foundations, are more important: “relevant to industry”.

It seems that many university computer science departments have become
mere college IT groups. Research and educational courses in methodology sub-
jects are replaced by “research” into and training courses in current technology
trends — often dictated by so-called industry concerns. The course curriculum
is crowded by training in numerous “trendy” topics at the expense of education
in fewer topics. Many “trendy” courses have replaced fewer foundational ones.

I would classify this obstacle as one of university and department management
failure, kowtowing to perceived, popular industry-demands.

7. A Not-Yet-Industry-attuned Engineering Obstacle: Tools are missing for han-
dling version and configuration control, typically for refinement relationships in
the context of using formal methods.

Software engineering usually treats software development artefacts not as
mathematical objects, but as “textual” documents. And software development
usually entail that such documents are very large (cf. Sect. 3.1) and must be han-
dled as computer data. Whereas academic computing science may have provided
tools for the handling of formal development documents reasonably adequately, it
seems not to have provided tools for the interface to (even commercial) software
version control packages [35, CVS]. Similarly for “build” configuration manage-
ment, etcetera.

Even for stepwise developed formal documents there are basically no support
tools available for linking pairs of abstract and refined formalizations.

Thus there is a real hindrance for the use of formal methods in industry when
its practical tools are not attunable to those of formal methods [16].

8. An Education Gap Obstacle: When students educated in formal methods
enter industry, the majority of other colleagues will not have been educated in
formal methods, causing the new employee to be over-ruled in their wishes to
apply formal methods.

3.3 A Preliminary Summary Discussion

Many of the academic and industry obstacles can be overcome. Still, a main
reason for formal methods not being picked up, and hence “more” successful, is
the lack of scalable and practical tool support.

3.4 The Next 10 Years?

No-one can predict the future. However, we shall provide some guesses/hopes.
We try to stay somewhat realistic and avoid hopes such as solving N ZNP, and
making it possible to prove real sized programs fully correct within practical
time frames. The main observation is that programmers today seldom write
specifications at all, and if they do, the specifications are seldom verified against
code. An exception is of course assertions placed in code, although not even this is

40 Years of Formal Methods 53

so commonly practiced. Even formal methods people usually do not apply formal
methods to their own code, although it can be said that formal methods people
do apply mathematics to develop theories (automata theory, proof theory, etc.)
before these theories are implemented in code. However, these formalizations
are usually written in ad hoc (although often elegant and neat) mathematical
notation, and they are not related mechanically to the resulting software. Will
this situation change in any way in the near future?

We see two somewhat independent trends, which on the one hand are easy to
observe, but, on the other hand, perhaps deserve to be pointed out. The first trend
is an increased focus on providing verification support for programming languages
(in contrast to a focus on pure modeling languages). Of course early work on pro-
gram correctness, such as Hoare’s [56, 57] and Dijkstra’s work [36], did indeed focus
on correctness of programs, but this form of work mostly formed the underlying
theories and did not immediately result in tools. The trend we are pointing out is a
tooling trend. The second trend is the design of new programming languages that
look like the earlier specification languages such as VDM and RSL.We will elaborate
some on these two trends below. We will argue that we are moving towards a point
of singularity, where specification and programming will be done within the same
language and verification tooling framework. This will help break down the barrier
for programmers to write specifications.

Verification Support for Programming Languages: We have in the past seen
many verification systems created with specialized specification and modeling
languages. Theorem proving systems, for example, typically offer functional spec-
ification languages (where functions have no side effects) in order to simplify the
theorem proving task. Examples include ACL2 [71, 70], Isabelle/HOL [88], Coq
[8], and PVS [106, 92, 91, 107].

The PVS specification language [91] stands out by putting a lot of emphasis on
the convenience of the language, although it is still a functional language. The
model checkers, such as SPIN [60] and SMV [28] usually offer notations being some-
what limited in convenience when it comes to defining data types, in contrast
to control, in order make the verification task easier. Note that in all these ap-
proaches, specification is considered as a different activity than programming.

Within the last decade or so, however, there has been an increased focus
on verification techniques centered around real programming languages. This
includes model checkers such as the Java model checker JPF (Java PathFinder)
[50, 111], the C model checkers SLAM/SDV [5], CBMC [27], BLAST [9], and the C
code extraction and verification capability Modex of SPIN [59], as well as theorem
proving systems, for C, such as VCC [33], VeriFast [64], and the general analysis
framework Frama~-C [43]. The ACL2 theorem prover should be mentioned as a very
early example of a verification system associated with a programming language,
namely LISP. Experimental simplified programming languages have also lately
been developed with associated proof support, including Dafny [79], supporting
SMT-based verification, and AAL [41] supporting static analysis, model checking,
and testing.

54 D. Bjgrner and K. Havelund

The Advancement of High-level Programming Languages: At the same time, pro-
gramming languages have become increasingly high level, with examples such as
ML [86] combining functional and imperative programming; and its derivatives
CML (Concurrent ML) [31] and Ocaml [89], integrating features for concurrency
and message passing, as well as object-orientation on top of the already existing
module system; Haskell [110] as a pure functional language; Java [105], which
was one of the first programming languages to support sets, list and maps as
built-in libraries — data structures which are essential in model-based speci-
fication; Scala [102], which attempts to cleanly integrate object-oriented and
functional programming; and various dynamically typed high-level languages
such as Python [95] combining object-orientation and some form of functional
programming, and built-in succinct notation for sets, lists and maps, and itera-
tors over these, corresponding to set, list and map comprehensions, which are key
to for example VDM, RSL and Alloy. Some of the early specification languages,
including VDM and RSL, were indeed so-called wide-spectrum specification lan-
guages, including programming constructs as well as specification constructs.
However, these languages were still considered specification languages and not
programming languages. The above mentioned high-level programming trend
may help promote the idea of writing down high-level designs — it will just be
another program. Some programming language extensions incorporate specifica-
tions, usually in a layered manner where specifications are separated from the
actual code. EML (Extended ML) [69] is an extension of the functional program-
ming language SML (Standard ML [94]) with algebraic specification written in the
signatures. ECML (Extended Concurrent ML [49]) extends CML (Concurrent ML)
[69] with a logic for specifying CML processes in the style of EML. Eiffel [84] is
an imperative programming language with design by contract features (pre/post
conditions and invariants). Spec# [6] extends C# with constructs for non-null
types, pre/post conditions, and invariants. JML [26] is a specification language
for Java, where specifications are written in special annotation comments [which
start with an at-sign (@)].

The Point of Singularity for Formal Methods: It seems evident that the trend
seen above where verification technology is developed around programming lan-
guages will continue. Verification frameworks will be part of programming IDEs
and be available for programmers without additional efforts. Testing will, how-
ever, still appear to be the most practical approach to ensure the correctness
of real-sized applications, but likely supported with more rigorous techniques.
Wrt. the development in programming languages, these do move towards what
would be called wide-spectrum programming languages, to turn the original term
‘wide-spectrum specification languages’ on its head. The programming language
is becoming your specification language as well. Your first prototype may be
your specification, which you may refine and later use as a test oracle. Formal
specification, prototyping, and agile programming will become tightly integrated
activities. It is, however, important to stress, that languages will have to be able
to compete with for example C when it comes to efficiency, assuming one stays
within an efficient subset of the language. It should follow the paradigm: you

40 Years of Formal Methods 55

pay only for what you use. It is time that we try to move beyond C for writing
for example embedded systems, while at the same time allow high-level concepts
as found in early wide-spectrum specification languages. There is no reason why
this should not be possible.

There are two other directions that we would like to mention: visual languages
and DSLs (Domain Specific Languages). Formal methods have an informal com-
panion in the model-based programming community, represented for example
most strongly by UML [65] and its derivations. This form of modeling is graphical
by nature. UML is often criticized for lack of formality, and for posing a link-
age problem between models and code. However, visual notations clearly have
advantages in some contexts. The typical approach is to create visual artifacts
(for example class diagrams and state charts), and then derive code from these.
An alternative view would be to allow graphical rendering of programs using
built-in support for user-defined visualization, both of static structure as well as
of dynamic behavior. This would tighten connection between lexical structure
and graphical structure. One would, however, not want to define UML as part of a
programming language. Instead we need powerful and simple-to-use capabilities
of extending programming languages with new DSLs. Such are often referred
to as internal DSLs, in contrast to external DSLs which are stand-alone lan-
guages. This will be critical in many domains, where there are needs for defining
new DSLs, but at the same time a desire to have the programming language
be part of the DSL to maintain expressive power. The point of singularity is
the point where specification, programming and verification is performed in an
integrated manner, within the same language framework, additionally supported
by visualization and meta-programming.

4 Conclusion

We have surveyed facets of formal methods, discussed eight obstacles to their
propagation and discussed three possible future developments. We do express a,
perhaps not too vain hope, that formal methods, both specification- and analysis-
oriented, will overcome the eight obstacles — and others!

We have seen many exciting formal methods emerge. The first author has
edited two double issues of journal articles on formal methods [11] (ASM, B,
Cafe0BJ, CASL, DC, RAISE, TLA+, Z) and [15] (Alloy, ASM, Event-B, DC,
CafeOBJ, CASL, RAISE, VDM, Z), and, based on [11] a book [37].

Several of the originators of VDM are still around [7]. The originator of Z, B
and Event B is also still around [3]. And so are the originators of Alloy, RAISE,
CASL, CafeO0BJ and Maude. And so is the case for the analytic methods too! How
many of the formal methods mentioned in this paper will still be around and
“kicking” when their originators are no longer active?

Acknowledgements. We dedicate this to our colleague of many years, Chris
George. Chris is a main co-developer of RAISE [46, 45]. From the early 1980s
Chris has contributed to both the industrial and the academic progress of for-
mal methods. We have learned much from Chris — and expect to learn more!

56

D. Bjgrner and K. Havelund

Thanks to OC chair Jin Song Dong and PC co-chair Cliff Jones for inviting
this paper.

References

10.

11.

12.

13.

14.

15.

16.

Abrial, J.-R.: The B Book. Cambridge University Press, UK (1996)

Abrial, J.-R.: Modeling in Event-B: System and Softw. Eng. Cambridge University
Press, UK (2009)

Abrial, J.-R.: From Z to B and then Event-B: Assigning Proofs to Meaningful
Programs. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
1-15. Springer, Heidelberg (2013)

Araki, K., et al. (eds.): IFM 1999-2013: Integrated Formal Methods. LNCS,
vol. 1945, 2335, 2999, 3771, 4591, 5423, 6496, 7321 and 7940. Springer, Heidelberg
(2013)

Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1-20. Springer, Heidelberg
(2004), Tool website: http://research.microsoft.com/en-us/projects/slam
Barnett, M., Fahndrich, M., Leino, K.R.M., Miiller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81—
91 (2011), Tool website:
http://research.microsoft.com/en-us/projects/specsharp

Beki¢, H., Bjgrner, D.;, Henhapl, W., Jones, C.B., Lucas, P.: A Formal Definition
of a PL/I Subset. Technical Report 25.139, Vienna, Austria (September 20, 1974)
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. EATCS Series: Texts
in Theoretical Computer Science. Springer (2004)

Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model
checker BLAST. International Journal on Software Tools for Technology Transfer,
STTT 9(5-6), 505-525 (2007), Tool website:
http://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

Bjgrner, D.: Programming Languages: Formal Development of Interpreters and
Compilers. In: Morlet, E., Ribbens, D. (eds.) International Computing Symposium
1977, pp. 1-21. European ACM, North-Holland Publ. Co., Amsterdam (1977)
Bjgrner, D. (ed.) Logics of Formal Specification Languages. Computing and In-
formatics 22(1-2) (2003); This double issue contains the following papers on B,
CafeOBJ, CASL, RAISE, TLA+ and Z

Bjgrner, D.: Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer (2006)

Bjgrner, D.: Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer
(2006) (Chapters 12—-14 are primarily authored by Christian Krog Madsen)
Bjgrner, D.: Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer
(2006)

Bjgrner, D.: Special Double Issue on Formal Methods of Program Development.
International Journal of Software and Informatics 3 (2009)

Bjgrner, D.: Believable Software Management. Encyclopedia of Software Engi-
neering 1(1), 1-32 (2011)

http://research.microsoft.com/en-us/projects/slam
http://research.microsoft.com/en-us/projects/specsharp
http://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

40 Years of Formal Methods 57

Bjgrner, D., et al. (eds.): VDM, FME and FM Symposia 1987-2012, LNCS, vol.
252, 328, 428, 551-552, 670, 873, 1051, 1313, 1708-1709, 2021, 2391, 2805, 3582,
4085, 5014, 6664, 7436 (1987-2012)

Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978) (This was the first mono-
graph on Meta-IV)

Bjgrner, D., Jones, C.B. (eds.): Formal Specification and Software Development.
Prentice-Hall (1982)

Bjgrner, D., Oest, O.N. (eds.): Towards a Formal Description of Ada. LNCS,
vol. 98. Springer, Heidelberg (1980)

Bjgrner, N., Browne, A., Colon, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe,
T.: Verifying Temporal Properties of Reactive Systems: A STeP Tutorial. Formal
Methods in System Design 16, 227-270 (2000)

Bjgrner, N., McMillan, K., Rybalchenko, A.: Higher-order Program Verification
as Satisfiability Modulo Theories with Algebraic Data-types. In: Higher-Order
Program Analysis (June 2013),
http://hopa.cs.rhul.ac.uk/files/proceedings.html

Blanchet, B., Cousot, P., Cousot, R., Jerome Feret, L.M., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation, pp. 196-207 (2003)

Bowen, J., et al.: Z, B, ZUM, ABZ Meetings, Conferences, Symposia and Work-
shops, Z Users Workshops: 1986-1995; Z, ZB and ABZ Users Meetings: 1996-2013.
LNCS, vol. 1212, 1493, 1878, 2272, 2651, 3455, 5238, 5977 and 7316 (1986—2014)
Burstall, R.M., Landin, P.J.: Programs and their proofs: an algebraic approach.
Technical report, DTIC Document (1968)

Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 342-363. Springer, Heidelberg (2006), Tool website:
http://www.eecs.ucf.edu/~1leavens/JML/index.shtml

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176.
Springer, Heidelberg (2004), Tool website: http://www.cprover.org/cbmc
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000) ISBN 0-262-03270-8

Clavel, M., Durédn, F., Eker, S., Lincoln, P., Oliet, N.M., Meseguer, J., Talcott,
C.: Maude 2.6 Manual, Department of Computer Science, University of Illinois
and Urbana-Champaign, Urbana-Champaign, Ill. USA (January 2011)
Clemmensen, G., Oest, O.: Formal specification and development of an Ada com-
piler — a VDM case study. In: Proc. 7th International Conf. on Software Engi-
neering, Orlando, Florida, March 26-29, pp. 430-440. IEEE (March 1984)

The CML programming language, http://cml.cs.uchicago.edu

Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer,
Heidelberg (2004)

Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23-42. Springer, Heidelberg (2009), Tool website:
http://research.microsoft.com/en-us/projects/vcc

http://hopa.cs.rhul.ac.uk/files/proceedings.html
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://www.cprover.org/cbmc
http://cml.cs.uchicago.edu
http://research.microsoft.com/en-us/projects/vcc

58

34.

35.
36.
37.
38.
39.
40.
41.
42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.
56.

57.

D. Bjgrner and K. Havelund

Cohen, E., Paul, W., Schmaltz, S.: Theory of multi core hypervisor verification.
In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H.
(eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 1-27. Springer, Heidelberg (2013)
CVS: Software Version Control, http://www.nongnu.org/cvs/

Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)

Bjgrner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Se-
ries, Monograph in Theoretical Computer Science. Springer, Heidelberg (2008)
Diirr, E.H., van Katwijk, J.: VDM™", A Formal Specification Language for Object
Oriented Designs. In: COMP EURO 1992, pp. 214-219. IEEE (May 1992)
Fitzgerald, J., Larsen, P.G.: Developing Software Using VDM-SL. Cambridge
University Press, Cambridge (1997)

Fitzgerald, J., Larsen, P.G.: Modelling Systems — Practical Tools and Techniques in
Software Development, 2nd edn. Cambridge University Press, Cambridge (2009)
Florian, M.: Analysis-Aware Design of Embedded Systems Software. PhD thesis,
California Institute of Technology, Pasadena, California (October 2013)

Floyd, R.W.: Assigning Meanings to Programs. In: [103], pp. 19-32 (1967)

The Frama-C software analysis framework, http://frama-c.com

Futatsugi, K., Diaconescu, R.: CafeOBJ Report The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. AMAST Series
in Computing, vol. 6. World Scientific Publishing Co. Pte. Ltd. (1998)

George, C.W., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Specification Language. The BCS Practi-
tioner Series. Prentice-Hall, Hemel Hampstead (1992)

George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead (1995)

Gries, D.: The Science of Programming. Springer (1981)

Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231-274 (1987)

Havelund, K.: The Fork Calculus - Towards a Logic for Concurrent ML. PhD
thesis, DIKU, Department of Computer Science, University of Copenhagen, Den-
mark (1994)

Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
STTT 2(4), 366-381 (2000)

Haxthausen, A.E., Yong, X.: Linking DC together with TRSL. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 25-44. Springer,
Heidelberg (2000)

Haxthausen, A.E.: Some Approaches for Integration of Specification Techniques.
In: INT 2000 — Integration of Specification Techniques with Applications in Engi-
neering, pp. 33—40. Technical University of Berlin, Germany. Dept. of Informatics
(2000)

Haxthausen, A.E., Yong, X.: A RAISE Specification Framework and Justification
assistant for the Duration Calculus, Saarbriicken, Dept of Linguistics, Gothenburg
University, Sweden (1998)

He, J.: From CSP to Hybrid Systems. In: A Classical Mind. Prentice Hall (1994)
Hehner, E.: The Logic of Programming. Prentice-Hall (1984)

Hoare, C.: The Axiomatic Basis of Computer Programming. Communications of
the ACM 12(10), 567-583 (1969)

Hoare, C.: Proof of Correctness of Data Representations. Acta Informatica 1,
271-281 (1972)

http://www.nongnu.org/cvs/
http://frama-c.com

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

40 Years of Formal Methods 59

Hoare, C.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International (1985, 2004), Published electronically:
http://www.usingcsp.com/cspbook.pdf

Holzmann, G.J.: Logic verification of ANSI-C code with SPIN. In: Havelund, K.,
Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 131-147. Springer,
Heidelberg (2000), Tool website: http://spinroot.com/modex

Holzmann, G.J.: The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading (2003)

International Conferences on Formal Engineering Methods, ICFEM (ed.) : LNCS,
vol. 2405, 2885, 3308, 3785, 4260, 4789, 5256, 5885, 6447 and 8144, IEEE Com-
puter Society Press and Springer Years 2002-2013: IEEE, Years 20022013
ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC) (1992,
1996, 1999)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006) ISBN 0-262-10114-9

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: A powerful, sound, predictable, fast verifier for C and Java.
In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 41-55. Springer, Heidelberg (2011), Tool website:
http://people.cs.kuleuven.be/~bart. jacobs/verifast

Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Object Technology Series. Addison—-Wesley, Addison Wesley Longman, Inc.,
One Jacob Way, Reading (1999)

Jones, C.B.: Software Development: A Rigorous Approach. Prentice-Hall (1980)
Jones, C.B.: Systematic Software Development — Using VDM, 2nd edn. Prentice-
Hall (1989)

Jones, N.D., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. C.A.R.Hoare Series in Computer Science. Prentice Hall International
(1993)

Kahrs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: A gentle
introduction. Theoretical Computer Science 173, 445-484 (1997), Tool website:
http://homepages.inf.ed.ac.uk/dts/eml

Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Publishers (June 2000)

Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (June 2000)

Knuth, D.: The Art of Computer Programming, Fundamental Algorithms, vol. 1.
Addison-Wesley, Reading (1968)

Knuth, D.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading (1969)

Knuth, D.: The Art of Computer Programming, Searching & Sorting, vol. 3.
Addison-Wesley, Reading (1973)

Lakos, C., et al. (eds.): SEFM: International IEEE Conferences on Software En-
gineering and Formal Methods, SEFM 2002-2013. IEEE Computer Society Press
(2003-2013)

Lamport, L.: Specifying Systems. Addison—-Wesley, Boston (2002)

Landin, P.J.: The mechanical evaluation of expressions. The Computer Jour-
nal 6(4), 308-320 (1964)

Landin, P.J.: Correspondence between ALGOL 60 and Church’s Lambda-
notation: part i. Communications of the ACM 8(2), 89-101 (1965)

http://www.usingcsp.com/cspbook.pdf
http://spinroot.com/modex
http://people.cs.kuleuven.be/~bart.jacobs/verifast
http://homepages.inf.ed.ac.uk/dts/eml

60

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.

93.

94.

95.
96.

97.

98.
99.
100.
101.

102.

D. Bjgrner and K. Havelund

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348-370.
Springer, Heidelberg (2010), Tool website:
http://research.microsoft.com/en-us/projects/dafny

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Specifications.
Addison Wesley (1991)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Safety. Addison
Wesley (1995)

McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computa-
tion by Machines, Part I. Communications of the ACM 3(4), 184-195 (1960)
McCarthy, J.: Towards a Mathematical Science of Computation. In: Popplewell,
C. (ed.) IFIP World Congress Proceedings, pp. 21-28 (1962)

Meyer, B.: Eiffel: The Language, 2nd revised edn., 300 pages. Prentice Hall PTR,
Upper Sadle River (1992) (Amazon price: US $47.00)

Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. The MIT Press,
Cambridge (1990)

Miller, A., Paul, W.: Computer Architecture, Complexity and Correctness.
Springer (2000)

Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

The OCaml programming language, http://ocaml.org

Oest, O.N.: Vdm from research to practice (invited paper). In: IFIP Congress,
pp. 527-534 (1986)

Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language
Reference, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Sys-
tem Guide, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

Paul, W.: Towards a Worldwide Verification Technology. In: Meyer, B., Woodcock,
J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 19-25. Springer, Heidelberg (2008)
Paulson, L.C.: ML for the Working Programmer. Cambridge University Press
(1991)

The Python programming language, http://www.python.org

Reisig, W.: Abstract State Machines for the Classroom. In: [37], pp. 15-46.
Springer (2008)

Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien.
Leitfaden der Informatik, 1st edn., June 15, 248 pages. Vieweg+Teubner (2010)
ISBN 978-3-8348-1290-2

Reisig, W.: Understanding Petri Nets Modeling Techniques, Analysis Methods,
Case Studies, 230+XXVII pages. Springer (2013) (145 illus)

Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, vol. 2, pp. 717-740. ACM (1972)
Reynolds, J.C.: The Craft of Programming. Prentice Hall PTR (1981)

Sannella, D., Tarlecki, A.: Foundations of Algebraic Semantcs and Formal Soft-
ware Development. Monographs in Theoretical Computer Science. Springer, Hei-
delberg (2012)

The Scala programming language, http://www.scala-lang.org

http://research.microsoft.com/en-us/projects/dafny
http://ocaml.org
http://www.python.org
http://www.scala-lang.org

103.

104.

105.
106.

107.

108.
109.

110.

111.

112.

113.

114.

115.

116.

40 Years of Formal Methods 61

Schwartz, J.: Mathematical Aspects of Computer Science. In: Proc. of Symp. in
Appl. Math. American Mathematical Society, Rhode Island (1967)

Scott, D., Strachey, C.: Towards a mathematical semantics for computer lan-
guages. In: Computers and Automata. Microwave Research Inst. Symposia,
vol. 21, pp. 19-46 (1971)

Sestoft, P.: Java Precisely, July 25. The MIT Press (2002)

Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial, Computer Science Labora-
tory, SRI International, Menlo Park, CA (February1993); Also appears in Tuto-
rial Notes, Formal Methods Europe 1993: Industrial-Strength Formal Methods,
Odense, Denmark, pp. 357-406 (April 1993)

Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Prover
Guide, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

Sommerville, I.: Software Engineering. Addison-Wesley (1982)

Static analysers: Semmle, http://www.semmle.com, Coverity:
http://www.coverity.com, CodeSonar: http://www.grammatech.com/codesonar,
KlocWork: http://www.klocwork.com, etc.

Thompson, S.: Haskell: The Craft of Functional Programming, 2nd edn., March
29, 512 pages. Addison Wesley (1999) ISBN 0201342758

Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking pro-
grams. Autom. Softw. Eng. 10(2), 203-232 (2003), Tool website:
http://javapathfinder.sourceforge.net

Whysall, P.J., McDermid, J.A.: An approach to object-oriented specification using
Z. In: Nicholls, J.E. (ed.) Z User Workshop, Oxford 1990. Workshops in Comput-
ing, pp. 193-215. Springer (1991)

Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Prac-
tice and Experience. ACM Computing Surveys 41(4), 19 (2009)

Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996)

Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of
hybrid systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of
Programming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207-281.
Springer, Heidelberg (2013)

Zhou, C.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real—
time Systems. Monographs in Theoretical Computer Science. An EATCS Series-
—Verlag. Springer (2004)

http://www.semmle.com
http://www.coverity.com
http://www.grammatech.com/codesonar
http://www.klocwork.com
http://javapathfinder.sourceforge.net

A Refinement Based Strategy for Local
Deadlock Analysis of Networks of CSP Processes

Pedro Antonino!, Augusto Sampaio!, and Jim Woodcock?

! Universidade Federal de Pernambuco, Centro de Informética, Recife, Brazil
{prga2,acas}@cin.ufpe.br
2 University of York, Department of Computer Science, York, UK
jim.woodcock@york.ac.uk

Abstract. Based on a characterisation of process networks in the CSP
process algebra, we formalise a set of behavioural restrictions used for
local deadlock analysis. Also, we formalise two patterns, originally pro-
posed by Roscoe, which avoid deadlocks in cyclic networks by perform-
ing only local analyses on components of the network; our formalisation
systematises the behavioural and structural constraints imposed by the
patterns. A distinguishing feature of our approach is the use of refine-
ment expressions for capturing notions of pattern conformance, which
can be mechanically checked by CSP tools like FDR. Moreover, three
examples are introduced to demonstrate the effectiveness of our strat-
egy, including a performance comparison between FDR default deadlock
assertion and the verification of local behavioural constraints induced by
our approach, also using FDR.

Keywords: Local Analysis, Deadlock Freedom, CSP, FDR, Behavioural
pattern.

1 Introduction

There are a number of ways to prove that a system is deadlock free. One ap-
proach is to prove, using a proof system and semantic model, that a deadlock
state is not reachable [14]. Another approach is to model check a system in or-
der to verify that a deadlock state cannot be reached [13]. Both approaches have
substantial drawbacks. Concerning the first approach, it is not fully automatic
and requires one to have a vast knowledge of: the semantic model, the notation
employed in the model and the proof system used. In the second approach, al-
though automatic, deadlock verification can became unmanageable due to the
exponential growth with the number of components of the system. To illustrate
these problems, let us assume that one is trying to prove that the dinning philoso-
phers is deadlock free using the CSP notation [8,13,16]. In the first approach,
one must be familiar with the stable failures semantic model [5,13,16] and with a
proof system to carry the proof itself. In the second case, assuming that we have
philosopher and fork processes with 7 and 4 states, respectively, the number of
states can grow up to 7V x 4V, where N is the number of philosophers in the

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 62-77, 2014.
© Springer International Publishing Switzerland 2014

A Refinement Based Strategy for Local Deadlock Analysis 63

configuration. For instance, to verify that a system with 50 philosophers and 50
forks is deadlock free one has to verify up to 7°° x 4°° states.

One alternative to these approaches is to adopt a hybrid technique, which
consists of proving, using semantic models and a proof system, that for a par-
ticular class of well-defined systems, a property can be verified by only checking
a small portion of the system. This principle, called local analysis, is the core
technique of some existing approaches to compositional analysis [1,4]. Concern-
ing deadlock analysis, in particular, the strategy reported in [14,6] introduces a
network model and behavioural constraints that support local analysis.

Nevertheless, despite the provided conceptual support for local deadlock anal-
ysis, the approach presented in [14,13,6] lacks systematisation and provides no
tool support. As a contribution of this work, we present an approach to fully sys-
tematise and formalise a behavioural constraint capturing the notion of conflict
freedom, enabling the verification of acyclic networks, and two communication
behavioural patterns [14,13,10], the resource allocation and the client/server
patterns, which guarantee deadlock freedom for cyclic networks. All these be-
havioural restrictions are described as refinement expressions, which enables au-
tomatic verification by a refinement checker like FDR [17].

Finally, three examples are introduced (a ring buffer, a dining philosophers
and a leadership election algorithm) as a proof of concept of our refinement
based strategy, as well as a performance comparison between our strategy (for
local analysis) and the built-in FDR deadlock freedom verification.

In the next section we briefly introduce CSP. In Section 3 we present the
network model [14,6] on which we base our approach. Our major contributions
are presented in Section 4: the formalisation of a behavioural condition that
guarantees deadlock freedom for acyclic network, the formalisation of two com-
munication patterns that avoid deadlocks in cyclic networks, and a refinement
based technique for verifying behavioural constraints of the network model and
conformance to the patterns. Section 5 provides practical evaluation and Section
6 gives our conclusions, as well as related and future work.

2 CSP

CSP is a process algebra that can be used to describe systems as interacting
components, which are independent self-contained processes with interfaces that
are used to interact with the environment [13]. Most of the CSP tools, like FDR,
accept a machine-processable CSP, called C'S Py, used in this paper. In Table 1,
we summarise the set of C'SPy; constructs used in this work.

Two CSP semantic models are also used: the stable failures, and the stable-
revivals models [16]. In the stable failures model, a process is represented by
its traces, which is a set of finite sequences of events it can perform, given by
traces(P), and by its stable failures. Stable failures are pairs (s, X) where s is
a finite trace and X is a set of events that the process can refuse to do after
performing the trace s. At the state where the process can refuse events in
X, the process must not be able to perform an internal action, otherwise this

64 P. Antonino, A. Sampaio, and J. Woodcock

Table 1. C'SPy; constructs

STOP Canonical deadlock

SKIP Successful termination

IF b THEN P ELSE Q Conditional choice

POQ External choice

P I7lQ Internal choice

P;Q Sequential composition

P [[a <- b]] Renaming (replaces occurences of event a with event b
in process P)

P\ S Hiding (hides the set of events in set S from P, making
these events internal)

P [csillcs2] Q Alphabetised parallelism (runs P and Q in parallel, where

P (Q) is only allowed to perform events in cs1 (cs2), and
they must synchronise in the events within cs1 N cs2)

[T x:8 @ P(x) Replicated external choice (external choice of the pro-
cesses P(x), where x is an element of S)
["] x:8 @ P(x) Replicated internal choice (internal choice of the pro-

cesses P(x), where x is an element of S)

Il x:8 @ [A(x)] P(x) Replicated alphabetised parallelism (parallelism of the
processes P(x) using alphabets A(x), where x is an ele-
ment of S)

state would be unstable and would not be taken into account in this model.
The function refusals(P,s) gives the set of X’s that a process P can refuse
after s, and failures(P) gives the set of stable failures of process P. The stable
revivals model has three components: traces, deadlocks and revivals. The traces
component is the same one as that described for the other model. The deadlocks
component gives the set of traces after which the process deadlocks. Finally, the
revivals component gives the set of triples (s, X, a) which is composed of a trace
s of the process, a set of refusals X after this trace, and an event that can be
performed after this refusal a, the revival event.

For each model, there is a refinement relation given by [M=. M can be T,F or
v for traces, stable failures and stable revivals, refinement relation respectively.
The refinement expression P [M= Q holds if and only if for each component of
model M, component(P) 2 component(Q). For instance, for the stable failures
model, P [F= Q < failures(P) D failures(Q) A traces(P) D traces(Q).

The choice of a model involves considerations about the semantic domain
convenient to capture the relevant property. The properties that can only be
expressed in terms of maximal failures are more intuitively represented in the
stable revivals model, since this model carries partial information about the
maximal failure: the revival event. On the other hand, the restrictions that can
be expressed without being confined to maximal failures can be easily captured
by the stable failure model and its refinement relation.

A Refinement Based Strategy for Local Deadlock Analysis 65
3 Network Model

The concepts presented in this section are essentially drawn from [6,14], which
present an approach to deadlock analysis of systems described as a network of
CSP processes. The most fundamental concept is the one of atomic tuples, which
represents the basic components of a system. These are triples that contain
an identifier for the component, the process describing the behaviour of this
component and an alphabet that represents the set of events that this component
can perform. A network is a finite set of atomic tuples.

Definition 1 (Network). Let CSP Processes be the set of all possible CSP
processes, X the set of CSP events and IdType the set for identifiers of atomic
tuples. A network is a set V, such that:

V C Atomics
where: Atomics = I[dType x CSP Processes x PX and V is finite

The behaviour of a network is given as a composition of the behaviour of
each component using the CSP alphabetised parallel operator, where the be-
haviour and alphabet from the atomic tuple identified by id are extracted by the
functions B(id, V') and A(id, V') respectively. We use the indexed version of the
alphabetised parallel operator.

Definition 2 (Behaviour of a network). Let V be a network.
B(V) =11 id : dom V @ [A(id,V)] B(id,V)

A live network is a structure that satisfies three assumptions. The first one is
busyness. A busy network is a network whose atomic components are deadlock
free. The second assumption is atomic non-termination, i.e. no atomic compo-
nent can terminate. The last assumption concerns interactions. A network is
triple-disjoint if at most two processes share an event, i.e. if for any three differ-
ent atomic tuples their alphabet intersection is the empty set.

In a live network, a deadlock state can only arise from an improper interaction
between processes, since no process can individually deadlock. This particular
misinteraction is captured by the concept of ungranted requests. An ungranted
request occur in a particular state o = (s, R) of the network. In this state, s is a
trace of the network and R is a vector of refusal sets, R(id) being the refusal set
of the process id after s [A(id, V), where s [A(id, V) corresponds to trace s
restricted to events in A(id, V). We introduce the notations o.s and 0.R to get
the s and the R component of state o, respectively. An ungranted request arises
in a state o when an atom, say id;, is offering an event to communicate with
another atom, say ids, but idy cannot offer any of the events expected by id;. In
addition, both processes must not be able to perform internal actions, i.e. events
that do not involve the synchronisation with another process.

Definition 3 (Ungranted request). Let id; and ids be identifiers of processes
in a network V, A1 = A(id1,V), Az = A(ida, V') and Voc(V) the set of shared

66 P. Antonino, A. Sampaio, and J. Woodcock

events of network V. There is an ungranted request from idy to ids in state o if
the following predicate holds:

ungranted request(V,o,idy,ids) =
request(V, o,idy,idz) N ungrantedness(V, o,idy, idz)
A in vocabulary(V, o, id,ids)

— request(V, o,idy,ids) = (A1 \ 0.R(id1)) N Az # 0
— ungrantedness(V, 0,idy, ids) = (A1 N A3) C (0.R(id1) U o.R(idz))
— in vocabulary(V, o,idy,idz) = (A1 \ 0.R(id1)) U (A2 \ 0.R(idz2)) C Voc(V)

Ungranted requests are the building blocks of a more complex structure de-
noted cycle of ungranted requests. A cycle of this kind is represented as a se-
quence of different process identifiers, C, where each element at the position i,
C(i), has an ungranted request to the element at the position i ® 1, C(i & 1),
where @ is addition modulo length of the sequence. A conflict is a proper cy-
cle of ungranted requests with length 2. After these definitions, a fundamental
theorem extracted from [6] is introduced.

Theorem 1. Let V be a live network. Any deadlocked state has a cycle of un-
granted requests.

Theorem 1 allows one to reduce the problem of avoiding deadlock by pre-
venting cycles of ungranted requests. With this result it is already possible to
fully verify a tree topology network in a local way, by checking only pairs of
processes, due to the fact that only conflicts can arise in tree networks. Never-
theless, networks with cycles in their topology cannot be locally verified by this
method, since the verification of absence of cycles of ungranted requests with
length greater than 2 involves a global verification of the entire system.

In [6,13,14,10], a set of patterns and examples of classes of networks is defined
by semantic behavioural properties and a rather informal description of the their
network structure. Although helpful for designing deadlock free systems, these
patterns lack systematisation and, more importantly, the associated restrictions
are expressed as semantic properties that must be proved in a semantic model.
Also, some of the properties are too restrictive; for instance, the behaviour of a
resource process is tied to be the one given by the rule. As a major contribu-
tion, in the next section, we present a formal systematisation of these patterns.
Also, we derive refinement assertions that precisely capture the conformance to
a particular pattern. Two examples are provided.

4 Local Deadlock Analysis Based on Patterns and
Refinement Checking

In this section, we present a local deadlock analysis strategy for networks with
acyclic and cyclic communication topologies. In order to alleviate the complex-
ity of local analysis, we use an abstraction function to reduce the states to be

A Refinement Based Strategy for Local Deadlock Analysis 67

analysed. If a process of a network can perform an individual event in a state o,
i.e., an event that does not require the permission of another process, then this
state is deadlock free, since this process can perform this event. Thus, for the
purpose of deadlock analysis, all states where a process offer an individual event
can be discarded as deadlock is impossible. As we are not concerned with diver-
gent behaviour, the hiding operator is used to abstract this meaningless states.
This enables us to focus on constraints over the behaviour related to interactions
between atoms, the meaningful behaviour for deadlock verification.

Definition 4 (Abstraction function). For a network V', let B(id, V') be the be-
haviour, A(id, V') the alphabet and AVoc(id, V') the set of events used for com-
municating with other processes of atom id. Then we define:

Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V))
where: AVoc(id,V) = Union({inter(A(id,V),A(ID_(a),V)) | a <- V, ID_(a) != id})

Now, we introduce a behavioural constraint capturing conflict freedom be-
tween pair of processes in a network. As already discussed, conflict freedom
allows one to locally verify an acyclic network to be deadlock free. This property
can be more intuitively captured by a refinement expression if the pair of atoms
being verified for conflict is placed in a particular behavioural context. This con-
text first abstracts the behavior of both atoms by using the function Abs and
extend their behaviour by allowing them to deterministically offer the special
event req whenever an event from A(idl, V') N A(id2,V) is offered. Secondly, it
composes the pair of processes using the alphabets extended with the req event.
This context is given by the Context process, where the Ext process performs the
abstraction and extension mentioned.

Definition 5 (Extended behaviour of a pair of processes). Let idl and id2 be
two processes of network V.

Context(idl,id2,V)= Ext(id1,id2,V) [union(A(id1,V),{req}) | lunion(A(id2,V),{req})]Ext(id2,id1,V)
where: Ext(id1,id2,V) = Abs(id1,V) [[x <- x, x <- req | x <- inter(A(id1,V),A(id2,V))]]

When placed in this context, a conflict arises when the req event is offered and
A(id1, V)N A(id2,V) is refused. Hence, a conflict free pair of processes does not
have a revival of the form (s, X, req) where A(id1) N A(id2) C X. The process
ConflictFreeSpec, presented next, describes a process that has every possible
behaviour but the ones that generate the conflicting form of revivals. It specifies
all the states such that when req is offered, then A(id1,V) N A(id2,V) is not
refused. The Context is conflict free, if the following refinement expression holds.

Definition 6 (Extended behavior conflict freedom specification). Let idl and
id2 be two identifiers of atoms of network V.

ConflictFreeSpec(idl,id2,V) =
let U_A = union(A(id1,V),A(id2,V))
I_A = inter(A(id1,V),A(id2,V))
CF_ ((I"] ev : I_A @ ev -> CF_) [] req -> CHAOS(union(U_A,{req})))
|“1 (17| ev : U_A @ ev -> CF_)
within CF_

where: CHAOS(Alp) = SKIP |~| STOP |~| (I~| ev : Alp @ ev -> CHAOS(Alp))

68 P. Antonino, A. Sampaio, and J. Woodcock

Theorem 2 (Soundness of conflict freedom refinement expression).
ConflictFreeSpec(idl,id2,V) [V= Comtext(idt,id2,V) = the pair (idl,id2) is conflict free.

Proof. In a conflict free state, the Context process must not have a revival of
the form (s, X, req) where A(idy) N A(idy) C X. After calculation of the revivals
of the ConflictFreeSpec, its revivals are given by the following set comprehen-
sion expression {(s, X,a)ls € (A1 U A2 U {req})* A a € (A1 U Az U {req}) A
a & X N (a=req= (A N Az) € X)}; this specification has all the possible
revivals but the ones generated by a conflict. If the refinement expression holds,
then revivals(ConflictFreeSpec(idl,id2,V)) O revivals(Context(idl,id2,V)).
Hence, in this case Context has only conflict free revivals. For the other compo-
nents of this model, deadlocks and traces, the restrictions are evident. Traces are
not restricted at all, traces(ConflictFreeSpec(idl,id2,V)) = (A; UA2U{req})*,
also as deadlock can only arise if there is a conflict, we restrict the set of dead-
locks to be empty, deadlocks(ConflictFreeSpec(idl,id2,V)) = {).

A more detailed proof of this and subsequent theorems can be found in [3].

With the characterisation of conflict freedom as a refinement assertion, one
can mechanically verify deadlock freedom for an acyclic network. Nevertheless,
cyclic networks can only be guaranteed deadlock free locally by the verification
of pattern compliance. In the sequel we present two of such patterns: the resource
allocation and the client/server pattern.

Our contribution here is the systematic formalisation of these patterns, par-
ticularly the way in which behavioural properties are captured. We describe pat-
terns as predicates over the network, imposing both behavioural and structural
restrictions on atoms participating in the network. Note that, since we impose
behavioural restrictions on the individual behaviour of atoms, we create a local
form of verifying deadlock freedom; instead of evaluating the entire network, we
analyse atoms individually for guaranteeing deadlock freedom. The behavioural
restrictions are expressed by an abstract CSP process and a conformance rela-
tion. The abstract process represents a specification of the expected behaviour of
a given atom, and the conformance relation, expressed as process refinement in
CSP, states whether or not a given atom conforms to this expected behaviour.
These refinement expressions can be verified using a refinement checker. The
structural restrictions are captured by first order predicates.

4.1 Resource Allocation Pattern

The resource allocation pattern can be applied to systems that, in order to
perform an action, have to acquire some shared resources such as a lock. In this
pattern the atoms of a network are divided into user and resource processes. The
functions acquire(idy, idgr) and release(idy, idr) give the event used by the user
process idy to acquire (and, respectively, release) the resource idg. This pattern
imposes a behavioural restriction on both resource and user processes.

A Refinement Based Strategy for Local Deadlock Analysis 69

The expected behaviour of a resource is given by the following process. It
offers the events of acquisition to all users able to acquire this resource and,
once acquired, it offers the release event to the user that has acquired it. Note
that this is a schematic process; once the users(id) structure is defined, this
process is fully defined and it becomes an actual process. This is an artifice
used to specify behavioural constraints which are later tailored to a particular
concrete process.

Definition 7 (Resource specification). Let id be an identifier of a resource atom
and users(id) a set of user identifiers used by this resource.
ResourceSpec(id,V) =

let idsU = users(id)

Resource = [] idU : idsU @ acquire(idU,id) -> release(idU,id) -> Resource
within Resource

The required behaviour of a user is given by the following process. It first
acquires all the necessary resources and then releases them. Both acquiring and
releasing must be performed using the order denoted by the resources(id) se-
quence.

Definition 8 (User specification). Let id be an identifier of a user atom and
resources(id) a sequence of resource identifiers in which this user atom acquire
1ts resources.
UserSpec(id,V) =
let Aquire(s) = if s != <> then acquire(id,head(s)) -> Aquire(tail(s)) else SKIP
Release(s) = if s != <> then release(id,head(s)) -> Release(tail(s)) else SKIP

User(s) = Aquire(s);Release(s);User(s)
within User(resources(id))

The behavioural restriction imposed by the resource allocation pattern is given
by a conformance notion using the stable failure refinement relation [F=. The
refinement relation ensures that user and resource atoms of the network meet
their respective specification.

Definition 9 (Resource allocation behavioural restriction). Let uset and rset
be the sets of users and resources atoms identifiers, respectively.

Behaviour RA(V, uset, rset) = Behaviour(V, uset, UserSpec, [F=) A

Behaviour(V,rset, ResourceSpec, [F=)
where: Behaviour(V, S, Spec, R) =Vid : S e Spec(id, V) R Abs(id, V')

Besides the behavioural restriction, this pattern also imposes a structural
restriction, which is given by a conjunction of smaller conditions. The first con-
dition, partitions, ensures that users and resources are two disjoint partitions of
the network identifiers. The disjoint Alpha condition guarantees that the alpha-
bet of users and resources are disjoint, whereas controlled Alpha imposes that
the shared events between users and resources must be the set of acquire and re-
lease events. Finally, strictOrder ensures that the transitive closure of the >pg4
relation, >% 4, is a strict total order.

70 P. Antonino, A. Sampaio, and J. Woodcock

Definition 10 (Resource allocation structural restriction). Let V' be a network,
users a set of user atom identifiers, resources a set of resource atom identifiers.

Structure RA(V, users, resources) =
partitions(dom V, users, resources) A disjoint Alpha(V, resources) N
disjoint Alpha(V,users) A controlled Alpha(V, users, resources) A
strictTotalOrder(>5 4)

where:

partitions(S, P1,P2) =S =PIUP2APINP2=1
— disjointAlpha(V,S) =Vidy,ide : S @ A(idy, V) N A(ida, V) =0
controlledAlpha(V,S1,82) =Vid; : S1,idy : S2 e

A(idy, V) N A(ide, V) = {acquire(idy, ids), release(idy , idg) }
idy >pa ide = 3id : users @ i, j : dom sequence(id) e

id1 = sequence(id)(i) A idy = sequence(id)(j) N i < j

The compliance with the resource allocation pattern is given by the confor-
mance to both behavioural and structural conformances; i.e. the network must
satisfy both the StructureRA and Behaviour RA predicates. As the purpose of
the pattern is to avoid deadlock, we present a theorem which demonstrates that
compliance to the resource allocation pattern prevents deadlock.

Theorem 3 (Deadlock free resource allocation network). Let users and resources
be two sets of identifiers of network V.

If RA(V,users, resources) then V is deadlock free.

~

where: RA(V,users, resources) Structure RA(V, users, resources) A

Behaviour RA(V, users, resources)

Proof. First of all, an ungranted request can only happen from a user to a
resource and vice versa, since there is no interaction between two users or two
resources. Secondly, an ungranted request from a user to a resource can only
happen if the resource is acquired by some other user. Thirdly, an ungranted
request from a resource to a user can only happen if the user has already acquired
that resource. These conditions are guaranteed by pattern adherence.

Then, assuming that there is a cycle of ungranted requests, there must be a
maximal resource in the cycle, say C(imaq). Thus, the C(imq,®1) must be a user
process that has acquired this resource. Moreover, C'(i,,q. @ 2) is also a resource
process lower in the >% 4 order than C(imgy). Since C(imaz @ 1) is making an
ungranted request to C(imas @ 2), by the definition of the cycle, it is trying
to acquire this resource. Thus, the user process C(ima, @ 1) has the maximal
resource C(imqz) and is trying to acquire C(imqq. @ 2), which is a contradiction
concerning the pattern conditions.

A Refinement Based Strategy for Local Deadlock Analysis 71

4.2 Client/Server Pattern

The client/server pattern is used for architectures where an atom can behave
as a server or as a client in the network. The events in the alphabets of atoms
can be classified into client requests, server requests and responses. When the
process offers a server request event it is in a server state, in which it has to offer
all its server requests to its clients. This behaviour is described by the following
specification. The specification allows the process to behave arbitrarily when
performing non server request events; however if a server request is offered, it
offers all server request events. The server request events of atom id is given by
the function serverRequests(id).

Definition 11 (Behavioural server requests specification). Let id be an identifier
of the atom in a network V and serverFEvents a function that yield the set of
server events of an atom given its identifier.

ServerRequestsSpec(id,V) =
let sEvs = serverRequests(id)
othersEvs = diff(A(id,V),sEvs)
Server = ((|~| ev : othersEvs @ ev -> SKIP) |~| ([] ev : sEvs @ ev -> SKIP)) ; Server
within if not empty(othersEvs) then Server else RUN(sevs)

where: RUN(evs) = [1 ev : evs @ ev -> RUN(evs)

There is also an imposition in the behaviour of processes concerning requests
and responses. A process, conforming to the client/server pattern, must initially
offer its request events. Once a request is performed, it can behave in several
ways, according to some conditions. If the request performed demands no re-
sponse, then the process must offer, again, some request events. If the request
demands a response, then there are two cases to consider depending on whether
the request performed was a server one or a client one. In the case of a server
request, the process must answer this request with at least one of the possible
responses. In the case of a client request, the process must be able to accept
all response expected. The function responses gives this set of the expected re-
sponses for a request event, and the client requests, of an atom identified by id,
are given by the function client Requests(id). The specification of this behaviour
is given by the following process.

Definition 12 (Behavioural server responses specification). Let id be an iden-
tifier of the atom in a network V.

RequestsResponsesSpec(id,V) =
let cEvs = clientRequests(id)
sEvs = serverRequests(id)
ClientRequestsResponsesSpec =
(17| ev : cEvs @ ev -> (if empty(responses(ev)) then SKIP
else ([] res : responses(ev) @ res -> SKIP)))
ServerRequestsResponsesSpec =
(1"l ev : sEvs @ ev -> (if empty(responses(ev)) then SKIP
else (|~| res : responses(ev) @ res-> SKIP)))
C = ClientRequestsResponsesSpec;C
S = ServerRequestsResponsesSpec;S
CS = (ClientRequestsResponsesSpec |~| ServerRequestsResponsesSpec);CS
within

72 P. Antonino, A. Sampaio, and J. Woodcock

if empty(cEvs) and empty(sEvs) then STOP
else
if empty(cEvs) then S
else
if empty(sEvs) then C
else CS

The conformance of an atom’s behaviour to the ServerRequestsSpec is defined
by the refinement relation in the stable revivals model, whereas conformance to
the RequestsResponsesSpec is defined by the stable failure refinement relation.

Definition 13 (Client/server behavioural restriction). Let V' be a network.

BehaviourCS(V) = Behaviour(V,domV, ServerRequestsSpec, [V=) A
Behaviour(V,dom V, RequestResponsesSpec, [F=)

Similarly to the resource allocation structural restriction, the structural re-
striction of the client/server pattern is composed by a conjunction of smaller
clauses. The disjoint Events predicate ensures that the events used for sever
requests, client requests, server responses and client responses, for an atom,
are disjoint. The controlled Alpha predicate guarantees that the communication
alphabet is restricted to client and server events. The pairedEvents guaran-
tees that every server request has a client request pair and vice-versa. Also, the
strictOrder predicate guarantees that the transitive closure of the >¢g relation,
(>&g), is a strict order.

Definition 14 (Client/server structural restriction). Let V' be a live network,
and =pqme an equality relation on function names; we actually use fi #name fo
as an abbreviation of =(f1 =name f2). Also, let SRq(id) = server Requests(id),
CRq(id) = clientRequests(id), SRp(id) = UrquSRq(id) responses(req) and
CRp(id) = UrquCRq(id) responses(req).

StructureCS(V) = disjoint Events({CRq, SRq,CRp, SRp}, V) A
controlled Alpha(V,dom V') A
pairedEvents(V,dom V) A strictOrder(>¢g)

where:

— disjointEvents(F's,V) =

Vid:domV; f: Fs e fi Zname fo = f1(id) N f2(id) =0
controlledAlpha(V, S) =

Vid: S e AVoc(id, V) = SRq(id) U CRq(id) U SRp(id) U CRp(id)
pairedRequests(V,S) =

Vid:domV e Vreq: SRq(id) @ 3id' : domV e req € CRq(id') A

Vid:domV e Vreq: CRq(id) ® Jid : domV e req € SRq(id')
—idl >es id2 = CRq(idl) N SRq(id2) # 0

A Refinement Based Strategy for Local Deadlock Analysis 73

A network conforms to this predicate if the conjunction of the structural and
behavioural restriction is satisfied. The goal of preventing deadlock is achieved
by this pattern as stated by the following theorem.

Theorem 4 (Network CS conform is deadlock free). Let V' be a network.
If ConformCS(V) then V is deadlock free.
where: ConformCS(V) = BehaviourCS(V) A StructureCS(V)

Proof. The structural restriction ensures that the behaviour involved in inter-
actions between the processes in a client/server network is the one restricted by
the behavioural constraints. The behavioural restrictions impede an ungranted
request from an atom behaving as a client to an atom behaving as a server. In
a server state, this server must be offering all its request events, and the atom
behaving as a client must be willing to perform a client request to this server
client. As the server is accepting all requests, it is also accepting the request
being made by the client, precluding the ungranted request. Thus, in a cycle of
ungranted requests, if C(4) is acting as a client, then C'(i @ 1) must be acting as
a client as well, hence by induction, a cycle that has a client must be composed
only of clients, and as a consequence a cycle that has a server must be composed
only by atoms behaving as servers.

If the cycle of ungranted requests is exclusively composed of either client or
server behaving atoms, then in this cycle either C'(¢) >cg C(i @ 1) if processes
are behaving as clients, or C(i ® 1) >¢g C(7) if they are behaving as servers. As
>%.g is a strict order, if a cycle is possible this means that C'(i) >¢¢ C(4), which
contradicts the irreflexive property of the order, what proves that no cycle of
ungranted request can arise, preventing deadlocks according to Theorem 1.

5 Experimental Analysis

As a proof of concept of our strategy, we have applied the formalised patterns and
conflict freedom assertion to verify deadlock freedom for three examples: a ring
buffer, the asymmetric dining philosophers and a leadership election algorithm.
The CSP models of all the three examples are parametrised to allow instances
with different number of processes. The CSP models can be found in [3].

The ring buffer stores data in a circular way. This system is composed of a
controller which is responsible for inputting and outputting data, and a set of
memory cells to store data. The controller is responsible for storing input data
in the appropriate cell according to its information about the top and bottom
indices of the buffer. It also possesses a cache cell where it stores the data ready
to be read. This system has an acyclic topology as it can be seen as a tree where
the controller is the root and the memory cells its leaves. We parametrised this
model by N, the number of cells to store data. Its communication architecture
for a model with N = 3 is depicted in Figure 1(a).

The dining philosophers consists of philosophers that try to acquire forks in
order to eat. It is a classical deadlock problem and its asymmetric version obeys

74 P. Antonino, A. Sampaio, and J. Woodcock

Leader Leader
[Controller Pl Fork Phil Election Election
Node Node
T T
Leader
Memory Memary Memory Fork Phil Fork Election
Cell Cell Cell Node

(a) Ring buffer b) Dining philosophers (c) Leadership election

Fig. 1. Communication architectures with N = 3

our resource allocation pattern restrictions. The forks are the resources and the
philosophers the users. In the asymmetric case, every philosopher acquires its left
fork, then its right one, but one has an asymmetric behaviour acquiring first the
right and then the left fork. This is a cyclic network that has a ring topology, and
a classical example of the resource allocation pattern. This model is parametrised
by N the number of philosophers. Its communication architecture for a model
with N = 3 is depicted in Figure 1(b).

The last example is a simplified model of a distributed synchronised leadership
election system. The nodes are composed of a controller, a memory, a receiver
and a transmitter and they exchange data to elect the leader of the network.
Every node can communicate with every other node, hence we have a cyclic fully
connected graph. For this model we applied the client/server pattern as this
leadership election model conforms to this pattern. We parametrised this model
by N the number of leadership election nodes. Its communication architecture
for a model with N = 3 is depicted in Figure 1(c).

In order to demonstrate, in practice, that local analysis avoids combinatorial
explosion, we have conducted a comparative analysis of two verification ap-
proaches for those examples, all using FDR: (i) analysis of the complete model;
(ii) local analysis of the model using the refinement assertions presented in Sec-
tion 4. For the analysis of our strategy (ii), we only assess the time for verifying
behavioural constraints. Since the structural restrictions can be static analysed,
they represent a negligible value if compared to the behavioural constraints.

We conducted the analysis for different instances of N’s (3, 5, 10, 20, 30), as
explained before; these are summarised in Table 2. In the table we present the
amount of time involved in each case. We used a dedicated server with an 8 core
Intel(R) Xeon(R) 2.67GHz and 16 GB of RAM in an Ubuntu 4.4.3 system.

The results demonstrate how the time for deadlock verification can grow
exponentially with the linear increase of the number of processes for global
methods such as (i). Also, it demonstrates that our approach, based on patterns
that support local analysis, seems promising; to our knowledge, it is the first
sound and be the only automated strategy for guaranteeing deadlock freedom
for complex systems. Notice, particularly, that our strategy (ii) allows one to
verify a leadership election system with 30 nodes in less than 35 minutes, a very
promising result in dealing with a complex system involving a fully connected
graph of components. On the other hand, global analysis of the complete model

A Refinement Based Strategy for Local Deadlock Analysis 75

Table 2. Performance comparison measured in seconds

Ring Buffer Dining Philosophers Leader Election
N #Procs (i) (ii) #Procs (i) (ii) #Procs (i) (i)
3 4 0.02 0.01 6 0.19 0.09 12 * 8.67

5 6 0.161 0.535 10 0.109 0.21 20 * 18
10 11 86.79 3.12 20 701.05 0.4 40 * 62
20 21 * 2192 40 * 1 80 * 442
30 31 *85.35 60 * 228 120 * 1926

* Exceed the execution limit of 1 hour

in FDR is unable to give an answer in the established time limit for a 3 node
instance. In order to give an idea of the size of this system with 30 nodes, the
processes controller, receiver, transmitter and memory have 854, 271, 263 and 99
states, respectively. This means that the leader election system can have up to
85430 x 27130 x 26330 x 9930 states. Another consideration is that local analysis
also enables the use of parallel cores to verify simultaneously different processes,
which would reduce the amount of time for verification even further.

6 Conclusion and Related Work

Our verification strategy focuses on a local analysis of deadlock freedom of de-
sign models of concurrent systems which obey certain architectural patterns.
Although this method is not complete, it already covers a vast spectrum of sys-
tems, those that are conflict free systems, as well as cyclic systems that can
be designed in terms of the formalised patterns. The strategy seems promising
in terms of performance, applicability and complexity mastering, as evidenced
by the application of the strategy for complex systems such as a distributed
leadership election example.

A variation of the leadership election algorithm, based on a distinct commu-
nication pattern, is explored in [2]. The emphasis there is on a detailed for-
malisation of the algorithm and the proposed pattern. The gains obtained with
local deadlock analysis are similar to those reported here, which gives some more
evidence of the practical applicability of our approach.

Roscoe and Brookes developed a structured model for analysing deadlock in
networks [6]. They created the model based on networks of processes and a body
of concepts that helped to analyse networks in a more elegant and abstract way.
Roscoe and Dathi also contributed by developing a proof method for deadlock free-
dom [14]. They have built a method to prove deadlock freedom based on variants,
similar to the ones used to prove loop termination. In their work, they also start
to analyse some of the patterns that arise in deadlock free systems. Although their
results enable one to verify locally a class of networks, there is no framework avail-
able that implements their results such as the one presented here. A more recent
work by Roscoe et al. [15] presents some compression techniques, which are able to
check the dining philosopher example for 10'%° processes. Compression techniques
are an important complementary step for further improving our strategy.

76 P. Antonino, A. Sampaio, and J. Woodcock

Following these initial works, Martin defined some design rules to avoid dead-
lock freedom [10]. He also developed an algorithm and a tool with the specific
purpose of deadlock verification, the Deadlock checker [11], which reduces the
problem of deadlock checking to the quest of cycles of ungranted requests, in
live networks. The algorithm used by this tool can also incur an exponential
explosion in the state space to be verified, as the quest of a cycle of ungranted
request can be as hard as the quest of finding a deadlocked state.

In [9], the authors propose an encoding of the network model and of a rule
from [14], which allows a local proof of deadlock freedom, in a theorem prover. Even
though this encoding provides mechanical support for deadlock analysis and allows
one to reason locally, it does not resolve some of the problems that motivated this
work, which is to insulate the user as much as possible from the details of the for-
malisation. For instance, in order to carry out the proof using the approach in [9]
one has to understand the stable-failures semantic model, has to directly interact
with the theorem prover, and has to provide some mathematical structures that are
not evident, such as a partial order that breaks the cycles of ungranted requests. On
the other hand, our work could benefit from this encoding to mechanise the formal-
isation of our patterns using a theorem prover. Also, an encoding of our patterns
brings the alternative of proving deadlock freedom via pattern adherence.

In [7], the authors carried out a proof demonstrating that the networks be-
longing to the class of hexagonal systolic arrays are deadlock free. Nevertheless,
they do not propose a systematic way for verifying that a given system is an
hexagonal systolic array, and the authors recognise that the proof is theoreti-
cally error-prone, and practically infeasible, if carried manually, as they did. Our
work could be combined with this one, so as to create a pattern to systematically
capture networks of this kind. This new method would benefit from the system-
atisation we have proposed, in terms of refinement expressions, for automatic
verification that a network is an hexagonal systolic array.

In a recent work, Ramos et al. developed a strategy to compose systems guar-
anteeing deadlock freedom for each composition [12]. The main drawback with
their method is the lack of compositional support to cyclic networks. One of the
rules presented there is able to, in a compositional way, connect components in
order to build a tree topology component. They presented a rule to deal with
cyclic components but it is not compositional, in the sense that the verification
of its proviso is not local, i.e. it must be performed in the entire system. Our
strategy complements and can be easily combined with this compositional ap-
proach. A distinguishing feature of our strategy is precisely the possibility of
combining it with other systematic approaches to analysis.

As future work we plan to formalise additional patterns, such as the cyclic
communicating pattern. Also, we plan to carry out further practical experiments
and implement an elaborated framework to support the entire strategy, running
FDR in background to carry out the analyses.

Acknowledgments. The EU Framework 7 Integrated Project COM-
PASS (Grant Agreement 287829) financed most of the work presented here.
This work was also partially supported by the National Institute of Science and

A Refinement Based Strategy for Local Deadlock Analysis 7

Technology for Software Engineering (INES), funded by CNPq and FACEPE,
grants 573964 /2008-4 and APQ-1037-1.03/08.

References

10.

11.

12.

13.

14.

15.

16.
17.

Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73-132 (1993)

Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: An industrial SoS application of compositional deadlock
verification. In: Rozier, K.Y. (ed.) NFM 2014. LNCS, vol. 8430, pp. 31-45. Springer,
Heidelberg (2014)

Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of csp processes — extended version. Technical
report, Centro de informética, Universidade Federal de Pernambuco (November
2013), http://www.cin.ufpe.br/~prga2/tech/techFM2014.html

Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-finder 2: Towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453-458. Springer, Heidelberg (2011)

Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-
cesses. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concur-
rency. LNCS, vol. 197, pp. 281-305. Springer, Heidelberg (1985)

Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communicating
processes. Distributed Computing 4, 209-230 (1991)

Gruner, S., Steyn, T.J.: Deadlock-freeness of hexagonal systolic arrays. Inf. Process.
Lett. 110(14-15), 539-543 (2010)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

Isobe, Y., Roggenbach, M., Gruner, S.: Extending CSP-Prover by deadlock-
analysis: Towards the verification of systolic arrays. In: FOSE 2005. Japanese Lec-
ture Notes Series, vol. 31. Kindai-kagaku-sha (2005)

Martin, J.M.R., Welch, P.H.: A Design Strategy for Deadlock-Free Concurrent
Systems. Transputer Communications 3(4), 215-232 (1997)

Martin, J.: Deadlock checker repository (2012),
http://wotug.org/parallel/theory/formal/csp/Deadlock/

Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy com-
ponent systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 140-156. Springer, Heidelberg (2009)

Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall (1998)
Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Inf. Comput. 75(3),
289-327 (1987)

Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133-152. Springer, Heidelberg (1995)

Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)

University of Oxford. FDR: User Manual, version 2.94 (2012),
http://www.cs.ox.ac.uk/projects/concurrency-tools/

http://www.cin.ufpe.br/~prga2/tech/techFM2014.html
http://wotug.org/parallel/theory/formal/csp/Deadlock/
http://www.cs.ox.ac.uk/projects/concurrency-tools/

Algebraic Principles for Rely-Guarantee Style
Concurrency Verification Tools

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Department of Computer Science, University of Sheffield, UK
{a.armstrong,v.gomes,g.struth}@dcs.shef.ac.uk

Abstract. We provide simple equational principles for deriving rely-
guarantee-style inference rules and refinement laws based on idempotent
semirings. We link the algebraic layer with concrete models of programs
based on languages and execution traces. We have implemented the ap-
proach in Isabelle/HOL as a lightweight concurrency verification tool
that supports reasoning about the control and data flow of concurrent
programs with shared variables at different levels of abstraction. This is
illustrated on a simple verification example.

1 Introduction

Extensions of Hoare logics are becoming increasingly important for the verifi-
cation and development of concurrent and multiprocessor programs. One of the
most popular extensions is Jones’ rely-guarantee method [17]. A main benefit
of this method is compositionality: the verification of large concurrent programs
can be reduced to the independent verification of individual subprograms. The
effect of interactions or interference between subprograms is captured by rely
and guarantee conditions. Rely conditions describe the effect of the environment
on an individual subprogram. Guarantee conditions, in turn, describe the effect
of an individual subprogram on the environment. By constraining a subprogram
by a rely condition, the global effect of interactions is captured locally.

To make this method applicable to concrete program development and verifi-
cation tasks, its integration into tools is essential. To capture the flexibility of the
method, a number of features seem desirable. First, we need to implement solid
mathematical models for fine-grained program behaviour. Second, we would like
an abstract layer at which inference rules and refinement laws can be derived
easily. Third, a high degree of proof automation is mandatory for the analysis
of concrete programs. In the context of the rely-guarantee method, tools with
these important features are currently missing.

This paper presents a novel approach for providing such a tool integration in
the interactive theorem proving environment Isabelle/HOL. At the most abstract
level, we use algebras to reason about the control flow of programs as well as for
deriving inference rules and refinement laws. At the most concrete level, detailed
models of program stores support fine-grained reasoning about program data
flow and interference. These models are then linked with the algebras. Isabelle

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 78-93, 2014.
© Springer International Publishing Switzerland 2014

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 79

allows us to implement these layers in a modular way and relate them formally
with one another. It not only provides us with a high degree of confidence in
the correctness of our development, it also supports the construction of custom
proof tactics and procedures for program verification and refinement tasks.

For sequential programs, the applicability of algebra, and Kleene algebra in
particular, has been known for decades. Kleene algebra provides operations for
non-deterministic choice, sequential composition and finite iteration, in addi-
tion to skip and abort. With appropriate extensions, Kleene algebras support
Hoare-style verification of sequential programs, and allow the derivation of pro-
gram equivalences and refinement rules [20,16]. Kleene algebras have been used
in applications including compiler optimisation, program construction, transfor-
mation and termination analysis, and static analysis. Formalisations and tools
are available in interactive theorem provers such as Coq [26] and Isabelle [2,3,1].
A first step towards an algebraic description of rely-guarantee based reasoning
has recently been undertaken [16].

The main contributions of this paper are as follows. First, we investigate alge-
braic principles for rely-guarantee style reasoning. Starting from [16] we extract a
basic minimal set of axioms for rely and guarantee conditions which suffice to de-
rive the standard rely-guarantee inference rules. These axioms provide valuable
insights into the conceptual and operational role of these constraints. However,
algebra is inherently compositional, so it turns out that these axioms do not fully
capture the semantics of interference in execution traces. We therefore explore
how the compositionality of these axioms can be broken in the right way, so as
to capture the intended trace semantics.

Second, we link our rely-guarantee algebras with a simple trace based seman-
tics which so far is restricted to finite executions and disregards termination
and synchronisation. Despite the simplicity of this model, we demonstrate and
evaluate our prototypical verification tool implemented in Isabelle by verify-
ing a simple example from the literature. Beyond that our approach provides
a coherent framework from which more complex and detailed models can be
implemented in the future.

Third, we derive the usual inference rules of the rely-guarantee method with
the exception of assignment axioms directly from the algebra, and obtain assign-
ment axioms from our models. Our formalisation in Isabelle allows us to reason
seamlessly across these layers, which includes the data flow and the control flow
of concurrent programs.

Taken together, our Isabelle implementation constitutes a tool prototype for
the verification and construction of concurrent programs. We illustrate the tool
with a simple example from the literature. The complete Isabelle code can be
found online!. A previous Isabelle implementation of rely-guarantee reasoning is
due to Prensa Nieto [24]. Our implementation differs both by making the link
between concrete programs and algebras explicit, which increases modularity,
and by allowing arbitrary nested parallelism.

! www.dcs.shef.ac.uk/~alasdair/rg

www.dcs.shef.ac.uk/~alasdair/rg

80 A. Armstrong, V.B.F. Gomes, and G. Struth

2 Algebraic Preliminaries

Rely-guarantee algebras, which are introduced in the following section, are based
on dioids and Kleene algebras. A semiring is a structure (S, +,-,0,1) such that
(S,+,0) is a commutative monoid, (S,+,1) is a monoid and the distributivity
laws 2 - (y+2) =2 -z4+y-zand (z+y) -2 =z -2z+y- 2z as well as the
annihilation laws z -0 = 0 and 0 -z = 0 hold. A dioid is a semiring in which
addition is idempotent: x + x = x. Hence (S, +,0) forms a join semilattice with
least element 0 and partial order defined, as usual, as * <y < x+y = y. The
operations of addition and multiplication are isotone with respect to the order,
that is, x < y implies z+x < z4y,z-x < z-yand z-z < y-z. A dioid is
commutative if multiplication is: x -y =y - x.

In the context of sequential programs, one typically thinks of - as sequential
composition, + as nondeterministic choice, 0 as the abortive action and 1 as skip.
In this context it is essential that multiplication is not commutative. Often we
use ; for sequential composition when discussing programs. More formally, it is
well known that (regular) languages with language union as +, language product
as -, the empty language as 0 and the empty word language {¢} as 1 form dioids.
Another model is formed by binary relations with the union of relations as +,
the product of relations as -, the empty relation as 0 and the identity relation
as 1. A model of commutative dioids is formed by sets of (finite) multisets or
Parikh vectors with multiset addition as multiplication.

It is well known that commutative dioids can be used for modelling the interac-
tion between concurrent composition and nondeterministic choice. The following
definition serves as a basis for models of concurrency in which sequential and
concurrent composition interact.

A trioid is a structure (S,+,,||,0,1) such that (S,+,-,0,1) is a dioid and
(S,+,1],0,1) a commutative dioid. In a trioid there is no interaction between
the sequential composition - and the parallel composition ||. On the one hand,
Gischer has shown that trioids are sound and complete for the equational theory
of series-parallel pomset languages [13], which form a well studied model of true
concurrency. On the other hand, he has also obtained a completeness result
with respect to a notion of pomset subsumption for trioids with the additional
interchange aziom (w||z) - (y||z) < (w-y)||(x - z) and it is well known that this
additional axiom also holds for (regular) languages in which || is interpreted as
the shuffle or interleaving operation [12].

Formally, the shuffle || of two finite words is defined inductively as €||s = {s},
slle = {s}, and as||bt = a(s||bt) U b(as||t), which is then lifted to the shuffle
product of languages X and Y as X||Y ={z|ly: r € X Az € Y}.

For programming, notions of iteration are essential. A Kleene algebra is a
dioid expanded with a star operation which satisfies both the left unfold axiom
1+ -2 < x* and left and right induction axioms z+ -y <y=x*-2 <y
and z+y- -z <y =z -2° <y. It follows that 1 + = - z* = x* and that the
right unfold axiom 1+ a* -z < z* is derivable as well. Thus iteration z* is mod-
elled as the least fixpoint of the function Ay.1+4x-y, which is the same as the least

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 81

fixpoint of A\y.1 + y - z. A commutative Kleene algebra is a Kleene algebra in
which multiplication is commutative.

Tt is well known that (regular) languages form Kleene algebras and that (regu-
lar) sets of multisets form commutative Kleene algebras. In fact, Kleene algebras
are complete with respect to the equational theory of regular languages as well
as the equational theory of binary relations with the reflexive transitive closure
operation as the star [19]. Moreover, commutative Kleene algebras are complete
with respect to the equational theory of regular languages over multisets [7]. It
follows that equations in (commutative) Kleene algebras are decidable.

A bi-Kleene algebra is a structure (K, 4+, |[,0,1,*,*)) where (K, +,-,0,1,%)
is a Kleene algebra and (K, +,||,0,1,*)) is a commutative Kleene algebra. Bi-
Kleene algebras are sound and complete with respect to the equational theory
of regular series-parallel pomset languages, and the equational theory is again
decidable [21]. A concurrent Kleene algebra is a bi-Kleene algebra which satisfies
the interchange law [16]. It can be shown that shuffle languages and regular
series-parallel pomset languages with a suitable notion of pomset subsumption
form concurrent Kleene algebras.

In some contexts, it is also useful to add a meet operation M to a bi-Kleene
algebra, such that (K, +,M) is a distributive lattice. This is particularly needed
in the context of refinement, where we typically want to represent specifications
as well as programs.

A (unital) quantale is a dioid based on a complete lattice where the multipli-
cation distributes over arbitrary suprema. Formally, it is a structure (5, <,-, 1)
such that (5, <) is a complete lattice, (5,,1) is a monoid and

2(XY) = X{zyly e Y}, (XX)y = X{zylr € X}.

In a quantale the star is the sum of all powers z”. Therefore, all quantales are
also Kleene algebras.

3 Generalised Hoare Logics in Kleene Algebra

It is well known that the inference rules of sequential Hoare logic (except the as-
signment axiom) can be derived in expansions of Kleene algebras. One approach
is as follows [23]. Suppose a suitable Boolean algebra B of tests has been em-
bedded into a Kleene algebra K such that 0 and 1 are the minimal and maximal
element of B, 4+ corresponds to join and - to meet. Complements — are defined
only on B. Suppose further that a backward diamond operator (x|p has been de-
fined for each x € K and p € B, which models the set of all states to which each
terminating execution of program x may lead from states p. Finally suppose that
a forward box operator |z]p has been defined which models the (largest) set of
states from which every terminating execution of must end in states p and that
boxes and diamonds are adjoints of the Galois connection (z|p < ¢ & p < |z]g,
for all x € K and p,q € B. It is then evident from the above explanations that
validity of a Hoare triple F {p}x{q} can be encoded as (x|p < ¢ and the weakest
liberal precondition operator wlp(z,q) as |z]p. Hence the relationship between

82 A. Armstrong, V.B.F. Gomes, and G. Struth

the proof theory and the semantics of Hoare logic is captured by the Galois
connection F {p}z{q} & p < wlp(z,q). It has been shown that the relational
semantics of sequential while-programs can be encoded in these modal Kleene
algebras and that the inference rules of Hoare logic can be derived [23].

In the context of concurrency, this relational approach is no longer appropri-
ate; the following approach by Tarlecki [28] can be used instead. One can now
encode validity of a Hoare triple as

Falylzt e aey <z

for arbitrary elements of a Kleene algebra. Nevertheless all the rules of sequential
Hoare logic except the assignment axiom can still be derived [16]. Tarlecki’s
motivating explanations carry over to the algebraic approach.

As an example we show the derivation of a generalised while rule. Suppose
z-t-y <z Then x- (t-y)* < by the right induction axiom of Kleene algebra
and therefore = - (t - y)* - t' < x - t' for arbitrary element ¢’ by isotonicity of
multiplication. This derives the while rule

= {x - thy{z}
F{a}(t-y)r -tz -t}

for a generalised while loop (¢-y)* - t/, which specialises to the conventional rule
when ¢ and ¢’ are, in some sense, complements.

The correspondence to a wlp-style semantics, as in modal Kleene algebra,
now requires a generalisation of the Galois connection for boxes and diamonds
to multiplication and an upper adjoint in the form of residuation. This can be
achieved in the context of action algebras [27], which expand Kleene algebras by
operations of left and right residuation defined by the Galois connections

zyYy<zer<ziy, zy<z&ey<z— oz

These residuals, and now even the Kleene star, can be axiomatised equationally
in action algebras. For a comprehensive list of the properties of action algebras
and their most important models see [2], including the language and the rela-
tional model. In analogy to the development in modal Kleene algebra we can
now stipulate wip(z,y) = y + x and obtain the Galois connection

= {zhy{z} & = < wlip(y, 2)

with F {wlp(y, 2) }y{z} and x < wlp(y, z) = F {z}y{z} as characteristic proper-
ties. Moreover, if the action algebra is also a quantale, and infinite sums exist,
it follows that wlp(y, z) = > {z : F {z}y{z}}. It is obvious that this definition
makes sense in all models of action algebras and quantales. Intuitively, suppose
p stands for the set of all behaviours of a system, for instance the set of all
execution traces, that end in state p, and likewise for ¢q. Then {p}z{q} states
that all executions ending in p can be extended by x to executions ending in q.
wlp(z, q) is the most general behaviour, that is the set of all executions p after
which all executions of z must end in g.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 83

A residuation for concurrent composition can be considered as well:
tly <z &y <z

The residual /7 represents the weakest program such that when placed in par-
allel with x, the parallel composition behaves as z.

4 A Rely-Guarantee Algebra

We now show how bi-Kleene algebras can be expanded into a simple algebra that
supports the derivation of rely-guarantee style inference rules. This development
does mot use the interchange law for several reasons. First, this law fails for fair
parallel composition z || y in models with possibly infinite, or non-terminating
programs. In this model, -y £ « ||; y whenever z is non-terminating. Secondly,
it is not needed for deriving the usual rules of rely-guarantee.

A rely-guarantee algebra is a structure (K, I, 4,0, ,*,0, 1), where (K, +,M)
is a distributive lattice, (K, +,-,|,0,1) is a trioid and (K,+,M,-,],*,0,1) is a
bi-Kleene algebra where we do not consider the parallel star. I is a distinguished
subset of rely and guarantee conditions or interference constraints which satisfy
the following axioms

rlr <, (1)
r <l (2)
rll(z-y) = (rllx) - (rlly), (3)
rlla™ < (rlla) " (4)
By convention, we use 7 and g to refer to elements of I, depending on whether
they are used as relies or guarantees, and x, y, z for arbitrary elements of K. The
operations || and M must be closed with respect to I.

The general idea is to constrain a program by a rely condition by executing
the two in parallel. Axiom (1) states that interference from a constraint being
run twice in parallel is no different from just the interference from that constraint
begin run once in parallel. Axiom (2) states that interference from a single con-
straint is less than interference from itself and another interference constraint.
Axiom (3) allows an interference constraint to be split across sequential pro-
grams. Axiom (4) is similar to Axiom (3) in intent, except it deals with finite
iteration.

Some elementary consequences of these rules are

1<, r*=r-r=r=rlr rllzt = (r||z)".
Theorem 1. Azioms (1), (2) and (3) are independent.

Proof. We have used Isabelle’s Nitpick [4] counterexample generator to construct
models which violate each particular axiom while satisfying all others. O

84 A. Armstrong, V.B.F. Gomes, and G. Struth

Theorem 2. Aziom (3) implies (4) in a quantale where || distributes over ar-
bitrary suprema.

Proof. In a quantale ™ can be defined as a sum of powers ™ = >~ | 2 where

2! = x and 2'*! = - 2°. By induction on i we get r||z’ = (r[|z)?, hence

rllat =l Yt =) rllat =) (rll2)’ = (rlae)*

i>1 i>1 i>1
O

In first-order Kleene algebras (3) and (4) are independent, but it is impossible
to find a counterexample with Nitpick because it generates only finite counterex-
amples, and all finite Kleene algebras are a forteriori quantales.

Jones quintuples can be encoded in this setting as

rgEA{pte{q} <= p-(rllz) <gnz <y (5)

This means that program = when constrained by a rely r, and executed after p,
behaves as q. Moreover, all behaviours of x are included in its guarantee ¢q. Note
that this encoding is stronger than in traditional rely-guarantee, as x is required
to unconditionally implement g. The algebra could easily be extended with an
additional operator f such that f(r,z) < g would encode that x implements ¢
only under interference of at most r. For more complex examples than what we
present in section 8 such an encoding may prove neccessary.

Theorem 3. The standard rely-guarantee inference rules can be derived with
the above encoding, as shown in Figure 1.

Thus (1) to (4), which are all necessary to derive these rules, represent a
minimal set of axioms from which these inference rules can be derived.

If we add residuals to our algebra quintuples can be encoded in the following
way, which is equivalent to the encoding in Equation (5).

rgk{pte{e} = =z <r/(p—q)Nyg. (6)

This encoding allows us to think in terms of program refinement, as in [14], since
r/(p — q) Mg defines the weakest program that when placed in parallel with
interference from r, and guaranteeing interference at most g, goes from p to ¢—a
generic specification for a concurrent program.

5 Breaking Compositionality

While the algebra in the previous section is adequate for deriving the standard
inference rules, its equality is too strong to capture many interesting statements
about concurrent programs. Consider the congruence rule for parallel composi-
tion, which is inherent in the algebraic approach:

r=y = z|z=yl=z.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 85

p-r<p .
Skip
r,g - {p}1{p}
p<p g = {p"Ye{q'} ¢ <q

Weakening
g+ {p}r{q}

r,g = {p}z{q} r,g = {q}y{s}

Sequential
rg - {qte - y{s}

ri, g1 F{pi}z{q} g1 <712 ro,g2 F {p2}y{q2} g2 <71

Parallel
r1Mra, gillge = {p1 M p2telly{q Mg}

r,g = {p}z{q} r,g = {p}y{q}

Choi
r,g = {p}z +y{q} oree
p-r<p r,g = {p}z{p}
. Star
r,g = {p}z*{p}

Fig. 1. Rely-guarantee inference rules

This can be read as follows; if and y are equal, then they must be equal under
all possible interferences from an arbitrary z. At first, this might seem to preclude
any fine-grained reasoning about interference using purely algebra. This is not
the case, but breaking such inherent compositionality in just the right way to
capture interesting properties of interference requires extra work.

A way of achieving this is to expand our rely-guarantee algebra with an ad-
ditional function 7 : K — K and redefining our quintuples as,

r,g{ple{q} <= p-(r|c) <z qgrhz<yg.
Where x <, y is 7(z) < 7(y). Since for any operator e it is not required that
m(x) =m(y) = w(rez)=m(ye2),

we can break compositionality in just the right way, provided we chose appropri-
ate properties for m. These properties are extracted from properties of the trace
model, which will be explained in detail in the next section. Many of those can
be derived from the fact that, in our model, 7 = Ax. zM¢, where ¢ is healthiness
condition which filters out ill-defined traces. We do not list these properties here.
In addition 7 must satisfy the properties

a" <qm(a)", (
z -y <qm(x) 7(y), (8
2tz y<,y = x°-z2<, v, (
2ty <,y = z-2°<,v. (10

86 A. Armstrong, V.B.F. Gomes, and G. Struth

For any operator e, we write x o, y for the operator 7(x e y), and we write x™
for m(z*).

Theorem 4. (7(K),+x,x,",0,1) is a Kleene algebra.

Proof. It can be shown that 7 is a retraction, that is, 72 = . Therefore,

xz € w(K) iff 7(x) = x. This condition can then be used to check the closure
conditions for all operations. O

We redefine our rely-guarantee algebra as a structure (K, I,+,M, -, ||,*,m,0,1)
which, in addition to the rules in Section 4, satisfies (7) to (10).

Theorem 5. All rules in Figure 1 can be derived in this algebra.

Moreover their proofs remain the same, mutatis mutandis.

6 Finite Language Model

We now construct a finite language model satisfying the axioms in Section 4
and 5. Restricting our attention to finite languages means we do not need to
concern ourselves with termination side-conditions, nor do we need to worry
about additional restrictions on parallel composition, e.g. fairness. However, all
the results in this section can be adapted to potentially infinite languages, and
our Isabelle/HOL formalisation already includes general definitions by using
coinductively defined lazy lists to represent words, and having a weakly-fair
shuffle operator for such infinite languages.

We consider languages where the alphabet contains state pairs of the form
(01,02) € 2. A word in such a language is consistent if every such pair in
a word has the same first state as the previous transition’s second state. For
example, (01, 02)(02,03) is consistent, while (01, 02)(03, 03) is consistent only if
o9 = o3. Sets of consistent words are essentially Aczel traces [9], but lack the
usual process labels. We denote the set of all consistent words by C' and define
the function 7 from the previous section as AX. X N C in our model.

Sequential composition in this model is language product, as per usual.
Concurrent composition is the shuffle product defined in Section 2. The shuffle
product is associative, commutative, and distributes over arbitrary joins. Both
products share the same unit, {e} and zero, (). In Isabelle proving properties of
shuffle is surprisingly tricky (especially if one considers infinite words). For a
in-depth treatment of the shuffle product see [22].

Theorem 6. (P((X?)*),U,-,|,0,{e}) forms a trioid.

The rely-guarantee elements in this model are sets containing all the words
which can be built from some set of state pairs in X?. We define a function (R)
which lifts a relation R to a language containing words of length one for each pair
in R. The set of rely-guarantee conditions I is then defined as {r. IR.r = (R)*}.

Theorem 7. (P((X?)*),I,U,-, |,*,m,0,{€}) is a rely-guarantee algebra.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 87

Since (R) is atomic, it satisfies several useful properties, such as,
(R)*[[(S) = (R)"; (S) ()", (R)"[{S)" = ((R)"; (S)")".

To demonstrate how this model works, consider the graphical representation
of a language shown below.

01y — 01 01 01
“x \
09 ---» 09 g9 g9
s \
03 03 g3 g3

The language contains the following six words

(01,01)(01,02)(02,03), (01,02)(01,02)(02,03),
(02,02)(01,02)(02,03), (01,01)(03,02)(02,03),
(01,02)(03,02)(02,03), (02,02)(03,02)(02,03),

where only the first, (01,01)(01,02)(02,03) is consistent. This word is high-
lighted with solid arrows in the diagram above. Now if we shuffle the single state
pair (o2,03) into the above language, would end up with a language containing
the words represented in the diagram below:

g1 ---» 01 g1 (o} 01
\ “x

032 —— 02 g2 g9 g9

g3 g3 g3 03 03

By performing this shuffle action, we no longer have a consistent word from
o1 to o3, but instead a consistent word from oy to o3 and oy to o3. These
new consistent words were constructed from previously inconsistent words—the
shuffle operator can generate many consistent words from two inconsistent words.
If we only considered consistent words, & la Aczel traces, we would be unable
to define such a shuffle operator directly on the traces themselves, and would
instead have to rely on some operational semantics to generate traces.

7 Enriching the Model

To model and verify programs we need additional concepts such as tests and as-
signment axioms. A test is any language P where P < (Id). We write test(P) for
(Idp). In Kleene algebra the sequential composition of two tests should be equal

88 A. Armstrong, V.B.F. Gomes, and G. Struth

to their intersection. However, the traces test(P);test(Q) and test(P N Q) are
incomparable, as all words in the former have length two, while all the words in
the latter have length one. To overcome this problem, we use the concepts of stut-
tering and mumbling, following [5] and [11]. We inductively generate the mumble
language w' for a word w in a language over X2 as follows: Assume o1, 09,03 € X
and u,v,w € (X?)*. First, w € w'. Secondly, if u(o1,02)(02,03)v € w' then
u(oy,03)v € w'. This operation is lifted to languages in the obvious way as

Xt :U{xT.xeX}.

Stuttering is represented as a rely condition (Id)* where Id is the identity relation.
Two languages X and Y are equal under stuttering if (Id)*|| X = (Id)*||Y".

Assuming we apply mumbling to both sides of the following equation, we have
that

test(P N Q) < test(P); test(Q)

as the longer words in test(P);test(Q)) can be mumbled down into the shorter
words of test(P N Q), whereas stuttering gives us the opposite direction,

(1d)* | (test(P); test(Q)) <» (Id)*[[test(P N Q).

We henceforth assume that all languages are implicitly mumble closed.
Using tests, we can encode if statements and while loops

if P{X }else{Y }=test(P); X + test(—P);Y,
while P { X } = (test(P); X)*; test(—P).

Next, we define the operator end(P) which contains all the words which end in
a state satisfying P. Some useful properties of end include

end(P);test@Q <, end(P N Q), test(P) < end(P),
range(ldp o R) < P = end(P); (R)* <, end(P).

In this model, assignment is defined as
ri=e = Uv.test{cr. eval(o,e) = v} -z v

where x < v denotes the atomic command which assigns the value v to x. The
eval function atomically evaluates an expression e in the state o. Using this
definition we derive the assignment rule

unchanged(vars(e)) N preserves(P) N preserves(P[z/e]),
unchanged(—{z})
F {end(P)} xz := e {end(P[z/€])}.

The rely condition states the following: First, the environment is not allowed
to modify any of the variables used when evaluating e, i.e. those variables must

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 89

remain unchanged. Second, the environment must preserve the precondition.
Third, the postcondition of the assignment statement is also preserved. In turn,
the assignment statement itself guarantees that it leaves every variable other
than z unchanged. Preserves and unchanged are defined as

preserves(P) = ({(0,0"). P(0) = P(o')})*,
unchanged(X) = ({(0,0"). Vv € X. o(v) = o' (v)})*.

We also defined two futher rely conditions, increasing and decreasing, which are
defined much like unchanged except they only require that variables increase or
decrease, rather than stay the same. We can easily define other useful assignment
rules—if we know properties about P and e, we can make stronger guarantees
about what x := e can do. For example the assignment z := z — 2 can also
guarantee that = will always decrease.

8 Examples

To demonstrate how the parallel rule behaves, consider the following simple
statement, which simply assigns two variables in parallel:

(Idy*,(T)*F{end(zx =2Ay=2A2=5)}
ri=x+2]y:=z
{end(z =4ANy=5A2=05)}.

The environment (ld)* is only giving us stuttering interference. Since we are
considering this program in isolation, we make no guarantees about how this
affects the environment. To apply the parallel rule from Figure 1, we weaken
or strengthen the interference constrains and pre/postcondition as needed to fit
the form of the parallel rule.

First, we weaken the rely condition to unchanged{z} M unchanged{y, z}. Sec-
ond we strengthen the guarantee condition to unchanged{y, z} || unchanged{x}.
When we apply the parallel rule each assignment’s rely will become the other as-
signment’s guarantee. Finally, we split the precondition and postcondition into
end(z = 2) M endly =2Az=25)and end(z = 4) M end(ly = 5Az = 5)
respectively. Upon applying the parallel rule, we obtain two trivial goals

(unchanged{z})*, (unchanged{y, z})* F {end(z = 2)} := = + 2 {end(x = 4)},
(unchanged{y, z})*, (unchanged{z})* F {end(y =2 Az =5)}

Y=z
{end(y =5 A z=75)}.

Figure 2 shows the FINDP program, which has been used by numerous au-
thors e.g. [25,17,10,14]. The program finds the least element of an array satisfying
a predicate P. The index of the first element satisfying p is placed in the variable
f. If no element of the array satisfies P then f will be set to the length of the

90 A. Armstrong, V.B.F. Gomes, and G. Struth

array. The program has two subprograms, A and B, running in parallel, one
of which searches the even indices while the other searches the odd indices. A
speedup over a sequential implementation is achieved as A will terminate when
B finds an element of the array satisfying P which is less than i 4.

fa :=len(array);

fB = len(array);

14 =0 i =1
while ia < fa ANia < fe { ||while iz < faAip < fB {
if P(array[ia]) { if P(array[ig]) {
fa:=ia fB:=iB
} else { } else { ’
4 =14 +2 ip:=1B+2
} }
} }

[=min(fa, f5)

Fig. 2. FINDP Program

Here, we only sketch the correctness proof, and comment on its implementa-
tion in Isabelle. We do not attempt to give a detailed proof, as this has been
done many times previously.

To prove the correctness of FINDP, we must show that

FINDP <, end(leastP(f)) + end(f = len(array)),

where leastP(f) is the set of states where f is the least index satisfying P, and
f = len(array) is the set of states where f is the length of the array. In other
words, either we find the least element, or f remains the same as the length of
the array, in which case no elements in the array satisfy P.

To prove the parallel part of the program, subprogram A guarantees that it
does not modify any of the variables used by subprogram B, except for f4, which
it guarantees will only ever decrease. Subprogram B makes effectively the same
guarantee to A. Under these interference constraints we then prove that A or B
will find the lowest even or odd index which satisfies P respectively—or they do
not find it, in which case f4 or fp will remain equal to the length of the array.

Despite the seemingly straightforward nature of this proof, it turns out to be
surprisingly difficult in Isabelle. Each atomic step needs to be shown to satisfy
the guarantee of its containing subprogram, as well as any goals relating to its
pre and post conditions. This invariably leads to a proliferation of many small
proof goals, even for such a simple program. More work must be done to manage
the complexity of such proofs within interactive theorem provers.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 91

9 Conclusion

We have introduced variants of semirings and Kleene algebras intended to model
rely-guarantee and interference based reasoning. We have developed an inter-
leaving model for these algebras which uses familiar concepts from traces and
language theory. This theory has been implemented in the Isabelle/HOL theo-
rem prover, providing a solid mathematical basis on which to build a tool for
mechanised refinement and verification tasks. In line with this aim, we have
applied our formalisation to a simple example program.

This implementation serves as a basis from which further interesting aspects
of concurrent programs, such as non-termination and synchronisation can be
explored. As mentioned in Section 6, some of the work needed to implement this
we have already done in Isabelle.

Algebra plays an important role in our development. First, it allowed us to
derive inference rules rapidly and with little proof effort. Second, it yields an
abstract layer at which many properties that would be difficult to prove in con-
crete models can be verified with relative ease by equational reasoning. Third,
as pointed out in Section 2, some fragments of the algebras considered are decid-
able. Therefore, decision procedures for some aspects of rely-guarantee reasoning
can be implemented in interactive theorem proving tools such as Isabelle. How-
ever, we have not yet investigated the extent to which such decision procedures
would benefit our approach.

The examples from Section 8 confirm previous evidence [24] that even seem-
ingly straightforward concurrency verification tasks can be tedious and complex.
It is too early to draw informed conclusions, but while part of this complexity
may be unavoidable, more advanced models and proof automation are needed to
overcome such difficulties. Existing work on combining rely-guarantee with sepa-
ration logic [29] may prove useful here. Our language model is sufficiently generic
such that arbitrary models of stores may be used, including those common in
separation logic, which have already been implemented in Isabelle [18].

In addition, algebraic approaches to separation logic have already been in-
troduced. Examples are the separation algebras in [6], and algebraic separation
logic [8]. More recently, concurrent Kleene algebras have given an algebraic ac-
count of some aspects of concurrent separation logic [16,15].

Acknowledgements. The authors would like to thank Brijesh Dongol and Ian
Hayes for inspiring discussions on concurrency verification and the rely-guarantee
method. The first author acknowledges funding from an EPSRC doctoral fel-
lowship. The second author is supported by CNPq Brazil. The third author
acknowledges funding by EPSRC grant EP/J003727/1.

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Algebras for program correctness in
isabelle/HOL. In: Kahl, W. (ed.) RAMiCS 2014. LNCS, vol. 8428, pp. 49-64.
Springer, Heidelberg (2014)

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Armstrong, V.B.F. Gomes, and G. Struth

Armstrong, A., Struth, G., Weber, T.: Kleene algebra. In: Archive of Formal Proofs
(2013)

Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on
Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 197-212. Springer, Heidelberg (2013)
Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131-146. Springer, Heidelberg (2010)

Brookes, S.: Full abstraction for a shared variable parallel language. In: Okada, M.,
Panangaden, P. (eds.) LICS, 1993, pp. 98-109 (1993)

Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Ong, L. (ed.) LICS 2007, pp. 366-378 (2007)

Conway, J.H.: Regular algebra and finite machines. Chapman and Hall (1971)
Dang, H.-H., Hofner, P., Mdller, B.: Algebraic separation logic. J. Log. Algebr.
Program. 80(6), 221-247 (2011)

de Boer, F.S., Hannemann, U., de Roever, W.-P.: Formal justification of the rely-
guarantee paradigm for shared-variable concurrency: A semantic approach. In: Wing,
J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1245-1265.
Springer, Heidelberg (1999)

de Roever, W.-P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency verification: an introduction to state-based methods.
Cambridge University Press, Cambridge (2001)

Dingel, J.: A refinement calculus for shared-variable parallel and distributed pro-
gramming. Formal Aspects of Computing 14(2), 123-197 (2002)

Gischer, J.L.: Shuffle languages, Petri nets, and context-sensitive grammars. Com-
mun. ACM 24(9), 597-605 (1981)

Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Sci-
ence 61(2-3), 199-224 (1988)

Hayes, 1.J., Jones, C.B., Colvin, R.J.: Refining rely-guarantee thinking (2013)
(unpublished)

Hoare, C.A.R., Hussain, A., Moller, B., O’Hearn, P.W., Petersen, R.L., Struth,
G.: On locality and the exchange law for concurrent processes. In: Katoen, J.-
P., Konig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 250-264. Springer,
Heidelberg (2011)

Hoare, T., Moller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6), 266—296 (2011)

Jones, C.B.: Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University (1981)

Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332-337. Springer, Heidelberg
(2012)

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366-390 (1994)

Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427-443 (1997)

Laurence, M.R., Struth, G.: Completeness results for bi-Kleene algebras and regular
pomset languages (2013) (submitted)

Mateescu, A., Mateescu, G.D., Rozenberg, G., Salomaa, A.: Shuffle-like operations
on w-words. In: Pun, G., Salomaa, A. (eds.) New Trends in Formal Languages.
LNCS, vol. 1218, pp. 395-411. Springer, Heidelberg (1997)

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 93

23.

24.

25.

26.

27.

28.

29.

Moller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221-239 (2006)

Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348-362. Springer, Heidelberg (2003)

Owicki, S.: Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cornell
University (1975)

Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180-196.
Springer, Heidelberg (2013)

Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990.
LNCS, vol. 478, pp. 97-120. Springer, Heidelberg (1991)

Tarlecki, A.: A language of specified programs. Science of Computer Program-
ming 5, 59-81 (1985)

Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge (2008)

Definition, Semantics, and Analysis
of Multirate Synchronous AADL

Kyungmin Bae!, Peter Csaba Olveczky?, and José Meseguer!

! University of Illinois at Urbana-Champaign, USA
2 University of Oslo, Norway

Abstract. Many cyber-physical systems are hierarchical distributed
control systems whose components operate with different rates, and that
should behave in a virtually synchronous way. Designing such systems is
hard due to asynchrony, skews of the local clocks, and network delays;
furthermore, their model checking is typically unfeasible due to state
space explosion. Multirate PALS reduces the problem of designing and
verifying virtually synchronous multirate systems to the much simpler
tasks of specifying and verifying their underlying synchronous design. To
make the Multirate PALS design and verification methodology available
within an industrial modeling environment, we define in this paper the
modeling language Multirate Synchronous AADL, which can be used to
specify multirate synchronous designs using the AADL modeling stan-
dard. We then define the formal semantics of Multirate Synchronous
AADL in Real-Time Maude, and integrate Real-Time Maude verifica-
tion into the OSATE tool environment for AADL. Finally, we show how
an algorithm for smoothly turning an airplane can be modeled and an-
alyzed using Multirate Synchronous AADL.

1 Introduction

Modeling languages are widely used but tend to be weak on the formal analysis
side. If they can be endowed with formal analysis capabilities “under the hood”
with minimal disruption to the established modeling processes, formal methods
can be more easily adopted and many design errors can be detected early in the
design phase, resulting in higher quality systems and in substantial savings in
the development and verification processes. This work reports on a significant
advance within a long-term effort to intimately connect formal methods and
modeling languages: supporting model checking analysis of multirate distributed
cyber-physical systems within the industrial modeling standard AADL [10].
Our previous work [7,8,13] has focused on endowing AADL with formal anal-
ysis capabilities, using Real-Time Maude [14] as an “under the hood” formal
tool. Our goal is the automated analysis of AADL models by model checking.
Such models describe cyber-physical systems made up of distributed components
that communicate with each other through ports. However, due to the combi-
natorial explosion caused by the distributed nature of cyber-physical systems,
straightforward model checking of AADL models quickly becomes unfeasible.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 94-109, 2014.
© Springer International Publishing Switzerland 2014

Definition, Semantics, and Analysis of Multirate Synchronous AADL 95

To tame this combinatorial explosion we have investigated general formal
patterns that, by drastically reducing the state space, can support the model
checking of distributed cyber-physical systems. A broad class of such systems
are distributed control systems that, while asynchronous, must be virtually syn-
chronous, since they are controlled in a periodic way. The PALS (“Physically
Asynchronous but Logically Synchronous”) pattern [2,12] achieves such state
space reduction by reducing the design of a distributed system of this kind to
that of its much simpler synchronous counterpart.! However, PALS is limited by
the requirement that all components have the same period, which is unrealistic
in practice. Typically, components closer to sensors and actuators have a faster
period than components higher up in the control hierarchy. This has led us to
develop Multirate PALS [6], which generalizes PALS to the multi-rate case.

Taking advantage of Multirate PALS for model checking distributed designs
in AADL by model checking the corresponding synchronous design requires:
(i) defining appropriate extensions of AADL where such synchronous models
can be specified; (ii) giving a formal semantics to such language extensions;
and (iii) building tools as OSATE plugins that automate the model checking
verification of the synchronous models. This is very useful, because synchronous
designs are much easier to understand by engineers, they are much easier to
model check, and generation of their more complex distributed versions can be
automated and made correct by construction using Multirate PALS.

For PALS, steps (i)—(iii) were taken in the Synchronous AADL language and
tool [7,8]. This paper greatly broadens the class of AADL models that can be
model checked in this way by extending AADL to support the Multirate PALS
methodology. This involves the following steps: in Section 3 we define the Multi-
rate Synchronous AADL language; in Section 5 we define the formal semantics of
Multirate Synchronous AADL in Real-Time Maude; and in Section 6 we describe
the MR-SynchAADL tool as an OSATE plugin. We illustrate the effectiveness
of the Multirate Synchronous AADL language and the MR-SynchAADL tool on
a distributed control system for turning an aircraft (Sections 4 and 7).

2 Preliminaries

Multirate PALS. The Multirate PALS formal pattern [6] can drastically sim-
plify the design and verification of distributed cyber-physical systems whose
architecture is one of hierarchical distributed control. The devices may operate
at different rates, but the synchronous changes of the local control applications
can happen only at the hyperperiod boundary [1]. Systems of this nature are
very common in avionics, motor vehicles, robotics, and automated manufactur-
ing. More specifically, given a multirate synchronous design SD and performance
bounds I" on the clock skews, computation times, and network delays, Multirate

! For an avionics case study in [12], the number of system states for their simplest
possible distributed version with perfect local clocks and no network delays was
3,047,832, but PALS reduced the number of states to be analyzed to 185.

96 K. Bae, P.C. Olveczky, and J. Meseguer

PALS maps SD to the corresponding distributed real-time system MA(SD, I")
that is stuttering bisimilar to SD as made precise in [6].

A component in such a synchronous design is formalized as a typed machine
M = (D;,S,D,,00), where D; = D;, X -+ x D, is the input set, S is the
set of states, D, = D,, X -+- X D, is the output set, and dpy C (D; x S) x
(S x D,) is the transition relation. Such a machine receives inputs, changes its
local state, and produces outputs in each iteration, through its n input ports
and m output ports. We consider multirate systems
where a set of components with the same rate may
communicate with each other and with a number of
faster components, so that the period of the higher-
level components is a multiple of the period of each
fast component, as illustrated in Fig. 1, where each
machine is annotated by its period.

To compose machines with different periods into a synchronous system in
which all components operate in lock-step, we “slow down” the fast components
so that all components run at the slow rate. A fast machine that is slowed down
by a factor k performs k internal transitions during one (slow) period; since it
consumes an input and produces an output at each port in each of these internal
steps, it consumes and produces k-tuples of inputs and outputs in a slow step.
Such a k-tuple output must be transformed into a single value by an input
adaptor function a, : Dfp — D;, so that it can be read by the slow component.
Likewise, since the fast component expects a k-tuple of input values in each
input port, the single-value output from a slow component must be transformed
to a k-tuple of inputs to the fast machine by an adaptor oy : D;, — qu (e.g.,
mapping d to (d, L,..., L) for some “don’t care” value).

A multirate machine ensemble is a network of typed machines with different
rates and input adaptors. Such an ensemble has a synchronous semantics: all
machines perform a transition (possibly consisting of multiple “internal transi-
tions”) simultaneously, and the output becomes an input at the next (global)
step. Its synchronous composition defines another typed machine, which can be
a component in another ensemble, giving rise to hierarchical multirate ensembles
formalized in [6]. For example, the “system” in the left-hand side of Fig. 2 can
be seen as the hierarchical multirate ensemble in the right-hand side. We assume
that the observable behavior of an environment can be defined by a (possibly)
nondeterministic machine, and that all other machines are deterministic.

eI’1V12<:> enV12<:’[ﬁ
o N ars
(e) (.«) (
)

.4
V4
6
x5 X
[[2 J— 2
Fig. 2. A multirate control system and the corresponding multirate ensemble

Fig. 1. A multirate system

J

Definition, Semantics, and Analysis of Multirate Synchronous AADL 97

AADL. The Architecture Analysis & Design Language (AADL) [10] is an indus-
trial modeling standard used in avionics, aerospace, automotive, medical devices,
and robotics to describe an embedded real-time system as an assembly of soft-
ware components mapped onto an execution platform. In AADL, a component
type specifies the component’s interface (e.g., ports) and properties (e.g., peri-
ods), and a component implementation specifies its internal structure as a set of
subcomponents and a set of connections linking their ports. An AADL construct
may have properties describing its parameters, declared in property sets. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

This paper focuses on the software components of AADL, since we use AADL
to specify synchronous designs. Software components include threads that model
the application software to be executed and data components representing data
types. System components are the top level components. Thread behavior is
modeled as a guarded transition system using the behavior annexr sublanguage
[11]. The actions performed when a transition is applied may update local vari-
ables, call methods, and/or generate new outputs. Actions are built from basic
actions using sequencing, conditionals, and finite loops. When a thread is acti-
vated, an enabled transition is applied; if the resulting state is not a complete
state, another transition is applied, until a complete state is reached.

Real-Time Maude. A Real-Time Maude [14] module is a tuple (X, E, IR, TR),
where: (i) (X, E) is a membership equational theory [9] with X a signature (i.e.,
a collection of declarations of sorts, subsorts, and function symbols) and E a
set of confluent and terminating (possibly conditional) equations, specifying the
system’s states as an algebraic data type; (ii) IR is a set of instantaneous rewrite
rules of the form crl [I]1: ¢t => t' if condition, specifying the system’s instan-
taneous (i.e., zero-time) transitions; and (iii) TR is a set of tick rewrite rules of
the form crl [I]: {t} => {t'} in time 7 if condition, specifying a transition
with duration 7 and label [from an instance of the term ¢ to the corresponding
instance of . A conjunct in condition may be an equation u = v, a rewrite u => v
(which holds if u can be rewritten to v in zero or more steps), or a matching
equation u := v (which can be used to instantiate the variables in u).

The Real-Time Maude syntax is fairly intuitive (see [9]). A function symbol
f is declared with the syntax op f : s1 ...s, => s, where s1 ... s, are the sorts
of its arguments, and s is its (value) sort. Maude supports the declaration of
partial functions using the arrow ‘~>’ (e.g., op f : s1...8, ~> 8), so that a term
containing a partial function may not have a sort. Equations are written with
syntax eq u = v, and ceq u = v if condition for conditional equations.

A class declaration class C | atty : s1, ..., att, : s, declares a class C
with attributes att; to att, of sorts s to s,. An object of class C is represented
as a term <O : C | atty : valy, ..., atty, : val, > where O is its identifier, and valy
to val, are the current values of the attributes att; to att,. The global state has
the form {t}, where ¢ is a term of sort Configuration that has the structure of a
multiset of objects and messages, with multiset union denoted by a juxtaposition
operator. A subclass inherits all the attributes of its superclasses.

98 K. Bae, P.C. Olveczky, and J. Meseguer

A Real-Time Maude specification is executable, and the tool offers a variety
of formal analysis methods. The rewrite command simulates one behavior of
the system from an initial state. Real-Time Maude’s LTL model checker checks
whether each behavior from an initial state, possibly up to a time bound, satisfies
a linear temporal logic formula. A temporal logic formula is constructed by state
propositions and temporal logic operators such as True, ~ (negation), /\, \/, ->
(implication), [1 (“always”), <> (“eventually”), U (“until”), and 0 (“next”).

3 Multirate Synchronous AADL

This section introduces the Multirate Synchronous AADL language for specifying
hierarchical multirate ensembles in AADL. Multirate Synchronous AADL is a
subset of AADL extended with a property set MR_SynchAADL. Our goals when
designing Multirate Synchronous AADL were: (i) keeping the new property set
small, and (ii) letting the AADL constructs in the (common) subset have the
same meaning in AADL and Multirate Synchronous AADL.

Subset of AADL. Since Multirate Synchronous AADL is intended to model
synchronous designs, it focuses on the behavioral and structural subset of AADL:
hierarchical system, process, and thread components; ports and connections; and
thread behaviors defined in the behavior annex language.

The dispatch protocol is used to trigger an execution of a thread. Fvent-
triggered dispatch, where the execution of one thread triggers the execution of
another thread, is not suitable to define a system in which all threads must
execute in lock-step. Therefore, each thread must have periodic dispatch. This
means that, in the absence of immediate connections, the thread is dispatched
at the beginning of each period of the thread.

There are three kinds of ports in AADL: data ports, event ports, and event
data ports. Event and event data ports can be used to dispatch event-triggered
threads, and may contain a buffer of untreated received events, whereas a data
port always contains (at most) one element. Multirate Synchronous AADL only
allows data ports, since each component in multirate ensembles gets only one
piece of data in each input port (the user should only specify single machines
and the input adaptors that deal with the k-tuples of inputs/outputs).

We must make sure that all outputs generated in one iteration is available at
the beginning of the next iteration, and not before, since in multirate ensembles,
outputs generated in one step becomes inputs of their destination components
in the next step. As explained in [7] for (single-rate) Synchronous AADL, this
is achieved in AADL by having delayed connections.

New Features. The new features in Multirate Synchronous AADL are defined
in the following property set MR_SynchAADL:

property set MR_SynchAADL is
Synchronous: inherit aadlboolean
applies to (system, process, thread group, thread);

Definition, Semantics, and Analysis of Multirate Synchronous AADL 99

Nondeterministic: aadlboolean applies to (thread);
InputAdaptor: aadlstring applies to (port);
end MR_SynchAADL;

The main system component in a Multirate Synchronous AADL model should
declare the property MR_SynchAADL: :Synchronous => true, to state that it
can be executed synchronously. As mentioned in Section 2, we assume that the
behavior of an environment is defined by a nondeterministic machine, and that
all other threads are deterministic. A nondeterministic environment component
should add the property MR_SynchAADL: :Nondeterministic => true.

The main new feature needed to define a multirate ensemble is input adaptors.
Multirate Synchronous AADL provides a number of predefined input adaptors.
The 1-to-k input adaptors, mapping a single value to a k-vector of values, are:

"repeat_input" (maps v to (v,v,...,v))

"use in first iteration" (maps v to (v, L, ..,L))

"use in last iteration" (maps v to (L,..., L, v))

"use in iteration ¢" (maps v to (i_, ,J;,U,J_,).

i—1

The k-to-1 input adaptors, mapping k-vectors to single values, include:

"first" (maps (v1,...,vx) to v1)
"last" (maps (v1,...,Vx) to vg)
"use element i" (maps (v1,...,vk) to v;)
"average" (maps (v1,...,v;) to (v1 + -+ vi)/k)
"max" (maps (v1,...,v;) to max(m7 e UR))-

In Multirate Synchronous AADL, such an input adaptor is assigned to an input
port as a property MR_SynchAADL: : InputAdaptor => input adaptor, e.g.:

goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};

The "use in ..." 1-to-k adaptors generate some “don’t care” values L. Instead
of explicitly having to define such default values, the fact that a port p has an
input “1” is manifested by p’fresh being false.

4 Case Study: Turning an Airplane

This section shows how the design of a virtually synchronous control system for
turning an airplane can be specified in Multirate Synchronous AADL. To achieve
a smooth turn of the airplane, the controller must synchronize the movements
of the airplane’s two ailerons and its rudder (an aileron is a flap attached to
the end of the left or the right wing, and a rudder is a flap attached to the
vertical tail). This is a prototypical multirate distributed control system, since
the subcontrollers for the ailerons and the rudder typically have different periods

100 K. Bae, P.C. Olveczky, and J. Meseguer

CEEEEE— r N
The Airplane Turning Control System (60 ms)
—————— goalp,
goal,, <:>(Left wing subcontroller (15 ms)]
> oL
Pilot console Main goaly
(600 ms) controller <:’(Rudder subcontroller (20 ms)]
(60 ms) ay
< goalp
¥ 4:>[Right wing subcontroller (15 ms)]
—— aR
—— | J

Fig. 3. The architecture of our airplane turning control system

[1], yet must synchronize in real time to achieve a smooth turn. We only show a
few parts of the model and refer to the longer report [5] for the full specification.

When an aircraft makes a turn, it rolls towards the desired direction, so that
the lift force caused by the wings acts as the centripetal force and the aircraft
moves in a circular motion. The ailerons are used to control the roll angle.
However, the rolling of the aircraft produces a yawing moment in the opposite
direction, called adverse yaw, which makes the aircraft sideslip in the wrong
direction. This undesired side effect is countered by using the aircraft’s rudder.

As shown in Fig. 3, our system consists of four periodic controllers with differ-
ent periods. The environment is the pilot console that allows the pilot to select
a new desired direction every 600 ms. The left wing controller receives the de-
sired angle goal; of the aileron from the main controller, and moves the aileron
towards that angle. The right wing (resp., the rudder) controller operates in
the same way for the right wing aileron (resp., the rudder). The main controller
receives the desired direction (from the pilot console) and the current angle of
each device (from the device controllers), computes the new desired device an-
gles, and sends them to the device controllers. We have also defined a model of
the control algorithm directly in Real-Time Maude in [3], and refer to it for more
details about the turning control algorithm.

The following AADL component declares the top-level “implementation” of
the system in terms of connections and subcomponents:

system implementation Airplane.impl
subcomponents
pilotConsole: system PilotConsole.impl; turnCtrl: system TurningController.impl;
connections
port pilotConsole.goal_dr -> turnCtrl.pilot_goal {Timing => Delayed;};

port turnCtrl.curr_dr -> pilotConsole.curr_dr {Timing => Delayed;};
properties

MR_SynchAADL: :Synchronous => true; Period => 600 ms;

Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output

pilotConsole.goal_dr, turnCtrl.curr_dr;
end Airplane.impl;

The pilot may in any round nondeterministically add 0°, 10°, or —10° to the
current desired direction. The input port curr_dr receives the current direction
1 from the turning system, which operates 10 times faster than the pilot; we
must therefore use an input adaptor to map the 10-tuple of directions into a
single value, for which it is natural to use the last value.

Definition, Semantics, and Analysis of Multirate Synchronous AADL 101

system PilotConsole -- "interface" of the pilot console
features
curr_dr: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
goal_dr: out data port Base_Types::Float;
end PilotConsole;

The implementation of PilotConsole contains the following thread defining
the pilot behavior. When the thread dispatches, the transition from state idle
to select is taken. Since select is not a complete state, the thread continues
executing, by nondeterministically selecting one of the other transitions, which
assigns the selected angle change to the output port goal_dr. Since the resulting
state idle is a complete state, the execution in the current dispatch ends.

thread implementation PilotConsoleThread.impl

properties
MR_SynchAADL: :Nondeterministic => true; Dispatch_Protocol => Periodic;
annex behavior_specification {**
states
idle: initial complete state; select: state;
transitions
idle -[on dispatch]-> select; select -[]-> idle {goal_dr := 0.0};
select -[]1-> idle {goal_dr := 10.0}; select -[]1-> idle {goal_dr := -10.0};
*%};

end PilotConsoleThread. impl;

The turning controller consists of the main controller and the three subcon-
trollers. The subcontrollers are specified as instances of Subcontroller.impl.
Since the turning controller is 10 times faster than the pilot console, it will
execute 10 “internal” iterations in a global period; hence the single input in
pilot_goal from the pilot must be mapped into 10 values, and we choose to
use the input in the first local iteration:
system TurningController -- "interface" of the turning controller

features
pilot_goal: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration”;};
curr_dr: out data port Base_Types::Float;
end TurningController;

system implementation TurningController.impl

subcomponents
mainCtrl: system Maincontroller.impl; rudderCtrl: system Subcontroller.impl;
leftCtrl: system Subcontroller.impl; rightCtrl: system Subcontroller.impl;
connections

port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};

port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing => Delayed;};

port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing => Delayed;};

port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing => Delayed;};

port mainCtrl.right_goal ~-> rightCtrl.goal_angle {Timing => Delayed;};

port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};

port pilot_goal -> mainCtrl.goal_angle; port mainCtrl.curr_dr -> curr_dr;
properties

Period => 60 ms;

Period => 15 ms applies to leftCtrl, rightCtrl;

Period => 20 ms applies to rudderCtri;

Data_Model::Initial_Value => ("1.0") applies to -- ailerons can move 1° in 15ms

102 K. Bae, P.C. Olveczky, and J. Meseguer

leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.5") applies to -- rudder can move 0.5° in 20ms
rudderCtrl.ctrlProc.ctrlThread.diffAngle;
Data_Model::Initial_Value => ("0.0") applies to -- 4nitial feedback output

leftCtrl.curr_angle, rightCtrl.curr_angle, rudderCtrl.curr_angle,
mainCtrl.left_goal, mainCtrl.right_goal, mainCtrl.rudder_goal;
end TurningController.impl;

Due to lack of space, we refer to [5] for the specification of the main controller.
The behavior of the subcontrollers is straightforward: move the device toward
the goal angle up to diffAngle (declared in TurningController.impl), update
the goal angle if a new value has received, and report back the current angle:

system Subcontroller -- "interface" of a device controller
features
goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration”;};
curr_angle: out data port Base_Types::Float;
end Subcontroller;

thread implementation SubcontrollerThread.impl
subcomponents
currAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.
goalAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0
diffAngle : data Base_Types::Float;
annex behavior_specification {Hx
states
init: initial complete state; move, update: state;
transitions
init -[on dispatch]-> move;
move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0) currAngle := currAngle + diffAngle
else currAngle := currAngle - diffAngle end if };
move -[otherwise]l-> update {currAngle := goal_angle};
update -[1-> init {
if (goal_angle’fresh) goalAngle := goal_angle end if; curr_angle := currAngle};
*%};
end SubcontrollerThread. impl;

5 Real-Time Maude Semantics

This section summarizes the Real-Time Maude semantics of Multirate Syn-
chronous AADL. The entire semantics is given in our longer report [5], and
is very different from the semantics of single-rate Synchronous AADL [7], which
could use a flattened structure of (single-rate) components, in order to explicitly
deal with the hierarchical structure of components with different rates.

Real-Time Maude Representations. The Real-Time Maude semantics is
defined in an object-oriented style, in which a Multirate Synchronous AADL
component instance is represented as an object instance of a subclass of the
following class Component:

class Component | features : Configuration, subcomponents : Configuration,
connections : Set{Connection}, properties : PropertyAssociation

Definition, Semantics, and Analysis of Multirate Synchronous AADL 103

The attribute features represents the ports of a component as a multiset
of Port objects; subcomponents denotes its subcomponents as a multiset of
Component objects; properties denotes its properties; and connections de-
notes its connections, each of which has the form source --> target.

A component whose behavior is given by its subcomponents, such as a system
or a process, is represented as an object instance of a subclass of Ensemble:

class Ensemble . class System . class Process
subclass System Process < Ensemble < Component

The Thread class contains the attributes for the thread’s behavior:

class Thread | variables : Set{VarId}, transitions : Set{Transition},
currState : Location, completeStates : Set{Location}
subclass Thread < Component

The attribute variables denotes the local temporary variables of the thread
component, transitions denotes its transitions, currState denotes the current
state, and completeStates denotes its complete states.

The data subcomponents of a thread can specify the thread’s local state vari-
ables, whose value attribute denotes its current value v, expressed as the term
[v], where bot denotes the “don’t care” value L:

class Data | value : DataContent . subclass Data < Component
sorts DataContent Value . subsort Value < DataContent
op bot : -> DataContent [ctor] . op [_] : Bool -> Value [ctor]
op [_] : Int -> Value [ctor] . op [_] : Float -> Value [ctor]

A data port is represented as an object instance of a subclass of the class
Port, whose content attribute contains a list of data contents (either a value or
1) and properties can denote its input adaptor. An input port also contains
the attribute cache to keep the previously received “value”; if an input port p
received 1 in the latest dispatch, the thread can use a value in cache, while
p’fresh becomes false:

class Port | content : List{DataContent}, properties : PropertyAssociation
class InPort | cache : DataContent . class OutPort
subclass InPort OutPort < Port

For example, an instance of the TurningController. impl system component
in our airplane controller example can be represented by an object

< turnCtrl : System |
features : < pilot_goal : InPort | content : [0.0], cache : [0.0],
properties : InputAdaptor => {use in first iteration} >
< curr_dr : OutPort | content : [0.0], properties : none >
subcomponents : < mainCtrl : System | ... > < leftCtrl : System | ... >
< rightCtrl : System | ... > < rudderCtrl : System | ... >,
connections : leftCtrl..curr_angle -->mainCtrl.. left_angle ;

mainCtrl .. curr_dr --> curr_dr,
properties : Period => {60} >

104 K. Bae, P.C. Olveczky, and J. Meseguer

Thread Behavior. The behavior of a single AADL component is specified
using the partial function executeStep: Object ~> Object, by means of equa-
tions (for deterministic components) or rewrite rules (for nondeterministic com-
ponents). The following rule defines the behavior of nondeterministic threads:

crl [execute]:
executeStep(
< C : Thread | features : PORTS, subcomponents : DATA,

currState : L, completeStates : LS, transitions : TRS,
variables : VARS, properties : PROPS >)

=> < C : Thread | features : writeFeature(FMAP’,PORTS’),
subcomponents : DATA’, currState : L’ >

if Nondeterministic => {true} in PROPS

/\ (PORTS’ | FMAP) := readFeature(PORTS)

/\ execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS) => L’ | FMAP’ | DATA’ .

The function readFeature returns a map from each input port to its current
value (i.e., the first value of the data content list), while removing the value
from the port and using the cached value if the value is 1. Then, any possible
computation result of the thread’s transition system is nondeterministically as-
signed to the pattern L’ | FMAP’ | DATA’. The function writeFeature updates
the content of each output port from the result.

The meaning of the operator execTrans is defined by the following rewrite
rule, which repeatedly applies transitions until a complete state is reached:

crl [trans]: execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS)
=> if (L’ in LS) then L’ | FMAP’ | DATA’
else execTrans(L’, LS, TRS, VARS, FMAP’ | DATA’ | PROPS) fi
if (L -[GUARD]-> L’ ACTION) ; TRS’ := enabledTrans(L, TRS, FMAP | DATA | PROPS)
/\ FMAP’ | DATA’ | PROPS := execAction(ACTION, VARS, FMAP | DATA | PROPS) .

The function enabledTrans finds all enabled transitions from the current state L
whose GUARD evaluates to true, and any of these is nondeterministically assigned
to the pattern (L -[GUARD]-> L’ ACTION). The function execAction executes
the actions of the chosen transition and returns a new configuration. If the next
state L’ is not a complete state (else branch), then execTrans is applied again
with the new configuration.

Ensemble Behavior. For ensemble components such as processes and systems,
their synchronous behavior is also defined by using executeStep:

crl [execute]l: executeStep(< C : Ensemble | >) => transferResults(0BJ’)
if OBJ := applyAdaptors(transferInputs(< C : Ensemble | >))
/\ prepareExec(0BJ) => 0BJ’ .

This rule specifies the multirate synchronous composition of its all subcompo-
nents. First, each input port of the subcomponents receives a value from its
source, either an input port of C or an output port of another subcomponent
(transferInputs). Second, appropriate input adaptors are applied to each in-
put port (applyAdaptors), and the resulting term is assigned to the variable

Definition, Semantics, and Analysis of Multirate Synchronous AADL 105

0BJ. Third, for each subcomponent, executeStep is applied multiple times ac-
cording to its period (prepareExec). Next, any term of sort Object resulting
from rewriting prepareExec (0BJ) in zero or more steps is nondeterministically
assigned to 0BJ’ of sort Object. Since executeStep does not yield terms of this
sort, 0BJ’ will only capture an object where executeStep has been completely
evaluated in each subcomponent. Finally, the new outputs of the subcomponents
are transferred to the output ports of C (transferResults).

Multirate Synchronous Steps. A synchronous step of the entire system is
formalized by the following conditional tick rewrite rule:

crl [step]:
{< C : System | properties : Period => {T} ; Synchronous => {true} ; PROPS,
features : none >}
=> {SYSTEM} in time T
if executeStep(< C : System | >) => SYSTEM .

Any term of sort Object, in which executeStep is completely evaluated, result-
ing from rewriting executeStep(< C : System | >) in zero or more steps can
be nondeterministically assigned to the variable SYSTEM.

6 Formal Analysis Using the MR-SynchAADL Tool

To support the convenient modeling and verification of Multirate Synchronous
AADL models within the OSATE tool environment, we have developed the MR-
SynchAADL OSATE plugin that: (i) checks whether a given model is a valid Mul-
tirate Synchronous AADL model; (ii) provides an intuitive language for specify-
ing system requirements; and (iii) automatically synthesizes a Real-Time Maude
model from a Multirate Synchronous AADL model and uses Real-Time Maude
model checking to analyze whether the Multirate Synchronous AADL model
satisfies the given requirements. The tool is available at http://formal.cs.
illinois.edu/kbae/MR-SynchAADL.

Requirement Specification Language. The MR-SynchAADL tool provides
a requirement specification language that allows the user to define system re-
quirements in an intuitive way, without having to understand Real-Time Maude.
The requirement specification language defines several parametric atomic propo-
sitions. The proposition

full component name @ location

holds in a state when the thread identified by the full component name is in state
location. A full component name is a component path in the AADL syntax: a
period-separated path of component identifiers. Similarly, the proposition

full component name | boolean expression

http://formal.cs.illinois.edu/kbae/MR-SynchAADL
http://formal.cs.illinois.edu/kbae/MR-SynchAADL

106 K. Bae, P.C. Olveczky, and J. Meseguer

holds in a state if boolean expression evaluates to true in the component. We can
use any boolean expression in the AADL behavior annex syntax involving data
components, feedback output data ports, and property values.

In MR-SynchAADL, we can easily declare formulas and requirements for Mul-
tirate Synchronous AADL models as LTL formulas, using the usual Boolean
connectives and temporal logic operators. In our example, the declaration

formula safeYaw: turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;

states that safeYaw holds when the current yaw angle is less than 1°. The
following requirement defines the safety requirement: the yaw angle should always
be close to 0°.

requirement safety: [] safeYaw;

Tool Interface. Figure 4 shows the MR-SynchAADL window for the airplane
example. In the editor part, two system requirements, explained below, are spec-
ified using the requirement specification language. The Constraints Check, the
Code Generation,and the Perform Verification buttons are used to perform,
respectively, the syntactic validation of the model, the Real-Time Maude code
generation, and the LTL model checking. The Perform Verification button
has been clicked and the results are shown in the “Maude Console.”

= Airplane_scenario_lnstance.pspe 53 | Airplane.aadl | = O || 5= outline | @ synchaapL... 3| = 0O
name: Airplane_scenario_Instance; | B
- an AADL implementation AADL Property Spec

model: Airplane::Airplane.scenario; .
Spec: Airplane_scenario_lnstance.psp
- a path for the corresponding instance model

instance: "/AirplaneTurn/instances/Airplane_Airplane_scenario_Instance.aax12"; Constraints Check | | Code Generation |

- reguirements Real-Time Maude Simulation

requirement safety: [1 safeYaw;
Bound:
requirement safeTurn: safeYaw U (stable /\ reachGogl) in time <= 7200;
Perform Simulation
- other formulas and propositions
formula safeYaw: turningCtrl.mainController.ctrlProc.ctriThread | absCcurrYaw) < 1.9; AADL Property Requirement
[saf
- formula stable: turningCtrl.mainController. ckrlProc. ctriThread | o Sateryg
abs(currRol) < 8.5 and absCcurrYaw) < 8.5; []safeTurn
formula reachGoal: turningCtrl | abscurr_direction - 60.8) < 8.5;
 select All | Perform Verification |

lee®|e|@= 0

[Z. problems | = Properties G Maude Consale 33

Ready.
Untimed model check {initial} I-u safety in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF with mode deterministic time increase

Result Bool :
true

rewrites: 486318 in 502ms cpu (587ms real) (967248 rewrites/second}
Model check{initial} |-t safeTurn in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF in time <- 7200 with mode deterministic time increase

Result Bool :
true

Fig.4. MR-SynchAADL window in OSATE

Definition, Semantics, and Analysis of Multirate Synchronous AADL 107

7 Verifying the Airplane Turing Controller

This section shows how the Multirate Synchronous AADL model of the airplane
controller can be verified with the MR-SynchAADL tool. The system must sat-
isfy the following requirement: the airplane must reach the desired direction with
a stable status within reasonable time, while keeping the yaw angle close to 0°.

In order to verify whether the airplane can reach a specific goal direction, we
first consider a deterministic pilot given by the following implementation, where
the pilot gradually turns the airplane 60° to the right by adding 10° to the goal
direction 6 times, instead of using the nondeterministic pilot in Section 4:
thread implementation PilotConsoleThread.scenario

subcomponents

counter: data Base_Types::Integer {Data_Model::Initial_Value => ("0");};
annex behavior_specification {*

states
idle: initial complete state; select: state;
transitions
idle -[on dispatch]-> select; select -[counter >= 6]-> idle;
select -[counter < 6]-> idle {goal_dr := 10.0; counter := counter + 1};
*%} 3

end PilotConsoleThread.scenario;

The desired requirement, with the additional constraint that the desired state
must always be reached within 7,200 ms, can be formalized as an LTL formula
using the requirement specification language in MR-SynchAADL as follows:

requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7200;
formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;
formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

where safeYaw is defined in Section 6, stable holds if both roll and yaw angles
are close to 0, and reachGoal holds if the current direction is close to 60°.

Figure 4 shows the model checking results for the two system requirements
safety (declared in Section 6) and safeTurn. In the deterministic scenario, the
airplane controller satisfies both properties as displayed in the Maude console.
These analyses took 1.6 and 0.5 seconds, respectively, on Intel Core i5 2.4 GHz
with 4 GB memory and the numbers of states explored are 59 and 13.

We have verified the safety requirement for the nondeterministic pilot and
have summarized the model checking in the table below, which shows a huge state
space reduction compared to the asynchronous model: for the same pilot behavior
and time bound 3,000 ms, the number of reachable states in the simplest possible
distributed asynchronous model, with perfect local clocks and no network delays,
is 420,288 [6], whereas there are 364 reachable states in the synchronous model.

Bound (ms) # States Time (s) Bound # States Time Bound # States Time

< 3,000 364 7 < 4,200 3,280 62 < 5,400 29,524 600
< 3,600 1,093 21 < 4,800 9,841 189 < 6,000 88,573 2,323

108 K. Bae, P.C. Olveczky, and J. Meseguer

8 Related Work and Conclusions

There are a number of synchronizers relating synchronous and asynchronous
systems; see [12] for an overview and comparison with PALS. To the best of our
knowledge, only Multirate PALS and the work in [1] propose synchronizers for
multirate systems where tight time bounds must be met. The paper [1] proposes
a different multirate extension of PALS, without general input adaptors; how-
ever, they do not provide a formal model of the synchronous or asynchronous
systems, and—the main difference with this paper—they do not propose a lan-
guage for defining synchronous models, or any way of formally analyzing the
synchronous designs. We formalize Multirate PALS in [6,4], but that work does
not consider AADL. On the other hand, [7,8] define the single-rate Synchronous
AADL language and a Real-Time Maude-based analysis tool for Synchronous
AADL. The current paper significantly generalizes that work to account for hier-
archical multirate systems. In particular, in addition to needing input adaptors,
one significant difference is that the single-rate case allows a much simpler Real-
Time Maude semantics, where we can consider a flattened system, whereas in
the hierarchical multirate case we need to maintain the hierarchy, which makes
the Real-Time Maude semantics quite complex. The paper [3] performs the air-
plane case study using (only) Real-Time Maude instead of using Multirate Syn-
chronous AADL and our OSATE plug-in. Finally, [13] presents a “standard”
(i.e., asynchronous) semantics for a subset of AADL in Real-Time Maude, but
does not consider a language extension or a synchronous semantics of AADL.
In this work we have made the complexity-reducing Multirate PALS model-
ing and verification methodology for virtually synchronous hierarchical multirate
systems available to AADL modelers by: (i) defining the Multirate Synchronous
AADL language, which allows the modeler to specify his/her synchronous de-
signs using AADL; (ii) giving a Real-Time Maude semantics for Multirate Syn-
chronous AADL, which not only defines the language precisely but also allows
formal analysis of Multirate Synchronous AADL models; (iii) providing an in-
tuitive way of specifying temporal logic requirements that such models should
satisfy; and (iv) integrating both modeling and automated model checking into
the OSATE tool environment for AADL. We have illustrated the effectiveness of
our methodology, language, and tool on a control system for turning an airplane.
Future work includes applying our language and tool on more case studies,
and on automatically generating a correct-by-construction AADL model of the
distributed implementation from a verified model of the synchronous design.

Acknowledgments. We thank the anonymous reviewers for many helpful com-
ments on an earlier version of this paper. This work has been supported in part
by NSF Grants CNS08-34709, CCF09-05584, and CNS 13-19109, the Boeing
Corporation Grant C8088-557395, and AFOSR Grant FA8750-11-2-0084.

Definition, Semantics, and Analysis of Multirate Synchronous AADL 109

References

10.

11.

12.

13.

14.

Al-Nayeem, A.; Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition and
analysis of virtually synchronized real-time distributed systems. In: Proc. ICCPS
2012. IEEE (2012)

Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. 30th IEEE Real-
Time Systems Symposium. IEEE (2009)

Bae, K., Krisiloff, J., Meseguer, J., Olveczky, P.C.: PALS-based analysis of an
airplane multirate control system in Real-Time Maude. In: Proc. FTSCS 2012.
Electronic Proceedings in Theoretical Computer Science, vol. 105, pp. 5-21 (2012)
Bae, K., Meseguer, J., Olveczky, P.C.: Formal patterns for multi-rate distributed
real-time systems. In: Pédsdreanu, C.S., Salatin, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 1-18. Springer, Heidelberg (2013)

Bae, K., Meseguer, J., Olveczky, P.C.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL (2013),
http://formal.cs.illinois.edu/kbae/MR-SynchAADL

Bae, K., Meseguer, J., Olveczky, P.C.: Formal patterns for multirate dis-
tributed real-time systems. Science of Computer Programming (to appear, 2014),
http://dx.doi.org/10.1016/j.scico0.2013.09.010

Bae, K., Olveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651-667. Springer, Heidelberg (2011)

Bae, K., Olveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software En-
gineering. LNCS, vol. 7212, pp. 59-62. Springer, Heidelberg (2012)

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL. Addison-Wesley
(2012)

Franga, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL behaviour annex - experiments and roadmap. In: Proc. ICECCS 2007.
IEEE (2007)

Meseguer, J., Olveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comp. Sci. 451, 1-37
(2012)

Olveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of be-
havioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.)
FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp. 47-62. Springer, Heidelberg
(2010)

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161-196 (2007)

http://formal.cs.illinois.edu/kbae/MR-SynchAADL
http://dx.doi.org/10.1016/j.scico.2013.09.010

TRUSTFOUND: Towards a Formal Foundation
for Model Checking Trusted Computing Platforms

Guangdong Bail, Jianan Hao?, Jianliang Wus, Yang Liu?,
Zhenkai Liang', and Andrew Martin*

1 National University of Singapore, Singapore
2 Nanyang Technological University, Singapore
3 Shandong University, China
4 University of Oxford, UK

Abstract. Trusted computing relies on formally verified trusted computing plat-
forms to achieve high security assurance. In practice, however, new platforms are
often proposed without a comprehensive formal evaluation and explicitly defined
underlying assumptions. In this work, we propose TRUSTFOUND, a formal foun-
dation and framework for model checking trusted computing platforms. TRUST-
FOUND includes a logic for formally modeling platforms, a model of trusted
computing techniques and a broad spectrum of threat models. It can be used to
check platforms on security properties (e.g., confidentiality and attestability) and
uncover the implicit assumptions that must be satisfied to guarantee the security
properties. In our experiments, TRUSTFOUND is used to encode and model check
two trusted platforms. It has identified a total of six implicit assumptions and two
severe previously-unknown logic flaws from them.

1 Introduction

The concept of trusted computing has been proposed for more than a decade. It intro-
duces hardware-support security, which takes tamper-resistant hardware techniques as
the root of trust, such as Trusted Computing Module (TPM) [20,21], Intel’s TXT, and
ARM TrustZone. These hardware techniques provide a physically isolated storage and
computation environment, based on which a chain of trust is set up to support the upper
layer software.

Benefited from the hardware support, trusted computing achieves an unprecedent-
edly high security guarantee (i.e., trust) in systems involving multi-level trust domains.
Therefore, it has been widely embraced by mainstream products. For example, more
than 500 million PCs have shipped with TPM [5] so far; Microsoft equips their recent
products Windows RT and Windows 8 Pro tablets with built-in TPM technology [26].
In addition, as we have witnessed, it has been significantly influencing the design of
contemporary security systems and protocols— many trusted platforms' have been pro-
posed both in industry [1,4] and academia [27,32,9,30].

Problems. Ideally, the design of the trusted platforms must be formally verified be-
fore they are implemented. However, there still lacks an analytical foundation to guide

"In this paper, trusted platforms refer to the systems, infrastructures and protocols built on
trusted computing techniques.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 110-126, 2014.
(© Springer International Publishing Switzerland 2014

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 111

the formal analysis. New trusted platforms are often designed and built without com-
prehensive analysis against common threat models, which often results in vulnerabili-
ties [22,11,38,37,14].

Formally analyzing trusted platforms is notoriously challenging. First, a trusted plat-
form usually involves more than one component, including hardware, firmware and
software, all of which need to be evaluated. In addition, their configurations and com-
munication interfaces also affect the security properties of the platform. Second, a secu-
rity analyst has to become an expert in the internals of the hardware-support techniques
and formally model them before she is able to model her own platform. However, the
techniques are subtle and complicated. Taking TPM as an example, the specification
of TPM version 1.2 [20] from Trusted Computing Group (TCG) has 800+ pages, and
version 2.0 [21] has 1400+ pages. Third, the large attack surface on trusted platforms
requires a comprehensive consideration and understanding of the malicious behaviors.

Our Work. We propose TRUSTFOUND, a formal foundation for analyzing trusted plat-
forms. TRUSTFOUND includes a formalism named TCSP# (Trusted CSP#) for model-
ing the trusted platforms, a formal model of the key techniques in trusted computing?
(e.g., TPM, static root of trust measurement, late launch and the chain of trust), as well
as a broad spectrum of threat models. TCSP# combines the CSP/CSP# [35], LS? [16]
and trusted computing concepts, which supports modeling machines, communications,
cryptography data and operations, and trusted computing techniques. The TPM model
prevents security analysts from stumbling into the complicated internals of trusted com-
puting techniques. In addition, the threat models cover most of the known attack scenar-
i0s, including the hardware attacker, the system attacker and the network attacker. For
the security analysis, TRUSTFOUND aims to 1) detect flaws from the designs of trusted
platforms using model checking, and 2) uncover the implicit underlying assumptions on
the trusted computing base (TCB), using of trusted computing techniques and network
infrastructure, which must be satisfied for the platform to guarantee the security goals.

We implement TRUSTFOUND as a framework in C# and CSP# [35] based on the
model checker PAT [36]. We apply TRUSTFOUND to formally study two trusted plat-
forms — an envelope protocol and a cloud computing platform. TRUSTFOUND has
found that seven existing attacks may break their security goals, and identified six im-
plicit assumptions for each of them. Besides, it has detected two previous-unknown
security flaws in them, which allow the attacker to breach the desired security goals
completely by simply rebooting the machine at certain timing.

2 Motivation and Overview

2.1 Overview of Key Concepts in Trusted Computing

Trusted Platform Model (TPM). TPM is the root of trust for secure storage and mea-
surement, which is a tamper-free coprocessor that provides an isolated storage and
computing environment. TPM implements the cryptography primitives such as encryp-
tion/decryption, signature, hash and key management. TPM provides a set of commands

2 The rest of this paper refers this model as the TPM model.

112 G. Bai et al.

for the external software to implement functionality that cannot be achieved only using
software, such as building a chain of trust and remote attestation. TPM contains 24 in-
ternal Platform Configuration Registers (PCRs). The only way to modify their content
is through the command TPM Extend (s) : PCR; <+ hash(PCR;,s). Therefore, the value
of a PCR can be used to indicate the state of the software stack on a platform. A key
can be sealed to a particular PCR value, such that the key cannot be used (unsealed)
if the content of the PCR is not in the sealed value. Two important asymmetric key
pairs are embedded in a TPM, namely the Endorsement Key (EK) and the Storage Root
Key (SRK). These two keys are kept secret from the external software.

Chain of Trust. A chain of trust is set up by validating each of the system components
from bottom up. Two ways can be used to build a chain of trust. The first is the Static
Root of Trust Measurement (SRTM) which builds a static chain since the booting of the
machine; the other is Dynamic Root of Trust Measurement (DRTM) which dynamically
creates a secure execution environment. In SRTM, the first software component is the
CRTM (Core Root of Trust for Measurement), while in DRTM, the component is the
Authenticated Code Module (ACM).

2.2 Motivating Example

Alice Bob’s Machine TPM

T T
! ®request ! !
1 1 1
(2) SRTM/DRTM !

®n |

| ——— 1
@ extendn 1

Ables and Ryan [8] proposed a digital en-
velope protocol. This protocol has been an-
alyzed and proved correct under certain
assumptions by the previous work [18]. Our
work attempts to analyze it against a broader
range of threat models to uncover the under-
lying assumptions and if possible, identify se-
curity flaws from its design.

1

1

E (@: Create and Seal k:E:y
|—>

i U [kIsRE KT

1 < 1

: ! ® Certify key !

1 . —
Security Goal. The protocol allows Alice to i !
1
1
1
1
1

H cert !
. . e
send Bob an enveloped secret, achieving the @k, cert i
goal that Bob can either read the secret or re- ® [secrer] k N
voke his right to unseal the envelope. More — TP P, @attestable mode

importantly, if Bob revokes his right, he is
able to prove that he has not accessed the data
and will not be able to afterwards.

Fig. 1. Sealing Envelope Process in the En-
velope Protocol

Protocol Steps. The envelope protocol is de-
signed to work as follows:

1) Sealing Envelope. Shown in Fig. 1, Alice requests Bob to enter an attestable mode
(meaning that the state of Bob’s machine is known by Alice) where runs a trusted
block. Bob can achieve this through either SRTM or DRTM. After this step, the PCR
is in the state So (D& ®). Alice then sends a random nonce 7 to the trusted block. The
value of n is kept secret to Bob (®). The trusted block extends the PCR with n, so
its value becomes hash(So, n) (®). Bob creates an asymmetric key pair k (private key)
and k=1 (public key). Bob seals k to the PCR value hash(hash(So, n), accept) (®) and

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 113

generates a certificate to prove this (®). Bob sends k! and the certificate to Alice, and
Alice sends back the encrypted secret (D&®).

2) Unsealing Envelope or Revoking Right. To unseal the envelope, Bob extends the
TPM with accept, such that the key can be unsealed for decryption. Alternatively, Bob
extends the TPM with reject (accept and reject are two different integers), and requests
a TPM quote (a TPM signed PCR value hash(hash(So, n), reject))) as the evidence.

Possible Property Violations. This protocol is subject to several attacks, which may
lead to the violation of the security goal. In the following, we show two examples.

1) Nonce Stealing. The confidentiality of # is critical in this protocol. If it is obtained
by Bob, Bob can first chooses to extend reject, and then reboot the machine and extend
accept to unseal the key. Here the problem is that it is impossible to set up an encrypted
channel directly between Alice and Bob’s TPM. Therefore, there must be particular
software and hardware involved to bridge them, for example, network adapter, LPC
bus (where the TPM chip is located), network driver and SSL/TLS library. As a result,
there are several existing attacks for malicious Bob to obtain the value of n.

2) Forging Certificate Attack. 1f Bob compromises a CA (Certificate Authority) trusted
by Alice, an attack can be conducted at Step @. Bob can forge a certificate for a key
pair whose private part is visible to him and deceive Alice into trusting that the key is
sealed to the expected PCR state.

Implicit Assumptions. Given the existence of these two possible violations, two un-
derlying assumptions must be satisfied to achieve the security goal.

— Al: a Set of Trusted Components. The components that the n flows through, such
as the SSL library and the LPC bus, must be included in the TCB.

— A2: a Trusted and Uncompromisable CA. A secure CA is required to validate all
certificates.

2.3 TRUSTFOUND Overview

As shown by this example, the de- Threat Models

sign of a trusted platform must | Counter

be formally analyzed to reduce Model Example] | Assumption
possible flaws. Thus, we propose Checking Inference
TRUSTFOUND, an analytical formal |TPM Model _ !
foundation and framework for model
checking trusted platforms. Fig. 2

shows the overall design of TRUST- Fig. 2. Overview of TRUSTFOUND
FOouND. TRUSTFOUND provides an

expressive language named TCSP# for modeling trusted platforms (Section 3). It also
provides a TPM model such that the security analyst can include the models of trusted
computing techniques by simply invoking into the TPM model (Section 3.3). The
TCSP# model is taken as input to a model checker, with a set of attacker models
(Section 4). If an attack violates the specified security properties, the model checker
generates a counterexample. TRUSTFOUND then infers security flaws and implicit as-
sumptions based on the counterexample (Section 4.4).

114 G. Bai et al.

Scope & Assumptions. The core objective of TRUSTFOUND is to figure out whether
the design of a trusted platform guarantees the expected properties under a spectrum
of attacks. We focus on revealing the flaws and implicit assumptions in the platform
designs. We do not target the detection of attacks exploiting implementation vulnera-
bilities such as the BIOS attack [34], DMA attack [31] and TPM reset attack [2], but
we do take them into consideration when identifying the implicit assumptions. We do
not consider the DoS attack and side channel attacks such as the timing attack [33].
We also make the following assumptions in TRUSTFOUND: 1) the cryptographic algo-
rithms used by the platforms are perfectly secure, and 2) the secret keys and nonces are
secret and distinct among different sessions.

3 Modeling Trusted Platforms

This section presents TCSP#, which is designed for modeling and verifying the trusted
platforms. TCSP# extends CSP/CSP# [35] with the logic of security systems, which is
based on the LS? [16]. Besides, it has new extensions on the trusted computing concepts.
We show that it is capable of capturing the semantics of trusted platforms.

3.1 Overview of Modeling Language

This section explains the syntax and semantics of CSP# intuitively to ease understand-
ing the rest of this paper. The terms defined in CSP# and used in this paper is underlined.
We refer the reader to [35] for the full syntax and semantics of CSP#.

Overview of CSP#.
Syntax. The crucial syntax of CSP# is as following.
Process P ::= Stop | Skip — termination

| [p]P — state guard
| e—P — event prefixing
| e{program} — P — data operation prefixing
| ¢?d— P(d)|cld— P — channel input/output
| P;Q — sequence
| POQ|PMNQ]|ifbthenPelse Q — choices
| PlllQ|P|Q — concurrency
| PA(e— Q) — interrupt

The core of CSP# is the concurrency and communication. A CSP# model is a 3-tuple
(VS, init, P), where VS is a set of variables, init is the initial values of these variables,
and P is a process. The e is a simple event; program executes an atomic and sequen-
tial program when e is executed; c is a synchronized communication channel. CSP#
supports internal choice (P 1 Q), external choice (P O) and conditional branch
(if b then P else Q). Process P; Q behaves as P and after P terminates, behaves as Q.
Process P ||| O behaves P and Q simultaneously and only synchronize through the chan-
nels, while P || Q requires synchronization over a set of events. Process P A (e — Q)
behaves as P until e occurs and then behaves as Q.

Semantics. The semantic model of a CSP# model is a Labeled Transition System (LTS),
which is a tuple (S, init, Act, Tran) where S is a finite set of states; init is the initial state

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 115

Process TP == a{program} — TP — data operation prefixing
| P — process in CSP#
data/variable d ::=n — number
| ¢ — program
| & — symmetric key
| sk|sk™! — private/public key
| d,d — concatenation
| [dlx | [d]sk — ciphertext
| [d]g—1 — signature
| h(d) — hash
| TPM DATA — TPM data
action a = newd — generate new data object
| readl.d | writel.d — read/write d from/to location /
| symencrypt d.sk™" | encrypt d.k — encryption
| symdecrypt d.sk | decrypt d.k — decryption
| sign d.sk verify d.sk™" — sign & verify signature
| hashd — hash
| TPM CMD — TPM commands
location 1 == ROM@i | RAM @i | disk@i

Fig. 3. Extension of the Logic for Trusted Platforms in TCSP#

and init € S; Act is a set of actions; Tran is a set labeled transition relations, each of
whose elements is a relation § x Act x S. We use s — s’ to denote (s, e, s") € Tran.

Reachability Checking. Since most of the security properties can be specified in reach-
ability, we only use reachability checking in this work (Section 4.3), although other
properties such as refinement and linear temporal logic can be checked on an LTS. We
define a path as a sequence of alternating states and events < so, €o, 51, €1, ... >. A state

s, is reachable if there exists a path P such that so = init and s; AN si41 forall i < n.

New Extensions in TCSP#.

Fig. 3 presents the new extensions introduced by TCSP#, which are twofold. The first
is on modeling the secure systems, including cryptographic operations, machines, net-
work, programs, etc. (Section 3.2). The other is on modeling the trusted computing
techniques, which are modeled as a set of special data structures and used as global
variables (Section 3.3).

TCSP# is abstract, but it is capable of capturing the necessary details of the trusted
platforms. It can model the complicated data structures and the control flow of the
platforms. Compared with LS?, TCSP# is more expressive and it fits in the inherently
communicative and concurrent trusted platforms. TCSP# has the same semantic model
as CSP#, which is also an LTS.

3.2 Modeling Security Systems

Machines, Bus and Network. Fig. 4 shows the abstraction of a machine in TRUST-
FOUND. A machine is modeled as a process in TCSP#. Each machine contains a CPU,
a hard disk, a TPM, a network adapter, ROM and RAM. By default, the firmware such

116 G. Bai et al.

,\ ittt el
| Network Machine
_______ ! | Adapter RAM

1
1
i . 1
1 Machine , ! 1
| g \ :
1 | Disk Apps !
1
: Bootloader TPM i
! 1
|\ — R i ‘
 Trom :
1
Communication ! - Commands |
1 -anware
- Channels 1 '

Fig. 4. Abstraction of a Machine

enum [os]; var DISK = [Code,|; var RAM = [0];
Config() = load{RAM @os = DISK @os} — OS;
OS() = OSben[gn;

(a) Loading OS from the Disk

enum [0s, 0su]; var DISK = [Code,s, Code.,y,|; var RAM = [0, 0];

Config() = load{RAM @os = DISK @os} — SystemAttacker;
SystemAttacker() = crackMemory{RAM @os = DISK @os,,} — OS;

0S() = [RAM @0s == Codeos|OSpenign O [RAM @0s == Codeys,, |OSmalicious;

(b) Compromising OS after it is loaded (code,s,, : the code of compromised OS)
Fig. 5. TCSP# Models of Loading OS and an Attack Compromising the OS

as BIOS and the CRTM are located in the ROM. The hardware drivers and the soft-
ware, such as the bootloader, OS, network driver and applications, are located in the
hard disk. All of them are loaded into the RAM before they can be executed. Fig. 5(a)
demonstrates a simplified TCSP# model of loading the OS from the disk to the RAM.

We emphasize the communication channel between the CPU and the TPM, namely
the LPC bus. The reason is because it is more vulnerable than other channels like the
north bridge that is between the CPU and the RAM. The LPC bus, actually, has been
found vulnerable to an eavesdropping attack [25] and the TPM reset attack [2].

TRUSTFOUND models the communication channels among the components and
among the machines with channels. The sender uses ch!d to send out data and the re-
ceiver listens on the channel using ch?d. In the real world, a communication channel can
be a private/secure channel or a public/non-secure channel. Therefore, TRUSTFOUND
introduces the concept of private channel and public channel accordingly. The private
channel is immune to the attacker’s eavesdropping, for example, the SSL channel, while
public channel leaks all transmitted messages to the network attacker.

Data. Two categories of data are supported in TRUSTFOUND. The first one is primitive
data, including the integer, boolean, cipertext, hash value, signature, encryption/decryp-
tion keys, program and concatenated data. Each primitive data is represented symboli-
cally as a 2-tuple d = (type, expression), where type indicates the type of the data, such

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 117

as nonce, program and public key; the expression may be a number, the identity of a key
or a ciphertext [d];. The other type is the TPM data, which is discussed in Section 3.3.

Cryptography Primitives. TCSP# includes the standard cryptography primitives, such
as encryption/decryption, signing/signature verification, hashing, nonce (random num-
ber) generation. These primitives take the symbolized data as operands. For example,
signing a nonce n = (nonce, 1) with key sk = (private key,001) (001 is the identity
of sk) generates the signature sig = (signature, [n]y), which can be verified using sk’s
inverse key sk=! = (public key,00171).

3.3 Modeling the TPM

Since all the key concepts, such as the root of trust, chain of trust, SRTM and DRTM,
are based on the TPM, we detail the modeling of the TPM in this section.

Abstraction and Simplification. To reduce complexity in modeling and verifying pro-
cess, a reasonable abstraction and simplification is necessary. The challenge is that the
semantics relevant to the security properties cannot be excluded. TRUSTFOUND pre-
serves this semantics in the following three aspects.

— Functionality. The functionality of the TPM commands is preserved in a simula-
tion way. For example, the return value of the command TPM CreateWrapKey is
a representation of TPM key blob, in which contains a symbolic representation of
encryption key (discussed soon).

— Internal Semantics. The internal security semantics specified by TCG is pre-
served. For example, in the commands that use a sealed key, such as TPM Seal,
TPM Unseal, TPM Unbind, the content of the PCR is checked with the sealed value
before the key can be used.

— Internal State Transition. The internal state of the TPM changes accordingly
when the commands are invoked. For example, when the TPM Extend (index, value)
is called, the PCR|index] is extended with value; rebooting the machine and acti-
vating late launch set the PCRs to a pre-defined value.

We make the following simplifications on the authorization and the key hierarchy.

1) No Authorization Required. In a real TPM, the authorization protocols such as
the OIAP (Object-Independent Authorization Protocol) and the OSAP (Object-Specific
Authorization Protocol) are used to set up a session between the user and the TPM.
Since authorization has been well analyzed in previous work [17], we omits it.

2) No Key Hierarchy. Based on our assumption that the cryptographic algorithms
are perfectly secure, we do not consider the key hierarchy in TPM. Therefore, all the
certificates issued by the TPM are signed using its EK, meaning we do not consider
the AIK (Attestation Identity Key); similarly, all the encryption operations for secure
storage use the SRK.

Abstraction of TPM Data. TRUSTFOUND models the data relevant to the TPM, in-
cluding the internal data structures (e.g., the PCR value, EK and SRK) and the data
generated and consumed by TPM (e.g., TPM certificate, TPM quote, key blob and data
blob). Each TPM instance has a unique EK that can be used as its identity.

118 G. Bai et al.

5;= {PCR, VM, {ek, srk}}, s,.,= {PCR® {index'> hash(PCRlindex]|d)}, VM, {ek, srk}}

(a) TPM Extend (@ is function overriding and seq @© {i — v} means overrides seq[i|
with v.)

w Ch?keyblob TPM_LoadKeyz @ Chlloc w

s;= {PCR, VM, {ek, srk}}, s;,= {PCR, VMU {(loc, (sk, sk "))}, {ek, srk}}

(b) TPM LoadKey2
Fig. 6. The Semantics Models of Two TPM Commands

A TPM data is constructed from the primitive data. A PCR value includes the index of
the PCR and a hash value to indicate its value. The EK and SRK are asymmetric key pairs.
A TPM certificate is a certificate issued by a TPM to certify that a key is generated by the
TPM and has been sealed on a specific PCR value. A TPM quote is a PCR value signed by
the TPM. A key blob, which is generated by the TPM CreateWrapKey command, includes
the public part and encrypted private part of the generated key. It also indicates the PCR
value that the key is sealed to. A data blob is returned by the TPM Seal command. The
models of these TPM data can be found in our implementation [6]. Here, we just take
the TPM certificate as an example to show how the TPM data is modeled.

Example. A TPM certificate is a 2-tuple (type, expression), where the fype indicates that
the tuple is a TPM certificate; the expression is a concatenation of a serial of other data:
< bool,sk~*,int, TPM PCRValue,ek™', [bool, sk=1, int, TPM PCRValue,ek '], >.
The first element indicates it is a key generated by the TPM; the second is the public
part of the certified key; the third and the fourth indicate the PCR and PCR value the
key is sealed to; the fifth is the public part of the EK and the last is a signature by EK.

Formalization of TPM. The TPM is formalized as an LTS £77M = (57 init” , Cmd"
TranT), where

- 5T = SZ;, X SZ;M is a finite set of states, including control states and data states.
The S7,

vt = {Sinit, Sin, Sow } models the states regarding the input and output; each
of ST is a set of variables V7 and their values (detailed later in this Section).
An element of S . is a set {PCR, VM, {ek,srk}}, where the PCR is a sequence
which includes the values of 24 PCRs; the VM represents the volatile memory and
contains indexed key pairs loaded via TPM LoadKey2, each of which is denoted by
(location, {sk,sk=1}); ek and srk stand for the EK and the SRK, respectively.

— init” is the initial state.

— Cmd” is the set of the commands.

— Tran” is the transition relations, each of which is a relation S7 x Cmd” x S7.
Tran” defines the semantics of the TPM commands, that is, the state transitions

upon invoking the TPM commands.

TPM Commands. We use the models of TPM Extend (Fig. 6(a)) and TPM LoadKey2
(Fig. 6(b)) to demonstrate the semantics model of TPM commands. The interface
TRUSTFOUND provides to the security analyst is the commands same as those

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 119

rulel.l: de AKNke AK E [d € AK Symmetric Encryption Rule
rule 1.2 : [dli € AK Nk € AKX F de AK Symmetric Decryption Rule
rule2.1: d € AKAsk™' € AK F [dlg—1 € AK Asymmetric Encryption Rule
rule 2.2 : [dlg-—1 € AKAske AKE de AK Asymmetric Decryption Rule
rule 2.3 : d € AK N sk e AK F |d« € AK Signature Rule
rule2.4: [dlg € AKAsk™' € AKE de AK Signature Verification Rule
rule3.1: d e AKX E hash(d) € AK Hash Rule

Fig. 7. Deduction Rules for Cryptography

specified by TCG. These commands take as input the symbolized TPM data. Thus, from
the perspective of the analyst, our TPM model can be regarded as a software-based sym-
bolic and abstract emulator of TPM. We refer the readers to [6] for the full model.

Correctness of TPM Model. One critical issue is that TRUSTFOUND requires a com-
plete and sound TPM model to prevent false positives and negatives. Some previous work
has been done towards a verified implementation of TPM [28], which can be used to ver-
ify and refine our implementation. In this work, we assume our TPM model is correct.

4 Threat Attacks and Security Goals

After coming up with the formal specification of a trusted platform, the next step is to
evaluate the expected security properties against threats models. This section defines
the modeling of the attacks and security properties in TRUSTFOUND.

4.1 Attacker’s Knowledge and Knowledge Deduction

We define a property called knowledge set AKC € VS for the attacker. The elements
of AK are the data that can be obtained by the attacker. The attacker can enlarge AKX
by eavesdropping on the communication channels, generating data using a machine
equipped with TPM (discussed in Section 4.2) and deducing new knowledge based on
the data known to him. We define some rules for the attacker to deduce new knowledge.
As an example, Fig. 7 demonstrates part of the deduction rules for cryptography.

Two events activate the knowledge deduction. First, when a ciphertext is added into
AKC, the attacker actively tries to decrypt it using all the keys he possesses. Second,
when a data of a particular type is required, for example, outputting a data to a process,
the attacker constructs a new data of the required type. The challenge in knowledge
deduction is that applying cryptographic functions unboundedly may leads to an infinite
AK. Therefore, we bound the nesting depth of the encryption functions to be less than
3 by default, unless the attacker obtains or a receiver expects data of deeper nest. In
our experiments, we have not found any protocol using more than 3 levels of nesting
cryptographic constructions, which implies that this bound is reasonable.

4.2 Threat Models

We divide the threat models in trusted computing into three categories, namely the
network attacker, the system attacker and the hardware attacker.

120 G. Bai et al.

Network Attacker. The network attacker is modeled using the Dolev-Yao model [19].
An active network attacker is able to eavesdrop all messages and modify unencrypted
messages on network. We assume the SSL channel cannot be compromised; however,
if the platform use SSL as the communication channel, TRUSTFOUND reports that the
platform relies on two implicit assumptions—the SSL library must be trusted and a
trusted CA is required (uncovering the implicit assumptions is discussed in Section 4.4).

A novel feature of the network attacker is that the attacker possesses a machine (de-
noted by M 4) equipped with TPM. During the knowledge deduction, the attacker can
feed TPM with forged data to generate TPM data expected by the victims. Therefore,
the attacker can commit the masquerading attack [34], which forges PCR quote with
M 4 to convince the attester that the machine is in the expected state, while conducts
malicious behaviors on another machine.

System Attacker. The system attacker can compromise all of the legacy software, in-
cluding the bootloader, the OS and the applications. The attacker can read/write all the
locations on hard disk and RAM. Fig. 5(b) demonstrates the model of an attack which
compromises the OS after it has been loaded to the RAM.

In addition, the system attacker can invoke the TPM’s commands with arbitrary pa-
rameters. One possible attack is that the attacker invokes TPM Extend with the benign
code to convince the attester, but executes a malicious version of the code.

Hardware Attacker. The attacker on hardware level completely controls a machine.
The attacker can compromise the add-on hardware and firmware, for example, DMA
attack [23], compromising bootloader and BIOS [24], TPM reset attack [2] and eaves-
dropping on LPC bus [25]. Compromising firmware such as BIOS and bootloader can
defeat the SRTM. The DMA attack can modify the program after it has been loaded
into the memory, leading to the same consequence as the system attacker. The TPM
reset attack can reset the PCRs to the default state without reboot or late launch. The
attacker, therefore, becomes capable of setting the PCR to an arbitrary state as what the
system attacker can do. The hardware attacker who can access the LPC bus is able to
eavesdrop the communication between the TPM and the CPU.

Note that TRUSTFOUND also regards rebooting a machine as an attack, given it
changes the state of the system and TPM. We name this attack reboot attack.

4.3 Security Goals

The trusted platforms are designed to satisfy various security goals. This section dis-
cusses two most commonly used ones. We also show that these two goals and other
properties can be specified as reachability properties.

Confidentiality. Most of the time, a trusted platform needs to introduce some creden-
tials, whose confidentiality needs to be guaranteed, such as the n in our motivating
example. To check confidentiality property, TRUSTFOUND queries a credential d from
the AK after the execution of the platforms. If d € AL, the confidentiality is violated.

Attestability. Attestability means if the attester believes the attested machine is in a state
S, then the machine must be in that state. Violation of attestability may completely vi-
olate the design properties of a platform. As shown in Section 2.2, the forging certificate

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 121

attack manages to break the protocol. The security analyst can define this property with
reachability, that is, it cannot be reached that the state of the attested machine (in terms
of the PCR value) is not equal to the expected state St.

Other security property can also be specified with reachability in TRUSTFOUND. For
example, the security goal of our motivating example, can be specified as

#define bothCan(isBobGetSec == true && isBobRvk == true);
Fassert Protocol reaches bothCan;

where the isBobGetSec and isBobRvk are two variables in the TCSP# model;
isBobGetSec is set to true whenever Bob reads the secret and isBobRvk is set to true
once Alice receives the TPM quote of hash(hash(So, n), reject).

4.4 Uncovering Implicit Assumptions

Identifying those implicit assumptions is crucial for enhancing the security on the de-
sign level, e.g., by decreasing the size of the TCB as much as possible, and guiding the
implementation, e.g., correctly using TPM. TRUSTFOUND figures out the assumptions
on the following three aspects.

— TCB. TRUSTFOUND considers the components of hardware, firmware and soft-
ware. If an attack targeting a component violates the security goals, the component
is added to the assumptions of TCB.

— Network Infrastructure. If TRUSTFOUND finds the platform uses a private channel,
it assumes the SSL is used, and thus the SSL library should be included in the TCB
and a trusted CA is needed. In addition, if the platform uses any certificate, a trusted
CA is required.

— Use of TPM. TRUSTFOUND considers the use of the PCRs. One important but
likely to be overlooked fact is that two PCRs (16 and 23) are resettable without
a system reboot (using the TPM PCR Reset command), meaning that the system
attacker can generate any value for those PCRs and do the same attack as the TPM
reset attack. Therefore, they cannot be used for attestation.

S Implementation and Case Studies

We have implemented TRUSTFOUND in the PAT model checker [36], which is a self-
contained model checking framework for modeling and verification. We implement
TCSP# by integrating the existing CSP# language with an external library. This library
implements semantics of TCSP#, TPM models and the threat models in approximately
4k lines of C# code [6]. As case studies, we apply TRUSTFOUND on two existing trusted
platforms.

5.1 Analysis of the Digital Envelope Protocol

We use TRUSTFOUND to comprehensively analyze the envelope protocol presented in
Section 2.2. The protocol is modeled in less than 500 lines of TCSP# code. This section
summarizes our findings; the reader may refer to [6] for the complete models. Since

122 G. Bai et al.

violating either of confidentiality and attestability leads to the violation of bothCan (de-
fined in Section 4.3), we just check the assertion of bothCan in our experiments.

Threat Models. We define the following attack scenarios based on the threat models.

Network Attacker. We define NA1 as a network attack which can record and replay the
transmitted messages, and NA2 as a compromised CA who issues certificate for a key
pair (mk, mk—1) whose private key is known by Bob.

System Attacker. We define SA1 as a compromised BIOS who extends a benign OS
but executes another malicious one, and SA2 as a buggy software component (e.g., the
SSL library) who can be compromised and cause the leakage of n. SAI indicates the
modules measured in Sy but can be compromised at runtime, while SA2 indicates those
that are not measured in Sq but in fact, are sensitive.

Hardware Attacker. We define HAla as the TPM reset attack, HA1b as the TPM LPC
attack, HA2 as the DMA attack targeting loaded OS, and HA3 as the reboot attack.
Note that for all attackers, we model the protocol in a way that Bob can re-execute the
protocol and during re-execution, a fake Alice can feed Bob with data included in the
attacker’s knowledge set.

Experiments. TRUSTFOUND reports that NAI can obtain n at Step @. Bob therefore
can first extend reject and convince Alice with hash(hash(So, n), reject), and then re-
executes the protocol with the fake Alice and extends accept to get secret. After we
change the channel to be private, the data leakage is removed and TRUSTFOUND figures
out two assumptions: Al that SSL library should be included in TCB and A2 that a
trust CA is required. For NA2, TRUSTFOUND reports an attack on Step @. Bob forges
a certificate to convince Alice that the mk is sealed in TPM. Alice then uses mk~! to
encrypt secret. Bob is able to decrypt the ciphertext with mk. TRUSTFOUND also figures
out A2 in this case.

For SAI and SA2, TRUSTFOUND reports the leakage of n. Bob can conduct the same
attack as that in NAI. We then extend SA1 to attack all the modules measured by SRTM
and DRTM. TRUSTFOUND identifies A3 that for SRTM, the TCB should include the
CRTM, the BIOS, the bootloader, the OS and the trusted block, and A4 that for DRTM,
the ACM and the trusted block should be included in the TCB.

For HAla, TRUSTFOUND re-
ports that Bob does not reboot the Table 1. Statistics in Experiment of Envelope Protocol
machine upon receiving Alice’s re-

Attacks Statistics
quest at Step @. Bob then can ex-

#States #Transitions Time(s) Memory

ecute the protocol with Alice and NAI 3225 8336 218 29M
whenever a particular PCR is re- NA2 7023 13528 769 220M
quired, he just resets the PCR and §47 47451 124680 24.35 198M
constructs the expected PCR value. SA2 16744 43785 794 T2M
HA1b eavesdrops all command pa- HAla 4993 11353 194 38M
rameters transferring through the HAIb 2662 6907 1.63 23M

LPC bus, which allows Bob to ob- HA2 47451 124680 21.14 186M
tain n. Attack sequence is simi- HA3 75110 210663 36.66 232M

lar to NAI. Since the TPM reset

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 123

attack and LPC attack are targeting the physical interface, TRUSTFOUND reports A5
that proper protection on physical interface should be in TCB. HA2 only works for
SRTM since DRTM disables DMA for measured code by default. TRUSTFOUND re-
ports that the attacker can modify the OS to the malicious one after it has been loaded,
as SA1 does. Therefore, it figures out A6 that DMA-capable devices must be trusted
when SRTM is used.

A Logic Flaw in the Protocol. TRUSTFOUND reports a severe logic flaw which makes
the protocol vulnerable to HA3. Between the step @ and step @, malicious Bob can
reboot his machine to a malicious state and obtain n at step ®. Then Bob can conduct
the same attack as NAI. TRUSTFOUND raises it as a logic flaw because the property
violation occurs without any component on attack.

Table 1 lists the statistics collected in our experiments. Our experiments were con-
ducted on a PC with Intel Core 17-940 at 2.93 GHz and 12GB RAM. As can be seen,
it requires to explore significant numbers of states to detect the security flaws, which is
infeasible for manual analysis.

5.2 Analysis of a Trusted Grid Platform

We apply TRUSTFOUND to another trusted platform Alice C—l?u—d oM

for cloud computing [15], which can be abstracted as N G i
the steps shown in Fig. 8. Basically, Alice locates her : | SRTM/DRTM,_ !
encrypted sensitive program in the cloud (®). When |
the program needs to be executed, Alice attests the '
software stack in the cloud using a typical remote at- i ® quote
testation protocol [34] (@-®). If Alice verifies that the Yy

. . .
cloud is in an expected state, she sends the decryption 5
key to the trusted block (similar to Fig. 1).

(@ TPM_Quote(n i

quote |

®n

O attestable mode

Fig. 8. Trusted Grid Platform
Experiments and Results. We model this platform in
approximately 150 lines of TCSP# code. We use the same set of threat models as that
in Section 5.1. Due to the similarity of these two platforms, we derive the same set
of assumptions as we expected. Furthermore, TRUSTFOUND finds the following logic
flaw in this platform when we test the reboot attack (HA3).

A Logic Flaw in the Protocol. After Step ®, the malicious cloud can reboot to an
untrusted mode, and communicate with Alice to obtain k. This flaw occurs because the
attestability is violated. Given the cloud is under complete control of the attacker, an
authentication between Step ® and ® (as suggested in [15]) cannot defeat this attack.
A possible remedy is to request a key which is bound to a expected PCR value from the
cloud and encrypt k with this key.

6 Related Work

Security System Specification. We use the logic of LS? [16] in TCSP# to support mod-
eling security systems. Besides, formally specification of security systems has been well
studied in the literature. Many logics and calculi have been proposed before, such as

124 G. Bai et al.

BAN logic [12], WL model [39] and Spi-calculus [7]. To support verification and rea-
soning of them, a number of automatic tools have been developed, such as Proverif [10]
and AVISPA [3]. All of them focus on the security systems and TRUSTFOUND extends
them with the support of trusted computing techniques.

Trusted Platform Verification. Some previous work has been done on formal analysis
of the trusted platforms. Delaune et al. [18] present a Horn-clause-based framework for
trusted platform analysis, which is featured in sensitiveness of PCR states. Namiluko
and Martin [29] propose an abstract framework for TPM-based system based on CSP.
In this work, a trusted system is abstracted as composition of the subsystems, including
the resources and configurations. The TPM is abstracted as a set of processes. Giirgens
et al. [22] specify the TPM API using FSA (Finite State Automata). All of these works
need to model the TPM commands before analyzing the trusted platforms. Therefore,
TRUSTFOUND can serve as a foundation for them.

7 Conclusion

We presented TRUSTFOUND, a formal foundation and framework for model checking
trusted platforms. TRUSTFOUND provides an expressive formalism, a formal model of
the TPM, and three categories of threat models. We successfully detect design-level
flaws and a set of implicit assumptions from two existing trusted platforms. Hopefully,
TRUSTFOUND can be taken as a formal foundation for future research on formal ver-
ification of trusted platforms. Our ongoing work is to support newly proposed TPM
specification namely TPM 2.0, which aims to support TPM 2.0 based platforms such as
the Direct Anonymous Attestation (DAA) protocol [13].

Acknowledgement. We thank the anonymous reviewers for their valued comments to
improve this manuscript. We also thank Jin Song Dong, Jun Sun, Sjouke Mauw and
David Basin for their helpful feedback and comments. Guangdong Bai is supported by
NGS. This research is partially supported by “Formal Verification on Cloud” project
under Grant No: M4081155.020, “Verification of Security Protocol Implementations”
project under Grant No: M4080996.020 and by Singapore Ministry of Education under
grant R-252-000-519-112.

References

1. BitLocker, http://technet.microsoft.com/en-us/library/
eed49438%28v=ws.10%29.aspx

. TPM Reset Attack, http://www.cs.dartmouth.edu/~pkilab/sparks/

. The AVISPA project homepage, http://www.avispa-project.org/

. Trusted Boot, http://sourceforge.net/projects/tboot/

. Trusted Platform Module (TPM): Built-in Authentication,
http://www. trustedcomputinggroup.org/solutions/
authentication

6. TrustFound, http://www.comp.nus.edu.sg/~a0091939/TrustFound/

|9 I SN US I S]

http://technet.microsoft.com/en-us/library/ee449438%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/ee449438%28v=ws.10%29.aspx
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.avispa-project.org/
http://sourceforge.net/projects/tboot/
http://www.trustedcomputinggroup.org/solutions/authentication
http://www.trustedcomputinggroup.org/solutions/authentication
http://www.comp.nus.edu.sg/~a0091939/TrustFound/

11.

12.

14.

15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 125

. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The spi Calculus. Infor-

mation and Computation 148(1), 1-70 (1999)

. Ables, K., Ryan, M.D.: Escrowed Data and the Digital Envelope. In: Acquisti, A., Smith,

S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246-256. Springer,
Heidelberg (2010)

. Berger, S., Céceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: Virtual-

izing the Trusted Platform Module. In: USENIX Security Symposium (2006)

. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: [IEEE

Computer Security Foundations Workshop (CSFW) (2001)

Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay Attack in TCG Specification and
Solution. In: Annual Computer Security Applications Conference (ACSAC) (2005)
Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transactions on
Computer Systems 8, 18-36 (1990)

. Chen, L., Li, J.: Flexible and Scalable Digital Signatures in TPM 2.0. In: ACM Conference

on Computer and Communications Security (CCS) (2013)

Chen, L., Ryan, M.: Offline Dictionary Attack on TCG TPM Weak Authorisation Data, and
Solution. In: Future of Trust in Computing (2008)

Cooper, A., Martin, A.: Towards a Secure, Tamper-Proof Grid Platform. In: IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2006)

. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A Logic of Secure Systems and Its Application

to Trusted Computing. In: IEEE Symposium on Security and Privacy (S&P) (2009)
Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A Formal Analysis of Authentication in
the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
111-125. Springer, Heidelberg (2011)

Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal Analysis of Protocols Based on TPM
State Registers. In: IEEE Computer Security Foundations Symposium (CSF) (2011)

. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions on Infor-

mation Theory 29(2), 198-208 (1983)

T. C. Group. TPM Specification 1.2 (2013),
http://www.trustedcomputinggroup.org/resources/tpm main
specification

T. C. Group. TPM Specification 2.0 (2013),

https://www. trustedcomputinggroup.org/resources/

tpm library specification

Giirgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security Evaluation
of Scenarios Based on the TCG’s TPM Specification. In: Biskup, J., Lopez, J. (eds.)
ESORICS 2007. LNCS, vol. 4734, pp. 438-453. Springer, Heidelberg (2007)

Hendricks, J., van Doorn, L.: Secure Bootstrap is Not Enough: Shoring Up the Trusted Com-
puting Base. In: ACM SIGOPS European Workshop (2004)

Kauer, B.: OSLO: Improving the Security of Trusted Computing. In: USENIX Security
(2007)

Kursawe, K., Schellekens, D., Preneel, B.: Analyzing Trusted Platform Communication. In:
ECRYPT Workshop, CRASH-CRyptographic Advances in Secure Hardware (2005)
Mackie, K.: Wave Outlines Windows 8 Mobile Device Management Alternative

McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an Execution In-
frastructure for TCB Minimization. In: ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys) (2008)

Mukhamedov, A., Gordon, A.D., Ryan, M.: Towards a Verified Reference Implementation of
a Trusted Platform Module. In: Christianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.)
Security Protocols 2009. LNCS, vol. 7028, pp. 69-81. Springer, Heidelberg (2013)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification

126

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

G. Bai et al.

Namiluko, C., Martin, A.: An Abstract Model of a Trusted Platform. In: Chen, L., Yung, M.
(eds.) INTRUST 2010. LNCS, vol. 6802, pp. 47-66. Springer, Heidelberg (2011)

Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Practical State
Continuity for Protected Modules. In: IEEE Symposium on Security and Privacy (S&P)
(2011)

Sadeghi, A.-R., Selhorst, M., Stiible, C., Wachsmann, C., Winandy, M.: TCG Inside?: A
Note on TPM Specification Compliance. In: ACM Workshop on Scalable Trusted Comput-
ing (STC) (2006)

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-Based
Integrity Measurement Architecture. In: USENIX Security Symposium (2004)

Sparks, E.R.: A Security Assessment of Trusted Platform Modules. Technical Report
TR2007-597, Dartmouth College, Computer Science (2007)

Stumpf, F., Tafreschi, O., Roder, P., Eckert, C.: A Robust Integrity Reporting Protocol for
Remote Attestation. In: Workshop on Advances in Trusted Computing (WATC) (2006)

Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System
Modeling and Verification. In: International Symposium on Theoretical Aspects of Software
Engineering (TASE) (2009)

Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709-714. Springer,
Heidelberg (2009)

Wojtczuk, R., Rutkowska, J.: Attacking Intel Trusted Execution Technology. In: Black Hat
DC (2009)

Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another Way to Circumvent Intel Trusted Exe-
cution Technology. Invisible Things Lab (2009)

Woo, T.Y.C., Lam, S.S.: A Semantic Model for Authentication Protocols. In: IEEE Sympo-
sium on Security and Privacy (S&P) (1993)

The VerCors Tool
for Verification of Concurrent Programs

Stefan Blom and Marieke Huisman

Formal Methods and Tools, University of Twente, The Netherlands
{s.blom,m.huisman}@utwente.nl

Abstract. The VerCors tool implements thread-modular static verifi-
cation of concurrent programs, annotated with functional properties and
heap access permissions. The tool supports both generic multithreaded
and vector-based programming models. In particular, it can verify mul-
tithreaded programs written in Java, specified with JML extended with
separation logic. It can also verify parallelizable programs written in a
toy language that supports the characteristic features of OpenCL. The
tool verifies programs by first encoding the specified program into a much
simpler programming language and then applying the Chalice verifier to
the simplified program. In this paper we discuss both the implementation
of the tool and the features of its specification language.

1 Introduction

Increasing performance demands, application complexity and explicit multi-core
parallelism make concurrency omnipresent in software applications. However,
due to the complex interferences between threads in an application, concurrent
software is also notoriously hard to get correct. Therefore, formal techniques are
needed to reason about the behavior of concurrent programs. Over the last years,
program logics have proven themselves to be useful to reason about sequential
programs. In particular, several powerful tools for JML have been developed [5].
These techniques now are mature enough to lift them to concurrent programs.

The VerCors tool supports the thread-modular verification of multithreaded
programs. Modularity is achieved by specifying for each thread which variables
on the heap it can access, by means of access permissions, which can be divided
and combined, but not duplicated [8]. To read a location, any share of the access
permission to that location suffices. To write a location a thread needs 100% of
the access rights. Hence, if a thread has write permission to a location, no other
thread can read that location simultaneously. Moreover, if a thread has read
permission to a location, other threads can also only read this location. Thus
specifications that are sufficiently protected by permissions are interference-free.
Moreover, verified programs cannot contain data races.

Just as multi-core processors are ubiquitous, the same applies to GPU hard-
ware. Therefore, the VerCors tool also provides the functionality to reason about
kernels running on a GPU, where a large number of threads execute the same
instructions, each on part of the data.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 127-131, 2014.
© Springer International Publishing Switzerland 2014

128 S. Blom and M. Huisman

2 Design of the VerCors Tool

Rather than building yet another verifier, the VerCors tool leverages existing
verifiers. That is, it is designed as a compiler that translates specified programs
to a simpler language. These simplified programs are then verified by a third-
party verifier. If there are errors then the error messages are converted to refer
to the original input code.

Figure 1 shows the overall architec-
ture of the tool. Its main input lan- =
guage is Java. For prototyping, we use {} {} Ve'cT’ggsl
the toy language PVL, which is a very
simple object-oriented language that can
express specified GPU kernels too. The [l
C language family front-end is work-in- Y4
progress, but will support OpenCL in ’Cha'ice‘®’3°°gie ‘®’ 2 ‘ back ends
the near future. We mainly use Chalice
[10], a verifier for an idealized concurrent Fig. 1. VerCors tool architecture
programming language, as our back-end,
but for sequential programs we also use the intermediate program verification
language Boogie [1].

The implementation of the tool is highly modular. Everything is built around
the Common Object Language data structure for Abstract Syntax Trees. For
Java and C, parsing happens in two passes. In the first pass an existing ANTLR4
[13] grammar is used to convert the program into an AST while keeping all com-
ments. In the second pass those comments that contain specifications are parsed
using a separate grammar. This prevents us from having to maintain heavily
modified grammars and makes it much easier to support multiple specification
languages. The process of encoding programs consists of many simple passes. Ob-
viously, this impacts performance, but it is good for reusability and checkability
of the passes. Our back-end framework allows switching between different ver-
sions, by setting up their command line execution using environment modules,
a system for dynamic access to multiple versions of software modules [11].

’ Java ‘ ’ PVL ‘ ’Ope%CL‘ input languages
I

Common Object Language

3 The VerCors Specification Language

The VerCors specification language has JML as a starting point, and adds fea-
tures from Chalice, and from Hurlin’s permission-based separation logic for con-
current Java [8], in order to be equally expressive as Hurlin’s logic.

Using JML as a starting point allows to reuse existing JML specifications.
However, JML’s support for framing (i.e., modifies clauses) is not precise enough
to be used in a concurrent setting. Instead we use access permissions Perm(e,),
where e is an expression denoting a location on the heap (a field in Java) and 7
is a percentage. To specify properties of the value stored at the location we just
refer to the location in our formulas. Thus, we are forced to check that every
expression is self-framed, i.e., we need to check that only locations for which we
have access permission are accessed. This is different from classical separation

The VerCors Tool for Verification of Concurrent Programs 129

logic, which uses the PointsTo primitive, which has an additional argument that
denotes the value of the location and cannot refer to the location otherwise. We
prefer the Perm primitive because it fits JML and Chalice best. The VerCors
tool supports PointsTo as syntactic sugar, which can be extended to full support.
Moreover, it is proven that the two logics are equivalent [12]. Another feature of
our logic is the notion of thread-local predicates, which are used to axiomatize
the lockset predicate that keeps track of the locks held by the current thread [8].

Like Chalice, the VerCors tool disallows disjunction between resources. It does
so by distinguishing the type resource from the type boolean. Thus, boolean
formulas allow all logical operators and quantifications, while resource formulas
are limited to the separating conjunction, separating implication (magic wand),
and universal quantification. In method contracts, pre- and postconditions are
of type resource.

VerCors’ specification language uses several features that are not natively
present in Chalice and thus have to be encoded. Resource predicates can have
an arbitrary number of arguments, whereas Chalice only allows the implicit this
argument. This is encoded by (partially) translating the formulas to witness ob-
jects. That is, instead of passing arguments to a predicate, we put the arguments
in an object and define a predicate (without arguments) on that object. This
translation also turns proof construction annotations into method calls. Magic
wands are encoded using a similar strategy of defining witness objects [3]. By
encoding complex specifications as data structures with simple specifications,
we gain the ability to verify complex specifications with existing tools. However,
these existing tools have no specific support for our data structures. Therefore,
we also have to provide proof scripts to guide the proof search in the encoded
program.

Below, we show a small example of a program in PVL that computes the
fibonacci numbers by forking new threads instead of making recursive calls.

class Fib { static int fib(int n)=n<2?1:fib(n—1)+fib(n—2);
2 int input, output;
requires perm(input,50) * perm(output,100);
4 ensures perm(input,50) * perm(output,100) * output=fib(input);
void run() { if (input<2) { output :=1; }

6 else { Fib f1 := new Fib; fl.input := input—1;

Fib f2 := new Fib; f2.input := input—2;
8 fork f1; fork f2;

assert fl.input=input—1 * f2.input=input—2;
10 join f1; join f2;

output := fl.output + f2.output; }}}

Note that we use Chalice notation for fractions: 50 means read-only and 100
means write access. Also note how on line 9, we use an assert to remind the
prover that because we can read the inputs to the threads, these inputs cannot
change. The Java version of this example is much longer and can be found on
the tool’s website [14].

In addition to verification of Multiple Instruction Multiple Data programs,
the VerCors tool also supports verification of Single Instruction Multiple Data

130 S. Blom and M. Huisman

programs. Specifically, it supports reasoning about GPU kernels written in PVL.
The concept of a kernel is that a large number of threads, divided over one or
more working groups, all execute the same code, but each on part of the data.
These computations cannot synchronize, except for barrier synchronization of
the threads within a working group. Due to the lack of other synchronization
primitives, the resources available for redistribution at a barrier are precisely
those available to a working group at the start of the computation. This is
reflected by the fact that the required resources upon entering a barrier are
deduced by our tool instead of being specified by the user. Moreover, it means
that in future versions we can simplify the permission model to three values:
no access, read access, full access. Our kernel logic imposes proof obligations to
ensure that all resources are always properly distributed [4]. The tool verifies
these proof obligations by encoding them as specified methods and classes.

Below, we show a small example of a kernel. It displays a typical case: first
each of the gsize threads computes a value based on an unknown function f and
its identifier tid. Then the threads synchronize using a barrier and add their own
result to that of the preceding thread to get their final result:

global int[gsize] x, y;
2 requires perm(x[tid],100) * perm(y[tid],100);
ensures perm(x[tid], 100) * (O<tid & tid<gsize —> x[tid]=f(tid)+f(tid—1));
4 void main(){
y[tid] = f(tid);
6 barrier (global){
requires y[tid]=f(tid);
8 ensures perm(x[tid],100) * perm(y[tid],50) * perm(y[(tid—1) mod gsize],50);
ensures y[tid]=f(tid) * (tid>0 —> y[tid—1]=f(tid—1)); }

if (tid>0) { x[tid] := y[tid]+y[tid—1]; } }

[
o

4 Conclusion

This paper gives a brief overview of the VerCors tool set and its specification
language. The main application areas of the tool are MIMD programs written in
Java, using Java’s concurrency library, and SIMD applications, such as OpenCL
kernels. The tool website [14] contains additional information such as our col-
lection of verified examples, which can be tested with the online version of the
tool. These examples demonstrate reasoning about the fork/join pattern, reen-
trant locks, and about magic wands in specifications. Additionally, there are also
several verified kernel examples.

There are several other static verifiers that support reasoning about MIMD
programs, such as VCC [6] for C, VeriFast [9] for C and Java, jStar [7] for Java,
and Chalice [10] for an idealized concurrent language. The VCC tool has its own
permission system and does not use separation logic. The VeriFast and jStar
tools both use classical separation logic, with jStar being more limited (e.g. no
support for fractional permissions). The Chalice tool, like VerCors uses implicit
dynamic frames, which can be seen as a variant of separation logic [12]. The
distinguishing feature of the VerCors tool compared to the ones above is that it

The VerCors Tool for Verification of Concurrent Programs 131

supports specifications using the magic wand operator. Moreover, VerCors has
support for other concurrency models, such as the SIMD model used for GPU
kernels. Memory safety for kernels can also be checked with GPUVerify [2], but
additionally, VerCors can check functional correctness of kernels.

At the moment, the tool requires a considerable amount of annotations to
verify a program. To reduce this, we will work on automatic generation of spec-
ifications and also on identifying and implementing useful default specifications
and syntactic sugar. To turn the tool into a full-fledged verification tool, we have
to add support for reasoning about e.g., exceptions. Moreover, we will continue
the work on the C parser, so the tool can verify OpenCL.

Acknowledgement. This work is supported by the ERC 258405 VerCors
project and by the EU FP7 STREP 287767 project CARP.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364-387. Springer, Heidelberg (2006)

2. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA 2012, pp. 113-132. ACM (2012)

3. Blom, S.C.C., Huisman, M.: Witnessing the elimination of magic wands. Techni-
cal Report TR-CTIT-13-22, Centre for Telematics and Information Technology,
University of Twente, Enschede (November 2013)

4. Blom, S.C.C., Huisman, M., Mihelcic, M.: Specification and verification of gpgpu
programs. Technical Report TR-CTIT-13-21, Centre for Telematics and Informa-
tion Technology, University of Twente, Enschede (November 2013)

5. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll,
E.: An overview of JML tools and applications. STTT 7(3), 212-232 (2005)

6. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23-42. Springer, Heidelberg (2009)

7. DiStefano, D., Parkinson, M.: jStar: Towards practical verification for Java. In:
ACM Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pp. 213-226. ACM Press (2008)

8. Hurlin, C.: Specification and Verification of Multithreaded Object-Oriented Pro-
grams with Separation Logic. PhD thesis, Université Nice Sophia Antipolis (2009)

9. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW520,
Katholieke Universiteit Leuven (2008)

10. Leino, K., Miiller, P., Smans, J.: Verification of concurrent programs with Chalice.
In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS,
vol. 5705, pp. 195-222. Springer, Heidelberg (2009)

11. The environment modules project, http://modules.sourceforge.net

12. Parkinson, M., Summers, A.: The relationship between separation logic and implicit
dynamic frames. Logical Methods in Computer Science 8(3:01), 1-54 (2012)

13. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)

14. The vercors tool online, http://www.utwente.nl/vercors/

http://modules.sourceforge.net
http://www.utwente.nl/vercors/

Knowledge-Based Automated Repair
of Authentication Protocols

Borzoo Bonakdarpour!, Reza Hajisheykhi?, and Sandeep S. Kulkarni®

1 School of Computer Science
University of Waterloo, Canada
borzoo@cs.uwaterloo.ca
2 Department of Computer Science and Engineering
Michigan State University, USA
{hajishey,sandeep}@cse.msu.edu

Abstract. In this paper, we introduce a technique for repairing bugs in
authentication protocols automatically. Although such bugs can be iden-
tified through sophisticated testing or verification methods, the state of
the art falls short in fixing bugs in security protocols in an automated
fashion. Our method takes as input a protocol and a logical property that
the protocol does not satisfy and generates as output another protocol
that satisfies the property. We require that the generated protocol must
refine the original protocol in cases where the bug is not observed; i.e.,
repairing a protocol should not change the existing healthy behavior of
the protocol. We use epistemic logic to specify and reason about authen-
tication properties in protocols. We demonstrate the application of our
method in repairing the 3-step Needham-Schroeder’s protocol. To our
knowledge, this is the first application of epistemic logic in automated
repair of security protocols.

1 Introduction

Automated model repair aims at eliminating the human factor in fixing bugs.
More specifically, model repair begins with a model M and properties ¥ and
I1, such that M satisfies ¥ but does not satisfy II (e.g., identified by model
checking). The goal is to repair M automatically and obtain a model M’, such
that M’ satisfies both ¥ and II. In other words, model repair adds property II
to the original model while preserving the existing property 3.

In this paper, we focus on developing an automated technique that deals with
repairing authentication protocols. The problem of model repair in the context of
security protocols creates new challenges that are not present when repair is per-
formed to add safety, liveness or fault-tolerance properties. Specifically, the prob-
lem of adding other properties can be expressed in terms of states reached by the
program, e.g., safety can be expressed in terms of states (respectively, transitions
or computation prefixes) that should not be reached. On the contrary, a security
property requires analysis of the knowledge of different agents in different states.
Moreover, this knowledge depends upon inference rules (e.g., if an agent knows

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 132-147, 2014.
© Springer International Publishing Switzerland 2014

Knowledge-Based Automated Repair of Authentication Protocols 133

a message k(m) and it knows the key k, then it knows message m). Even when
one finds that a security violation has occurred based on the knowledge of agents,
fixing the protocol creates new challenges that are not present in adding normal
safety and liveness requirements. Specifically, if the state where a security property
is violated is reached due to an action of the adversary, it is not possible to remove
the corresponding adversary action. Moreover, even if that state was reached due
to a regular agent action, the way that the action can be changed depends upon
(1) the type of keys that can be used, (2) assumptions about initial distribution
of keys, (3) inference rules that identify the roles of keys, and so on.

Based on this discussion, repairing a security protocol involves three steps:
The first step involves identifying the state where the security violation occurs.
The second step involves identifying the step that could be altered to poten-
tially eliminate the security violation. This step is essential since all steps (e.g.,
actions taken by adversary) are not fixable. This step also involves identifying
the corresponding adversary-free states and identifying the knowledge-difference
between states reached in the presence of the adversary and states reached in the
absence of the adversary. Finally, the third step involves utilizing this knowledge-
difference to repair the protocol. This step depends upon the types of changes one
can do including the use of new nonces, existing or new keys, types of messages
that may be permitted, etc.

Our contribution in this paper is twofold. We introduce a novel epistemic [10]
algorithm that repairs a given authentication protocol, so that it satisfies the
authentication requirement in the presence of a newly identified threat. More-
over, the algorithm preserves the behavior of the protocol in the absence and
presence of already known attacks (i.e., the repair algorithm does not damage
the existing sound features of the protocol). Our approach for repairing security
protocol is as follows. We assume that the repeated application of inference rules
is terminating, as without this assumption, even the verification problem could
be undecidable. This can be achieved by bounding the structure of messages used
in the protocol (e.g., number of fields, depth of encryption, etc) and requiring
all legitimate participants to reject messages that violate this structure. Under
this assumption, our approach is sound and complete for the first step; i.e., if the
security property is violated, then it would be detected. For the second step, our
approach is sound and (intentionally) incomplete. Specifically, we identify poten-
tial steps where the security protocol can be repaired. However, to identify the
knowledge-difference, for the sake of efficiency, we only focus on atomic knowl-
edge propositions. This step can be made sound and complete at the increased
computational cost. Finally, the third step is a sound and incomplete heuristic,
as the choices made in the repairing the protocol (e.g., whether new nonces can
be used, what types of keys can be used, etc.) depend upon external factors such
as efficiency, user-preference that cannot be modeled during repair. However,
our algorithm still preserves soundness during this step, by ensuring that the
soundness only depends upon the inference rules rather than the heuristics used
in this step. We also demonstrate the application of our method in repairing the
bug the 3-step Needham-Schroeder public-key protocol.

134 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Organization. In Section 2, we present the preliminary concepts on epistemic
logic. Section 3 describes our high-level computation model. The formal state-
ment of knowledge-based repair problem is presented in Section 4. Section 5
describes our repair algorithm, while Section 6 presents the application of the
algorithm to repair the Needham-Schroeder’s protocol. Related work is discussed
in Section 7. We conclude in Section 8.

2 Preliminaries [10]

2.1 The Notion of Knowledge

Let @ be a nonempty finite set of atomic propositions, typically labeled p, p’, ¢,
q,.... Also,let 1,2,...,n be the names of a nonempty finite set of agents. We
define the syntax and semantics of our epistemic language as follows.

Definition 1. Epistemic formulas are defined inductively as follows:

pu=true | p | mp | o1 Ap2 | Kip

where p € @, i € {1,...,n}, and K; is the modal operator read as ‘agent i
knows”. O

We formalize the semantics of our epistemic language in terms of Kripke struc-
tures. A Kripke structure M for n agents over atomic propositions @ is a tuple
(S, m, K1,...,K,), where S is a nonempty set of states, w is an interpretation
which associates with each state in S a truth assignment to the atomic proposi-
tions in @ (i.e., w(s) : @ — {true, false} for each state s € S), and K; is a binary
equivalence relation on S, that is, a set of pairs of elements of S. Intuitively, we
think of IC; as a possibility relation; i.e., it defines what states agent i considers
possible at any given state. For example, Figure 1 [10] shows a Kripke structure
M = (S,7,K1,K3) over & = {p} with states S = {s,¢,u}. Proposition p holds
in states s and u and it does not hold in state t. We now define the notion of
(M, s) | ¢, which is read as ‘(M, s) satisfies ¢’

Definition 2. Let M = (S,7,K1,...,K,) be a Kripke structure over atomic
propositions @, s € S, and p € ®. Semantics of our logic is defined inductively
as follows:

(M, s) = true

M) ep i w(s)p) = frue

(Mos) g iff (Ms) iy

(M,s) Eony iff (M) = o A (M,s) =0

(M,s) E Ko iff (M,t) = e forallt, such that
(

s,t) € K;, where 1 <i < n.
In addition, M |= ¢ holds iff (M,s) = ¢ holds for every state s € S. O

For example, for the Kripke structure in Figure 1, we have (M, s) &= Kap (i.e.,
in state s agent 2 knows p). Also, we have (M, s) E - Ko—K;p.

Knowledge-Based Automated Repair of Authentication Protocols 135

-p p p
; ; 1 ; ; 2 :(;
1,2 1,2 1,2

Fig. 1. A Kripke structure

2.2 Knowledge in Multi-agent Systems

In order to reason about the knowledge of agents, we leverage the notions of
local state and global state of agents. Let L; be a set of possible local states for
agent i, fori =1,...,n. We take G = L1 X --- X L,, to be the set of global states.
A run is a function from the nonnegative integers Z>g (called time) to G. Thus,
a run r is a sequence of global states in G. We refer to a pair (r,m) consisting of
a run r and time m as a point. Notice that each r(m) is of the form (s1,...,s,),
where s;, 1 < i < mn, is the local state of agent i. We say that two global states
s=1(s1,...,5n) and s’ = (s%,...,s),) are indistinguishable to agent i, and write
s~y s, iff ¢ has the same state in both s and ¢/, that is, if s; = s}. Likewise,
two points (r,m) and (r',m’) are indistinguishable for agent 4 if r(m) ~; r'(m’)
(or, equivalently, if r;(m) = ri(m’)). Clearly, ~; is an equivalence relation on
points.

Definition 3. A system R (with global states G) is a nonempty set of runs over
a set G of global states. O

We say that (r,m) is a point in system R, if r € R. In order to connect the
notion of systems to knowledge, we reason about atomic propositions in each
state of the system.

Definition 4. An interpreted system N is a pair (R, 7), where R (with global
states G) is a system over global states G and m is a function from G to 22. O

To define knowledge in interpreted systems, we associate with an interpreted
system N = (R, m) a Kripke structure My = (S, 7, K1,...,K,) as follows:

— S consists of the points in N, and
— IC; is a relation in My, defined by ~;.

Thus, we say that (N, r,m) | ¢ exactly if (Myr,s) E ¢, where s = (r,m). Le.,

(N,r,m) Ep (forpe @) if =(r,m)(p) = true, and
(N,r,m) E Ko it (N,7,m') | ¢ forall (+',m’) such that (r,m) ~; (r',m’).

An interpreted system N satisfies an epistemic formula ¢ iff (N,r,m) E ¢,
for all points (r,m).

136 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Finally, we introduce the ‘always’ temporal operator . Syntactically, if ¢ is
an epistemic formula (see Definition 1), then Oy is also an epistemic formula.
The semantics of the this operator is the following:

(N,r,m) = Qg iff (N,r,m') E ¢, for all m" > m.

3 High-Level System Representation

To concisely represent a system, we use guarded commands (also called actions).

Each action is of the form L : g — sty;sts;...;stg;, , where L is a label,
g is a guard, that is, a Boolean expression over a set of atomic propositions,
and st1, sto, ..., st are sequentially executed statements that prescribe how the

state of agents of a system change. Given a set of actions, one can trivially obtain
a system as defined in Definition 3 (i.e., a set of runs).

Since our focus in this paper is on message passing protocols, we utilize a
special send(message) statement for simplicity of presentation. A message is of
the form S,.R,.S;.R;.msg, where S, is a physical sender (e.g., an IP address),
R, is a physical receiver, S; is a logical sender (e.g., host name), R; is a logical
receiver, and msg is the message content. For example, I,,. B,.A.B. “hello” means
that the message “hello” is intended to be sent by agent I to agent B. However,
I wants to impersonate A by choosing logical sender A.

We now describe the semantics of send. Let A, B, C', and D be agents of a
system with the following Boolean variables sent., (z.y.msg) and rcvd . (x.y.msg),
where z # y, z,z,y € {A, B,C, D}, and msg is the message content. Execution
of statement send(C.D.A.B.msg) affects the variables of agents as follows:

(1) This message is sent by physical sender C' and it is sent to physical re-
ceiver D. However, it appears to have been sent from A to B. If D is not an
intruder, we expect that D = B. Otherwise, D will discard this invalid message.
However, if D is an intruder, it might accept this message since it is part of its
attack routine. (2) Actual sending and receiving of a message occurs simulta-
neously. (3) The value of an auziliary variable rcvdfromp, is set to the physical
address of the sender, that is, rcvdfromp = C. This variable is only used to
describe the protocol since we need an action of the form ‘reply to the (physical)
sender of this message’. We emphasize that this variable does not participate
in state evaluation of an agent. (4) The value of variables sentc(A.B.msg) and
rcvd p(A.B.msg) are set to true.

For example, consider the following actions:

LA true — send(A,.By.A.B. “hello”);
LB rcvdp(A.B.“hello”) — send(B,.rcvdfrom g.B.A.“bon jour”);

Table 1 describes how the state of each agent develops in a run r.

Remark. Sending of a message send(A4,.B,.A.B.msg) sets variables
sent(A.B.msg) and rcvdg(A.B.msg) to true. It does not set sentp(A.B.msg)
to true. sentp(A.B.msg) is set to true only if B concludes (based on the authen-
tication protocol under consideration) that the message msg was indeed sent by
A. Note that B will not be reading sent 4 (z.y.msg). However, it could conclude
Kpsents(A.B.msg) based on the inference rules.

Knowledge-Based Automated Repair of Authentication Protocols 137

Table 1. State and knowledge development of agents A and B

global state local state of agent A local state of agent B
revdfrom , = L revdfrompg = L
r(0) Va : senty(...) = false YV : senty(...) = false
YV : revde (...) = false YV : revds (...) = false

rcvdfrompg = Ap
rcvd g(A.B.“hello”)

sentp(B.A.“bon jour”)

r(1) sent a(A.B.“hello”)

) rcvdfrom , = B,
" revd 4(B.A.“bon jour”)

4 The Model Repair Problem

In this section, we formally state the repair problem in the context of authen-
tication protocols. The intuitive description of the problem is the following. We
are given an interpreted system N that satisfies an epistemic (authentication)
property ¢. However, if an intruder agent intr joins the system, the obtained
system (denoted N iner) does not satisfy . The system N4, is trivially ob-
tained by incorporating the local states of intr in calculating global states of
Niiner and extending runs of N by the intruder’s actions. Since the focus of
this paper is on authentication protocols, we first define authentication in terms
of epistemic formulas. Then, we discuss the problem statement for repairing a
given protocol.

4.1 Authentication

Intuitively, authentication refers to the ability to conclusively decide who the
sender of a given message is. This can be captured by the following epistemic
formulas for any message msg:

w1 =0K 4(senta(B.A.msg) = sentp(B.A.msg)) (1)
w2 =0Kp(sentp(A.B.msg) = senta(A.B.msg)) (2)

4.2 Formal Problem Statement

Following the intuitive description of the problem in the beginning of this sec-
tion, the repair problem is to obtain a system A’ such that (1) A/ behaves
similarly to N, and (2) N, satisfies ¢, the desired authentication property
such as that described by formulas 1 and ¢s. In order to capture the first condi-
tion, we define a state mapping function f from one Kripke structure to another.
In particular, let N' and N’ be two systems (in our context, the original and
repaired systems, respectively) over the set ¢ of atomic propositions. Let My =
(S, m, K1,...,Kn) and My = (8", 7',KY,...,K},) be their corresponding Kripke

138 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

structures, respectively. A state mapping function f : S’ — S is an onto function,
such that:

1. for all & € §" and p € @, if w(f(s'))(p) = true, then 7'(s")(p) = true
2. forall ',r" € S, if (s',r") € K} for some ¢, then (f(s'), f(r')) € K;.

Definition 5. An interpreted system N’ refines an interpreted system N iff
there exists a state mapping function f, such that, for each runr’ = r'(0)r'(1)...
in N, the run v = f(r'(0))f(r'(1))... belongs to N. 0

Next, based on the above discussion, we define the problem of repairing a
given protocol as follows:

Problem 1 Given an interpreted system N, an intruder agent intr, and an
epistemic property @, where N' = ¢ and Nyinwr = @, the repair problem is
to obtain an interpreted system N’ such that:

— (C1) N’ refines N, and
- (02) J/rint'r ': ®-

Note that based on Constraint C'l and Definition 5, it follows that behaviors
of N in the absence of intruder correspond to behaviors in A/. Hence, if N does
not terminate (deadlock) in some state then A/ cannot terminate in that state
either. N/ may not have all behaviors that are included in N; some behaviors
could be removed if it is impossible to provide authentication for them in the
presence of the intruder. It is straightforward to change the problem statement
(and our algorithm) to require all existing behaviors be preserved by requiring
the algorithm to declare failure if it is forced remove behaviors in N.

5 A Knowledge-Based Repair Algorithm

5.1 Auxiliary Agent

We introduce an auxiliary agent, GA for each agent A. Agent GA can view the
global communication and update the knowledge accordingly. To illustrate the
use of GA, consider the example, where A receives a plaintext message “hello”
from B. Based on the discussion in Section 3, the proposition rcvd 4 (B.A. “hello”)
is true. However, since A is not sure about whether B really sent it,
sent 4(B.A.“hello”) is still false. On the contrary, sentga(B.A.“hello”) is true.
Except for this difference, agents A and GA are identical. Note that agent GA is
auxiliary and cannot be realized. It is only for analyzing the protocol to evaluate
how it can be repaired.

To illustrate the role of agent GA, consider the following scenarios where a
protocol action, say ac, is executed: (1) In the first scenario, ac is executed in
an intruder-free scenario in a state sp and the resulting state is s1, and (2) In
another scenario, the action is executed in the presence of an intruder in state s

Knowledge-Based Automated Repair of Authentication Protocols 139

Algorithm 1. Epistemic Repair

Input: An interpreted system A, intruder agent intr, and epistemic formula .
Output: An interpreted system N”.

1: R := ReachableStates(N\)

3: while (T A —¢ # false) do

4: Let (s1, s2,...,sk) be a prefix of a run of Ny ntr, where s, € T A =

5 for all j=ktol do

6: if (j = 1) then

7 declare failure to repair N

8 end if

9: Let ac be the high-level action responsible for execution of (s;j_1,s;)
10: if ac is an intruder action then

11: continue

12: end if

13: X ={so | (so € R) A (so,s1) corresponds to the high level action ac}
14: if (Vs€X:3Q:(N,s|=KgaQ AN Niyintr,sj—1 = 7KgaQ)) then
15: fiz(N,intr, R, T, sj_1,s;, A, ac)

16: end if

17: end for

18: R := ReachableStates(N)

19: T := ReachableStates(Nintr)
20: end while

21: return N

and the resulting state is s3, and this eventually leads to a state where security
requirement is violated.

To prevent this security violation, without violating C'1, we want to prevent
execution of Action ac in sy without preventing its execution in state sg. If states
sp and sy are distinguishable to agent A, this can be achieved trivially. If sy and
so are indistinguishable, then the auxiliary agent GA can assist in modifying the
protocol, so that sy and s, are distinguishable.

5.2 Algorithm Description

Step 1: Locating the Authentication Violation The repair algorithm Epis-
temic Repair (see Algorithm 1) first computes the set R of states reached in the
absence of the intruder intr and T, states reached in the presence of intr (Lines
1 and 2). We assume that the security requirement is of the form C¢. Hence, if
T N — is satisfiable, then some run of the protocol violates the security require-
ment in the presence of the intruder. Hence, the algorithm iterates and repairs
until T A =@ becomes false. If T A = is true, then the algorithm finds a state,
say sk, in T' A - and identifies how that state can be reached in a run of the
protocol (Line 4).

Step 2: Identifying repairable Location The algorithm traverses this path
backward to identify a location where the protocol could be repaired. In this
backward traversal, let (s;_1,s;) be the current transition being considered. If
this transition is caused by an intruder action, then it cannot be stopped (Lines
11) and the algorithm considers the previous transition (s;_2,s;5-1). If (sj-1, s;)
is not a transition of the intruder, then the algorithm evaluates the knowledge
difference between s;_; and corresponding states reached in the absence of the

140 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Algorithm 2. fix Function

Input: Interpreted system N, intruder intr, set of states R and T, states s, state s’, agent A, and
action ac, where ac is responsible for executing (s, s’).
Output: An interpreted system N

1: X ={so € R|3s1 € R: (s0,51) is a transition of ac }

2: if X = () then

3: Remove Action ac from N

4: end if

5: if (Vsk € X :3Qk : (N, Sk ‘: KaQr A ./\/’+i7,,tr,»,s ‘: ﬁKAQk)) then

6: change Action ac in N to “if (\/ Q) then ac”

7: end if

8: For some B, m, let rcvda(B, A, {m}pK,) be included in the guard of action ac.

9: r =3B :rcvda(B, A, {m}pk ,)

10: ¢t =3B : sentp(B, A, {m}prr,)

11: if (VS() c X : (N, S0 ‘= Kar /\N+i7,,tr,s ‘= KA'I") AN (N, S0 ‘= Kgat /\N+i7,,tr,s |= ﬁKcAt))
then

12: Replace sending of {m}pKA in N by: {m, sende'r‘IDm}pKA

13: Change action ac in N to: “If (rcvda(B, A, {m, B}pk ,)) then ac”

14: end if

15: For some B, m, let rcvda(B, A, {m}) be included in the guard of action ac.

16: =3B :rcvda(B, A, {m})

17: t =3B : sentp(B, A,{m})

18: if (Vso € X : (N, so = Kar /\N+intr,3 = Kar) A (N, so = Kgat /\N+i7,,tr,s = = Kgat))
then

21: end if

22: For some B, m, let rcvda(B, A, {m}) be included in the guard of action ac.
23: r =3B :rcvda(B, A, {m})
24: t =3B : sentp(B, A, {m})
25: if (Vso € X : (N, 50 = Kar ANtintr, s |= Kar) A
N,so = Kcat A (Nyintr, s = Kgat) AN (N, so = Kgashkey(key))) then
26: Replace sending of {m} in N by: {{m}yey}
27: Change action ac in N to: “If rcvda (B, A, {{m}rey) then ac”
28: end if

29: For some m, D, keyi, let rcvda(D, A, {m}key) be included in the guard of action ac.
30: r1 =3D :revda(D, A, {m1}key,)
31: ro =3D :revda(D, A, {m2}key,)
32: rg = 3E : sentg(E, A, {ml}keyl) A sentg(E, A, {mz}keyz)
33: if (Vsp € X : (W, 50 = Kar1) A Nyintr, s = Kari)A

(N, so = Karz) A (N+i7,,tr,s = Karz) A (N, so E Kgars) A (N+int7‘7 s = -Kgars)A

(N, s0 |E Kgashkey(key1)) A (N, so = Kgashkey(keyz))) then
34: Replace sending of {ma}rey, in N by: {ma, key1 }rey,
35: Change action ac in N to:
“If (3ma, D : revda(D, A, {m1}key, Arcvda(D, A, {m, keyi}rey,) then ac”

36: end if

intruder as follows. It first identifies possible states sg, where the same action is
being executed (Line 13). Then, it identifies whether there exists a predicate Q,
such that K¢a@ is true in state sg, but it is false in state s;_;. For efficiency
of implementation (without affecting soundness), in implementation of our case
studies, we only consider atomic propositions as choices for Q). If such a predicate
Q is found (Line 14), then Step 3 is invoked by calling Algorithm 2.

Knowledge-Based Automated Repair of Authentication Protocols 141

Step 3: Repairing the Bug Step 3 is based on heuristics to repair the given
protocol so that the knowledge @ identified in Step 2 can be utilized to repair
the protocol.

Remowal of useless actions. Line 1 of Algorithm 2 computes the set of corre-
sponding states, say X, reached in the absence of the intruder. If X is equal to
the empty set (Lines 2-4), then action ac is never executed in the absence of the
intruder and, hence, can be safely removed.

Repairing an improper implementation. If X is nonempty, but there exists
a predicate), such that K4(Q is true in all states in X and KAQ is false in
state s, then we change action ac to ‘if (Q), then ac’ (Lines 5-7). Note that in
this scenario, agent A already possesses some knowledge that would enable it to
prevent violation of the security property.

Imparting knowledge of sender via public/private keys. Lines 8-14 cover an
instance, where the knowledge of GA can be imparted to agent A. Here, predicate
r denotes that A has received some message m encrypted by its public key.
Predicate t denotes that the sender of this message (a non-intruder agent) is
aware of sending this message. Furthermore, K 47 is true in all states in X as
well as in state s. And, Kgat is true in all states of X although not in state s.
Here GA has the knowledge that the message received in s has not been sent
by the agent who claims to have sent it. However, agent A is not aware of this.
Now, the knowledge of agent GA can be imparted to A if we replace the action of
sending of message m, so that the message is of the form {m, senderID,,}pk ,.
Moreover, A can use this knowledge if ac is changed, so that the logical sender
of the message is the same as the one that is included in the message.

Likewise, the remaining actions allow GA to impart its knowledge based on
public/shared keys as well as knowledge about correlation between senders of
different messages.

As discussed in the Introduction, the function fiz can include more rules. We
have specified general rules that should be applied in a rich class of scenarios.
An interesting observation in this case is that the correctness of the repaired
protocol does not rely on the details of fiz function. The correctness of the
protocol only relies on axioms (such as those discussed in Section 6) used to
update the knowledge.

Finally, after Algorithm 2 changes N, we reevaluate R and T to ensure states
in X are not reachable. Now, if there exists a state in T' A =, the algorithm
resolves by using Algorithm 2. This process is repeated until T' A = is false.

Theorem 1. Algorithm Epistemic Repair is sound, and the complexity of Algo-
rithm Epistemic Repair is O(|Gnr| + O(dif + fiz)).

6 Case Study: The Needham-Schroeder Protocol

In this section, we present a case study, the well-known Needham-Schroeder (NS)
public-key authentication protocol [14]. The protocol assumes reliable communi-
cation channels and aims to establish mutual authentication between two agents,
say A and B, in a system using public-key cryptography [20]. Each agent A in

142 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

the system possesses a public key PK 4, that other agents can obtain from a key
server. (For simplicity, we assume that each agent initially knows the public key
of all other agents.) Each agent also owns a private key PK 4! which is the
inverse of PK 4.

6.1 The Original 3-Step Protocol
Step 1 The first action of the protocol R, is due to agent A:

RAL ¢ fresh 4(No) — fresh4(N,) := false; send(A,.By.A.B{N,.A}pr,,)

where N, is a random number generated by agent A (called a nonce). As we
present the protocol actions, we also explain how the run and knowledge of each
agent develops. The nonce N, is modeled by including a proposition fresh 4 (Ng)
as an atomic proposition in Definition 1. The proposition fresh 4(N,) holds in
the initial local state of agent A and it does not hold in the initial local state of
agent B. (If multiple nonces are required for A then this would be achieved by
having propositions such as fresh 4 (N,), fresh 4(Nq,), etc.) We introduce the
propositions hasa(msg) that is true when agent A has message msg. In action
R4 agent A sends a message to agent B (encrypted by the public key of B)
containing the fresh nonce and the logical name of the sender agent; i.e., {N,, A}.

We use a set of inference rules as azioms, such that they can be applied only
a finite number of times to present the derivation of propositions automatically.
These axioms are as follows:

sent A(A.B.msg) revd A(B.A{msg} pk ,)

hasa({msg})

revd 5 (B.A.msq)
3C : sentc(B.A.msg)

—
w
=

(4)

hasa(msg)

hass({m1.m2})
hasa(ml) A hasa(m2)

(5) (6)

In the initial local state of A, propositions fresh 4(N,) and hasa(N,) hold. It
is straightforward to observe that after execution of action RZ!, the following
formulas hold:

Kasenta(A.B{N,.A}) (semantics of send)
Kprevdp(A.B{N,.A}) (semantics of send)

K hasa(Ny) (Axiom 3)

Kphasp(Ny) (Semantics of send and Axioms 4, 5)
KaKphasp(Ng) (Semantics of send and Axioms 4, 5)

Step 2 The next action of the protocol R, is due to agent B:

RB :: revdg(A.BA{N,.A}pi) A freshg(Np)
— freshg(Ny) = false; send(Bp.revdfrom g. B.A{N,.Np} pi)

The guard of action RE! evaluates to true if agent B has received the message

from A and acquires a fresh nonce. Similar to agent A, an atomic proposition

Knowledge-Based Automated Repair of Authentication Protocols 143

freshg(Np) holds in the initial state of agent B. In this case, agent B sends a
message encrypted by the public key of A to agent A containing the nonce it has
received from A and its own fresh nonce. Using the axioms described above, we
can show that executing this action agent A can authenticate B, i.e., property
1 in Equation 1 of Section 4 holds.

Step 3 The last action of the protocol R, is due to agent A:

Rz .. revd A(B.A{Na-No}pg) N hasa(Na)
— send(A,.rcvdfrom 4.A.B{Np}pK)

By executing this action, B authenticates A; i.e., @2 holds.

6.2 The Intruder

The intruder I is based on Dolev-Yao model attacks the system by impersonating
agent A or B and replaying messages. In an impersonation action, an intruder
sends a message to some agent, say B, that appears to arrive from agent A.
Clearly, there are infinitely many messages the intruder could send to B. How-
ever, the (good) agents in this protocol accept a certain format of messages.
Hence, any message that is not of that format will be discarded by the agent.
One attempt to impersonate A is to send a message to B that conforms to the
structure of the RAL.

R hasr(N,) — send (/. By A.B{No.A}pg.)

Note that the above attack considers the situation where the adversary has
learnt N,. It does not consider the attack when I uses a random number since
it would be discarded. However, if hasy(N,) becomes true based on messages I
has received or by combining different message fragments, decoding encrypted
messages etc then I would be allowed to attack using the above action. Thus,
this modeling permits us to model a general attacker such as that in Dolev-Yao
model without considering the infinitely many actions that it could take.

Likewise, Agent I can impersonate user B by sending a message that conforms
to the one expected by that agent.

RE : hasp(Ng) A hasr(Ny) — send(1,.Ap.B.A{Nu.Ny} pic ;)

R = hasi(Ny) — send(I,.Bp.A.B{Np} Pk ;)

Observe that in the above message, the physical sender of the message is the
intruder. However, the logical sender is A (for Rl and RI3) or B (for R

In a replay action, the intruder replays a message it had received earlier.
Specifically, if the intruder receives a message from B, then it re-sends it to A,
so that it appears to have been sent by I. Thus, the action where the intruder
replays a message sent by B is as follows: (The action where intruder replays a
message sent by A is similar).

144 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni
RI :: revd(B.A.m) — send(I,.A,.I.A.m)

RE, o revd (A T{Ny} p,) — send(I,. By A.B{Nv}pr,.)

This action can be derived from previous actions of the intruder. It is included
here only to simplify the presentation.

We also note that the intruder actions modeled thus can be easily extended to
other attacks, such as eavesdropping (modeled by revising the protocol, so that
a copy of each message (respectively, selected messages) is sent to the intruder),
packet drop (modeled by having each message routed through the intruder who
can choose to drop it or forward it), and so on.

6.3 Application of the Repair Algorithm

Based on the description of Algorithm 1, we first identify a state in T'A =9 and
analyze the run (Line 4). One (prefix of a) run that reaches a state in T A =g
is as shown below:

1. Action RA: (A—=1I): send(A.I{N,.A}px,)

2. Impersonation Action R (I — B): send(I.By. A.BA{Nq.A} ppc)

3. Action R51 (B—1I): send(By.I,.B.A{N,.Np}tpk)
4. Relay Action RIx (I — A): send(l,.Ap. . A{Ny.Np}pK ,)
5. Action Rz (A—1I): send(Ay.Ip. AL {Np}pr)

6. Impersonation Action R (I — B): send(I,.Bp. A.BA{Nv} py .)

ns

The algorithm begins with step 6 of this run and consider earlier states (Line 5).
Observe that step 6 in the above scenario is an intruder action. Hence, according
to Line 11, we consider the previous step of the run, where A sends a message to
I in action Rﬁg. In the repair algorithm, we need to either remove or restrict this
action. Now, we can observe that the guard of the corresponding action satisfies
the constraint on Lines 8-14. Hence, the original protocol is revised so that in
Step 3, the ID of the sender, namely B is included in the message. Moreover,
the action in A is modified to expect this ID to be present. Thus, the revised
actions are as follows:

RIBv revdg(A.BA{N,. A} px) A freshg(Np)
— freshg(Ny) := false; send(Bp.revdfromg. B.A{N,.Ny.B} pc)

R;L/;Q B ’I“C?)dA(B.A.{Na.Nb.B}PKA) A hasa(Nyg)
— send(A,.rcvdfrom ,.A.B{Np} Pk)

One can verify that this repaired protocol satisfies constraints C'1 and C2 of
Problem 1.

7 Related Work

Automated model repair is a relatively new area of research. To the best of
our knowledge, this paper is the first work on applying model repair in the

Knowledge-Based Automated Repair of Authentication Protocols 145

context of epistemic logic and, in particular, security protocols. Model repair
with respect to CTL properties was first considered in [4]. Model repair for
CTL using abstraction techniques has been studied in [8]. The theory of model
repair for memoryless LTL properties was considered in [12] in a game-theoretic
fashion; i.e., a repaired model is obtained by synthesizing a winning strategy for
a 2-player game. In [3], the authors explore the model repair for a fragment of
LTL (the UNITY language [6]). Most results in [3] focus on complexity analysis
of model repair for different variations of UNITY properties. Model repair in
other contexts includes the work in [2] for probabilistic systems and in [22] for
Boolean programs.

Synthesizing security protocols from BAN logic [5] specifications has been
studied in [21]. Unlike our work that repairs an existing protocol, the techniques
in [15,16, 21, 23] synthesize a protocol from scratch and, hence, cannot reuse
the previous efforts made in designing an existing protocol. The approaches pro-
posed in [7,13] address controller synthesis for enforcing security properties. In
particular, the technique in [7] studies synthesis of fair non-repudiation protocols
for digital signatures and the work in [13] concerns enforcing security objectives
expressed in LTL. None of these methods are knowledge-based, which is the
focus of this paper.

In the context of repairing security protocols, Pimentel et al. have proposed
applying formulation of protocol patch methods to repair the security protocols
automatically [17,18]. In order to guide the location of the fault in a protocol,
they use Abadi and Needham’s principles [1] for the prudent engineering prac-
tice for cryptographic protocols. However, by its nature, this work applies to
protocols where principles from [1] are not followed. By contrast, our approach
follows a more general approach of using epistemic logic about knowledge to
repair the given protocol. Since authentication protocols essentially rely on ‘who
knows what and when’, we expect this method is especially valuable for repairing
security protocols.

8 Conclusion

Vulnerabilities of security protocols can be thought of in two categories: (1)
where existing assumptions are found to be false, e.g., due to cryptanalytic at-
tacks, and (2) where a new attack that violates the security property is dis-
covered. Examples of former include keys that are not large enough, ability of
an intruder to guess nonces (e.g., the attack in an early implementation of SSL
by Netscape [11]). For these vulnerabilities, one must utilize prevention mecha-
nisms, e.g., with use or larger keys or new algorithms to generate nonces. Exam-
ples of the latter include cases where unanticipated behaviors (e.g., imposed by
an intruder) can break the soundness of a protocol. For instance, the Needham-
Schroeder protocol breaks when one of the agents decides to misbehave. For such
vulnerabilities, we advocate a formal repair approach.

In this paper, we presented a knowledge-based sound algorithm for repair-
ing authentication protocols. Our algorithm compares this knowledge with the

146 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

knowledge of an (auxiliary) agent that can obtain additional information based
on the actual partial run that reached the current state. Subsequently, we iden-
tify how the knowledge of the auxiliary agent can be mapped to a real agent in
the protocol. Our repair algorithm preserves the existing properties of the proto-
col by ensuring that the repaired protocol refines the initial one in the absence of
the intruder. We illustrated the application of our algorithm on the Needham-
Schroeder public-key authentication protocol [14]. We have implemented our
algorithm and found that it was possible to repair this protocol in a reason-
able time. We argue that our repair algorithm can be utilized for some other
security properties as well, e.g., in privacy. Suppose a bit b is to be kept pri-
vate from an adversary I. In this case, this requirement can be expressed as
O-Kr(b= 0) A-Kr(b=1)).

Our approach is generic for repair of authentication protocols, where the vul-
nerability lies in the protocol (as opposed to violation of assumption of the
strength of encryption). Authentication deals with a requirement that if agent
A accepts a message m to be from agent B, then the message is indeed sent
by agent B. This is exactly the kind of specification we have used in our case
study. Sometimes, the identity of agent B is not precisely known to A; instead
it requires that two messages are sent by the same agent. This is also easily pos-
sible with our approach. We have not considered the issue of whether a received
message is fresh or not. However, this issue can be modeled easily. For example,
if A wants to be sure that the message from B is fresh, it can be encoded by a
requirement of the form ‘B knows something that A knows to be fresh’. Once
again, this requirement is identical to the properties considered in this paper.
Also, our approach is generic enough to model several threats. Our example
considered attacks such as replay and impersonation.

There are several future extensions of this work. One extension is based on
developing repair algorithms that utilize the notion of distributed knowledge [10].
Another extension is for repairing security protocols for problems such as infor-
mation flow, where a more general notion of hyperproperties [9] is required.

Acknowledgements. Thiswork has been supported in part by Canada’s NSERC
Discovery Grant 418396-2012, NSERC Strategic Grant 430575-2012, and U.S.A.
NSF grants CNS-1329807 and CNS-1318678.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering 22(1), 6-15 (1996)

2. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326-340. Springer, Heidelberg (2011)

3. Bonakdarpour, B., Ebnenasir, A., Kulkarni, S.S.: Complexity results in revis-
ing UNITY programs. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 4(1), 1-28 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Knowledge-Based Automated Repair of Authentication Protocols 147

Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by Al techniques. Elsevier Journal on Artificial Intelligence 112, 57—
104 (1999)

Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proceedings
of the Royal Society of London 426(1), 233-271 (1989)

Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1988)

Chatterjee, K., Raman, V.: Synthesizing protocols for digital contract signing. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 152-168.
Springer, Heidelberg (2012)

Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 341-355. Springer, Heidelberg (2012)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Secu-
rity 18(6), 1157-1210 (2010)

Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The
MIT Press (1995)

Goldberg, I., Wagner, D.: Randomness and the netscape browser,
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226-238. Springer,
Heidelberg (2005)

Martinelli, F., Matteucci, I.: A framework for automatic generation of security
controller. Software Testing, Verification and Reliability 22(8), 563-582 (2012)
Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of ACM 21(12), 993-999 (1978)

Perrig, A., Song, D.X.: Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols. In:
CSEFW, pp. 64-76. IEEE Computer Society (2000)

Perrig, A., Song, D.X.: A first step towards the automatic generation of security
protocols. In: NDSS. The Internet Society (2000)

Pimentel, J.C.L., Monroy, R., Hutter, D.: A method for patching interleaving-
replay attacks in faulty security protocols. In: Electronic Notes in Theoretical
Computer Science (ENTCS), pp. 117-130 (2007)

Lopez P., J.C., Monroy, R., Hutter, D.: On the automated correction of security
protocols susceptible to a replay attack. In: Biskup, J., Lépez, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 594-609. Springer, Heidelberg (2007)

RFC 5746, http://tools.ietf.org/html/rfc5746

Rivest, R.L., Shamir, A.; Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of ACM 21(2), 120-126 (1978)
Saidi, H.: Toward automatic synthesis of security protocols. AAAT archives (2002)
Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local re-
pairs for boolean programs. In: Formal Methods in Computer-Aided Design (FM-
CAD), pp. 1-10 (2008)

Song, D., Perrig, A., Phan, D.: AGVI - automatic generation, verification, and
implementation of security protocols. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 241-245. Springer, Heidelberg (2001)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://tools.ietf.org/html/rfc5746

A Simplified Z Semantics for Presentation
Interaction Models

Judy Bowen and Steve Reeves

Department of Computer Science,
The University of Waikato,
New Zealand
{jbowen, stever}@cs.waikato.ac.nz

Abstract. Creating formal models of interactive systems requires that
we understand not just the functionality of the system, but also the
interface and interaction possibilities. The benefits of fully modelling
these systems is that we can ensure behavioural properties of all aspects
of the system are correct and prove properties of correctness of the whole
system. In the case of safety-critical interactive systems this is important
as errors of interactive behaviours can be just as devastating as functional
errors. In previous works we have developed models which enable us
to perform these tasks - notably presentation models and presentation
interaction models (PIMs) and have shown that by using the pCharts
language to describe PIMs we can use its underlying Z semantics to
produce specifications of both functionality and interface/interaction. In
this paper we revisit the Z semantics of PIMs and propose an alternative
(and simpler) semantics along with explanations of why this is more
useful and appropriate for particular modelling situations.

Keywords: Formal methods, interactive systems, Z, semantics.

1 Introduction

Presentation interaction models (PIMs) are used to describe the navigational
possibilities of an interactive system [2]. A PIM describes each discrete dialogue
or screen or window or mode in the interaction with a presentation model, along
with showing how each of these presentation models, the discrete parts of the
interaction, is connected to each other model.

We formally model a PIM with a pchart! . Each state in the chart is associ-
ated with a presentation model. Each step in the PIM, between the presentation
models, is represented by transitions between states in the chart associated with
the respective presentation models. Central to the use of pCharts is the small set
of structuring features within the pChart-language which can be composed to-
gether in completely general ways to handle the complexity of the systems being
modelled, so we use composition and decomposition, for example, to structure
the chart, allowing us to hide information at certain levels (decomposition) or

! uCharts is the language and the members of that language are ucharts.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 148-162, 2014.
© Springer International Publishing Switzerland 2014

A Simplified Z Semantics for PIMs 149

to compose more complicated charts by composing together simpler charts, i.e.
all the usual techniques we see in modelling of systems to handle complexity
in useful and effective ways. The semantics of charts, when laid out in formal,
concrete detail, can be complex, in order to account for all the features of the
language. In some, very interesting, cases it turns out that all this complexity-
due-to-generality is not needed.

Recently, like many of our colleagues in the interactive system engineering
community (see for example [6,7]), our work on modelling interactive systems
has been focussing on safety-critical medical devices (such as infusion pumps,
syringe pumps etc.) [3,4]. These are devices with an interface provided by the
hardware - typically by way of soft-keys, buttons and a screen - which allow
the users to interact with the software which controls the device. These devices
are modal, that is they have a number of discrete modes of behaviour such that
each item of the (limited) interface will behave differently depending on the mode
the device is currently in. The presentation models and PIMs we have used to
describe interactive software applications can be used equally successfully for
these types of devices. However, these sorts of devices, essentially because they
are modal, have models with a much simpler structure than systems in general.
Our aim here is to describe how we can use the much simpler formality of finite
state automata (FSA), rather than pCharts, to formalise the PIMs for modal
systems.

In the rest of the paper we expand on all the above, introducing presentation
models, PIMs and pCharts. We also expand on the argument for simplification
given briefly above. We give examples of how this new semantics can be used and
provide proofs of correctness where appropriate. This provides two contributions.
Firstly a simplified Z semantics (note that we use Z for practical reasons—we are
familiar with it, we have tools to support it, we have a stock of devices specified in
it—not because we are wedded to it in any scientific or philosophical sense. Any
other suitable language could be used) for PIMs is given which is independent
from the Z semantics for uCharts. Secondly an approach to combining the PIM
(expressed in Z) with a Z specification of the system’s functionality is given,
which enables model-checking to be carried out on a single specification of an
entire system which captures both the functionality and interaction.

2 The Interaction Models

2.1 Presentation Models

Presentation models describe an interface and its interactivity (either an actual
implemented interface or a design artefact such as a prototype) by way of its
component widgets. Each separate window or dialogue of a Ul - or each unique
mode of an interactive device - is described in a presentation model (or PModel),
and then the collection of all these PModels give us a model of the behaviour of
the widgets of the complete UT (or device). Each widget is described as a tuple
consisting of an identifier, a category (which denotes the nature of interaction)
and a set of behaviours associated with this widget.

150 J. Bowen and S. Reeves

1. Prows and Hold B key unth START UP screens sppes:
2. Walt until Pre-Loading hes Ninished (sctustor stops moving)
9. Lowd ooty 80 ell sensors slop feshing.

1 WEP. 900415 WY 4 LT, 049910) (8,

Fig. 1. T34 Syringe Pump

Consider the T34 syringe pump shown in figure 1. This is a modal medical
device which is used to deliver the contents of a syringe to a patient over a pre-
determined period of time. The interface enables a medic to set the amount of
medication to be delivered as well as the time of delivery in order to control the
rate at which the syringe contents are infused. The device has ten widgets (the
buttons, display and an audible alarm) and seven different modes. Each mode
is described in a PModel where we define the behaviour of all of the widgets in
that mode. For example here is the PModel for the “SetVolume” mode:

SetVolume is
OnOffButton, ActionControl, (I Init)
UpButton, ActionControl, (S IncVolume)
DownButton, ActionControl, (S DecVolume)
InfoButton, ActionControl, (I Info)
YesButton, ActionControl, (S SetVolume, I SetDuration)
NoButton, ActionControl, (I Init)
FwdButton, ActionControl, ()
BackButton, ActionControl,()
Display, MultiValResponder, (S IncVolume, S DecVolume)
AudioAlarm, SValResponder, (S Timeout)

An empty set of parentheses indicates that a widget has no behaviour in this
mode. The behaviours are split into two categories, they are either I-behaviours
(denoted by a prefix of I) or S-behaviours (denoted by a prefix of S).
I-behaviours relate to interactivity and changes in mode of the interface (or
between windows of a Ul in a software system) whereas S-behaviours relate to
underlying functionality of the device (or system). Some widgets have more than
one behaviour, the effect of this depends on whether they are widgets which
gencrate events (such as ActionControls) or widgets which respond to events
(such as MultiValResponders or SValResponders). For example, the YesButton
has both S SetVolume and I SetDuration in its set of associated behaviours,
and because it is an ActionControl this indicates that both of these behaviours

A Simplified Z Semantics for PIMs 151

occur simultaneously when the widget is interacted with. The Display widget,
however, is a MultiValResponder, and this means that it will respond to either
of its associated behaviours (S IncVolume or S DecVolume) when they occur.

While the presentation model of a device describes all possible behaviours of
that device (in all of its given modes), it says nothing about the availability of
those behaviours, i.e. it cannot be used to determine whether or not a user can
ever access the described behaviours or whether the system contains undesir-
able properties such as deadlock. The behaviours described by the PModels are
independent of each other and there is no notion of how they interact. These
connections and interactions are provided by the presentation interaction model
(PIM) described next, and in this way the PModels and the PIM provide the
usual benefits of separation of concerns (between the widgets of each mode and
the way these modes are connected together).

2.2 Presentation Interaction Models

A presentation interaction model (PIM) describes the navigational possibilities
of a UT or device (i.e. how a user can switch between different modes to access
different behaviours). The general idea is that a PIM is an automaton of some
sort, where each state is a mode (given by a presentation model). This abstraction
enables us to describe the PIM of systems and devices without encountering a
state space explosion (as the number of states is linked to the number of different
windows or modes rather than to individual behaviours which are ‘hidden’ in
the presentation models).
A PIM is a quadruple, (P, >, 4, po) which consists of the following:

a finite set of PModels, P

— a finite set of input labels, >

a finite transition function, d, which takes a PModel and an input label and
returns a PModel

— a start PModel, pg, one of the PModels in P

We can define a notion of well-formedness of a PIM which states that a PIM
is well-formed iff the labels on transitions out of any PModel are the names of
I-behaviours which exist in the behaviour set of that PModel. This ensures that
it accurately describes the true navigational possibilities of the system described
in the presentation models. The PIM for the T34 syringe pump is given in figure
2. We can see that the PModel called “SetVolume” (one mode of the device,
as given in the previous example) has three outgoing transitions, one labelled
with I Init, one labelled with I SetDuration and one labelled with I Info, and
we also see that “SetVolume” does indeed have these three I-behaviours, so this
part of the PIM is well-formed. The transitions show the effect of the behaviour
by indicating the target PModel (which again represents a mode of the device),
and they give formal meaning to the I-behaviours.

152 J. Bowen and S. Reeves

T34Pump

w |_SetVolume
SetDuration
I_SetDuration

SetDuration
|_RdteConfir
1_Infg
RateConmm

RateConfirr

1_SetVolumg

Coor)

1/ConfirmSettings

I_Infg 1_Info,

I_info

ConfirmSettings

1_ConfirihStagt
onfimSettings
tartinfusionConfirr
_Paused
Infusitg |/ R @
I_IpfusionSummay

I_Paused (BatteryStaty

Cinfusing
@ I_infusing BatteryStatus

Fig. 2. PIM for the T34 Syringe Pump

2.3 Presentation Model Relation

The final part of our interaction models is the presentation model relation (PMR)
which is used to give meaning to the S-behaviours of the presentation model.
The underlying functionality of the device or system is given in a Z specifica-
tion (in the manner of [1]). As is typical this describes the state of the system
via observations, and the operations which can change those observations. Each
S-behaviour given in a presentation model has a corresponding operation in the
specification (it is actually a many-to-one relation in general, although in many
cases is a one-to-one relation) which therefore gives a formal meaning to that
behaviour. For example, the S IncVolume behaviour given in the example above
appears in the PMR as:
S IncVolume +— IncrementVolumeOp

where IncrementVolumeOp is an operation schema in the Z specification de-
scribing how the state observations are changed by this operation, and hence
S IncVolume is given a meaning.

2.4 MicroCharts

The pCharts language was developed from a simplified (and formalised) version
of statecharts, and has both a visual representation and an underlying logic and
semantics given in Z and a refinement theory derived from these [10], [8]. As well

A Simplified Z Semantics for PIMs 153

as being the visual abstract formulation of such chart languages, we have used
1Charts as the meta-language for PIMs as it provides the following benefits:

a formal semantics given in Z (which then provides a mechanism to describe

the PIM itself in Z);

— existing tools for both creating and editing pcharts as well as making the
conversion to Z;

— composition and decomposition of sequential charts which provides a high
level of structuring for complex PIMs;

— a refinement theory, which has enabled us to consider refinement for Uls and

interactive systems.

The process to build the Z model for charts involves firstly creating a general
model for each of the separate sequential charts in the pchart and then combining
these together to eventually create a single chart describing all of the components
and their combinations. The general model for each sequential chart has two
notions of state, the first being the automaton notion of state which is determined
by the transitions of the system, and the second being the notion of whether the
chart is currently active or not (which relates to the semantics of composition
and decomposition of the sequential charts).

Modelling a PIM via pCharts has provided us with a number of benefits: firstly
we have tools which enable us to create the graphical representations of ucharts;
and secondly pCharts has a semantics given in Z, and so we can then use model
checkers such as the ProZ component of ProB [12] or theorem provers such as
Z/EVES [11] or ProofPower [13] to investigate PIMs of interactive systems.

The pCharts language provides a number of features to manage complexity
within the models, such as the ability to combine several charts together using
both composition and decomposition, the ability to define signal sharing between
composed charts and also the ability to control the input and output interfaces
for signals which can be accepted or emitted by charts. For large and complex
interactive systems we can take advantage of these features (indeed they are
vital for dealing with complexity), but typically for modal medical devices we
do not need this range, and we briefly justify this statement later in the paper.

Describing all of the complexities of the pCharts language in Z is necessarily
itself complex. Not only do we need to declare all of the necessary types for
signals and states of the chart and model each of the transitions, we also need
to consider how the charts behave in the absence of defined behaviour (using
either a do-nothing or a chaotic interpretation within Z) as well as capture the
subtleties of the signal interfaces and shared signals. The Z semantics of a uchart
is then long and complex, and in the case of our medical devices not necessarily
the most appropriate representation for our purposes. In addition, this approach
leaves us with a complete Z representation of the PIM, but when we consider
the Z specification of the underlying functionality as well we typically have to
keep the two separate as the complexity of the PIM representation means that
there is no obvious or clearly defined way to combine the two (we discuss this
in more detail in the next section).

154 J. Bowen and S. Reeves
3 Why Simplify?

The process for creating Z specifications from pcharts introduced above has to
support all of the construction mechanisms included in the pCharts language
- composition, decomposition, feedback of signals and consideration of whether
a chart is active or not. This means that even if we have a very simple pchart
the framework required to support the full language adds an overhead. For ex-
ample, a single sequential chart with three states and two transitions leads to
a 7 specification consisting of twelve different schemas. While this is necessary
when we are dealing with the full expressiveness of uCharts, for some PIMs -
and particularly PIMs of modal devices - this is not needed.

When we are dealing with interactive systems whose design and UI complexity
require the additional features of pcharts we retain the separation of Ul and func-
tionality during our model-checking, however for modal medical devices (which
have much simpler PIMs, typically fewer than 10-20 states) it is more useful for
us to consider the system as a whole as it is typically in the intersection of Ul
and functionality that we are likely to find errors or problems. The ability to
model-check the device in its entirety supports the type of analysis required for
verifying safety-properties of devices, as described in [4] as well as contributing
to the goals of the US Food and Drug Administration (FDA) “Generic Infusion
Pump” project [14] which aims to show how model-based analysis can be applied
to the software of infusion pumps.

In order to create such a single specification we must somehow merge the
PIM with the functional specification. If we use uCharts semantics for the PIM
then to do this we must extend the functional specification to also include the
notions of undefined behaviour and incorporate the ‘active’ considerations into
our operation schemas which changes the level of abstraction and introduces
unnecessary complexity.

Having a single, simpler Z specification which describes both the functional-
ity and interaction also supports another area of our work which is related to
creating visualisations of, and simulations from, models [5].

4 The New Z Semantics

The declarations in Z that form the basis of the new semantics remain similar to
those given under pChart semantics. In fact it is straightforward but tedious to
show that because: there is only one chart involved which is always active; and
exactly one transition can happen at any one step, because of the way PModels
and PIMs are defined; and because there are no output signals on any transition;
then the general pChart semantics with these restrictions is equivalent to the
simpler one we give here.

Consider the small example shown in figure 3. We can categorise each element
in the PIM as follows:

— PModels {4, B}
— Input labels {I A,I B}

A Simplified Z Semantics for PIMs 155

SimpleExample
I_B
I_A

Fig. 3. Simple PIM Example

— Transition function {(B,I A)— A,(A,I B),— B}
— A starting PModel A

So we can now expand this into a Z specification as follows. First we define
the necessary types for the description of state, which we see from the above is
{A, B} along with the types for any inputs, which are the transition labels from
the transition function. For our small example this is:

State := A | B
Signal :==1 A|I B

Next we provide the schema defining the observations of state, followed by a
initialisation schema which defines the starting state - i.e. sets the observation
for the current state to A:

PIMSystem
currentState : State

Inat
PIMSystem

currentState = A

Finally we create an operation schema for each transition which takes the tran-
sition label as an input and using the defined starting PModel or state as the
precondition changes the current state observation to the PModel (state) that
the transition function specifies.

TransitionAB
APIMSystem

1?7 : Signal

17=1 B
currentState = A
currentState’ = B

156 J. Bowen and S. Reeves

Transition BA
APIMSystem
1?7 : Signal

i7=1 A
currentState = B
currentState’ = A

This is the complete Z specification for the PIM. It consists of two type defi-
nitions and four schemas. In general for any PIM we will always have two type
definitions and the number of schemas will be t 4+ 2 where t is the number
of transitions in the PIM. This contrasts with the pchart semantics where we
have a minimum of n + 5 + t schemas, where n is the number of states and
t is the number of transitions (the additional five schemas are used to man-
age undefined behaviour and notions of ‘active’). This increases in cases where
composition and decomposition exists in the chart by one schema per pair of
composed/decomposed charts.

We can model-check the above specification to ensure it has the intended
meaning and that it behaves as expected in all cases and does not exhibit any
unintended behaviour (as described in requirements or by regulatory bodies such
as the FDA) or that it meets defined safety properties.

5 Combining the PIM with Functional Specification

Part of our motivation in simplifying the PIM semantics is to enable us to
combine the Z of the PIM with the corresponding Z specification in order to
have a single specification of all parts of the system. We consider this next, and
first introduce an example of a simplified medical device to help explain the
process. Figure 4 shows a prototype interface for the simplified medical device
which consists of a screen and three buttons. The device has three modes of
operation - “Time Entry”, “Volume Entry” and “Infusing”, the presentation
model for this example is shown next, and the PIM is given in figure 5.

b s
=]

Fig. 4. Prototype for Simplified Medical Device

SimpletedicalDevice

00

A Simplified Z Semantics for PIMs 157

Simple Medical Device is TimeEntry:VolumeEntry:Infusing
TimeEntry is

Display, MultiValResponder, (S IncTime, S DecTime)

UpKey, ActionControl, (S IncTime)

DownKey, ActionControl, (S DecTime)

OkKey, ActionControl, (S SetTime, I VolumeEntry)
VolumeEntry is

Display, MultiValResponder, (S IncVol, S DecVol)

UpKey, ActionControl, (S IncVol)

DownKey, ActionControl, (S DecVol)

OkKey, ActionControl, (S SetVol, I Infusing)
Infusing is

Display, MultiValResponder, (S Infusing)

UpKey, ActionControl, ()

DownKey, ActionControl, ()

OkKey, ActionControl, ()

SimpleMed
I_VolumeEntry
@ VolumeEntry

I_Infusing

Fig. 5. PIM for Simplified Medical Device

Based on the algorithm given in the previous section we can describe the PIM
in the following Z :

State ::= TimeEntry | VolumeEntry | Infusing
Signal ::= 1 VolEntry | I Infusing

SitmpleMed PIM
currentState : State

158 J. Bowen and S. Reeves

Init
SimpleMed PIM

currentState = TimeFEntry

TransitionTime Vol
ASimpleMedPIM
1?7 : Signal

1?7 =1 VolEntry
currentState = TimeFEntry
currentState’ = VolumeEntry

Transition Vollnfusing
ASimpleMed PIM
17 : Signal

1?7 =1 Infusing
currentState = VolumeFEntry
currentState’ = Infusing

5.1 The Functional Specification

Now we consider the functional specification for the simplified medical device
above. The primary observations of the specification relate to time, dosage vol-
umes and dosage rate. Again we will simplify things by abstracting all of the
values to simple natural numbers (rather than concerning ourselves with hours,
minutes and seconds for time, or floating point numbers for volumes etc.; obvi-
ously for real specifications it is vital to model these correctly as these values
are crucial to the behaviour of the device).

INFUSING ::= Yes | No

SimpleMedSystem
storedTime : N

time : N
storedVolume : N
volume : N
infusionRate : N
elapsedTime : N
volumeRemaining : N
infusing : INFUSING

A Simplified Z Semantics for PIMs 159

Inat
SimpleMedSystem

storedTime = 0

time = 0
storedVolume = 0
volume = 0
infusionRate = 0
elapsedTime = 0
volumeRemaining = 0
infusing = No

ChangeVolume ValOp
ASimpleMedSystem
i7:N

volume’ = 1?7

storedTime = stored Time’

time = time’

stored Volume = stored Volume'
infusionRate’ = infusionRate
elapsedTime’ = elapsedTime
volumeRemaining’ = volumeRemaining
infusing’ = infusing

We similarly describe operation schemas ‘Set VolumeOp’, ‘ChangeTimeValOp’,
‘SetTimeOp’ and ‘InfusingOp’ which we omit here for brevity. One point of inter-
est to note is that this specification allows the possibility to increment the ‘volume’
observation (using the ‘ChangeVolumeValOp’) irrespective of whether or not the
current infusing state is ‘Yes’ or ‘No’. We would consider this unsafe behaviour (as
we do not want to be able to change settings during an infusion). This is the type
of property which might be given in the requirements, or in FDA safety regula-
tions, and would therefore be considered an adverse behaviour of the device. We
have shown in previous work [4] how we can use LTL in ProZ to check such safety
properties, so here for example we might have a property defined in a predicate
such as:

G({Infusing = Yes} = not(e(ChangeVolumeValOp())))

which requires that globally (i.e. in every state) if the value of the Infusing obser-
vation is ‘Yes‘ then the operation ChangeVolumeValOp should not be enabled.
Figure 6 shows the result of checking this, the counter example for the resulting
failure to prove this true is given in the ProZ history listing.

We could, of course, ‘fix’ this by adding the necessary predicates as pre-
conditions to the operations, but if we consider the PIM again, we know in-
tuitively that our interaction model already prevents this behaviour (as only

160 J. Bowen and S. Reeves

ProZ: 1.3.4-final: [SimpleMedFunctionality.tex]

Formula FALSE.

) Counterexample found for G({infusing =
Yes} => not{e(ChangeVolValOp({_))).

Fig. 6. Checking Safety Property in Functional Specification

behaviours in active states are available at any given time). What we now want
to do therefore is combine the PIM and functional specification into a single
specification that enables us to model-check the behaviour of the entire system.
In this way we hope that problems or errors we find will be ‘real’ errors rather
than false-positives caused by missing information from one side or the other.

In order to achieve this we also need to consider the PMR, which relates the
operations of the Z specification to the S-behaviours of the presentation model,
which for this example is as follows:

IncTimeVal — ChangeTimeValOp

DecTimeVal — ChangeTime ValOp
SetTime — SetTimeOp

IncVolVal — ChangeVolumeValOp
DecVolVal — ChangeVolume ValOp
SetVol — SetVolumeOp

Infusing — InfusingOp

NN U»nnninin

In conjunction with the presentation models (which are in effect the states of
the PIM) this enables us determine a relationship between operations and states
- which we can describe informally as describing which state (mode) a device
needs to be in to perform any given operation.

The combined specification begins with all definitions given in the PIM, then
those of the functional specification followed by the system schemas defined
in each together with their initialisations. Then we define a new single system
schema which is the conjunction of the previous schemas and similarly define the
initialisation as the conjunction of both initialisations. The transition schemas
from the PIM are included in their original form. Now for each of the oper-
ation schemas in the functional specification we need to add a precondition
which determines the required state of the PIM, i.e. describes when this opera-
tion is available. So in our simple medical device example we have an operation
“ChangeTimeValOp”, the PMR tells us that this is related to the S IncTimeVal
behaviour which requires the system to be in the “TimeEntry” state. The en-
hanced operation is then described as follows:

Total ChangeTimeValOp =
ChangeTimeValOp A [currentState : State | currentState = TimeEntry|

A Simplified Z Semantics for PIMs 161

ProZ: 1.3.4-final: [SimpleMedTotal.tex]

Formula TRUE.

) No counterexample found.

Fig. 7. Checking Safety Property in Total Specification

We follow this same process for each of the operation schemas. Now we can not
only model-check the behaviour of the entire system in one process, but we also
see that the problem we identified earlier where it was possible to increment the
‘volume’ observation irrespective of current infusing state has been removed. It
is no longer possible to perform this operation unless we are in the “TimeEntry”
state, i.e. when the system is not infusing. Figure 7 shows the result of checking
the same LTL property as previously on the total specification.

6 Automating the Process

We currently have a number of tools which support us in our model creation
and in deriving the Z from pcharts, which can be done automatically. We can
retain this automation by simply extending the existing tools to produce a sec-
ond output, which is the new Z semantics (a relatively straight-forward process).
This will enable us to have both the pCharts version of the Z as well as the new
semantics we have described, produced in a single automated process. We can
also then extend this further so that given the input of the functional specifica-
tion we can also produce the combined specification using the algorithm we have
given in section 5. This does, of course, rely on the developers of the specification
following the conventions described here for their specification.

7 Conclusions and Future Work

In this paper we have presented a simplified automata and Z semantics for pre-
sentation interaction models which enables us to easily produce a single specifi-
cation of both functionality and interactivity of modal medical devices. Whilst
we have not elaborated here on the uses (and usefulness) of these models, when
dealing with safety-critical devices (such as medical devices), which are coming
under increasing scrutiny and regulation by authorities such as the FDA follow-
ing ongoing concerns with adverse events, it is crucial that we are able to model
and verify such devices. Our previous work on modelling safety-properties of
such devices [4] and similar work looking at creating reference models against
which devices can be verified [9] demonstrate the increasing importance of such
verification.

162 J. Bowen and S. Reeves

We do not propose these new semantics as a replacement for the original
puchart version of the PIM and its underlying semantics. These remain a valuable
tool when we are dealing with models whose complexity requires the additional
features that puCharts provides over and above sequential charts. However, in
cases where these features are not required, and particularly for modal medical
devices where a single (interaction and functionality) final model is more impor-
tant to us, then these new semantics provide an alternative approach to their
modelling.

References

1. Bowen, J.P.: Formal Specification and Documentation Using Z, A Case Study
Approach. International Thomson Computer Press (1996)

2. Bowen, J., Reeves, S.: Formal Models for User Interface Design Artefacts. Innova-
tions in Systems and Software Engineering 4(2), 125-141 (2008)

3. Bowen, J., Reeves, S.: Modelling User Manuals of Modal Medical Devices and
Learning from the Experience. In: Fourth ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems (EICS 2012), pp. 121-130. ACM, New York
(2012)

4. Bowen, J., Reeves, S.: Modelling Safety Properties of Interactive Medical Systems.
In: Fifth ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2013), pp. 91-100. ACM, New York (2013)

5. Bowen, J., Jones, S., Reeves, S.: Creating Visualisations of Formal Models of Inter-
active Medical Devices. In: Pre-proceedings of Second International Workshop on
Formal Techniques for Safety-Critical Systems (FT'SCS 2013), pp. 259-263 (2013)

6. Campos, J., Harrison, M.: Modelling and Analysing the Interactive Behaviour of
an Infusion Pump. ECEASST 11 (2001)

7. Harrison, M., Campos, J., Masci, P.: Reusing Models and Properties in the Analysis
of Similar Interactive Devices. In: Innovations in Systems and Software Engineer-
ing. Springer (2013)

8. Henson, M.C., Reeves, S.: A Logic for the Schema Calculus. In: Bowen, J.P., Fett,
A., Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 172-192. Springer, Hei-
delberg (1998)

9. Masci, P., Ayoub, A., Curzon, P., Harrison, M.D., Lee, 1., Thimbleby, H.: Verifica-
tion of Interactive Software for Medical Devices: PCA Infusion Pumps and FDA
Regulation As an Example. In: Fifth ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2013), pp. 81-90. ACM, New York (2013)

10. Reeve, G., Reeves, S.: uCharts and Z: Examples and Extensions. In: Proceedings
of APSEC 2000, pp. 258-263. IEEE Computer Society (2000)

11. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72-85. Springer, Heidelberg (1997)

12. The ProB Animator and Model-Checker, http://www.stups.uni-duesseldorf.de
/ProB/index.php5/Main Page

13. ProofPower, http://www.lemma-one.com/ProofPower/index/index.html

14. The Generic Patient Controlled Analgesia Pump Hazard Analysis and Safety Re-
quirements, http://rtg.cis.upenn.edu/gip.php3

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.lemma-one.com/ProofPower/index/index.html
http://rtg.cis.upenn.edu/gip.php3

Log Analysis for Data Protection Accountability

Denis Butin and Daniel Le Métayer

Inria, Université de Lyon, France
{denis.butin,daniel.le-metayer}@inria.fr

Abstract. Accountability is increasingly recognised as a cornerstone of
data protection, notably in European regulation, but the term is fre-
quently used in a vague sense. For accountability to bring tangible ben-
efits, the expected properties of personal data handling logs (used as
“accounts”) and the assumptions regarding the logging process must be
defined with accuracy. In this paper, we provide a formal framework
for accountability and show the correctness of the log analysis with re-
spect to abstract traces used to specify privacy policies. We also show
that compliance with respect to data protection policies can be checked
based on logs free of personal data, and describe the integration of our
formal framework in a global accountability process.

1 Context and Motivation

The principle of accountability, introduced three decades ago in the OECD’s
guidelines [18], has been enjoying growing popularity over the last few years in
the field of data protection. A consortium was set up in 2009 with precisely the
definition and analysis of accountability as one of its primary goals [8]. At the
European level, the Article 29 Working Group published an opinion dedicated
to the matter recently [1] and the principle is expected to be enshrined in the
upcoming European data protection regulation [12]1

The key idea behind the notion of accountability is that data controllers (Eu-
ropean terminology for entities collecting personal data, denoted DC from now
on) should not merely comply with data protection rules but also be able to
demonstrate compliance — “showing how responsibility is exercised and making
this verifiable”, as stated by the Article 29 Working Group [1]. The motivation
underlying this general principle is that data subjects (DS) disclosing personal
data to a DC lose control over it and require strong guarantees regarding actual
handling.

Crucially, accountability is more than an impediment to companies: it can help
them clarify their internal processes and level of compliance with legal rules (or
their own policies). In addition, a solid accountability process puts a company
in a better position to demonstrate its compliance in case of dispute.

! The latest draft of this regulation, adopted by the European Parliament’s Civil
Liberties Committee last October, further strengthens accountability requirements
(articles 5 and 22).

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 163-178, 2014.
© Springer International Publishing Switzerland 2014

164 D. Butin and D. Le Métayer

Nevertheless, a downside to the generality of this concept is that it is too
frequently used in a vague sense — at least, by lawyers and decision makers.
Some clarity is provided by Bennett’s nomenclature [9], which distinguishes three
types of accountability: accountability of policy, of procedures and of practice.
The strongest variant is accountability of practice, which holds that DC ought to
demonstrate that their actual data handling complies with their obligations. In
the case of accountability of policy, they must be able to show that they actually
have defined a privacy policy; in the case of accountability of procedures, they
must be able to show that they have put in place appropriate procedures to meet
their policy. Ideally, the three types of accountability should be implemented:
having a privacy policy in place is obviously a minimal requirement and the
procedures should support good practices. However, in order to implement the
accountability of practices and ensure that it can really improve the protection
of DS, a number of key questions must be addressed:

— A clear definition should be provided of the “accounts” which are at the core
of the concept of accountability. For accountability of practice, execution
logs are natural candidates, but what should be kept in the logs is an essen-
tial and non-trivial issue. Obviously, enough information should be recorded
to make accountability possible; but it is also necessary to comply with an-
other principle of data protection, data minimization: only the personal data
necessary for a given purpose should be recorded. Actually, one of the argu-
ments against the use of accountability of practice is that the logs required
to implement it could in fact represent an additional source of risks for per-
sonal data. As illustrated in our work [4], designing the contents of the logs
is therefore far from obvious: intuitive solutions typically include too much
data or omit information necessary for effective compliance.

— A clear definition of the accountability process has to be provided, showing
how accounts are built and analyzed. For the accountability process to be
worthwhile, accounts (here: logs) should reflect actual system execution and
the verdict returned by the analysis procedure ought to be reliable. Overall,
the guarantees provided by the whole process should be detailed to avoid
misleading representations by DC or misplaced expectations from DS.

If the above issues are not properly handled, accountability may either repre-
sent illusory protections (and low-cost greenwashing for DC) or even additional
sources of personal data leaks.

In this paper, we argue that formal methods can play a crucial role in ad-
dressing the above issues. In this context, however, they have to be used in a
“light” way for several reasons. First, not all data protection obligations can be
described formally. For instance, the notion of purpose, which is central in the
European Data Protection Directive, cannot be defined in mathematical terms.
Similarly, break-glass rules [16], which are necessary in certain areas such as
health data processing (e.g. to allow unauthorized physicians to access personal
data in emergency situations), are not well-suited to formalisation. Furthermore,
the goal of the accountability process is not to establish a formal proof of com-
pliance for a system (which would be completely out of reach in practice) but

Log Analysis for Data Protection Accountability 165

rather to be able to detect potential misbehaviour. One challenge in this area
is therefore the integration of formal methods in an otherwise informal process
and the definition of clear interactions between both worlds.

Another issue to be addressed in a formal accountability framework is the
gap between two different levels of abstraction. The privacy 2 policy defined or
understood by DS (or by lawyers) applies to abstract notions, such as “home ad-
dress” or “health data”, whereas actual logs typically include lower-level details
such as system memory addresses or duplication of data.

Considering the above objectives and challenges, the contributions of this
paper are threefold:

— We provide a framework for accountability of practice based on “privacy
friendly” logs, showing that compliance with respect to data protection poli-
cies can be checked based on logs which do not contain any personal data.

— We show the correctness of the log analysis with respect to abstract traces
that are used to specify privacy policies.

— We describe the integration of the formal framework in the overall account-
ability process and identify the complementary procedures and manual ver-
ifications that are necessary to complement the log analysis.

We first introduce privacy policies and their abstract representation (§2), be-
fore specifying “personal-data-free” logs (§3). The core accountability properties,
i.e. the guarantees provided by the log analysis, are presented in §4. The integra-
tion of the formal framework in a global accountability process is outlined in §5.
We then provide a survey of related work (§6), followed by an outline of future
work and conclusive remarks (§7). An extended version of this paper is available
in a technical report [6].

2 Privacy Policies and Abstract Events

The first stage of any data protection accountability process is the definition of
privacy policies. In practice, a policy can be defined by the DC and accepted by
the DS or result from a negotiation phase. In any case, it should comply with
applicable laws. We do not consider the legal validity of the policies here nor
their origin and assume that any personal data received by a DC is associated
with a policy. The fact that the data is sent with a policy by the DS implies
that she provides her consent for the use of her data in the conditions expressed
by the policy. The fact that the DC accepts the data with the policy is taken
as a commitment from his side to comply with the policy. In practice, a policy
specifies what can be done with categories of data defined in a way which makes
sense to DS, for instance “age”, “postal address”, or “profession”. A first and
major requirement of our accountability framework is that the privacy policy
should always remain attached to the associated data (which is sometimes called

2 In this paper, we use the expressions “privacy” and “data protection” interchangeably
even though, from a legal point of view, they refer to two different protection regimes.

166 D. Butin and D. Le Métayer

the sticky policy approach) because it will serve as a reference point for evaluating
whether the DC has fulfilled his obligations.

As we want to check compliance with respect to privacy policies, we consider
traces and logs on the side of the DC in this paper.

Definition 1 (Privacy policy). Privacy policies are defined as tuples:
Policy = Purposes x Time x Time x Contexts x FwPolicy

In 7w € Policy, m = (ap,dd, rd, cx, fw), ap is the set of authorised purposes of
data use. Purposes are taken from a set of admissible values (taken as constants
here, possibly structured as an ontology). The deletion delay dd is the delay after
which the data must be deleted by the DC. The rd parameter specifies the delay
for the DC to comply with requests by the DS, for instance regarding the deletion
of personal data. The set cx defines the contexts in which the data can be used.
Contexts is the set of constants here which could represent external parameters
such as time or location. The data forwarding policy is defined by the value of
fw; it is equal either to 1 (in which case no forwarding at all to third parties is
possible) or to | (all forwarding is allowed). We sometimes use the notation 7.ap,
m.dd, etc. to access the fields of a policy tuple. An example policy in this for-
mat could be m = ({ Marketing, Statistics}, 180d, 60m, { Location_ Europe},1).
This policy stipulates that data can be used exclusively for the purposes of
Marketing and Statistics, that all data must be deleted no later than 180 days
from its disclosure, that requests by the DS must be complied with within 60
minutes, that data can only be used for a location context equal to Furope and
that any forwarding to third parties is forbidden.

We do not attempt to include all complexities of existing policy languages
here. The above format should rather be seen as a proof-of-concept example to
illustrate our overall approach.

2.1 Abstract Events

Having defined privacy policies, we now introduce the list of abstract events, so-
called because they describe events at the level of personal data, abstracting away
from system internals such as memory addresses. Abstract events are expressed
intuitively with regard to the format of privacy policies. Mirroring the design of
privacy policies mentioned above, this list of events illustrates an instantiation of
our framework; it can be extended easily®. All abstract events carry a timestamp
t as their first argument.

— (Disclosure,t,or,ds,0,v,) — the initial reception by the DC of personal
data of origin or (the origin is the entity which sent the data), type 6 (e.g.
a person’s age or postal address) and value v related to DS ds, with an
associated sticky policy 7. Depending on the value of or, the data can be
sent by ds or by a third party.

3 For example with update events — one could add a modification index to states to
manage them. Notifications events could also be added.

Log Analysis for Data Protection Accountability 167

— (DeleteReq,t,or,ds,0) — a request received by the DC and sent by or to

delete personal data of owner ds and type 6.

(AccessReq,t,ds,0) — a request received by the DC and sent by ds to access

her own data.

— (Delete, t,ds,) — a deletion of the data of ds of type 6 by the DC.

— (DeleteOrder,t,tp,ds,) — a request sent by the DC to the third party tp
to delete the data of ds of type 6.

— (Forward,t,rec,ds,0,v,7) — the forwarding by the DC of the data of ds
of type 6 and value v to the recipient rec, which can be either a third party
or the DS (to grant her access to her own data following an access request),
with policy m attached.

— (Use, t,ds, 0, purpose, reason) — the use by the DC of the data of ds of type
0 for a specific purpose and reason. The purpose element is taken from an
ontology, while the reason is a textual description, used by a human for
informal verification as discussed in §5.

— (BreakGlass, t, et,bgt, bgc) — the occurrence of a break-glass event of type
bgt in circumstances bgc, where the affected entities and data types are
couples (ds, 8) members of the set et. In practice, bgc is a textual description,
similarly to reason in Use events.

— (Context,t, ct) — the switching of the current context to ct. To simplify, the
context is just modeled by a simple value here but it could very well be a
structure to account for different external parameters (such as time, location,
etc.).

Definition 2 (Trace). A trace o is a sequence of abstract events.

In order to define the notion of compliant trace, we need to introduce abstract
states.

Definition 3 (Abstract state). The abstract state of a system is a function
Sa : Entity x Type — Time x Entity x Value x Policy x P (Entity x N) x
P (BGtype x BGcircumstances x Time)

(ds, 0) — (t,or,v, 7, receivers, bg)

The abstract state associated with each DS ds and type of personal data
0 includes the origin or (the entity from which the most recent version of the
value of the data emanated from), the data’s value v, the sticky policy 7 (current
policy) and the set of receivers (all third parties who have received the data
together with the corresponding event index in the trace). Information about
break-glass events is collected by triples bg,, = (bgt, bgc, timebg), where bgt is a
break-glass event’s type, bgc its circumstances and timebg its time. bg is a set
of such triples, including all break-glass events that occurred so far for this DS
and data type. S4 is expanded with S4(Context) = ct € Context, where ct is
the current context.

We use the notation X[(ds,0) — (t,or,v,m,r,bg)] to denote a state X’ similar
to X except that X'(ds,0) = (t,or,v,m, 1, bg). The semantics of an event at

168 D. Butin and D. Le Métayer

Sa ((Disclosure, t,or,ds,0,v,m),5) X = X|[(ds,0) — (t,or,v, 7, D,)]
Sa((Delete,t,ds, 8),7)X = X[(ds,0) —1]

Sa((Forward,t',rec,ds,0,v,7),7) X =
if rec # ds then X[(ds,0) — (t,or,v,w, receivers U {(rec, j)}, bg)]
with (¢, or,v, 7, receivers,bg) = X(ds,0) else X

Sa((BreakGlass,t', et,bgt,bgc), j) X =
if (ds,0) € et then X|[(ds,0) — (t,or,v, 7, receivers, bg U {(bgt,bgc,t')})]
with (¢, or,v, m, receivers,bg) = X (ds,0) else ¥

Sa((Context,t,ct), j) X = X[Context — ct|

Sa(os,7)X = X for the other events. Even though those events do not impact the
abstract state, they either introduce commitments for the DC (e.g. DeleteReq) or
allow him to fulfill his obligations (e.g. DeleteOrder).

Fig. 1. Abstract event semantics

a given position j in a trace are given by the function S4: (Event x N) —
AbstractState — AbstractState defined in Fig. 1.

Disclosure initialises all abstract state variables, while Forward adds a third
party, together with its event index, to the receivers set, unless the recipient is
the DS herself (i.e. the DS is granted access to her own data), in which case the
state is unchanged. BreakGlass events only modify the state if they occur for
the ds and 6 under consideration.

The current state after the execution of a trace o = [eq, ..., e,] is defined as
Fa(o,1)Xy with V ds, 0, Xy(ds,0) =L and:

Fa([lin) 2 =%

Fa(ler,...,em],n) X =Fa(lea,...,em],n+1)(Saler,n)x)

We set States(o,i) = Fa(o};,1)Xo, with 0); = 01 ...0; the prefix of length i
of o.

Furthermore, let EvTime be a function such that FvTime(o;) = t; with
o; = (X,ti,...),t; € Time. Having defined abstract events, traces and event
semantics, we can now define the compliance of a trace with respect to the
policy attached to the data received by a DC.

2.2 Trace Compliance Properties
The following compliance properties are stated Vi € N, V ds, V 6:

Al: No personal data should appear in an abstract state after its global deletion
delay has expired: Statea(o,i — 1)(ds,0) = (t,or,v,m, receivers,bg) =
EvTime(o;) <t+m.dd

Log Analysis for Data Protection Accountability 169

A2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and deletion: o; = (Delete, t', ds, 0) A Statea(o,i—1)(ds,) =
(t,or,v,m,receivers,bg) = Y (tp,1) € receivers, Ik | It | op =
(DeleteOrder,t" tp,ds,0) Ak €]a, i witha = max{n| (t,,n) € receivers}

A3: Deletion requests are fulfilled before expiration of the request fulfillment
delay: o, = (DeleteReq,t',or,ds,0) N Statea(o,i—1)(ds,0) = (t,or,v,,
receivers,bg) = Ik | 3t" | o = (Delete,t”,ds,0) Nt <t" <t'+7m.rd

A4: A4 is defined similarly to A3 for access requests, where the granting of
access is a Forward event with rec = ds.

A5: Data is only used for purposes defined in the policy: o; = (Use, t',ds, 0,
purpose,reason) A States(o,i—1)(ds,0) = (t,or,v,m, receivers,bg)

— purpose € w.ap

A6: All contexts in which data is used in the trace are authorised in the policy:
o; = (Use,t',ds, 0, purpose, reason) N States(o,i — 1)(Context) = ct A
Statea(o,i — 1)(ds,) = (¢, or,v, 7, receivers, bg) = ct € w.cx

AT: If the policy forbids all forwarding, there is none:

o; = (Forward,t' ,rec,ds,0,v,m) A rec#ds N Statea(o,i—1)(ds,0) =
(t,or,v, w,receivers,bg) = w.fw # T

Definition 4 (Trace compliance). A trace o is compliant (Complianta(o))
if it satisfies all of the above properties Ay, ..., Az.

This concludes our formalisation of abstract events. The next section intro-
duces log events, which are closer to system operations and include internals
such as memory references. Defining such events and their compliance will ulti-
mately allow us to relate abstract events and log events to express accountability
properties (§4).

3 Log Specification and Compliance

Abstract events are useful to express privacy policies at a level which makes
sense for DS. However the expected guarantees concern the actual behaviour of
the system, which can be checked based on its execution log. We start by defin-
ing log events and continue with the associated concrete states and compliance
properties.

3.1 Log Events

There are two main differences between trace events and log events. First, log
events correspond to a small number of general purpose low-level operations,
such as receiving data, sending it, reading it, copying it, deleting it or external
events. The semantics of these events are passed through parameters (in most
cases, the second one, such as Disclosure). Second, log event operations apply
to the machine state, which is a function from references (i.e. memory addresses)
to values; as opposed to abstract event operations, which apply directly to high-
level data.

170 D. Butin and D. Le Métayer

The format of the logs is a key design choice for an accountability architec-
ture. As discussed in [4], this choice is far from obvious. In our framework, it
is guided by two factors: the privacy policies which have to be verified and the
aforementioned data minimization principle. Actually, we choose a radical op-
tion here, which is to avoid recording in the logs any value v of personal data *.
We show in the next section that this choice does not prevent us from meeting
the expected accountability requirements.

The list of log events follows. All log events carry a timestamp ¢, and events
without descriptions have the same meaning as the corresponding abstract event.

— (Receive, Disclosure, t,or,ds, 0,7, ref)

(Receive, DeleteReq, t, or, ds, 0)

(Receive, AccessReq,t,ds,)

(Copy, t,ref,ref) — a copying of data by the DC from one system reference

to another.

— (Delete, t,ref) — a deletion of the data of ds with reference ref by the DC.

(Send, DeleteOrder, t, tp,ds, 0)

— (Send,Val,t,rec,ref) — an unspecified sending of data from the DC to a
recipient rec, which can be a third party or ds in case she is granted access
to her own data.

— (Read, t,ref, purpose,reason) — the use by the DC of the data of ds of
reference ref for a specific purpose and reason.

— (External, BreakGlass, t, et, bgt, bgc)

(External, Context,t, ct)

Logs are to traces as log events are to abstract events:
Definition 5 (Log). A log is a sequence of log events.

In the same way that we defined abstract states and semantics, we now define
concrete states and the semantics of concrete events.

Definition 6 (Concrete state). The concrete state of a system is defined by
the function Sc : Reference — Time x Type x Entity x Entity x Policy x
P(Entity x N) x P(BGtype x BGcircumstances x Time)

ref — (t,0,ds, or, 7, receivers, bq)

Here Reference is the set of memory addresses; the other parameters are
defined as for abstract states. S¢ is expanded with Sc(Context) = ct € Context.

The semantics of an event at a position j in a log are given by a function
(LogEvent x N) — ConcreteState — ConcreteState defined as in Fig. 2.

Note that data values are not manipulated explicitly here; e.g. in the concrete
(Receive, Disclosure, . ..) event above, the value of the data of type 6 is stored
in system memory at address ref. The Copy event does not modify the state
associated to ref but the one associated to ref’, since ref’ is overwritten.

4 Nevertheless, the couple (ds, 0) to which v is associated is still recorded.

Log Analysis for Data Protection Accountability 171

Sc((Receive, Disclosure, t,or,ds,0,m,ref), 1) X = Xiref — (t,0,ds,or, 7, , &)]
Sc((Copy,t,ref,ref’),j)¥ = Llref’ — X(ref)]
Sc((Delete, t,ref),)X = X[ref —1]

Sc((Send,Val,t',rec,ref),j) X =
if rec # ds then X[ref — (t,6,ds,or, 7, receivers U {(rec, j)}, bg)]
with (¢,0,ds, or,m, receivers,bg) = X(ref) else X

Sc((External, BreakGlass,t', et,bgt,bgc),7) X =
if (ds,0) € et then Xref — (¢,0,ds, or, 7, receivers, bg U {(bgt, bgc, t')})]
with (¢,0,ds, or, m,receivers,bg) = X(ref) else X

Sc((External, Context,t,ct), j) X = X[Context — ct]
Sc(Li,7)X = X for the other events.

Fig. 2. Concrete event semantics

The current concrete state Statec (L) after the execution of a log L is defined
recursively from S¢, like Statea (o) was previously defined from S4. One can
now express useful functions based on the current state at a position 4 in a log:

— The Locations function returns the set of references associated to data of a
certain datatype from ds:

Locations(L,i,ds,0) = {ref | Statec(L,i)(ref) = (_,0,ds, _,_,_,_)}

— The All Receivers function returns the set of all third parties that store some
data of a certain datatype from ds, with the associated event index at which
they received the data: AllReceivers(L,i,ds,0) = {(tp, k) | I ref |
Statec(L,i)(ref) = (_,0,ds, _,_,receivers,) A (tp,k) € receivers}

Furthermore, as for abstract events, let EvTime be a function such that
EvTime(L;) = t; when L; = (...,t;,...). Using these functions, we can now
express compliance for logs.

3.2 Log Compliance Properties

Because logs reflect actual system executions and involve lower-level operations
such as copies of data in memory addresses, it is necessary to also define the
meaning of compliance in terms of logs. The following log compliance properties
are stated Vi € N, V ref, Vds, V0:

C1: No personal data should appear in an abstract state after its global deletion
delay has expired: Statec(L,i—1)(ref) = (t,0,ds, or, m, receivers, bg) =
EvTime(L;) <t+m.dd

172 D. Butin and D. Le Métayer

C2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and its deletion: L; = (Delete,t',ref) A Statec(L,i—1)
(ref) = (t,0,ds,or, 7, receivers, bg) => V (tp,1) € receivers, 3k | 3¢ |
Ly, = (Send, DeleteOrder,t”,t,,ds,0) A k € |, i with o = maz{n | (tp,n)
€ receivers}

C3: Delete requests are fulfilled before expiration of the request fulfillment de-
lay: L; = (Receive, DeleteReq,t',or,ds,0) A Statec(L,i — 1)(ref) =
(t,0,ds,or,
m,receivers,bg) => Y r € Locations(L,i,ds,0), 3k |3t" | Ly = (Delete,
) A<t <t +mrd

C4: C4 is defined similarly to C3 for access requests.

C5: Data is only used for purposes defined in the policy: L; = (Read, t', ref,
purpose,reason) A Statec(L,i— 1)(ref) = (t,0,ds, or, 7, receivers, bg)
— purpose € w.ap

C6: All contexts in which data is used in the trace are authorised in the policy:
L; = (Read, t',ref, purpose,reason) A Statec(L,i— 1)(Context) =ct A
Statec(L,i — 1)(ref) = (t,0,ds, or,w, receivers,bg) = ct € m.cx

CT7: If the policy forbids all forwarding, there is none:

L; = (Send,Val,t',rec,ref) A rec#ds A
Statec(L,i — 1)(ref) = (t,0,ds, or,w, receivers,bg) = w.fw # 1

Definition 7 (Log compliance). A log L is compliant (Compliantc (L)) if it
satisfies all of the above properties Cq,...,Cxr.

4 Accountability Properties

To relate abstract privacy policies to actual log verifications, it is necessary
to introduce two abstraction relations: a relation between abstract states and
concrete states and a relation between traces and logs.

We first introduce the relation between abstract states and concrete states:

Definition 8 (State abstraction). Abstracts(Xc,Xa) holds if and only if
{(ds,0) | 37, Xc(r) = (t,0,ds,or, 7, receivers,bg)} = Domain(X4) and

Vor, Vds, V0,Xc(r)=(t0,ds,or, 7, receivers, bg) <

Jv | Ya(ds,0) = (t,or,v, 7, receivers, bg).

The relation Abstract; denotes that a trace is an abstraction of a log:

Definition 9 (Log abstraction). Abstracty(L,o) holds if and only if there
exists a function Map such that Map : N — P(N) | ¥V r € [1,|o]], Map(r) #
g ANVYrselllol]l, V' e Map(i), Vs € Map(j), r < s = 1" < s and for
all i € [1,]0]] and for all j € [1,|L|], the properties in Fig. 3 are true.

Log Analysis for Data Protection Accountability 173

Map(i) = {j} N o: = (Disclosure,t,or,ds,0,v,7) <~
L; = (Receive, Disclosure, t,or,ds,0,m,ref) A
Abstracts(Statec(L,j — 1), Statea(o,i — 1))

Map(i) = {j} N o: = (DeleteRegq,t,or,ds,0) <~
L; = (Receive, DeleteReq, t,or,ds,0) N Abstracts(Statec(L,j—1), Statea(o,i—1))

Map(i) = {j} A oi = (AccessReq,t,ds,0) <~
L; = (Receive, AccessReq,t,ds,0) N Abstracts(Statec(L,j — 1), Statea(o,i — 1))

Map(i) = J A o; = (Delete,t,ds,0) <~
V r € Locations(L, min(J),ds,0), 3 j € J |
L; = (Delete,t,r) N Abstracts(Statec(L,j — 1), Statea(o,i— 1))

Map(i) = {j} N o; = (DeleteOrder,t,tp,ds,0) <—
L; = (Send, DeleteOrder, t,tp,ds,0) N\ Abstracts(Statec(L,j—1), Statea(o,i—1))

Map(i) = {j} N o: = (Forward,t,rec,ds,0,v,7) <~
L; = (Send,Val,t,rec,ref) with Statec(L,j — 1)(ref) =
(t',0,ds,or, m,receivers,bg) A Abstracts(Statec(L,j — 1), Statea(o,i — 1))

Map(i) = {j} N o: = (Use,t,ds,0,purpose,reason) A
Statea(o,i — 1)(Context) = ct <~
L; = (Read, t,ref, purpose, reason) with Statec(L,j — 1)(ref) =
(t',0,ds, or, m,receivers,bg) A Abstracts(Statec(L,j — 1), Statea(o,i — 1)) A
Statec(L,j — 1)(Context) = ct

Fig. 3. Log abstraction definition

Using this Abstract function, it is now possible to express the core correctness
property relating traces and logs:

Property 1 (Correctness).
Compliantc(L) N Abstracty,(L,o) = Complianta(o)

This property shows that the abstract meaning of the policies (which can be
understood by users) reflect the actual properties of the logs. It also makes it
possible to abstract the log into a trace and analyse the trace instead of the log.

Proof outline: Since Compliant (o) is defined as the conjunction of the seven
trace compliance hypotheses Ai defined in §2, it is equivalent to show that they
all hold. We do not detail all proofs here but present the strategy and an archety-
pal example®. Generally speaking, starting with the premise of a given Ai, one
wants to reach the corresponding conclusion, assuming the ad hoc log compli-
ance property Ci and Abstractr,(L,o). Abstract events can be mapped back to

> See [6] for more details.

174 D. Butin and D. Le Métayer

one or more concrete events; for instance, in case of deletion, all references for a
given ds and 6 must be deleted, giving rise to multiple concrete Delete events.
The corresponding log compliance property is then used. Often, to use the log
compliance property in question, information about states is needed and can be
obtained through the state abstraction used in the predicates. For instance, in
the case of A7, concluding that 7.fw #71 via C'7 implies reasoning over the con-
crete state associated to the reference parameter of the (Send,Val,...) event;
indeed, the event itself does not carry the associated policy, unlike its abstract
version Forward, but the state mapping is realised through Abstracty (L, o).

The case of A2 is typical: its assumptions are o; = (Delete,t’',ds,0) A
Statea(o,i — 1)(ds,0) = (t,or,v, 7, receivers, bg). We assume Abstracty (L, o).
Let J = Map(i). The part of Abstracty(L,o) relative to Delete yields V¥ r €
Locations(L,min(J),ds,0), 3 j € J| L; = (Delete,t',r) N Abstractg(Statec
(L,j—1), Statea(o,i—1)), Since State(c,i—1)(ds,0) = (t,or,v,m, receivers,bg),
we get, in particular, V r € Locations(L, min(J),ds,0), 3 j € J | Statec(L,j —
1)(r) = (t,0,ds, or,m, receivers, bg). C2 can now be used, and gives V (¢p,1) €
receivers, 3 k| 3¢ | Ly = (Send, DeleteOrder,t”,t,,ds,0) N k € |a,i| with
a =max{n | (t,,n) € receivers}. Using Abstracty, (L, o) again for DeleteOrder
yields the desired conclusion: V (tp,1) € receivers, 3 k' | Map(k') = {k} | o =
(DeleteOrder,t” ,tp,ds,0) with k' €]a, j'[and a = maz{n | (t,,n) € receivers}.
In this case, it is critical to establish a correspondence between abstract and con-
crete states to be able to reason over the receivers set that features in the conclusion
of both properties. In the case of A6 and C6, context equivalence is used.

Race Conditions: From the perspective of a DS, it is essential that all copies of data
are actually deleted in the end, whether they are local or remote. The following
property guarantees that all deletion requests are eventually fulfilled on all levels:

Property 2 (Absence of Race Conditions). All deletion requests are fulfilled after
a finite delay, provided the log is compliant and of finite length.

Proof Outline: We assume L = Ly...L, to be a log of length n, ds and 6
fixed. All deletion requests are fulfilled after a finite delay. Indeed, assume 3 i €
[1,n] | L;i = (Receive, DeleteReq,t,or,ds,8), L; € L and A = Locations(L,1,
ds, 8). By contradiction, the following alternatives are impossible:

— Assume there exists a local copy of the initial data which is never deleted, i.e.
Jref € A|V s €[l,n],Ls # (Delete,t',ref) N Ls # (Copy,t’,ref’,ref)
with ref’ ¢ Locations(L,i,ds,0) — this contradicts C3.

— Assume there is a third party whom the data was shared with and who
never received a DeleteOrder, i.e. 3 o € AllReceivers(L,i,ds,0) and V r €
[1,n], L, # (Send, DeleteOrder,t, «,ds,d). Because of the above, we know
3k | Ly = (Delete,t',ref) with ref € A — this contradicts C2.

— Assume the data was received by the DC from a third party T P after its ini-
tial versions were deleted locally at time ', i.e. 3" | (Receive, Disclosure,t”,
TP,ds,0,m,ref) A t"" >t This contradicts C'2’s guarantee the deletion or-
der to TP was sent out before t’, since the deletion order makes the data
unavailable to TP at time ¢”.

Log Analysis for Data Protection Accountability 175

On the other hand, there is no guarantee that data for a given 6 is deleted at
the end of a trace if no deletion request exists for it. Indeed, successive disclosures
with ever-growing global deletion delays 7.dd do not contradict C1.

5 Accountability Process

The formal framework presented in this paper contributes to the three types of ac-
countability introduced in §1: it can be used to provide precise definitions of privacy
policies and to build log analysers to check the compliance of a log with respect to
the privacy policies of the data collected by the DC. Actual log files can be parsed
and converted by log abstraction to traces that can be mechanically checked as
in [4]. In addition, it suggests a number of manual checks and procedural measures
required to complement the log analysis and make it fully effective. In practice, as
we argued in [5], a true accountability process should impose that these manual
checks are carried out by independent auditors.

The additional manual checks suggested by the formal framework fall into two
categories:

— General verifications on the architecture of the system: the goal of these
verifications is to convince the auditor that the log reflects the actual execu-
tion of the system. In general it will not be possible to check this property
formally because it will be out of the question to build a formal model of
an entire system just for the purpose of accountability. However, the for-
mal framework provides clear guidelines about the guarantees that the DC
should provide (in informal or semi-formal ways, for example in the form
of diagrams and design documentation). Basically, each type of log event
leads to specific assumptions which have to be met by the logging tool and
demonstrated by the DC: for example any operation involving the receipt,
copy or transfer of personal data should be appropriately recorded in the
log, each use of personal data should be associated with a precise purpose
recorded in the log, etc.

— Specific verifications depending on the outcome of the log analysis: the log
contains references to pieces of information that may have to be checked by
the auditor. For example, the reason argument of Read events can take the
form of a piece of text explaining in more detail the justification for the use
of the dataS. Similarly, the parameters associated with break-glass events
can be checked to confirm that they provide sufficient justifications for the
breach of a privacy property’.

It should be clear that the objective of an audit in the context of accountability
is not to provide a one hundred per cent guarantee that the system is compliant.
The general philosophy is that a good accountability process should make it more
difficult for DC to breach the rules and also to cover up their misbehaviour. In

% These descriptions can be recorded in a library and provided through specific func-
tions; they are useful to complement and define more precisely the purpose argument.
" Each break-glass event is associated with a set et of affected entities and data types.

176 D. Butin and D. Le Métayer

practice, auditors (or controllers of Data Protection Authorities®) do not attempt
to check all log entries for all collected data: they rather choose to explore logs
selectively to check specific types of data’. In our model, the correctness property
of §4 defines a condition to be met by such a log analyser. Despite the fact that
a full application of formal verifications is out of reach in this context, we believe
that the formal approach followed here can bring significant benefits in terms of
rigour in the definition of the objectives and the procedures to reach them.

6 Related Work

Accountability in computer science is generally associated with very specific
properties. An example of a formal property attached to accountability is non-
repudiation: Bella and Paulson [2] see accountability as a proof that a participant
took part in a security protocol and performed certain actions. The proof of non-
repudiation relies on the presence of specific messages in network history.

Several frameworks for a posteriori compliance control have already been de-
veloped. Etalle and Winsborough [11] present a logical framework for using logs
to verify that actions taken by the system are authorized. Cederquist et al. [7]
introduce a framework to control compliance of document policies where users
may be audited and asked to justify actions. Jagadeesan et al. [15] define account-
ability as a set of mechanisms based on “after-the-fact verification” by auditors
for distributed systems. As in [19], blame assignment based on evidence plays a
central role in this framework. Integrity (the consistency of data) and authentica-
tion (the proof of an actor’s identity) are integral to the communication model.
Together with non-repudiation [2], these technical concepts are often seen as
pillars of the concept of accountability in computer science literature.

On the practical side, Haeberlen [14] outlines the challenges and building
blocks for accountable cloud computing. Accountability is seen as desirable both
for customers of cloud services and service providers. The building blocks of
accountability are defined as completeness, accuracy and verifiability. Technical
solutions to enable these characteristics on cloud computing platforms have been
devised by the authors.

Work presented in [17] proposes criteria for acceptable log architecture de-
pending on system features and potential claims between the parties.

Finally, current legal perspectives on accountability are surveyed in [13].

7 Conclusions

Considering the ever-growing collection and flow of personal data in our digital
societies, a priori controls will be less and less effective for many reasons, and ac-
countability will become more and more necessary to counterbalance this loss of ex
ante control by DS. Another major benefit of accountability is that it can act as an
incentive for DC to take privacy commitments more seriously and put appropriate

8 Such as the CNIL in France.
9 Typically, sensitive data or data for which they have suspicions of breach.

Log Analysis for Data Protection Accountability 177

measures in place, especially if audits are conducted in a truly independent way
and possibly followed by sanctions in case of breach. As pointed out by De Hert,
“the qualitative dimension of accountability schemes may not be underrated” [10].

However, the term “accountability” has been used with different meanings by
different communities, very often in a broad sense by lawyers and in very specific
technical contexts by computer scientists. This paper aims to reconcile both
worlds, by defining precisely the aspects which can be formalised and showing
how manual checks can complement automatic verifications.

The language used here to express privacy policies and the sets of events are
typical of the most relevant issues in this area, but they should obviously be
complemented to be used as a basis for an effective accountability framework.
In order to implement such a framework, several issues should be addressed:

— The security (integrity and confidentiality) of the logs should be ensured.
This aspect, which has not been discussed here, has been addressed by pre-
vious work [3, 20, 21].

— A suitable interface should be provided to the auditors for a selective search
of the logs based on an analyser meeting the requirements defined in §4.
This interface must provide convenient ways for the auditor to reach the
documents that need complementary verifications.

— More complex data manipulation operations should be considered, including
for example the merging of different pieces of personal data or anonymization
techniques. The privacy policy language should be extended to allow the DS
to specify the rules associated with the result of such operations.

Last but not least, it is also possible to reduce even further the amount of data
stored in the logs by ensuring that not only the values of personal information
are not recorded in the logs, but also the identity of the DS and the type of
data (the (ds,#) pair in the formal model). Indeed, the only role of this pair in
the model is to establish a link with the privacy policy and it could as well be
anonymized through a hash function. The fact that our formal model can be
used to implement an effective accountability framework without recording any
extra personal data makes it possible to counter the most common objection
against accountability in the context of personal data protection. This argument
is especially critical for Data Protection Agencies, for which such a “personal-
data-free” accountability framework could significantly ease day-to-day checks.
It can also be a key argument for DC reluctant to create new logs which may
represent additional security risks. For these reasons, we hope this work can pave
the way for future wider adoption of effective accountability of practice.

Acknowledgement. This work was partially funded by the European project
PARIS / FP7-SEC-2012-1 and the Inria Project Lab CAPPRIS (Collaborative
Action on the Protection of Privacy Rights in the Information Society).

References

1. Article 29 Data Protection Working Party: Opinion 3/2010 on the principle of
accountability (2010)

178

2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Butin and D. Le Métayer

Bella, G., Paulson, L.C.: Accountability Protocols: Formalized and Verified. ACM
Trans. Inf. Syst. Secur. 9(2), 138-161 (2006)

Bellare, M., Yee, B.S.: Forward Integrity for Secure Audit Logs. Tech. rep., Uni-
versity of California at San Diego (1997)

Butin, D., Chicote, M., Le Métayer, D.: Log Design for Accountability. In: 2013
IEEE Security & Privacy Workshop on Data Usage Management, pp. 1-7. IEEE
Computer Society (2013)

. Butin, D., Chicote, M., Le Métayer, D.: Strong Accountability: Beyond Vague

Promises. In: Gutwirth, S., Leenes, R., De Hert, P. (eds.) Reloading Data Protec-
tion, pp. 343-369. Springer (2014)

. Butin, D., Le Métayer, D.: Log Analysis for Data Protection Accountability (Ex-

tended Version). Tech. rep., Inria (2013)

. Cederquist, J., Corin, R., Dekker, M., Etalle, S., den Hartog, J., Lenzini, G.: Audit-

based compliance control. Int. J. Inf. Secur. 6(2), 133-151 (2007)

. Center for Information Policy Leadership: Data Protection Accountability: The

Essential Elements (2009)

. Bennett, C.J.: Implementing Privacy Codes of Practice. Canadian Standards As-

sociation (1995)

De Hert, P.: Accountability and System Responsibility: New Concepts in Data Pro-
tection Law and Human Rights Law. In: Managing Privacy through Accountability
(2012)

Etalle, S., Winsborough, W.H.: A Posteriori Compliance Control. In: Proceedings
of the 12th ACM Symposium on Access Control Models and Technologies, SAC-
MAT, pp. 11-20. ACM (2007)

European Commission: Proposal for a Regulation of the European Parliament and
of the Council on the Protection of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of such Data (2012)

Guagnin, D., Hempel, L., Ilten, C.: Managing Privacy Through Accountability.
Palgrave Macmillan (2012)

Haeberlen, A.: A Case for the Accountable Cloud. Operating Systems Review 44(2),
52-57 (2010)

Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a Theory of Account-
ability and Audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 152-167. Springer, Heidelberg (2009)

Joint NEMA /COCIR/JIRA Security and Privacy Committee (SPC): Break-Glass:
An Approach to Granting Emergency Access to Healthcare Systems (2004)

Le Métayer, D., Mazza, E., Potet, M.L.: Designing Log Architectures for Legal
Evidence. In: Proceedings of the 8th International Conference on Software Engi-
neering and Formal Methods, SEFM 2010, pp. 156-165. IEEE Computer Society
(2010)

Organisation for Economic Co-operation and Development: OECD Guidelines on
the Protection of Privacy and Transborder Flows of Personal Data (1980)
Schneider, F.B.: Accountability for Perfection. IEEE Security & Privacy 7(2), 3-4
(2009)

Schneier, B., Kelsey, J.: Secure Audit Logs to Support Computer Forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159-176 (1999)

Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an Encrypted and
Searchable Audit Log. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004 (2004)

Automatic Compositional Synthesis
of Distributed Systems

Werner Damm' and Bernd Finkbeiner?

! Carl von Ossietzky Universitit Oldenburg
2 Universitit des Saarlandes

Abstract. Given the recent advances in synthesizing finite-state controllers from
temporal logic specifications, the natural next goal is to synthesize more com-
plex systems that consist of multiple distributed processes. The synthesis of dis-
tributed systems is, however, a hard and, in many cases, undecidable problem.
In this paper, we investigate the synthesis problem for specifications that admit
dominant strategies, i.e., strategies that perform at least as well as the best al-
ternative strategy, although they do not necessarily win the game. We show that
for such specifications, distributed systems can be synthesized compositionally,
considering one process at a time. The compositional approach has dramatically
better complexity and is uniformly applicable to all system architectures.

1 Introduction

Synthesis, the automatic translation of specifications into implementations, holds the
promise to revolutionize the development of complex systems. While the problem
has been studied for a long time (the original formulation is attributed to Alonzo
Church [4]), recent years seem to have achieved the phase transition to practical tools
and realistic applications, such as the automatic synthesis of the AMBA bus proto-
col [1]. Tools like Acacia+ [3], Ratsy [2], and Unbeast [6] automatically translate a
specification given in linear-time temporal logic into finite-state machines that guaran-
tee that the specification holds for all possible inputs from the system’s environment.
Given the success of obtaining such finite-state controllers, the natural next step would
be to synthesize more complex systems, consisting of multiple distributed processes.
However, none of the currently available tools is capable of synthesizing systems with
as many as two processes. This is unfortunate, because a separation into multiple pro-
cesses is not only necessary to obtain well-structured and humanly understandable im-
plementations, but is in fact often a non-negotiable design constraint: for example, the
synchronization between different ECUs in a car involves explicit and time-consuming
bus communication; approximating the network of ECUs with a single process there-
fore usually produces unimplementable solutions.

The lack of tools for the synthesis of distributed systems is no accident. For most
system architectures, the distributed synthesis problem is undecidable [14], and for sys-
tem architectures where the problem is decidable, such as pipelines, the complexity has
been shown to be non-elementary in the number of processes. Experience with similar
problems with non-elementary complexity, such as WS1S satisfiability (implemented

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 179-193, 2014.
© Springer International Publishing Switzerland 2014

180 W. Damm and B. Finkbeiner

in Mona [10]), suggests, however, that these results do not necessarily mean that the
synthesis of distributed systems is generally impossible. The specifications in the typ-
ical hardness arguments use the incomplete informedness of the processes to force the
processes into specific complex behaviors. For example, in the undecidability proof
due to Pnueli and Rosner, the specification forces the processes to simulate a Turing
machine. The question arises if such specifications are of practical interest in the devel-
opment of finite-state controllers. Can we obtain better complexity results if we restrict
the specifications to a “reasonable” subset?

The key idea to reduce the complexity is to work compositionally. Compositionality
is a classic concept in programming languages and verification where one ensures that
the results obtained for a process also hold for the larger system [15]; in the case of
synthesis, we want to ensure that the implementations found for individual processes
can be used to realize the larger multi-process system. Unfortunately, synthesis does not
lend itself easily to a compositional approach. In game-theoretic terms, synthesis looks
for winning strategies, i.e., strategies that ensure the satisfaction of the specification
under all circumstances. While the notion of winning is, in principle, compositional (if
each process guarantees a property no matter what the other processes do, then clearly
the system will guarantee the property as well), winning is too strong as a process re-
quirement, because properties can rarely be guaranteed by one process alone. Typically,
there exist input sequences that would prevent the process from satisfying the property,
and the processes in the environment cooperate in the sense that they do not produce
those sequences.

In this paper, we develop a synthesis technique for distributed systems that is based
on a weaker notion than winning: A strategy is dominant if it performs, in any situa-
tion, at least as well as the best alternative strategy. Unlike winning strategies, dominant
strategies are allowed to lose the game — as long as no other strategy would have won
the game in the same situation. In a distributed system, a dominant strategy requires
only a best effort — ensure the specification if you can — rather than a comprehensive
guarantee that the specification is satisfied. It turns out that, just like winning, dom-
inance is also a compositional notion. However, it is much more realistic to expect a
process to have a dominant strategy than it is to have a winning strategy. In cases where
the environment of the process behaves unreasonably, i.e., where it is made impossible
for the process to satisfy its specification, we no longer require the process to satisfy
the specification.

We call a specification that has a dominant strategy admissible. Intuitively, a specifi-
cation is admissible as long as we do not require a process to “‘guess” variables it cannot
see or to “predict” future inputs. Predicting future inputs is, of course, impossible; at
the same time, it is easy to choose, in retrospect for a specific sequence of inputs, an
alternative strategy that would have guessed correctly. Consider, for example, the LTL
specification ¢ = (O a) < b, where a is an input variable and b is an output variable.
By itself, ¢ is not admissible. Every specification can, however, be strengthened into an
admissible specification. For example, ¢ A (I b) is admissible.

As we show in the paper, there is a fundamental connection between admissibil-
ity and compositionality: a process has a dominant strategy if and only if there exists
a unique weakest environment assumption that would guarantee that the process can

Automatic Compositional Synthesis of Distributed Systems 181

ensure the satisfaction of the specification. We first exploit this connection in an incre-
mental synthesis algorithm: considering one process at a time, we compute the domi-
nant strategy and the unique environment assumption. For the remaining processes, we
replace the specification with the new assumption.

We then show that, for safety properties, true compositionality can be obtained by
synthesizing each process in isolation. Even without considering the environment as-
sumptions of the partner processes, the composition of the dominant strategies for
two subarchitectures is guaranteed to result in a dominant strategy for the composite
architecture.

Unfortunately, this property does not hold for liveness properties; the problem is that
each process may have a dominant strategy that waits for the other process to make
the first step. If such strategies are combined, they wait forever. We address this prob-
lem with a new notion of dominance, which we call bounded dominance. Intuitively,
bounded dominance compares the number of steps that a strategy takes to satisfy a live-
ness objective with a (constant) bound. The dominant strategy must meet the bound
whenever some alternative strategy would meet the bound. The composition of two
strategies that are dominant for some bound is again dominant for the same bound.

Finally, we describe how to combine incremental and compositional synthesis, and
how to localize the analysis based on an automatic decomposition of the specification
into subsets of relevant properties for each process.

2 Synthesis of Distributed Systems

We are interested in synthesizing a distributed system for a given system architecture
A and an LTL formula ¢. A solution to the synthesis problem is a set of finite-state
strategies {s, | p € P}, one for each process in the architecture, such that the joint
behavior satisfies .

Architectures. An architecture A is a tuple (P, V, inp, out), where P is a set of system
processes, V is a set of (Boolean) variables, and inp, out : P — 2V are two functions that
map each process to a set of input and output variables, respectively. For each process p,
the inputs and outputs are disjoint, inp(p) N out(p) = 0, and for two different processes
p # g, the output variables are disjoint: out(p) N out(q) = 0. We denote the set of
visible variables of process p with V(p) = inp(p) U out(p). If P is singleton, we call the
architecture single-process; if P contains at least two processes, we call the architecture
distributed.

For two architectures Ay = (Py,V,inp,,out;) and Ay = (P, V,inp,,out;) with
the same variables, but disjoint sets of processes, Py N P, = 0, we define the
parallel composition as the architecture A(||[A, = (P; U Pp,V,p +— ifp €
Py then inp,(p) else inp,(p), p = if p € Py then out;(p) else outr(p)).

Implementations. An implementation of an architecture consists of strategies S = {s, |
p € P} for the system processes. A system process p € P is implemented by a strategy,
i.e., afunction s, : (2"(P))* — 2°4(P) that maps histories of inputs to outputs. A strategy
is finite-state if it can be represented by a finite-state transducer (Q, go, 6 : Qx 2P —

182 W. Damm and B. Finkbeiner

0,y : Q — 2°4®) with a finite set of states Q, an initial state g, a transition function
¢ and an output function 7.

The parallel composition s,l|s, of the strategies of two processes p,q € P is
a function sy, : (2/)* — 29 that maps histories of the remaining inputs / =
(inp(p) U inp(q)) \ (out(p) U out(q)) to the union O = out(p) U out(q) of the outputs:
Spllg(0) = sp(a,(0) U sy(ay(0)), where a,(€) = € and a,(vov . .. vx) = (Vg U s4(€)) N
inp(p))((v1 U s4(ay(v9))) Ninp(p)) ... (kU sy(ag(vivz . .. v-1))) N inp(p)), and, anal-
ogously, ay(e) = € and a,(vov; ... vr) = (Vo U s,(€)) N inp(q))(v1 U sp(a,(vp))) N
inp(q)) ... (Y spap(viva . .. ur-1))) N inp(q)).

A computation is an infinite sequence of variable valuations. For a sequence y =
viv; ... € (2 P of valuations of the variables outside the control of a process p,
the computation resulting from s is denoted by comp(s,y) = (s(e) Uvy) (s(v1 Ninp(p))U
v2) (s(v1 Ninp(p)va N inp(p)) U v3). . ..

Specification. We use w-regular languages, which we also call properties, to specify
system behaviors. For a computation o and an w-regular language ¢, we also write
o E ¢ if o € ¢. To define w-regular languages, we use automata or LTL formulas.

A strategy s : (21)* — 29 is winning for a property ¢, denoted by s, [¢, iff, for
every sequence y = vjv; ... € (2 9)¢ of valuations of the variables outside the con-
trol of p, the computation comp(s,,y) resulting from s, satisfies ¢. We generalize the
notion of winning from strategies to implementations (and, analogously, the notions of
dominance and bounded dominance later in the paper), by defining that an implemen-
tation S is winning for ¢ iff the parallel composition of the strategies in S is winning
(for their combined sets of inputs and outputs).

Synthesis. A property ¢ is realizable in an architecture A iff there exists an implemen-
tation that is winning for ¢. We denote realizability by A 0= .

Theorem 1. [12] The question whether a property given by an LTL formula is realiz-
able in an architecture with a single system process is 2EXPTIME-complete.

Theorem 2. [14] The question whether a property given by an LTL formula is re-
alizable in an architecture is undecidable for architectures with two or more system
processes.

3 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the following, we
only give a quick summary of the standard terminology, the reader is referred to [9] for
a full exposition.

A (full) tree is given as the set 7™ of all finite words over a given set of directions 7.
For given finite sets 2 and 7’, a 2-labeled T-tree is a pair (1, [) with a labeling function
[: T* — X that maps every node of 1™ to a letter of 2.

An alternating tree automaton A = (X, 7, 0, qo,0, @) runs on X-labeled 7-trees.
Q is a finite set of states, go € Q a designated initial state, § a transition function
6: 0 x2— B (QxT), where B¥(Q X T) denotes the positive Boolean combinations

Automatic Compositional Synthesis of Distributed Systems 183

of O X T, and « is an acceptance condition. Intuitively, disjunctions in the transition
function represent nondeterministic choice; conjunctions start an additional branch in
the run tree of the automaton, corresponding to an additional check that must be passed
by the input tree. A run tree on a given 2-labeled 7-tree (1, [) is a Q X 7"*-labeled tree
where the root is labeled with (g, I/(¢)) and where for a node n with a label (¢, x) and a
set of children child(n), the labels of these children have the following properties:

— for all m € child(n) : the label of m is (g, X Un), gm € Q, Uy € T such that (g, vyy)
is an atom of d(q, I(x)), and
— the set of atoms defined by the children of n satisfies (g, /(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity con-
dition is a function « from Q to a finite set of colors C c N. A path is accepted if the
highest color appearing infinitely often is even. The safety condition is the special case
of the parity condition where all states are colored with 0. The Biichi condition is the
special case of the parity condition where all states are colored with either 1 or 2, the
co-Biichi condition is the special case of the parity condition where all states are col-
ored with either O or 1. For Biichi and co-Biichi automata we usually state the coloring
function in terms of a set F of states. For the Biichi condition, F contains all states with
color 2 and is called the set of accepting states. For the co-Biichi condition, F' contains
all states with color 1 and is called the set of rejecting states. The Biichi condition is
satisfied if some accepting state occurs infinitely often, the co-Biichi condition is satis-
fied if all rejecting states only occur finitely often. A X-labeled 7-tree is accepted if it
has an accepting run tree. The set of trees accepted by an alternating automaton A is
called its language L(A). An automaton is empty iff its language is empty.

A nondeterministic automaton is an alternating automaton where the image of ¢ con-
sists only of such formulas that, when rewritten in disjunctive normal form, contain at
most one element of Q X {v} for every direction v in every disjunct. A universal au-
tomaton is an alternating automaton where the image of ¢ contains no disjunctions. A
deterministic automaton is an alternating automaton that is both universal and nonde-
terministic, i.e., the image of ¢ has no disjunctions and contains at most one element of
0 x {v} for every direction v.

A word automaton is the special case of a tree automaton where the set 1" of direc-
tions is singleton. For word automata, we omit the direction in the transition function.

4 Dominant Strategies

In game theory, strategic dominance refers to a situation where one strategy is better
than any other strategy, no matter how the opponent plays. In the setting of reactive
synthesis, remorsefree dominance [5] was introduced in order to accommodate situa-
tions that simply make it impossible to achieve the specified objective. For example, a
module might have an input signal that resets its computation; if the reset signal is set
too frequently it becomes impossible to complete the computation. In such a situation,
we would expect the module to try to finish the computation as quickly as possible,
to have the best chance to complete the computation before the next reset, but would

184 W. Damm and B. Finkbeiner

forgive the module for not completing the computation if the resets have made it im-
possible to do so.

Dominance can be seen as a weaker version of winning. A strategy ¢ : (2/)* — 29
is dominated by a strategy s : (2/)* — 29, denoted by ¢ < s, iff, for every sequence
y € 2V 9)¢ for which the computation comp(t, y) resulting from ¢ satisfies ¢, the com-
putation comp(s, y) resulting from s also satisfies . A strategy s is dominant iff, for all
strategies 7, t < s. Analogously to the definition of winning implementations, we say
that an implementation S is dominant iff the parallel composition of the strategies in S
is dominant.

Finally, we say that a property ¢ is admissible in an architecture A, denoted by
A B> o, iff there is a dominant implementation.

Informally, a specification is admissible if the question whether it can be satisfied
does not depend on variables that are not visible to the process or on future inputs. For
example, the specification ¢ = (Oa) < b, where a is an input variable and b is an
output variable is not admissible, because in order to know whether it is best to set b in
the first step, one needs to know the value of a in the second step. No matter whether
the strategy sets b or not, there is an input sequence that causes remorse, because ¢ is
violated for the chosen strategy while it would have been satisfied for the same sequence
of inputs if the other strategy had been chosen.

Consider an architecture with a single process p. For a property given as an LTL
formula, one can construct a nondeterministic parity tree automaton with an exponen-
tial number of colors and a doubly-exponential number of states in the length of the
formula, such that the trees accepted by the automaton define exactly the dominant
strategies. This can be done, following the ideas of [5], by first constructing a universal
co-Biichi word automaton A; that accepts a sequence in (2")® iff it satisfies the specifi-
cation ¢. The size of A, is exponential in the length of ¢. This automaton will be used to
recognize situations in which the strategy satisfies the specification. Then, we construct
a universal co-Biichi word automaton A, that accepts a sequence in (2") iff it
does not satisfy the specification ¢ for any choice of the outputs in out(p). The size of
A, is also exponential in the length of ¢. This automaton will be used to recognize sit-
uations in which the strategy does not need to satisfy the specification because no other
strategy would either. Automata A; and A, are combined in a product construction
to obtain the universal co-Biichi word automaton Az, which accepts all sequences in
(2V)“ that either satisfy ¢ or have the property that ¢ would be violated for all possible
choices of the outputs out(p). The size of Aj is still exponential in the length of ¢. We
then build a universal co-Biichi tree automaton B of the same size as Aj3 that accepts
a 2°“(P)_|abeled 2P")-tree iff the sequence along every branch and for every choice of
the values of the variables in V \ V(p) is accepted by Asz. Converting B into an equiv-
alent nondeterministic tree automaton B, results in the desired nondeterministic parity
tree automaton with an exponential number of colors and a doubly-exponential number
of states in the length of the formula.

The synthesis of a dominant strategy thus reduces to checking tree automata empti-
ness and extracting a representation of some accepted tree as a finite-state machine.
This can be done in exponential time in the number of colors and in polynomial time
in the number of states [11]. For a matching lower bound, note that standard LTL

Automatic Compositional Synthesis of Distributed Systems 185

synthesis is already 2EXPTIME-hard [12]. Since every winning strategy is also domi-
nant, we can reduce the standard synthesis problem to the synthesis of dominant strate-
gies, by first checking the existing of a dominant strategy; if the answer is no, then no
winning strategy exists. If the answer is yes, we synthesize a dominant strategy and ver-
ify (which can be done in polynomial time) whether it is winning. If it is winning, we
have obtained a winning strategy, if not, then no winning strategy exists, because, oth-
erwise, the synthesized strategy would not dominate the winning strategy, and, hence,
would not be dominant.

Theorem 3. The problem of deciding whether a property given as an LTL formula is
admissible in a single-process architecture is 2EXPTIME-complete. A dominant strat-
egy can be computed in doubly-exponential time.

If the property is given as a deterministic automaton instead of as an LTL formula,
admissibility checking only takes exponential time, because the automata A; and A,
have the same size as the property automaton.

S Synthesis of Environment Assumptions

Standard compositional approaches for synthesis (cf. [7]) require the user to explicitly
state the assumptions placed by the individual components on their environment. These
assumptions need to be sufficiently strong so that each process can then be synthesized
in isolation, relying only on the assumptions instead of the actual (and yet to be synthe-
sized) implementation of the environment.

For admissible specifications, we can automatically construct the environment as-
sumption. Since the dominant strategy defines the greatest set of environment behaviors
for which the specification can be satisfied, the environment assumption is unique, and
can in fact be represented by an automaton.

Theorem 4. For an architecture A and a property ¢ such that A == ¢, there ex-
ists a unique weakest environment assumption, i.e., a unique largest set of sequences
w(A, @) € 2V %)% where O = Upep out(p), such that A 0= w(A, ¢) — ¢. If @ is given
as a deterministic parity word automaton, then there is a deterministic parity word
automaton for w(A, ¢) with an exponential number of states. If ¢ is given as an LTL
formula, the number of states is doubly-exponential in the length of the formula.

Proof. We construct the deterministic parity automaton A,) for the weakest envi-
ronment assumption as follows. Applying Theorem 3, we compute a dominant strat-
egy s, represented as a transducer A; = (O, ¢50,05 : O X 2P 5 Q) ys 1 Q —
204(P)y - Assume ¢ is given as a deterministic parity automaton A, = (Qg,y0,0p :
0 x2" = Q,c). We combine A, and A, to obtain the deterministic parity automaton
Ay = (Q', g5, 9", ¢’) which recognizes all sequences that satisfy ¢ whenever the outputs
of the process are chosen according to Aj.

- 0" =(0sX Q¢) U{L},
- q6 = (q5,07 q;’())v

186 W. Damm and B. Finkbeiner

For architectures A, B and properties ¢, y: For architecture A and property ¢:
AB= @ A= @
B = w(A, p) w(A,)
AlBo= ¢ A=
(a) Rule INc-SyNT (b) Rule A2R

Fig. 1. Rules Inc-Sy~T and A2R, implementing the incremental synthesis style

- 6'((g5. q¢). 1) = (g}, q,) Where g € 65(qs, i N inp(p)), qg, € 64(qe, D} if i N out(q) =
Y(qy), and ¢"((gs, q0),) = L, 6(L,7) = L, otherwise.

- C'(CIS,%) = C(Qtp)v C,(J-) =0.

The language of A, is the unique weakest environment assumption: suppose that there
exists an environment assumption ¢" with £(A,) ¢ ¢, then there is a sequence y in
W' N\ L(Ay) for which there exists a strategy ¢ such that the computation resulting from
v and ¢ satisfies ¢, while the computation resulting from y and s does not satisfy ¢. This
contradicts that s is dominant. O

Theorem 4 can be used to synthesize a distributed system incrementally, i.e., by
constructing one process at a time and propagating the environment assumptions. This
synthesis style corresponds to the repeated application of Rule Inc-SynT, shown in Fig-
ure la: in order to prove the admissibility of a specification ¢ in an architecture A||B, we
show that ¢ is admissible in A, and the resulting environment assumption is admissible
in B. Once the full system has been synthesized, we verify that the remaining envi-
ronment assumption is true, which proves that the specification holds for all possible
inputs. This last step corresponds to an application of Rule A2R, shown in Figure 1b.

Theorem 5. Rules INc-SyNT and A2R are sound.

6 Compositional Synthesis for Safety Properties

With the incremental synthesis approach of Rules Inc-SynT and A2R, we reduce the
synthesis problem for the distributed system to a sequence of admissibility checks over
individual processes. The disadvantage of incremental synthesis is its inherent sequen-
tiality: we cannot consider processes in parallel; additionally, each application of Rule
INnc-SynNT increases the size of the specification.

In this section, we introduce a compositional approach, where the processes are con-
sidered independently of each other. Figure 2a shows the compositional synthesis rule
SareTY-CoMP-SYNT. In order to synthesize an implementation for specification ¢ in the
distributed architecture A;||A,, we check whether ¢ is admissible on both A; and A,. If
¢ is admissible on both A; and A,, it is also admissible on A;||A,. For the final check
whether the specification is satisfied for all environment behaviors, we model check the
resulting dominant strategy. This last step corresponds to an application of Rule MC,
shown in Figure 2b.

Automatic Compositional Synthesis of Distributed Systems 187

For architectures A, B and safety property ¢: For architecture A, property ¢, and
a strategy s:
A= @
Bm= o skEe
AlBE= ¢ A= ¢
(a) Rule SAFETY-CoMP-SYNT (b) Rule MC

Fig. 2. Rules Sarery-Comp-SyNT and MC, implementing the compositional synthesis style

Note that Rule SAreTy-Comp-SYNT is restricted to safety properties. The rule is in
fact not sound for liveness properties. Consider ¢ = (O a) « (OO) A (O b) ©
(@<), where a is the output of Ay, b is the output of A,, and c is the output of
the external environment of A||A;. A dominant strategy s; for A; is to wait for the
first b and then, in the next step, output a. Suppose there are, on some input sequence,
infinitely many ¢ and some b, or only finitely many c, then s; satisfies ¢. On the other
hand, if there are infinitely many c but no b, then ¢ is violated no matter what strategy A;
chooses. Hence, s; is dominant. Likewise, a dominant strategy for A, is to wait for the
first a and then, in the next step, produce a b. However, A||A; does not have a dominant
strategy for ¢, because we require A|||A; to predict whether or not the environment will
set ¢ to true infinitely often. Any strategy will fail this objective on at least some input
sequence; however, given such an input sequence there is always a strategy that makes
the correct prediction for that particular sequence.

In the following, we prove that Rule SareTy-Comp-SynT is sound for safety prop-
erties. We will adapt Rule Sarery-Comp-SYNT to arbitrary properties in Section 7. The
reason for the soundness of Rule SAFETY-Comp-Synr is that the parallel composition of
two dominant strategies is again dominant.

Lemma 1. For a safety property ¢ it holds that if s, is dominant for A\ and s, is domi-
nant for A, then si||s, is dominant for A1||A;.

Proof. Let O1,0;, and Oy, be the output variables of the processes in Aj, A;, and
A1y, respectively, and let V be the set of variables in all three architectures. Suppose,
by way of contradiction, that there exists a sequence y C (2°?2)¢ of valuations of
variables outside the control of the processes in A;||A, such that the computation o =
comp(si||sa, y) resulting from s1||s, does not satisfy ¢, but there exists a strategy ¢ such
that the resulting computation o = comp(t,y) satisfies ¢. We pick the smallest prefix
§-nof o, where ¢ € (2V)*,n € 2V such that every infinite extension of ¢ -7 violates ¢ but
there is an infinite extension o’ of ¢ that agrees with o on the variables V \ Oy, outside
the control of the processes in Aj||A; and that satisfies ¢. Such a prefix exists because
@ is a safety property. The prefix cannot be the empty sequence, because otherwise
all sequences that agree with o on V \ Oy, including o’, would violate ¢. The last
position 1 of the prefix contains decisions of both s; and s,. We make the following
case distinction:

— There is an infinite extension 0" of -1 for some 7" with ’ N(V\0) = nN(V\Oy)
such that o [¢, i.e., the violation of ¢ is the fault of strategy s;. In this case, s is

188 W. Damm and B. Finkbeiner

117

not dominant, because the sequence that results from restricting o’ to the variables
V'\ O outside the control of A causes s; to violate ¢, while an alternative strategy,
producing the outputs of 0", would satisfy ¢.

— There is no infinite extension o’ of §-i’ for some 1’ with 7’ N(V\0;) = nN(V\Oy)
such that 0"’ [¢, i.e., the violation of ¢ is (at least also) the fault of strategy s,.
In this case, s, is not dominant, because the sequence that results from restricting
o to the variables V \ O, outside the control of A, causes causes s to violate ¢,
while an alternative strategy, producing the outputs of o, would satisfy .

Either case contradicts the assumption that s; and s, are dominant. O

In light of the observation that Rule SaAFeTYy-ComP-SYNT cannot be generalized to live-
ness properties, it is not surprising that Lemma 1 does not hold for liveness properties
either. Consider the specification (& a) A (O b), where a is the output of Ay and b is
the output of A;. A dominant strategy s; for A is to wait for the first » and then, in the
next step, output a. The strategy guarantees the specification on all paths that have a b
somewhere; no strategy for A; satisfies the specification on paths without a b. Likewise,
a dominant strategy for A, is to wait for the first @ and then, in the next step, produce
a b. The composition sy||s2, will, however, never output an a or b and therefore violate
the specification, despite the fact that even winning strategies exist, such as the strategy
that immediately outputs a and b.

Lemma 1 implies the soundness of Rule SAFETY-Comp-SynT. The soundness of Rule
MC is trivial, as the strategy s is guaranteed to satisfy the specification ¢.

Theorem 6. Rules SAreTY-Comp-SYNT and MC are sound.

7 Compositional Synthesis for Liveness Properties

We saw in the preceding section that the soundness of Rule COMP-SYNT breaks for
liveness properties, because the composition of two dominant strategies is not neces-
sarily also dominant. In this section, we propose an alternative notion of admissibility,
which we call bounded admissibility, which is preserved under composition.

We motivate bounded dominance with the example from Section 6. Consider again
the property ¢ = (& a) A (O b) where a is the output of A; and b is the output of A,. We
introduced the dominant strategy s; for A;, which waits for the first b before outputting
a. Strategy s is problematic, because it is dominant for A;, but does not result in a
dominant strategy s;||s, for Aj||A,, when combined with the corresponding strategy s,
for A, which waits for the first a before outputting b.

The problem is that both s; and s, postpone their respective output indefinitely, be-
cause they both wait for the other strategy to start. Bounded dominance refines the val-
uation of the strategy by counting the number of steps it takes before a and b become
true. This number is compared to a fixed bound n, say n = 5. Strategy s; is not dom-
inant with respect to bound 7, because it may unnecessarily exceed the bound. There
is an n-dominant strategy s{, which sets a in the very first step and therefore meets the
bound whenever possible, i.e., as long as b arrives within 5 steps. The corresponding
strategy s, for A, which outputs b in the first step, is n-dominant for A,. Replacing s;

Automatic Compositional Synthesis of Distributed Systems 189

©
(@

Fig. 3. Universal co-Biichi automaton for the LTL formula ¢ =] (& a) A (O b)). The states
depicted with double circles (2 and 3) are the rejecting states in F.

/

and s, with s

for Ay||A;.

We prepare the definition of bounded dominance by defining the measure of a com-
putation. The measure captures how quickly a strategy makes progress with respect to
a liveness property. We define the measure with respect to a representation of the spec-
ification as a universal co-Biichi automaton. Such an automaton can be produced with
standard LTL-to-Biichi translation algorithms, by first constructing a nondeterministic
Biichi automaton for the negation of the specification and then dualizing the automaton
to obtain a universal co-Biichi automaton for the complement language [13,8]. If the
specification is a conjunction of properties, the size of the automaton is linear in the
number of conjuncts: we apply the translation to the individual conjuncts, resulting in
automata with an exponential number of states in the length of the conjunct, and then
compose the automata by branching (universally) from the initial state into the other-
wise disjoint subautomata for the conjuncts.

and s} solves the problem: The combined strategy sil|s> is n-dominant

Lemma 2. Let ¢ = o1 Ay A. .. A, be an LTL formula that consists of a conjunction of
properties. There is a universal co-Biichi automaton that accepts exactly the computa-
tions that satisfy ¢, such that the automaton consists of subautomata for the individual
conjuncts that only overlap in the initial state. The size of the automaton is exponential
in the length of the largest conjunct and linear in the number of conjuncts.

The automaton accepts a computation iff the number of visits to rejecting states is
finite on every path of the run tree. We define the measure of the computation o, denoted
by measure,(c) as the supremum of the number of visits to rejecting states over all paths
of the run tree of the automaton for ¢. If there is no run tree, we set the measure to co.

As an example, consider ¢ = [1(($ a) A (& b)). The universal co-Biichi automaton
for ¢ is shown in Figure 3. The computation {a, b}* has measure 0, because the run tree
only has a single path, labeled everywhere with state 1. The computation O{a}{a, b} has
measure 2: There are three paths, an infinite path labeled with state 1 everywhere, and
two finite paths, one labeled with state 1 followed by state 2, and one labeled with state
1, followed by two times state 3. The number of visits to rejecting states are thus 0, 1,
and 2, respectively, and the supremum is 2.

Let n be a fixed natural number. We say that a strategy ¢ : (2/)* — 29 is dominated
with bound n (or short: n-dominated) by a strategy s : (2)* — 29, denoted by ¢ <, s, iff,

190 W. Damm and B. Finkbeiner

For architectures A, B and For architecture A, property ¢ given as
arbitrary property ¢: an LTL formula over V \ {J ,cp out(p), and
property ¥ given as an LTL formula over V:
A,
B o=, ¢ A=, Y
AllB &=, ¢ A, 0Ny
(a) Rule GENERAL-COMP-SYNT (b) Rule Decomp

Fig. 4. Rules GENErRAL-Comp-SyYNT and Decomp

for every sequence y € (2"°?)® for which the measure of the computation comp(t,y)
resulting from ¢ is less than or equal to n, the measure of the computation comp(s,y)
resulting from s is also less than or equal to n. A strategy s is n-dominant iff, for all
strategies ¢, t 4, s. A property ¢ is n-admissible in an architecture A, denoted by A ¢=,
@, iff there is an n-dominant implementation.

If the universal automaton is a safety automaton, then dominance and n-dominance
are equivalent. Since the safety automaton does not have any rejecting states, the mea-
sure is either 0, if the property is satisfied, or oo, if the property is violated and there
is, therefore, no run tree. Hence, the definitions of dominance and bounded dominance
agree for any choice of the bound.

As an example property that has a dominant strategy but no n-dominant strategy
for any bound n, consider (& a) <> (& b), where a is the input and b the output. This
property can be satisfied for every possible input by waiting for an a before setting the b.
For example, setting b in the step after the first a is observed is a winning and therefore
dominant strategy. However, this strategy, as well as any other strategy that waits for an
a before setting b, is not n-dominant for any choice of n: consider the situation where a
occurs exactly every n steps; then the measure of the strategy would be n + 1, while an
alternative strategy that produces a b every n steps has only measure n.

Note that bounded admissibility does not imply admissibility; any specification of
the form (& a) A (=a) A (O —a) A ¢, where a is an output, is 1-admissible, because it
is impossible to achieve a measure < 1; obviously, there are formulas ¢ for which this
specification is not admissible.

Bounded dominance can be checked with a small variation of the construction from
Section 4: we simply modify the universal automaton A;, which verifies that strategy
s, achieves its goal, as well as the universal automaton A, which checks whether any
alternative strategy would achieve the goal, by counting the number of visits to rejecting
states up to 7.

Theorem 7. For a fixed bound n, the problem of deciding whether a property given
as an LTL formula is n-admissible in a single-process architecture is 2EXPTIME-
complete. An n-dominant strategy can be computed in doubly-exponential time.

Rule GeEnerAL-Comp-SyNT, shown in Figure 4a, generalizes the compositional syn-
thesis approach from Rule Sarery-Comp-SYNT to general properties. Because Rule

Automatic Compositional Synthesis of Distributed Systems 191

GENERAL-CompP-SYNT is based on bounded admissibility ¢=,, instead of standard ad-
missibility &=, Lemma 1 now holds for general properties:

Lemma 3. For an arbitrary property ¢ it holds that if s| is n-dominant for A and s, is
n-dominant for A,, then sy||sy is n-dominant for A,||A,.

The proof of Lemma 3 is analogous to the proof of Lemma 1. Lemma 3 implies the
soundness of Rule GENERAL-COMP-SYNT.

Theorem 8. Rule GENERAL-CoMP-SYNT is sound.

8 Property Decomposition

Specifications are usually given as a conjunction of properties. The goal of property
decomposition is to avoid analyzing all properties in the synthesis of every process, and
instead only focus on a small set of “relevant” properties for each process.

In general, it is not sound to leave out conjuncts when checking the admissibility
of the specification for some process, even if, overall, every conjunct is “covered” by
some process. The problem is that the missing conjuncts may invalidate admissibility.
Consider, for example, the properties ¢ = O (a < Ob) and ¢ = O(c & Ob), where
a is an input variable, and b and c are output variables. Individually, both ¢ and ¢ are
admissible, but their conjunction ¢ A i is not: in order to set the value of ¢ correctly, a
dominant strategy would need to predict the future input a.

Conjuncts that do not refer to output variables enjoy, however, the following
monotonicity property: if ¢ does not refer to the output variables, then for every
(n-)admissible property ¢ it holds that ¢ A i is also (n-)admissible.

Theorem 9. Let ¢ be an LTL formula over V \ \,ep out(p), and y an LTL formula
over V. Then it holds that if Y is (n-)admissible, then ¢ A\ is also (n-)admissible.

Proof. Suppose, by way of contradiction, that there is a strategy s : (2/)* — 2© that
is dominant for i, but not for ¢ A . Then there exists a strategy ¢ and a sequence y €
(29)@ of variable valuations that are not under the control of the process, such that the
computation resulting from ¢ satisfies ¢ A ¢ and the computation resulting from s does
not. Since ¢ only refers to uncontrollable variables, the truth value of ¢ is determined
by y; we therefore know that ¢ must also be satisfied by the computation resulting from
s. Hence, ¢ must be violated on the computation resulting from s, while it is satisfied
by the computation resulting from ¢. This contradicts the assumption that s is dominant
for .

For bounded admissibility assume, analogously, that there is a strategy s that is
n-dominant for i, but not for ¢ A . Then there exists a strategy ¢ and a sequence
y € 2" 9)¢ such that measureypy(comp(t,y)) < n < measure,ny(comp(s,y)). Since
the subautomata for the conjuncts only intersect in the initial state, every path of the run
tree is, starting with the second state, either completely in the subautomaton for ¢ or in
the subautomaton for . Since ¢ only refers to uncontrollable variables, the paths, and,

192 W. Damm and B. Finkbeiner

hence, the number of visits to rejecting states in the subautomaton of ¢ are the same
for comp(s,y) as for comp(t,y). Hence, there must be some path in the subautomaton
for v where comp(s, y) visits rejecting states more than n times, while comp(¢, y) visits
rejecting states less than or equal to n times. This contradicts the assumption that s is
n-dominant for . m|

Theorem 9 can be used to eliminate conjuncts that do not refer to output vari-
ables. This decompositional synthesis style corresponds to applications of Rule Decowmp,
shown in Figure 4b.

9 The Compositional Synthesis Algorithm

Putting the results from the preceding sections together, we obtain the following synthe-
sis algorithm. For an architecture A = A;||A|| ... composed of multiple single-process
architectures and a specification ¢, given as a conjunction ¢ = ¢; A g2 A ..., of LTL
formulas, we do the following:

1. Applying Rule GeneraL-Comp-SyNT, check for all subarchitectures A; whether
A; &=, y; if so, synthesize a dominant (or n-dominant, for liveness properties)
strategy.

— for this purpose, use Rule Decomp to identify a subset C C {1,2,...,m} of the
conjuncts such that A; &=, A jec @), and
— compose the n-dominant strategies according to Lemma 3.

2. Apply Rule MC to check whether the resulting strategy satisfies ¢. If yes, a correct

implementation has been found.

For specifications given as LTL formulas, the complexity of the compositional syn-
thesis algorithm is doubly-exponential in the length of the formula. Since the synthesis
of the strategies for the subarchitectures is independent of each other, the complexity
of finding the strategies is linear in the number of processes; the complexity of com-
posing the strategies and checking the resulting strategy is exponential in the number of
processes.

10 Conclusions

We have presented an approach for the synthesis of distributed systems from temporal
specifications. For admissible specifications, the complexity of our construction is dra-
matically lower than that of previously known algorithms. Since the synthesis method
is compositional, it can easily be parallelized. The constructed implementations are
modular and much smaller than those constructed by previous approaches that work on
a “flattened” state space. The construction is furthermore universally applicable to all
system architectures, including the large class of architectures for which the standard
synthesis problem is undecidable.

Automatic Compositional Synthesis of Distributed Systems 193

References

15.

. Bloem, R.P., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Automatic

hardware synthesis from specifications: A case study. In: Proc. DATE, pp. 1188-1193 (2007)

. Bloem, R.P., Gamauf, H.J., Hofferek, G., Konighofer, B., Konighofer, R.: Synthesizing ro-

bust systems with RATSY. In: Open Publishing Association (ed.) SYNT 2012, Electronic
Proceedings in Theoretical Computer Science, vol. 84, pp. 47-53 (2012)

. Bohy, A., Bruyere, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis.

In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652—657. Springer,
Heidelberg (2012)

. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math., Upsala, pp.

23-25 (1963)

. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler,

M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12-26. Springer, Heidelberg (2011)

. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)

TACAS 2011. LNCS, vol. 6605, pp. 272-275. Springer, Heidelberg (2011)

. Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: Peled, D.A., Tsay, Y.-

K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 263-277. Springer, Heidelberg (2005)

. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for

Technology Transfer 15(5-6), 519-539 (2013)

. Gridel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,

vol. 2500. Springer, Heidelberg (2002)

. Henriksen, J.G., Jensen, Jgrgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm,

A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89-110.
Springer, Heidelberg (1995)

. Jurdzifiski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.

(eds.) STACS 2000. LNCS, vol. 1770, pp. 290-301. Springer, Heidelberg (2000)

. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Proc. of ICTL

(1997)

. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of 46th IEEE

Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Oc-
tober 23-25, pp. 531-540 (2005)

. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. FOCS

1990, pp. 746757 (1990)
de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol. 1536.
Springer, Heidelberg (1998)

Automated Real Proving in PVS via MetiTarski

1, 2

William Denman®* and César Munoz

1 University of Cambridge, Computer Laboratory, UK
wd239Qcam. ac.uk
2 NASA, Langley Research Center, US
cesar.a.munoz@nasa.gov

Abstract. This paper reports the development of a proof strategy that
integrates the MetiTarski theorem prover as a trusted external decision
procedure into the PVS theorem prover. The strategy automatically dis-
charges PVS sequents containing real-valued formulas, including tran-
scendental and special functions, by translating the sequents into first
order formulas and submitting them to MetiTarski. The new strategy
is considerably faster and more powerful than other strategies for non-
linear arithmetic available to PVS.

1 Introduction

Formally reasoning about the behavior of safety-critical cyber-physical systems
is a difficult and well-known problem. To address the verification of these real-
world systems, state-of-the-art formal tools should be able to reason about more
than just polynomial functions. MetiTarski [1] is an automated theorem prover
for first order formulas containing inequalities between transcendental and spe-
cial functions such as sin, cos, exp, sqrt, etc. A modified resolution framework
guides the proof search, replacing instances of special functions by verified up-
per and lower polynomial bounds. During resolution, decision procedures for the
theory of real closed fields (RCF) are called to delete algebraic clauses that are
inconsistent with other derived facts. The current implementation of MetiTarski
takes advantage of the highly-efficient non-linear satisfiability methods within
the SMT solver Z3 for RCF decisions.

The Prototype Verification System (PVS) [8] is a formal verification environ-
ment that consists of a specification language, based on a classical higher-order
logic enriched with an expressive type system, and an interactive theorem prover
for this logic. The PVS specification language is strongly typed and supports pred-
icate subtyping. In particular, the numerical types are defined such that nat (natu-
ral numbers) is a subtype of int (integers), int is a subtype of rat (rationals), rat

* Research supported by SRI International, under NSF Grant CNS-0917375, and En-
gineering and Physical Sciences Research Council, under grants EP/1011005/1 and
EP/1010335/1. Author would like to thank the National Institute of Aerospace for a
short visit supported by the Assurance of Flight Critical System’s project of NASA’s
Aviation Safety Program at Langley Research Center under Research Cooperative
Agreement No. NNLO9AAQOA.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 194-199, 2014.
© Springer International Publishing Switzerland 2014

Automated Real Proving in PVS via MetiTarski 195

is a subtype of real (reals), and real is a subtype of the primitive type number.
The subtyping hierarchy of numerical types and the fact that rational arithmetic
is built-in makes PVS well suited for real number proving. In particular, ground
numerical expressions are automatically (and efficiently) simplified by the PVS
theorem prover. For example, the numerical expression 1/3+1/3+1/3 is simplified
to 1 and this simplification does notrequire a proof. PVS has been extensively used
at NASA in the formal verification of algorithms and operational concepts for the
next generation of air traffic management systems.1

The NASA PVS Library?, which is the de facto PVS standard library, in-
cludes several strategies for manipulating [3] and simplifying [5] real number
formulas. The most advanced proof strategies for real number proving available
in the NASA PVS Library are interval [2,7] and bernstein [6]. These strate-
gies are based on provably correct interval arithmetic and Bernstein polynomial
approximations, respectively. The strategy interval automatically discharges
sequent formulas involving transcendental and other special functions. The strat-
egy bernstein automatically discharges simply-quantified multivariate polyno-
mial inequalities. The main characteristic of these strategies is that they preserve
soundness, i.e., proofs that use interval and bernstein can be expanded into
a tree of primitive PVS proof rules. Unfortunately, this also means that these
strategies are not as efficient as specialized theorems provers like MetiTarski.

For interactive theorem provers such as PVS, access to external decision pro-
cedures for the theory of real closed fields can greatly speed up the verification
time of large and complex algorithms. This paper describes the integration of
MetiTarski as a trusted oracle wit