
Cliff Jones
Pekka Pihlajasaari
Jun Sun (Eds.)

 123

LN
CS

 8
44

2

19th International Symposium
Singapore, May 12–16, 2014
Proceedings

FM 2014:
Formal Methods

Lecture Notes in Computer Science 8442
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Cliff Jones Pekka Pihlajasaari Jun Sun (Eds.)

FM 2014:
Formal Methods
19th International Symposium
Singapore, May 12-16, 2014
Proceedings

13

Volume Editors

Cliff Jones
Newcastle University
School of Computing Science
Newcastle, UK
E-mail: cliff.jones@ncl.ac.uk

Pekka Pihlajasaari
Data Abstraction (Pty) Ltd
Johannesburg, South Africa
E-mail: pekka@data.co.za

Jun Sun
Singapore University of Technology and Design
Information System Technology and Design, Singapore
E-mail: sunjun@sutd.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06409-3 e-ISBN 978-3-319-06410-9
DOI 10.1007/978-3-319-06410-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936206

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Message from the Organising Committee

Welcome to FM-2014! Welcome to Singapore! This is the nineteenth in a se-
ries of symposia organized by Formal Methods Europe, this is its first time in
Asia! The conference is jointly organized by three Singapore universities NUS,
NTU, SUTD and a French-Singapore joint research lab IPAL. FM week is May
12–16, 2014 at the NUS, with a strong core technical program. Additionally
six workshops and five tutorials focusing on specific formal methods for various
application areas will be held early in FM week. I would like to express my
heart-felt thanks to Programme Committee Cliff Jones, Pekka Pihlajasaari and
Jun Sun; Doc Symposium Chair: Annabelle McIver; Workshop Chair: Shengchao
Qin; Publicity Chairs: Jonathan Bowen, Kenji Taguchi; Tutorial Chair: Richard
Paige; and Financial/Local Chair: Yang Liu; local organising committee mem-
bers: Guangdong Bai, Manman Chen, Jianqi Shi, Ling Shi, Yan Liu as well as
the workshop organisers, tutorial presenters and many student helpers, for their
hard work to make FM-2014 successful.

February 2014 Jin Song Dong

VI Preface

Message from Programme Committee Chairs

FM-2014 is the 19�� symposium in a series that began life as “VDM Europe” in
1987 and, in 1993, became “Formal Methods Europe”. The nod to Europe in
these names marked the initial funding support from the European Union but
is now purely historical with “FME” being today an international organisation
and the renowned FM symposia attracting papers from across the globe. For
the Programme Committee (PC) chairs of the Singapore event, it has been a
privilege to play a part in continuing the success of a series that has consistently
focussed on applicable formal methods.

This Singapore event is only the second to take place outside of Europe (the
first was in 2006 at McMaster University in Canada). Placing a conference in a
completely new geographical location poses some risks so the PC was delighted
to receive a strong set of over 150 submitted papers; for the Main Stream 38
papers were selected and seven for the Industry Stream. In both cases, we felt
that we were able to set the very highest standard. The overall acceptance rate
is 29%.

We were extremely happy to gain ready acceptance to our invitation from
three excellent invited speakers:

– Zhenjiang Hu from Japan’s National Institute of Informatics is one of the
leading researchers in the new field of bidirectional model transformations.

– Gerwin Klein has led NICTA’s formal verification part of the Trustworthy
Embedded Systems project and was the leader of the L4.verified and L4pilot
projects.

– Jim Woodcock has made numerous contributions to the application of indus-
trial-scale software engineering and formal methods.

Dines Bjørner was one of the co-founders of this series of symposia and has done
an enormous amount to promote formal methods in general and to help FME
in particular (anyone who attended FM-99 in Toulouse will never forget the
experience!). We decided therefore to create a special role for his “Distinguished
Lecture”.

John Fitzgerald was chair of FME for the gestation period and birth of FM-
2014 and we should like to express our thanks both to the committee and to John
in particular for his many years of unstinting service to our community. Nor has
he forgotten one of the most important roles of any leader –that of finding (and
persuading) a worthy successor– and we Ana Cavalcanti the very best for her
period as Chair of FME.

The volume in your hands provides a scientific guarantee of a successful sym-
posium. The vibrant city-state of the Lion and its famous hospitality will, we
believe, do the rest to ensure that FM-2014 in Singapore will provide its own
memorable experience to participants.

Our warm thanks go to the members of the PC and their reviewers. Without
them, the selection of papers would have been overwhelming and sterile. The
enormous breadth of background in their comments resulted in the discovery of

Preface VII

a number of gems that could otherwise have been overlooked. Of course the PC
would have nothing to work on but for the authors who submit interesting and
relevant papers and it is to them we express our final thanks.

February 2014 Cliff Jones
Pekka Pihlajasaari

Jun Sun

Organisation

We are grateful to Formal Methods Europe (FME), National University of Sin-
gapore (NUS), Nanyang Technological University (NTU), Singapore University
of Technology and Design (SUTD) and the French-Singapore joint research lab
IPAL for organizing FM 2014. Our special thanks to the faculty, students, and
staff, who volunteered their time in the Organizing Committee.

General Chair

Jin Song Dong National University of Singapore, Singapore

Program Committee Chairs

Cliff B. Jones Newcastle University, UK
Pekka Pihlajasaari Data Abstraction (Pty) Ltd, South Africa
Jun Sun Singapore University of Technology and Design,

Singapore

Doctoral Symposium Chair

Annabelle McIver Macquarie University, Australia

Workshop Chair

Shengchao Qin University of Teesside, UK

Publicity Chairs

Jonathan Bowen London South Bank University, UK
Kenji Taguchi AIST, Japan

Tutorial Chair

Richard Paige University of York, UK

X Organisation

Financial/Local Chair

Yang Liu Nanyang Technological University, Singapore

Program Committee

Bernhard Aichernig Graz University of Technology, Austria
Richard Banach University of Manchester, UK
Juan Bicarregui Rutherford Appleton Laboratory, UK
Jon Burton Praxis, UK
Andrew Butterfield Trinity College Dublin, Ireland
Ana Cavalcanti York University, UK
Marsha Chechik University of Toronto, Canada
Yu-Fang Chen Academia Sinica, Taiwan
Wei-Ngan Chin National University of Singapore, Singapore
Cristina Cifuentes Oracle, USA
Jim Davies University of Oxford, UK
Frank De Boer CWI, The Netherlands
Ewen Denney SGT/NASA Ames, USA
Dino Distefano Facebook and University of London, UK
José Luiz Fiadeiro Royal Holloway, University of London, UK
John Fitzgerald Newcastle University, UK
Marie-Claude Gaudel LRI, Université Paris-Sud and CNRS, France
Jaco Geldenhuys Stellenbosch University, South Africa
Dimitra Giannakopoulou NASA Ames, USA
Stefania Gnesi ISTI-CNR, Italy
Wolfgang Grieskamp Google, USA
Lindsay Groves Victoria University of Wellington, New Zealand
Jim Grundy Intel Corporation, USA
Stefan Gruner University of Pretoria, South Africa
Anne E. Haxthausen Technical University of Denmark, Denmark
Ian J. Hayes University of Queensland, Australia
Constance Heitmeyer Naval Research Laboratory, USA
Jane Hillston University of Edinburgh, UK
Michael Holloway NASA, USA
Shinichi Honiden National Institute of Informatics, Japan
Ralf Huuck NICTA, Australia
Daniel Jackson MIT, USA
Cliff Jones Newcastle University, UK
Rajeev Joshi Laboratory for Reliable Software, Jet

Propulsion Laboratory, USA
Peter Gorm Larsen Aarhus School of Engineering, Denmark
Gary T. Leavens University of Central Florida, USA

Organisation XI

Yves Ledru Laboratoire d’Informatique de Grenoble -
Université Joseph Fourier, France

Michael Leuschel University of Düsseldorf, Germany
Brendan Mahony DSTO, Australia
Tom Maibaum McMaster University, Canada
Annabelle McIver Macquarie University, Australia
Dominique Mery Université de Lorraine, LORIA, France
Peter Müller ETH Zürich, Switzerland
Tobias Nipkow TU München, Germany
Colin O’Halloran QinetiQ Ltd., UK
Jose Oliveira Universidade do Minho, Portugal
Pekka Pihlajasaari Data Abstraction (Pty) Ltd, South Africa
André Platzer Carnegie Mellon University, USA
Zongyan Qiu Peking University, China
Ken Robinson The University of New South Wales, Australia
Andreas Roth SAP Research, Germany
Abhik Roychoudhury National University of Singapore, Singapore
Augusto Sampaio Federal University of Pernambuco, Brazil
Steve Schneider University of Surrey, UK
Emil Sekerinski McMaster University, Canada
Xiaoyu Song Portland State University, USA
Ketil Stoelen SINTEF, Norway
Jing Sun The University of Auckland, New Zealand
Jun Sun Singapore University of Technology and Design
Axel Van Lamsweerde Université Catholique de Louvain, Belgium
Marcel Verhoef Chess, The Netherlands
Willem Visser Stellenbosch University, South Africa
Chao Wang Virginia Tech, USA
Alan Wassyng McMaster University, Canada
Pamela Zave AT&T Laboratories–Research, USA
Lijun Zhang Technical University of Denmark, DK
Hongjun Zheng MathWorks, USA

Additional Reviewers

Abal, Iago
Ait Ameur, Yamine
Albarghouthi, Aws
Aliakbary, Sadegh
Almeida, Jose Bacelar
Andrews, Zoe
Atanasiu, Radu-Florian
Banach, Richard
Bezirgiannis, Nikolaos

Bicarregui, Juan
Blanchette, Jasmin Christian
Bobot, François
Bodeveix, Jean-Paul
Bonakdarpour, Borzoo
Brekling, Aske
Bryans, Jeremy W.
Bucchiarone, Antonio
Carvalho, Gustavo

XII Organisation

Castro, Pablo
Ciancia, Vincenzo
Clark, Allan
Coleman, Joey
Costea, Andreea
Couto, Luis
Davies, Jim
Demasi, Ramiro
Dobrikov, Ivaylo
Dunne, Steve
Durán, Francisco
Eldib, Hassan
Fantechi, Alessandro
Galpin, Vashti
Gherghina, Cristian
Gheyi, Rohit
Ghorbal, Khalil
Gilmore, Stephen
Gretz, Friedrich
Gurfinkel, Arie
Hague, Matthew
Hahn, Moritz
Hallerstede, Stefan
Hansen, Dominik
Henriques, David
Holik, Lukas
Ishikawa, Fuyuki
Isobe, Yoshinao
Janicki, Ryszard
Jansen, David N.
Jeannin, Jean-Baptiste
Joebstl, Elisabeth
Joshi, Rajeev
Jørgensen, Peter
K.R., Raghavendra
Kassios, Ioannis
Kiniry, Joseph
Krautsevich, Leanid
Krenn, Willibald
Krings, Sebastian
Krishnan, Paddy
Kusano, Markus
Le, Duy Khanh
Le, Quang Loc
Le, Ton Chanh

Lepri, Daniela
Li, Guangyuan
Li, Qin
Li, Yi
Liu, Yang
Lluch Lafuente, Alberto
Loos, Sarah
Lorber, Florian
Loreti, Michele
Løvengreen, Hans Henrik
Martins, João G.
Meinicke, Larissa
Merz, Stephan
Miyazawa, Alvaro
Monahan, Rosemary
Moreira, Nelma
Morgan, Carrol
Morgan, Carroll
Murray, Toby
Müller, Andreas
Nickovic, Dejan
Olivier, Martin
Payne, Richard
Pereira, David
Pierce, Ken
Quesel, Jan-David
Refsdal, Atle
Robinson, Peter
Rogalewicz, Adam
Runde, Ragnhild Kobro
Safilian, Aliakbar
Sakamoto, Kazunori
Santosa, Andrew Edward
Schewe, Sven
Schulze, Uwe
Seehusen, Fredrik
Seidl, Helmut
Serbanescu, Vlad
Sharma, Asankhaya
Sighireanu, Mihaela
Simmonds, William
Singh, Neeraj
Solhaug, Bjørnar
Solms, Fritz
Song, Lei

Organisation XIII

Sousa Pinto, Jorge
Steggles, Jason
Tanabe, Yoshinori
Tarasyuk, Anton
Ter Beek, Maurice H.
Timm, Nils
Tiran, Stefan
Treharne, Helen
Trung, Ta Quang
Turrini, Andrea
Vakili, Sasan
van der Storm, Tijs

Vu, Linh H.
Wang, Chen-Wei
Wang, Hao
Wasowski, Andrzej
Watson, Bruce
Wei, Wei
Yang, Zijiang
Yi, Jooyong
Yoshioka, Nobukazu
Zeyda, Frank
Zhang, Chenyi
Zhang, Lu

Table of Contents

Validity Checking of Putback Transformations in Bidirectional
Programming . 1

Zhenjiang Hu, Hugo Pacheco, and Sebastian Fischer

Proof Engineering Considered Essential . 16
Gerwin Klein

Engineering UToPiA: Formal Semantics for CML . 22
Jim Woodcock

40 Years of Formal Methods: Some Obstacles and Some Possibilities? . . . 42
Dines Bjørner and Klaus Havelund

A Refinement Based Strategy for Local Deadlock Analysis of Networks
of CSP Processes . 62

Pedro Antonino, Augusto Sampaio, and Jim Woodcock

Algebraic Principles for Rely-Guarantee Style Concurrency Verification
Tools . 78

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Definition, Semantics, and Analysis of Multirate Synchronous AADL . . . 94
Kyungmin Bae, Peter Csaba Ölveczky, and José Meseguer

TrustFound: Towards a Formal Foundation for Model Checking
Trusted Computing Platforms . 110

Guangdong Bai, Jianan Hao, Jianliang Wu, Yang Liu,
Zhenkai Liang, and Andrew Martin

The VerCors Tool for Verification of Concurrent Programs 127
Stefan Blom and Marieke Huisman

Knowledge-Based Automated Repair of Authentication Protocols 132
Borzoo Bonakdarpour, Reza Hajisheykhi, and Sandeep S. Kulkarni

A Simplified Z Semantics for Presentation Interaction Models 148
Judy Bowen and Steve Reeves

Log Analysis for Data Protection Accountability . 163
Denis Butin and Daniel Le Métayer

Automatic Compositional Synthesis of Distributed Systems 179
Werner Damm and Bernd Finkbeiner

XVI Table of Contents

Automated Real Proving in PVS via MetiTarski . 194
William Denman and César Muñoz

Quiescent Consistency: Defining and Verifying Relaxed
Linearizability . 200

John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan,
Oleg Travkin, and Heike Wehrheim

Temporal Precedence Checking for Switched Models and Its Application
to a Parallel Landing Protocol . 215

Parasara Sridhar Duggirala, Le Wang, Sayan Mitra,
Mahesh Viswanathan, and César Muñoz

Contracts in Practice . 230
H.-Christian Estler, Carlo A. Furia, Martin Nordio,
Marco Piccioni, and Bertrand Meyer

When Equivalence and Bisimulation Join Forces in Probabilistic
Automata . 247

Yuan Feng and Lijun Zhang

Precise Predictive Analysis for Discovering Communication Deadlocks
in MPI Programs . 263

Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and
Subodh Sharma

Proof Patterns for Formal Methods . 279
Leo Freitas and Iain Whiteside

Efficient Runtime Monitoring with Metric Temporal Logic: A Case
Study in the Android Operating System . 296

Hendra Gunadi and Alwen Tiu

IscasMc: A Web-Based Probabilistic Model Checker 312
Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and
Lijun Zhang

Invariants, Well-Founded Statements and Real-Time Program Algebra . . 318
Ian J. Hayes and Larissa Meinicke

Checking Liveness Properties of Presburger Counter Systems Using
Reachability Analysis . 335

K. Vasanta Lakshmi, Aravind Acharya, and Raghavan Komondoor

A Symbolic Algorithm for the Analysis of Robust Timed Automata 351
Piotr Kordy, Rom Langerak, Sjouke Mauw, and
Jan Willem Polderman

Table of Contents XVII

Revisiting Compatibility of Input-Output Modal Transition Systems 367
Ivo Krka, Nicolás D’Ippolito, Nenad Medvidović, and
Sebastián Uchitel

Co-induction Simply: Automatic Co-inductive Proofs in a Program
Verifier . 382

K. Rustan M. Leino and Micha�l Moskal

Management of Time Requirements in Component-Based Systems 399
Yi Li, Tian Huat Tan, and Marsha Chechik

Compositional Synthesis of Concurrent Systems through Causal Model
Checking and Learning . 416

Shang-Wei Lin and Pao-Ann Hsiung

Formal Verification of Operational Transformation 432
Yang Liu, Yi Xu, Shao Jie Zhang, and Chengzheng Sun

Verification of a Transactional Memory Manager under Hardware
Failures and Restarts . 449

Ognjen Marić and Christoph Sprenger

SCJ: Memory-Safety Checking without Annotations 465
Chris Marriott and Ana Cavalcanti

Refactoring, Refinement, and Reasoning: A Logical Characterization
for Hybrid Systems . 481

Stefan Mitsch, Jan-David Quesel, and André Platzer

Object Propositions . 497
Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and
Hannes Mehnert

Flexible Invariants through Semantic Collaboration 514
Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and
Bertrand Meyer

Efficient Tight Field Bounds Computation Based on Shape
Predicates . 531

Pablo Ponzio, Nicolás Rosner, Nazareno Aguirre, and Marcelo Frias

A Graph-Based Transformation Reduction to Reach UPPAAL States
Faster . 547

Jonas Rinast, Sibylle Schupp, and Dieter Gollmann

Computing Quadratic Invariants with Min- and Max-Policy Iterations:
A Practical Comparison . 563

Pierre Roux and Pierre-Löıc Garoche

XVIII Table of Contents

Efficient Self-composition for Weakest Precondition Calculi 579
Christoph Scheben and Peter H. Schmitt

Towards a Formal Analysis of Information Leakage for Signature
Attacks in Preferential Elections . 595

Roland Wen, Annabelle McIver, and Carroll Morgan

Analyzing Clinical Practice Guidelines Using a Decidable Metric
Interval-Based Temporal Logic . 611

Morteza Yousef Sanati, Wendy MacCaull, and
Thomas S.E. Maibaum

A Modular Theory of Object Orientation in Higher-Order UTP 627
Frank Zeyda, Thiago Santos, Ana Cavalcanti, and Augusto Sampaio

Formalizing and Verifying a Modern Build Language 643
Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte

The Wireless Fire Alarm System: Ensuring Conformance to Industrial
Standards through Formal Verification . 658

Sergio Feo-Arenis, Bernd Westphal, Daniel Dietsch,
Marco Muñiz, and Ahmad Siyar Andisha

Formally Verifying Graphics FPU: An Intel R© Experience 673
Aarti Gupta, V. Achutha Kirankumar M., and Rajnish Ghughal

MDP-Based Reliability Analysis of an Ambient Assisted
Living System . 688

Yan Liu, Lin Gui, and Yang Liu

Diagnosing Industrial Business Processes: Early Experiences 703
Suman Roy, A.S.M. Sajeev, and Srivibha Sripathy

Formal Verification of Lunar Rover Control Software Using UPPAAL . . . 718
Lijun Shan, Yuying Wang, Ning Fu, Xingshe Zhou, Lei Zhao,
Lijng Wan, Lei Qiao, and Jianxin Chen

Formal Verification of a Descent Guidance Control Program of a Lunar
Lander . 733

Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu,
Liang Zou, and Yao Chen

Author Index . 749

Validity Checking of Putback Transformations

in Bidirectional Programming

Zhenjiang Hu1, Hugo Pacheco2, and Sebastian Fischer3

1 National Institute of Informatics, Japan
2 Cornell University, USA

3 Christian-Albrechts University of Kiel, Germany

Abstract. A bidirectional transformation consists of pairs of transfor-
mations —a forward transformation get produces a target view from a
source, while a putback transformation put puts back modifications on
the view to the source— satisfying sensible roundtrip properties. Ex-
isting bidirectional approaches are get-based in that one writes (an arti-
fact resembling) a forward transformation and a corresponding backward
transformation can be automatically derived. However, the unavoidable
ambiguity that stems from the underspecification of put often leads to
unpredictable bidirectional behavior, making it hard to solve nontriv-
ial practical synchronization problems with existing bidirectional trans-
formation approaches. Theoretically, this ambiguity problem could be
solved by writing put directly and deriving get , but differently from pro-
gramming with get it is easy to write invalid put functions. An open
challenge is how to check whether the definition of a putback transfor-
mation is valid, while guaranteeing that the corresponding unique get
exists. In this paper, we propose, as far as we are aware, the first safe
language for supporting putback-based bidirectional programming. The
key to our approach is a simple but powerful language for describing
primitive putback transformations. We show that validity of putback
transformations in this language is decidable and can be automatically
checked. A particularly elegant and strong aspect of our design is that
we can simply reuse and apply standard results for treeless functions and
tree transducers in the specification of our checking algorithms.

1 Introduction

Bidirectional transformations (BXs for short) [6,10,16], originated from the view
updating mechanism in the database community [1,7,12], have been recently at-
tracting a lot of attention from researchers in the communities of programming
languages and software engineering since the pioneering work of Foster et al. on a
combinatorial language for bidirectional tree transformations [10]. Bidirectional
transformations provide a novel mechanism for synchronizing and maintaining
the consistency of information between input and output, and have seen many
interesting applications, including the synchronization of replicated data in dif-
ferent formats [10], presentation-oriented structured document development [17],
interactive user interface design [22] or coupled software transformation [20].

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014

2 Z. Hu, H. Pacheco, and S. Fischer

A bidirectional transformation basically consists of a pair of transformations:
the forward transformation get s is used to produce a target view v from a source
s , while the putback transformation put s v is used to reflect modifications on
the view v to the source s . These two transformations should be well-behaved in
the sense that they satisfy the following round-tripping laws.

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that not changing the view shall be reflected as
not changing the source, while the PutGet property requires all changes in the
view to be completely reflected to the source so that the changed view can be
computed again by applying the forward transformation to the changed source.

Example 1. As a simple example1, consider a forward function getAs that selects
from a source list all the elements that are tagged with A:

getAs [] = []
getAs (A a : ss) = a : getAs ss
getAs (B b : ss) = getAs ss

and a corresponding putback function putAs that uses a view list to update A
elements in the original source list:

putAs [] [] = []
putAs [] (v : vs) = A v : putAs [] vs
putAs (A a : ss) [] = putAs ss []
putAs (A a : ss) (v : vs) = A v : putAs ss vs
putAs (B b : ss) vs = B b : putAs ss vs

where we use the view to replace A elements, impose no effect on B elements,
and stop when both the source and view lists are empty. We also deal with the
cases when the view and the source lists do not have sufficient elements. �

Bidirectional programming is to develop well-behaved BXs in order to solve
various synchronization problems. A straightforward approach to bidirectional
programming is to write two unidirectional transformations. Although this ad-
hoc solution provides full control over both get and putback transformations and
can be realized using standard programming languages, the programmer needs
to show that the two transformations satisfy the well-behavedness laws, and a
modification to one of the transformations requires a redefinition of the other
transformation as well as a new well-behavedness proof.

To ease and enable maintainable bidirectional programming, it is preferable
to write just a single program that can denote both transformations, which has
motivated two different methods. One is to allow users to write the forward

1 We will use a Haskell-like notation [18] throughout paper, and assume that our
definitions are typed with the same (abstract) data types of Haskell’98.

Validity Checking of Putback Transformations in Bidirectional Programming 3

transformation in a familiar (unidirectional) programming language, and de-
rive a suitable putback transformation through bidirectionalization techniques
[13, 21, 27, 29]. The other is to instruct users to write a program in a particu-
lar bidirectional programming language [3, 4, 10, 14, 15, 23, 24], from which both
transformations can be derived. The latter languages tend to invite users to write
BXs as they would write get functions, but may provide eventually different put
strategies via a fixed set of combinators.

In general, a get function may not be injective, so there may exist many
possible put functions that can be combined with it to form a valid BX. Recall
the definition of putAs from Example 1; we could define another reasonable
putback function for getAs by changing the second and third equations to:

putAs [] (v : vs) = A v : B c : putAs [] vs
putAs (A a : ss) [] = putAs (B a : ss) []

such that an additional B -tagged constant value c is added after each view value
v and excessive A values are converted to B values.

This unavoidable ambiguity of put is what makes bidirectional programming
challenging and unpredictable in practice. In fact, there is neither a clear con-
sensus on the best requirements even for well-studied domains [5], nor a general
way to specify which put should be selected. The effectiveness of existing bidirec-
tional programming methods comes from limiting the programmers’ knowledge
and control of the putback transformation, to keep bidirectional programming
manageable. Unfortunately, this makes it hard (or impossible) for programmers
to mold the bidirectional behavior, and severely hinders the applicability of ex-
isting BX tools in solving practical nontrivial synchronization problems.

One interesting fact is that while get usually loses information when mapping
from a source to a view, put must preserve information when putting back from
the view to the source, according to the PutGet property. So, a natural question
is: what if we replace the traditional get-based bidirectional programming style
by a putback-based bidirectional programming style? This is, writing put and
deriving get (or, in other words, specifying the intended putback transformation
that best suits particular purposes, and deriving the forward transformation.)

Theoretically, it has been shown in [8, 9] that, for a putback transformation
put, if there exists a forward transformation get then such forward transforma-
tion is unique. Practically, however, there is little work on put-based bidirectional
programming. This is not without reason: as argued in [9], it is far from being
straightforward to construct a framework that can directly support putback-
based bidirectional programming. One of the challenges is how to check whether
the definition of a put is in such a valid form that guarantees that the corre-
sponding unique get exists. In contrast to programming get , it is easy to write
invalid put functions. For instance, if we change the first equation for putAs to:

putAs (A a : ss) (v : vs) = A a : A v : putAs ss vs

then we will end up with an invalid put for which there is no get that forms a
well-behaved BX. This raises the question of how to statically check the validity
of put .

4 Z. Hu, H. Pacheco, and S. Fischer

In this paper, we propose (as far as we are aware) the first safe language
for supporting putback-based bidirectional programming. We propose to adopt
a hybrid compositional approach, keeping the design of well-behaved primitive
putback transformations separated from the design of compositional methods
for gluing smaller BXs. In this approach, a set of primitive BXs is prepared, and
a new BX is defined by assembling the primitive transformations with a fixed set
of general combinators. This approach has two main advantages. First, a com-
prehensive set of useful generic combinators [3,4,10,14,15,23,24] already exists
and can be used without further development. Second, since these combinators
are rather limited in specifying sophisticated bidirectional behavior, it is practi-
cally useful to be able to write primitive BXs, that are often easily determined,
designed and implemented for particular domain-specific applications.

The key to our approach is a suitable language for describing primitive put-
back transformations. We choose a general first-order functional language and
require putback functions definable in the language to be affine (each view vari-
able is used at most once) and in the treeless form (no intermediate data struc-
tures are used in a definition). In fact, this class of functions has been considered
elsewhere in the context of deforestation [28], where treeless functions are used
to describe basic computation components, and has a close relationship with
theories of tree transducers [19]. As will be demonstrate later, this language
is sufficiently powerful to specify various putback functions over algebraic data
structures and, more importantly, validity of putback transformations in the
language can be automatically checked.

The rest of this paper is organized as follows. Section 2 begins by briefly re-
viewing the basic put-based bidirectional programming concepts and properties
that play an important role in our language design. Section 3 then introduces our
Pdl language for specifying primitive putback functions, and Section 4 propose
our checking algorithms for validating putback functions (and deriving forward
transformations as a side effect). Section 5 discusses related work and Section 6
provides our conclusions together with possible directions for future work.

2 Putback-Based Bidirectional Programming

Let us briefly review the basic concepts and results from [8, 9] that clarify the
essence of putback-based programming and play an important role in our validity
checking. Calculational proofs of all the results can be found in [8].

First of all, we define validity of a putback transformation put as follows.

Definition 1 (Validity of Putback Transformations). We say that a put
is valid if there exists a get such that both GetPut and PutGet are satisfied.

One interesting fact is that, for a valid put , there exists at most one get
that can form a BX with it. This is in sharp contrast to get-based bidirectional
programming, where many puts can be paired with a get to form a BX.

Lemma 1 (Uniqueness of get). Given a put function, there exists at most
one get function that forms a well-behaved BX.

Validity Checking of Putback Transformations in Bidirectional Programming 5

To facilitate the validity checking of put without mentioning get , we introduce
two new properties on put whose combination is equivalent to GetPut and
PutGet.

– The first, that we call view determination, says that equivalence of updated
sources produced by a put implies equivalence of views that are put back.

∀ s, s′, v, v′. put s v = put s′ v′ ⇒ v = v′ ViewDetermination

Note that the view determination implies that put s is injective (with s = s′).
– The second, that we call source stability, denotes a slightly stronger notion

of surjectivity for every source:

∀ s. ∃ v. put s v = s SourceStability

Actually, these two laws together provide an equivalent characterization of the
validity of put . The following theorem will be the basis for our later presented
algorithms for checking of validity of put and deriving get .

Theorem 1 (Validity). A put function is valid if and only if it satisfies the
ViewDetermination and SourceStability properties.

For the context of this paper, we are assuming that all functions are total —in
the pure mathematical sense— between an input type and an output type.

3 Defining Putback Functions

In this section, we design a language for describing putback functions, such that
the validity of putback functions written in our language can be automatically
checked and the corresponding get functions can be automatically derived.

As explained in the introduction, we adopt a hybrid compositional approach,
keeping separate the design of well-behaved primitive putback transformations
and the design of compositional methods for gluing primitive bidirectional trans-
formations. We will focus on the former —designing the language for specifying
various primitive putback functions (with rich update strategies) over algebraic
data structures— while existing generic combinators [3, 4, 10, 14, 15, 23, 24] can
be reused to glue them together into larger transformations.

3.1 Pdl: A Putback Function Definition Language

We introduce Pdl, a treeless language for defining primitive put functions. By
treeless, we mean that no composition can be used in the definition of a put
function. It is a first-order functional programming language similar to both
Wadler’s language for defining basic functions for fusion transformation [28]
and the language for defining basic get functions of Matsuda et al. [21], with a
particularity that it also supports pattern expressions in source function calls.

The syntax of Pdl is given in Figure 1. A program in our language consists of
a set of putback function definitions, and each definition consists of a sequence

6 Z. Hu, H. Pacheco, and S. Fischer

Rule Definition
r ::= f ps pv = e putback

Pattern
p ::= C p1 . . . pn constructor pattern

| x @ p look-ahead variable
| x variable

Expression
e ::= C e1 . . . en constructor application

| x variable
| f xs xv function call (no nested calls)

where C ∈ C is of arity n, f ∈ P and x ∈ X .

Operational Semantics (Call-by-Value):

(Con)
e1 ⇓ r1 · · · en ⇓ rn

C e1 . . . en ⇓ C r1 . . . rn
(Fun)

f ps pv =̂ e ∈ R
∃θ, f psθ pvθ = f rs rv eθ ⇓ u

f rs rv ⇓ u

where “eθ” denotes the expression that is obtained by replacing any variable
x in e with the value θ(x), and v1, . . . , vn denote values; values are expressions
that consist only of constructor symbols in C.

Fig. 1. Putback Definition Language (P denotes putback function symbols, C denotes
constructor symbols, X denotes variables)

of putback rules. A putback rule, as the name suggests, is used to put view
information back into the source, and has the form:

f ps pv =̂ e

It describes how f adapts the source ps to e, when the view is of the form pv.
We make the following additional considerations:

– For the patterns ps and pv, in addition to traditional variable and constructor
patterns, we introduce look-ahead variable patterns mainly for the purpose
of abstracting constant patterns using variables. For example, we can write
the constant pattern [] as xs@[], which allows us to syntactically distinguish
whether an empty string appearing in the right-hand side is newly created
or passed from the input.

– We require the body expression e to be in an extended structured treeless
form [28]. That is, a function call should have shape f xs xv, where xs is
a variable in the source pattern ps and xv is a variable in the view pattern
pv, and at least one of xs and xv is strictly smaller that its original pattern.
This means that a recursive call of a putback function updates components
of the source with the components of the view, and it may appear inside a
constructor application, but never inside another function call.

Validity Checking of Putback Transformations in Bidirectional Programming 7

– We assume that each rule is affine, i.e., every variable in the left-hand side
of a rule occurs at most once in the corresponding right-hand side.

Definition 2 (Putback Transformation in Pdl). A putback transformation
is a total function defined by a set of putback rules.

We can see that putAs in Example 1 is almost a putback transformation in
Pdl, except that some arguments of recursive calls are an empty list instead of
a variable. This can be easily resolved by using a look-ahead variable.

Example 2. The following putAs is defined in Pdl.

putAs [] [] = []
putAs (ss@[]) (v : vs) = A v : putAs ss vs
putAs (A a : ss) (vs@[]) = putAs ss vs
putAs (A a : ss) (v : vs) = A v : putAs ss vs
putAs (B b : ss) vs = B b : putAs ss vs �

Let us demonstrate with more examples that Pdl is powerful enough to de-
scribe various putback transformations (functions).

Example 3 (Fully Updating). The simplest putback function uses the view to
fully update the original source, or in other words, to fully embed the view to
the source. This can be defined in Pdl as follows.

updAll s v = v �

Example 4 (Updating Component). We may use the view to update the first or
second component of a source pair, or say, to embed the view to first or second
component of a source pair:

updFst (Pair x y) v = Pair v y
updSnd (Pair x y) v = Pair x v �

Example 5 (Updating Data Structure). We may use the view to update the last
element of a non-empty source list2:

updLast [s] v = [v]
updLast (s : ss) v = s : updLast ss v

For this particular example, we consider the type of non-empty lists because
otherwise updLast would not be total, since there is no rule for putting a view
element back into an empty source list. �
2 A non-empty list type can be defined as A+ = Wrap A | NeCons A A+, but for
simplicity we abuse the notation and write our example using regular lists.

8 Z. Hu, H. Pacheco, and S. Fischer

Two remarks are worth making. First, all putback rules in Pdl should meet
the syntactic constraints as discussed before; those that do not satisfy these
constraints are not considered to be a putback rule. For instance, the following
rule is not a putback rule, because s appears twice in the right hand side.

putSyntacBad s v = putSyntacBad s s

Second, a putback transformation defined in Pdl may not be valid. For instance,
the putback transformation defined by

putInvalid s v = s

which completely ignores the view v . The function putInvalid is invalid in the
sense there is no actual get function that can be paired with it to form a valid
BX. In this paper we will show that the validity of any putback transformation
in Pdl can be automatically checked.

3.2 Properties of Putback Transformations in Pdl

Putback transformation in Pdl enjoy two features, which will play an important
role in our later validity checking.

First, some equational properties on Pdl putback transformations can be
automatically proved by induction. This is because putback transformations are
structured in a way such that any recursive call is applied to sub-components
of the input. In fact, such structural and total recursive functions fall in the
category where validity of a specific class of equations is decidable [11]. More
specifically, the following lemma holds.

Lemma 2 (Validity of Equational Properties). Let put be a putback trans-
formation. Validity of any equational property in the following form

put e1 e2 = p

is decidable, where e1 and e2 are two expressions and p is a pattern.

Note that the equational property that can be dealt with by the above lemma
requires its right hand side to be a simple pattern, this is, a constructor term
without (recursive) function calls.

Second, Pdl putback transformations are closed under composition. This fol-
lows from the known fact that compositions of functions in treeless form are
again functions in treeless form [28] and these function can be automatically
derived. Usually, treeless functions are defined in a more general form:

f p1 . . . pn = e

where a function can have an arbitrary number of inputs. So, a putback trans-
formation in Pdl is a special case which has two predefined (source and view)
inputs. The following lemma can be easily obtained, and will be used later.

Validity Checking of Putback Transformations in Bidirectional Programming 9

Lemma 3 (Putback Transformation Fusion). Let put be a putback trans-
formation and f be a one-input treeless function. Then a new putback transfor-
mation put ′ can be automatically derived from the following definition.

put′ s v = put s (f v)

4 Validity Checking

Given a put function in Pdl, we will now give an algorithm to check whether
it is valid. According to Theorem 1, we need to check two conditions: view
determination of put and source stability of put . Additionally, we need to check
that put is a total function, what in Pdl can be easily done by checking the
exhaustiveness of the patterns for all the rules. To simplify our presentation, we
will consider putback transformations that are single recursive functions.

4.1 View Determination Checking

First, let us see how to check injectivity of put s. Notice that FV(pv) ⊆ FV(e) is
a necessary condition, where FV(e) denotes a set of free variables in expression
e. This is because if there is a view pattern variable v that does not appear in e,
then we can construct two different views, say v1 and v2, such that they match
pv but differ in the part of the code matching v and satisfy put s v1 = put s v2
for any s matching ps. For instance, the following view embedding rule

putNoInj (A s) v = A s

will make putNoInj non-injective because, for any two views v1 and v2, we have
putNoInj (A s) v1 = putNoInj (A s) v2 = A s

In fact, the above necessary condition is also a sufficient condition. Following
[21], we can prove the following stronger lemma.

Lemma 4 (Injectivity Checking). Let put be a putback transformation in
Pdl. Then put s is injective, for any s, if and only if FV(pv) ⊆ FV(e) holds
for any putback rule put ps pv =̂ e.

However, proving that put s is injective, for any s , is not sufficient to guarantee
that put satisfies view determination. For example, consider a putback function
that sums two natural numbers:

bad Z v = v
bad (S s) v = S (bad s v)

Even though bad s is injective, we can easily find a counter-example showing
that bad is not view deterministic:

bad Z (S Z) = S Z
bad (S Z) Z = S Z

10 Z. Hu, H. Pacheco, and S. Fischer

where different views S Z and Z lead to the same source S Z . In fact, there is
no (functional) left inverse get such that get (bad s v) = v .

This requires finding a more general method to check the view determination
property. Let us first take a closer look at the view determination property:

∀ s, s′, v, v′. put s v = put s′ v′ ⇒ v = v′

Since put must map different views to different sources, this property is equiva-
lent to stating that the inverse mapping from the result of putback to the input
view is be functional (or single-valued), i.e., a relation that returns at most one
view for each source. This hints us to divide the checking problem into two steps
for a given putback transformation put : (1) deriving such an inverse mapping,
say Rput , and (2) checking that Rput is single-valued.

Deriving Inverse Mapping from put

Consider a putback transformation put defined by a set of putback rules, ignoring
rules in the form:

put ps pv = put p′s pv

for which view determination trivially holds. Now the inverse mapping R from
the result of put to its input view can be defined by inverting the remaining
putback rules put ps pv = e, i.e.,

Rput e = pv iff put ps pv = e

Example 6. As a concrete example, recall the putAs function from Example 2.
We can automatically derive the following “relation” RPutAs .

RputAs [] = []
RputAs (A v : putAs ss vs) = v : vs
RputAs (putAs ss vs) = v : vs
RputAs (B b : putAs ss vs) = vs

It covers all the putback rules except for the rule putAs (A a : ss) (vs as []) =
putAs ss vs . �

The above derived Rput would be a bit unusual, in that put could appear on
the left-hand side. In fact, each equation can be normalized into the form:

Rput p = e

where p is a pattern and e is an expression as in Pdl. The idea is to eliminate
recursive calls put xs xv by introducing a new pattern variable x′

s = put xs xv

(and thus Rput x′
s = xv), and replacing put xs xv by x′

s in the left-hand side and
xv by Rput x′

s in the right-hand side of the equation.

Validity Checking of Putback Transformations in Bidirectional Programming 11

Example 7. After normalization, we can transform the RputAs from Example 6
into the following.

RputAs [] = []
RputAs (A v : ss ′) = v : RputAs ss

′

RputAs (A v : ss ′) = v : RputAs ss
′

RputAs (B b : ss ′) = RputAs ss ′

After removing duplicated rules, we get the following final RputAs .

RputAs [] = []
RputAs (A v : ss ′) = v : RputAs ss

′

RputAs (B b : ss ′) = RputAs ss ′ �

Checking Single-Valuedness of the Mapping

First, it is easy to show that the derived R can always be translated into a (finite
state) top-down tree transducer [26] where each rule has the form Rput p = e
and all free variables in e are those in p and appear exactly once. This conclusion
relies on the assumption that view variables are used exactly once in the right
side of putback rules, as implied by the affinity syntactic constraint and the
necessary injectivity of put s .

Note that, in general, Rput may not be a function, by containing overlapping
patterns that may return different view values for the same source. For instance,
our inversion algorithm will produce the following non-deterministic relation for
the putback definition of bad :

Rbad n = n
Rbad (S n) = Rbad n

where Rbad (S 0) = S 0 from the first equation, and Rbad (S n) = 0 from the
second equation (followed by the first equation).

If the derived Rput returns at most one view value for every source value,
then it corresponds directly (modulo removal of possibly overlapping but similar
patterns) to a get in a treeless function similar to Pdl. This is equivalent to
stating that the corresponding tree transducer is single-valued, a problem that
is fortunately known to be decidable in polynomial time [26].

Lemma 5 (Single-valuedness of get). It is decidable if the relation Rput de-
rived from a putback function put in Pdl is a function.

4.2 Source Stability Checking

With the Rput relation derived in the previous section in hand, checking source
stability of a putback function put amounts to proving that, for any source s,
the GetPut property holds:

put s (Rput s) = s

12 Z. Hu, H. Pacheco, and S. Fischer

Algorithm: Validity Checking of Putback Transformation

Input: A program P = (R,F , C,X) for putback definitions in Pdl.

Procedure:

check the syntactic constraints for each rule r in R;
{* check totality: *}
check pattern exhaustiveness for each putback definition in R;

for each f ps pv =̂ e ∈ R do
begin
{* check view determination: *}
check injectivity: FV(pv) ⊆ FV(e);
derive and normalize Rf ;
check view determination: Rf is single-valued;
{* check source stability: *}
define pr s v =̂ f s (Rf v);
fusion pr s v =̂ f s (Rf v) to be a new putback transformation;
check property pr s s = s inductively;

end;
return True if all the checks are passed, and False otherwise.

Fig. 2. Validity Checking Algorithm

Note that GetPut implies in particular SourceStability. Above that, at this
point we only know that Rput is functional, but not that it constitutes a valid
get function, i.e., that it is totally defined for all sources. This single proof also
gives us that result.

The proof can be conducted as follows. First, we introduce a new (partial)
function pr defined as:

pr x y = put x (Rput y)

Since Rput is in the treeless form, it follows from Lemma 3 that pr is a putback
transformation in Pdl. Now by Lemma 2, we know that pr s s = s is inductively
provable. That is, put s (Rput s) = s is inductively provable, which is what we
want.

Lemma 6 (Source Stability Checking). Let put be a putback function in
Pdl and Rput be a treeless function. Then it is decidable if put is source stable.

4.3 Checking Algorithm

Figure 2 summarizes our checking algorithm. The input is a program defining a
set of putback definitions F using a set of rules R with a set of data constructors
C and a set of variables C. The checking algorithm will return True if all the
putback definitions are valid, and return False otherwise.

Validity Checking of Putback Transformations in Bidirectional Programming 13

Theorem 2 (Soundness and Completeness). The putback checking algo-
rithm is sound, in that if putback functions pass the check then they are valid,
and complete, in that there are no putback functions defined in Pdl that are
valid but do not pass the check.

Proof. It directly follows from Lemmas 4 and 6. �

5 Related Work

The pioneering work of Foster et al. [10] proposes one of the first bidirectional
programming languages for defining views of tree-structured data. They recast
many of the ideas for database view-updating [1,7] into the design of a language
of lenses, consisting of a get and a put function that satisfy well-behavedness
laws. The novelty of their work is by putting emphasis on types and totality
of lens transformations, and by proposing a series of combinators that allow
reasoning about totality and well-behavedness of lenses in a compositional way.
The kinds of BXs studied in our paper are precisely total well-behaved lenses.

After that, many bidirectional languages have been proposed. Bohannon et
al. [4] propose a language of lenses for relational data built using standard SPJ
relational algebra combinators and composition. Bohannon et al. [3] design a
language for the BX of string data, built using a set of regular operations and a
type system of regular expressions. Matching lenses [2] generalize the string lens
language by lifting the update strategy from a key-based matching to support
a set of different alignment heuristics that can be chosen by users. Pacheco and
Cunha [23] propose a point-free functional language of total well-behaved lenses,
using a simple positional update strategy, and later [24] they extend the match-
ing lenses approach to infer and propagate insertion and deletion updates over
arbitrary views defined in such point-free language. Hidaka et al. [13] propose
the first linguistic approach for bidirectional graph transformations, by giving a
bidirectional semantics to the UnCal graph algebra. All the above existing bidi-
rectional programing approaches based on lenses focus on writing bidirectional
programs that resemble the get function, and possibly take some additional pa-
rameters that provide limited control over the put function.

Since these get -based languages are often state-based, they must align the
updated view and the original source structures to identify the modifications on
the view and translate them to the source accordingly. Although for unordered
data (relations, graphs) such alignment can be done rather straightforwardly,
for ordered data (strings, trees) it is more problematic to find a reasonable
alignment strategy, and thus to provide a reasonable view update translation
strategy. Our results open the way towards put programming languages, that
in theory could give the programmer the possibility to express all well-behaved
update translation strategies (for a given class of get functions).

In his PhD thesis, Foster [9] discusses a characterization of lenses in terms
of put functions. However, he does so only to plead for a forward programming
style and does not pursue a putback programming style. In [8], we independently

14 Z. Hu, H. Pacheco, and S. Fischer

review classes of lenses solely in terms of their putback functions, rephrasing ex-
isting laws in terms of simple mathematical concepts. We use the built-in search
facilities of the functional-logic programming language Curry to obtain the get
function corresponding to a user-defined put function. Furthermore, in [25], a
monadic combinator library for supporting putback style bidirectional program-
ming is proposed. None of them considers mechanisms to ensure the validity of
user-defined put functions and especially totality of the transformations. In the
current paper, we explore the putback style to demonstrate that it can be ad-
vantageous and viable in practice, and illustrate a possible way to specify valid
(total) put functions and correctly derive (total) get functions.

6 Conclusions and Future Work

In this paper, we have proposed a novel linguistic framework for supporting a
putback-based approach to bidirectional programming: a new language has been
designed for specifying primitive putback transformations, an automatic algo-
rithm has been given to statically check whether a put is valid, and a derivation
algorithm has been provided to construct an efficient get from a valid put . Our
new framework retains the advantages of writing a single program to specify a
BX but, in sharp contrast to get-based bidirectional programming, allows pro-
grammers to describe their intended put update strategies in a direct, predictable
and, most importantly, unambiguous way.

The natural direction for future work is to consider extensions to Pdl to sup-
port a larger class of BXs, while retaining the soundness and completeness of the
validity checking algorithms. It remains open to prove results about the com-
pleteness (in terms of expressiveness) of (practical) putback-based programming,
i.e., identifying classes of get functions for which concrete putback definition lan-
guages can specify all valid put functions.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

2. Barbosa, D.M.J., Cretin, J., Foster, J.N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: ICFP 2010, pp. 193–204. ACM (2010)

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: POPL 2008, pp. 407–419. ACM (2008)

4. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: PODS 2006, pp. 338–347. ACM (2006)

5. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Transactions on Database Sys-
tems 33(4) (2008)

6. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidi-
rectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

7. Dayal, U., Bernstein, P.: On the correct translation of update operations on rela-
tional views. ACM Transactions on Database Systems 7, 381–416 (1982)

Validity Checking of Putback Transformations in Bidirectional Programming 15

8. Fischer, S., Hu, Z., Pacheco, H.: “Putback” is the Essence of Bidirectional Pro-
gramming. GRACE Technical Report 2012-08, National Institute of Informatics,
36 p. (2012)

9. Foster, J.: Bidirectional Programming Languages. Ph.D. thesis, University of Penn-
sylvania (December 2009)

10. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

11. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer,
Heidelberg (2001)

12. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486–524 (1988)

13. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: ICFP 2010, pp. 205–216. ACM (2010)

14. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011,
pp. 371–384. ACM (2011)

15. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL 2012, pp. 495–508.
ACM (2012)

16. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Dagstuhl Seminar on Bidirectional
Transformations (BX). SIGMOD Record 40(1), 35–39 (2011)

17. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89–118 (2008)

18. Hutton, G.: Programming in Haskell. Cambridge University Press (2007)
19. Kühnemann, A.: Comparison of deforestation techniques for functional programs

and for tree transducers. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS,
vol. 1722, pp. 114–130. Springer, Heidelberg (1999)

20. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: SETS
2004 (2004)

21. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007, pp. 47–58. ACM (2007)

22. Meertens, L.: Designing constraint maintainers for user interaction (1998),
manuscript available at, http://www.kestrel.edu/home/people/meertens

23. Pacheco, H., Cunha, A.: Generic point-free lenses. In: Bolduc, C., Desharnais, J.,
Ktari,B. (eds.)MPC2010.LNCS,vol. 6120,pp. 331–352. Springer,Heidelberg (2010)

24. Pacheco, H., Cunha, A., Hu, Z.: Delta lenses over inductive types. In: BX 2012.
Electronic Communications of the EASST, vol. 49 (2012)

25. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-
tional programming. In: PEPM 2014, pp. 39–50. ACM (2014)

26. Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time.
Theor. Comput. Sci. 106(1), 135–181 (1992)

27. Voigtländer, J.: Bidirectionalization for free! (pearl). In: POPL 2009, pp. 165–176.
ACM (2009)

28. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)

29. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007, pp. 164–173.
ACM (2007)

http://www.kestrel.edu/home/people/meertens

Proof Engineering Considered Essential

Gerwin Klein

NICTA� and UNSW, Sydney, Australia
first-name.last-name@nicta.com.au

Abstract. In this talk, I will give an overview of the various formal
verification projects around the evolving seL4 microkernel, and discuss
our experience in large scale proof engineering and maintenance.

In particular, the presentation will draw a picture of what these ver-
ifications mean and how they fit together into a whole. Among these
are a number of firsts: the first code-level functional correctness proof of
a general-purpose OS kernel, the first non-interference proof for such a
kernel at the code-level, the first binary-level functional verification of
systems code of this complexity, and the first sound worst-case execution-
time profile for a protected-mode operating system kernel.

Taken together, these projects produced proof artefacts on the order
of 400,000 lines of Isabelle/HOL proof scripts. This order of magnitude
brings engineering aspects to proofs that we so far mostly associate with
software and code. In the second part of the talk, I will report on our
experience in proof engineering methods and tools, and pose a number
of research questions that we think will be important to solve for the
wider scale practical application of such formal methods in industry.

1 The seL4 Verification

This extended abstract contains a brief summary of the seL4 verification and
proof engineering aspects. A more extensive in-depth overview has appeared
previously [13].

The seL4 kernel is a 3rd generation microkernel in the L4 family [17]. The
purpose of such microkernels is to form the core of the trusted computing base
of any larger-scale system on top. They provide basic operating system (OS)
mechanisms such as virtual memory, synchronous and asynchronous messages,
interrupt handling, and in the case of seL4, capability-based access control. The
idea is that, using these mechanisms, one can isolate software components in
time and space from each other, and therefore not only enable verification of such
components in isolation and in higher-level programming models, but even forego
the formal verification of entire components in a system altogether, and focus
on a small number of trusted critical components instead, without sacrificing
assurance in the critical properties of the overall system [3]. This general idea
is not new. For instance, it can be found for simpler separation kernels in the

� NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 16–21, 2014.
c© Springer International Publishing Switzerland 2014

Proof Engineering Considered Essential 17

MILS setting [2]. For modern systems, some of the untrusted components will
be an entire monolithic guest OS such as Linux. That is, the microkernel is used
not only for separation, but also as a full virtualisation platform or hypervisor.

This setting provides the motivation for the formal verification of such ker-
nels: they are at the centre of trust for the overall system — if the microkernel
misbehaves, no predictions can be made about the security or safety of the over-
all system running on it. At the same time, microkernels are small: roughly on
the order of 10,000 lines of C code. The seL4 verification shows that this is now
within reach of full formal code-level verification of functional and non-functional
properties, and with a level of effort that is within a factor of 2–5 of normal high
quality (but not high assurance) software development in this domain. With fur-
ther research in proof engineering, automation, and code and proof synthesis, we
think this factor can be brought down to industrially interesting levels, and in
specific cases, can even be made cheaper than standard software development.

Apart from its scale, two main requirements set the verification of seL4 apart
from other software verification projects: a) the verification is at the code level
(and more recently even at the binary level), and b) it was a strict requirement of
the project not to sacrifice critical runtime performance for ease of verification.

The second requirement is crucial for the real-world applicability of the result.
Especially in microkernels, context switching and message passing performance
is paramount for the usability of the system, because these will become the most
frequently run operation not just of the kernel, but of the entire system. The mere
idea of the first generation of microkernels has famously been criticised for being
prohibitive for system performance and therefore ultimately unusable [24]. Time
has shown this argument wrong. The second generation of microkernels have
demonstrated context switching and message passing performance on par with
standard procedure calls as used in monolithic kernels [17]. The third generation
has added strong access control to the mix without sacrificing this performance.
Such microkernels now power billions of mobile devices, and therefore arguably
have more widespread application than most (or maybe all) standard monolithic
kernels. All this rests on the performance of a few critical operations of such
kernels, and it is no wonder that the field seems obsessed with these numbers.
Using simplifications, abstractions or verification mechanisms that lead to one
or two orders of magnitude slow-down would be unacceptable.

The first requirement — code-level verification instead of verification on high-
level models or manual abstractions — was important to achieve a higher degree
of assurance in the first place, and later turned out to be indispensable for main-
taining the verification of an evolving code base. The various separate verification
projects around seL4 took place over a period of almost a decade, but they fully
integrate and provide machine-checked theorems over the same code base (except
the worst-case execution-time (WCET) analysis, which uses different techniques).
Whenever the code or design of the kernel changes, which happens regularly, it is
trivial and automatic to check which parts of the verification break and need to be
updated. This would be next to impossible if there was a manual abstraction step
involved from the artefact the machine runs to the artefact the proof is concerned

18 G. Klein

with. It has often been observed that even light-weight application of formal meth-
ods brings significant benefit early in the life cycle of a project. Our experience
shows that strong benefits can be sustained throughout the much longer mainte-
nance phase of software systems. As I will show in the talk, maintaining proofs
together with code is not without cost, but at least in the area of critical high-
assurance systems changes can now be made with strong confidence, and without
paying the cost of full expensive re-certification.

The talk will describe the current state of the formal verification of the seL4
kernel, which is conducted almost exclusively in the LCF-style [10] interactive
proof assistant Isabelle/HOL [20]. The exceptions are binary verification, which
uses a mix of Isabelle, HOL4 [23] and automatic SMT solvers, and the WCET
analysis, which uses the Chronos tool, manual proof and model checking for the
elimination of infeasible paths.

In particular, the verification contains the following proofs:

– functional correctness [14] between an abstract higher-order logic specifica-
tion of seL4 and its C code semantics, including the verification of a high-
performance message-passing code path [13];

– functional correctness between the C code semantics and the binary of the
seL4 kernel after compilation and linking [21], based on the well-validated
Cambridge ARM semantics [7];

– the security property integrity [22], which roughly says that the kernel will
not let user code change data without explicit write permission;

– the security property non-interference [19,18], which includes confidentiality
and together with integrity provides isolation, which implies availability and
spacial separation;

– correct user-level system initialisation on top of the kernel [5], according to
static system descriptions in the capability distribution language capDL [15],
with a formal connection to the security theorems mentioned above [13];

– a sound binary-level WCET profile obtained by static analysis [4], which is
one of the key ingredients to providing temporal isolation.

Verification can never be absolute; it must always make fundamental assump-
tions. In this work we verify the kernel with high-level security properties down
to the binary level, but we still assume correctness of TLB and cache flushing
operations as well as the correctness of machine interface functions implemented
in handwritten assembly. Of course, we also assume hardware correctness. We
give details on the precise assumptions of this verification and how they can be
reduced even further elsewhere [13].

The initial functional correctness verification of seL4 took 12 person years of
work for the proof itself, and another 12-13 person years for developing tools,
libraries, and frameworks. Together, these produced about 200,000 lines of Is-
abelle/HOL proof scripts [14].

The subsequent verification projects on security and system properties on top
of this functional correctness proof were drastically cheaper, for instance less than
8 person months for the proof of integrity, and about 2 person years for the proof
of non-interference [13]. During these subsequent projects, the seL4 kernel evolved.

Proof Engineering Considered Essential 19

While there were no code-level defects to fix in the verified code base, changes in-
cluded performance improvements, API simplifications, additional features, and
occasional fixes to parts of the non-verified code base of seL4, such as the initiali-
sation and assembly portions of the kernel. Some of these changes were motivated
by security proofs, for instance to simplify them, or to add a scheduler with sep-
aration properties. Other changes were motivated by applications the group was
building on top of the kernel, such as a high-performance data base [11].

This additional work increased the overall proof size to roughly 400,000 lines
of Isabelle proof script. Other projects of similar order of magnitude include the
verified compiler CompCert [16], the Verisoft project [1] that addressed a whole
system stack, and the four colour theorem [8,9].

While projects of this size clearly are not yet mainstream, and may not become
mainstreamfor academia,we should expectan increase in scale fromacademic to in-
dustrial proofs similar to the increase in scale from academic to industrial software
projects. There is little research onmanaging proofs and formal verification on this
scale, even though we can expect verification artefacts to be one or two orders of
magnitude larger than the corresponding code artefacts. Of course, we are not the
first to recognise the issue of scale for proofs. All of the other large scale verification
projects above make note of it, as did previous hardware verifications [12].

We define a large scale proof as one that no single person can fully understand
in detail at any one time. Only collaboration and tool support make it possible
to conduct and check such proofs with confidence.

Many of the issues faced in such verification projects are similar to those in
software engineering: there is the matter of merely browsing, understanding, and
finding intermediate facts in a large code or proof base; there are dependencies
between lemmas, definitions, theories, and other proof artefacts that are similar
to dependencies between classes, objects, modules, and functions; there is the
issue of refactoring existing proofs either for better maintainability or readability,
or even for more generality and additional purposes; and there are questions of
architecture, design, and modularity in proofs as well as code. Some of the proof
structure often mirrors the corresponding code structure, other parts do not
necessarily have to do so. For large scale proofs, we also see issues of project
management, cost and effort estimation, and team communication. These again
have similarities with software engineering, but also have their unique challenges.

Based on our experience in the verification projects mentioned above, the
following research questions would be interesting and beneficial to solve.

1. What are the fundamental differences and similarities between proof engi-
neering and software engineering?

2. Can we estimate time and effort for a specific proof up front, and with
which confidence? Related questions are: can we predict the size of the proof
artefacts a project will produce? Are they related to effort? Can we predict
the complexity or difficulty of a proof given artefacts that are available early
in the project life cycle, such as initial specifications and/or code prototypes?

3. Which technical tools known from traditional software development could
make an even higher impact on proof engineering? Emerging prover IDEs [25]

20 G. Klein

for instance can provide more semantic information than typical program-
ming IDEs, and refactoring tools can be more aggressive than their code
counterparts because the result is easily checked.

4. Are there more fundamental ways in which proof irrelevance, formal abstrac-
tion, andmodularity canbe exploited for themanagement of large scale proofs?

5. Can concepts such as code complexity or technical debt be transferred to
proofs in a useful way?

6. Are there fundamental aspects of proof library design that are different to soft-
ware libraries? What are the proof and specification patterns?

7. Empirical software engineering has identified a number of “laws” that sta-
tistically apply to the development of large software projects [6]. Which of
these continue to hold for proofs? Are there new specific correlations that
hold for large scale proofs?

Some of these questions do already receive some attention, but not yet to the
degree required for making significant broader progress in this area.

This is clearly just a subjective subset of research question in this space. As
software engineering has done for code development, we think that addressing
such questions for large scale proofs will have a positive impact not only on
the industrial feasibility of large verification projects, but also on the everyday
development of smaller proofs.

References

1. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., Tsyban,
A.: Balancing the load — leveraging a semantics stack for systems verification.
JAR: Special Issue Operat. Syst. Verification 42(2-4), 389–454 (2009)

2. Alves-Foss, J., Oman, P.W., Taylor, C., Harrison, S.: The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst. 2, 239–247 (2006)

3. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the
presence of large untrusted components. In: Klein, G., Huuck, R., Schlich, B. (eds.)
5th SSV, Vancouver, Canada, USENIX (October 2010)

4. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Timing
analysis of a protected operating system kernel. In: 32nd RTSS, Vienna, Austria,
pp. 339–348 (November 2011)

5. Boyton, A., et al.: Formally verified system initialisation. In: Groves, L., Sun, J.
(eds.) ICFEM 2013. LNCS, vol. 8144, pp. 70–85. Springer, Heidelberg (2013)

6. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering: Em-
pirical Observations, Laws and Theories. Pearson, Addison Wesley (2003)

7. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

8. Gonthier, G.: A computer-checked proof of the four colour theorem (2005),
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

9. Gonthier, G.: Formal proof — the four-color theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008)

10. Gordon, M.J., Milner, R.. Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

Proof Engineering Considered Essential 21

11. Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.I., Alonso, G.:
RapiLog: Reducing system complexity through verification. In: EuroSys, Prague,
Czech Republic, pp. 323–336 (April 2013)

12. Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification
of pentium R© 4 floating-point divider. In: Margaria, T., Melham, T.F. (eds.)
CHARME 2001. LNCS, vol. 2144, pp. 196–211. Springer, Heidelberg (2001)

13. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems (TOCS) 32(1), 2:1–2:70 (2014)

14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT,
USA, pp. 207–220. ACM (October 2009)

15. Kuz, I., Klein, G., Lewis, C.,Walker, A.: capDL:A language for describing capability-
based systems. In: 1st APSys, New Delhi, India, pp. 31–36 (August 2010)

16. Leroy, X.: Formal certification of a compiler back-end, or: Programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) 33rd POPL,
Charleston, SC, USA, pp. 42–54. ACM (2006)

17. Liedtke, J.: Towards real microkernels. CACM 39(9), 70–77 (1996)
18. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,

C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: IEEE Symp. Security & Privacy, San Francisco, CA, pp. 415–429
(May 2013)

19. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS,
vol. 7679, pp. 126–142. Springer, Heidelberg (2012)

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

21. Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, Seattle, Washington, USA, pp. 471–481. ACM (June 2013)

22. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011)

23. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

24. Tannenbaum, A., Torwalds, L.: LINUX is obsolete. Discussion on comp.os.minix
(1992), https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI

25. Wenzel, M.: Isabelle/jEdit - a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI

Engineering UToPiA
Formal Semantics for CML

Jim Woodcock

Department of Computer Science
University of York

jim.woodcock@york.ac.uk

Abstract. We describe the semantic domains for Compass Modelling
Language (CML), using Hoare & He’s Unifying Theories of Program-
ming (UTP). CML has been designed to specify, design, compose, sim-
ulate, verify, test, and validate industrial systems of systems. CML is
a semantically heterogeneous language, with state-rich imperative con-
structs based on VDM, communication and concurrency based on CSP,
object orientation with object references, and discrete time based on
Timed CSP. A key objective is to be semantically open, allowing further
paradigms to be added, such as process mobility, continuous physical
models, and stochastic processes. Our semantics deals separately with
each paradigm, composing them with Galois connections, leading to a
natural contract language for all constructs in all paradigms. The result
is a compositional formal definition of a complex language, with the indi-
vidual parts being available for reuse in other language definitions. The
work backs our claim that use of UTP scales up to industrial-strength
languages: Unifying Theories of Programming in Action (UToPiA).

1 Introduction

The COMPASS Modelling Language (CML) is a new language, developed for the
modelling and analysis of systems of systems (SoS), which are typically large-
scale systems composed of independent constituent systems [27]. The COMPASS
project is described in detail at http://www.compass-research.eu/. CML is
based on a combination of VDM [11], CSP [22], and Circus [26,17,18,10]. Broadly
speaking, a CML model consists of a collection of types, functions, channels and
processes. Each process encapsulates a state and operations in the style of VDM
and interacts with the environment via synchronous communications in the style
of CSP. The main elements of the basic CML language with state, concurrency,
and timing are described in Table 1. Additionally, CML is object oriented.

We start in Sect. 2 with a description of UTP and its theory of alphabetised re-
lations. We give a practical illustration of UTP in Sect. 3 with a novel description
of separation logic in UTP, which forms the theory of object references in CML.
In Sect. 4, we describe the theories used in the semantics of CML and explain
how informally they fit together. The underpinnings of the formal explanation
are given in Sect. 5, where we introduce a meta-theory of Galois connections.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 22–41, 2014.
c© Springer International Publishing Switzerland 2014

http://www.compass-research.eu/

Engineering UToPiA 23

Table 1. The CML language

deadlock STOP termination SKIP
divergence CHAOS miracle MIRACLE
assignment (v := e) specification statement w : [pre, post]

simple prefix a → SKIP prefixed action a → P
guarded action [g] &P sequential composition P ; Q
internal choice P � Q external choice P � Q

parallel composition P ‖cs Q interleaving P � Q
abstraction P \ A recursion μX • P(X)

wait Wait(n) timeout P
n
� Q

untimed timeout P � Q interrupt P
 Q

timed interrupt P
n

 Q starts by P startsby(n)

ends by P endsby(n) while b ∗ P
Sects 6–8 build progressively on top of the basic theory of relations: imperative
designs, reactive processes, and timed reactive processes. Each theory is linked
back to its predecessor using a Galois connection.

The main contribution of this paper is to present a semantics of CML. Our
style provides a natural contract language for all language constructs, including
nonterminating reactive processes. The result is a compositional formal definition
of a complex language, with individual parts being available for reuse. Our work
shows that the use of UTP scales up to industrial-strength languages.

2 Unifying Theories of Programming

UTP [9] sets out a long-term research agenda summarised as follows. Researchers
propose programming theories and practitioners use pragmatic programming
paradigms; what is the relationship between them? UTP, based on predicative
programming [8], gives three principal ways to study such relationships: (i) by
computational paradigm, identifying common concepts; (ii) by level of abstraction,
from requirements, through architectures and components, to platform-specific
implementation technology; and (iii) by method of presentation—denotational,
algebraic, and operational semantics and their mutual embeddings.

UTP presents a theoretical foundation for understanding software and systems
engineering. It has been already been exploited in areas such as component-based
systems [29], hardware [19,30], and hardware/software co-design [3], but UTP
can also be used in a more active way as a domain-specific language for construct-
ing domain-specific languages, especially ones with heterogeneous semantics. An
example is the semantics for Safety-Critical Java [6,5]. The analogy is of a theory
supermarket, where you shop for exactly those features you need, while being
confident that the theories plug-and-play together.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in the Z
notation [28]. Each programming construct is formalised as a relation between an
initial and an intermediate or final observation. The collection of these relations

24 J. Woodcock

forms a theory of a paradigm, which contains three essential parts: an alphabet,
a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied. Names are chosen for any relevant external observations
of behaviour. For instance, programming variables x , y, and z would be part
of the alphabet. Theories for particular programming paradigms require the
observation of extra information; some examples are: a flag that says whether
the program has started (ok); the current time (clock); the number of available
resources (res); a trace of the events in the life of the program (tr); a set of
refused events (ref), or a flag that says whether the program is waiting for
interaction with its environment (wait). The signature gives syntactic rules for
denoting objects of the theory. Healthiness conditions identify properties that
characterise the theory, which can often be expressed in terms of a function φ that
makes a program healthy. There is no point in applying φ twice, since we cannot
make a healthy program even healthier, so φ must be idempotent: P = φ(P).
The fixed-points of this equation are then the healthy predicates.

An alphabetised predicate (P , Q , . . . , true) is an alphabet-predicate pair, such
that the predicate’s free variables are all members of the alphabet. Relations
are predicates in which the alphabet comprises plain variables (x , y, z , . . .)
and dashed variables (x ′, a′, . . .); the former represent initial observations,
and the latter, intermediate or final observations. The alphabet of P is denoted
αP , and may be divided into its before-variables (inαP) and its after-variables
(outαP). A homogeneous relation has outαP = inαP ′, where inαP ′ is the set
of variables obtained by dashing all variables in the alphabet inαP . A condition
(b, c, d , . . . , true) has an empty output alphabet. Standard predicate calculus op-
erators are used to combine alphabetised predicates, but their definitions must
specify the alphabet of the combined predicate. For instance, the alphabet of a
conjunction is the union of the alphabets of its components.

A distinguishing feature of UTP is its concern with program correctness, which
is the same in every paradigm in [9]: in every state, the behaviour of an implemen-
tation implies its specification. Suppose αP = {a, b, a′, b′}, then the universal
closure of P is simply ∀ a, b, a′, b′ • P , denoted [P]. Program correctness for
P with respect to specification S is denoted S � P (S is refined by P), and is
defined as: S � P iff [P ⇒ S].

UTP has an infix syntax for the conditional, P � b�Q , and it is defined
(b ∧ P) ∨ (¬ b ∧ Q), if αb ⊆ αP = αQ . Sequence is modelled as rela-
tional composition: two relations may be composed, providing that the alpha-
bets match: P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0), if outαP = inαQ ′ = {v ′}.
If A = {x , y, . . . , z} and αe ⊆ A, the assignment x :=A e of expression e to
variable x changes only x ’s value: x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z).
There is a degenerate form of assignment that changes no variable, called “skip”:
IIA =̂ (v ′ = v), if A = {v}. Nondeterminism can arise in one of two ways: ei-
ther as the result of run-time factors, such as distributed processing; or as the
under-specification of implementation choices. Either way, nondeterminism is
modelled by choice; the semantics is simply disjunction: P 	 Q =̂ P ∨ Q .

Engineering UToPiA 25

Variable blocks are split into the commands var x , which declares and intro-
duces x in scope, and end x , which removes x from scope. In the definitions, A
is an alphabet containing x and x ′.

var x =̂ (∃ x • IIA) end x =̂ (∃ x ′ • IIA)

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

The set of alphabetised predicates with a particular alphabet A forms a com-
plete lattice under the refinement ordering (which is a partial order). The bottom
element is denoted ⊥A, and is the weakest predicate true; this is the program
that aborts, and behaves quite arbitrarily. The top element is denoted �A, and
is the strongest predicate false; this is the program that performs miracles and
implements every specification. Since alphabetised relations form a complete lat-
tice, every construction defined solely using monotonic operators has a complete
lattice of fixed points. The weakest fixed-point of the function F is denoted by
μ F , and is simply the greatest lower bound (the weakest) of all the fixed-points
of F . This is defined: μ F =̂ 	{X | F (X) � X }. The strongest fixed-point
νF is the dual of the weakest fixed-point.

3 Separation Logic in UTP

We present separation logic as an example of a programming theory in UTP.
Separation logic was originally conceived as an extension of Hoare logic for rea-
soning about programs that use pointers [16,21], although it is also applicable
to reasoning about the ownership of resources and about virtual separation be-
tween parallel programs with shared state. To understand the problem being
addressed, consider the assignment rule in Hoare logic.

{ p[e/x] } x := e { p }

We use this rule to calculate the precondition for x := 10 to achieve a postcon-
dition x = 10 ∧ y = 0 as (x = 10 ∧ y = 0)[10/x], which is simply y = 0.

Now suppose that x is a reference variable denoting an address in memory,
not a simple value. Let the expression [x] be the value obtained by dereferencing
x ; that is, by looking up the address and reading its contents, which could be
a constant, another address, or a record combining a mixture of both. Refer-
ence variables are created on the heap, which is memory set aside for dynamic
allocation. Two reference variables can be aliases for the same address, so that
modifying the value addressed by a reference variable will implicitly modify the
values associated with all aliases, and this may be surprising. As a result, aliasing
makes it particularly difficult to understand, analyse, and optimise programs.

Consider the assignment [x] := 10 and the postcondition [x] = 10 ∧ [y] = 0.
We calculate the precondition ([x] = 10 ∧ [y] = 0)[10/[x]], which simplifies to
[y] = 0. So the before-value of [x] is unimportant and the before-value of [y]
must be 0; providing the latter holds, the assignment makes the postcondition

26 J. Woodcock

true; but what if x and y point to the same address? Afterwards, this address
must be both 10 and 0; this can mean only that the standard rule for assignment
is unsound in the presence of aliasing. The problem can be fixed in an ad hoc
way by adding the precondition that there is no aliasing.

Separation logic is specifically designed to overcome this problem. We show
how to give a semantics in UTP to separation logic and its characteristic frame
rule that allows compositional reasoning about reference variables and the heap.
In UTP, we avoid using an environment to describe the current state of a pro-
gram; instead, we identify a program variable with its meaning as a mathematical
variable. We extend this by adding an observation variable to represent the heap.
Instead of talking about memory addresses, we abstract a little and discuss ob-
ject identifiers and field names. For example, if we have an object type with two
fields int and next , then an observation of our heap could be the function:

{(o1, int) �→ 3, (o2, int) �→ 4, (o3, int) �→ 2,
(o1, next) �→ o2, (o2, next) �→ o3, (o3, next) �→ null}

If our reference variable x has the object identifier o1 as its reference, then
this heap describes a linked list that represents the sequence 〈3, 4, 2〉. In what
follows, we treat the object identifier and field name pair as though it were
simply an object identifier. Let Obj be the set of object identifiers and Val be
the set of values (constants or object identifiers, or the special null value); then
hp : Obj �→ Val represents the state of the heap. Heap predicates constrain hp;
they do not make sense unless all their reference variables are defined to be on
the heap. We formalise this as a healthiness condition. Let fv(P) be the set of
free program variables mentioned in P .

Definition 1 (Heap predicate SL1). P is a healthy heap predicate providing
it is a fixed point of the function: SL1(P) = P ∧ fv(P) ⊆ dom hp. SL1-healthy
predicates are called simply “heap predicates”. �

Definition 2 (Compatible join). Define the compatible join of two heaps as:
hp � (h1, h2) =̂ dom h1 ∩ dom h2 = ∅ ∧ hp = h1 ∪ h2. �

The key operator in separation logic is the separating conjunction. In its defini-
tion, we use the shorthand: ph = p[h/hp]; later, we also use Qh′

h = Q [h, h′/hp, hp′].

Definition 3 (Separating conjunction). The binary operator ∗ (pronounced
“star” or “separating conjunction”) asserts that the heap can be split into two
disjoint parts where its two arguments hold, respectively.

p ∗ q =̂ ∃ h1, h2 • hp � (h1, h2) ∧ ph1 ∧ qh2 �

We introduce a healthiness condition on relations on heaps.

Definition 4 (Frame property SL2). Suppose that the heap can be partitioned
into subheaps h1 and h2 and that all of Q’s reference variables are on the h1

Engineering UToPiA 27

subheap: hp � (h1, h2) ∧ fv(Qhp′
hp) ⊆ dom h1. Then Q is independent of the

heaplet h2 if it is a fixed point of the function:

SL2(Qhp′
hp) = Qhp′

hp ∧ ∃ h′
1 • hp′ � (h′

1, h2) ∧ Qh′
1

h1

SL2-healthy predicates are said to have the frame property. �
In the standard account of separation logic, the frame property is proved as
a theorem of the operational semantics of the programming language, but we
make it a basic healthiness condition. The set of healthy predicates must then be
shown to be closed under (the denotational semantics of) the program operators.

Frame-property-healthy predicates support modular reasoning in separation
logic. To demonstrate this, we define Hoare triples and prove the frame rule.
First, the notion of refinement in UTP is given in the following definition.

Definition 5 (Refinement). Suppose Q and P are heap relations; then Q is
a refinement of P, written P � Q, providing that every observation of Q is also
an observation of P. That is, P � Q =̂ [Q ⇒ P]. �
Definition 6 (Hoare triple). The correctness of a program Q is a refinement
assertion: { p } Q { r } =̂ (p ⇒ r ′) � Q, providing [p ⇒ fv(Q) ⊆ dom hp]. �

Now we are ready for the central result in separation logic, the frame rule,
which is the basis for the logic’s local reasoning technique. This says that if
a program Q can execute safely in a local state satisfying p, then it can also
execute in any bigger state satisfying p ∗ s and that its execution will not affect
this additional part of the state, and so s will remain true after execution.

Theorem 1 (Frame Rule)

{ p } Q { r }
[fv(Q) ∩ fv(p) = ∅]

{ p ∗ s } Q { r ∗ s }
Proof: See Fig. 1. �

Separation logic also has a separating implication (∗, known as “magic wand”)
that asserts that extending the heap with a disjoint part that satisfies its first
argument results in a heap that satisfies the second argument.

Definition 7. p ∗ q =̂ ∀ h1, h2 • h1 � (hp, h2) ∧ ph2 ⇒ qh1 �
Lemma 1 (Galois)

((p ∗ q) ⇒ r)hp∪h iff p ⇒ (q ∗ r) if dom h ∩ dom hp = ∅ �

The heaplet x �→ v asserts that the heap is a singleton map:

Definition 8 (Heaplet). x �→ hp v =̂ hp = {x �→ v} �
In practice, we drop the subscript and write simply x �→ v . If we do not care
what the value is on the heap, then we write x �→ .

Now we return to verifying the assignment. Here is the rule in separation
Hoare logic for assignment:

28 J. Woodcock

�
[I]

sh2 , hp
′ � (h ′

1, h2), rh′
1� hp′ � (h ′

1, h2) ∧ rh′
1
∧ sh2

[∃-R]
sh2 , hp

′ � (h ′
1, h2), rh′

1� ∃ h1, h2 • hp′ � (h1, h2) ∧ rh1 ∧ sh2 [∗-def]
sh2 , hp

′ � (h ′
1, h2), rh′

1� (r ∗ s)hp′
[⇒-L, thin-L]

ph1 , sh2 , hp
′ � (h ′

1, h2),Q
h′
1

h1
, ph1 ∧ Qh′

1
h1
⇒ rh′

1� (r ∗ s)hp′
[∀-L]

ph1 , sh2 , hp
′ � (h ′

1, h2),Q
h′
1

h1
, [php ∧ Qhp′

hp ⇒ rhp′]

� (r ∗ s)hp′
[Hoare-def]

{ php } Qhp′
hp { rhp }, ph1 , sh2 , hp

′ � (h ′
1, h2),Q

h′
1

h1� (r ∗ s)hp′
[∃-L, ∧-L]

{ php } Qhp′
hp { rhp }, ph1 , sh2 , ∃ h ′

1 • hp′ � (h ′
1, h2) ∧ Qh′

1
h1� (r ∗ s)hp′

[Qhp′
hp is SL2]

{ php } Qhp′
hp { rhp }, hp � (h1, h2), ph1 , sh2 ,Q

hp′
hp

� (r ∗ s)hp′
[∃-L, ∧-L]

{ php } Qhp′
hp { rhp },∃ h1, h2 • hp � (h1, h2) ∧ ph1 ∧ sh2 ,Q

hp′
hp

� (r ∗ s)hp′
[∗-def]

{ php } Qhp′
hp { rhp }, (p ∗ s)hp ,Qhp′

hp
� (r ∗ s)hp′

[∀-R, ⇒-R, ∧-L]
{ php } Qhp′

hp { rhp }
� [(p ∗ s)hp ∧ Qhp′

hp ⇒ (r ∗ s)hp′]
[Hoare-def]

{ php } Qhp′
hp { rhp }

� { (p ∗ s)hp } Qhp′
hp { (r ∗ s)hp }

Fig. 1. Proof of the frame rule

Engineering UToPiA 29

{ (x �→) ∗ ((x �→ e) ∗ p) } x := e { p }

For our assignment [x] := 10, a suitable postcondition is: x �→ 10 ∗ y �→ 0, which
gives us a precondition of

(x �→) ∗ ((x �→ 10) ∗ (x �→ 10 ∗ y �→ 0))

A sufficient condition is that y �→ 0, which follows directly from Lemma 1.
Further healthiness conditions are needed for a complete treatment of sep-

aration logic; in particular, heaps must be internally consistent for successful
evaluation of heap variables.

4 Linking Paradigms

Currently, CML contains several language paradigms.

1. State-Based Description. The theory of designs provides a nondetermin-
istic programming language with pre- and postcondition specifications as
contracts. The concrete realisation is VDM.

2. Concurrency and Communication. The theory of reactive processes pro-
vides process networks communicating by message passing. The concrete
realisation is CSPM with its rich collection of process combinators.

3. Object Orientation. This theory is built on designs with state-based de-
scriptions structured by sub-typing, inheritance, and dynamic binding, with
object creation, type testing and casting, and state-component access [4].

4. References. The theory of heap storage and its manipulations supports a
reference semantics based on separation logic described in Sect. 3.

5. Time. The theory of timed traces in UTP supports the observation of events
in discrete time. It is used in a theory of Timed CSP [24].

The semantic domains are each formalised as lattices of relations ordered by
refinement. Mappings exist between the different semantic domains that can
be use to translate a model from one lattice into a corresponding model in
another lattice. For example, the lattice of designs is completely disjoint from
the lattice of reactive processes, but the mapping R maps every design into a
corresponding reactive process. Intuitively, the mapping equips the design with
the crucial properties of a reactive process: that it has a trace variable that
records the history of interactions with its environment and that it can wait
for such interactions. A vital healthiness condition is that this trace increases
monotonically: this ensures that once an event has taken place it cannot be
retracted—even when the process aborts.

But there is another mapping that can undo the effect of R: it is called H ,
and it is the function that characterises what it is to be a design. H puts re-
quirements on the use of the observations ok and ok ′, and it is the former
that concerns us here. It states that, until the operation has started properly
(ok is true), no observation can be made of the operation’s behaviour. So, if

30 J. Woodcock

the operation’s predecessor has aborted, nothing can be said about any of the
operation’s variables, not even the trace observation variable. This destroys the
requirement of R that says that the trace increases monotonically.

This pair of mappings form a Galois connection [20], and they exist between all
of CML’s semantic domains. One purpose of a Galois connection is to embed one
theory within another, and this is what gives the compositional nature of UTP
and CML, since Galois connections compose to form another Galois connection.
For example, if we establish a Galois connection between reactive processes and
timed reactive processes (see Section 7), then we can compose the connection
between designs and reactive processes with this new Galois connection to form
a connection between designs and timed reactive processes.

This apparently obscure mathematical fact, that there is a Galois connection
between designs and relations, is of great practical value. One of the most impor-
tant features of designs is assertional reasoning, including the use of Hoare logic
and weakest precondition calculus. Assertional reasoning can be incorporated
into the theory of reactive processes by means of R. Consider the Hoare triple
p {Q } r , where p is a precondition, r is a postcondition, and Q is a reactive
process. We can give this the following meaning: (R(p � r ′) � Q): a refinement
assertion. The specification is R(p � r ′); here the precondition p and the post-
condition r have been assembled into a design (note that r becomes a condition
on the after-state; this design is then translated into a reactive process by the
mapping R. This reactive specification must then be implemented correctly by
the reactive process Q . Thus, reasoning with pre- and postconditions can be
extended from state-based operations to cover all operators of the reactive lan-
guage, including non-terminating processes, concurrency, and communication.

This is the foundation of the contractual approach used in COMPASS: pre-
conditions and postconditions (designs) can be embedded in each of the semantic
domains and this brings uniformity through a familiar reasoning technique [25].

5 Galois Connections

Our fundamental notion is that of a Galois connection on lattices [20], although
much of what we say applies equally to posets.

Example 1 (Arithmetic). Consider the following inequation: x + y ≤ z , for
x , y, z : Z. We can shunt the variable y to the other side without changing
its validity: x ≤ z − y. Writing L(n) = n + y and R(n) = n − y, we summarise
this arithmetic law: L(x) ≤ z iff x ≤ R(z). This law is an example of a shunting
rule that is often useful in manipulating arithmetic expressions. 	�

Definition 9 (Galois connection). A Galois connection between two lattices
(S ,�) and (T ,�) is a pair of functions (L, R) with L : S → T (the left adjoint)
and R : T → S (the right adjoint) satisfying, for all X in S and Y in T

L(X) � Y iff X � R(Y)

In much of what follows, the lattices share the same order. 	�

Engineering UToPiA 31

We depict a Galois connection as a diagram. Suppose that S is a lattice with
order relation �, T is a lattice with order �, L : S → T , R : T → S ,
and that (L, R) is a Galois connection. Then we denote this by the diagram

(S ,�)
L
�
R
(T ,�). There is an alternative definition of a Galois connection, with

L(X) as the strongest element Y with X � R(Y), and R(Y) as the weakest
element X with L(X) � Y , providing that L and R are monotonic. We formalise
this in the following law.

Law 51 (Alternative Galois Connection)

(L, R) is a Galois connection between lattices S and T

iff

⎧⎨⎩
Prop. 51.1 L, R monotonic
Prop. 51.2 L ◦ R � idT
Prop. 51.3 idS � R ◦ L

The function L ◦ R is strengthening and the function R ◦ L is weakening. 	�

Law 52 (Pseudo-inverse). For any Galois connection (L,R), each function is
a pseudo-inverse of the other:

Law 52.1 L = L ◦ R ◦ L
Law 52.2 R = R ◦ L ◦ R �

An interesting specialisation of a Galois connection is when the function L
is surjective; that is, when ranL = T , where T is the set of elements in the
right-hand lattice. As we see below in Law 53, L’s surjectivity is equivalent to
R’s injectivity, which in turn is equivalent to the existence of a left inverse for
R, which turns out to be L itself. This special case is known as a retract (L is
a retraction of R); elsewhere, it is known variously as a Galois injection or a
Galois insertion. If it is R that is surjective, then L will be injective and R will
be its left inverse; this special case is known as a coretract . If both functions are
surjective, then they are also both injective and this very special case is known
as a Galois bijection. Such structures are still of practical interest, such as the
Galois bijection between logarithms and natural exponents.

Definition 10 (Retract and Coretract). For any Galois connection (L, R):

Def 10.1 (L, R) is a retract if L ◦ R = idT (Galois insertion)
Def 10.2 (L, R) is a coretract if R ◦ L = idS (Galois injection) �

We are nearly ready to give a collection of useful equivalences about retracts
and coretracts, but first we need one more definition. Recall that if F is mono-
tonic, then [(P � Q) ⇒ (F (P) � F (Q))]. If the implication also holds in the
opposite direction, then F is an order similarity.

Definition 11 (Order Similarity). F : S → S is an order similarity if, for
every P , Q : S: (F (P) � F (Q)) = (P � Q). �

32 J. Woodcock

Another term for a function being monotonic is that is it order preserving; an-
other term for the converse is that the function is order reflecting; the pair of
implications is then termed an order embedding or an order monomorphism.

This now gives us four equivalent ways of characterising a retract.

Law 53 (Retract Property)

(L, R) is a retract

iff (Law 53.1) L is surjective
iff (Law 53.2) R is injective
iff (Law 53.3) R is an order similarity �

Similarly, there are four equivalent ways of characterising a coretract.

Law 54 (Coretract Property)

(R, L) is a coretract

iff (Law 54.1) R is surjective
iff (Law 54.2) L is injective
iff (Law 54.3) L is an order similarity �

There are four more useful properties of Galois connections between complete
lattices. The first two tell us that it is necessary to have only one of the two func-
tions, since the other can be determined uniquely. The second two properties are
about distribution through the lattice operators: L is a complete join-morphism
R is a complete meet-morphism.

Law 55 (Galois Connection Properties). For any Galois connection (L, R)
on complete lattices S and T, we have:

Law 55.1 R uniquely determines L L(P) =
�
{Q ∈ S | P � R(Q) }

Law 55.2 L uniquely determines R R(Q) =
⊔
{P ∈ T | L(P) � Q }

Law 55.3 L preserves lubs L(
⊔

X) =
⊔
{L(P) | P ∈ X }

Law 55.4 R preserves glbs R(
�

Y) =
�
{R(Q) | Q ∈ Y } �

The last two properties in Law 55 are interesting because they link the lattice
operators involved in a Galois connection. A theory consists of a set of predicates
over a particular alphabet ordered in a lattice that is accompanied by a signature
that describes the operators of the theory. There may be other similar operators
in the signatures of the two theories involved in the Galois connection, and the
links between them can be investigated as morphisms in a similar way to those
for the lattice operators. For example, in the Galois connection between designs
and reactive processes, each theory has an imperative assignment, and we would
expect that them to be related so that (x :=R y) = R(x :=H y).

The following definition describes the links that might be made by L between
the function symbol F in the two lattice signatures and by a set of such functions.

Engineering UToPiA 33

Definition 12 (Σ-morphism)

L is an F-morphism L ◦ FS = FT ◦ L
L is an F�-morphism L ◦ FS � FT ◦ L
L is an F�-morphism L ◦ FS � FT ◦ L
L is a Σ-morphism L is an F-morphism, for all F in Σ �

If the Galois connection is a retract, then there is a very precise relationship
between F in the two lattices and L.

Law 56 (Retract Morphism). If (L, R) is a retract and L is an F-morphism,
then FS = R ◦ FT ◦ L. �

A dual property exists for a coretract.

Law 57 (Coretract Morphism). If (L, R) is a coretract and R is an F-
morphism, then FS = R ◦ FT ◦ L. �

We can use these morphisms to calculate a function in one lattice in terms of
another. For example, suppose that L is an F morphism, then we can calculate
the strongest definition for FT in terms of FS and the functions L and R. This
is described in the following lemma.

Lemma 2 (Strongest Solution). F#(Y) = L ◦ FS ◦ R(Y) is the strongest
solution for FT in FS (X) � R ◦ FT ◦ L(X) �

This concludes our brief description of Galois connections and their properties.
A more detailed description can be found in [20].

6 Designs

In the theory of relations, the following inequality holds:

true ; x := 0 �= true

So, if we follow an aborting execution (semantics true) by an assignment, then
the result is not abort. Operationally, this is as though a non-terminating loop
can simply be ignored, and this is not how we expect real programs to behave.
The solution to this problem is to find a subset of the relational theory in which
the equality does hold. We introduce a new observation variable ok , which is
used to record information about the start and termination of programs. The
required equation holds for predicates in this set.

The predicates in this set are called designs. They can be split into precondition-
postcondition pairs like those in B [1], VDM [11], and refinement calculi [13,2,14].
In designs, ok records that the program has started, and ok ′ records that
it has terminated; they never appear in code or in preconditions and postcondi-
tions. In implementing a design, we are allowed to assume that the precondition

34 J. Woodcock

holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that the program terminates. If the
precondition does not hold, or the program does not start, we are not committed
to establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q , for predicates P and Q not
containing ok or ok ′, is written (P � Q) and defined as (ok ∧ P ⇒ ok ′ ∧ Q). If
the program starts in a state satisfying P , then it will terminate, and on termina-
tion Q will be true. Refinement of a design involves weakening the precondition
or strengthening the postcondition in the presence of the precondition:

Law 61. Refinement of designs

P1 � Q1 � P2 � Q2 = [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] �

Designs satisfy two healthiness conditions. A relation P is H1 -healthy iff
P = (ok ⇒ P), so observations cannot be made before the program has started.
A consequence is that R satisfies the left-zero and unit laws: true ; R = true
and IID ; R = R. The second healthiness condition is P = P ; J , where
J = (ok ⇒ ok ′) ∧ II . This states that P must be monotonic in ok ′: it can-
not require nontermination, so even abort can terminate.

H is the composition of H1 and H2 (they commute). Designs are exactly
those relations that are H-healthy. So what exactly is the connection between
designs and mere relations? We look for a Galois connection between the lattice
of nondeterministic programs provided by the theory of relations and the lattice
with the same signature provided by the theory of designs. These two theories
lie at the heart of CML. We start by defining the left adjoint, which we call Des .
This maps pure relations into the lattice of designs: Des : Relations → Designs.
Both lattices are ordered by refinement.

The semantics of nondeterministic programs in Relations excludes a treatment
of termination (as evidenced by the inequality above), so when we map a relation
R into a design, we have to decide how to handle the termination question. R
can have no description of when it terminates, and its correctness against a
specification must be judged with the assumption that it terminates; this is
exactly a statement of partial correctness. We encode both these decisions using
the healthiness condition for designs, H , together with the requirement that the
program must terminate.

Definition 13 (Des). Des(R) =̂ H(R ∧ ok ′) �

H2(P) = P ; J J =̂ (ok ⇒ ok ′) ∧ II(αP \ {ok , ok ′})

A key property of this definition is known as J -splitting:

P ; J = P f ∨ (P t ∧ ok ′)

Law 62 (Des Design). Des(R) = true � R �

Engineering UToPiA 35

The right adjoint is called Rel , and it maps from Designs into Relations. Its job
is to throw away the information about initiation and termination in a design to
extract the underlying relation. It does this by considering only the case that the
design is started and finishes properly: Rel(D) = D [true, true/ok , ok ′]. There is
a shorthand for this particular substitution: D tt .

Definition 14 (Rel). Rel(D) =̂ D tt �

Law 63 (Rel Design). Rel(P � Q) = P ⇒ Q �

This pair of functions form a Galois connection: (Designs,�)
Des
�
Rel

(Relations,�).

Theorem 2 ((Des , Rel) Galois connection)

(Des , Rel) is a Galois connection �

The Galois connection (Des , Rel) is a coretract.

Lemma 3 (Des injective)

Des is injective �

Lemma 4 ((Des , Rel) Properties)

1. Rel is surjective
2. (Des , Rel) is a coretract
3. Des is an order similarity: (Des(R) � Des(S)) = (R � S)

Proof. Since Des is injective. �

7 Reactive Processes

Reactive processes in UTP [9, Chap. 8] have four pairs of observation variables:
ok , wait , tr , ref and their dashed counterparts. Three states are described by
ok ′ and wait ′: (i) ok ′ ∧ wait ′, the process is in a stable intermediate state;
(ii) ok ′ ∧ ¬ wait ′, the process is in a stable final state; and (iii) ¬ ok , the process
is in an unstable state. The corresponding undashed conditions refer to the
process’s predecessor’s state. The history of events engaged in by the process’s
predecessors is recorded in the trace tr ; the events engaged in by the process
itself are recorded in tr ′− tr . (The definedness of this expression is the topic of a
healthiness condition below.) At any moment, the process will have certain events
enabled and others disabled; ref ′ described the events currently being refused
by the process. (The ref variable is the odd man out, as it serves no purpose
other than to make a reactive process a homogeneous relation. Its status is the
subject of a healthiness condition not discussed here; see [9, Chap. 8].)

36 J. Woodcock

Reactive processes satisfy three healthiness conditions. The first, R1 en-
sures that events, once they occur, cannot be retracted: tr ≤ tr ′. The second,
R2 , ensures that a process’s behaviour is oblivious to the history of events:
P(tr , tr ′) = P(〈〉, tr ′ − tr). The third makes sure that sequential composition
behaves appropriately: P = II R �wait �P , where

IIR = (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧ ref ′ = ref)

CSP processes are reactive processes that satisfy two additional healthiness con-
ditions: CSP1 = R1 ◦ H1 and CSP2(P) = P ; J . Here,

J = (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref

The fact that the two CSP conditions are the reactive analogues of the two
design healthiness conditions allows the semantics of basic CML to be given as
compositions. We formalise this notion by setting out the key Galois connection
between designs and reactive processes.

The healthiness conditions R2 and R3 commute with H1 and H2 . This means
that they preserve designs. R1 , on the other hand, does not commute with H1 :

H1 ◦ R1 (P) = ok ⇒ P ∧ (tr ≤ tr ′)

R1 ◦ H1 (P) = (ok ⇒ P) ∧ (tr ≤ tr ′)

In fact, R1 ◦ H1 = CSP1 . For this reason, it is interesting to study the rela-
tionship between R1 and H , which, as we see below, turns out to be a retract.

Theorem 3. (H,R1) is a Galois connection. �

The Galois connection (H ,R1) is a retract, since H is injective on CSP processes,
with R1 as its left inverse. We prove this in the next lemma.

Lemma 5. H is injective. �

To complete the proof, we need two small lemmas.

Lemma 6. CSP = R1 ◦ H. �

Lemma 7 ((H ,R1) is a Galois connection)

1. R1 is surjective
2. (R1,H) is a retract (Galois insertion)
3. H is an order similarity (H(P) � H(Q)) = (P � Q)

Proof. Since H is injective. �

Engineering UToPiA 37

8 Timed Reactive Processes

Our semantic domain consists of traces with embedded refusal sets, which is close
to Lowe and Ouaknine’s timed testing model [12], which records the passing of
time with an explicit tock event and allows refusal experiments to be made only
before tocks. We do not observe the tock event directly and so tock �∈ Σ. Instead,
we observe the passage of time through the refusal experiments. At the end of
each time interval either a refusal experiment is made or the empty refusal set is
recorded. If we let Σ be the universe of events, then the traces that we can observe
are drawn from the following set: timedTrace =̂ (Σ + P(Σ))∗. This defines the
set of all finite sequences where each element is either an event or a refusal set.
For example, the trace 〈a, b, {b, c}, ∅, c〉 represents the observation: (i) the trace
〈a, b〉 occurred in the first time interval; (ii) at the end of this trace, the process
refused the set of events {b, c}; (iii) no events were observed during the second
time interval; (iv) at the end of the second time interval, no events were refused;
(v) the third time interval is incomplete, but the trace 〈c〉 was observed so far.
Notice that timed testing traces are able to record quite subtle information.
Consider the behaviour of a process P , with a universe of events including only
a and b. P never offers to engage in b, but offers to engage in a during every
other time interval. Here is a possible trace of P : 〈{a, b}, {b}, {a, b}, {b}, {a, b}〉.

We define some simple operators on timed traces. The function events(t)
throws away the refusal sets in t , leaving just the trace of events. The function
refsduring(t) collects together the set of refusal sets in t , throwing away ordering
information and the event component. The function refusals(t) calculates all the
events that are refused at some point during the trace t .

Definition 15. Let A ⊆ Σ, a ∈ Σ and t ∈ timedTrace. Then

events(t) = t � Σ

refsduring(t) = ran(t � P(Σ))

refusals(t) =
⋃

refsduring(t)

The trace precedence relation t � u holds when t contains less information than
u, either because t is a prefix of u, or the refusal sets in t are subsets of the
similarly positioned refusal sets in u, or a combination of the two conditions.

Definition 16 (Testing trace precedence). Let a ∈ Σ, X ⊆ Y ⊆ Σ and
t , u ∈ timedTrace. Then

〈〉 � u
〈a〉 � t � 〈a〉 � u if t � u
〈X 〉� t � 〈Y 〉� u if t � u

�

For example 〈a, {b}, c, {d , e}〉 � 〈a, {b, d}, c, {d , e}〉. This is a stronger relation
than the usual prefix relation on event traces, ≤ :

A similar result holds for the refusals over testing traces:

38 J. Woodcock

Lemma 8 (Precedence refusals). t � u ∧ a ∈ refusals(t) ⇒ a ∈
refusals(u).
Proof by induction on t. �

Observations of CML consist of: ok , ok ′, wait , wait ′, which are inherited from
reactive processes; rt , rt ′, which are timed testing traces; and v , v ′, which are the
vectors of programming variables. A derived variable, tt ′ = rt ′−rt , describes the
events of the trace carried out by the current process. There are five healthiness
conditions.

The first requirement is that tt ′ is well-defined. This requires that the obser-
vation of rt prefixes the observation of rt ′. RT1 ensures that a process cannot
alter the part of the trace that has already been observed; all it may do is append
to rt .

Definition 17 (RT1)

RT1(P) = P ∧ rt ≤ rt ′

Our next healthiness condition is similar to R2 : it controls the use of the trace
variable to make sure that P is not sensitive to the behaviour of its predecessors.

Definition 18. RT2(P) = P [〈〉, tt ′/rt , rt ′] �

The healthiness condition RT3 is a modified form of R3 . Changes to the internal
state of a process are permitted by RT3 , but should remain unobservable until
some interaction takes place (cf. [3]). This inability to observe internal interaction
has the consequence that a choice between two processes cannot be resolved by
internal state changes, but only external events or the termination of one of the
processes.

Definition 19 (RT3)

RT3(P) = RT1(true � wait ′ ∧ tt ′ = 〈〉)�wait �P

Our fourth healthiness condition corresponds to CSP1 .

Definition 20. RT4(P) = RT1(¬ ok) ∨ P. �

Our fifth healthiness condition is similar to CSP2 .

Definition 21 (RT5). RT5(P) = P ; J . �

Lemma 9 (RT functions are commuting monotonic idempotents)

1. RT1–RT5 are all monotonic idempotents.
2. RT1–RT5 all commute.

Definition 22 (RT)

RT =̂ RT1 ◦ RT2 ◦ RT3 ◦ RT4 ◦ RT5

Engineering UToPiA 39

The trace variable tr and the refusal variable ref in basic CML are replaced by
the single timed trace rt in timed CML. We establish a Galois connection that
links these variables by specifying one of the adjuncts and then calculate the
other. We choose the left adjoint L : Timed → Reactive, as it is easy to specify
since it forgets all the information about time represented in rt and rt ′.

Definition 23

L(P) =̂
∃ rt , rt ′ • P ∧ (tr = events(rt)) ∧ (tr ′ = events(rt ′))

∧ (ref = last(refsduring(rt)) ∧ (ref ′ = last(refsduring(rt ′))

As we know, one adjoint in a Galois connection uniquely determines the other.
We can think of R(Q) as finding a schedule for the events and refusals in Q , but
which schedule would be appropriate? The answer is provided by the calculation
needed for R.

Definition 24

R(Q) =̂
�
{P | L(P) � Q }

This is the weakest possible schedule.
L and R can be used to check properties of CML processes, to structure them

into architectural patterns, and as part of system development techniques.

9 Conclusion

Our initial work on Galois connections for timed reactive processes opens up
some interesting avenues of work.

If P is a fixed point of R ◦ L, then it is time insensitive. This may be an
important structural property.

Sherif [23] uses a similar Galois connection as an architectural pattern for
real-time systems. In his work, a CircusTime process is translated into a timeless
Circus process that interacts with a set of clocks; collectively, they implement
the timed specification. The strategy for translating the specification is based
on using the left adjoint to forget timing information, whilst introducing the
required clock interactions.

A recommended development strategy for Handel-C programs on FPGAs is to
ignore timing properties initially and produce a network of communicating pro-
cesses with the required basic functionality [19]. Once this is completed, commu-
nications and state assignments should then be scheduled synchronously. Handel-
C is similar to CML and Circus, and so the scheduling could be carried out as a
translation based on our right adjoint R.

The work described in this paper is being mechanised in Isabelle/HOL [15],
using Foster’s UTP embedding [7]. The work is inspired by previous mechanisa-
tions, such as [18].

40 J. Woodcock

Acknowledgements. This work is supported by EU Framework 7
Integrated Project Comprehensive Modelling for Advanced Systems of
Systems (COMPASS, Grant Agreement 287829). For more information
see http://www.compass-research.eu. Simon Foster, Will Harwood, and
Andy Galloway made helpful comments on parts of this paper; Samuel Canham
and Jeremy Bryans contributed to work on the semantic domain for timed reac-
tive processes; Ana Cavalcanti made contributions throughout; John Fitzgerald
and Peter Gorm Larsen provided continuous inspiration; thanks are due to all
of them.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Back, R.J.R., Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer (1998)

3. Butterfield, A., Gancarski, P., Woodcock, J.: State visibility and communication
in Unifying Theories of Programming. In: Chin, W.-N., Qin, S. (eds.) TASE 2009,
Third IEEE Int. Symp. on Theoretical Aspects of Software Engineering, pp. 47–54.
IEEE Computer Society (2009)

4. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software
and System Modeling 4(3), 277–296 (2005)

5. Cavalcanti, A., Wellings, A.J., Woodcock, J.: The Safety-Critical Java memory
model formalised. Formal Asp. Comput. 25(1), 37–57 (2013)

6. Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical
Java in Circus. In: Wellings, A.J., Ravn, A.P. (eds.) The 9th International Work-
shop on Java Technologies for Real-time and Embedded Systems, JTRES 2011,
York, United Kingdom, September 26-28, pp. 20–29. ACM (2011)

7. Foster, S., Woodcock, J.: Unifying Theories of Programming in Isabelle. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming. LNCS, vol. 8050, pp.
109–155. Springer, Heidelberg (2013)

8. Hehner, E.C.R.: Retrospective and prospective for Unifying Theories of Program-
ming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 1–17.
Springer, Heidelberg (2006)

9. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)
10. Circus homepage, http://www.cs.york.ac.uk/circus/ (accessed February 27,

2014)
11. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall (1986)
12. Lowe, G., Ouaknine, J.: On timed models and full abstraction. Electr. Notes Theor.

Comput. Sci. 155, 497–519 (2006)
13. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)
14. Morris, J.M.: A Theoretical Basis for Stepwise Refinement and the Programming

Calculus. Science of Computer Programming 9(3), 287–306 (1987)
15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
16. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that

alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

http://www.compass-research.eu
http://www.cs.york.ac.uk/circus/

Engineering UToPiA 41

17. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electr. Notes Theor. Comput. Sci. 187, 107–123 (2007)

18. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

19. Perna, J.I., Woodcock, J.: UTP semantics for Handel-C. In: Butterfield, A. (ed.)
UTP 2008. LNCS, vol. 5713, pp. 142–160. Springer, Heidelberg (2010)

20. Priestley, H.A.: Ordered sets and complete lattices. In: Blackhouse, R., Crole, R.L.,
Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Pro-
gram Construction. LNCS, vol. 2297, pp. 21–78. Springer, Heidelberg (2002)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science, LICS
2002, Copenhagen, Denmark, July 22-25, pp. 55–74. IEEE Computer Society
(2002)

22. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)
23. Sherif, A.: A Framework for Specification and Validation of Real-Time Systems

using Circus Actions. PhD thesis, Centro de Informaticá, Universidade Federal de
Pernambuco (2006)

24. Wei, K., Woodcock, J., Burns, A.: Timed Circus: Timed CSP with the Miracle. In:
ICECCS, pp. 55–64 (2011)

25. Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.) UTP
2008. LNCS, vol. 5713, pp. 202–217. Springer, Heidelberg (2010)

26. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

27. Woodcock, J., Cavalcanti, A., Fitzgerald, J.S., Larsen, P.G., Miyazawa, A., Perry,
S.: Features of CML: A formal modelling language for systems of systems. In: 7th
International Conference on System of Systems Engineering, SoSE 2012, Genova,
Italy, July 16-19, pp. 445–450. IEEE (2012)

28. Woodcock, J., Davies, J.: Using Z—Specification, Refinement, and Proof. Prentice-
Hall (1996)

29. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In: But-
terfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 238–257. Springer, Heidelberg
(2010)

30. Zhu, H., Yang, F., He, J.: Generating denotational semantics from algebraic se-
mantics for event-driven system-level language. In: Qin, S. (ed.) UTP 2010. LNCS,
vol. 6445, pp. 286–308. Springer, Heidelberg (2010)

40 Years of Formal Methods

Some Obstacles and Some Possibilities?

Dines Bjørner1 and Klaus Havelund2,�

1 Fredsvej 11, DK-2840 Holte, Danmark
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark

bjorner@gmail.com

www.imm.dtu.dk/~dibj
2 Jet Propulsion Laboratory, Calif. Inst. of Techn., Pasadena, California 91109, USA

klaus.havelund@jpl.nasa.gov

www.havelund.com

Dedicated to Chris W. George

Abstract. In this “40 years of formal methods” essay we shall first delin-
eate, Sect. 1, what we mean by method, formal method, computer sci-
ence, computing science, software engineering, and model-oriented and
algebraic methods. Based on this, we shall characterize a spectrum
from specification-oriented methods to analysis-oriented methods. Then,
Sect. 2, we shall provide a “survey”: which are the ‘prerequisite works’
that have enabled formal methods, Sect. 2.1, and which are, to us, the,
by now, classical ‘formal methods’, Sect. 2.2. We then ask ourselves the
question: have formal methods for software development, in the sense of
this paper been successful? Our answer is, regretfully, no! We motivate
this answer, in Sect. 3.2, by discussing eight obstacles or hindrances to the
proper integration of formal methods in university research and educa-
tion as well as in industry practice. This “looking back” is complemented,
in Sect. 3.4, by a “looking forward” at some promising developments —
besides the alleviation of the (eighth or more) hindrances!

1 Introduction

It is all too easy to use terms colloquially. That is, without proper definitions.

1.1 Some Delineations

Method: By a method we shall understand a set of principles for selecting and
applying techniques and tools for analyzing and/or synthesizing an artefact. In
this paper we shall be concerned with methods for analyzing and synthesizing
software artefacts.
� The work of second author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 42–61, 2014.
c© Springer International Publishing Switzerland 2014

www.imm.dtu.dk/~dibj
www.havelund.com

40 Years of Formal Methods 43

We consider the code, or program, components of software to be mathematical
artefacts.1 That is why we shall only consider such methods which we call formal
methods.

Formal Method: By a formal method we shall understand a method whose tech-
niques and tools can be explained in mathematics. If, for example, the method
includes, as a tool, a specification language, then that language has a formal syn-
tax, a formal semantics, and a formal proof system. The techniques of a formal
method help construct a specification, and/or analyse a specification, and/or
transform (refine) one (or more) specification(s) into a program. The techniques
of a formal method, (besides the specification languages) are typically software
packages.

Formal, Rigorous or Systematic Development: The aim of developing software,
either formally or rigorously or systematically2 is to [be able to] reason about
properties of what is being developed. Among such properties are correctness
of program code with respect to requirements and computing resource usage.

Computer Science, Computing Science and Software Engineering: By computer
science we shall understand the study of and knowledge about the mathematical
structures that “exist inside” computers.

By computing science we shall understand the study of and knowledge about
how to construct those structures. The term programming methodology is here
used synonymously with computing science.

By engineering we shall understand the design of technology based on scientific
insight and the analysis of technology in order to assess its properties (including
scientific content) and practical applications.

By software engineering we shall understand the engineering of domain descrip-
tions (D), the engineering of requirements prescriptions (R), the engineering of
software designs (S), and the engineering of informal and formal relations (|=3)
between domain descriptions and requirements prescriptions (D |= R), and do-
main descriptions & requirements prescriptions and software designs (D,S |= R).
This delineation of software engineering is based (i) on treating all specifica-
tions as mathematical structures4, and (ii) by (additional to these programming
methodological concerns) also considering more classical engineering concerns
[16].
1 Major “schools” of software engineering seem to not take this view.
2 We may informally characterize the spectrum of “formality”. All specifications are
formal. Furthermore,

– in a formal development all arguments are formal;

– in a rigorous development some arguments are made and they are formal;

– in a systematic development some arguments are made, but they are not necessarily
formal, although on a form such that they can be made formal.

Boundary lines are, however, fuzzy.
3 B|=A reads: B is a refinement of A.
4 In that sense “our” understanding of software engineering differs fundamentally from
that of for example [108].

44 D. Bjørner and K. Havelund

Model-oriented and Algebraic Methods: By a model-oriented method we shall
understand a method which is based on model-oriented specifications, that is,
specifications whose data types are concrete, such as numbers, sets, Cartesians,
lists, maps.

By an algebraic method, or as we shall call it, property-oriented method we shall
understand a method which is based on property-oriented specifications, that is,
specifications whose data types are abstract, that is, postulated abstract types,
called carrier sets, together with a number of postulated operations defined in
terms of axioms over carrier elements and operations.

1.2 Specification versus Analysis Methods

We here introduce the reader to the distinction between specification-oriented
methods and analysis-oriented methods. Specification-oriented methods, also re-
ferred to as specification methods, and typically amongst the earliest formal
methods, are primarily characterized by a formal specification language, and in-
clude for example VDM [18, 66, 19, 67, 39, 40], Z [114] and RAISE/RSL [46, 45, 12–
14]. The focus is mostly on convenient and expressive specification languages
and their semantics. The main challenge is considered to be how to write simple,
easy to understand and elegant/beautiful specifications. These systems, how-
ever, eventually got analysis tools and techniques. Analysis-oriented methods,
also referred to as analysis methods, on the other hand, are born with focus
on analysis, and include for example Alloy [63], Astrée [23], Event B [2], PVS
[106, 92, 91, 107], Z3 [22] and SPIN [60]. Some of these analysis-oriented meth-
ods, however, offer very convenient specification languages, PVS [91] being an
example.

2 A Syntactic Status Review

Our focus is on model-oriented specification and development approaches.
We shall, however, briefly mention the property-oriented, or algebraic ap-
proaches also.

By a syntactic review we mean a status that focuses publications, formal
methods (“by name”), conferences and user groups.

2.1 A Background for Formal Methods

The formal methods being surveyed has a basis, we think, in a number of seminal
papers and in a number of seminal textbooks.

Seminal Papers: What has made formal software development methods pos-
sible? Here we should like to briefly mention some of the giant contributions
which are the foundation for formal methods. There is John McCarthy ’s work,
for example [82, 83]: Recursive Functions of Symbolic Expressions and Their
Computation by Machines and Towards a Mathematical Science of Computa-
tion. There is Peter Landin’s work, for example [77, 78, 25]: The Mechanical

40 Years of Formal Methods 45

Evaluation of Expressions, Correspondence between ALGOL 60 and Church’s
Lambda-notation and Programs and their Proofs: an Algebraic Approach. There
is Robert Floyd’s work, for example [42]: Assigning Meanings to Programs.
There is John Reynold’s work, for example [99]: Definitional Interpreters for
Higher-order Programming Languages. There is Dana Scott and Christopher

Strachey’s work, for example [104]: Towards a Mathematical Semantics for
Computer Languages. There is Edsger Dijkstra’s work, for example [36]: A
Discipline of Programming. There is Tony Hoare’s work, for example [56, 57]:
An Axiomatic Basis for Computer Programming and Proof of Correctness of
Data Representations.

Some Supporting Text Books: Some monographs or text books “in line” with
formal development of programs, but not “keyed” to specific notations, are:
The Art of Programming [72–74, Donald E. Knuth, 1968–1973], A Discipline of
Programming [36, Edsger W. Dijkstra, 1976], The Science of Programming [47,
David Gries, 1981], The Craft of Programming [100, John C. Reynolds, 1981]
and The Logic of Programming [55, Eric C.R. Hehner, 1984].

2.2 A Brief Technology and Community Survey

We remind the reader of our distinction between formal specification methods
and formal analysis methods.

A List of Formal, Model-oriented Specification Methods: The foremost speci-
fication and model-oriented formal methods are, chronologically listed: VDM 5

[18, 66, 19, 67, 39, 40] 1974, Z6 [114] 1980, RAISE/RSL7,8 [46, 45, 12–14]
1992, and B9 [1] 1996. The foremost analysis and model-oriented formal methods
(chronologically listed) are: Alloy [63] 2000 and Event-B [2] 2009. The main
focus is on the development of specifications. Of these VDM, Z and RAISE orig-
inated as rather “purist” specification methods, Alloy and Event-B from their
conception focused strongly on analysis.

A List of Formal, Algebraic Methods: The foremost property-oriented formal
methods (alphabetically listed) are: CafeOBJ [44], CASL10 [32] and Maude [29].
The definitive text on algebraic semantics is [101]. It is a characteristic of al-
gebraic methods that their specification logics are analysis friendly, usually in
terms of rewriting.

A List of Formal Analysis Methods: The foremost analysis methods11 can be
roughly “classified” into three classes: Abstract Interpretation, for example:
Astrée [23]; Theorem Proving, for example: ACL2 [71, 70], Coq [8], Isabelle/HOL

5 Vienna Development Method.
6 Z: Zermelo.
7 Rigorous Approach to Software Engineering.
8 RAISE Specification Language.
9 B: Bourbaki.

10 Common Algebraic Specification Language.
11 In addition to those of formal algebraic methods.

46 D. Bjørner and K. Havelund

[88], STeP [21], PVS [107] and Z3 [22]. Model-Checking, for example: SMV [28]
and SPIN/Promela [60]. Shallow program analysis is provided by static analysis
tools such as Semmle12, Coverity13, CodeSonar14 and KlocWork [109]15. These
static analyzers scale extremely well to very large programs, unlike most other
formal methods tools; they are a real success from an industrial adoption point
of view. However, this is at the price of the limited properties they can check;
they can usually not check functional properties: that a program satisfies its
requirements.

Mathematical Notations: Why not use “good, old-fashioned” mathematics as a
specification language? W. J. Paul [87, 93, 34] has done so. Y. Gurevich has put
a twist to the use of mathematics as a specification language in his ‘Evolving
Algebras’ known now as Abstract Algebras [96].

Related Formal Notations: Among formal notations for describing reactive sys-
tems we can mention: CSP16 [58] and CCS17 [85] for textually modeling con-
currency, DC18 [116] for modeling time-continuous temporal properties, MSC19

[62] for graphically modeling message communication between simple processes,
Petri Nets [97, 98] for modeling arbitrary synchronization of multiple processes,
Statecharts [48] for modelling hierarchical systems, and TLA+20 [76] and STeP21

[80, 81] for modeling temporal properties.

Workshops, Symposia and Conferences: An abundance of regular workshops,
symposia and conferences have grown up around formals methods. Along (rough-
ly) the specification-orientation we have: VDM, FM and FME22 symposia [17]; Z, B,

ZB, ABZ, etc. meetings, workshops, symposia, conferences, etc. [24]; SEFM23 [75];
and ICFEM24 [61]. One could wish for some consolidation of these too numerous
events. Although some of these conferences started out as specification-oriented,
today they are all more or less analysis-oriented. The main focus of research
today is analysis.

And along the pure analysis-orientation we have the annual: CAV25, CADE26,
TACAS27, etcetera conferences.
12 www.semmle.com
13 www.coverity.com
14 www.grammatech.com/codesonar
15 www.klocwork.com
16 CSP: Communicating Sequential Processes.
17 CCS: Calculus of Communicating Systems.
18 DC: Duration Calculus.
19 MSC: Message Sequence Charts.
20 TLA+: Temporal Logic of Actions.
21 STeP: Stanford Temporal Prover.
22 FM: Formal Methods and FME: FM Europe.
23 SEFM: Software Engineering and Formal Methods.
24 ICFEM: Intl.Conf. of Formal Engineering Methods.
25 CAV: Computer Aided Verification.
26 CADE: Computer Aided Deduction.
27 TACAS: Tools and Algorithms for the Construction and Analysis of Systems.

www.semmle.com
www.coverity.com
www.grammatech.com/codesonar
www.klocwork.com

40 Years of Formal Methods 47

User Groups: The advent of the Internet has facilitated method-specific “home
pages”: Alloy: alloy.mit.edu/alloy/, ASM: www.eecs.umich.edu/gasm/ and
rotor.di.unipi.it/AsmCenter/, B: en.wikipedia.org/wiki/B-Method, E-
vent-B: www.event-b.org/, RAISE: en.wikipedia.org/wiki/RAISE, VDM:
www.vdmportal.org/twiki/bin/view and Z: formalmethods.wikia.com/wi-
ki/Z notation.

Formal Methods Journals: Two journals emphasize formal methods: Formal As-
pects of Computing28 and Formal Methods in System Design29 both published
by Springer.

2.3 Shortcomings

The basic, model-oriented formal methods are sometimes complemented by some
of “the related” formal notations. RSL includes CSP and some restricted notion
of object-orientedness and a subset of RSL has been extended with DC [53,
51]. VDM and Z has each been extended with some (wider) notion of object-
orientedness: VDM++ [38], respectively object Z [112].

A general shortcoming of all the above-mentioned model-oriented formal meth-
ods is their inability to express continuity in the sense, at the least, of first-
order differential calculus. The IFM conferences [4] focus on such “integrations”.
[Haxthausen, 2000] outlines integration issues for model-oriented specification
languages [52]. Hybrid CSP [54, 115] is CSP + differential equations + interrupt!

2.4 A Success Story?

With all these books, publications, conferences and user-groups can we claim
that formal methods have become a success — an integral part of computer
science and software engineering? and established in the software industry? Our
answer is basically no! Formal methods30 have yet to become an integral part
of computer science & software engineering research and education, and the
software industry. We shall motivate this answer in Sect. 3.2.

3 More Personal Observations

As part of an analysis of the situation of formal methods with respect to research,
education and industry are we to (a) either compare the various methods,
holding them up against one another? (b) or to evaluate which application areas

28 link.springer.com/journal/165
29 link.springer.com/journal/10703
30 An exception is the static analysis tools mentioned earlier, which can check whether

programs are well formed. These tools have been widely adopted by industry, and
must be termed as a success. However, these tools cannot check for functional correct-
ness: that a program satisfies the functional requirements. When we refer to formal
methods here we are thinking of systems that can check functional correctness.

springerlink.bibliotecabuap.elogim.com/journal/165
springerlink.bibliotecabuap.elogim.com/journal/10703

48 D. Bjørner and K. Havelund

each such method are best suited for, (c) or to identity gaps in these methods,
(d) or “something else”! We shall choose (d): “something else”! (a) It is far too
early — hence risky — to judge as to which methods will survive, if any! (b) It is
too trivial — and therefore not too exciting — to make statements about “best
application area” (or areas). (c) It is problematic — and prone to prejudices —
to identify theoretical problems and technical deficiencies in specific methods. In
a sense “survivability” and “applicability” (a–c) are somewhat superficial issues
with respect to what we shall instead attempt. It may be more interesting, (d), to
ruminate over what we shall call deeper issues — “hindrances to formal methods”
— such which seems common to all formal methods.

3.1 The DDC Ada “Story”

In 1980 a team of six just-graduated MScs started the industrial development of a
commercial Ada compiler. Their (MSc theses) semantics description (in VDM+CSP)
of Ada were published in [20, Towards a Formal Description of Ada]. The project
took some 44 man years in the period 1 Jan. 1980 to 1 Oct. 1984 – when the
US Dod, in Sept. 1984, had certified the compiler. The six initial developers
were augmented by 3 also just-graduated MScs in 1981 and 1982. The “formal
methods” aspects of the development approach was first documented in [10,
ICS’77] – and is outlined in [20, Chapter 1]. The project staff were all properly
educated in formal semantics and compiler development in the style of [10], [18]
and [19]. The completed project was evaluated in [30] and in [90].

Now, 30 years later, mutations of that 1984 Ada compiler are still around!
From having taken place in Denmark, a core DDC Ada compiler product group
was moved to the US in 199031 — purely based on marketing considerations.
Several generations of Ada have been assimilated into the 1981–1984 design.
Several generations of less ‘formal methods’ trained developers have worked and
are working on the DDC-I Inc. Legacy Ada compiler systems. For the first 10
years of the 1984 Ada compiler product less than one man month was spent per
year on corrective maintenance – dramatically below industry “averages”!

The DDC Ada development was systematic: it had roughly up to eight (8) steps
of “refinement”: two (2) steps of domain description of Ada (approx. 11.000 lines),
via four (4) steps of requirements prescription for the Ada compiler (approx.
55.000 lines), and two (2) steps of design (approx. 6.000 lines) and coding of
the compiler itself. Throughout the emphasis was on (formal) specification. No
attempt was really made to express, let alone prove, formal properties of any
of these steps nor their relationships. The formal/systematic use of VDM must
be said to be an unqualified formal methods success story.32 Yet the published
literature on Formal Methods fails to recognize this [113].

• • •
31 Cf.DDC-I Inc., Phoenix, Arizona http://www.ddci.com/
32 The 1980s Ada compiler “competitors” each spent well above 100 man years on their

projects – and none of them are “in business” today (2014).

http://www.ddci.com/

40 Years of Formal Methods 49

The following personal observations can be seen in the context of the more than
30 years old DDC Ada compiler project.

3.2 Eight Obstacles to Formal Methods

If we claim “obstacles”, then it must be that we assume on the background of,
for example, the “The DDC Ada Story” that formal methods are worthwhile, in
fact, that formal methods are indispensable in the proper, professional pursuit of
software development. That is, that not using formal methods in software devel-
opment, where such methods are feasible33, is a sign of a immature, irresponsible
industry.

Summarizing, we see the following eight obstacles to the research, teaching and
practice of formal methods: 1. A History of Science and Engineering “Obstacle”,
2. A Not-Yet-Industry-scaled Tool Obstacle, 3. An Intra-Departmental Obstacle, 4.
A Not-Invented-Here Obstacle, 5. A Supply and Demand Obstacle, 6. A Slide in
Professionalism Obstacle, 7. A Not-Yet-Industry-attuned Engineering Obstacle and
8. An Education Gap Obstacle. These obstacles overlap to a sizable extent. Rather
than bringing an analysis built around a small set of “independent hindrances”
we bring a somewhat larger set of “related hindrances” that may be more familiar
to the reader.

1. A History of Science and Engineering Obstacle: There is not enough research
of and teaching of formal methods. Amongst other things because there is a lack
of belief that they scale — that it is worthwhile.

It is worthwhile researching formal software development methods. We must
strive for correct software. Since it is possible to develop software formally and
such that it is correct, etcetera, one must study such formal methods. It is
worthwhile teaching & learning formal software development methods. Since it
is possible to develop software formally and such that it is correct, etcetera,
one ought teach and learn such formal methods, independently of whether the
students then proceed to actually practice formal methods.

Just because a formal method may be judged not yet to be industry-scale is
no hindrance to it being researched taught and learned — we must prepare our
students properly. The science (of formal methods) must precede industry-scale
engineering.

This obstacle is of “history-of-science-and-engineering” nature. It is not really
an ‘obstacle’, merely a fact of life, something that time may make less of a
“problem”.

2. A Not-Yet-Industry-scaled Tool Obstacle: The tool support for formal methods
is not sufficient for large scale use of these methods.

The advent of the first formal specification languages, VDM [18] and Z [114],
were not “accompanied” by any tool support: no syntax checkers, nothing! Aca-
demic programming was done by individuals. The mere thought that three or
more programmers need collaborate on code development occurred much too late

33 ‘Feasibility’ is then a condition that may be subject to discussion!

50 D. Bjørner and K. Havelund

in those circles. As a result propagation of formal methods appears to have been
significantly stifled. The first software tools appear to not having been “industry
scale”.

It took many years before this problem was properly recognized. The Euro-
pean Community’s research programmers have helped somewhat, cf. RAISE34,
Overture35 and Deploy36. The VSTTE: Verified Software: Theories, Tools

and Experiments37 initiative aims to advance the state of the art in the science
and technology of software verification through the interaction of theory develop-
ment, tool evolution, and experimental validation.

It seems to be a fact that industry will not use a formal method unless it is
standardized and “supported” by extensive tools. Most formal method specifica-
tion languages are conceived and developed by small groups of usually university
researchers. This basically stands in the way of preparing for standards and for
developing and later maintaining tools.

This ‘obstacle’ is of less of a ‘history of science and engineering’, more of a
‘maturity of engineering’ nature. It was originally caused by, one could say, the
näıvety of the early formal methods researchers: them not accepting that tools
were indeed indispensable. The problem should eventually correct “itself”!

3. An Intra-Departmental Obstacle: There are two facets to this obstacle. Fields
of computer science and software engineering are not sufficiently explained to
students in terms of mathematics, and formal methods, for example, specified
using formal specifications; and scientific papers on methodology are either
not written, or, when written and submitted are rejected by referees not un-
derstanding the difference between computer sciences and computing science —
methodology papers do not create neat “little theories”, with clearly identifiable
and provable propositions, lemmas and theorems.

It is claimed that most department of computer science &38 software engi-
neering staff are unaware of the science & engineering aspects of each others’
individual sub-fields. That is, we often see software engineering researchers and
teachers unaware of the discipline of, for example, Automata Theory & Formal
Languages, and abstraction and modeling (i.e., formal methods). With the un-
awareness manifesting itself in the lack of use of cross-discipline techniques and
tools. Such a lack of awareness of intra-department disciplines seems rare among
mathematicians.

Whereas mathematics students see their advisors freely use the specialized,
though standard mathematics of relevant fields of their colleagues, computer
science & software engineering students are usually “robbed” of this cross-
disciplinarity. What a shame!

34 spd-web.terma.com/Projects/RAISE/
35 www.overturetool.org/
36 www.deploy-project.eu/
37 https://sites.google.com/site/vstte2013/
38 We single quote the ampersand: ‘&’ between A and B to emphasize that A & B is

one subject field.

spd-web.terma.com/Projects/RAISE/
www.overturetool.org/
www.deploy-project.eu/
https://sites.google.com/site/vstte2013/

40 Years of Formal Methods 51

Whereas mathematics is used freely across a very wide spectrum of classical
engineering disciplines, formal specification is far from standard in “classical”
subjects such as programming languages and their compilers, operating systems,
databases and their management systems, protocol designs, etcetera. Our field
(of informatics) is not mature, we claim, before formal specifications are used in
all relevant sub-fields.

4. A Not-Invented-Here Obstacle: There are too many formal methods being de-
veloped, causing the “believers” of each method to focus on defining the method
ground up, hence focusing on foundations, instead of stepping on the shoulders
of others and focus on the how to use these methods.

Are there too many formal specification languages? It is probably far too early
to entertain this question. The field of formal methods is just some 45 years old.
Young compared to other fields.

But what we see as “a larger” hindrance to formal methods, whether for spec-
ification or for analysis, is that, because of this “proliferation” of especially spec-
ification methods, their more widespread use, as was mentioned above, across
“the standard CS&SE courses” is hindered.

5. A Supply and Demand Obstacle: There is not a sufficiently steady flow of
software engineering students all educated in formal methods from basically all
the suppliers.

There are software houses, “out there”, on several continents, in several coun-
tries, which use formal methods in one form or another. A main problem of theirs
is twofold: the lack of customers which demand “provably correct” software, and
the lack of candidates from universities properly educated in formal methods.
A few customers, demanding “provably correct” software, can make a “huge”
difference. In contrast, there must be a steady flow of “more-or-less” “unified
formal methods”-educated educated graduates. It is a “catch-22” situation.

In other fields of classical engineering candidates emerge from varieties of
universities with more-or-less “normalized”, easily comparable, educations. Not
so in informatics: Most universities do not offer courses based on formal methods.
If they do, they either focus on specification or on analysis; few covers both.

We can classify this obstacle as one of a demand/supply conflict.

6. A Slide in Professionalism Obstacle: Todays masters in computing science
and software engineering are not as well educated as were those of 30 years ago.

The project mentioned in Sect. 3.1 cannot be carried out, today (2014), by
students from my former university. From three, usually 50 student, courses,
over 18 months, there is now only one, and usually a 25 student, one semester
course in ‘formal methods’, cf. [12–14]. At colleague departments around Europe
one can see a similar trend: A strong center for partial evaluation [68] existed for
some 25 years and there are now no courses and hardly any research taking
place at Copenhagen University in that subject. Similarly another strong center
for foundations of functional programming has been reduced to basically a one
person activity at another Danish university. The “powers that be” have, in their
infinite wisdom, apparently decided that courses and projects around Internet,

52 D. Bjørner and K. Havelund

Web design and collaborative work, courses that are presented as having no
theoretical foundations, are more important: “relevant to industry”.

It seems that many university computer science departments have become
mere college IT groups. Research and educational courses in methodology sub-
jects are replaced by “research” into and training courses in current technology
trends — often dictated by so-called industry concerns. The course curriculum
is crowded by training in numerous “trendy” topics at the expense of education
in fewer topics. Many “trendy” courses have replaced fewer foundational ones.

I would classify this obstacle as one of university and department management
failure, kowtowing to perceived, popular industry-demands.

7. A Not-Yet-Industry-attuned Engineering Obstacle: Tools are missing for han-
dling version and configuration control, typically for refinement relationships in
the context of using formal methods.

Software engineering usually treats software development artefacts not as
mathematical objects, but as “textual” documents. And software development
usually entail that such documents are very large (cf. Sect. 3.1) and must be han-
dled as computer data. Whereas academic computing science may have provided
tools for the handling of formal development documents reasonably adequately, it
seems not to have provided tools for the interface to (even commercial) software
version control packages [35, CVS]. Similarly for “build” configuration manage-
ment, etcetera.

Even for stepwise developed formal documents there are basically no support
tools available for linking pairs of abstract and refined formalizations.

Thus there is a real hindrance for the use of formal methods in industry when
its practical tools are not attunable to those of formal methods [16].

8. An Education Gap Obstacle: When students educated in formal methods
enter industry, the majority of other colleagues will not have been educated in
formal methods, causing the new employee to be over-ruled in their wishes to
apply formal methods.

3.3 A Preliminary Summary Discussion

Many of the academic and industry obstacles can be overcome. Still, a main
reason for formal methods not being picked up, and hence “more” successful, is
the lack of scalable and practical tool support.

3.4 The Next 10 Years?

No-one can predict the future. However, we shall provide some guesses/hopes.
We try to stay somewhat realistic and avoid hopes such as solving N =? NP, and
making it possible to prove real sized programs fully correct within practical
time frames. The main observation is that programmers today seldom write
specifications at all, and if they do, the specifications are seldom verified against
code. An exception is of course assertions placed in code, although not even this is

40 Years of Formal Methods 53

so commonly practiced. Even formal methods people usually do not apply formal
methods to their own code, although it can be said that formal methods people
do apply mathematics to develop theories (automata theory, proof theory, etc.)
before these theories are implemented in code. However, these formalizations
are usually written in ad hoc (although often elegant and neat) mathematical
notation, and they are not related mechanically to the resulting software. Will
this situation change in any way in the near future?

We see two somewhat independent trends, which on the one hand are easy to
observe, but, on the other hand, perhaps deserve to be pointed out. The first trend
is an increased focus on providing verification support for programming languages
(in contrast to a focus on pure modeling languages). Of course early work on pro-
gramcorrectness, such asHoare’s [56, 57] andDijkstra’s work [36], did indeed focus
on correctness of programs, but this form of work mostly formed the underlying
theories and did not immediately result in tools. The trend we are pointing out is a
tooling trend. The second trend is the design of new programming languages that
look like the earlier specification languages such as VDM and RSL.We will elaborate
some on these two trends below.We will argue that we are moving towards a point
of singularity, where specification and programming will be done within the same
language and verification tooling framework. This will help break down the barrier
for programmers to write specifications.

Verification Support for Programming Languages: We have in the past seen
many verification systems created with specialized specification and modeling
languages. Theorem proving systems, for example, typically offer functional spec-
ification languages (where functions have no side effects) in order to simplify the
theorem proving task. Examples include ACL2 [71, 70], Isabelle/HOL [88], Coq
[8], and PVS [106, 92, 91, 107].

The PVS specification language [91] stands out by putting a lot of emphasis on
the convenience of the language, although it is still a functional language. The
model checkers, such as SPIN [60] and SMV [28] usually offer notations being some-
what limited in convenience when it comes to defining data types, in contrast
to control, in order make the verification task easier. Note that in all these ap-
proaches, specification is considered as a different activity than programming.

Within the last decade or so, however, there has been an increased focus
on verification techniques centered around real programming languages. This
includes model checkers such as the Java model checker JPF (Java PathFinder)
[50, 111], the C model checkers SLAM/SDV [5], CBMC [27], BLAST [9], and the C

code extraction and verification capability Modex of SPIN [59], as well as theorem
proving systems, for C, such as VCC [33], VeriFast [64], and the general analysis
framework Frama-C [43]. The ACL2 theorem prover should be mentioned as a very
early example of a verification system associated with a programming language,
namely LISP. Experimental simplified programming languages have also lately
been developed with associated proof support, including Dafny [79], supporting
SMT-based verification, and AAL [41] supporting static analysis, model checking,
and testing.

54 D. Bjørner and K. Havelund

The Advancement of High-level Programming Languages: At the same time, pro-
gramming languages have become increasingly high level, with examples such as
ML [86] combining functional and imperative programming; and its derivatives
CML (Concurrent ML) [31] and Ocaml [89], integrating features for concurrency
and message passing, as well as object-orientation on top of the already existing
module system; Haskell [110] as a pure functional language; Java [105], which
was one of the first programming languages to support sets, list and maps as
built-in libraries — data structures which are essential in model-based speci-
fication; Scala [102], which attempts to cleanly integrate object-oriented and
functional programming; and various dynamically typed high-level languages
such as Python [95] combining object-orientation and some form of functional
programming, and built-in succinct notation for sets, lists and maps, and itera-
tors over these, corresponding to set, list and map comprehensions, which are key
to for example VDM, RSL and Alloy. Some of the early specification languages,
including VDM and RSL, were indeed so-called wide-spectrum specification lan-
guages, including programming constructs as well as specification constructs.
However, these languages were still considered specification languages and not
programming languages. The above mentioned high-level programming trend
may help promote the idea of writing down high-level designs — it will just be
another program. Some programming language extensions incorporate specifica-
tions, usually in a layered manner where specifications are separated from the
actual code. EML (Extended ML) [69] is an extension of the functional program-
ming language SML (Standard ML [94]) with algebraic specification written in the
signatures. ECML (Extended Concurrent ML [49]) extends CML (Concurrent ML)
[69] with a logic for specifying CML processes in the style of EML. Eiffel [84] is
an imperative programming language with design by contract features (pre/post
conditions and invariants). Spec# [6] extends C# with constructs for non-null
types, pre/post conditions, and invariants. JML [26] is a specification language
for Java, where specifications are written in special annotation comments [which
start with an at-sign (@)].

The Point of Singularity for Formal Methods: It seems evident that the trend
seen above where verification technology is developed around programming lan-
guages will continue. Verification frameworks will be part of programming IDEs
and be available for programmers without additional efforts. Testing will, how-
ever, still appear to be the most practical approach to ensure the correctness
of real-sized applications, but likely supported with more rigorous techniques.
Wrt. the development in programming languages, these do move towards what
would be called wide-spectrum programming languages, to turn the original term
‘wide-spectrum specification languages’ on its head. The programming language
is becoming your specification language as well. Your first prototype may be
your specification, which you may refine and later use as a test oracle. Formal
specification, prototyping, and agile programming will become tightly integrated
activities. It is, however, important to stress, that languages will have to be able
to compete with for example C when it comes to efficiency, assuming one stays
within an efficient subset of the language. It should follow the paradigm: you

40 Years of Formal Methods 55

pay only for what you use. It is time that we try to move beyond C for writing
for example embedded systems, while at the same time allow high-level concepts
as found in early wide-spectrum specification languages. There is no reason why
this should not be possible.

There are two other directions that we would like to mention: visual languages
and DSLs (Domain Specific Languages). Formal methods have an informal com-
panion in the model-based programming community, represented for example
most strongly by UML [65] and its derivations. This form of modeling is graphical
by nature. UML is often criticized for lack of formality, and for posing a link-
age problem between models and code. However, visual notations clearly have
advantages in some contexts. The typical approach is to create visual artifacts
(for example class diagrams and state charts), and then derive code from these.
An alternative view would be to allow graphical rendering of programs using
built-in support for user-defined visualization, both of static structure as well as
of dynamic behavior. This would tighten connection between lexical structure
and graphical structure. One would, however, not want to define UML as part of a
programming language. Instead we need powerful and simple-to-use capabilities
of extending programming languages with new DSLs. Such are often referred
to as internal DSLs, in contrast to external DSLs which are stand-alone lan-
guages. This will be critical in many domains, where there are needs for defining
new DSLs, but at the same time a desire to have the programming language
be part of the DSL to maintain expressive power. The point of singularity is
the point where specification, programming and verification is performed in an
integrated manner, within the same language framework, additionally supported
by visualization and meta-programming.

4 Conclusion

We have surveyed facets of formal methods, discussed eight obstacles to their
propagation and discussed three possible future developments. We do express a,
perhaps not too vain hope, that formal methods, both specification- and analysis-
oriented, will overcome the eight obstacles — and others!

We have seen many exciting formal methods emerge. The first author has
edited two double issues of journal articles on formal methods [11] (ASM, B,

CafeOBJ, CASL, DC, RAISE, TLA+, Z) and [15] (Alloy, ASM, Event-B, DC,

CafeOBJ, CASL, RAISE, VDM, Z), and, based on [11] a book [37].
Several of the originators of VDM are still around [7]. The originator of Z, B

and Event B is also still around [3]. And so are the originators of Alloy, RAISE,

CASL, CafeOBJ and Maude. And so is the case for the analytic methods too! How
many of the formal methods mentioned in this paper will still be around and
“kicking” when their originators are no longer active?

Acknowledgements. We dedicate this to our colleague of many years, Chris
George. Chris is a main co-developer of RAISE [46, 45]. From the early 1980s
Chris has contributed to both the industrial and the academic progress of for-
mal methods. We have learned much from Chris — and expect to learn more!

56 D. Bjørner and K. Havelund

Thanks to OC chair Jin Song Dong and PC co-chair Cliff Jones for inviting
this paper.

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, UK (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Softw. Eng. Cambridge University

Press, UK (2009)
3. Abrial, J.-R.: From Z to B and then Event-B: Assigning Proofs to Meaningful

Programs. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
1–15. Springer, Heidelberg (2013)

4. Araki, K., et al. (eds.): IFM 1999–2013: Integrated Formal Methods. LNCS,
vol. 1945, 2335, 2999, 3771, 4591, 5423, 6496, 7321 and 7940. Springer, Heidelberg
(2013)

5. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004), Tool website: http://research.microsoft.com/en-us/projects/slam

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–
91 (2011), Tool website:
http://research.microsoft.com/en-us/projects/specsharp

7. Bekič, H., Bjørner, D., Henhapl, W., Jones, C.B., Lucas, P.: A Formal Definition
of a PL/I Subset. Technical Report 25.139, Vienna, Austria (September 20, 1974)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. EATCS Series: Texts
in Theoretical Computer Science. Springer (2004)

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model
checker BLAST. International Journal on Software Tools for Technology Transfer,
STTT 9(5-6), 505–525 (2007), Tool website:
http://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

10. Bjørner, D.: Programming Languages: Formal Development of Interpreters and
Compilers. In: Morlet, E., Ribbens, D. (eds.) International Computing Symposium
1977, pp. 1–21. European ACM, North-Holland Publ. Co., Amsterdam (1977)

11. Bjørner, D. (ed.) Logics of Formal Specification Languages. Computing and In-
formatics 22(1-2) (2003); This double issue contains the following papers on B,
CafeOBJ, CASL, RAISE, TLA+ and Z

12. Bjørner, D.: Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer (2006)

13. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer
(2006) (Chapters 12–14 are primarily authored by Christian Krog Madsen)

14. Bjørner, D.: Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer
(2006)

15. Bjørner, D.: Special Double Issue on Formal Methods of Program Development.
International Journal of Software and Informatics 3 (2009)

16. Bjørner, D.: Believable Software Management. Encyclopedia of Software Engi-
neering 1(1), 1–32 (2011)

http://research.microsoft.com/en-us/projects/slam
http://research.microsoft.com/en-us/projects/specsharp
http://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

40 Years of Formal Methods 57

17. Bjørner, D., et al. (eds.): VDM, FME and FM Symposia 1987–2012, LNCS, vol.
252, 328, 428, 551-552, 670, 873, 1051, 1313, 1708-1709, 2021, 2391, 2805, 3582,
4085, 5014, 6664, 7436 (1987–2012)

18. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978) (This was the first mono-
graph on Meta-IV)

19. Bjørner, D., Jones, C.B. (eds.): Formal Specification and Software Development.
Prentice-Hall (1982)

20. Bjørner, D., Oest, O.N. (eds.): Towards a Formal Description of Ada. LNCS,
vol. 98. Springer, Heidelberg (1980)

21. Bjørner, N., Browne, A., Colon, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe,
T.: Verifying Temporal Properties of Reactive Systems: A STeP Tutorial. Formal
Methods in System Design 16, 227–270 (2000)

22. Bjørner, N., McMillan, K., Rybalchenko, A.: Higher-order Program Verification
as Satisfiability Modulo Theories with Algebraic Data-types. In: Higher-Order
Program Analysis (June 2013),
http://hopa.cs.rhul.ac.uk/files/proceedings.html

23. Blanchet, B., Cousot, P., Cousot, R., Jerome Feret, L.M., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation, pp. 196–207 (2003)

24. Bowen, J., et al.: Z, B, ZUM, ABZ Meetings, Conferences, Symposia and Work-
shops, Z Users Workshops: 1986–1995; Z, ZB and ABZ Users Meetings: 1996–2013.
LNCS, vol. 1212, 1493, 1878, 2272, 2651, 3455, 5238, 5977 and 7316 (1986–2014)

25. Burstall, R.M., Landin, P.J.: Programs and their proofs: an algebraic approach.
Technical report, DTIC Document (1968)

26. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 342–363. Springer, Heidelberg (2006), Tool website:
http://www.eecs.ucf.edu/~leavens/JML/index.shtml

27. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004), Tool website: http://www.cprover.org/cbmc

28. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000) ISBN 0-262-03270-8

29. Clavel, M., Durán, F., Eker, S., Lincoln, P., Oliet, N.M., Meseguer, J., Talcott,
C.: Maude 2.6 Manual, Department of Computer Science, University of Illinois
and Urbana-Champaign, Urbana-Champaign, Ill. USA (January 2011)

30. Clemmensen, G., Oest, O.: Formal specification and development of an Ada com-
piler – a VDM case study. In: Proc. 7th International Conf. on Software Engi-
neering, Orlando, Florida, March 26-29, pp. 430–440. IEEE (March 1984)

31. The CML programming language, http://cml.cs.uchicago.edu

32. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer,
Heidelberg (2004)

33. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009), Tool website:
http://research.microsoft.com/en-us/projects/vcc

http://hopa.cs.rhul.ac.uk/files/proceedings.html
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://www.cprover.org/cbmc
http://cml.cs.uchicago.edu
http://research.microsoft.com/en-us/projects/vcc

58 D. Bjørner and K. Havelund

34. Cohen, E., Paul, W., Schmaltz, S.: Theory of multi core hypervisor verification.
In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H.
(eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 1–27. Springer, Heidelberg (2013)

35. CVS: Software Version Control, http://www.nongnu.org/cvs/
36. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
37. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Se-

ries, Monograph in Theoretical Computer Science. Springer, Heidelberg (2008)
38. Dürr, E.H., van Katwijk, J.: VDM++, A Formal Specification Language for Object

Oriented Designs. In: COMP EURO 1992, pp. 214–219. IEEE (May 1992)
39. Fitzgerald, J., Larsen, P.G.: Developing Software Using VDM-SL. Cambridge

University Press, Cambridge (1997)
40. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in

Software Development, 2nd edn. Cambridge University Press, Cambridge (2009)
41. Florian, M.: Analysis-Aware Design of Embedded Systems Software. PhD thesis,

California Institute of Technology, Pasadena, California (October 2013)
42. Floyd, R.W.: Assigning Meanings to Programs. In: [103], pp. 19–32 (1967)
43. The Frama-C software analysis framework, http://frama-c.com
44. Futatsugi, K., Diaconescu, R.: CafeOBJ Report The Language, Proof Techniques,

and Methodologies for Object-Oriented Algebraic Specification. AMAST Series
in Computing, vol. 6. World Scientific Publishing Co. Pte. Ltd. (1998)

45. George, C.W., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Specification Language. The BCS Practi-
tioner Series. Prentice-Hall, Hemel Hampstead (1992)

46. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead (1995)

47. Gries, D.: The Science of Programming. Springer (1981)
48. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming 8(3), 231–274 (1987)
49. Havelund, K.: The Fork Calculus - Towards a Logic for Concurrent ML. PhD

thesis, DIKU, Department of Computer Science, University of Copenhagen, Den-
mark (1994)

50. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
STTT 2(4), 366–381 (2000)

51. Haxthausen, A.E., Yong, X.: Linking DC together with TRSL. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 25–44. Springer,
Heidelberg (2000)

52. Haxthausen, A.E.: Some Approaches for Integration of Specification Techniques.
In: INT 2000 – Integration of Specification Techniques with Applications in Engi-
neering, pp. 33–40. Technical University of Berlin, Germany. Dept. of Informatics
(2000)

53. Haxthausen, A.E., Yong, X.: A RAISE Specification Framework and Justification
assistant for the Duration Calculus, Saarbrücken, Dept of Linguistics, Gothenburg
University, Sweden (1998)

54. He, J.: From CSP to Hybrid Systems. In: A Classical Mind. Prentice Hall (1994)
55. Hehner, E.: The Logic of Programming. Prentice-Hall (1984)
56. Hoare, C.: The Axiomatic Basis of Computer Programming. Communications of

the ACM 12(10), 567–583 (1969)
57. Hoare, C.: Proof of Correctness of Data Representations. Acta Informatica 1,

271–281 (1972)

http://www.nongnu.org/cvs/
http://frama-c.com

40 Years of Formal Methods 59

58. Hoare, C.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International (1985, 2004), Published electronically:
http://www.usingcsp.com/cspbook.pdf

59. Holzmann, G.J.: Logic verification of ANSI-C code with SPIN. In: Havelund, K.,
Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 131–147. Springer,
Heidelberg (2000), Tool website: http://spinroot.com/modex

60. Holzmann, G.J.: The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading (2003)

61. International Conferences on Formal Engineering Methods, ICFEM (ed.) : LNCS,
vol. 2405, 2885, 3308, 3785, 4260, 4789, 5256, 5885, 6447 and 8144, IEEE Com-
puter Society Press and Springer Years 2002–2013: IEEE, Years 2002–2013

62. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC) (1992,
1996, 1999)

63. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006) ISBN 0-262-10114-9

64. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: A powerful, sound, predictable, fast verifier for C and Java.
In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011), Tool website:
http://people.cs.kuleuven.be/~bart.jacobs/verifast

65. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Object Technology Series. Addison–Wesley, Addison Wesley Longman, Inc.,
One Jacob Way, Reading (1999)

66. Jones, C.B.: Software Development: A Rigorous Approach. Prentice-Hall (1980)
67. Jones, C.B.: Systematic Software Development — Using VDM, 2nd edn. Prentice-

Hall (1989)
68. Jones, N.D., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program

Generation. C.A.R.Hoare Series in Computer Science. Prentice Hall International
(1993)

69. Kahrs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: A gentle
introduction. Theoretical Computer Science 173, 445–484 (1997), Tool website:
http://homepages.inf.ed.ac.uk/dts/eml

70. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Publishers (June 2000)

71. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (June 2000)

72. Knuth, D.: The Art of Computer Programming, Fundamental Algorithms, vol. 1.
Addison-Wesley, Reading (1968)

73. Knuth, D.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading (1969)

74. Knuth, D.: The Art of Computer Programming, Searching & Sorting, vol. 3.
Addison-Wesley, Reading (1973)

75. Lakos, C., et al. (eds.): SEFM: International IEEE Conferences on Software En-
gineering and Formal Methods, SEFM 2002–2013. IEEE Computer Society Press
(2003-2013)

76. Lamport, L.: Specifying Systems. Addison–Wesley, Boston (2002)
77. Landin, P.J.: The mechanical evaluation of expressions. The Computer Jour-

nal 6(4), 308–320 (1964)
78. Landin, P.J.: Correspondence between ALGOL 60 and Church’s Lambda-

notation: part i. Communications of the ACM 8(2), 89–101 (1965)

http://www.usingcsp.com/cspbook.pdf
http://spinroot.com/modex
http://people.cs.kuleuven.be/~bart.jacobs/verifast
http://homepages.inf.ed.ac.uk/dts/eml

60 D. Bjørner and K. Havelund

79. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010), Tool website:
http://research.microsoft.com/en-us/projects/dafny

80. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Specifications.
Addison Wesley (1991)

81. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Safety. Addison
Wesley (1995)

82. McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computa-
tion by Machines, Part I. Communications of the ACM 3(4), 184–195 (1960)

83. McCarthy, J.: Towards a Mathematical Science of Computation. In: Popplewell,
C. (ed.) IFIP World Congress Proceedings, pp. 21–28 (1962)

84. Meyer, B.: Eiffel: The Language, 2nd revised edn., 300 pages. Prentice Hall PTR,
Upper Sadle River (1992) (Amazon price: US $ 47.00)

85. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

86. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. The MIT Press,
Cambridge (1990)

87. Miller, A., Paul, W.: Computer Architecture, Complexity and Correctness.
Springer (2000)

88. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

89. The OCaml programming language, http://ocaml.org
90. Oest, O.N.: Vdm from research to practice (invited paper). In: IFIP Congress,

pp. 527–534 (1986)
91. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language

Reference, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

92. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Sys-
tem Guide, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

93. Paul, W.: Towards a Worldwide Verification Technology. In: Meyer, B., Woodcock,
J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 19–25. Springer, Heidelberg (2008)

94. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press
(1991)

95. The Python programming language, http://www.python.org
96. Reisig, W.: Abstract State Machines for the Classroom. In: [37], pp. 15–46.

Springer (2008)
97. Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien.

Leitfäden der Informatik, 1st edn., June 15, 248 pages. Vieweg+Teubner (2010)
ISBN 978-3-8348-1290-2

98. Reisig, W.: Understanding Petri Nets Modeling Techniques, Analysis Methods,
Case Studies, 230+XXVII pages. Springer (2013) (145 illus)

99. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, vol. 2, pp. 717–740. ACM (1972)

100. Reynolds, J.C.: The Craft of Programming. Prentice Hall PTR (1981)
101. Sannella, D., Tarlecki, A.: Foundations of Algebraic Semantcs and Formal Soft-

ware Development. Monographs in Theoretical Computer Science. Springer, Hei-
delberg (2012)

102. The Scala programming language, http://www.scala-lang.org

http://research.microsoft.com/en-us/projects/dafny
http://ocaml.org
http://www.python.org
http://www.scala-lang.org

40 Years of Formal Methods 61

103. Schwartz, J.: Mathematical Aspects of Computer Science. In: Proc. of Symp. in
Appl. Math. American Mathematical Society, Rhode Island (1967)

104. Scott, D., Strachey, C.: Towards a mathematical semantics for computer lan-
guages. In: Computers and Automata. Microwave Research Inst. Symposia,
vol. 21, pp. 19–46 (1971)

105. Sestoft, P.: Java Precisely, July 25. The MIT Press (2002)
106. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial, Computer Science Labora-

tory, SRI International, Menlo Park, CA (February1993); Also appears in Tuto-
rial Notes, Formal Methods Europe 1993: Industrial-Strength Formal Methods,
Odense, Denmark, pp. 357–406 (April 1993)

107. Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Prover
Guide, Computer Science Laboratory, SRI International, Menlo Park, CA
(September 1999)

108. Sommerville, I.: Software Engineering. Addison-Wesley (1982)
109. Static analysers: Semmle, http://www.semmle.com, Coverity:

http://www.coverity.com, CodeSonar: http://www.grammatech.com/codesonar,
KlocWork: http://www.klocwork.com, etc.

110. Thompson, S.: Haskell: The Craft of Functional Programming, 2nd edn., March
29, 512 pages. Addison Wesley (1999) ISBN 0201342758

111. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003), Tool website:
http://javapathfinder.sourceforge.net

112. Whysall, P.J., McDermid, J.A.: An approach to object-oriented specification using
Z. In: Nicholls, J.E. (ed.) Z User Workshop, Oxford 1990. Workshops in Comput-
ing, pp. 193–215. Springer (1991)

113. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Prac-
tice and Experience. ACM Computing Surveys 41(4), 19 (2009)

114. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996)

115. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of
hybrid systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of
Programming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281.
Springer, Heidelberg (2013)

116. Zhou, C.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real–
time Systems. Monographs in Theoretical Computer Science. An EATCS Series-
–Verlag. Springer (2004)

http://www.semmle.com
http://www.coverity.com
http://www.grammatech.com/codesonar
http://www.klocwork.com
http://javapathfinder.sourceforge.net

A Refinement Based Strategy for Local

Deadlock Analysis of Networks of CSP Processes

Pedro Antonino1, Augusto Sampaio1, and Jim Woodcock2

1 Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil
{prga2,acas}@cin.ufpe.br

2 University of York, Department of Computer Science, York, UK
jim.woodcock@york.ac.uk

Abstract. Based on a characterisation of process networks in the CSP
process algebra, we formalise a set of behavioural restrictions used for
local deadlock analysis. Also, we formalise two patterns, originally pro-
posed by Roscoe, which avoid deadlocks in cyclic networks by perform-
ing only local analyses on components of the network; our formalisation
systematises the behavioural and structural constraints imposed by the
patterns. A distinguishing feature of our approach is the use of refine-
ment expressions for capturing notions of pattern conformance, which
can be mechanically checked by CSP tools like FDR. Moreover, three
examples are introduced to demonstrate the effectiveness of our strat-
egy, including a performance comparison between FDR default deadlock
assertion and the verification of local behavioural constraints induced by
our approach, also using FDR.

Keywords: Local Analysis, Deadlock Freedom, CSP, FDR, Behavioural
pattern.

1 Introduction

There are a number of ways to prove that a system is deadlock free. One ap-
proach is to prove, using a proof system and semantic model, that a deadlock
state is not reachable [14]. Another approach is to model check a system in or-
der to verify that a deadlock state cannot be reached [13]. Both approaches have
substantial drawbacks. Concerning the first approach, it is not fully automatic
and requires one to have a vast knowledge of: the semantic model, the notation
employed in the model and the proof system used. In the second approach, al-
though automatic, deadlock verification can became unmanageable due to the
exponential growth with the number of components of the system. To illustrate
these problems, let us assume that one is trying to prove that the dinning philoso-
phers is deadlock free using the CSP notation [8,13,16]. In the first approach,
one must be familiar with the stable failures semantic model [5,13,16] and with a
proof system to carry the proof itself. In the second case, assuming that we have
philosopher and fork processes with 7 and 4 states, respectively, the number of
states can grow up to 7N × 4N , where N is the number of philosophers in the

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 62–77, 2014.
c© Springer International Publishing Switzerland 2014

A Refinement Based Strategy for Local Deadlock Analysis 63

configuration. For instance, to verify that a system with 50 philosophers and 50
forks is deadlock free one has to verify up to 750 × 450 states.

One alternative to these approaches is to adopt a hybrid technique, which
consists of proving, using semantic models and a proof system, that for a par-
ticular class of well-defined systems, a property can be verified by only checking
a small portion of the system. This principle, called local analysis, is the core
technique of some existing approaches to compositional analysis [1,4]. Concern-
ing deadlock analysis, in particular, the strategy reported in [14,6] introduces a
network model and behavioural constraints that support local analysis.

Nevertheless, despite the provided conceptual support for local deadlock anal-
ysis, the approach presented in [14,13,6] lacks systematisation and provides no
tool support. As a contribution of this work, we present an approach to fully sys-
tematise and formalise a behavioural constraint capturing the notion of conflict
freedom, enabling the verification of acyclic networks, and two communication
behavioural patterns [14,13,10], the resource allocation and the client/server
patterns, which guarantee deadlock freedom for cyclic networks. All these be-
havioural restrictions are described as refinement expressions, which enables au-
tomatic verification by a refinement checker like FDR [17].

Finally, three examples are introduced (a ring buffer, a dining philosophers
and a leadership election algorithm) as a proof of concept of our refinement
based strategy, as well as a performance comparison between our strategy (for
local analysis) and the built-in FDR deadlock freedom verification.

In the next section we briefly introduce CSP. In Section 3 we present the
network model [14,6] on which we base our approach. Our major contributions
are presented in Section 4: the formalisation of a behavioural condition that
guarantees deadlock freedom for acyclic network, the formalisation of two com-
munication patterns that avoid deadlocks in cyclic networks, and a refinement
based technique for verifying behavioural constraints of the network model and
conformance to the patterns. Section 5 provides practical evaluation and Section
6 gives our conclusions, as well as related and future work.

2 CSP

CSP is a process algebra that can be used to describe systems as interacting
components, which are independent self-contained processes with interfaces that
are used to interact with the environment [13]. Most of the CSP tools, like FDR,
accept a machine-processable CSP, called CSPM , used in this paper. In Table 1,
we summarise the set of CSPM constructs used in this work.

Two CSP semantic models are also used: the stable failures, and the stable-
revivals models [16]. In the stable failures model, a process is represented by
its traces, which is a set of finite sequences of events it can perform, given by
traces(P), and by its stable failures. Stable failures are pairs (s, X) where s is
a finite trace and X is a set of events that the process can refuse to do after
performing the trace s. At the state where the process can refuse events in
X , the process must not be able to perform an internal action, otherwise this

64 P. Antonino, A. Sampaio, and J. Woodcock

Table 1. CSPM constructs

STOP Canonical deadlock
SKIP Successful termination
IF b THEN P ELSE Q Conditional choice
P [] Q External choice
P |~| Q Internal choice
P;Q Sequential composition
P [[a <- b]] Renaming (replaces occurences of event a with event b

in process P)
P \ S Hiding (hides the set of events in set S from P, making

these events internal)
P [cs1||cs2] Q Alphabetised parallelism (runs P and Q in parallel, where

P (Q) is only allowed to perform events in cs1 (cs2), and
they must synchronise in the events within cs1∩ cs2)

[] x:S @ P(x) Replicated external choice (external choice of the pro-
cesses P(x), where x is an element of S)

|~| x:S @ P(x) Replicated internal choice (internal choice of the pro-
cesses P(x), where x is an element of S)

|| x:S @ [A(x)] P(x) Replicated alphabetised parallelism (parallelism of the
processes P(x) using alphabets A(x), where x is an ele-
ment of S)

state would be unstable and would not be taken into account in this model.
The function refusals(P, s) gives the set of X ’s that a process P can refuse
after s, and failures(P) gives the set of stable failures of process P . The stable
revivals model has three components: traces, deadlocks and revivals. The traces
component is the same one as that described for the other model. The deadlocks
component gives the set of traces after which the process deadlocks. Finally, the
revivals component gives the set of triples (s, X, a) which is composed of a trace
s of the process, a set of refusals X after this trace, and an event that can be
performed after this refusal a, the revival event.

For each model, there is a refinement relation given by [M=. M can be T,F or
V for traces, stable failures and stable revivals, refinement relation respectively.
The refinement expression P [M= Q holds if and only if for each component of
model M, component(P) ⊇ component(Q). For instance, for the stable failures
model, P [F= Q ⇔ failures(P) ⊇ failures(Q) ∧ traces(P) ⊇ traces(Q).

The choice of a model involves considerations about the semantic domain
convenient to capture the relevant property. The properties that can only be
expressed in terms of maximal failures are more intuitively represented in the
stable revivals model, since this model carries partial information about the
maximal failure: the revival event. On the other hand, the restrictions that can
be expressed without being confined to maximal failures can be easily captured
by the stable failure model and its refinement relation.

A Refinement Based Strategy for Local Deadlock Analysis 65

3 Network Model

The concepts presented in this section are essentially drawn from [6,14], which
present an approach to deadlock analysis of systems described as a network of
CSP processes. The most fundamental concept is the one of atomic tuples, which
represents the basic components of a system. These are triples that contain
an identifier for the component, the process describing the behaviour of this
component and an alphabet that represents the set of events that this component
can perform. A network is a finite set of atomic tuples.

Definition 1 (Network). Let CSP P rocesses be the set of all possible CSP
processes, Σ the set of CSP events and IdT ype the set for identifiers of atomic
tuples. A network is a set V , such that:

V ⊂ Atomics

where: Atomics =̂ IdT ype × CSP P rocesses × PΣ and V is finite

The behaviour of a network is given as a composition of the behaviour of
each component using the CSP alphabetised parallel operator, where the be-
haviour and alphabet from the atomic tuple identified by id are extracted by the
functions B(id, V) and A(id, V) respectively. We use the indexed version of the
alphabetised parallel operator.

Definition 2 (Behaviour of a network). Let V be a network.
B(V) =̂ || id : dom V @ [A(id,V)] B(id,V)

A live network is a structure that satisfies three assumptions. The first one is
busyness. A busy network is a network whose atomic components are deadlock
free. The second assumption is atomic non-termination, i.e. no atomic compo-
nent can terminate. The last assumption concerns interactions. A network is
triple-disjoint if at most two processes share an event, i.e. if for any three differ-
ent atomic tuples their alphabet intersection is the empty set.

In a live network, a deadlock state can only arise from an improper interaction
between processes, since no process can individually deadlock. This particular
misinteraction is captured by the concept of ungranted requests. An ungranted
request occur in a particular state σ = (s, R) of the network. In this state, s is a
trace of the network and R is a vector of refusal sets, R(id) being the refusal set
of the process id after s |̀ A(id, V), where s |̀ A(id, V) corresponds to trace s
restricted to events in A(id, V). We introduce the notations σ.s and σ.R to get
the s and the R component of state σ, respectively. An ungranted request arises
in a state σ when an atom, say id1, is offering an event to communicate with
another atom, say id2, but id2 cannot offer any of the events expected by id1. In
addition, both processes must not be able to perform internal actions, i.e. events
that do not involve the synchronisation with another process.

Definition 3 (Ungranted request). Let id1 and id2 be identifiers of processes
in a network V , A1 = A(id1, V), A2 = A(id2, V) and V oc(V) the set of shared

66 P. Antonino, A. Sampaio, and J. Woodcock

events of network V . There is an ungranted request from id1 to id2 in state σ if
the following predicate holds:

ungranted request(V, σ, id1, id2) =̂

request(V, σ, id1, id2) ∧ ungrantedness(V, σ, id1, id2)

∧ in vocabulary(V, σ, id1, id2)

– request(V, σ, id1, id2) =̂ (A1 \ σ.R(id1)) ∩ A2 �= ∅
– ungrantedness(V, σ, id1, id2) =̂ (A1 ∩ A2) ⊆ (σ.R(id1) ∪ σ.R(id2))
– in vocabulary(V, σ, id1, id2) =̂ (A1 \ σ.R(id1)) ∪ (A2 \ σ.R(id2)) ⊆ V oc(V)

Ungranted requests are the building blocks of a more complex structure de-
noted cycle of ungranted requests. A cycle of this kind is represented as a se-
quence of different process identifiers, C, where each element at the position i,
C(i), has an ungranted request to the element at the position i ⊕ 1, C(i ⊕ 1),
where ⊕ is addition modulo length of the sequence. A conflict is a proper cy-
cle of ungranted requests with length 2. After these definitions, a fundamental
theorem extracted from [6] is introduced.

Theorem 1. Let V be a live network. Any deadlocked state has a cycle of un-
granted requests.

Theorem 1 allows one to reduce the problem of avoiding deadlock by pre-
venting cycles of ungranted requests. With this result it is already possible to
fully verify a tree topology network in a local way, by checking only pairs of
processes, due to the fact that only conflicts can arise in tree networks. Never-
theless, networks with cycles in their topology cannot be locally verified by this
method, since the verification of absence of cycles of ungranted requests with
length greater than 2 involves a global verification of the entire system.

In [6,13,14,10], a set of patterns and examples of classes of networks is defined
by semantic behavioural properties and a rather informal description of the their
network structure. Although helpful for designing deadlock free systems, these
patterns lack systematisation and, more importantly, the associated restrictions
are expressed as semantic properties that must be proved in a semantic model.
Also, some of the properties are too restrictive; for instance, the behaviour of a
resource process is tied to be the one given by the rule. As a major contribu-
tion, in the next section, we present a formal systematisation of these patterns.
Also, we derive refinement assertions that precisely capture the conformance to
a particular pattern. Two examples are provided.

4 Local Deadlock Analysis Based on Patterns and
Refinement Checking

In this section, we present a local deadlock analysis strategy for networks with
acyclic and cyclic communication topologies. In order to alleviate the complex-
ity of local analysis, we use an abstraction function to reduce the states to be

A Refinement Based Strategy for Local Deadlock Analysis 67

analysed. If a process of a network can perform an individual event in a state σ,
i.e., an event that does not require the permission of another process, then this
state is deadlock free, since this process can perform this event. Thus, for the
purpose of deadlock analysis, all states where a process offer an individual event
can be discarded as deadlock is impossible. As we are not concerned with diver-
gent behaviour, the hiding operator is used to abstract this meaningless states.
This enables us to focus on constraints over the behaviour related to interactions
between atoms, the meaningful behaviour for deadlock verification.

Definition 4 (Abstraction function). For a network V , let B(id, V) be the be-
haviour, A(id, V) the alphabet and AV oc(id, V) the set of events used for com-
municating with other processes of atom id. Then we define:

Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V))

where: AVoc(id,V) = Union({inter(A(id,V),A(ID_(a),V)) | a <- V, ID_(a) != id})

Now, we introduce a behavioural constraint capturing conflict freedom be-
tween pair of processes in a network. As already discussed, conflict freedom
allows one to locally verify an acyclic network to be deadlock free. This property
can be more intuitively captured by a refinement expression if the pair of atoms
being verified for conflict is placed in a particular behavioural context. This con-
text first abstracts the behavior of both atoms by using the function Abs and
extend their behaviour by allowing them to deterministically offer the special
event req whenever an event from A(id1, V) ∩ A(id2, V) is offered. Secondly, it
composes the pair of processes using the alphabets extended with the req event.
This context is given by the Context process, where the Ext process performs the
abstraction and extension mentioned.

Definition 5 (Extended behaviour of a pair of processes). Let id1 and id2 be
two processes of network V .
Context(id1,id2,V)= Ext(id1,id2,V)[union(A(id1,V),{req})||union(A(id2,V),{req})]Ext(id2,id1,V)

where: Ext(id1,id2,V) = Abs(id1,V) [[x <- x, x <- req | x <- inter(A(id1,V),A(id2,V))]]

When placed in this context, a conflict arises when the req event is offered and
A(id1, V)∩A(id2, V) is refused. Hence, a conflict free pair of processes does not
have a revival of the form (s, X, req) where A(id1) ∩ A(id2) ⊆ X . The process
ConflictFreeSpec, presented next, describes a process that has every possible
behaviour but the ones that generate the conflicting form of revivals. It specifies
all the states such that when req is offered, then A(id1, V) ∩ A(id2, V) is not
refused. The Context is conflict free, if the following refinement expression holds.

Definition 6 (Extended behavior conflict freedom specification). Let id1 and
id2 be two identifiers of atoms of network V .

ConflictFreeSpec(id1,id2,V) =
let U_A = union(A(id1,V),A(id2,V))

I_A = inter(A(id1,V),A(id2,V))
CF_ = ((|~| ev : I_A @ ev -> CF_) [] req -> CHAOS(union(U_A,{req})))

|~| (|~| ev : U_A @ ev -> CF_)
within CF_

where: CHAOS(Alp) = SKIP |~| STOP |~| (|~| ev : Alp @ ev -> CHAOS(Alp))

68 P. Antonino, A. Sampaio, and J. Woodcock

Theorem 2 (Soundness of conflict freedom refinement expression).
ConflictFreeSpec(id1,id2,V) [V= Context(id1,id2,V) ⇒ the pair (id1, id2) is conflict free.

Proof. In a conflict free state, the Context process must not have a revival of
the form (s, X, req) where A(id1)∩A(id1) ⊆ X . After calculation of the revivals
of the ConflictFreeSpec, its revivals are given by the following set comprehen-
sion expression {(s, X, a)|s ∈ (A1 ∪ A2 ∪ {req})∗ ∧ a ∈ (A1 ∪ A2 ∪ {req}) ∧
a �∈ X ∧ (a = req ⇒ (A1 ∩ A2) �⊆ X)}; this specification has all the possible
revivals but the ones generated by a conflict. If the refinement expression holds,
then revivals(ConflictFreeSpec(id1,id2,V)) ⊇ revivals(Context(id1,id2,V)).
Hence, in this case Context has only conflict free revivals. For the other compo-
nents of this model, deadlocks and traces, the restrictions are evident. Traces are
not restricted at all, traces(ConflictFreeSpec(id1,id2,V)) = (A1∪A2∪{req})∗,
also as deadlock can only arise if there is a conflict, we restrict the set of dead-
locks to be empty, deadlocks(ConflictFreeSpec(id1,id2,V)) = ∅.
A more detailed proof of this and subsequent theorems can be found in [3].

With the characterisation of conflict freedom as a refinement assertion, one
can mechanically verify deadlock freedom for an acyclic network. Nevertheless,
cyclic networks can only be guaranteed deadlock free locally by the verification
of pattern compliance. In the sequel we present two of such patterns: the resource
allocation and the client/server pattern.

Our contribution here is the systematic formalisation of these patterns, par-
ticularly the way in which behavioural properties are captured. We describe pat-
terns as predicates over the network, imposing both behavioural and structural
restrictions on atoms participating in the network. Note that, since we impose
behavioural restrictions on the individual behaviour of atoms, we create a local
form of verifying deadlock freedom; instead of evaluating the entire network, we
analyse atoms individually for guaranteeing deadlock freedom. The behavioural
restrictions are expressed by an abstract CSP process and a conformance rela-
tion. The abstract process represents a specification of the expected behaviour of
a given atom, and the conformance relation, expressed as process refinement in
CSP, states whether or not a given atom conforms to this expected behaviour.
These refinement expressions can be verified using a refinement checker. The
structural restrictions are captured by first order predicates.

4.1 Resource Allocation Pattern

The resource allocation pattern can be applied to systems that, in order to
perform an action, have to acquire some shared resources such as a lock. In this
pattern the atoms of a network are divided into user and resource processes. The
functions acquire(idU , idR) and release(idU , idR) give the event used by the user
process idU to acquire (and, respectively, release) the resource idR. This pattern
imposes a behavioural restriction on both resource and user processes.

A Refinement Based Strategy for Local Deadlock Analysis 69

The expected behaviour of a resource is given by the following process. It
offers the events of acquisition to all users able to acquire this resource and,
once acquired, it offers the release event to the user that has acquired it. Note
that this is a schematic process; once the users(id) structure is defined, this
process is fully defined and it becomes an actual process. This is an artifice
used to specify behavioural constraints which are later tailored to a particular
concrete process.

Definition 7 (Resource specification). Let id be an identifier of a resource atom
and users(id) a set of user identifiers used by this resource.

ResourceSpec(id,V) =
let idsU = users(id)

Resource = [] idU : idsU @ acquire(idU,id) -> release(idU,id) -> Resource
within Resource

The required behaviour of a user is given by the following process. It first
acquires all the necessary resources and then releases them. Both acquiring and
releasing must be performed using the order denoted by the resources(id) se-
quence.

Definition 8 (User specification). Let id be an identifier of a user atom and
resources(id) a sequence of resource identifiers in which this user atom acquire
its resources.

UserSpec(id,V) =
let Aquire(s) = if s != <> then acquire(id,head(s)) -> Aquire(tail(s)) else SKIP

Release(s) = if s != <> then release(id,head(s)) -> Release(tail(s)) else SKIP
User(s) = Aquire(s);Release(s);User(s)

within User(resources(id))

The behavioural restriction imposed by the resource allocation pattern is given
by a conformance notion using the stable failure refinement relation [F=. The
refinement relation ensures that user and resource atoms of the network meet
their respective specification.

Definition 9 (Resource allocation behavioural restriction). Let uset and rset
be the sets of users and resources atoms identifiers, respectively.

BehaviourRA(V, uset, rset) =̂ Behaviour(V, uset, UserSpec, [F=) ∧
Behaviour(V, rset, ResourceSpec, [F=)

where: Behaviour(V, S, Spec, R) = ∀ id : S • Spec(id, V)R Abs(id, V)

Besides the behavioural restriction, this pattern also imposes a structural
restriction, which is given by a conjunction of smaller conditions. The first con-
dition, partitions, ensures that users and resources are two disjoint partitions of
the network identifiers. The disjointAlpha condition guarantees that the alpha-
bet of users and resources are disjoint, whereas controlledAlpha imposes that
the shared events between users and resources must be the set of acquire and re-
lease events. Finally, strictOrder ensures that the transitive closure of the >RA

relation, >∗
RA, is a strict total order.

70 P. Antonino, A. Sampaio, and J. Woodcock

Definition 10 (Resource allocation structural restriction). Let V be a network,
users a set of user atom identifiers, resources a set of resource atom identifiers.

StructureRA(V, users, resources) =̂

partitions(domV, users, resources) ∧ disjointAlpha(V, resources) ∧
disjointAlpha(V, users) ∧ controlledAlpha(V, users, resources) ∧
strictT otalOrder(>∗

RA)

where:

– partitions(S, P1, P2) =̂ S = P1 ∪ P2 ∧ P1 ∩ P2 = ∅
– disjointAlpha(V, S) =̂ ∀ id1, id2 : S • A(id1, V) ∩ A(id2, V) = ∅
– controlledAlpha(V, S1, S2) =̂ ∀ id1 : S1, id2 : S2 •

A(id1, V) ∩ A(id2, V) = {acquire(id1, id2), release(id1, id2)}
– id1 >RA id2 =̂ ∃ id : users • ∃ i, j : dom sequence(id) •

id1 = sequence(id)(i) ∧ id2 = sequence(id)(j) ∧ i < j

The compliance with the resource allocation pattern is given by the confor-
mance to both behavioural and structural conformances; i.e. the network must
satisfy both the StructureRA and BehaviourRA predicates. As the purpose of
the pattern is to avoid deadlock, we present a theorem which demonstrates that
compliance to the resource allocation pattern prevents deadlock.

Theorem 3 (Deadlock free resource allocation network). Let users and resources
be two sets of identifiers of network V .

If RA(V, users, resources) then V is deadlock free.

where: RA(V, users, resources) =̂ StructureRA(V, users, resources) ∧
BehaviourRA(V, users, resources)

Proof. First of all, an ungranted request can only happen from a user to a
resource and vice versa, since there is no interaction between two users or two
resources. Secondly, an ungranted request from a user to a resource can only
happen if the resource is acquired by some other user. Thirdly, an ungranted
request from a resource to a user can only happen if the user has already acquired
that resource. These conditions are guaranteed by pattern adherence.

Then, assuming that there is a cycle of ungranted requests, there must be a
maximal resource in the cycle, say C(imax). Thus, the C(imax⊕1) must be a user
process that has acquired this resource. Moreover, C(imax⊕ 2) is also a resource
process lower in the >∗

RA order than C(imax). Since C(imax ⊕ 1) is making an
ungranted request to C(imax ⊕ 2), by the definition of the cycle, it is trying
to acquire this resource. Thus, the user process C(imax ⊕ 1) has the maximal
resource C(imax) and is trying to acquire C(imax ⊕ 2), which is a contradiction
concerning the pattern conditions.

A Refinement Based Strategy for Local Deadlock Analysis 71

4.2 Client/Server Pattern

The client/server pattern is used for architectures where an atom can behave
as a server or as a client in the network. The events in the alphabets of atoms
can be classified into client requests, server requests and responses. When the
process offers a server request event it is in a server state, in which it has to offer
all its server requests to its clients. This behaviour is described by the following
specification. The specification allows the process to behave arbitrarily when
performing non server request events; however if a server request is offered, it
offers all server request events. The server request events of atom id is given by
the function serverRequests(id).

Definition 11 (Behavioural server requests specification). Let id be an identifier
of the atom in a network V and serverEvents a function that yield the set of
server events of an atom given its identifier.

ServerRequestsSpec(id,V) =
let sEvs = serverRequests(id)

othersEvs = diff(A(id,V),sEvs)
Server = ((|~| ev : othersEvs @ ev -> SKIP) |~| ([] ev : sEvs @ ev -> SKIP)) ; Server

within if not empty(othersEvs) then Server else RUN(sevs)

where: RUN(evs) = [] ev : evs @ ev -> RUN(evs)

There is also an imposition in the behaviour of processes concerning requests
and responses. A process, conforming to the client/server pattern, must initially
offer its request events. Once a request is performed, it can behave in several
ways, according to some conditions. If the request performed demands no re-
sponse, then the process must offer, again, some request events. If the request
demands a response, then there are two cases to consider depending on whether
the request performed was a server one or a client one. In the case of a server
request, the process must answer this request with at least one of the possible
responses. In the case of a client request, the process must be able to accept
all response expected. The function responses gives this set of the expected re-
sponses for a request event, and the client requests, of an atom identified by id,
are given by the function clientRequests(id). The specification of this behaviour
is given by the following process.

Definition 12 (Behavioural server responses specification). Let id be an iden-
tifier of the atom in a network V .

RequestsResponsesSpec(id,V) =
let cEvs = clientRequests(id)

sEvs = serverRequests(id)
ClientRequestsResponsesSpec =

(|~| ev : cEvs @ ev -> (if empty(responses(ev)) then SKIP
else ([] res : responses(ev) @ res -> SKIP)))

ServerRequestsResponsesSpec =
(|~| ev : sEvs @ ev -> (if empty(responses(ev)) then SKIP

else (|~| res : responses(ev) @ res-> SKIP)))
C = ClientRequestsResponsesSpec;C
S = ServerRequestsResponsesSpec;S
CS = (ClientRequestsResponsesSpec |~| ServerRequestsResponsesSpec);CS

within

72 P. Antonino, A. Sampaio, and J. Woodcock

if empty(cEvs) and empty(sEvs) then STOP
else

if empty(cEvs) then S
else

if empty(sEvs) then C
else CS

The conformance of an atom’s behaviour to the ServerRequestsSpec is defined
by the refinement relation in the stable revivals model, whereas conformance to
the RequestsResponsesSpec is defined by the stable failure refinement relation.

Definition 13 (Client/server behavioural restriction). Let V be a network.

BehaviourCS(V) =̂ Behaviour(V, domV, ServerRequestsSpec, [V=) ∧
Behaviour(V, domV, RequestResponsesSpec, [F=)

Similarly to the resource allocation structural restriction, the structural re-
striction of the client/server pattern is composed by a conjunction of smaller
clauses. The disjointEvents predicate ensures that the events used for sever
requests, client requests, server responses and client responses, for an atom,
are disjoint. The controlledAlpha predicate guarantees that the communication
alphabet is restricted to client and server events. The pairedEvents guaran-
tees that every server request has a client request pair and vice-versa. Also, the
strictOrder predicate guarantees that the transitive closure of the >CS relation,
(>∗

CS), is a strict order.

Definition 14 (Client/server structural restriction). Let V be a live network,
and =name an equality relation on function names; we actually use f1 �=name f2
as an abbreviation of ¬(f1 =name f2). Also, let SRq(id) = serverRequests(id),
CRq(id) = clientRequests(id), SRp(id) =

⋃
req∈SRq(id) responses(req) and

CRp(id) =
⋃

req∈CRq(id) responses(req).

StructureCS(V) =̂ disjointEvents({CRq, SRq, CRp, SRp}, V) ∧
controlledAlpha(V, domV) ∧
pairedEvents(V, domV) ∧ strictOrder(>∗

CS)

where:

– disjointEvents(F s, V) =̂

∀ id : domV ; f : F s • f1 �=name f2 ⇒ f1(id) ∩ f2(id) = ∅
– controlledAlpha(V, S) =̂

∀ id : S • AV oc(id, V) = SRq(id) ∪ CRq(id) ∪ SRp(id) ∪ CRp(id)

– pairedRequests(V, S) =̂

∀ id : domV • ∀ req : SRq(id) • ∃ id′ : domV • req ∈ CRq(id′) ∧
∀ id : domV • ∀ req : CRq(id) • ∃ id′ : domV • req ∈ SRq(id′)

– id1 >CS id2 =̂ CRq(id1) ∩ SRq(id2) �= ∅

A Refinement Based Strategy for Local Deadlock Analysis 73

A network conforms to this predicate if the conjunction of the structural and
behavioural restriction is satisfied. The goal of preventing deadlock is achieved
by this pattern as stated by the following theorem.

Theorem 4 (Network CS conform is deadlock free). Let V be a network.

If ConformCS(V) then V is deadlock free.

where: ConformCS(V) =̂ BehaviourCS(V) ∧ StructureCS(V)

Proof. The structural restriction ensures that the behaviour involved in inter-
actions between the processes in a client/server network is the one restricted by
the behavioural constraints. The behavioural restrictions impede an ungranted
request from an atom behaving as a client to an atom behaving as a server. In
a server state, this server must be offering all its request events, and the atom
behaving as a client must be willing to perform a client request to this server
client. As the server is accepting all requests, it is also accepting the request
being made by the client, precluding the ungranted request. Thus, in a cycle of
ungranted requests, if C(i) is acting as a client, then C(i⊕ 1) must be acting as
a client as well, hence by induction, a cycle that has a client must be composed
only of clients, and as a consequence a cycle that has a server must be composed
only by atoms behaving as servers.

If the cycle of ungranted requests is exclusively composed of either client or
server behaving atoms, then in this cycle either C(i) >CS C(i ⊕ 1) if processes
are behaving as clients, or C(i⊕ 1) >CS C(i) if they are behaving as servers. As
>∗

CS is a strict order, if a cycle is possible this means that C(i) >∗
CS C(i), which

contradicts the irreflexive property of the order, what proves that no cycle of
ungranted request can arise, preventing deadlocks according to Theorem 1.

5 Experimental Analysis

As a proof of concept of our strategy, we have applied the formalised patterns and
conflict freedom assertion to verify deadlock freedom for three examples: a ring
buffer, the asymmetric dining philosophers and a leadership election algorithm.
The CSP models of all the three examples are parametrised to allow instances
with different number of processes. The CSP models can be found in [3].

The ring buffer stores data in a circular way. This system is composed of a
controller which is responsible for inputting and outputting data, and a set of
memory cells to store data. The controller is responsible for storing input data
in the appropriate cell according to its information about the top and bottom
indices of the buffer. It also possesses a cache cell where it stores the data ready
to be read. This system has an acyclic topology as it can be seen as a tree where
the controller is the root and the memory cells its leaves. We parametrised this
model by N , the number of cells to store data. Its communication architecture
for a model with N = 3 is depicted in Figure 1(a).

The dining philosophers consists of philosophers that try to acquire forks in
order to eat. It is a classical deadlock problem and its asymmetric version obeys

74 P. Antonino, A. Sampaio, and J. Woodcock

(a) Ring buffer (b) Dining philosophers (c) Leadership election

Fig. 1. Communication architectures with N = 3

our resource allocation pattern restrictions. The forks are the resources and the
philosophers the users. In the asymmetric case, every philosopher acquires its left
fork, then its right one, but one has an asymmetric behaviour acquiring first the
right and then the left fork. This is a cyclic network that has a ring topology, and
a classical example of the resource allocation pattern. This model is parametrised
by N the number of philosophers. Its communication architecture for a model
with N = 3 is depicted in Figure 1(b).

The last example is a simplified model of a distributed synchronised leadership
election system. The nodes are composed of a controller, a memory, a receiver
and a transmitter and they exchange data to elect the leader of the network.
Every node can communicate with every other node, hence we have a cyclic fully
connected graph. For this model we applied the client/server pattern as this
leadership election model conforms to this pattern. We parametrised this model
by N the number of leadership election nodes. Its communication architecture
for a model with N = 3 is depicted in Figure 1(c).

In order to demonstrate, in practice, that local analysis avoids combinatorial
explosion, we have conducted a comparative analysis of two verification ap-
proaches for those examples, all using FDR: (i) analysis of the complete model;
(ii) local analysis of the model using the refinement assertions presented in Sec-
tion 4. For the analysis of our strategy (ii), we only assess the time for verifying
behavioural constraints. Since the structural restrictions can be static analysed,
they represent a negligible value if compared to the behavioural constraints.

We conducted the analysis for different instances of N ’s (3, 5, 10, 20, 30), as
explained before; these are summarised in Table 2. In the table we present the
amount of time involved in each case. We used a dedicated server with an 8 core
Intel(R) Xeon(R) 2.67GHz and 16 GB of RAM in an Ubuntu 4.4.3 system.

The results demonstrate how the time for deadlock verification can grow
exponentially with the linear increase of the number of processes for global
methods such as (i). Also, it demonstrates that our approach, based on patterns
that support local analysis, seems promising; to our knowledge, it is the first
sound and be the only automated strategy for guaranteeing deadlock freedom
for complex systems. Notice, particularly, that our strategy (ii) allows one to
verify a leadership election system with 30 nodes in less than 35 minutes, a very
promising result in dealing with a complex system involving a fully connected
graph of components. On the other hand, global analysis of the complete model

A Refinement Based Strategy for Local Deadlock Analysis 75

Table 2. Performance comparison measured in seconds

Ring Buffer Dining Philosophers Leader Election

N #Procs (i) (ii) #Procs (i) (ii) #Procs (i) (ii)

3 4 0.02 0.01 6 0.19 0.09 12 * 8.67
5 6 0.161 0.535 10 0.109 0.21 20 * 18
10 11 86.79 3.12 20 701.05 0.4 40 * 62
20 21 * 21.92 40 * 1 80 * 442
30 31 * 85.35 60 * 2.28 120 * 1926

∗ Exceed the execution limit of 1 hour

in FDR is unable to give an answer in the established time limit for a 3 node
instance. In order to give an idea of the size of this system with 30 nodes, the
processes controller, receiver, transmitter and memory have 854, 271, 263 and 99
states, respectively. This means that the leader election system can have up to
85430 × 27130 × 26330 × 9930 states. Another consideration is that local analysis
also enables the use of parallel cores to verify simultaneously different processes,
which would reduce the amount of time for verification even further.

6 Conclusion and Related Work

Our verification strategy focuses on a local analysis of deadlock freedom of de-
sign models of concurrent systems which obey certain architectural patterns.
Although this method is not complete, it already covers a vast spectrum of sys-
tems, those that are conflict free systems, as well as cyclic systems that can
be designed in terms of the formalised patterns. The strategy seems promising
in terms of performance, applicability and complexity mastering, as evidenced
by the application of the strategy for complex systems such as a distributed
leadership election example.

A variation of the leadership election algorithm, based on a distinct commu-
nication pattern, is explored in [2]. The emphasis there is on a detailed for-
malisation of the algorithm and the proposed pattern. The gains obtained with
local deadlock analysis are similar to those reported here, which gives some more
evidence of the practical applicability of our approach.

Roscoe and Brookes developed a structured model for analysing deadlock in
networks [6]. They created the model based on networks of processes and a body
of concepts that helped to analyse networks in a more elegant and abstract way.
Roscoe andDathi also contributed by developing a proofmethod for deadlock free-
dom [14]. They have built a method to prove deadlock freedom based on variants,
similar to the ones used to prove loop termination. In their work, they also start
to analyse some of the patterns that arise in deadlock free systems. Although their
results enable one to verify locally a class of networks, there is no framework avail-
able that implements their results such as the one presented here. A more recent
work by Roscoe et al. [15] presents some compression techniques, which are able to
check the dining philosopher example for 10100 processes. Compression techniques
are an important complementary step for further improving our strategy.

76 P. Antonino, A. Sampaio, and J. Woodcock

Following these initial works, Martin defined some design rules to avoid dead-
lock freedom [10]. He also developed an algorithm and a tool with the specific
purpose of deadlock verification, the Deadlock checker [11], which reduces the
problem of deadlock checking to the quest of cycles of ungranted requests, in
live networks. The algorithm used by this tool can also incur an exponential
explosion in the state space to be verified, as the quest of a cycle of ungranted
request can be as hard as the quest of finding a deadlocked state.

In [9], the authors propose an encoding of the network model and of a rule
from [14], which allows a local proof of deadlock freedom, in a theoremprover.Even
though this encoding providesmechanical support for deadlock analysis and allows
one to reason locally, it does not resolve some of the problems that motivated this
work, which is to insulate the user as much as possible from the details of the for-
malisation. For instance, in order to carry out the proof using the approach in [9]
one has to understand the stable-failures semantic model, has to directly interact
with the theoremprover, and has to provide somemathematical structures that are
not evident, such as a partial order that breaks the cycles of ungranted requests.On
the other hand, ourwork could benefit from this encoding tomechanise the formal-
isation of our patterns using a theorem prover. Also, an encoding of our patterns
brings the alternative of proving deadlock freedom via pattern adherence.

In [7], the authors carried out a proof demonstrating that the networks be-
longing to the class of hexagonal systolic arrays are deadlock free. Nevertheless,
they do not propose a systematic way for verifying that a given system is an
hexagonal systolic array, and the authors recognise that the proof is theoreti-
cally error-prone, and practically infeasible, if carried manually, as they did. Our
work could be combined with this one, so as to create a pattern to systematically
capture networks of this kind. This new method would benefit from the system-
atisation we have proposed, in terms of refinement expressions, for automatic
verification that a network is an hexagonal systolic array.

In a recent work, Ramos et al. developed a strategy to compose systems guar-
anteeing deadlock freedom for each composition [12]. The main drawback with
their method is the lack of compositional support to cyclic networks. One of the
rules presented there is able to, in a compositional way, connect components in
order to build a tree topology component. They presented a rule to deal with
cyclic components but it is not compositional, in the sense that the verification
of its proviso is not local, i.e. it must be performed in the entire system. Our
strategy complements and can be easily combined with this compositional ap-
proach. A distinguishing feature of our strategy is precisely the possibility of
combining it with other systematic approaches to analysis.

As future work we plan to formalise additional patterns, such as the cyclic
communicating pattern. Also, we plan to carry out further practical experiments
and implement an elaborated framework to support the entire strategy, running
FDR in background to carry out the analyses.

Acknowledgments. The EU Framework 7 Integrated Project COM-
PASS (Grant Agreement 287829) financed most of the work presented here.
This work was also partially supported by the National Institute of Science and

A Refinement Based Strategy for Local Deadlock Analysis 77

Technology for Software Engineering (INES), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (1993)

2. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: An industrial SoS application of compositional deadlock
verification. In: Rozier, K.Y. (ed.) NFM 2014. LNCS, vol. 8430, pp. 31–45. Springer,
Heidelberg (2014)

3. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of csp processes — extended version. Technical
report, Centro de informática, Universidade Federal de Pernambuco (November
2013), http://www.cin.ufpe.br/~prga2/tech/techFM2014.html

4. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-finder 2: Towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011)

5. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-
cesses. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concur-
rency. LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985)

6. Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communicating
processes. Distributed Computing 4, 209–230 (1991)

7. Gruner, S., Steyn, T.J.: Deadlock-freeness of hexagonal systolic arrays. Inf. Process.
Lett. 110(14-15), 539–543 (2010)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
9. Isobe, Y., Roggenbach, M., Gruner, S.: Extending CSP-Prover by deadlock-

analysis: Towards the verification of systolic arrays. In: FOSE 2005. Japanese Lec-
ture Notes Series, vol. 31. Kindai-kagaku-sha (2005)

10. Martin, J.M.R., Welch, P.H.: A Design Strategy for Deadlock-Free Concurrent
Systems. Transputer Communications 3(4), 215–232 (1997)

11. Martin, J.: Deadlock checker repository (2012),
http://wotug.org/parallel/theory/formal/csp/Deadlock/

12. Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy com-
ponent systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 140–156. Springer, Heidelberg (2009)

13. Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall (1998)
14. Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Inf. Comput. 75(3),

289–327 (1987)
15. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M.,

Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to

check 1020 dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995)

16. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)
17. University of Oxford. FDR: User Manual, version 2.94 (2012),

http://www.cs.ox.ac.uk/projects/concurrency-tools/

http://www.cin.ufpe.br/~prga2/tech/techFM2014.html
http://wotug.org/parallel/theory/formal/csp/Deadlock/
http://www.cs.ox.ac.uk/projects/concurrency-tools/

Algebraic Principles for Rely-Guarantee Style

Concurrency Verification Tools

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Department of Computer Science, University of Sheffield, UK
{a.armstrong,v.gomes,g.struth}@dcs.shef.ac.uk

Abstract. We provide simple equational principles for deriving rely-
guarantee-style inference rules and refinement laws based on idempotent
semirings. We link the algebraic layer with concrete models of programs
based on languages and execution traces. We have implemented the ap-
proach in Isabelle/HOL as a lightweight concurrency verification tool
that supports reasoning about the control and data flow of concurrent
programs with shared variables at different levels of abstraction. This is
illustrated on a simple verification example.

1 Introduction

Extensions of Hoare logics are becoming increasingly important for the verifi-
cation and development of concurrent and multiprocessor programs. One of the
most popular extensions is Jones’ rely-guarantee method [17]. A main benefit
of this method is compositionality: the verification of large concurrent programs
can be reduced to the independent verification of individual subprograms. The
effect of interactions or interference between subprograms is captured by rely
and guarantee conditions. Rely conditions describe the effect of the environment
on an individual subprogram. Guarantee conditions, in turn, describe the effect
of an individual subprogram on the environment. By constraining a subprogram
by a rely condition, the global effect of interactions is captured locally.

To make this method applicable to concrete program development and verifi-
cation tasks, its integration into tools is essential. To capture the flexibility of the
method, a number of features seem desirable. First, we need to implement solid
mathematical models for fine-grained program behaviour. Second, we would like
an abstract layer at which inference rules and refinement laws can be derived
easily. Third, a high degree of proof automation is mandatory for the analysis
of concrete programs. In the context of the rely-guarantee method, tools with
these important features are currently missing.

This paper presents a novel approach for providing such a tool integration in
the interactive theorem proving environment Isabelle/HOL. At the most abstract
level, we use algebras to reason about the control flow of programs as well as for
deriving inference rules and refinement laws. At the most concrete level, detailed
models of program stores support fine-grained reasoning about program data
flow and interference. These models are then linked with the algebras. Isabelle

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 78–93, 2014.
c© Springer International Publishing Switzerland 2014

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 79

allows us to implement these layers in a modular way and relate them formally
with one another. It not only provides us with a high degree of confidence in
the correctness of our development, it also supports the construction of custom
proof tactics and procedures for program verification and refinement tasks.

For sequential programs, the applicability of algebra, and Kleene algebra in
particular, has been known for decades. Kleene algebra provides operations for
non-deterministic choice, sequential composition and finite iteration, in addi-
tion to skip and abort. With appropriate extensions, Kleene algebras support
Hoare-style verification of sequential programs, and allow the derivation of pro-
gram equivalences and refinement rules [20,16]. Kleene algebras have been used
in applications including compiler optimisation, program construction, transfor-
mation and termination analysis, and static analysis. Formalisations and tools
are available in interactive theorem provers such as Coq [26] and Isabelle [2,3,1].
A first step towards an algebraic description of rely-guarantee based reasoning
has recently been undertaken [16].

The main contributions of this paper are as follows. First, we investigate alge-
braic principles for rely-guarantee style reasoning. Starting from [16] we extract a
basic minimal set of axioms for rely and guarantee conditions which suffice to de-
rive the standard rely-guarantee inference rules. These axioms provide valuable
insights into the conceptual and operational role of these constraints. However,
algebra is inherently compositional, so it turns out that these axioms do not fully
capture the semantics of interference in execution traces. We therefore explore
how the compositionality of these axioms can be broken in the right way, so as
to capture the intended trace semantics.

Second, we link our rely-guarantee algebras with a simple trace based seman-
tics which so far is restricted to finite executions and disregards termination
and synchronisation. Despite the simplicity of this model, we demonstrate and
evaluate our prototypical verification tool implemented in Isabelle by verify-
ing a simple example from the literature. Beyond that our approach provides
a coherent framework from which more complex and detailed models can be
implemented in the future.

Third, we derive the usual inference rules of the rely-guarantee method with
the exception of assignment axioms directly from the algebra, and obtain assign-
ment axioms from our models. Our formalisation in Isabelle allows us to reason
seamlessly across these layers, which includes the data flow and the control flow
of concurrent programs.

Taken together, our Isabelle implementation constitutes a tool prototype for
the verification and construction of concurrent programs. We illustrate the tool
with a simple example from the literature. The complete Isabelle code can be
found online1. A previous Isabelle implementation of rely-guarantee reasoning is
due to Prensa Nieto [24]. Our implementation differs both by making the link
between concrete programs and algebras explicit, which increases modularity,
and by allowing arbitrary nested parallelism.

1 www.dcs.shef.ac.uk/~alasdair/rg

www.dcs.shef.ac.uk/~alasdair/rg

80 A. Armstrong, V.B.F. Gomes, and G. Struth

2 Algebraic Preliminaries

Rely-guarantee algebras, which are introduced in the following section, are based
on dioids and Kleene algebras. A semiring is a structure (S,+, ·, 0, 1) such that
(S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid and the distributivity
laws x · (y + z) = x · z + y · z and (x + y) · z = x · z + y · z as well as the
annihilation laws x · 0 = 0 and 0 · x = 0 hold. A dioid is a semiring in which
addition is idempotent: x + x = x. Hence (S,+, 0) forms a join semilattice with
least element 0 and partial order defined, as usual, as x ≤ y ⇔ x + y = y. The
operations of addition and multiplication are isotone with respect to the order,
that is, x ≤ y implies z + x ≤ z + y, z · x ≤ z · y and x · z ≤ y · z. A dioid is
commutative if multiplication is: x · y = y · x.

In the context of sequential programs, one typically thinks of · as sequential
composition, + as nondeterministic choice, 0 as the abortive action and 1 as skip.
In this context it is essential that multiplication is not commutative. Often we
use ; for sequential composition when discussing programs. More formally, it is
well known that (regular) languages with language union as +, language product
as ·, the empty language as 0 and the empty word language {ε} as 1 form dioids.
Another model is formed by binary relations with the union of relations as +,
the product of relations as ·, the empty relation as 0 and the identity relation
as 1. A model of commutative dioids is formed by sets of (finite) multisets or
Parikh vectors with multiset addition as multiplication.

It is well known that commutative dioids can be used for modelling the interac-
tion between concurrent composition and nondeterministic choice. The following
definition serves as a basis for models of concurrency in which sequential and
concurrent composition interact.

A trioid is a structure (S,+, ·, ||, 0, 1) such that (S,+, ·, 0, 1) is a dioid and
(S,+, ||, 0, 1) a commutative dioid. In a trioid there is no interaction between
the sequential composition · and the parallel composition ||. On the one hand,
Gischer has shown that trioids are sound and complete for the equational theory
of series-parallel pomset languages [13], which form a well studied model of true
concurrency. On the other hand, he has also obtained a completeness result
with respect to a notion of pomset subsumption for trioids with the additional
interchange axiom (w‖x) · (y‖z) ≤ (w · y)‖(x · z) and it is well known that this
additional axiom also holds for (regular) languages in which || is interpreted as
the shuffle or interleaving operation [12].

Formally, the shuffle ‖ of two finite words is defined inductively as ε‖s = {s},
s‖ε = {s}, and as‖bt = a(s‖bt) ∪ b(as‖t), which is then lifted to the shuffle
product of languages X and Y as X‖Y = {x‖y : x ∈ X ∧ x ∈ Y }.

For programming, notions of iteration are essential. A Kleene algebra is a
dioid expanded with a star operation which satisfies both the left unfold axiom
1 + x · x� ≤ x� and left and right induction axioms z + x · y ≤ y ⇒ x� · z ≤ y
and z + y · x ≤ y ⇒ z · x� ≤ y. It follows that 1 + x · x� = x� and that the
right unfold axiom 1+ x� · x ≤ x� is derivable as well. Thus iteration x∗ is mod-
elled as the least fixpoint of the function λy.1+x·y, which is the same as the least

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 81

fixpoint of λy.1 + y · x. A commutative Kleene algebra is a Kleene algebra in
which multiplication is commutative.

It is well known that (regular) languages form Kleene algebras and that (regu-
lar) sets of multisets form commutative Kleene algebras. In fact, Kleene algebras
are complete with respect to the equational theory of regular languages as well
as the equational theory of binary relations with the reflexive transitive closure
operation as the star [19]. Moreover, commutative Kleene algebras are complete
with respect to the equational theory of regular languages over multisets [7]. It
follows that equations in (commutative) Kleene algebras are decidable.

A bi-Kleene algebra is a structure (K,+, ·, ||, 0, 1, �, (�)) where (K,+, ·, 0, 1, �)
is a Kleene algebra and (K,+, ||, 0, 1, (�)) is a commutative Kleene algebra. Bi-
Kleene algebras are sound and complete with respect to the equational theory
of regular series-parallel pomset languages, and the equational theory is again
decidable [21]. A concurrent Kleene algebra is a bi-Kleene algebra which satisfies
the interchange law [16]. It can be shown that shuffle languages and regular
series-parallel pomset languages with a suitable notion of pomset subsumption
form concurrent Kleene algebras.

In some contexts, it is also useful to add a meet operation 	 to a bi-Kleene
algebra, such that (K,+,) is a distributive lattice. This is particularly needed
in the context of refinement, where we typically want to represent specifications
as well as programs.

A (unital) quantale is a dioid based on a complete lattice where the multipli-
cation distributes over arbitrary suprema. Formally, it is a structure (S,≤, ·, 1)
such that (S,≤) is a complete lattice, (S, ·, 1) is a monoid and

x(ΣY) = Σ{xy|y ∈ Y }, (ΣX)y = Σ{xy|x ∈ X}.

In a quantale the star is the sum of all powers xn. Therefore, all quantales are
also Kleene algebras.

3 Generalised Hoare Logics in Kleene Algebra

It is well known that the inference rules of sequential Hoare logic (except the as-
signment axiom) can be derived in expansions of Kleene algebras. One approach
is as follows [23]. Suppose a suitable Boolean algebra B of tests has been em-
bedded into a Kleene algebra K such that 0 and 1 are the minimal and maximal
element of B, + corresponds to join and · to meet. Complements − are defined
only on B. Suppose further that a backward diamond operator 〈x|p has been de-
fined for each x ∈ K and p ∈ B, which models the set of all states to which each
terminating execution of program x may lead from states p. Finally suppose that
a forward box operator |x]p has been defined which models the (largest) set of
states from which every terminating execution of x must end in states p and that
boxes and diamonds are adjoints of the Galois connection 〈x|p ≤ q ⇔ p ≤ |x]q,
for all x ∈ K and p, q ∈ B. It is then evident from the above explanations that
validity of a Hoare triple � {p}x{q} can be encoded as 〈x|p ≤ q and the weakest
liberal precondition operator wlp(x, q) as |x]p. Hence the relationship between

82 A. Armstrong, V.B.F. Gomes, and G. Struth

the proof theory and the semantics of Hoare logic is captured by the Galois
connection � {p}x{q} ⇔ p ≤ wlp(x, q). It has been shown that the relational
semantics of sequential while-programs can be encoded in these modal Kleene
algebras and that the inference rules of Hoare logic can be derived [23].

In the context of concurrency, this relational approach is no longer appropri-
ate; the following approach by Tarlecki [28] can be used instead. One can now
encode validity of a Hoare triple as

� {x}y{z} ⇔ x · y ≤ z

for arbitrary elements of a Kleene algebra. Nevertheless all the rules of sequential
Hoare logic except the assignment axiom can still be derived [16]. Tarlecki’s
motivating explanations carry over to the algebraic approach.

As an example we show the derivation of a generalised while rule. Suppose
x · t · y ≤ x. Then x · (t · y)∗ ≤ x by the right induction axiom of Kleene algebra
and therefore x · (t · y)∗ · t′ ≤ x · t′ for arbitrary element t′ by isotonicity of
multiplication. This derives the while rule

� {x · t}y{x}
� {x}(t · y)∗ · t′{x · t′}

for a generalised while loop (t · y)∗ · t′, which specialises to the conventional rule
when t and t′ are, in some sense, complements.

The correspondence to a wlp-style semantics, as in modal Kleene algebra,
now requires a generalisation of the Galois connection for boxes and diamonds
to multiplication and an upper adjoint in the form of residuation. This can be
achieved in the context of action algebras [27], which expand Kleene algebras by
operations of left and right residuation defined by the Galois connections

x · y ≤ z ⇔ x ≤ z ← y, x · y ≤ z ⇔ y ≤ x → z.

These residuals, and now even the Kleene star, can be axiomatised equationally
in action algebras. For a comprehensive list of the properties of action algebras
and their most important models see [2], including the language and the rela-
tional model. In analogy to the development in modal Kleene algebra we can
now stipulate wlp(x, y) = y ← x and obtain the Galois connection

� {x}y{z} ⇔ x ≤ wlp(y, z)

with � {wlp(y, z)}y{z} and x ≤ wlp(y, z) ⇒ � {x}y{z} as characteristic proper-
ties. Moreover, if the action algebra is also a quantale, and infinite sums exist,
it follows that wlp(y, z) =

∑
{x : � {x}y{z}}. It is obvious that this definition

makes sense in all models of action algebras and quantales. Intuitively, suppose
p stands for the set of all behaviours of a system, for instance the set of all
execution traces, that end in state p, and likewise for q. Then {p}x{q} states
that all executions ending in p can be extended by x to executions ending in q.
wlp(x, q) is the most general behaviour, that is the set of all executions p after
which all executions of x must end in q.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 83

A residuation for concurrent composition can be considered as well:

x‖y ≤ z ⇔ y ≤ x/z.

The residual x/z represents the weakest program such that when placed in par-
allel with x, the parallel composition behaves as z.

4 A Rely-Guarantee Algebra

We now show how bi-Kleene algebras can be expanded into a simple algebra that
supports the derivation of rely-guarantee style inference rules. This development
does not use the interchange law for several reasons. First, this law fails for fair
parallel composition x ‖f y in models with possibly infinite, or non-terminating
programs. In this model, x ·y �≤ x ‖f y whenever x is non-terminating. Secondly,
it is not needed for deriving the usual rules of rely-guarantee.

A rely-guarantee algebra is a structure (K, I,+,	, ·, ‖, �, 0, 1), where (K,+,)
is a distributive lattice, (K,+, ·, ‖, 0, 1) is a trioid and (K,+,	, ·, ‖, �, 0, 1) is a
bi-Kleene algebra where we do not consider the parallel star. I is a distinguished
subset of rely and guarantee conditions or interference constraints which satisfy
the following axioms

r‖r ≤ r, (1)

r ≤ r‖r′, (2)

r‖(x · y) = (r‖x) · (r‖y), (3)

r‖x+ ≤ (r‖x)+. (4)

By convention, we use r and g to refer to elements of I, depending on whether
they are used as relies or guarantees, and x, y, z for arbitrary elements of K. The
operations ‖ and 	 must be closed with respect to I.

The general idea is to constrain a program by a rely condition by executing
the two in parallel. Axiom (1) states that interference from a constraint being
run twice in parallel is no different from just the interference from that constraint
begin run once in parallel. Axiom (2) states that interference from a single con-
straint is less than interference from itself and another interference constraint.
Axiom (3) allows an interference constraint to be split across sequential pro-
grams. Axiom (4) is similar to Axiom (3) in intent, except it deals with finite
iteration.

Some elementary consequences of these rules are

1 ≤ r, r� = r · r = r = r‖r, r‖x+ = (r‖x)+.

Theorem 1. Axioms (1), (2) and (3) are independent.

Proof. We have used Isabelle’s Nitpick [4] counterexample generator to construct
models which violate each particular axiom while satisfying all others. 	�

84 A. Armstrong, V.B.F. Gomes, and G. Struth

Theorem 2. Axiom (3) implies (4) in a quantale where ‖ distributes over ar-
bitrary suprema.

Proof. In a quantale x+ can be defined as a sum of powers x+ =
∑

i≥1 xi where

x1 = x and xi+1 = x · xi. By induction on i we get r‖xi = (r‖x)i, hence

r‖x+ = r‖
∑
i≥1

xi =
∑
i≥1

r‖xi =
∑
i≥1

(r‖x)i = (r‖x)+.

	�

In first-order Kleene algebras (3) and (4) are independent, but it is impossible
to find a counterexample with Nitpick because it generates only finite counterex-
amples, and all finite Kleene algebras are a forteriori quantales.

Jones quintuples can be encoded in this setting as

r, g � {p}x{q} ⇐⇒ p · (r‖x) ≤ q ∧ x ≤ g. (5)

This means that program x when constrained by a rely r, and executed after p,
behaves as q. Moreover, all behaviours of x are included in its guarantee q. Note
that this encoding is stronger than in traditional rely-guarantee, as x is required
to unconditionally implement g. The algebra could easily be extended with an
additional operator f such that f(r, x) ≤ q would encode that x implements q
only under interference of at most r. For more complex examples than what we
present in section 8 such an encoding may prove neccessary.

Theorem 3. The standard rely-guarantee inference rules can be derived with
the above encoding, as shown in Figure 1.

Thus (1) to (4), which are all necessary to derive these rules, represent a
minimal set of axioms from which these inference rules can be derived.

If we add residuals to our algebra quintuples can be encoded in the following
way, which is equivalent to the encoding in Equation (5).

r, g � {p}x{q} ⇐⇒ x ≤ r/(p → q) 	 g. (6)

This encoding allows us to think in terms of program refinement, as in [14], since
r/(p → q) 	 g defines the weakest program that when placed in parallel with
interference from r, and guaranteeing interference at most g, goes from p to q—a
generic specification for a concurrent program.

5 Breaking Compositionality

While the algebra in the previous section is adequate for deriving the standard
inference rules, its equality is too strong to capture many interesting statements
about concurrent programs. Consider the congruence rule for parallel composi-
tion, which is inherent in the algebraic approach:

x = y =⇒ x‖z = y‖z.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 85

p · r ≤ p
Skip

r, g � {p}1{p}

r′ ≤ r g ≤ g′ p ≤ p′ r′, g′ � {p′}x{q′} q′ ≤ q
Weakening

r, g � {p}x{q}

r, g � {p}x{q} r, g � {q}y{s}
Sequential

r, g � {q}x · y{s}

r1, g1 � {p1}x{q1} g1 ≤ r2 r2, g2 � {p2}y{q2} g2 ≤ r1
Parallel

r1 � r2, g1‖g2 � {p1 � p2}x‖y{q1 � q2}

r, g � {p}x{q} r, g � {p}y{q}
Choice

r, g � {p}x+ y{q}

p · r ≤ p r, g � {p}x{p}
Star

r, g � {p}x�{p}

Fig. 1. Rely-guarantee inference rules

This can be read as follows; if x and y are equal, then they must be equal under
all possible interferences from an arbitrary z. At first, this might seem to preclude
any fine-grained reasoning about interference using purely algebra. This is not
the case, but breaking such inherent compositionality in just the right way to
capture interesting properties of interference requires extra work.

A way of achieving this is to expand our rely-guarantee algebra with an ad-
ditional function π : K → K and redefining our quintuples as,

r, g � {p}x{q} ⇐⇒ p · (r‖c) ≤π q ∧ x ≤ g.

Where x ≤π y is π(x) ≤ π(y). Since for any operator • it is not required that

π(x) = π(y) =⇒ π(x • z) = π(y • z),

we can break compositionality in just the right way, provided we chose appropri-
ate properties for π. These properties are extracted from properties of the trace
model, which will be explained in detail in the next section. Many of those can
be derived from the fact that, in our model, π = λx. x	 c, where c is healthiness
condition which filters out ill-defined traces. We do not list these properties here.
In addition π must satisfy the properties

x� ≤π π(x)�, (7)

x · y ≤π π(x) · π(y), (8)

z + x · y ≤π y =⇒ x� · z ≤π y, (9)

z + y · x ≤π y =⇒ z · x� ≤π y. (10)

86 A. Armstrong, V.B.F. Gomes, and G. Struth

For any operator •, we write x •π y for the operator π(x • y), and we write xπ

for π(x�).

Theorem 4. (π(K),+π, ·π, π, 0, 1) is a Kleene algebra.

Proof. It can be shown that π is a retraction, that is, π2 = π. Therefore,
x ∈ π(K) iff π(x) = x. This condition can then be used to check the closure
conditions for all operations. 	�

We redefine our rely-guarantee algebra as a structure (K, I,+,	, ·, ‖, �, π, 0, 1)
which, in addition to the rules in Section 4, satisfies (7) to (10).

Theorem 5. All rules in Figure 1 can be derived in this algebra.

Moreover their proofs remain the same, mutatis mutandis.

6 Finite Language Model

We now construct a finite language model satisfying the axioms in Section 4
and 5. Restricting our attention to finite languages means we do not need to
concern ourselves with termination side-conditions, nor do we need to worry
about additional restrictions on parallel composition, e.g. fairness. However, all
the results in this section can be adapted to potentially infinite languages, and
our Isabelle/HOL formalisation already includes general definitions by using
coinductively defined lazy lists to represent words, and having a weakly-fair
shuffle operator for such infinite languages.

We consider languages where the alphabet contains state pairs of the form
(σ1, σ2) ∈ Σ2. A word in such a language is consistent if every such pair in
a word has the same first state as the previous transition’s second state. For
example, (σ1, σ2)(σ2, σ3) is consistent, while (σ1, σ2)(σ3, σ3) is consistent only if
σ2 = σ3. Sets of consistent words are essentially Aczel traces [9], but lack the
usual process labels. We denote the set of all consistent words by C and define
the function π from the previous section as λX. X ∩ C in our model.

Sequential composition in this model is language product, as per usual.
Concurrent composition is the shuffle product defined in Section 2. The shuffle
product is associative, commutative, and distributes over arbitrary joins. Both
products share the same unit, {ε} and zero, ∅. In Isabelle proving properties of
shuffle is surprisingly tricky (especially if one considers infinite words). For a
in-depth treatment of the shuffle product see [22].

Theorem 6. (P((Σ2)�),∪, ·, ‖, ∅, {ε}) forms a trioid.

The rely-guarantee elements in this model are sets containing all the words
which can be built from some set of state pairs in Σ2. We define a function 〈R〉
which lifts a relation R to a language containing words of length one for each pair
in R. The set of rely-guarantee conditions I is then defined as {r. ∃R.r = 〈R〉�}.

Theorem 7. (P((Σ2)�), I,∪, ·, ‖, �, π, ∅, {ε}) is a rely-guarantee algebra.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 87

Since 〈R〉 is atomic, it satisfies several useful properties, such as,

〈R〉�‖〈S〉 = 〈R〉�; 〈S〉; 〈R〉�, 〈R〉�‖〈S〉� = (〈R〉�; 〈S〉�)�.

To demonstrate how this model works, consider the graphical representation
of a language shown below.

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

The language contains the following six words

(σ1, σ1)(σ1, σ2)(σ2, σ3), (σ1, σ2)(σ1, σ2)(σ2, σ3),

(σ2, σ2)(σ1, σ2)(σ2, σ3), (σ1, σ1)(σ3, σ2)(σ2, σ3),

(σ1, σ2)(σ3, σ2)(σ2, σ3), (σ2, σ2)(σ3, σ2)(σ2, σ3),

where only the first, (σ1, σ1)(σ1, σ2)(σ2, σ3) is consistent. This word is high-
lighted with solid arrows in the diagram above. Now if we shuffle the single state
pair (σ2, σ3) into the above language, would end up with a language containing
the words represented in the diagram below:

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

By performing this shuffle action, we no longer have a consistent word from
σ1 to σ3, but instead a consistent word from σ2 to σ3 and σ1 to σ3. These
new consistent words were constructed from previously inconsistent words—the
shuffle operator can generate many consistent words from two inconsistent words.
If we only considered consistent words, à la Aczel traces, we would be unable
to define such a shuffle operator directly on the traces themselves, and would
instead have to rely on some operational semantics to generate traces.

7 Enriching the Model

To model and verify programs we need additional concepts such as tests and as-
signment axioms. A test is any language P where P ≤ 〈Id〉. We write test(P) for
〈IdP 〉. In Kleene algebra the sequential composition of two tests should be equal

88 A. Armstrong, V.B.F. Gomes, and G. Struth

to their intersection. However, the traces test(P); test(Q) and test(P ∩ Q) are
incomparable, as all words in the former have length two, while all the words in
the latter have length one. To overcome this problem, we use the concepts of stut-
tering and mumbling, following [5] and [11]. We inductively generate the mumble
language w† for a word w in a language over Σ2 as follows: Assume σ1, σ2, σ3 ∈ Σ
and u, v, w ∈ (Σ2)�. First, w ∈ w†. Secondly, if u(σ1, σ2)(σ2, σ3)v ∈ w† then
u(σ1, σ3)v ∈ w†. This operation is lifted to languages in the obvious way as

X† =
⋃

{x†. x ∈ X}.

Stuttering is represented as a rely condition 〈Id〉� where Id is the identity relation.
Two languages X and Y are equal under stuttering if 〈Id〉�‖X =π 〈Id〉�‖Y .

Assuming we apply mumbling to both sides of the following equation, we have
that

test(P ∩ Q) ≤π test(P); test(Q)

as the longer words in test(P); test(Q) can be mumbled down into the shorter
words of test(P ∩ Q), whereas stuttering gives us the opposite direction,

〈Id〉�‖(test(P); test(Q)) ≤π 〈Id〉�‖test(P ∩ Q).

We henceforth assume that all languages are implicitly mumble closed.
Using tests, we can encode if statements and while loops

if P { X } else { Y } = test(P);X + test(−P);Y,

while P { X } = (test(P);X)�; test(−P).

Next, we define the operator end(P) which contains all the words which end in
a state satisfying P . Some useful properties of end include

end(P); testQ ≤π end(P ∩ Q), test(P) ≤ end(P),

range(IdP ◦ R) ≤ P =⇒ end(P); 〈R〉� ≤π end(P).

In this model, assignment is defined as

x := e =
⋃

v. test{σ. eval(σ, e) = v} · x ← v

where x ← v denotes the atomic command which assigns the value v to x. The
eval function atomically evaluates an expression e in the state σ. Using this
definition we derive the assignment rule

unchanged(vars(e)) ∩ preserves(P) ∩ preserves(P [x/e]),

unchanged(−{x})
� {end(P)} x := e {end(P [x/e])}.

The rely condition states the following: First, the environment is not allowed
to modify any of the variables used when evaluating e, i.e. those variables must

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 89

remain unchanged. Second, the environment must preserve the precondition.
Third, the postcondition of the assignment statement is also preserved. In turn,
the assignment statement itself guarantees that it leaves every variable other
than x unchanged. Preserves and unchanged are defined as

preserves(P) = 〈{(σ, σ′). P (σ) =⇒ P (σ′)}〉�,

unchanged(X) = 〈{(σ, σ′). ∀v ∈ X. σ(v) = σ′(v)}〉�.

We also defined two futher rely conditions, increasing and decreasing, which are
defined much like unchanged except they only require that variables increase or
decrease, rather than stay the same. We can easily define other useful assignment
rules—if we know properties about P and e, we can make stronger guarantees
about what x := e can do. For example the assignment x := x − 2 can also
guarantee that x will always decrease.

8 Examples

To demonstrate how the parallel rule behaves, consider the following simple
statement, which simply assigns two variables in parallel:

〈Id〉�, 〈�〉� � {end(x = 2 ∧ y = 2 ∧ z = 5)}
x := x + 2 ‖ y := z

{end(x = 4 ∧ y = 5 ∧ z = 5)}.

The environment 〈Id〉� is only giving us stuttering interference. Since we are
considering this program in isolation, we make no guarantees about how this
affects the environment. To apply the parallel rule from Figure 1, we weaken
or strengthen the interference constrains and pre/postcondition as needed to fit
the form of the parallel rule.

First, we weaken the rely condition to unchanged{x} 	 unchanged{y, z}. Sec-
ond we strengthen the guarantee condition to unchanged{y, z} ‖ unchanged{x}.
When we apply the parallel rule each assignment’s rely will become the other as-
signment’s guarantee. Finally, we split the precondition and postcondition into
end(x = 2) 	 end(y = 2 ∧ z = 5) and end(x = 4) 	 end(y = 5 ∧ z = 5)
respectively. Upon applying the parallel rule, we obtain two trivial goals

〈unchanged{x}〉�, 〈unchanged{y, z}〉� � {end(x = 2)} x := x + 2 {end(x = 4)},

〈unchanged{y, z}〉�, 〈unchanged{x}〉� � {end(y = 2 ∧ z = 5)}
y := z

{end(y = 5 ∧ z = 5)}.

Figure 2 shows the FINDP program, which has been used by numerous au-
thors e.g. [25,17,10,14]. The program finds the least element of an array satisfying
a predicate P . The index of the first element satisfying p is placed in the variable
f . If no element of the array satisfies P then f will be set to the length of the

90 A. Armstrong, V.B.F. Gomes, and G. Struth

array. The program has two subprograms, A and B, running in parallel, one
of which searches the even indices while the other searches the odd indices. A
speedup over a sequential implementation is achieved as A will terminate when
B finds an element of the array satisfying P which is less than iA.

fA := len(array);

fB := len(array);⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iA = 0

while iA < fA ∧ iA < fB {
if P (array[iA]) {

fA := iA

} else {
iA := iA + 2

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

iB = 1

while iB < fA ∧ iB < fB {
if P (array[iB]) {

fB := iB

} else {
iB := iB + 2

}
}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

f = min(fA, fB)

Fig. 2. FINDP Program

Here, we only sketch the correctness proof, and comment on its implementa-
tion in Isabelle. We do not attempt to give a detailed proof, as this has been
done many times previously.

To prove the correctness of FINDP, we must show that

FINDP ≤π end(leastP(f)) + end(f = len(array)),

where leastP(f) is the set of states where f is the least index satisfying P , and
f = len(array) is the set of states where f is the length of the array. In other
words, either we find the least element, or f remains the same as the length of
the array, in which case no elements in the array satisfy P .

To prove the parallel part of the program, subprogram A guarantees that it
does not modify any of the variables used by subprogram B, except for fA, which
it guarantees will only ever decrease. Subprogram B makes effectively the same
guarantee to A. Under these interference constraints we then prove that A or B
will find the lowest even or odd index which satisfies P respectively—or they do
not find it, in which case fA or fB will remain equal to the length of the array.

Despite the seemingly straightforward nature of this proof, it turns out to be
surprisingly difficult in Isabelle. Each atomic step needs to be shown to satisfy
the guarantee of its containing subprogram, as well as any goals relating to its
pre and post conditions. This invariably leads to a proliferation of many small
proof goals, even for such a simple program. More work must be done to manage
the complexity of such proofs within interactive theorem provers.

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 91

9 Conclusion

We have introduced variants of semirings and Kleene algebras intended to model
rely-guarantee and interference based reasoning. We have developed an inter-
leaving model for these algebras which uses familiar concepts from traces and
language theory. This theory has been implemented in the Isabelle/HOL theo-
rem prover, providing a solid mathematical basis on which to build a tool for
mechanised refinement and verification tasks. In line with this aim, we have
applied our formalisation to a simple example program.

This implementation serves as a basis from which further interesting aspects
of concurrent programs, such as non-termination and synchronisation can be
explored. As mentioned in Section 6, some of the work needed to implement this
we have already done in Isabelle.

Algebra plays an important role in our development. First, it allowed us to
derive inference rules rapidly and with little proof effort. Second, it yields an
abstract layer at which many properties that would be difficult to prove in con-
crete models can be verified with relative ease by equational reasoning. Third,
as pointed out in Section 2, some fragments of the algebras considered are decid-
able. Therefore, decision procedures for some aspects of rely-guarantee reasoning
can be implemented in interactive theorem proving tools such as Isabelle. How-
ever, we have not yet investigated the extent to which such decision procedures
would benefit our approach.

The examples from Section 8 confirm previous evidence [24] that even seem-
ingly straightforward concurrency verification tasks can be tedious and complex.
It is too early to draw informed conclusions, but while part of this complexity
may be unavoidable, more advanced models and proof automation are needed to
overcome such difficulties. Existing work on combining rely-guarantee with sepa-
ration logic [29] may prove useful here. Our language model is sufficiently generic
such that arbitrary models of stores may be used, including those common in
separation logic, which have already been implemented in Isabelle [18].

In addition, algebraic approaches to separation logic have already been in-
troduced. Examples are the separation algebras in [6], and algebraic separation
logic [8]. More recently, concurrent Kleene algebras have given an algebraic ac-
count of some aspects of concurrent separation logic [16,15].

Acknowledgements. The authors would like to thank Brijesh Dongol and Ian
Hayes for inspiring discussions on concurrency verification and the rely-guarantee
method. The first author acknowledges funding from an EPSRC doctoral fel-
lowship. The second author is supported by CNPq Brazil. The third author
acknowledges funding by EPSRC grant EP/J003727/1.

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Algebras for program correctness in
isabelle/HOL. In: Kahl, W. (ed.) RAMiCS 2014. LNCS, vol. 8428, pp. 49–64.
Springer, Heidelberg (2014)

92 A. Armstrong, V.B.F. Gomes, and G. Struth

2. Armstrong, A., Struth, G., Weber, T.: Kleene algebra. In: Archive of Formal Proofs
(2013)

3. Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on
Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 197–212. Springer, Heidelberg (2013)

4. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

5. Brookes, S.: Full abstraction for a shared variable parallel language. In: Okada, M.,
Panangaden, P. (eds.) LICS, 1993, pp. 98–109 (1993)

6. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Ong, L. (ed.) LICS 2007, pp. 366–378 (2007)

7. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall (1971)
8. Dang, H.-H., Höfner, P., Möller, B.: Algebraic separation logic. J. Log. Algebr.

Program. 80(6), 221–247 (2011)
9. de Boer, F.S., Hannemann, U., de Roever, W.-P.: Formal justification of the rely-

guarantee paradigm for shared-variable concurrency:A semantic approach. In:Wing,
J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1245–1265.
Springer, Heidelberg (1999)

10. de Roever, W.-P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency verification: an introduction to state-based methods.
Cambridge University Press, Cambridge (2001)

11. Dingel, J.: A refinement calculus for shared-variable parallel and distributed pro-
gramming. Formal Aspects of Computing 14(2), 123–197 (2002)

12. Gischer, J.L.: Shuffle languages, Petri nets, and context-sensitive grammars. Com-
mun. ACM 24(9), 597–605 (1981)

13. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Sci-
ence 61(2-3), 199–224 (1988)

14. Hayes, I.J., Jones, C.B., Colvin, R.J.: Refining rely-guarantee thinking (2013)
(unpublished)

15. Hoare, C.A.R., Hussain, A., Möller, B., O’Hearn, P.W., Petersen, R.L., Struth,
G.: On locality and the exchange law for concurrent processes. In: Katoen, J.-
P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 250–264. Springer,
Heidelberg (2011)

16. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011)

17. Jones, C.B.: Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University (1981)

18. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg
(2012)

19. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

20. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

21. Laurence, M.R., Struth, G.: Completeness results for bi-Kleene algebras and regular
pomset languages (2013) (submitted)

22. Mateescu, A., Mateescu, G.D., Rozenberg, G., Salomaa, A.: Shuffle-like operations
on ω-words. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages.
LNCS, vol. 1218, pp. 395–411. Springer, Heidelberg (1997)

Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools 93

23. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221–239 (2006)

24. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003)

25. Owicki, S.: Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cornell
University (1975)

26. Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196.
Springer, Heidelberg (2013)

27. Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990.
LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991)

28. Tarlecki, A.: A language of specified programs. Science of Computer Program-
ming 5, 59–81 (1985)

29. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge (2008)

Definition, Semantics, and Analysis
of Multirate Synchronous AADL

Kyungmin Bae1, Peter Csaba Ölveczky2, and José Meseguer1

1 University of Illinois at Urbana-Champaign, USA
2 University of Oslo, Norway

Abstract. Many cyber-physical systems are hierarchical distributed
control systems whose components operate with different rates, and that
should behave in a virtually synchronous way. Designing such systems is
hard due to asynchrony, skews of the local clocks, and network delays;
furthermore, their model checking is typically unfeasible due to state
space explosion. Multirate PALS reduces the problem of designing and
verifying virtually synchronous multirate systems to the much simpler
tasks of specifying and verifying their underlying synchronous design. To
make the Multirate PALS design and verification methodology available
within an industrial modeling environment, we define in this paper the
modeling language Multirate Synchronous AADL, which can be used to
specify multirate synchronous designs using the AADL modeling stan-
dard. We then define the formal semantics of Multirate Synchronous
AADL in Real-Time Maude, and integrate Real-Time Maude verifica-
tion into the OSATE tool environment for AADL. Finally, we show how
an algorithm for smoothly turning an airplane can be modeled and an-
alyzed using Multirate Synchronous AADL.

1 Introduction

Modeling languages are widely used but tend to be weak on the formal analysis
side. If they can be endowed with formal analysis capabilities “under the hood”
with minimal disruption to the established modeling processes, formal methods
can be more easily adopted and many design errors can be detected early in the
design phase, resulting in higher quality systems and in substantial savings in
the development and verification processes. This work reports on a significant
advance within a long-term effort to intimately connect formal methods and
modeling languages: supporting model checking analysis of multirate distributed
cyber-physical systems within the industrial modeling standard AADL [10].

Our previous work [7,8,13] has focused on endowing AADL with formal anal-
ysis capabilities, using Real-Time Maude [14] as an “under the hood” formal
tool. Our goal is the automated analysis of AADL models by model checking.
Such models describe cyber-physical systems made up of distributed components
that communicate with each other through ports. However, due to the combi-
natorial explosion caused by the distributed nature of cyber-physical systems,
straightforward model checking of AADL models quickly becomes unfeasible.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 94–109, 2014.
c© Springer International Publishing Switzerland 2014

Definition, Semantics, and Analysis of Multirate Synchronous AADL 95

To tame this combinatorial explosion we have investigated general formal
patterns that, by drastically reducing the state space, can support the model
checking of distributed cyber-physical systems. A broad class of such systems
are distributed control systems that, while asynchronous, must be virtually syn-
chronous, since they are controlled in a periodic way. The PALS (“Physically
Asynchronous but Logically Synchronous”) pattern [2,12] achieves such state
space reduction by reducing the design of a distributed system of this kind to
that of its much simpler synchronous counterpart.1 However, PALS is limited by
the requirement that all components have the same period, which is unrealistic
in practice. Typically, components closer to sensors and actuators have a faster
period than components higher up in the control hierarchy. This has led us to
develop Multirate PALS [6], which generalizes PALS to the multi-rate case.

Taking advantage of Multirate PALS for model checking distributed designs
in AADL by model checking the corresponding synchronous design requires:
(i) defining appropriate extensions of AADL where such synchronous models
can be specified; (ii) giving a formal semantics to such language extensions;
and (iii) building tools as OSATE plugins that automate the model checking
verification of the synchronous models. This is very useful, because synchronous
designs are much easier to understand by engineers, they are much easier to
model check, and generation of their more complex distributed versions can be
automated and made correct by construction using Multirate PALS.

For PALS, steps (i)–(iii) were taken in the Synchronous AADL language and
tool [7,8]. This paper greatly broadens the class of AADL models that can be
model checked in this way by extending AADL to support the Multirate PALS
methodology. This involves the following steps: in Section 3 we define the Multi-
rate Synchronous AADL language; in Section 5 we define the formal semantics of
Multirate Synchronous AADL in Real-Time Maude; and in Section 6 we describe
the MR-SynchAADL tool as an OSATE plugin. We illustrate the effectiveness
of the Multirate Synchronous AADL language and the MR-SynchAADL tool on
a distributed control system for turning an aircraft (Sections 4 and 7).

2 Preliminaries

Multirate PALS. The Multirate PALS formal pattern [6] can drastically sim-
plify the design and verification of distributed cyber-physical systems whose
architecture is one of hierarchical distributed control. The devices may operate
at different rates, but the synchronous changes of the local control applications
can happen only at the hyperperiod boundary [1]. Systems of this nature are
very common in avionics, motor vehicles, robotics, and automated manufactur-
ing. More specifically, given a multirate synchronous design SD and performance
bounds Γ on the clock skews, computation times, and network delays, Multirate

1 For an avionics case study in [12], the number of system states for their simplest
possible distributed version with perfect local clocks and no network delays was
3,047,832, but PALS reduced the number of states to be analyzed to 185.

96 K. Bae, P.C. Ölveczky, and J. Meseguer

PALS maps SD to the corresponding distributed real-time system MA(SD, Γ)
that is stuttering bisimilar to SD as made precise in [6].

A component in such a synchronous design is formalized as a typed machine
M = (Di, S, Do, δM), where Di = Di1 × · · · × Din is the input set, S is the
set of states, Do = Do1 × · · · × Dom is the output set, and δM ⊆ (Di × S) ×
(S × Do) is the transition relation. Such a machine receives inputs, changes its
local state, and produces outputs in each iteration, through its n input ports

6 4 3 3

12 12env12

Fig. 1. A multirate system

and m output ports. We consider multirate systems
where a set of components with the same rate may
communicate with each other and with a number of
faster components, so that the period of the higher-
level components is a multiple of the period of each
fast component, as illustrated in Fig. 1, where each
machine is annotated by its period.

To compose machines with different periods into a synchronous system in
which all components operate in lock-step, we “slow down” the fast components
so that all components run at the slow rate. A fast machine that is slowed down
by a factor k performs k internal transitions during one (slow) period; since it
consumes an input and produces an output at each port in each of these internal
steps, it consumes and produces k-tuples of inputs and outputs in a slow step.
Such a k-tuple output must be transformed into a single value by an input
adaptor function αp : Dk

ip
→ Dip so that it can be read by the slow component.

Likewise, since the fast component expects a k-tuple of input values in each
input port, the single-value output from a slow component must be transformed
to a k-tuple of inputs to the fast machine by an adaptor α′

q : Diq → Dk
iq

(e.g.,
mapping d to (d, ⊥, . . . , ⊥) for some “don’t care” value ⊥).

A multirate machine ensemble is a network of typed machines with different
rates and input adaptors. Such an ensemble has a synchronous semantics: all
machines perform a transition (possibly consisting of multiple “internal transi-
tions”) simultaneously, and the output becomes an input at the next (global)
step. Its synchronous composition defines another typed machine, which can be
a component in another ensemble, giving rise to hierarchical multirate ensembles
formalized in [6]. For example, the “system” in the left-hand side of Fig. 2 can
be seen as the hierarchical multirate ensemble in the right-hand side. We assume
that the observable behavior of an environment can be defined by a (possibly)
nondeterministic machine, and that all other machines are deterministic.

12

6 4

2 2

env12 12

4

env12

6

2 2

Fig. 2. A multirate control system and the corresponding multirate ensemble

Definition, Semantics, and Analysis of Multirate Synchronous AADL 97

AADL. The Architecture Analysis & Design Language (AADL) [10] is an indus-
trial modeling standard used in avionics, aerospace, automotive, medical devices,
and robotics to describe an embedded real-time system as an assembly of soft-
ware components mapped onto an execution platform. In AADL, a component
type specifies the component’s interface (e.g., ports) and properties (e.g., peri-
ods), and a component implementation specifies its internal structure as a set of
subcomponents and a set of connections linking their ports. An AADL construct
may have properties describing its parameters, declared in property sets. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

This paper focuses on the software components of AADL, since we use AADL
to specify synchronous designs. Software components include threads that model
the application software to be executed and data components representing data
types. System components are the top level components. Thread behavior is
modeled as a guarded transition system using the behavior annex sublanguage
[11]. The actions performed when a transition is applied may update local vari-
ables, call methods, and/or generate new outputs. Actions are built from basic
actions using sequencing, conditionals, and finite loops. When a thread is acti-
vated, an enabled transition is applied; if the resulting state is not a complete
state, another transition is applied, until a complete state is reached.

Real-Time Maude. A Real-Time Maude [14] module is a tuple (Σ, E, IR, TR),
where: (i) (Σ, E) is a membership equational theory [9] with Σ a signature (i.e.,
a collection of declarations of sorts, subsorts, and function symbols) and E a
set of confluent and terminating (possibly conditional) equations, specifying the
system’s states as an algebraic data type; (ii) IR is a set of instantaneous rewrite
rules of the form crl [l]: t => t′ if condition, specifying the system’s instan-
taneous (i.e., zero-time) transitions; and (iii) TR is a set of tick rewrite rules of
the form crl [l]: {t} => {t′} in time τ if condition, specifying a transition
with duration τ and label l from an instance of the term t to the corresponding
instance of t′. A conjunct in condition may be an equation u = v, a rewrite u => v
(which holds if u can be rewritten to v in zero or more steps), or a matching
equation u := v (which can be used to instantiate the variables in u).

The Real-Time Maude syntax is fairly intuitive (see [9]). A function symbol
f is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn are the sorts
of its arguments, and s is its (value) sort. Maude supports the declaration of
partial functions using the arrow ‘~>’ (e.g., op f : s1 . . . sn ~> s), so that a term
containing a partial function may not have a sort. Equations are written with
syntax eq u = v, and ceq u = v if condition for conditional equations.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class C
with attributes att1 to attn of sorts s1 to sn. An object of class C is represented
as a term < O : C | att1 : val1, ..., attn : valn > where O is its identifier, and val1
to valn are the current values of the attributes att1 to attn. The global state has
the form {t}, where t is a term of sort Configuration that has the structure of a
multiset of objects and messages, with multiset union denoted by a juxtaposition
operator. A subclass inherits all the attributes of its superclasses.

98 K. Bae, P.C. Ölveczky, and J. Meseguer

A Real-Time Maude specification is executable, and the tool offers a variety
of formal analysis methods. The rewrite command simulates one behavior of
the system from an initial state. Real-Time Maude’s LTL model checker checks
whether each behavior from an initial state, possibly up to a time bound, satisfies
a linear temporal logic formula. A temporal logic formula is constructed by state
propositions and temporal logic operators such as True, ~ (negation), /\, \/, ->
(implication), [] (“always”), <> (“eventually”), U (“until”), and O (“next”).

3 Multirate Synchronous AADL

This section introduces the Multirate Synchronous AADL language for specifying
hierarchical multirate ensembles in AADL. Multirate Synchronous AADL is a
subset of AADL extended with a property set MR_SynchAADL. Our goals when
designing Multirate Synchronous AADL were: (i) keeping the new property set
small, and (ii) letting the AADL constructs in the (common) subset have the
same meaning in AADL and Multirate Synchronous AADL.

Subset of AADL. Since Multirate Synchronous AADL is intended to model
synchronous designs, it focuses on the behavioral and structural subset of AADL:
hierarchical system, process, and thread components; ports and connections; and
thread behaviors defined in the behavior annex language.

The dispatch protocol is used to trigger an execution of a thread. Event-
triggered dispatch, where the execution of one thread triggers the execution of
another thread, is not suitable to define a system in which all threads must
execute in lock-step. Therefore, each thread must have periodic dispatch. This
means that, in the absence of immediate connections, the thread is dispatched
at the beginning of each period of the thread.

There are three kinds of ports in AADL: data ports, event ports, and event
data ports. Event and event data ports can be used to dispatch event-triggered
threads, and may contain a buffer of untreated received events, whereas a data
port always contains (at most) one element. Multirate Synchronous AADL only
allows data ports, since each component in multirate ensembles gets only one
piece of data in each input port (the user should only specify single machines
and the input adaptors that deal with the k-tuples of inputs/outputs).

We must make sure that all outputs generated in one iteration is available at
the beginning of the next iteration, and not before, since in multirate ensembles,
outputs generated in one step becomes inputs of their destination components
in the next step. As explained in [7] for (single-rate) Synchronous AADL, this
is achieved in AADL by having delayed connections.

New Features. The new features in Multirate Synchronous AADL are defined
in the following property set MR_SynchAADL:

property set MR_SynchAADL is
Synchronous: inherit aadlboolean

applies to (system, process, thread group, thread);

Definition, Semantics, and Analysis of Multirate Synchronous AADL 99

Nondeterministic: aadlboolean applies to (thread);
InputAdaptor: aadlstring applies to (port);

end MR_SynchAADL;

The main system component in a Multirate Synchronous AADL model should
declare the property MR_SynchAADL::Synchronous => true, to state that it
can be executed synchronously. As mentioned in Section 2, we assume that the
behavior of an environment is defined by a nondeterministic machine, and that
all other threads are deterministic. A nondeterministic environment component
should add the property MR_SynchAADL::Nondeterministic => true.

The main new feature needed to define a multirate ensemble is input adaptors.
Multirate Synchronous AADL provides a number of predefined input adaptors.
The 1-to-k input adaptors, mapping a single value to a k-vector of values, are:

"repeat_input" (maps v to (v, v, . . . , v))
"use in first iteration" (maps v to (v, ⊥, . . . , ⊥))
"use in last iteration" (maps v to (⊥, . . . , ⊥, v))
"use in iteration i" (maps v to (⊥, . . . , ⊥

︸ ︷︷ ︸

i−1

, v, ⊥, . . . , ⊥)).

The k-to-1 input adaptors, mapping k-vectors to single values, include:

"first" (maps (v1, . . . , vk) to v1)
"last" (maps (v1, . . . , vk) to vk)
"use element i" (maps (v1, . . . , vk) to vi)
"average" (maps (v1, . . . , vk) to (v1 + · · · + vk)/k)
"max" (maps (v1, . . . , vk) to max(v1, . . . , vk)).

In Multirate Synchronous AADL, such an input adaptor is assigned to an input
port as a property MR_SynchAADL::InputAdaptor => input adaptor, e.g.:

goal_angle: in data port Base_Types::Float
{MR_SynchAADL::InputAdaptor => "use in first iteration";};

The "use in ..." 1-to-k adaptors generate some “don’t care” values ⊥. Instead
of explicitly having to define such default values, the fact that a port p has an
input “⊥” is manifested by p’fresh being false.

4 Case Study: Turning an Airplane

This section shows how the design of a virtually synchronous control system for
turning an airplane can be specified in Multirate Synchronous AADL. To achieve
a smooth turn of the airplane, the controller must synchronize the movements
of the airplane’s two ailerons and its rudder (an aileron is a flap attached to
the end of the left or the right wing, and a rudder is a flap attached to the
vertical tail). This is a prototypical multirate distributed control system, since
the subcontrollers for the ailerons and the rudder typically have different periods

100 K. Bae, P.C. Ölveczky, and J. Meseguer

Pilot console
(600ms)

The Airplane Turning Control System (60ms)

Main
controller
(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Fig. 3. The architecture of our airplane turning control system

[1], yet must synchronize in real time to achieve a smooth turn. We only show a
few parts of the model and refer to the longer report [5] for the full specification.

When an aircraft makes a turn, it rolls towards the desired direction, so that
the lift force caused by the wings acts as the centripetal force and the aircraft
moves in a circular motion. The ailerons are used to control the roll angle.
However, the rolling of the aircraft produces a yawing moment in the opposite
direction, called adverse yaw, which makes the aircraft sideslip in the wrong
direction. This undesired side effect is countered by using the aircraft’s rudder .

As shown in Fig. 3, our system consists of four periodic controllers with differ-
ent periods. The environment is the pilot console that allows the pilot to select
a new desired direction every 600 ms. The left wing controller receives the de-
sired angle goalL of the aileron from the main controller, and moves the aileron
towards that angle. The right wing (resp., the rudder) controller operates in
the same way for the right wing aileron (resp., the rudder). The main controller
receives the desired direction (from the pilot console) and the current angle of
each device (from the device controllers), computes the new desired device an-
gles, and sends them to the device controllers. We have also defined a model of
the control algorithm directly in Real-Time Maude in [3], and refer to it for more
details about the turning control algorithm.

The following AADL component declares the top-level “implementation” of
the system in terms of connections and subcomponents:

system implementation Airplane.impl
subcomponents

pilotConsole: system PilotConsole.impl; turnCtrl: system TurningController.impl;
connections

port pilotConsole.goal_dr -> turnCtrl.pilot_goal {Timing => Delayed;};
port turnCtrl.curr_dr -> pilotConsole.curr_dr {Timing => Delayed;};

properties
MR_SynchAADL::Synchronous => true; Period => 600 ms;
Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output

pilotConsole.goal_dr, turnCtrl.curr_dr;
end Airplane.impl;

The pilot may in any round nondeterministically add 0◦, 10◦, or −10◦ to the
current desired direction. The input port curr_dr receives the current direction
ψ from the turning system, which operates 10 times faster than the pilot; we
must therefore use an input adaptor to map the 10-tuple of directions into a
single value, for which it is natural to use the last value.

Definition, Semantics, and Analysis of Multirate Synchronous AADL 101

system PilotConsole -- "interface" of the pilot console
features

curr_dr: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
goal_dr: out data port Base_Types::Float;

end PilotConsole;

The implementation of PilotConsole contains the following thread defining
the pilot behavior. When the thread dispatches, the transition from state idle
to select is taken. Since select is not a complete state, the thread continues
executing, by nondeterministically selecting one of the other transitions, which
assigns the selected angle change to the output port goal_dr. Since the resulting
state idle is a complete state, the execution in the current dispatch ends.

thread implementation PilotConsoleThread.impl
properties

MR_SynchAADL::Nondeterministic => true; Dispatch_Protocol => Periodic;
annex behavior_specification {**

states
idle: initial complete state; select: state;

transitions
idle -[on dispatch]-> select; select -[]-> idle {goal_dr := 0.0};
select -[]-> idle {goal_dr := 10.0}; select -[]-> idle {goal_dr := -10.0};

**};
end PilotConsoleThread.impl;

The turning controller consists of the main controller and the three subcon-
trollers. The subcontrollers are specified as instances of Subcontroller.impl.
Since the turning controller is 10 times faster than the pilot console, it will
execute 10 “internal” iterations in a global period; hence the single input in
pilot_goal from the pilot must be mapped into 10 values, and we choose to
use the input in the first local iteration:
system TurningController -- "interface" of the turning controller

features
pilot_goal: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_dr: out data port Base_Types::Float;

end TurningController;

system implementation TurningController.impl
subcomponents

mainCtrl: system Maincontroller.impl; rudderCtrl: system Subcontroller.impl;
leftCtrl: system Subcontroller.impl; rightCtrl: system Subcontroller.impl;

connections
port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};
port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing => Delayed;};
port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing => Delayed;};
port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.right_goal -> rightCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};
port pilot_goal -> mainCtrl.goal_angle; port mainCtrl.curr_dr -> curr_dr;

properties
Period => 60 ms;
Period => 15 ms applies to leftCtrl, rightCtrl;
Period => 20 ms applies to rudderCtrl;
Data_Model::Initial_Value => ("1.0") applies to -- ailerons can move 1◦ in 15 ms

102 K. Bae, P.C. Ölveczky, and J. Meseguer

leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;
Data_Model::Initial_Value => ("0.5") applies to -- rudder can move 0.5◦ in 20 ms

rudderCtrl.ctrlProc.ctrlThread.diffAngle;
Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output

leftCtrl.curr_angle, rightCtrl.curr_angle, rudderCtrl.curr_angle,
mainCtrl.left_goal, mainCtrl.right_goal, mainCtrl.rudder_goal;

end TurningController.impl;

Due to lack of space, we refer to [5] for the specification of the main controller.
The behavior of the subcontrollers is straightforward: move the device toward
the goal angle up to diffAngle (declared in TurningController.impl), update
the goal angle if a new value has received, and report back the current angle:
system Subcontroller -- "interface" of a device controller

features
goal_angle: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_angle: out data port Base_Types::Float;

end Subcontroller;

thread implementation SubcontrollerThread.impl
subcomponents

currAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
goalAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
diffAngle : data Base_Types::Float;

annex behavior_specification {**
states

init: initial complete state; move, update: state;
transitions

init -[on dispatch]-> move;
move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0) currAngle := currAngle + diffAngle
else currAngle := currAngle - diffAngle end if };

move -[otherwise]-> update {currAngle := goal_angle};
update -[]-> init {
if (goal_angle’fresh) goalAngle := goal_angle end if; curr_angle := currAngle};

**};
end SubcontrollerThread.impl;

5 Real-Time Maude Semantics

This section summarizes the Real-Time Maude semantics of Multirate Syn-
chronous AADL. The entire semantics is given in our longer report [5], and
is very different from the semantics of single-rate Synchronous AADL [7], which
could use a flattened structure of (single-rate) components, in order to explicitly
deal with the hierarchical structure of components with different rates.

Real-Time Maude Representations. The Real-Time Maude semantics is
defined in an object-oriented style, in which a Multirate Synchronous AADL
component instance is represented as an object instance of a subclass of the
following class Component:

class Component | features : Configuration, subcomponents : Configuration,
connections : Set{Connection}, properties : PropertyAssociation .

Definition, Semantics, and Analysis of Multirate Synchronous AADL 103

The attribute features represents the ports of a component as a multiset
of Port objects; subcomponents denotes its subcomponents as a multiset of
Component objects; properties denotes its properties; and connections de-
notes its connections, each of which has the form source --> target.

A component whose behavior is given by its subcomponents, such as a system
or a process, is represented as an object instance of a subclass of Ensemble:

class Ensemble . class System . class Process .
subclass System Process < Ensemble < Component .

The Thread class contains the attributes for the thread’s behavior:

class Thread | variables : Set{VarId}, transitions : Set{Transition},
currState : Location, completeStates : Set{Location} .

subclass Thread < Component .

The attribute variables denotes the local temporary variables of the thread
component, transitions denotes its transitions, currState denotes the current
state, and completeStates denotes its complete states.

The data subcomponents of a thread can specify the thread’s local state vari-
ables, whose value attribute denotes its current value v, expressed as the term
[v], where bot denotes the “don’t care” value ⊥:

class Data | value : DataContent . subclass Data < Component .
sorts DataContent Value . subsort Value < DataContent .
op bot : -> DataContent [ctor] . op [_] : Bool -> Value [ctor] .
op [_] : Int -> Value [ctor] . op [_] : Float -> Value [ctor] .

A data port is represented as an object instance of a subclass of the class
Port, whose content attribute contains a list of data contents (either a value or
⊥) and properties can denote its input adaptor. An input port also contains
the attribute cache to keep the previously received “value”; if an input port p
received ⊥ in the latest dispatch, the thread can use a value in cache, while
p’fresh becomes false:

class Port | content : List{DataContent}, properties : PropertyAssociation .
class InPort | cache : DataContent . class OutPort .
subclass InPort OutPort < Port .

For example, an instance of the TurningController.impl system component
in our airplane controller example can be represented by an object

< turnCtrl : System |
features : < pilot_goal : InPort | content : [0.0], cache : [0.0],

properties : InputAdaptor => {use in first iteration} >
< curr_dr : OutPort | content : [0.0], properties : none >

subcomponents : < mainCtrl : System | ... > < leftCtrl : System | ... >
< rightCtrl : System | ... > < rudderCtrl : System | ... >,

connections : leftCtrl.. curr_angle --> mainCtrl.. left_angle ;
...
mainCtrl.. curr_dr --> curr_dr,

properties : Period => {60} >

104 K. Bae, P.C. Ölveczky, and J. Meseguer

Thread Behavior. The behavior of a single AADL component is specified
using the partial function executeStep : Object ~> Object, by means of equa-
tions (for deterministic components) or rewrite rules (for nondeterministic com-
ponents). The following rule defines the behavior of nondeterministic threads:

crl [execute]:
executeStep(

< C : Thread | features : PORTS, subcomponents : DATA,
currState : L, completeStates : LS, transitions : TRS,
variables : VARS, properties : PROPS >)

=> < C : Thread | features : writeFeature(FMAP’,PORTS’),
subcomponents : DATA’, currState : L’ >

if Nondeterministic => {true} in PROPS
/\ (PORTS’ | FMAP) := readFeature(PORTS)
/\ execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS) => L’ | FMAP’ | DATA’ .

The function readFeature returns a map from each input port to its current
value (i.e., the first value of the data content list), while removing the value
from the port and using the cached value if the value is ⊥. Then, any possible
computation result of the thread’s transition system is nondeterministically as-
signed to the pattern L’ | FMAP’ | DATA’. The function writeFeature updates
the content of each output port from the result.

The meaning of the operator execTrans is defined by the following rewrite
rule, which repeatedly applies transitions until a complete state is reached:

crl [trans]: execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS)
=> if (L’ in LS) then L’ | FMAP’ | DATA’

else execTrans(L’, LS, TRS, VARS, FMAP’ | DATA’ | PROPS) fi
if (L -[GUARD]-> L’ ACTION) ; TRS’ := enabledTrans(L, TRS, FMAP | DATA | PROPS)
/\ FMAP’ | DATA’ | PROPS := execAction(ACTION, VARS, FMAP | DATA | PROPS) .

The function enabledTrans finds all enabled transitions from the current state L
whose GUARD evaluates to true, and any of these is nondeterministically assigned
to the pattern (L -[GUARD]-> L’ ACTION). The function execAction executes
the actions of the chosen transition and returns a new configuration. If the next
state L’ is not a complete state (else branch), then execTrans is applied again
with the new configuration.

Ensemble Behavior. For ensemble components such as processes and systems,
their synchronous behavior is also defined by using executeStep:

crl [execute]: executeStep(< C : Ensemble | >) => transferResults(OBJ’)
if OBJ := applyAdaptors(transferInputs(< C : Ensemble | >))
/\ prepareExec(OBJ) => OBJ’ .

This rule specifies the multirate synchronous composition of its all subcompo-
nents. First, each input port of the subcomponents receives a value from its
source, either an input port of C or an output port of another subcomponent
(transferInputs). Second, appropriate input adaptors are applied to each in-
put port (applyAdaptors), and the resulting term is assigned to the variable

Definition, Semantics, and Analysis of Multirate Synchronous AADL 105

OBJ. Third, for each subcomponent, executeStep is applied multiple times ac-
cording to its period (prepareExec). Next, any term of sort Object resulting
from rewriting prepareExec(OBJ) in zero or more steps is nondeterministically
assigned to OBJ’ of sort Object. Since executeStep does not yield terms of this
sort, OBJ’ will only capture an object where executeStep has been completely
evaluated in each subcomponent. Finally, the new outputs of the subcomponents
are transferred to the output ports of C (transferResults).

Multirate Synchronous Steps. A synchronous step of the entire system is
formalized by the following conditional tick rewrite rule:

crl [step]:
{< C : System | properties : Period => {T} ; Synchronous => {true} ; PROPS,

features : none >}
=> {SYSTEM} in time T
if executeStep(< C : System | >) => SYSTEM .

Any term of sort Object, in which executeStep is completely evaluated, result-
ing from rewriting executeStep(< C : System | >) in zero or more steps can
be nondeterministically assigned to the variable SYSTEM.

6 Formal Analysis Using the MR-SynchAADL Tool

To support the convenient modeling and verification of Multirate Synchronous
AADL models within the OSATE tool environment, we have developed the MR-
SynchAADL OSATE plugin that: (i) checks whether a given model is a valid Mul-
tirate Synchronous AADL model; (ii) provides an intuitive language for specify-
ing system requirements; and (iii) automatically synthesizes a Real-Time Maude
model from a Multirate Synchronous AADL model and uses Real-Time Maude
model checking to analyze whether the Multirate Synchronous AADL model
satisfies the given requirements. The tool is available at http://formal.cs.
illinois.edu/kbae/MR-SynchAADL.

Requirement Specification Language. The MR-SynchAADL tool provides
a requirement specification language that allows the user to define system re-
quirements in an intuitive way, without having to understand Real-Time Maude.
The requirement specification language defines several parametric atomic propo-
sitions. The proposition

full component name @ location

holds in a state when the thread identified by the full component name is in state
location. A full component name is a component path in the AADL syntax: a
period-separated path of component identifiers. Similarly, the proposition

full component name | boolean expression

http://formal.cs.illinois.edu/kbae/MR-SynchAADL
http://formal.cs.illinois.edu/kbae/MR-SynchAADL

106 K. Bae, P.C. Ölveczky, and J. Meseguer

holds in a state if boolean expression evaluates to true in the component. We can
use any boolean expression in the AADL behavior annex syntax involving data
components, feedback output data ports, and property values.

In MR-SynchAADL, we can easily declare formulas and requirements for Mul-
tirate Synchronous AADL models as LTL formulas, using the usual Boolean
connectives and temporal logic operators. In our example, the declaration

formula safeYaw: turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;

states that safeYaw holds when the current yaw angle is less than 1◦. The
following requirement defines the safety requirement: the yaw angle should always
be close to 0◦.

requirement safety: [] safeYaw;

Tool Interface. Figure 4 shows the MR-SynchAADL window for the airplane
example. In the editor part, two system requirements, explained below, are spec-
ified using the requirement specification language. The Constraints Check, the
Code Generation, and the Perform Verification buttons are used to perform,
respectively, the syntactic validation of the model, the Real-Time Maude code
generation, and the LTL model checking. The Perform Verification button
has been clicked and the results are shown in the “Maude Console.”

Fig. 4. MR-SynchAADL window in OSATE

Definition, Semantics, and Analysis of Multirate Synchronous AADL 107

7 Verifying the Airplane Turing Controller

This section shows how the Multirate Synchronous AADL model of the airplane
controller can be verified with the MR-SynchAADL tool. The system must sat-
isfy the following requirement: the airplane must reach the desired direction with
a stable status within reasonable time, while keeping the yaw angle close to 0◦.

In order to verify whether the airplane can reach a specific goal direction, we
first consider a deterministic pilot given by the following implementation, where
the pilot gradually turns the airplane 60◦ to the right by adding 10◦ to the goal
direction 6 times, instead of using the nondeterministic pilot in Section 4:
thread implementation PilotConsoleThread.scenario

subcomponents
counter: data Base_Types::Integer {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
states

idle: initial complete state; select: state;
transitions

idle -[on dispatch]-> select; select -[counter >= 6]-> idle;
select -[counter < 6]-> idle {goal_dr := 10.0; counter := counter + 1};

**};
end PilotConsoleThread.scenario;

The desired requirement, with the additional constraint that the desired state
must always be reached within 7,200 ms, can be formalized as an LTL formula
using the requirement specification language in MR-SynchAADL as follows:

requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7200;
formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;
formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

where safeYaw is defined in Section 6, stable holds if both roll and yaw angles
are close to 0, and reachGoal holds if the current direction is close to 60◦.

Figure 4 shows the model checking results for the two system requirements
safety (declared in Section 6) and safeTurn. In the deterministic scenario, the
airplane controller satisfies both properties as displayed in the Maude console.
These analyses took 1.6 and 0.5 seconds, respectively, on Intel Core i5 2.4 GHz
with 4 GB memory and the numbers of states explored are 59 and 13.

We have verified the safety requirement for the nondeterministic pilot and
have summarized the model checking in the table below, which shows a huge state
space reduction compared to the asynchronous model: for the same pilot behavior
and time bound 3,000ms, the number of reachable states in the simplest possible
distributed asynchronous model, with perfect local clocks and no network delays,
is 420,288 [6], whereas there are 364 reachable states in the synchronous model.

Bound (ms) # States Time (s) Bound # States Time Bound # States Time
≤ 3,000 364 7 ≤ 4,200 3,280 62 ≤ 5,400 29,524 600
≤ 3,600 1,093 21 ≤ 4,800 9,841 189 ≤ 6,000 88,573 2,323

108 K. Bae, P.C. Ölveczky, and J. Meseguer

8 Related Work and Conclusions

There are a number of synchronizers relating synchronous and asynchronous
systems; see [12] for an overview and comparison with PALS. To the best of our
knowledge, only Multirate PALS and the work in [1] propose synchronizers for
multirate systems where tight time bounds must be met. The paper [1] proposes
a different multirate extension of PALS, without general input adaptors; how-
ever, they do not provide a formal model of the synchronous or asynchronous
systems, and—the main difference with this paper—they do not propose a lan-
guage for defining synchronous models, or any way of formally analyzing the
synchronous designs. We formalize Multirate PALS in [6,4], but that work does
not consider AADL. On the other hand, [7,8] define the single-rate Synchronous
AADL language and a Real-Time Maude-based analysis tool for Synchronous
AADL. The current paper significantly generalizes that work to account for hier-
archical multirate systems. In particular, in addition to needing input adaptors,
one significant difference is that the single-rate case allows a much simpler Real-
Time Maude semantics, where we can consider a flattened system, whereas in
the hierarchical multirate case we need to maintain the hierarchy, which makes
the Real-Time Maude semantics quite complex. The paper [3] performs the air-
plane case study using (only) Real-Time Maude instead of using Multirate Syn-
chronous AADL and our OSATE plug-in. Finally, [13] presents a “standard”
(i.e., asynchronous) semantics for a subset of AADL in Real-Time Maude, but
does not consider a language extension or a synchronous semantics of AADL.

In this work we have made the complexity-reducing Multirate PALS model-
ing and verification methodology for virtually synchronous hierarchical multirate
systems available to AADL modelers by: (i) defining the Multirate Synchronous
AADL language, which allows the modeler to specify his/her synchronous de-
signs using AADL; (ii) giving a Real-Time Maude semantics for Multirate Syn-
chronous AADL, which not only defines the language precisely but also allows
formal analysis of Multirate Synchronous AADL models; (iii) providing an in-
tuitive way of specifying temporal logic requirements that such models should
satisfy; and (iv) integrating both modeling and automated model checking into
the OSATE tool environment for AADL. We have illustrated the effectiveness of
our methodology, language, and tool on a control system for turning an airplane.

Future work includes applying our language and tool on more case studies,
and on automatically generating a correct-by-construction AADL model of the
distributed implementation from a verified model of the synchronous design.

Acknowledgments. We thank the anonymous reviewers for many helpful com-
ments on an earlier version of this paper. This work has been supported in part
by NSF Grants CNS08-34709, CCF09-05584, and CNS 13-19109, the Boeing
Corporation Grant C8088-557395, and AFOSR Grant FA8750-11-2-0084.

Definition, Semantics, and Analysis of Multirate Synchronous AADL 109

References

1. Al-Nayeem, A., Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition and
analysis of virtually synchronized real-time distributed systems. In: Proc. ICCPS
2012. IEEE (2012)

2. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. 30th IEEE Real-
Time Systems Symposium. IEEE (2009)

3. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: PALS-based analysis of an
airplane multirate control system in Real-Time Maude. In: Proc. FTSCS 2012.
Electronic Proceedings in Theoretical Computer Science, vol. 105, pp. 5–21 (2012)

4. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multi-rate distributed
real-time systems. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 1–18. Springer, Heidelberg (2013)

5. Bae, K., Meseguer, J., Ölveczky, P.C.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL (2013),
http://formal.cs.illinois.edu/kbae/MR-SynchAADL

6. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate dis-
tributed real-time systems. Science of Computer Programming (to appear, 2014),
http://dx.doi.org/10.1016/j.scico.2013.09.010

7. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011)

8. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software En-
gineering. LNCS, vol. 7212, pp. 59–62. Springer, Heidelberg (2012)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

10. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL. Addison-Wesley
(2012)

11. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL behaviour annex - experiments and roadmap. In: Proc. ICECCS 2007.
IEEE (2007)

12. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comp. Sci. 451, 1–37
(2012)

13. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of be-
havioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.)
FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg
(2010)

14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

http://formal.cs.illinois.edu/kbae/MR-SynchAADL
http://dx.doi.org/10.1016/j.scico.2013.09.010

TRUSTFOUND: Towards a Formal Foundation
for Model Checking Trusted Computing Platforms

Guangdong Bai1, Jianan Hao2, Jianliang Wu3, Yang Liu2,
Zhenkai Liang1, and Andrew Martin4

1 National University of Singapore, Singapore
2 Nanyang Technological University, Singapore

3 Shandong University, China
4 University of Oxford, UK

Abstract. Trusted computing relies on formally verified trusted computing plat-
forms to achieve high security assurance. In practice, however, new platforms are
often proposed without a comprehensive formal evaluation and explicitly defined
underlying assumptions. In this work, we propose TRUSTFOUND, a formal foun-
dation and framework for model checking trusted computing platforms. TRUST-
FOUND includes a logic for formally modeling platforms, a model of trusted
computing techniques and a broad spectrum of threat models. It can be used to
check platforms on security properties (e.g., confidentiality and attestability) and
uncover the implicit assumptions that must be satisfied to guarantee the security
properties. In our experiments, TRUSTFOUND is used to encode and model check
two trusted platforms. It has identified a total of six implicit assumptions and two
severe previously-unknown logic flaws from them.

1 Introduction

The concept of trusted computing has been proposed for more than a decade. It intro-
duces hardware-support security, which takes tamper-resistant hardware techniques as
the root of trust, such as Trusted Computing Module (TPM) [20,21], Intel’s TXT, and
ARM TrustZone. These hardware techniques provide a physically isolated storage and
computation environment, based on which a chain of trust is set up to support the upper
layer software.

Benefited from the hardware support, trusted computing achieves an unprecedent-
edly high security guarantee (i.e., trust) in systems involving multi-level trust domains.
Therefore, it has been widely embraced by mainstream products. For example, more
than 500 million PCs have shipped with TPM [5] so far; Microsoft equips their recent
products Windows RT and Windows 8 Pro tablets with built-in TPM technology [26].
In addition, as we have witnessed, it has been significantly influencing the design of
contemporary security systems and protocols— many trusted platforms1 have been pro-
posed both in industry [1,4] and academia [27,32,9,30].

Problems. Ideally, the design of the trusted platforms must be formally verified be-
fore they are implemented. However, there still lacks an analytical foundation to guide

1 In this paper, trusted platforms refer to the systems, infrastructures and protocols built on
trusted computing techniques.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 110–126, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 111

the formal analysis. New trusted platforms are often designed and built without com-
prehensive analysis against common threat models, which often results in vulnerabili-
ties [22,11,38,37,14].

Formally analyzing trusted platforms is notoriously challenging. First, a trusted plat-
form usually involves more than one component, including hardware, firmware and
software, all of which need to be evaluated. In addition, their configurations and com-
munication interfaces also affect the security properties of the platform. Second, a secu-
rity analyst has to become an expert in the internals of the hardware-support techniques
and formally model them before she is able to model her own platform. However, the
techniques are subtle and complicated. Taking TPM as an example, the specification
of TPM version 1.2 [20] from Trusted Computing Group (TCG) has 800+ pages, and
version 2.0 [21] has 1400+ pages. Third, the large attack surface on trusted platforms
requires a comprehensive consideration and understanding of the malicious behaviors.

Our Work. We propose TRUSTFOUND, a formal foundation for analyzing trusted plat-
forms. TRUSTFOUND includes a formalism named TCSP# (Trusted CSP#) for model-
ing the trusted platforms, a formal model of the key techniques in trusted computing2

(e.g., TPM, static root of trust measurement, late launch and the chain of trust), as well
as a broad spectrum of threat models. TCSP# combines the CSP/CSP# [35], LS2 [16]
and trusted computing concepts, which supports modeling machines, communications,
cryptography data and operations, and trusted computing techniques. The TPM model
prevents security analysts from stumbling into the complicated internals of trusted com-
puting techniques. In addition, the threat models cover most of the known attack scenar-
ios, including the hardware attacker, the system attacker and the network attacker. For
the security analysis, TRUSTFOUND aims to 1) detect flaws from the designs of trusted
platforms using model checking, and 2) uncover the implicit underlying assumptions on
the trusted computing base (TCB), using of trusted computing techniques and network
infrastructure, which must be satisfied for the platform to guarantee the security goals.

We implement TRUSTFOUND as a framework in C# and CSP# [35] based on the
model checker PAT [36]. We apply TRUSTFOUND to formally study two trusted plat-
forms — an envelope protocol and a cloud computing platform. TRUSTFOUND has
found that seven existing attacks may break their security goals, and identified six im-
plicit assumptions for each of them. Besides, it has detected two previous-unknown
security flaws in them, which allow the attacker to breach the desired security goals
completely by simply rebooting the machine at certain timing.

2 Motivation and Overview

2.1 Overview of Key Concepts in Trusted Computing

Trusted Platform Model (TPM). TPM is the root of trust for secure storage and mea-
surement, which is a tamper-free coprocessor that provides an isolated storage and
computing environment. TPM implements the cryptography primitives such as encryp-
tion/decryption, signature, hash and key management. TPM provides a set of commands

2 The rest of this paper refers this model as the TPM model.

112 G. Bai et al.

for the external software to implement functionality that cannot be achieved only using
software, such as building a chain of trust and remote attestation. TPM contains 24 in-
ternal Platform Configuration Registers (PCRs). The only way to modify their content
is through the command TPM Extend (s) : PCRi ← hash(PCRi, s). Therefore, the value
of a PCR can be used to indicate the state of the software stack on a platform. A key
can be sealed to a particular PCR value, such that the key cannot be used (unsealed)
if the content of the PCR is not in the sealed value. Two important asymmetric key
pairs are embedded in a TPM, namely the Endorsement Key (EK) and the Storage Root
Key (SRK). These two keys are kept secret from the external software.

Chain of Trust. A chain of trust is set up by validating each of the system components
from bottom up. Two ways can be used to build a chain of trust. The first is the Static
Root of Trust Measurement (SRTM) which builds a static chain since the booting of the
machine; the other is Dynamic Root of Trust Measurement (DRTM) which dynamically
creates a secure execution environment. In SRTM, the first software component is the
CRTM (Core Root of Trust for Measurement), while in DRTM, the component is the
Authenticated Code Module (ACM).

2.2 Motivating Example

Alice Bob’s Machine
request

TPM

SRTM/DRTM

n
extend n

Create and Seal key

Certify key

[k]SRK -1, k -1

cert
k -1 , cert

[secret] k -1
attestable mode

Fig. 1. Sealing Envelope Process in the En-
velope Protocol

Ables and Ryan [8] proposed a digital en-
velope protocol. This protocol has been an-
alyzed and proved correct under certain
assumptions by the previous work [18]. Our
work attempts to analyze it against a broader
range of threat models to uncover the under-
lying assumptions and if possible, identify se-
curity flaws from its design.

Security Goal. The protocol allows Alice to
send Bob an enveloped secret, achieving the
goal that Bob can either read the secret or re-
voke his right to unseal the envelope. More
importantly, if Bob revokes his right, he is
able to prove that he has not accessed the data
and will not be able to afterwards.

Protocol Steps. The envelope protocol is de-
signed to work as follows:

1) Sealing Envelope. Shown in Fig. 1, Alice requests Bob to enter an attestable mode
(meaning that the state of Bob’s machine is known by Alice) where runs a trusted
block. Bob can achieve this through either SRTM or DRTM. After this step, the PCR
is in the state S0 (①&②). Alice then sends a random nonce n to the trusted block. The
value of n is kept secret to Bob (③). The trusted block extends the PCR with n, so
its value becomes hash(S0, n) (④). Bob creates an asymmetric key pair k (private key)
and k−1 (public key). Bob seals k to the PCR value hash(hash(S0, n), accept) (⑤) and

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 113

generates a certificate to prove this (⑥). Bob sends k−1 and the certificate to Alice, and
Alice sends back the encrypted secret (⑦&⑧).

2) Unsealing Envelope or Revoking Right. To unseal the envelope, Bob extends the
TPM with accept, such that the key can be unsealed for decryption. Alternatively, Bob
extends the TPM with reject (accept and reject are two different integers), and requests
a TPM quote (a TPM signed PCR value hash(hash(S0, n), reject))) as the evidence.

Possible Property Violations. This protocol is subject to several attacks, which may
lead to the violation of the security goal. In the following, we show two examples.

1) Nonce Stealing. The confidentiality of n is critical in this protocol. If it is obtained
by Bob, Bob can first chooses to extend reject, and then reboot the machine and extend
accept to unseal the key. Here the problem is that it is impossible to set up an encrypted
channel directly between Alice and Bob’s TPM. Therefore, there must be particular
software and hardware involved to bridge them, for example, network adapter, LPC
bus (where the TPM chip is located), network driver and SSL/TLS library. As a result,
there are several existing attacks for malicious Bob to obtain the value of n.

2) Forging Certificate Attack. If Bob compromises a CA (Certificate Authority) trusted
by Alice, an attack can be conducted at Step ⑦. Bob can forge a certificate for a key
pair whose private part is visible to him and deceive Alice into trusting that the key is
sealed to the expected PCR state.

Implicit Assumptions. Given the existence of these two possible violations, two un-
derlying assumptions must be satisfied to achieve the security goal.

– A1: a Set of Trusted Components. The components that the n flows through, such
as the SSL library and the LPC bus, must be included in the TCB.

– A2: a Trusted and Uncompromisable CA. A secure CA is required to validate all
certificates.

2.3 TRUSTFOUND Overview

Model
Checking

Platform
Model

TPM Model

Counter
Example Assumption

Inference

Threat Models

Properties Security FlawsSecurity

Fig. 2. Overview of TRUSTFOUND

As shown by this example, the de-
sign of a trusted platform must
be formally analyzed to reduce
possible flaws. Thus, we propose
TRUSTFOUND, an analytical formal
foundation and framework for model
checking trusted platforms. Fig. 2
shows the overall design of TRUST-
FOUND. TRUSTFOUND provides an
expressive language named TCSP# for modeling trusted platforms (Section 3). It also
provides a TPM model such that the security analyst can include the models of trusted
computing techniques by simply invoking into the TPM model (Section 3.3). The
TCSP# model is taken as input to a model checker, with a set of attacker models
(Section 4). If an attack violates the specified security properties, the model checker
generates a counterexample. TRUSTFOUND then infers security flaws and implicit as-
sumptions based on the counterexample (Section 4.4).

114 G. Bai et al.

Scope & Assumptions. The core objective of TRUSTFOUND is to figure out whether
the design of a trusted platform guarantees the expected properties under a spectrum
of attacks. We focus on revealing the flaws and implicit assumptions in the platform
designs. We do not target the detection of attacks exploiting implementation vulnera-
bilities such as the BIOS attack [34], DMA attack [31] and TPM reset attack [2], but
we do take them into consideration when identifying the implicit assumptions. We do
not consider the DoS attack and side channel attacks such as the timing attack [33].
We also make the following assumptions in TRUSTFOUND: 1) the cryptographic algo-
rithms used by the platforms are perfectly secure, and 2) the secret keys and nonces are
secret and distinct among different sessions.

3 Modeling Trusted Platforms

This section presents TCSP#, which is designed for modeling and verifying the trusted
platforms. TCSP# extends CSP/CSP# [35] with the logic of security systems, which is
based on the LS2 [16]. Besides, it has new extensions on the trusted computing concepts.
We show that it is capable of capturing the semantics of trusted platforms.

3.1 Overview of Modeling Language

This section explains the syntax and semantics of CSP# intuitively to ease understand-
ing the rest of this paper. The terms defined in CSP# and used in this paper is underlined.
We refer the reader to [35] for the full syntax and semantics of CSP#.

Overview of CSP#.
Syntax. The crucial syntax of CSP# is as following.

Process P ::= Stop | Skip – termination
| [b]P – state guard
| e → P – event prefixing
| e{program} → P – data operation prefixing
| c?d → P(d) | c!d → P – channel input/output
| P; Q – sequence
| P � Q | P � Q | if b then P else Q – choices
| P ||| Q | P || Q – concurrency
| P
 (e → Q); – interrupt

The core of CSP# is the concurrency and communication. A CSP# model is a 3-tuple
(VS, init, P), where VS is a set of variables, init is the initial values of these variables,
and P is a process. The e is a simple event; program executes an atomic and sequen-
tial program when e is executed; c is a synchronized communication channel. CSP#
supports internal choice (P 	 Q), external choice (P � Q) and conditional branch
(if b then P else Q). Process P; Q behaves as P and after P terminates, behaves as Q.
Process P ||| Q behaves P and Q simultaneously and only synchronize through the chan-
nels, while P || Q requires synchronization over a set of events. Process P # (e → Q)
behaves as P until e occurs and then behaves as Q.

Semantics. The semantic model of a CSP# model is a Labeled Transition System (LTS),
which is a tuple (S, init, Act, Tran) where S is a finite set of states; init is the initial state

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 115

Process TP ::= a{program} → TP – data operation prefixing
| P – process in CSP#

data/variable d ::= n – number
| c – program
| k – symmetric key
| sk | sk−1 – private/public key
| d, d′ – concatenation
| [d]k | [d]sk – ciphertext
| [d]sk−1 – signature
| h(d) – hash
| TPM DATA – TPM data

action a ::= new d – generate new data object
| read l.d | write l.d – read/write d from/to location l
| symencrypt d.sk−1 | encrypt d.k – encryption
| symdecrypt d.sk | decrypt d.k – decryption
| sign d.sk verify d.sk−1 – sign & verify signature
| hash d – hash
| TPM CMD – TPM commands

location l ::= ROM@i | RAM@i | disk@i

Fig. 3. Extension of the Logic for Trusted Platforms in TCSP#

and init ∈ S; Act is a set of actions; Tran is a set labeled transition relations, each of
whose elements is a relation S × Act × S. We use s

e−→ s′ to denote (s, e, s′) ∈ Tran.

Reachability Checking. Since most of the security properties can be specified in reach-
ability, we only use reachability checking in this work (Section 4.3), although other
properties such as refinement and linear temporal logic can be checked on an LTS. We
define a path as a sequence of alternating states and events < s0, e0, s1, e1, ... >. A state

sn is reachable if there exists a path P such that s0 = init and si
ei−→ si+1 for all i < n.

New Extensions in TCSP#.
Fig. 3 presents the new extensions introduced by TCSP#, which are twofold. The first
is on modeling the secure systems, including cryptographic operations, machines, net-
work, programs, etc. (Section 3.2). The other is on modeling the trusted computing
techniques, which are modeled as a set of special data structures and used as global
variables (Section 3.3).

TCSP# is abstract, but it is capable of capturing the necessary details of the trusted
platforms. It can model the complicated data structures and the control flow of the
platforms. Compared with LS2, TCSP# is more expressive and it fits in the inherently
communicative and concurrent trusted platforms. TCSP# has the same semantic model
as CSP#, which is also an LTS.

3.2 Modeling Security Systems

Machines, Bus and Network. Fig. 4 shows the abstraction of a machine in TRUST-
FOUND. A machine is modeled as a process in TCSP#. Each machine contains a CPU,
a hard disk, a TPM, a network adapter, ROM and RAM. By default, the firmware such

116 G. Bai et al.

CPU

ROM

Disk

Firmware

Bootloader OS

Apps R/W

R

LPC Bus

TPM

Commands
PCRs Volatile

R/W

RAM
…

Network
Adapter

Machine

Machine

Network

Communication
Channels

Memory
Embedded

Keys

Fig. 4. Abstraction of a Machine

enum [os]; var DISK = [Codeos]; var RAM = [0];
Config() = load{RAM@os = DISK@os} → OS;
OS() = OSbenign;

(a) Loading OS from the Disk

enum [os, osm]; var DISK = [Codeos,Codeosm]; var RAM = [0, 0];
Config() = load{RAM@os = DISK@os} → SystemAttacker;
SystemAttacker() = crackMemory{RAM@os = DISK@osm} → OS;
OS() = [RAM@os == Codeos]OSbenign � [RAM@os == Codeosm]OSmalicious;

(b) Compromising OS after it is loaded (codeosm : the code of compromised OS)

Fig. 5. TCSP# Models of Loading OS and an Attack Compromising the OS

as BIOS and the CRTM are located in the ROM. The hardware drivers and the soft-
ware, such as the bootloader, OS, network driver and applications, are located in the
hard disk. All of them are loaded into the RAM before they can be executed. Fig. 5(a)
demonstrates a simplified TCSP# model of loading the OS from the disk to the RAM.

We emphasize the communication channel between the CPU and the TPM, namely
the LPC bus. The reason is because it is more vulnerable than other channels like the
north bridge that is between the CPU and the RAM. The LPC bus, actually, has been
found vulnerable to an eavesdropping attack [25] and the TPM reset attack [2].

TRUSTFOUND models the communication channels among the components and
among the machines with channels. The sender uses ch!d to send out data and the re-
ceiver listens on the channel using ch?d. In the real world, a communication channel can
be a private/secure channel or a public/non-secure channel. Therefore, TRUSTFOUND

introduces the concept of private channel and public channel accordingly. The private
channel is immune to the attacker’s eavesdropping, for example, the SSL channel, while
public channel leaks all transmitted messages to the network attacker.

Data. Two categories of data are supported in TRUSTFOUND. The first one is primitive
data, including the integer, boolean, cipertext, hash value, signature, encryption/decryp-
tion keys, program and concatenated data. Each primitive data is represented symboli-
cally as a 2-tuple d = (type, expression), where type indicates the type of the data, such

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 117

as nonce, program and public key; the expression may be a number, the identity of a key
or a ciphertext [d]k. The other type is the TPM data, which is discussed in Section 3.3.

Cryptography Primitives. TCSP# includes the standard cryptography primitives, such
as encryption/decryption, signing/signature verification, hashing, nonce (random num-
ber) generation. These primitives take the symbolized data as operands. For example,
signing a nonce n = (nonce, 1) with key sk = (private key, 001) (001 is the identity
of sk) generates the signature sig = (signature, [n]sk), which can be verified using sk’s
inverse key sk−1 = (public key, 001−1).

3.3 Modeling the TPM

Since all the key concepts, such as the root of trust, chain of trust, SRTM and DRTM,
are based on the TPM, we detail the modeling of the TPM in this section.

Abstraction and Simplification. To reduce complexity in modeling and verifying pro-
cess, a reasonable abstraction and simplification is necessary. The challenge is that the
semantics relevant to the security properties cannot be excluded. TRUSTFOUND pre-
serves this semantics in the following three aspects.

– Functionality. The functionality of the TPM commands is preserved in a simula-
tion way. For example, the return value of the command TPM CreateWrapKey is
a representation of TPM key blob, in which contains a symbolic representation of
encryption key (discussed soon).

– Internal Semantics. The internal security semantics specified by TCG is pre-
served. For example, in the commands that use a sealed key, such as TPM Seal,
TPM Unseal, TPM Unbind, the content of the PCR is checked with the sealed value
before the key can be used.

– Internal State Transition. The internal state of the TPM changes accordingly
when the commands are invoked. For example, when the TPM Extend (index, value)
is called, the PCR[index] is extended with value; rebooting the machine and acti-
vating late launch set the PCRs to a pre-defined value.

We make the following simplifications on the authorization and the key hierarchy.

1) No Authorization Required. In a real TPM, the authorization protocols such as
the OIAP (Object-Independent Authorization Protocol) and the OSAP (Object-Specific
Authorization Protocol) are used to set up a session between the user and the TPM.
Since authorization has been well analyzed in previous work [17], we omits it.

2) No Key Hierarchy. Based on our assumption that the cryptographic algorithms
are perfectly secure, we do not consider the key hierarchy in TPM. Therefore, all the
certificates issued by the TPM are signed using its EK, meaning we do not consider
the AIK (Attestation Identity Key); similarly, all the encryption operations for secure
storage use the SRK.

Abstraction of TPM Data. TRUSTFOUND models the data relevant to the TPM, in-
cluding the internal data structures (e.g., the PCR value, EK and SRK) and the data
generated and consumed by TPM (e.g., TPM certificate, TPM quote, key blob and data
blob). Each TPM instance has a unique EK that can be used as its identity.

118 G. Bai et al.

sinit/si sin/si sout/si+1
Ch?index.d TPM_Extend Ch!0 sinit/si+1

si = {PCR, VM, {ek, srk}}, si+1 = {PCR {index hash(PCR[index]|d)}, VM, {ek, srk}}

(a) TPM Extend (⊕ is function overriding and seq ⊕ {i �→ v} means overrides seq[i]
with v.)

sinit/si sin/si sout/si+1
Ch?keyblob TPM_LoadKey2 Ch!loc sinit/si+1

si = {PCR, VM, {ek, srk}}, si+1 = {PCR, VM {(loc, (sk, sk -1))}, {ek, srk}}

(b) TPM LoadKey2
Fig. 6. The Semantics Models of Two TPM Commands

A TPM data is constructed from the primitive data. A PCR value includes the index of
the PCR and a hash value to indicate its value. The EK and SRK are asymmetric key pairs.
A TPM certificate is a certificate issued by a TPM to certify that a key is generated by the
TPM and has been sealed on a specific PCR value. A TPM quote is a PCR value signed by
the TPM. A key blob, which is generated by the TPM CreateWrapKey command, includes
the public part and encrypted private part of the generated key. It also indicates the PCR
value that the key is sealed to. A data blob is returned by the TPM Seal command. The
models of these TPM data can be found in our implementation [6]. Here, we just take
the TPM certificate as an example to show how the TPM data is modeled.

Example. A TPM certificate is a 2-tuple (type, expression), where the type indicates that
the tuple is a TPM certificate; the expression is a concatenation of a serial of other data:
< bool, sk−1, int, TPM PCRValue, ek−1, [bool, sk−1, int, TPM PCRValue, ek−1]ek >.
The first element indicates it is a key generated by the TPM; the second is the public
part of the certified key; the third and the fourth indicate the PCR and PCR value the
key is sealed to; the fifth is the public part of the EK and the last is a signature by EK.

Formalization of TPM. The TPM is formalized as an LTS LT PM = (ST , initT , CmdT ,
TranT), where

– ST = ST
ctrl × ST

data is a finite set of states, including control states and data states.
The ST

ctrl = {sinit, sin, sout} models the states regarding the input and output; each
of ST

data is a set of variables VT and their values (detailed later in this Section).
An element of ST

data is a set {PCR, VM, {ek, srk}}, where the PCR is a sequence
which includes the values of 24 PCRs; the VM represents the volatile memory and
contains indexed key pairs loaded via TPM LoadKey2, each of which is denoted by
(location, {sk, sk−1}); ek and srk stand for the EK and the SRK, respectively.

– initT is the initial state.
– CmdT is the set of the commands.
– TranT is the transition relations, each of which is a relation ST × CmdT × ST .

TranT defines the semantics of the TPM commands, that is, the state transitions
upon invoking the TPM commands.

TPM Commands. We use the models of TPM Extend (Fig. 6(a)) and TPM LoadKey2
(Fig. 6(b)) to demonstrate the semantics model of TPM commands. The interface
TRUSTFOUND provides to the security analyst is the commands same as those

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 119

rule 1.1 : d ∈ AK ∧ k ∈ AK 	 [d]k ∈ AK Symmetric Encryption Rule
rule 1.2 : [d]k ∈ AK ∧ k ∈ AK 	 d ∈ AK Symmetric Decryption Rule
rule 2.1 : d ∈ AK ∧ sk−1 ∈ AK 	 [d]sk−1 ∈ AK Asymmetric Encryption Rule
rule 2.2 : [d]sk−1 ∈ AK ∧ sk ∈ AK 	 d ∈ AK Asymmetric Decryption Rule
rule 2.3 : d ∈ AK ∧ sk ∈ AK 	 [d]sk ∈ AK Signature Rule
rule 2.4 : [d]sk ∈ AK ∧ sk−1 ∈ AK 	 d ∈ AK Signature Verification Rule
rule 3.1 : d ∈ AK 	 hash(d) ∈ AK Hash Rule

Fig. 7. Deduction Rules for Cryptography

specified by TCG. These commands take as input the symbolized TPM data. Thus, from
the perspective of the analyst, our TPM model can be regarded as a software-based sym-
bolic and abstract emulator of TPM. We refer the readers to [6] for the full model.

Correctness of TPM Model. One critical issue is that TRUSTFOUND requires a com-
plete and sound TPM model to prevent false positives and negatives. Some previous work
has been done towards a verified implementation of TPM [28], which can be used to ver-
ify and refine our implementation. In this work, we assume our TPM model is correct.

4 Threat Attacks and Security Goals

After coming up with the formal specification of a trusted platform, the next step is to
evaluate the expected security properties against threats models. This section defines
the modeling of the attacks and security properties in TRUSTFOUND.

4.1 Attacker’s Knowledge and Knowledge Deduction

We define a property called knowledge set AK ∈ VS for the attacker. The elements
of AK are the data that can be obtained by the attacker. The attacker can enlarge AK
by eavesdropping on the communication channels, generating data using a machine
equipped with TPM (discussed in Section 4.2) and deducing new knowledge based on
the data known to him. We define some rules for the attacker to deduce new knowledge.
As an example, Fig. 7 demonstrates part of the deduction rules for cryptography.

Two events activate the knowledge deduction. First, when a ciphertext is added into
AK, the attacker actively tries to decrypt it using all the keys he possesses. Second,
when a data of a particular type is required, for example, outputting a data to a process,
the attacker constructs a new data of the required type. The challenge in knowledge
deduction is that applying cryptographic functions unboundedly may leads to an infinite
AK. Therefore, we bound the nesting depth of the encryption functions to be less than
3 by default, unless the attacker obtains or a receiver expects data of deeper nest. In
our experiments, we have not found any protocol using more than 3 levels of nesting
cryptographic constructions, which implies that this bound is reasonable.

4.2 Threat Models

We divide the threat models in trusted computing into three categories, namely the
network attacker, the system attacker and the hardware attacker.

120 G. Bai et al.

Network Attacker. The network attacker is modeled using the Dolev-Yao model [19].
An active network attacker is able to eavesdrop all messages and modify unencrypted
messages on network. We assume the SSL channel cannot be compromised; however,
if the platform use SSL as the communication channel, TRUSTFOUND reports that the
platform relies on two implicit assumptions—the SSL library must be trusted and a
trusted CA is required (uncovering the implicit assumptions is discussed in Section 4.4).

A novel feature of the network attacker is that the attacker possesses a machine (de-
noted by MA) equipped with TPM. During the knowledge deduction, the attacker can
feed TPM with forged data to generate TPM data expected by the victims. Therefore,
the attacker can commit the masquerading attack [34], which forges PCR quote with
MA to convince the attester that the machine is in the expected state, while conducts
malicious behaviors on another machine.

System Attacker. The system attacker can compromise all of the legacy software, in-
cluding the bootloader, the OS and the applications. The attacker can read/write all the
locations on hard disk and RAM. Fig. 5(b) demonstrates the model of an attack which
compromises the OS after it has been loaded to the RAM.

In addition, the system attacker can invoke the TPM’s commands with arbitrary pa-
rameters. One possible attack is that the attacker invokes TPM Extend with the benign
code to convince the attester, but executes a malicious version of the code.

Hardware Attacker. The attacker on hardware level completely controls a machine.
The attacker can compromise the add-on hardware and firmware, for example, DMA
attack [23], compromising bootloader and BIOS [24], TPM reset attack [2] and eaves-
dropping on LPC bus [25]. Compromising firmware such as BIOS and bootloader can
defeat the SRTM. The DMA attack can modify the program after it has been loaded
into the memory, leading to the same consequence as the system attacker. The TPM
reset attack can reset the PCRs to the default state without reboot or late launch. The
attacker, therefore, becomes capable of setting the PCR to an arbitrary state as what the
system attacker can do. The hardware attacker who can access the LPC bus is able to
eavesdrop the communication between the TPM and the CPU.

Note that TRUSTFOUND also regards rebooting a machine as an attack, given it
changes the state of the system and TPM. We name this attack reboot attack.

4.3 Security Goals

The trusted platforms are designed to satisfy various security goals. This section dis-
cusses two most commonly used ones. We also show that these two goals and other
properties can be specified as reachability properties.

Confidentiality. Most of the time, a trusted platform needs to introduce some creden-
tials, whose confidentiality needs to be guaranteed, such as the n in our motivating
example. To check confidentiality property, TRUSTFOUND queries a credential d from
the AK after the execution of the platforms. If d ∈ AK, the confidentiality is violated.

Attestability. Attestability means if the attester believes the attested machine is in a state
ST , then the machine must be in that state. Violation of attestability may completely vi-
olate the design properties of a platform. As shown in Section 2.2, the forging certificate

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 121

attack manages to break the protocol. The security analyst can define this property with
reachability, that is, it cannot be reached that the state of the attested machine (in terms
of the PCR value) is not equal to the expected state ST .

Other security property can also be specified with reachability in TRUSTFOUND. For
example, the security goal of our motivating example, can be specified as

#define bothCan(isBobGetSec == true && isBobRvk == true);
#assert Protocol reaches bothCan;

where the isBobGetSec and isBobRvk are two variables in the TCSP# model;
isBobGetSec is set to true whenever Bob reads the secret and isBobRvk is set to true
once Alice receives the TPM quote of hash(hash(S0, n), reject).

4.4 Uncovering Implicit Assumptions

Identifying those implicit assumptions is crucial for enhancing the security on the de-
sign level, e.g., by decreasing the size of the TCB as much as possible, and guiding the
implementation, e.g., correctly using TPM. TRUSTFOUND figures out the assumptions
on the following three aspects.

– TCB. TRUSTFOUND considers the components of hardware, firmware and soft-
ware. If an attack targeting a component violates the security goals, the component
is added to the assumptions of TCB.

– Network Infrastructure. If TRUSTFOUND finds the platform uses a private channel,
it assumes the SSL is used, and thus the SSL library should be included in the TCB
and a trusted CA is needed. In addition, if the platform uses any certificate, a trusted
CA is required.

– Use of TPM. TRUSTFOUND considers the use of the PCRs. One important but
likely to be overlooked fact is that two PCRs (16 and 23) are resettable without
a system reboot (using the TPM PCR Reset command), meaning that the system
attacker can generate any value for those PCRs and do the same attack as the TPM
reset attack. Therefore, they cannot be used for attestation.

5 Implementation and Case Studies

We have implemented TRUSTFOUND in the PAT model checker [36], which is a self-
contained model checking framework for modeling and verification. We implement
TCSP# by integrating the existing CSP# language with an external library. This library
implements semantics of TCSP#, TPM models and the threat models in approximately
4k lines of C# code [6]. As case studies, we apply TRUSTFOUND on two existing trusted
platforms.

5.1 Analysis of the Digital Envelope Protocol

We use TRUSTFOUND to comprehensively analyze the envelope protocol presented in
Section 2.2. The protocol is modeled in less than 500 lines of TCSP# code. This section
summarizes our findings; the reader may refer to [6] for the complete models. Since

122 G. Bai et al.

violating either of confidentiality and attestability leads to the violation of bothCan (de-
fined in Section 4.3), we just check the assertion of bothCan in our experiments.

Threat Models. We define the following attack scenarios based on the threat models.

Network Attacker. We define NA1 as a network attack which can record and replay the
transmitted messages, and NA2 as a compromised CA who issues certificate for a key
pair (mk, mk−1) whose private key is known by Bob.

System Attacker. We define SA1 as a compromised BIOS who extends a benign OS
but executes another malicious one, and SA2 as a buggy software component (e.g., the
SSL library) who can be compromised and cause the leakage of n. SA1 indicates the
modules measured in S0 but can be compromised at runtime, while SA2 indicates those
that are not measured in S0 but in fact, are sensitive.

Hardware Attacker. We define HA1a as the TPM reset attack, HA1b as the TPM LPC
attack, HA2 as the DMA attack targeting loaded OS, and HA3 as the reboot attack.
Note that for all attackers, we model the protocol in a way that Bob can re-execute the
protocol and during re-execution, a fake Alice can feed Bob with data included in the
attacker’s knowledge set.

Experiments. TRUSTFOUND reports that NA1 can obtain n at Step ①. Bob therefore
can first extend reject and convince Alice with hash(hash(S0, n), reject), and then re-
executes the protocol with the fake Alice and extends accept to get secret. After we
change the channel to be private, the data leakage is removed and TRUSTFOUND figures
out two assumptions: A1 that SSL library should be included in TCB and A2 that a
trust CA is required. For NA2, TRUSTFOUND reports an attack on Step ⑦. Bob forges
a certificate to convince Alice that the mk is sealed in TPM. Alice then uses mk−1 to
encrypt secret. Bob is able to decrypt the ciphertext with mk. TRUSTFOUND also figures
out A2 in this case.

For SA1 and SA2, TRUSTFOUND reports the leakage of n. Bob can conduct the same
attack as that in NA1. We then extend SA1 to attack all the modules measured by SRTM
and DRTM. TRUSTFOUND identifies A3 that for SRTM, the TCB should include the
CRTM, the BIOS, the bootloader, the OS and the trusted block, and A4 that for DRTM,
the ACM and the trusted block should be included in the TCB.

Table 1. Statistics in Experiment of Envelope Protocol

Attacks Statistics
#States #Transitions Time(s) Memory

NA1 3225 8336 2.18 29M
NA2 7023 13528 7.69 220M
SA1 47451 124680 24.35 198M
SA2 16744 43785 7.94 72M
HA1a 4993 11353 1.94 38M
HA1b 2662 6907 1.63 23M
HA2 47451 124680 21.14 186M
HA3 75110 210663 36.66 232M

For HA1a, TRUSTFOUND re-
ports that Bob does not reboot the
machine upon receiving Alice’s re-
quest at Step ①. Bob then can ex-
ecute the protocol with Alice and
whenever a particular PCR is re-
quired, he just resets the PCR and
constructs the expected PCR value.
HA1b eavesdrops all command pa-
rameters transferring through the
LPC bus, which allows Bob to ob-
tain n. Attack sequence is simi-
lar to NA1. Since the TPM reset

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 123

attack and LPC attack are targeting the physical interface, TRUSTFOUND reports A5
that proper protection on physical interface should be in TCB. HA2 only works for
SRTM since DRTM disables DMA for measured code by default. TRUSTFOUND re-
ports that the attacker can modify the OS to the malicious one after it has been loaded,
as SA1 does. Therefore, it figures out A6 that DMA-capable devices must be trusted
when SRTM is used.

A Logic Flaw in the Protocol. TRUSTFOUND reports a severe logic flaw which makes
the protocol vulnerable to HA3. Between the step ② and step ③, malicious Bob can
reboot his machine to a malicious state and obtain n at step ③. Then Bob can conduct
the same attack as NA1. TRUSTFOUND raises it as a logic flaw because the property
violation occurs without any component on attack.

Table 1 lists the statistics collected in our experiments. Our experiments were con-
ducted on a PC with Intel Core i7-940 at 2.93 GHz and 12GB RAM. As can be seen,
it requires to explore significant numbers of states to detect the security flaws, which is
infeasible for manual analysis.

5.2 Analysis of a Trusted Grid Platform

Alice Cloud
[c]k

TPM

SRTM/DRTM

n
TPM_Quote(n)

quote

k
quote

attestable mode

Fig. 8. Trusted Grid Platform

We apply TRUSTFOUND to another trusted platform
for cloud computing [15], which can be abstracted as
the steps shown in Fig. 8. Basically, Alice locates her
encrypted sensitive program in the cloud (①). When
the program needs to be executed, Alice attests the
software stack in the cloud using a typical remote at-
testation protocol [34] (②-⑤). If Alice verifies that the
cloud is in an expected state, she sends the decryption
key to the trusted block (similar to Fig. 1).

Experiments and Results. We model this platform in
approximately 150 lines of TCSP# code. We use the same set of threat models as that
in Section 5.1. Due to the similarity of these two platforms, we derive the same set
of assumptions as we expected. Furthermore, TRUSTFOUND finds the following logic
flaw in this platform when we test the reboot attack (HA3).

A Logic Flaw in the Protocol. After Step ⑤, the malicious cloud can reboot to an
untrusted mode, and communicate with Alice to obtain k. This flaw occurs because the
attestability is violated. Given the cloud is under complete control of the attacker, an
authentication between Step ⑤ and ⑥ (as suggested in [15]) cannot defeat this attack.
A possible remedy is to request a key which is bound to a expected PCR value from the
cloud and encrypt k with this key.

6 Related Work

Security System Specification. We use the logic of LS2 [16] in TCSP# to support mod-
eling security systems. Besides, formally specification of security systems has been well
studied in the literature. Many logics and calculi have been proposed before, such as

124 G. Bai et al.

BAN logic [12], WL model [39] and Spi-calculus [7]. To support verification and rea-
soning of them, a number of automatic tools have been developed, such as Proverif [10]
and AVISPA [3]. All of them focus on the security systems and TRUSTFOUND extends
them with the support of trusted computing techniques.

Trusted Platform Verification. Some previous work has been done on formal analysis
of the trusted platforms. Delaune et al. [18] present a Horn-clause-based framework for
trusted platform analysis, which is featured in sensitiveness of PCR states. Namiluko
and Martin [29] propose an abstract framework for TPM-based system based on CSP.
In this work, a trusted system is abstracted as composition of the subsystems, including
the resources and configurations. The TPM is abstracted as a set of processes. Gürgens
et al. [22] specify the TPM API using FSA (Finite State Automata). All of these works
need to model the TPM commands before analyzing the trusted platforms. Therefore,
TRUSTFOUND can serve as a foundation for them.

7 Conclusion

We presented TRUSTFOUND, a formal foundation and framework for model checking
trusted platforms. TRUSTFOUND provides an expressive formalism, a formal model of
the TPM, and three categories of threat models. We successfully detect design-level
flaws and a set of implicit assumptions from two existing trusted platforms. Hopefully,
TRUSTFOUND can be taken as a formal foundation for future research on formal ver-
ification of trusted platforms. Our ongoing work is to support newly proposed TPM
specification namely TPM 2.0, which aims to support TPM 2.0 based platforms such as
the Direct Anonymous Attestation (DAA) protocol [13].

Acknowledgement. We thank the anonymous reviewers for their valued comments to
improve this manuscript. We also thank Jin Song Dong, Jun Sun, Sjouke Mauw and
David Basin for their helpful feedback and comments. Guangdong Bai is supported by
NGS. This research is partially supported by “Formal Verification on Cloud” project
under Grant No: M4081155.020, “Verification of Security Protocol Implementations”
project under Grant No: M4080996.020 and by Singapore Ministry of Education under
grant R-252-000-519-112.

References

1. BitLocker, http://technet.microsoft.com/en-us/library/
ee449438%28v=ws.10%29.aspx

2. TPM Reset Attack, http://www.cs.dartmouth.edu/˜pkilab/sparks/
3. The AVISPA project homepage, http://www.avispa-project.org/
4. Trusted Boot, http://sourceforge.net/projects/tboot/
5. Trusted Platform Module (TPM): Built-in Authentication,

http://www.trustedcomputinggroup.org/solutions/
authentication

6. TrustFound, http://www.comp.nus.edu.sg/˜a0091939/TrustFound/

http://technet.microsoft.com/en-us/library/ee449438%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/ee449438%28v=ws.10%29.aspx
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.avispa-project.org/
http://sourceforge.net/projects/tboot/
http://www.trustedcomputinggroup.org/solutions/authentication
http://www.trustedcomputinggroup.org/solutions/authentication
http://www.comp.nus.edu.sg/~a0091939/TrustFound/

Towards a Formal Foundation for Model Checking Trusted Computing Platforms 125

7. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The spi Calculus. Infor-
mation and Computation 148(1), 1–70 (1999)

8. Ables, K., Ryan, M.D.: Escrowed Data and the Digital Envelope. In: Acquisti, A., Smith,
S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246–256. Springer,
Heidelberg (2010)

9. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: Virtual-
izing the Trusted Platform Module. In: USENIX Security Symposium (2006)

10. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: IEEE
Computer Security Foundations Workshop (CSFW) (2001)

11. Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay Attack in TCG Specification and
Solution. In: Annual Computer Security Applications Conference (ACSAC) (2005)

12. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transactions on
Computer Systems 8, 18–36 (1990)

13. Chen, L., Li, J.: Flexible and Scalable Digital Signatures in TPM 2.0. In: ACM Conference
on Computer and Communications Security (CCS) (2013)

14. Chen, L., Ryan, M.: Offline Dictionary Attack on TCG TPM Weak Authorisation Data, and
Solution. In: Future of Trust in Computing (2008)

15. Cooper, A., Martin, A.: Towards a Secure, Tamper-Proof Grid Platform. In: IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2006)

16. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A Logic of Secure Systems and Its Application
to Trusted Computing. In: IEEE Symposium on Security and Privacy (S&P) (2009)

17. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A Formal Analysis of Authentication in
the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
111–125. Springer, Heidelberg (2011)

18. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal Analysis of Protocols Based on TPM
State Registers. In: IEEE Computer Security Foundations Symposium (CSF) (2011)

19. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions on Infor-
mation Theory 29(2), 198–208 (1983)

20. T. C. Group. TPM Specification 1.2 (2013),
http://www.trustedcomputinggroup.org/resources/tpm main
specification

21. T. C. Group. TPM Specification 2.0 (2013),
https://www.trustedcomputinggroup.org/resources/
tpm library specification

22. Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security Evaluation
of Scenarios Based on the TCG’s TPM Specification. In: Biskup, J., López, J. (eds.)
ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)

23. Hendricks, J., van Doorn, L.: Secure Bootstrap is Not Enough: Shoring Up the Trusted Com-
puting Base. In: ACM SIGOPS European Workshop (2004)

24. Kauer, B.: OSLO: Improving the Security of Trusted Computing. In: USENIX Security
(2007)

25. Kursawe, K., Schellekens, D., Preneel, B.: Analyzing Trusted Platform Communication. In:
ECRYPT Workshop, CRASH-CRyptographic Advances in Secure Hardware (2005)

26. Mackie, K.: Wave Outlines Windows 8 Mobile Device Management Alternative
27. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an Execution In-

frastructure for TCB Minimization. In: ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys) (2008)

28. Mukhamedov, A., Gordon, A.D., Ryan, M.: Towards a Verified Reference Implementation of
a Trusted Platform Module. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.)
Security Protocols 2009. LNCS, vol. 7028, pp. 69–81. Springer, Heidelberg (2013)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification

126 G. Bai et al.

29. Namiluko, C., Martin, A.: An Abstract Model of a Trusted Platform. In: Chen, L., Yung, M.
(eds.) INTRUST 2010. LNCS, vol. 6802, pp. 47–66. Springer, Heidelberg (2011)

30. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Practical State
Continuity for Protected Modules. In: IEEE Symposium on Security and Privacy (S&P)
(2011)

31. Sadeghi, A.-R., Selhorst, M., Stüble, C., Wachsmann, C., Winandy, M.: TCG Inside?: A
Note on TPM Specification Compliance. In: ACM Workshop on Scalable Trusted Comput-
ing (STC) (2006)

32. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-Based
Integrity Measurement Architecture. In: USENIX Security Symposium (2004)

33. Sparks, E.R.: A Security Assessment of Trusted Platform Modules. Technical Report
TR2007-597, Dartmouth College, Computer Science (2007)

34. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A Robust Integrity Reporting Protocol for
Remote Attestation. In: Workshop on Advances in Trusted Computing (WATC) (2006)

35. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System
Modeling and Verification. In: International Symposium on Theoretical Aspects of Software
Engineering (TASE) (2009)

36. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

37. Wojtczuk, R., Rutkowska, J.: Attacking Intel Trusted Execution Technology. In: Black Hat
DC (2009)

38. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another Way to Circumvent Intel Trusted Exe-
cution Technology. Invisible Things Lab (2009)

39. Woo, T.Y.C., Lam, S.S.: A Semantic Model for Authentication Protocols. In: IEEE Sympo-
sium on Security and Privacy (S&P) (1993)

The VerCors Tool

for Verification of Concurrent Programs

Stefan Blom and Marieke Huisman

Formal Methods and Tools, University of Twente, The Netherlands
{s.blom,m.huisman}@utwente.nl

Abstract. The VerCors tool implements thread-modular static verifi-
cation of concurrent programs, annotated with functional properties and
heap access permissions. The tool supports both generic multithreaded
and vector-based programming models. In particular, it can verify mul-
tithreaded programs written in Java, specified with JML extended with
separation logic. It can also verify parallelizable programs written in a
toy language that supports the characteristic features of OpenCL. The
tool verifies programs by first encoding the specified program into a much
simpler programming language and then applying the Chalice verifier to
the simplified program. In this paper we discuss both the implementation
of the tool and the features of its specification language.

1 Introduction

Increasing performance demands, application complexity and explicit multi-core
parallelism make concurrency omnipresent in software applications. However,
due to the complex interferences between threads in an application, concurrent
software is also notoriously hard to get correct. Therefore, formal techniques are
needed to reason about the behavior of concurrent programs. Over the last years,
program logics have proven themselves to be useful to reason about sequential
programs. In particular, several powerful tools for JML have been developed [5].
These techniques now are mature enough to lift them to concurrent programs.

The VerCors tool supports the thread-modular verification of multithreaded
programs. Modularity is achieved by specifying for each thread which variables
on the heap it can access, by means of access permissions, which can be divided
and combined, but not duplicated [8]. To read a location, any share of the access
permission to that location suffices. To write a location a thread needs 100% of
the access rights. Hence, if a thread has write permission to a location, no other
thread can read that location simultaneously. Moreover, if a thread has read
permission to a location, other threads can also only read this location. Thus
specifications that are sufficiently protected by permissions are interference-free.
Moreover, verified programs cannot contain data races.

Just as multi-core processors are ubiquitous, the same applies to GPU hard-
ware. Therefore, the VerCors tool also provides the functionality to reason about
kernels running on a GPU, where a large number of threads execute the same
instructions, each on part of the data.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 127–131, 2014.
c© Springer International Publishing Switzerland 2014

128 S. Blom and M. Huisman

2 Design of the VerCors Tool

Rather than building yet another verifier, the VerCors tool leverages existing
verifiers. That is, it is designed as a compiler that translates specified programs
to a simpler language. These simplified programs are then verified by a third-
party verifier. If there are errors then the error messages are converted to refer
to the original input code.

Chalice Boogie Z3

Java PVL OpenCL
C

Tool
VerCors

back ends

input languages

Common Object Language

Fig. 1. VerCors tool architecture

Figure 1 shows the overall architec-
ture of the tool. Its main input lan-
guage is Java. For prototyping, we use
the toy language PVL, which is a very
simple object-oriented language that can
express specified GPU kernels too. The
C language family front-end is work-in-
progress, but will support OpenCL in
the near future. We mainly use Chalice
[10], a verifier for an idealized concurrent
programming language, as our back-end,
but for sequential programs we also use the intermediate program verification
language Boogie [1].

The implementation of the tool is highly modular. Everything is built around
the Common Object Language data structure for Abstract Syntax Trees. For
Java and C, parsing happens in two passes. In the first pass an existing ANTLR4
[13] grammar is used to convert the program into an AST while keeping all com-
ments. In the second pass those comments that contain specifications are parsed
using a separate grammar. This prevents us from having to maintain heavily
modified grammars and makes it much easier to support multiple specification
languages. The process of encoding programs consists of many simple passes. Ob-
viously, this impacts performance, but it is good for reusability and checkability
of the passes. Our back-end framework allows switching between different ver-
sions, by setting up their command line execution using environment modules,
a system for dynamic access to multiple versions of software modules [11].

3 The VerCors Specification Language

The VerCors specification language has JML as a starting point, and adds fea-
tures from Chalice, and from Hurlin’s permission-based separation logic for con-
current Java [8], in order to be equally expressive as Hurlin’s logic.

Using JML as a starting point allows to reuse existing JML specifications.
However, JML’s support for framing (i.e., modifies clauses) is not precise enough
to be used in a concurrent setting. Instead we use access permissions Perm(e, π),
where e is an expression denoting a location on the heap (a field in Java) and π
is a percentage. To specify properties of the value stored at the location we just
refer to the location in our formulas. Thus, we are forced to check that every
expression is self-framed, i.e., we need to check that only locations for which we
have access permission are accessed. This is different from classical separation

The VerCors Tool for Verification of Concurrent Programs 129

logic, which uses the PointsTo primitive, which has an additional argument that
denotes the value of the location and cannot refer to the location otherwise. We
prefer the Perm primitive because it fits JML and Chalice best. The VerCors
tool supports PointsTo as syntactic sugar, which can be extended to full support.
Moreover, it is proven that the two logics are equivalent [12]. Another feature of
our logic is the notion of thread-local predicates, which are used to axiomatize
the lockset predicate that keeps track of the locks held by the current thread [8].

Like Chalice, the VerCors tool disallows disjunction between resources. It does
so by distinguishing the type resource from the type boolean. Thus, boolean
formulas allow all logical operators and quantifications, while resource formulas
are limited to the separating conjunction, separating implication (magic wand),
and universal quantification. In method contracts, pre- and postconditions are
of type resource.

VerCors’ specification language uses several features that are not natively
present in Chalice and thus have to be encoded. Resource predicates can have
an arbitrary number of arguments, whereas Chalice only allows the implicit this

argument. This is encoded by (partially) translating the formulas to witness ob-
jects. That is, instead of passing arguments to a predicate, we put the arguments
in an object and define a predicate (without arguments) on that object. This
translation also turns proof construction annotations into method calls. Magic
wands are encoded using a similar strategy of defining witness objects [3]. By
encoding complex specifications as data structures with simple specifications,
we gain the ability to verify complex specifications with existing tools. However,
these existing tools have no specific support for our data structures. Therefore,
we also have to provide proof scripts to guide the proof search in the encoded
program.

Below, we show a small example of a program in PVL that computes the
fibonacci numbers by forking new threads instead of making recursive calls.

class Fib { static int fib (int n)=n<2?1:fib(n−1)+fib(n−2);
2 int input , output;

requires perm(input,50) ∗ perm(output,100);
4 ensures perm(input,50) ∗ perm(output,100) ∗ output=fib(input);

void run() { if (input<2) { output := 1; }
6 else { Fib f1 := new Fib; f1 . input := input−1;

Fib f2 := new Fib; f2 . input := input−2;
8 fork f1 ; fork f2 ;

assert f1 . input=input−1 ∗ f2.input=input−2;
10 join f1 ; join f2 ;

output := f1 .output + f2.output; }}}
Note that we use Chalice notation for fractions: 50 means read-only and 100
means write access. Also note how on line 9, we use an assert to remind the
prover that because we can read the inputs to the threads, these inputs cannot
change. The Java version of this example is much longer and can be found on
the tool’s website [14].

In addition to verification of Multiple Instruction Multiple Data programs,
the VerCors tool also supports verification of Single Instruction Multiple Data

130 S. Blom and M. Huisman

programs. Specifically, it supports reasoning about GPU kernels written in PVL.
The concept of a kernel is that a large number of threads, divided over one or
more working groups, all execute the same code, but each on part of the data.
These computations cannot synchronize, except for barrier synchronization of
the threads within a working group. Due to the lack of other synchronization
primitives, the resources available for redistribution at a barrier are precisely
those available to a working group at the start of the computation. This is
reflected by the fact that the required resources upon entering a barrier are
deduced by our tool instead of being specified by the user. Moreover, it means
that in future versions we can simplify the permission model to three values:
no access, read access, full access. Our kernel logic imposes proof obligations to
ensure that all resources are always properly distributed [4]. The tool verifies
these proof obligations by encoding them as specified methods and classes.

Below, we show a small example of a kernel. It displays a typical case: first
each of the gsize threads computes a value based on an unknown function f and
its identifier tid . Then the threads synchronize using a barrier and add their own
result to that of the preceding thread to get their final result:

global int [gsize] x, y;
2 requires perm(x[tid],100) ∗ perm(y[tid],100);

ensures perm(x[tid],100) ∗ (0<tid & tid<gsize −> x[tid]=f(tid)+f(tid−1));
4 void main(){

y[tid] := f(tid);
6 barrier (global){

requires y[tid]=f(tid);
8 ensures perm(x[tid],100) ∗ perm(y[tid],50) ∗ perm(y[(tid−1) mod gsize],50);

ensures y[tid]=f(tid) ∗ (tid>0 −> y[tid−1]=f(tid−1)); }
10 if (tid>0) { x[tid] := y[tid]+y[tid−1]; } }

4 Conclusion

This paper gives a brief overview of the VerCors tool set and its specification
language. The main application areas of the tool are MIMD programs written in
Java, using Java’s concurrency library, and SIMD applications, such as OpenCL
kernels. The tool website [14] contains additional information such as our col-
lection of verified examples, which can be tested with the online version of the
tool. These examples demonstrate reasoning about the fork/join pattern, reen-
trant locks, and about magic wands in specifications. Additionally, there are also
several verified kernel examples.

There are several other static verifiers that support reasoning about MIMD
programs, such as VCC [6] for C, VeriFast [9] for C and Java, jStar [7] for Java,
and Chalice [10] for an idealized concurrent language. The VCC tool has its own
permission system and does not use separation logic. The VeriFast and jStar
tools both use classical separation logic, with jStar being more limited (e.g. no
support for fractional permissions). The Chalice tool, like VerCors uses implicit
dynamic frames, which can be seen as a variant of separation logic [12]. The
distinguishing feature of the VerCors tool compared to the ones above is that it

The VerCors Tool for Verification of Concurrent Programs 131

supports specifications using the magic wand operator. Moreover, VerCors has
support for other concurrency models, such as the SIMD model used for GPU
kernels. Memory safety for kernels can also be checked with GPUVerify [2], but
additionally, VerCors can check functional correctness of kernels.

At the moment, the tool requires a considerable amount of annotations to
verify a program. To reduce this, we will work on automatic generation of spec-
ifications and also on identifying and implementing useful default specifications
and syntactic sugar. To turn the tool into a full-fledged verification tool, we have
to add support for reasoning about e.g., exceptions. Moreover, we will continue
the work on the C parser, so the tool can verify OpenCL.

Acknowledgement. This work is supported by the ERC 258405 VerCors
project and by the EU FP7 STREP 287767 project CARP.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

2. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA 2012, pp. 113–132. ACM (2012)

3. Blom, S.C.C., Huisman, M.: Witnessing the elimination of magic wands. Techni-
cal Report TR-CTIT-13-22, Centre for Telematics and Information Technology,
University of Twente, Enschede (November 2013)

4. Blom, S.C.C., Huisman, M., Mihelcic, M.: Specification and verification of gpgpu
programs. Technical Report TR-CTIT-13-21, Centre for Telematics and Informa-
tion Technology, University of Twente, Enschede (November 2013)

5. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll,
E.: An overview of JML tools and applications. STTT 7(3), 212–232 (2005)

6. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

7. DiStefano, D., Parkinson, M.: jStar: Towards practical verification for Java. In:
ACM Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pp. 213–226. ACM Press (2008)

8. Hurlin, C.: Specification and Verification of Multithreaded Object-Oriented Pro-
grams with Separation Logic. PhD thesis, Université Nice Sophia Antipolis (2009)

9. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW520,
Katholieke Universiteit Leuven (2008)

10. Leino, K., Müller, P., Smans, J.: Verification of concurrent programs with Chalice.
In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009)

11. The environment modules project, http://modules.sourceforge.net
12. Parkinson, M., Summers, A.: The relationship between separation logic and implicit

dynamic frames. Logical Methods in Computer Science 8(3:01), 1–54 (2012)
13. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)
14. The vercors tool online, http://www.utwente.nl/vercors/

http://modules.sourceforge.net
http://www.utwente.nl/vercors/

Knowledge-Based Automated Repair

of Authentication Protocols

Borzoo Bonakdarpour1, Reza Hajisheykhi2, and Sandeep S. Kulkarni2

1 School of Computer Science
University of Waterloo, Canada

borzoo@cs.uwaterloo.ca
2 Department of Computer Science and Engineering

Michigan State University, USA
{hajishey,sandeep}@cse.msu.edu

Abstract. In this paper, we introduce a technique for repairing bugs in
authentication protocols automatically. Although such bugs can be iden-
tified through sophisticated testing or verification methods, the state of
the art falls short in fixing bugs in security protocols in an automated
fashion. Our method takes as input a protocol and a logical property that
the protocol does not satisfy and generates as output another protocol
that satisfies the property. We require that the generated protocol must
refine the original protocol in cases where the bug is not observed; i.e.,
repairing a protocol should not change the existing healthy behavior of
the protocol. We use epistemic logic to specify and reason about authen-
tication properties in protocols. We demonstrate the application of our
method in repairing the 3-step Needham-Schroeder’s protocol. To our
knowledge, this is the first application of epistemic logic in automated
repair of security protocols.

1 Introduction

Automated model repair aims at eliminating the human factor in fixing bugs.
More specifically, model repair begins with a model M and properties Σ and
Π, such that M satisfies Σ but does not satisfy Π (e.g., identified by model
checking). The goal is to repair M automatically and obtain a model M ′, such
that M ′ satisfies both Σ and Π. In other words, model repair adds property Π
to the original model while preserving the existing property Σ.

In this paper, we focus on developing an automated technique that deals with
repairing authentication protocols. The problem of model repair in the context of
security protocols creates new challenges that are not present when repair is per-
formed to add safety, liveness or fault-tolerance properties. Specifically, the prob-
lem of adding other properties can be expressed in terms of states reached by the
program, e.g., safety can be expressed in terms of states (respectively, transitions
or computation prefixes) that should not be reached. On the contrary, a security
property requires analysis of the knowledge of different agents in different states.
Moreover, this knowledge depends upon inference rules (e.g., if an agent knows

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 132–147, 2014.
c© Springer International Publishing Switzerland 2014

Knowledge-Based Automated Repair of Authentication Protocols 133

a message k(m) and it knows the key k, then it knows message m). Even when
one finds that a security violation has occurred based on the knowledge of agents,
fixing the protocol creates new challenges that are not present in adding normal
safety and liveness requirements. Specifically, if the state where a security property
is violated is reached due to an action of the adversary, it is not possible to remove
the corresponding adversary action. Moreover, even if that state was reached due
to a regular agent action, the way that the action can be changed depends upon
(1) the type of keys that can be used, (2) assumptions about initial distribution
of keys, (3) inference rules that identify the roles of keys, and so on.

Based on this discussion, repairing a security protocol involves three steps:
The first step involves identifying the state where the security violation occurs.
The second step involves identifying the step that could be altered to poten-
tially eliminate the security violation. This step is essential since all steps (e.g.,
actions taken by adversary) are not fixable. This step also involves identifying
the corresponding adversary-free states and identifying the knowledge-difference
between states reached in the presence of the adversary and states reached in the
absence of the adversary. Finally, the third step involves utilizing this knowledge-
difference to repair the protocol. This step depends upon the types of changes one
can do including the use of new nonces, existing or new keys, types of messages
that may be permitted, etc.

Our contribution in this paper is twofold. We introduce a novel epistemic [10]
algorithm that repairs a given authentication protocol, so that it satisfies the
authentication requirement in the presence of a newly identified threat. More-
over, the algorithm preserves the behavior of the protocol in the absence and
presence of already known attacks (i.e., the repair algorithm does not damage
the existing sound features of the protocol). Our approach for repairing security
protocol is as follows. We assume that the repeated application of inference rules
is terminating, as without this assumption, even the verification problem could
be undecidable. This can be achieved by bounding the structure of messages used
in the protocol (e.g., number of fields, depth of encryption, etc) and requiring
all legitimate participants to reject messages that violate this structure. Under
this assumption, our approach is sound and complete for the first step; i.e., if the
security property is violated, then it would be detected. For the second step, our
approach is sound and (intentionally) incomplete. Specifically, we identify poten-
tial steps where the security protocol can be repaired. However, to identify the
knowledge-difference, for the sake of efficiency, we only focus on atomic knowl-
edge propositions. This step can be made sound and complete at the increased
computational cost. Finally, the third step is a sound and incomplete heuristic,
as the choices made in the repairing the protocol (e.g., whether new nonces can
be used, what types of keys can be used, etc.) depend upon external factors such
as efficiency, user-preference that cannot be modeled during repair. However,
our algorithm still preserves soundness during this step, by ensuring that the
soundness only depends upon the inference rules rather than the heuristics used
in this step. We also demonstrate the application of our method in repairing the
bug the 3-step Needham-Schroeder public-key protocol.

134 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Organization. In Section 2, we present the preliminary concepts on epistemic
logic. Section 3 describes our high-level computation model. The formal state-
ment of knowledge-based repair problem is presented in Section 4. Section 5
describes our repair algorithm, while Section 6 presents the application of the
algorithm to repair the Needham-Schroeder’s protocol. Related work is discussed
in Section 7. We conclude in Section 8.

2 Preliminaries [10]

2.1 The Notion of Knowledge

Let Φ be a nonempty finite set of atomic propositions, typically labeled p, p′, q,
q′, Also, let 1, 2, . . . , n be the names of a nonempty finite set of agents. We
define the syntax and semantics of our epistemic language as follows.

Definition 1. Epistemic formulas are defined inductively as follows:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ

where p ∈ Φ, i ∈ {1, . . . , n}, and Ki is the modal operator read as ‘agent i
knows’. 	�

We formalize the semantics of our epistemic language in terms of Kripke struc-
tures. A Kripke structure M for n agents over atomic propositions Φ is a tuple
(S, π,K1, . . . ,Kn), where S is a nonempty set of states, π is an interpretation
which associates with each state in S a truth assignment to the atomic proposi-
tions in Φ (i.e., π(s) : Φ → {true, false} for each state s ∈ S), and Ki is a binary
equivalence relation on S, that is, a set of pairs of elements of S. Intuitively, we
think of Ki as a possibility relation; i.e., it defines what states agent i considers
possible at any given state. For example, Figure 1 [10] shows a Kripke structure
M = (S, π,K1,K2) over Φ = {p} with states S = {s, t, u}. Proposition p holds
in states s and u and it does not hold in state t. We now define the notion of
(M, s) |= ϕ, which is read as ‘(M, s) satisfies ϕ’.

Definition 2. Let M = (S, π,K1, . . . ,Kn) be a Kripke structure over atomic
propositions Φ, s ∈ S, and p ∈ Φ. Semantics of our logic is defined inductively
as follows:

(M, s) |= true
(M, s) |= p iff π(s)(p) = true
(M, s) |= ¬ϕ iff (M, s) �|= ϕ
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ ∧ (M, s) |= ψ
(M, s) |= Kiϕ iff (M, t) |= ϕ for all t, such that

(s, t) ∈ Ki, where 1 ≤ i ≤ n.

In addition, M |= ϕ holds iff (M, s) |= ϕ holds for every state s ∈ S. 	�

For example, for the Kripke structure in Figure 1, we have (M, s) |= K2p (i.e.,
in state s agent 2 knows p). Also, we have (M, s) |= ¬K2¬K1p.

Knowledge-Based Automated Repair of Authentication Protocols 135

1,2

1 2

1,2 1,2

t s u

¬p p p

Fig. 1. A Kripke structure

2.2 Knowledge in Multi-agent Systems

In order to reason about the knowledge of agents, we leverage the notions of
local state and global state of agents. Let Li be a set of possible local states for
agent i, for i = 1, . . . , n. We take G = L1×· · ·×Ln to be the set of global states.
A run is a function from the nonnegative integers Z≥0 (called time) to G. Thus,
a run r is a sequence of global states in G. We refer to a pair (r, m) consisting of
a run r and time m as a point. Notice that each r(m) is of the form (s1, . . . , sn),
where si, 1 ≤ i ≤ n, is the local state of agent i. We say that two global states
s = (s1, . . . , sn) and s′ = (s′1, . . . , s′n) are indistinguishable to agent i, and write
s ∼i s′, iff i has the same state in both s and s′, that is, if si = s′i. Likewise,
two points (r, m) and (r′, m′) are indistinguishable for agent i if r(m) ∼i r′(m′)
(or, equivalently, if ri(m) = r′i(m

′)). Clearly, ∼i is an equivalence relation on
points.

Definition 3. A system R (with global states G) is a nonempty set of runs over
a set G of global states. 	�

We say that (r, m) is a point in system R, if r ∈ R. In order to connect the
notion of systems to knowledge, we reason about atomic propositions in each
state of the system.

Definition 4. An interpreted system N is a pair (R, π), where R (with global
states G) is a system over global states G and π is a function from G to 2Φ. 	�

To define knowledge in interpreted systems, we associate with an interpreted
system N = (R, π) a Kripke structure MN = (S, π,K1, . . . ,Kn) as follows:

– S consists of the points in N , and
– Ki is a relation in MN defined by ∼i.

Thus, we say that (N , r, m) |= ϕ exactly if (MN , s) |= ϕ, where s = (r, m). I.e.,

(N , r, m) |= p (for p ∈ Φ) iff π(r, m)(p) = true, and
(N , r, m) |= Kiϕ iff (N , r′, m′) |= ϕ for all (r′, m′) such that (r, m) ∼i (r

′, m′).

An interpreted system N satisfies an epistemic formula ϕ iff (N , r, m) |= ϕ,
for all points (r, m).

136 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Finally, we introduce the ‘always’ temporal operator �. Syntactically, if ϕ is
an epistemic formula (see Definition 1), then �ϕ is also an epistemic formula.
The semantics of the this operator is the following:

(N , r, m) |= �ϕ iff (N , r, m′) |= ϕ, for all m′ ≥ m.

3 High-Level System Representation

To concisely represent a system, we use guarded commands (also called actions).
Each action is of the form L :: g −→ st1; st2; . . . ; stk; , , where L is a label,
g is a guard, that is, a Boolean expression over a set of atomic propositions,
and st1, st2, . . . , stk are sequentially executed statements that prescribe how the
state of agents of a system change. Given a set of actions, one can trivially obtain
a system as defined in Definition 3 (i.e., a set of runs).

Since our focus in this paper is on message passing protocols, we utilize a
special send(message) statement for simplicity of presentation. A message is of
the form Sp.Rp.Sl.Rl.msg, where Sp is a physical sender (e.g., an IP address),
Rp is a physical receiver, Sl is a logical sender (e.g., host name), Rl is a logical
receiver, and msg is the message content. For example, Ip.Bp.A.B.“hello” means
that the message “hello” is intended to be sent by agent I to agent B. However,
I wants to impersonate A by choosing logical sender A.

We now describe the semantics of send. Let A, B, C, and D be agents of a
system with the following Boolean variables sentz(x.y.msg) and rcvdz(x.y.msg),
where x �= y, z, x, y ∈ {A, B, C, D}, and msg is the message content. Execution
of statement send(C.D.A.B.msg) affects the variables of agents as follows:

(1) This message is sent by physical sender C and it is sent to physical re-
ceiver D. However, it appears to have been sent from A to B. If D is not an
intruder, we expect that D = B. Otherwise, D will discard this invalid message.
However, if D is an intruder, it might accept this message since it is part of its
attack routine. (2) Actual sending and receiving of a message occurs simulta-
neously. (3) The value of an auxiliary variable rcvdfromD is set to the physical
address of the sender, that is, rcvdfromD = C. This variable is only used to
describe the protocol since we need an action of the form ‘reply to the (physical)
sender of this message’. We emphasize that this variable does not participate
in state evaluation of an agent. (4) The value of variables sentC(A.B.msg) and
rcvdD(A.B.msg) are set to true.

For example, consider the following actions:

LA :: true −→ send(Ap.Bp.A.B.“hello”);
LB :: rcvdB(A.B.“hello”) −→ send(Bp.rcvdfromB.B.A.“bon jour”);

Table 1 describes how the state of each agent develops in a run r.
Remark. Sending of a message send(Ap.Bp.A.B.msg) sets variables

sentA(A.B.msg) and rcvdB(A.B.msg) to true. It does not set sentB(A.B.msg)
to true. sentB(A.B.msg) is set to true only if B concludes (based on the authen-
tication protocol under consideration) that the message msg was indeed sent by
A. Note that B will not be reading sentA(x.y.msg). However, it could conclude
KBsentA(A.B.msg) based on the inference rules.

Knowledge-Based Automated Repair of Authentication Protocols 137

Table 1. State and knowledge development of agents A and B

global state local state of agent A local state of agent B

r(0)

rcvdfromA = ⊥
∀x : sentx(. . .) = false
∀x : rcvdx(. . .) = false

rcvdfromB = ⊥
∀x : sentx(. . .) = false
∀x : rcvdx(. . .) = false

r(1) sentA(A.B.“hello”)
rcvdfromB = Ap

rcvdB(A.B.“hello”)

r(2)
rcvdfromA = Bp

rcvdA(B.A.“bon jour”)
sentB(B.A.“bon jour”)

4 The Model Repair Problem

In this section, we formally state the repair problem in the context of authen-
tication protocols. The intuitive description of the problem is the following. We
are given an interpreted system N that satisfies an epistemic (authentication)
property ϕ. However, if an intruder agent intr joins the system, the obtained
system (denoted N+intr) does not satisfy ϕ. The system N+intr is trivially ob-
tained by incorporating the local states of intr in calculating global states of
N+intr and extending runs of N by the intruder’s actions. Since the focus of
this paper is on authentication protocols, we first define authentication in terms
of epistemic formulas. Then, we discuss the problem statement for repairing a
given protocol.

4.1 Authentication

Intuitively, authentication refers to the ability to conclusively decide who the
sender of a given message is. This can be captured by the following epistemic
formulas for any message msg :

ϕ1 ≡�KA(sentA(B.A.msg) ⇒ sentB(B.A.msg)) (1)

ϕ2 ≡�KB(sentB(A.B.msg) ⇒ sentA(A.B.msg)) (2)

4.2 Formal Problem Statement

Following the intuitive description of the problem in the beginning of this sec-
tion, the repair problem is to obtain a system N ′, such that (1) N ′ behaves
similarly to N , and (2) N ′

+intr satisfies ϕ, the desired authentication property
such as that described by formulas ϕ1 and ϕ2. In order to capture the first condi-
tion, we define a state mapping function f from one Kripke structure to another.
In particular, let N and N ′ be two systems (in our context, the original and
repaired systems, respectively) over the set Φ of atomic propositions. Let MN =
(S, π,K1, . . . ,Kn) and MN ′ = (S′, π′,K′

1, . . . ,K′
n) be their corresponding Kripke

138 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

structures, respectively. A state mapping function f : S′ → S is an onto function,
such that:

1. for all s′ ∈ S′ and p ∈ Φ, if π(f(s′))(p) = true, then π′(s′)(p) = true
2. for all s′, r′ ∈ S′, if (s′, r′) ∈ K′

i for some i, then (f(s′), f(r′)) ∈ Ki.

Definition 5. An interpreted system N ′ refines an interpreted system N iff
there exists a state mapping function f , such that, for each run r′ = r′(0)r′(1) . . .
in N ′, the run r = f(r′(0))f(r′(1)) . . . belongs to N . 	�

Next, based on the above discussion, we define the problem of repairing a
given protocol as follows:

Problem 1 Given an interpreted system N , an intruder agent intr, and an
epistemic property ϕ, where N |= ϕ and N+intr �|= ϕ, the repair problem is
to obtain an interpreted system N ′ such that:

– (C1) N ′ refines N , and
– (C2) N ′

+intr |= ϕ.

Note that based on Constraint C1 and Definition 5, it follows that behaviors
of N ′ in the absence of intruder correspond to behaviors in N . Hence, if N does
not terminate (deadlock) in some state then N ′ cannot terminate in that state
either. N ′ may not have all behaviors that are included in N ; some behaviors
could be removed if it is impossible to provide authentication for them in the
presence of the intruder. It is straightforward to change the problem statement
(and our algorithm) to require all existing behaviors be preserved by requiring
the algorithm to declare failure if it is forced remove behaviors in N .

5 A Knowledge-Based Repair Algorithm

5.1 Auxiliary Agent

We introduce an auxiliary agent, GA for each agent A. Agent GA can view the
global communication and update the knowledge accordingly. To illustrate the
use of GA, consider the example, where A receives a plaintext message “hello”
from B. Based on the discussion in Section 3, the proposition rcvdA(B.A.“hello”)
is true. However, since A is not sure about whether B really sent it,
sentA(B.A.“hello”) is still false. On the contrary, sentGA(B.A.“hello”) is true.
Except for this difference, agents A and GA are identical. Note that agent GA is
auxiliary and cannot be realized. It is only for analyzing the protocol to evaluate
how it can be repaired.

To illustrate the role of agent GA, consider the following scenarios where a
protocol action, say ac, is executed: (1) In the first scenario, ac is executed in
an intruder-free scenario in a state s0 and the resulting state is s1, and (2) In
another scenario, the action is executed in the presence of an intruder in state s2

Knowledge-Based Automated Repair of Authentication Protocols 139

Algorithm 1. Epistemic Repair
Input: An interpreted system N , intruder agent intr, and epistemic formula �ϕ.
Output: An interpreted system N ′.

1: R := ReachableStates(N)
2: T := ReachableStates(N+intr)
3: while (T ∧ ¬ϕ �= false) do
4: Let 〈s1, s2, ..., sk〉 be a prefix of a run of N+intr, where sk ∈ T ∧ ¬ϕ
5: for all j = k to 1 do
6: if (j = 1) then
7: declare failure to repair N
8: end if
9: Let ac be the high-level action responsible for execution of (sj−1, sj)
10: if ac is an intruder action then
11: continue
12: end if
13: X = {s0 | (s0 ∈ R) ∧ (s0, s1) corresponds to the high level action ac}
14: if (∀s ∈ X : ∃Q : (N , s |= KGAQ ∧ N+intr , sj−1 |= ¬KGAQ)) then
15: fix(N , intr, R, T, sj−1, sj , A, ac)
16: end if
17: end for
18: R := ReachableStates(N)
19: T := ReachableStates(N+intr)
20: end while
21: return N

and the resulting state is s3, and this eventually leads to a state where security
requirement is violated.

To prevent this security violation, without violating C1, we want to prevent
execution of Action ac in s2 without preventing its execution in state s0. If states
s0 and s2 are distinguishable to agent A, this can be achieved trivially. If s0 and
s2 are indistinguishable, then the auxiliary agent GA can assist in modifying the
protocol, so that s0 and s2 are distinguishable.

5.2 Algorithm Description

Step 1: Locating the Authentication Violation The repair algorithm Epis-

temic Repair (see Algorithm 1) first computes the set R of states reached in the
absence of the intruder intr and T , states reached in the presence of intr (Lines
1 and 2). We assume that the security requirement is of the form �ϕ. Hence, if
T ∧¬ϕ is satisfiable, then some run of the protocol violates the security require-
ment in the presence of the intruder. Hence, the algorithm iterates and repairs
until T ∧ ¬ϕ becomes false . If T ∧ ¬ϕ is true, then the algorithm finds a state,
say sk, in T ∧ ¬ϕ and identifies how that state can be reached in a run of the
protocol (Line 4).

Step 2: Identifying repairable Location The algorithm traverses this path
backward to identify a location where the protocol could be repaired. In this
backward traversal, let (sj−1, sj) be the current transition being considered. If
this transition is caused by an intruder action, then it cannot be stopped (Lines
11) and the algorithm considers the previous transition (sj−2, sj−1). If (sj−1, sj)
is not a transition of the intruder, then the algorithm evaluates the knowledge
difference between sj−1 and corresponding states reached in the absence of the

140 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

Algorithm 2. fix Function
Input: Interpreted system N , intruder intr, set of states R and T , states s, state s′, agent A, and

action ac, where ac is responsible for executing (s, s′).
Output: An interpreted system N .

1: X = {s0 ∈ R | ∃s1 ∈ R : (s0, s1) is a transition of ac }

2: if X = ∅ then
3: Remove Action ac from N
4: end if

5: if (∀sk ∈ X : ∃Qk : (N , sk |= KAQk ∧ N+intr , s |= ¬KAQk)) then
6: change Action ac in N to “if (

∨
Qk) then ac”

7: end if

8: For some B, m, let rcvdA(B,A, {m}PKA
) be included in the guard of action ac.

9: r = ∃B : rcvdA(B,A, {m}PKA
)

10: t = ∃B : sentB(B,A, {m}PKA
)

11: if (∀s0 ∈ X : (N , s0 |= KAr ∧ N+intr , s |= KAr) ∧ (N , s0 |= KGAt ∧ N+intr , s |= ¬KGAt))
then

12: Replace sending of {m}PKA
in N by: {m, senderIDm}PKA

13: Change action ac in N to: “If (rcvdA(B,A, {m,B}PKA
)) then ac”

14: end if

15: For some B, m, let rcvdA(B,A, {m}) be included in the guard of action ac.
16: r = ∃B : rcvdA(B,A, {m})
17: t = ∃B : sentB(B,A, {m})
18: if (∀s0 ∈ X : (N , s0 |= KAr ∧ N+intr , s |= KAr) ∧ (N , s0 |= KGAt ∧ N+intr , s |= ¬KGAt))

then
19: Replace sending of {m} in N by: {{m}

PK
−1
senderm

}PKA

20: Change action ac in N to: “rcvdA(B,A, {{m}
PK

−1
B

}PKA
)”

21: end if

22: For some B, m, let rcvdA(B,A, {m}) be included in the guard of action ac.
23: r = ∃B : rcvdA(B,A, {m})
24: t = ∃B : sentB(B,A, {m})
25: if (∀s0 ∈ X : (N , s0 |= KAr ∧N+intr , s |= KAr) ∧

N , s0 |= KGAt ∧ (N+intr, s |= ¬KGAt) ∧ (N , s0 |= KGAshkey(key))) then
26: Replace sending of {m} in N by: {{m}key}
27: Change action ac in N to: “If rcvdA(B,A, {{m}key) then ac”
28: end if

29: For some m, D, key1, let rcvdA(D,A, {m}key) be included in the guard of action ac.
30: r1 = ∃D : rcvdA(D,A, {m1}key1

)

31: r2 = ∃D : rcvdA(D,A, {m2}key2
)

32: r3 = ∃E : sentE(E,A, {m1}key1
) ∧ sentE(E,A, {m2}key2

)

33: if (∀s0 ∈ X : (N , s0 |= KAr1) ∧ (N+intr , s |= KAr1)∧
(N , s0 |= KAr2) ∧ (N+intr , s |= KAr2) ∧ (N , s0 |= KGAr3) ∧ (N+intr, s |= ¬KGAr3)∧

(N , s0 |= KGAshkey(key1)) ∧ (N , s0 |= KGAshkey(key2))) then
34: Replace sending of {m2}key2

in N by: {m2, key1}key2

35: Change action ac in N to:
“If (∃m1, D : rcvdA(D,A, {m1}key1

∧ rcvdA(D,A, {m, key1}key2
) then ac”

36: end if

intruder as follows. It first identifies possible states s0, where the same action is
being executed (Line 13). Then, it identifies whether there exists a predicate Q,
such that KGAQ is true in state s0, but it is false in state sj−1. For efficiency
of implementation (without affecting soundness), in implementation of our case
studies, we only consider atomic propositions as choices for Q. If such a predicate
Q is found (Line 14), then Step 3 is invoked by calling Algorithm 2.

Knowledge-Based Automated Repair of Authentication Protocols 141

Step 3: Repairing the Bug Step 3 is based on heuristics to repair the given
protocol so that the knowledge Q identified in Step 2 can be utilized to repair
the protocol.

Removal of useless actions. Line 1 of Algorithm 2 computes the set of corre-
sponding states, say X , reached in the absence of the intruder. If X is equal to
the empty set (Lines 2-4), then action ac is never executed in the absence of the
intruder and, hence, can be safely removed.

Repairing an improper implementation. If X is nonempty, but there exists
a predicate Q, such that KAQ is true in all states in X and KAQ is false in
state s, then we change action ac to ‘if (Q), then ac’ (Lines 5-7). Note that in
this scenario, agent A already possesses some knowledge that would enable it to
prevent violation of the security property.

Imparting knowledge of sender via public/private keys. Lines 8-14 cover an
instance, where the knowledge ofGA can be imparted to agent A. Here, predicate
r denotes that A has received some message m encrypted by its public key.
Predicate t denotes that the sender of this message (a non-intruder agent) is
aware of sending this message. Furthermore, KAr is true in all states in X as
well as in state s. And, KGAt is true in all states of X although not in state s.
Here GA has the knowledge that the message received in s has not been sent
by the agent who claims to have sent it. However, agent A is not aware of this.
Now, the knowledge of agent GA can be imparted to A if we replace the action of
sending of message m, so that the message is of the form {m, senderIDm}PKA .
Moreover, A can use this knowledge if ac is changed, so that the logical sender
of the message is the same as the one that is included in the message.

Likewise, the remaining actions allow GA to impart its knowledge based on
public/shared keys as well as knowledge about correlation between senders of
different messages.

As discussed in the Introduction, the function fix can include more rules. We
have specified general rules that should be applied in a rich class of scenarios.
An interesting observation in this case is that the correctness of the repaired
protocol does not rely on the details of fix function. The correctness of the
protocol only relies on axioms (such as those discussed in Section 6) used to
update the knowledge.

Finally, after Algorithm 2 changes N , we reevaluate R and T to ensure states
in X are not reachable. Now, if there exists a state in T ∧ ¬ϕ, the algorithm
resolves by using Algorithm 2. This process is repeated until T ∧ ¬ϕ is false .

Theorem 1. Algorithm Epistemic Repair is sound, and the complexity of Algo-
rithm Epistemic Repair is O(|GN |+ O(dif + fix)).

6 Case Study: The Needham-Schroeder Protocol

In this section, we present a case study, the well-known Needham-Schroeder (NS)
public-key authentication protocol [14]. The protocol assumes reliable communi-
cation channels and aims to establish mutual authentication between two agents,
say A and B, in a system using public-key cryptography [20]. Each agent A in

142 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

the system possesses a public key PKA, that other agents can obtain from a key
server. (For simplicity, we assume that each agent initially knows the public key
of all other agents.) Each agent also owns a private key PKA

−1 which is the
inverse of PKA.

6.1 The Original 3-Step Protocol

Step 1 The first action of the protocol Rns is due to agent A:

RA1
ns :: freshA(Na) −→ freshA(Na) := false ; send(Ap.Bp.A.B.{Na.A}PKB

)

where Na is a random number generated by agent A (called a nonce). As we
present the protocol actions, we also explain how the run and knowledge of each
agent develops. The nonce Na is modeled by including a proposition freshA(Na)
as an atomic proposition in Definition 1. The proposition freshA(Na) holds in
the initial local state of agent A and it does not hold in the initial local state of
agent B. (If multiple nonces are required for A then this would be achieved by
having propositions such as freshA(Na1), freshA(Na2), etc.) We introduce the
propositions hasA(msg) that is true when agent A has message msg . In action
RA1

ns , agent A sends a message to agent B (encrypted by the public key of B)
containing the fresh nonce and the logical name of the sender agent; i.e., {Na, A}.

We use a set of inference rules as axioms, such that they can be applied only
a finite number of times to present the derivation of propositions automatically.
These axioms are as follows:

sentA(A.B.msg)

hasA(msg)
(3)

rcvdA(B.A.{msg}PKA)

hasA({msg})
(4)

hasA({m1.m2})
hasA(m1) ∧ hasA(m2)

(5)
rcvdA(B.A.msg)

∃C : sentC(B.A.msg)
(6)

In the initial local state of A, propositions freshA(Na) and hasA(Na) hold. It
is straightforward to observe that after execution of action RA1

ns , the following
formulas hold:

KAsentA(A.B.{Na.A}) (semantics of send)
KBrcvdB(A.B.{Na.A}) (semantics of send)
KAhasA(Na) (Axiom 3)
KBhasB(Na) (Semantics of send and Axioms 4, 5)
KAKBhasB(Na) (Semantics of send and Axioms 4, 5)

Step 2 The next action of the protocol Rns is due to agent B:

RB1
ns :: rcvdB(A.B.{Na.A}PKB

) ∧ freshB(Nb)
−→ freshB(Nb) := false ; send(Bp.rcvdfromB.B.A.{Na.Nb}PKA)

The guard of action RB1
ns evaluates to true if agent B has received the message

from A and acquires a fresh nonce. Similar to agent A, an atomic proposition

Knowledge-Based Automated Repair of Authentication Protocols 143

freshB(Nb) holds in the initial state of agent B. In this case, agent B sends a
message encrypted by the public key of A to agent A containing the nonce it has
received from A and its own fresh nonce. Using the axioms described above, we
can show that executing this action agent A can authenticate B, i.e., property
ϕ1 in Equation 1 of Section 4 holds.

Step 3 The last action of the protocol Rns is due to agent A:

RA2
ns :: rcvdA(B.A.{Na.Nb}PKA

) ∧ hasA(Na)
−→ send(Ap.rcvdfromA.A.B.{Nb}PKB

)

By executing this action, B authenticates A; i.e., ϕ2 holds.

6.2 The Intruder

The intruder I is based on Dolev-Yao model attacks the system by impersonating
agent A or B and replaying messages. In an impersonation action, an intruder
sends a message to some agent, say B, that appears to arrive from agent A.
Clearly, there are infinitely many messages the intruder could send to B. How-
ever, the (good) agents in this protocol accept a certain format of messages.
Hence, any message that is not of that format will be discarded by the agent.
One attempt to impersonate A is to send a message to B that conforms to the
structure of the RA1

ns .

RI1
ns :: hasI(Na) −→ send(Ip.Bp.A.B.{Na.A}PKB

)

Note that the above attack considers the situation where the adversary has
learnt Na. It does not consider the attack when I uses a random number since
it would be discarded. However, if hasI(Na) becomes true based on messages I
has received or by combining different message fragments, decoding encrypted
messages etc then I would be allowed to attack using the above action. Thus,
this modeling permits us to model a general attacker such as that in Dolev-Yao
model without considering the infinitely many actions that it could take.

Likewise, Agent I can impersonate user B by sending a message that conforms
to the one expected by that agent.

RI2
ns :: hasI(Na) ∧ hasI(Nb) −→ send(Ip.Ap.B.A.{Na.Nb}PKA

)

RI3
ns :: hasI(Nb) −→ send(Ip.Bp.A.B.{Nb}PKB)

Observe that in the above message, the physical sender of the message is the
intruder. However, the logical sender is A (for RI1

ns and RI3
ns) or B (for RI2

ns)
In a replay action, the intruder replays a message it had received earlier.

Specifically, if the intruder receives a message from B, then it re-sends it to A,
so that it appears to have been sent by I. Thus, the action where the intruder
replays a message sent by B is as follows: (The action where intruder replays a
message sent by A is similar).

144 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

RI4
ns :: rcvdI(B.A.m) −→ send(Ip.Ap.I.A.m)

RI5
ns :: rcvdI(A.I.{Nb}PKI

) −→ send(Ip.Bp.A.B.{Nb}PKB
)

This action can be derived from previous actions of the intruder. It is included
here only to simplify the presentation.

We also note that the intruder actions modeled thus can be easily extended to
other attacks, such as eavesdropping (modeled by revising the protocol, so that
a copy of each message (respectively, selected messages) is sent to the intruder),
packet drop (modeled by having each message routed through the intruder who
can choose to drop it or forward it), and so on.

6.3 Application of the Repair Algorithm

Based on the description of Algorithm 1, we first identify a state in T ∧¬ϕ2 and
analyze the run (Line 4). One (prefix of a) run that reaches a state in T ∧ ¬ϕ2

is as shown below:

1. Action RA1
ns (A → I): send(A.I.{Na.A}PK I

)
2. Impersonation Action RI1

ns (I → B): send(Ip.Bp.A.B.{Na.A}PKB
)

3. Action RB1
ns (B → I): send(Bp.Ip.B.A.{Na.Nb}PKA

)
4. Relay Action RI4

ns (I → A): send(Ip.Ap.I.A.{Na.Nb}PKA
)

5. Action RA2
ns (A → I): send(Ap.Ip.A.I.{Nb}PK I

)
6. Impersonation Action RI5

ns (I → B): send(Ip.Bp.A.B.{Nb}PKB
)

The algorithm begins with step 6 of this run and consider earlier states (Line 5).
Observe that step 6 in the above scenario is an intruder action. Hence, according
to Line 11, we consider the previous step of the run, where A sends a message to
I in action RA2

ns . In the repair algorithm, we need to either remove or restrict this
action. Now, we can observe that the guard of the corresponding action satisfies
the constraint on Lines 8-14. Hence, the original protocol is revised so that in
Step 3, the ID of the sender, namely B is included in the message. Moreover,
the action in A is modified to expect this ID to be present. Thus, the revised
actions are as follows:

R′B1
ns :: rcvdB(A.B.{Na.A}PKB

) ∧ freshB(Nb)
−→ freshB(Nb) := false; send(Bp.rcvdfromB.B.A.{Na.Nb.B}PKA

)

R′A2
ns :: rcvdA(B.A.{Na.Nb.B}PKA

) ∧ hasA(Na)
−→ send(Ap.rcvdfromA.A.B.{Nb}PKB)

One can verify that this repaired protocol satisfies constraints C1 and C2 of
Problem 1.

7 Related Work

Automated model repair is a relatively new area of research. To the best of
our knowledge, this paper is the first work on applying model repair in the

Knowledge-Based Automated Repair of Authentication Protocols 145

context of epistemic logic and, in particular, security protocols. Model repair
with respect to CTL properties was first considered in [4]. Model repair for
CTL using abstraction techniques has been studied in [8]. The theory of model
repair for memoryless LTL properties was considered in [12] in a game-theoretic
fashion; i.e., a repaired model is obtained by synthesizing a winning strategy for
a 2-player game. In [3], the authors explore the model repair for a fragment of
LTL (the UNITY language [6]). Most results in [3] focus on complexity analysis
of model repair for different variations of UNITY properties. Model repair in
other contexts includes the work in [2] for probabilistic systems and in [22] for
Boolean programs.

Synthesizing security protocols from BAN logic [5] specifications has been
studied in [21]. Unlike our work that repairs an existing protocol, the techniques
in [15, 16, 21, 23] synthesize a protocol from scratch and, hence, cannot reuse
the previous efforts made in designing an existing protocol. The approaches pro-
posed in [7, 13] address controller synthesis for enforcing security properties. In
particular, the technique in [7] studies synthesis of fair non-repudiation protocols
for digital signatures and the work in [13] concerns enforcing security objectives
expressed in LTL. None of these methods are knowledge-based, which is the
focus of this paper.

In the context of repairing security protocols, Pimentel et al. have proposed
applying formulation of protocol patch methods to repair the security protocols
automatically [17, 18]. In order to guide the location of the fault in a protocol,
they use Abadi and Needham’s principles [1] for the prudent engineering prac-
tice for cryptographic protocols. However, by its nature, this work applies to
protocols where principles from [1] are not followed. By contrast, our approach
follows a more general approach of using epistemic logic about knowledge to
repair the given protocol. Since authentication protocols essentially rely on ‘who
knows what and when’, we expect this method is especially valuable for repairing
security protocols.

8 Conclusion

Vulnerabilities of security protocols can be thought of in two categories: (1)
where existing assumptions are found to be false, e.g., due to cryptanalytic at-
tacks, and (2) where a new attack that violates the security property is dis-
covered. Examples of former include keys that are not large enough, ability of
an intruder to guess nonces (e.g., the attack in an early implementation of SSL
by Netscape [11]). For these vulnerabilities, one must utilize prevention mecha-
nisms, e.g., with use or larger keys or new algorithms to generate nonces. Exam-
ples of the latter include cases where unanticipated behaviors (e.g., imposed by
an intruder) can break the soundness of a protocol. For instance, the Needham-
Schroeder protocol breaks when one of the agents decides to misbehave. For such
vulnerabilities, we advocate a formal repair approach.

In this paper, we presented a knowledge-based sound algorithm for repair-
ing authentication protocols. Our algorithm compares this knowledge with the

146 B. Bonakdarpour, R. Hajisheykhi, and S.S. Kulkarni

knowledge of an (auxiliary) agent that can obtain additional information based
on the actual partial run that reached the current state. Subsequently, we iden-
tify how the knowledge of the auxiliary agent can be mapped to a real agent in
the protocol. Our repair algorithm preserves the existing properties of the proto-
col by ensuring that the repaired protocol refines the initial one in the absence of
the intruder. We illustrated the application of our algorithm on the Needham-
Schroeder public-key authentication protocol [14]. We have implemented our
algorithm and found that it was possible to repair this protocol in a reason-
able time. We argue that our repair algorithm can be utilized for some other
security properties as well, e.g., in privacy. Suppose a bit b is to be kept pri-
vate from an adversary I. In this case, this requirement can be expressed as
�(¬KI(b = 0) ∧ ¬KI(b = 1)).

Our approach is generic for repair of authentication protocols, where the vul-
nerability lies in the protocol (as opposed to violation of assumption of the
strength of encryption). Authentication deals with a requirement that if agent
A accepts a message m to be from agent B, then the message is indeed sent
by agent B. This is exactly the kind of specification we have used in our case
study. Sometimes, the identity of agent B is not precisely known to A; instead
it requires that two messages are sent by the same agent. This is also easily pos-
sible with our approach. We have not considered the issue of whether a received
message is fresh or not. However, this issue can be modeled easily. For example,
if A wants to be sure that the message from B is fresh, it can be encoded by a
requirement of the form ‘B knows something that A knows to be fresh’. Once
again, this requirement is identical to the properties considered in this paper.
Also, our approach is generic enough to model several threats. Our example
considered attacks such as replay and impersonation.

There are several future extensions of this work. One extension is based on
developing repair algorithms that utilize the notion of distributed knowledge [10].
Another extension is for repairing security protocols for problems such as infor-
mation flow, where a more general notion of hyperproperties [9] is required.

Acknowledgements. Thiswork has been supported in part byCanada’sNSERC
Discovery Grant 418396-2012, NSERC Strategic Grant 430575-2012, and U.S.A.
NSF grants CNS-1329807 and CNS-1318678.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering 22(1), 6–15 (1996)

2. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)

3. Bonakdarpour, B., Ebnenasir, A., Kulkarni, S.S.: Complexity results in revis-
ing UNITY programs. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 4(1), 1–28 (2009)

Knowledge-Based Automated Repair of Authentication Protocols 147

4. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Elsevier Journal on Artificial Intelligence 112, 57–
104 (1999)

5. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proceedings
of the Royal Society of London 426(1), 233–271 (1989)

6. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1988)

7. Chatterjee, K., Raman, V.: Synthesizing protocols for digital contract signing. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 152–168.
Springer, Heidelberg (2012)

8. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 341–355. Springer, Heidelberg (2012)

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Secu-
rity 18(6), 1157–1210 (2010)

10. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The
MIT Press (1995)

11. Goldberg, I., Wagner, D.: Randomness and the netscape browser,
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

12. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

13. Martinelli, F., Matteucci, I.: A framework for automatic generation of security
controller. Software Testing, Verification and Reliability 22(8), 563–582 (2012)

14. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of ACM 21(12), 993–999 (1978)

15. Perrig, A., Song, D.X.: Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols. In:
CSFW, pp. 64–76. IEEE Computer Society (2000)

16. Perrig, A., Song, D.X.: A first step towards the automatic generation of security
protocols. In: NDSS. The Internet Society (2000)

17. Pimentel, J.C.L., Monroy, R., Hutter, D.: A method for patching interleaving-
replay attacks in faulty security protocols. In: Electronic Notes in Theoretical
Computer Science (ENTCS), pp. 117–130 (2007)

18. Lopez P., J.C., Monroy, R., Hutter, D.: On the automated correction of security
protocols susceptible to a replay attack. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 594–609. Springer, Heidelberg (2007)

19. RFC 5746, http://tools.ietf.org/html/rfc5746
20. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems. Communications of ACM 21(2), 120–126 (1978)
21. Saidi, H.: Toward automatic synthesis of security protocols. AAAI archives (2002)
22. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local re-

pairs for boolean programs. In: Formal Methods in Computer-Aided Design (FM-
CAD), pp. 1–10 (2008)

23. Song, D., Perrig, A., Phan, D.: AGVI - automatic generation, verification, and
implementation of security protocols. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 241–245. Springer, Heidelberg (2001)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://tools.ietf.org/html/rfc5746

A Simplified Z Semantics for Presentation

Interaction Models

Judy Bowen and Steve Reeves

Department of Computer Science,
The University of Waikato,

New Zealand
{jbowen,stever}@cs.waikato.ac.nz

Abstract. Creating formal models of interactive systems requires that
we understand not just the functionality of the system, but also the
interface and interaction possibilities. The benefits of fully modelling
these systems is that we can ensure behavioural properties of all aspects
of the system are correct and prove properties of correctness of the whole
system. In the case of safety-critical interactive systems this is important
as errors of interactive behaviours can be just as devastating as functional
errors. In previous works we have developed models which enable us
to perform these tasks - notably presentation models and presentation
interaction models (PIMs) and have shown that by using the μCharts
language to describe PIMs we can use its underlying Z semantics to
produce specifications of both functionality and interface/interaction. In
this paper we revisit the Z semantics of PIMs and propose an alternative
(and simpler) semantics along with explanations of why this is more
useful and appropriate for particular modelling situations.

Keywords: Formal methods, interactive systems, Z, semantics.

1 Introduction

Presentation interaction models (PIMs) are used to describe the navigational
possibilities of an interactive system [2]. A PIM describes each discrete dialogue
or screen or window or mode in the interaction with a presentation model, along
with showing how each of these presentation models, the discrete parts of the
interaction, is connected to each other model.

We formally model a PIM with a μchart1 . Each state in the chart is associ-
ated with a presentation model. Each step in the PIM, between the presentation
models, is represented by transitions between states in the chart associated with
the respective presentation models. Central to the use of μCharts is the small set
of structuring features within the μChart-language which can be composed to-
gether in completely general ways to handle the complexity of the systems being
modelled, so we use composition and decomposition, for example, to structure
the chart, allowing us to hide information at certain levels (decomposition) or

1 μCharts is the language and the members of that language are μcharts.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 148–162, 2014.
c© Springer International Publishing Switzerland 2014

A Simplified Z Semantics for PIMs 149

to compose more complicated charts by composing together simpler charts, i.e.
all the usual techniques we see in modelling of systems to handle complexity
in useful and effective ways. The semantics of charts, when laid out in formal,
concrete detail, can be complex, in order to account for all the features of the
language. In some, very interesting, cases it turns out that all this complexity-
due-to-generality is not needed.

Recently, like many of our colleagues in the interactive system engineering
community (see for example [6,7]), our work on modelling interactive systems
has been focussing on safety-critical medical devices (such as infusion pumps,
syringe pumps etc.) [3,4]. These are devices with an interface provided by the
hardware - typically by way of soft-keys, buttons and a screen - which allow
the users to interact with the software which controls the device. These devices
are modal, that is they have a number of discrete modes of behaviour such that
each item of the (limited) interface will behave differently depending on the mode
the device is currently in. The presentation models and PIMs we have used to
describe interactive software applications can be used equally successfully for
these types of devices. However, these sorts of devices, essentially because they
are modal, have models with a much simpler structure than systems in general.
Our aim here is to describe how we can use the much simpler formality of finite
state automata (FSA), rather than μCharts, to formalise the PIMs for modal
systems.

In the rest of the paper we expand on all the above, introducing presentation
models, PIMs and μCharts. We also expand on the argument for simplification
given briefly above. We give examples of how this new semantics can be used and
provide proofs of correctness where appropriate. This provides two contributions.
Firstly a simplified Z semantics (note that we use Z for practical reasons—we are
familiar with it, we have tools to support it, we have a stock of devices specified in
it—not because we are wedded to it in any scientific or philosophical sense. Any
other suitable language could be used) for PIMs is given which is independent
from the Z semantics for μCharts. Secondly an approach to combining the PIM
(expressed in Z) with a Z specification of the system’s functionality is given,
which enables model-checking to be carried out on a single specification of an
entire system which captures both the functionality and interaction.

2 The Interaction Models

2.1 Presentation Models

Presentation models describe an interface and its interactivity (either an actual
implemented interface or a design artefact such as a prototype) by way of its
component widgets. Each separate window or dialogue of a UI - or each unique
mode of an interactive device - is described in a presentation model (or PModel),
and then the collection of all these PModels give us a model of the behaviour of
the widgets of the complete UI (or device). Each widget is described as a tuple
consisting of an identifier, a category (which denotes the nature of interaction)
and a set of behaviours associated with this widget.

150 J. Bowen and S. Reeves

Fig. 1. T34 Syringe Pump

Consider the T34 syringe pump shown in figure 1. This is a modal medical
device which is used to deliver the contents of a syringe to a patient over a pre-
determined period of time. The interface enables a medic to set the amount of
medication to be delivered as well as the time of delivery in order to control the
rate at which the syringe contents are infused. The device has ten widgets (the
buttons, display and an audible alarm) and seven different modes. Each mode
is described in a PModel where we define the behaviour of all of the widgets in
that mode. For example here is the PModel for the “SetVolume” mode:

SetVolume is
OnOffButton, ActionControl, (I Init)
UpButton, ActionControl, (S IncVolume)
DownButton, ActionControl, (S DecVolume)
InfoButton, ActionControl, (I Info)
YesButton, ActionControl, (S SetVolume, I SetDuration)
NoButton, ActionControl, (I Init)
FwdButton, ActionControl, ()
BackButton, ActionControl,()
Display, MultiValResponder, (S IncVolume, S DecVolume)
AudioAlarm, SValResponder, (S Timeout)

An empty set of parentheses indicates that a widget has no behaviour in this
mode. The behaviours are split into two categories, they are either I-behaviours
(denoted by a prefix of I) or S-behaviours (denoted by a prefix of S).
I-behaviours relate to interactivity and changes in mode of the interface (or
between windows of a UI in a software system) whereas S-behaviours relate to
underlying functionality of the device (or system). Some widgets have more than
one behaviour, the effect of this depends on whether they are widgets which
generate events (such as ActionControls) or widgets which respond to events
(such as MultiValResponders or SValResponders). For example, the YesButton
has both S SetVolume and I SetDuration in its set of associated behaviours,
and because it is an ActionControl this indicates that both of these behaviours

A Simplified Z Semantics for PIMs 151

occur simultaneously when the widget is interacted with. The Display widget,
however, is a MultiValResponder, and this means that it will respond to either
of its associated behaviours (S IncVolume or S DecVolume) when they occur.

While the presentation model of a device describes all possible behaviours of
that device (in all of its given modes), it says nothing about the availability of
those behaviours, i.e. it cannot be used to determine whether or not a user can
ever access the described behaviours or whether the system contains undesir-
able properties such as deadlock. The behaviours described by the PModels are
independent of each other and there is no notion of how they interact. These
connections and interactions are provided by the presentation interaction model
(PIM) described next, and in this way the PModels and the PIM provide the
usual benefits of separation of concerns (between the widgets of each mode and
the way these modes are connected together).

2.2 Presentation Interaction Models

A presentation interaction model (PIM) describes the navigational possibilities
of a UI or device (i.e. how a user can switch between different modes to access
different behaviours). The general idea is that a PIM is an automaton of some
sort, where each state is a mode (given by a presentation model). This abstraction
enables us to describe the PIM of systems and devices without encountering a
state space explosion (as the number of states is linked to the number of different
windows or modes rather than to individual behaviours which are ‘hidden’ in
the presentation models).

A PIM is a quadruple, (P ,
∑

, δ, p0) which consists of the following:

– a finite set of PModels, P
– a finite set of input labels,

∑
– a finite transition function, δ, which takes a PModel and an input label and

returns a PModel
– a start PModel, p0, one of the PModels in P

We can define a notion of well-formedness of a PIM which states that a PIM
is well-formed iff the labels on transitions out of any PModel are the names of
I-behaviours which exist in the behaviour set of that PModel. This ensures that
it accurately describes the true navigational possibilities of the system described
in the presentation models. The PIM for the T34 syringe pump is given in figure
2. We can see that the PModel called “SetVolume” (one mode of the device,
as given in the previous example) has three outgoing transitions, one labelled
with I Init, one labelled with I SetDuration and one labelled with I Info, and
we also see that “SetVolume” does indeed have these three I-behaviours, so this
part of the PIM is well-formed. The transitions show the effect of the behaviour
by indicating the target PModel (which again represents a mode of the device),
and they give formal meaning to the I-behaviours.

152 J. Bowen and S. Reeves

T34Pump

LoadSyringe

Info

Init

RateSet

Timeout

SetVolume

SetDuration

RateConfirm

ConfirmSettings

StartInfusionConfirm

Infusing

Paused

InfusionSummary

BatteryStatus

I_Init

I_RateSet

I_Info
I_Init

I_Info

I_Init

I_Info

I_TimeOut

I_SetVolume I_Info

I_Init

I_SetDuration

I_Init I_Info

I_Info

I_SetVolume

I_Init

I_RateConfirm

I_Info

I_SetDuration

I_Init

I_Info

I_RateConfirm I_ConfirmSettings

I_Init

I_ConfirmStart

I_Info I_Info

I_Init

I_ConfirmSettings

I_Infusing

I_Paused
I_InfusionSummary

I_Init

I_Info

I_Infusing

I_Paused

I_BatteryStatus

I_Infusing
I_Infusing

I_Paused

Fig. 2. PIM for the T34 Syringe Pump

2.3 Presentation Model Relation

The final part of our interaction models is the presentation model relation (PMR)
which is used to give meaning to the S-behaviours of the presentation model.
The underlying functionality of the device or system is given in a Z specifica-
tion (in the manner of [1]). As is typical this describes the state of the system
via observations, and the operations which can change those observations. Each
S-behaviour given in a presentation model has a corresponding operation in the
specification (it is actually a many-to-one relation in general, although in many
cases is a one-to-one relation) which therefore gives a formal meaning to that
behaviour. For example, the S IncVolume behaviour given in the example above
appears in the PMR as:

S IncVolume �→ IncrementVolumeOp
where IncrementVolumeOp is an operation schema in the Z specification de-
scribing how the state observations are changed by this operation, and hence
S IncVolume is given a meaning.

2.4 MicroCharts

The μCharts language was developed from a simplified (and formalised) version
of statecharts, and has both a visual representation and an underlying logic and
semantics given in Z and a refinement theory derived from these [10], [8]. As well

A Simplified Z Semantics for PIMs 153

as being the visual abstract formulation of such chart languages, we have used
μCharts as the meta-language for PIMs as it provides the following benefits:

– a formal semantics given in Z (which then provides a mechanism to describe
the PIM itself in Z);

– existing tools for both creating and editing μcharts as well as making the
conversion to Z;

– composition and decomposition of sequential charts which provides a high
level of structuring for complex PIMs;

– a refinement theory, which has enabled us to consider refinement for UIs and
interactive systems.

The process to build the Z model for charts involves firstly creating a general
model for each of the separate sequential charts in the μchart and then combining
these together to eventually create a single chart describing all of the components
and their combinations. The general model for each sequential chart has two
notions of state, the first being the automaton notion of state which is determined
by the transitions of the system, and the second being the notion of whether the
chart is currently active or not (which relates to the semantics of composition
and decomposition of the sequential charts).

Modelling a PIM via μCharts has provided us with a number of benefits: firstly
we have tools which enable us to create the graphical representations of μcharts;
and secondly μCharts has a semantics given in Z, and so we can then use model
checkers such as the ProZ component of ProB [12] or theorem provers such as
Z/EVES [11] or ProofPower [13] to investigate PIMs of interactive systems.

The μCharts language provides a number of features to manage complexity
within the models, such as the ability to combine several charts together using
both composition and decomposition, the ability to define signal sharing between
composed charts and also the ability to control the input and output interfaces
for signals which can be accepted or emitted by charts. For large and complex
interactive systems we can take advantage of these features (indeed they are
vital for dealing with complexity), but typically for modal medical devices we
do not need this range, and we briefly justify this statement later in the paper.

Describing all of the complexities of the μCharts language in Z is necessarily
itself complex. Not only do we need to declare all of the necessary types for
signals and states of the chart and model each of the transitions, we also need
to consider how the charts behave in the absence of defined behaviour (using
either a do-nothing or a chaotic interpretation within Z) as well as capture the
subtleties of the signal interfaces and shared signals. The Z semantics of a μchart
is then long and complex, and in the case of our medical devices not necessarily
the most appropriate representation for our purposes. In addition, this approach
leaves us with a complete Z representation of the PIM, but when we consider
the Z specification of the underlying functionality as well we typically have to
keep the two separate as the complexity of the PIM representation means that
there is no obvious or clearly defined way to combine the two (we discuss this
in more detail in the next section).

154 J. Bowen and S. Reeves

3 Why Simplify?

The process for creating Z specifications from μcharts introduced above has to
support all of the construction mechanisms included in the μCharts language
- composition, decomposition, feedback of signals and consideration of whether
a chart is active or not. This means that even if we have a very simple μchart
the framework required to support the full language adds an overhead. For ex-
ample, a single sequential chart with three states and two transitions leads to
a Z specification consisting of twelve different schemas. While this is necessary
when we are dealing with the full expressiveness of μCharts, for some PIMs -
and particularly PIMs of modal devices - this is not needed.

When we are dealing with interactive systems whose design and UI complexity
require the additional features of μcharts we retain the separation of UI and func-
tionality during our model-checking, however for modal medical devices (which
have much simpler PIMs, typically fewer than 10-20 states) it is more useful for
us to consider the system as a whole as it is typically in the intersection of UI
and functionality that we are likely to find errors or problems. The ability to
model-check the device in its entirety supports the type of analysis required for
verifying safety-properties of devices, as described in [4] as well as contributing
to the goals of the US Food and Drug Administration (FDA) “Generic Infusion
Pump” project [14] which aims to show how model-based analysis can be applied
to the software of infusion pumps.

In order to create such a single specification we must somehow merge the
PIM with the functional specification. If we use μCharts semantics for the PIM
then to do this we must extend the functional specification to also include the
notions of undefined behaviour and incorporate the ‘active’ considerations into
our operation schemas which changes the level of abstraction and introduces
unnecessary complexity.

Having a single, simpler Z specification which describes both the functional-
ity and interaction also supports another area of our work which is related to
creating visualisations of, and simulations from, models [5].

4 The New Z Semantics

The declarations in Z that form the basis of the new semantics remain similar to
those given under μChart semantics. In fact it is straightforward but tedious to
show that because: there is only one chart involved which is always active; and
exactly one transition can happen at any one step, because of the way PModels
and PIMs are defined; and because there are no output signals on any transition;
then the general μChart semantics with these restrictions is equivalent to the
simpler one we give here.

Consider the small example shown in figure 3. We can categorise each element
in the PIM as follows:

– PModels {A,B}
– Input labels {I A, I B}

A Simplified Z Semantics for PIMs 155

SimpleExample

A B

I_B

I_A

Fig. 3. Simple PIM Example

– Transition function {(B , I A) �→ A, (A, I B), �→ B}
– A starting PModel A

So we can now expand this into a Z specification as follows. First we define
the necessary types for the description of state, which we see from the above is
{A,B} along with the types for any inputs, which are the transition labels from
the transition function. For our small example this is:

State ::= A | B
Signal ::= I A | I B

Next we provide the schema defining the observations of state, followed by a
initialisation schema which defines the starting state - i.e. sets the observation
for the current state to A:

PIMSystem
currentState : State

Init
PIMSystem

currentState = A

Finally we create an operation schema for each transition which takes the tran-
sition label as an input and using the defined starting PModel or state as the
precondition changes the current state observation to the PModel (state) that
the transition function specifies.

TransitionAB
ΔPIMSystem
i? : Signal

i? = I B
currentState = A
currentState ′ = B

156 J. Bowen and S. Reeves

TransitionBA
ΔPIMSystem
i? : Signal

i? = I A
currentState = B
currentState ′ = A

This is the complete Z specification for the PIM. It consists of two type defi-
nitions and four schemas. In general for any PIM we will always have two type
definitions and the number of schemas will be t + 2 where t is the number
of transitions in the PIM. This contrasts with the μchart semantics where we
have a minimum of n + 5 + t schemas, where n is the number of states and
t is the number of transitions (the additional five schemas are used to man-
age undefined behaviour and notions of ‘active’). This increases in cases where
composition and decomposition exists in the chart by one schema per pair of
composed/decomposed charts.

We can model-check the above specification to ensure it has the intended
meaning and that it behaves as expected in all cases and does not exhibit any
unintended behaviour (as described in requirements or by regulatory bodies such
as the FDA) or that it meets defined safety properties.

5 Combining the PIM with Functional Specification

Part of our motivation in simplifying the PIM semantics is to enable us to
combine the Z of the PIM with the corresponding Z specification in order to
have a single specification of all parts of the system. We consider this next, and
first introduce an example of a simplified medical device to help explain the
process. Figure 4 shows a prototype interface for the simplified medical device
which consists of a screen and three buttons. The device has three modes of
operation - “Time Entry”, “Volume Entry” and “Infusing”, the presentation
model for this example is shown next, and the PIM is given in figure 5.

Fig. 4. Prototype for Simplified Medical Device

A Simplified Z Semantics for PIMs 157

Simple Medical Device is TimeEntry:VolumeEntry:Infusing
TimeEntry is

Display, MultiValResponder, (S IncTime, S DecTime)
UpKey, ActionControl, (S IncTime)
DownKey, ActionControl, (S DecTime)
OkKey, ActionControl, (S SetTime, I VolumeEntry)

VolumeEntry is
Display, MultiValResponder, (S IncVol, S DecVol)
UpKey, ActionControl, (S IncVol)
DownKey, ActionControl, (S DecVol)
OkKey, ActionControl, (S SetVol, I Infusing)

Infusing is
Display, MultiValResponder, (S Infusing)
UpKey, ActionControl, ()
DownKey, ActionControl, ()
OkKey, ActionControl, ()

SimpleMed

TimeEntry
I_VolumeEntry

I_Infusing

VolumeEntry

Infusing

Fig. 5. PIM for Simplified Medical Device

Based on the algorithm given in the previous section we can describe the PIM
in the following Z :

State ::= TimeEntry | VolumeEntry | Infusing
Signal ::= I VolEntry | I Infusing

SimpleMedPIM
currentState : State

158 J. Bowen and S. Reeves

Init
SimpleMedPIM

currentState = TimeEntry

TransitionTimeVol
ΔSimpleMedPIM
i? : Signal

i? = I VolEntry
currentState = TimeEntry
currentState ′ = VolumeEntry

TransitionVolInfusing
ΔSimpleMedPIM
i? : Signal

i? = I Infusing
currentState = VolumeEntry
currentState ′ = Infusing

5.1 The Functional Specification

Now we consider the functional specification for the simplified medical device
above. The primary observations of the specification relate to time, dosage vol-
umes and dosage rate. Again we will simplify things by abstracting all of the
values to simple natural numbers (rather than concerning ourselves with hours,
minutes and seconds for time, or floating point numbers for volumes etc.; obvi-
ously for real specifications it is vital to model these correctly as these values
are crucial to the behaviour of the device).

INFUSING ::= Yes | No

SimpleMedSystem
storedTime : N
time : N
storedVolume : N
volume : N
infusionRate : N
elapsedTime : N
volumeRemaining : N
infusing : INFUSING

A Simplified Z Semantics for PIMs 159

Init
SimpleMedSystem

storedTime = 0
time = 0
storedVolume = 0
volume = 0
infusionRate = 0
elapsedTime = 0
volumeRemaining = 0
infusing = No

ChangeVolumeValOp
ΔSimpleMedSystem
i? : N

volume′ = i?
storedTime = storedTime ′

time = time ′

storedVolume = storedVolume ′

infusionRate ′ = infusionRate
elapsedTime ′ = elapsedTime
volumeRemaining ′ = volumeRemaining
infusing ′ = infusing

We similarly describe operation schemas ‘SetVolumeOp’, ‘ChangeTimeValOp’,
‘SetTimeOp’ and ‘InfusingOp’ which we omit here for brevity. One point of inter-
est to note is that this specification allows the possibility to increment the ‘volume’
observation (using the ‘ChangeVolumeValOp’) irrespective of whether or not the
current infusing state is ‘Yes’ or ‘No’. We would consider this unsafe behaviour (as
we do not want to be able to change settings during an infusion). This is the type
of property which might be given in the requirements, or in FDA safety regula-
tions, and would therefore be considered an adverse behaviour of the device. We
have shown in previous work [4] how we can use LTL in ProZ to check such safety
properties, so here for example we might have a property defined in a predicate
such as:

G({Infusing = Yes} ⇒ not(e(ChangeVolumeValOp())))

which requires that globally (i.e. in every state) if the value of the Infusing obser-
vation is ‘Yes‘ then the operation ChangeVolumeValOp should not be enabled.
Figure 6 shows the result of checking this, the counter example for the resulting
failure to prove this true is given in the ProZ history listing.

We could, of course, ‘fix’ this by adding the necessary predicates as pre-
conditions to the operations, but if we consider the PIM again, we know in-
tuitively that our interaction model already prevents this behaviour (as only

160 J. Bowen and S. Reeves

Fig. 6. Checking Safety Property in Functional Specification

behaviours in active states are available at any given time). What we now want
to do therefore is combine the PIM and functional specification into a single
specification that enables us to model-check the behaviour of the entire system.
In this way we hope that problems or errors we find will be ‘real’ errors rather
than false-positives caused by missing information from one side or the other.

In order to achieve this we also need to consider the PMR, which relates the
operations of the Z specification to the S-behaviours of the presentation model,
which for this example is as follows:

S IncTimeVal �→ ChangeTimeValOp
S DecTimeVal �→ ChangeTimeValOp
S SetTime �→ SetTimeOp
S IncVolVal �→ ChangeVolumeValOp
S DecVolVal �→ ChangeVolumeValOp
S SetVol �→ SetVolumeOp
S Infusing �→ InfusingOp

In conjunction with the presentation models (which are in effect the states of
the PIM) this enables us determine a relationship between operations and states
- which we can describe informally as describing which state (mode) a device
needs to be in to perform any given operation.

The combined specification begins with all definitions given in the PIM, then
those of the functional specification followed by the system schemas defined
in each together with their initialisations. Then we define a new single system
schema which is the conjunction of the previous schemas and similarly define the
initialisation as the conjunction of both initialisations. The transition schemas
from the PIM are included in their original form. Now for each of the oper-
ation schemas in the functional specification we need to add a precondition
which determines the required state of the PIM, i.e. describes when this opera-
tion is available. So in our simple medical device example we have an operation
“ChangeTimeValOp”, the PMR tells us that this is related to the S IncTimeVal
behaviour which requires the system to be in the “TimeEntry” state. The en-
hanced operation is then described as follows:

Total ChangeTimeValOp =̂
ChangeTimeValOp ∧ [currentState : State | currentState = TimeEntry]

A Simplified Z Semantics for PIMs 161

Fig. 7. Checking Safety Property in Total Specification

We follow this same process for each of the operation schemas. Now we can not
only model-check the behaviour of the entire system in one process, but we also
see that the problem we identified earlier where it was possible to increment the
‘volume’ observation irrespective of current infusing state has been removed. It
is no longer possible to perform this operation unless we are in the “TimeEntry”
state, i.e. when the system is not infusing. Figure 7 shows the result of checking
the same LTL property as previously on the total specification.

6 Automating the Process

We currently have a number of tools which support us in our model creation
and in deriving the Z from μcharts, which can be done automatically. We can
retain this automation by simply extending the existing tools to produce a sec-
ond output, which is the new Z semantics (a relatively straight-forward process).
This will enable us to have both the μCharts version of the Z as well as the new
semantics we have described, produced in a single automated process. We can
also then extend this further so that given the input of the functional specifica-
tion we can also produce the combined specification using the algorithm we have
given in section 5. This does, of course, rely on the developers of the specification
following the conventions described here for their specification.

7 Conclusions and Future Work

In this paper we have presented a simplified automata and Z semantics for pre-
sentation interaction models which enables us to easily produce a single specifi-
cation of both functionality and interactivity of modal medical devices. Whilst
we have not elaborated here on the uses (and usefulness) of these models, when
dealing with safety-critical devices (such as medical devices), which are coming
under increasing scrutiny and regulation by authorities such as the FDA follow-
ing ongoing concerns with adverse events, it is crucial that we are able to model
and verify such devices. Our previous work on modelling safety-properties of
such devices [4] and similar work looking at creating reference models against
which devices can be verified [9] demonstrate the increasing importance of such
verification.

162 J. Bowen and S. Reeves

We do not propose these new semantics as a replacement for the original
μchart version of the PIM and its underlying semantics. These remain a valuable
tool when we are dealing with models whose complexity requires the additional
features that μCharts provides over and above sequential charts. However, in
cases where these features are not required, and particularly for modal medical
devices where a single (interaction and functionality) final model is more impor-
tant to us, then these new semantics provide an alternative approach to their
modelling.

References

1. Bowen, J.P.: Formal Specification and Documentation Using Z, A Case Study
Approach. International Thomson Computer Press (1996)

2. Bowen, J., Reeves, S.: Formal Models for User Interface Design Artefacts. Innova-
tions in Systems and Software Engineering 4(2), 125–141 (2008)

3. Bowen, J., Reeves, S.: Modelling User Manuals of Modal Medical Devices and
Learning from the Experience. In: Fourth ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems (EICS 2012), pp. 121–130. ACM, New York
(2012)

4. Bowen, J., Reeves, S.: Modelling Safety Properties of Interactive Medical Systems.
In: Fifth ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2013), pp. 91–100. ACM, New York (2013)

5. Bowen, J., Jones, S., Reeves, S.: Creating Visualisations of Formal Models of Inter-
active Medical Devices. In: Pre-proceedings of Second International Workshop on
Formal Techniques for Safety-Critical Systems (FTSCS 2013), pp. 259–263 (2013)

6. Campos, J., Harrison, M.: Modelling and Analysing the Interactive Behaviour of
an Infusion Pump. ECEASST 11 (2001)

7. Harrison, M., Campos, J., Masci, P.: Reusing Models and Properties in the Analysis
of Similar Interactive Devices. In: Innovations in Systems and Software Engineer-
ing. Springer (2013)

8. Henson, M.C., Reeves, S.: A Logic for the Schema Calculus. In: Bowen, J.P., Fett,
A., Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 172–192. Springer, Hei-
delberg (1998)

9. Masci, P., Ayoub, A., Curzon, P., Harrison, M.D., Lee, I., Thimbleby, H.: Verifica-
tion of Interactive Software for Medical Devices: PCA Infusion Pumps and FDA
Regulation As an Example. In: Fifth ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2013), pp. 81–90. ACM, New York (2013)

10. Reeve, G., Reeves, S.: μCharts and Z: Examples and Extensions. In: Proceedings
of APSEC 2000, pp. 258–263. IEEE Computer Society (2000)

11. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

12. The ProB Animator and Model-Checker, http://www.stups.uni-duesseldorf.de
/ProB/index.php5/Main Page

13. ProofPower, http://www.lemma-one.com/ProofPower/index/index.html
14. The Generic Patient Controlled Analgesia Pump Hazard Analysis and Safety Re-

quirements, http://rtg.cis.upenn.edu/gip.php3

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.lemma-one.com/ProofPower/index/index.html
http://rtg.cis.upenn.edu/gip.php3

Log Analysis for Data Protection Accountability

Denis Butin and Daniel Le Métayer

Inria, Université de Lyon, France
{denis.butin,daniel.le-metayer}@inria.fr

Abstract. Accountability is increasingly recognised as a cornerstone of
data protection, notably in European regulation, but the term is fre-
quently used in a vague sense. For accountability to bring tangible ben-
efits, the expected properties of personal data handling logs (used as
“accounts”) and the assumptions regarding the logging process must be
defined with accuracy. In this paper, we provide a formal framework
for accountability and show the correctness of the log analysis with re-
spect to abstract traces used to specify privacy policies. We also show
that compliance with respect to data protection policies can be checked
based on logs free of personal data, and describe the integration of our
formal framework in a global accountability process.

1 Context and Motivation

The principle of accountability, introduced three decades ago in the OECD’s
guidelines [18], has been enjoying growing popularity over the last few years in
the field of data protection. A consortium was set up in 2009 with precisely the
definition and analysis of accountability as one of its primary goals [8]. At the
European level, the Article 29 Working Group published an opinion dedicated
to the matter recently [1] and the principle is expected to be enshrined in the
upcoming European data protection regulation [12]1

The key idea behind the notion of accountability is that data controllers (Eu-
ropean terminology for entities collecting personal data, denoted DC from now
on) should not merely comply with data protection rules but also be able to
demonstrate compliance — “showing how responsibility is exercised and making
this verifiable”, as stated by the Article 29 Working Group [1]. The motivation
underlying this general principle is that data subjects (DS) disclosing personal
data to a DC lose control over it and require strong guarantees regarding actual
handling.

Crucially, accountability is more than an impediment to companies: it can help
them clarify their internal processes and level of compliance with legal rules (or
their own policies). In addition, a solid accountability process puts a company
in a better position to demonstrate its compliance in case of dispute.
1 The latest draft of this regulation, adopted by the European Parliament’s Civil

Liberties Committee last October, further strengthens accountability requirements
(articles 5 and 22).

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 163–178, 2014.
c© Springer International Publishing Switzerland 2014

164 D. Butin and D. Le Métayer

Nevertheless, a downside to the generality of this concept is that it is too
frequently used in a vague sense — at least, by lawyers and decision makers.
Some clarity is provided by Bennett’s nomenclature [9], which distinguishes three
types of accountability: accountability of policy, of procedures and of practice.
The strongest variant is accountability of practice, which holds that DC ought to
demonstrate that their actual data handling complies with their obligations. In
the case of accountability of policy, they must be able to show that they actually
have defined a privacy policy; in the case of accountability of procedures, they
must be able to show that they have put in place appropriate procedures to meet
their policy. Ideally, the three types of accountability should be implemented:
having a privacy policy in place is obviously a minimal requirement and the
procedures should support good practices. However, in order to implement the
accountability of practices and ensure that it can really improve the protection
of DS, a number of key questions must be addressed:

– A clear definition should be provided of the “accounts” which are at the core
of the concept of accountability. For accountability of practice, execution
logs are natural candidates, but what should be kept in the logs is an essen-
tial and non-trivial issue. Obviously, enough information should be recorded
to make accountability possible; but it is also necessary to comply with an-
other principle of data protection, data minimization: only the personal data
necessary for a given purpose should be recorded. Actually, one of the argu-
ments against the use of accountability of practice is that the logs required
to implement it could in fact represent an additional source of risks for per-
sonal data. As illustrated in our work [4], designing the contents of the logs
is therefore far from obvious: intuitive solutions typically include too much
data or omit information necessary for effective compliance.

– A clear definition of the accountability process has to be provided, showing
how accounts are built and analyzed. For the accountability process to be
worthwhile, accounts (here: logs) should reflect actual system execution and
the verdict returned by the analysis procedure ought to be reliable. Overall,
the guarantees provided by the whole process should be detailed to avoid
misleading representations by DC or misplaced expectations from DS.

If the above issues are not properly handled, accountability may either repre-
sent illusory protections (and low-cost greenwashing for DC) or even additional
sources of personal data leaks.

In this paper, we argue that formal methods can play a crucial role in ad-
dressing the above issues. In this context, however, they have to be used in a
“light” way for several reasons. First, not all data protection obligations can be
described formally. For instance, the notion of purpose, which is central in the
European Data Protection Directive, cannot be defined in mathematical terms.
Similarly, break-glass rules [16], which are necessary in certain areas such as
health data processing (e.g. to allow unauthorized physicians to access personal
data in emergency situations), are not well-suited to formalisation. Furthermore,
the goal of the accountability process is not to establish a formal proof of com-
pliance for a system (which would be completely out of reach in practice) but

Log Analysis for Data Protection Accountability 165

rather to be able to detect potential misbehaviour. One challenge in this area
is therefore the integration of formal methods in an otherwise informal process
and the definition of clear interactions between both worlds.

Another issue to be addressed in a formal accountability framework is the
gap between two different levels of abstraction. The privacy 2 policy defined or
understood by DS (or by lawyers) applies to abstract notions, such as “home ad-
dress” or “health data”, whereas actual logs typically include lower-level details
such as system memory addresses or duplication of data.

Considering the above objectives and challenges, the contributions of this
paper are threefold:

– We provide a framework for accountability of practice based on “privacy
friendly” logs, showing that compliance with respect to data protection poli-
cies can be checked based on logs which do not contain any personal data.

– We show the correctness of the log analysis with respect to abstract traces
that are used to specify privacy policies.

– We describe the integration of the formal framework in the overall account-
ability process and identify the complementary procedures and manual ver-
ifications that are necessary to complement the log analysis.

We first introduce privacy policies and their abstract representation (§2), be-
fore specifying “personal-data-free” logs (§3). The core accountability properties,
i.e. the guarantees provided by the log analysis, are presented in §4. The integra-
tion of the formal framework in a global accountability process is outlined in §5.
We then provide a survey of related work (§6), followed by an outline of future
work and conclusive remarks (§7). An extended version of this paper is available
in a technical report [6].

2 Privacy Policies and Abstract Events

The first stage of any data protection accountability process is the definition of
privacy policies. In practice, a policy can be defined by the DC and accepted by
the DS or result from a negotiation phase. In any case, it should comply with
applicable laws. We do not consider the legal validity of the policies here nor
their origin and assume that any personal data received by a DC is associated
with a policy. The fact that the data is sent with a policy by the DS implies
that she provides her consent for the use of her data in the conditions expressed
by the policy. The fact that the DC accepts the data with the policy is taken
as a commitment from his side to comply with the policy. In practice, a policy
specifies what can be done with categories of data defined in a way which makes
sense to DS, for instance “age”, “postal address”, or “profession”. A first and
major requirement of our accountability framework is that the privacy policy
should always remain attached to the associated data (which is sometimes called
2 In this paper, we use the expressions “privacy” and “data protection” interchangeably

even though, from a legal point of view, they refer to two different protection regimes.

166 D. Butin and D. Le Métayer

the sticky policy approach) because it will serve as a reference point for evaluating
whether the DC has fulfilled his obligations.

As we want to check compliance with respect to privacy policies, we consider
traces and logs on the side of the DC in this paper.

Definition 1 (Privacy policy). Privacy policies are defined as tuples:

P olicy = P urposes × T ime × T ime × Contexts × F wP olicy

In π ∈ P olicy, π = (ap, dd, rd, cx, fw), ap is the set of authorised purposes of
data use. Purposes are taken from a set of admissible values (taken as constants
here, possibly structured as an ontology). The deletion delay dd is the delay after
which the data must be deleted by the DC. The rd parameter specifies the delay
for the DC to comply with requests by the DS, for instance regarding the deletion
of personal data. The set cx defines the contexts in which the data can be used.
Contexts is the set of constants here which could represent external parameters
such as time or location. The data forwarding policy is defined by the value of
fw; it is equal either to ↑ (in which case no forwarding at all to third parties is
possible) or to ↓ (all forwarding is allowed). We sometimes use the notation π.ap,
π.dd, etc. to access the fields of a policy tuple. An example policy in this for-
mat could be π = ({Marketing, Statistics}, 180d, 60m, {Location_Europe}, ↑).
This policy stipulates that data can be used exclusively for the purposes of
Marketing and Statistics, that all data must be deleted no later than 180 days
from its disclosure, that requests by the DS must be complied with within 60
minutes, that data can only be used for a location context equal to Europe and
that any forwarding to third parties is forbidden.

We do not attempt to include all complexities of existing policy languages
here. The above format should rather be seen as a proof-of-concept example to
illustrate our overall approach.

2.1 Abstract Events

Having defined privacy policies, we now introduce the list of abstract events, so-
called because they describe events at the level of personal data, abstracting away
from system internals such as memory addresses. Abstract events are expressed
intuitively with regard to the format of privacy policies. Mirroring the design of
privacy policies mentioned above, this list of events illustrates an instantiation of
our framework; it can be extended easily3. All abstract events carry a timestamp
t as their first argument.

– (Disclosure, t, or, ds, θ, v, π) — the initial reception by the DC of personal
data of origin or (the origin is the entity which sent the data), type θ (e.g.
a person’s age or postal address) and value v related to DS ds, with an
associated sticky policy π. Depending on the value of or, the data can be
sent by ds or by a third party.

3 For example with update events — one could add a modification index to states to
manage them. Notifications events could also be added.

Log Analysis for Data Protection Accountability 167

– (DeleteReq, t, or, ds, θ) — a request received by the DC and sent by or to
delete personal data of owner ds and type θ.

– (AccessReq, t, ds, θ) — a request received by the DC and sent by ds to access
her own data.

– (Delete, t, ds, θ) — a deletion of the data of ds of type θ by the DC.
– (DeleteOrder, t, tp, ds, θ) — a request sent by the DC to the third party tp

to delete the data of ds of type θ.
– (Forward, t, rec, ds, θ, v, π) — the forwarding by the DC of the data of ds

of type θ and value v to the recipient rec, which can be either a third party
or the DS (to grant her access to her own data following an access request),
with policy π attached.

– (Use, t, ds, θ, purpose, reason) — the use by the DC of the data of ds of type
θ for a specific purpose and reason. The purpose element is taken from an
ontology, while the reason is a textual description, used by a human for
informal verification as discussed in §5.

– (BreakGlass, t, et, bgt, bgc) — the occurrence of a break-glass event of type
bgt in circumstances bgc, where the affected entities and data types are
couples (ds, θ) members of the set et. In practice, bgc is a textual description,
similarly to reason in Use events.

– (Context, t, ct) — the switching of the current context to ct. To simplify, the
context is just modeled by a simple value here but it could very well be a
structure to account for different external parameters (such as time, location,
etc.).

Definition 2 (Trace). A trace σ is a sequence of abstract events.

In order to define the notion of compliant trace, we need to introduce abstract
states.

Definition 3 (Abstract state). The abstract state of a system is a function
SA : Entity × T ype −→ T ime × Entity × V alue × P olicy × P (Entity × N) ×
P (BGtype × BGcircumstances × T ime)

(ds, θ) �→ (t, or, v, π, receivers, bg)

The abstract state associated with each DS ds and type of personal data
θ includes the origin or (the entity from which the most recent version of the
value of the data emanated from), the data’s value v, the sticky policy π (current
policy) and the set of receivers (all third parties who have received the data
together with the corresponding event index in the trace). Information about
break-glass events is collected by triples bgn = (bgt, bgc, timebg), where bgt is a
break-glass event’s type, bgc its circumstances and timebg its time. bg is a set
of such triples, including all break-glass events that occurred so far for this DS
and data type. SA is expanded with SA(Context) = ct ∈ Context, where ct is
the current context.

We use the notation Σ[(ds, θ) → (t, or, v, π, r, bg)] to denote a state Σ′ similar
to Σ except that Σ′(ds, θ) = (t, or, v, π, r, bg). The semantics of an event at

168 D. Butin and D. Le Métayer

SA ((Disclosure, t, or, ds, θ, v, π), j) Σ = Σ[(ds, θ) → (t, or, v, π,∅,∅)]

SA((Delete, t, ds, θ), j)Σ = Σ[(ds, θ) →⊥]

SA((F orward, t′, rec, ds, θ, v, π), j)Σ =
if rec �= ds then Σ[(ds, θ) → (t, or, v, π, receivers ∪ {(rec, j)}, bg)]
with (t, or, v, π, receivers, bg) = Σ(ds, θ) else Σ

SA((BreakGlass, t′, et, bgt, bgc), j)Σ =
if (ds, θ) ∈ et then Σ[(ds, θ) → (t, or, v, π, receivers, bg ∪ {(bgt, bgc, t′)})]
with (t, or, v, π, receivers, bg) = Σ(ds, θ) else Σ

SA((Context, t, ct), j)Σ = Σ[Context → ct]

SA(σi, j)Σ = Σ for the other events. Even though those events do not impact the
abstract state, they either introduce commitments for the DC (e.g. DeleteReq) or
allow him to fulfill his obligations (e.g. DeleteOrder).

Fig. 1. Abstract event semantics

a given position j in a trace are given by the function SA: (Event × N) →
AbstractState → AbstractState defined in Fig. 1.

Disclosure initialises all abstract state variables, while Forward adds a third
party, together with its event index, to the receivers set, unless the recipient is
the DS herself (i.e. the DS is granted access to her own data), in which case the
state is unchanged. BreakGlass events only modify the state if they occur for
the ds and θ under consideration.

The current state after the execution of a trace σ = [e1, . . . , en] is defined as
FA(σ, 1)Σ0 with ∀ ds, θ, Σ0(ds, θ) =⊥ and:

FA ([], n) Σ = Σ

FA ([e1, . . . , em], n) Σ = FA ([e2, . . . , em], n + 1) (SA(e1, n)Σ)

We set StateA(σ, i) = FA(σ|i, 1)Σ0, with σ|i = σ1 . . . σi the prefix of length i
of σ.

Furthermore, let EvT ime be a function such that EvT ime(σi) = ti with
σi = (X, ti, . . .), ti ∈ T ime. Having defined abstract events, traces and event
semantics, we can now define the compliance of a trace with respect to the
policy attached to the data received by a DC.

2.2 Trace Compliance Properties

The following compliance properties are stated ∀ i ∈ N, ∀ ds, ∀ θ:

A1: No personal data should appear in an abstract state after its global deletion
delay has expired: StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg) =⇒
EvT ime(σi) ≤ t + π.dd

Log Analysis for Data Protection Accountability 169

A2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and deletion: σi = (Delete, t′, ds, θ) ∧ StateA(σ, i−1)(ds, θ) =
(t, or, v, π, receivers, bg) =⇒ ∀ (tp, l) ∈ receivers, ∃ k | ∃ t′′ | σk =
(DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with α = max{n | (tp, n) ∈ receivers}

A3: Deletion requests are fulfilled before expiration of the request fulfillment
delay: σi = (DeleteReq, t′, or, ds, θ) ∧ StateA(σ, i − 1)(ds, θ) = (t, or, v, π,
receivers, bg) =⇒ ∃ k | ∃ t′′ | σk = (Delete, t′′, ds, θ) ∧ t′ < t′′ ≤ t′ + π.rd

A4: A4 is defined similarly to A3 for access requests, where the granting of
access is a Forward event with rec = ds.

A5: Data is only used for purposes defined in the policy: σi = (Use, t′, ds, θ,
purpose, reason) ∧ StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg)
=⇒ purpose ∈ π.ap

A6: All contexts in which data is used in the trace are authorised in the policy:
σi = (Use, t′, ds, θ, purpose, reason) ∧ StateA(σ, i − 1)(Context) = ct ∧
StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg) =⇒ ct ∈ π.cx

A7: If the policy forbids all forwarding, there is none:
σi = (Forward, t′, rec, ds, θ, v, π) ∧ rec �= ds ∧ StateA(σ, i − 1)(ds, θ) =
(t, or, v, π, receivers, bg) =⇒ π.fw �= ↑

Definition 4 (Trace compliance). A trace σ is compliant (CompliantA(σ))
if it satisfies all of the above properties A1, . . . , A7.

This concludes our formalisation of abstract events. The next section intro-
duces log events, which are closer to system operations and include internals
such as memory references. Defining such events and their compliance will ulti-
mately allow us to relate abstract events and log events to express accountability
properties (§4).

3 Log Specification and Compliance

Abstract events are useful to express privacy policies at a level which makes
sense for DS. However the expected guarantees concern the actual behaviour of
the system, which can be checked based on its execution log. We start by defin-
ing log events and continue with the associated concrete states and compliance
properties.

3.1 Log Events

There are two main differences between trace events and log events. First, log
events correspond to a small number of general purpose low-level operations,
such as receiving data, sending it, reading it, copying it, deleting it or external
events. The semantics of these events are passed through parameters (in most
cases, the second one, such as Disclosure). Second, log event operations apply
to the machine state, which is a function from references (i.e. memory addresses)
to values; as opposed to abstract event operations, which apply directly to high-
level data.

170 D. Butin and D. Le Métayer

The format of the logs is a key design choice for an accountability architec-
ture. As discussed in [4], this choice is far from obvious. In our framework, it
is guided by two factors: the privacy policies which have to be verified and the
aforementioned data minimization principle. Actually, we choose a radical op-
tion here, which is to avoid recording in the logs any value v of personal data 4.
We show in the next section that this choice does not prevent us from meeting
the expected accountability requirements.

The list of log events follows. All log events carry a timestamp t, and events
without descriptions have the same meaning as the corresponding abstract event.

– (Receive, Disclosure, t, or, ds, θ, π, ref)
– (Receive, DeleteReq, t, or, ds, θ)
– (Receive, AccessReq, t, ds, θ)
– (Copy, t, ref, ref) — a copying of data by the DC from one system reference

to another.
– (Delete, t, ref) — a deletion of the data of ds with reference ref by the DC.
– (Send, DeleteOrder, t, tp, ds, θ)
– (Send, V al, t, rec, ref) — an unspecified sending of data from the DC to a

recipient rec, which can be a third party or ds in case she is granted access
to her own data.

– (Read, t, ref, purpose, reason) — the use by the DC of the data of ds of
reference ref for a specific purpose and reason.

– (External, BreakGlass, t, et, bgt, bgc)
– (External, Context, t, ct)

Logs are to traces as log events are to abstract events:

Definition 5 (Log). A log is a sequence of log events.

In the same way that we defined abstract states and semantics, we now define
concrete states and the semantics of concrete events.

Definition 6 (Concrete state). The concrete state of a system is defined by
the function SC : Reference −→ T ime × T ype × Entity × Entity × P olicy ×
P(Entity × N) × P(BGtype × BGcircumstances × T ime)

ref �→ (t, θ, ds, or, π, receivers, bg)

Here Reference is the set of memory addresses; the other parameters are
defined as for abstract states. SC is expanded with SC(Context) = ct ∈ Context.

The semantics of an event at a position j in a log are given by a function
(LogEvent × N) → ConcreteState → ConcreteState defined as in Fig. 2.

Note that data values are not manipulated explicitly here; e.g. in the concrete
(Receive, Disclosure, . . .) event above, the value of the data of type θ is stored
in system memory at address ref . The Copy event does not modify the state
associated to ref but the one associated to ref ′, since ref ′ is overwritten.
4 Nevertheless, the couple (ds, θ) to which v is associated is still recorded.

Log Analysis for Data Protection Accountability 171

SC((Receive, Disclosure, t, or, ds, θ, π, ref), j)Σ = Σ[ref → (t, θ, ds, or, π,∅,∅)]

SC((Copy, t, ref, ref ′), j)Σ = Σ[ref ′ → Σ(ref)]

SC((Delete, t, ref), j)Σ = Σ[ref →⊥]

SC((Send, V al, t′, rec, ref), j)Σ =
if rec �= ds then Σ[ref → (t, θ, ds, or, π, receivers ∪ {(rec, j)}, bg)]
with (t, θ, ds, or, π, receivers, bg) = Σ(ref) else Σ

SC((External, BreakGlass, t′, et, bgt, bgc), j)Σ =
if (ds, θ) ∈ et then Σ[ref → (t, θ, ds, or, π, receivers, bg ∪ {(bgt, bgc, t′)})]
with (t, θ, ds, or, π, receivers, bg) = Σ(ref) else Σ

SC((External, Context, t, ct), j)Σ = Σ[Context → ct]

SC(Li, j)Σ = Σ for the other events.

Fig. 2. Concrete event semantics

The current concrete state StateC(L) after the execution of a log L is defined
recursively from SC , like StateA(σ) was previously defined from SA. One can
now express useful functions based on the current state at a position i in a log:

– The Locations function returns the set of references associated to data of a
certain datatype from ds:
Locations(L, i, ds, θ) = {ref | StateC(L, i)(ref) = (_, θ, ds, _, _, _, _)}

– The AllReceivers function returns the set of all third parties that store some
data of a certain datatype from ds, with the associated event index at which
they received the data: AllReceivers(L, i, ds, θ) = {(tp, k) | ∃ ref |
StateC(L, i)(ref) = (_, θ, ds, _, _, receivers, _) ∧ (tp, k) ∈ receivers}

Furthermore, as for abstract events, let EvT ime be a function such that
EvT ime(Li) = ti when Li = (. . . , ti, . . .). Using these functions, we can now
express compliance for logs.

3.2 Log Compliance Properties

Because logs reflect actual system executions and involve lower-level operations
such as copies of data in memory addresses, it is necessary to also define the
meaning of compliance in terms of logs. The following log compliance properties
are stated ∀ i ∈ N, ∀ ref, ∀ ds, ∀ θ:

C1: No personal data should appear in an abstract state after its global deletion
delay has expired: StateC(L, i−1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒
EvT ime(Li) ≤ t + π.dd

172 D. Butin and D. Le Métayer

C2: Deletions yield third party deletion requests, sent between the last forward-
ing of the data and its deletion: Li = (Delete, t′, ref) ∧ StateC(L, i − 1)
(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ ∀ (tp, l) ∈ receivers, ∃ k | ∃ t′′ |
Lk = (Send, DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with α = max{n | (tp, n)
∈ receivers}

C3: Delete requests are fulfilled before expiration of the request fulfillment de-
lay: Li = (Receive, DeleteReq, t′, or, ds, θ) ∧ StateC(L, i − 1)(ref) =
(t, θ, ds, or,
π, receivers, bg) =⇒ ∀ r ∈ Locations(L, i, ds, θ), ∃ k | ∃ t′′ | Lk = (Delete,
t′′, r) ∧ t′ < t′′ ≤ t′ + π.rd

C4: C4 is defined similarly to C3 for access requests.
C5: Data is only used for purposes defined in the policy: Li = (Read, t′, ref,

purpose, reason) ∧ StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg)
=⇒ purpose ∈ π.ap

C6: All contexts in which data is used in the trace are authorised in the policy:
Li = (Read, t′, ref, purpose, reason) ∧ StateC(L, i − 1)(Context) = ct ∧
StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ ct ∈ π.cx

C7: If the policy forbids all forwarding, there is none:
Li = (Send, V al, t′, rec, ref) ∧ rec �= ds ∧
StateC(L, i − 1)(ref) = (t, θ, ds, or, π, receivers, bg) =⇒ π.fw �= ↑

Definition 7 (Log compliance). A log L is compliant (CompliantC(L)) if it
satisfies all of the above properties C1, . . . , C7.

4 Accountability Properties

To relate abstract privacy policies to actual log verifications, it is necessary
to introduce two abstraction relations: a relation between abstract states and
concrete states and a relation between traces and logs.

We first introduce the relation between abstract states and concrete states:

Definition 8 (State abstraction). AbstractS(ΣC , ΣA) holds if and only if
{(ds, θ) | ∃ r, ΣC(r) = (t, θ, ds, or, π, receivers, bg)} = Domain(ΣA) and
∀ r, ∀ ds, ∀ θ, ΣC(r) = (t, θ, ds, or, π, receivers, bg) ⇐⇒
∃ v | ΣA(ds, θ) = (t, or, v, π, receivers, bg).

The relation AbstractL denotes that a trace is an abstraction of a log:

Definition 9 (Log abstraction). AbstractL(L, σ) holds if and only if there
exists a function Map such that Map : N → P(N) | ∀ r ∈ [1, |σ|], Map(r) �=
∅ ∧ ∀ r, s ∈ [1, |σ|], ∀ r′ ∈ Map(i), ∀ s′ ∈ Map(j), r < s =⇒ r′ < s′ and for
all i ∈ [1, |σ|] and for all j ∈ [1, |L|], the properties in Fig. 3 are true.

Log Analysis for Data Protection Accountability 173

Map(i) = {j} ∧ σi = (Disclosure, t, or, ds, θ, v, π) ⇐⇒
Lj = (Receive, Disclosure, t, or, ds, θ, π, ref) ∧
AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (DeleteReq, t, or, ds, θ) ⇐⇒
Lj = (Receive, DeleteReq, t, or, ds, θ) ∧ AbstractS(StateC(L, j−1), StateA(σ, i−1))

Map(i) = {j} ∧ σi = (AccessReq, t, ds, θ) ⇐⇒
Lj = (Receive, AccessReq, t, ds, θ) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = J ∧ σi = (Delete, t, ds, θ) ⇐⇒
∀ r ∈ Locations(L, min(J), ds, θ), ∃ j ∈ J |
Lj = (Delete, t, r) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (DeleteOrder, t, tp, ds, θ) ⇐⇒
Lj = (Send, DeleteOrder, t, tp, ds, θ) ∧ AbstractS(StateC(L, j −1), StateA(σ, i−1))

Map(i) = {j} ∧ σi = (F orward, t, rec, ds, θ, v, π) ⇐⇒
Lj = (Send, V al, t, rec, ref) with StateC(L, j − 1)(ref) =
(t′, θ, ds, or, π, receivers, bg) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1))

Map(i) = {j} ∧ σi = (Use, t, ds, θ, purpose, reason) ∧
StateA(σ, i − 1)(Context) = ct ⇐⇒
Lj = (Read, t, ref, purpose, reason) with StateC(L, j − 1)(ref) =
(t′, θ, ds, or, π, receivers, bg) ∧ AbstractS(StateC(L, j − 1), StateA(σ, i − 1)) ∧
StateC(L, j − 1)(Context) = ct

Fig. 3. Log abstraction definition

Using this Abstract function, it is now possible to express the core correctness
property relating traces and logs:

Property 1 (Correctness).

CompliantC(L) ∧ AbstractL(L, σ) =⇒ CompliantA(σ)

This property shows that the abstract meaning of the policies (which can be
understood by users) reflect the actual properties of the logs. It also makes it
possible to abstract the log into a trace and analyse the trace instead of the log.

Proof outline: Since CompliantA(σ) is defined as the conjunction of the seven
trace compliance hypotheses Ai defined in §2, it is equivalent to show that they
all hold. We do not detail all proofs here but present the strategy and an archety-
pal example5. Generally speaking, starting with the premise of a given Ai, one
wants to reach the corresponding conclusion, assuming the ad hoc log compli-
ance property Ci and AbstractL(L, σ). Abstract events can be mapped back to
5 See [6] for more details.

174 D. Butin and D. Le Métayer

one or more concrete events; for instance, in case of deletion, all references for a
given ds and θ must be deleted, giving rise to multiple concrete Delete events.
The corresponding log compliance property is then used. Often, to use the log
compliance property in question, information about states is needed and can be
obtained through the state abstraction used in the predicates. For instance, in
the case of A7, concluding that π.fw �=↑ via C7 implies reasoning over the con-
crete state associated to the reference parameter of the (Send, V al, . . .) event;
indeed, the event itself does not carry the associated policy, unlike its abstract
version Forward, but the state mapping is realised through AbstractL(L, σ).

The case of A2 is typical: its assumptions are σi = (Delete, t′, ds, θ) ∧
StateA(σ, i − 1)(ds, θ) = (t, or, v, π, receivers, bg). We assume AbstractL(L, σ).
Let J = Map(i). The part of AbstractL(L, σ) relative to Delete yields ∀ r ∈
Locations(L, min(J), ds, θ), ∃ j ∈ J | Lj = (Delete, t′, r) ∧ AbstractS(StateC
(L, j−1), StateA(σ, i−1)), Since StateA(σ, i−1)(ds, θ) = (t, or, v, π, receivers, bg),
we get, in particular, ∀ r ∈ Locations(L, min(J), ds, θ), ∃ j ∈ J | StateC(L, j −
1)(r) = (t, θ, ds, or, π, receivers, bg). C2 can now be used, and gives ∀ (tp, l) ∈
receivers, ∃ k | ∃ t′′ | Lk = (Send, DeleteOrder, t′′, tp, ds, θ) ∧ k ∈]α, i[with
α = max{n | (tp, n) ∈ receivers}. Using AbstractL(L, σ) again for DeleteOrder
yields the desired conclusion: ∀ (tp, l) ∈ receivers, ∃ k′ | Map(k′) = {k} | σk′ =
(DeleteOrder, t′′, tp, ds, θ) with k′ ∈]α, j′[and α = max{n | (tp, n) ∈ receivers}.
In this case, it is critical to establish a correspondence between abstract and con-
crete states to be able to reason over the receivers set that features in the conclusion
of both properties. In the case of A6 and C6, context equivalence is used.

Race Conditions: From the perspective of a DS, it is essential that all copies of data
are actually deleted in the end, whether they are local or remote. The following
property guarantees that all deletion requests are eventually fulfilled on all levels:
Property 2 (Absence of Race Conditions). All deletion requests are fulfilled after
a finite delay, provided the log is compliant and of finite length.

Proof Outline: We assume L = L1 . . . Ln to be a log of length n, ds and θ
fixed. All deletion requests are fulfilled after a finite delay. Indeed, assume ∃ i ∈
[1, n] | Li = (Receive, DeleteReq, t, or, ds, θ), Li ∈ L and A = Locations(L, i,
ds, θ). By contradiction, the following alternatives are impossible:
– Assume there exists a local copy of the initial data which is never deleted, i.e.

∃ ref ∈ A | ∀ s ∈ [1, n], Ls �= (Delete, t′, ref) ∧ Ls �= (Copy, t′′, ref ′, ref)
with ref ′ /∈ Locations(L, i, ds, θ) — this contradicts C3.

– Assume there is a third party whom the data was shared with and who
never received a DeleteOrder, i.e. ∃ α ∈ AllReceivers(L, i, ds, θ) and ∀ r ∈
[1, n], Lr �= (Send, DeleteOrder, t, α, ds, θ). Because of the above, we know
∃ k | Lk = (Delete, t′, ref) with ref ∈ A — this contradicts C2.

– Assume the data was received by the DC from a third party T P after its ini-
tial versions were deleted locally at time t′, i.e. ∃ t′′ | (Receive, Disclosure, t′′,
T P, ds, θ, π, ref) ∧ t′′ > t′. This contradicts C2’s guarantee the deletion or-
der to T P was sent out before t′, since the deletion order makes the data
unavailable to T P at time t′′.

Log Analysis for Data Protection Accountability 175

On the other hand, there is no guarantee that data for a given θ is deleted at
the end of a trace if no deletion request exists for it. Indeed, successive disclosures
with ever-growing global deletion delays π.dd do not contradict C1.

5 Accountability Process

The formal framework presented in this paper contributes to the three types of ac-
countability introduced in §1: it can be used to provide precise definitions of privacy
policies and to build log analysers to check the compliance of a log with respect to
the privacy policies of the data collected by the DC. Actual log files can be parsed
and converted by log abstraction to traces that can be mechanically checked as
in [4]. In addition, it suggests a number of manual checks and procedural measures
required to complement the log analysis and make it fully effective. In practice, as
we argued in [5], a true accountability process should impose that these manual
checks are carried out by independent auditors.

The additional manual checks suggested by the formal framework fall into two
categories:

– General verifications on the architecture of the system: the goal of these
verifications is to convince the auditor that the log reflects the actual execu-
tion of the system. In general it will not be possible to check this property
formally because it will be out of the question to build a formal model of
an entire system just for the purpose of accountability. However, the for-
mal framework provides clear guidelines about the guarantees that the DC
should provide (in informal or semi-formal ways, for example in the form
of diagrams and design documentation). Basically, each type of log event
leads to specific assumptions which have to be met by the logging tool and
demonstrated by the DC: for example any operation involving the receipt,
copy or transfer of personal data should be appropriately recorded in the
log, each use of personal data should be associated with a precise purpose
recorded in the log, etc.

– Specific verifications depending on the outcome of the log analysis: the log
contains references to pieces of information that may have to be checked by
the auditor. For example, the reason argument of Read events can take the
form of a piece of text explaining in more detail the justification for the use
of the data6. Similarly, the parameters associated with break-glass events
can be checked to confirm that they provide sufficient justifications for the
breach of a privacy property7.

It should be clear that the objective of an audit in the context of accountability
is not to provide a one hundred per cent guarantee that the system is compliant.
The general philosophy is that a good accountability process should make it more
difficult for DC to breach the rules and also to cover up their misbehaviour. In
6 These descriptions can be recorded in a library and provided through specific func-

tions; they are useful to complement and define more precisely the purpose argument.
7 Each break-glass event is associated with a set et of affected entities and data types.

176 D. Butin and D. Le Métayer

practice, auditors (or controllers of Data Protection Authorities8) do not attempt
to check all log entries for all collected data: they rather choose to explore logs
selectively to check specific types of data9. In our model, the correctness property
of §4 defines a condition to be met by such a log analyser. Despite the fact that
a full application of formal verifications is out of reach in this context, we believe
that the formal approach followed here can bring significant benefits in terms of
rigour in the definition of the objectives and the procedures to reach them.

6 Related Work

Accountability in computer science is generally associated with very specific
properties. An example of a formal property attached to accountability is non-
repudiation: Bella and Paulson [2] see accountability as a proof that a participant
took part in a security protocol and performed certain actions. The proof of non-
repudiation relies on the presence of specific messages in network history.

Several frameworks for a posteriori compliance control have already been de-
veloped. Etalle and Winsborough [11] present a logical framework for using logs
to verify that actions taken by the system are authorized. Cederquist et al. [7]
introduce a framework to control compliance of document policies where users
may be audited and asked to justify actions. Jagadeesan et al. [15] define account-
ability as a set of mechanisms based on “after-the-fact verification” by auditors
for distributed systems. As in [19], blame assignment based on evidence plays a
central role in this framework. Integrity (the consistency of data) and authentica-
tion (the proof of an actor’s identity) are integral to the communication model.
Together with non-repudiation [2], these technical concepts are often seen as
pillars of the concept of accountability in computer science literature.

On the practical side, Haeberlen [14] outlines the challenges and building
blocks for accountable cloud computing. Accountability is seen as desirable both
for customers of cloud services and service providers. The building blocks of
accountability are defined as completeness, accuracy and verifiability. Technical
solutions to enable these characteristics on cloud computing platforms have been
devised by the authors.

Work presented in [17] proposes criteria for acceptable log architecture de-
pending on system features and potential claims between the parties.

Finally, current legal perspectives on accountability are surveyed in [13].

7 Conclusions

Considering the ever-growing collection and flow of personal data in our digital
societies, a priori controls will be less and less effective for many reasons, and ac-
countability will become more and more necessary to counterbalance this loss of ex
ante control by DS. Another major benefit of accountability is that it can act as an
incentive for DC to take privacy commitments more seriously and put appropriate
8 Such as the CNIL in France.
9 Typically, sensitive data or data for which they have suspicions of breach.

Log Analysis for Data Protection Accountability 177

measures in place, especially if audits are conducted in a truly independent way
and possibly followed by sanctions in case of breach. As pointed out by De Hert,
“the qualitative dimension of accountability schemes may not be underrated” [10].

However, the term “accountability” has been used with different meanings by
different communities, very often in a broad sense by lawyers and in very specific
technical contexts by computer scientists. This paper aims to reconcile both
worlds, by defining precisely the aspects which can be formalised and showing
how manual checks can complement automatic verifications.

The language used here to express privacy policies and the sets of events are
typical of the most relevant issues in this area, but they should obviously be
complemented to be used as a basis for an effective accountability framework.
In order to implement such a framework, several issues should be addressed:
– The security (integrity and confidentiality) of the logs should be ensured.

This aspect, which has not been discussed here, has been addressed by pre-
vious work [3, 20, 21].

– A suitable interface should be provided to the auditors for a selective search
of the logs based on an analyser meeting the requirements defined in §4.
This interface must provide convenient ways for the auditor to reach the
documents that need complementary verifications.

– More complex data manipulation operations should be considered, including
for example the merging of different pieces of personal data or anonymization
techniques. The privacy policy language should be extended to allow the DS
to specify the rules associated with the result of such operations.

Last but not least, it is also possible to reduce even further the amount of data
stored in the logs by ensuring that not only the values of personal information
are not recorded in the logs, but also the identity of the DS and the type of
data (the (ds, θ) pair in the formal model). Indeed, the only role of this pair in
the model is to establish a link with the privacy policy and it could as well be
anonymized through a hash function. The fact that our formal model can be
used to implement an effective accountability framework without recording any
extra personal data makes it possible to counter the most common objection
against accountability in the context of personal data protection. This argument
is especially critical for Data Protection Agencies, for which such a “personal-
data-free” accountability framework could significantly ease day-to-day checks.
It can also be a key argument for DC reluctant to create new logs which may
represent additional security risks. For these reasons, we hope this work can pave
the way for future wider adoption of effective accountability of practice.

Acknowledgement. This work was partially funded by the European project
PARIS / FP7-SEC-2012-1 and the Inria Project Lab CAPPRIS (Collaborative
Action on the Protection of Privacy Rights in the Information Society).

References
1. Article 29 Data Protection Working Party: Opinion 3/2010 on the principle of

accountability (2010)

178 D. Butin and D. Le Métayer

2. Bella, G., Paulson, L.C.: Accountability Protocols: Formalized and Verified. ACM
Trans. Inf. Syst. Secur. 9(2), 138–161 (2006)

3. Bellare, M., Yee, B.S.: Forward Integrity for Secure Audit Logs. Tech. rep., Uni-
versity of California at San Diego (1997)

4. Butin, D., Chicote, M., Le Métayer, D.: Log Design for Accountability. In: 2013
IEEE Security & Privacy Workshop on Data Usage Management, pp. 1–7. IEEE
Computer Society (2013)

5. Butin, D., Chicote, M., Le Métayer, D.: Strong Accountability: Beyond Vague
Promises. In: Gutwirth, S., Leenes, R., De Hert, P. (eds.) Reloading Data Protec-
tion, pp. 343–369. Springer (2014)

6. Butin, D., Le Métayer, D.: Log Analysis for Data Protection Accountability (Ex-
tended Version). Tech. rep., Inria (2013)

7. Cederquist, J., Corin, R., Dekker, M., Etalle, S., den Hartog, J., Lenzini, G.: Audit-
based compliance control. Int. J. Inf. Secur. 6(2), 133–151 (2007)

8. Center for Information Policy Leadership: Data Protection Accountability: The
Essential Elements (2009)

9. Bennett, C.J.: Implementing Privacy Codes of Practice. Canadian Standards As-
sociation (1995)

10. De Hert, P.: Accountability and System Responsibility: New Concepts in Data Pro-
tection Law and Human Rights Law. In: Managing Privacy through Accountability
(2012)

11. Etalle, S., Winsborough, W.H.: A Posteriori Compliance Control. In: Proceedings
of the 12th ACM Symposium on Access Control Models and Technologies, SAC-
MAT, pp. 11–20. ACM (2007)

12. European Commission: Proposal for a Regulation of the European Parliament and
of the Council on the Protection of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of such Data (2012)

13. Guagnin, D., Hempel, L., Ilten, C.: Managing Privacy Through Accountability.
Palgrave Macmillan (2012)

14. Haeberlen, A.: A Case for the Accountable Cloud. Operating Systems Review 44(2),
52–57 (2010)

15. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a Theory of Account-
ability and Audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 152–167. Springer, Heidelberg (2009)

16. Joint NEMA/COCIR/JIRA Security and Privacy Committee (SPC): Break-Glass:
An Approach to Granting Emergency Access to Healthcare Systems (2004)

17. Le Métayer, D., Mazza, E., Potet, M.L.: Designing Log Architectures for Legal
Evidence. In: Proceedings of the 8th International Conference on Software Engi-
neering and Formal Methods, SEFM 2010, pp. 156–165. IEEE Computer Society
(2010)

18. Organisation for Economic Co-operation and Development: OECD Guidelines on
the Protection of Privacy and Transborder Flows of Personal Data (1980)

19. Schneider, F.B.: Accountability for Perfection. IEEE Security & Privacy 7(2), 3–4
(2009)

20. Schneier, B., Kelsey, J.: Secure Audit Logs to Support Computer Forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

21. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an Encrypted and
Searchable Audit Log. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004 (2004)

Automatic Compositional Synthesis
of Distributed Systems

Werner Damm1 and Bernd Finkbeiner2

1 Carl von Ossietzky Universität Oldenburg
2 Universität des Saarlandes

Abstract. Given the recent advances in synthesizing finite-state controllers from
temporal logic specifications, the natural next goal is to synthesize more com-
plex systems that consist of multiple distributed processes. The synthesis of dis-
tributed systems is, however, a hard and, in many cases, undecidable problem.
In this paper, we investigate the synthesis problem for specifications that admit
dominant strategies, i.e., strategies that perform at least as well as the best al-
ternative strategy, although they do not necessarily win the game. We show that
for such specifications, distributed systems can be synthesized compositionally,
considering one process at a time. The compositional approach has dramatically
better complexity and is uniformly applicable to all system architectures.

1 Introduction

Synthesis, the automatic translation of specifications into implementations, holds the
promise to revolutionize the development of complex systems. While the problem
has been studied for a long time (the original formulation is attributed to Alonzo
Church [4]), recent years seem to have achieved the phase transition to practical tools
and realistic applications, such as the automatic synthesis of the AMBA bus proto-
col [1]. Tools like Acacia+ [3], Ratsy [2], and Unbeast [6] automatically translate a
specification given in linear-time temporal logic into finite-state machines that guaran-
tee that the specification holds for all possible inputs from the system’s environment.
Given the success of obtaining such finite-state controllers, the natural next step would
be to synthesize more complex systems, consisting of multiple distributed processes.
However, none of the currently available tools is capable of synthesizing systems with
as many as two processes. This is unfortunate, because a separation into multiple pro-
cesses is not only necessary to obtain well-structured and humanly understandable im-
plementations, but is in fact often a non-negotiable design constraint: for example, the
synchronization between different ECUs in a car involves explicit and time-consuming
bus communication; approximating the network of ECUs with a single process there-
fore usually produces unimplementable solutions.

The lack of tools for the synthesis of distributed systems is no accident. For most
system architectures, the distributed synthesis problem is undecidable [14], and for sys-
tem architectures where the problem is decidable, such as pipelines, the complexity has
been shown to be non-elementary in the number of processes. Experience with similar
problems with non-elementary complexity, such as WS1S satisfiability (implemented

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 179–193, 2014.
c© Springer International Publishing Switzerland 2014

180 W. Damm and B. Finkbeiner

in Mona [10]), suggests, however, that these results do not necessarily mean that the
synthesis of distributed systems is generally impossible. The specifications in the typ-
ical hardness arguments use the incomplete informedness of the processes to force the
processes into specific complex behaviors. For example, in the undecidability proof
due to Pnueli and Rosner, the specification forces the processes to simulate a Turing
machine. The question arises if such specifications are of practical interest in the devel-
opment of finite-state controllers. Can we obtain better complexity results if we restrict
the specifications to a “reasonable” subset?

The key idea to reduce the complexity is to work compositionally. Compositionality
is a classic concept in programming languages and verification where one ensures that
the results obtained for a process also hold for the larger system [15]; in the case of
synthesis, we want to ensure that the implementations found for individual processes
can be used to realize the larger multi-process system. Unfortunately, synthesis does not
lend itself easily to a compositional approach. In game-theoretic terms, synthesis looks
for winning strategies, i.e., strategies that ensure the satisfaction of the specification
under all circumstances. While the notion of winning is, in principle, compositional (if
each process guarantees a property no matter what the other processes do, then clearly
the system will guarantee the property as well), winning is too strong as a process re-
quirement, because properties can rarely be guaranteed by one process alone. Typically,
there exist input sequences that would prevent the process from satisfying the property,
and the processes in the environment cooperate in the sense that they do not produce
those sequences.

In this paper, we develop a synthesis technique for distributed systems that is based
on a weaker notion than winning: A strategy is dominant if it performs, in any situa-
tion, at least as well as the best alternative strategy. Unlike winning strategies, dominant
strategies are allowed to lose the game — as long as no other strategy would have won
the game in the same situation. In a distributed system, a dominant strategy requires
only a best effort – ensure the specification if you can – rather than a comprehensive
guarantee that the specification is satisfied. It turns out that, just like winning, dom-
inance is also a compositional notion. However, it is much more realistic to expect a
process to have a dominant strategy than it is to have a winning strategy. In cases where
the environment of the process behaves unreasonably, i.e., where it is made impossible
for the process to satisfy its specification, we no longer require the process to satisfy
the specification.

We call a specification that has a dominant strategy admissible. Intuitively, a specifi-
cation is admissible as long as we do not require a process to “guess” variables it cannot
see or to “predict” future inputs. Predicting future inputs is, of course, impossible; at
the same time, it is easy to choose, in retrospect for a specific sequence of inputs, an
alternative strategy that would have guessed correctly. Consider, for example, the LTL
specification ϕ = ( a) ↔ b, where a is an input variable and b is an output variable.
By itself, ϕ is not admissible. Every specification can, however, be strengthened into an
admissible specification. For example, ϕ ∧ (b) is admissible.

As we show in the paper, there is a fundamental connection between admissibil-
ity and compositionality: a process has a dominant strategy if and only if there exists
a unique weakest environment assumption that would guarantee that the process can

Automatic Compositional Synthesis of Distributed Systems 181

ensure the satisfaction of the specification. We first exploit this connection in an incre-
mental synthesis algorithm: considering one process at a time, we compute the domi-
nant strategy and the unique environment assumption. For the remaining processes, we
replace the specification with the new assumption.

We then show that, for safety properties, true compositionality can be obtained by
synthesizing each process in isolation. Even without considering the environment as-
sumptions of the partner processes, the composition of the dominant strategies for
two subarchitectures is guaranteed to result in a dominant strategy for the composite
architecture.

Unfortunately, this property does not hold for liveness properties; the problem is that
each process may have a dominant strategy that waits for the other process to make
the first step. If such strategies are combined, they wait forever. We address this prob-
lem with a new notion of dominance, which we call bounded dominance. Intuitively,
bounded dominance compares the number of steps that a strategy takes to satisfy a live-
ness objective with a (constant) bound. The dominant strategy must meet the bound
whenever some alternative strategy would meet the bound. The composition of two
strategies that are dominant for some bound is again dominant for the same bound.

Finally, we describe how to combine incremental and compositional synthesis, and
how to localize the analysis based on an automatic decomposition of the specification
into subsets of relevant properties for each process.

2 Synthesis of Distributed Systems

We are interested in synthesizing a distributed system for a given system architecture
A and an LTL formula ϕ. A solution to the synthesis problem is a set of finite-state
strategies {sp | p ∈ P}, one for each process in the architecture, such that the joint
behavior satisfies ϕ.

Architectures. An architecture A is a tuple (P,V, inp, out), where P is a set of system
processes, V is a set of (Boolean) variables, and inp, out : P→ 2V are two functions that
map each process to a set of input and output variables, respectively. For each process p,
the inputs and outputs are disjoint, inp(p) ∩ out(p) = ∅, and for two different processes
p � q, the output variables are disjoint: out(p) ∩ out(q) = ∅. We denote the set of
visible variables of process p with V(p) = inp(p)∪ out(p). If P is singleton, we call the
architecture single-process; if P contains at least two processes, we call the architecture
distributed.

For two architectures A1 = (P1,V, inp1, out1) and A2 = (P2,V, inp2, out2) with
the same variables, but disjoint sets of processes, P1 ∩ P2 = ∅, we define the
parallel composition as the architecture A1||A2 = (P1 ∪ P2,V, p
→ if p ∈
P1 then inp1(p) else inp2(p), p
→ if p ∈ P1 then out1(p) else out2(p)).

Implementations. An implementation of an architecture consists of strategies S = {sp |
p ∈ P} for the system processes. A system process p ∈ P is implemented by a strategy,
i.e., a function sp : (2inp(p))∗ → 2out(p) that maps histories of inputs to outputs. A strategy
is finite-state if it can be represented by a finite-state transducer (Q, q0, δ : Q×2inp(p) →

182 W. Damm and B. Finkbeiner

Q, γ : Q → 2out(p)), with a finite set of states Q, an initial state q0, a transition function
δ and an output function γ.

The parallel composition sp||sq of the strategies of two processes p, q ∈ P is
a function sp||q : (2I)∗ → 2O that maps histories of the remaining inputs I =
(inp(p) ∪ inp(q)) \ (out(p) ∪ out(q)) to the union O = out(p) ∪ out(q) of the outputs:
sp||q(σ) = sp(αp(σ)) ∪ sq(αq(σ)), where αp(ε) = ε and αp(υ0υ1 . . . υk) = ((υ0 ∪ sq(ε)) ∩
inp(p))((υ1 ∪ sq(αq(υ0))) ∩ inp(p)) . . . ((υk ∪ sq(αq(υ1υ2 . . . υk−1))) ∩ inp(p)), and, anal-
ogously, αq(ε) = ε and αq(υ0υ1 . . . υk) = ((υ0 ∪ sp(ε)) ∩ inp(q))((υ1 ∪ sp(αp(υ0))) ∩
inp(q)) . . . ((υk ∪ sp(αp(υ1υ2 . . . υk−1))) ∩ inp(q)).

A computation is an infinite sequence of variable valuations. For a sequence γ =
υ1υ2 . . . ∈ (2V�out(p))ω of valuations of the variables outside the control of a process p,
the computation resulting from s is denoted by comp(s, γ) = (s(ε)∪υ1) (s(υ1∩ inp(p))∪
υ2) (s(υ1 ∩ inp(p)υ2 ∩ inp(p)) ∪ υ3)

Specification. We use ω-regular languages, which we also call properties, to specify
system behaviors. For a computation σ and an ω-regular language ϕ, we also write
σ |= ϕ if σ ∈ ϕ. To define ω-regular languages, we use automata or LTL formulas.

A strategy s : (2I)∗ → 2O is winning for a property ϕ, denoted by sp |= ϕ, iff, for
every sequence γ = υ1υ2 . . . ∈ (2V�O)ω of valuations of the variables outside the con-
trol of p, the computation comp(sp, γ) resulting from sp satisfies ϕ. We generalize the
notion of winning from strategies to implementations (and, analogously, the notions of
dominance and bounded dominance later in the paper), by defining that an implemen-
tation S is winning for ϕ iff the parallel composition of the strategies in S is winning
(for their combined sets of inputs and outputs).

Synthesis. A property ϕ is realizable in an architecture A iff there exists an implemen-
tation that is winning for ϕ. We denote realizability by A� ϕ.

Theorem 1. [12] The question whether a property given by an LTL formula is realiz-
able in an architecture with a single system process is 2EXPTIME-complete.

Theorem 2. [14] The question whether a property given by an LTL formula is re-
alizable in an architecture is undecidable for architectures with two or more system
processes.

3 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the following, we
only give a quick summary of the standard terminology, the reader is referred to [9] for
a full exposition.

A (full) tree is given as the set Υ∗ of all finite words over a given set of directions Υ.
For given finite sets Σ and Υ, a Σ-labeled Υ-tree is a pair 〈Υ∗, l〉with a labeling function
l : Υ∗ → Σ that maps every node of Υ∗ to a letter of Σ.

An alternating tree automaton A = (Σ, Υ,Q, q0, δ, α) runs on Σ-labeled Υ-trees.
Q is a finite set of states, q0 ∈ Q a designated initial state, δ a transition function
δ : Q × Σ → B+(Q × Υ), where B+(Q × Υ) denotes the positive Boolean combinations

Automatic Compositional Synthesis of Distributed Systems 183

of Q × Υ, and α is an acceptance condition. Intuitively, disjunctions in the transition
function represent nondeterministic choice; conjunctions start an additional branch in
the run tree of the automaton, corresponding to an additional check that must be passed
by the input tree. A run tree on a given Σ-labeled Υ-tree 〈Υ∗, l〉 is a Q ×Υ∗-labeled tree
where the root is labeled with (q0, l(ε)) and where for a node n with a label (q, x) and a
set of children child(n), the labels of these children have the following properties:

– for all m ∈ child(n) : the label of m is (qm, x ·υm), qm ∈ Q, υm ∈ Υ such that (qm, υm)
is an atom of δ(q, l(x)), and

– the set of atoms defined by the children of n satisfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity con-
dition is a function α from Q to a finite set of colors C ⊂ N. A path is accepted if the
highest color appearing infinitely often is even. The safety condition is the special case
of the parity condition where all states are colored with 0. The Büchi condition is the
special case of the parity condition where all states are colored with either 1 or 2, the
co-Büchi condition is the special case of the parity condition where all states are col-
ored with either 0 or 1. For Büchi and co-Büchi automata we usually state the coloring
function in terms of a set F of states. For the Büchi condition, F contains all states with
color 2 and is called the set of accepting states. For the co-Büchi condition, F contains
all states with color 1 and is called the set of rejecting states. The Büchi condition is
satisfied if some accepting state occurs infinitely often, the co-Büchi condition is satis-
fied if all rejecting states only occur finitely often. A Σ-labeled Υ-tree is accepted if it
has an accepting run tree. The set of trees accepted by an alternating automaton A is
called its languageL(A). An automaton is empty iff its language is empty.

A nondeterministic automaton is an alternating automaton where the image of δ con-
sists only of such formulas that, when rewritten in disjunctive normal form, contain at
most one element of Q × {υ} for every direction υ in every disjunct. A universal au-
tomaton is an alternating automaton where the image of δ contains no disjunctions. A
deterministic automaton is an alternating automaton that is both universal and nonde-
terministic, i.e., the image of δ has no disjunctions and contains at most one element of
Q × {υ} for every direction υ.

A word automaton is the special case of a tree automaton where the set Υ of direc-
tions is singleton. For word automata, we omit the direction in the transition function.

4 Dominant Strategies

In game theory, strategic dominance refers to a situation where one strategy is better
than any other strategy, no matter how the opponent plays. In the setting of reactive
synthesis, remorsefree dominance [5] was introduced in order to accommodate situa-
tions that simply make it impossible to achieve the specified objective. For example, a
module might have an input signal that resets its computation; if the reset signal is set
too frequently it becomes impossible to complete the computation. In such a situation,
we would expect the module to try to finish the computation as quickly as possible,
to have the best chance to complete the computation before the next reset, but would

184 W. Damm and B. Finkbeiner

forgive the module for not completing the computation if the resets have made it im-
possible to do so.

Dominance can be seen as a weaker version of winning. A strategy t : (2I)∗ → 2O

is dominated by a strategy s : (2I)∗ → 2O, denoted by t � s, iff, for every sequence
γ ∈ (2V�O)ω for which the computation comp(t, γ) resulting from t satisfies ϕ, the com-
putation comp(s, γ) resulting from s also satisfies ϕ. A strategy s is dominant iff, for all
strategies t, t � s. Analogously to the definition of winning implementations, we say
that an implementation S is dominant iff the parallel composition of the strategies in S
is dominant.

Finally, we say that a property ϕ is admissible in an architecture A, denoted by
A� ϕ, iff there is a dominant implementation.

Informally, a specification is admissible if the question whether it can be satisfied
does not depend on variables that are not visible to the process or on future inputs. For
example, the specification ϕ = (a) ↔ b, where a is an input variable and b is an
output variable is not admissible, because in order to know whether it is best to set b in
the first step, one needs to know the value of a in the second step. No matter whether
the strategy sets b or not, there is an input sequence that causes remorse, because ϕ is
violated for the chosen strategy while it would have been satisfied for the same sequence
of inputs if the other strategy had been chosen.

Consider an architecture with a single process p. For a property given as an LTL
formula, one can construct a nondeterministic parity tree automaton with an exponen-
tial number of colors and a doubly-exponential number of states in the length of the
formula, such that the trees accepted by the automaton define exactly the dominant
strategies. This can be done, following the ideas of [5], by first constructing a universal
co-Büchi word automatonA1 that accepts a sequence in (2V)ω iff it satisfies the specifi-
cation ϕ. The size ofA1 is exponential in the length of ϕ. This automaton will be used to
recognize situations in which the strategy satisfies the specification. Then, we construct
a universal co-Büchi word automaton A2 that accepts a sequence in (2V�out(p))ω iff it
does not satisfy the specification ϕ for any choice of the outputs in out(p). The size of
A2 is also exponential in the length of ϕ. This automaton will be used to recognize sit-
uations in which the strategy does not need to satisfy the specification because no other
strategy would either. Automata A1 and A2 are combined in a product construction
to obtain the universal co-Büchi word automaton A3, which accepts all sequences in
(2V)ω that either satisfy ϕ or have the property that ϕ would be violated for all possible
choices of the outputs out(p). The size ofA3 is still exponential in the length of ϕ. We
then build a universal co-Büchi tree automaton B1 of the same size as A3 that accepts
a 2out(p)-labeled 2inp(p)-tree iff the sequence along every branch and for every choice of
the values of the variables in V �V(p) is accepted byA3. ConvertingB1 into an equiv-
alent nondeterministic tree automaton B2 results in the desired nondeterministic parity
tree automaton with an exponential number of colors and a doubly-exponential number
of states in the length of the formula.

The synthesis of a dominant strategy thus reduces to checking tree automata empti-
ness and extracting a representation of some accepted tree as a finite-state machine.
This can be done in exponential time in the number of colors and in polynomial time
in the number of states [11]. For a matching lower bound, note that standard LTL

Automatic Compositional Synthesis of Distributed Systems 185

synthesis is already 2EXPTIME-hard [12]. Since every winning strategy is also domi-
nant, we can reduce the standard synthesis problem to the synthesis of dominant strate-
gies, by first checking the existing of a dominant strategy; if the answer is no, then no
winning strategy exists. If the answer is yes, we synthesize a dominant strategy and ver-
ify (which can be done in polynomial time) whether it is winning. If it is winning, we
have obtained a winning strategy, if not, then no winning strategy exists, because, oth-
erwise, the synthesized strategy would not dominate the winning strategy, and, hence,
would not be dominant.

Theorem 3. The problem of deciding whether a property given as an LTL formula is
admissible in a single-process architecture is 2EXPTIME-complete. A dominant strat-
egy can be computed in doubly-exponential time.

If the property is given as a deterministic automaton instead of as an LTL formula,
admissibility checking only takes exponential time, because the automata A1 and A2

have the same size as the property automaton.

5 Synthesis of Environment Assumptions

Standard compositional approaches for synthesis (cf. [7]) require the user to explicitly
state the assumptions placed by the individual components on their environment. These
assumptions need to be sufficiently strong so that each process can then be synthesized
in isolation, relying only on the assumptions instead of the actual (and yet to be synthe-
sized) implementation of the environment.

For admissible specifications, we can automatically construct the environment as-
sumption. Since the dominant strategy defines the greatest set of environment behaviors
for which the specification can be satisfied, the environment assumption is unique, and
can in fact be represented by an automaton.

Theorem 4. For an architecture A and a property ϕ such that A � ϕ, there ex-
ists a unique weakest environment assumption, i.e., a unique largest set of sequences
w(A, ϕ) ⊆ (2V�O)ω where O =

⋃
p∈P out(p), such that A � w(A, ϕ) → ϕ. If ϕ is given

as a deterministic parity word automaton, then there is a deterministic parity word
automaton for w(A, ϕ) with an exponential number of states. If ϕ is given as an LTL
formula, the number of states is doubly-exponential in the length of the formula.

Proof. We construct the deterministic parity automaton Aw(A,ϕ) for the weakest envi-
ronment assumption as follows. Applying Theorem 3, we compute a dominant strat-
egy s, represented as a transducer As = (Qs, qs,0, δs : Q × 2inp(p) → Q, γs : Q →
2out(p)). Assume ϕ is given as a deterministic parity automaton Aϕ = (Qϕ, qϕ,0, δϕ :
Q × 2V → Q, c). We combineAs and Aϕ to obtain the deterministic parity automaton
Aψ = (Q′, q′0, δ

′, c′) which recognizes all sequences that satisfy ϕ whenever the outputs
of the process are chosen according to As.

– Q′ = (Qs × Qϕ) ∪ {⊥},
– q′0 = (qs,0, q′ϕ,0),

186 W. Damm and B. Finkbeiner

For architectures A, B and properties ϕ, ψ:

A� ϕ
B� w(A, ϕ)

A||B� ϕ

For architecture A and property ϕ:

A� ϕ
w(A, ϕ)
A� ϕ

(a) Rule Inc-Synt (b) Rule A2R

Fig. 1. Rules Inc-Synt and A2R, implementing the incremental synthesis style

– δ′((qs, qϕ), i) = (q′s, q′ϕ) where q′s ∈ δs(qs, i ∩ inp(p)), q′ϕ ∈ δϕ(qϕ, i)} if i ∩ out(q) =
γ(q′s), and δ′((qs, qϕ), i) = ⊥, δ(⊥, i) = ⊥, otherwise.

– c′(qs, qϕ) = c(qϕ), c′(⊥) = 0.

The language ofAψ is the unique weakest environment assumption: suppose that there
exists an environment assumption ψ′ with L(Aψ) � ψ′, then there is a sequence γ in
ψ′ �L(Aψ) for which there exists a strategy t such that the computation resulting from
γ and t satisfies ϕ, while the computation resulting from γ and s does not satisfy ϕ. This
contradicts that s is dominant. ��

Theorem 4 can be used to synthesize a distributed system incrementally, i.e., by
constructing one process at a time and propagating the environment assumptions. This
synthesis style corresponds to the repeated application of Rule Inc-Synt, shown in Fig-
ure 1a: in order to prove the admissibility of a specification ϕ in an architecture A||B, we
show that ϕ is admissible in A, and the resulting environment assumption is admissible
in B. Once the full system has been synthesized, we verify that the remaining envi-
ronment assumption is true, which proves that the specification holds for all possible
inputs. This last step corresponds to an application of Rule A2R, shown in Figure 1b.

Theorem 5. Rules Inc-Synt and A2R are sound.

6 Compositional Synthesis for Safety Properties

With the incremental synthesis approach of Rules Inc-Synt and A2R, we reduce the
synthesis problem for the distributed system to a sequence of admissibility checks over
individual processes. The disadvantage of incremental synthesis is its inherent sequen-
tiality: we cannot consider processes in parallel; additionally, each application of Rule
Inc-Synt increases the size of the specification.

In this section, we introduce a compositional approach, where the processes are con-
sidered independently of each other. Figure 2a shows the compositional synthesis rule
Safety-Comp-Synt. In order to synthesize an implementation for specification ϕ in the
distributed architecture A1||A2, we check whether ϕ is admissible on both A1 and A2. If
ϕ is admissible on both A1 and A2, it is also admissible on A1||A2. For the final check
whether the specification is satisfied for all environment behaviors, we model check the
resulting dominant strategy. This last step corresponds to an application of Rule MC,
shown in Figure 2b.

Automatic Compositional Synthesis of Distributed Systems 187

For architectures A, B and safety property ϕ:

A� ϕ
B� ϕ

A||B� ϕ

For architecture A, property ϕ, and
a strategy s:

s |= ϕ
A� ϕ

(a) Rule Safety-Comp-Synt (b) Rule MC

Fig. 2. Rules Safety-Comp-Synt and MC, implementing the compositional synthesis style

Note that Rule Safety-Comp-Synt is restricted to safety properties. The rule is in
fact not sound for liveness properties. Consider ϕ = (( a) ↔ ( c)) ∧ (( b) ↔
( c)), where a is the output of A1, b is the output of A2, and c is the output of
the external environment of A1||A2. A dominant strategy s1 for A1 is to wait for the
first b and then, in the next step, output a. Suppose there are, on some input sequence,
infinitely many c and some b, or only finitely many c, then s1 satisfies ϕ. On the other
hand, if there are infinitely many c but no b, then ϕ is violated no matter what strategy A1

chooses. Hence, s1 is dominant. Likewise, a dominant strategy for A2 is to wait for the
first a and then, in the next step, produce a b. However, A1||A2 does not have a dominant
strategy for ϕ, because we require A1||A2 to predict whether or not the environment will
set c to true infinitely often. Any strategy will fail this objective on at least some input
sequence; however, given such an input sequence there is always a strategy that makes
the correct prediction for that particular sequence.

In the following, we prove that Rule Safety-Comp-Synt is sound for safety prop-
erties. We will adapt Rule Safety-Comp-Synt to arbitrary properties in Section 7. The
reason for the soundness of Rule Safety-Comp-Synt is that the parallel composition of
two dominant strategies is again dominant.

Lemma 1. For a safety property ϕ it holds that if s1 is dominant for A1 and s2 is domi-
nant for A2, then s1||s2 is dominant for A1||A2.

Proof. Let O1,O2, and O12 be the output variables of the processes in A1, A2, and
A12, respectively, and let V be the set of variables in all three architectures. Suppose,
by way of contradiction, that there exists a sequence γ ⊆ (2V�O12)ω of valuations of
variables outside the control of the processes in A1||A2 such that the computation σ =
comp(s1||s2, γ) resulting from s1||s2 does not satisfy ϕ, but there exists a strategy t such
that the resulting computation σ′ = comp(t, γ) satisfies ϕ. We pick the smallest prefix
δ ·η of σ, where δ ∈ (2V)∗, η ∈ 2V such that every infinite extension of δ ·η violates ϕ but
there is an infinite extension σ′′ of δ that agrees with σ on the variables V �O12 outside
the control of the processes in A1||A2 and that satisfies ϕ. Such a prefix exists because
ϕ is a safety property. The prefix cannot be the empty sequence, because otherwise
all sequences that agree with σ on V � O12, including σ′, would violate ϕ. The last
position η of the prefix contains decisions of both s1 and s2. We make the following
case distinction:

– There is an infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(V�O1) = η∩(V�O1)
such that σ′′′ |= ϕ, i.e., the violation of ϕ is the fault of strategy s1. In this case, s1 is

188 W. Damm and B. Finkbeiner

not dominant, because the sequence that results from restrictingσ′′′ to the variables
V�O1 outside the control of A1 causes s1 to violate ϕ, while an alternative strategy,
producing the outputs of σ′′′, would satisfy ϕ.

– There is no infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(V�O1) = η∩(V�O1)
such that σ′′′ |= ϕ, i.e., the violation of ϕ is (at least also) the fault of strategy s2.
In this case, s2 is not dominant, because the sequence that results from restricting
σ′′ to the variables V � O2 outside the control of A2 causes causes s2 to violate ϕ,
while an alternative strategy, producing the outputs of σ′′, would satisfy ϕ.

Either case contradicts the assumption that s1 and s2 are dominant. ��
In light of the observation that Rule Safety-Comp-Synt cannot be generalized to live-

ness properties, it is not surprising that Lemma 1 does not hold for liveness properties
either. Consider the specification ( a) ∧ ( b), where a is the output of A1 and b is
the output of A2. A dominant strategy s1 for A1 is to wait for the first b and then, in the
next step, output a. The strategy guarantees the specification on all paths that have a b
somewhere; no strategy for A1 satisfies the specification on paths without a b. Likewise,
a dominant strategy for A2 is to wait for the first a and then, in the next step, produce
a b. The composition s1||s2, will, however, never output an a or b and therefore violate
the specification, despite the fact that even winning strategies exist, such as the strategy
that immediately outputs a and b.

Lemma 1 implies the soundness of Rule Safety-Comp-Synt. The soundness of Rule
MC is trivial, as the strategy s is guaranteed to satisfy the specification ϕ.

Theorem 6. Rules Safety-Comp-Synt and MC are sound.

7 Compositional Synthesis for Liveness Properties

We saw in the preceding section that the soundness of Rule COMP-SYNT breaks for
liveness properties, because the composition of two dominant strategies is not neces-
sarily also dominant. In this section, we propose an alternative notion of admissibility,
which we call bounded admissibility, which is preserved under composition.

We motivate bounded dominance with the example from Section 6. Consider again
the property ϕ = ( a)∧ ( b) where a is the output of A1 and b is the output of A2. We
introduced the dominant strategy s1 for A1, which waits for the first b before outputting
a. Strategy s1 is problematic, because it is dominant for A1, but does not result in a
dominant strategy s1||s2 for A1||A2, when combined with the corresponding strategy s2

for A2, which waits for the first a before outputting b.
The problem is that both s1 and s2 postpone their respective output indefinitely, be-

cause they both wait for the other strategy to start. Bounded dominance refines the val-
uation of the strategy by counting the number of steps it takes before a and b become
true. This number is compared to a fixed bound n, say n = 5. Strategy s1 is not dom-
inant with respect to bound n, because it may unnecessarily exceed the bound. There
is an n-dominant strategy s′1, which sets a in the very first step and therefore meets the
bound whenever possible, i.e., as long as b arrives within 5 steps. The corresponding
strategy s′2 for A2, which outputs b in the first step, is n-dominant for A2. Replacing s1

Automatic Compositional Synthesis of Distributed Systems 189

1

2 3

∗

¬a ¬b

¬a ¬b

Fig. 3. Universal co-Büchi automaton for the LTL formula ϕ =  (( a) ∧ ( b)). The states
depicted with double circles (2 and 3) are the rejecting states in F.

and s2 with s′1 and s′2 solves the problem: The combined strategy s1||s2 is n-dominant
for A1||A2.

We prepare the definition of bounded dominance by defining the measure of a com-
putation. The measure captures how quickly a strategy makes progress with respect to
a liveness property. We define the measure with respect to a representation of the spec-
ification as a universal co-Büchi automaton. Such an automaton can be produced with
standard LTL-to-Büchi translation algorithms, by first constructing a nondeterministic
Büchi automaton for the negation of the specification and then dualizing the automaton
to obtain a universal co-Büchi automaton for the complement language [13,8]. If the
specification is a conjunction of properties, the size of the automaton is linear in the
number of conjuncts: we apply the translation to the individual conjuncts, resulting in
automata with an exponential number of states in the length of the conjunct, and then
compose the automata by branching (universally) from the initial state into the other-
wise disjoint subautomata for the conjuncts.

Lemma 2. Let ϕ = ϕ1∧ϕ2∧. . .∧ϕn be an LTL formula that consists of a conjunction of
properties. There is a universal co-Büchi automaton that accepts exactly the computa-
tions that satisfy ϕ, such that the automaton consists of subautomata for the individual
conjuncts that only overlap in the initial state. The size of the automaton is exponential
in the length of the largest conjunct and linear in the number of conjuncts.

The automaton accepts a computation iff the number of visits to rejecting states is
finite on every path of the run tree. We define the measure of the computationσ, denoted
by measureϕ(σ) as the supremum of the number of visits to rejecting states over all paths
of the run tree of the automaton for ϕ. If there is no run tree, we set the measure to∞.

As an example, consider ϕ =  (( a) ∧ ( b)). The universal co-Büchi automaton
for ϕ is shown in Figure 3. The computation {a, b}ω has measure 0, because the run tree
only has a single path, labeled everywhere with state 1. The computation ∅{a}{a, b}ω has
measure 2: There are three paths, an infinite path labeled with state 1 everywhere, and
two finite paths, one labeled with state 1 followed by state 2, and one labeled with state
1, followed by two times state 3. The number of visits to rejecting states are thus 0, 1,
and 2, respectively, and the supremum is 2.

Let n be a fixed natural number. We say that a strategy t : (2I)∗ → 2O is dominated
with bound n (or short: n-dominated) by a strategy s : (2I)∗ → 2O, denoted by t�n s, iff,

190 W. Damm and B. Finkbeiner

For architectures A, B and
arbitrary property ϕ:

A�n ϕ
B�n ϕ

A||B�n ϕ

For architecture A, property ϕ given as
an LTL formula over V �

⋃
p∈P out(p), and

property ψ given as an LTL formula over V :

A�n ψ

A�n ϕ ∧ ψ
(a) Rule General-Comp-Synt (b) Rule Decomp

Fig. 4. Rules General-Comp-Synt and Decomp

for every sequence γ ∈ (2V�O)ω for which the measure of the computation comp(t, γ)
resulting from t is less than or equal to n, the measure of the computation comp(s, γ)
resulting from s is also less than or equal to n. A strategy s is n-dominant iff, for all
strategies t, t �n s. A property ϕ is n-admissible in an architecture A, denoted by A�n

ϕ, iff there is an n-dominant implementation.
If the universal automaton is a safety automaton, then dominance and n-dominance

are equivalent. Since the safety automaton does not have any rejecting states, the mea-
sure is either 0, if the property is satisfied, or ∞, if the property is violated and there
is, therefore, no run tree. Hence, the definitions of dominance and bounded dominance
agree for any choice of the bound.

As an example property that has a dominant strategy but no n-dominant strategy
for any bound n, consider ( a) ↔ ( b), where a is the input and b the output. This
property can be satisfied for every possible input by waiting for an a before setting the b.
For example, setting b in the step after the first a is observed is a winning and therefore
dominant strategy. However, this strategy, as well as any other strategy that waits for an
a before setting b, is not n-dominant for any choice of n: consider the situation where a
occurs exactly every n steps; then the measure of the strategy would be n + 1, while an
alternative strategy that produces a b every n steps has only measure n.

Note that bounded admissibility does not imply admissibility; any specification of
the form ( a) ∧ (¬a) ∧ (¬a) ∧ ϕ, where a is an output, is 1-admissible, because it
is impossible to achieve a measure ≤ 1; obviously, there are formulas ϕ for which this
specification is not admissible.

Bounded dominance can be checked with a small variation of the construction from
Section 4: we simply modify the universal automaton A1, which verifies that strategy
sp achieves its goal, as well as the universal automatonA2, which checks whether any
alternative strategy would achieve the goal, by counting the number of visits to rejecting
states up to n.

Theorem 7. For a fixed bound n, the problem of deciding whether a property given
as an LTL formula is n-admissible in a single-process architecture is 2EXPTIME-
complete. An n-dominant strategy can be computed in doubly-exponential time.

Rule General-Comp-Synt, shown in Figure 4a, generalizes the compositional syn-
thesis approach from Rule Safety-Comp-Synt to general properties. Because Rule

Automatic Compositional Synthesis of Distributed Systems 191

General-Comp-Synt is based on bounded admissibility �n instead of standard ad-
missibility�, Lemma 1 now holds for general properties:

Lemma 3. For an arbitrary property ϕ it holds that if s1 is n-dominant for A1 and s2 is
n-dominant for A2, then s1||s2 is n-dominant for A1||A2.

The proof of Lemma 3 is analogous to the proof of Lemma 1. Lemma 3 implies the
soundness of Rule General-Comp-Synt.

Theorem 8. Rule General-Comp-Synt is sound.

8 Property Decomposition

Specifications are usually given as a conjunction of properties. The goal of property
decomposition is to avoid analyzing all properties in the synthesis of every process, and
instead only focus on a small set of “relevant” properties for each process.

In general, it is not sound to leave out conjuncts when checking the admissibility
of the specification for some process, even if, overall, every conjunct is “covered” by
some process. The problem is that the missing conjuncts may invalidate admissibility.
Consider, for example, the properties ϕ =  (a ↔  b) and ψ =  (c ↔ b), where
a is an input variable, and b and c are output variables. Individually, both ϕ and ψ are
admissible, but their conjunction ϕ ∧ ψ is not: in order to set the value of c correctly, a
dominant strategy would need to predict the future input a.

Conjuncts that do not refer to output variables enjoy, however, the following
monotonicity property: if ϕ does not refer to the output variables, then for every
(n-)admissible property ψ it holds that ϕ ∧ ψ is also (n-)admissible.

Theorem 9. Let ϕ be an LTL formula over V �
⋃

p∈P out(p), and ψ an LTL formula
over V. Then it holds that if ψ is (n-)admissible, then ϕ ∧ ψ is also (n-)admissible.

Proof. Suppose, by way of contradiction, that there is a strategy s : (2I)∗ → 2O that
is dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence γ ∈
(2V�O)ω of variable valuations that are not under the control of the process, such that the
computation resulting from t satisfies ϕ ∧ ψ and the computation resulting from s does
not. Since ϕ only refers to uncontrollable variables, the truth value of ϕ is determined
by γ; we therefore know that ϕmust also be satisfied by the computation resulting from
s. Hence, ψ must be violated on the computation resulting from s, while it is satisfied
by the computation resulting from t. This contradicts the assumption that s is dominant
for ψ.

For bounded admissibility assume, analogously, that there is a strategy s that is
n-dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence
γ ∈ (2V�O)ω such that measureϕ∧ψ(comp(t, γ)) ≤ n < measureϕ∧ψ(comp(s, γ)). Since
the subautomata for the conjuncts only intersect in the initial state, every path of the run
tree is, starting with the second state, either completely in the subautomaton for ϕ or in
the subautomaton for ψ. Since ϕ only refers to uncontrollable variables, the paths, and,

192 W. Damm and B. Finkbeiner

hence, the number of visits to rejecting states in the subautomaton of ϕ are the same
for comp(s, γ) as for comp(t, γ). Hence, there must be some path in the subautomaton
for ψ where comp(s, γ) visits rejecting states more than n times, while comp(t, γ) visits
rejecting states less than or equal to n times. This contradicts the assumption that s is
n-dominant for ψ. ��

Theorem 9 can be used to eliminate conjuncts that do not refer to output vari-
ables. This decompositional synthesis style corresponds to applications of Rule Decomp,
shown in Figure 4b.

9 The Compositional Synthesis Algorithm

Putting the results from the preceding sections together, we obtain the following synthe-
sis algorithm. For an architecture A = A1||A2|| . . . composed of multiple single-process
architectures and a specification ϕ, given as a conjunction ϕ = ϕ1 ∧ ϕ2 ∧ . . . ϕm of LTL
formulas, we do the following:

1. Applying Rule General-Comp-Synt, check for all subarchitectures Ai whether
Ai �n ϕ; if so, synthesize a dominant (or n-dominant, for liveness properties)
strategy.

– for this purpose, use Rule Decomp to identify a subset C ⊆ {1, 2, . . . ,m} of the
conjuncts such that Ai �n

∧
j∈C ϕ j, and

– compose the n-dominant strategies according to Lemma 3.
2. Apply Rule MC to check whether the resulting strategy satisfies ϕ. If yes, a correct

implementation has been found.

For specifications given as LTL formulas, the complexity of the compositional syn-
thesis algorithm is doubly-exponential in the length of the formula. Since the synthesis
of the strategies for the subarchitectures is independent of each other, the complexity
of finding the strategies is linear in the number of processes; the complexity of com-
posing the strategies and checking the resulting strategy is exponential in the number of
processes.

10 Conclusions

We have presented an approach for the synthesis of distributed systems from temporal
specifications. For admissible specifications, the complexity of our construction is dra-
matically lower than that of previously known algorithms. Since the synthesis method
is compositional, it can easily be parallelized. The constructed implementations are
modular and much smaller than those constructed by previous approaches that work on
a “flattened” state space. The construction is furthermore universally applicable to all
system architectures, including the large class of architectures for which the standard
synthesis problem is undecidable.

Automatic Compositional Synthesis of Distributed Systems 193

References

1. Bloem, R.P., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Automatic
hardware synthesis from specifications: A case study. In: Proc. DATE, pp. 1188–1193 (2007)

2. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthesizing ro-
bust systems with RATSY. In: Open Publishing Association (ed.) SYNT 2012, Electronic
Proceedings in Theoretical Computer Science, vol. 84, pp. 47–53 (2012)

3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer,
Heidelberg (2012)

4. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math., Upsala, pp.
23–25 (1963)

5. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer, Heidelberg (2011)

6. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

7. Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: Peled, D.A., Tsay, Y.-
K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 263–277. Springer, Heidelberg (2005)

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for
Technology Transfer 15(5-6), 519–539 (2013)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

10. Henriksen, J.G., Jensen, Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm,
A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110.
Springer, Heidelberg (1995)

11. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

12. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Proc. of ICTL
(1997)

13. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of 46th IEEE
Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Oc-
tober 23–25, pp. 531–540 (2005)

14. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. FOCS
1990, pp. 746–757 (1990)

15. de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol. 1536.
Springer, Heidelberg (1998)

Automated Real Proving in PVS via MetiTarski

William Denman1,� and César Muñoz2

1 University of Cambridge, Computer Laboratory, UK
wd239@cam.ac.uk

2 NASA, Langley Research Center, US
cesar.a.munoz@nasa.gov

Abstract. This paper reports the development of a proof strategy that
integrates the MetiTarski theorem prover as a trusted external decision
procedure into the PVS theorem prover. The strategy automatically dis-
charges PVS sequents containing real-valued formulas, including tran-
scendental and special functions, by translating the sequents into first
order formulas and submitting them to MetiTarski. The new strategy
is considerably faster and more powerful than other strategies for non-
linear arithmetic available to PVS.

1 Introduction

Formally reasoning about the behavior of safety-critical cyber-physical systems
is a difficult and well-known problem. To address the verification of these real-
world systems, state-of-the-art formal tools should be able to reason about more
than just polynomial functions. MetiTarski [1] is an automated theorem prover
for first order formulas containing inequalities between transcendental and spe-
cial functions such as sin, cos, exp, sqrt, etc. A modified resolution framework
guides the proof search, replacing instances of special functions by verified up-
per and lower polynomial bounds. During resolution, decision procedures for the
theory of real closed fields (RCF) are called to delete algebraic clauses that are
inconsistent with other derived facts. The current implementation of MetiTarski
takes advantage of the highly-efficient non-linear satisfiability methods within
the SMT solver Z3 for RCF decisions.

The Prototype Verification System (PVS) [8] is a formal verification environ-
ment that consists of a specification language, based on a classical higher-order
logic enriched with an expressive type system, and an interactive theorem prover
for this logic. The PVS specification language is strongly typed and supports pred-
icate subtyping. In particular, the numerical types are defined such that nat (natu-
ral numbers) is a subtype of int (integers), int is a subtype of rat (rationals), rat

� Research supported by SRI International, under NSF Grant CNS-0917375, and En-
gineering and Physical Sciences Research Council, under grants EP/I011005/1 and
EP/I010335/1. Author would like to thank the National Institute of Aerospace for a
short visit supported by the Assurance of Flight Critical System’s project of NASA’s
Aviation Safety Program at Langley Research Center under Research Cooperative
Agreement No. NNL09AA00A.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 194–199, 2014.
c© Springer International Publishing Switzerland 2014

Automated Real Proving in PVS via MetiTarski 195

is a subtype of real (reals), and real is a subtype of the primitive type number.
The subtyping hierarchy of numerical types and the fact that rational arithmetic
is built-in makes PVS well suited for real number proving. In particular, ground
numerical expressions are automatically (and efficiently) simplified by the PVS
theorem prover. For example, the numerical expression 1/3+1/3+1/3 is simplified
to 1 and this simplification does not require a proof. PVS has been extensively used
at NASA in the formal verification of algorithms and operational concepts for the
next generation of air traffic management systems.1

The NASA PVS Library2, which is the de facto PVS standard library, in-
cludes several strategies for manipulating [3] and simplifying [5] real number
formulas. The most advanced proof strategies for real number proving available
in the NASA PVS Library are interval [2,7] and bernstein [6]. These strate-
gies are based on provably correct interval arithmetic and Bernstein polynomial
approximations, respectively. The strategy interval automatically discharges
sequent formulas involving transcendental and other special functions. The strat-
egy bernstein automatically discharges simply-quantified multivariate polyno-
mial inequalities. The main characteristic of these strategies is that they preserve
soundness, i.e., proofs that use interval and bernstein can be expanded into
a tree of primitive PVS proof rules. Unfortunately, this also means that these
strategies are not as efficient as specialized theorems provers like MetiTarski.

For interactive theorem provers such as PVS, access to external decision pro-
cedures for the theory of real closed fields can greatly speed up the verification
time of large and complex algorithms. This paper describes the integration of
MetiTarski as a trusted oracle within PVS. This integration greatly improves the
automated capabilities of PVS for proving properties involving real numbers.

2 The PVS Strategy metit

The proof strategy that integrates the RCF automated theorem prover Meti-
Tarski into the PVS theorem prover is called metit. This strategy, which is
currently available as part of the NASA PVS Library for PVS 6.0, requires
MetiTarski and an external arithmetic decision procedure such as Z3.3

In its simplest form, the strategy metit can be used to prove universally-
quantified formulas involving real numbers such as

∀v ∈ [200, 250], |φ| ≤ 35 :

∣∣∣∣ 180 g

πv 0.514
tan(

πφ

180
)

∣∣∣∣ < 3.825, (1)

where g = 9.8 (gravitational acceleration in meters per second squared) and π
is the well-known irrational constant. This formula, which appears in the formal
verification of an alerting algorithm for parallel landing [4], states that for an

1 http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html.
2 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
3 The full distribution of the NASA PVS Library includes pre-installed binaries of
MetiTarski 2.2 and Z3 4.3.1 for Mac OSX 10.7.3 and 64-bits Linux.

http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

196 W. Denman and C. Muñoz

aircraft flying at a ground speed between 200 and 250 knots and maximum bank
angle of 35 degrees, the angular speed is less than 3.825 degrees per second.

Figure 1 shows Formula 1 as a sequent in PVS. The double hash symbol
“##” is the inclusion operator of closed intervals, which are denoted using the
parenthesis operator “[| |]”. The sequent, which consists of one universally-
quantified formula in the consequent, is automatically discharged by the proof
strategy metit in less than one second. The strategy uses PVS’ internal utilities
to parse the sequent. If the sequent is recognized as a set of first order formulas
involving real numbers, the strategy translates the sequent into a TPTP4 formula
and submits it to MetiTarski. If MetiTarski returns SZS status Theorem, the
result is trusted by PVS and the sequent is closed. If MetiTarski returns SZS
status Timeout or SZS status GaveUp then the sequent in question is returned
back to PVS unchanged. Application of other proof strategies would be required
at this stage.

|-------

{1} FORALL (v, phi:real): abs(phi) <= 35 AND v ## [|200, 250|] IMPLIES

abs(180*9.8*tan(phi*pi/180)/(pi*v*0.514)) < 3.825

Rule? (metit)

Metitarski Input =

fof(pvs2metit,conjecture, (![V1, PHI2]: (((abs(PHI2) <= 35) & (200 <=

V1 & V1 <= 250)) => (abs((((180*(98/10))*tan(((PHI2*pi)/180)))/((pi*V1)

*(514/1000)))) < (3825/1000))))).

SZS status Theorem for tr_35.tptp

Processor time: 0.680 = 0.184 (Metis) + 0.496 (RCF)

Trusted source: MetiTarski.

Q.E.D.

Fig. 1. Automated proof of Formula 1 using metit

Although universally-quantified real-number formulas such as Formula 1 oc-
cur in the verification of complex systems, a more common use case for the
strategy metit is in the context of an interactive proof of a large theorem where
multiple formulas appear in a sequent. The strategy metit only deals with se-
quents that are sets of first order formulas containing real-number inequalities
between transcendental and special functions. However, the user may optionally
specify formulas of interest in a given sequent. Other formulas in the sequent
will be ignored by the strategy.

Moreover, in an interactive theorem prover such as PVS, sequent formulas may
also involve data structures such as records, arrays, tuples, and abstract data
types. For example, the sequent in Figure 2 appears in a lemma that characterizes

4 The TPTP format is used by the Thousands of Problems for Theorem Provers library
(http://www.cs.miami.edu/~{}tptp.)

http://www.cs.miami.edu/~{}tptp

Automated Real Proving in PVS via MetiTarski 197

aircraft trajectories that are repulsive.5 This sequent consists of 12 antecedent
formulas and one consequent formula. All of the formulas are quantifier-free, but
free-variables (Skolem constants, in PVS terminology) occurring in the sequent
can be understood as universally-quantified variables. In addition to the real
variable eps, this sequent involves record variables v, rd, dv, and mps, which
represent vectors in a 2-D Euclidean space.

The strategy metit does not directly deal with data structures. However, it
recognizes that an expression such as v‘x, which accesses the field x of 2-D
vector variable v, denotes a real-number variable. Hence, the strategy appropri-
ately translates record and tuple access expressions as variables in the TPTP
syntax. Furthermore, the strategy metit allows the user to specify the formulas
of interest that are to be sent to MetiTarski. The proof command (metit *),
where the asterisk symbol “*” specifies all formulas in the sequent, translates
the 13 formulas of the sequent into a TPTP formula involving 9 variables. This
particular TPTP formula is discharged by MetiTarski in less than 0.2 seconds.

Further analysis of the sequent in Figure 2 reveals that all the formulas in the
sequent are necessary to discharge it. For example, the proof command (metit

(^ -1)), where (^ -1) denotes all formulas in the sequent but the first one in
the antecedent, does not succeed to prove the sequent. In total, the proof of the
lemma where this particular sequent appears requires 171 invocations of metit
and, including all the other proof rules, the lemma is proved in 37 seconds. The
largest sequent discharged by metit in this proof involves 13 variables. It is
important to note that none of these sequents can be discharged by any other
automated strategies available to PVS.

The use case for the PVS strategy metit is ideally for lemmas containing tran-
scendental functions and special functions. However proofs of purely polynomial
problems can also take advantage of the integration of PVS, MetiTarski, and Z3.
What distinguishes Z3 from other state-of-the-art SMT solvers is that its proof
heuristics for non-linear real arithmetic are customizable through a strategy lan-
guage. MetiTarski itself also implements its own set of strategies that work in
combination with those of Z3.

3 Results and Conclusion

To test the capabilities of the integration of MetiTarski with PVS, the proof
strategy metit was run on the suite of examples from the PVS contribution
interval arith.6 These examples involve trigonometric and other special func-
tions, which are not supported by the strategy bernstein. The experiments were
run on an Intel Core2Duo 2.4GHz processor with 4GB of RAM. The results are

5 Lemma repulsive criteria iterative reduces seq divergent special of theory
repulsive iterative in the contribution ACCoRD of the NASA PVS Library. Thanks
to Anthony Narkawicz, NASA Langley, for providing this example.

6 The test suite is available in the theory metit examples in the contribution
MetiTarski of the NASA PVS Library.

198 W. Denman and C. Muñoz

repulsive_criteria_iterative_reduces_seq_divergent_special.3.1.1.1 :

[-1] eps = 1 OR eps = -1

[-2] v`y*eps <= 0

[-3] rd`y*eps < 0

[-4] ((v`x = 0 AND v`y = 0) IMPLIES rd`x >= 0)

[-5] ((v`x /= 0 OR v`y /= 0) IMPLIES rd`x > v`x)

[-6] rd`x*v`y*eps-rd`y*v`x*eps <= 0

[-7] mps`y*eps+rd`y*eps < 0

[-8] v`x >= 0

[-9] (dv`x /= 0 OR dv`y /= 0)

[-10] mps`x*rd`y*eps-mps`y*rd`x*eps <= 0

[-11] -1*(dv`x*mps`y*eps)-dv`x*rd`y*eps+ dv`y*mps`x*eps+dv`y*rd`x*eps < 0

[-12] ((rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y < 0 AND

dv`x*rd`y*eps-dv`y*rd`x*eps < 0) OR (rd`x*mps`x+rd`x*rd`x+

rd`y*mps`y+rd`y*rd`y >= 0 AND dv`x*mps`x+dv`x*rd`x+dv`y*mps`y+

dv`y*rd`y > rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y

AND dv`x*rd`y*eps-dv`y*rd`x*eps <= 0))

|-------

[1] (dv`x /= 0 OR dv`y /= 0) AND dv`y*eps < 0 AND ((v`x = 0 AND v`y = 0)

IMPLIES dv`x >= 0) AND ((v`x /= 0 OR v`y /= 0) IMPLIES dv`x > v`x)

AND dv`x*v`y*eps-dv`y*v`x*eps <= 0

Fig. 2. Sequent involving 13 formulas and 9 variables

Table 1. Interval vs metit strategy run-times

Lemma interval (s) metit (s) Speed up

sqrt23 1.39 0.154 9.27
sin6sqrt 1.76 0.120 14.67
sqrtx3 1.65 0.195 8.46
tr 35 1.97 0.680 2.77
tr 35 le 1.87 0.113 16.55
A and S 1.38 0.036 38.30
atan implementation 2.55 0.154 16.56
ex1 ba 1.59 0.073 21.78
ex2 ba 1.51 0.049 30.82
ex3 ba 1.65 0.059 27.97
ex4 ba 1.71 0.078 21.92
ex5 ba 1.84 0.075 24.53
ex6 ba 1.60 0.105 15.24
ex7 ba 1.54 0.111 13.87

displayed in Table 1. Each row is a separate attempt to prove the specified lem-
mas. The next two columns each list the total proof time for the respective proof
strategy. On average, the speed up to proof times was on the factor of 18. In an
interactive proof where multiple sub-problems of the type listed in Table 1 occur,

Automated Real Proving in PVS via MetiTarski 199

the potential reduction in overall proof time is substantial. However, it should
be noted that while interval is a proof-producing strategy, i.e., interval pre-
serves the soundness of the PVS proof system, metit integrates MetiTarski and
its RCF decision methods as trusted oracles into the PVS theorem prover.

Proving theorems over the reals with proof assistants such as PVS can require
a significant amount of manual and computational effort. Sending difficult sub-
problems to trusted oracles is an accepted method for decreasing proof times.
Since MetiTarski uses several external arithmetic decision methods (Mathemat-
ica, QEPCAD or Z3) itself for deciding the satisfiability of RCF sentences, the
strategy metit greatly expands the number of options available to PVS for au-
tomatically dealing with problems from the theory of the reals. Experiments
show that the new strategy is considerably better than other methods currently
available to PVS for closing sequents containing real-valued functions.

For a certification environment, where external oracles may not be allowed,
the PVS development includes several means to disable trusted strategies. For
instance, metit has no effect on any theory that imports MetiTarski@Disable.
Furthermore, the Emacs command M-x disable-oracle MetiTarski temporar-
ily disables the strategy during a PVS session and the proveit option -disable

MetiTarski disables the strategy while reproving a PVS theory in batch mode.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44, 175–205 (2010)

2. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for
interval arithmetic. IEEE Transactions on Computers 58(2), 226–237 (2009)

3. Di Vito, B.: A PVS prover strategy package for common manipulations. Technical
Memorandum NASA/TM-2002-211647, NASA Langley Research Center (2002)

4. Muñoz, C., Carreño, V., Dowek, G., Butler, R.: Formal verification of conflict de-
tection algorithms. International Journal on Software Tools for Technology Trans-
fer 4(3), 371–380 (2003)

5. Muñoz, C., Mayero, M.: Real automation in the field. Contractor Report NASA/CR-
2001-211271, ICASE, Langley Research Center, Hampton VA 23681-2199, USA (De-
cember 2001)

6. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomi-
als and applications to global optimization. Journal of Automated Reasoning 51(2),
151–196 (2013), http://dx.doi.org/10.1007/s10817-012-9256-3

7. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for global
optimization. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164,
pp. 326–343. Springer, Heidelberg (2014)

8. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/s10817-012-9256-3

Quiescent Consistency:
Defining and Verifying Relaxed Linearizability

John Derrick1, Brijesh Dongol1, Gerhard Schellhorn2,
Bogdan Tofan2, Oleg Travkin3, and Heike Wehrheim2

1 Department of Computing, University of Sheffield, Sheffield, UK
2 Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
3 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany

Abstract. Concurrent data structures like stacks, sets or queues need to be highly
optimized to provide large degrees of parallelism with reduced contention. Lin-
earizability, a key consistency condition for concurrent objects, sometimes limits
the potential for optimization. Hence algorithm designers have started to build
concurrent data structures that are not linearizable but only satisfy relaxed con-
sistency requirements.

In this paper, we study quiescent consistency as proposed by Shavit and
Herlihy, which is one such relaxed condition. More precisely, we give the first
formal definition of quiescent consistency, investigate its relationship with lin-
earizability, and provide a proof technique for it based on (coupled) simulations.
We demonstrate our proof technique by verifying quiescent consistency of a (non-
linearizable) FIFO queue built using a diffraction tree.

1 Introduction

The growth of multi- and many-core architectures has led to the increased use of algo-
rithms that allow multiple processes to access and update a single shared data structure.
Typically, these algorithms are concurrent (more efficient) re-implementations of stan-
dard data structures such as stacks, queues, sets, etc. Simple concurrent algorithms use
locks to control access to the shared state, but more sophisticated algorithms dispense
with locking and use non-blocking primitives such as compare-and-swap for synchro-
nisation, enabling a finer granularity of atomicity. Because fine-grained atomicity in-
creases the potential for parallelism, which in turn improves efficiency, such algorithms
are set to become increasingly commonplace [19,13].

The subtlety and complexity of fine-grained concurrent algorithms necessitates for-
mal verification of their correctness. Several notions of correctness have been proposed
including sequential consistency, quiescent consistency, and linearizability, which are
defined by mapping the behaviours of a concurrent data structure to the behaviours of
the corresponding abstract (sequential) data structure.

To date, most attention has been focused on linearizability as introduced by Her-
lihy and Wing [14], which requires that each operation call appears to take effect
instantaneously at some point between its invocation and response. A number of ap-
proaches to proving linearizability have been developed, and several algorithms have
been shown to be linearizable [5,21,3,17,9,20]. The methodology used in these proofs

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 200–214, 2014.
c© Springer International Publishing Switzerland 2014

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 201

varies, and ranges from shape analysis and separation logic to rely-guarantee reasoning
and simulation-based methods.

However, linearizability is not the only relevant condition – weaker notions such
as sequential consistency [15], quiescent consistency [13], and eventual consistency
[18], as well as relaxed forms of linearizability like quasi linearizability [2] and k-
linearizability [12] have also been defined. As algorithm designers seek to further de-
crease contention among the parallel processes (and increase efficiency) [19], these
weaker criteria are set to become increasingly important. Below, we shall see example
algorithms that use counting networks [4] and diffraction trees [1] to reduce contention.
These algorithms are not linearizable and only satisfy the weaker correctness criteria.

In his recent paper [19], Shavit proposes quiescent consistency as a promising cor-
rectness condition for concurrent data structures in the multi-core age. Stated informally,
quiescent consistency requires (1) operations to appear in a one-at-a-time sequential or-
der, and (2) operations separated by a period of quiescence (i.e., a period in which no
operation is executing) to appear to take effect in their real-time order. Hence, when-
ever an object becomes quiescent, its execution thus far must be equivalent to some
sequential execution [13]. However, despite this simple formulation there appears to be
no formal definition in the literature, let alone proof methodology to verify that an algo-
rithm is quiescent consistent. This paper addresses this shortcoming, and our aim is to
give the first formal definition of quiescent consistency and provide a proof technique
for it based on coupled simulations.

Coupled simulations [11] are a proof methodology used in refinement - developed
as an approach to non-atomic refinement in state-based systems [8], where the atomic
abstract operations are implemented via a non-atomic decomposition. Refinement tech-
niques have already proved useful in the verification of linearizability, see [10]. Here,
we employ coupled simulations to derive a methodology for showing that fine-grained
atomic concurrent algorithms are quiescent consistent, and apply it to prove quiescent
consistency of a concurrent queue implementation. Moreover, the latter proof is fully
mechanized using the interactive prover KIV [16].

The structure of this paper is as follows. In Section 2 we illustrate quiescent consis-
tency via two versions of a concurrent queue implementation, and in Section 3 we give
its formal definition. Background to the refinement and coupled simulation methodol-
ogy is provided in Section 4, and this is applied to prove quiescent consistency of one
of the queue versions in Section 5. Finally we conclude in Section 6.

2 Background

Quiescent consistency is a consistency requirement on concurrent data structures that is
weaker than linearizability, and therefore allows more optimizations via reduced con-
tention on the shared variables. In this section we present two queue implementations:
a non-blocking and a blocking queue, each of which is based on the architecture of
diffracting trees. We use these examples to illustrate linearizability and quiescent con-
sistency and the difference between these conditions.

The architecture of diffracting trees uses the following principle (adapted from count-
ing networks [4]): elements called balancers are arranged in a binary tree (with an ar-
bitrary depth). Each balancer contains one bit, which determines the direction in which

202 J. Derrick et al.

1

0

1
0

ebit

queue[1]

queue[0]

dbit

Fig. 1. A queue composed of two diffraction trees of level 1 and two queues

the tree is traversed; a balancer value of 0 causes a traversal up and a value 1 causes a
traversal down. The leaves of the tree point to a concurrent data structure. Operations
on the tree (and hence data structures) start at the root of the tree and traverse the tree
based on the balancer values. Each traversal is coupled with a bit flip, so that the next
traversal occurs along the other branch. Upon reaching a leaf, the process performs a
corresponding operation on the data structure at the leaf.

The running example used for the rest of this paper is an implementation of a queue
made up of two balancers and two queues, i.e., two diffracting trees with just one level,
one for dequeue and one for enqueue operations (see Figure 1). Enqueue and dequeues
share the two queues at the leaves of the trees.

The two operations enqueue and dequeue are implemented as follows (where Enq
and Deq are used to denote an atomic enqueue and dequeue):

enqueue(el:T) dequeue
E1: do lbit:=ebit; D1: do lbit:=dbit;
E2: until D2: until

CAS(ebit,lbit,1-lbit) CAS(dbit,lbit,1-lbit)
E3: Enq(queue[lbit],el) D3: return Deq(queue[lbit])

Here, the semantics of CAS (Compare-And-Swap) is that of an atomic comparison of
the stored local value with the shared variable followed by an assignment to the variable
if the values are still equal:

CAS(var,old,new) = atomic{if var=old then var:=new;return true
else return false}

In the implementation both operations read their corresponding bit and try to flip it.
When they succeed, they enqueue (or dequeue) the queue of their local bit. The two
queues work in FIFO order. There are two versions of the dequeue operation: a non-
blocking version, which returns empty when the Dequeue operation is executed on an
empty queue, and a blocking version, where the Deq waits until an element is found in
the queue. We will see that the former is not quiescent consistent while the latter is.

Now we take a look at the correctness conditions. We expect this structure to behave
like a queue, i.e., operate in FIFO order and, of course, never return a value by a de-
queue which has not been enqueued before. Consistency conditions for concurrent data
structures capture such expectations.

The general set up is as follows. Consistency requirements are usually defined via
a comparison of the histories of concurrent implementations and an atomic abstract
specification of the data structure. Histories are sequences of events, which can be invo-
cations and returns of particular operations (out of some set I) by particular processes

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 203

from a set P. Thus we define:

Event ::= inv〈〈P × I × IN〉〉 | ret〈〈P × I × OUT〉〉

Here, IN and OUT are the domains for inputs and outputs (which include a null el-
ement), respectively. Operation calls by concurrent processes may overlap, but those
by a single process are sequential. An operation call is pending if it has been invoked
but has not yet returned. An object (data structure) is quiescent if it has no pending
operation calls. Two operation calls are ordered if the return of the first operation call
precedes the invocation of the second.

Example 1. If we let P = IN, I = {enq, deq} and IN = OUT = {a, b, c, . . .}, a possible
history for the blocking concurrent queue implementation is the following:

h1 =̂ 〈inv(1, deq,), inv(2, enq, a), ret(2, enq,), inv(3, enq, b), ret(3, enq,),
inv(4, deq,), ret(4, deq, b), inv(5, deq,), ret(5, deq, a),
inv(6, enq, c), ret(6, enq,), ret(1, deq, c)〉

There is not much concurrency in this run: only the first dequeue is running concurrently
with the rest of the operations. Once started this dequeue is always pending until the
end of the history, so the history is quiescent initially and at the end only. Note that the
first dequeue must have already flipped the dbit when it starts. Thus the second dequeue
returns the element in the lower queue which is b. �

The essential question of correctness is then to ask: Is this history a correct queue be-
haviour? Two different ways of answering it are the following (first given informally).

Linearizability: Operation calls should appear to take effect in their order.

Quiescent consistency: Operation calls separated by a period of quiescence
should appear to take effect in their order.

Thus, linearizability provides the illusion that each operation applied by concurrent pro-
cesses takes effect instantaneously at some point between its invocation and its return.
For quiescent consistency this requirement is relaxed. A “meaningful” explanation of a
history must only be defined when the concurrent data structure in question is quiescent.

For example, history h1 is not linearizable: the first two enqueues start and finish be-
fore the second and third dequeue, yet the dequeues return the elements in the reverse
order. This is because the first dequeue has already flipped the dbit. The linearizability
criterion therefore cannot be met. However, it turns out that the blocking implemen-
tation, and in particular h1, is quiescent consistent: none of the intermediate states of
h1 are quiescent, and thus the consistency condition is not imposing any constraints on
orderings. So we can indeed find an appropriate sequential history which has the same
outcome as h1, namely for instance the following one:

h2 = 〈inv(3, enq, b), ret(3, enq,), inv(2, enq, a), ret(2, enq,),
inv(4, deq,), ret(4, deq, b), inv(5, deq,), ret(5, deq, a),
inv(6, enq, c), ret(6, enq,), inv(1, deq,), ret(1, deq, c)〉

204 J. Derrick et al.

Formally, one uses a matching function to relate each concurrent history (e.g., h1) to a
consistent sequential history (e.g., h2) that “explains” the behaviour of the concurrent
data structure with respect to a sequential execution. The requirements on the matching
function are dependent on the consistency condition under consideration.

The non-blocking version of the algorithm (in which dequeue returns empty on
empty queues) is not even quiescent consistent. This can be seen by the following his-
tory of the non-blocking queue:

h3 =̂ 〈inv(1, deq,), ret(1, deq, empty), inv(2, enq, a), ret(2, enq),
inv(3, deq,), ret(3, deq, empty)〉

In h3 we find lots of quiescent states, which necessitate keeping the order of operations.
The second dequeue does, however, not return the a which – due to the prior enqueue
– should be the result. Nevertheless, the blocking version of the queue is quiescent
consistent, and in the following we will precisely define what this means and how we
can prove it.

3 Quiescent Consistency

In this section, we formalise both linearizability and quiescent consistency with their
informal definitions in mind. Both notions of consistency compare a (possibly highly
concurrent) implementation with an abstract sequential specification S. In S, operations
(like enqueue and dequeue) are executed atomically. The consistency conditions then
compare the histories of the implementation and specification, and reorder the imple-
mentation’s histories in some way so that it matches the specification. Each consistency
condition formalises the allowed reorderings within the histories.

First of all, not all sequences of events are correct histories. Thus we need the notion
of a legal history: one that consists of matching pairs of invoke and return events plus
possibly some pending invocations, where an operation has started but not yet finished.

To formalise this we need some notation. We let History denote the set of all his-
tories. For a history h, #h is the length of the sequence, and h(n) its nth element (for
n : 1..#h). We use predicates inv?(e) and ret?(e) to check whether an event e ∈ Event
is an invoke or a return, and we let Ret! be the set of return events. We let e.p ∈ P be the
process executing the event e and e.i ∈ I the index of the abstract operation to which
the event belongs. We can then define a legal history:

Definition 1. Let h : seq Event be a sequence of events. Two positions m, n in h form a
matching pair, denoted mp(m, n, h) if

0 < m < n ≤ #h ∧ h(m).p = h(n).p ∧ h(m).i = h(n).i ∧
∀ k • m < k < n ⇒ h(k).p �= h(m).p

A position n in h is a pending invocation, denoted pi(n, h), if

1 ≤ n ≤ #h ∧ inv?(h(n)) ∧ ∀m • n < m ≤ #h ⇒ h(m).p �= h(n).p

h is legal, denoted legal(h), if

∀ n : 1..#h • if inv?(h(n)) then pi(n, h) ∨ ∃m : 1..#h • mp(n, m, h)
else ∃m : 1..#h • mp(m, n, h) �

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 205

A history is sequential if all invoke operations are immediately followed by their match-
ing returns. In the examples above, history h1 is not sequential, whereas h2 and h3 are,
and all are legal. Having defined the notion of pending invocation, we can now fix what
we mean by a quiescent state, or more precisely, quiescent history.

Definition 2. A legal history h is quiescent, written qu(h), if ¬∃ n • pi(n, h). �

Both the definition of linearizability and quiescent consistency are given by comparing
the histories generated by concurrent implementations with the sequential histories of
some given abstract atomic specification. For the moment, we just assume legal histories
to be given; in the next section we will precisely define these for our queue.

Definition 3 (Quiescent consistency). Let h be a quiescent, concurrent history, hs a
sequential history. The history h is said to be quiescent consistent with hs, denoted
qcons(h, hs), if

∃ bijective f : 1..#h
→ 1..#hs •
(∀ n : 1..#h : h(n) = hs(f (n))) ∧ (∀m, n : mp(m, n, h) ⇒ f (m) + 1 = f (n))

∧ ∀m, n, k : m < n ∧ m ≤ k ≤ n ∧ qu(h[1..k]) ∧ ret?(h(m)) ∧ inv?(h(n))
⇒ f (m) < f (n)

An implementation I is quiescent consistent wrt. a specification S if for all quiescent
histories h of I there is a sequential history hs of S such that qcons(h, hs). �

Our definition allows operations of a quiescent history h (represented as matching pairs)
to be reordered arbitrarily between quiescent states. However, each individual matching
pair must be preserved according to the second conjunct of the definition of qcons.

For quiescent consistency we look at quiescent histories. Linearizability considers
all histories of the implementation and first brings each non-quiescent history into a
”reasonable” quiescent one. To this end, it extends the history with the return events
of those operations which ”have taken effect”, and afterwards it removes the remaining
pending invokes using a function complete.

Definition 4 (Linearizability). Let h be a history, hs a sequential history. The history
h is said to be in lin-relation with hs, denoted lin(h, hs), if

∃ bijective f : 1..#h
→ 1..#hs •
(∀ n : 1..#h • h(n) = hs(f (n))) ∧ (∀m, n : mp(m, n, h) ⇒ f (m) + 1 = f (n))

∧ ∀m, n, m′, n′ : 1..#h • n < m′ ∧ mp(m, n, h) ∧ mp(m′, n′, h) ⇒ f (n) < f (m′)

A concurrent history h is linearizable with respect to some sequential history hs, denoted
linearizable(h, hs), if

∃ h0 : seq Ret! • legal(h � h0) ∧ lin(complete(h � h0), hs)

An implementation I is linearizable with a specification S if for all histories h of I there
is a sequential history hs of S such that linearizable(h, hs). �

It is easy to see that linearizability is the stronger notion.

Proposition 1. Let h be a quiescent, hs a sequential history. Then
lin(h, hs) ⇒ qcons(h, hs) �

206 J. Derrick et al.

4 Coupled Simulations - A Proof Methodology

Before presenting a proof technique for quiescent consistency, we need to fix the im-
plementation and abstract specification. Both are given as abstract data types of the
form: S = (State, Init, (Opp,i)p∈P,i∈I), consisting of a state, an initialisation condition,
a collection of operations. (Because each process can execute each operation, they are
indexed by the process id.) As we will use techniques from the area of refinement, the
abstract sequential specification will be called A (abstract) while the implementation is
the concrete level and thus named C. We formalise the data types within Z.

AState
queueA : seq T

AInit
AState′

queueA′ = 〈 〉

AEnqp

ΔAState
el? : T

queueA′ = queueA � 〈el?〉

ADeqp

ΔAState
el! : T

queueA = 〈el!〉� queueA′

Note that this specifies a blocking queue: the dequeue operation can only be executed
if the queue can be divided into one element and the rest.

The implementation based on diffraction trees needs a bit more explanation. In gen-
eral, we need to distinguish in all such concurrent data structures the global state (here,
the two balancers and the two queues) and the local variables of the processes (here,
the input parameter el for the enqueue, the local bit lbit plus a program counter). Re-
call that P is the set of all process identifiers. For the program counters, the values
will be the line numbers plus one value N standing for a process being idle: PC =
{N, E1, E2, E3, D1, D2, D3}.

CState
ebit : B, dbit : B
queueC : B → seq T
lbit : P → B
el : P → T
pc : P → PC

CInit
CState′

ebit′ = dbit′ = 0
queueC′(0) = 〈 〉
queueC′(1) = 〈 〉
∀ p ∈ P • pc′(p) = N

For every line in the algorithm and every process possibly executing it, we now define
one operation in the concrete implementation data type. We refrain from giving all of
them here, and just give two examples. We use the Object-Z convention that all variables
which are not named in the schema remain the same.

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 207

enq2Cp

ΔCState

pc(p) = E2
lbit(p) = ebit ⇒

ebit′ = 1− lbit(p) ∧ pc′(p) = E3
lbit(p) �= ebit ⇒

ebit′ = ebit ∧ pc′(p) = E1

deq3Cp

ΔCState
el! : T

pc(p) = D3
queueC(lbit(p)) =

〈el!〉� queue′(lbit(p))
pc′(p) = N

The basic idea for a proof method for quiescent consistency is to compare abstract
specification and concrete implementation data type with respect to some notion of re-
finement [7]. The standard proof strategy for refinement proceeds via simulations which
come in two forms (which are sound and jointly complete), forward and backward sim-
ulation [6]. Here, we first of all aim at a sound proof technique for quiescent consistency
and thus use just one, namely forward simulation (a complete technique would probably
need backward simulations as well). We furthermore can elide the condition of applica-
bility since quiescent consistency is a safety property rather than a general refinement
property where one would need to ensure progress of the concrete system.

Definition 5 (Forward simulation)
Let A = (AState, AInit, (AOpp,i)p∈P,i∈I) and C = (CState, CInit, (COpp,i)p∈P,i∈I) be

two data types. A relation R : AState × CState is a forward simulation from A to C if
the following two conditions hold:

– Initialization: ∀ ci : CInit • ∃ ai : AInit • R(ai, ci),
– Correctness:

∀ as : AState, cs : CState, cs′ : CState, in : IN, out : OUT, p : P, i : I •
R(as, cs) ∧ COpp,i(in, cs, cs′, out) ⇒
(∃ as′ : AState • R(as′, cs′) ∧ AOpp,i(in, as, as′, out)) �

The two conditions state that (a) every initial concrete state needs to have a matching
(via the relation R - known as a retrieve relation) initial abstract state and (b) all the
steps of the concrete data type need to be matched by corresponding abstract steps.
Here, the assumption is that the granularity of data types is the same: every concrete
operation has exactly one corresponding abstract operation. This assumption needs to be
relaxed for our application; in fact for all applications which carry out some sort of non-
atomic refinement where an abstract operations is implemented by a whole sequence
of concrete operations. Thus, we assume the operations of the abstract data type A are
indexed by (process names plus) elements from some set I, and operations of C indexed
by elements from some set J (plus again process names), and an abstraction function
abs : J → I is given.

For the queue, all concrete enqp’s are related to AEnqp and similar for dequeue. For
a non-atomic refinement, we furthermore need to know what the operations are which
start (invoke) an implementation sequence, which end (return from an invocation of) a
sequence and which are internal. For the former two we use the predicates inv? and ret?
defined in the last section, for the latter we use a similar predicate int?.

The basic idea of the non-atomic, or coupled, simulation which we use in the fol-
lowing, is to match only the return steps of a sequence with the abstract operations,

208 J. Derrick et al.

quiescent quiescent

COpp,a COpq,a COpq,b COpp,b

R〈 〉R〈 〉

C :

A :

RH1 RH3RH2

AOpp,1
o
9 AOpq,1

H1 = 〈inv(p, AOp1,)〉
H2 = H1

� 〈inv(q, AOp1,)〉
H3 = H2

� 〈ret(q, AOp1,)〉

Fig. 2. Coupled simulation for some example run

and (abstractly) view all other steps as “skip” steps. In addition, the matching of return
steps only takes place when we have arrived at a quiescent consistent history again. To
keep track of the progress of the concrete operation, we extend the retrieve relation R
with histories H, thus getting a family of retrieve relations RH . When we finally reach
a quiescent history (by executing a return operation), we need to match up with all ab-
stract operations occuring in H. However, quiescent consistency allows us to look for
just some sequential order, not necessarily in the order of them appearing in H.

Figure 2 shows an example of this where the abstract operation AOpp,1 is imple-
mented as COpp,a

o
9 COpp,b, i.e., abs : a �→ 1, b �→ 1. The diagram shows some steps

of the concrete system in which processes p and q are running (i.e., COpp,a is the ex-
ecution of operation COpa by process p and so on), and how this would be simulated
in the abstract. Only when we reach a quiescent state again, we need to match up with
the abstract. During non-quiescent concrete states the retrieve relation RH relates the
concrete states to the “previous” abstract state.

We are now going to formally define this type of simulation. We write h ' hs for two
histories h, hs iff they are permutation equivalent and matching pairs are preserved. We
let AOP denote the set of all abstract operations. For a sequential history hs and abstract
states as, as′ we define

hs(as, as′) =̂ ∃ aops : AOP∗ • aops(as, as′) ∧ hist(aops) = hs,

where hist makes a proper history out of a sequence of abstract operations,

hist(〈AOpp1,1(in1, out1), . . . , AOppn,n(inn, outn)〉) =
〈inv(p1, AOp1, in1), ret(p1, AOp1, out1), . . . , inv(pn, AOpn, inn), ret(pn, AOpn, outn)〉.

Definition 6 (Coupled simulation). Let A = (AState, AInit, (AOpp,i)p∈P,i∈I) be an ab-
stract data type and C = (CState, CInit, (COpp,j)p∈P,j∈J) a concrete data type, related
via abstraction function abs : J → I. A family of relations RH ⊆ AState × CState, H a
history of C, is a coupled simulation relation from A to C if the following holds:

– Initialization: ∀ ci : CInit • ∃ ai : AInit • R〈 〉(ai, ci),
– Correctness:

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 209

1. Invocation: ∀ as : AState, cs : CState, cs′ : CState, in : IN, p : P, j : J •
RH(as, cs) ∧ COpp,j(in, cs, cs′) ∧ inv?(COpp,j) ⇒ RH�〈inv(p,AOpabs(j),in)〉(as, cs′),

2. Internal: ∀ as : AState, cs : CState, cs′ : CState, p : P, j : J •
RH(as, cs) ∧ COpp,j(cs, cs′) ∧ int?(COpp,j) ⇒ RH(as, cs′),

3. Return to quiescent:
∀ as : AState, cs : CState, cs′ : CState, out : OUT, p : P, j : J •
RH(as, cs)∧COpp,j(cs, cs′, out)∧ret?(COpp,j)∧qu(H�〈ret(p, AOpabs(j), out)〉) ⇒
∃ as′ : AState • R〈 〉(as′, cs′) ∧

∃ sequential hs • hs ' H � 〈ret(p, AOpabs(j), out)〉 ∧ hs(as, as′),
4. Return to non-quiescent:

∀ as : AState, cs : CState, cs′ : CState, out : OUT, p : P, j : J •
RH(as, cs)∧COpp,j(cs, cs′, out)∧ret?(COpp,j) ∧ ¬qu(H�〈ret(p, AOpabs(j), out)〉)

⇒ RH�〈ret(p,AOpabs(j),out)〉(as, cs′). �

It can be shown that coupled simulation is a sound proof technique for quiescent con-
sistency (the proof of this follows easily from the definition.):

Theorem 1. Let A = (AState, AInit, (AOpp,i)p∈P,i∈I) be an abstract data type and C =
(CState, CInit, (COpp,j)p∈P,j∈J) a concrete data type. If there is a coupled simulation
RH from A to C, then C is quiescent consistent wrt. A. �

Moreover, the two simulation types – forward and coupled simulation – can safely be
combined.

Proposition 2. For some abstract data types A = (AState, AInit, (AOpp,i)p∈P,i∈I), B =
(BState, BInit, (BOpp,j)p∈P,j∈J) and C = (CState, CInit, (COpp,j)p∈P,j∈J) related via
abs : J → I. If there is a coupled simulation RH from A to B and a forward simulation
S from B to C, then we have a coupled simulation relation from A to C.

Proof: Define a coupled simulation from A to C by SH = RH o
9 S. �

In the next section, we will make use of coupled simulations and their combination with
forward simulations to show quiescent consistency of the blocking queue.

5 Quiescent Consistency of the Blocking Queue

To prove quiescent consistency of the blocking queue implementation, we proceed in
two steps. Instead of directly constructing a coupled simulation relation between A and
C, we introduce an intermediary data type (called B), and then show the existence of
a coupled simulation between A and B, and a (trivial) forward simulation from B to C.
The coupled simulation proofs have been mechanized with the interactive prover KIV.1

1 See https://swt.informatik.uni-augsburg.de/swt/projects/
QC-queue.html for a description of the KIV proofs.

https://swt.informatik.uni-augsburg.de/swt/projects/QC-queue.html
https://swt.informatik.uni-augsburg.de/swt/projects/QC-queue.html

210 J. Derrick et al.

The abstract data type B includes all of C’s state plus some auxiliary information to
help us in the proof. First, it records the values of queueC(i), ebit and dbit from the
last quiescent state as lastq(i), lastEbit and lastDbit (for i = 0, 1). It also records the
processes which have done enqueues and dequeues since then in enqs(i) and deqs(i).
Two auxiliary queues auxq(i) store lastq(i) plus all the enqueued elements since the
last quiescent state. Dequeued elements are not removed from auxq(i).

BState
CState
lastq, auxq : B → seq T
enqs, deqs : B → seq P
lastEbit, lastDbit : B

BInit
BState′

CInit
lastEbit′ = lastDbit′ = 0
∀ i : {0, 1} • auxq′(i) = lastq′(i) = 〈 〉

∧ enqs′(i) = deqs′(i) = 〈 〉

All operations on C are extended to operations on state B. For all but the last oper-
ations deq3Cp and enq3Cp of each algorithm the extension leaves the auxiliary state
unchanged. Formally, e.g., deq2Bp = deq2Cp ∧ Ξ(BState \ CState), where Ξ(S) de-
notes the identity relation on S.

Operations deq3Cp and enq3Cp get extended twice. First they must modify auxq,
enqs and deqs appropriately. For enqueue, the new element is appended to the auxil-
iary queue and the process id to the sequence of enqueues (operation weakenq3Bp).
Operation weakdeq3Bp is similar, except that dequeues are not applied to auxq.

weakenq3Bp

ΔBState

enq3Cp

auxq′(lbit(p)) = auxq(lbit(p))� el(p)

enqs′(lbit(p)) = enqs(lbit(p))� 〈p〉

weakdeq3Bp

ΔBState
el! : T

deq3Cp

deqs′(lbit(p)) = deqs(lbit(p))� 〈p〉

resetB
ΔBState

ΞCState
if ∀ p : P • pc(p) = N
then auxq′ = lastq′ = queueC ∧ lastEbit′ = ebit ∧ lastDbit′ = dbit
else Ξ(BState \ CState)

Furthermore, when the step brings B into a quiescent state, we have to appropriately
reset the auxiliary information. This is done by sequentially composing with resetB, i.e.

enq3Bp = weakenq3Bp
o
9 resetB deq3Bp = weakdeq3Bp

o
9 resetB

A number of invariants are valid for the reachable part of this data type, for instance
∀ i ∈ {0, 1} • #enqs(i) ≤ #auxq(i) ∧#deqs(i) ≤ #auxq(i). The queues are related
in the following way:

lastq(i) = auxq(i)[1..(#auxq(i)−#enqs(i))]

queueC(i) = auxq(i)[(#deqs(i) + 1)..#auxq(i)]

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 211

For the proof of coupled simulation, we need one rather important invariant stating
a connection between the sizes of the two queues, the number of already enqueued and
dequeued elements, the number of pending enqueues and dequeues and the two bits.
For this, we define pending enqueues and dequeues to be the following.

PE(i) = {p ∈ P | pc(p) = E3 ∧ lbit(p) = i}
PD(i) = {p ∈ P | pc(p) = D3 ∧ lbit(p) = i}

The invariant states a balancing property:

Proposition 3. Let bs : BState a reachable state of the abstract data type B. Then the
following invariant INV holds:

#queueC(0) + #PE(0)−#PD(0) + dbit =
#queueC(1) + #PE(1)−#PD(1) + ebit .

Proof sketch: By induction on the number of steps needed to reach the state. Initially,
the invariant holds as all sequences are empty and dbit and ebit are both 0. For the
induction step there are a number of cases to consider. As one example: assume the
next operation is from process p, moving from E2 to E3 thereby increasing the size
of PE(lbit(p)) by one. If lbit(p) = 0 (enqueue to upper queue), this furthermore sets
ebit from 0 to 1 thereby keeping the sums of both sides equal. If on the other hand
lbit(p) = 1 (enqueue going to lower queue), ebit is set from 1 to 0 thereby keeping the
sum on the right hand side of the equation the same. �

Note that for quiescent states the equation reduces to #queueC(0) + dbit =# queueC(1)
+ ebit, i.e., the two queues are balanced: in quiescent states they can differ in size by at
most one, and the two bits specify the allowed difference.

Next we go to the central part of our proof, the abstraction relation for the coupled
simulation RH. It should relate states of A and B with particular histories H. First of all,
we consider the case when H is empty, i.e., and in a quiescent state. In this case, we
just need to determine the contents of the abstract queue from the two concrete queues
queueC(0) and queueC(1) by shuffling their contents, starting with queueC(dbit) (since
this is where dequeueing processes start). As the above invariant INV tells us, in size the
two queues can be just one element apart. Therefore the following recursive definition
of shuffle (which leaves, e.g., (shuffle(0, 〈 〉, q) for nonempty q unspecified) is sufficient:

shuffle(0, 〈 〉, 〈 〉) = 〈 〉 shuffle(1, 〈 〉, 〈 〉) = 〈 〉
shuffle(0, 〈a〉� q1, q2) = 〈a〉� shuffle(1, q1, q2)

shuffle(1, q1, 〈a〉� q2) = 〈a〉� shuffle(0, q1, q2)

For quiescent states queueA = shuffle(dbit, queueC(0), queueC(1)). For non-quiescent
states, we need to link up with the abstract queue which was represented in the last
quiescent state (see the simulation diagram in Figure 2). Thus, we then simply use
queueA = shuffle(lastDbit, lastq(0), lastq(1)). In quiescent states, lastDbit and dbit
as well as queueC(i) and lastq(i) coincide; thus the last expression is valid both for
quiescent and non-quiescent states.

212 J. Derrick et al.

Now to the history H: It accumulates the invocation and return events which have
happened since the last quiescent state. The order is in fact irrelevant as we seek to
find a matching sequential history which is just a permutation (') of H. However, the
events inside H have to be consistent with the auxiliary information of BState: for every
process in enqs(i) there has to be an invoke and a return event in H (plus similiar for
processes in deqs(i)) and if there is a currently running enqueue (dequeue, respectively)
there furthermore has to be an invoke event for it.

To formalize this, we construct a sequence of events from enqs(i) and deqs(i). The
necessary information about enqueued / dequeued elements is found in auxq(i):

evts(enqs(i)) = �
j=1..#enqs(i)〈inv(p, enq, a), ret(p, enq,) •

p = enqs(i)(j) ∧ a = auxq(i)(#lastq(i) + j)〉

evts(deqs(i)) = �
j=1..#deqs(i)〈inv(p, deq,), ret(p, deq, a) •

p = deqs(i)(j) ∧ a = auxq(i)(j)〉

Last, we let invevts(bs) be the invoke events of currently running enqueues and de-
queues in state bs (the order is irrelevant), i.e.,

invevts(bs) = 〈inv(p, enq, a) • pc(p) ∈ {E1, E2, E3} ∧ el(p) = a〉�
〈inv(p, deq,) • pc(p) ∈ {D1, D2, D3}〉

With these definitions at hand, we can state the second theorem.

Theorem 2. Let A and B be the abstract data types defined above. Then

RH =̂ queueA = shuffle(lastDbit, lastq(0), lastq(1))∧
H ' evts(enqs(0)) � evts(enqs(1)) �

evts(deqs(0))� evts(deqs(0))� invevts(bs)

is a coupled simulation from A to B.

Proof: Since the abstraction function only changes when the resulting state is qui-
escent (when the positive case of resetB is executed), the critical proof obligation is
the case “Return to quiescent” in Def. 6. It requires constructing a suitable sequential
history hs. This history consists of two halves. The first half executes the enqueues
of shuffle(¬ebit, evts(enqs(0), evts(enqs(1)) in reverse order2 resulting in the abstract
queue shuffle(lastDbit, auxq(0), auxq(1)). The second part executes the dequeues of
shuffle(lastDbit, evts(deqs(0), evts(deqs(1)) to get to the current abstract queue. The
proof is inductive over the lengths of the enq and deq lists. �

This completes the part of the proof relating data types A and B. The second step is now
the one from B to C for which we have a forward simulation.

Proposition 4. Let B and C be the abstract data types defined above. Then there is a
forward simulation from B to C.

2 The KIV proof combines evts, shuffling and reversing into one function eshuffle.

Quiescent Consistency: Defining and Verifying Relaxed Linearizability 213

Proof: Directly follows from the fact that B is just an extension of C, or seen the other
way round, C’s operations being a projection of B’s operations onto CState. �

This finally implies the correctness of the blocking queue implementation.

Corollary 1. The data type C, i.e., the queue implementation with blocking dequeue
operations, is quiescent consistent with respect to the abstract data type A.

Proof: Follows from Theorems 1 and 2 together with Propositions 2 and 4. �

6 Conclusion

In this paper, we have given a formal definition of, and a proof methodology for, quies-
cent consistency. We have demonstrated the technique by proving quiescent consistency
of a concurrent, non-linearizable queue implementation. To the best of our knowledge,
this is the first formal proof of quiescent consistency of an algorithm.

We have chosen to formalise quiescent consistency in a way that matches the in-
formal definition as closely as possible, however, since we are formalising an informal
description there might be valid alternatives to our definition above. In particular, our
formalisation has some specific consequences, since it embodies the idea that quiescent
consistency does not necessarily preserve program order. This means that one is even
allowed to reorder the operations of a single process. So the following history (not oc-
curing for our queue example):

〈inv(1, enq, a), inv(2, deq,), ret(2, deq, b), inv(2, enq, b), ret(2, enq,), ret(1, enq,)〉
where the b is visibly dequeued before being enqueued, is accepted, since it can be re-
ordered to the sequential history:

〈inv(2, enq, b), ret(2, enq,), inv(2, deq,), ret(2, deq, b), inv(1, enq, a), ret(1, enq,)〉.
However strange this may seem, it appears that most informal discussions on quiescent
consistency view this as a consequence of the definition.

There are also other alternatives to quiescent consistency or linearizability for con-
current object correctness. For example, eventual consistency [18] states that all obser-
vations on a system will agree if there are no more updates to the system. Although
this is a weaker condition than sequential consistency, there is no relation between it
and quiescent consistency. In a similar way quasi-linearizability [2], or k-linearizability
[12] and quiescent consistency are incomparable.

It is worth noting that although both quasi-linearizability and k-linearizability have
been formally defined, neither condition has an associated proof method. Our aim here
was to provide a proof method for quiescent consistency, which we did via the use of
coupled simulations, and furthermore, show how these proofs can be mechanised. In
particular we provided a full mechanisation of the coupled simulation proofs for the
queue using KIV.

References

1. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools based
on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010)

214 J. Derrick et al.

2. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for improved
concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490,
pp. 395–410. Springer, Heidelberg (2010)

3. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

4. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. Journal of the ACM 41(5), 1020–
1048 (1994)

5. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation.
ENTCS 137, 93–110 (2005)

6. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their
Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47. Cambridge Uni-
versity Press (1998)

7. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced Applica-
tions. Springer (May 2001)

8. Derrick, J., Boiten, E.A.: Non-atomic refinement in Z. In: Wing, J.M., Woodcock, J., Davies,
J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1477–1496. Springer, Heidelberg (1999)

9. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a lock-free
concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
78–95. Springer, Heidelberg (2008)

10. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for lin-
earizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

11. Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement. In: Bert, D.,
Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 127–147. Springer,
Heidelberg (2003)

12. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation
of concurrent data structures. In: POPL, pp. 317–328. ACM (2013)

13. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann (2008)
14. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.

ACM TOPLAS 12(3), 463–492 (1990)
15. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers 28(9), 690–691 (1979)
16. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive

proofs with KIV. In: Automated Deduction—A Basis for Applications, Interactive Theorem
Proving, vol. II, ch. 1, pp. 13–39. Kluwer (1998)

17. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259. Springer, Heidel-
berg (2012)

18. Shapiro, M., Kemme, B.: Eventual consistency. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia
of Database Systems, pp. 1071–1072. Springer US (2009)

19. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)
20. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with hazard

pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 239–255.
Springer, Heidelberg (2011)

21. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent
linearisable objects. In: PPoPP 2006, pp. 129–136. ACM (2006)

Temporal Precedence Checking for Switched Models
and Its Application to a Parallel Landing Protocol

Parasara Sridhar Duggirala1, Le Wang1, Sayan Mitra1,
Mahesh Viswanathan1, and César Muñoz2

1 University of Illinois at Urbana Champaign
{duggira3,lewang2,mitras,vmahesh}@illinois.edu

2 NASA
cesar.a.munoz@nasa.gov

Abstract. This paper presents an algorithm for checking temporal precedence
properties of nonlinear switched systems. This class of properties subsume
bounded safety and capture requirements about visiting a sequence of predicates
within given time intervals. The algorithm handles nonlinear predicates that arise
from dynamics-based predictions used in alerting protocols for state-of-the-art
transportation systems. It is sound and complete for nonlinear switch systems that
robustly satisfy the given property. The algorithm is implemented in the Compare
Execute Check Engine (C2E2) using validated simulations. As a case study, a
simplified model of an alerting system for closely spaced parallel runways is con-
sidered. The proposed approach is applied to this model to check safety properties
of the alerting logic for different operating conditions such as initial velocities,
bank angles, aircraft longitudinal separation, and runway separation.

1 Introduction

Dynamic analysis presents a scalable alternative to static analysis for models with non-
linear dynamics. The basic procedure for dynamic safety verification has three building
blocks: (a) a simulation engine, (b) a generalization or bloating procedure, and (c) a sat-
isfiability checker. The simulation engine generates a validated simulation of the model
with some rigorous error bounds for a given initial configuration. The generalization
procedure uses additional model information to overapproximate bounded-time reach
set for a set of initial configurations from the validated simulations. This additional
model information could be, for example, statically computed Lipschitz constants [13],
contraction metrics [9] or more general designer-provided annotations [6]. Finally, the
approximation is checked by a satisfiability procedure for inferring safety after itera-
tively refining its precision. With these three pieces it is possible to design sound and
relatively complete algorithms for bounded time safety verification that also scale to
moderately high-dimensional models [6].

This paper proposes a new algorithm that extends the reach of the above procedure in
two significant ways. First, the new algorithm verifies temporal precedence properties
which generalize bounded safety. A model A satisfies temporal precedence P1 ≺b P2 if
along every trajectory of A, for any time at which the predicate P2 holds, there exists an
instant of time, at least b time units sooner, where the predicate P1 must hold. The key

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 215–229, 2014.
c© Springer International Publishing Switzerland 2014

216 P.S. Duggirala et al.

subroutine in the new verification algorithm uses a simulation-based reach set approxi-
mation procedure for estimating the time intervals over which the predicates P1 and P2

may or must hold. These estimates are constructed so that the algorithm is sound. The
algorithm is guaranteed to terminate whenever A satisfies the given property robustly
(relatively complete). That is, not only does every trajectory ξ satisfy P1 ≺b P2, but
any small time-shifts and value perturbations of ξ also satisfy P1 ≺b P2. Such relative
completeness guarantees usually have the most precision that one can hope for in any
formal analysis of models involving physical quantities.

Secondly, a new approach to checking satisfiability of nonlinear guarantee predi-
cates[10] is proposed. If P1 and P2 in the above type of temporal precedence property
are in propositional logic or uses linear arithmetic (or restricted fragments of nonlinear
arithmetic), then existing solvers can efficiently check whether a set of states satisfy
them. On the other hand, if they are written as ∃t > 0, fp(x, t) > 0, where fp is a
nonlinear real-valued function, then the options are limited. Quantifier elimination is an
expensive option (doubly exponential complexity [1]), but even that is feasible only if
fp has a closed form definition of a special form (such as polynomial functions). If fp
is implicitly defined as the solution of a set of ordinary differential equations (ODEs)
with no analytical solution then quantifier elimination is impossible. This paper pro-
vides a sound and relatively complete procedure for checking bounded time guarantee
predicates using simulation-based overapproximations of fp(x, t).

These two algorithms are used in the analysis of an interesting and difficult verifi-
cation problem arising from a parallel landing protocol. The Simplified Aircraft-based
Paired Approach (SAPA) [7] is an advanced operational concept that enables dependent
approaches in closely spaced parallel runways. In the presence of blundering aircraft,
the SAPA procedure relies on an alerting algorithm called Adjacent Landing Alerting
System (ALAS) [12]. ALAS uses linear and nonlinear projections of the landing aircraft
trajectories with various velocity vectors and bank angles to detect possible conflicts.
Given the nonlinear characteristics of the ALAS logic, finding operating conditions
under which the SAPA/ALAS protocol satisfies the safety property is a challenging
problem.

This paper presents a simplified model, written as a switched system, of the SAPA/
ALAS protocol. The safety properties that are considered on this model state that an
alert is issued at least b seconds before an unsafe scenario is encountered. These prop-
erties are specified as temporal precedence properties of the form Alert ≺b Unsafe .
The proposed verification algorithm is applied to this model to formally check these
kinds of properties for various aircraft and runway configurations.

2 System Models and Properties

For a vector v in Rn, |v| stands for �2-norm. Given intervals I ,I ′ over R, the relation
I < I ′ holds iff ∀u ∈ I, ∀u′ ∈ I ′, u < u′. For a real number b, I − b = {u− b |u ∈ I}.
Subtraction operation over intervals is defined as, I − I ′ = {u − u′ | v ∈ I, v′ ∈ I ′}.
I × I ′ = {u × u′ | u ∈ I, u′ ∈ I ′}. For δ ∈ R≥0 and x ∈ Rn, Bδ(x) ⊆ Rn is the
closed ball with radius δ centered at x. For a set S ⊆ Rn, Bδ(S) = ∪x∈SBδ(v). For
any function V : Rn × Rn → R≥0, given a δ > 0, BV

δ (x) = {y | V (x, y) ≤ δ}. For a

Temporal Precedence Checking for Switched Models and Its Application 217

set S ⊆ Rn, BV
δ (S) = ∪x∈SBV

δ (x). For a bounded set A, dia(A) = supx,y∈A |x − y|
denotes the diameter of A.

A real-valued function α : R≥0 �→ R≥0 is called a class K function if α(0) = 0
and α is strictly increasing. It is a class K∞ function if additionally α(x) → ∞ as
x → ∞. For a function h : R≥0 → Rn and a positive real δ > 0, the δ-left shift of
h is the function hδ : R≥0 → Rn defined as hδ(t) = h(t + δ) for any t ∈ R≥0. A
δ-perturbation of h is any function g : R≥0 → Rn such that for all t, |g(t)− h(t)| < δ.
A càdlàg function is a function which is continuous from the right and has a limit from
the left for every element in its domain.

2.1 The Switched System Model

This paper uses the switch system formalism [8] for modeling continuous systems. The
evolution of an n dimensional switched system is specified by a collection of ordinary
differential equations (ODEs) also called as modes or locations indexed by a set I
and a switching signal that specifies which ODE is active at a given point in time.
Fixing a switching signal and an initial state, the system is deterministic. Its behavior is
the continuous, piece-wise differentiable function of time obtained by pasting together
the solutions of the relevant ODEs. The symbol I represents the set of modes and n
represents the dimension of the system with Rn as state space.

Definition 1. Given the set of modes I and the dimension n, a switched system A is
specified by the tuple 〈Θ,F , Σ〉, with

(i) Θ ⊆ Rn, a compact set of initial states,
(ii) F = {fi : Rn → Rn}i∈I , an indexed collection of continuous, locally Lipschitz

functions, and
(iii) Σ, a set of switching signals, where each σ ∈ Σ is a càdlàg function σ : R≥0 →

I.

The semantics of A is defined in terms of its solutions or trajectories. For a given
initial state x0 ∈ Θ and a switching signal σ ∈ Σ, the solution or the trajectory of the
switched system is a function ξx0,σ : R≥0 → Rn, such that: ξx0,σ(0) = x0, and for any
t > 0 it satisfies the differential equation:

ξ̇x0,σ(t) = fσ(t)(ξx0,σ(t)). (1)

When clear from context, the subscripts x0 and σ are dropped from ξ. Under the stated
locally Lipschitz assumption of the fi’s and the càdlàg assumption on σ, it is well-
known that Equation (1) has a unique solution [8] and that indeed the trajectory ξ is a
well-defined function.

Example. A simple switched system model of a thermostat has two modes I =
{on, off } and a single continuous dimension with initial value, say x = 62. The con-
tinuous dynamics is defined by the linear ODEs ẋ = −kx for off and ẋ = h − kx
for on , where k and h are parameters of the thermostat. Thus, fon(x) = −kx and
foff (x) = h − kx. For a particular switching signal σ, the solution ξx0,σ is shown in
Figure 1.

218 P.S. Duggirala et al.

Fig. 1. A switching signal and trajectory of thermostat model

A bounded time switch-
ing signal can be represented
as a sequence σ = m0,
m1, . . . , mk where each
mi is a pair in I × R+,
with the two components
denoted by mi.mode and
mi.time. The sequence
define σ(t) = mi.mode

for all t ∈ [
∑i−1

j=0 mj .time,∑i
j=0 mj .time). A set of

switching signals Σ is repre-
sented as a switching interval
sequence S = q0, q1, . . . qk,
where each qj is a pair with qj .mode ∈ I and qj .range is an open interval in R≥0.
Given a switching interval sequence S, the set sig(S) denotes the set of switching sig-
nals σ = m0, m1, . . . , mk, such that mj .mode = qj .mode and mj .time ∈ qj .range.
By abuse of notation, a set of switching signals Σ and its finite representation S with
sig(S) = Σ are used interchangeably. The expression width(S) denotes the size of the
largest interval qi.range. The refinement operation of Σ, denoted as refine(S), gives a
finite set of switching interval sequences S such that

⋃
S′∈S sig(S′) = sig(S) and for

each S′ ∈ S, width(S′) ≤ width(S)/2.

2.2 Temporal Precedence with Guarantee Predicates

A predicate for the switched system A is a computable function P : Rn → {�,⊥}
that maps each state in Rn to either � (true) or ⊥ (false). The predicate is said to be
satisfied by a state x ∈ Rn if P (x) = �. A guarantee predicate [10] P (x) is a predicate
of the form ∃t > 0, fp(x, t) > 0, where fp : Rn × R → R is called a lookahead func-
tion. A guarantee predicate holds at a state x if there exists some future time t at which
fp(x, t) > 0 holds. Using a quantifier elimination procedure, a guarantee predicate can
be reduced to an ordinary predicate without the existential quantifier. However, this is
an expensive operation, and more importantly, it is only feasible for restricted classes
of real-valued lookahead functions with explicit closed form definitions. Section 3.1
presents a technique to handle guarantee predicates with lookahead functions as solu-
tions to nonlinear ODE. As seen in Section 4, such lookahead functions are particularly
useful in designing alerting logics such as ALAS.

Temporal precedence properties are a class of properties specified by a pair of pred-
icates that must hold for any behavior of the system with some minimum time gap
between them. More precisely, a temporal precedence property φ is written as φ =
P1 ≺b P2, where P1 and P2 are (possibly guarantee) predicates and b is a positive real
number. The property φ = P1 ≺b P2 is satisfied by a particular trajectory ξ of A iff

∀t2 > 0, if P2(ξ(t2)) then ∃t1, 0 < t1 < t2 − b, P1(ξ(t1)). (2)

In other words, along ξ, predicate P1 should be should be satisfied at least b time units
before any instance of P2 is satisfied. A switched system A satisfies φ, if every trajectory

Temporal Precedence Checking for Switched Models and Its Application 219

ofA satisfies φ. The property φ is said to be robustly satisfied by a system if ∃τ > 0, δ >
0 such that all τ ′ < τ left shifts and all δ-perturbations of all trajectories ξ satisfy the
property. With a collection of precedence properties, it is possible to state requirements
about ordering of some predicates before others.

An execution ξ is said to robustly violate a precedence property P1 ≺b P2 if there is
a time instant t2 such that P2(ξ(t2)) holds, and for some δ > 0, all δ-perturbations ξ′

of ξ and t1 ∈ (0, t2 − b), P1 does not hold in ξ′ at time t1. A system is said to robustly
violates φ = P1 ≺b P2 if some execution ξ (from an initial state) robustly violates φ.

3 Simulation-Based Verification of Temporal Precedence

This section presents an algorithm for verifying temporal precedence properties of
switched systems and establish its correctness. Similar to the simulation-based safety
verification algorithm presented in an earlier work [6], this algorithm has three key
features: (a) it uses validated simulations for the dynamics in F , (b) it requires model
annotations called discrepancy functions for the dynamics in in F . Finally, (c) it re-
quires a procedure for checking satisfiability of nonlinear guarantee predicates arising
from solutions of differential equations.

For a given initial state x0 and an ODE ẋ = f(x, t) which admits a solution ξ, a fixed
time-step numerical integrator produces a sequence of sample points e.g., x1, x2, . . . ,
xl ∈ Rn that approximate the trajectory ξx0 at a sequence of time points, say ξx0(h),
ξx0(2h), . . . , ξx0(l × h). However, these simulations do not provide any rigorous guar-
antees about the errors incurred during numerical approximations. Rigorous error
bounds on these simulations, which can be made arbitrarily small, are required for
performing formal analysis. One such notion of a simulation for an ODE is defined
as follows.

Definition 2. Consider an ODE ẋ = f(x, t). Given an initial state, x0, a time bound
T > 0, error bound ε > 0, and a time step τ > 0, an (x0, T, ε, τ)-simulation trace is
a finite sequence (R1, [t0, t1]), (R2, [t1, t2]), . . . , (Rl, [tl−1, tl]) where each Rj ⊆ Rn,
and tj ∈ R≥0 such that ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0, and tl = T ,
(2) ∀t ∈ [tj−1, tj], ξx0(t) ∈ Rj , and
(3) dia(Rj) ≤ ε.

Numerical ODE solvers such as CAPD1 and VNODE-LP 2 can be used to generate
such simulations for arbitrary values of τ and ε using Taylor Models and interval arith-
metic. Model annotations called discrepancy functions used for computing reach-set
from simulations are defined as follows.

Definition 3. A smooth function V : R2n → R≥0 is called a discrepancy function for
an ODE ẋ = f(x, t), if and only if there are functions α, α ∈ K∞ and a uniformly

1 http://capd.ii.uj.edu.pl/index.php
2 http://www.cas.mcmaster.ca/˜nedialk/vnodelp

http://capd.ii.uj.edu.pl/index.php
http://www.cas.mcmaster.ca/~nedialk/vnodelp

220 P.S. Duggirala et al.

continuous function β : R2n ×R → R≥0 with β(x1, x2, t) → 0 as |x1 − x2| → 0 such
that for any pair of states x1, x2 ∈ Rn:

α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|) and (3)

∀ t > 0. V (ξx1(t), ξx2(t)) ≤ β(x1, x2, t), (4)

where ξ denotes the solution of the differential equation. A tuple (α, α, β) satisfying the
above conditions is called a witness to the discrepancy function.

The discrepancy function provides an upper bound on the distance between two trajec-
tories starting from different initial states x1 and x2. This upper bound, together with a
simulation, is used to compute an overapproximation of the set of all reachable states of
the system from a neighborhood of the simulation. For linear and affine dynamics such
discrepancy functions can be computed by solving semidefinite programs [6]. In [6],
classes of nonlinear ODEs were identified for which Lipschitz constants, contraction
metrics, and incremental Lyapunov functions can be computed. These classes are all
special instances of Definition 3. For the switched systems A with a set of differential
equations F = {fi}i∈I , a discrepancy function for each fi (namely, Vi and its witness
(αi, αi, βi)) is required. Using discrepancy function and validated simulations as build-
ing blocks, a bounded overapproximation of the reachable set for initial set Θ, set of
switching signals S, and time step τ can be defined as follows.

Definition 4. Given an initial set of states Θ, switching interval sequence S, dynamics
F , time step τ > 0, and error bound ε > 0, a (Θ, S, ε, τ)-ReachT ube is a sequence
ψ = (O1, [t0, t1]), (O2, [t1, t2]), . . . , (Ol, [tl−1, tl]) where Oj is a set of pairs (R, h)
such that R ⊆ Rn, and h ∈ I, such that, ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0,
(2) ∀x0 ∈ Θ, ∀σ ∈ sig(S), ∀t ∈ [tj−1, tj], ∃(R, h) ∈ Oj , such that, ξx0,σ(t) ∈

R, σ(t) = h,
(3) ∀(R, h) ∈ Oj , dia(R) ≤ ε, and
(4) each mode in I occurs at most once in Oj .

Intuitively, for every given time interval [tj−1, tj], the set Oj contains an (R, h) pair
such that R overapproximates the reachable set for the mode h in the given interval
duration. In a previous work on verification using simulations [6], an algorithm that
computes overapproximation of the reachable set via sampled executions and annota-
tions is presented. The procedure, called ComputeReachTube, takes as input the initial
set Θ, switching signals S, partitioning parameter δ, simulation error ε′, and time step
τ . It compute the sequence ψ and error ε such that ψ is a (Θ, S, ε, τ)-ReachT ube. The
procedure is outlined below.

1. Assign to Q, the set of initial states Θ.
2. For each qi in the switching interval sequence S = q0, q1, . . . , qk.
3. Compute X = {x1, x2, . . . , xm}, a δ-partitioning of Q, such that Q ⊆ ∪Bδ(xi).
4. Generate a validated simulation (Definition 2) η for every state x ∈ X with er-

ror ε′, time step τ , for time horizon Tqi = sup{qi.range}. Then, compute the

ReachT ube for Bδ(x0) by bloating η as B
Vqi.mode

ε (η), where ε = sup{βqi.mode(y,
x, t) | y ∈ Bδ(x), t ∈ [0, Tqi]}.

Temporal Precedence Checking for Switched Models and Its Application 221

5. Compute the union of each of the ReachT ubes for Bδ(x0) as the ReachT ube for
mode qi.mode.

6. Compute the initial set for the next mode by taking the projection of ReachT ube
for qi.mode over the interval qi.range as Q. Repeat steps 3 - 6 for qi+1.

The order of overapproximation of the ReachT ube computed using the procedure de-
scribed above is the maximum bloating performed using the annotation Vqi.mode and
βqi.mode for all the modes in S. This overapproximation and the error in simulation
gives the value of ε such that ψ is a (Θ, S, ε, τ)-ReachT ube. The nondeterminism dur-
ing the switching times from one mode to another enables the reachable set to be in two
different modes at a given instance of time, which is reflected in Oj . Proposition 1 states
that arbitrarily precise ReachT ubes can be computed by refining the initial parameters
for the ComputeReachTube procedure.

Proposition 1. Given an initial set Θ, switching signals S, partitioning parameter δ,
simulation error ε′ and time step τ , let 〈ψ, ε〉 = ComputeReachTube(Θ, S, δ, ε′, τ). As
dia(Θ) → 0, width(S) → 0, δ → 0, ε′ → 0, and τ → 0, then ε → 0.

3.1 Temporal Precedence Verification Algorithm

CheckRefine (see Figure 2) performs the following steps iteratively: (1) Create an ini-
tial partition of the set of start states Θ. (2) Compute the ReachT ubes for each these
partitions as given in Definition 4. (3) Check the temporal precedence property for the
ReachT ube. (4) Refine the partitioning if the above check is inconclusive, and repeat
steps (2)-(4).

A key step in the procedure is to verify whether a given ReachT ube satisfies a
temporal precedence property. In this step, collection of intervals mustInt , notInt , and
mayInt are computed for a given ReachT ube and a predicate. They are defined as
follows.

Definition 5. Given a ReachT ube ψ = (O1, [t0, t1]), . . . , (Ol, [tl−1, tl]) and a predi-
cate P , for all j > 0,

[tj−1, tj] ∈ mustInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P.

[tj−1, tj] ∈ notInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P c.

[tj−1, tj] ∈ mayInt(P, ψ) otherwise.

Definition 5 classifies an interval [tj−1, tj] as an element of mustInt(P, ψ) only if
the overapproximation of the reachable set for that interval is contained in P . Similar is
the case with notInt(P, ψ). However if the overapproximation of the reachable set can-
not conclude either of the cases, then the interval is classified as mayInt(P, ψ). There
are two possible reasons for this: first, the order of overapproximation is too coarse to
prove containment in either P or P c; second, the execution moves from the states satis-
fying P to states not satisfying P during that interval. Thus, better estimates ofmustInt ,
notInt and mayInt can be obtained by improving the accuracy of ReachT ube ψ.

To compute mustInt , mayInt , and notInt as defined in Definition 5, it is neces-
sary to check if R ⊆ P or R ⊆ P c. However, for guarantee predicates with lookahead

222 P.S. Duggirala et al.

functions that use the solutions of ODEs, it is unclear how to perform these checks. Sec-
tion 3.2 describes a simulation-based method to address this challenge. The algorithm
in Section 3.2 will, in fact, provide weaker guarantees. Assuming P is an open set, the
algorithm will answer correctly when R ⊆ P and when for some δ > 0, Bδ(R) ⊆ P c;
in other cases, the algorithm may not terminate. Such weaker guarantees will turn out
to be sufficient for the case study considered in this paper.

Definition 6. Given ReachT ube ψ and temporal precedence property P1 ≺b P2, ψ is
said to satisfy the property iff for any interval I ′, I ′ ∈ mustInt(P2, ψ)∪mayInt(P2, ψ),
exists interval I , I ∈ mustInt(P1, ψ) such that I < I ′− b. Also, ψ is said to violate the
property if ∃I ′ ∈ mustInt(P2, ψ) such that, ∀I ∈ mustInt(P1, ψ) ∪ mayInt(P1, ψ),
I ′ − b < I .

From Definition 6 it is clear that if a ReachT ube ψ satisfies a temporal precedence
property, then for all the trajectories corresponding to the ReachT ube, the predicate P1

is satisfied at least b time units before P2. Also, if the ReachT ube violates the property,
then it is clear that there exists at least one trajectory such that for an instance of time,
i.e., in I ′ ∈ mustInt(P2, ψ) at all the time instances at least b units before, the predicate
P1 is not satisfied. In all other cases, the ReachT ube cannot infer whether the property
is satisfied or violated. As this inference depends on the accuracy of mustInt , notInt
and mayInt . More accurate ReachT ubes produce better estimates of these intervals
and hence help in better inference of temporal precedence property.

Given a system A and property P1 ≺b P2, one can compute the ReachT ube for
the system and apply Definition 6 to check whether the system satisfies the temporal
precedence property. This is however not guaranteed to be useful as the approximation
of ReachT ube computed might be too coarse. The algorithm CheckRefine refines, at
each iteration, the inputs to compute more precise ReachT ubes. Proposition 1 guaran-
tees that these ReachT ubes can be made arbitrarily precise.

The algorithm (in Figure 2) first partitions the initial set into δ-neighborhoods (line 4)
and compute ReachT ubes for every switching interval sequence in Ω (line 7). If all
these ReachT ubes (that is all the executions from neighborhood) satisfy the property,
then the neighborhood is removed from Q. Similarly, the algorithm CheckRefine re-
turns that the property is violated only when ReachT ube violates the property. If nei-
ther can be inferred, then the parameters to function ComputeReachTube are refined
in line 11 to increase their precision. Since this operation is iteratively performed to
obtain arbitrarily precise ReachT ubes, Soundness and Relative completeness follow
from Definition 6 and Proposition 1.

Theorem 1 (Soundness). Algorithm CheckRefine is sound, i.e., if it returns that the
system satisfies the property, then the property is indeed satisfied. If it returns that the
property is violated, then the property is indeed violated by the system.

Theorem 2 (Relative Completeness). Assume that predicates P1 and P2 are open
sets, and there is a procedure that correctly determines if for a set R, R ⊆ Pi (for
i = 1, 2) or if there is δ > 0 such that Bδ(R) ⊆ P c

i (for i = 1, 2). If the system A
satisfies the property P1 ≺b P2 or if A robustly violates P1 ≺b P2 then the algorithm
in Figure 2 terminates with the right answer.

Temporal Precedence Checking for Switched Models and Its Application 223

1: Input:A = 〈Θ,F , Σ〉, {Vi, (αi, αi, βi)}i∈I , P1 ≺b P2, δ0, δ′0, ε′0, τ0.
2: Q← Θ; Ω ← {Σ}; δ ← δ0; δ′ ← δ′0; ε′ ← ε′0; τ ← τ0
3: while Q �= ∅ do
4: X ← δ-partition(Q);
5: for all x0 ∈ X do
6: for all S ∈ Ω do
7: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S, δ

′, ε′, τ)
8: if ψ satisfies P1 ≺b P2 then continue;
9: else if ψ falsifies P1 ≺b P2 return “Property P1 ≺b P2 is violated”

10: else
11: Ω ← Ω \ {S} ∪ refine(S); δ ← δ/2; δ′ ← δ′/2, ε′ ← ε′/2; τ ← τ/2;
12: goto Line 4
13: end if
14: end for
15: Q← Q \ Bδ(x0)
16: end for
17: end while
18: return “Property P1 ≺b P2 is satisfied”.

Fig. 2. Algorithm CheckRefine: Partitioning and refinement algorithm for verification of temporal
precedence properties

3.2 Verification of Guarantee Predicates

As discussed in the Section 2.2, guarantee predicates are of the form P (x) = ∃t >
0, fp(x, t) > 0, where fp is called a lookahead function. Section 3.1 presents an al-
gorithm for time bounded verification of such predicates of the special form P (x) =
∃0 < t < Tl, wp(ξ

′
x(t)) > 0, where wp is a continuous function and ξ′ is solution of

ODE ẏ = g(y, t). The algorithm CheckGuarantee in Figure 3 checks whether R ⊆ P
or an open cover of R is contained in P c has been defined. This algorithm, similar
to CheckRefine, computes successively better approximations for the ReachT ube and
checks whether the predicate P ′ ≡ wp(x) > 0 is satisfied by the reach tube. This
is done by calculating mustInt(P ′, ψ) and mayInt(P ′, ψ) as defined in Definition 5.
If the mustInt is non-empty, then it implies that the predicate P is satisfied by the
ReachT ube and hence R ⊆ P . If both the mayInt and mustInt are empty sets, then,
clearly the predicate P is not satisfied in the bounded time Tl by any state in R, and
hence an open cover of R is contained in P c. Soundness and Relative Completeness of
CheckGuarantee follow from CheckRefine (proofs in full version3).

Theorem 3 (Soundness). AlgorithmCheckGuarantee is sound, i.e., if it returns “SAT’’
then the set R indeed satisfies the lookahead predicate. If it returns “UNSAT’’, then the
set R does not satisfy the lookahead predicate.

3 https://wiki.cites.illinois.edu/wiki/display/MitraResearch/
Verification+of+a+Parallel+Landing+Protocol

https://wiki.cites.illinois.edu/wiki/display/MitraResearch/Verification+of+a+Parallel+Landing+Protocol
https://wiki.cites.illinois.edu/wiki/display/MitraResearch/Verification+of+a+Parallel+Landing+Protocol

224 P.S. Duggirala et al.

Theorem 4 (Relative Completeness). Assuming that the lookahead predicate is an
open set, If the set R satisfies the lookahead predicate, or it robustly violates the looka-
head predicate i.e. ∃δ > 0, such that Bδ(R) ⊂ P c, then the algorithm in Figure 3
terminates with the right answer.

1: Input: R, ẏ = g(y, t), S′, Vg(x1, x2), (αg, αg, βg) wp, δ, τ , Tl

2: while R �= ∅ do
3: X ← δ-partition(R);
4: for all x0 ∈ X do
5: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S

′, δ, δ, τ);
6: if mustInt(wp, ψ) �= ∅ then R← R \ Bδ(x0)
7: else if mustInt(wp, ψ) ∪mayInt(wp, ψ) = ∅ then return “UNSAT”
8: end if
9: end for

10: δ ← δ/2; τ ← τ/2;
11: end while
12: return “SAT”.

Fig. 3. Algorithm CheckGuarantee: Decides whether a lookahead predicate is satisfied in a given
set R

4 Case Study: A Parallel Landing Protocol

The Simplified Aircraft-based Paired Approach (SAPA) is an advanced operational con-
cept proposed by the US Federal Aviation Administration (FAA) [7]. The SAPA con-
cept supports dependent, low-visibility parallel approach operations to runways with
lateral spacing closer than 2500 ft. A Monte-Carlo study conducted by NASA has con-
cluded that the basic SAPA concept is technically and operationally feasible [7]. SAPA
relies on an alerting mechanism to avoid aircraft blunders, i.e., airspace situations where
an aircraft threats to cross the path of another landing aircraft.

NASA’s Adjacent Landing Alerting System (ALAS) is an alerting algorithm for the
SAPA concept [12]. ALAS is a pair-wise algorithm, where the two aircraft are referred
to as ownship and intruder. When the ALAS algorithm is deployed in an aircraft fol-
lowing the SAPA procedure, the aircraft considers itself to be the ownship, while any
other aircraft is considered to be an intruder. The alerting logic of the ALAS algorithm
consists of several checks including conformance of the ownship to its nominal land-
ing trajectory, aircraft separation at current time, and projected aircraft separation for
different trajectories.

A formal static analysis of the ALAS algorithm is challenging due to the complex-
ity of the SAPA protocol and the large set of configurable parameters of the ALAS
algorithm that enable different alerting thresholds, aircraft performances, and runway
geometries. This paper considers the component of the ALAS alerting logic that checks
violations of predefined separation minima for linear and curved projected trajectories
of the current aircraft states. This component is one of the most challenging to analyze
since it involves nonlinear dynamics. Safety considerations regarding communication
errors, pilot and communication delays, surveillance uncertainty, and feasibility of res-
olution maneuvers are not modeled in this paper.

Temporal Precedence Checking for Switched Models and Its Application 225

Fig. 4. Possible blundering scenario
during parallel approach of aircraft. In-
truder (red) & ownship (blue).

For the analysis of the landing protocol, this
paper considers a blundering scenario where the
intruder aircraft turns towards the ownship dur-
ing the landing approach. The dynamics of the
aircraft are modeled as a switched system with
continuous variables sxi, syi, vxi, vyi and sxo,
syo, vxo, and vyo representing the position and
velocity of intruder and ownship respectively. The
switching system has two modes: approach and
turn. The mode approach represents the phase
when both aircraft are heading towards the run-
way with constant speed. The mode turn repre-
sents the blundering trajectory of intruder. In this
mode, the intruder banks at an angle φi to turn
away from the runway towards the ownship. The
switching signal determines the time of transition
from approach to turn. In this mode, the differen-
tial equation of the ownship remains the same as
that of approach , but the intruder’s turning mo-
tion with banking angle φi is

˙⎡⎢⎢⎢⎢⎢⎣
sxi

syi

vxi

vyi

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 ωi

0 0 −ωi 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
sxi

syi

vxi

vyi

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0

0

ωi − cy

ωi + cx

⎤⎥⎥⎥⎥⎥⎦ , (5)

where cx and cy are constant functions of the initial states of the ownship and intruder,
and ωi is the angular speed of intruder. Given the bank angle φi, the angular speed is
given by wi =

G| tan(βi)|√
vxi

2+vyi
2

, where G is the gravitational constant. The upper bound on

the bank angle φi is denoted as φmax.
The system starts in the approach mode with the initial position of the intruder at

sxi = syi = 0 and the ownship at sxo = xsep and syo = ysep , where xsep denotes
the lateral separation between the runways and ysep denotes the initial longitudinal
separation between the aircraft. The initial velocities of both aircraft along the x-axis
are 0 and the initial velocities along the y-axis are parameters. The time of switching
from approach mode to turn mode is nondeterministically chosen from the interval
Tswitch = [2.3, 2.8]. These parameters and the initial values of the variables are con-
strained by the SAPA procedure [7].

4.1 Alerting Logic and Verification of Temporal Precedence Property

The alerting logic of ALAS considered in this paper issues an alert when the aircraft are
predicted to violate some distance thresholds called Front and Back [12]. To predict

226 P.S. Duggirala et al.

this violation, the aircraft projects the current state of the system with three different
dynamics: first, the intruder does not turn, i.e., banking angle 0◦, second, the intruder
turns with the specified bank angle φi and third, the intruder turns with the maximum
bank angle φmax. If any of these projections violates the distance thresholds, then an
alert is issued. The alert predicates for the each one of these projections are represented
by Alert0, Alertβi and Alertβmax , respectively. Thus, the alerting logic considered in
this paper is defined as Alert ≡ Alert0 ∨ Alertβi ∨ Alertβmax .

The alert predicates Alert0, Alertβi and Alertβmax are guarantee predicates. The
lookahead function for Alertπ is defined as follows: from a given state x, it computes
the projected trajectory of the aircraft when intruder turns at bank angle π. If these tra-
jectories intersect, then it computes the times of intersection. That is, it computes ti, to
such that sx′

i(ti) = sx′
o(to) and sy′

i(ti) = sy′
o(to), where sx′

i, sy′
i, sx′

o, sy′
o represent

the positions of the intruder and ownship aircraft in the projected trajectory. If such ti
and to exist, the Alertπ is defined as:

Alertπ(x) ≡ iff ti > to ? (Δt2 × (vx2
o + vy2

o) < Back2)

: (Δt2 × (vx2
o + vy2

o) < Front2),

where Δt = ti− to. If such ti and to do not exist, then Alertπ(x) = ⊥. The expression
a ? b : c is a short hand for if(a) then b else c.

As the guarantee predicates cannot be handled by SMT solvers, Section 3.2 pro-
poses a simulation based algorithm for handling them. In this case study, the proposed
technique is used to resolve the nonlinearities of to and ti in the Alertπ predicate. As
given in procedure CheckGuarantee, the following steps are performed to resolve the
nonlinear guarantee predicate. First, bounded time ReachT ubes ψ′ for the projected
dynamics are computed. Second, from ψ′, the intervals To and Ti are computed such
that ti ∈ Ti and to ∈ To. Finally, an overapproximation Alert ′π of Alertπ is computed
as: Alert ′π(x) = � iff

Ti > To ? (ΔT 2 × (vx2
o + vy2

o) < Back2)

: (ΔT 2 × (vx2
o + vy2

o) < Front2),

where ΔT = Ti−To. The numerical values of Ti and To computed simplify the Alert ′π
predicate and can be handled by SMT solvers.

A state of the system where the intruder aircraft is inside a safety area surrounding
the ownship is said to be unsafe. This paper considers a safety area of rectangular shape
that is SafeHoriz wide, starts a distance SafeBack behinds the ownship and finishes
a distance SafeFront in front of the ownship. The values SafeHoriz , SafeBack and
SafeFront are given constants. Formally, the predicate Unsafe is defined as Unsafe(x)
≡ (syi > syo?syi − syo < SafeFront : syo − syi < SafeBack) and |sxi − sxo| <
SafeHoriz .

The correctness property considered in this paper is that an alert is raised at least 4
time units before the intruder violates the safety buffer. This can written as a temporal
precedence property Alert ≺4 Unsafe .

Temporal Precedence Checking for Switched Models and Its Application 227

4.2 Verification Scenarios and C2E2 Performance

The verification algorithms of Section 3 are implemented in the tool Compute Execute
Check Engine (C2E2). C2E2 accepts Stateflow (SF) charts as inputs, translates them to
C++ using CAPD for generating rigorous simulations. For checking SAT queries, it uses
Z3 [2] and GLPK4. The discrepancy functions for the aircraft dynamics were obtained
by computing incremental Lyapunov-like function using MATLAB [6]. The following
experiments were performed on Intel Quad Core machine 2.33 GHz with 4GM memory.

0 2 4 6 8 10 12
0.2

0.4
0

0.5

1

ysep=0.3 0.01km

xsep=0.23 0.01km

x (km)

y
(k

m
)

time (sec)

(a) Scenario 1

y
(k

m
)

x (km)
time (sec)2 4 6 8

0
1

2

2

4

6

10

xsep=0.23 0.01km
ysep=0.3 0.01km

(b) Scenario 2

y
(k

m
)

x (km) time (sec)5 10 15 20
-1

-0.5
0

0
0.5

1
1.5

2

xsep=1.03 0.01km

ysep=0.3 0.01km

(c) Scenario 3

Fig. 5. Figure depicting the set of reachable states of the system. Color coding is used to depict
whether the alert is issued by the alerting algorithm.

The temporal precedence property Alert ≺b Unsafe is checked for several config-
urations of the system, i.e., values of parameters and initial values of state variables.
For these experiments, the time bound for verification is set to 15 seconds and the time
bound for projection is set to 25 seconds.

Table 1. Running times. Columns 2-5: Verifi-
cation Result, Running time, # of refinements,
value of b for which A ≺b U is satisfied.

Scen. A ≺4 U time (m:s) Refs. A ≺t U

6 False 3:27 5 2.16

7 True 1:13 0 –

8 True 2:21 0 –

6.1 False 7:18 8 1.54

7.1 True 2:34 0 –

8.1 True 4:55 0 –

9 False 2:18 2 1.8

10 False 3:04 3 2.4

9.1 False 4:30 2 1.8

10.1 False 6:11 3 2.4

Scenario 1. The system configuration is
specified by the following parameters and
variables: xsep ∈ [0.22, 0.24] km, ysep ∈
[0.2, 04] km, φi = 30◦, φmax = 45◦,
vyo = 0.07 km/s and vyi = 0.08 km/s.
With this configuration, C2E2 proves that
the system satisfies the temporal prece-
dence property Alert ≺4 Unsafe and an
alert is generated 4.38 seconds before the
safety is violated. The set of reachable
states of the ownship and the intruder when
the safety property is violated is shown in
red and the safe states reached are shown in
blue and green respectively in Figure 5(a).

Scenario 2. Increasing the intruder ve-
locity to vyi = 0.11 km/s, and bank angle φi = 45◦ from the configuration of Sce-
nario 1 results in Scenario 2. In this case, the safe separation between the intruder and
the ownship is always maintained as the intruder completes the turn behind the ownship.
Also, the alarm is not raised and hence the property Alert ≺4 Unsafe is satisfied.

4 http://www.gnu.org/software/glpk

http://www.gnu.org/software/glpk

228 P.S. Duggirala et al.

Scenario 3. Changing the configuration by vyi = 0.11 km/s, xsep ∈ [1.02, 1.04] km,
and φi = 45◦ from Scenario 1 results in Scenario 3. C2E2 proves that the simplified
alerting logic considered in this paper issues a false-alert, i.e., an alert is issued even
when the safety of the system is maintained. Though the property Alert ≺4 Unsafe is
not violated, avoiding such circumstances improves the efficiency of the protocol and
C2E2 can help identify such configurations.

Scenario 4. Placing the intruder in front of ownship, i.e., ysep = −0.3 km and vyi =
0.115 km/s from configuration in Scenario 1 results in Scenario 4. C2E2 proves that the
simplified alerting logic considered in this paper misses an alert, i.e., does not issue an
alert before the safety separation is violated. Such scenarios should always be avoided
as they might lead to catastrophic situations. This demonstrates that C2E2 can aid in
identifying scenarios which should be avoided and help design the safe operational
conditions for the protocol.

Scenario 5. Reducing the xsep ∈ [0.15, 0.17] km and ysep ∈ [0.19, 0.21] km from
configuration in Scenario 1 gives Scenario 5. For this scenario, C2E2 did not termi-
nate in 30 mins. Since the verification algorithm presented in Section 3 is sound and
relatively complete only if the system robustly satisfies the property, it is conjectured
that Scenario 5 does not satisfy the property robustly. The partitioning and the simu-
lation parameters at the time-out were δ = 0.0005 and time step τ = 0.001. These
values are an order of magnitude smaller than the typical values for termination, e.g.,
δ = 0.005 and τ = 0.01, which supports the conjecture that Scenario 5 does not satisfy
the property robustly.

The running time of verification procedure and their outcomes for several other sce-
narios are presented in Table 1. Scenarios 6-8 introduce uncertainty in the initial ve-
locities of the aircraft with all other parameters remaining the same as in Scenario 1.
The velocity of the aircraft are changed to be vyo ∈ [0.07, 0.075] in Scenario 5,
vyi ∈ [0.107, 0.117] in Scenario 6, and vxi ∈ [0.0, 0.005] in Scenario 7 respectively.
Scenarios S.1 is similar to Scenario S (for S being 6,7,8), but with twice the uncer-
tainty in the velocity. Scenario 9 is obtained by changing the runway separation to
be xsep = 0.5 ± 0.01. Scenario 10 is obtained by reducing the xsep = 0.2 ± 0.01.
Scenario S.1 is similar to Scenario S (for S being 9,10) however with twice the time
horizon for verification and projection. These results suggest that the verification time
depends on time horizon approximately linearly.

5 Related Work and Conclusion

There are several MATLAB based tools for analyzing properties of switched systems
using simulations. Breach [4] uses sensitivity analysis [5] for analyzing STL properties
of systems using simulations. This analysis is sound and relatively complete for linear
systems, but does not provide formal guarantees for nonlinear systems. S-Taliro [11]
is a falsification engine that search for counterexamples using Monte-Carlo techniques
and hence provides only probabilistic guarantees. STRONG [3] uses robustness analy-
sis for coverage of all executions from a given initial set by constructing bisimulation
functions. Currently this tool computes bisimulation functions for only linear or affine
hybrid systems and does not handle nonlinear systems.

Temporal Precedence Checking for Switched Models and Its Application 229

This paper presents a dynamic analysis technique that verifies temporal precedence
properties and an approach to verify guarantee predicates that use solutions of ODEs
as lookahead functions. These techniques are proved to be sound and relative complete.
The verification approach is applied to a landing protocol that involves nonlinear dy-
namics. The case study demonstrated that the proposed technique can not only verify
safety properties of the alerting logic, but also could identify conditions for false and
missed alert which are crucial in designing the operational concept.

Acknowledgement. The authors at University of Illinois Urbana Champaign were sup-
ported by grants NSF CSR 1016791 and US AFOSR FA9550-12-1-0336.

References

1. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition: A synopsis. SIGSAM Bull. 10(1), 10–12 (1976)

2. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

3. Deng, Y., Rajhans, A., Julius, A.A.: STRONG: A trajectory-based verification toolbox for
hybrid systems. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 165–168. Springer, Heidelberg (2013)

4. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer,
Heidelberg (2010)

5. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Hei-
delberg (2007)

6. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from execu-
tions. In: Proceedings of the 13th International Conference on Embedded Software (EM-
SOFT 2013), Montreal, Canada (2013)

7. Johnson, S.C., Lohr, G.W., McKissick, B.T., Guerreiro, N.M., Volk, P.: Simplified aircraft-
based paired approach: Concept definition and initial analysis. Technical Report NASA/TP-
2013-217994, NASA, Langley Research Center (2013)

8. Liberzon, D.: Switching in Systems and Control. In: Systems and Control: Foundations and
Applications. Birkhauser, Boston (2003)

9. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems. Automat-
ica 32(6), 683–696 (1998)

10. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proceedings of the Sixth An-
nual ACM Symposium on Principles of Distributed Computing (PODC 1987), Vancouver,
British Columbia, Canada, p. 205. ACM (1987)

11. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas, G.J.: Monte-
carlo techniques for falsification of temporal properties of non-linear hybrid systems. In:
Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC 2010), Stockholm, Sweden, pp. 211–220. ACM (2010)

12. Perry, R.B., Madden, M.M., Torres-Pomales, W., Butler, R.W.: The simplified aircraft-based
paired approach with the ALAS alerting algorithm. Technical Report NASA/TM-2013-
217804, NASA, Langley Research Center (2013)

13. Wood, G., Zhang, B.: Estimation of the Lipschitz constant of a function. Journal of Global
Optimization 8, 91–103 (1996)

Contracts in Practice�

H.-Christian Estler, Carlo A. Furia, Martin Nordio,
Marco Piccioni, and Bertrand Meyer

Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Contracts are a form of lightweight formal specification embedded in
the program text. Being executable parts of the code, they encourage program-
mers to devote proper attention to specifications, and help maintain consistency
between specification and implementation as the program evolves. The present
study investigates how contracts are used in the practice of software development.
Based on an extensive empirical analysis of 21 contract-equipped Eiffel, C#, and
Java projects totaling more than 260 million lines of code over 7700 revisions,
it explores, among other questions: 1) which kinds of contract elements (precon-
ditions, postconditions, class invariants) are used more often; 2) how contracts
evolve over time; 3) the relationship between implementation changes and con-
tract changes; and 4) the role of inheritance in the process. It has found, among
other results, that: the percentage of program elements that include contracts is
above 33% for most projects and tends to be stable over time; there is no strong
preference for a certain type of contract element; contracts are quite stable com-
pared to implementations; and inheritance does not significantly affect qualitative
trends of contract usage.

1 Introduction

Using specifications as an integral part of the software development process has long
been advocated by formal methods pioneers and buffs. While today few people question
the value brought by formal specifications, the software projects that systematically
deploy them are still a small minority. What can we learn from these adopters about the
practical usage of specifications to support software development?

In this paper, we answer this question by looking into contracts, a kind of lightweight
formal specification in the form of executable assertions (preconditions, postconditions,
and class invariants). In the practice of software development, contracts support a range
of activities such as runtime checking, automated testing, and static verification, and
provide rigorous and unambiguous API documentation. They bring some of the ad-
vantages of “heavyweight” formal methods while remaining amenable to programmers
without strong mathematical skills: whoever can write Boolean expressions can also
write contracts. Therefore, learning how contracts are used in the projects that use them
can shed light on how formal methods can make their way into the practice of software
development.

� Work supported by Gebert-Ruf Stiftung, by ERC grant CME # 291389, and by SNF grant
ASII # 200021-134976.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 230–246, 2014.
c© Springer International Publishing Switzerland 2014

Contracts in Practice 231

The empirical study of this paper analyzes 21 projects written in Eiffel, C#, and Java,
three major object-oriented languages supporting contracts, with the goal of studying
how formal specifications are written, changed, and maintained as part of general soft-
ware development. Eiffel has always supported contracts natively; the Java Modeling
Language (JML [16]) extends Java with contracts written as comments; and C# has
recently added support with the Code Contracts framework [8]. Overall, our study ana-
lyzed more than 260 million lines of code and specification distributed over 7700 revi-
sions. To our knowledge, this is the first extensive study of the practical evolving usage
of simple specifications such as contracts over project lifetimes.

The study’s specific questions target various aspects of how contracts are used in
practice: Is the usage of contracts quantitatively significant and uniform across the var-
ious selected projects? How does it evolve over time? How does it change with the
overall project? What kinds of contracts are used more often? What happens to con-
tracts when implementations change? What is the role of inheritance?

The main findings of the study, described in Section 3, include:

– The projects in our study make a significant usage of contracts: the percentages of
routines and classes with specification is above 33% in the majority of projects.

– The usage of specifications tends to be stable over time, except for the occasional
turbulent phases where major refactorings are performed. This suggests that con-
tracts evolve following design changes.

– There is no strong preference for certain kinds of specification elements (precondi-
tions, postconditions, class invariants); but preconditions, when they are used, tend
to be larger (have more clauses) than postconditions. This indicates that different
specification elements are used for different purposes.

– Specifications are quite stable compared to implementations: a routine’s body may
change often, but its contracts will change infrequently. This makes a good case
for a fundamental software engineering principle: stable interfaces over changing
implementations [21].

– Inheritance does not significantly affect the qualitative findings about specification
usage: measures including and excluding inherited contracts tend to correlate. This
suggests that the abstraction levels provided by inheritance and by contracts are
largely complementary.

As a supplemental contribution, we make all data collected for the study available online
as an SQL database image [3]. This provides a treasure trove of data about practically
all software projects of significant size publicly available that use contracts.

Positioning: What this Study is Not. The term “specification” has a broad meaning.
To avoid misunderstandings, let us mention other practices that might be interesting to
investigate, but which are not our target in this paper. We do not consider formal specifi-
cations in forms other than executable contracts. We do not look for formal specifications
in generic software projects: it is well-known [22] that the overwhelming majority of soft-
ware does not come with formal specifications (or any specifications). Instead, we pick
our projects among the minority of those actually using contracts, to study how the few
adopters use formal specifications in practice. We do not study applications of contracts;
but our analysis may serve as a basis to follow-up studies targeting applications. We do

232 H.-C. Estler et al.

not compare different methodologies to design and write contracts; we just observe the
results of programming practices.

Extended Version. For lack of space, we can only present the most important facts; an
extended version [7] provides more details on both the analysis and the results.

2 Study Setup

Our study analyzes contract specifications in Eiffel, C#, and Java, covering a wide range
of projects of different sizes and life spans developed by professional programmers and
researchers. We use the terms “contract” and “specification” as synonyms.

Data Selection. We selected 21 open-source projects that use contracts and are available
in public repositories. Save for requiring a minimal amount of revisions (at least 30) and
contracts (at least 5% of elements in the latest revisions), we included all open-source
projects written in Eiffel, C# with CodeContracts, or Java with JML we could find when
we performed this research. Table 1 lists the projects and, for each of them, the total
number of REVisions, the life span (AGE, in weeks), the size in lines of code (LOC) at
the latest revision, the number of DEVelopers involved (i.e., the number of committers
to the repository), and a short description.

Table 1. List of projects used in the study. “AGE” is in weeks, “#LOC” is lines of code.

PROJECT LANG. # REV. AGE # LOC # DEV. DESCRIPTION

1 AutoTest Eiffel 306 195 65’625 13 Contract-based random testing tool
2 EiffelBase Eiffel 1342 1006 61’922 45 General-purpose data structures library
3 EiffelProgramAnalysis Eiffel 208 114 40’750 8 Utility library for analyzing Eiffel programs
4 GoboKernel Eiffel 671 747 53’316 8 Library for compiler interoperability
5 GoboStructure Eiffel 282 716 21’941 6 Portable data structure library
6 GoboTime Eiffel 120 524 10’840 6 Date and time library
7 GoboUtility Eiffel 215 716 6’131 7 Library to support design patterns
8 GoboXML Eiffel 922 285 163’552 6 XML Library supporting XSL and XPath
9 Boogie C# 766 108 88’284 29 Program verification system

10 CCI C# 100 171 20’602 3 Library to support compilers construction
11 Dafny C# 326 106 29’700 19 Program verifier
12 LabsFramework C# 49 30 14’540 1 Library to manage experiments in .NET
13 Quickgraph C# 380 100 40’820 4 Generic graph data structure library
14 Rxx C# 148 68 55’932 2 Library of unofficial reactive LINQ extensions
15 Shweet C# 59 7 2352 2 Application for messaging in Twitter style
16 DirectVCGen Java 376 119 13’294 6 Direct Verification Condition Generator
17 ESCJava Java 879 366 73’760 27 An Extended Static Checker for Java (version 2)
18 JavaFE Java 395 389 35’013 18 Front-end parser for Java byte and source code
19 Logging Java 29 106 5’963 3 A logging framework
20 RCC Java 30 350 10’872 7 Race Condition Checker for Java
21 Umbra Java 153 169 15’538 8 Editor for Java bytecode and BML specifications

Total 7’756 6’392 830’747 228

Measures. The raw measures produced by include: the number of classes, the num-
ber of classes with invariants, the average number of invariant clauses per class, and
the number of classes modified compared to the previous revision; the number of rou-
tines (public and private), the number of routines with non-empty precondition, with
non-empty postcondition, and with non-empty specification (that is, precondition, post-
condition, or both), the average number of pre- and postcondition clauses per routine,
and the number of routines with modified body compared to the previous revision.

Contracts in Practice 233

Measuring precisely the strength of a specification (which refers to how constraining
it is) is hardly possible as it requires detailed knowledge of the semantics of classes
and establishing undecidable properties in general. In our study, we count the number
of specification clauses (elements anded, normally on different lines) as a proxy for
specification strength. The number of clauses is a measure of size that is interesting in
its own right. If some clauses are changed,1 just counting the clauses may measure
strength incorrectly. We have evidence, however, that the error introduced by measur-
ing strengthening in this way is small. We manually inspected 277 changes randomly
chosen, and found 11 misclassifications (e.g., strengthening reported as weakening).
Following [17, Eq. 5], this implies that, with 95% probability, the errors introduced by
our estimate (measuring clauses for strength) involve no more than 7% of the changes.

3 How Contracts Are Used

Our study targets the following main questions, addressed in the following subsections.

Q1. Do projects make a significant usage of contracts, and how does usage evolve over
time?

Q2. How does the usage of contracts change with projects growing or shrinking in size?
Q3. What kinds of contract elements are used more often?
Q4. What is the typical size and strength of contracts, and how does it change over

time?
Q5. Do implementations change more often than their contracts?
Q6. What is the role of inheritance in the way contracts change over time?

Table 2 shows the essential quantitative data we discuss for each project; Table 3 shows
sample plots of the data for four projects. In the rest of the section, we illustrate and
summarize the data in Table 2 and the plots in Table 3 as well as much more data and
plots that, for lack of space, are available elsewhere [3,7].

3.1 Writing Contracts

In the majority of projects in our study, developers devoted a considerable part of their
programming effort to writing specifications for their code. While we specifically target
projects with some specification (and ignore the majority of software that doesn’t use
contracts), we observe that most of the projects achieve significant percentages of rou-
tines or classes with specification. As shown in column % ROUTINES SPEC of Table 2,
in 7 of the 21 analyzed projects, on average 50% or more of the public routines have
some specification (pre- or postcondition); in 14 projects, 35% or more of the routines
have specification; and only 3 projects have small percentages of specified routines
(15% or less). Usage of class invariants (column % CLASSES INV in Table 2) is more
varied but still consistent: in 9 projects, 33% or more of the classes have an invariant;
in 10 projects, 12% or less of the classes have an invariant. The standard deviation of
these percentages is small for 11 of the 21 projects, compared to the average value over

1 We consider all concrete syntactic changes, that is all textual changes.

234 H.-C. Estler et al.

Ta
bl

e
2.

S
pe

ci
fi

ca
ti

on
ov

er
al

l
st

at
is

ti
cs

w
it

h
no

n-
fl

at
cl

as
se

s.
Fo

r
ea

ch
pr

oj
ec

t,
w

e
re

po
rt

th
e

nu
m

be
r

of
cl

as
se

s
an

d
of

pu
bl

ic
ro

ut
in

es
(#

C
L

A
S

S
E

S
,

#
R

O
U

T
IN

E
S
);

th
e

pe
rc

en
ta

ge
(1

is
10

0%
)

of
cl

as
se

s
w

it
h

no
n-

em
pt

y
in

va
ri

an
t(

%
C

L
A

S
S

E
S

IN
V

);
of

ro
ut

in
es

w
it

h
no

n-
em

pt
y

sp
ec

ifi
ca

ti
on

(%
R

O
U

T
IN

E
S

S
P

E
C

)
an

d
m

or
e

sp
ec

ifi
ca

lly
w

ith
no

n-
em

pt
y

pr
ec

on
di

tio
n

(P
R

E
)

an
d

po
st

co
nd

it
io

n
(P

O
S

T
);

th
e

m
ea

n
nu

m
be

r
of

cl
au

se
s

of
ro

ut
in

e
pr

ec
on

di
ti

on
s

(A
V

G

R
O

U
T

IN
E

S
P

R
E

)
an

d
of

po
st

co
nd

it
io

ns
(P

O
S

T
).

Fo
r

ea
ch

m
ea

su
re

,t
he

ta
bl

e
re

po
rt

s
m

in
im

um
(m

),
m

ed
ia

n
(μ

),
m

ax
im

um
(M

),
an

d
st

an
da

rd
de

vi
at

io
n

(σ
)

ac
ro

ss
al

lr
ev

is
io

ns
.

#
C

L
A

S
S

E
S

%
C

L
A

S
S

E
S

IN
V

#
R

O
U

T
IN

E
S

%
R

O
U

T
IN

E
S

S
P

E
C

%
R

O
U

T
IN

E
S

P
R

E
%

R
O

U
T

IN
E

S
P

O
S

T
A

V
G

R
O

U
T

IN
E

S
P

R
E

A
V

G
R

O
U

T
IN

E
S

P
O

S
T

P
ro

je
ct

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

A
ut

oT
es

t
98

22
0

25
4

66
0.

38
0.

43
0.

55
0.

06
35

2
10

53
12

34
37

2
0.

47
0.

49
0.

61
0.

06
0.

23
0.

25
0.

4
0.

07
0.

34
0.

36
0.

45
0.

04
1.

73
1.

76
1.

85
0.

03
1.

19
1.

22
1.

28
0.

03
E

if
fe

lB
as

e
93

18
4

25
6

36
0.

24
0.

34
0.

39
0.

03
54

5
19

84
33

23
69

6
0.

26
0.

4
0.

44
0.

04
0.

17
0.

27
0.

3
0.

03
0.

14
0.

24
0.

26
0.

03
1.

43
1.

6
1.

7
0.

05
1.

2
1.

46
1.

51
0.

06
E

if
fe

lP
ro

gr
am

A
na

ly
si

s
0

17
9

22
1

30
0

0.
04

0.
05

0
0

82
8

11
27

19
9

0
0.

25
0.

27
0.

02
0

0.
14

0.
16

0.
02

0
0.

15
0.

16
0.

01
0

1.
23

1.
25

0.
09

0
1.

13
1.

17
0.

08
G

ob
oK

er
ne

l
0

72
15

7
38

0
0.

11
0.

13
0.

04
0

16
8

70
2

15
5

0
0.

6
1

0.
17

0
0.

3
0.

4
0.

09
0

0.
51

1
0.

19
0

2.
1

2.
91

0.
59

0
1.

32
1.

86
0.

25
G

ob
oS

tr
uc

tu
re

42
75

10
9

17
0.

19
0.

33
0.

39
0.

06
12

2
37

2
48

3
88

0.
18

0.
29

0.
41

0.
07

0.
07

0.
19

0.
28

0.
06

0.
16

0.
23

0.
32

0.
05

1.
45

1.
82

1.
93

0.
13

1.
17

1.
44

1.
49

0.
1

G
ob

oT
im

e
0

22
47

10
0

0.
12

0.
28

0.
09

0
17

6
33

3
53

0
0.

63
0.

66
0.

06
0

0.
28

0.
33

0.
03

0
0.

58
0.

6
0.

06
0

1.
62

1.
7

0.
15

0
2.

28
2.

53
0.

25
G

ob
oU

ti
li

ty
3

25
43

10
0

0.
22

0.
5

0.
08

1
90

18
5

55
0

0.
9

0.
98

0.
14

0
0.

58
0.

83
0.

12
0

0.
58

0.
67

0.
11

0
1.

8
2.

07
0.

24
0

1.
29

1.
52

0.
25

G
ob

oX
M

L
0

17
6

85
9

25
2

0
0.

38
0.

48
0.

07
0

88
3

54
65

16
03

0
0.

35
0.

44
0.

05
0

0.
23

0.
35

0.
03

0
0.

23
0.

33
0.

06
0

1.
43

1.
55

0.
14

0
1.

2
1.

36
0.

07
B

oo
gi

e
9

60
6

64
7

18
1

0.
24

0.
34

0.
58

0.
06

80
35

42
37

48
10

55
0.

49
0.

52
0.

81
0.

09
0.

28
0.

3
0.

74
0.

13
0.

08
0.

32
0.

38
0.

04
1.

6
1.

73
1.

76
0.

03
1

1.
02

1.
02

0.
01

C
C

I
45

60
10

8
15

0.
01

0.
04

0.
06

0.
01

16
0

21
0

30
2

50
0

0.
03

0.
05

0.
01

0
0.

03
0.

04
0.

01
0

0
0.

01
0

1
1.

33
1.

6
0.

22
0

0
1

0.
49

D
af

ny
11

14
8

18
4

25
0.

04
0.

47
0.

52
0.

06
25

37
5

55
1

85
0.

16
0.

64
0.

74
0.

07
0.

16
0.

57
0.

64
0.

06
0

0.
18

0.
22

0.
03

1
2.

29
2.

36
0.

18
0

1.
04

1.
05

0.
14

L
ab

s
47

58
75

8
0.

35
0.

38
0.

42
0.

02
35

1
41

3
51

8
29

0.
38

0.
47

0.
5

0.
03

0.
28

0.
38

0.
42

0.
03

0.
1

0.
13

0.
21

0.
03

1.
34

1.
37

1.
58

0.
08

1.
13

1.
17

1.
28

0.
05

Q
ui

ck
gr

ap
h

22
8

26
0

33
6

27
0

0.
02

0.
04

0.
01

10
74

12
62

18
62

17
9

0
0.

16
0.

22
0.

07
0

0.
15

0.
21

0.
07

0
0.

01
0.

02
0.

01
0

1.
71

2.
1

0.
71

0
1.

18
1.

36
0.

46
R

xx
0

14
5

18
9

53
0

0.
42

0.
44

0.
08

0
13

58
17

92
49

4
0

0.
7

0.
97

0.
11

0
0.

6
0.

93
0.

13
0

0.
62

0.
81

0.
08

0
2.

1
2.

24
0.

18
0

1.
03

1.
12

0.
1

S
hw

ee
t

0
28

36
13

0
0

0
0

0
57

85
33

0
0.

1
0.

4
0.

07
0

0.
1

0.
4

0.
07

0
0.

01
0.

07
0.

02
0

1.
6

2
0.

77
0

1
1

0.
49

D
ir

ec
tV

C
G

en
13

55
82

17
0

0
0.

03
0

74
44

0
58

2
11

5
0.

06
0.

15
0.

37
0.

04
0.

06
0.

15
0.

37
0.

04
0.

02
0.

1
0.

35
0.

05
1

1
1.

33
0.

05
1

1
1

0
E

S
C

Ja
va

66
16

1
30

8
80

0.
11

0.
17

0.
26

0.
05

23
3

58
5

30
79

85
3

0.
16

0.
36

0.
74

0.
21

0.
14

0.
27

0.
69

0.
2

0.
06

0.
12

0.
2

0.
03

1.
07

1.
27

1.
66

0.
21

1.
21

1.
52

1.
88

0.
12

Ja
va

F
E

10
7

12
4

64
1

29
0.

12
0.

47
0.

62
0.

04
49

9
58

9
10

81
12

5
0.

34
0.

43
0.

8
0.

15
0.

26
0.

34
0.

74
0.

14
0.

13
0.

18
0.

31
0.

04
1.

2
1.

54
1.

61
0.

12
1.

26
1.

48
1.

82
0.

09
L

og
gi

ng
20

22
23

1
0.

04
0.

09
0.

09
0.

01
15

4
17

1
17

3
6

0.
32

0.
49

0.
54

0.
04

0.
14

0.
33

0.
35

0.
04

0.
21

0.
28

0.
33

0.
02

1.
39

1.
43

1.
5

0.
04

1.
58

1.
75

2
0.

08
R

C
C

48
14

2
14

4
42

0.
08

0.
1

0.
11

0.
01

35
9

44
1

44
7

35
0.

06
0.

56
0.

59
0.

24
0.

03
0.

07
0.

1
0.

02
0.

04
0.

52
0.

54
0.

23
1.

21
1.

28
1.

36
0.

04
1

1.
04

1.
05

0.
02

U
m

br
a

23
41

77
16

0
0.

06
0.

1
0.

03
36

12
2

33
2

78
0

0.
02

0.
05

0.
02

0
0.

01
0.

03
0.

01
0

0.
02

0.
04

0.
01

0
1

1
0.

49
0

1
1

0.
47

Contracts in Practice 235

Ta
bl

e
3.

S
el

ec
te

d
pl

ot
s

fo
r

pr
oj

ec
ts

E
if

fe
lB

as
e,

A
ut

oT
es

t,
E

S
C

Ja
va

,a
nd

B
oo

gi
e.

E
ac

h
gr

ap
h

fr
om

le
ft

to
ri

gh
t

re
pr

es
en

ts
th

e
ev

ol
ut

io
n

ov
er

su
cc

es
si

ve
re

vi
si

on
s

of
:

(1
)

an
d

(2
),

pe
rc

en
ta

ge
of

ro
ut

in
es

w
it

h
pr

ec
on

di
ti

on
(p

re
in

th
e

le
ge

nd
),

w
it

h
po

st
co

nd
it

io
n

(p
os

t)
,a

nd
of

cl
as

se
s

w
it

h
in

va
ri

an
t

(i
nv

);
(3

),
av

er
ag

e
nu

m
be

r
of

cl
au

se
s

in
co

nt
ra

ct
s;

(4
),

nu
m

be
r

of
ch

an
ge

s
to

im
pl

em
en

ta
ti

on
an

d
sp

ec
ifi

ca
ti

on
(b

od
y+

sp
ec

),
to

im
pl

em
en

ta
ti

on
on

ly
(b

od
y

on
ly

),
an

d
ch

an
ge

to
sp

ec
ifi

ca
ti

on
on

ly
.W

he
n

pr
es

en
t,

a
th

in
gr

ay
li

ne
pl

ot
s

th
e

to
ta

ln
um

be
r

of
ro

ut
in

e
in

th
e

pr
oj

ec
t(

sc
al

ed
).

S
im

il
ar

pl
ot

s
fo

r
al

lp
ro

je
ct

s
ar

e
av

ai
la

bl
e

[7
,3

].

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

0.150.200.250.300.350.40

E
if

fe
lB

a
s

e
:

%
 r

o
u

ti
n

e
s

 a
n

d
 c

la
s

s
e

s
 w

it
h

 s
p

e
c

if
ic

a
ti

o
n

re
vi

si
o

n

% routines or classes

p
re

p
o

st
in

v

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0.250.300.350.400.450.500.55

A
u

to
T
e

s
t:

 %
 r

o
u

ti
n

e
s

 a
n

d
 c

la
s

s
e

s
 w

it
h

 s
p

e
c

if
ic

a
ti

o
n

re
vi

si
o

n

% routines or classes

p
re

p
o

st
in

v

0
2

0
0

4
0

0
6

0
0

8
0

0

0.20.40.60.8

E
S

C
J

a
v
a

:
S

p
e

c
if

ic
a

ti
o

n
 c

la
u

s
e

s
 p

e
r

ro
u

ti
n

e
 o

r
c
la

s
s

re
vi

si
o

n

clauses per routine or class

p
re

p
o

st
in

v

2
0

0
4

0
0

6
0

0
8

0
0

050100150

B
o

o
g

ie
:

#
 c

h
a

n
g

e
d

 r
o

u
ti

n
e

s
 o

r
s

p
e

c

re
vi

si
o

n

routines

b
o

d
y+

sp
e

c
b

o
d

y
o

n
ly

sp
e

c
o

n
ly

236 H.-C. Estler et al.

all revisions: the latter is at least five times larger. suggesting that deviations from the
average are normally small. Section 3.2 gives a quantitative confirmation of this hint
about the stability of specification amount over time.

The EiffelBase project—a large standard library used in most Eiffel projects—is a
good “average” example of how contracts may materialize over a project’s lifetime.
After an initial fast growing phase (see the first plot in Table 3), corresponding to a
still incipient design that is taking shape, the percentages of routines and classes with
specification stabilize around the median values with some fluctuations that—while still
significant, as we comment on later—do not affect the overall trend or the average per-
centage of specified elements. This two-phase development (initial mutability followed
by stability) is present in several other projects of comparable size, and is sometimes
extreme, such as for Boogie, where there is a widely varying initial phase, followed by a
very stable one where the percentages of elements with specification is practically con-
stant around 30%. Analyzing the commit logs around the revisions of greater instability
showed that wild variations in the specified elements coincide with major reengineer-
ing efforts. For Boogie, the initial project phase coincides with the porting of a parent
project written in Spec# (a dialect of C#), and includes frequent alternations of adding
and removing code from the repository; after this phase, the percentage of routines and
classes with specification stabilizes to a value close to the median.

There are few outlier projects where the percentage of elements with specification
is small, not kept consistent throughout the project’s life, or both. Quickgraph, for ex-
ample, never has more than 4% of classes with an invariant or routines with a postcon-
dition, and its percentage of routines with precondition varies twice between 12% and
21% in about 100 revisions (see complete data in [7]).

In two thirds of the projects, on average 1/3 or more of the routines
have some specification (pre- or postconditions).

Public vs. Private Routines. The data analysis focuses on contracts of public routines.
To determine whether trends are different for private routines, we visually inspected the
plots [3] and computed the correlation coefficient2 τ for the evolution of the percentages
of specified public routines against those of private routines. The results suggest to parti-
tion the projects into three categories. For the 9 projects in the first category—AutoTest,
EiffelBase, Boogie, CCI, Dafny, JavaFE, Logging, RCC and Umbra—the correlation
is positive (0.51 ≤ τ ≤ 0.94) and highly significant. The 2 projects in the second
category—GoboStructure and Labs—have negative (τ ≤ −0.47) and also significant
correlation. The remaining 10 projects belong to the third category, characterized by
correlations small in absolute value, positive or negative, or statistically insignificant.
This partitioning seems to correspond to different approaches to interface design and
encapsulation: for projects in the first category, public and private routines always re-
ceive the same amount of specification throughout the project’s life; projects in the sec-
ond category show negative correlations that may correspond to changes to the visibility
status of a significant fraction of the routines; visual inspection of projects in the third
category still suggests positive correlations between public and private routines with

2 All correlation measures in the paper employ Kendall’s rank correlation coefficient τ .

Contracts in Practice 237

specification, but the occasional redesign upheaval reduces the overall value of τ or the
confidence level. In fact, the confidence level is typically small for projects in the third
category; and it is not significant (p = 0.418) only for EiffelProgramAnalysis which
also belongs to the third category. Projects with small correlations tend to be smaller
in size with fewer routines and classes; conversely, large projects may require a stricter
discipline in defining and specifying the interface and its relations with the private parts,
and have to adopt consistent approaches throughout their lives.

In roughly half of the projects, the amounts of contracts in public and in private
routine correlate; in the other half, correlation vanishes due to redesign changes.

3.2 Contracts and Project Size

The correlation between the number of routines or classes with some specification and
the total number of routines or classes (with or without specification) is consistently
strong and highly significant. Looking at routines, 10 projects exhibit an almost perfect
correlation with τ > 0.9 and p ∼ 0; only 3 projects show medium/low correlations
(Labs and Quickgraph with τ = 0.48, and Logging with τ = 0.32) which are however
still significant. The outlook for classes is quite similar: the correlation between number
of classes with invariants and number of all classes tends to be high. Outliers are the
projects Boogie and JavaFE with the smaller correlations τ = 0.28 and τ = 0.2, but
visual inspection still suggests that a sizable correlation exists for Boogie (the results
for JavaFE are immaterial since it has only few invariants overall). In all, the absolute
number of elements with specification is normally synchronized to the overall size of
a project, confirming the suggestion of Section 3.1 that the percentage of routines and
classes with specification is stable over time.

Having established that, in general, specification and project size have similar trends,
we can look into finer-grained variations of specifications over time. To estimate the rel-
ative effort of writing specifications, we measured the correlation between percentage
of specified routines or classes and number of all routines or all classes.

A first large group of projects, almost half of the total whether we look at routines
or classes, show weak or negligible correlations (−0.35 < τ < 0.35). In this ma-
jority of projects, the relative effort of writing and maintaining specifications evolves
largely independently of the project size. Given that the overall trend is towards stable
percentages, the high variance often originates from initial stages of the projects when
there were few routines or classes in the system and changes can be momentous. Gobo-
Kernel and DirectVCGen are specimens of these cases: the percentage of routines with
contracts varies wildly in the first 100 revisions when the system is still small and the
developers are exploring different design choices and styles.

Another group of 3 projects (AutoTest, Boogie, and Dafny) show strong negative
correlations (τ < −0.75) both between percentage of specified routines and number of
routines and between percentage of specified classes and number of classes. The usual
cross-inspection of plots and commit logs points to two independent phenomena that
account for the negative correlations. The first is the presence of large merges of project
branches into the main branch; these give rise to strong irregularities in the absolute and
relative amount of specification used, and may reverse or introduce new specification

238 H.-C. Estler et al.

styles and policies that affect the overall trends. As evident in the second plot of Ta-
ble 3, AutoTest epitomizes this phenomenon, with its history clearly partitioned into
two parts separated by a large merge at revision 150. The second phenomenon that
may account for negative correlations is a sort of “specification fatigue” that kicks in
as a project becomes mature and quite large. At that point, there might be diminish-
ing returns for supplying more specification, and so the percentage of elements with
specification gracefully decreases while the project grows in size. (This is consistent
with Schiller et al.’s suggestion [27] that annotation burden limits the extent to which
contracts are used.) The fatigue is, however, of small magnitude if present at all, and
may be just be a sign of reached maturity where a solid initial design with plenty of
specification elements pays off in the long run to the point that less relative investment
is sufficient to maintain a stable level of maintainability and quality.

The remaining projects have significant positive correlations (τ > 0.5) between ei-
ther percentage of specified routines and number of routines or between percentage of
specified classes and number of classes, but not both. In these special cases, it looks as
if the fraction of programming effort devoted to writing specification tends to increase
with the absolute size of the system: when the system grows, proportionally more rou-
tines or classes get a specification. However, visual inspection suggests that, in all cases,
the trend is ephemeral or contingent on transient phases where the project size changes
significantly in little time. As the projects mature and their sizes stabilize, the other two
trends (no correlation or negative correlation) emerge in all cases.

The fraction of routines and classes with some specification is quite stable over time.
Local exceptions are possible when major redesign changes take place.

3.3 Kinds of Contract Elements

Do programmers prefer preconditions? Typically, one would expect that preconditions
are simpler to write than postconditions (and, for that matter, class invariants): post-
conditions are predicates that may involve two states (before and after routine execu-
tion). Furthermore, programmers have immediate benefits in writing preconditions as
opposed to postconditions: a routine’s precondition defines the valid input; hence, the
stronger it is, the fewer cases the routine’s body has to deal with.

Contrary to this common assumption, the data in our study (columns % ROUTINES

PRE and POST in Table 2) is not consistently lopsided towards preconditions. 2 projects
show no difference in the median percentages of routines with precondition and with
postcondition. 10 projects do have, on average, more routines with precondition than
routines with postcondition, but the difference in percentage is less than 10% in 5 of
those projects, and as high as 39% only in one project (Dafny). The remaining 9 projects
even have more routines with postcondition than routines with precondition, although
the difference is small (less than 5%) in 5 projects, and as high as 45% only in RCC.

On the other hand, in 17 projects the percentage of routines with some specification
(precondition, postcondition, or both) is higher than both percentages of routines with
precondition and of routines with postcondition. Thus, we can partition the routines
of most projects in three groups of comparable size: routines with only precondition,
routines with only postcondition, and routines with both. The 4 exceptions are CCI,

Contracts in Practice 239

Shweet, DirectVCGen, and Umbra where, however, most elements have little speci-
fication. In summary, many exogenous causes may concur to determine the ultimate
reasons behind picking one kind of contract element over another, such as the project
domain and the different usage of different specification elements. Our data is, however,
consistent with the notion that programmers choose which specification to write accord-
ing to context and requirements, not based on a priori preferences. It is also consistent
with Schiller et al.’s observations [27] that contract usage follows different patterns in
different projects, and that programmers are reluctant to change their preferred usage
patterns—and hence patterns tend to remain consistent within the same project.

A closer look at the projects where the difference between percentages of routines
with precondition and with postcondition is significant (9% or higher) reveals another
interesting pattern. All 6 projects that favor preconditions are written in C# or Java:
Dafny, Labs, Quickgraph, Shweet, ESCJava (third plot in Table 3, after rev. 400), and
JavaFE; conversely, the 3 of 4 projects that favor postconditions are in Eiffel (AutoTest,
GoboKernel, and GoboTime), whereas the fourth is RCC written in Java. A possible
explanation for this division involves the longer time that Eiffel has supported contracts
and the principal role attributed to Design by Contract within the Eiffel community.

Preconditions and postconditions are used equally frequently across most projects.

Class Invariants. Class invariants have a somewhat different status than pre- or post-
conditions. Since class invariants must hold between consecutive routine calls, they
define object consistence, and hence they belong to a different category than pre- and
postconditions. The percentages of classes with invariant (% CLASSES INV in Table 2)
follow similar trends as pre- and postconditions in most projects in our study. Only
4 projects stick out because they have 4% or less of classes with invariant, but other-
wise make a significant usage of other specification elements: Quickgraph, EiffelPro-
gramAnalysis, Shweet, and DirectVCGen.3 Compared to the others, Shweet has a short
history and EiffelProgramAnalysis involves students as main developers rather than
professionals. Given that the semantics of class invariants is less straightforward than
that of pre- and postconditions—and can become quite intricate for complex
programs [1]—this might be a factor explaining the different status of class invariants
in these projects. A specific design style is also likely to influence the usage of class
invariants, as we further comment on in Section 3.4.

Kinds of Constructs. An additional classification of contracts is according to the con-
structs they use. We gathered data about constructs of three types: expressions involv-
ing checks that a reference is Void (Eiffel) or null (C# and Java); some form of finite
quantification (constructs for ∀/∃ over containers exist for all three languages); and old
expressions (used in postconditions to refer to values in the pre-state). Void/null checks
are by far the most used: in Eiffel, 36%–93% of preconditions, 7%–62% of postcon-
ditions, and 14%–86% of class invariants include a Void check; in C#, 80%–96% of
preconditions contain null checks, as do 34%–92% of postconditions (the only excep-
tion is CCI which does not use postconditions) and 97%–100% of invariants (exceptions

3 While the projects CCI and Umbra have few classes with invariants (4%–6%), we don’t discuss
them here because they also only have few routines with preconditions or postconditions.

240 H.-C. Estler et al.

are Quickgraph at 20% and Shweet which does not use invariants); in Java, 88%–100%
of preconditions, 28%–100% of postconditions, and 50%–77% of class invariants con-
tain null (with the exception of Umbra which has few contracts in general). Void/null
checks are simple to write, and hence cost-effective, which explains their wide usage;
this may change in the future, with the increasing adoption of static analyses which su-
persede such checks [19,4]. The predominance of simple contracts and its justification
have been confirmed by others [27].

At the other extreme, quantifications are very rarely used: practically never in pre-
or postconditions; and very sparsely (1%–10% of invariants) only in AutoTest, Boogie,
Quickgraph, ESCJava, and JavaFE’s class invariants. This may also change in the fu-
ture, thanks to the progresses in inferring complex contracts [11,30,29], and in method-
ological support [24].

The usage of old is more varied: C# postconditions practically don’t use it, Java
projects rarely use it (2%–3% of postconditions at most), whereas it features in as many
as 39% of postconditions for some Eiffel projects. Using old may depend on the design
style; for example, if most routines are side-effect free and return a value function solely
of the input arguments there is no need to use old.

The overwhelming majority of contracts involves Void/null checks.
In contrast, quantifiers appear very rarely in contracts.

3.4 Contract Size and Strength

The data about specification size (and strength) partly vindicates the intuition that pre-
conditions are more used. While Section 3.3 showed that routines are not more likely
to have preconditions than postconditions, preconditions have more clauses on aver-
age than postconditions in all but the 3 projects GoboTime, ESCJava, and Logging.
As shown in columns AVG ROUTINES PRE and POST of Table 2, the difference in fa-
vor of preconditions is larger than 0.5 clauses in 9 projects, and larger than 1 clause
in 3 projects. CCI never deploys postconditions, and hence its difference between pre-
and postcondition clauses is immaterial. GoboTime is a remarkable outlier: not only do
twice as many of its routines have a postcondition than have precondition, but its av-
erage postcondition has 0.66 more clauses than its average precondition. ESCJava and
Logging also have larger postconditions on average but the size difference is less con-
spicuous (0.25 and 0.32 clauses). We found no simple explanation for these exceptions,
but they certainly are the result of deliberate design choices.

The following two facts corroborate the idea that programmers tend to do a better job
with preconditions than with postconditions—even if they have no general preference
for one or another. First, the default “trivial” precondition true is a perfectly reason-
able precondition for routines that compute total functions—defined for every value of
the input; a trivial postcondition is, in contrast, never satisfactory. Second, in general,
“strong” postconditions are more complex than “strong” preconditions [24] since they
have to describe more complex relations.

Class invariants are not directly comparable to pre- and postconditions, and their
usage largely depends on the design style. Class invariants apply to all routines and at-
tributes of a class, and hence they may be used extensively and involve many clauses;

Contracts in Practice 241

conversely, they can also be replaced by pre- and postconditions in most cases, in
which case they need not be complex or present at all. In the majority of projects
(15 out of 21), however, class invariants have more clauses on average than pre- and
postconditions. We might impute this difference to the traditional design principles for
object-oriented contract-based programming, which attribute a significant role to class
invariants [18,5,25] as the preferred way to define valid object state.

In over eighty percent of the projects, the average preconditions
contain more clauses than the average postconditions.

Section 3.1 observed the prevailing stability over time of routines with specification.
Visual inspection and the values of standard deviation point to a qualitatively similar
trend for specification size, measured in number of clauses. In the first revisions of a
project, it is common to have more varied behavior, corresponding to the system design
being defined; but the average strength of specifications typically reaches a plateau, or
varies quite slowly, in mature phases.

Project Labs is somewhat of an outlier, where the evolution of specification strength
over time has a rugged behavior (see [7] for details and plots). Its average number of
class invariant clauses has a step at about revision 29, which corresponds to a merge,
when it suddenly grows from 1.8 to 2.4 clauses per class. During the few following
revisions, however, this figure drops quickly until it reaches a value only slightly higher
than what it was before revision 29. What probably happened is that the merge mixed
classes developed independently with different programming styles (and, in particular,
different attitudes towards the usage of class invariants). Shortly after the merge, the
developers refactored the new components to make them comply with the overall style,
which is characterized by a certain average invariant strength.

One final, qualitative, piece of data about specification strength is that in a few
projects there seems to be a moderate increase in the strength of postconditions to-
wards the latest revisions of the project. This observation is however not applicable
to any of the largest and most mature projects we analyzed (e.g., EiffelBase, Boogie,
Dafny).

The average size (in number of clauses) of specification elements is stable over time.

3.5 Implementation vs. Specification Changes

Contracts are executable specifications; normally, they are checked at runtime during
debugging and regression testing sessions (and possibly also in production releases, if
the overhead is acceptable, to allow for better error reporting from final users). Specif-
ically, most applications and libraries of our study are actively used and maintained.
Therefore, their contracts cannot become grossly misaligned with the implementation.

A natural follow-up question is then whether contracts change more often or less
often than the implementations they specify. To answer, we compare two measures in
the projects: for each revision, we count the number of routines with changed body and
changed specification (pre- or postcondition) and compare it to the number of routines
with changed body and unchanged specification. These measures aggregated over all

242 H.-C. Estler et al.

revisions determine a pair of values (cP , uP) for each project P : cP characterizes the
frequency of changes to implementations that also caused a change in the contracts,
whereas uP characterizes the frequencies of changes to implementations only. To avoid
that few revisions with very many changes dominate the aggregate values for a project,
each revision contributes with a binary value to the aggregate value of a project: 0 if no
routine has undergone a change of that type in that revision, and 1 otherwise.4 We per-
formed a Wilcoxon signed-rank test comparing the cP ’s to the uP ’s across all projects to
determine if the median difference between the two types of events (changed body with
and without changed specification) is statistically significant. The results confirm with
high statistical significance (V = 0, p = 9.54 · 10−7, and large effect size—Cohen’s
d > 0.99) that specification changes are quite infrequent compared to implementation
changes for the same routine. Visual inspection also confirms the same trend: see the last
plot in Table 3 about Boogie. A similar analysis ignoring routines with trivial (empty)
specification leads to the same conclusion also with statistical significance (V = 29,
p = 4.78 · 10−3, and medium effect size d > 0.5).

When specifications do change, what happens to their strength measured in number
of clauses? Another Wilcoxon signed-rank test compares the changes to pre- and post-
conditions and class invariants that added clauses (suggesting strengthening) against
those that removed clauses (suggesting weakening). Since changes to specifications are
in general infrequent, the results were not as conclusive as those comparing specifi-
cation and implementation changes. The data consistently points towards strengthening
being more frequent than weakening: V = 31.5 and p < 0.02 for precondition changes;
V = 29 and p < 0.015 for postcondition changes; V = 58.5 and p = 0.18 for invari-
ant changes. The effect sizes are, however, smallish: Cohen’s d is about 0.4, 0.42, and
0.18 for preconditions, postconditions, and invariants. In all, the effect of strengthening
being more frequent than weakening seems to be real but more data is needed to obtain
conclusive evidence.

The implementation of an average routine changes
much more frequently than its specification.

3.6 Inheritance and Contracts

Inheritance is a principal feature of object-oriented programming, and involves con-
tracts as well as implementations; we now evaluate its effects on the findings previously
discussed.

We visually inspected the plots and computed correlation coefficients for the per-
centages and average strength of specified elements in the flat (explicitly including all
routines and specification of the ancestor classes) and non-flat (limited to what appears
in the class text) versions of the classes. In the overwhelming majority of cases, the cor-
relations are high and statistically significant: 16 projects have τ ≥ 0.54 and p < 10−9

for the percentage of routines with specification; 17 projects have τ ≥ 0.66 and p ∼ 0
for the percentage of classes with invariant; 12 projects have τ ≥ 0.58 and p < 10−7

for the average precondition and postcondition strength (and 7 more projects still have

4 Using other “reasonable” aggregation functions (including exact counting) leads to qualita-
tively similar results.

Contracts in Practice 243

τ ≥ 0.33 and visually evident correlations); and 15 projects have τ ≥ 0.45 and p ∼ 0
for the average invariant strength. The first-order conclusion is that, in most cases, ig-
noring the inherited specification does not preclude understanding qualitative trends.

What about the remaining projects, which have small or insignificant correlations for
some of the measures in the flat and non-flat versions? Visual inspection often confirms
the absence of significant correlations, in that the measures evolve along manifestly
different shapes in the flat or non-flat versions; the divergence in trends is typically ap-
parent in the revisions where the system size changes significantly, where the overall
design—and the inheritance hierarchy—is most likely to change. To see if these visible
differences invalidate some of the findings discussed so far, we reviewed the findings
against the data for flat classes. The big picture was not affected: considering inheri-
tance may affect the measures and offset or bias some trends, but the new measures
are still consistent with the same conclusions drawn from the data for non-flat classes.
Future work will investigate whether this result is indicative of a mismatch between
the semantics of inheritance and how it is used in practice [28,26]. (See the extended
version [7] for details.)

Qualitative trends of measures involving contracts do not change significantly
whether we consider or ignore inherited contracts.

4 Threats to Validity

Construct Validity. Using the number of clauses as a proxy for the strength of a specifi-
cation may produce imprecise measures; Section 2, however, estimated the imprecision
and showed it is limited, and hence an acceptable trade-off in most cases (also given
that computing strength exactly is infeasible). Besides, the number of clauses is still a
valuable size/complexity measure in its own right (Section 3.4).

Internal Validity. Since we targeted object-oriented languages where inheritance is
used pervasively, it is essential that the inheritance structure be taken into account in
the measures. We fully addressed this major threat to internal validity by analyzing all
projects twice: in non-flat and flat version (Section 3.6).

External Validity. Our study is restricted to three formalisms for writing contract spec-
ifications. While other notations for contracts are similar, we did not analyze other
types of formal specification, which might limit the generalizability of our findings. In
contrast, the restriction to open-source projects does not pose a serious threat to external
validity in our study, because several of our projects are mainly maintained by profes-
sional programmers (EiffelBase and Gobo projects) or by professional researchers in
industry (Boogie, CCI, Dafny, and Quickgraph).

An important issue to warrant external validity involves the selection of projects. We
explicitly targeted projects that make a non-negligible usage of contracts (Section 2),
as opposed to the overwhelming majority that only include informal documentation or
no documentation at all. This deliberate choice limits the generalizability of our find-
ings, but also focuses the study on understanding how contracts can be seriously used
in practice. A related observation is that the developers of several of the study’s projects
are supporters of using formal specifications. While this is a possible source of bias it

244 H.-C. Estler et al.

also contributes to reliability of the results: since we are analyzing good practices and
success stories of writing contracts, we should target competent programmers with suf-
ficient experience, rather than inexpert novices. Besides, Schiller et al.’s independent
analysis [27] of some C# projects using CodeContracts also included in our study sug-
gests that their developers are hardly fanatic about formal methods, as they use contracts
only to the extent that it remains inexpensive and cost-effective, and does not require
them to change their programming practices.

Nevertheless, to get an idea of whether the programmers we studied really have in-
comparable skills, we also set up a small control group, consisting of 10 projects devel-
oped by students of a software engineering course involving students from universities
all around the world. In summary (see [7] for details), we found that several of the
trends measured with the professional programmers were also present in the student
projects—albeit on the smaller scale of a course project. This gives some confidence
that the big picture outlined by this paper’s results somewhat generalizes to developers
willing to spend some programming effort to write contracts.

5 Related Work

To our knowledge, this paper is the first quantitative empirical study of specifications in
the form of contracts and their evolution together with code. Schiller et al. [27] study C#
projects using CodeContracts (some also part of our study); while our and their results
are not directly comparable because we take different measures and classify contract
usage differently, the overall qualitative pictures are consistent and nicely complemen-
tary. In the paper we also highlighted a few points where their results confirm or justify
ours. Schiller et al. do not study contract evolution; there is evidence, however, that
other forms of documentation—e.g., comments [9], APIs [13], or tests [32]—evolve
with code.

A well-known problem is that specification and implementation tend to diverge over
time; this is more likely for documents such as requirements and architectural de-
signs that are typically developed and stored separately from the source code. Much
research has targeted this problem; specification refinement, for instance, can be ap-
plied to software revisions [10]. Along the same lines, some empirical studies analyzed
how requirements relate to the corresponding implementations; [12], for example, ex-
amines the co-evolution of certain aspects of requirements documents with change logs
and shows that topic-based requirements traceability can be automatically implemented
from the information stored in version control systems.

The information about the usage of formal specification by programmers is largely
anecdotal, with the exceptions of a few surveys on industrial practices [2,31]. There is,
however, some evidence of the usefulness of contracts and assertions. [15], for exam-
ple, suggests that increases of assertions density and decreases of fault density correlate.
[20] reports that using assertions may decrease the effort necessary for extending exist-
ing programs and increase their reliability. In addition, there is evidence that developers
are more likely to use contracts in languages that support them natively [2]. As the tech-
nology to infer contracts from code reaches high precision levels [6,30], it is natural to
compare automatically inferred and programmer-written contracts; they turn out to be,
in general, different but with significant overlapping [23].

Contracts in Practice 245

6 Concluding Discussion and Implications of the Results

Looking at the big picture, our empirical study suggests a few actionable remarks.
(i) The effort required to make a quantitatively significant usage of lightweight specifi-
cations is sustainable consistently over the lifetime of software projects. This supports
the practical applicability of methods and processes that rely on some form of rigorous
specification. (ii) The overwhelming majority of contracts that programmers write in
practice are short and simple. This means that, to be practical, methods and tools should
make the best usage of such simple contracts or acquire more complex and complete
specifications by other means (e.g., inference). It also encourages the usage of simple
specifications early on in the curriculum and in the training of programmers [14]. (iii) In
spite of the simplicity of the contracts that are used in practice, developers who commit
to using contracts seem to stick to them over an entire project lifetime. This reveals that
even simple specifications bring a value that is worth the effort: a little specification can
go a long way. (iv) Developers often seem to adapt their contracts in response to changes
in the design; future work in the direction of facilitating these adaptations and making
them seamless has a potential for a high impact. (v) A cornerstone software engineer-
ing principle—stable interfaces over changing implementations—seems to have been
incorporated by programmers. An interesting follow-up question is then whether this
principle can be leveraged to improve not only the reusability of software components
but also the collaboration between programmers in a development team. (vi) Somewhat
surprisingly, inheritance does not seem to affect most qualitative findings of our study.
The related important issue of how behavioral subtyping is achieved in practice [26]
belongs to future work, together with several other follow-up questions whose answers
can build upon the foundations laid by this paper’s results.

Acknowledgments. Thanks to Sebastian Nanz for comments on a draft of this paper;
and to Todd Schiller, Kellen Donohue, Forrest Coward, and Mike Ernst for sharing a
draft of their paper [27] and comments on this work.

References

1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Comm. ACM 54(6), 81–91 (2011)

2. Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones, C.B., Romanovsky,
A., Troubitsyna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 100–113. Springer,
Heidelberg (2006)

3. http://se.inf.ethz.ch/data/coat/
4. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using pluggable

type-checkers. In: ICSE, pp. 681–690. ACM (2011)
5. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework for ver-

ification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 412–437. Springer, Heidelberg (2008)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69,
35–45 (2007)

7. Estler, H.C., Furia, C.A., Nordio, M., Piccioni, M., Meyer, B.: Contracts in practice (2013),
extended version with appendix http://arxiv.org/abs/1211.4775

http://se.inf.ethz.ch/data/coat/
http://arxiv.org/abs/1211.4775

246 H.-C. Estler et al.

8. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC, pp. 2103–
2110. ACM (2010)

9. Fluri, B., Würsch, M., Gall, H.: Do code and comments co-evolve? on the relation between
source code and comment changes. In: WCRE, pp. 70–79. IEEE (2007)

10. García-Duque, J., Pazos-Arias, J., López-Nores, M., Blanco-Fernández, Y., Fernández-Vilas,
A., Díaz-Redondo, R., Ramos-Cabrer, M., Gil-Solla, A.: Methodologies to evolve formal
specifications through refinement and retrenchment in an analysis-revision cycle. Require-
ments Engineering 14, 129–153 (2009)

11. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container
classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)

12. Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to implementa-
tion via topic analysis. In: ICSM (2012)

13. Kim, M., Cai, D., Kim, S.: An empirical investigation into the role of API-level refactorings
during software evolution. In: ICSE, pp. 151–160. ACM (2011)

14. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 214–228. Springer, Heidelberg (2008)

15. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software asser-
tions and faults: An empirical investigation. In: ISSRE, pp. 204–212 (2006)

16. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral
Specifications of Businesses and Systems, pp. 175–188. Kluwer Academic Publishers (1999)

17. Martin, J.K., Hirschberg, D.S.: Small sample statistics for classification error rates II. Tech.
rep., CS Department, UC Irvine (1996), http://goo.gl/Ec8oD

18. Meyer, B.: Object Oriented Software Construction, 2nd edn. Prentice Hall PTR (1997)
19. Meyer, B., Kogtenkov, A., Stapf, E.: Avoid a Void: the eradication of null dereferencing. In:

Reflections on the Work of C.A.R., pp. 189–211. Springer (2010)
20. Müller, M.M., Typke, R., Hagner, O.: Two controlled experiments concerning the usefulness

of assertions as a means for programming. In: ICSM, pp. 84–92 (2002)
21. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972)
22. Parnas, D.L.: Precise documentation: The key to better software. In: The Future of Software

Engineering, pp. 125–148. Springer (2011)
23. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written and auto-

matically inferred contracts. In: ISSTA, pp. 93–104 (2009)
24. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong specifications?

In: ICSE, pp. 257–266. ACM (2013)
25. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through semantic

collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
505–520. Springer, Heidelberg (2014)

26. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent substitutability. In:
ICSE, pp. 282–291. ACM (2013)

27. Schiller, T.W., Donohue, K., Coward, F., Ernst, M.D.: Writing and enforcing contract speci-
fications. In: ICSE. ACM (2014)

28. Tempero, E., Yang, H.Y., Noble, J.: What programmers do with inheritance in Java. In:
Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 577–601. Springer, Heidelberg (2013)

29. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. 18(3-4), 263–292 (2011)

30. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE, pp. 191–200
(2011)

31. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and ex-
perience. ACM CSUR 41(4) (2009)

32. Zaidman, A., Van Rompaey, B., Demeyer, S., van Deursen, A.: Mining software repositories
to study co-evolution of production and test code. In: ICST, pp. 220 –229 (2008)

http://goo.gl/Ec8oD

When Equivalence and Bisimulation Join Forces
in Probabilistic Automata�

Yuan Feng1,2 and Lijun Zhang3,��

1 University of Technology Sydney, Australia
2 Department of Computer Science and Technology, Tsinghua University, China

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, China

Abstract. Probabilistic automata were introduced by Rabin in 1963 as language
acceptors. Two automata are equivalent if and only if they accept each word with
the same probability. On the other side, in the process algebra community, prob-
abilistic automata were re-proposed by Segala in 1995 which are more general
than Rabin’s automata. Bisimulations have been proposed for Segala’s automata
to characterize the equivalence between them. So far the two notions of equiv-
alences and their characteristics have been studied most independently. In this
paper, we consider Segala’s automata, and propose a novel notion of distribution-
based bisimulation by joining the existing equivalence and bisimilarities. Our
bisimulation bridges the two closely related concepts in the community, and pro-
vides a uniform way of studying their characteristics. We demonstrate the utility
of our definition by studying distribution-based bisimulation metrics, which gives
rise to a robust notion of equivalence for Rabin’s automata.

1 Introduction

In 1963, Rabin [29] introduced the model probabilistic automata as language accep-
tors. In a probabilistic automaton, each input symbol determines a stochastic transition
matrix over the state space. Starting with the initial distribution, each word (a sequence
of symbols) has a corresponding probability of reaching one of the final states, which
is referred to the accepting probability. Two automata are equivalent if and only if they
accept each word with the same probability. The corresponding decision algorithm has
been extensively studied, see [29,31,25,26].

Markov decision processes (MDPs) were known as early as the 1950s [3], and are a
popular modeling formalism used for instance in operations research, automated plan-
ning, and decision support systems. In MDPs, each state has a set of enabled actions
and each enabled action leads to a distribution over successor states. MDPs have been
widely used in the formal verification of randomized concurrent systems, and are now
supported by probabilistic model checking tools such as PRISM [27], MRMC [24] and
IscasMC [20].
� Supported by the National Natural Science Foundation of China (NSFC) under grant No.

61361136002, and Australian Research Council (ARC) under grant Nos. DP130102764 and
FT100100218. Y. F. is also supported by the Overseas Team Program of Academy of Mathe-
matics and Systems Science, Chinese Academy of Sciences.

�� Corresponding author.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 247–262, 2014.
c© Springer International Publishing Switzerland 2014

248 Y. Feng and L. Zhang

On the other side, in the context of concurrent systems, probabilistic automata were
re-proposed by Segala in 1995 [30], which extend MDPs with internal nondeterminis-
tic choices. Segala’s automata are more general than Rabin’s automata, in the sense that
each input symbol corresponds to one, or more than one, stochastic transition matri-
ces. Various behavioral equivalences are defined, including strong bisimulations, strong
probabilistic bisimulations, and weak bisimulation extensions [30]. These behavioral
equivalences are used as powerful tools for state space reduction and hierarchical veri-
fication of complex systems. Thus, their decision algorithms [4,2,23] and logical char-
acterizations [28,12,22] are widely studied in the literature.

Equivalences are defined for the specific initial distributions over Rabin’s automata,
whereas bisimulations are usually defined over states. For Segala’s automata, state-
based bisimulations have arguably too strong distinguishing power, thus in the recent
literature, various relaxations have been proposed. The earliest such formulation is a
distribution-based bisimulation in [14], which is defined for Rabin’s automata. This is
essentially an equivalent characterization of the equivalence in the coinductive man-
ner, as for bisimulations. Recently, in [15], a distribution-based weak bisimulation has
been proposed, and the induced distribution-based strong bisimulation is further stud-
ied in [21]. It is shown that the distribution-based strong bisimulation agrees with the
state-based bisimulations when lifted to distributions.

To the best of the authors’ knowledge, even the two notions are closely related, so
far their characteristics have been studied independently. As the main contribution of
this paper, we consider Segala’s probabilistic automata, and propose a novel notion of
distribution-based bisimulation by joining the existing equivalence and bisimilarities.
We show that for Rabin’s probabilistic automata it coincides with equivalences, and
for Segala’s probabilistic automata, it is reasonably weaker than the existing bisimu-
lation relation. Thus, our bisimulations bridge the two closely related concepts in the
community, and provide a uniform way of studying their characteristics.

We demonstrate the utility of our approach by studying distribution-based bisimula-
tion metrics. Bisimulations for probabilistic systems are known to be very sensitive to
the transition probabilities: even a tiny perturbation of the transition probabilities will
destroy bisimilarity. Thus, bisimulation metrics have been proposed [19]: the distance
between any two states are measured, and the smaller the distance is, the more simi-
lar they are. If the distance is zero, one then has the classical bisimulation. Because of
the nice property of robustness, bisimulation metrics have attracted a lot attentions on
MDPs and their extension with continuous state space, see [10,8,11,13,17,6,18,1,7].

All of the existing bisimulation metrics mentioned above are state-based. On the
other side, as states lead to distributions in MDPs, the metrics must be lifted to distri-
butions. In the second part of the paper, we propose a distribution-based bisimulation
metric; we consider it being more natural as no lifting of distances is needed. We pro-
vide a coinductive definition as well as a fixed point characterization, both of which
are used in defining the state-based bisimulation metrics in the literature. We provide a
logical characterization for this metric as well, and discuss the relation of our definition
and the state-based ones.

A direct byproduct of our bisimulation-based metrics is the notion of equivalence
metrics for Rabin’s probabilistic automata. As for bisimulation metrics, the equivalence

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 249

metric provides a robust solution for comparing Rabin’s automata. To the best of our
knowledge, this has not been studied in the literature. We anticipate that more solution
techniques developed in one area can inspire solutions for the corresponding problems
in the other.

Organization of the Paper. We introduce some notations in Section 2. Section 3 recalls
the definitions of probabilistic automata, equivalence, and bisimulation relations. We
present our distribution-based bisimulation in Section 4, and bisimulation metrics and
their logical characterizations in 5. Section 6 concludes the paper. Due to the lack of
space, most proofs were omitted in this paper; please refer to the full version at [16] for
the details.

2 Preliminaries

Distributions. For a finite set S, a distribution is a function μ : S → [0, 1] satisfy-
ing |μ| :=

∑
s∈S μ(s) = 1. We denote by Dist(S) the set of distributions over S.

We shall use s, r, t, . . . and μ, ν . . . to range over S and Dist(S), respectively. Given
a set of distributions {μi}1≤i≤n, and a set of positive weights {pi}1≤i≤n such that∑

1≤i≤n pi = 1, the convex combination μ =
∑

1≤i≤n pi · μi is the distribution
such that μ(s) =

∑
1≤i≤n pi · μi(s) for each s ∈ S. The support of μ is defined

by supp(μ) := {s ∈ S | μ(s) > 0}. For an equivalence relation R defined on S, we
write μRν if it holds that μ(C) = ν(C) for all equivalence classes C ∈ S/R. A distri-
bution μ is called Dirac if |supp(μ)| = 1, and we let δs denote the Dirac distribution
with δs(s) = 1.

Note that when S is finite, the distributions Dist(S) over S, when regarded as a sub-
set of R|S|, is both convex and compact. In this paper, when we talk about convergence
of distributions, or continuity of relations such as transitions, bisimulations, and pseu-
dometrics between distributions, we are referring to the normal topology of R|S|. For
a set F ⊆ S, we define the (column) characteristic vector ηF by letting ηF (s) = 1 if
s ∈ F , and 0 otherwise.

Pseudometric. A pseudometric over Dist(S) is a function d : Dist(S) × Dist(S) →
[0, 1] such that

1. d(μ, μ) = 0;
2. d(μ, ν) = d(ν, μ);
3. d(μ, ν) + d(ν, ω) ≥ d(μ, ω).

In this paper, we assume that a pseudometric is continuous.

3 Probabilistic Automata and Bisimulations

3.1 Probabilistic Automata

Let AP be a finite set of atomic propositions. We recall the notion of probabilistic
automata introduced by Segala [30].

250 Y. Feng and L. Zhang

Definition 1 (Probabilistic Automata). A probabilistic automaton is a tuple A =
(S, Act,→, L, α) where S is a finite set of states, Act is a finite set of actions, → ⊆
S × Act × Dist(S) is a transition relation, L : S → 2AP is a labeling function, and
α ∈ Dist(S) is an initial distribution.

As usual we only consider image-finite probabilistic automata, i.e. for all s ∈ S, the
set {μ | (s, a, μ) ∈ →} is finite. A transition (s, a, μ) ∈ → is denoted by s

a−→ μ. We
denote by Act(s) := {a | s

a−→ μ} the set of enabled actions in s. We say A is input
enabled, if Act(s) = Act for all s ∈ S. We say A is an MDP if Act is a singleton.

Interestingly, a subclass of probabilistic automata were already introduced by Ra-
bin in 1963 [29]; Rabin’s probabilistic automata were referred to as reactive automata
in [30]. We adopt this convention in this paper.

Definition 2 (Reactive Automata). We say A is reactive if it is input enabled, and for
all s, L(s) ∈ {∅, AP}, and s

a−→ μ ∧ s
a−→ μ′ ⇒ μ = μ′.

Here the condition L(s) ∈ {∅, AP} implies that the states can be partitioned into
two equivalence classes according to their labeling. Below we shall identify F := {s |
L(s) = AP} as the set of accepting states, a terminology used in reactive automata. In
a reactive automaton, each action a ∈ Act is enabled precisely once for all s ∈ S, thus
inducing a stochastic matrix M(a) satisfying s

a−→ M(a)(s, ·).

3.2 Probabilistic Bisimulation and Equivalence

First, we recall the definition of (strong) probabilistic bisimulation for probabilistic au-
tomata [30]. Let {s

a−→ μi}i∈I be a collection of transitions, and let {pi}i∈I be a collec-
tion of probabilities with

∑
i∈I pi = 1. Then (s, a,

∑
i∈I pi · μi) is called a combined

transition and is denoted by s
a−→P μ where μ =

∑
i∈I pi · μi.

Definition 3 (Probabilistic bisimulation [30]). An equivalence relation R ⊆ S × S
is a probabilistic bisimulation if sRr implies that L(s) = L(r), and for each s

a−→ μ,
there exists a combined transition r

a−→P ν such that μRν.
We write s ∼P r whenever there is a probabilistic bisimulation R such that sRr.

Recently, in [15], a distribution-based weak bisimulation has been proposed, and the
induced distribution-based strong bisimulation is further studied in [21]. Their bisimi-
larity is shown to be the same as ∼P when lifted to distributions. Below we recall the
definition of equivalence for reactive automata introduced by Rabin [29].

Definition 4 (Equivalence for Reactive Automata [29]). Let Ai = (Si, Acti,→i

, Li, αi) with i = 1, 2 be two reactive automata with Act1 = Act2 =: Act, and
Fi = {s ∈ Si | L(s) = AP} the set of final states for Ai. We say A1 and A2 are equiv-
alent if A1(w) = A2(w) for each w ∈ Act∗, where Ai(w) := αiMi(a1) . . . Mi(ak)ηFi

provided w = a1 . . . ak.

Stated in plain english, A1 and A2 with the same set of actions are equivalent iff for
an arbitrary input w, the probabilities of absorbing in F1 and F2 are the same.

So far bisimulations and equivalences were studied most independently. The only ex-
ception we are aware is [14], in which for Rabin’s probabilistic automata, a distribution-
based bisimulation is defined that generalizes both equivalence and bisimulations.

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 251

Definition 5 (Bisimulation for Reactive Automata [14]). Let Ai = (Si, Acti,→i

, Li, αi) with i = 1, 2 be two given reactive automata with Act1 = Act2 =: Act, and
Fi the set of final states for Ai. A relation R ⊆ Dist(S1)×Dist(S2) is a bisimulation
if for each μRν it holds (i) μ · ηF1 = ν · ηF2 , and (ii) (μM1(a))R(νM2(a)) for all
a ∈ Act.

We write μ ∼d ν whenever there is a bisimulation R such that μRν.

It is shown in [14] that two reactive automata are equivalent if and only if their initial
distributions are distribution-based bisimilar according to the definition above.

4 A Novel Bisimulation Relation

In this section we introduce a notion of distribution-based bisimulation for Segala’s
automata by extending the bisimulation defined in [14]. We shall show the compatibil-
ity of our definition with previous ones in Subsection 4.1, and some properties of our
bisimulation in Subsection 4.2.

For the first step of defining a distribution-based bisimulation, we need to extend
the transitions starting from states to those starting from distributions. A natural can-
didate for such an extension is as follows: for a distribution μ to perform an action a,
each state in its support must make a combined a-move. However, this definition is
problematic, as in Segala’s general probabilistic automata, action a may not always be
enabled in any support state of μ. In this paper, we deal with this problem by first defin-
ing the distribution-based bisimulation (resp. distances) for input enabled automata, for
which the transition between distributions can be naturally defined, and then reducing
the equivalence (resp. distances) of two distributions in a general probabilistic automata
to the bisimilarity (resp. distances) of these distributions in an input enabled automata
which is obtained from the original one by adding a dead state.

To make our idea more rigorous, we need some notations. For A ⊆ AP and a distri-
bution μ, we define μ(A) :=

∑
{μ(s) | L(s) = A}, which is the probability of being

in those state s with label A.

Definition 6. We write μ
a−→ μ′ if for each s ∈ supp(μ) there exists s

a−→P μs such that
μ′ =

∑
s μ(s) · μs.

We first present our distribution-based bisimulation for input enabled probabilistic
automata.

Definition 7. Let A = (S, Act,→, L, α) be an input enabled probabilistic automaton.
A symmetric relation R ⊆ Dist(S)× Dist(S) is a (distribution-based) bisimulation if
μRν implies that

1. μ(A) = ν(A) for each A ⊆ AP , and
2. for each a ∈ Act, whenever μ

a−→ μ′ then there exists a transition ν
a−→ ν′ such that

μ′Rν′.

We write μ ∼A ν if there is a bisimulation R such that μRν.

Obviously, the bisimilarity ∼A is the largest bisimulation relation.

252 Y. Feng and L. Zhang

For probabilistic automata which are not input enabled, we define distribution-based
bisimulation with the help of input enabled extension specified as follows.

Definition 8. Let A = (S, Act,→, L, α) be a probabilistic automaton over AP . The
input enabled extension of A, denoted by A⊥, is defined as an (input enabled) proba-
bilistic automaton (S⊥, Act,→⊥, L⊥, α) over AP⊥ where

1. S⊥ = S ∪ {⊥} where ⊥ is a dead state not in S;
2. AP⊥ = AP ∪ {dead} with dead �∈ AP ;
3. →⊥ = → ∪ {(s, a, δ⊥) | a �∈ Act(s)} ∪ {(⊥, a, δ⊥) | a ∈ Act};
4. L⊥(s) = L(s) for any s ∈ S, and L⊥(⊥) = {dead}.

Definition 9. Let A be a probabilistic automaton which is not input enabled. Then μ
and ν are bisimilar, denoted by μ ∼A ν, if μ ∼A⊥ ν in A⊥.

We always omit the superscript A in ∼A when no confusion arises.

4.1 Compatibility

In this section we instantiate appropriate labeling functions and show that our notion
of bisimilarity is a conservative extension of both probabilistic bisimulation [29] and
equivalence relations [14].

Lemma 1. Let A be a probabilistic automaton where AP = Act, and L(s) = Act(s)
for each s. Then, μ ∼P ν implies μ ∼ ν.

Probabilistic bisimulation is defined over states inside one automaton, whereas equiv-
alence and distribution for reactive automata are defined over two automata. However,
they can be connected by the notion of direct sum of two automata, which is the automa-
ton obtained by considering the disjoint union of states, edges and labeling functions
respectively.

Lemma 2. Let A1 and A2 be two reactive automata with the same set of actions Act.
Let Fi = {s ∈ Si | L(s) = AP}. Then, the following are equivalent:

1. A1 and A2 are equivalent,
2. α1 ∼d α2,
3. α1 ∼ α2 in their direct sum.

Proof. The equivalence between (1) and (2) is shown in [14]. The equivalence between
(2) and (3) is straightforward, as for reactive automata our definition degenerates to
Definition 5. 	�

To conclude this section, we present an example to show that our bisimilarity is
strictly weaker than ∼P.

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 253

Example 1. Consider the example probabilistic automaton depicted in Fig. 1, which is
inspired from an example in [14]. Let AP = Act = {a}, L(s) = Act(s) for each
s, and ε1 = ε2 = 0. We argue that q �∼P q′. Otherwise, note q

a−→ 1
2δr1 + 1

2δr2 and

q′
a−→ δr′ . Then we must have r′ ∼P r1 ∼P r2. This is impossible, as r1

a−→ 2
3δs1 +

1
3δs2

and r′
a−→ 1

2δs′1 +
1
2δs′2 , but s1 ∼P s′1 �∼P s2 ∼P s′2.

However, by our definition of bisimulation, the Dirac distributions δq and δq′ are
indeed bisimilar. The reason is, we have the following transition

1

2
δr1 +

1

2
δr2

a−→ 1

3
δs1 +

1

6
δs2 +

1

6
δs3 +

1

3
δs4 ,

and it is easy to check δs1 ∼ δs3 ∼ δs′1 and δs2 ∼ δs4 ∼ δs′2 . Thus we have 1
2δr1 +

1
2δr2 ∼ δr′ , and finally δq ∼ δq′ .

q

r1 r2

a,

1
2

a,

1
2

s1 s2 s3 s4

a,

2
3
+ ε1

a

a,

1
3
− ε1

a

a,

1
3
− ε2 a,

2
3
+ ε2

q
′

r
′

a, 1

s
′

1a s
′

2

a,

1
2

a,

1
2

Fig. 1. An illustrating example in which state labelings are defined by L(s) = Act(s)

4.2 Properties of the Relations

In the following, we show that the notion of bisimilarity is in harmony with the linear
combination and the limit of distributions.

Definition 10. A binary relation R ⊆ Dist(S)×Dist(S) is said to be

– linear, if for any finite set I and any probabilistic distribution {pi}i∈I , μiRνi for
each i implies (

∑
i∈I pi · μi)R(

∑
i∈I pi · νi);

– continuous, if for any convergent sequences of distributions {μi}i and {νi}i, μiRνi
for each i implies (limi μi)R(limi νi);

– left-decomposable, if (
∑

i∈I pi · μi)Rν, where 0 < pi ≤ 1 and
∑

i∈I pi = 1, then
ν can be written as

∑
i∈I pi · νi such that μiRνi for every i ∈ I .

– left-convergent, if (limi μi)Rν, then for any i we have μiRνi for some νi with
limi νi = ν.

254 Y. Feng and L. Zhang

We prove below that our transition relation between distributions satisfies these
properties.

Lemma 3. For an input enabled probabilistic automata, the transition relation
a−→ be-

tween distributions is linear, continuous, left-decomposable, and left-convergent.

Theorem 1. The bisimilarity relation ∼ is both linear and continuous.

In general, our definition of bisimilarity is not left-decomposable. This is in sharp
contrast with the bisimulations defined by using the lifting technique [9]. However, this
should not be regarded as a shortcoming; actually it is the key requirement we aban-
don in this paper, which makes our definition reasonably weak. This has been clearly
illustrated in Example 1.

5 Bisimulation Metrics

We present distribution-based bisimulation metrics with discounting factor γ ∈ (0, 1] in
this section. Three different ways of defining bisimulation metrics between states exist
in the literature: one coinductive definition based on bisimulations [35,33,34,13], one
based on the maximal logical differences [10,11,32], and one on fixed point [8,32,17].
We propose all the three versions for our distribution-based bisimulations with dis-
counting. Moreover, we show that they coincide. We fix a discount factor γ ∈ (0, 1]
throughout this section. For any μ, ν ∈ Dist(S), we define the distance

dAP (μ, ν) :=
1

2

∑
A⊆AP

|μ(A)− ν(A)| .

Then it is easy to check that

dAP (μ, ν) = max
B⊆2AP

∣∣∣∣∣∑
A∈B

μ(A)−
∑
A∈B

ν(A)

∣∣∣∣∣ = max
B⊆2AP

[∑
A∈B

μ(A) −
∑
A∈B

ν(A)

]
.

5.1 A Direct Approach

Definition 11. Let A = (S, Act,→, L, α) be an input enabled probabilistic automa-
ton. A family of symmetric relations {Rε | ε ≥ 0} over Dist(S) is a (discounted)
approximate bisimulation if for any ε ≥ 0 and μRεν, we have

1. dAP (μ, ν) ≤ ε;
2. for each a ∈ Act, μ

a−→ μ′ implies that there exists a transition ν
a−→ ν′ such that

μ′Rε/γν′.

We write μ ∼A
ε ν whenever there is an approximate bisimulation {Rε | ε ≥ 0} such

that μRεν. For any two distributions μ and ν, we define the bisimulation distance of μ
and ν as

DA
b (μ, ν) = inf{ε ≥ 0 | μ ∼A

ε ν}. (1)

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 255

Again, the approximate bisimulation and bisimulation distance of distributions in a
general probabilistic automaton can be defined in terms of the corresponding notions in
the input enabled extension; that is, μ ∼A

ε ν if μ ∼A⊥
ε ν, and DA

b (μ, ν) := DA⊥
b (μ, ν).

We always omit the superscripts for simplicity if no confusion arises.
It is standard to show that the family {∼ε| ε ≥ 0} is itself an approximate bisimula-

tion. The following lemma collects some more properties of ∼ε.

Lemma 4. 1. For each ε, the ε-bisimilarity ∼ε is both linear and continuous.
2. If μ ∼ε1 ν and ν ∼ε2 ω, then μ ∼ε1+ε2 ω;
3. ∼ε1 ⊆ ∼ε2 whenever ε1 ≤ ε2.

The following theorem states that the infimum in the definition Eq. (1) of bisimula-
tion distance can be replaced by minimum; that is, the infimum is achievable.

Theorem 2. For any μ, ν ∈ Dist(S), μ ∼Db(μ,ν) ν.

Proof. By definition, we need to prove μ ∼Db(μ,ν) ν in the extended automaton. We
first prove that for any ε ≥ 0, the symmetric relations {Rε | ε ≥ 0} where

Rε = {(μ, ν) | μ ∼εi ν for each ε1 ≥ ε2 ≥ · · · ≥ 0, and lim
i→∞

εi = ε}

is an approximate bisimulation. Suppose μRεν. Since μ ∼εi ν we have dAP (μ, ν) ≤ εi
for each i. Thus dAP (μ, ν) ≤ ε as well. Furthermore, if μ

a−→ μ′, then for any i ≥ 1,
ν

a−→ νi and μ′ ∼εi/γ νi. Since Dist(S) is compact, there exists a subsequence {νik}k
of {νi}i such that limk νik = ν′ for some ν′. We claim that

– ν
a−→ ν′. This follows from the continuity of the transition

a−→, Lemma 3.
– For each k ≥ 1, μ′ ∼εik/γ

ν′. Suppose conversely that μ′ �∼εik/γ
ν′ for some k.

Then by the continuity of ∼εik/γ
, we have μ′ �∼εik/γ

νj for some j ≥ ik. This
contradicts the fact that μ′ ∼εj/γ νj and Lemma 4(3). Thus μ′Rε/γν′ as required.

Finally, it is direct from definition that there exists a decreasing sequence {εi}i such
that limi εi = Db(μ, ν) and μ ∼εi ν for each i. Then the theorem follows. 	�

A direct consequence of the above theorem is that the bisimulation distance between
two distributions vanishes if and only if they are bisimilar.

Corollary 1. For any μ, ν ∈ Dist(S), μ ∼ ν if and only if Db(μ, ν) = 0.

Proof. Direct from Theorem 2, by noting that ∼ = ∼0. 	�

The next theorem shows that Db is indeed a pseudometric.

Theorem 3. The bisimulation distance Db is a pseudometric on Dist(S).

5.2 Modal Characterization of the Bisimulation Metrics

We now present a Hennessy-Milner type modal logic motivated by [10,11] to charac-
terize the distance between distributions.

256 Y. Feng and L. Zhang

Definition 12. The class Lm of modal formulae over AP , ranged over by ϕ, ϕ1, ϕ2,
etc, is defined by the following grammar:

ϕ ::= B | ϕ ⊕ p | ¬ϕ |
∧
i∈I

ϕi | 〈a〉ϕ

where B ⊆ 2AP , p ∈ [0, 1], a ∈ Act, and I is an index set.

Given an input enabled probabilistic automaton A = (S, Act,→, L, α) over AP ,
instead of defining the satisfaction relation |= for the qualitative setting, the (discounted)
semantics of the logic Lm is given in terms of functions from Dist(S) to [0, 1]. For any
formula ϕ ∈ Lm, the satisfaction function of ϕ, denoted by ϕ again for simplicity, is
defined in a structural induction way as follows:

– B(μ) :=
∑

A∈B μ(A);
– (ϕ ⊕ p)(μ) := min{ϕ(μ) + p, 1};
– (¬ϕ)(μ) := 1− ϕ(μ);
– (

∧
i∈I ϕi)(μ) := infi∈I ϕi(μ);

– (〈a〉ϕ)(μ) := sup
μ

a−→μ′ γ · ϕ(μ′).

Lemma 5. For any ϕ ∈ Lm, ϕ : Dist(S) → [0, 1] is a continuous function.

From Lemma 5, and noting that the set {μ′ | μ
a−→ μ′} is compact for each μ and a,

the supremum in the semantic definition of 〈a〉ϕ can be replaced by maximum; that is,
(〈a〉ϕ)(μ) = max

μ
a−→μ′ γ ·ϕ(μ′). Now we define the logical distance for distributions.

Definition 13. The logic distance of μ and ν in Dist(S) of an input enabled automaton
is defined by

DA
l (μ, ν) = sup

ϕ∈Lm

|ϕ(μ) − ϕ(ν)| . (2)

The logic distance for a general probabilistic automaton can be defined in terms of
the input enabled extension; that is, DA

l (μ, ν) := DA⊥
l (μ, ν). We always omit the

superscripts for simplicity.

Now we can show that the logic distance exactly coincides with bisimulation distance
for any distributions.

Theorem 4. Db = Dl.

Proof. As both Db and Dl are defined in terms of the input enabled extension of au-
tomata, we only need to prove the result for input enabled case. Let μ, ν ∈ Dist(S).
We first prove Db(μ, ν) ≥ Dl(μ, ν). It suffices to show by structural induction that for
any ϕ ∈ Lm, |ϕ(μ)− ϕ(ν)| ≤ Db(μ, ν). There are five cases to consider.

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 257

– ϕ ≡ B for some B ⊆ 2AP . Then |ϕ(μ) − ϕ(ν)| = |
∑

A∈B[μ(A) − ν(A)]| ≤
dAP (μ, ν) ≤ Db(μ, ν) by Theorem 2.

– ϕ ≡ ϕ′ ⊕ p. Assume ϕ′(μ) ≥ ϕ′(ν). Then ϕ(μ) ≥ ϕ(ν). By induction, we have
ϕ′(μ)− ϕ′(ν) ≤ Db(μ, ν). Thus

|ϕ(μ)−ϕ(ν)| = min{ϕ′(μ)+p, 1}−min{ϕ′(ν)+p, 1} ≤ ϕ′(μ)−ϕ′(ν) ≤ Db(μ, ν).

– ϕ ≡ ¬ϕ′. By induction, we have |ϕ′(μ)−ϕ′(ν)| ≤ Db(μ, ν), thus |ϕ(μ)−ϕ(ν)| =
|1− ϕ′(μ)− 1 + ϕ′(ν)| ≤ Db(μ, ν) as well.

– ϕ ≡
∧

i∈I ϕi. Assume ϕ(μ) ≥ ϕ(ν). For any ε > 0, let j ∈ I such that ϕj(ν) ≤
ϕ(ν) + ε. By induction, we have |ϕj(μ)− ϕj(ν)| ≤ Db(μ, ν). Then

|ϕ(μ) − ϕ(ν)| ≤ ϕj(μ)− ϕj(ν) + ε ≤ Db(μ, ν) + ε,

and |ϕ(μ)− ϕ(ν)| ≤ Db(μ, ν) from the arbitrariness of ε.
– ϕ ≡ 〈a〉ϕ′. Assume ϕ(μ) ≥ ϕ(ν). Let μ′

∗ ∈ Dist(S) such that μ
a−→ μ′

∗ and
γ · ϕ′(μ′

∗) = ϕ(μ). From Theorem 2, we have μ ∼Db(μ,ν) ν. Thus there exists ν′
∗

such that ν
a−→ ν′

∗ and μ′
∗ ∼Db(μ,ν)/γ ν′

∗. Hence γ · Db(μ
′
∗, ν′

∗) ≤ Db(μ, ν), and

|ϕ(μ)− ϕ(ν)| ≤ γ · [ϕ′(μ′
∗)− ϕ′(ν′

∗)] ≤ γ · Db(μ
′
∗, ν′

∗) ≤ Db(μ, ν)

where the second inequality is from induction.

Now we turn to the proof of Db(μ, ν) ≤ Dl(μ, ν). We will achieve this by showing
that the symmetric relations Rε = {(μ, ν) | Dl(μ, ν) ≤ ε}, where ε ≥ 0, constitute an
approximate bisimulation. Let μRεν for some ε ≥ 0. First, for any B ⊆ 2AP we have∣∣∣∣∣∑

A∈B
μ(A)−

∑
A∈B

ν(A)

∣∣∣∣∣ = |B(μ)− B(ν)| ≤ Dl(μ, ν) ≤ ε.

Thus dAP (μ, ν) ≤ ε as well. Now suppose μ
a−→ μ′ for some μ′. We have to show that

there is some ν′ with ν
a−→ ν′ and Dl(μ

′, ν′) ≤ ε/γ. Consider the set

K = {ω ∈ Dist(S) | ν
a−→ ω and Dl(μ

′, ω) > ε/γ}.

For each ω ∈ K, there must be some ϕω such that |ϕω(μ
′) − ϕω(ω)| > ε/γ. As our

logic includes the operator ¬, we can always assume that ϕω(μ
′) > ϕω(ω) + ε/γ. Let

p = supω∈K ϕω(μ
′). Let

ϕ′
ω = ϕω ⊕ [p − ϕω(μ

′)], ϕ′ =
∧
ω∈K

ϕ′
ω, and ϕ = 〈a〉ϕ′.

Then from the assumption that Dl(μ, ν) ≤ ε, we have |ϕ(μ)−ϕ(ν)| ≤ ε. Furthermore,
we check that for any ω ∈ K,

ϕ′
ω(μ

′) = ϕω(μ
′)⊕ [p − ϕω(μ

′)] = p.

Thus ϕ(μ) ≥ γ · ϕ′(μ′) = γ · p.

258 Y. Feng and L. Zhang

Let ν′ be the distribution such that ν
a−→ ν′ and ϕ(ν) = γ · ϕ′(ν′). We are going

to show that ν′ �∈ K, and then Dl(μ
′, ν′) ≤ ε/γ as required. For this purpose, assume

conversely that ν′ ∈ K. Then

ϕ(ν) = γ · ϕ′(ν′) ≤ γ · ϕ′
ν′(ν′) ≤ γ · [ϕν′ (ν′) + p − ϕν′ (μ′)]

< γ · p − ε ≤ ϕ(μ)− ε,

contradicting the fact that |ϕ(μ)− ϕ(ν)| ≤ ε.
We have proven that {Rε | ε ≥ 0} is an approximate bisimulation. Thus μ ∼ε ν,

and so Db(μ, ν) ≤ ε, whenever Dl(μ, ν) ≤ ε. So we have Db(μ, ν) ≤ Dl(μ, ν) from
the arbitrariness of ε. 	�

5.3 A Fixed Point-Based Approach

In the following, we denote by M the set of pseudometrics over Dist(S). Denote by 0
the zero pseudometric which assigns 0 to each pair of distributions. For any d, d′ ∈ M,
we write d ≤ d′ if d(μ, ν) ≤ d′(μ, ν) for any μ and ν. Obviously ≤ is a partial order,
and (M,≤) is a complete lattice.

Definition 14. Let A = (S, Act,→, L, α) be an input enabled probabilistic automa-
ton. We define the function F : M → M as follows. For any μ, ν ∈ Dist(S),

F (d)(μ, ν) = max
a∈Act

{ dAP (μ, ν),

sup
μ

a−→μ′
inf

ν
a−→ν′

γ · d(μ′, ν′), sup
ν

a−→ν′
inf

μ
a−→μ′

γ · d(μ′, ν′)}.

Then, F is monotonic with respect to ≤, and by Knaster-Tarski theorem, F has a least
fixed point, denoted DA

f , given by

DA
f =

∞∨
n=0

Fn(0) .

Once again, the fixed point-based distance for a general probabilistic automaton can
be defined in terms of the input enabled extension; that is, DA

f (μ, ν) := DA⊥
f (μ, ν).

We always omit the superscripts for simplicity.
Similar to Lemma 5, we can show that the supremum (resp. infimum) in Definiton 14

can be replaced by maximum (resp. minimum). Now we show that Df coincides with
Db.

Theorem 5. Df = Db.

5.4 Comparison with State-Based Metrics

In this section, we prove that our distribution-based bisimulation metric is lower
bounded by the state-based game bisimulation metrics [8] for MDPs. This game bisimu-
lation metric is particularly attractive as it preserves probabilistic reachability, long-run,
and discounted average behaviors [5]. We first recall the definition of state-based game
bisimulation metrics [8] for MDPs:

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 259

Definition 15. Given μ, ν ∈ Dist(S), μ ⊗ ν is defined as the set of weight functions
λ : S × S → [0, 1] such that for any s, t ∈ S,∑

s∈S

λ(s, t) = ν(t) and
∑
t∈S

λ(s, t) = μ(s).

Given a metric d defined on S, we lift it to Dist(S) by defining

d(μ, ν) = inf
λ∈μ⊗ν

⎛⎝ ∑
s,t∈S

λ(s, t) · d(s, t)

⎞⎠ .

Actually the infimum in the above definition is attainable.

Definition 16. We define the function f : M → M as follows. For any s, t ∈ S,

f(d)(s, t) = max
a∈Act

⎧⎨⎩1− δL(s),L(t), sup
s

a−→Pμ

inf
t

a−→Pν

γ · d(μ, ν), sup
t

a−→Pν

inf
s

a−→Pμ

γ · d(μ, ν)

⎫⎬⎭
where δL(s),L(t) = 1 if L(s) = L(t), and 0 otherwise. We take inf ∅ = 1 and sup ∅ = 0.
Again, f is monotonic with respect to ≤, and by Knaster-Tarski theorem, F has a least
fixed point, denoted df , given by

df =
∞∨

n=0

fn(0) .

Now we can prove the following theorem which may be regarded as the quantitative
extension of Lemma 1.

Theorem 6. Let A be a probabilistic automaton. Then Df ≤ df .

Example 2. Consider Fig. 1, and assume ε1 ≥ ε2 > 0. Applying the definition of
Db, it is easy to check that Db(δq, δq′) = 0.5(ε1 − ε2)γ. By our results, we have
Dl(δq, δq′) = Df (δq, δq′) = Db(δq, δq′). Note that for the discounting case γ < 1,
difference far in the future will have less influence in the distance.

We further compute the distance under state-based bisimulation metrics (see [17]
for example). Assume that γ = 1. One first compute the distance between r1 and r′

being 1
6 +ε1, between r2 and r′ being 1

6 +ε2. Then, the state-based bisimulation metric
between q and q′ is 1

6 + 0.5(ε1 + ε2), which can be obtained by lifting the state-based
metrics.

5.5 Comparison with Equivalence Metric

Note that we can easily extend the equivalence relation defined in Definition 5 to a
notion of equivalence metric:

260 Y. Feng and L. Zhang

Definition 17 (Equivalence Metric). Let Ai = (Si, Acti,→i, Li, αi) with i = 1, 2 be
two reactive automata with Act1 = Act2 =: Act, and Fi = {s ∈ Si | L(s) = AP} the
set of final states for Ai. We say A1 and A2 are ε-equivalent, denoted A1 ∼d

ε A2, if for
any input word w = a1a2 . . . an, |A1(w)−A2(w)| ≤ ε. Furthermore, the equivalence
distance between A1 and A2 is defined by Dd(A1,A2) := inf{ε ≥ 0 | A1 ∼d

ε A2}.

Now we show that for reactive automata, the equivalence metric Dd coincide with
our undiscounted bisimulation metric Db, which may be regarded as a quantitative ex-
tension of Lemma 2.

Proposition 1. Let A1 and A2 be two reactive automata with the same set of actions
Act. Let the discount factor γ = 1. Then Dd(A1,A2) = Db(α1, α2) where Db is
defined in the direct sum of A1 and A2.

Proof. We first show that Dd(A1,A2) ≤ Db(α1, α2). For each input word w =
a1a2 . . . an, it is easy to check that Ai(w) = ϕ(αi) where ϕ = 〈a1〉〈a2〉 . . . 〈an〉(F1 ∪
F2). As we have shown that Db = Dl, it holds |A1(w) − A2(w)| ≤ Db(α1, α2), and
hence A1 ∼d

Db(α1,α2)
A2. Then Dd(A1,A2) ≤ Db(α1, α2) by definition.

Now we turn to the proof of Dd(A1,A2) ≥ Db(α1, α2). First we show that

Rε = {(μ, ν) | μ ∈ Dist(S1), ν ∈ Dist(S2),Aμ
1 ∼d

ε Aν
2}

is an approximate bisimulation. Here for a probabilistic automaton A, we denote by Aμ

the automaton which is the same as A except that the initial distribution is replaced by
μ. Let μRεν. Since L(s) ∈ {∅, AP} for all s ∈ S1 ∪ S2, we have μ(AP) + μ(∅) =
ν(AP) + ν(∅) = 1. Thus

dAP (μ, ν) = |μ(AP)− ν(AP)| = |μ(F1)− ν(F2)|.

Note that μ(F1) = Aμ
1 (e) and ν(F2) = Aν

2(e), where e is the empty string. Then
dAP (μ, ν) = |Aμ

1 (e)−Aν
2(e)| ≤ ε.

Let μ
a−→ μ′ and ν

a−→ ν′. We need to show μ′Rεν
′, that is, Aμ′

1 ∼d
ε Aν′

2 . For any

w ∈ Act∗, note that Aμ′
1 (w) = Aμ

1 (aw). Then

|Aμ′
1 (w)−Aν′

2 (w)| = |Aμ
1 (aw) −Aν

2(aw)| ≤ ε,

and hence Aμ′
1 ∼d

ε Aν′
2 as required.

Having proven that Rε is an approximate bisimulation, we know A1 ∼d
ε A2 implies

α1 ∼ε α2. Thus Dd(A1,A2) = inf{ε | A1 ∼d
ε A2} ≥ inf{α1 ∼ε α2} = Db(α1, α2).

	�

6 Discussion and Future Work

In this paper, we considered Segala’s automata, and proposed a novel notion of bisimu-
lation by joining the existing notions of equivalence and bisimilarities. We have demon-
strated the utility of our definition by studying distribution-based bisimulation metrics,
which have been extensively studied for MDPs.

When Equivalence and Bisimulation Join Forces in Probabilistic Automata 261

As future work we would like to identify further solutions and techniques developed
in one area that could inspire solutions for the corresponding problems in the other
area. This includes for instance decision algorithm developed for equivalence check-
ing [31,25], extensions to simulations, and compositional verification for probabilistic
automata.

References

1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-Fly Exact Computation of Bisim-
ilarity Distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 1–15. Springer, Heidelberg (2013)

2. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding Bisimilarity and Similarity for
Probabilistic Processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

3. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
4. Cattani, S., Segala, R.: Decision Algorithms for Probabilistic Bisimulation. In: Brim, L.,

Jančar, P., Křetı́nský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385.
Springer, Heidelberg (2002)

5. Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for game metrics
(full version). Logical Methods in Computer Science 6(3) (2010)

6. Chen, D., van Breugel, F., Worrell, J.: On the Complexity of Computing Probabilistic Bisim-
ilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Hei-
delberg (2012)

7. Comanici, G., Panangaden, P., Precup, D.: On-the-Fly Algorithms for Bisimulation Metrics.
In: QEST, pp. 94–103. IEEE Computer Society (2012)

8. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: LICS,
pp. 99–108. IEEE Computer Society (2007)

9. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic pro-
cesses. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288.
Springer, Heidelberg (2009)

10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for Labeled Markov Sys-
tems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273.
Springer, Heidelberg (1999)

11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov pro-
cesses. Theor. Comput. Sci. 318(3), 323–354 (2004)

12. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and

complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010)
13. Desharnais, J., Laviolette, F., Tracol, M.: Approximate Analysis of Probabilistic Processes:

Logic, Simulation and Games. In: QEST, pp. 264–273. IEEE Computer Society (2008)
14. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of Labeled Markov Chains. Int. J.

Found. Comput. Sci. 19(3), 549–563 (2008)
15. Eisentraut, C., Hermanns, H., Zhang, L.: On Probabilistic Automata in Continuous Time. In:

LICS, pp. 342–351. IEEE Computer Society (2010)
16. Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic automata.

CoRR, abs/1311.3396 (2013)
17. Ferns, N., Panangaden, P., Precup, D.: Bisimulation Metrics for Continuous Markov Decision

Processes. SIAM J. Comput. 40(6), 1662–1714 (2011)
18. Fu, H.: Computing Game Metrics on Markov Decision Processes. In: Czumaj, A.,

Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392,
pp. 227–238. Springer, Heidelberg (2012)

262 Y. Feng and L. Zhang

19. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems.
In: IFIP TC2 Working Conference on Programming Concepts and Methods, pp. 443–458.
North-Holland (1990)

20. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: ISCASMC: A web-based prob-
abilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS,
pp. 309–313. Springer, Heidelberg (2014)

21. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Comput. 24(4-6),
749–768 (2012)

22. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic Logical Charac-
terization. Inf. Comput. 209(2), 154–172 (2011)

23. Hermanns, H., Turrini, A.: Deciding Probabilistic Automata Weak Bisimulation in Polyno-
mial Time. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18,
pp. 435–447, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

24. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the
probabilistic model checker mrmc. Perform. Eval. 68(2), 90–104 (2011)

25. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language Equiva-
lence for Probabilistic Automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011)

26. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the Complexity of
the Equivalence Problem for Probabilistic Automata. In: Birkedal, L. (ed.) FOSSACS 2012.
LNCS, vol. 7213, pp. 467–481. Springer, Heidelberg (2012)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-
Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 585–591. Springer, Heidelberg (2011)

28. Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete Probabilis-
tic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer,
Heidelberg (2007)

29. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
30. Segala, R.: Modeling and Verification of Randomized Distributed Realtime Systems. PhD

thesis. MIT (1995)
31. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic automata.

SIAM Journal on Computing 21(2), 216–227 (1992)
32. van Breugel, F., Sharma, B., Worrell, J.: Approximating a Behavioural Pseudometric Without

Discount for Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp.
123–137. Springer, Heidelberg (2007)

33. Ying, M.: Topology in Process Calculus: Approximate Correctness and Infinite Evolution of
Concurrent Programs. Springer, New York (2001)

34. Ying, M.: Bisimulation indexes and their applications. Theoretical Computer Science 275,
1–68 (2002)

35. Ying, M., Wirsing, M.: Approximate bisimilarity. In: Rus, T. (ed.) AMAST 2000. LNCS,
vol. 1816, pp. 309–322. Springer, Heidelberg (2000)

Precise Predictive Analysis

for Discovering Communication Deadlocks
in MPI Programs

Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma

Department of Computer Science, University of Oxford, UK

Abstract. The Message Passing Interface (MPI) is the standard API
for high-performance and scientific computing. Communication dead-
locks are a frequent problem in MPI programs, and this paper addresses
the problem of discovering such deadlocks. We begin by showing that
if an MPI program is single-path, the problem of discovering communi-
cation deadlocks is NP-complete. We then present a novel propositional
encoding scheme which captures the existence of communication dead-
locks. The encoding is based on modelling executions with partial orders,
and implemented in a tool called MOPPER. The tool executes an MPI
program, collects the trace, builds a formula from the trace using the
propositional encoding scheme, and checks its satisfiability. Finally, we
present experimental results that quantify the benefit of the approach
in comparison to a dynamic analyser and demonstrate that it offers a
scalable solution.

1 Introduction

The Message Passing Interface (MPI) [17] is the lingua franca of high-perfor-
mance computing (HPC) and remains one of the most widely used APIs for
building distributed message-passing applications. Given MPI’s wide adoption
in large-scale studies in science and engineering, it is important to have means
to establish some formal guarantees, like deadlock-freedom, on the behaviour of
MPI programs.

In this work, we present an automated method to discover communication
deadlocks in MPI programs that use blocking and nonblocking (asynchronous)
point-to-point communication calls (such as send and receive calls) and global
synchronization primitives (such as barriers). A communication deadlock (re-
ferred to simply as “deadlock” in this paper), as described in [19], is “a situation
in which each member process of the group is waiting for some member process
to communicate with it, but no member is attempting to communicate with it”.

Establishing deadlock-freedom in MPI programs is hard. This is primarily due
to the presence of nondeterminism that is induced by various MPI primitives
and the buffering/arbitration effects in the MPI nodes and the network. For
instance, a popular choice in MPI programs to achieve better performance (as
noted in [25]) is the use of receive calls with MPI ANY SOURCE argument; such calls

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 263–278, 2014.
c© Springer International Publishing Switzerland 2014

264 V. Forejt et al.

are called “wildcard receives”. A wildcard receive in a process can be matched
with any sender targeting the process, thus the matching between senders and
receivers is susceptible to network delivery nondeterminism. MPI calls such as
probe and wait are sources of nondeterminism as well. This prevalence—and
indeed, preference—for nondeterminism renders MPI programs susceptible to
the schedule-space explosion problem.

Additional complexity in analysing MPI programs is introduced when control-
flow decisions are based on random data, or when the data communicated to
wildcard receives is used to determine the subsequent control-flow of the pro-
gram. We call the programs that do not bear this complexity single-path MPI
programs. As many MPI programs are implemented as single-path programs,
we focus on verifying deadlock-freedom in programs where nondeterminism is
caused only by wildcard receives and where any control flow that could affect
inter-process communication is deterministic.

The rationale for focussing on single-path programs is also found in numerous
other domains. For instance, the single-path property is the basis of recent work
on verifying GPU kernels [15].

Popular MPI debuggers and program verifiers such as [16,11,14,10] only offer
limited assistance in discovering deadlocks in programs with wildcard receives.
The debuggers concern themselves exclusively with the send-receive matches
that took place in the execution under observation: alternate matches that could
potentially happen in the same execution are not explored, nor reasoned about.

On the more formal side, tools such as model checkers can detect bugs
related to nondeterministic communication by exploring all relevant match-
ings/interleavings. However, such tools suffer from several known shortcomings.
In some cases, the model has to be constructed manually [21], while some tools
have to re-execute the entire program until the problematic matching is discov-
ered [24,26]. These limitations prevent such tools from analysing MPI programs
that are complex, make heavy use of nondeterminism, or take long to run.

In contrast to established tools, we analyse MPI programs under two different
buffering modes: (i) the zero-buffering model, wherein the nodes do not provide
buffering and messages are delivered synchronously, and (ii) the infinite-buffering
model, under which asynchronously sent messages are buffered without limit.
These two models differ in their interpretation of the MPI Wait event. Under the
zero-buffering model, each wait call associated with a nonblocking send blocks
until the message is sent and copied into the address space of the destination
process. Under the infinite-buffering model, each wait call for a nonblocking send
returns immediately (see Section 2).

Contribution. This paper presents two new results for single-path MPI pro-
grams. First, we demonstrate that even for this restricted class of programs, the
problem of deadlock detection is NP-complete (Section 3).

Second, we present a novel MPI analyser that combines a dynamic verifier with
a SAT-based analysis that leverages recent results on propositional encodings of
constraints over partial orders [1].

Precise Predictive Analysis for Discovering Communication Deadlocks 265

Our tool operates as follows: the dynamic verifier records an execution trace
in the form of a sequence of MPI calls. Then, we extract the per-processmatches-
before partial order on those calls (defined in Section 2), specifying restrictions
on the order in which the communication calls may match on an alternative
trace. We then construct a sufficiently small over-approximate set of potential
matches [20] for each send and receive call in the collected trace. Subsequently,
we construct a propositional formula that allows us to determine whether there
exists a valid MPI run that respects the matches-before order and yields a dead-
lock. In our implementation of the propositional encoding, the potentially match-
ing calls are modelled by equality constraints over bit vectors, which facilitates
Boolean constraint propagation (BCP) in the SAT solver, resulting in good solv-
ing times.

Our approach is sound and complete for the class of single-path MPI programs
we consider (modulo the buffering models which we implement): that is, our tool
reports neither false alarms nor misses any deadlock. Our experiments indicate
significant speedup compared to the analysis time observed when using ISP [25]
(In-situ Partial Order), which is a dynamic analyser that enumerates matches
explicitly.

For programs that are not single-path, our approach can still be used as a
per-path-oracle in a dynamic verifier or model checker that explores the relevant
control-flow paths. Finally, we believe that the presented encoding for MPI pro-
grams has a wider applicability to other popular programming languages that
provide message passing support, such as Erlang or Scala.

The paper is organized as follows: We begin by outlining the related work
and then introduce the necessary definitions in Section 2. In Sections 3 and 4
we present the complexity results for the studied problem and present our SAT
encoding. Then in Section 5 we present the evaluation of our work.

Related Work. Deadlock detection is a central problem in the CCS commu-
nity. As an instance, DELFIN+ [8] is a model checker for CCS that uses the
A∗ algorithm as a heuristic to detect errors early in the search. Process algebra
systems, like CCS and CSP, appear to be a natural fit to analyse MPI pro-
grams. However, to the best of our knowledge, no research exists that addresses
the problem of automatically building CSP/CCS models from MPI programs
and analysing them using CSP/CCS tools. Tools such as Pilot [2] support the
implementation of CSP models using MPI.

Petri nets are another popular formalism for modelling and analysing dis-
tributed systems. McMillan presented a technique to discover deadlocks in a
class of Petri nets called 1-safe Petri nets (featuring finite trace prefixes) and
proved the problem to be NP-complete. Nevertheless, we are not aware of any
polynomial-time reduction between this problem and the problem we study.

The work in [3,27] presents a predictive trace analysis methodology for multi-
threaded C/Java programs. The authors of [27] construct a propositional encod-
ing of constraints over partial orders and pass it to a SAT solver. They utilize
the source code and an execution trace to discover a causal model of the system
that is more relaxed than the causal order computed in some of the prior work

266 V. Forejt et al.

in that area. This allows them to reason about a wider set of thread interleav-
ings and detect races and assertion violations which other work may miss. The
symbolic causal order together with a bound on the number of context switches
is used to improve the scalability of the algorithm. In our work, the concept of
context switch is irrelevant. The per-process matches-before relation suffices to
capture all match possibilities precisely, and consequently, there are neither false
positives nor false negatives. The tool presented in [1] addresses shared-variable
concurrent programs, and is implemented on top of the CBMC Bounded Model
Checker [4].

MCAPI (Multicore Communications API) [12] is a lightweight message pass-
ing library for heterogeneous multicore platforms. It provides support for a sub-
set of the calls found in MPI. For instance, MCAPI does not have deterministic
receives or collective operations. Thus, the class of deadlocks found in MCAPI
is a subset of the class of deadlocks in MPI. Deniz et al. provide a trace analysis
algorithm that detects potential deadlocks and violations of temporal assertions
in MCAPI [5]. The discovery of potential deadlocks is based on the construction
of AND Wait-for graphs and is imprecise. The work in [13,7] discovers assertion
violations in MCAPI programs. While both present an order-based encoding,
the work in [7] does not exploit the potential matches relation, and thus yields
a much slower encoding [13].

Huang et al. [13] present an order-based SMT encoding using the potential
matches relation. The encoding is designed to reason about violations of asser-
tions on data, and does not allow to express the existence of deadlocks. The
paper furthermore shows that the problem of discovering assertion violations on
a trace is NP-complete. Due to the inherent difference of the problems studied,
our proof of NP-completeness is significantly more involved than the one of [13].
In particular, for a 3-CNF formula with n clauses, their work uses n assertions,
where each assertion itself is a disjunction of propositions (corresponding to the
literals in a clause of the 3-CNF formula). In our case, the satisfiability of all
clauses needs to be expressed by a possibility to form a single match.

TASS [23] is a bounded model checker that uses symbolic execution to verify
safety properties in MPI programs that are implemented using a strict subset
of C. It is predominantly useful in establishing the equivalence of sequential and
parallel versions of a numerically-insensitive scientific computing program. TASS
may report false alarms and the authors indicate that the potential deadlock
detection strategy does not scale when nondeterministic wildcard receives are
used [23].

2 Preliminaries

In this section we introduce the necessary definitions and formulate the problem
we study in this paper. For brevity, we refer to single-path MPI programs as
MPI programs.

MPI Programs. An MPI program is given as a collection of N processes,
denoted by P1, . . . , PN . We denote the events in process i by ai,j , where j denotes

Precise Predictive Analysis for Discovering Communication Deadlocks 267

the index (i.e. the position within the process) at which the event a occurs. We
use the terms “event” and “MPI call” interchangeably. We define the per-process
order �po on events as follows: ai,j �po bk,� if and only if events ai,j and bk,� are
from the same process (that is, i = k), and the index of a is lower or equal to
the index of b (that is, j ≤ �).

The list of MPI calls/events that we permit to occur in an MPI program is as
follows. A nonblocking (resp. blocking) send from Pi to Pj indexed at program
location k ≤ |Pi| is denoted by nS i,k(j) (resp. bS i,k(j)). Similarly, a nonblocking
(resp. blocking) receive call, nRi,k(j) (resp. bRi,k(j)), indicates that Pi receives
a message from Pj . A wildcard receive is denoted by writing ∗ in place of j.
We write just S and R when the distinction between a blocking or nonblocking
call is not important. The nonblocking calls return immediately. A blocking
wait call, which returns on successful completion of the associated nonblocking
call, is denoted by Wi,k(hi,j), where hi,j indicates the index of the associated
nonblocking call from Pi. A wait call to a nonblocking receive will return only
if a matching send call is present and the message is successfully received in the
destination address. By contrast, a wait call to a nonblocking send will return
depending on the underlying buffering model. According to the standard [17] a
nonblocking send is completed as soon as the message is copied out of the sender’s
address space. Thus, under the zero-buffering model the wait call will return only
after the sent message is successfully received by the receiver since there is no
underlying communication subsystem to buffer the message. In contrast, under
the infinite-buffering model the sent message is guaranteed to be buffered by the
underlying subsystem. We assume, without any loss of generality, that message
buffering happens immediately after the return of the nonblocking send in which
case the associated wait call will return immediately.

Let Bi,j be a barrier call at process i. Since barrier calls (in a process) synchro-
nise uniquely with a per-process barrier call from each process in the system, all
barrier matches are totally ordered. Thus, we use Bi,j(d) to denote the barrier
call issued by the process i that will be part of the d-th system-wide barrier call.
The process i issuing the barrier blocks until all the other processes also issue
the barrier d. When the program location is not relevant, we replace it by “−”.

Let C be the set of all MPI calls in the program, and Ci the set of MPI calls
in Pi, i.e., the set of MPI calls that Pi may execute. A match is a subset of C
containing those calls that together form a valid communication. A set containing
matched send and receive operations, or a set of matched barrier operations, or
a singleton set containing a wait operation are all matches.

Furthermore, we define a matches-before partial order �mo which captures a
partial order among communication operations in Ci. We refer the reader to [25]
for complete details on the matches-before order. This order is different for the
zero-buffering and infinite-buffering model. For the zero-buffering model, it is
defined to be the smallest order satisfying that for any a, b ∈ C, a ≺mo b if
a ≺po b and one of the following conditions is satisfied:

– a is blocking;

– a, b are nonblocking send calls to the same destination;

268 V. Forejt et al.

– a is a nonblocking wildcard receive call and b is a receive call sourcing from
Pk (for some k), or a wildcard receive;

– a is a nonblocking call and b is the associated wait call.

When a is a nonblocking receive call sourcing from Pk and b is a nonblocking
wildcard receive call and the MPI program is at a state where both the calls
are issued but not matched yet, then a ≺mo b is conditionally dependent on
the availability of a matching send for a (as noted in [25]). Due to its schedule-
dependent nature, we ignore this case in the construction of our encoding. In
our experience, we have not come across a benchmark that issues a conditional
matches-before edge.

In the case of the infinite-buffering model, the only change is that the last
rule does not apply when a is the non-blocking send; this corresponds to the
fact that all nonblocking sends are immediately buffered, and so all the waits for
such sends return immediately.

Since the only difference between the finite- and infinite-buffering model is
the way the order ≺mo is defined, most of the constructions we present apply
for both models. When it is necessary to make a distinction, we will point this
out to the reader.

Semantics of MPI Programs. We now define the behaviour of MPI programs.
The current state q = 〈I, M〉 of the system is described by the set of calls I that
have been issued, and a set of calls M ⊆ I that were issued and subsequently
matched. To formally define a transition system for an MPI program, we need
to reason about the calls that can be issued or matched in q. The first is denoted
by the set Issuable(q), which is defined as

Issuable(〈I, M〉) = {x | ∀y ≺po x : y ∈ I ∧ ∀y ≺mo x : if y ∈ B, then y ∈ M}

where B is the set of all blocking calls from C, i.e., it contains all waits, barriers
and blocking sends and receives. We call a set m ⊆ I \ M of calls ready in
q = 〈I, M〉 if for every a ∈ m and every s ≺mo a we have s ∈ M . We then define

Matchable(q) = {{a, b} ready in q | ∃i, j a = Si,−(j), b = Rj,−(i/∗)} ∪
{{a} ready in q | ∃i : a = Wi,−(hi,−)} ∪
{{a1, · · · , aN} ready in q | ∃d ∀i ∈ [1, N] : ai = Bi,−(d)}

The semantics of an MPI program P is given by a finite state machine S(P) =
〈Q, q0,A, δ〉 where

– Q ⊆ 2C×2C is the set of states where each state q is a tuple 〈I, M〉 satisfying
M ⊆ I, with I being the set of calls that were so far issued by the processes
in the program, and M being the set of calls that were already matched.

– q0 = 〈∅, ∅〉 is the starting state.
– A ⊆ 2C is the set of actions.
– δ ⊆ Q×A → Q is the transition function which is the union of two sets of

transitions (i) issue transitions, denoted by →i, and (ii) match transitions,
denoted by →m.

Precise Predictive Analysis for Discovering Communication Deadlocks 269

• 〈I, M〉 α−→i 〈I ∪ α, M〉, if α ⊆ Issuable(〈I, M〉) and |α| = 1.

• 〈I, M〉 α−→m 〈I, M ∪ α〉, if α ⊆ Matchable(〈I, M〉).
We then use q

α−→ q′ to denote that (q, α, q′) ∈ δ.

The set of potential matches M is defined by M =
⋃

q∈Σ Matchable(q), where
Σ ⊆ Q is the set of states that can be reached on some trace starting in q0.

A trace is a sequence of states and transitions, q0
α0−→ q1

α1−→ . . .
αn−1−−−→ qn

beginning with q0 such that qi
ai−→ qi+1 for every 0 ≤ i < n.

The Deadlock Detection Problem. A state 〈I, M〉 is deadlocking if M �= C
and it is not possible to make any (issue or match) transition from 〈I, M〉. A trace
is deadlocking if it ends in a deadlocking state. In this paper, we are interested
in finding deadlocking traces and the problem we study is formally defined as
follows.

Definition 1. Given an MPI program P, the deadlock detection problem asks
whether there is a deadlocking trace in S(P).

3 Complexity of the Problem

In this section we prove the following theorem.

Theorem 1. The deadlock detection problem is NP-complete, for both the finite-
and infinite-buffering model.

The membership in NP follows easily. All traces are of polynomial size, because
after every transition, new elements are added to the set of issued or matched
calls, and maximal size of these sets is |C|. Hence, we can guess a sequence
of states and actions, and check that they determine a deadlocking trace. This
check can be performed in polynomial time, because the partial order�mo can be
computed in polynomial time, as well as the sets Issuable(q) and Matchable(q),
for any given state q.

Proving the lower bound of Theorem 1 is more demanding. We provide a
reduction from 3-SAT; the reduction applies to both finite- and infinite-buffering
semantics, because it only uses the calls whose semantics is the same under
both models. Let Ψ be a 3-CNF formula over propositional variables x1, . . . , xn

with clauses c1, . . . , cm. We create processes Ppos i, Pnegi and Pdeci for each
1 ≤ i ≤ n. As the names suggest, communication in process Ppos i (or Pnegi)
will correspond to positive (or negative) values of xi. The process Pdeci will
ensure that at most one of Ppos i and Pnegi can communicate before a certain
event, making sure that a value of xi is simulated correctly.

Further, for each 1 ≤ j ≤ m we create a process P cj , and we also create three
distinguished processes, P v , P r and P s . Hence, the total number of processes
is 3 · n + m + 3.

The communication of the processes is defined in Figure 1. In the figure, the
expression ∀ck,xi : bSpos,−(ck) is a shorthand for several consecutive sends, one

270 V. Forejt et al.

Ppos i Pneg i Pdeci Pcj P v P r P s

bSposi,1(deci) bS negi,1(deci) bRdeci,1(∗) bRcj ,1(∗) bS v,1(r) bRr,1(∗) bRs,1(c1)

∀ck�xi : ∀ck�¬xi : bSdeci,2(v) bS cj,2(s) bRv,2(∗) bRr,2(s)
...

bS posi,−(ck) bSnegi,−(ck) bRdeci,3(∗) bRcj ,3(∗)
... bRs,m(cm)

bRcj ,4(∗) bRv,m+1(∗) bS s,m+1(r)

Fig. 1. The MPI program P(Ψ). Here i ranges from 1 to n, and j ranges from 1 to m.

to each P ck such that xi ∈ ck. The order in which the calls are made is not
essential for the reduction.

To establish the lower bound for Theorem 1, we need to prove the following.

Lemma 1. A 3-CNF formula Ψ is satisfiable if and only if the answer to the
deadlock detection problem for P(Ψ) is yes.

The crucial observation for the proof of the lemma is that for a deadlock to
occur, the call bS s,m+1(r) must be matched with bRr ,1(∗): in such a case, the
calls bRr ,2(s) and bS v ,1(r) cannot find any match. In any other circumstance a
deadlock cannot occur, in particular note that any Sposi,−(ck), and Snegi,−(ck)
can find a matching receive, because there are exactly 3 sends sent to every P ck.

For bS s,m+1(r) and bRr ,1(∗) to form a match together, calls bRs,j(cj), 1 ≤ j ≤
m, must find a match before P v starts to communicate. To achieve this, having
a satisfying valuation ν for Ψ , for every 1 ≤ i ≤ n we match bSposi,1(deci) or
bSnegi,1(deci) with bRdec,1(∗), depending on whether xi is true or false under ν.
We then match the remaining calls of Ppos i or Pnegi, and because ν is satisfying,
we know that eventually the call bS cj ,2(s) can be issued and matched with
bRs,j(cj), for all j.

On the other hand, if there is no satisfying valuation for Ψ , then unless for
some i both the calls bSposi,1(deci) and bSnegi

(deci) find a match, some bS cj,2(s)
(and hence also bRs,j(cj)) remains unmatched. However, for both bSposi,1(deci)
and bSnegi

(deci) to match, bSdeci,2(v) must match some receive in P v , which
violates the necessary condition for the deadlock to happen, i.e. that P v does
not enter into any communication.

4 Propositional Encoding

In this section we introduce a propositional encoding for solving the deadlock
detection problem. Intuitively, a satisfying valuation for the variables in the
encoding provides a set of calls matched on a trace, a set of unmatched calls
that can form a match, and a set of matches together with a partial order on
them, which contains enough dependencies to ensure that the per-process partial
order is satisfied.

Precise Predictive Analysis for Discovering Communication Deadlocks 271

We will restrict the presentation to the problem without barriers, since barri-
ers can be removed by preprocessing, where for barrier calls Bi,−(d) and Bj,−(d)
and for any two calls a and b such that a ≺mo Bi,−(d) and Bi,−(d) ≺mo b we
assume a ≺mo b. The barrier calls can then be removed without introducing
spurious models.

Our encoding contains variables ma and ra for every call a. Their intuitive
meaning is that a is matched or ready to be matched whenever ma or ra is
true, respectively. Supposing we correctly identify the set of matched and issued
calls on a trace, we can determine whether a deadlock has occurred. For this to
happen, there must be some unmatched call, and no potential match can take
place (i.e. for any potential match, some call was either used in another match,
or was not issued yet). Thus, we must ensure that we determine the matched
and issued calls correctly. We impose a preorder on the calls, where a occurs
before b in the preorder if a finds a match before b. To capture the preorder, we
use the variables tab to denote that a matches before b, and sab which stipulate
that a call a matches a receive b and hence they must happen at the same time;
note that this applies in the infinite buffering case as well.

Finally, we must ensure that tab and sab correctly impose a preorder. We use a
bit vector clka of size -log2 |C|. for every call a, denoting the “time” at which the
call a happens, and stipulate that clka < clk b (resp. clka = clk b) if tab (resp. sab)
is true.

As part of the input, our encoding requires a set M+ ⊇ M containing sets
of calls which are type-compatible (i.e. all α that can be contained in some
Matchable(q) if we disregard the requirement for α to be ready). The reason for
not starting directly with M is that the problem of deciding whether a given
set α is a potential match, i.e. whether α ∈ M, is NP-complete. This result can
be obtained as a simple corollary of our construction for Lemma 1. Hence, in
any practical implementation we must start with M+, since computing the set
M is as hard as the deadlock detecting problem itself. We will give a reasonable
candidate for M+ in the next section.

The formal definition of the encoding is presented in Figure 2. In the figure, S
and R are the sets containing all send and receive calls, respectively, Imm(a) =
{x|x ≺mo a, ∀z : x �mo z �mo a ⇒ z ∈ {x, a}} stands for the set of immediate
predecessors of a, and M+(a) =

⋃
{b | ∃α ∈ M+ : a, b ∈ α} \ {a} is the set of

all calls with which a can form a match. Further, clka = clk b (resp. clka < clk b)
are shorthands for the formulae that are true if and only if the bit vector for a
encodes the value equal to (resp. lower than) the value of the bit vector for b.
The formula constructed contains O(|C|2) variables, and its size is in O(|C|3).

Correctness of the Encoding. The correctness of the encoding is formally
established by Lemmas 2 and 4.

Lemma 2. For every deadlocking trace there is a satisfying assignment to the
variables in the encoding.

Proof. Given a deadlocking trace, we construct the satisfying assignment as fol-
lows. We set ma to true if and only if a is matched on the trace, and ra true if

272 V. Forejt et al.

Partial order
∧
b∈C

∧
a∈Imm(b)

tab (1)

Unique match for send
∧

(a,b)∈M+

∧
c∈M+(a),c �=b

(
sab → ¬sac

)
(2)

Unique match for receive
∧

(a,b)∈M+

∧
c∈M+(b),c �=a

(
sab → ¬scb

)
(3)

Match correct
∧
a∈R

(
ma →

∨
b∈M+(a)

sba
) ∧ ∧

a∈S

(
ma →

∨
b∈M+(a)

sab
)

(4)

Matched only
∧

α∈M+

(
sα →

∧
a∈α

ma

)
(5)

No match possible
∧

α∈M+

(∨
a∈α

(ma ∨ ¬ra)
)

(6)

All ancestors matched
∧
b∈C

(
rb ↔

∧
a∈Imm(b)

ma

)
(7)

Not all matched
∨
a∈C

¬ma (8)

Match only issued
∧
a∈C

(
ma → ra

)
(9)

Clock equality
∧

(a,b)∈M+∩(S×R)

(
sab → (clka = clkb

)
(10)

Clock difference
∧

a,b∈C

(
tab → (clka < clk b)

)
(11)

Fig. 2. The SAT encoding for the deadlock detection. Here, empty conjunctions are
true and empty disjunctions are false.

and only if it is matched or if for every b ≺mo a, mb is true. This makes sure the
conditions (6)–(9) are satisfied.

We assign sab to true if and only if {a, b} occurs as a match on the trace.
This ensures satisfaction of conditions of (2)–(5). Further, let α1α2 . . . be the
sequence of actions under which match transitions are taken on the trace. We
stipulate tab if a ∈ αi and b ∈ αj for i < j. We also set clka = i for every a ∈ αi

and every i. This ensures satisfaction of the remaining conditions. 	�

The following lemma follows easily from conditions (2) and (3).

Lemma 3. In every satisfying assignment to the variables in the encoding we
have that for every a, if sab and sab′ are true, then b = b′, and also if sba and
sb′a are true, then b = b′.

Lemma 4. For every satisfying assignment to the variables in the encoding
there is a deadlocking trace.

Precise Predictive Analysis for Discovering Communication Deadlocks 273

Proof. Given a satisfying assignment, we construct the trace as follows. Let A
be the set of all sends and waits such that a ∈ A if and only if ma is true, and let
a1 . . . aK be an ordered sequence of elements in A such that for any ai and aj ,
if clkai < clkaj , then i < j. We further define a sequence θ = α1 . . . αK , where
every αi contains ai, and if ai is a send, then αi also contains the unique receive bi
such that saibi is true. Such bi always exists, and is unique by Lemma 3. By (10)
the sequence θ satisfies that whenever a ∈ αi and b ∈ αj and clka < clk b, then
i < j. Moreover, for any c we have that the proposition mc is true if and only if
c occurs in some αi; this follows by the construction of A and by (4) and (5).

We define a trace from the sequence θ by stipulating that it visits the states

qi = 〈Ii, Mi〉 = 〈 {y | ∃x ≈po y : x ∈
⋃

1≤�≤i

α�} ,
⋃

1≤�≤i

α� 〉

for 0 ≤ i ≤ K, where the part of the trace from qi to qi+1 is defined to be

qi
{bi,1}−−−−→i 〈Ii∪{bi,1}, Mi〉

{bi,2}−−−−→i . . .
{bi,n}−−−−→i 〈Ii∪{bi,1, . . . bi,ni}, Mi〉

αi+1−−−→m qi+1

for {bi,1, . . . , bi,ni} = {y | ∃x ≈po y : x ∈ αi+1} \ {y | ∃x ≈po y : x ∈
⋃

1≤�≤i α�},
and where if bi,j ≺po bi,�, then j < �.

We now argue that the sequence above is indeed a valid trace in S(P). Firstly,
q0 = 〈∅, ∅〉. Let i be largest number such that the sequence from q0 up to qi is a
valid trace. Let j be largest number such that the extension of this trace from qi
up to 〈I, M〉 = 〈Ii ∪ {bi,1, . . . bi,j}, Mi〉 is a valid trace. We analyse the possible
values of j, showing that each leads to a contradiction.

– Suppose 0 ≤ j < ni. First, note that bi,j+1 �∈ I ∪ M , because bi,j+1 does
not occur in {y | ∃x ≈po y : x ∈

⋃
1≤�≤i α�}. We need to show that bi,j+1 ∈

Issuable(〈I, M〉).
If a ≺po bi,j+1, then by the definition of the sequence bi,1, . . . bi,ni the element
a has been issued already. Further, if a ≺mo bi,j+1, then by (1) we have that
tabi,j+1 is true, and so clka < clk bi,j+1 . By the conditions (7) and (9) we have
that ma is true, and so a must occur in some α�. We have argued that if
clka < clk bi,j+1 , then a ∈ α� for � ≤ i, and so a ∈ M .
Hence by definition bi,j+1 ∈ Issuable(〈I, M〉).

– Suppose j = ni. We have argued above that for every element b ∈ αi+1 and
every a ≺mo b we have a ∈ M . Also, b ∈ I\M , and so αi+1 is ready in 〈I, M〉.
Finally, we defined αi+1 to be either a singleton set containing a wait, or a set
containing compatible send and receive, hence, αi+1 ∈ Matchable(〈I, M〉).

Finally, we argue that the trace is deadlocking. By (8) and the construction
of the sequence θ we have that MK � C. We show that from qK = 〈IK , MK〉 it is
not possible to make a match transition, even after possibly making a number of
issue transitions. This proves that there is a deadlocking trace. Suppose that it

is possible to make a match transition, and let us fix a suffix qK
{b1}−−−→i q̂1

{b2}−−−→i

q̂2 . . .
{bn}−−−→i q̂n

α−→m q̄. Note that because q̂n = 〈IK ∪ {b1, . . . , bn}, MK〉, for

274 V. Forejt et al.

the transition under α to exist it must be the case that for any b ∈ α and any
a ≺mo b we have a ∈ MK . But then by (7) all b ∈ α satisfy that rb is true. Then
by (6) we get that there is b ∈ α for which mb is true, and so b ∈ MK , which
contradicts that the match transition under α can be taken in q̂n. 	�

5 Implementation and Experimental Results

The MOPPER deadlock detection tool takes as input an MPI program and
outputs the result of the deadlock analysis. MOPPER first compiles and exe-
cutes the input program using ISP (In-Situ Partial order) [24]. The ISP tool
outputs a canonical trace of the input program, along with the matches-before
partial order �mo. MOPPER then computes the M+ overapproximation as fol-
lows. The intial M+ is obtained by taking the union of all sets whose elements
are type-compatible (i.e., singleton sets containing a wait call, sets of barrier
calls containing individual calls from each process, and sets containing Si,−(j)
together with Rj,−(i/∗)), and then refining the set by removing the sets which
violate some basic rules implied by �mo. Formally, the M+ we use is the largest
set satisfying

M+ = {{a, b} | a = Si,−(j), b = Rj,−(i/∗),
∀a′ ≺mo a ∃ b′ �0mo b : {a′, b′} ∈ M+,

∀b′ ≺mo b ∃ a′ �0mo a : {a′, b′} ∈ M+}
∪ {{a} | a = Wi,l(hj)}
∪ {{a1, · · · , aN} | ∀i ∈ [1, n], ai = Bi,−} .

The partial order �mo and the over-approximation of M (M+) are then used
by MOPPER to construct the prepositional formula as explained in the previous
section. This prepositional formula is then passed to the SAT solver, and when
the computation finishes, the result is presented to the user, possibly with a
deadlocking trace.

Our experiments were performed on a 64-bit, quad-core, 3GHz Xeon ma-
chine with 16GB of memory, running Linux version 3.5. MOPPER uses ISP
version 0.2.0 [24] to generate the trace and MiniSat version 2.2.0 [6] to
solve the propositional formula. All our benchmarks are C MPI programs
and the sources of the benchmarks and the MOPPER tool can be found
at http://www.cprover.org/mpi.

We compare the performance of MOPPER with the dynamic verifier that is
integrated in ISP. We instruct ISP to explore the matches exhaustively with
a time-out of two hours. We use a time-out of 30 minutes for MOPPER. We
also compare the bounded model checker TASS [23] with MOPPER; TASS is
configured to time-out after 30 minutes.

The results of the experiments are tabulated in Table 1. The table presents the
results under different buffering assumptions only for those benchmarks where
buffering had an impact. Note that the MOPPER running time does not in-
clude the time it takes to generate the trace with ISP; the MOPPER numbers

http://www.cprover.org/mpi

Precise Predictive Analysis for Discovering Communication Deadlocks 275

do include the constraint generation and SAT solving time. Comparison of the
execution time of both tools is meaningful only when the benchmarks are single-
path. For the benchmarks where this is not the case MOPPER only explores a
subset of the scenarios that ISP explores.

To estimate the degree of match nondeterminism in the collected program
trace, we introduce a new metric ρ = |M+|/mcount, where mcount is the number
of send and receive matches in the trace. Benchmarks with a high value of ρ have
a large set of potential matches. Since the metric relies on potential matches, ρ
could be greater than 1 even for a completely deterministic benchmark.

Benchmarks. The benchmarks Diffusion2d and Integrate mw are a part of the
FEVS benchmark suite [22]; these benchmarks exhibit high degree of nondeter-
minism, as indicated by their value of ρ. The Diffusion2d benchmark solves the
two-dimensional diffusion equation. In Diffusion2d, each node communicates its
local computation results with its neighbouring nodes which are laid out in a
grid fashion. The Integrate mw benchmark estimates the integral of a sine or
a cosine function in a given range. The integration tasks are dynamically al-
lotted to worker nodes by a master node. Due to this dynamic load balancing
by the master node, Integrate mw is not a single-path MPI program. In order
to make Integrate mw a single path benchmark, we modified the source to im-
plement static load balancing. In this single-path variant of the Integrate mw
benchmark, the schedule space grows as n!/n where n is the number of processes.

The benchmarks Floyd and Gauss Elimination are from [28] and both are
single-path MPI programs. Floyd implements the all-pairs shortest path algo-
rithm and employs a pipelined communication pattern where each process com-
municates with the process immediately next in a ranking.

Monte is a benchmark from [9] that implements the Monte Carlo method
to compute the value of pi. It is implemented in a classic master-worker com-
munication pattern with dynamic load balancing. We have run this benchmark
without modification and thus cannot claim the results to be complete.

We have a set of 10 synthetic benchmarks with various deadlocking patterns
that are not discovered by the MPI runtime even after repeated runs. Among
them, we include only the DTG (dependence transition group [24]) benchmark.
The benchmark has seemingly unrelated pair of matches at the start state that do
not commute. Thus, selecting one match-pair over the other leads to a deadlock.
A run of ISP with optimization fails to discover the deadlock, however, when
the optimization is turned off, ISP discovers the deadlock after 3 runs.

A pattern similar to DTG exists in the Heat-errors benchmark [18]. This
benchmark implements the solution of the heat conduction equation. ISP dis-
covers the deadlock (when this benchmark is run on eight processes) in just over
two hours after exploring 5021 interleavings. The same deadlock is detected in
under a second by MOPPER.

For comparison of MOPPER with TASS we used the 64-bit Linux binary of
TASS version 1.1. Since TASS accepts only a limited subset of C, our exper-
imentation with TASS is restricted to only few benchmarks, namely Integrate
and the synthetic benchmarks. With these few benchmarks, the scalability of

276 V. Forejt et al.

Table 1. Experimental Results

MOPPER ISP

B’mark #Calls Procs ρ B Dla #Vars #Clauses time #Runs time

sDTG† 16 5 1.33
0 ✔ 266 739 0.01 3 0.08
∞ 483 1389 0.01 3 0.08

sGauss Elim
92 8 1.86 0 2.7K 8.4K 0.01 1 0.27

188 16 1.93 0 6.3K 19.9K 0.02 1 0.36
380 32 1.97 0 14.3K 45.2K 0.04 1 0.58

sHeat
152 8 1.8 0 ✔ 8.9K 27.2K 0.03 >2.5K TO
312 16 1.84 0 ✔ 20K 60.9K 0.06 >2.5K TO
632 32 1.86 0 ✔ 44.9K 136.9K 0.18 >2.5K TO

sFloyd

120 8 7∞ 14K 51K 1.4 >20K TO

256 16 7.53
0 35.09K 128K 16.37 >20K TO
∞ 34.6K 127.2K 32.5 >20K TO

528 32 7.8
0 79.34K 292K 161.26 >20K TO
∞ 78.28K 288.5K 122.39 >20K TO

sDiffusion2d
52 4 2.82 ∞ 2.9K 9.6K 0.01 90 29.1

108 8 5.7 ∞ 13.6K 49.9K TO >10.5K TO
sPingping 2370 4 2.0 ⊗ 336K 1.16M 1.15 >1k TO

mIntegrate

28 4 3.0 ⊗ 1.9K 6K 0.01 6 0.04
36 8 4.0 ⊗ 1.8K 6.2K 0.05 5040 216.72
46 10 5.0 ⊗ 3.2K 11.6K 20.4 >13K TO
76 16 7.0 ⊗ 10.7K 40.5K TO >13K TO

Monte
35 4 2.42 ∞ 1K 3K 0.00 6 0.76
75 8 4.6 ∞ 3.6K 12.3K 0.43 5040 1928.28

155 16 8.7 ∞ 15.6K 58K TO >5.4K TO
a Deadlock present † ISP misses the deadlock under optimized run
s single-path ⊗ Buffering model irrelevant m Modified to single-path

TASS cannot be evaluated in an objective manner. We observed, however, that
the potential deadlock detection of TASS on our benchmarks was particularly
slow: the analysis of Integrate with TASS timed out when run for ten processes.
On the synthetic benchmarks, TASS was one order of magnitude slower than
MOPPER.

Discussion. Our results show that the search for deadlocks using SAT and our
partial-order encoding is highly efficient compared to an existing, state-of-the-art
dynamic verifier. However, there is room for improvement in several directions.
Our encoding times out on three benchmarks. To address the time-out problem,
we can restrict our analysis to calls that match within a window enclosed by
barriers. Additionally, we can further refine M+ by discovering additional con-
straints under which matches really take place. Furthermore, our benchmarks
(and MPI programs in general) contain a high degree of communication symme-
try (groups of processes that follow the same control flow). We conjecture that
by exploiting this symmetry we can successfully perform a sound reduction of

Precise Predictive Analysis for Discovering Communication Deadlocks 277

the trace (i.e., without missing deadlocks). We also aim to support a larger class
of MPI programs by (i) extending the encoding for nondeterministic calls such
as waitsome and waitany, and (ii) covering data-dependent MPI programs.

6 Conclusion

We have investigated the problem of deadlock detection for a class of MPI pro-
grams with no control-flow nondeterminism. We have shown that finding a dead-
lock in such programs is NP-complete. We have further devised a SAT-based
encoding that can be successfully used to find deadlocks in real-world programs.
We have implemented the encoding as part of a new tool, called MOPPER, and
have provided an evaluation on benchmarks of various sizes. Our experiments
show that the tool outperforms the state-of-the-art model checker in the area.

There are several directions in which our tool can be improved, such as han-
dling larger subset of the MPI language, or reducing the size of the traces. We
plan to investigate these in our future work.

Acknowledgements. The authors would like to thank Martin Brain, Alex
Horn and Saurabh Joshi for helpful discussions on the topic.

The authors were in part supported by EPSRC H017585/1 and J012564/1, the
EU FP7 STREP PINCETTE and ERC 280053. G. Narayanaswamy is a Com-
monwealth Scholar, funded by the UK government. V. Forejt is also affiliated
with Masaryk University, Czech Republic.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model
checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

2. Carter, J.D., Gardner, W.B., Grewal, G.: The Pilot library for novice MPI pro-
grammers. In: PPoPP, pp. 351–352. ACM (2010)

3. Chen, F., Serbanuta, T.F., Rosu, G.: jPredictor: A predictive runtime analysis tool
for Java. In: ICSE, pp. 221–230. ACM (2008)

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

5. Deniz, E., Sen, A., Holt, J.: Verification and coverage of message passing multicore
applications. ACM Trans. Design Autom. Electr. Syst. 17(3), 23 (2012)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Elwakil, M., Yang, Z.: Debugging support tool for MCAPI applications. In:
PDATAD, pp. 20–25. ACM (2010)

8. Gradara, S., Santone, A., Villani, M.L.: DELFIN+: An efficient deadlock detection
tool for CCS processes. J. Comput. Syst. Sci. 72(8), 1397–1412 (2006)

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI. MIT Press (1999)
10. Haque, W.: Concurrent deadlock detection in parallel programs. Int. J. Comput.

Appl. 28(1), 19–25 (2006)

278 V. Forejt et al.

11. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: SC, p. 30 (2012)

12. Holt, J., Agarwal, A., Brehmer, S., Domeika, M., Griffin, P., Schirrmeister, F.:
Software standards for the multicore era. IEEE Micro 29(3), 40–51 (2009)

13. Huang, Y., Mercer, E., McCarthy, J.: Proving MCAPI executions are correct using
SMT. In: ASE, pp. 26–36. IEEE (2013)

14. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: An MPI anal-
ysis and checking tool. In: PARCO. Advances in Parallel Computing, vol. 13,
pp. 493–500. Elsevier (2003)

15. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying
GPU kernels by test amplification. In: PLDI, pp. 383–394. ACM (2012)

16. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in
MPI programs. Concurrency and Computation: Practice and Experience 14(11),
911–932 (2002)

17. Message Passing Interface, http://www.mpi-forum.org/docs/mpi-2.2
18. Mueller, M.S., Gopalakrishnan, G., de Supinski, B.R., Lecomber, D., Hilbrich, T.:

Dealing with MPI bugs at scale: Best practices, automatic detection, debugging,
and formal verification,
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131

19. Natarajan, N.: A distributed algorithm for detecting communication deadlocks.
In: Joseph, M., Shyamasundar, R.K. (eds.) FSTTCS 1984. LNCS, vol. 181,
pp. 119–135. Springer, Heidelberg (1984)

20. Sharma, S., Gopalakrishnan, G., Mercer, E., Holt, J.: MCC: A runtime verification
tool for MCAPI user applications. In: FMCAD, pp. 41–44 (2009)

21. Siegel, S.F.: Model checking nonblocking MPI programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

22. Siegel, S.F., Zirkel, T.K.: FEVS: A functional equivalence verification suite for high-
performance scientific computing. Mathematics in Computer Science 5(4), 427–435
(2011)

23. Siegel, S.F., Zirkel, T.K.: The Toolkit for Accurate Scientific Software. Technical
Report UDEL-CIS-2011/01, Department of Computer and Information Sciences,
University of Delaware (2011)

24. Vakkalanka, S.: Efficient dynamic verification algorithms for MPI applications.
PhD thesis, University of Utah, Salt Lake City, UT, USA, AAI3413092 (2010)

25. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

26. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: SC, pp. 1–10. IEEE (2010)

27. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for con-
current programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 256–272. Springer, Heidelberg (2009)

28. Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., Voelker,
G.: MPIWiz: subgroup reproducible replay of MPI applications. In: PPoPP,
pp. 251–260. ACM (2009)

http://www.mpi-forum.org/docs/mpi-2.2
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131

Proof Patterns for Formal Methods

Leo Freitas and Iain Whiteside

School of Computing Science, Newcastle University, U.K.
.@newcastle.ac.uk

Abstract. Design patterns represent a highly successful technique in
software engineering, giving a reusable ‘best practice’ solution to com-
monly occurring problems in software design. Taking inspiration from
this approach, this paper introduces proof patterns, which aim to pro-
vide a common vocabulary for solving formal methods proof obligations
by capturing and describing solutions to common patterns of proof.

Keywords: proof pattern, formal verification, proof obligations.

1 Introduction

A key advantage of formal specification of software systems using mathemat-
ical models is a precise characterisation of the requirements that is amenable
to scrutiny through deductive reasoning methods. Popular formal methods lan-
guages like Z, B, and VDM [1,25,36], share a similar methodology: a software
system is modelled at an abstract level and refined stepwise to a more con-
crete representation by infusing the model with design decisions and concrete
datatypes. In each level of ‘refinement’ a system state is usually described as
an abstract datatype or record with an invariant attached. Operations of the
system are described with preconditions and postconditions that may modify
the system state. The correctness guarantees provided by ‘formal methods’ stem
from the proof obligations (POs) that are generated for any given model. Within
formal methods, POs tend to have a predictable shape. Furthermore, the pro-
cess of model design tends to exhibit predictable shapes. This repetition in the
phrasing of theorems and in the solution to particular modelling problems sug-
gests the possibility of repeated proofs. This notion of repetitive proof has been
corroborated in practice from our personal experiences [11,15,16].

One of the main challenges for the widespread adoption of formal methods
in industry is the expense, both in time and human expertise, of solving these
proof obligations. For example, industrial partners using B claim each PO costs
38 euros! In itself this is not a show stopper, until one realises that there are over
11, 000 proof obligations to discharge1. Our aim is, given expert proofs of more
difficult lemmas together with (meta-)proof data collected with our tools, to
enable less experienced proof engineers to identify remainder common situations

1 These numbers were reported at a private meeting with colleagues from a French
company dealing with a (unpublished) system involving railways.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 279–295, 2014.
c© Springer International Publishing Switzerland 2014

280 L. Freitas and I. Whiteside

and tackle them effectively by the use of proof patterns, hence reducing the
overall proof cost and effort, both of which are usually the argument against
formal methods application in industry.

In Software Engineering, design patterns are a highly successful technique
for providing solutions to frequently occurring problems in software design [19].
Patterns give a template description of how to solve a particular problem that
can be used in many different situations. Patterns have evolved to become best
practices that must be implemented and are easily recognised when providing a
common vocabulary for describing solutions. Similarly, mathematicians do not
often talk about the details of their proofs: they have a common parlance of high-
level proof patterns (e.g. by induction, ε-δ proofs in analysis) that enables fellow
mathematicians to understand and recreate proofs. It is our aim in this paper
to introduce proof patterns for formal methods. Specifically, we hypothesise:

Similar to software engineering design patterns, proof patterns exist for
formal methods proof obligations. Furthermore, under the right circum-
stances, they are applicable over multiple methods.

This paper presents several proof patterns useful for discharging proof obli-
gations across formal methods. We describe these patterns similarly to software
design patterns, and although we use a concrete example problem for explain-
ing the patterns, we believe that they transfer across problems, and sometimes
across provers. We provide examples of each pattern in action using a VDM
model of a heap memory manager [27, Ch. 7], which we have formalised in the
Isabelle and Z/EVES theorem provers [30,31]. We believe that too small an ex-
ample is unlikely to clarify the issues with patterns in proof obligations, and
that industrial examples do not fit in a paper (yet are amenable to our pat-
terns). For instance, we drew on our experience from proofs of the Software
Verification Grand Challenge [24] pilot projects [9,12,14,15,16,17,18,37] to iden-
tify, summarise and categorise the patterns presented here.

In the next section, we briefly introduce software design patterns, formal meth-
ods, and our running example. Then, Section 3 describes our core proof patterns
with examples of each in action. We further exemplify our proof patterns with
a worked example on a feasibility proof obligation in Section 4. Finally, we con-
clude with related and future work in Section 5.

2 Background

2.1 Patterns

Like with design patterns for software engineering [19], we see proof patterns as
a combination of informal description, examples of use, and a set of attributes
of discourse explaining the conditions for which the proof pattern may apply. A
classic example of a design pattern is the iterator pattern.

We are trying to do for proof what design patterns did for software devel-
opment: create a discourse of ideas and processes that might omit the specifics

Proof Patterns for Formal Methods 281

of “how”, unless one is happy to look at the gory details (i.e. not only of large
proofs, but of large amounts of failed proof attempts). We try to give precise and
accountable details as much as possible, yet we are still some way from having
an expressive enough declarative proof language to capture proof intent.

2.2 Heap Problem

In this section, we provide an overview of a heap memory manager, modelled
in VDM [27, Ch.7], that we use throughout this paper to exemplify our proof
patterns. We have formalised and proved all proof obligations associated with
the first two levels of refinement for this model in the Isabelle [30,29] and
Z/EVES [31] theorem provers. A full description of this formalisation, including
a detailed description of the translation between a VDM model and its repre-
sentation in Isabelle, can be found in [11].The model consists of two datatypes
and two operations:

Loc: the type of a single adjacent memory location, represented as N.
Free: the type of the heap as a collection of all free locations. At level 0, it is

represented as the set Free0
 Loc-set, whereas at level 1, it is represented
as a map from start location to size that is disjoint and separate:

Free1 = Loc
m−→ N1

inv (f)
 disj (f) ∧ sep(f)

disj (f)
 ∀l , l ′ ∈ dom f ·l �= l ′ −→ locs-of (l , f (l))∩locs-of (l ′, f (l ′)) = φ

sep(f)
 ∀l ∈ dom f · (l + f (l)) /∈ dom f

The invariant conditions ensure that the range of locations identified by any
two map elements (defined as {l . . . l + f (l)-1} by locs-of) do not intersect
(disj) and that contiguous memory regions are as large as possible (sep).
That is, for any element l in the map, the location immediately to the right
of its memory region (l + f (l)) is not the start location for another region:
l + f (l) /∈ dom (f). We write F1-inv(f) to refer to this invariant of Free1.

NEW: takes a size and heap as input and returns a starting location for a
contiguous chunk of memory of the appropriate size after updating the state.

DISPOSE: returns a contiguous chunk of memory back to the heap. This op-
eration takes a start location and size as parameters, updating the state.

At level 0, these operations are defined as

NEW 0 (s :N1) r :Loc

ext wr f0 : Free0

pre ∃l ∈ Loc · locs-of (l , s) ⊆ f0

post locs-of (r , s) ⊆ ↼−
f0) ∧

f0 =
↼−
f0 − locs-of (r , s)

DISPOSE0 (l :Loc, s :N1)

ext wr f0 : Free0

pre locs-of (l , s) ∩ f0 = { }

post f0 =
↼−
f0 ∪ locs-of (l , s)

Set difference and set union characterise the removal and addition of elements to
the heap. The precondition on NEW 0 ensures that there is a contiguous region

282 L. Freitas and I. Whiteside

of the appropriate size, whereas DISPOSE0 ensures the range of locations being
returned is not already free. At level 1, the NEW operation is:

NEW 1 (s :N1) r :Loc

ext wr f1 : Free1

pre ∃l ∈ dom f1 · f1(l) ≥ s

post r ∈ dom
↼−
f1 ∧ (

↼−
f1 (r) = s ∧ f1 = {r} −� ↼−

f1 ∨
↼−
f1 (r) > s ∧ f1 = ({r} −� ↼−

f1) ∪m {r + s �→ ↼−
f1 (r)− s})

NEW 1 has two behaviours depending on whether a location of exactly the re-
quired size or larger has been located. If the size matches, then that element is
removed from the map; if the map element refers to a larger region, then the re-
maining locations in the region must be added back to the heap (hence the map
union). The precondition captures both cases using ≥. We describe DISPOSE1
in Section 4 as part of a worked example of solving a feasibility proof obliga-
tion with proof patterns. The retrieve between these two levels of refinement is
given by function f0 = locs(f1): it generalises locs-of over the domain of f1 using
distributed union (i.e. locs =

⋃
{locs-of (x , f1(x)) | x ∈ dom f1}).

3 Proof Patterns

In the following sections we describe our proof patterns. Despite the specificity
of the Heap example, these patterns apply in most problems of interest within
formal methods POs. Wherever patterns are specific enough, we provide proof
snippets in Isar: a human readable formal proof language for Isabelle [35].

3.1 Witnessing

One of the most important steps to solve feasibility (and reification) POs is
finding appropriate witnesses for the outputs and updated state. The general

form of these POs is ∀↼−̄
σ , ī ·pre-OP(

↼−̄
σ , ī) −→ ∃σ̄, ō ·post -OP(

↼−̄
σ , ī , σ̄, ō), where

↼−̄
σ and ī are the initial state and inputs and σ̄ and ō represent a sequence of
updated state variables and outputs. In general, finding a witness is a difficult
task, but there are two common patterns that allow some of the existentials to
be discharged easily and a third pattern to help the engineer “discover” the right
unknown witness.

One Point. Often the value of an updated state variable is given explicitly in
the postcondition as an equality, σi = t , where t is an expression in terms of the
initial state. This can be discharged by a generalised version of the “one-point’
proof rule in [36, Sect. 4.2], which Z/EVES implements and could be encoded
in Isabelle, though at present we discharge it manually. The rule avoids provid-
ing any explicit instantiation, regardless of variable order. If t is a complicated
expression, one may wish to introduce an informative name x ′ = t into the as-
sumptions and use the one-point rule with x ′ instead, since t is substituted for
σi everywhere it is used in the postcondition.

Proof Patterns for Formal Methods 283

Existential Precondition. A more subtle situation involves an existential precon-
dition (e.g. pre-OP
 ∃x · P x). This often means that x , once eliminated, is
‘supposed to be’ mapped to a particular witness. Notice that inputs to precon-
ditions can also be viewed as existentially quantified assumptions and are also
suitable. This pattern occurs when a nondeterministic choice for the postcon-
dition is required and a value satisfying the precondition can be picked. This
means that we can often match an “existential” precondition variable by trying
to match the P x from the precondition within the postconditions.

Dummy. When a witness guess is unknown, making progress in the proof serves
to clarify the appropriate choice. To make progress, one should instantiate the
existential quantifier with an arbitrary variable, then proceed. Once the goal is
rewritten taking the witness into account, resulting subgoals can be analysed for
evidence pointing to appropriate instantiations.

Example. In the heap case study, both one-point and existential precondition
patterns occur in the feasibility PO for NEW 1 and DISPOSE1. After performing
case analysis, the first PO is as follows:

∀f s · F1-inv(f) ∧ (∃l ∈ dom f · f (l) = s) −→
(∃f ′ r ′ · F1-inv(f ′) ∧ r ′ ∈ dom f ∧ f (r ′) = s ∧ f ′ = {r} −� f)

The witness for f ′ can be found using the one-point rule for f ′ = {r} −� f . This
entails some existential introduction massaging, which Z/EVES does automati-
cally and we encode in Isabelle. Notice we cannot use r in the witness as it is also
being quantified. The witness for r is the l introduced by existential elimination
on the precondition. The witnessing pattern reduces this feasibility proof obliga-
tion to showing that the invariant holds on the updated state as F1-inv({l}−�f),
which is ready for invariant breakdown as described in the next section.

3.2 Invariant Breakdown

One often needs to show that the updated state preserves the invariant, as in the
example above. When the updated state is defined in terms of the original state,
we move the invariant predicate towards the original state in order to use the
assumption held by the original invariant. This can be seen as a specialised form
of the rippling proof plan for solving step cases of induction proofs [5]. Rather
than delve into the details of rippling, we explain this pattern as an operation
on invariant proofs.

The situation that triggers this pattern is as follows.We need to solve inv(h(σ))
where we know inv(σ) holds and the updated state is h(σ). As a simple exam-
ple, imagine the state is a set of natural numbers X and the updated state is
f (X)∩g(X), giving us a proof obligation inv(X) −→ inv(f (X)∩g(X)). To apply
the invariant breakdown pattern, we aim to move the invariant predicate closer
to the original invariant terms: distributing it over set intersection in this case.
Furthermore, the subterms that contain the original state would be generalised
to an arbitrary element. This means speculating a lemma: P −→ inv(A) −→
inv(B) −→ inv(A∩B), whereP expresses side-conditions under which the lemma

284 L. Freitas and I. Whiteside

must hold. The application of this lemma leads to inv(f (X)) and inv(g(X)) as
new subgoals, we need to apply the invariant breakdown pattern again until we
get inv(X) itself as assumptions to the speculated lemma. While the invariant
breakdown pattern does not solve the goal, it provides a set of lemmas that, if
proven, will lead to a proof of the top-level goal. We call them weakening lemmas
(see Section 3.3) and they are available to function symbols either unknown or
with little automation.

The process of discovering such side-conditions P is non-trivial and requires
expertise. It can also be helped, however, by model-checking and counter-example
checking: take P as true and run a counterexample checker, for example. An-
other source of useful information is the definitions of the operators involved, in
the case above {inv , f , g,∩}. Together with counter-examples found, they expose
the clues to the appropriate side-conditions, which might themselves be lemmas
to be proved. In the worst case, when side-conditions are difficult to guess, one
might need to create a new concept specific to the domain of the problem.

Example. In the heap, this pattern was used frequently, since the two compo-
nents of the invariant (separateness and disjointedness) needed to be proved for
the updated state in both the NEW and DISPOSE operations. In NEW 1, for
example, we are required to show that the following goal holds.

Disjoint(({r} −�
↼−
f1)∪m{r + s �→ ↼−

f1 (r)− s})
where we have a single occurrence of the original state f1 as itself, which gives
us some indication of how to break down this formula by distributing Disjoint
over map union (∪m). Generalising, we speculate a lemma:

Q −→ Disjoint(f) −→ Disjoint({a �→ b}) −→ Disjoint(f ∪m{a �→ b})
Ignoring side-conditions for the moment, this gives us the following subgoals:

Disjoint({r} −�
↼−
f1) Disjoint({r + s �→ ↼−

f1 (r)− s}))
The second goal does not contain the original state, and can be solved trivially.
For the first goal, we need to repeat the invariant breakdown process on domain
filtering (−�). This allows us to solve the goal using the assumption.

3.3 Weakening Lemmas

When one does not have enough information about function symbols appearing
in invariant breakdown, we need weakening lemmas relating these symbols.

For instance, POs over complex states often include records and data struc-
tures the prover knows little about (e.g. a map from a record to a list). Naively
dealing with the presence of these (novel use of) symbols often leads to either
polluted (and repetitive) proofs, or to overly specific lemmas. Instead, we need
lemmas that weaken specific parts of the goal (for backward reasoning) or specific
parts of the hypothesis (for forward reasoning). This breaks down the task to
manageable pieces, up to the point where the prover has automation for function
symbols involved, as in the example above involving inv(∩).

When discharging proof obligations for the heap we came across surprising
points of failure. The refinement and feasibility POs for NEW and DISPOSE

Proof Patterns for Formal Methods 285

motivated the creation of lemmas for both Z/EVES and Isabelle, which are fully
documented in [11].

Isabelle proofs. From the pattern for the feasibility proof, we provide weaken-
ing lemmas to enable automation on our given witnesses. This unpicking of the
various parts of the feasibility proof obligation leads to the suggestion of lemma
shapes up to the point where available lemmas apply. Once these linking (weak-
ening) lemmas are in place, Isabelle knows enough about involved operators and
can automatically discharge them. Bridging this gap is where expert input is
needed. For example, to represent VDM maps in Isabelle we use (Loc ⇀ N),
which is a total function with an optional range type. Isabelle has useful op-
erators like map update (†), yet not map union (∪m), which we define as map
update over maps with disjoint domains. Map union features in proofs for NEW 1
and DISPOSE1, and we needed lemmas linking the new operator to a represen-
tation known to Isabelle, namely map update. Thus, while performing invariant
breakdown, we identify the need for weakening lemmas about distributing VDM
operators over invariant subparts. Similar lemmas for other function symbols
were also added, where different side-conditions determine where such weaken-
ing lemmas can be used. In total we have 51 of them for Isabelle.

Z/EVES proofs. Arguably, given Z already contains a mathematical toolkit akin
to VDM’s, it is easier to represent a VDM model in Z/EVES. This means many
of the weakening lemmas we need are already available. The lesson from this
though is that weakening lemmas over known (or reused) function symbols do
indeed transfer across problems, and that is our experience. Some of the Isabelle
weakening lemma were informed by previous experience with Z/EVES.

We declare weakening lemmas in Z/EVES as a rewrite rule, which the prover
uses automatically during simplification and is akin to Isabelle’s simp attribute
on lemmas. These lemmas are not quite solving, but distilling the problem
through the proof engineering process described by our proof patterns. These
kinds of lemmas are not usually transferable across problems, yet the general
principles/patterns behind them are, as our experience with the GC pilot project
experiments shows [9,12,14,15,16,17,18,37].

3.4 Type Bridging and Zooming

When discharging weakening lemmas and/or discovering side-conditions of in-
variant breakdown, one often needs to add explicit (novel, if obvious) information
about type relationships and their layers of abstraction/representation. These
lemmas establish algebraic properties between new user-defined operators, and
known (set theory, say) operators.

Provers have preferred directions for reasoning, be that left-right simplifica-
tion, or a “waterfall” [28] involving generalisation and simplification. We call
“type bridging” all those auxiliary lemmas necessary for weakening the goal (in
backward proof) towards true by substituting “simpler” goals up to the point
they meet the available hypothesis. For example, when a conditional rule fails
to match, it is often because its side-condition could not be discharged. Often

286 L. Freitas and I. Whiteside

these conditions are simply type checking (e.g. parameters are within the in-
volved function symbols’ declared types). This gives rise to a set of specialised
type-inference lemmas for the expressions involved.

The mathematical toolkits of Z, Event-B, and VDM are defined in terms of
maps, sequences, sets, and relations. User-defined functions are often given in
terms of operators with higher automation, in which case the appropriate expan-
sion lemma to the function symbol with most automation is needed. In methods
such as Z and VDM, the notion of records is ubiquitous yet goals involving
records do not require the prover to know about all the record structures, hence
specific lemmas exposing a record’s properties are often needed to streamline
proofs (i.e. in [15], such record slicing reduced a 45-page long cluttered goal into
16-chunks of related intent about a page each).

This type bridging, where the lemma is there to help bridge notions be-
tween operators of interest (i.e. user-defined and set theory in this case) en-
hances proof automation. Similarly, when moving between layers of abstrac-
tion/representation, the right level of definition expansion needs to be taken
into account. That is, we need to instruct the prover what “zoom” to use, and
we do not want to expand all definitions to sets or predicates, but rather keep
definitions at different “zoom” levels, adding lemmas between levels as needed.

Such type judgements can also work in forward proof by strengthening hy-
potheses of interest. For instance, given a goal involving an injective map inverse
(f˜(f (x))) and an assumption x ∈ dom f , we could extend the hypothesis to say
that f˜(f (x)) = x . This usually makes the prover substitute the goal with the
simpler right hand side (RHS) involving x . The amount and shape of these
auxiliary lemmas are determined by the direction a prover takes, as well as by
the amount of previously available information for the given operators. Finally,
certain invariants are mathematically sensible (i.e. a sequence of size up to 10,
s ∈ T ∗ ∧ card(s) ≤ 10), yet hard to use in proof because of tricky operators like
cardinality (card(s)) that involve bijective functions. Equivalent versions of the
same invariant using just set theory (i.e. sequence indices range from 1 up to 10,
inds s ⊆ {1, . . . , 10}) can be proved as type bridging lemmas, hence providing
better automation.

Example. In the Isabelle proof for the heap example we added a (congruence)
lemma that required no extra side-conditions, hence directly simplifying the goal
by removing one of the operators. Within Isabelle libraries, the term “congruence
lemma” is used to refer to lemmas that weaken the goal structure with respect to
some easier (sub-)term that is preferred. For example, in Isabelle lemma imp cong
can be used to rewrite a goal involving an implication such as ?P −→?Q to a
corresponding goal such as ?P ′ −→?Q ′, so long as one can find that ?P is related
(in the example, equivalent) to ?P ′ and the same for ?Q ′. Weaker relationships
between involved terms are also used.

In our case, such a lemma states that subtracting from the map’s domain
preserves separation (i.e. sep(x −� f) −→ sep(f)). The presence of the operator
to absorb on the left hand side (LHS) tells the prover our preference for the RHS
expression as a result. Moreover, the free variables in weakening lemmas for sep

Proof Patterns for Formal Methods 287

needed for the feasibility of NEW 1 were reused in DISPOSE1, hence making
the feasibility proof script itself much like the one for NEW 1 (i.e. their common
strategy being reused modulo the key lemmas discovered).

3.5 Retrieve State Update

When refining a model, a retrieve relation maps concrete to abstract state repre-
sentations. A key PO is that if the postcondition holds at the concrete level, then
it holds in the abstract. This proof obligation is called narrow postcondition in
VDM (correctness in Z). A common feature in refinement is a type jump between
the abstract and the concrete levels. For example, the heap is represented as a
set of locations at level 0 and refined to a partial map in level 1.

In these situations where the updated state at the concrete level is described
using an equality σ = f (↼−σ) for some f , that is, when we have a functional
retrieve, we can apply a pattern called retrieve state update to conjecture lemmas
that map across the type jump. To prove the postcondition we can use one-point
witnessing under the retrieve to solve retr(σ) = g(retr(↼−σ)) for some function g
on the original state, where retr(con) = abs is a function from the concrete to
the abstract state. After the state update with the equality above, this is really:
retr(f (↼−σ)) = g(retr(↼−σ)). In this situation, we have three pieces of information:
a) the structure of the retrieve function mapping concrete and abstract; b) a set
of operators at the concrete level (used in f); and, c) a set of operators at the
abstract level (used in retr and g). To solve this goal, we must first translate the
operators in f to those of g by distributing the retrieve function. For example,
the narrow postcondition PO for the NEW operation on the heap is:

retr({r} −� ↼−
f) = locs(

↼−
f)− locs-of (r , s)

The ‘zoom’ level for the abstract state is that of sets and the level of the concrete
is maps. The application of this pattern suggests distributing retr over domain
filtering, which suggests a possible lemma of the form

P −→ retr({r} −�
↼−
f) = Q(retr(

↼−
f), {r})

where P expresses side-conditions and Q is some undetermined operation on sets.
At this point the retrieve function is operating solely on the state, so we stop
applying the pattern. Comparison with the RHS of our goal makes clear what
Q should be, but this is not always so straightforward. Thus, just like invariant
breakdown, the proof pattern can help suggest an attack, but it requires input
from the proof engineer.

3.6 Hidden Case Analysis

Hidden case analysis is the insertion of a lemma of the form P ∨ ¬P to hypothe-
ses and the subsequent breakdown of the proof obligation into the case where
P holds and the case where ¬P holds. This pattern is common to mathemat-
ics as well. It is often used in situations where it is not clear what information the

288 L. Freitas and I. Whiteside

precondition provides to prove the postcondition holds, despite it being available,
if hidden. A few examples of where this occurs are:

– Certain predicate calculus patterns in either pre/postconditions lend them-
selves to hidden cases analysis. Conditional postconditions (P −→ Q) in-
dicate a case split on the condition. Disjunctive postconditions are often
associated with hidden disjuncts of the precondition (e.g. as in NEW 1).

– Non-linear arithmetic operators occur in the precondition, such as ≥, and
also when negation and non-linear arithmetic are combined.

– Sets, sequences, and maps in preconditions might require case analysis for
emptiness; and so on.

For example, the disjunction in the postcondition for the NEW 1 operations

(
↼−
f1 (r) = s∧f1 = {r}−�↼−

f1) ∨ (
↼−
f1 (r) > s∧f1 = ({r}−�↼−

f1)∪{r+s �→ ↼−
f1 (r)−s})

suggests that a case analysis must be performed on the preconditions. In this
case, introducing f1(l) = s ∨ f1(l) �= s allows us to derive from the precondition
(∃l ∈ dom f1 · f1(l) ≥ s) that f1(l) > s ∨ f1(l) = s . Each case in the precondition
is explicit as a goal in each side of the disjunction, although the disjunct with
the precondition was hidden by ≥.

3.7 Shaping

In formal methods, proof obligations tend to be large with lots of information
present in the goal and assumptions. This can often obscure the overall struc-
ture of a goal. In the shaping proof pattern, we utilise some of this information
to simplify the goal before applying an important lemma or applying another
proof pattern, such as invariant breakdown. A shaping pattern consists of a set
of shaping lemmas, which are equalities between a sub term of the goal and
a simpler representation, and a set of targeted rewrites that simplify the goal.
The benefit of using this proof pattern before applying an important weakening
lemma is that it will considerably simplify the resulting subgoals. In mathemat-
ics, this often occurs when trying to get rid of some difficult operator like square
root, so one squares both sides of an equation, say.

In the heap example, shaping was used frequently to simplify some of the
details of the DISPOSE1 postcondition in the feasibility and refinement proofs,
where prior case analysis had provided further information about the structure.
We give an example of shaping (and the case analysis that triggers it) next.

4 Patterns in the Heap

The top-level POs for a model, such as operation feasibility, tend to have similar
structure that can be exploited to increase proof effectiveness. We call such
similarities methodological patterns. Rather than describe these patterns, we give
a worked example of how the patterns described in the previous section can
be composed to help solve the feasibility proof obligation for the DISPOSE

Proof Patterns for Formal Methods 289

operation at level 1. In a companion technical report, we provide a detailed
presentation of methodological patterns [13]. The VDM operation is as follows:

DISPOSE1 (d :Loc, s :N1)

ext wr f : Free1

pre is-disj (locs-of (d , s), locs(f))

post ∃below , above, ext ∈ Loc
m−→ N1 ·

below = {l | l ∈ dom f ∧ l +
↼−
f (l) = d}� f ∧

above = {l | l ∈ dom f ∧l = d+s}�f∧ext = above∪m below∪m{d �→ s}∧
f = (dom below∪dom above−�

↼−
f)∪m {min-loc(ext) �→ sum-size(ext)}

The inputs d and s are the start location and size of region to add back to the
heap. The precondition is similar to level 0: this time using locs to construct the
set of all free locations from the heap map.

The complexity in DISPOSE1 arises from the fact that the memory region
being added back to the heap may adjoin zero, one, or two other regions already
in the heap. Thus, to preserve the sep part of the invariant (e.g. memory regions
should be as large as possible), we must join them together. The map above will
adjoin the end of the region being added; below defines the map of elements
adjoining from the start. The extended map then consists of above, below , and
the disposed region in the middle. Updating the state is then a case of removing
above and below (using domain filtering) and adding a region that corresponds
to the minimum starting location and the sum of the sizes of the elements of ext .
To illustrate, for a heap f = {0 �→ 4, 8 �→ 3}, DISPOSE1(4, 4) would result in
the updated f = {0 �→ 11}. This is because above = {8 �→ 3}, below = {0 �→ 4},
and ext = {0 �→ 4, 4 �→ 4, 8 �→ 3}.

Proof of DISPOSE1 Feasibility by Patterns

Step 1: Representation Transformation. This proof pattern can be used option-
ally at the start of any proof in order to make a representational change to
simplify the proof. All that is required is a lemma which equates both POs. In
the case of DISPOSE1, we gave explicit definitions for above, below , and ext ,
which makes it easier to deal with existential quantifiers, and we prove this al-
ternative definition equal to the original. It is worth mentioning one ought not
change the model for the sake of proof alone, as this often impairs model clarity.

Step 2: Safe Decomposition. Not a formal methods proof pattern per se, but
safe decomposition is used as a standard technique in automated reasoning to
break down fixed variables, hypotheses and conclusions of a goal. We extend
this technique in our Isabelle development to unfold the definitions of pre-DIS1
and post -DIS1-ALT by a single zoom level. The result, given as a declarative
Isabelle/Isar proof script is as follows:

theorem DIS1-feas: (∀ · f d s . pre-DIS1 f d s −→ (∃ · f ′ . post-DIS1 f d s f ′))
proof (subst dispose-feas-transform) — The transformation step

290 L. Freitas and I. Whiteside

show (∀ · f d s . pre-DIS1 f d s −→ (∃ · f ′ . post-DIS1-ALT f d s f ′))
unfolding pre-DIS1-def post-DIS1-ALT-def
proof (intro allI impI , elim conjE) — Safe decomposition
fix f d s assume inv : F1-inv f and pre: (locs-of d s) ∩ (locs f) ={}
show ∃ ·f ′. f ′ = (dom (below f d) ∪ dom (above f d s)) -� f ∪m

[min-loc (ext f d s) �→ sum-size (ext f d s)] ∧ F1-inv f ′

gap — The gap represents the area of the proof still to solve
qed
qed

Step 3: Witnessing. In this case, witnessing is straightforward as we have a
one-point existential. The resulting proof script replaces the previous gap.

show ∃ ·f ′. f ′ = (dom (below f d) ∪ dom (above f d s)) -� f ∪m
[min-loc (ext f d s) �→ sum-size (ext f d s)] ∧ F1-inv f ′

proof(rule exI , rule conjI , rule refl) — Single-point witnessing with exI
show F1-inv ((dom (below f d) ∪ dom (above f d s)) -� f ∪m . . .)
gap
qed

Step 4: Hidden Case Analysis. At this point, we could apply the invariant break-
down pattern, but an expert proof engineer notes that the definitions of above
and below mean it is either empty or a singleton map. Thus, the next proof step
is to apply case analysis on both above and below, resulting in four separate
cases to be solved. We focus on the first, where above = below = φ.

Step 5: Shaping. We again postpone invariant breakdown and perform the shap-
ing pattern since we have added the hidden case analysis information above to
the hypotheses. We now know, for example, that filtering the (empty) domains
of above and below from f will have no effect. The result of case analysis and
shaping leaves another proof gap as:

proof (cases below f d = empty , cases above f d s = empty) — case analysis
assume below-empty : below f d = empty and above-empty : above f d s= empty
have ab-shape: (dom (below f d) ∪ dom (above f d s)) -� f= f gap
have min-loc-shape: min-loc (ext f d s) = d gap
have sum-size-shape: sum-size (ext f d s) = s gap
show ?thesis
proof (subst ab-shape, subst min-loc-shape, subst sum-size-shape)
show F1-inv (f ∪m [d �→ s])
gap
qed
. . .— the other three cases are not shown
qed

Step 6: Zooming and Decomposition. We wish to attack each part of the invari-
ant (sep and disj) independently, so we unfold definitions and decompose the
conjunction accordingly.

Proof Patterns for Formal Methods 291

Step 7: Invariant Breakdown. We are now in a position to apply the invariant
breakdown proof pattern. We describe the application of the pattern for disj ,
but the sep part is similar. Recall, from above, that we have F1-inv(f) as an
assumption (and thus also disj f). The aim of invariant breakdown is to speculate
lemmas that expose the hypothesis in our conclusion. In this case, we have the
original state on the LHS of the map union operator, but not the right. This
helps us to speculate a lemma: P → disj (f) → disj (f ∪m [d �→ s]) where P
represents unknown side-conditions. In the case of disj , the important condition
is (locs-of d s) ∩ (locs f)={}, which is exactly the precondition for DISPOSE1.
The (partial) proof script is:

show disj (f ∪m [d �→ s])
proof (rule unionm-singleton-disj) — The speculated lemma
show sep f using inv by assumption — Use of hypothesis
show (locs-of d s) ∩ (locs f) ={} by (rule pre) — Precondition as side-condition
. . .— Additional side-conditions
qed

The use of invariant breakdown does not solve the invariant subgoals, but it
directs the proof engineer to the appropriate lemma structures to speculate.

Step 8: Weakening and Type Bridging. Because of the repeated nature of some
POs, weakening lemmas speculated by invariant breakdown are often reusable.
The lemma unionm-singleton-disj is used in each of the other three cases intro-
duced by hidden case analysis.

Lemma inference is quite hard in general, yet within the proof process pre-
sented, weakening and type bridging lemmas that will make proof progress are
easier to identify. For example, in the proof for the other cases in the DISPOSE1
feasibility PO, because of the presence of inv(f ∪m g), we need a side-condition
that the map domains are disjoint (dom f ∩ dom g = { }). In context this is
given by the rather specific lemma:

lemma l-dispose1-munion-disjoint :
dom ((dom (dispose1-below f1 d1) ∪ dom (dispose1-above f1 d1 s1)) -� f1) ∩
dom [min-loc (dispose1-ext f1 d1 s1) �→ sum-size (dispose1-ext f1 d1 s1)] = {}

This lemma is an instantiation of a side-condition that features in all subgoals
when breaking down the invariant for DISPOSE1, hence is the key enabler of
progress for the invariant breakdown of that feasibility proof.

5 Related Work and Conclusions

This paper introduced the concept of proof patterns in formal methods and de-
scribed several patterns of proof that commonly occur. We tested this hypoth-
esis by an experiment: the proof of a VDM heap memory manager [27]. Just as
in software design patterns [19], proof patterns are informal and are described
generically, without reference to an individual problem. We also describe the

292 L. Freitas and I. Whiteside

composition of a set of patterns in a worked example of a feasibility proof obli-
gation. We believe that a small collection of proof patterns is all that is needed
to increase the automation of most formal methods proof obligations. This will
not eventually remove the burden of proof, yet we believe proof patterns offer
good support in de-skilling the process, as well as increasing proof effort reuse.

Before getting to the nub of the problem within industrial-scale proof obliga-
tions, which almost always involve large formulae (i.e. tens of pages long) and
multiple (i.e. over 100) variables, we claim it is fundamental to have in place a
considerable amount of machinery to enable automation to an acceptable level.
Proof engineering is essential for scalability: it takes a good amount of unrelated
proof effort to enable the actual proof obligations of interest to be tackled. Lem-
mas are useful whenever one needs to: decompose a complex problem; fine-tune
the theorem prover’s rewriting abilities to given goals; generalise a solution of
some related (usually more abstract) problem; or to provide alternative solu-
tions/encodings of the same data structure/algorithm being modelled; etc.

Related Work. The term design pattern originated in architecture [2], but is
most widely known in software design [19]. Some languages, such as Java, even
have built-in support from patterns, such as the iterator pattern. In software
engineering, there is a wealth of research in design patterns, from architectural
patterns to specific patterns for user interfaces. In [7], Buschmann introduces
architectural patterns that are capable of describing large-scale software sys-
tems, such as model-view controller, which separates the representation of data
(the model) and the user’s view of it. Architectural patterns are similar to our
methodological patterns, which we describe as a composition of proof patterns
to help solve a top-level proof obligation. We describe some closely related work
in formal proof, but Buschmann et al. related work on design patterns [8].

It has been noted in the mathematical community that pencil-and-paper
proofs often follow specific patterns, such as proof by contradiction, by induction,
etc. These ideas have found their way into the domain of automated theorem
proving. Bundy’s proof plans were an early attempt at capture patterns of in-
ductive proof [4]. Proof plans have been implemented many times, most recently
in Isaplanner [10]. We would like to investigate whether the planning language in
Isaplanner is expressive enough to formalise some of our proof patterns. In [26],
we start this process by describing a language to capture meta-proof information.
Also within the AI4FM project, colleagues have developed a graphical rewrit-
ing language [20] that will hopefully be amenable to proof pattern recognition.
As well as the static proof patterns described here, it may be possible to learn
patterns from a corpus of proofs [22,23]. Some mathematical proof patterns
are so prevalent that they have been implemented as theorem provers in their
own right. The Galculator theorem prover, for example, can be seen as specif-
ically implementing the pattern of proof using Galois-connections and indirect
equalities [32].

Proof Patterns for Formal Methods 293

Future Work. In the heap example, we also used AI4FM tools (under devel-
opment) to collect (> 250 GB) proof process data [33,34], which we plan to
analyse to identify clusters using AI techniques akin to [21]. We hope with this
data to find hard evidence for proof patterns. The AI4FM hypothesis is that
“enough information-extraction can be automated from a mechanical proof that
future proofs of examples of the same class can have increased automation”. The
challenge is discussed in several earlier publications including [6,26,11]. As such,
an important area of future work on proof patterns is the transference of a proof,
described using patterns, to help automate another similar proof obligation. We
are also interested in extending our catalogue of proof patterns, as well as col-
lecting further examples of the patterns for different formal methods. While we
have given a natural language presentation of patterns in this paper, we would
like to formalise a pattern language in order to present and automatically gener-
ate proofs from the patterns, similar to work in software design patterns [3]. We
will analyse the proof process data captured by our tools using AI techniques.

Acknowledgements. We are grateful to Cliff Jones for suggesting the Heap
problem and for, together with Andrius Velykis, the many fruitful discussions.
Other AI4FM members helped us understand important problems in automated
reasoning. This work is supported by EPSRC grant EP/H024204/1.

References

1. Abrial, J.-R.: The Event-B book. Cambridge University Press, UK (2010)
2. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,

Construction (Center for Environmental Structure Series). Oxford University Press
(August 1977) (later printing edition)

3. Budinsky, F.J., Finnie, M.A., Vlissides, J., Yu, P.: Automatic code generation from
design patterns. IBM Systems Journal 35(2), 151–171 (1996)

4. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Over-
beek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg
(1988)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance
for Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science,
vol. 56. Cambridge University Press (2005)

6. Bundy, A., et al.: Learning from experts to aid the automation of proof search.
In: O’Reilly, L., et al. (eds.) PreProceedings of the 9th AVoCS 2009, CSR-2-2009,
Swansea University, UK, pp. 229–232 (2009)

7. Buschmann, F., et al.: Pattern-oriented software architecture: a system of patterns.
John Wiley & Sons, Inc., New York (1996)

8. Buschmann, F., Henney, K., Schmidt, D.: Past, present, and future trends in soft-
ware patterns. IEEE Software 24(4), 31–37 (2007)

9. Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of flash
memory. Science of Computer Programming 74(4), 219–237 (2009)

10. Dixon, L., Fleuriot, J.: IsaPlanner: A prototype proof planner in isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer,
Heidelberg (2003)

294 L. Freitas and I. Whiteside

11. Freitas, L., Jones, C.B., Velykis, A., Whiteside, I.: How to say why. Techni-
cal Report CS-TR-1398, Newcastle University (November 2013), http://www.

ai4fm.org/tr

12. Freitas, L., McDermott, J.: Formal methods for security in the Xenon hypervisor.
International Journal on Software Tools for Technology Transfer 13(5), 463–489
(2011)

13. Freitas, L., Whiteside, I.: Proof patterns for formal methods. Technical Report
CS-TR-1399, Newcastle University (November 2013)

14. Freitas, L., Woodcock, J.: Proving theorems about JML classes. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems.
LNCS, vol. 4700, pp. 255–279. Springer, Heidelberg (2007)

15. Freitas, L., Woodcock, J.: Mechanising Mondex with Z/Eves. Formal Aspects of
Computing 20(1), 117–139 (2008)

16. Freitas, L., Woodcock, J.: A chain datatype in Z. International Journal of Software
and Informatics 3(2-3), 357–374 (2009)

17. Freitas, L., Woodcock, J., Zhang, Y.: Verifying the CICS file control API with
Z/Eves: an experiment in the verified software repository. Science of Computer
Programming 74(4), 197–218 (2009)

18. Freitas, L., Woodcock, J., Zheng, F.: POSIX file store in Z/Eves: an experiment in
the verified software repository. Science of Computer Programming 74(4), 238–257
(2009)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1998)

20. Grov, G., Kissinger, A., Lin, Y.: A graphical language for proof strategies. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312,
pp. 324–339. Springer, Heidelberg (2013)

21. Heras, J., Komendantskaya, E.: ML4PG in computer algebra verification. In:
Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS, vol. 7961, pp. 354–358. Springer, Heidelberg (2013)

22. Heras, J., Komendantskaya, E.: Statistical proof-patterns in Coq/SSReflect. CoRR,
abs/1301.6039 (2013)

23. Jamnik, M.: et al. Automatic learning of proof methods in proof planning. Logic
Journal of the IGPL 11(6), 647–673 (2003)

24. Jones, C., O’Hearn, P., Woodcock, J.: Verified software: a grand challenge. IEEE
Computer 39(4), 93–95 (2006)

25. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall (1990)

26. Jones, C.B., Freitas, L., Velykis, A.: Ours is to reason why. In: Liu, Z., Woodcock,
J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051,
pp. 227–243. Springer, Heidelberg (2013)

27. Jones, C.B., Shaw, R.C.F. (eds.): Case Studies in Systematic Software Develop-
ment. Prentice Hall International (1990)

28. Kaufmann, M., Manolios, P., Moore, J.S.: ACL2 Computer-Aided Reasoning: An
Approach. University of Austin Texas (2009)

29. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

30. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

31. Saaltink, M.: The Z/EVES system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

http://www.ai4fm.org/tr
http://www.ai4fm.org/tr

Proof Patterns for Formal Methods 295

32. Silva, P.F., Oliveira, J.N.: Galculator: functional prototype of a Galois-connection
based proof assistant. In: Antoy, S., Albert, E. (eds.) PPDP, pp. 44–55. ACM
(2008)

33. Velykis, A.: Inferring the proof process. In: Choppy, C., Delayahe, D., Kläı, K.
(eds.) FM 2012 Doctoral Symposium, Paris, France (August 2012)

34. Velykis, A.: Capturing & Inferring the Proof Process (under submission). PhD
thesis, School of Computing Science, Newcastle University (2014)

35. Wenzel, M.M.: Isabelle/Isar - a versatile environment for human-readable formal
proof documents. PhD thesis, Technische Universität München (2002)

36. Woodcock, J., Davies, J.: Using Z. Prentice Hall International (1996)
37. Woodcock, J., Freitas, L.: Linking VDM and Z. In: International Conference on

Engineering of Complex Computer Systems, Belfast, pp. 143–152 (2008)

Efficient Runtime Monitoring

with Metric Temporal Logic:
A Case Study in the Android Operating System

Hendra Gunadi1 and Alwen Tiu2

1 Research School of Computer Science,
The Australian National University, Australia

2 School of Computer Engineering, Nanyang Technological University, Singapore

Abstract. We present a design and an implementation of a security
policy specification language based on metric linear-time temporal logic
(MTL). MTL features temporal operators that are indexed by time in-
tervals, allowing one to specify timing-dependent security policies. The
design of the language is driven by the problem of runtime monitoring of
applications in mobile devices. A main case of the study is the privilege
escalation attack in the Android operating system, where an app gains
access to certain resource or functionalities that are not explicitly granted
to it by the user, through indirect control flow. To capture these attacks,
we extend MTL with recursive definitions, that are used to express call
chains betwen apps. We then show how the metric operators of MTL,
in combination with recursive definitions, can be used to specify policies
to detect privilege escalation, under various fine grained constraints. We
present a new algorithm, extending that of linear time temporal logic,
for monitoring safety policies written in our specification language. The
monitor does not need to store the entire history of events generated by
the apps, something that is crucial for practical implementations. We
modified the Android OS kernel to allow us to insert our generated mon-
itors modularly. We have tested the modified OS on an actual device,
and show that it is effective in detecting policy violations.

1 Introduction

Android is a popular mobile operating system (OS) that has been used in a range
of mobile devices such as smartphones and tablet computers. It uses Linux as
the kernel, which is extended with an application framework (middleware). Most
applications of Android are written to run on top of this middleware, and most
of Android-specific security mechanisms are enforced at this level.

Android treats each application as a distinct user with a unique user ID. At
the kernel level, access control is enforced via the standard Unix permission
mechanism based on the user id (and group id) of the app. At the middleware
level, each application is sandboxed, i.e., it is running in its own instance of
Dalvik virtual machine, and communication and sharing between apps are al-
lowed only through an inter-process communication (IPC) mechanism. Android
middleware provides a list of resources and services such as sending SMS, access

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 296–311, 2014.
� Springer International Publishing Switzerland 2014

Efficient Runtime Monitoring with Metric Temporal Logic 297

to contacts, or internet access. Android enforces access control to these services
via its permission mechanism: each service/resource is associated with a certain
unique permission tag, and each app must request permissions to the services
it needs at installation time. Everytime an app requests access to a specific ser-
vice/resource, Android runtime security monitor checks whether the app has the
required permission tags for that particular service/resource. A more detailed
discussion of Android security architecture can be found in [14].

One problem with Android security mechanism is the problem of privilege
escalation, that is, the possibility of an app to gain access to services or resources
that it does not have permissions to access. Obviously privilege escalation is a
common problem of every OS, e.g., when a kernel bug is exploited to gain root
access. However, in Android, privilege escalation is possible even when apps are
running in the confine of Android sandboxes [21,10,8]. There are two types of
attacks that can lead to privilege escalation [8]: the confused deputy attack and
the collusion attack. In the confused deputy attack, a legitimate app (the deputy)
has permissions to certain services, e.g., sending SMS, and exposes an interface
to this functionality without any guards. This interface can then be exploited
by a malicious app to send SMS, even though the malicious app does not have
the permission. Recent studies [21,17,9] show some system and consumer apps
expose critical functionalities that can be exploited to launch confused deputy
attacks. The collusion attack requires two or more malicious apps to collaborate.
We have yet to encounter such a malware, either in the Google Play market
or in the third party markets, although a proof-of-concept malware with such
properties, called SoundComber [24], has been constructed.

Several security extensions to Android have been proposed to deal with priv-
ilege escalation attacks [12,15,8]. Unlike these works, we aim at designing a
high-level policy language that is expressive enough to capture privilege esca-
lation attacks, but is also able to express more refined policies (see Section 4).
Moreover, we aim at designing a lightweight monitoring framework, where policy
specifications can be modified easily and enforced efficiently. Thus we aim at an
automated generation of security monitors that can efficiently enforce policies
written in our specification language.

On the specific problem of detecting privilege escalation, it is essentially a
problem of tracking (runtime) control flow, which is in general a difficult problem
and would require a certain amount of static analysis [11,13]. So we adopt a
‘lightweight’ heuristic to ascertain causal dependency between IPC calls: we
consider two successive calls, say from A to B, followed by a call from B to
C, as causally dependent if they happen within a certain reasonably short time
frame. This heuristic can be easily circumvented if B is a colluding app. So the
assumption that we make here is that B is honest, i.e., the confused deputy. For
example, a privilege escalation attack mentioned in [21] involves a malicious app,
with no permission to access internet, using the built-in browser (the deputy) to
communicate with a server. In our model, the actual connection (i.e., the network
socket) is treated as virtual app, so the browser here acts as a deputy that calls
(opens) the network socket on behalf of the malicious app. In such a scenario, it

298 H. Gunadi and A. Tiu

is reasonable to expect that the honest deputy would not intentionally delay the
opening of sockets. So our heuristic seems sensible in the presence of confused
deputy attacks, but can be of course circumvented by colluding apps (collusion
attacks). There is probably no general solution to detect collusion attacks that
can be effective in all cases, e.g., when covert channels are involved [24], so we
shall restrict to addressing the confused deputy attacks.

The core of our policy language, called RMTL, is essentially a past-fragment
of metric linear temporal logic (MTL) [1,26,2]. We consider only the fragment
of MTL with past-time operators, as this is sufficient for our purpose to enforce
history-sensitive access control. This also means that we can only enforce some,
but not all, safety properties [20], e.g., policies capturing obligations as in, e.g.,
[2], cannot be enforced in our framework. Temporal operators are useful in this
setting to enforce access control on apps based on histories of their executions;
see Section 4. Such a history-dependent policy cannot be expressed in the policy
languages used in [12,15,8].

MTL by itself is, however, insufficient to express transitive closures of rela-
tions, which is needed to specify IPC call chains between apps, among others.
To deal with this, we extend MTL with recursive definitions, e.g., one would be
able to write a definition such as:

trans(x, y) ∶= call(x, y) ∨ ∃z.⟐n trans(x, z) ∧ call(z, y), (1)

where call denotes the IPC event, and x, y, z denote the apps. This equation
defines trans as the transitive closure of call. The metric operator ⟐nφ means
intuitively φ holds within n time units in the past; we shall see a more precise def-
inition of the operators in Section 2. Readers familiar with modal μ-calculus [6]
will note that this is but a syntactic sugar for μ-expressions for (least) fixed
points.

To be practically enforceable in Android, RMTL monitoring algorithm must
satisfy an important constraint, i.e., the algorithm must be trace-length indepen-
dent [5]. This is because the number of events generated by Android can range in
the thousands per hour, so if the monitor must keep all the events generated by
Android, its performance will degrade significantly over time. Another practical
consideration also motivates a restriction to metric operators that we adopt in
RMTL. More specifically, MTL allows a metric version of the ‘since’ operator
of the form φ1 S[m,n) φ2, where [m, n) specifies a half-closed (discrete) time
interval from m to n. The monitoring algorithm for MTL in [26] works by first
expanding this formula into formulas of the form φ1 S[m′,n′) φ2 where [m′, n′)
is any subinterval of [m, n). A similar expansion is also used implicitly in mon-
itoring for first-order MTL in [2], i.e., in their incremental automatic structure
extension in their first-order logic encoding for the ‘since’ and ‘until’ operators.
In general, if we have k nested occurrences of metric operators, each with in-
terval [m, n), the number of formulas produced by this expansion is bounded

by O(((n−m)×(n−m+1)
2

)k). In Android, event timestamps are in milliseconds, so
this kind of expansion is not practically feasible. For example, suppose we have
a policy that monitors three successive IPC calls that happen within 10 seconds

Efficient Runtime Monitoring with Metric Temporal Logic 299

between successive calls. This requires two nested metric operators with intervals
[0,104) to specify. The above naive expansion would produce around 25 × 1014

formulas, and assuming the truth value of each formula is represented with 1 bit,
this would require more than 30 GB of storage to store all their truth values,
something which is beyond the capacity of most smartphones today.

An improvement to this exponential expansion mentioned above is proposed
in [3,23], where one keeps a sequence of timestamps for each metric temporal
operator occuring in the policy. This solution, although avoids the exponential
expansion, is strictly speaking not trace-length independent. This solution seems
optimal so it is hard to improve it without further restriction to the policy
language. We show that, if one restricts the intervals of metric operators to the
form [0, n), one only needs to keep one timestamp for each metric operator in
monitoring; see Section 3.

To summarise, our contributions are as follows:

1. In terms of results in runtime verification, our contribution is in the design
of a new logic-based policy language that extends MTL with recursive defi-
nitions, that avoids exponential expansion of metric operators, and for which
the policy enforcement is trace-length independent. In [5], a policy language
based on first-order LTL and a general monitoring algorithm are given, but
they do not allow recursive definitions nor metric operators. Such definitions
and operators could perhaps be encoded using first-order constructs (e.g.,
encoding recursion via Horn clauses, and define timestamps explicitly as a
predicate), but the resulting monitoring procedure is not guaranteed to be
trace-length independent.

2. In terms of the application domain, ours is the first implementation of a logic-
based runtime security monitor for Android that can enforce history-based
access control policies, including those that concern privilege escalations.
Our monitoring framework can express temporal and metric-based policies
not possible in existing works [12,15,8].

The rest of the paper is organized as follows. Section 2 introduces our policy
language RMTL. In Section 3, we present the monitoring algorithm for RMTL
and state its correctness. Some example policies are described in 4. Section 5
discusses our implementation of the monitors for RMTL, and the required mod-
ification of Android OS kernel to integrate our monitor into the OS. In Section 6
we conclude and discuss related and future works. Detailed proofs of the lemmas
and theorems are omitted here but can be found in [18]. Details of the imple-
mentation of the monitor generator and the binaries of the modified Android
OS are available online.1

2 The Policy Specification Language RMTL

Our policy specification language, which we call RMTL, is based on an extension
of metric linear-time temporal logic (MTL) [25]. The semantics of LTL [22] is

1 http://users.cecs.anu.edu.au/~hengunadi/LogicDroid.html.

http://users.cecs.anu.edu.au/~hengunadi

300 H. Gunadi and A. Tiu

defined in terms of models which are sequences of states (or worlds). In our case,
we restrict to finite sequences of states. MTL extends LTL models by adding
timestamps to each state, and adding temporal operators that incorporate tim-
ing constraints, e.g., MTL features temporal operators such as ◇[0,3)φ which
expresses that φ holds in some state in the future, and the timestamp of that
world is within 0 to 3 time units from the current timestamp. We restrict to
a model of MTL that uses discrete time, i.e., timestamps in this case are non-
negative integers. We shall also restrict to the past-time fragment of MTL.

We extend MTL with two additional features: first-order quantifiers and re-
cursive definitions. Our first-order language is a multi-sorted one. We consider
only two sorts, which we call prop (for ‘properties’) and app (for denoting appli-
cations). Sorts are ranged over by α. We first fix a signature Σ for our first-order
language, which is used to express terms and predicates of the language. We
consider only constant symbols and predicate symbols, but no function symbols.
We distinguish two types of predicate symbols: defined predicates and undefined
ones. The defined predicate symbols are used to write recursive definitions and
to each of such symbols we associate a formula as its definition.

Constant symbols are ranged over by a, b and c, undefined predicate symbols
are ranged over by p, q and r, and defined predicate symbols are ranged over
by P , Q and R. We assume an infinite set of sorted variables V , whose elements
are ranged over by x, y and z. We sometimes write xα to say that α is the sort
of variable x. A Σ-term is either a constant symbol c ∈ Σ or a variable x ∈ V .
We use s, t and u to range over terms. To each symbol in Σ we associate a
sort information. We shall write c ∶ α when c is a constant symbol of sort α. A
predicate symbol of arity n has sort of the form α1×⋯×αn, and such a predicate
can only be applied to terms of sorts α1, . . . , αn.

Constant symbols are used to express permissions in the Android OS, e.g.,
reading contacts, sending SMS, etc., and user ids of apps. Predicate symbols are
used to express events such as IPC calls between apps, and properties of an app,
such as whether it is a system app, a trusted app (as determined by the user). As
standard in first-order logic (see e.g. [16]), the semantics of terms and predicates
are given in terms of a first-order structure, i.e., a set Dα, called a domain, for
each sort α, and an interpretation function I assigning each constant symbol
c ∶ α ∈ Σ an element of cI ∈ Dα and each predicate symbol p ∶ α1 × ⋯ × αn ∈ Σ
an n-ary relation pI ⊆ Dα1 ×⋯×Dαn . We shall assume constant domains in our
model, i.e., every world has the same domain.

The formulas of RMTL is defined via the following grammar:

F ∶= � ∣ p(t1, . . . , tm) ∣ P (t1, . . . , tn) ∣ F ∨F ∣ ¬F ∣ ●F ∣ F S F ∣ ⧫F ∣ ⟐F ∣
●nF ∣ F Sn F ∣ ⧫nF ∣ ⟐nF ∣ ∃αx.F

where m and n are natural numbers. The existential quantifier is annotated with
a sort information α. For most of our examples and applications, we only quan-
tify over variables of sort app. The operators indexed by n are metric temporal
operators. The n ≥ 1 here denotes the interval [0, n), so these are special cases
of the more general MTL operators in [25], where intervals can take the form
[m, n), for n ≥ m ≥ 0. We use φ, ϕ and ψ to range over formulas. We assume

Efficient Runtime Monitoring with Metric Temporal Logic 301

that unary operators bind stronger than the binary operators, so ●φ ∨ ψ means
(●φ) ∨ ψ. We write φ(x1, . . . , xn) to denote a formula whose free variables are
among x1, . . . , xn. Given such a formula, we write φ(t1, . . . , tn) to denote the
formula obtained by replacing xi with ti for every i ∈ {1, . . . , n}.

To each defined predicate symbol P ∶ α1 × ⋯ × αn, we associate a formula
φP , which we call the definition of P . Notationally, we write P (x1, . . . , xn) ∶=
φp(x1, . . . , xn). We require that φP is guarded, i.e., every occurrence of any re-
cursive predicate Q in φP is prefixed by either ●, ●m, ⟐ or ⟐n. This guardedness
condition is important to guarantee termination of recursion in model checking.

Given the above logical operators, we can define additional operators via their
negation, e.g., ⊺ is defined as ¬�, φ∧ψ is defined as ¬(¬φ∨¬ψ), φ→ ψ is defined
as ¬φ ∨ψ, and ∀αx.φ is defined as ¬(∃αx.¬φ), etc.

Before proceeding to the semantics of RMTL, we first define a well-founded
ordering on formulae of RMTL, which will be used later.

Definition 1. We define a relation ≺S on the set RMTL formulae as the small-
est relation satisfying the following conditions:

1. For any formula φ of the form p(t⃗), �, ●ψ, ●nψ, ⟐ψ and ⟐nψ, there is no
φ′ such that φ′ ≺S φ.

2. For every recursive definition P (x⃗) ∶= φP (x⃗), we have φP (t⃗) ≺S P (t⃗) for
every terms t⃗.

3. ψ ≺S ψ ∨ψ′, ψ ≺S ψ′ ∨ψ, ψ ≺S ¬ψ, and ψ ≺S ∃x.ψ.
4. ψi ≺S ψ1 S ψ2, and ψi ≺S ψ1 Sn ψ2, for i ∈ {1,2}

We denote with ≺ the reflexive and transitive closure of ≺S .

Lemma 1. The relation ≺ on RMTL formulas is a well-founded partial order.

For our application, we shall restrict to finite domains. Moreover, we shall
restrict to an interpretation I which is injective, i.e., mapping every constant c
to a unique element of Dα. In effect we shall be working in the term model, so
elements of Dα are just constant symbols from Σ. So we shall use a constant
symbol, say c ∶ α, to mean both c ∈ Σ and cI ∈ Dα. With this fix interpretation,
the definition of the semantics (i.e., the satisfiability relation) can be much sim-
plified, e.g., we do not need to consider valuations of variables. A state is a set
of undefined atomic formulas of the form p(c1, . . . , cn). Given a sequence σ, we
write ∣σ∣ to denote its length, and we write σi to denote the i-th element of σ
when it is defined, i.e., when 1 ≤ i ≤ ∣σ∣. A model is a pair (π, τ) of a sequence
of states π and a sequence of timestamps, which are natural numbers, such that
∣π∣ = ∣τ ∣ and τi ≤ τj whenever i ≤ j.

Let < denote the total order on natural numbers. Then we can define a well-
order on pairs (i, φ) of natural numbers and formulas by taking the lexicographi-
cal ordering (<,≺). The satisfiability relation between a model ρ = (π, τ), a world
i ≥ 1 (which is a natural number) and a closed formula φ (i.e., φ contains no free
variables), written (ρ, i) ⊧ φ, is defined by induction on the pair (i, φ) as follows,
where we write (ρ, i) /⊧ φ when (ρ, i) ⊧ φ is false.

302 H. Gunadi and A. Tiu

– (ρ, i) /⊧ �
– (ρ, i) ⊧ ¬φ iff (ρ, i) /⊧ φ.
– (ρ, i) ⊧ p(c1, . . . , cn) iff p(c1, . . . , cn) ∈ πi.
– (ρ, i) ⊧ P (c1, . . . , cn) iff (ρ, i) ⊧ φ(c1, . . . , cn) where P (x⃗) ∶= φ(x⃗).
– (ρ, i) ⊧ φ ∨ ψ iff (ρ, i) ⊧ φ or (ρ, i) ⊧ ψ.
– (ρ, i) ⊧ ●φ iff i > 1 and (ρ, i − 1) ⊧ φ.
– (ρ, i) ⊧ ⧫φ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ.
– (ρ, i) ⊧ ⟐φ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ.
– (ρ, i) ⊧ φ1 S φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2 and (ρ, k) ⊧ φ1 for

every k s.t. j < k ≤ i.
– (ρ, i) ⊧ ●nφ iff i > 1, (ρ, i − 1) ⊧ φ and τi − τi−1 < n.
– (ρ, i) ⊧ ⧫nφ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ and τi − τj < n.
– (ρ, i) ⊧ ⟐nφ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ and τi − τj < n.
– (ρ, i) ⊧ φ1 Sn φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2, (ρ, k) ⊧ φ1 for

every k s.t. j < k ≤ i, and τi − τj < n.
– (ρ, i) ⊧ ∃αx.φ(x) iff there exists c ∈ Dα s.t. (ρ, i) ⊧ φ(c).

Note that due to the guardedness condition in recursive definitions, our semantics
for recursive predicates is much simpler than the usual definition as in μ-calculus,
which typically involves the construction of a (semantic) fixed point operator.
Note also that some operators are redundant, e.g., ⧫φ can be defined as ⊺ S φ,
and ⟐φ can be defined as ●⧫φ. This holds for some metric operators, e.g., ⧫nφ
and ⟐nφ can be defined as, respectively, ⊺ Sn φ and

⟐nφ = ⋁
i+j=n

●i⧫jφ (2)

This operator will be used to specify an active call chain, as we shall see later,
so it is convenient to include it in our policy language.

In the next section, we shall assume that ⧫,⟐, ⧫n as derived connectives. Since
we consider only finite domains, ∃αx.φ(x) can be reduced to a big disjunction

⋁c∈Dα
φ(c), so we shall not treat ∃-quantifier explicitly. This can be problematic

if the domain of quantification is big, as it suffers the same kind of exponential
explosion as with the expansion of metric operators in MTL [26]. We shall defer
the explicit treatment of quantifiers to future work.

3 Trace-Length Independent Monitoring

The problem of monitoring is essentially a problem of model checking, i.e., to
decide whether (ρ, i) ⊧ φ, for any given ρ = (π, τ), i and φ. In the context of
Android runtime monitoring, a state in π can be any events of interest that one
would like to capture, e.g., the IPC call events, queries related to location infor-
mation or contacts, etc. To simplify discussions, and because our main interest
is in privilege escalation through IPC, the only type of event we consider in π is
the IPC event, which we model with the predicate call ∶ app × app.

Given a policy specification φ, a naive monitoring algorithm that enforces this
policy would store the entire event history π and every time a new event arrives at

Efficient Runtime Monitoring with Metric Temporal Logic 303

time t, it would check (([π; e], [τ ; t]), ∣ρ∣ + 1) ⊧ φ. This is easily shown decidable,
but is of course rather inefficient. In general, the model checking problem for
RMTL (with finite domains) can be shown PSPACE hard following the same
argument as in [4]. A design criteria of RMTL is that enforcement of policies
does not depend on the length of history of events, i.e., at any time the monitor
only needs to keep track of a fixed number of states. Following [5], we call a
monitoring algorithm that satisfies this property trace-length independent.

For PTLTL, trace-length independent monitoring algorithm exists, e.g., the
algorithm by Havelund and Rosu [19], which depends only on two states in a
history. That is, satisfiability of (ρ, i+1) ⊧ φ is a boolean function of satisfiability
of (ρ, i+1) ⊧ ψ, for every strict subformula ψ of φ, and satisfiability of (ρ, i) ⊧ ψ′,
for every subformula ψ′ of φ. This works for PTLTL because the semantics
of temporal operators in PTLTL can be expressed in a recursive form, e.g.,
the semantics of S can be equally expressed as [19]: (ρ, i + 1) ⊧ φ1 S φ2 iff
(ρ, i + 1) ⊧ φ2, or (ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S φ2. This is not the case for
MTL. For example, satisfiability of the unrestricted ‘since’ operator S[m,n) can
be equivalently expressed as:

(ρ, i + 1) ⊧ φ1 S[m,n) φ2 iff m = 0, n > 1, and (ρ, i + 1) ⊧ φ2, or
(ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S[m′,n′) φ2

(3)

where m′ = min(0, m − τi+1 + τi) and n′ = min(0, n − τi+1 + τi). Since τi+1 can
vary, the value of m′ and n′ can vary, depending on the history ρ. We avoid
the expansion of metric operators in monitoring by restricting the intervals in
the metric operators to the form [0, n). We show that clause (3) can be brought
back to a purely recursive form. The key to this is the following lemma:

Lemma 2 (Minimality). If (ρ, i) ⊧ φ1 Sn φ2 ((ρ, i) ⊧ ⟐nφ) then there exists
an m ≤ n such that (ρ, i) ⊧ φ1 Sm φ2 (resp. (ρ, i) ⊧ ⟐mφ) and such that for
every k such that 0 < k <m, we have (ρ, i) /⊧ φ1 Sk φ2 (resp., (ρ, i) /⊧ ⟐kφ).

Given ρ, i and φ, we define a function m as follows:

m(ρ, i, φ) = {
m, if φ is either φ1 Sn φ2 or ⟐nφ′ and (ρ, i) ⊧ φ,
0, otherwise.

where m is as given in Lemma 2; we shall see how its value is calculated in
Algorithm 3. The following theorem follows from Lemma 2.

Theorem 1 (Recursive forms). For every model ρ, every n ≥ 1, φ, φ1 and
φ2, and every 1 < i ≤ ∣ρ∣, the following hold:

1. (ρ, i) ⊧ φ1 Sn φ2 iff (ρ, i) ⊧ φ2, or (ρ, i) ⊧ φ1 and (ρ, i − 1) ⊧ φ1 Sn φ2 and
n − (τi − τi−1) ≥ m(ρ, i − 1, φ1 Sn φ2).

2. (ρ, i) ⊧ ⟐nφ iff (ρ, i − 1) ⊧ φ and τi − τi−1 < n, or (ρ, i − 1) ⊧ ⟐nφ and
n − (τi − τi−1) ≥ m(ρ, i − 1,⟐nφ).

Given Theorem 1, the monitoring algorithm for PTLTL in [19] can be adapted,
but with an added data structure to keep track of the function m. In the following,

304 H. Gunadi and A. Tiu

Algorithm 1. Monitor(ρ, i, φ)

Init(ρ,φ, prev, cur,mprev,mcur)
for j = 1 to i do

Iter(ρ, j,φ, prev, cur,mprev,mcur);
end for
return cur[idx(φ)];

Algorithm 2. Init(ρ, φ, prev, cur, mprev, mcur)

for k = 1, . . . ,m do
prev[k] ∶= false, mprev[k] ∶= 0 and mcur[k] ∶= 0;

end for
for k = 1, . . . ,m do

switch (φk = �)
case (�): cur[k] ∶= false;
case (p(c⃗)): cur[k] ∶= p(c⃗) ∈ π1;
case (P (c⃗)): cur[k] ∶= cur[idx(φP (c⃗))]; {Suppose P (x⃗) ∶= φP (x⃗).}
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (ψ1 ∨ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= false;
case (⟐ψ): cur[k] ∶= false;
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)];
case (●nψ): cur[k] ∶= false;
case (⟐nψ): cur[k] ∶= false;mcur[k] ∶= 0;
case (φk = ψ1 Sn ψ2):

cur[k] ∶= cur[idx(ψ2)];
if cur[k] = true then mcur[k] ∶= 1;
else mcur[k] ∶= 0;
end if

end switch
end for
return cur[idx(φ)];

given a formula φ, we assume that ∃, ⧫ and ⟐ have been replaced with its
equivalent form as mentioned in Section 2.

Given a formula φ, let Sub(φ) be the set of subformulas of φ. We define a
closure set S∗(φ) of φ as follows: Let Sub0(φ) = Sub(φ), and let

Subn+1(φ) = Subn(φ) ∪ {Sub(φP (c⃗)) ∣ P (c⃗) ∈ Subn(φ), and P (x⃗) ∶= φP (x⃗)}

and define Sub∗(φ) = ⋃n≥0 Subn(φ). Since Dα is finite, Sub∗(φ) is finite, al-
though its size is exponential in the arities of recursive predicates. For our specific
applications, the predicates used in our sample policies have at most arity of two
(for tracking transitive calls), so this is still tractable. In future work, we plan
to investigate ways of avoiding this explicit expansion of recursive predicates.

We now describe how monitoring can be done for φ, given ρ and 1 ≤ i ≤ ∣ρ∣.
We assume implicitly a preprocessing step where we compute Sub∗(φ); we do

Efficient Runtime Monitoring with Metric Temporal Logic 305

Algorithm 3. Iter(ρ, i, φ, prev, cur, mprev, mcur)

Require: i > 1.
prev ∶= cur; mprev ∶=mcur;
for k = 1 to m do mcur[k] ∶= 0; end for
for k = 1 to m do

switch (φk)
case (�): cur[k] ∶= false;
case (p(c⃗)): cur[k] ∶= p(c⃗) ∈ πi;
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (P (c⃗)): cur[k] ∶= cur[idx(φP (c⃗))]; {Suppose P (x⃗) ∶= φP (x⃗).}
case (ψ1 ∨ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= prev[idx(ψ)];
case (⟐ψ): curr[k] ∶= prev[idx(ψ)] ∨ prev[⟐ψ];
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)] ∨ (cur[idx(ψ1)] ∧ prev[idx(ψ2)]);
case (●nψ): cur[k] ∶= prev[ψ] ∧ (τi − τi−1 < n);
case (⟐nψ):

l ∶= prev[idx(ψ)] ∧ (τi − τi−1 < n);
r ∶= prev[idx(⟐nψ)] ∧ (n − (τi − τi−1) ≥mprev[k]));
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= τi − τi−1 + 1;
else if r then mcur[k] ∶=mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

case (ψ1 Sn ψ2):
l ∶= cur[idx(ψ2)];
r ∶= cur[idx(ψ1)] ∧ prev[k] ∧ (n − (τi − τi−1) ≥mprev[k]);
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= 1;
else if r then mcur[k] ∶=mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

end switch
end for
return cur[idx(φ)];

not describe this step here but it is quite straightforward. Let φ1, φ2, . . . , φm be
an enumeration of Sub∗(φ) respecting the partial order ≺, i.e., if φi ≺ φj then
i ≤ j. Then we can assign to each ψ ∈ Sub∗(φ) an index i, s.t., ψ = φi in this
enumeration. We refer to this index as idx(ψ). We maintain two boolean ar-
rays prev[1, . . . , m] and cur[1, . . . , m]. The intention is that given ρ and i > 1,
the value of prev[k] corresponds to the truth value of the judgment (ρ, i − 1) ⊧
φk and the truth value of cur[k] corresponds to the truth value of the judg-
ment (ρ, i) ⊧ φk. We also maintain two integer arrays mprev[1, . . . , m] and
mcur[1, . . . , m] to store the value of the function m. The value of mprev[k]
corresponds to m(ρ, i−1, φk), and mcur[k] corresponds to m(ρ, i, φk). Note that
this preprocessing step only needs to be done once, i.e., when generating the

306 H. Gunadi and A. Tiu

monitor codes for a particular policy, which is done offline, prior to inserting the
monitor into the operating system kernel.

The main monitoring algorithm is divided into two subprocedures: the initial-
isation procedure (Algorithm 2) and the iterative procedure (Algorithm 3). The
monitoring procedure (Algorithm 1) is then a simple combination of these two.
We overload some logical symbols to denote operators on boolean values. In the
actual implementation, we do not actually implement the loop in Algorithm 1;
rather it is implemented as an event-triggered procedure, to process each event
as they arrive using Iter.

Theorem 2. (ρ, i) ⊧ φ iff Monitor(ρ, i, φ) returns true.

The Iter function only depends on two worlds: ρi and ρi−1, so the algorithm
is trace-length independent. In principle there is no upperbound to its space
complexity, as the timestamp τi can grow arbitrarily large, as is the case in [3].
Practically, however, the timestamps in Android are stored in a fixed size data
structure, so in such a case, when the policy is fixed, the space complexity is
constant (i.e., independent of the length of history ρ).

4 Examples

We provide some basic policies as an example of how we can use this logic to
specify security policies. From now on, we shall only quantify over the domain
app, so in the following we shall omit the sort annotation in the existential
quantifier. The predicate trans is the recursive predicate defined in Equation (1)
in the introduction. The constant sink denotes a service or resource that an
unprivileged application tries to access via privilege escalation e.g. send SMS,
or access to internet. The constant contact denotes the Contact provider app
in Android. We also assume the following “static” predicates (i.e., their truth
values do not vary over time):

– system(x): x is a system app or process. By system app here we mean any
app that is provided and certified by google (such as Google Maps, Google
Play, etc) or an app that comes preinstalled to the phone.

– hasP ermissionT oSink(y): y has permission to access the sink.
– trusted(x): x is an app that the user trusts. This is not a feature of Android,

rather, it is a specific feature of our implementation. We build into our
implementation a ‘trust’ management app to allow the user a limited control
over apps that he/she trusts.

The following policies refer to access patterns that are forbidden. So given a
policy φ, the monitor at each state i make sure that (ρ, i) /⊧ φ holds. Assuming
that (ρ, i) /⊧ φ, where i = ∣ρ∣, holds, then whenever a new event (i.e., the IPC call)
e is registered at time t, the monitor checks that (([π; e], [τ ; t]), i+ 1) /⊧ φ holds.
If it does, then the call is allowed to proceed. Otherwise, it will be terminated.

Efficient Runtime Monitoring with Metric Temporal Logic 307

Table 1. Performance Table (ms)

Policy Uncached Cached

1 76.64 14.36
2 93.65 42.36
3 94.68 41.83
4 92.43 42.75

No Monitor 75.8 16.9

Table 2. Memory Overhead Table

Policy Size(kB) Overhead(%)

1 372 0.05
2 916 0.11
3 916 0.11
4 916 0.11

Note: on emulator with 49 apps and
overall memory of around 800 mB

1. ∃x.(call(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).
This is a simple policy where we block a direct call from any untrusted
application to the sink. This policy can serve as a privilege manager where we
dynamically revoke permission for application to access the sink regardless
of the static permission it asked during installation.

2. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬hasP ermissionT oSink(x)).
This policy says that transitive calls to a sink from non-system apps are
forbidden, unless the source of the calls already has permission to the sink.
This is then a simple privilege escalation detection (for non-system apps).

3. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).
This is further refinement to the policy in that we also give the user privilege
to decide for themselves dynamically whether or not to trust an application.
Untrusted apps can not make transitive call to the sink, but trusted apps
are allowed, regardless of their permissions.

4. ∃x(trans(x, internet) ∧ ¬system(x) ∧ ¬trusted(x) ∧⟐(call(x, contact))).
This policy allows privilege escalation by non-trusted apps as long as there
is no potential for data leakage through the sink. That is, as soon as a non-
system and untrusted app accesses contact, it will be barred from accessing
the internet. Note that the use of non-metric operator ⟐ ensures that the
information that a particular app has accessed contact is persistent. This
policy resembles the well-known Chinese Wall policy [7] that is often used to
manage conflict of interests. Here accessing contacts and connecting to the
internet are considered as different conflict-of-interests classes.

5 Implementation

We have implemented the monitoring algorithm presented in the previous sec-
tion in Android 4.1. Some modifications to the application framework and the
underlying Linux kernel are neccessary to ensure our monitor can effectively
monitor and stop unwanted behaviours. We have tested our implementation in
both Android emulator and an actual device (Samsung Galaxy Nexus phone).

Our implementation consists of two parts: the codes that generate a monitor
given a policy specification, and the modifications of Android framework and its
Linux kernel to hook our monitor and to intercept IPCs and access to Android
resources. The modification on Android framework mainly revolves around Ac-
tivity Manager Service, a system component which deals with processing intent.

308 H. Gunadi and A. Tiu

(a) (b)

Fig. 1. Timing of Calls

We add a hook in the framework to redirect permission checking (either starting
activity, service, or broadcasting intent) to pass through our monitor first before
going to the usual Android permission checking. The modification to the kernel
consists mainly of additional system calls to interact with the framework, and
a monitor stub which will be activated when the monitor module is loaded. To
improve runtime performance, the monitor generation is done outside Android;
it produces C codes that are then compiled into a kernel module, and inserted
into Android boot image.

The monitor generator takes an input policy, encoded in an XML format
extending that of RuleML. The monitor generator works by following the logic
of the monitoring algorithm presented in Section 3. It takes a policy formula φ,
and generates the required data structures and determines an ordering between
elements of Sub∗(φ) as described earlier, and produces the codes illustrated in
Algorithm 2, 3 and 1. The main body of our monitor lies in the Linux kernel space
as a kernel module. The reason for this is that there are some cases where Android
leaves the permission checking to the Linux kernel layer e.g., for opening network
socket. However, to monitor the IPC events between Android components and
apps, we need to place a hook inside the application framework. The IPC between
apps is done through passing a data structure called Intent, which gets broken
down into parcels before they are passed down to the kernel level to be delivered.
So intercepting these parcels and reconstructing the original Intent object in the
kernel space would be more difficult and error prone. The events generated by
apps or components will be passed down to the monitor in the kernel, along with
the application’s user id. If the event is a call to the sink, then depending on
the policy that is implemented in the monitor, it will decide to whether block
or allow the call to proceed. We do this through our custom additional system
calls to the Linux kernel which go to this monitor.

Our implementation places hooks in four services, namely accessing inter-
net (opening network sockets), sending SMS, accessing location, and accessing
contact database. For each of this sink, we add a virtual UID in the monitor
and treat it as a component of Android. We currently track only IPC calls
through the Intent passing mechanism. This is obviously not enough to detect
all possible communications between apps, e.g., those that are done through

Efficient Runtime Monitoring with Metric Temporal Logic 309

file systems, or side channels, such as vibration setting (e.g., as implemented in
SoundComber [24]), so our implementation is currently more of a proof of con-
cept. In the case of SoundComber, our monitor can actually intercepts the calls
between colluding apps, due to the fact that the sender app broadcasts an intent
to signal receiver app to start listenting for messages from the covert channels.

We have implemented some apps to test policies we mentioned in Section 4.
In Table 1 and Figure 1, we provide some measurement of the timing of the
calls between applications. The policy numbers in Table 1 refer to the policies
in Section 4. To measure the average time for each IPC call, we construct a
chain of ten apps, making successive calls between them, and measure the time
needed for one end to reach the other. We measure two different average timings
in miliseconds (ms) for different scenarios, based on whether the apps are in the
background cache (i.e., suspended) or not. We also measure the time spent on
the monitor actually processing the event, which is around 1 ms for policy 1,
and around 10 ms for the other three policies. This shows that the time spent
in processing the event is quite low, but more overhead comes from the space
required to process the event (there is a big jump in overall timing from simple
rules with at most 2 free variables to the one with 3 free variables). Figure 1
shows that the timing of calls over time for each policy are roughly the same.
This backs our claim that even though our monitor implements history-based
access control, its performance does not depend on the size of the history. Table 2
shows the memory footprints of the security monitors. The first column in the
table shows the actual size of the memory required by each monitor, and the
second column shows the percentage of the memory of each monitor relative
to the overall available memory. As can be seen from the table, the memory
overhead of the monitors is negligible.

6 Conclusion, Related and Future Work

We have shown a policy language design based on MTL that can effectively de-
scribe various scenarios of privilege escalation in Android. Moreover, any policy
written in our language can be effectively enforced. The key to the latter is the
fact that our enforcement procedure is trace-length independent. We have also
given a proof-of-concept implementation on actual Android devices and show
that our implementation can effectively enforce RMTL policies.

We have already discussed related work in runtime monitoring based on LTL
in the introduction. We now discuss briefly related work in Android security.
There is a large body of works in this area, more than what can be reasonably
surveyed here, so we shall focus on the most relevant ones to our work, i.e., those
that deal with privilege escalation. For a more comprehensive survey on other
security extensions or analysis, the interested reader can consult [8]. QUIRE [12]
is an application centric approach to privilege escalation, done by tagging the
intent objects with the caller’s UID. Thus, the recipient application can check
the permission of the source of the call chain. IPC Inspection [15] is another
application centric solution that works by reducing the privilege of the recipient

310 H. Gunadi and A. Tiu

application when it receives a communication from a less privileged application.
XManDroid [8] is a system centric solution, just like ours. Its security monitor
maintains a call graph between apps. It is the closest to our solution, except that
we are using temporal logic to specify a policy, and our policy can be modified
modularly. This way, a system administrator can have flexibility in designing a
policy that is suited to the system in question. Moreover, should an attacker find
a way to circumvent the current monitor, we can easily modify the monitor to
enforce a different policy that addresses the security hole.

Our policy language is also more expressive as we can specify both temporal
and metric properties. As a result, XManDroid will have better performance in
general (exploiting the persistent link in the graph by using cache), yet there
are policies that our monitor can enforce but XManDroid cannot. For exam-
ple, consider Policy 4 in Section 4. XManDroid can only express whether an
application has the permission to access contact, but not the fact that contact
was accessed in the past. So in this case XManDroid would forbid an app with
permission to access contact to connect to the internet, whereas in our case, we
prevent the connection to the internet only after contact was actually accessed.
TaintDroid [13] is another system-centric solution, but it is designed to track
data flow, rather than control flow, via taint analysis, so privilege escalation can
be inferred from leakage of data.

We currently do not deal with quantifiers directly in our algorithm. Such
quantifiers are expanded into purely propositional connectives (when the do-
main is finite), which is exponential in the number of variables in the policy.
As an immediate future work, we plan to investigate whether techniques using
spawning automata [5] can be adapted to our setting to allow a “lazy” expansion
of quantifiers as needed. It is not possible to design trace-length-independent
monitoring algorithms in the unrestricted first-order LTL [5], so the challenge
here is to find a suitable restriction that can be enforced efficiently.

Acknowledgment. This work is partly supported by the Australian Research
Council Discovery Grant DP110103173.

References

1. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. In:
LICS, pp. 390–401. IEEE Computer Society (1990)

2. Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: FSTTCS. LIPIcs, vol. 2, pp. 49–60, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2008)

3. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012)

4. Bauer, A., Goré, R., Tiu, A.: A first-order policy language for history-based transac-
tion monitoring. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684,
pp. 96–111. Springer, Heidelberg (2009)

Efficient Runtime Monitoring with Metric Temporal Logic 311

5. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

6. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, pp.
721–756. Elsevier (2007)

7. Brewer, D.F.C., Nash, M.J.: The Chinese wall security policy. In: IEEE Symposium
on Security and Privacy. IEEE (1989)

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.: To-
wards taming privilege-escalation attacks on android. In: NDSS 2012 (2012)

9. Chan, P.P.F., Hui, L.C.K., Yiu, S.-M.: Droidchecker: analyzing android applica-
tions for capability leak. In: WISEC, pp. 125–136. ACM (2012)

10. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

11. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

12. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight
provenance for smartphone operating systems. In: 20th USENIX Security Sympo-
sium (2011)

13. Enck, W., Gillbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI (2010)

14. Enck, W., Ongtang, M., McDaniel, P.D.: Understanding android security. IEEE
Security & Privacy 7(1), 50–57 (2009)

15. Felt, A.P., Wang, H., Moschuk, A., Hanna, S., Chin, E.: Permission re-delegation:
Attacks and defenses. In: 20th USENIX Security Symposium (2011)

16. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)
17. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks

in stock android smartphones. In: NDSS 2012 (2012)
18. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A

case study in the android operating system. CoRR, abs/1311.2362 (2013)
19. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,

J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

20. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

21. Lineberry, A., Richardson, D.L., Wyatt, T.: These aren’t the permissions you’re
looking for. In: DefCon 18 (2010)

22. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

23. Reinbacher, T., Függer, M., Brauer, J.: Real-time runtime verification on chip. In:
Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 110–125. Springer,
Heidelberg (2013)

24. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In: 18th An-
nual Network and Distributed System Security Symposium, NDSS (2011)

25. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Proc. of RV 2004 (2004)

26. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
Electr. Notes Theor. Comput. Sci. 113, 145–162 (2005)

ISCASMC: A Web-Based Probabilistic Model Checker�

Ernst Moritz Hahn1, Yi Li2, Sven Schewe3, Andrea Turrini1, and Lijun Zhang1,��

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, China

2 LMAM & Department of Information Science,
School of Math. Sciences, Peking University, China

3 Department of Computer Science, University of Liverpool, UK

Abstract. We introduce the web-based model checker ISCASMC for probabilis-
tic systems (see http://iscasmc.ios.ac.cn/IscasMC). This Java ap-
plication offers an easy-to-use web interface for the evaluation of Markov chains
and decision processes against PCTL and PCTL∗ specifications. Compared to
PRISM or MRMC, ISCASMC is particularly efficient in evaluating the proba-
bilities of LTL properties.

1 Introduction

Markov decision processes (MDP) are widely used to model and analyse systems that
exhibit both probabilistic and nondeterministic choices. To reason about such systems,
one often specifies properties in the popular probabilistic temporal logics PCTL, PLTL,
or PCTL∗ [2]. While PCTL∗ is more expressive, it suffers from a higher complexity
compared to PCTL [4]: model checking MDPs against PCTL specifications is linear,
but against PCTL∗ specifications is 2EXPTIME complete, and the doubly exponential
cost is usually incurred through the translation of the LTL fragments to deterministic au-
tomata. Several probabilistic model checkers have been developed for verifying Markov
chains and MDPs. The state-of-the-art probabilistic model checker PRISM [10] sup-
ports both PCTL and PCTL∗. Another model checker MRMC [8] is predominantly
used for model checking PCTL properties with reward extensions. On the other side,
LIQUOR [3] is a probabilistic model checker for PLTL properties.

In this paper, we present a new model checker for probabilistic models, called IS-
CASMC. ISCASMC supports Markov chains and MDPs, and properties specified in
PCTL∗. It implements the efficient heuristics in [7] particularly tuned to handle linear
time properties. ISCASMC is written in Java, while including a few off-the-shelf com-
ponents like SPOT [5] on the server side. The web interface on the client side is written
in HTML and JavaScript, such that ISCASMC enjoys full portability: it can be run from
any machine with internet access and a browser, be it a laptop or a mobile phone.

� Supported by the National Natural Science Foundation of China (NSFC) under grant No.
61361136002, 61350110518, 61202069, the Chinese Academy of Sciences Fellowship for
International Young Scientists (Grant No. 2013Y1GB0006), Research Fund for the Doctoral
Program of Higher Education of China (Grant No. 20120001120103), and Engineering and
Physical Science Research Council (EPSRC) through the grant EP/H046623/1.

�� Corresponding author.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 312–317, 2014.
c© Springer International Publishing Switzerland 2014

http://iscasmc.ios.ac.cn/IscasMC

ISCASMC: A Web-Based Probabilistic Model Checker 313

engine
main

DBMS
module

result
collector

thread
data
store

w1 thread
. . .

wn thread

work task

result result

task completed

thread limit

backend

database engine SPOT

user

DBMS
module

messages

tasks

model

editor

property

options

frontend / web interface

parser model

options product

engine
model checker

high-level
description

pa
rs

er
/o

pt
io

ns
in

te
rf

ac
e

formula

au
to

m
at

on

result

Fig. 1. Architecture of ISCASMC

In the web interface, one can easily import or create examples, analyse it and track
the results. The computation is performed on the server, thus making the evaluation of
Markov chains and MDPs very easy and readily available. The main features of the tool
include modularity, support of linear time properties, and specification of linear time
properties using pattern formulas.

Outline. We describe the architecture and usage of the tool in Section 2. The main
features of ISCASMC are given in Section 3, and Section 4 concludes the paper.

2 Architecture and Usage

The architecture and components of ISCASMC are depicted in Figure 1. It has three
main components: the frontend web interface, the backend for handling requests from
the frontend, and the model checker engine. A database engine is used to store infor-
mation. We describe these components in detail.

2.1 The Frontend Web Interface

The frontend allows for logging into the system, either as a guest or as a registered user.
Guest users can experiment with most of the features of the tool, but they have limited
resources, for instance small timeout values.

314 E.M. Hahn et al.

After logging into the system, it offers several views, including:

– Message Centre. The message centre provides the user recent news. Particularly,
one can post messages, send models to other users as well as receive models shared
by other users.

– Model Centre. The model management centre lists available models, their type (cur-
rently only PRISM models are supported), comments, options, last updated snap-
shot and all available operations for the model. From the menu above one can also
upload or create new models. The properties are associated to models. For each
model, one can create and analyse these properties. Currently, ISCASMC supports
Markov chains and MDPs and properties in PCTL∗. Once one clicks on one of the
models in the list, one enters the editing page.
In the editing page, models can be edited, and properties can be added, modified,
or removed. A model may have more than one associated properties.

– Task Centre. In the model centre, the user can choose to check selected properties
or all properties. This is referred to as a task. Note that a task is created as a snap-
shot of the current model, (selected) properties and options. This allows the user to
modify the model/properties and submit several tasks without having to wait for the
termination of the previous submitted tasks. The task, together with the correspond-
ing options, will be sent to the server side to be handled. In the task centre, one can
find a list of all submitted tasks from the user. For each task, one can track the cur-
rent status, find the final results once available, see the complete log generated by
the model checker, or remove the task.

– Option Centre. From the option centre the user can set the user level options. More-
over, for each model to be analysed, one may modify certain options and get model
level options. The model level options have higher priority and will overwrite user
level options.

– Example Centre. From the example centre, the user can directly import several
examples together with associated properties into her own account.

The Interface. While the frontend does not play a role in the evaluation of the model,
it includes a fast syntax check that allows for checking the syntactical correctness of
the model while interacting with the editor. As shown in Figure 1, the parser and the
options interface are shared between the model checker and the frontend.

The part available to the frontend is a stand-alone program (on the server side)
that makes use of only a small part of the classes in the model checker engine. This
lightweight version is only used for checking the syntactical correctness of models from
the client side, while the full version on the model checker site also constructs the re-
spective models and automata. These syntactical correctness checks are simple and can
thus be done efficiently on-demand, bypassing the scheduling queue.

2.2 The Database

The database, powered by MySQLTM, contains all information needed to elaborate the
models: besides the user details, it stores the models and the relative properties
defined by the user, as well as the tasks the user creates by requiring an operation on

ISCASMC: A Web-Based Probabilistic Model Checker 315

the model. Each task is created by the frontend DBMS module as snapshot of the model
and the corresponding properties and options, such that it is not affected by subsequent
changes. Once a task is completed, it is updated by the backend DBMS module with the
evaluation of the properties (or with an error message), according to the model checker
outcome. The tasks are kept until the user explicitly removes them via the task centre.

2.3 The Backend

The main job of the backend is to poll tasks from the database and evaluate them. It
currently adopts a FIFO approach to retrieve the tasks from the DBMS module. These
tasks are then sent to several instances of ISCASMC that run in parallel in independent
worker threads w1, . . . , wn. Once a worker wi completes her task, she sends the outcome
to the data store, whose main jobs are to keep track of busy workers and to collect the
results. Since the evaluation of a task may take some time, the worker periodically sends
status updates to the data store. The result collector retrieves the available results from
the data store and forwards them to the database via the backend DBMS module.

2.4 The Model Checker Engine

The model checker is the working horse of the system. Each work thread will parse and
translate the model and the specification it is going to be checked against. For com-
plex LTL subformulas (that is, for each linear part ϕ of PCTL∗ outside of the simple
PCTL operators), we first use SPOT [5] to generate the generalised Büchi automaton.
Unless this is already deterministic, we then use the layered approach from [7], which
uses first subset constructions (with an over- and underapproximation of the acceptance
condition), and subsequently refines them (where necessary) first to a breakpoint con-
struction (again with an over- and underapproximation of the acceptance condition) and
then to the deterministic Rabin automata [11]. The product of the automaton and model
is an MDP equipped with accepting conditions. These accepting conditions are used to
identify accepting states in the product, after which the problem reduces to a proba-
bilistic reachability problem for MDPs. The reachability problem is a central problem
in probabilistic model checking, and is well studied, see [1] for a survey. One can apply
value iteration or policy iteration to solve it. Currently, ISCASMC uses a value iteration
approach based on Gauss-Seidel or Jacobi method. After the evaluation, it returns the
results to the backend.

3 Main Features

ISCASMC supports models and properties described in the PRISM input language. A
nice feature of ISCASMC is that it provides a plain web interface that allows users
to easily try the probabilistic model checker. Since the computation is performed on
the server side, the user can conduct her experiments using computers, but also smart
phones and any device with a browser and internet access. Besides its performance, the
main features of ISCASMC are modularity and the handling of linear time properties.

316 E.M. Hahn et al.

Table 1. Quasi birth-death process. The example and properties can be loaded on the webpage.

ISCASMC PRISM
property time (s) prod. states autom. states type time (s) prod. states autom. states

propU 1 805 2 subset 24 808 12
propGF∧ 1 825 6 breakp. 365 825 77775
propGF∨ 1 1634 8 rabin 34 823 4110

– Modularity. The three main components of ISCASMC are essentially independent
of each other. This allows for distributing the computation, i.e., it allows for cen-
tring the power-hungry evaluation on powerful servers, while using simple ma-
chines like smartphones for the initiation and control of the experiments.

– Pattern formulas. ISCASMC provides pattern formula specifications. This allows
one to easily add and check PLTL properties based on the absence and response
LTL patterns proposed in [6] by simply choosing basic events among existing la-
bels in the model or by writing her own events. All occurrences of the same event
identifier are automatically replaced by actual content.

– Error tracking. ISCASMC being a web-based tool, we are able to keep track of
all internal assertion failures and runtime errors which occur during any model
checking run. This way, we are able to reproduce the according bug and thus can
quickly fix the problem.

– Comparison Platform. ISCASMC can be easily extended for providing a comparing
platform for off-the-shelf probabilistic model checkers. We shall leave it as our
future work.

– Linear time properties. Comparing to existing model checkers such as PRISM,
MRMC, and LIQUOR, ISCASMC builds on efficient heuristics in [7] tailored to
linear time properties.

Example 1. In Table 1, we consider a variant of the quasi birth-death process described
in [9] together with some example properties. For each of the properties, we compare
performance results of ISCASMC and PRISM. For both tools we provide the total run-
time in seconds, the number of states of the property automaton constructed for the
analysis, and the size of the product of this automaton with the model. For ISCASMC,
we also state with which method from [7] (subset, breakpoint, or Rabin construction)
the property can be decided.

For this set of properties, ISCASMC terminated considerably faster. The reason is
that the time required to construct the complete Rabin determinisation is very high.
The approach in [7] completely avoids this construction for the first two properties.
In the third one, it employs an on-the-fly implementation of the state-of-the-art Rabin
determinisation algorithm [11]. We can therefore restrict the use of the full Rabin con-
struction to refining those parts of the product, where this is required for deciding the
respective property.

ISCASMC: A Web-Based Probabilistic Model Checker 317

4 Future Work

We plan to extend ISCASMC to support more model types such as continuous-time
Markov decision processes and Markov games, recursive Markov chains and quantum
Markov chains. On the property side, we plan to incorporate more general properties
such as reward properties and ω-regular languages. To allow handling larger models, we
plan to extend our implementation to use symbolic rather than explicit-state methods.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems. In:

Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg
(1995)

3. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time analysis of
reactive systems. In: QEST, pp. 131–132 (2006)

4. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4),
857–907 (1995)

5. Duret-Lutz, A.: LTL translation improvements in SPOT. In: VECoS, pp. 72–83. BCS (2011)
6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state

verification. In: FMSP, pp. 7–15 (1998)
7. Hahn, E.M., Li, G., Schewe, S., Zhang, L.: Lazy determinisation for quantitative model

checking, arXiv:1311.2928 (2013)
8. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST, pp. 243–

244 (2005)
9. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time

Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 311–
324. Springer, Heidelberg (2007)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

11. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementation of
generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS,
vol. 7561, pp. 42–56. Springer, Heidelberg (2012)

Invariants, Well-Founded Statements
and Real-Time Program Algebra

Ian J. Hayes and Larissa Meinicke

School of Information Technology and Electrical Engineering,
The University of Queensland,

Brisbane, 4072, Australia

Abstract. Program algebras based on Kleene algebra abstract the essential prop-
erties of programming languages in the form of algebraic laws. The proof of a re-
finement law may be expressed in terms of the algebraic properties of programs
required for the law to hold, rather than directly in terms of the semantics of a
language. This has the advantage that the law is then valid for any programming
language that satisfies the axioms of the algebra.

In this paper we explore the notion of well-founded statements and their re-
lationship to well-founded relations and iterations. The laws about well-founded
statements and relations are combined with invariants to derive a simpler proof of
a while-loop introduction law. The algebra is then applied to a real-time program-
ming language. The main difference is that tests within conditions and loops take
time to evaluate and during that time the values of program inputs may change.
This requires new definitions for conditionals and while loops but the proofs of
the introduction laws for these constructs can still make use of the more basic
algebraic properties of iterations.

1 Introduction

In this paper we use program algebras based on Kleene algebra for regular expressions
[10], with extensions to incorporate tests [28] and infinite iteration [7,36,37]. The alge-
braic approach starts from a set of basic properties that are assumed—the axioms—and
further properties are derived from these. Proving laws about programs in terms of their
algebraic properties has the advantage that the laws are then valid for any programming
language that satisfies the axioms. The semantics of the language can be used to show
whether or not the axioms are consistent. Sect. 2 gives the syntax and algebraic prop-
erties of our programming language, which includes finite and infinite iterations, and
program specifications. Invariants play an important role in reasoning about iterations
[17] and a set of laws for invariants combined with iterated relations is given in Sect. 3.

The rule for introducing a while loop makes use of the concept of a well-founded
statement [17], which has algebraic properties similar to a well-founded relation. New
laws for reasoning about iterations involving well-founded statements and their rela-
tionship to well-founded relations are presented in Sect. 4. These laws lead to a simpler
proof of the law for introducing a while loop, presented in Sect. 5. The general form of
the law makes use of postconditions that are relations rather than single-state predicates,
similar to the form used by Jones [27]. Hence the algebraic rules for iteration come into
play both for relations and statements.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 318–334, 2014.
c© Springer International Publishing Switzerland 2014

Real-Time Program Algebra 319

A significant advantage of focusing on algebraic properties of programs is that they
can be applied to quite different models of computation. As well as the standard re-
finement calculus they can be applied to timed versions of the refinement calculus
[23,24,19,16,20]. The main difference for real-time refinement is that test evaluation
in conditionals and while loops takes time and hence we need to introduce a new timed
test primitive. In Sect. 6 we introduce timed versions of statements and develop a rule
to introduce a timed conditional and in Sect. 7 a rule for a timed while loop. Existing
algebraic formulations for real-time programs, including timed regular expressions [3],
do not allow for the expression of timed tests.

2 Program Kleene Algebra

2.1 Notation

Typical statements are represented by s, t and u; relations by r; predicates by p; and
boolean expressions by b. A binary relation is modelled as a set of pairs of states both
taken from the same state space Σ, where for binary relations r1 and r2, r1 ∪ r2 is their
union, and r1 o

9 r2 is their relational composition. Relational composition is associative
has as its identity the relation, id, which maps every element, x, in the state space Σ to
itself. Finite iteration of a relation zero or more times, r∗, is defined by

r∗ =̂
⋃
k∈N

rk ,

where r0 =̂ id and rk+1 =̂ r o
9 rk.

2.2 Program Syntax

The following defines the abstract syntax of program statements over a state space Σ,
where b and p are single-state predicates over Σ, r is a binary relation over Σ, S is a
set of statements, and k is a natural number.

s ::= abort | skip |magic | 〈b〉 | [p, r] | ⊔S | s 	 s | s ; s | sk | s∗ | s∞ | sω |
if b then s else t | while b do s

The statement abort is the everywhere undefined statement, skip is the null statement,
magic is the everywhere infeasible statement, 〈b〉 is a test or guard, [p, r] is a specifica-
tion statement with precondition p and postcondition relation r, ⊔S is the (demonic)
nondeterministic choice over the set of statements S, s 	 t is binary nondeterministic
choice and is equivalent to ⊔{s, t}, “s ; t” is sequential composition, sk is s iterated
k times, s∗ is finite iteration of s zero or more times, s∞ is infinite iteration of s, and
sω is finite or infinite iteration of s. As a shorthand we omit the “;” and write “s t”
for sequential composition. Unary operators have the highest precedence followed by
sequential composition and then nondeterministic choice.

320 I.J. Hayes, L. Meinicke

2.3 Basic Algebraic Properties

Nondeterministic choice (s 	 t) is associative, commutative, idempotent, and has iden-
tity magic. Sequential composition is associative; it has identity skip and left zeros of
abort and magic.

Definition 1 (refinement). For any statements s and t, s is refined by t, written s � t,
is defined as follows.

s � t =̂ s = s 	 t

Refinement is a partial order and statements form a complete lattice under the refine-
ment ordering with least element abort and greatest element magic. Nondeterministic
choice and sequential composition satisfy the follows distribution axioms for a set of
commands S and non-empty set of commands T .

(⊔S) t = ⊔{s ∈ S • s t} (1)

s (⊔T) � ⊔{t ∈ T • s t} (2)

Definition 2 (conjunctive). A statement, s, is conjunctive provided for all statements,
t and u,

s (t 	 u) = s t 	 s u .

The following statements are not primitive, in the sense that they can be defined in terms
of other statements.

abort =̂ [false, true] (3)

skip =̂ [true, id] (4)

magic =̂ [true, false] (5)

〈b〉 =̂ [true, b ∧ id] (6)

if b then s else t =̂ (〈b〉 s) 	 (〈¬b〉 t) (7)

do b → s od =̂ (〈b〉 s)ω 〈¬b〉 (8)

Blikle made use of tests to allow conditionals and while loops to be expressed [6].
For a predicate, b, a test, 〈b〉, acts as skip if b holds, and as magic otherwise. For the
purposes of this paper test predicates are assumed to be well defined.1 A while loop
do b → s od can be viewed as a nondeterministic choice between its possible unrollings,
which include its finite unrolling zero or more times as well as its infinite unrolling.
Overall this corresponds to the ω-iteration of the test and body, (〈b〉s), followed by the
negation of the test [5].

1 Undefined expressions (such as division by zero) could be handled by adding a precondition
of def(b), that defines the set of states in which b is well defined.

Real-Time Program Algebra 321

2.4 Iteration

Our treatment of iteration operators is based on von Wright’s refinement algebra [37].
Kleene algebra provides an iteration operator s∗, which iterates s zero or more times
but only a finite number of times [10,28]. Cohen extended this approach with infinite
iteration to handle non-terminating loops [7]. The iteration operator s∞ iterates s an
infinite number of times [16,13] and the iteration operator sω iterates s zero or more
times, including both a finite and an infinite number of iterations. The iteration operators
are defined via their algebraic properties: finite iteration is a greatest fixed point and
both infinite and omega iteration are least fixed points [5]. For natural number k and
statements s, t and u, the following axioms define our iteration operators.

s0 = skip (9)

sk+1 = s sk (10)

s∗ = skip 	 s s∗ (11)

sω = skip 	 s sω (12)

s∞ = s s∞ (13)

u � t 	 s u ⇒ u � s∗ t (14)

t 	 s u � u ⇒ sω t � u (15)

s u � u ⇒ s∞ � u (16)

Monotonicity of the iteration operators follows from the corresponding induction
properties (14), (15) and (16), and unfolding properties (11), (12) and (13).

Lemma 1 (monotonicity of iterations). If s � t then the following hold.

s∗ � t∗ (17)

sω � tω (18)

s∞ � t∞ (19)

The term lemma is used here to refer to a law whose proof from our assumed algebraic
properties is available in the literature, while the term theorem is used for new laws or
laws with new proofs.

Lemma 2 (infinite iteration). For any natural number k,

s∞ = sk s∞ . (20)

Lemma 3 (isolation). For a conjunctive statement s, sω = s∗ 	 s∞ .

2.5 Specifications

Program specifications are expressed using Morgan-style specification statements [29].
When writing the postcondition of a specification, we allow relations to be represented
by their characteristic predicates and hence allow relations to be combined using logical
operators such as conjunction and disjunction, with the obvious meaning of intersection

322 I.J. Hayes, L. Meinicke

and union of the relations. Furthermore, a single-state predicate, p, within a postcondi-
tion is interpreted as constraining the pre-state to satisfy p, and a primed predicate, p′,
is interpreted as constraining the post-state to satisfy p similar to the notation used in Z
[11,34]. For example, the specification [x > 0, x′ = x − 1] decrements x, provided the
initial value of x is greater than zero and is undefined otherwise.

We write p � q to state that predicate p ⇒ q holds for all possible values of its free
variables. For our purposes it is sufficient to state a number of axioms of specifications.

(p1 � p2 ∧ (r2 ⇒ r1)) ⇒ [p1, r1] � [p2, r2] (21)

[p1, (r1 ∧ p′2)
o
9 r2] = [p1, r1 ∧ p′2][p2, r2] (22)

[p, r ∨ w] = [p, r] 	 [p, w] (23)

These axioms hold in the standard semantics for the refinement calculus [31]. Tests
satisfy the following properties.

Lemma 4 (tests)

[p, r ∧ b′] = [p, r] 〈b〉 (24)

[p, b ∧ r] � 〈b〉 [b ∧ p, r] (25)

〈b0〉〈b1〉 = 〈b0 ∧ b1〉 (26)

3 Invariants

A predicate p is an invariant of a statement s, if whenever p holds before executing s, it
also holds after s.

Definition 3 (invariant). A single-state predicate p is an invariant of a statement s if

[p, p′] � s .

Proofs of the following properties of invariants made be found in [17].

Lemma 5 (invariants). For any predicate p, natural number k and statement s the
following hold.

[p, p′] � skip (27)

[p, p′] � [p, p′] [p, p′] (28)

[p, p′] � [p, p′]k (29)

[p, p′] � [p, p′]∗ (30)

[p, p′] � s ⇒ [p, p′] � s∗ (31)

The following properties generalise the above to include (iterated) relations. If the
relations in the following are instantiated with the universal relation (with characteristic
predicate true), they give the corresponding properties in Lemma 5 (invariants).

Real-Time Program Algebra 323

Lemma 6 (relation with invariant). For any predicate p, natural number k, relations
r, r1 and r2, and statement s the following hold.

[p, id ∧ p′] � skip (32)

[p, (r1 o
9 r2) ∧ p′] � [p, r1 ∧ p′] [p, r2 ∧ p′] (33)

[p, rk ∧ p′] � [p, r ∧ p′]k (34)

[p, r∗ ∧ p′] � [p, r ∧ p′]∗ (35)

[p, r ∧ p′] � s ⇒ [p, r∗ ∧ p′] � s∗ (36)

4 Well-Founded Relations and Statements

A relation, r, is well founded provided there does not exist an infinite sequence of states
σ0, σ1, σ2, . . . such that all pairs of successive states are related by r. We use a slight
generalisation that corresponds to r being well founded from initial states satisfying p.

Definition 4 (well-founded relation). A relation r is well founded on p if

∀σ ∈ Σ • p(σ) ⇒ (∃k ∈ N • {σ}� rk = false)

where for a set of states ss and relation r, ss � r =̂ {(x, y) ∈ r | x ∈ ss}.

In order to reason about while loops, earlier work promoted the concept of a well-
founded relation to a well-founded statement [17]. The infinite iteration, s∞, of a well-
founded statement, s, has no possible behaviours, i.e. it is infeasible. If s is well founded
there does not exist any infinite sequence σ of states with successive states σi and σi+1

being the before and after states of an execution of s. More generally it is useful to
define what it means for a statement to be well founded if started in a state satisfying
some predicate p. The specification [p, false] is infeasible from states satisfying p.

Definition 5 (well-founded statement). A statement s is well founded on p if

[p, false] � s∞ .

In this paper we prove some new theorems about well-founded statements and itera-
tions, and their relationship to well-founded relations. These lead to a simpler proof of
the while loop introduction rule in Sect. 5 and are reused for a real-time loop in Sect. 7.

Theorem 1 (well-founded iteration relation). If a conjunctive statement s maintains
the invariant p and the relation r, i.e., [p, r ∧ p′] � s, and s is well founded on p, then

[p, r∗ ∧ p′] � sω .

324 I.J. Hayes, L. Meinicke

Proof.

[p, r∗ ∧ p′] � sω

≡ by Lemma 3 (isolation) as s is conjunctive
[p, r∗ ∧ p′] � s∗ 	 s∞

� by Definition 5 (well-founded statement) as s is well founded on p
[p, r∗ ∧ p′] � s∗ 	 [p, false]

� by (21), [p, r∗ ∧ p′] � [p, false]
[p, r∗ ∧ p′] � s∗

� by (36)
[p, r ∧ p′] � s

Corollary 2 (well-founded iteration invariant). If a conjunctive statement s main-
tains the invariant p, i.e. [p, p′] � s, and s is well founded on p, then [p, p′] � sω.

The following theorem relates well-founded relations and well-founded statements.

Theorem 3 (well-founded infinite iteration). If a relation r is a well-founded relation
on p, then [p, r ∧ p′] is a well-founded statement on p, i.e. [p, r ∧ p′]∞ = [p, false].

The proof of this theorem uses the shorthand notation 〈〈σ〉〉 to mean 〈λσ0 • σ0 = σ〉.
It is the test that succeeds if and only if the current state is σ. It satisfies the property
that (⊔σ ∈ Σ • 〈〈σ〉〉) = skip because

⋃
{σ ∈ Σ • {σ}� id} = id.

Proof. To show that [p, r∧p′]∞ � [p, false] we use ∞-induction (16). We need to show

[p, r ∧ p′] [p, false] � [p, false]

which holds by (22) because ((r∧ p′) o
9 false) = false. We show [p, false] � [p, r∧ p′]∞

as follows. Because r is well-founded on p, for each state σ satisfying p there exists a
kσ such that {σ}� rkσ = false.

[p, r ∧ p′]∞

= as (⊔σ ∈ Σ • 〈〈σ〉〉) = skip
(⊔σ ∈ Σ • 〈〈σ〉〉)[p, r ∧ p′]∞

= distributing using (1)
(⊔σ ∈ Σ • 〈〈σ〉〉[p, r ∧ p′]∞)

= for each σ choose kσ such that p(σ) ⇒ {σ}� rkσ = false; (20)
(⊔σ ∈ Σ • 〈〈σ〉〉[p, r ∧ p′]kσ [p, r ∧ p′]∞)

� by (34)
(⊔σ ∈ Σ • 〈〈σ〉〉[p, rkσ ∧ p′][p, r ∧ p′]∞)

� by (21), (26) and (25) as (λσ0 • σ0 = σ) ∧ rkσ = {σ}� rkσ

(⊔σ ∈ Σ • 〈〈σ〉〉[p, {σ}� rkσ ∧ p′][p, r ∧ p′]∞)
= as for all σ, kσ was chosen such that {σ}� rkσ = false if p(σ)
(⊔σ ∈ Σ • 〈〈σ〉〉[p, false] [p, r ∧ p′]∞)

� as [false, true] is the least program and by (1) as (⊔σ ∈ Σ • 〈〈σ〉〉) = skip
[p, false] [false, true]

= by (22)
[p, false]

Real-Time Program Algebra 325

5 While Loops as Iterations

The rule for a terminating while loop requires the loop body (including the test) to be
well founded on states satisfying the invariant p.

Theorem 4 (while loop). Provided (〈b〉 s) is well-founded on p, s is conjunctive, and
[p, r ∧ p′] � 〈b〉 s then

[p, r∗ ∧ p′ ∧ ¬b′] � do b → s od .

Proof.

[p, r∗ ∧ p′ ∧ ¬b′] � do b → s od
≡ by (24) and Definition 8 (while loop)
[p, r∗ ∧ p′] 〈¬b〉 � (〈b〉 s)ω 〈¬b〉

� by monotonicity
[p, r∗ ∧ p′] � (〈b〉 s)ω

� by Theorem 1 (well-founded iteration relation) using assumptions
[p, r ∧ p′] � 〈b〉 s

Note that the proviso [p, r ∧ p′] � 〈b〉 s is equivalent to [p ∧ b, r ∧ p′] � s, which is in
a form closer to that used in the refinement calculus [30,4] and VDM [27].

Corollary 5 (while loop invariant). If (〈b〉 s) is well-founded on p, s is conjunctive,
and [p, p′] � 〈b〉 s then [p, p′ ∧ ¬b′] � do b → s od.

Corollary 6 (while loop relation). If r is well-founded on p, [p, r ∧ p′] � 〈b〉 s and s
is conjunctive, then [p, r∗ ∧ p′ ∧ ¬b′] � do b → s od.

Proof. By Theorem 3 (well-founded infinite iteration) if a relation r is well founded on
p then [p, r∧p′]∞ = [p, false]. Because [p, r∧p′] � 〈b〉 s, by monotonicity of iterations
(19), [p, r ∧ p′]∞ � (〈b〉 s)∞ and hence [p, false] � (〈b〉 s)∞. That is, by Definition 5
(well-founded statement), (〈b〉s) is well founded on p and hence Theorem 4 (while
loop) applies.

6 Real-Time

A simple way to add time to the programming theory is to include a current time vari-
able, τ , in the state [1,23], for example, Hooman devised a Hoare logic for reasoning
about real-time programs with a current time variable [26]. Time can be modelled by
natural numbers giving an abstract notion of time [24] or dense representations such
as the real numbers giving real-time [20] and allowing one to consider hybrid systems.
The choice is immaterial for the purposes of this paper but to allow for nonterminating
computations we define T ime∞ =̂ T ime ∪ {∞}.

There are a number of increasingly expressive versions of semantics for timed state-
ments depending upon the choice of the state space Σ. In the simplest a state maps
variable names including τ to values [23]. A more expressive state space consists of a

326 I.J. Hayes, L. Meinicke

timed trace σ ∈ T ime → (V ar → V al), which gives the values of all the variables at
each time instant. The timed trace corresponding to time τ has a domain consisting of
the set of all times up to τ [19]. The starting trace σ of a statement must be a prefix of
the finishing trace σ′. Note that the finishing trace may be infinite (i.e. τ ′ = ∞). We’ll
assume this model for this paper as it allows program inputs to vary during the execu-
tion of a statement. An even more expressive state space is Utting’s real-time refinement
calculus that changes only time [35,20].

For any statement one can assume it is started at some finite time (i.e. τ �= ∞)
and that all statements ensure time does not go backwards (i.e. τ ≤ τ ′). In this paper
specifications are defined to be terminating and hence a timed specification requires that
the finishing time is finite (i.e. τ ′ < ∞), although more liberal specifications that allow
nontermination are possible [13,16]. Timed statements are distinguished from untimed
versions by a subscript of τ .

Definition 6 (timed specification). [p, r]τ =̂ [τ �= ∞∧ p, r ∧ τ ≤ τ ′ < ∞]

The condition for refinement of timed specifications can assume time increases and the
specification statement terminates. The following two lemmas follow from axioms (21)
and (22).

Lemma 7 (refine timed specification). If τ ≤ τ ′ < ∞∧ p1 � p2 ∧ (r2 ⇒ r1),

[p1, r1]τ � [p2, r2]τ .

Lemma 8 (refine to timed sequential). If

p ∧ ((r1 ∧ p′1 ∧ τ ≤ τ ′ < ∞) o
9 (r2 ∧ τ ≤ τ ′ < ∞)) � r

then, [p, r]τ � [p, r1 ∧ p′1]τ [p1, r2]τ .

6.1 Idle Invariance

For timed programs the variables in the state space are partitioned into inputs and out-
puts. Let V be the set of output variables. The relation stableV constraints the variables
in V so that they do not change between the start time τ and the finish time τ ′; other
variables are unconstrained. An idle statement may take some finite time but does not
change any output variables.

Definition 7 (idle). idle =̂ [true, stableV]τ

Note that skip differs from idle because skip takes no time and hence idle � skip but
not vice versa.

Although an idle statement doesn’t change any output variables, it does allow time
to progress, and hence a predicate p that holds before an idle statement may no longer
hold after it. A predicate that is invariant over the execution of an idle statement is called
idle-invariant [12,13,16]. For example, for any constant D, the predicate τ ≤ D is not
idle-invariant, but D ≤ τ is.

Definition 8 (idle-invariant). A predicate p is idle-invariant if

〈p〉 idle 〈p〉 = 〈p〉 idle .

If p is idle-invariant then [p, stableV ∧ p′]τ � idle.

Real-Time Program Algebra 327

In order for a statement to be unaffected by a preceding idle it must be pre-idle-
invariant, and to be unaffected by a following idle it must be post-idle-invariant. These
two often go together.

Definition 9 (pre-idle-invariant). A statement s is pre-idle-invariant if s � idle s.

Definition 10 (post-idle-invariant). A statement s is post-idle-invariant if s � s idle.

Lemma 9 (pre-and-post-idle-invariant). If s is both pre- and post-idle-invariant, then

s � idle s idle .

Because idle � skip the refinement in the above law can be replaced by equality.

6.2 Timed Tests

While the rules for iterations carry over to the real-time case, the rules for conditionals
and while loops given above do not apply for real-time programs because the defini-
tion of these constructs needs to be revised to allow for the time taken for tests to be
evaluated [20,15,14]. Note that the test 〈b〉 corresponds to an instantaneous test because
it ensures τ = τ ′. To handle non-atomic tests that take time to evaluate, we introduce
a new primitive statement: a timed test 〈b〉τ . For real-time programs the environment
evolves in parallel with the program and hence there are similarities between handling
timed tests and handling tests in programs involving concurrency [22]. The semantics
of a timed test can be given by using an operational semantics for expression evaluation
and then promoting each sequence of operations for an expression evaluation to a timed
statement (a semantics is given in Appendix A). Any timed test is pre- and post-idle-
invariant and because it does not modify any variables it satisfies the following axiom.

idle � 〈b〉τ (37)

Reasoning about a timed test is complicated because both time and the values of the
input variables are changing as the test is being evaluated and hence whether the test
succeeds or fails depends on when input variables (including τ) within it are accessed.
An important special case is if the test expression is single-reference.

Definition 11 (single-reference). An expression b is single-reference if there is only a
single input variable y in b that is changed by the environment, and furthermore there
is only a single reference to y within b.

For this special case evaluating the test corresponds to instantaneously evaluating the
test in the state in which y is accessed [8,18,33]. A timed test with the single-reference
property is equivalent to an instantaneous test surrounded by idle statements.

Lemma 10 (test single-reference). If b satisfies the single-reference property,

〈b〉τ = idle 〈b〉 idle .

328 I.J. Hayes, L. Meinicke

Lemma 11 (test idle-invariant). If b satisfies the single-reference property, b � b0,
and b0 is idle-invariant,

〈b〉τ 〈b0〉 = 〈b〉τ .

Proof.
〈b〉τ 〈b0〉

= by Lemma 10 (test single-reference)
idle 〈b〉 idle 〈b0〉

= by (26) as b � b0
idle 〈b〉 〈b0〉 idle 〈b0〉

= by Definition 8 (idle-invariant) as b0 is idle-invariant
idle 〈b〉 〈b0〉 idle

= by (26) as as b � b0
idle 〈b〉 idle

= by Lemma 10 (test single-reference)
〈b〉τ

A real-time conditional statement is defined using timed tests to allow for the time to
evaluate its test and an idle statement to allow for the time taken to exit the conditional.

Definition 12 (timed conditional). For any boolean expression b and statements s and
t,

ifτ b then s else t =̂ (〈b〉τ s 	 〈¬b〉τ t) idle

Note that time progresses during the execution of the timed tests and hence an explicit
idle is not needed at the start. Care is needed in handling the guard of a timed conditional
because, unlike the untimed case, on termination of 〈b〉τ , b may not hold, i.e. 〈b〉τ �=
〈b〉τ 〈b〉, where the last test is an instantaneous (untimed) test of b in the state at the end
of execution of the timed test. For example, because time increases during execution
of a test, given a constant time D one can conclude 〈D ≤ τ〉τ = 〈D ≤ τ〉τ 〈D ≤ τ〉
but not 〈τ < D〉τ = 〈τ < D〉τ 〈τ < D〉. If none of the variables accessed by b are
changed by the environment one can deduce 〈b〉τ = 〈b〉τ 〈b〉. More generally, there
exists a predicate b0 no stronger than b such that 〈b〉τ = 〈b〉τ 〈b0〉, where in the worst
case b0 may be true. To handle the “else” case of a conditional, note that there also
exists a predicate b1 no stronger than ¬b such that 〈¬b〉τ = 〈¬b〉τ 〈b1〉. The following
rule for introducing a conditional makes use of such predicates b0 and b1. Because b0 is
no stronger than b and b1 is no stronger than ¬b, b0 ∨ b1 holds for all states.

Theorem 7 (timed conditional). Provided the predicate b0 satisfies 〈b〉τ = 〈b〉τ 〈b0〉
and b1 satisfies 〈¬b〉τ = 〈¬b〉τ 〈b1〉 and [p, r]τ is pre- and post-idle-invariant,

[p, r]τ � ifτ b then [b0 ∧ p, r]τ else [b1 ∧ p, r]τ .

Real-Time Program Algebra 329

Proof.
ifτ b then [b0 ∧ p, r]τ else [b1 ∧ p, r]τ

= by Definition 12 (if statement)
(〈b〉τ [b0 ∧ p, r]τ 	 〈¬b〉τ [b1 ∧ p, r]τ) idle

= as 〈b〉τ = 〈b〉τ 〈b0〉 and 〈¬b〉τ = 〈¬b〉τ 〈b1〉
(〈b〉τ 〈b0〉 [b0 ∧ p, r]τ 	 〈¬b〉τ 〈b1〉 [b1 ∧ p, r]τ) idle

� by (25) twice
(〈b〉τ [p, b0 ∧ r]τ 	 〈¬b〉τ [p, b1 ∧ r]τ) idle

� as idle � 〈b〉τ and idle � 〈¬b〉τ by (37)
(idle [p, b0 ∧ r]τ 	 idle [p, b1 ∧ r]τ) idle

� distributing idle using (2)
idle ([p, b0 ∧ r]τ 	 [p, b1 ∧ r]τ) idle

= by (23)
idle [p, (b0 ∧ r) ∨ (b1 ∧ r)]τ idle

= by (21) as (b0 ∨ b1) holds for all states
idle [p, r]τ idle

� by Lemma 9 (pre-and-post-idle-invariant)
[p, r]τ

7 Timed while Loops

The main theorem needed for handling a timed iteration is a timed version of Theorem 1
(well-founded iteration relation).

Theorem 8 (timed well-founded iteration). If a conjunctive statement s maintains the
invariant p and the relation r, i.e., [p, r ∧ p′]τ � s, and s is well founded on p, then

[p, r∗ ∧ p′]τ � sω .

Proof. By Definition 6 (timed specification) the assumption [p, r∧p′]τ � s is equivalent
to [τ �= ∞∧ p, r ∧ p′ ∧ τ ≤ τ ′ < ∞] � s, which is used in the last step below.

[p, r∗ ∧ p′]τ
= by Definition 6 (timed specification)
[τ �= ∞∧ p, r∗ ∧ p′ ∧ τ ≤ τ ′ < ∞]

� finite iteration of τ ≤ τ ′ < ∞ maintains τ ≤ τ ′ < ∞ overall
[τ �= ∞∧ p, (r ∧ τ ≤ τ ′ < ∞)∗ ∧ τ �= ∞∧ p′]

� by Theorem 1 (well-founded iteration relation) using assumption
sω

Definition 8 (while loop) given above does not handle a real-time interpretation. As
with the conditional, the tests within the while loop must be replaced by timed tests.

Definition 13 (timed while loop)

doτ b → s od =̂ (〈b〉τ s)ω〈¬b〉τ

330 I.J. Hayes, L. Meinicke

To devise a refinement law for a real-time loop similar to the standard law, some
restrictions are necessary. To allow a real-time loop to take some time even if the test is
initially false, the relation in Theorem 9 (timed while loop) below uses a weaker form
of finite iteration, r� =̂ r∗ o

9 stableV, where V is the set of output variables.

Lemma 12 (kleene plus idle). If p is idle-invariant,

[p, r� ∧ p′]τ � [p, r∗ ∧ p′]τ idle .

Proof. From its definition r� = r∗ o
9 stableV.

[p, (r∗ o
9 stableV) ∧ p′]τ

� by Lemma 8 (refine to timed sequential)
[p, r∗ ∧ p′]τ [p, stableV ∧ p′]τ

� as p is idle-invariant
[p, r∗ ∧ p′]τ idle

As for the conditional, we make use of a predicate b0 that is no stronger than b and a
predicate b1 that is no stronger than ¬b in the following rule.

Theorem 9 (timed while loop). If 〈b〉τ = 〈b〉τ 〈b0〉 and 〈¬b〉τ = 〈¬b〉τ 〈b1〉, p is idle-
invariant, [p, r∧p′]τ is pre-idle-invariant, (〈b〉τ s) is well-founded on p, s is conjunctive,
and [p, r ∧ p′]τ � 〈b0〉 s then

[p, r� ∧ p′ ∧ b′1]τ � doτ b → s od .

Proof.

[p, r� ∧ p′ ∧ b′1]τ � doτ b → s od
≡ by (24) and Definition 13 (timed while loop)

[p, r� ∧ p′]τ 〈b1〉 � (〈b〉τ s)ω 〈¬b〉τ
� by Lemma 12 (kleene plus idle), p idle-invariant, and 〈¬b〉τ = 〈¬b〉τ 〈b1〉

[p, r∗ ∧ p′]τ idle 〈b1〉 � (〈b〉τ s)ω 〈¬b〉τ 〈b1〉
� by monotonicity as idle � 〈¬b〉τ by (37)

[p, r∗ ∧ p′]τ � (〈b〉τ s)ω

� by Theorem 8 (timed well-founded iteration) using the assumptions
[p, r ∧ p′]τ � 〈b〉τ s

The latter is shown as follows.

[p, r ∧ p′]τ
� by Definition 9 (pre-idle-invariant) as [p, r ∧ p′]τ is pre-idle-invariant
idle [p, r ∧ p′]τ

� by assumption [p, r ∧ p′]τ � 〈b0〉 s
idle 〈b0〉 s

� as idle � 〈b〉τ by (37)
〈b〉τ 〈b0〉 s

= as 〈b〉τ = 〈b〉τ 〈b0〉
〈b〉τ s

Real-Time Program Algebra 331

Corollary 10 (timed loop invariant). If 〈b〉τ = 〈b〉τ 〈b0〉 and 〈¬b〉τ = 〈¬b〉τ 〈b1〉, p
is idle-invariant, (〈b〉τ s) is well-founded on p, s is conjunctive, and [p, p′]τ � 〈b0〉 s,

[p, p′ ∧ b′1]τ � doτ b → s od .

The following corollary requires r to be well founded. It follows from Theorem 9
(timed while loop) in a manner similar to Corollary 6 (while loop relation).

Corollary 11 (timed loop relation). If 〈b〉τ = 〈b〉τ 〈b0〉 and 〈¬b〉τ = 〈¬b〉τ 〈b1〉, p is
idle-invariant, [p, r ∧ p′]τ is pre-idle-invariant, r is well-founded on p, s is conjunctive,
and [p, r ∧ p′]τ � 〈b0〉 s then,

[p, r� ∧ p′ ∧ b′1]τ � doτ b → s od .

8 Conclusions

By defining while loops in terms of iteration operators we are able to leverage the
algebraic properties of iteration operators to devise simple proofs of refinement laws
for loops. In addition, by giving an algebraic characterisation of well foundedness for
statements (rather than relations) the proof of the while loop rule can be handled in an
elegant manner.

By phrasing the proofs of the laws in terms of the algebraic properties of the pro-
gramming constructs, the laws can be used with any language whose semantics satisfies
the axioms on which the theory is based. In this paper we focused on the refinement
calculus [4,30,32] but the laws apply equally well to refinement in VDM [27], B [2],
and Hoare and He’s unifying theory of programming [25]. The semantics of these ap-
proaches are based on relations between before and after states (or a generalisation of
this to weakest precondition predicate transformers).

The approach can be extended to reasoning in the real-time refinement calculus
[20,14]. The definitions of the conditional and while loop need to be revised to allow for
the time taken for tests to be evaluated. To handle this we need to introduce a new prim-
itive: a timed test. We also need properties such as a predicate being idle-invariant and
specifications being pre- and post-idle-invariant [12,13,16], and give algebraic charac-
terisations of these properties and proofs of introduction laws for conditionals and while
loops.

Acknowledgements. This research was supported Australian Research Council Dis-
covery Grant DP130102901. We would like to thank Joakim von Wright for introducing
us to program algebra, and Robert Colvin, Steve Dunne, Cliff Jones, Kim Solin and our
anonymous reviewers for feedback on ideas presented in this paper.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Trans. on Prog. Lang.
and Sys. 16(5), 1543–1571 (1994)

2. Abrial, J.-R.: The B-Book: Assigning programs to meanings. Cambridge University Press
(1996)

332 I.J. Hayes, L. Meinicke

3. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)
4. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,

New York (1998)
5. Back, R.-J.R., von Wright, J.: Reasoning algebraically about loops. Acta Informatica 36,

295–334 (1999)
6. Blikle, A.: Specified programming. In: Blum, E.K., Paul, M., Takasu, S. (eds.) Mathematical

Studies of Information Processing. LNCS, vol. 75, pp. 228–251. Springer, Heidelberg (1979)
7. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000.

LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)
8. Coleman, J.W.: Expression decomposition in a rely/guarantee context. In: Shankar, N.,

Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 146–160. Springer, Heidelberg
(2008)

9. Colvin, R.J., Hayes, I.J.: Structural operational semantics through context-dependent be-
haviour. Journal of Logic and Algebraic Programming 80(7), 392–426 (2011)

10. Conway, J.H.: Regular Algebra and Finite Machines. Chapman Hall (1971)
11. Hayes, I.J. (ed.): Specification Case Studies, 2nd edn. Prentice Hall (1993)
12. Hayes, I.J.: Reasoning about real-time programs using idle-invariant assertions. In: Dong,

J.S., He, J., Purvis, M. (eds.) Proceedings of 7th Asia-Pacific Software Engineering Confer-
ence (APSEC 2000), pp. 16–23. IEEE Computer Society (2000)

13. Hayes, I.J.: Reasoning about real-time repetitions: Terminating and nonterminating. Science
of Computer Programming 43(2-3), 161–192 (2002)

14. Hayes, I.J.: A predicative semantics for real-time refinement. In: McIver, A., Morgan, C.C.
(eds.) Programming Methodology, pp. 109–133. Springer, Heidelberg (2003)

15. Hayes, I.J.: Towards platform-independent real-time systems. In: Strooper, P.A. (ed.)
ASWEC, pp. 192–200. IEEE Computer Society (2004)

16. Hayes, I.J.: Termination of real-time programs: Definitely, definitely not, or maybe. In:
Dunne, S., Stoddart, W. (eds.) UTP 2006. LNCS, vol. 4010, pp. 141–154. Springer, Hei-
delberg (2006)

17. Hayes, I.J.: Invariants and well-foundedness in program algebra. In: Cavalcanti, A., Deharbe,
D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 1–14. Springer,
Heidelberg (2010)

18. Hayes, I.J., Burns, A., Dongol, B., Jones, C.B.: Comparing degrees of non-deterministic in
expression evaluation. The Computer Journal 56(6), 741–755 (2013)

19. Hayes, I.J., Dunne, S.E., Meinicke, L.: Unifying theories of programming that distinguish
nontermination and abort. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 178–194. Springer, Heidelberg (2010)

20. Hayes, I.J., Utting, M.: A sequential real-time refinement calculus. Acta Informatica 37(6),
385–448 (2001)

21. Hayes, I.J., Colvin, R.J.: Integrated operational semantics: Small-step, big-step and multi-
step. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Ric-
cobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 21–35. Springer, Heidelberg (2012)

22. Hayes, I.J., Jones, C.B., Colvin, R.J.: Reasoning about concurrent programs: Refining rely-
guarantee thinking. Technical Report CS-TR-1395, School of Computing Science, Newcastle
University, 66 pages (September 2013)

23. Hehner, E.C.R.: Termination is timing. In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS,
vol. 375, pp. 36–47. Springer, Heidelberg (1989)

24. Hehner, E.C.R.: Abstractions of time. In: Roscoe, A.W. (ed.) A Classical Mind, ch. 12, pp.
191–210. Prentice Hall (1994)

25. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)
26. Hooman, J.: Extending Hoare logic to real-time. Formal Aspects of Computing 6(6A), 801–

825 (1994)

Real-Time Program Algebra 333

27. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall (1990)
28. Kozen, D.: Kleene algebra with tests. ACM Trans. Prog. Lang. and Sys. 19, 427–443 (1999)
29. Morgan, C.C.: The specification statement. ACM Trans. Prog. Lang. and Sys. 10(3), 403–419

(1988)
30. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall (1994)
31. Morgan, C.C., Robinson, K.A.: Specification statements and refinement. IBM Jnl. Res.

Dev. 31(5), 546–555 (1987)
32. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus.

Science of Computer Programming 9(3), 287–306 (1987)
33. Søndergaard, H., Sestoft, P.: Referential transparency, definiteness and unfoldability. Acta

Informatica 27, 505–517 (1990)
34. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall International

(1992)
35. Utting, M., Fidge, C.J.: A real-time refinement calculus that changes only time. In: Jifeng,

H. (ed.) Proc. 7th BCS/FACS Refinement Workshop, Electronic Workshops in Computing.
Springer (July 1996)

36. von Wright, J.: From Kleene algebra to refinement algebra. In: Boiten, E.A., Möller, B. (eds.)
MPC 2002. LNCS, vol. 2386, pp. 233–262. Springer, Heidelberg (2002)

37. von Wright, J.: Towards a refinement algebra. Sci. of Comp. Prog. 51, 23–45 (2004)

A Semantics of Timed Tests

The strategy for giving a semantics for timed tests is to first give an operational se-
mantics for expression evaluation and then promote this to timed statements [22]. The
operational semantics is given in a style devised by Colvin [9,21], which uses labelled
transitions. A label � on a transition is either (i) skip, representing a stuttering evaluation
step, or (ii) 〈x = v〉, where x is a variable name and v is a value, representing a test that
succeeds iff x has the value v in the current state. Note that labels may only contain tests
of the form 〈x = v〉 and not arbitrary tests. The semantics for an expression consisting
of just a variable x provides a rule for evaluating it to any value v – the actual value will
depend on the value of x in the state – and hence corresponds to the (instantaneous) test
〈x = v〉.

x
〈x=v〉−−−−→ v

Binary operators evaluate their arguments before finally calculating the expression’s
value using the semantics of the operator. We illustrate binary operators by giving the
rules for logical “and”. Other binary operators are similar. For boolean values v and w,
the function sem(∧, v, w) gives the standard truth table for the logical “and” of v and
w. The first two rules evaluate the sub-expressions b and c to boolean values (true or
false) and the final rule evaluates the “and” operator on those boolean values. In these
rules b, b1, c and c1 are expressions but v and w are restricted to be truth values.

b
�−→ b1

b ∧ c
�−→ b1 ∧ c

c
�−→ c1

b ∧ c
�−→ b ∧ c1

{v, w} ⊆ {false, true}

v ∧ w
skip−→ sem(∧, v, w)

The operational semantics for an expression generates a sequence of transitions labelled
with either skip or a variable access of the form 〈x = v〉. The following extracts the

334 I.J. Hayes, L. Meinicke

complete sequence of labels on transitions to form a big-step transition (signified by a
double-headed arrow “
”) labelled with a statement representing the semantics of a
timed test. The semantics composes the sequence of steps performed in the evaluation
with idle commands interposed to represent time delays.

b
idle−−
 b

b
�−→ b1 b1

ls−
 b2

b
idle;�;ls
−−−−
 b2

Finally the semantics of a timed test is a nondeterministic choice over all possible eval-
uations that result in true. Evaluation sequences that result in false are considered to
have failed and are not promoted.

Definition 14 (timed test). 〈b〉τ =̂ ⊔{ls | (b ls−
 true)}

Checking Liveness Properties of Presburger

Counter Systems Using Reachability Analysis

K. Vasanta Lakshmi, Aravind Acharya, and Raghavan Komondoor

Indian Institute of Science, Bangalore
{kvasanta,aravind.acharya,raghavan}@csa.iisc.ernet.in

Abstract. Counter systems are a well-known and powerful modeling
notation for specifying infinite-state systems. In this paper we target the
problem of checking liveness properties in counter systems. We propose
two semi decision techniques towards this, both of which return a for-
mula that encodes the set of reachable states of the system that satisfy
a given liveness property. A novel aspect of our techniques is that they
use reachability analysis techniques, which are well studied in the liter-
ature, as black boxes, and are hence able to compute precise answers on
a much wider class of systems than previous approaches for the same
problem. Secondly, they compute their results by iterative expansion or
contraction, and hence permit an approximate solution to be obtained
at any point. We state the formal properties of our techniques, and also
provide experimental results using standard benchmarks to show the use-
fulness of our approaches. Finally, we sketch an extension of our liveness
checking approach to check general CTL properties.

1 Introduction

Counter systems are a class of infinite state systems that are equivalent to sim-
ple looping programs that use integer variables, without arrays and pointers. A
counter system has a finite set of control states and a finite set of counters, with
each counter taking values from the infinite domain of integers. There are tran-
sitions between control states, with each transition being guarded by a predicate
on the counters, and having an action, which indicates the updated values of
the counters in terms of the old values. Presburger logic is the decidable first-
order theory of natural numbers. Presburger formulas use variables, constants,
addition and subtraction, comparisons, and quantification. The class of counter
systems where the guards as well as actions are represented using Presburger for-
mulas are called Presburger counter systems. Presburger counter systems have
been shown to be applicable in various settings [1], such as the analysis of the
TTP protocol, different broadcast protocols, as well as cache coherence proto-
cols. In the rest of this paper we use “counter system” or even just “system” to
refer to Presburger counter systems.

Verification of properties of counter systems has been an important topic in
the research literature. While problems such as reachability analysis and tempo-
ral property checking are decidable for infinite systems such as pushdown sys-
tems and petri-nets [2, 3], these problems are in general undecidable on counter

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 335–350, 2014.
c© Springer International Publishing Switzerland 2014

336 K.V. Lakshmi, A. Acharya, and R. Komondoor

systems because of their greater expressive power. This said, various interesting
subclasses of counter systems have been identified on which reachability anal-
ysis is decidable [4–8]. When it comes to CTL [9] temporal property checking,
researchers have shown decidability of this problem on significantly narrower
classes [10, 11]. We seek to bridge this gap somewhat, by proposing a novel CTL
property checking technique that uses reachability queries as subroutines.

1.1 Our Approach

Although our technique addresses the full CTL, the focus in this paper is mainly
on checking liveness properties, which are a fragment of the full CTL. Intuitively,
a state s (i.e., a vector of actual counter values) of a counter system is said to
satisfy liveness with respect to a given “good” property (which is expressed as a
Presburger formula on the counter values) if no matter what trace is taken from s
a state that satisfies the good property will eventually be reached [12]. A classic
example of a liveness property is that an entity that requests a resource will
eventually get the resource (i.e., will not starve). If there are no stuck states in
the system (i.e., states with no outgoing transitions)1, then a state s satisfies the
liveness property iff there does not exist an infinite trace starting from s along
which none of the states satisfy the good property. That is, using CTL notation,
s ought to satisfy the temporal property ¬EGφ, where φ is the negation of the
given good property. (E represents existential quantification over traces, while
G indicates an infinite trace along which the property φ holds globally, i.e., on
all states.) Therefore, we address the following problem: given a counter system
M and a temporal property EGφ, where φ is a formula representing a set of
states, return a Presburger formula that encodes the set of reachable states of
the system that satisfy this temporal property.

It is easy to see that fix-point computations are required to analyze properties
of infinite traces. Our key idea in this paper is to use the fix-point computation
capabilities of reachability analysis techniques to solve EG properties. Our ap-
proach is to perform certain transformations on the given counter system, and
then to perform reachability analysis iteratively, hence computing a progressively
more precise approximation of the set of states that satisfy the EG property.
We actually provide two alternative approaches for the same problem: one that
computes a growing under-approximation of the solution, and the other that
computes a shrinking over-approximation. Both are guaranteed to return a pre-
cise answer upon termination; however, termination is not always guaranteed,
even on systems that are within the subclasses of systems on which reachability
is decidable. In cases where guaranteed termination is not clear, the user can se-
lect one of the two approaches based on their desired direction of approximation,
and forcibly stop the analysis at any point to obtain an approximate result.

1 Any counter system with stuck states can be transformed into one without stuck
states, by adding a “dead” control state that has an unconditional self-loop with
identity action, and by adding transitions that take control from erstwhile stuck
states to this control state.

Checking Liveness Properties of Presburger Counter Systems 337

1.2 Contributions

– The key novelty of our approach, over previous CTL model-checking ap-
proaches [10, 11] is the use of reachability analysis black-boxes as subrou-
tines. In particular, as a result, we are able to show that the subclass of
systems on which each of our approaches is guaranteed to terminate (with
precise solutions) is arguably wider than the subclass addressed by Demri et
al. [10] (and potentially incomparable with that of Bozzelli et al.).

– We support approximations in cases where termination is not guaranteed.
This is a useful feature that is not a part of previous approaches.

– We also introduce an algorithm that can return the set of states that satisfy
any given CTL property. Previous approaches do not address arbitrarily
nested properties. (Our approaches for EG properties are in fact used as
subroutines in this algorithm.) Due to lack of space we only provide a sketch
of this algorithm.

– For each of our two EG approaches we state claims of precision (after ter-
mination), approximation in the appropriate direction (before termination),
and guaranteed termination on a certain subclass of systems. We provide
proofs of these claims in an associated technical report [13].

– We implement both our approaches, and provide experimental results on a
large set of real-life counter systems provided by the FAST [1] toolkit that
are outside the subclass of systems addressed by the approach of Demri et
al. [10].

The remainder of this paper is organized as follows: In Section 2 we introduce
some of the preliminary notions and terminology that underlies our approaches.
In Sections 3 and 4 we describe our under-approximation and over-approximation
approaches to answer EG properties, respectively. In Section 5 we sketch our
algorithm for answering CTL properties. Section 6 contains the discussion on
our implementation and experimental results, while Section 7 discusses related
work.

2 Preliminaries

Definition 1 (Counter System). A counter system M is represented by the
tuple M = 〈Q, C, Σ, φinit , G, F 〉 where Q is a finite set of natural numbers that
encode the control states, C is a finite set of m counters, φinit is a Presburger
formula that represents the initial states of the system, Σ is a finite alphabet
representing the set of transitions in M , such that for each b ∈ Σ there exists a
Presburger formula G(b) and a Presburger formula F (b) that are the guard and
action of the transition b, respectively.

Throughout this paper we use the notation gb and fb to represent G(b) and
F (b).

Figure 1(a) shows a counter system, which also serves as our running example.
Here Q = {q0} (encoded as the natural number zero), C = {x}, Σ = {t0, t1},

338 K.V. Lakshmi, A. Acharya, and R. Komondoor

x > 0 ∧ x < 5/

x′ = x − 1

t1

x ≥ 0 ∧ x < 100/

x′ = x + 1

t0

x = 0
q0

(a)

x = 0
q0

t0

t1

x′ = x + 1

x > 0 ∧ x < 5 ∧ x < 10/
x′ = x − 1

x ≥ 0 ∧ x < 100 ∧ x < 10/

(b)

t11

q02

t01 t03

q03
q01

t02

(c)

Fig. 1. (a) A counter system M . (b) Refinement M1 of M w.r.t (x < 10). (c) A
flatteningN ofM1. Each transition tij of N has the same guard and action as transition
ti of M1.

φinit = (x = 0) (shown as the incoming arrow into the system), gt0 ≡ (x ≥
0) ∧ (x < 100), gt1 ≡ (x > 0) ∧ (x < 5), ft0 ≡ (x′ = x + 1), ft1 ≡ (x′ = x − 1).
In our figures we separate the guard and action of a transition using a “/”.

A state (denoted by s, s0, s
′ etc.) in a system is a column vector v ∈ Nm+1.

The first element v0 represents the control state, while the values of rest of the
elements v1, . . . , vm represent the values of the counters C. We sometimes use
the term concrete state to refer to a state.

Our Presburger formulas use the names of the counters, as well the control-
state variable q (which refers to the first element v0 of a state as mentioned
above), as free variables. Any formula can be seen either as a property to be
satisfied by a state (e.g., when used in a guard), or as a set of states (e.g.,
in the context of input to our algorithm or output from it). Throughout this
paper we use φ, φi, etc., to denote Presburger formulas. Since the example
systems we use for illustrations have only a single control-state, we omit the
control-state variable q from the guards, actions, and formulas that we show (it
will always be constrained to be zero). Also, sometimes we wish to use extra
free variables (on top of the counter names and q) in a formula. Our notation
in this case is as follows: φ(k) is a Presburger formula with an additional free
variable k. (There is a another kind of Presburger formula, too, which is used to
represent actions of transitions, and uses unprimed and primed versions of the
free variables mentioned above.)

A state s is said to satisfy a formula φ, denoted as s |= φ, if the formula φ
evaluates to true when the free variables in φ are substituted by the correspond-
ing values in s. For this reason, we often refer to a formula as a “set of states”,
by which we mean the states that satisfy the formula.

The semantics of a counter system is as follows. A concrete transition s
b−→ s′

is possible (due to transition b) if s satisfies gb and (s, s′) satisfies fb. In this
case we say that s (s′) is an immediate predecessor (successor) of s′ (s). A
counter system can be non-deterministic; i.e., a state could have multiple suc-
cessor states, either by the action of a single transition itself, or due to different

Checking Liveness Properties of Presburger Counter Systems 339

transitions out of a control-state with overlapping guards. However, we assume
that systems exhibit finite branching; i.e., every state has a finite number of
immediate successors.

Given a counter system M , a trace t “in” M starting from a state s0 is any
sequence of states s0, s1, . . . , sn, n ≥ 0, such that there is a concrete transition
in M from each state in the sequence to the immediate successor (if any) in the
sequence. This definition also generalizes in a natural way to infinite traces. If t
is a trace in M we also say that M exhibits t. traces(M , φ) is the set of all traces
in M from states that satisfy φ. A state s0 in a system M is said to satisfy a
temporal formula EGφ, written as s0 |= EGφ, iff there exists an infinite trace
s0, s1, . . . in the system such that ∀i ≥ 0. si |= φ.

Other Definitions. Given a counter system M and Presburger formula φ, we
use the formula pre(M , φ) (which is also a Presburger formula in the counter
variables and in q) to represent the set of all states that have a successor that
satisfies φ. For the counter system M shown in Figure 1(a), pre(M , (x ≤ 2)) ≡
(x ≥ 0) ∧ (x ≤ 3).

An extension of the above definition is the formula prek (M , φ)(k). This repre-
sents the set of all states from which some state that satisfies φ can be reached in
exactly k steps (i.e., k concrete transitions). Note that k is an extra free variable
in the formula prek (M , φ)(k). For our example system M , prek (M , x = 4)(k) ≡
(x ≤ 4) ∧ (x ≥ (4− k)) ∧ (even(k) ⇒ even(x)) ∧ (odd(k) ⇒ odd(x)).

The backward reachability set for a set of states φ, namely pre∗(M , φ), repre-
sents the set of all states from which a state in φ can be reached in zero or more
steps. For our example system M , pre∗(M , x ≤ 4) ≡ x ≤ 4.

A system M1 is said to be a refinement of a system M with respect to a
formula φ, written as M1 ≡ refineSystem(M , φ), if M1 is identical to M in
every way except that the guard of each transition in M1 is the corresponding
guard in M conjuncted with φ. For instance, the system M1 in Figure 1(b) is a
refinement of the system M in part (a) of the same figure with respect to the
formula ‘x < 10’. Intuitively, M1 exhibits exactly those traces in M that do not
go through a concrete transition from a state that does not satisfy φ.

A flat counter system is one in which no two distinct cycles among its control
states overlap. That is, all cycles among its control states are simple cycles. A
flat system N is said to be a flattening of a system M if, intuitively, (a) the
two systems use the same set of counters, (b) each control-state qi of M occurs
zero or more times in N , with each of these copies encoded by the same natural
number as qi, and (c) any transition in N from a control-state qij (a copy of qi
in M) to a control-state qkl (a copy of qk in M) has the same guard and action
as some transition from qi to qk in M . It is easy to see that in general, for any
set of states φ, traces(N , φ) ⊆ traces(M , φ). We say that N is a trace flattening
of M with respect to a specific set of states φ if traces(N , φ) = traces(M , φ).

For instance, Figure 1(c) shows a flattening N of the (non-flat) system M1 in
part (b) of the figure. Control state q0 in M1 has three copies in N ; also, each
transition tij in N corresponds to transition ti in M1. N is a trace flattening

340 K.V. Lakshmi, A. Acharya, and R. Komondoor

of M1 with respect to the set of states ‘x ≥ 5’. On the other hand, any trace
that involves taking transition t1 twice in a row, such as ‘x = 4, x = 3, x = 2’ is
missing in N .

3 Under-Approximation Approach for EG Properties

In this section we describe our under-approximation approach for solving EG
properties, implemented as Algorithm computeGlobalUnder . The input to the
algorithm is a counter system M and a temporal property EGφ. We first present
the key ideas behind our approach, and then finally present our entire approach
in pseudo-code form.

3.1 Our Approach

Using Refinement and Reachability. Let M1 be the refinement of the given sys-
tem M with respect to the given φ; i.e., M1 ≡ refineSystem(M , φ). Clearly, a
state satisfies EGφ in M iff it satisfies EGφ in M1, which in turn is true iff there
is at least one infinite trace from this state in M1; this is because every concrete
transition in M1 starts from a state that satisfies φ. Our objective now is to find a
Presburger formula, somehow using reachability analysis, that represents the set
of states in M1 that have an infinite trace starting from them. Two key insights
that make this possible are: (a) In a finite-branching system, as per Köenig’s
Lemma, there is an infinite trace from a state iff there are traces starting from it
of all possible lengths k, for k ≥ 0. (b) A state has a trace of length k from it iff
it satisfies the formula prek (M1 , φ)(k), which can be computed by reachability
analysis. Therefore, with this formula in hand, one only needs to eliminate k as a
free variable from it using universal quantification, as in ∀k ≥ 0. prek (M1 , φ)(k),
to obtain the precise set of states that satisfy EGφ in M .

Computing prek (M1 , φ)(k). Existing reachability analysis that are based on “ac-
celerations” [4, 6–8] can be used as black-boxes for computing the formula
prek (M1 , φ)(k). However, a key limitation of all these techniques is that although
they can compute the formula pre∗(M1 , φ) for interesting subclasses of systems,
on the more difficult problem of computing the formula prek (M1 , φ)(k) their
applicability is restricted to the narrow class of flat systems. Whereas, most
practical systems, such as those provided by the Fast toolkit [1] are not flat, and
are not even trace-flattable with respect to large subsets of states in the system.
A way out of this quandary is to obtain any flattening N of M1, and to com-
pute the formula prek (N , φ)(k). The presence of an infinite trace in N from any
state s implies the presence of the same trace in M1. Therefore, the set of states
that satisfy EGφ in N (as represented by the formula ∀k ≥ 0. prek (N , φ)(k))
is guaranteed to be a subset (i.e., an under-approximation) of the set of states
that satisfy EGφ in M1.

We now build upon the idea above by systematically enumerating various flat-
tenings of M1, and by accumulating the sets of states that satisfy EGφ in these

Checking Liveness Properties of Presburger Counter Systems 341

Require: A system M and a set of states φ.
Ensure: Returns a set of states, and a label approx which indicates whether the

returned set is precise or is an under-approximation of EGφ in M .
1: M1 ← refineSystem(M , φ). k ← 1. X ← ∅.
2: while not forced to stop do
3: FLAT ← All flattenings of M1 of length k
4: for all N ∈ FLAT do
5: X ← X ∨ pre∗(N ,X)
6: X ← X ∨ ∀k ≥ 0.prek (N , φ)(k)
7: if isTraceFlattening(M1, N, φ−X) then
8: return (X, precise)
9: k ← k + 1
10: return (X, under)

Fig. 2. Algorithm computeGlobalUnder

flattenings. Therefore, this accumulated set, which we call X , is a monotonically
non-decreasing under-approximation of the set of states that satisfy EGφ in M1.
In order to be systematic, we enumerate flattenings of M1 in increasing order of
length, where the length of a flattening is the number of transitions it possesses.

Termination condition. There is no obvious way to decide to stop enumerating
flattenings of M1 based just on whether the set X is still growing or has stopped
growing. Therefore, the termination condition that we actually use is as fol-
lows: when we come across a flattening N of M1 such that traces(M1 , φ −X) =
traces(N , φ −X)2, we stop, and return the current set X as the precise solution.
Our termination condition is correct for the following reason: X contains all
states that satisfy EGφ in N (in addition to states that satisfied EGφ in other
flattenings enumerated prior to N). Therefore, φ − X describes states that do
not satisfy EGφ in N , but could potentially satisfy EGφ in M1. However, since
every trace in M1 starting from states in φ − X is also present in N (as per the
termination check) these states do not satisfy EGφ in M1, either. Therefore X
represents precisely the set of states that satisfy EGφ in M1.

Figure 2 shows the pseudo-code for Algorithm computeGlobalUnder . We have
already discussed all the details of this algorithm. One point to note is line 5;
this makes sense because any state from which a state in EGφ is reachable itself
satisfies EGφ.

Illustration. Say we want to solve the property EGφ, where φ ≡ x < 10, for the
system M in Figure 1(a). The refined system M1 is shown in part (b) of the figure.
Part (c) of the figure shows a flattening N , wherein the set of states that satisfy
EGφ is x < 5. Ignoring other flattenings that might have been enumerated
before N , let us treat X as being equal to x < 5. It can be observed that
traces(M1 , φ −X) = traces(N , φ −X). Therefore the algorithm will terminate
on this input with answer (x ≥ 0) ∧ (x < 5).

2 This check is decidable provided pre∗ can be computed on the flattening N [10].

342 K.V. Lakshmi, A. Acharya, and R. Komondoor

3.2 Theoretical Claims

It is not very difficult to see that the set X maintained by the algorithm is
a monotonically non-decreasing under-approximation of the set of states that
satisfy EGφ in M . Also, that upon termination the accumulated set X contains
the precise solution. However, it is not necessarily true that in all cases where
X becomes equal to the precise solution the algorithm will detect this situation
and terminate.

A sufficient condition for the termination of the algorithm on a system M
is that (a) prek and pre∗ queries terminate on flattenings of the refined system
M1, and (b) the system M1 ≡ refineSystem(M , φ) has a flattening N such that
traces(N , φ −X) = traces(M1 , φ −X), where X is the set of states that satisfy
EGφ in N .

While this is a simple condition to state, this characterization describes a class
that is strictly broader than the class addressed by the approach of Demri et
al. [10], which targets only the class of systems M that are trace-flattable with
respect to φinit ; i.e., M needs to have a flattening N such that N exhibits all
traces that M exhibits from all states that are reachable in M .

We provide formal statements and proofs of all our claims in the associated
technical report [13].

4 Over-Approximation Approach for EG Properties

Given a counter system M and a temporal formula EGφ this algorithm first
computes the refined system M1 ≡ refineSystem(M , φ), and then iteratively
accumulates in a set Y a growing set of states that definitely do not satisfy
EGφ. Upon termination it returns φreach − Y as the precise set of states that
satisfy EGφ in M , whereas upon a forced stop it returns φreach − Y as an over-
approximation. φreach is a Presburger formula representing the set of reachable
states in M . This approach basically resembles the classical approach for solving
EG properties for finite-state systems [9], but uses reachability analysis as a
black-box to accelerate the process of adding states to Y .

4.1 Details of the Approach

Recall that a state does not satisfy EGφ in M1 iff all traces starting from it
are finite. Therefore, the algorithm starts by initializing the set Y to the set
of states that don’t satisfy φ or are “stuck” (i.e., have no outgoing transition)
in M1, since these states trivially do not satisfy EGφ (M1 could have stuck
states even if the original system M did not). Subsequently, in each iteration,
the algorithm identifies states that do not satisfy EGφ in M1, using two different
conditions as described below, and adds them to Y .

Condition 1: If all successors of a state s are in Y then s can be added to
Y . The states that satisfy this property can be identified using the following
Presburger formula:

Checking Liveness Properties of Presburger Counter Systems 343

...

grow1

Y

s21

s22

s23

s11

s12

s13

s s1 s2 sn

∀i, j ∈ Σ. ((gi ∧ fi) ∧ (gj ∧ fj [s
′′/s′]) =⇒

(s′ = s′′) ∨ (Y [s′/s] ∧ Y [s′′/s])∨
(Y [s′/s]∧¬Y [s′′/s])∨(¬Y [s′/s]∧Y [s′′/s]))

(a) (b)

Fig. 3. (a) Illustration of formula grow2. (b) Formula for φatmost one succ outside Y .

grow1 ≡ (∀s′. ((g1 ∧ f1) ∨ (g2 ∧ f2) ∨ . . . (gn ∧ fn) =⇒ Y [s′/s]))− Y

Assuming Y is a Presburger formula in the counter variables and q, grow1 is
also a Presburger formula in these same variables. Y [s′/s] represents the variant
of Y where each variable is substituted with its primed version.

Condition 2: Ignoring all concrete transitions whose target state is already
in Y , if a state s is such that (a) there is only one trace t in M1 starting
from s (not counting prefixes of this trace t), and (b) t reaches a state that
satisfies grow1 after a finite number of steps, then s can be added to Y . In the
illustration in Figure 3(a), states s, s1, s2, etc., satisfy both sub-conditions (a)
and (b) mentioned above; state s11 satisfies only sub-condition (a), while state
s21 satisfies neither of the two sub-conditions.

The states that satisfy sub-condition (a) can be identified using the following
Presburger formula:

grow2a ≡ ¬(pre∗(M1 ,¬φatmost one succ outside Y))

where φatmost one succ outside Y represents the states that have at most one
successor state that is not already in Y . Therefore, ¬φatmost one succ outside Y

represents states that have two or more successors outside Y . Therefore, the
transitive predecessors of these states are the ones that don’t belong to grow2a.

The formula for φatmost one succ outside Y is shown in Figure 3(b). Intuitively,
the part before the ‘ =⇒ ’ identifies pairs of successor states (s′, s′′) of the state
s under consideration, while the part after the ‘ =⇒ ’ requires that s and s′ be
the same state, or that at least one of them be already in Y . gi, fi are the guard
and action of transition i, respectively.

Now, sub-condition (b) above is captured by the following formula: grow2b ≡
pre∗(M1 , grow1). Therefore, the states to be in added to Y by Condition 2 are
described by the formula grow2 ≡ grow2a ∧ grow2b.

Figure 4 shows the pseudo-code for the entire algorithm. Note that the ter-
mination condition is that grow1 and grow2 are both unsatisfiable (i.e., empty).

Illustration. Consider the example system M given in Figure 1(a) and the prop-
erty EGφ, where φ ≡ x < 10. The over-approximation algorithm initializes the
set Y to x ≥ 10. In the first iteration of the loop state (x = 9) has its only

344 K.V. Lakshmi, A. Acharya, and R. Komondoor

Require: A system M and a set of states φ.
Ensure: Returns a set of states, and a label approx which indicates whether the

returned set is precise or is an over-approximation of EGφ in M .
1: M1 = refineSystem(M , φ)
2: /* Initialize Y to states that have no successors or don’t satisfy φ. */
3: Y = ¬(g1 ∨ g2 ∨ · · · ∨ gn) ∨ ¬φ
4: while (grow1 ∨ grow2) is satisfiable) ∧ not forced to stop do
5: Y = Y ∨ (grow1 ∨ grow2)
6: return (grow1 ∨ grow2) is satisfiable) ? (φreach − Y , over) : (φreach − Y , precise)

Fig. 4. Algorithm computeGlobalOver

successor (x = 10) in Y and hence will satisfy grow1. Also, the states (x ≥
5) ∧ (x < 9) have only one outgoing trace starting from them and every such
trace ends in state in x = 9. Hence states (x ≥ 5)∧ (x < 9) satisfy grow2. Hence,
Y gets expanded to x ≥ 5. In the next iteration no states satisfy grow1 or grow2,
and hence the algorithm terminates. It returns the set of reachable states that
are not in Y , namely (x ≥ 0) ∧ (x < 5).

4.2 Theoretical Claims

We have already argued informally that the algorithm (a) maintains a growing
under-approximation Y of the set of states in M1 that do not satisfy EGφ, and
(b) terminates iff Y becomes precisely equal to this set.

In order to make an intuitive argument about termination we argue termi-
nation of our algorithm on three successive classes, each one wider than the
previous one. The first class is the class of systems M such that the refined sys-
tem M1 is flat and such that pre∗ queries on it terminate. Any flat system can
be seen as a directed acyclic graph (DAG), whose elements are simple cycles or
transitions that are not part of any cycle. We argue that the algorithm “pro-
cesses” any element e, i.e., identifies all states “in” the control-states in e that
need to be added to Y , in the immediate subsequent iteration after all successor
elements of e in the DAG have been processed. Intuitively, grow1 is responsible
for processing elements that are transitions, and grow2 for simple cycles.

The next class is the class of systems M such that the refined system M1

has a trace flattening with respect to φinit and such that pre∗ queries on M1

terminate. This is a generalization of the class on which the approach of Demri
et al. [10] terminates. Our argument for this class is a simple extension of our
argument for flat systems that is based on the structure of the trace flattening
of the system M1 rather than on the structure of M1 itself.

Our final class is of systems M such that (a) pre∗ queries on the refined system
M1 terminate, (b) there exists an integer bound k, and a (finite or infinite) set
of flattenings of M1 such that each flattening N in the set contains at most k
simple cycles (each one involving an arbitrary number of control states), and
such that each trace in M1 that starts from a state that does not satisfy EGφ is

Checking Liveness Properties of Presburger Counter Systems 345

exhibited by at least one of the flattenings mentioned above. (As it was with the
under-approximation algorithm, this characterization is a sufficient condition,
and does not exhaustively cover all cases on which our algorithm terminates.)

We provide a proof sketch of the final claim above, and full proofs of all other
claims in the associated technical report [13].

An interesting question that is left to future work is to determine how the
classes of systems on which our under- and over-approximation techniques ter-
minate compare.

5 Algorithm for Full CTL

In this section we sketch our algorithm for computing the set of states in a
counter system that satisfy any given CTL property. The algorithm takes a
counter system M , a CTL temporal property ψ, and an approximation label as
input. The CTL property is assumed to be in existential normal form, where the
main operators are EG, EX (“exists next”), and EU (“exists until”). The label,
which is from the set {over , under , precise}, specifies the allowed direction of
approximation in case the set of states that satisfy ψ in M cannot be computed
precisely. The algorithm works in two passes. The first pass is a top-down pass,
where the objective is to identify the allowed direction of approximation for
each sub-property of ψ. An interesting aspect here is that ‘¬’ operators cause
the allowed direction of approximation to get reversed. In the second pass the
set of states that satisfy each sub-property is computed in a bottom-up manner.
We use the notation φi to denote the solution (set of states) computed for a sub-
property ψi of ψ. For a sub-property EGψ1, the solution is obtained by invoking
computeGlobalUnder (M, φ1) or computeGlobalOver (M, φ1), depending on the
label assigned to this sub-property in the top-down pass. A sub-property EXψi

can be solved simply as pre(M , φi). A sub-property E(ψi U ψj) can be solved
as pre∗(refineSystem(M , φi), φj). In case the underlying pre∗ black-box is not
able to terminate then the approximation label assigned to this sub-property can
be used to perform an approximated pre∗ computation. We provide a detailed
discussion of the above algorithm in the associated technical report [13].

6 Implementation and Results

We have implemented our two algorithms computeGlobalUnder and
computeGlobalOver . We use the reachability analysis black-boxes provided
by the Fast toolkit [1] in our implementations. Fast is applicable on counter
systems whose guards and actions satisfy certain constraints [6]. Fast provides
a routine for computing pre∗ formulas on systems, which necessarily terminates
on flat systems as well as on systems that have a trace flattening with respect
to φinit , but also terminates on many other systems that do not have these
properties. Fast also provides (an always terminating) routine to compute prek

formulas on simple cycles, which we extended in a straightforward way to
work on flat systems. We implemented the routine isTraceFlattening , which is

346 K.V. Lakshmi, A. Acharya, and R. Komondoor

dirty′ = 1
valid′ = 0,

invalid ≥ 1/
invalid′ = invalid + valid + dirty − 1,

q0

dirty′ = 1
valid′ = 0,
invalid′ = invalid + valid + dirty − 1,
valid ≥ 1/

invalid′ = invalid + dirty − 1,

dirty′ = 0
valid′ = valid + 1,

invalid ≥ 1/

t3 t2

t1

Fig. 5. MSI cache coherence protocol

required by Algorithm computeGlobalUnder , using the trace-flattening check
formula referred to by Demri et al. [10] and shared with us by them via private
communication.

Benchmarks Selection. The Fast toolkit comes bundled with a number of exam-
ple counter systems, which model cache coherence protocols, client-server inter-
actions, control systems for lifts and trains, producer-consumer systems, etc. For
instance, the counter system shown in Figure 5 is from this toolkit, and models
the MSI cache coherence protocol for a single cache line. The counters invalid ,
valid and dirty represent the number of processors in the respective states for
the modeled cache line.

From the 45 example systems in the bundle, we chose, using a simple sufficient
condition that we designed, 17 systems that are guaranteed to not have a trace-
flattening with respect to φinit . We chose such systems because they are outside
the class of systems addressed by the previous approach of Demri et al. [10] and
on which our approaches are known to definitely terminate. In other words, they
are the more challenging systems.

These 17 systems (and the remaining 28 in the toolkit, also) were analyzed
previously only with reachability queries; the toolkit as such does not contain
any sample temporal properties for these systems. Therefore, after studying these
systems we manually identified CTL temporal properties for these systems which
we believe would be satisfied by all the reachable states of these systems, such
that each CTL property contains an EG sub-property. We identified two proper-
ties each for two of the systems, and one each for the 15 remaining systems, thus
resulting in 19 properties. For instance, for the MSI system shown in Figure 5, the
temporal property we identified is valid ≥ 1 =⇒ A((valid ≥ 1)U(dirty = 1)).
This property states that if at some point the cache line is in the valid state in
some processor then this remains true in subsequent steps and eventually some
processor moves into the dirty state wrt this line. This property holds at all
reachable states, intuitively, because transition t1, which is the only transition
that prevents any processor from entering into the dirty state, cannot be taken
indefinitely often (due to the bound on the number of processors in any instance
of the protocol). The above property can be written in existential normal form as
(valid < 1) ∨ ¬((EG(dirty �= 1)) ∨E((dirty �= 1) U (dirty �= 1 ∧ valid < 1))).

Note that the counter systems in the Fast toolkit are actually abstractions of
the underlying protocols or mechanisms modeled by them. Therefore, in some

Checking Liveness Properties of Presburger Counter Systems 347

Under-Approximation Over Approximation

Sys #counters #transitions RT(ms) FL NFE Term RT (ms) NI Term

syn 3 3 12 1 1 yes 20 2 yes
moe 5 4 18 1 1 yes 23 2 yes
ill 4 9 120 1 9 yes 140 3 yes
mes 4 4 101 2 19 yes 135 3 yes
cen 12 8 4985 3 96 yes 1600 4 yes

tic 6 6 (TO) 12 1055943 no 480 5 yes
lift 4 5 (TO) 16 1481555 no 720 3 yes
efm 6 5 (TO) 14 1117737 no 1200 3 yes
rea 12 9 (TO) 4 1702 no 9520 7 yes
con 11 8 (TO) 3 184 no 132700 5 yes

Fig. 6. Experimental results for both algorithms. Sys - System name (short), RT -
running time in milliseconds, (TO)-timed out, FL - max. length of flattenings explored,
NFE - number of flattenings explored, Term - termination of algorithm, NI - number
of iterations.

cases, it is possible that a temporal property that we identified holds in the
actual protocol or mechanism at all reachable states, but does not hold in the
abstraction.

Since our implementation targets only EG sub-properties, in the rest of this
section we restrict our attention to the EG sub-property inside each of the CTL
properties that we identified. We call each of the 19 system-property pairs under
consideration an input pair. We provide details of each input pair, such as an
English-language description of the system and a specification of the correspond-
ing CTL property in an associated technical report [13].

Results. We ran both our algorithms on the 19 input pairs, with a uniform 1-hour
timeout. Algorithm computeGlobalOver terminated on 10 pairs, while algorithm
computeGlobalUnder terminated on 5 of these 10 pairs. Neither algorithm ter-
minated on the remaining 9 pairs within 1 hour.

We summarize the results on which at least one of our algorithms terminated
in Figure 6. Each row in the table corresponds to results from both algorithms on
an input pair. The first column in this table is the name of a system, shortened
to its first three letters (the first one, “syn”, is the MSI system). The next
two columns give information about the system. Columns 4 − 7 of the table
correspond to results from algorithm computeGlobalUnder , while columns 8−10
correspond to results from algorithm computeGlobalOver . The meanings of these
columns have been explained in the caption of the figure.

Discussion. The first five rows in the table in Figure 6 describe input pairs
on which both our algorithms terminated. We observe that the algorithm
computeGlobalOver takes more time than the algorithm computeGlobalUnder
for smaller systems. This is mainly because of the large number of pre∗ queries
issued by algorithm computeGlobalOver . But for system centralserver, shown in

348 K.V. Lakshmi, A. Acharya, and R. Komondoor

the fifth row of the table, computeGlobalUnder takes a longer time. This is be-
cause it has to explore 96 flattenings; this involves a large number of prek and
pre∗ queries to the reachability engine when compared to the number of queries
posed by algorithm computeGlobalOver in 4 iterations.

Rows 5-10 in the table are about systems on which only the over-
approximation approach terminated within the time-out. There are multiple
possible reasons for this, such as the set X not becoming precise within the time
out, or the set becoming precise but the termination condition not becoming
true. Due to the large sizes of the systems it was not possible for us to manually
determine whether the algorithm would eventually terminate on the input pairs
in these rows. Also, due to the large sizes of the computed formulas, we could not
determine how “close” the approximate solutions were to the respective precise
solutions when the timeout happened.

The 9 input pairs on which neither of our algorithms terminated within the
time-out are not discussed in Figure 6. These pairs are from the following sys-
tems: ttp2, swimmingpool, dragon, futurbus (two properties), firefly (two prop-
erties), csm, and train. One reason for non-termination of both algorithms is
the large size of some of these counter systems (e.g., ttp2 has 9 counters and
17 transitions), causing individual reachability queries to take more time, and
also more iterations to be required by the algorithms. In fact, for ttp and swim-
mingpool systems, the approximations computed by our under-approximation
algorithm were continuing to improve even after one hour. Another possible rea-
son of non-termination of the two algorithms is the worst-case scenario wherein
none of the reachable states of the system satisfy the given EG property. Both of
our algorithms are more likely to take a long time or go into non-termination in
this scenario. Again, due to the size and complexity of the systems, we were not
able to determine manually for any of these 9 input pairs whether the scenario
mentioned above held, and whether our algorithms would have eventually ter-
minated if given more time. We observe empirically that the over-approximation
algorithm terminates on a superset of inputs as the under-approximation algo-
rithm. However, as mentioned in Section 4.2, we do not have a theoretical proof
that this holds in general. However, both algorithms are useful per-se, because
there are inputs where neither of them terminates. For instance, if one wishes to
conservatively under-approximate the set of states that are live with respect to
some “good” property, they would need an over-approximation of the property
EGφ, where φ is the negation of the “good” property. However, if one wishes
to check conservatively whether all states that satisfy property φ1 also satisfy a
property EGφ2 , they would need to check if φ1 implies an under-approximation
of EGφ2 . In summary, our empirical results show the value of our techniques
in the context of analyzing natural EG properties of real pre-existing system
models. The over-approximation approach terminated on 10 out of 19 input
pairs; both algorithms take reasonable time (from a fraction of a second to a few
seconds) on the vast majority of inputs on which they did not hit the 1-hour
timeout. They provide approximate results upon timeout. In comparison with

Checking Liveness Properties of Presburger Counter Systems 349

pre-existing approaches [10, 11] we are the first to report empirical evidence on
real examples using an implementation.

7 Related Work

Research work on model-checking CTL properties in counter systems has pro-
gressed along side the developments in techniques to answer reachability on these
systems. The approach of Bultan et al. [14] is an early approach; it does not use
accelerations [4, 6–8] to traverse sequences of concrete transitions at one go, and
is subsumed by subsequently proposed approaches [10, 11] that do use accelera-
tions. These approaches both build a summary of all possible traces in the given
counter system using accelerations. This summary is then checked against the
given temporal property. The two key technical differences of our approach over
these are: (a) Rather than attempting to summarize all the traces in the system,
we use refinement and then accelerations to characterize only the traces that sat-
isfy the given property. (b) We use repeated reachability queries, and not a single
phase of applying accelerations. The consequences of these differences are as fol-
lows. Due to features (a) and (b) above, as discussed in Sections 3.2 and 4.2, we
target systems beyond trace flattable systems, and terminate with precise results
on a wider class of systems than the approach of Demri et al. [10]. The practical
importance of this is borne out by our empirical studies. Feature (a) also en-
ables us to solve arbitrarily nested CTL properties, while feature (b) enables us
to compute approximated solutions in cases where a precise computation may
not be possible, which is very useful in practice. The previous approaches do
not possess these advantages. Finally, the previous approaches did not provide
empirical results using implementations.

There are a few other noteworthy points about the previous approaches
mentioned above. The approach of Bozelli et al. [11] does not have the finite-
branching restriction. Also, although neither previous approach addresses arbi-
trarily nested CTL properties, they address certain operators of CTL* that we
do not address.

Cook et al. [15, 16] proposed a technique to model check arbitrarily nested
temporal properties in a restricted class of C programs. The major difference
is that we address the “global” model-checking problem, wherein we return a
formula that encodes all states that satisfy a property. In their case they check
whether a given set of states satisfies a property. Also, they do not have capa-
bilities for approximations. Nevertheless, an interesting investigation for future
work would be to compare the classes of systems targeted by them and by us.

Acknowledgments. We thank A. Finkel and J. Leroux for their suggestions
and for their help with the Fast tool. We also acknowledge Indian Space Reseach
Organisation (ISRO) for providing partial financial support for this work.

350 K.V. Lakshmi, A. Acharya, and R. Komondoor

References

1. FASTer, http://altarica.labri.fr/forge/projects/faster/wiki/
2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

3. Esparza, J.: Decidability and complexity of petri net problems– An introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

4. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and pres-
burger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

5. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.A.: Counter machines and
verification problems. Theoret. Comp. Sc. 289(1), 165–189 (2002)

6. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. Technical Report, Labor. Specif. et Verif. LSV (2002)

7. Darlot, C., Finkel, A., Van Begin, L.: About fast and trex accelerations. Electronic
Notes in Theoretical Computer Science 128, 87–103 (2005)

8. Bozga, M., Ĝırlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009),
doi:10.1007/978-3-642-00768-2 29

9. Clarke, J.E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (1999)
10. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Towards a model-checker

for counter systems. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 493–507. Springer, Heidelberg (2006)

11. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS,
vol. 7148, pp. 88–103. Springer, Heidelberg (2012)

12. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

13. Lakshmi, K.V., Acharya, A., Komondoor, R.: Checking temporal proper-
ties of presburger counter systems using reachability analysis. CoRR (2013),
http://arxiv.org/abs/1312.1070

14. Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state pro-
grams using presburger arithmetic. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 400–411. Springer, Heidelberg (1996)

15. Cook, B., Koskinen, E., Vardi, M.: Temporal property verification as a program
analysis task. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 333–348. Springer, Heidelberg (2011)

16. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: Proc.
Conf. on Progr. Lang. Design and Impl. (PLDI), pp. 219–230 (2013)

http://altarica.labri.fr/forge/projects/faster/wiki/
http://arxiv.org/abs/1312.1070

A Symbolic Algorithm for the Analysis

of Robust Timed Automata

Piotr Kordy2, Rom Langerak1, Sjouke Mauw2, and Jan Willem Polderman1

1 University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
2 Université du Luxembourg, rue Richard Coudenhove-Kalergi 6,

L-1359 Luxembourg, Luxembourg

Abstract. We propose an algorithm for the analysis of robustness of
timed automata, that is, the correctness of a model in the presence of
small drifts of the clocks. The algorithm is an extension of the region-
based algorithm of Puri and uses the idea of stable zones as introduced
by Daws and Kordy. Similarly to the assumptions made by Puri, we
restrict our analysis to the class of timed automata with closed guards,
progress cycles, and bounded clocks. We have implemented the algorithm
and applied it to several benchmark specifications. The algorithm is a
depth-first search based on on-the-fly reachability using zones.

1 Introduction

One of the most successful current paradigms for the specification and analy-
sis of real-time systems is the timed automata model [2]. Timed automata are
automata extended by clock variables that can be tested and reset. Numerous
real-time systems have been specified and analysed using the Uppaal tool [3,17]
and the approach can be said to be mature and industrially applicable.

An important issue for timed automata specifications is robustness: what
happens if there are small imprecisions in the clocks or in the tests on clocks?
It appears that in that case more states are reachable, which means that a
specification that has been proven to be correct may no longer be correct in
the presence of imprecisions, even if they are arbitrarily small. Of course, this
has disturbing implications for the implementation of systems, as in real systems
imprecisions cannot be avoided. This important problem has been first addressed
in the seminal work by Puri [18], later improved and extended by De Wulf et
al. [11]. Their main result is the introduction of an enlarged semantics of timed
automata. In the enlarged semantics all clocks are allowed to drift by a small
(positive) perturbation ε, in order to model the imprecisions of the clocks. A
timed automaton is said to be implementable if there exists a value for ε for
which the behaviour of the timed automaton conforms to the specification under
the enlarged semantics.

Robust model-checking has been solved for safety properties [18,11] and for
richer linear-time properties [4,5]. The analysis and algorithms provided by these
papers are based on region automata. As the number of regions grows exponen-
tially with the size of the largest constant used in a timed automaton, region-
based algorithms are not really suitable for a practical implementation. What

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 351–366, 2014.
c© Springer International Publishing Switzerland 2014

352 P. Kordy et al.

would be needed is a symbolic analysis in terms of zones, which form the funda-
mental concept for the implementation of a tool like Uppaal [3]. A first step in
this direction has been provided by Daws and Kordy [8], who defined the notion
of stable zones and related it to the region-based approach of Puri et al. [18,10].
The algorithm of Daws and Kordy, which uses the concept of a stable zone, works
only for flat timed automata, i.e., automata that have no nested cycles. This re-
striction significantly limits the practical usability of the algorithm. One solution
could be to transform the timed automaton into a flat timed automaton using
results from Comon and Jurski [7]. Unfortunately, the resulting flat timed au-
tomaton may be exponentially larger than the starting timed automaton. In this
paper we show how the stable zone concept leads to a practical implementation.
We propose a fully symbolic algorithm to solve the robust reachability problem.
To validate practical usability of the algorithm, we implemented a simple tool
and performed a number of experiments.

Another solution to the robustness problem was suggested by Dima [13], who
proposed to combine the symbolic reachability algorithm with cycle detection
and expanding borders of the zones. That algorithm is an improvement over the
purely region-based algorithm of Puri. But at one point it looks for bordering
regions to the reachable set of states and checks if they are on a strongly con-
nected component. So, similarly to the region-based algorithm, the running time
may depend on the size of the constants used in the timed automaton.

The rest of the paper is structured as follows: in Section 2 we provide the
necessary background on timed automata, extended semantics, and stable zones.
In Section 3 we present a reachability algorithm based on stable zones, which is
proven correct in Section 4. Section 5 contains the results of experiments with
the implementation, and Section 6 contains the conclusions and perspectives.

2 Preliminaries

2.1 Timed Automata (TA)

Let X = {x1, . . . , xn} be a set of variables, called clocks. In this work we will
only consider bounded clocks, meaning that there is an upper bound M ∈ N
on the clock values. A clock valuation is a function v : X �→ [0, M] ⊂ R, which
assigns to each clock a non-negative value v(x) that is smaller than or equal to
this upper bound. By RX

≥0 we denote the set of all valuations over X .

Definition 1 (Closed Zones). A closed zone over a set of clocks X is a set
of clock valuations that satisfy constraints defined by the grammar g ::= x � d |
x− y � d | g∧g, where x, y ∈ X , d ∈ Z and �∈ {≤,≥}. The set of closed zones
over X is denoted by Z(X).

To simplify notation, we will often simply write the constraint itself to denote
the set of clock valuations that it implies. Further, we will use familiar notation,
like a ≤ x ≤ b, to denote composite constraints, such as (a ≤ x) ∧ (x ≤ b).
We will often write Z instead of Z(X) if X can be derived from the context.

A Symbolic Algorithm for the Analysis of Robust Timed Automata 353

A rectangular zone Z is a closed zone with no bounds on clock differences, i.e.,
with no constraints of the form x − y � d. The set of rectangular zones over X
is denoted by ZR(X). The set ZU (X) denotes the set of upper zones, that is,
rectangular zones with no lower bounds on the clocks.

Definition 2 (TA). A timed automaton [2] is a tuple A = (X , Q, I, q0, E) where
– X is a finite set of clocks,
– Q is a set of locations,
– I : Q → ZU (X) is a function that assigns to each location an invariant I(q),
– q0 ∈ Q is the initial location,
– E is a finite set of edges. An edge is a tuple of the form e = (q, Zg, X, q′),

where q, q′ are the source and target locations, Zg ∈ ZR(X) is an enabling
guard and X ⊆ X is the set of clocks to be reset.

We use the word location to denote a node of the automaton, rather than the
more commonly used word state, which we will use in the semantics to denote
a pair of a location and a valuation. An example of a timed automaton can be
seen in Figure 1. The set of clocks is X = {x1, x2, x3} and the set of locations is
Q = {q1, q2, q3}. The initial location is q1. The arrows represent the set of edges
E . For example in the edge from q1 to q2 the guard requires 2 ≤ x1 ≤ 4, and,
when taking this edge, clock x1 will be reset (X = {x1}). In this example, we
ignored the potential use of invariants.

2.2 Semantics

The semantics of a timed automaton is defined as a transition system, where a
state (q, v) ∈ Q × RX

≥0 consists of the current location and the current values
of the clocks. There are two types of transitions between states: the automaton
may either delay for some time (a delay transition), or follow an enabled edge
(an action transition) while resetting some clocks.

For t ∈ R, we define the valuation v + t as follows: for all x ∈ X , (v + t)(x) =
v(x) + t. This expression is only defined if for all clocks x, 0 ≤ v(x) + t ≤ M .
We sometimes write v − t for v + (−t). For X ⊆ X , v[X := 0] is the valuation
such that v[X := 0](x) = 0, for x ∈ X , and v[X := 0](x) = v(x), for x ∈ X \ X .
We denote the valuation that assigns 0 to every clock by 0.

Definition 3 (Standard semantics). The standard semantics of a timed au-
tomaton A = (X , Q, I, q0, E) is a transition system [A] = (S,→), where states
are pairs (q, v) ∈ S, with q ∈ Q, v ∈ I(q). The initial state is s0 = (q0,0), i.e.,
the initial location with all clocks equal to zero. For t ∈ R≥0 and e ∈ E, the

transition relation · ·→ · : S × (R≥0 ∪ E)× S is defined by:

– (q, v)
t→ (q, v + t), if v + t ∈ I(q) , t ∈ R≥0,

– (q, v)
e→ (q′, v[X := 0]), if e = (q, Zg, X, q′) ∈ E, v ∈ Zg, v[X := 0] ∈ I(q′).

Given a timed automaton, the interesting question is which states are reachable
from the initial state. Reachable states may be used to characterize safety prop-
erties of a system. Formally, the set of reachable states of a timed automaton

354 P. Kordy et al.

is the smallest set U ⊆ S of states containing s0 = (q0,0), and satisfying the

following condition: if (q, v)
t→ (q′, v′) for some t ∈ R≥0 or (q, v)

e→ (q′, v′) for
some e ∈ E , and (q, v) ∈ U , then (q′, v′) ∈ U .

Let us look again at the example in Figure 1. To simplify notation, we will
denote the values for the consecutive clocks by a vector [x1, x2, x3]. The initial
state is (q1, [0, 0, 0]). Here is an example of a sequence of states implied by the
standard semantics [A]:

(q1, [0, 0, 0])
2→ (q1, [2, 2, 2])

e1→ (q2, [0, 2, 2])
e2→ (q3, [0, 0, 2])

e3→ (q1, [0, 0, 0]),

where ei denotes an edge from a location qi. Note that this is the only possible
sequence that will get us back into the initial location (disregarding splitting the
first transition into separate delay steps). As we can see, it is not possible to
reach the Err location using the standard semantics [A].

2.3 Symbolic Semantics

In general, the semantics [A] has a non-countable number of states. To be able to
reason about these states, abstractions are used which are based on zones [14].
This results in a symbolic semantics where a symbolic state S is a pair (q, Z) ∈
Q ×Z consisting of a location and a zone.

We define time passing for zones: ↑Z = {v + t ∈ RX
≥0 | v ∈ Z ∧ t ∈ R≥0}.

Similarly, we define ↓Z = {v − t ∈ RX
≥0 | v ∈ Z ∧ t ∈ R≥0}. It can be shown

that the set of zones Z(X) is closed under these operations.

Definition 4 (Symbolic semantics). The symbolic semantics [[A]] is a tran-
sition system (Q ×Z ,⇒) with initial state (q0, {0}), where {0} is the zone in
which all clocks are equal to zero. For e ∈ E, transitions are defined by the rules:

– (q, Z)
↑⇒ (q, I(q) ∩ ↑Z),

– (q, Z)
e⇒ (q′, Z ′), where e = (q, Zg, X, q′) is an edge and Z ′ = {v′ | ∃v ∈

Z, (q, v)
e→ (q′, v′)} �= ∅.

To differentiate between states of standard and symbolic semantics, we will refer
to the latter as symbolic states. Such a symbolic state can be interpreted as a
set of states. Given state s = (q, x) and symbolic state S = (q′, Z) when q = q′

and x ∈ Z we will abuse notation and write s ∈ S. Similarly, given S = (q, Z)
and S′ = (q, Z ′) we say that S ⊆ S′ when Z ⊆ Z ′ and ↑S = (q, ↑Z).

For timed automata with bounded clocks, the symbolic semantics defined
above is sound, complete and finite [2]. For timed automata with unbounded
clocks, extrapolation can be used to ensure finiteness of the symbolic seman-
tics [3]. To illustrate the symbolic semantics, we show a sequence of symbolic
states of the timed automaton from Figure 1.

(q1, {x1=x2=x3=0}) ↑⇒ (q1, {x1=x2=x3})
e1⇒

(q2, {x1=0, x2=x3, 2 ≤ x2 ≤ 4}) ↑⇒ (q2, {x2=x3, 2 ≤ x2 − x1 ≤ 4}) e2⇒

(q3, {x1=x2=0, x3=2}) ↑⇒ (q3, {x1=x2=x3 − 2}) e3⇒ (q1, {x1=x2=x3=0})
Note that the Err location is again not reachable.

A Symbolic Algorithm for the Analysis of Robust Timed Automata 355

2.4 Extended Semantics

The semantics of timed automata makes unrealistic assumptions because it re-
quires instant reaction time and clocks that are infinitely precise. To remedy
these limitations, we give the parametric semantics introduced by Puri [18] that
enlarges the (normal) semantics of timed automata. This semantics can be de-
fined in terms of timed automata, extended with a small, positive, real valued
parameter, denoted ε.

Definition 5 (Extended semantics.). Given parameter ε, the extended se-
mantics [A]ε is a transition system (S,�ε) with initial state s0 = (q0,0). For
t ∈ R≥0 and e ∈ E, transitions are defined by the rules:

– (q, v)
t�ε (q, v′) if v′ ∈ I(q) and ∀x ∈ X v′(x) − v(x) ∈ [(1 − ε)t, (1 + ε)t],

– (q, v)
e�ε (q

′, v[X := 0]), if e = (q, Zg, X, q′) ∈ E, v ∈ Zg, v[X := 0] ∈ I(q′).

Note that the above definition allows perturbation to grow with time. If we
substitute ε by 0, then we obtain the standard semantics. Let Sε denote the set of
states reachable using transitions �ε in extended semantics [A]ε. Clearly, the set
of reachable states U ⊆ S in standard semantics [A] is a subset of Sε. Calculating
Sε is undecidable for more than two clocks [20]. As a solution, Puri has proposed
to calculate the set S∗ = lim

ε→0
Sε, which equals

⋂
ε>0 Sε, and represents the set

of states that are reachable for an arbitrarily small ε.
Looking again at the example in Figure 1, for any small ε > 0 we have the

following sequence of states:

(q1, [0, 0, 0])
2�ε (q1, [2, 2− 2ε, 2− 2ε])

e1�ε (q2, [0, 2− 2ε, 2− 2ε])
2ε�ε (q2, [2ε, 2, 2])

e2�ε (q3, [2ε, 0, 2])
e3�ε (q1, [2ε, 0, 0])

2−2ε� ε (q1, [2, 2− 4ε + 2ε2, 2− 4ε + 2ε2]) �ε

. . . �ε (q1, [4ε, 0, 0]) �ε . . . �ε (q1, [n2ε, 0, 0]), where n ∈ N≥2.

Note that after one cycle we reach the state (q1, [2ε, 0, 0]), which is not reachable
in [A]. Following the same sequence of edges n times allows us to accumulate
the small imprecision and reach state (q1, [n2ε, 0, 0]). For any value ε we can find
sufficiently large n such that n2ε ≥ 2, so the Err location is reachable in S∗.

Puri’s approach [18] to calculate S∗ is based on the concept of a region.
We will briefly explain his approach and indicate possibilities for improvement.
For arbitrarily small ε, the geometrical distance between clock valuations in
(q1, [n2ε, 0, 0]) and (q1, [(n+1)2ε, 0, 0]) is small. Intuitively, if two clock valuations
are close enough, we say that states are in the same region. By close enough we
mean that they give to each clock the same integral part and when the clocks
are sorted according to the fractional part of their valuation, they will form the
same sequence of clocks. Consequently, regions form an equivalence relation on
the set of states. Regions are interesting because states in the same region will
give rise to similar behaviours, meaning that the same transitions are available.
The region graph is a graph where the nodes are regions and there exists an
edge between regions c1 and c2 if ∃s1 ∈ c1 s2 ∈ c2 such that s1 → s2. The states
(q1, [n2ε, 0, 0]) and (q1, [(n + 1)2ε, 0, 0]) would be on a cycle in the region graph.
For a precise description of region graphs we refer to [2,3].

356 P. Kordy et al.

Puri [18] shows that being on a cycle in a region graph is a necessary and
sufficient condition to accumulate errors due to clock drift. Based on this ob-
servation, he proposes an algorithm to calculate S∗. The algorithm does normal
reachability analysis and adds regions that are on a cycle in a region graph and
have some common part with the set of states calculated so far. To avoid the
problem of an infinite number of possible cycles in the region graph, he uses
strongly connected components.

This way, Puri reduced the problem of finding the set S∗ to the problem
of finding all reachable strongly connected components on the region graph of
a timed automaton and calculating normal reachability, and thus he does not
need to use extended semantics in his algorithm.

Though of conceptual value, this algorithm is not suitable for implementation,
since the number of regions is exponentially large: O

(
|X |!M |X |) [2]. In order to

obtain a practical, more efficient robustness algorithm, we need an analysis in
terms of zones [21].

To summarize, we have introduced standard semantics, which has an infinite
number of possible states. The symbolic semantics uses zones to reduce the
number of states to a finite amount of abstract states and this is the semantics
used in any practical implementation. The last one is the extended semantics
that allows the clocks to drift in time, which is undecidable in general for a given
value of ε, but which can be calculated if ε is infinitely small. In the rest of the
paper we will show how to calculate S∗ using abstractions based on zones rather
than on regions.

2.5 Stable Zones

In this section we briefly recall the most important notions concerning the con-
cept of stable zones as introduced in [8]. Note that a stable zone is a set of states,
not a set of valuations. Stable zones are defined for edge cycles.

Definition 6 (Edge cycle). An edge cycle of a timed automaton A is a finite
sequence of edges σ = e1 . . . ek such that the source location of e1 is the same as
the destination location of ek. A progress cycle is an edge cycle where each clock
is reset at least once.

Following the assumptions in previous work on robustness [18,11,8], we will
only consider automata in which all edge cycles are progress cycles.

To simplify notation, given a sequence of edges σ = e1 . . . ek, we will write
σ⇒

for
↑⇒ e1⇒ ↑⇒ e2⇒ ↑⇒ . . .

↑⇒ek⇒ ↑⇒ and
σ→=

t0→e1→ t1→ . . .
ek→ tk→ for any t0, t1 . . . tk ∈ R≥0.

Definition 7 (Stable zone). A stable zone for an edge cycle σ in a timed
automaton is the largest set of states Wσ ⊆ Q × RX

≥0 such that

∀s ∈ Wσ ∃s1, s2 ∈ Wσ : s1
σ→ s

σ→ s2.

Thus, a stable zone Wσ is a set of states such that if we cycle (forward or back-
ward) along an edge cycle σ we have the possibility to stay inside Wσ. Intuitively

A Symbolic Algorithm for the Analysis of Robust Timed Automata 357

this allows infinite cycling and as a consequence arbitrary accumulation of small
imprecisions in clock drifts. This has been formally shown in [8], which can be
summarized in the following lemma:

Lemma 1. For any s, s′ ∈ Wσ and for any ε > 0, s �ε�ε . . . �ε s′.

Lemma 1 states that, given an arbitrarily small ε, starting from any state in Wσ,
we can reach any other state in Wσ in the extended semantics [A]ε. Therefore,
during extended reachability analysis, we can add stable zones as a whole in
a similar way as Puri’s algorithm adds strongly connected components of the
region graph.

q1

q2

q3

Err

x3 := 0 x3 = 2

x1 := 0
x1 ≥ 2
x1 ≤ 4

x2 := 0
x1 ≤ 2
x3 ≤ 2

x3 = 0
x1 ≥ 2

0.5

1

1.5

2

x2

0.5 1 1.5 2
x1

c

c′

Wσ \ c ∪ c′

Fig. 1. Timed automaton (left) and graph of S∗(right). The graph shows a part of S∗

for location q1 and clock value x3 = 0.

Looking at the example in Figure 1, we can see a timed automaton on the left
side. On the right side, the three grey areas represent the set S∗ for location q1
and clock value x3 = 0. For this clock value, the only reachable state in standard
semantics on the graph is (q1, [0, 0, 0]). In order to illustrate Puri’s algorithm,
we divided the grey area in three subareas. The areas c and c′ are regions that
are on a cycle in the region graph, meaning that from any state in c, we can
reach some other state c by taking at least one edge transition. For example
(q1, [0.5, 0.2, 0])

e1e2e3→ (q1[0.5, 0.5, 0]).
Puri’s algorithm would calculate S∗ in the following way: state (q1, [0, 0, 0])

would be added by standard reachability. Next, region c would be added because
it is on a cycle in the region graph. After that, region c′ would be added because
c ∩ c′ �= ∅ and c′ is also on a cycle. The lighter shaded area would be added
at the end, by checking what states are reachable from newly added regions.
In contrast, the algorithm from [8] would add the whole grey area in one step
because it lies inside a stable zone.

To show how to calculate stable zones in an efficient way, we introduce some
additional notation. Let e = (q, Zg, X, q′) be an edge. We define poste((q, Z)) =

(q′, ↑Z ′), where (q, Z)
e⇒ (q′, Z ′). In other words, for S ∈ Q × Z, poste(S) is a

symbolic state that contains all states that can be reached from the state S by

358 P. Kordy et al.

taking edge e and later allowing time to pass. Similarly, we define pree((q
′, Z)) =

(q, ↓Z ′), where Z ′ = {v | ∃v′ ∈ Z, (q, v)
e→ (q′, v′)}. For sequence of edges

σ = e1 . . . en, we define as postσ(S) = posten(. . . poste1(S)) and preσ(S) =
preen(. . . pree1(S)).

The following lemma from [8] gives a feasible algorithm to calculate stable
zones as a fixpoint:

Lemma 2. Wσ = νS.(postσ(S) ∩ preσ(S)) = (νS.postσ(S)) ∩ (νS.preσ(S)).

The ν operator is the greatest fixpoint operator from �-calculus. We need this
operator because a stable zone is defined as a maximal set. Intuitively, we need
postσ and preσ to ensure existence of predecessors and successors for any state
in Wσ. The algorithm proposed in [8] starts from the idea that all stable zones
are calculated a priori, on the basis of all edge cycles σ in the timed automaton.
Thus, the approach works only for flat timed automata (automata without nested
cycles). To extend the algorithm to non-flat timed automata is not trivial. For
example, it is not enough to consider only minimal edge cycles. It is possible
that two edge cycles σ1 and σ2 both have an empty stable zone, whereas the
edge cycle σ1σ2 has a non-empty stable zone. In the next section we present
an algorithm that uses the concept of stable zones. but calculates them using
fixpoint calculation.

3 A Symbolic Algorithm for the Extended Semantics

The purpose of the algorithm is to calculate the reachability relation for the
extended semantics. It means that, given a state Goal and an initial state S0, the
algorithm will check if the Goal state is reachable for an arbitrarily small value
of ε > 0 under extended semantics [A]ε. This can be achieved by performing
a normal reachability analysis in [[A]] while ensuring that all reachable stable
zones are added. We will detect that we touched a potential stable zone when
we reach a symbolic state that we have seen before. Given a symbolic state
potentially touching a stable zone (or zones), we need to do the greatest fixed
point calculation, described in detail in Section 3.2 (function AllSZones).

To make the algorithm more efficient we try to limit the set of states/edges
for which we have to do the fixpoint calculation by grouping locations together
into strongly connected sets – SCSU). SCSU is a minimal set of locations with
the property that, if we start with any reachable state in these locations and
follow any path that returns to the same location, we will not visit any location
outside SCSU . Given e = (q, Zg, X, q′) we say that e 	 SCSU if q ∈ SCSU and
q′ ∈ SCSU . Similarly σ 	 SCSU if σ = e1 . . . en and ∀1≤i≤n ei 	 SCSU .

Definition 8 (Strongly Connected Set – SCSU). Let U ⊆ S be a set of states
in [A]. SCSU ⊆ Q is the minimal set of locations q, such that ∀(q, v), (q, v′) ∈ U
such that (q, v)

σ→ (q, v′) it holds that σ 	 SCSU , and ∀(q, v) ∈ U : q ∈ SCSU

To find all such SCSU sets, we will combine the depth-first search reachabil-
ity algorithm for timed automata and Tarjan’s algorithm [19] to find strongly
connected components.

A Symbolic Algorithm for the Analysis of Robust Timed Automata 359

3.1 The Main Algorithm

We use the following notation: U ,U ′,Ucurr,Uprev,Useen ⊆ Q × Z, are sets of
symbolic states; S, S′, S′′, S0,Goal ∈ Q×Z are symbolic states; Qmark, SCSU ⊆ Q
is a set of locations; q ∈ Q is a location; ST,Open are stack structures holding
symbolic states. We can do typical operations on stack structures: ST.push(S)
will add S at the top of ST, and S := ST.pop() will remove the symbolic state
from the top of ST and store it in S. For each symbolic state S we will store the
edge by which it was reached, and two integers, S.index and S.lowlink. The integer
variable index ∈ Z is used to associate a unique integer value to each symbolic
state; variable lowlink ∈ Z holds the lowest value of index of the state that we
can reach from the current state. lowlink and index have direct equivalents in
Tarjan’s algorithm [19].

The algorithm takes as input initial symbolic state S0 and the symbolic goal
state Goal. The algorithm will return true, if Goal ⊆ S∗ and false otherwise.
The main algorithm is a depth-first search reachability algorithm with structures
typical of Tarjan’s algorithm [19]. The pseudo code is presented in Algorithm 1.

To find S∗, the algorithm needs to find all stable zones that touch the set
of reachable states. Unfortunately, we cannot calculate the stable zones by an a
priori analysis of the edge cycles of the timed automaton as there are potentially
infinitely many of them. Calculating stable zone Wσ only for the case where σ
is a simple cycle (a cycle with no repeated nodes or edges) is not enough: simple
cycles may have empty stable zones whereas combinations of them may have
non-empty stable zones.

The approach we take is to do a depth first search exploration of the automa-
ton and, for locations that we visit more than once, we calculate the set of stable
zones (function AllSZones). Calculating AllSZones, for location q, is expensive
if we do it for the whole automaton. To speed things up, we exclude locations
from which we cannot go back to the starting location q. We do it by grouping
locations into SCSU and limit AllSZones to one SCCU at a time.

The way we calculate all sets SCSU is similar to Tarjan’s algorithm. The
integer S.index numbers symbolic states in the order in which they were explored
and lowlink is equal to index initially. It is updated to be the lowest index of
states reachable from the given state. Each newly explored state is put on the
stack ST. We remove states from ST only when we finished exploring a given
state’s successors and its lowlink equals its index. We also maintain a list of Qmark

locations. A location is put into Qmark when there may be a potential stable zone
passing through the location. This will be the case when the state is contained
in some other state that we have seen before. After Qmark and SCSU are created,
we call AllSZones.

3.2 Calculation of Stable Zones

The function AllSZones, called with arguments (SCSU , q), calculates a set of sta-
ble zones passing through a given location q. AllSZones is a fixpoint calculation
of states in location q. Intuitively, fixpoint calculation is a result of Lemma 2.

360 P. Kordy et al.

Algorithm 1. DFS Reachability Algorithm based on Tarjan’s algorithm

function Reach(S0,Goal : Q× Z): B
U := ∅; index := 1; ST := ∅; Qmark := ∅ // Initialisation

return Search (↑S0,Goal) // Calling main function

function Search(S,Goal : Q× Z): B
if Goal ⊆ S: return true
else:

U := U ∪ {S} // Mark S as visited

ST.push(S) // Push S on the stack

S.index := index // Set the depth index for S
S.lowlink := index // Initialise lowlink for S
index := index+ 1

foreach S′, e: S e⇒ ↑⇒ S′do // Consider successors of S
if S′ ∈ U:

if ∃S′′ ∈ ST such that S′ ⊆ S′′: // Is it backedge?

S.lowlink := min(S.lowlink, S′′.lowlink)
q := location of S
Qmark := Qmark ∪ {q} // Mark q for stable zones

else: // S′ has not been encountered

if Search (↑S′,Goal): return true
S.lowlink := min(S.lowlink, S′.lowlink)

if S.lowlink == S.index: // Is it a root node?

SCSU := ∅ // Set of locations SCSU
repeat // Construct SCSU

S′ := ST.pop()
q := location of S′

SCSU := SCSU ∪ {q}
until S’==S
foreach q ∈ Qmark ∩ SCSU do

U ′ := AllSZones (SCSU , q) // Get stable zones for SCSU
foreach S′ ∈ U ′do

if S ∩ S′ �= ∅ and S′ /∈ U:
if Search(↑S′,Goal): return true

return false

The fixpoint calculation uses two sets of symbolic states: Uprev and Ucurr to store
states at location q. Ucurr is initialised with (q, Z∞), where Z∞ is a zone con-
taining all clock valuations, that is a zone with an empty set of constraints. We
maintain the set of states that we visited in this iteration step in the set Useen.
The stack Open is similar to the stack ST. It holds the states that have their
successors processed. The calculation is finished when Uprev = Ucurr. In each
iteration step we calculate the set of reachable states from Uprev. In Ucurr we
store newly reached states for location q. We limit the generation of successors
to the locations from SCSU , that is, we consider edge e only if e 	 SCSU . When
Uprev = Ucurr, for each S ∈ Ucurr, we calculate the pre step and add the resulting
state to the Open list.

A Symbolic Algorithm for the Analysis of Robust Timed Automata 361

Algorithm 2. Function AllSZones(SCSU : 2Q, q : Q): 2Q×Z

Uprev := ∅; Ucurr := {(q, Z∞)}
while Uprev �= Ucurr:

Uprev := Ucurr

Ucurr := ∅; Open := ∅; Useen := ∅
foreach S ∈ Uprev s.t. e 	 SCSU : and S

e→ S′ and S′ /∈ U do
Open.push(↑S′)

while Open �= ∅:
S′ :=Open.pop()
if S′.location == q:

σ := edge cycle by which we arrived to S′ from location q
if ∀S ∈ Ucurr : preσ(S

′) � S:
Ucurr := Ucurr ∪ {preσ(S′)}

Useen := Useen ∪ {S′}
foreach S′ e→ S′′: e 	 SCSU do

if S′′ /∈ U ∪ Useen:
Open.push(↑S′′)

return Uprev

3.3 Complexity

Checking reachability of a state in a timed automaton using semantics [A] is a
PSPACE-complete problem [2]. Let P be the time needed for checking reach-
ability of a state. We will analyse the complexity of our algorithm relative to
P . Let n be the number of clocks, k be the highest constant appearing in the
specification, and m the number of locations in timed automaton A. In the pes-
simistic case, we may have to call AllSZones for each location and with SCSU
containing all locations. To calculate AllSZones we may need k cycles, as a
stable zone may shrink only by one time unit for a computation cycle. A small
improvement can be achieved thanks to the result presented in [16] in Lemma
2 on page 10. It states that if the fixpoint calculation of a stable zone has not
finished after n2 cycles then the stable zone is empty. Thanks to that we can
limit the number of iterations in a fixpoint calculation to n2. Thus, the worst
case scenario complexity is O

(
P n2m

)
.

4 Correctness of the Algorithm

In this section we prove that the algorithm is correctly calculating the set of
reachable states S∗. The following lemma shows that by partitioning the loca-
tions into SCSU , we will not omit any stable zones during calculations.

Lemma 3. Let U ⊆ S be a set of reachable states in [A], and Wσ be a stable
zone, σ = e1 . . . en, and Wσ ∩ U �= ∅. If ei 	 SCSU for some 1 ≤ i ≤ n then
∀1≤j≤n ej 	 SCSU .

362 P. Kordy et al.

Proof. Let qi be the source location of ei. Let (qi, v) ∈ Wσ ∩ U and qi ∈ SCSU .
From Definition 7 it follows that there exists (qi, v′) such that (qi, v′) ∈ Wσ ∩ U
and (qi, v)

σ→ (qi, v′). Then the lemma follows directly from Definition 8.

The following theorem shows that if we call AllSZones (SCSU , q) then all stable
zones passing through location q will be included in the result.

Theorem 1. Let R be the result of AllSZones, called with input (SCSU , q), as
presented in Algorithm 2. Then for all stable zones Wσ passing through location
q, there exists S ∈ R such that Wσ ⊆ S or Wσ is reachable from S.

Proof. We will prove this by induction on the number of times the while loop
has been executed. Let Ui denote Uprev after the ith iteration of the while loop.
Initially U0 = (q, Z∞), so it trivially contains any possible stable zone passing
through location q. Now let us assume that there exists S ∈ Ui such that Wσ ⊆ S
or Wσ is reachable from S. Inside a while loop we explore all states having
locations from SCSU . From Lemma 3, we know that we will be able to follow σ
or any other edge cycle. From the properties of stable zones, we know that there
exists U ′ such that Wσ ∈ U ′ and U ′ will be added to the Open stack. If U ′ was
reached using σ then Ui+1 will contain preσ(Wσ) = Wσ. If U ′ was reached using
some other path σ′ 	 SCSU , then we know that preσ′(Wσ) ∩ Wσ will be added
to Ui+1 and we know that we can reach Wσ from Ui+1 using σ′ which concludes
the inductive proof.

The following theorem shows that the sequence of sets U1, . . . ,Ui calculated in the
function AllSZones is non-increasing. This shows that the function AllSZones

terminates.

Theorem 2. Let Ui denote Uprev after the ith iteration of the while loop in
the function AllSZones (SCSU , q) presented in Algorithm 2. Then ∀i>0∀S ∈
Ui+1 ∃S′ ∈ Ui such that S ⊆ S′.

Proof. In order to reduce the number of quantifiers, we will use s ∈ U to denote
∃S ∈ U : s ∈ S.

The proof will proceed by induction over the loop number i. Initially U1 =
(q, Z∞), so trivially all elements of U2 are included in U1. Let us assume that
∀1≤k<i ∀S ∈ Uk+1 ∃S′ ∈ Uk such that S ⊆ S′. We need to show that this
property holds for k = i.

Because all elements of Ui+1 are reachable from U1, ∀(q, Zi+1) ∈ Ui+1 there
exists a trajectory (q, Z1) →∗ (q, Z2) →∗ . . . → (q, Zi) →∗ (q, Zi+1) such that
∀1≤j≤i+1 (q, Zj) ∈ Uj . Using the induction assumption, we know that (q, Zi) ∈
Ui−1. We explore all possible paths in SCSU from Ui−1 to calculate Ui. Thus, if

(q, Zi) ∈ Ui−1, and (q, Zi)
σ→ (q, Zi+1), and σ 	 SCSU then (q, Zi+1) ∈ Ui, which

finishes the proof.

The next theorem states that all relevant zones are added to the set of reachable
states U by Algorithm 1. Together with Lemma 1 this proves completeness and
safety of Algorithm 1.

A Symbolic Algorithm for the Analysis of Robust Timed Automata 363

Theorem 3. Given timed automaton A, let U be a set of reachable states in
standard semantics. Then all stable zones Wσ such that Wσ∩U �= ∅ are included
in the result of Algorithm 1.

Proof. For any given zone Wσ, let q be the first location from σ such that part
of Wσ is reached when doing reachability analysis. From the properties of stable
zones, we know that location q will be visited at least once more. When location q
is visited for the last time, the current state will be contained in the U list. Thus,
location q will be added to Qmark. As a result, function AllSZones will be called
for location q and using Theorem 1, we know that the zone Wσ will be added to
the reachable set of states or it will be discovered during later exploration. Thus
the zone Wσ will be included in the result of Algorithm 1.

5 Implementation and Experiments

5.1 Implementation

To prove that our algorithm is applicable in practice, we have implemented a
prototype tool and tested it on a number of examples. The tool can perform
the reachability analysis in standard semantics using a breadth-first or depth-
first search and in extended semantics using Algorithm 1. The tool has been
written in C++ and the source code has about 5.6 Klocs. Internally it uses the
Uppaal DBM Library1 and Uppaal Timed Automata Parser Library2. The in-
put format for the tool is in the XML format compatible with Uppaal. The
tool, source, and specifications used for experiments can be downloaded from
http://satoss.uni.lu/members/piotr/verifix/.

5.2 Experiments

To check the performance of our implementation, we have used the examples
from the suite of Uppaal benchmarks taken from the Uppaal web-page [17].

As the first benchmark, we have used the CSMA/CD protocol (Carrier Sense,
Multiple-Access with Collision Detection). This is a media access control protocol
used most notably in local area networking with early Ethernet technology. A
detailed description of the protocol can be found in [22]. We have verified the
protocol with nine, ten, and eleven components.

Another example is Fisher’s Protocol which is a mutual exclusion algorithm,
described in [1]. We have verified the protocol for eight and nine components.

The FDDI (Fiber Distributed Data Interface) is a fiber-optic token ring local
area network, described e.g. in [15,9]. FDDI networks are composed of N sym-
metric stations that are organized in a ring. We have used a simplified model
with 11-ary, 12-ary, and 13-ary networks.

1 http://people.cs.aau.dk/~adavid/UDBM/
2 http://people.cs.aau.dk/~adavid/utap/

http://satoss.uni.lu/members/piotr/verifix/
http://people.cs.aau.dk/~adavid/UDBM/
http://people.cs.aau.dk/~adavid/utap/

364 P. Kordy et al.

The next verified model is a Mutual Exclusion protocol. The protocol ensures
mutual exclusion of a state in a distributed system via asynchronous communi-
cation. The protocol is described in full detail in [12]. For verification we used
models with three and four components.

The last model we have used is a lip synchronisation protocol described in [6].
Specifically we have used the model which assumes an ideal video stream. We
simplified the model by scaling down each constant by a factor of ten and five,
as the original model proved to be too difficult to verify within reasonable time.

Table 1. Validation time in seconds and number of generated states in thousands

Model

Run type Breadth-First Depth-First Extended Sem.
run
time

gen.
states

run
time

gen.
states

err.
loc.

run
time

gen.
states

err.
loc.

CSMA/CD – 9 comp. 0.3s 110k 0.7s 231k no 0.9s 260k no
CSMA/CD – 10 comp. 1.0s 287k 2.7s 775k no 3.5s 846k no
CSMA/CD – 11 comp. 2.9s 728k 11.6s 2 607k no 15.1s 2 790k no

Fisher – 8 comp. 0.3s 180k 0.4s 222k no 263.9s 348k no
Fisher – 9 comp. 1.8s 723k 2.4s 1 004k no 6151s 1 447k no

FDDI – 11-ary network 1.7s 28k 8.4s 68 k no 62.1s 122k no
FDDI – 12-ary network 10.4s 55k 42.3s 137k no 263.7s 224k no
FDDI – 13-ary network 53.4s 109k 187.5s 278k no 905.5s 1 775k no

Mutual excl. – 3 comp. 0.1s 61k 0.1s 35k no 7.5s 1 047k no
Mutual excl. – 4 comp. 4.8s 1 506k 2.2s 866k no 3545s 28 272k no

Lip synchr. – scale 0.1 0.06s 1 22k 0.06s 22k no 30.1s 5 244k yes
Lip synchr. – scale 0.2 0.1s 1 22k 0.1s 22k no 1537s 67 222k yes

The experiments have been performed on an Intel i7 processor with a 2.4 GHz
system and 8 GByte of memory. The results for all the verified models were the
same for standard semantics – the models are correct and the error location is
not reached. In extended semantics only the Lip Synchonization Protocol proved
to be non-robust as we managed to reach the error location – meaning that
video and sound can desynchronize over time). The running times and number
of generated states for each verification model are shown in Table 1.

The results show that for the CSMA/CD protocol our algorithm is almost
as good as depth first search. The performance drops drastically when we have
a model with many parallel components like Fisher’s protocol and the Mutual
Exclusion protocol. For those two cases SCSU will contain almost all locations of
timed automaton A, implying that the function AllSZonesmust do reachability
on the original A, which is the main source of inefficiency. Checking reachability
in the proposed robust way can be up to thousand times slower. The inefficiency
comes from the fact that we define SCSU in terms of locations. Potentially,
this may lead to many calls to the AllSZones function for the same input.
The solution could be to introduce some form of caching or redefine SCSU to
include the timing aspect. The verification of the Lip Synchronization Protocol
proved to be the hardest. The specification uses a discrete variable as a discrete

A Symbolic Algorithm for the Analysis of Robust Timed Automata 365

clock which creates many stable zones that are not reachable from each other in
standard semantics, but are touching each other. As a result they are reachable
in extended semantics, but the algorithm needs to add new zones many times.

6 Conclusions and Perspectives

Our research shows the feasibility of automated verification of systems with
the (realistic) assumption of drifting clocks. Many communication protocols and
distributed algorithms have already been designed with this assumption in mind,
but up to now they could not be formally verified.

The main result of our work is the development of a symbolic algorithm for
computing the reachability of locations in timed automata when the clocks may
drift by an arbitrarily small amount. The analysis on which this algorithm is
based was originally defined [18,11] for region automata and does not lend itself
to direct implementation in a tool. Our zone-based implementation is therefore a
very important step towards the analysis of robustness of timed systems. The key
concept on which our analysis is based is the notion of a stable zone, originally
defined in [8]. Unfortunately the concept of stable zone can be used only for
analysis of flat timed automata, which seriously limits this approach. Our zone-
based approach does not have this limitation.

We have developed a tool written in C++ implementing our algorithm. The
tool was tested on a number of benchmark specifications. The tests have shown
that the extended semantics performs three to four times slower in most cases,
but for some highly parallel specifications the verification time can be up to
thousand times slower, especially for specifications that are not robust.

In the future, we are interested in removing the limitations of bounded clocks
and the necessity of progress cycles. While removing the limitations may be
rather straight-forward to solve for flat automata, it is non-trivial in the general
case. If the extension is successful it would be interesting to check the robustness
of a wider class of real-life specifications. It will be interesting to investigate a
priori conditions for robustness, and techniques to repair robustness violations.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5), 1543–1571 (1994)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004)

4. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time prop-
erties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)

5. Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 157–171. Springer, Heidelberg (2008)

366 P. Kordy et al.

6. Bowman, H., Faconti, G., Katoen, J.-P., Latella, D., Massink, M.: Automatic ver-
ification of a lip-synchronisation protocol using uppaal. Formal Aspects of Com-
puting 10(5-6), 550–575 (1998)

7. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer,
Heidelberg (1999)

8. Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer,
Heidelberg (2006)

9. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

10. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementabil-
ity of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT
2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)

11. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed au-
tomata. Formal Meth. Syst. Des. 33(1-3), 45–84 (2008)

12. Dierks, H.: Comparing model checking and logical reasoning for real-time systems.
Formal Asp. Comput. 16(2), 104–120 (2004)

13. Dima, C.: Dynamical properties of timed automata revisited. In: Raskin, J.-F.,
Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 130–146. Springer,
Heidelberg (2007)

14. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

15. Jain, R.: FDDI Handbook: High-Speed Networking Using Fiber and Other Media.
Addison Wesley Publishing Company (1994)

16. Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed au-
tomata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244.
Springer, Heidelberg (2011)

17. Department of Information Technology at Uppsala University and the Department
of Computer Science at Aalborg University. UPPAAL, http://www.uppaal.org/

18. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic
Systems-Theory and Applications 10(1-2), 87–113 (2000)

19. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

20. Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Antsaklis,
P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) Hybrid Systems V
1997. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1999)

21. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transi-
tion systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 210–224.
Springer, Heidelberg (1993)

22. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer 1, 123–133 (1997)

http://www.uppaal.org/

Revisiting Compatibility of Input-Output Modal
Transition Systems�

Ivo Krka1, Nicolás D’Ippolito2,3, Nenad Medvidović4, and Sebastián Uchitel2,3

1 Google Inc, Zürich, Switzerland
2 Computing Department, Imperial College London, London, UK

3 Departamento de Computatión, FCEyN, Universidad de Buenos Aires, Argentina
4 University of Southern California, Los Angeles, CA, USA

Abstract. Modern software systems are typically built of components that com-
municate through their external interfaces. The external behavior of a component
can be effectively described using finite state automata-based formalisms. Such
component models can then used for varied analyses. For example, interface au-
tomata, which model the behavior of components in terms of component states
and transitions between them, can be used to check whether the resulting system
is compatible. By contrast, partial-behavior modeling formalisms, such as modal
transition systems, can be used to capture and then verify properties of sets of
prospective component implementations that satisfy an incomplete requirements
specification. In this paper, we study how pairwise compatibility should be de-
fined for partial-behavior models. To this end, we describe the limitations of the
existing compatibility definitions, propose a set of novel compatibility notions for
modal interface automata, and propose efficient, correct, and complete compati-
bility checking procedures.

1 Introduction

Modern software systems are typically built of components that communicate through
their external interfaces. A component’s behavior can be specified using finite state au-
tomata formalisms (e.g., Labeled Transition Systems [8] and Statecharts [7]). The basic
formalism, Labeled Transition Systems (LTS), describes the behavior of a component
in terms of component states and labeled transitions between them. Interface Automata
(IA) [1] extend LTS to model information related to interface operation controllability
—distinguishing between input, output, and internal actions— and to check whether
the interfaces of two components are semantically compatible.

Component’s behavior is often incrementally and iteratively refined and elaborated
as the requirements progressively become more complete. Partial-behavior modeling
formalisms (e.g., Modal Transition Systems (MTS) [14]) distinguish between required
behaviors, prohibited behaviors, and behaviors that are currently unknown as either

� This work was partially supported by grants ERC PBM-FIMBSE, ANPCYT PICT 2012-
0724, UBACYT W0813, ANPCYT PICT 2011-1774, UBACYT F075, CONICET PIP
11220110100596CO, MEALS 295261, and U.S. NSF awards 0905665, 1117593, 1218115,
and 1321141, and Infosys Technologies, Ltd. The work has been done while Ivo Krka was a
PhD candidate at the University of Southern California.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 367–381, 2014.
c© Springer International Publishing Switzerland 2014

368 I. Krka et al.

required or prohibited. Hence, such models can accurately capture the inherently par-
tial system requirements and serve as a foundation for iterative practices that involve
eliciting new requirements that prohibit or require some of the previously unknown be-
haviors [4, 5, 9, 11, 12, 19–21]). Partial behavior models come equipped with a notion
of refinement which formalizes the process of incorporating new requirements into the
partial specification. For example, a partial-behavior model of a product under devel-
opment is refined by selecting or discarding a specific feature. The final result of the
refinement process is a model without unknown behavior (e.g., an interface automaton)
that we refer to as an implementation.

At the implementation level, two components, represented as IAs, are compatible
if the output actions of one component are not blocked by a lack of matching input
actions in the other component. To enable continuous interface compatibility checking
when a specification is partial and iteratively refined, several modal interface automata
formalisms have been proposed [2, 13, 18]. Intuitively, determining the compatibility
of partially specified components should characterize “how compatible” those compo-
nents’ implementations are [10]. For example, at one extreme, any selection of imple-
mentations results in an error-free system (i.e., highly compatible partial specifications).
At the other extreme, only a very careful selection of implementations results in an
error-free system (i.e., conditionally compatible specifications). Therefore, the compat-
ibility of partial specifications directly affects how independently engineers can specify
the requirements for the different subsystems and components.

While promising, the prior work on modal interface automata is limited in terms of
the considered compatibility notions, as elaborated in our prior study [10]. In particu-
lar, the existing work implicitly considers only the above two compatibility extremes:
either all pairs of implementations are compatible vs. at least one pair of implemen-
tations is compatible. A richer and finer-grained spectrum of compatibility notions is
needed so that engineers can determine that specific subsets of the modal interface
automata implementations are compatible. In turn, such richer compatibility notions
would inform the subsequent specification refinement processes and make them more
flexible and loosely coupled. For example, consider the case when every implemen-
tation of one partially specified component has a compatible counterpart in the other
component’s set of possible implementations. The first component can then be refined
independently, followed by careful refinement of the other component (we refer to this
case as Implementation Compatibility).

In this paper, we revisit compatibility of Input-Output Modal Transition Systems (IO
MTS), i.e., MTS extended with input and output information. We define a range of IO
MTS compatibility notions semantically, based on the observation that IO MTS are used
to express sets of implementations. In contrast, previous work on such specifications pro-
vided only syntactic definitions of compatibility. Our work lets an engineer determine
whether some, all, or no implementations from one component’s implementation set
are compatible with some, all, or no implementations from another component’s imple-
mentation set. Given that the implementation sets may be infinite, for each compatibility
notion we propose a correct and complete procedure that, for two IO MTSs with a finite
set of transitions, efficiently checks their compatibility by checking the compatibility
of specially constructed implementations. While we define compatibility in a pair-wise

Revisiting Compatibility of Input-Output Modal Transition Systems 369

1 2
dH

A

aI 1 2
aO

B

3
cO 3 1 2

dH

A||B

aH 3

Fig. 1. Example interface automata and modal I/O automata for illustration of Compatibility

fashion, the definitions of compatibility can be trivially extended to N-way relationships
between the system components’ implementation sets.

The main contributions of this paper are: (1) general, semantics-based definitions of
four compatibility notions for IO MTS; (2) a discussion of the development processes
that are enabled by each compatibility notion; (3) novel concepts of the least constrain-
ing implementation and the most constraining implementation of an IO MTS; and (4) a
set of correct, complete, and efficient procedures for checking compatibility of two IO
MTS based on their least/most constraining implementations.

The next section provides the foundations of our work. Section 3 defines a set of four
novel compatibility notions. Section 4 proposes a suite of procedures for checking IO
MTS compatibility. Finally, Section 5 discusses the implications of the new compati-
bility notions and concludes the paper.

2 Background

To understand how we modify the notions of compatibility for modal interface specifi-
cations, it is necessary to first introduce the formalisms for specifying complete
component interfaces and partial component behaviors, and then to introduce how com-
patibility is currently defined for such specifications.

2.1 Transition Systems

A labeled transition system [17] is an FSA-based formalism used to model required
behavior of a software component as a set of component states and labeled transitions
between them. De Alfaro’s interface automata (IA) [1] are an extension of LTS that
distinguishes between input, output, and internal actions. The distinction between these
different types of actions enables the detection of communication mismatches (i.e., in-
compatibilities) when the automata are composed.

Definition 1 (IA). An interface automaton IA is a tuple (S, AI, AO, AH, Δ, s0), where
S is a set of states, AI, AO, AH are alphabets of input, output, and internal actions,
Δ ⊆ (S×AI ∪AO ∪AH × S) is the transition relation, and s0 is the initial state.

We use the notation s
�ω−→s′ for a required transition from s to s′ labeled with �,

ω ∈ {I,O,H} denotes input, output and internal transitions respectively. We may refer
to states in an IA A using dot notation, e.g. A.s1 refers to the state s1 of A.

Two IAs M and N are composable if they do not share any internal, input or output
actions (i.e., AH

M ∩AN = /0, AI
M ∩AI

N = /0, AO
M ∩AO

N = /0 and AH
N ∩AM = /0). Models A and

B, in Figure 1, are examples of composable IAs.

370 I. Krka et al.

Interface automata have a composition operator [1]; for brevity, we only define the
more general composition of IO MTS. The composition of IAs M and N is defined as
a restriction on the synchronous product automaton M ⊗N, which coincides with the
composition of I/O automata [16].

Definition 2. (Product) Given M =(SM, AI
M, AO

M, AH
M, ΔM, m0) and N =(SN, AI

N, AO
N,

AH
N , ΔN, n0) composable interface automata, their product is the interface automaton

M⊗N = 〈SM × SN,AI
M⊗N ,AO

M⊗N ,AH
M⊗N ,ΔM⊗N ,(m0,n0)〉 where

AI
M⊗N = (AI

M ∪AO
N)\AM ∪AN

AO
M⊗N = (AO

M ∪AO
N)\ shared(M,N)

AH
M⊗N = (AH

M ∪AH
N)∪ shared(M,N)

The transition relation is defined as follows:

DeltaM⊗N = {((m,n), �,(m′,n))|(m, �,m′) ∈ ΔM ∧ � /∈ shared(M,N)}
∪ {((m,n), �,(m,n′))|(n, �,n′) ∈ ΔN ∧ � /∈ shared(M,N)}
∪ {((m,n), �,(m′,n′))|(m, �,m′) ∈ ΔM ∧ (m, �,m′) ∈ ΔM ∧ � ∈ shared(M,N)}

Let shared(M,N) = AM ∩AN.

A condition for interface automata composition (||) is that an input event of one
automaton can only be an output event of another automaton. Furthermore, composing
an input action in one automaton with a matching output action in the other automaton
produces an internal action in the composition. For example, the interface automata
A‖B in Figure 1 that represents the composition of A and B has internal transition over
a that is the result of A and B synchronizing on a (A.s2

aI−→A.s3 and B.s1
aO−→B.s2).

In order to model uncertain aspects, or currently missing and underspecified as-
pects, of a system’s behavior, Larsen and Thomsen proposed modal transition systems
(MTS) [14]. MTS generalizes LTS with maybe transitions that are currently neither ex-
plicitly required nor prohibited, in addition to the required transitions found in LTS. The
disjoint sets of required and maybe transitions comprise a set of potential transitions.
Intuitively, an MTS describes a set of possible LTSs by describing an upper bound and
a lower bound of allowed behaviors from every state.

Definition 3 (MTS). A modal transition system M is a tuple (S, A, Δr, Δp, s0), where
S is the set of states, A is the action alphabet, Δr ⊆ S×A× S is the required transition
relation, Δp ⊆ S×A×S is the potential transition relation, Δr ⊆ Δp, and s0 is the initial
state.

As more information about the desired system behavior becomes available, some of
the maybe behavior in an MTS may become required, while other maybe behavior may
become prohibited. In this context, it is necessary to ensure that the revised partial mod-
els and the eventually obtained final model (referred to as an implementation) conform
to the initially developed partial model.

Definition 4. (Refinement) Let M = (SM,A,Δr
M,Δp

M,m0) and N = (SN ,A,Δr
N , Δp

N ,n0)
be two MTSs. Relation R ⊆ SM × SN is a refinement between M and N if the following
holds for every � ∈ A and every (s, t) ∈ R.

Revisiting Compatibility of Input-Output Modal Transition Systems 371

– If (m, �,m′) ∈ Δr
M then there is n′ such that (n, �,n′) ∈ Δr

N and (m′,n′) ∈ R.
– If (n, �,n′) ∈ Δp

N then there is m′ such that (m, �,m′) ∈ Δp
M and (m′,n′) ∈ R.

We say that N refines M if there is a refinement relation R between M and N such that
(m0,n0) ∈ R, denoted M � N.

Intuitively, N refines M if every required transition of M exists in N and every pos-
sible transition in N is possible also in M. An LTS can be viewed as an MTS where
Δp = Δr. LTSs that refine an MTS M are complete descriptions of the system behavior
and are thus called implementations of M, denoted Impls(M). An MTS N is a refine-
ment of an MTS M iff the implementation set of N is a subset of M’s implementations.

To model communication control in the presence of partially known requirements,
formalisms such as Modal I/O automata [2,13], Modal Interfaces [18], and Modal Inter-
face Automata [10] have been proposed. In essence, these formalisms merge MTS and
IA formalisms. Since MTS is the most widely used partial-behavior formalism, in this
paper we refer to this merge as an Input-Output Modal Transition System (IO MTS).
Intuitively, an IO MTS represents a set of IA implementations.
Definition 5 (Input-Output Modal Transition Systems). An input-output modal tran-
sition system IO is a tuple (S, AI, AO, AH, Δr, Δp, s0), where S is a set of states,
AI, AO, AH are alphabets of input, output, and internal actions respectively, Δr ⊆
S× (AI ∪AO ∪AH)× S is the required transition relation, Δp ⊆ S× (AI ∪AO ∪AH)× S
is the potential transition relation (Δr ⊆ Δp), and s0 is the initial state.

We refer to transitions in Δp \Δr as “maybe” transitions to distinguish them from re-
quired ones (those in Δr). Maybe transitions are denoted by suffixing the transition label

with “?” (e.g., s
�I?−→s′). For a given IO MTS M we denote M.Δδ

α the set of transitions in
Δα over actions in δ, for instance, M.Δr

I is the set of required transitions over internal
actions of M.

For example, consider the IO MTS A from Figure 2. The maybe transition

A.s1
aI?−→A.s2 implies that a decision on whether a will be implemented or not in state

A.s1 has not been made yet. By contrast, the required transition B.s1
bH−→B.s1 in the B

IO MTS of Figure 2 implies that b must be present in every implementation of B.

2.2 Interface Compatibility

As stated above, the composition of interface automata may involve communication
errors; the definition of interface automata compatibility [1] implies that two automata
are compatible if in their composition errors can be avoided.

1 2
aO?bH?

B

lO?1 2
aI?

A

dH?cO?

1

A1

cO 1 2
aI

A2

dH 1 2
aO

B1

lO
1 2

aO

B2

Fig. 2. Conditionally Compatible Models

372 I. Krka et al.

Definition 6 (IA Error State). Let IA1 and IA2 be interface automata. A state P.v =
〈IA1.s, IA2.t〉 in the interface automaton P = IA1||IA2 is an error state iff for some
l ∈ (IA1.AO ∩ IA2.AI)∪ (IA1.AI ∩ IA2.AO):

1. (∃IA1.s
�O−→ IA1.s′)∧ (¬∃IA2.t

�I−→ IA2.t ′), or

2. (¬∃IA1.s
�I−→ IA1.s′)∧ (∃IA2.t

�O−→ IA2.t ′).
We use Err(IA1, IA2) to denote the set of error states.
Definition 7 (IA Compatibility). Two interface automata IA1 and IA2 are compati-
ble if they are nonempty, composable, and there exists an IA E such that no state in
Err(IA1, IA2)×E.s is reachable in (IA1||IA2)||E.

The IA E in the above definition is referred to as a Legal Environment for (IA1||IA2).
Informally, a composite state is an error state when, for the composed component

states, an output transition in one automaton does not have a matching input transition
in the other automaton. Two IAs are considered compatible if their composition can op-
erate error-free in some environments (an environment is an external entity, represented
as IA, that uses the system). For example, the composite state (A‖B).s3 of A‖B from
Figure 1 is an error state because B can generate cO from state B.s2 in B, while A does
not accept cI in state A.s3.

Larsen and Thomsen [13], as well as subsequent work by other authors [2, 18], at-
tempt to adapt the definition of compatibility from IA to IO MTS. To this end, they
propose different types of error states based on the potential mismatches of output tran-
sitions in one IO MTS and input transition in the other IO MTS.
Definition 8 (IO MTS Potential Error State). A state (s1,s2) is a potential error state

if there exists � ∈ AH
s1‖s2

such that (s1
�O?−→ s′1 and s2 �

�I−→) or (s1 �
�I−→ and s2

�O?−→ s′2).
Definition 9 (IO MTS Mandatory Error State). A state (s1,s2) is a mandatory error

state if there exists �∈AH
s1‖s2

such that (s1
�O−→ s′1 and s2 �

�I?−→) or (s1 �
�I?−→ and s2

�O−→ s′2).

The potential error state implies that a composite state may become an IA error state
if refined in a particular manner – e.g., by implementing an output transition from s1

that is not enabled in s2. In contrast, a mandatory error state implies that a composite
state will be an IA error state if it is reachable in the eventual implementation.

Based on the error state definitions, Larsen et al. [13] define two notions of com-
patibility for IO MTS. The first definition states that two IO MTSs are compatible if a
potential error state is not reachable from the initial state via potential internal actions of
the composition. This implies that, no matter the refinement choices, an error-avoiding
environment can be built. In other words, all implementations of two compatible IO
MTSs will be compatible (Independent Implementability property in [13]).

Larsen’s second definition of compatibility states that two IO MTSs are compatible
if a mandatory error state is not reachable from the initial state via a set of required
internal and output actions of the composition. Under this notion, two compatible IO
MTSs can be refined into a pair of compatible implementations (within an appropri-
ate environment). However, this definition does not suggest how the refinement process
may proceed, other than by treating the system as a monolithic entity (i.e., every refine-
ment of one IO MTS needs to be synchronized and consistent with the refinements of
the other IO MTS).

Revisiting Compatibility of Input-Output Modal Transition Systems 373

R(x)

T1+T2
A,B IA, IB

Fig. 3. Fully Coupled Refinement Process

3 Semantically Defining Compatibility

The limitations of the existing IO MTS definitions, which we address in the remainder
of this paper, are twofold. First, they define compatibility using the syntactic definitions
of error states although IO MTS are used to represent sets of implementations, and a
more intuitive way of defining IO MTS compatibility would be through compatibility
of the possible pairs of implementations. In turn, the syntactic definition may not be
applicable more widely, to any type of partial-behavior model. Second, these defini-
tions were developed to solve specific problems (e.g., determining whether there is a
compatible product in a product line [13]), and do not explore the full space of possible
compatibility notions. We have developed compatibility notions that consider how the
implementation sets of the partial specifications relate in terms of their compatibility
(one-to-one, one-to-many, many-to-one, or many-to-many). Note that, while we define
compatibility notions in the context of IO MTS, they apply generally to partial-behavior
models thus serving as a potential common vocabulary for the research community.

The different compatibility notions induce a set of refinement processes they permit.
We define these processes and depict them using box-and-line diagrams: A box repre-
sents a refinement process that, given an IO MTS to refine among other inputs, produces
an implementation of the input IO MTS. The labels Ti inside the boxes denote the in-
dependent development teams responsible for the particular process. The arrows denote
the information flow between the refinement processes, while the arrow labels spec-
ify the information being carried. For example, Figure 3 depicts a situation where two
teams, T1 and T2, are refining a pair of partial specifications, A and B. The incoming
arrow to the refinement process, carried out through mutual effort of the two teams
(T1+T2), indicates that the the teams need to constantly work in concert in order to
proceed with the refinement. The outputs IA and IB correspond to the implementations
obtained by T 1+T2 after refining A and B.

3.1 Conditional Compatibility

The minimal requirement to consider two IO MTSs A and B compatible is to have at
least one compatible system implementation – i.e., a compatible pair (Ai,B j) of their
implementations. Otherwise, no matter which refinement choices are made on A and B,
it is impossible to arrive at an error-free system. This weakest compatibility notion has
been discussed and syntactically defined in the context of product lines [13], and we
refer to it as Conditional Compatibility.

Definition 10 (Conditional Compatibility). Given A and B IO MTSs, we say that A
and B are Conditionally Compatible if there exist two implementations IA ∈ Impls(A)
and IB ∈ Impls(B) such that IA and IB are compatible.

374 I. Krka et al.

In Figure 2, we depict two partial specifications with a compatible pair of implemen-
tations (A2,B2). While refining A and B into more defined partial models, it is necessary
to ensure that the resulting partial specifications contain at least some compatible im-
plementations. For example, if A is refined into A1 then the only allowed intermediate
refinements of B are those that contain B1 in the implementation set, i.e., those that
enable the output transition on a and disable the output transition on l.

The above example suggests that the refinement choices made on the different speci-
fications need to be carefully synchronized: each intermediate refinement of component
A needs to be immediately communicated in order to proceed with legal refinement of
the other component B, and vice versa. This observation generalizes into a coupled re-
finement process depicted in Figure 3, where the teams T 1 and T 2 are supposed to be
in charge of refining the specifications A and B, respectively. Although these are ide-
ally separate teams, conditional compatibility of partial specifications leads to their full
coupling — every refinement choice on either A or B strongly impacts the future legal
refinements and needs to be carefully negotiated and planned.

3.2 Specification Compatibility

Conditionally compatible specifications entail the weakest requirement for IO MTS
compatibility that induces an undesirably highly coupled refinement process. Decreas-
ing this coupling would imply that at least one specification can be refined relatively
independently. To this end, we propose two novel, stronger compatibility notions —
Specification Compatibility (described in this section) and Implementation Compatibil-
ity (described in the next section).

Specification Compatibility, formalized below, relies on the existence of a subset of
one component’s implementations that are compatible with every implementation of
the other component’s partial specification.

Definition 11 (Specification Compatibility). Given A and B two IO MTSs, we say
that A and B are Specification Compatible if there exist IA ∈ Impls(A) such that for all
IB ∈ Impls(B) it holds that IA and IB are compatible.

Consider the two Specification Compatible models A and B in Figure 4. The imple-
mentation A1 of A is compatible with all implementations of B. Hence, as long as A is

aI?
A

dH?
bO?

aO

B

bH?

bH? aO

aI

A1 aO

B1
bH

bH aO

a

O

B2

Fig. 4. Specification Compatible Models

Revisiting Compatibility of Input-Output Modal Transition Systems 375

R(x)

R(x)

T1

T2

A

B

IA

IB

Fig. 5. Specification Driven Refinement

refined into one of those implementations that are consistent with all implementations
of B (e.g., A1), the system is guaranteed to have no error states.

Thus, as depicted in Figure 5, Specification Compatibility induces a process in which
the specifications can be refined in parallel. In order to guarantee compatible implemen-
tations team T 1 requires the knowledge of the partial specification B, in addition to its
own specification A. By contrast, team T2 only requires the specification B and can
refine B fully independently, under the condition that team T 1 respects the partial spec-
ification B as a contract that restricts the allowed refinements.

3.3 Implementation Compatibility

As indicated above, Implementation Compatibility implies a less restrictive compatibil-
ity notion than Conditional Compatibility that reduces the coupling between the allowed
refinement processes of two partial specifications. The relation between the compatibil-
ity sets in this case is that every implementation of one IO MTS should have at least one
matching pairing in the other implementation set (for the Implementation Compatibility
notion of partial-behavior models, the set of matches need not overlap).

Definition 12 (Implementation Compatibility). Given A and B IO MTSs, we say that
A and B are Implementation Compatible if for all IA ∈ Impls(A), there exists an IB ∈
Impls(B) such that IA and IB are compatible.

For the example depicted in Figure 6, each of the implementations A1–A3 of A ap-
pears in the compatible set for at least one implementation of B. In particular, A1 is
compatible with B3, A2 is compatible with B2, and A3 is compatible with B1. Under

cI

B

bH? aO

aO? lH?

aI
A2

cO

A1

cO

A3

aI

aI?

cO?

A

cI

B2 aO

cI
B3

B1
aO

Fig. 6. Implementation Compatible Models

376 I. Krka et al.

R(x) R(x)
A T1 T2

B

IA IB

Fig. 7. Implementation Driven Refinement

these conditions, it is guaranteed that whatever implementation of A is chosen, it is
possible to find a matching compatible implementation of B.

The implication of Implementation Compatibility is that the first specification, A,
can be freely refined without regard for the other specification, B, as long as an appro-
priate implementation of B is carefully selected afterward. The corresponding process
is depicted in Figure 7: the process is sequential as team T 2 must wait until T 1 releases
an implementation of A. The difference compared to the process for Conditional Com-
patibility from Figure 7 is that team T 1 can freely select the refinement choices. These
choices in principle stem from the new requirements for component A, while having a
guarantee that those new requirements will be consistent with an eventual implementa-
tion of B. Hence, Implementation Compatibility is particularly desired in the context of
incremental refinement processes where the system is developed one feature at a time
(for a large system, a chain of Implementation Compatible IO MTSs would be built).

3.4 Strong Compatibility

The strongest notion of compatibility for a pair of partial specifications A and B is
one in which every pair (Ai,B j) of their implementations is compatible. Consider A
and B IO MTSs in Figure 8. As A and B only differ on internal transitions and all
their implementations enable the transition on a it follows that A and B are Strong
Compatible. This strict notion of compatibility has been used in prior work [2, 13, 18],
where it was proposed as the primary notion of compatibility. However, the motivation
for our work was that such a notion is overly strict for incrementally developed partial
specifications.

Definition 13 (Strong Compatibility). Given A and B IO MTSs. We say that A and B
IO MTSs are Specification Compatible if for all IA ∈ Impls(A) and for all IB ∈ Impls(B),
it holds that IA and IB are compatible.

The direct consequence of having a pair of Strong Compatible specifications is that
they can be refined in a fully distributed manner, as depicted in Figure 9. Two teams T1
and T 2 can independently refine their respective specifications, while guaranteeing that
the resulting system will operate in an error-free manner. Although achieving Strong
Compatibility is desirable due to the consequent parallelism of the refinement pro-
cess, its importance and prominence is likely to be limited in practice. This is because

aI

A

dH?
aO

B

cH?

Fig. 8. Strong Compatible Models

Revisiting Compatibility of Input-Output Modal Transition Systems 377

R(x)

R(x)B

A
T1

T2

IA

IB

Fig. 9. Fully Distributed Refinement

partial-behavior models are expected to become Strong Compatible only during late
stages of the refinement process.

4 Checking IO MTS Compatibility

A direct way to check compatibility of two IO MTSs is to check compatibility of their
implementations in a pairwise fashion. However, since the implementation sets may be
infinite, this is not feasible. Alternatively, it may be possible to syntactically define what
constitutes an IO MTS error state in a composition of two IO MTSs for the different
compatibility notions. However, it is unclear whether such definitions and the necessary
checking procedures would exist in each case.

The solution we propose is inspired by the concepts of pessimistic implementation
and optimistic implementation of an MTS [20]. The pessimistic implementation is a
lower bound of an MTS’s behaviors (i.e., no other implementation exhibits less behav-
ior), while the optimistic implementation is an upper bound of an MTS’s behaviors (i.e.,
no other implementation exhibits more behavior). We raise these concepts to IO MTS
by defining the least restrictive implementation and the most restrictive implementation
of an IO MTS (Sections 4.1 and 4.2). We then show how these implementations can
be used to check, correctly and completely, the compatibility of IO MTS by simply
checking the compatibility of their IA composition.

4.1 Least Restrictive Implementation

A component’s IA specification describes (1) assumptions that the component makes
regarding other components’ capabilities (via output transitions), (2) assertions about
how the component progresses internally (via internal transitions), and (3) guarantees
about the behavior accepted by the component (via input transitions). An implementa-
tion set of an IO MTS describes IAs that make a range of assumptions, assertions, and
guarantees, depending on which refinement choices were made to arrive at a particular
implementation. In this context, the upper bound of an IO MTS interface description
would be an IA that makes minimal assumptions and assertions about the output and
internal behaviors, while providing maximal guarantees regarding the input behaviors.

Definition 14 (Least Restrictive Implementation). IA LRI =(S, AI, AO, AH, Δ, s0) is
the least restrictive implementation of an IO MTS M=(S, AI, AO, AH, Δr, Δp, s0) with
the relation LRI.Δ defined as the union of M.Δp

I , M.Δr
H, and M.Δr

O.

378 I. Krka et al.

Informally, the least restrictive implementation of an IO MTS prohibits all the maybe
output and maybe internal behaviors of an IO MTS, thus making weaker assumptions
and assertions about those behaviors. Similarly, the least restrictive implementation re-
quires all the maybe input behaviors of an IO MTS. A desired “upper bound” property
for the least restrictive implementation is to be compatible with every environment that
is compatible with at least one implementation of the IO MTS.

Theorem 1 (Upper Bound of Compatibility). Let IA LRI =(S, AI, AO, AH, Δ, s0) is
the least restrictive implementation of an IO MTS M=(S, AI, AO, AH, Δr, Δp, s0). For
each other IA I that implements M, if IA E is a legal environment of I then E is also
compatible with LRI.

Proof (By Contradiction). Let IA E be an IA that is compatible with M’s implemen-
tation I, but is not compatible with LRI. This implies that there exists an error state
〈E.p,LRI.s〉 in which either (1) E generates an output LRI cannot accept or (2) LRI
generates an output that E cannot accept. Note that LRI.s refines a corresponding IO
MTS state M.s. If the composition E||I has a state 〈E.p, I.s′〉, where I.s′ refines M.s
then 〈E.p, I.s′〉 would also be an error state because, by Definition 14 and for I to be a
correct refinement of M [6], I.s′ accepts at most as many inputs as LRI, and I.s′ requires
at least as many outputs (thus satisfying condition (1) or (2) above).

In case E||I does not have a state 〈E.p, I.s′〉 such that I.s′ refines M.s, consider a se-
quence of LRI’s actions 〈l1, . . . , ln〉 that are traversed from 〈E.p0,LRI.s0〉 to 〈E.p,LRI.s〉.
Now consider a subsequence 〈l1, . . . , l j〉 which is supported by I. The next action l j+1 in
the full sequence cannot be an output or internal action of I because: (a) in case l j+1 was
required in the matching IO MTS state M.s j , it would be present in both LRI and I to
satisfy the refinement relation, and (b) in case l j+1 was maybe in the matching IO MTS
state M.s j , it would also be prohibited in LRI per Definition 14. Hence, the action l j+1

has to be an input action. This, however, implies that the composite state 〈E.p j, I.s′j〉 is
an error state because, in the composite state 〈E.p j,LRI.s j〉, E can generate the output
l j+1, which is not accepted in I.s′j. 	�

4.2 Most Restrictive Implementation

In contrast to the least restrictive implementation, the lower bound of an IO MTS inter-
face description would be an IA that makes maximal assumptions and assertions about
the output and internal behaviors, with minimal guarantees on the input behaviors.

Definition 15 (Most Restrictive Implementation). IA MRI =(S, AI, AO, AH, Δ, s0) is
the most restrictive implementation of an IO MTS M=(S, AI, AO, AH, Δr, Δp, s0) with
the relation MRI.Δ defined as the union of M.Δr

I , M.Δp
H, and M.Δp

O.

Informally, the most restrictive implementation of an IO MTS prohibits all the maybe
input behaviors of an IO MTS, thus accepting less output behaviors of external com-
ponents. Similarly, the most restrictive implementation requires all the maybe output
and maybe internal behaviors of an IO MTS, thus “forcing” the external components
to accept more of its output behaviors. A desired “lower bound” property for the most
restrictive implementation is to be compatible with an environment only if every other
implementation of the IO MTS is compatible with that environment.

Revisiting Compatibility of Input-Output Modal Transition Systems 379

Theorem 2 (Lower Bound of Compatibility). Let IA MRI =(S, AI, AO, AH, Δ, s0) be
the most restrictive implementation of an IO MTS M=(S, AI, AO, AH, Δr, Δp, s0). For
each other IA I that implements M, if IA E is a legal environment of MRI then E is also
compatible with I.

Proof (By Contradiction). Let IA E be an IA that is compatible with MRI, but not
with some other implementation I of M. This implies that there exists an error state
〈E.p, I.s′〉 in which either (1) E generates an output I cannot accept or (2) I generates
an output that E cannot accept. Note that I.s′ refines a corresponding IO MTS state
M.s. If the composition E||MRI has a state 〈E.p,MRI.s〉, where MRI.s refines M.s then
〈E.p,MRI.s〉 would also be an error state because, by Definition 15 and for I to be a
correct refinement of M [6], MRI.s accepts at most as many inputs as I.s′, and MRI.s
requires at least as many outputs (thus satisfying condition (1) or (2) above).

In case E||MRI does not have a state 〈E.p,MRI.s〉 such that MRI.s refines M.s,
consider a sequence of I’s actions 〈l1, . . . , ln〉 that are traversed from 〈E.p0, I.s0〉 to
〈E.p, I.s′〉. Now consider a subsequence 〈l1, . . . , l j〉 which is supported by MRI. The
next action l j+1 in the full sequence cannot be an input action of MRI because: (a) in
case l j+1 was required in the matching IO MTS state M.s j , it would be present in both
MRI and I to satisfy the refinement relation, and (b) in case l j+1 was maybe in the
matching IO MTS state M.s j , it would be prohibited in MRI per Definition 15, thus
creating an error state as E outputs l j+1 in that state. Hence, the action l j+1 has to be
an output or internal action. However, since MRI requires each potential transition on
output and internal actions, l j+1 would, by construction, exist in MRI.s j . 	�

4.3 Compatibility Checking Procedure

The least restrictive and most restrictive implementations bound the space of compatible
environments for IO MTS implementations. For example, to check whether all imple-
mentations of an IO MTS are compatible with an IA, it is sufficient to check the com-
patibility of the most restrictive implementation with the given IA. Such “bounding”
implementations can be used to construct general procedures for checking compatibil-
ity of two IO MTSs. For example, Conditional Compatibility requires that at least one
pair of implementations of two IO MTSs is error-free. Hence, the intuition is that, at a
minimum, their least constraining implementations need to be compatible. In the fol-
lowing definition, we specify how the least constraining implementations and the most
constraining implementations of two IO MTSs are used to check IO MTS compatibil-
ity. We then prove that the checking procedure is correct and complete for Conditional
Compatibility and Specification Compatibility; proofs for other two notions are similar.

Theorem 3 (Checking IO MTS Compatibility). Let LRIM and LRIN be the least re-
strictive implementations of IO MTS M and N, respectively, and MRIM and MRIN be
their most restrictive implementations. M and N are considered compatible iff:

1. Conditionally Compatibility: implementations LRIM and LRIN are compatible.
2. Specification Compatibility: implementations LRIM and MRIN are compatible.
3. Implementation Compatibility: implementations MRIM and LRIN are compatible.
4. Strong Compatibility: implementations MRIM and MRIN are compatible.

380 I. Krka et al.

Proof (By Contradiction). To prove that analyzing compatibility of LRIM and LRIN is
sufficient to check Conditional Compatibility of two IO MTSs, we assume that two IO
MTSs are not Conditionally Compatible, and LRIM and LRIN are compatible. This is
a contradiction as LRIM and LRIN are compatible implementations of M and N, which
then satisfy Definition 10 of Conditional Compatibility. To prove that the compatibility
of LRIM and LRIN is a necessary condition for two IO MTSs to be Conditionally Com-
patible, we assume that the two IO MTSs are Conditionally Compatible, and LRIM and
LRIN are incompatible. In this case, according to Theorem 1, no other implementation
of M can be compatible with LRIN . Furthermore, Theorem 1 then implies that no im-
plementation of N can be compatible with an implementation of M. This finally implies
that M and N are not Conditionally Compatible, thus arriving at a contradiction.

To prove that analyzing compatibility of LRIM and MRIN is sufficient to check Spec-
ification Compatibility of two IO MTSs, we assume that the two IO MTSs are not
Specification Compatible, and LRIM and MRIN are compatible. However, this is a con-
tradiction: according to Theorem 1, if LRIM and MRIN are compatible then LRIM is
compatible with every implementation of N, which makes M and N Specification Com-
patible. To prove that the compatibility of LRIM and MRIN is a necessary condition for
two IO MTSs to be Specification Compatible, we assume that the two IO MTSs are
Specification Compatible, and LRIM and MRIN are incompatible. In this case, accord-
ing to Theorem 2, no other implementation of M can be compatible with MRIN , which
contradicts the definition of Specification Compatibility (Definition 11). 	�

5 Conclusions

In this paper, we revisited how compatibility should be defined for partial specifica-
tions that characterize sets of potentially valid implementations. We aimed to arrive
at a foundational characterization which can be applied not only to IO MTS, but to
partial-behavior models in general (including, e.g., featured transition systems [3] and
disjunctive MTS [15]). To this end, we first defined four notions of partial-specification
compatibility, where each notion establishes a specific relation between the specifica-
tions’ implementation sets. Our definitions were specified in semantic terms, as op-
posed to syntactic terms, thus being more intuitive as well as more widely applicable
to any model that represents a set of compliant implementations. To analyze the im-
mediate impact of the compatibility notions, we elaborated the development processes
that are allowed under the different compatibility notions, ranging from fully coupled to
fully parallel development. Additionally, we introduced the concepts of the least restric-
tive implementation and the most restrictive implementation, which bound the space of
compatible environments for an IO MTS. These concepts were then used as the foun-
dation of low-complexity procedures for checking compatibility of two IO MTSs.

In our future work, we aim to further explore several new research avenues that
are enabled by our work. In particular, we plan to research what IA-style interface re-
finement (as opposed to modal refinement) means in the context of IO MTS [10]. We
also intend to explore whether it is possible to automatically generate an IO MTS that
characterizes the subset of implementations that are compliant with another IO MTS.

Revisiting Compatibility of Input-Output Modal Transition Systems 381

Finally, we aim to investigate how the IO MTS compatibility translates to develop-
ment processes for systems with many components. In particular, extending pair-wise
compatibility to N-way compatibility is technically simple. However the combinatorial
explosion of relations between partial component specifications may require thinking
of clustering them into subsystems for practical purposes. From a methodological point
of view, it may be useful to link the number of clusters to the number of independent
development teams, however, further research into practical ways of exploiting partial
component specifications in the context of multiple development teams is required.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE (2001)
2. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-

ment, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

3. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured transition
systems: Foundations for verifying variability-intensive systems and their application to LTL
model checking 39(8) (2012)

4. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: The modal transition system control
problem. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 155–170.
Springer, Heidelberg (2012)

5. Fischbein, D., D’Ippolito, N., Brunet, G., Chechik, M., Uchitel, S.: Weak Alphabet Merging
of Partial Behaviour Models. ACM TOSEM 21(2) (2012)

6. Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial behaviour mod-
els. In: FSE (2008)

7. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. of Comp. Prog. (1987)
8. Keller, R.M.: Formal verification of parallel programs. Com. of the ACM (1976)
9. Krka, I., Brun, Y., Edwards, G., Medvidovic, N.: Synthesizing Partial Component-level Be-

havior Models from System Specifications. In: ESEC/FSE (2009)
10. Krka, I., Medvidovic, N.: Revisiting modal interface automata. In: FORMSERA (2012)
11. Krka, I., Medvidovic, N.: Distributing refinements of a system-level partial behavior model.

In: RE (2013)
12. Krka, I., Medvidovic, N.: Component-aware triggered scenarios. In: WICSA (Submitted)
13. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and product line

theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

14. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: LICS (1988)
15. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS (1990)
16. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In:

PODC 1987 (1987)
17. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs (2006)
18. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal in-

terfaces: unifying interface automata and modal specifications. In: EMSOFT (2009)
19. Sibay, G.E., Braberman, V.A., Uchitel, S., Kramer, J.: Synthesising modal transition systems

from triggered scenarios. IEEE TSE (2013)
20. Sibay, G.E., Uchitel, S., Braberman, V., Kramer, J.: Distribution of modal transition systems.

In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 403–417. Springer,
Heidelberg (2012)

21. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of Partial Behavior Models from Properties
and Scenarios. IEEE TSE 35(3) (2009)

Co-induction Simply
Automatic Co-inductive Proofs in a Program Verifier

K. Rustan M. Leino and Michał Moskal

Microsoft Research, Redmond, WA, USA
{leino,micmo}@microsoft.com

Abstract. This paper shows that an SMT-based program verifier can support rea-
soning about co-induction—handling infinite data structures, lazy function calls,
and user-defined properties defined as greatest fix-points, as well as letting users
write co-inductive proofs. Moreover, the support can be packaged to provide a
simple user experience. The paper describes the features for co-induction in the
language and verifier Dafny, defines their translation into input for a first-order
SMT solver, and reports on some encouraging initial experience.

1 Introduction

Mathematical induction is a cornerstone of programming and program verification. It
arises in data definitions (e.g., some algebraic data structures can be described using in-
duction [6]), it underlies program semantics (e.g., it explains how to reason about finite
iteration and recursion [3]), and it gets used in proofs (e.g., supporting lemmas about
data structures use inductive proofs [18]). Whereas induction deals with finite things
(data, behavior, etc.), its dual, co-induction, deals with possibly infinite things. Co-
induction, too, is important in programming and program verification, where it arises
in data definitions (e.g., lazy data structures [34]), semantics (e.g., concurrency [32]),
and proofs (e.g., showing refinement in a co-inductive big-step semantics [25]). It is
thus desirable to have good support for both induction and co-induction in a system for
constructing and reasoning about programs.

Dramatic improvements in satisfiability-modulo-theories (SMT) solvers have brought
about new levels of power in automated reasoning. Some program verifiers and inter-
active proof assistants have used this power to reduce the amount of human interaction
needed to achieve results (e.g., [14,10,20,7]). In this paper, we introduce the first SMT-
based verifier to support co-induction.

The verifier is for programs written in the verification-aware programming language
Dafny [20],1 which we extend with co-inductive features. Co-datatypes and co-recursive
functions make it possible to use lazily evaluated data structures (like in Haskell [34]
or Agda [30]). Co-predicates, defined by greatest fix-points, let programs state prop-
erties of such data structures (as can also be done in, for example, Coq [5]). For the
purpose of writing co-inductive proofs in the language, we introduce co-lemmas. Os-
tensibly, a co-lemma invokes the co-induction hypothesis much like an inductive proof
invokes the induction hypothesis. Underneath the hood, our co-inductive proofs are ac-
tually approached via induction [27]: co-lemmas provide a syntactic veneer around this

1 Dafny is an open-source project at http://dafny.codeplex.com

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 382–398, 2014.
c© Springer International Publishing Switzerland 2014

http://dafny.codeplex.com

Co-induction Simply 383

// infinite streams

codatatype IStream〈T〉 = ICons(head: T, tail: IStream)
// pointwise product of streams
function Mult(a: IStream〈int〉, b: IStream〈int〉): IStream〈int〉
{ ICons(a.head * b.head, Mult(a.tail, b.tail)) }

// lexicographic order on streams
copredicate Below(a: IStream〈int〉, b: IStream〈int〉)
{ a.head ≤ b.head ∧ (a.head = b.head =⇒ Below(a.tail, b.tail)) }

// a stream a Below its Square
colemma Theorem_BelowSquare(a: IStream〈int〉)

ensures Below(a, Mult(a, a));

{ assert a.head ≤ Mult(a, a).head;
if a.head = Mult(a, a).head { Theorem_BelowSquare(a.tail); } }

// an incorrect property and a bogus proof attempt

colemma NotATheorem_SquareBelow(a: IStream〈int〉)
ensures Below(Mult(a, a), a); // ERROR

{ NotATheorem_SquareBelow(a); }

Fig. 1. A taste of how the co-inductive features in Dafny come together to give straightforward
definitions of infinite matters. The proof of the theorem stated by the first co-lemma lends itself
to the following intuitive reading: To prove that a is below Mult(a, a), check that their heads
are ordered and, if the heads are equal, also prove that the tails are ordered. The second co-lemma
states a property that does not always hold; the verifier is not fooled by the bogus proof attempt
and instead reports the property as unproved. wJHo »1

approach. We are not aware of any other proof assistant with co-inductive constructs
that takes this approach.

These language features and the automation in our SMT-based verifier combine to
provide a simple view of co-induction. As a sneak peek, consider the program in Fig. 1.2

It defines a type IStream of infinite streams, with constructor ICons and destructors
head and tail. Function Mult performs pointwise multiplication on infinite streams
of integers, defined using a co-recursive call (which is evaluated lazily). Co-predicate
Below is defined as a greatest fix-point, which intuitively means that the co-predicate
will take on the value true if the recursion goes on forever without determining a dif-
ferent value. The co-lemma states the theorem Below(a, Mult(a, a)). Its body gives
the proof, where the recursive invocation of the co-lemma corresponds to an invocation
of the co-induction hypothesis.

We argue that these definitions in Dafny are simple enough to level the playing field
between induction (which is familiar) and co-induction (which, despite being the dual
of induction, is often perceived as eerily mysterious). Moreover, the automation pro-
vided by our SMT-based verifier reduces the tedium in writing co-inductive proofs. For
example, it verifies Theorem_BelowSquare from the program text given in Fig. 1—no
additional lemmas or tactics are needed. (This is true throughout the paper—the verifier
works from the given program text and does not require or accept any other input.) In

2 The examples in the figures can be tried and tweaked online at the following address:
http://rise4fun.com/Dafny/id where id (e.g., wJHo) is provided below every figure.

http://rise4fun.com/Dafny/wJHo
http://rise4fun.com/Dafny/

384 K.R.M. Leino and M. Moskal

fact, as a consequence of the automatic-induction heuristic in Dafny [21], the verifier
will automatically verify Theorem_BelowSquare even given an empty body.

Just like there are restrictions on when an inductive hypothesis can be invoked, there
are restriction on how a co-inductive hypothesis can be used. These are, of course, taken
into consideration by our verifier. For example, as illustrated by the second co-lemma
in Fig. 1, invoking the co-inductive hypothesis in an attempt to obtain the entire proof
goal is futile. (We explain how this works in Sec. 3.2.)

Our initial experience with co-induction in Dafny shows it to provide an intuitive,
low-overhead user experience that compares favorably to even the best of today’s in-
teractive proof assistants for co-induction. In addition, the co-inductive features and
verification support in Dafny have other potential benefits. The features are a stepping
stone for verifying functional lazy programs with Dafny. Co-inductive features have
also shown to be useful in defining language semantics, as needed to verify the correct-
ness of a compiler [25], so this opens the possibility that such verifications can benefit
from SMT automation.

1.1 Contributions

– First SMT-based verifier for reasoning about co-induction.
– Language design that blends inductive and co-inductive features, allowing both

recursive and co-recursive calls to the same function (Sec. 2).
– User-callable prefix predicates—finite unfoldings of co-predicates used to establish

co-predicates via induction (Secs. 2.4 and 5).
– Extension of the technique of writing inductive proofs as programs (see [21]) to

co-inductive proofs using co-lemmas (Sec. 3). Unlike tactic-based systems, these
programs show the high-level structure of the (inductive and co-inductive) proofs.
Yet the automation provided by the SMT solver makes it unnecessary to manually
author the proof terms.

– Low-overhead tool-supported way to write and learn about co-inductive proofs (see
examples in Sec. 4).

2 Co-inductive Definitions

In this section and the next, we describe the design of our co-inductive extension of
Dafny. We start with the constructs for defining types, values, and properties of possibly
infinite data structures. Though we will hint at how our design compares to the existing
design for inductive constructs, space constraints prevent us from giving the details of
those; to learn more, see [21,23].

2.1 Background

The Dafny programming language supports functions and methods. A function in Dafny
is a mathematical function (i.e., it is well-defined, deterministic, and pure), whereas a
method is a body of statements that can mutate the state of the program. A function

Co-induction Simply 385

is defined by its given body, which is an expression. To ensure that function defini-
tions are mathematically consistent, Dafny insists that recursive calls be well-founded,
enforced as follows: Dafny computes the call graph of functions. The strongly con-
nected components within it are clusters of mutually recursive definitions arranged in
a DAG. This stratifies the functions so that a call from one cluster in the DAG to a
lower cluster is allowed arbitrarily. For an intra-cluster call, Dafny prescribes a proof
obligation that gets taken through the program verifier’s reasoning engine. Semanti-
cally, each function activation is labeled by a rank—a lexicographic tuple determined
by evaluating the function’s decreases clause upon invocation of the function. The
proof obligation for an intra-cluster call is thus that the rank of the callee is strictly less
(in a language-defined well-founded relation) than the rank of the caller [20]. Because
these well-founded checks correspond to proving termination of executable code, we
will often refer to them as “termination checks”. The same process applies to methods.

Lemmas in Dafny are commonly introduced by declaring a method, stating the prop-
erty of the lemma in the postcondition (keyword ensures) of the method, perhaps re-
stricting the domain of the lemma by also giving a precondition (keyword requires),
and using the lemma by invoking the method [16,21]. Lemmas are stated, used, and
proved as methods, but since they have no use at run time, such lemma methods are
typically declared as ghost, meaning that they are not compiled into code. The key-
word lemma introduces such a method. Control flow statements correspond to proof
techniques—case splits are introduced with if statements, recursion and loops are used
for induction, and method calls for structuring the proof. Additionally, the statement:

forall x | P(x) { Lemma(x); }

is used to invoke Lemma(x) on all x for which P(x) holds. If Lemma ensures Q(x), then
the forall statement establishes ∀ x • P(x) =⇒ Q(x).

2.2 Defining Co-inductive Datatypes

Each value of an inductive datatype is finite, in the sense that it can be constructed by
a finite number of calls to datatype constructors. In contrast, values of a co-inductive
datatype, or co-datatype for short, can be infinite. For example, a co-datatype can be
used to represent infinite trees.

Syntactically, the declaration of a co-datatype in Dafny looks like that of a datatype,
giving prominence to the constructors (following Coq [12]). For example, Fig. 2 de-
fines a co-datatype Stream of possibly infinite lists. Analogous to the common finite
list datatype, Stream declares two constructors, SNil and SCons. Values can be destruc-
ted using match expressions and statements. In addition, like for inductive datatypes,
each constructor C automatically gives rise to a discriminator C? and each parameter of
a constructor can be named in order to introduce a corresponding destructor. For ex-
ample, if xs is the stream SCons(x , ys), then xs .SCons? and xs .head =x hold. In
contrast to datatype declarations, there is no grounding check for co-datatypes—since a
co-datatype admits infinite values, the type is nevertheless inhabited.

386 K.R.M. Leino and M. Moskal

codatatype Stream〈T〉 = SNil | SCons(head: T, tail: Stream)

function Up(n: int): Stream〈int〉 { SCons(n, Up(n+1)) }
function FivesUp(n: int): Stream〈int〉

decreases 4 - (n - 1) % 5;
{ if n % 5 = 0 then SCons(n, FivesUp(n+1)) else FivesUp(n+1) }

Fig. 2. Stream is a co-inductive datatype whose values are possibly infinite lists. Function Up
returns a stream consisting of all integers upwards of n and FivesUp returns a stream consisting
of all multiples of 5 upwards of n . The self-call in Up and the first self-call in FivesUp sit in
productive positions and are therefore classified as co-recursive calls, exempt from termination
checks. The second self-call in FivesUp is not in a productive position and is therefore subject
to termination checking; in particular, each recursive call must decrease the rank defined by the
decreases clause. CplhV »

2.3 Creating Values of Co-datatypes

To define values of co-datatypes, one could imagine a “co-function” language feature:
the body of a “co-function” could include possibly never-ending self-calls that are in-
terpreted by a greatest fix-point semantics (akin to a CoFixpoint in Coq). Dafny uses a
different design: it offers only functions (not “co-functions”), but it classifies each intra-
cluster call as either recursive or co-recursive. Recursive calls are subject to termination
checks [20]. Co-recursive calls may be never-ending, which is what is needed to define
infinite values of a co-datatype. For example, function Up(n) in Fig. 2 is defined as the
stream of numbers from n upward: it returns a stream that starts with n and continues
as the co-recursive call Up(n + 1).

To ensure that co-recursive calls give rise to mathematically consistent definitions,
they must occur only in productive positions. This says that it must be possible to de-
termine each successive piece of a co-datatype value after a finite amount of work. This
condition is satisfied if every co-recursive call is syntactically guarded by a constructor
of a co-datatype, which is the criterion Dafny uses to classify intra-cluster calls as being
either co-recursive or recursive. Calls that are classified as co-recursive are exempt from
termination checks.

A consequence of the productivity checks and termination checks is that, even in the
absence of talking about least or greatest fix-points of self-calling functions, all func-
tions in Dafny are deterministic. Since there is no issue of several possible fix-points,
the language allows one function to be involved in both recursive and co-recursive calls,
as we illustrate by the function FivesUp in Fig. 2.

2.4 Stating Properties of Co-datatypes

Determining properties of co-datatype values may require an infinite number of obser-
vations. To that avail, Dafny provides co-predicates. Self-calls to a co-predicate need
not terminate. Instead, the value defined is the greatest fix-point of the given recurrence
equations. Figure 3 defines a co-predicate that holds for exactly those streams whose
payload consists solely of positive integers.

http://rise4fun.com/Dafny/CplhV

Co-induction Simply 387

copredicate Pos(s: Stream〈int〉)
{ match s

case SNil ⇒ true
case SCons(x, rest) ⇒ x > 0 ∧ Pos(rest) }

// Automatically generated by the Dafny compiler:

predicate Pos#[_k: nat](s: Stream〈int〉)
decreases _k;

{ if _k = 0 then true else
match s

case SNil ⇒ true

case SCons(x, rest) ⇒ x > 0 ∧ Pos#[_k-1](rest) }

Fig. 3. A co-predicate Pos that holds for those integer streams whose every integer is greater
than 0. The co-predicate definition implicitly also gives rise to a corresponding prefix predicate,
Pos#. The syntax for calling a prefix predicate sets apart the argument that specifies the prefix
length, as shown in the last line; for this figure, we took the liberty of making up a coordinating
syntax for the signature of the automatically generated prefix predicate. eYml »

Some restrictions apply. To guarantee that the greatest fix-point always exists, the
(implicit functor defining the) co-predicate must be monotonic. This is enforced by
a syntactic restriction on the form of the body of co-predicates: after conversion to
negation normal form (i.e., pushing negations down to the atoms), intra-cluster calls of
co-predicates must appear only in positive positions—that is, they must appear as atoms
and must not be negated. Additionally, to guarantee soundness later on, we require that
they appear in co-friendly positions—that is, in negation normal form, when they appear
under existential quantification, the quantification needs to be limited to a finite range.3

Since the evaluation of a co-predicate might not terminate, co-predicates are always
ghost. There is also a restriction on the call graph that a cluster containing a co-predicate
must contain only co-predicates, no other kinds of functions.

A copredicate declaration of P defines not just a co-predicate, but also a corre-
sponding prefix predicate P#. A prefix predicate is a finite unrolling of a co-predicate.
The prefix predicate is constructed from the co-predicate by

– adding a parameter _k of type nat to denote the prefix length,
– adding the clause decreases _k; to the prefix predicate (the co-predicate itself is

not allowed to have a decreases clause),
– replacing in the body of the co-predicate every intra-cluster call Q(args) to a co-

predicate by a call Q#[_k − 1](args) to the corresponding prefix predicate, and
then

– prepending the body with if _k = 0 then true else.

For example, for co-predicate Pos, the definition of the prefix predicate Pos# is as
suggested in Fig. 3. Syntactically, the prefix-length argument passed to a prefix predi-
cate to indicate how many times to unroll the definition is written in square brackets, as

3 Higher-order function support in Dafny is rather modest and typical reasoning patterns do not
involve them, so this restriction is not as limiting as it would have been in, e.g., Coq.

http://rise4fun.com/Dafny/eYml

388 K.R.M. Leino and M. Moskal

lemma UpPosLemma(n: int)
requires n > 0;
ensures Pos(Up(n));

{ forall k | 0 ≤ k { UpPosLemmaK(k, n); } }
lemma UpPosLemmaK(k: nat, n: int)

requires n > 0;

ensures Pos#[k](Up(n));
decreases k;

{ if k �= 0 {

// this establishes Pos#[k-1](Up(n).tail)
UpPosLemmaK(k-1, n+1); } }

Fig. 4. The lemma UpPosLemma proves Pos(Up(n)) for every n > 0 . We first show
Pos# [k](Up(n)), for n > 0 and an arbitrary k , and then use the forall statement to show
∀ k • Pos# [k](Up(n)). Finally, the axiom D(Pos) is used (automatically) to establish the
co-predicate. d7J3 »

in Pos#[k](s). The definition of Pos# is available only at clusters strictly higher than
that of Pos; that is, Pos and Pos# must not be in the same cluster. In other words, the
definition of Pos cannot depend on Pos#.

Equality between two values of a co-datatype is a built-in co-predicate. It has the
usual equality syntax s = t , and the corresponding prefix equality is written s =#[k] t .

3 Co-inductive Proofs

From what we have said so far, a program can make use of properties of co-datatypes.
For example, a method that declares Pos(s) as a precondition can rely on the stream s
containing only positive integers. In this section, we consider how such properties are
established in the first place.

3.1 Properties about Prefix Predicates

Among other possible strategies for establishing co-inductive properties (e.g., [15,9,19]),
we take the time-honored approach of reducing co-induction to induction [27]. More
precisely, Dafny passes to the SMT solver an assumption D(P) for every co-predicate
P , where:

D(P) ≡ ∀ x • P(x) ⇐⇒ ∀ k • P#k (x)

In Sec. 5, we state a soundness theorem of such assumptions, provided the co-predicates
meet the co-friendly restrictions from Sec. 2.4. An example proof of Pos(Up(n)) for
every n > 0 is shown in Fig. 4.

3.2 Co-lemmas

As we just showed, with help of the D axiom we can now prove a co-predicate by
inductively proving that the corresponding prefix predicate holds for all prefix lengths

http://rise4fun.com/Dafny/d7J3

Co-induction Simply 389

colemma UpPosLemma(n: int)
requires n > 0;
ensures Pos(Up(n));

{ UpPosLemma(n+1); }

Fig. 5. A proof of the lemma from Fig. 4 using the syntactic sugar of a co-lemma. Among other
things, the call to UpPosLemma(n+1) is desugared to UpPosLemma#[_k-1](n+1) (which can also
be used directly) and the proof goal is desugared to Pos#[_k](Up(n)). Intuitively, the body of
the co-lemma simply invokes the co-induction hypothesis to complete the proof. Se7h »

k . In this section, we introduce co-lemma declarations, which bring about two benefits.
The first benefit is that co-lemmas are syntactic sugar and reduce the tedium of having
to write explicit quantifications over k . The second benefit is that, in simple cases, the
bodies of co-lemmas can be understood as co-inductive proofs directly. As an example,
consider the co-lemma in Fig. 5, which can be understood as follows: UpPosLemma in-
vokes itself co-recursively to obtain the proof for Pos(Up(n).tail) (since Up(n).tail
equals Up(n+1)). The proof glue needed to then conclude Pos(Up(n)) is provided au-
tomatically, thanks to the power of the SMT-based verifier.

3.3 Prefix Lemmas

To understand why the code in Fig. 5 is a sound proof, let us now describe the details
of the desugaring of co-lemmas. In analogy to how a copredicate declaration defines
both a co-predicate and a prefix predicate, a colemma declaration defines both a co-
lemma and prefix lemma. In the call graph, the cluster containing a co-lemma must
contain only co-lemmas and prefix lemmas, no other methods or function. By decree,
a co-lemma and its corresponding prefix lemma are always placed in the same cluster.
Both co-lemmas and prefix lemmas are always ghosts.

The prefix lemma is constructed from the co-lemma by

– adding a parameter _k of type nat to denote the prefix length,
– replacing in the co-lemma’s postcondition the positive co-friendly occurrences of

co-predicates by corresponding prefix predicates, passing in _k as the prefix-length
argument,

– prepending _k to the (typically implicit) decreases clause of the co-lemma,
– replacing in the body of the co-lemma every intra-cluster call M(args) to a co-

lemma by a call M#[_k − 1](args) to the corresponding prefix lemma, and then
– making the body’s execution conditional on _k �= 0 .

Note that this rewriting removes all co-recursive calls of co-lemmas, replacing them
with recursive calls to prefix lemmas. These recursive call are, as usual, checked to be
terminating. We allow the pre-declared identifier _k to appear in the original body of
the co-lemma.4

4 Note, two places where co-predicates and co-lemmas are not analogous are: co-predicates must
not make recursive calls to their prefix predicates, and co-predicates cannot mention _k.

http://rise4fun.com/Dafny/Se7h

390 K.R.M. Leino and M. Moskal

We can now think of the body of the co-lemma as being replaced by a forall call,
for every k , to the prefix lemma. By construction, this new body will establish the co-
lemma’s declared postcondition (on account of the D axiom, which we prove sound in
Sec. 5, and remembering that only the positive co-friendly occurrences of co-predicates
in the co-lemma’s postcondition are rewritten), so there is no reason for the program
verifier to check it.

The actual desugaring of Fig. 5is in fact the code from Fig. 4, except that UpPosLemmaK
is named UpPosLemma# and modulo a minor syntactic difference in how the k argument
is passed.

In the recursive call of the prefix lemma, there is a proof obligation that the prefix-
length argument _k − 1 is a natural number. Conveniently, this follows from the fact
that the body has been wrapped in an if _k �= 0 statement. This also means that the
postcondition must hold trivially when _k = 0 , or else a postcondition violation will
be reported. This is an appropriate design for our desugaring, because co-lemmas are
expected to be used to establish co-predicates, whose corresponding prefix predicates
hold trivially when _k = 0 . (To prove other predicates, use an ordinary lemma, not a
co-lemma.)

It is interesting to compare the intuitive understanding of the co-inductive proof in
Fig. 5 with the inductive proof in Fig. 4. Whereas the inductive proof is performing
proofs for deeper and deeper equalities, the co-lemma can be understood as producing
the infinite proof on demand.

3.4 Automation

Because co-lemmas are desugared into lemmas whose postconditions benefit from in-
duction, Dafny’s usual induction tactic kicks in [21]. Effectively, it adds a forall state-
ment at the beginning of the prefix lemma’s body, invoking the prefix lemma recursively
on all smaller tuples of arguments. Typically, the useful argument tuples are those with a
smaller value of the implicit parameter _k and any other values for the other parameters,
but the forall statement will also cover tuples with the same _k and smaller values of
the explicit parameters.

Thanks to the induction tactic, the inductive lemma UpPosLemmaK from Fig. 4 is
verified automatically even if it is given an empty body. So, co-lemma UpPosLemma in
Fig. 5 is also verified automatically even if given an empty body—it is as if Dafny had
a tactic for automatic co-induction as well.

4 More Examples

In this section, we further illustrative what can easily be achieved with our co-induction
support in Dafny. We use examples that other treatments of co-induction have used
or offered as challenges. We give links to these examples online (cf. Footnote 2), but
also point out that most of the examples are also available in the Dafny test suite (see
Footnote 1).
Zip. Figure 6 states a few properties of the zip function on infinite streams. (See the
figure caption for a more detailed description.)
Wide Trees. Figure 7 shows a definition of trees with infinite width but finite height.

Co-induction Simply 391

codatatype IStream〈T〉 = ICons(head: T, tail: IStream)

function zip(xs: IStream, ys: IStream): IStream
{ ICons(xs.head, ICons(ys.head, zip(xs.tail, ys.tail))) }
function even(xs: IStream): IStream { ICons(xs.head, even(xs.tail.tail)) }
function odd(xs: IStream): IStream { even(xs.tail) }

function bzip(xs: IStream, ys: IStream, f: bool) : IStream
{ if f then ICons(xs.head, bzip(xs.tail, ys, ¬f))

else ICons(ys.head, bzip(xs, ys.tail, ¬f)) }

colemma EvenOddLemma(xs: IStream)
ensures zip(even(xs), odd(xs)) = xs;

{ EvenOddLemma(xs.tail.tail); }

colemma EvenZipLemma(xs: IStream, ys: IStream)
ensures even(zip(xs, ys)) = xs;

{ /* Automatic. */ }

colemma BzipZipLemma(xs: IStream, ys: IStream)
ensures zip(xs, ys) = bzip(xs, ys, true);

{ BzipZipLemma(xs.tail, ys.tail); }

Fig. 6. Some standard examples of combining and dividing infinite streams (cf. [13]). The proof
of EvenZipLemma is fully automatic, whereas the others require a single recursive call to be made
explicitly. The forall statement inserted automatically by Dafny’s induction tactic is in princi-
ple strong enough to prove each of the three lemmas, but the incompleteness of reasoning with
quantifiers in SMT solvers makes the explicit calls necessary. wq7Y »

FivesUp. The function FivesUp defined in Fig. 2 calls itself both recursively and co-
recursively. To prove that FivesUp(n) satisfies Pos for any positive n requires the use
of induction and co-induction together (which may seem mind boggling). We give a
simple proof in Fig. 8.

Recall that the decreases clause of the prefix lemma implicitly starts with _k, so
the termination check for each of the recursive calls passes: the first call decreases _k,
whereas the second call decreases the expression given explicitly. We were delighted
to see that the decreases clause (copied from the definition of FivesUp) is enough of
a hint to Dafny; it needs to be supplied manually, but the body of the co-lemma can in
fact be left empty.

Filter. The central issue in the FivesUp example is also found in the more useful filter
function. It has a straightforward definition in Dafny:

function Filter(s: IStream): IStream
requires AlwaysAnother(s);
decreases Next(s);

{ if P(s.head) then ICons(s.head, Filter(s.tail)) else Filter(s.tail) }

In the else branch, Filter calls itself recursively. The difficulty is proving that this
recursion terminates. In fact, the recursive call would not terminate given an arbitrary
stream; therefore, Filter has a precondition that elements satisfying P occur infinitely
often. To show progress toward the subsequent element of output, function Next counts
the number of steps in the input s until the next element satisfying P.

http://rise4fun.com/Dafny/wq7Y

392 K.R.M. Leino and M. Moskal

datatype Tree = Node(children: Stream〈Tree〉)
predicate IsFiniteHeight(t: Tree) { ∃ n • 0 ≤ n ∧ LowerThan(t.children, n) }
copredicate LowerThan(s: Stream〈Tree〉, n: nat)
{ match s

case SNil ⇒ true
case SCons(t, tail) ⇒

1 ≤ n ∧ LowerThan(t.children, n-1) ∧ LowerThan(tail, n) }

Fig. 7. By itself, the datatype declaration Tree will allow structures that are infinite in height (the
situation in Agda is similar [2]). In Dafny, the part of a Tree that can be inducted over is finite, in
fact of size just 1 (for more details of such induction, see [23]). To describe trees that are possibly
infinite only in width (that is, with finite height, but each node having a possibly infinite number
of children), we declare a predicate IsFiniteHeight. The use of a predicate to characterize an
interesting subset of a type is typical in Dafny (also in the imperative parts of the language; for
example, class invariants are just ordinary predicates [20]). nU5e »

colemma FivesUpPos(n: int)
requires n > 0;
ensures Pos(FivesUp(n));

decreases 4 - (n - 1) % 5;

{ if n % 5 = 0 { FivesUpPos#[_k-1](n + 1); }

else { FivesUpPos#[_k](n + 1); } }

Fig. 8. A proof that, for any positive n , all values in the stream FivesUp(n) are positive. The
proof uses both induction and co-induction. To illustrate what is possible, we show both calls as
explicitly targeting the prefix lemma. Alternatively, the first call could have been written as a call
FivesUpPos(n + 1) to the co-lemma, which would desugar to the same thing and would more
strongly suggest the intuition of appealing to the co-inductive hypothesis. 7hNCq »

The full example [22] defines the auxiliary functions and proves some theorems
about Filter, see 8oeR ». The filter function has also been formalized (with more effort)
in other proof assistants, for example by Bertot in Coq [4].

Iterates. In a paper that shows co-induction being encoded in the proof assistant Is-
abelle/HOL, Paulson [33] defines a function Iterates(f, M) that returns the stream

M , f (M), f 2(M), f 3(M), . . .

In Dafny syntax, the function is defined as

function Iterates〈A〉(M: A): Stream〈A〉 { SCons(M, Iterates(f(M))) }

Paulson defines a function Lmap:

function Lmap(s: Stream): Stream
{ match s

case SNil ⇒ SNil
case SCons(a, tail) ⇒ SCons(f(a), Lmap(tail)) }

http://rise4fun.com/Dafny/nU5e
http://rise4fun.com/Dafny/7hNCq

Co-induction Simply 393

codatatype RecType = Bottom | Top | Arrow(dom: RecType, ran: RecType)

copredicate Subtype(a: RecType, b: RecType)
{

a = Bottom ∨
b = Top ∨
(a.Arrow? ∧ b.Arrow? ∧ Subtype(b.dom, a.dom) ∧ Subtype(a.ran, b.ran))

}
colemma Subtype_Is_Transitive(a: RecType, b: RecType, c: RecType)

requires Subtype(a, b) ∧ Subtype(b, c);
ensures Subtype(a, c);

{

if a �= Bottom ∧ c �= Top {
Subtype_Is_Transitive(c.dom, b.dom, a.dom);
Subtype_Is_Transitive(a.ran, b.ran, c.ran);

}
}

Fig. 9. A definition of subtyping among recursive types. The co-lemma proves the subtype
relation to be transitive.

and proves that any function h satisfying h(M) = SCons(M, Lmap(h(M))) is indeed the
function Iterates. This proof and all other examples from Paulson’s paper can be done
in Dafny, see iplnx ».

Recursive Types. Kozen and Silva also argue that the playing field between induction
and co-induction can be leveled [19]. We have encoded all their examples in Dafny, see
yqel », and show one of them in Fig. 9.

Big-step Semantics. Leroy [24] defines a co-inductive big-step semantics for the λ-
calculus as follows:

λx .m
co
=⇒ λx .m

(id)
m0

co
=⇒ λx .m ′ m1

co
=⇒ n ′ m ′[x := n ′]

co
=⇒ n

m0m1
co
=⇒ n

(beta)

The double lines indicate that the proof tree is allowed to be infinite, with a greatest
fix-point semantics. The intention is that if evaluation of m does not terminate, then
∀n • m

co
=⇒ n . Figure 10 gives the corresponding definition in Dafny.

5 Soundness

In this section, we formalize and prove the connection between co-predicates and prefix
predicates. More precisely, we state a theorem that ∀ k • P#k(x) is the greatest fix-
point solution of the equation defining P(x) .

Consider a given cluster of co-predicate definitions, that is, a strongly connected
component of co-predicates:

Pi(xi) = Ci for i = 0 . . .n (1)

394 K.R.M. Leino and M. Moskal

datatype Term = Var(idx: nat) | Fun(Term) | App(m0: Term, m1: Term)

codatatype PreProof = Id | Beta(m: Term, n: Term, a: PreProof, b: PreProof, c: PreProof)

copredicate IsProof(m: Term, n: Term, d: PreProof)

{ match d

case Id ⇒ m.Fun? ∧ m = n

case Beta(m’, n’, a, b, c) ⇒ m.App? ∧ IsProof(m.m0, Fun(m’), a) ∧
IsProof(m.m1, n’, b) ∧ IsProof(Subst(m’, 0, n’), n, c) }

predicate Eval(m: Term, n: Term) { ∃ d • IsProof(m, n, d) }

// ERROR - Eval’ used in non-co-friendly position

copredicate Eval’(m: Term, n: Term)

{ match m

case Fun(_) ⇒ m = n

case App(m0, m1) ⇒ ∃ m’, n’ •
Eval’(m0, Fun(m’)) ∧ Eval’(m1, n’) ∧ Eval’(Subst(m’, 0, n’), n) }

Fig. 10. Big-step semantics definition in Dafny using De Bruijn indices. Explicit proof trees let
the user provide witnesses to the SMT solver and work around the co-friendliness restriction.
The alternative Eval’ definition above does not pass the co-friendliness test, as it quantifies over
m’ and n’ in every step. Full example and proof of (λx . x x)(λx . x x)

co
=⇒ m for all m can be

found at uKXM »

The right-hand sides (Ci) can reference functions, co-predicates, and prefix predicates
from lower clusters, as well as co-predicates (Pj) in the same cluster. According to our
restrictions in Sec. 2.4, the cluster contains only co-predicates, no prefix predicates or
other functions; so, any prefix predicate referenced in Ci is necessarily from a lower
cluster.

A cluster can be syntactically reduced to a single co-predicate, e.g.:

P(i , x0, . . . , xn) = 0 ≤ i ≤ n ∧ ((i = 0 ∧ C0σ) ∨ . . . ∨ (i = n ∧ Cnσ))
where σ = [Pi := (λ xi • P(i , x0, . . . , xn))]

n
i=0

(2)

In what follows, we assume P(x) = Cx to be the definition of P , where x stands for
the tuple of arguments and Cx for the body above. Let:

F (A) = {x | Cx [P := A]} (3)

where Cx [P := A] is Cx with occurrences of P replaced with (the characteristic
function of set) A . In other words, F is the functor taking an interpretation A of P and
returning a new interpretation. In Sec. 2.4, we defined the semantics of a co-predicate
to be the greatest fix-point of F (i.e., gfp(F)).

Let P# be the prefix predicate corresponding to P . We will write the prefix-length
argument k as a superscript, as in P#k . The prefix predicates are defined inductively
as follows:

P#0(x) ≡ � P#k+1(x) ≡ Cx [P := P#k] (4)

Theorem 1
x ∈ gfp(F) ⇐⇒ ∀ k • P#k(x)

Co-induction Simply 395

The simple proof, which is found in our companion technical report [23], uses the
Kleene fix-point theorem and the fact that F is Scott continuous (i.e., intuitively, mono-
tonic due to positivity restrictions, and possible to falsify with a finite number of argu-
ment tuples due to co-friendliness).

6 Related Work

Most previous attempts at verifying properties of programs using co-induction have
been limited to program verification environments embedded in interactive proof assis-
tants. Early work includes an Isabelle/HOL package for reasoning about fix-points and
applying them to inductive and co-inductive definitions [33]. The package was build-
ing from first principles and apparently lacked much automation. Later, a variant of
the circular co-induction proof rules [35] was used in the CoCasl [13] object-oriented
specification system in Isabelle/HOL. These rules essentially give a way to hide away
the co-induction hypothesis when it is first introduced, “freezing” it until a time when
it is sound to use it. In CoCasl, as in the CIRC [26] prover embedded in the Maude
term rewriting system, the automation is quite good. However, the focus is on proving
equalities of co-datatype values, and expressing general co-predicates is not as direct as
it is in Dafny.

Co-induction has long history in the Coq interactive proof assistant [12,9]. A virtue
of the standard co-induction tactic in Coq is that the entire proof goal becomes available
as the co-induction hypothesis. One must then discipline oneself to avoid using it except
in productive instances, something that is not checked until the final Qed command. In
Dafny, any assert in the middle of the proof will point out non-productive uses.

The language and proof assistant Agda [30,8], which uses dependent types based
on intuitionistic type theory, has some support for co-induction. Co-recursive datatypes
and calls are indicated in the program text using the operators ∞ and ! (see, e.g., [2]).
In Agda, proof terms are authored manually; there is no tactic language and no SMT
support to help with automation.

Using the sized types in MiniAgda [1], one also proves properties of infinite struc-
tures by proving them for any finite unrolling. Properties are specified using definitions
of co-datatypes, which are more restrictive than co-predicates in Dafny. In particular,
there is no existential quantification and thus co-friendliness comes for free.

Moore has verified the correctness of a compiler for the small language Piton [28].
The correctness theorem considers a run of k steps of a Piton program and shows that
m steps of the compiled version of the program behave like the original, where m is
computed as a function of k and k is an arbitrary natural number. One might also be in-
terested in proving the compiler correctness for infinite runs of the Piton program, which
could perhaps be facilitated by defining the Piton semantics co-inductively (cf. [24]). If
the semantics-defining co-predicates satisfied our co-friendly restriction, then our D
axiom would reduce reasoning about infinite runs to reasoning about all finite prefixes
of those runs.

Our technique of handling co-induction can be applied in any prover that readily
handles induction. This includes verifiers like VCC [10] and VeriFast [14], but also
interactive proof assistants. As shown in Fig. 8, induction and co-induction can benefit
from the same automation techniques, so we consider this line of inquiry promising.

396 K.R.M. Leino and M. Moskal

7 Conclusions

We have presented a technique for reasoning about co-inductive properties, which re-
quires only minor extensions of a verifier that already supports induction. In Dafny, the
induction itself is built on top of off-the-shelf state-of-the-art first-order SMT technol-
ogy [11], which provides high automation. In our initial experience, the co-inductive
definitions and proofs seem accessible to users without a large degree of clutter. The
striking similarity of the inductive and co-inductive proofs certainly helps here. Even
so, we suspect that further automation is possible once techniques for mechanized co-
induction reach a maturity more akin to what is provided for induction by tools today
(e.g., [18,31,29,5,17,36,21]). With possible applications in both verifiers and other proof
assistants, our work of making co-induction available in an SMT-based verifier takes a
step in the direction of reducing the human effort required to reason about co-induction.

Acknowledgments. During the course of this work, we have benefited from discus-
sions with many colleagues who understand co-induction far better than we. We are
grateful to all and mention here a subset: Jasmin Blanchette, Manfred Broy, Adam Chli-
pala, Ernie Cohen, Patrick Cousot, Jean-Christophe Filliâtre, Bart Jacobs (Nijmegen),
Daan Leijen, Ross Tate. We also thank many anonymous reviewers.

References

1. Abel, A.: MiniAgda: Integrating sized and dependent types. In: Workshop on Partiality And
Recursion in Interative Theorem Provers, PAR 2010 (2010)

2. Altenkirch, T., Danielsson, N.A.: Termination checking in the presence of nested in-
ductive and coinductive types. Short note supporting a talk given at PAR 2010 (2010),
http://www.cse.chalmers.se/~nad/publications/

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Bertot, Y.: Filters on coInductive streams, an application to eratosthenes’ sieve. In: Urzyczyn,
P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg (2005)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development — Coq’Art:
The Calculus of Inductive Constructions. Springer (2004)

6. Bird, R., Wadler, P.: Introduction to Functional Programming. International Series in Com-
puting Science. Prentice Hall (1992)

7. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJ-
CAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

8. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional language with
dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

9. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press (2013), http://adam.chlipala.net/cpdt/

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nip-
kow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer,
Heidelberg (2009)

http://www.cse.chalmers.se/~nad/publications/
http://adam.chlipala.net/cpdt/

Co-induction Simply 397

11. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

12. Giménez, E.: An application of co-inductive types in Coq: Verification of the alternating bit
protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 135–152.
Springer, Heidelberg (1996)

13. Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for COCASL

in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 341–356. Springer,
Heidelberg (2005)

14. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520, Depart-
ment of Computer Science, Katholieke Universiteit Leuven (2008)

15. Jacobs, B., Rutten, J.: An introduction to (co)algebra and (co)induction. In: Advanced Topics
in Bisimulation and Coinduction: Cambridge Tracts in Theoretical Computer Science, vol.
52, pp. 38–99. Cambridge University Press (2011)

16. Jacobs, B., Smans, J., Piessens, F.: VeriFast: Imperative programs as proofs. In: VS-Tools
Workshop at VSTTE 2010 (2010)

17. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive proof. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 291–306. Springer,
Heidelberg (2010)

18. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers (2000)

19. Kozen, D., Silva, A.: Practical coinduction. In: Mathematical Structures in Computer Science
(to appear)

20. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg
(2010)

21. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)

22. Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 2–16. Springer, Heidelberg (2013)

23. Leino, K.R.M., Moskal, M.: Co-induction simply: Automatic co-inductive proofs in a pro-
gram verifier. Technical Report MSR-TR-2013-49, Microsoft Research (2013)

24. Leroy, X.: Coinductive big-step operational semantics. In: Sestoft, P. (ed.) ESOP 2006.
LNCS, vol. 3924, pp. 54–68. Springer, Heidelberg (2006)

25. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
26. Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski, T., Montanari,

U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378. Springer, Heidelberg
(2007)

27. Milner, R.: A Calculus of Communicating Systems. Springer (1982)
28. Moore, J.S.: A mechanically verified language implementation. Journal of Automated Rea-

soning 5(4), 461–492 (1989)
29. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-

berg (2002)
30. Norell, U.: Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology (2007)
31. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification,

proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

32. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS
1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

398 K.R.M. Leino and M. Moskal

33. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. Journal of
Logic and Computation 7 (1997)

34. Peyton Jones, S.: Haskell 98 language and libraries: the Revised Report. Cambridge Univer-
sity Press (2003)

35. Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation. In: Kurz, A.,
Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–144. Springer, Hei-
delberg (2009)

36. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An automated prover for properties of
recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 407–421. Springer, Heidelberg (2012)

Management of Time Requirements
in Component-Based Systems

Yi Li1, Tian Huat Tan2, and Marsha Chechik1

1 Department of Computer Science, University of Toronto, Canada
2 ISTD, Singapore University of Technology and Design, Singapore

Abstract. In component-based systems, a number of existing software compo-
nents are combined in order to achieve business goals. Some of such goals may
include system-level (global) timing requirements (GTR). It is essential to refine
GTR into a set of component-level (local) timing requirements (LTRs) so that if
a set of candidate components collectively meets them, then the corresponding
GTR is also satisfied. Existing techniques for computing LTRs produce mono-
lithic representations, that have dependencies over multiple components. Such
representations do not allow for effective component selection and repair. In this
paper, we propose an approach for building under-approximated LTRs (ULTR)
consisting of independent constraints over components. We then show how ULTR
can be used to improve the design, monitoring and repair of component-based
systems under time requirements. We also report on the implementation of this
approach and its evaluation using real-world case studies in Web service com-
position. The results demonstrate its practical value and advantages over existing
techniques.

Keywords: Time requirements, component-based system, service selection,
monitoring, error recovery.

1 Introduction

Component-based software design has been widely adopted in practice for its support
for separation of concerns, management of complexity and improved reusability. In
this paradigm, a number of existing software components are combined to achieve a
business goal. Software components usually communicate and interact via a predefined
interface specifying the anticipated syntax and behaviors of components. The basic
promise of component-based software design is that component services can be used as
building blocks for larger integrated systems without the deep knowledge of their inter-
nal structures [18]. In other words, system designers can treat interfaces as descriptive
abstractions which should be both informative and sufficiently small.

The component-based design methodology has also been successfully applied for
time-critical systems such as timed circuits [18], embedded real-time systems [13,22]
and Web service compositions. The correctness and reliability of such systems depend
not only on the logical computation results but also on their timely response in all cir-
cumstances. Hence, it is an important requirement that the end-to-end (global) response
time (GTR) in the composite system is within a particular range (e.g., under 1 second).

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 399–415, 2014.
c© Springer International Publishing Switzerland 2014

400 Y. Li, T.H. Tan, and M. Chechik

Local Time Requirements. The system-level response time clearly depends on the re-
sponse times of the underlying components. The behavioral correctness of component-
based systems is often achieved by establishing contracts between sets of components.
If these are met, then the overall behavioral correctness is satisfied. In timed systems,
Local Time Requirements (LTR) are counterparts of such contracts, establishing con-
straints on the response times of the individual components. If LTRs are met, then the
GTR of the whole system is met as well.

Intuitively, an LTR is a constraint on the parametric response times and the con-
straint highly depends on the structures of the compositions. Suppose we have a model
consisting of two abstract components, C1 and C2, taking time t1 and t2, respectively.
Suppose the GTR for both systems is “produce the response in under k time units”. If
the two components are sequentially composed, i.e., C2 takes the output of C1 as its
input, the global response time of the composition is t1+ t2. In the parallel composition
case, both C1 and C2 are invoked at the same time, and the output of whoever finishes
first is returned. The global response time is thus min(t1, t2).

Prior Work. Existing work [21] synthesizes LTRs based on the structure of component
compositions and represents them as a linear real arithmetic formula in terms of com-
ponent response times. In the context of our example, LTRs of the two systems would
be t1 + t2 ≤ k and (t1 ≤ t2 ⇒ t1 ≤ k) ∧ (t1 > t2 ⇒ t2 ≤ k), respectively1. An LTR
formula typically depends on multiple components. Such a “monolithic” representation
has a number of limitations in designing, monitoring and repairing component-based
systems. First, at the software design stage, given the LTR of the system, all abstract
components appearing in the LTR formula have to be considered together in order to
select a suitable combination. This is often infeasible in practice for two reasons: (1)
The enumeration of all possible combinations of candidate components is computa-
tionally expensive when the number of functionally equivalent components is large [3].
For example, with 5 abstract components and 100 alternatives for each, the total num-
ber of possible combinations is 1005. The situation is even worse when selection has
to be done during runtime (online selection). (2) Under the commonly-used consumer-
broker-provider component service selection model [9] (shown in Fig. 1), the consumer
has no direct access to the service, e.g., due to privacy concerns, and service discovery
is done using a discovery agent. Many Quality of Service (QoS) broker-based service
discovery frameworks have been proposed [1,17]. In those frameworks, service search
and discovery are delegated to brokers who find suitable services for consumers based
on some QoS requirements (e.g., response time, price, availability, etc.) expressed as
queries. Such queries can only involve a single component.

Second, violations of time requirements are inevitable during runtime. In complex
software systems, the performance of components often varies with time. Sometimes
multiple components delay but not all of them are the actual causes of the violation.
The monolithic representation of LTRs prevents us from being able to distinguish prob-
lematic components and suggest point-wise error recovery and adaptation strategies.
The only possible recovery strategy is to replace all delayed components with function-

1 Time variables appearing in LTR constraints are implicitly assumed to have real values greater
or equal to zero, i.e., t1, t2 ∈ R, t1 ≥ 0, t2 ≥ 0.

Management of Time Requirements in Component-Based Systems 401

Broker

Retrieve

Publish

Consumer

Request

Virtual binding

ProvidersRegistries

Fig. 1. Illustration of the consumer-
broker-provider component service
selection model [9,1,17]

Reply Indices

Receive Request

Sync. Invoke DS

Indices exist

Async. Invoke FS

Async. Invoke PS

Failure

Indices not exist

On message FS On alarm 1 sec.

On message PS On alarm 1 sec.

Reply Indices

Reply Indices

Fig. 2. Workflow diagram of the SMIS example

ally equivalent substitutes that conform to the original timing contracts. Clearly, being
able to decompose LTSs and understand the independent timing constraints effectively
would yield more options and help find the most efficient recovery strategies.

The ULTR Approach. In this paper, we propose an approach that aims at lifting the
above-mentioned limitations of the existing LTR representation by decomposing it into
multiple sub-formulas where different abstract components have independent timing
contracts. The decomposed constraints under-approximate the original LTR while pro-
viding local guarantees on the level of its precision. As a consequence, the compo-
nent combinations satisfying the under-approximated LTR (denoted by ULTR) also
satisfy the original LTR. Recall the parallel composition example. A possible ULTR is
{B1 ≡ t1 ∈ [0,∞)∧ t2 ∈ [0, k], B2 ≡ t1 ∈ [0, k]∧ t2 ∈ (k,∞)} which captures the ex-
act same set of software components that meet the timing requirements. The constraints
in both sub-formulas B1 and B2 treat each component independently, i.e., to check the
satisfiability of ULTR, one only needs to look at a single component each time, and
once all components satisfy their own contracts, the ULTR is also satisfied.

Given a quantifier-free linear real arithmetic (QF LRA) formula ϕ containing only
time variables ti ∈ T which represent the response times of software components ci ∈
C, we exploit the power of Satisfiability Modulo Theories (SMT) solvers to sample
best under-approximations of ϕ, denoted as BU(ϕ). Formula BU(ϕ) is in the Interval
(BOX) abstract domain [10], i.e., in the form

∧
ti∈T li ≤ ti ≤ ui. The key to computing

BU(ϕ) is the application of a symbolic optimization procedure which helps find the
weakest formula representing a hypercube under the possibly non-convex constraints.
The hypercube shaped samples of ϕ are systematically obtained and aggregated to form
a ULTR until it is precise enough. We apply various heuristics according to the structure
of ϕ to ensure fast convergence.

Contributions of This Paper. (1) Given LTRs of a component-based system,
we develop a sound method for decomposing these constraints and discharging

402 Y. Li, T.H. Tan, and M. Chechik

inter-dependencies over multiple components while providing precision guarantees. (2)
We demonstrate the applicability of our method in component selection and its advan-
tages in generation of recovery strategies when compared with the monolithic approach.
(3) We evaluate the effectiveness of the ULTR approach in component selection through
case studies conducted on real-world Web service compositions.

We implemented our algorithm using the Z3 SMT solver [16] and the symbolic
optimization tool OPTMATHSAT [20] and reported our experience on its applicabil-
ity in component selection. The candidate Web services were chosen from a pub-
licly available Web service dataset QWS [1]. We also demonstrated that the ULTR
model, when adopted in automated error recovery, can help discover repair strategies
that are otherwise not possible to find. Supplemental materials including our proto-
type implementation and LTR constraints for the case studies are available online at
http://www.cs.utoronto.ca/~liyi/ultr/.

Organization. The rest of the paper is organized as follows. Sec. 2 gives an overview
of the ULTR approach using a running example. We present the main algorithm and its
applications in Sec. 3 and 4, respectively. Sec. 5 describes the implementation details
and empirical evaluation of the effectiveness of our approach. We review related works
in Sec. 6 and conclude the paper in Sec. 7.

2 Approach at a Glance

This section illustrates our approach on an example of Web service composition [21].

Stock Market Indices Service (SMIS). SMIS is a paid service to provide updated stock
indices to the subscribers. It provides service-level agreement (SLA) to the subscribers
stating that it always responds within 3 seconds upon request. The SMIS has three
component services: a database service (DS), a free news feed service (FS) and a paid
news feed service (PS). The workflow of the composite service is shown in Fig. 2 and
is described in the XML-based service composition language BPEL2.

The SMIS strategy is calling the free service FS before the paid service PS in order
to minimize the cost. Upon returning result to the user, SMIS caches the latest results
in an external database service provided by DS. Upon receiving the response from DS,
if the indices are already available (the <if> branch, denoted in Fig. 2 by �), they are
returned to the user; otherwise, FS is invoked asynchronously. A <pick> construct (de-
noted by⊗) is used here to wait for an incoming response from a previous asynchronous
invocation and timeout if necessary. If the response from FS is received within one sec-
ond, the result is returned to the user. Otherwise, the timeout occurs, and SMIS stops
waiting for the result from FS and calls PS instead. Similar to FS, the result from PS is
returned to the user if the response from PS is received within one second. Otherwise,
it would notify the user regarding the failure of getting stock indices.

LTR Synthesis. Starting with the global timing requirement (GTR) that the composite
service must respond within 3 seconds, we use the process of [21] to get the local timing

2 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

http://www.cs.utoronto.ca/~liyi/ultr/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Management of Time Requirements in Component-Based Systems 403

ϕ ≡ ¬(0 ≤ tDS ∧ 1 ≤ tFS ∧ 1 ≤ tPS)
∧ (0 ≤ tDS ∧ 0 ≤ tFS ∧ 0 ≤ tPS)
⇒ tDS ≤ 3

∧ (0 ≤ tDS ∧ 0 ≤ tFS

∧0 ≤ tPS ∧ tFS ≤ 1)
⇒ tDS + tFS ≤ 3

∧ (0 ≤ tDS ∧ 0 ≤ tPS

∧1 ≤ tFS ∧ tPS ≤ 1)
⇒ tDS + tPS ≤ 2

Fig. 3. LTR constraints ϕ of SMIS

0

3

1

2

1

tDS

tFS

tPS

0

Fig. 4. Feasible region of ϕ in the 3D space

constraints. The resulting LTR is a quantifier-free linear real arithmetic (QF LRA) for-
mula ϕ shown in Fig. 3. It contains three time variables, tDS, tFS and tPS. Geometrically,
the feasible region allowed by ϕ is a non-convex polyhedron in 3-dimensional space as
depicted in Fig. 4, and a particular service combination can be represented by a point in
the space.

Building ULTR Model via Sampling. To under-approximate ϕ and guarantee preci-
sion at the same time, we greedily sample largest possible hyperrectangles (also referred
to as BOXES) from the feasible space constrained by ϕ by iteratively using an SMT
solver. After obtaining each sample, we block the space of that sample from ϕ so that
no portion of ϕ is explored twice by the solver. For our example, this method proceeds
by applying the following operations non-deterministically:

1. Pick a largest possible hypercube3. Suppose the first sample picked from ϕ is
([0, 1), [0, 1), [0, 1)), a shorthand notation for the conjunctive constraint s1 ≡ 0 ≤ tDS <
1∧0 ≤ tFS < 1∧0 ≤ tPS < 1, which is the largest hypercube at the moment because the
three variables cannot be greater than or equal to 1 at the same time under the constraint
ϕ. See the shaded region in Fig. 4.

2. Sample an infinite number of hypercubes at a single step to form a hyperrect-
angle with infinite heights in some dimensions. This allows the algorithm to converge
when there are unbounded directions. For example, ([0, 1), [1,∞), [0, 1)) has an infinite
height in the tFS direction.

3. Terminate the sampling process when the size of the largest obtained sample is
smaller than a predefined precision level ω > 0. More precisely, the algorithm termi-
nates when there is no hypercube of size greater or equal to 2ω left in ϕ.

As an under-approximation technique, ULTR never returns false positives, i.e., it
never erroneously claims that a combination of services satisfies timing requirements.
By setting the precision level, our method provides an upper bound for the “local” infor-
mation loss. For instance, ω = 0.1 ensures that for every misclassified (false negative)
point there exists a close enough point (the distance between the projections on some
dimension is less than 0.1) which is correctly classified.

3 A hyperrectangle is a generalization of rectangle in an n-dimensional space. A hypercube is a
special form of a hyperrectangle with an equal height in each dimension.

404 Y. Li, T.H. Tan, and M. Chechik

3 The ULTR Algorithm

3.1 Definitions

Formulas. Let L be the QF LRA theory defined as follows:

ϕ ∈ L ::= true | false | P ∧ P′ | P ∨ P′

P, P′ ∈ Atoms ::= c1v1 + · · ·+ cnvn "# k, n ∈ N
vi ∈ Vars ::= {v1, . . . , vn},

where ci, k ∈ R, "#= {<,≤}. We use �ϕ� to denote the set of all satisfying assignments
(models) of ϕ. A model p : Vars → R of ϕ, denoted p |= ϕ, is a valuation of the
variables of ϕ such that ϕ(p) ≡ true, where ϕ(p) is ϕ with every occurrence of a
variable v replaced by p(v). Geometrically, p is a point in Rn, and in what follows, we
use the terms model and point to refer to p interchangeably. We use Vars(ϕ) to denote
the set of all Vars appearing in ϕ.

BOX and BOXES [12]. A set B ⊆ Rn is a BOX iff it is expressible by a finite system
(Cartesian product) of interval constraints. The set of all BOX-es of Rn is denoted by Bn.
A set BS ⊆ Rn is a BOXES iff there exist BOX-es B1, . . . ,Bk such that BS = ∪k

i=1Bi.
The set of all sets of BOXES of Rn is denoted by BSn.

Let V = {v1, . . . , vn} be variables. We assume that each variable is bound to some
unique dimension in Rn and use formV(B) to denote the formula

∧
vi∈V li "# vi "# ui s.t.

p ∈ B ⇔ p |= formV(B). Similarly, formV(BS)denotes the formula
∨

1≤i≤k formV(Bi).
In the rest of the paper, we do not distinguish between the set representation and its corre-
sponding formula representation and abuse the notations B and BS to mean formVars(ϕ)

(B) and formVars(ϕ)(BS) respectively.

Precision Level. Assume BS ⇒ ϕ. ω is the precision level of BS w.r.t. ϕ iff

∀ p ∃ p′ ∃ v · p |= ϕ ∧ p � BS ⇒ (p′ |= ϕ ⇔ p′ |= BS)∧ | p(v)− p′(v) |≤ ω.

That is, for any false negative p misclassified by BS there exists another point p′ which
is correctly captured, and the distance between p and p′ in the v direction is less than or
equal to ω.

Symbolic Optimization. Let ϕ be a formula in L. Let f be a linear objective function,
i.e., a linear term over Vars(ϕ) = {v1, . . . , vm}, in the form c1v1 + · · · + cmvm, where
ci ∈ R. We say k is the least upper bound of f w.r.t. ϕ and denote it by Lubf (ϕ) iff
ϕ ⇒ f ≤ k (k ∈ R ∪ {−∞,∞})4 and there does not exist k′ < k where ϕ ⇒ f ≤ k′.
The procedure of computing Lubf (ϕ) is called symbolic optimization.

3.2 Best Under-approximation

We now formalize the notion of best under-approximation and describe the algorithm
for computing it.

Definitions. Let ϕ ∈ L. A BOX formula B is an under-approximation of ϕ iff B ⇒ ϕ.
Let U(ϕ) be the set of all under-approximations of ϕ in Bn.

4 Note that k is∞ if f is unbounded in ϕ, and −∞ if ϕ is unsatisfiable.

Management of Time Requirements in Component-Based Systems 405

1: function FBU(ϕ, f)
2: B ← true
3: θ ← ∀Vars(ϕ) · (∧

vi∈Vars(ϕ)

αi � vi � βi)⇒ ϕ

4: θ′ ← QELIM(θ) � Quantifier elimination
5: p ← Lubf (θ

′) � Symbolic optimization
computing p ∈ �θ� that optimizes f

6: for all vi ∈ Vars(ϕ) do
7: B ← B ∧ (p(αi) ≤ vi ≤ p(βi))

8: return B

Fig. 5. Algorithm for computing B ∈ BUf (ϕ)

1: function ULTR (ϕ, ω)
2: BS ← ∅, h ←∞, i ← 0
3: B0, h0 ← MAXCUBE(ϕ)
4: while hi ≥ 2ω do
5: ASSERT(¬Bi); i ← i + 1
6: Bi, hi ← MAXCUBE(ϕ)
7: if (*) then � non-deterministic
8: Bi ← INFCUBE(ϕ,Bi)

9: BS ← BS ∪ Bi

10: return BS

Fig. 6. Iterative hypercube sampling

Let f : Bn → R be a function mapping a BOX formula to a real number. A BOX

formulaB is the best under-approximation of ϕ iff B ∈ U(ϕ) and ∀B′ ∈ U(ϕ)·f (B′) ≤
f (B). Let BUf (ϕ) be the set of all best under-approximations of ϕ.

Computing Best Under-approximation. Let θ ≡ ∀Vars(ϕ) · (
∧

vi∈Vars(ϕ) αi � vi �
βi) ⇒ ϕ, where αi and βi are real-valued bound variables introduced for each variable vi

in ϕ. Because the upper and lower bound pairs for all variables uniquely define a BOX

formula, we pose the problem of finding U(ϕ) as computing the set of all satisfying
assignments for αi and βi in the quantified formula θ. Then we are able to compute the
best satisfying assignment BUf (ϕ), which is the optimal BOX formulas in U(ϕ) w.r.t.
f , by calling Lubf (θ). An algorithm FBU is given in Fig. 5. Quantifier elimination
has to be applied on θ first to find the quantifier-free equivalent θ′ (Line 4) in order to
work with symbolic optimization procedures. The function FBU correctly computes the
optimal BOX formulaB that makes B ⇒ ϕ valid through finding satisfying assignments
of θ, which is supported by Proposition 1.

Proposition 1. Let p ∈ �θ�. Let ψ be the result of substituting li, ui in (B ⇒ ϕ), for
each vi ∈ Vars(ϕ), by p(αi) and p(βi) respectively. Then if θ is satisfiable, ψ is valid;
otherwise, there does not exist B ∈ Bn such that B ⇒ ϕ is valid.

3.3 Iterative Hypercube Sampling

B1 B2

B3

B4

B5

φ

h

Fig. 7. The iterative sampling
process illustration

We now show how FBU can be used to compute a
BOXES formula that under-approximates a given LTR
formula ϕ and ensures a local precision level through it-
erative hypercube sampling. As in Fig. 6, the ULTR al-
gorithm iteratively samples from ϕ using an SMT solver
and maintains a BOXES formula BS as the current com-
puted under-approximation of ϕ. Each new sample Bi is
added to BS and blocked from the future exploration by
asserting ¬Bi in the SMT solver context (Lines 5 and
9). For example, the grey boxes in Fig. 7 are blocked and
the next sample is B5. The ULTR algorithm makes use of
operations MAXCUBE and INFCUBE described below.

406 Y. Li, T.H. Tan, and M. Chechik

MAXCUBE(ϕ). The volume of a hyperrectangle, also known as hypervolume, is the
product of its heights in all dimensions. Since hypercubes have equal height in all di-
mensions, i.e., βi − αi = h for all vi ∈ Vars(ϕ) (the value of h is non-negative), we
find a hypercube with a maximal volume in ϕ by asserting an additional constraint∧

vi∈Vars(ϕ)(βi − αi = h) and computing a best under-approximation Bi ∈ BUh(ϕ)
using the procedure FBU to maximize the height h.

INFCUBE(ϕ,Bi). This operation is to ensure convergence when there are dimensions
where ϕ is unbounded. Given a maximal BOX Bi, it tries to relax the constraint in each
dimension in a fixed order. Relaxing the constraint vi ≤ ui is equivalent to sampling
an infinite number of hypercubes with the same size as Bi in the positive direction of
dimension vi. For example, 1 ≤ v is a relaxation of 1 ≤ v ≤ 2 in the positive v direction.
If the relaxed BOX B′

i still under-approximates ϕ then we can replace Bi by B′
i .

Correctness and Termination. The algorithm terminates if hi < 2ω and the precision
level is satisfied. For the example in Fig. 7, if ω = height(B5)/2 then the algorithm
terminates after B5 is sampled since no BOX equal or larger than B5 left within ϕ.
We now show that when the height of last sample h < 2ω, the precision level of ω is
guaranteed. Assume not, then for all mis-classified p there does not exist p′ that meets
the distance criteria and is correctly classified by BS. Thus, there exists a hypercubeB′

centered at p with height 2ω such that ∀ p′′ ∈ B′ · p′′ |= ϕ ∧ p′′ � BS. This contradicts
the termination condition h < 2ω, which implies there does not exist such B′.

The correctness of the sampling algorithm trivially follows from the fact that every
sample is a BOX formula that implies ϕ. Therefore, the disjunction of such samples BS
is an under-approximation of ϕ as well. From the correctness of FBU, the heights hi of
the sampled hypercubes form a non-increasing sequence. The algorithm terminates if
INFCUBE is eventually applied.

4 Applications

In this section, we show how ULTR models can be applied in both component selection
and runtime error recovery.

Component Selection. Recall that in the consumer-broker-provider component service
selection model, consumers can only make component-specific search queries through
a broker in order to find services they need. Having the property of component indepen-
dence, ULTR constraints BS can easily be translated into a sequence of simple service
search queries, e.g., “what are the news feed services that have response time less than
0.8 seconds”. The broker is able to answer such queries by returning a set of services
that satisfy the requirements in the queries [17].

In the SMIS running example, the ULTR computed are the three BOX constraints
In the SMIS example, the ULTR computed contains three BOX constraints {B1 ≡
([0, 1), [0,∞), [0, 1)),B2 ≡ ([0, 1), [0, 1), [1,∞)),B3 ≡ ([1, 2), [0, 1), [0,∞))}, where
intervals in each tuple represent the allowed time ranges for service DS, FS and PS
respectively. To reduce the number of remote queries, we could compute the box hull
of all BOX constraints first. We first pose three queries, “what are the DS/FS/PS that
respond under 2/∞/∞ seconds”, which ask for service combinations in the box hull of

Management of Time Requirements in Component-Based Systems 407

MA Module

uLTR Monitor

Recovery Generation

GTR Monitor

Execution
Engine

Recovery Strategy
Component

Response Time

System
Response

Time

Fig. 8. Component monitoring and re-
covery framework

1: function RECOVERY(BS, te)
2: distance ← empty map
3: for all B ∈ BS do
4: distance(B) ← 0
5: for all [li, ui] ∈ B do
6: if te(i) < li ∨ te(i) > ui then
7: distance(B) ← distance(B) + 1

8: return argminB′∈BS(distance(B′))

Fig. 9. Algorithm for generating best recovery plans

B1, B2 and B3, i.e., ([0, 2), [0,∞), [0,∞)). In general, we only need k remote search
queries for compositions of k component services. However, the box hull contains infea-
sible combinations which need to be filtered locally by examining each BOX constraint.

Runtime Adaptation and Recovery. The performance of real-time component-based
systems often varies subject to environmental factors over time. It is thus a common
practice for such systems to monitor themselves and recover from erroneous behaviors.
Fig. 8 depicts a runtime monitoring and recovery framework able to detect violations of
timing requirements and suggest efficient recovery strategies. GTR is first used to gen-
erate monolithic LTR constraints with which we can compute the initial estimation of
the ULTR model. At runtime, the Monitoring and Adaptation (MA) module monitors
both the system-level and the component-level response times. The latter are checked
against the ULTR model and there are two possibilities when it is violated: (1) The sys-
tem response time also violates GTR which indicates a real failure. Recovery strategies
are then generated and used to instruct the execution engine to recover. (2) GTR is not
violated and a false negative is caught. A way to address this problem is to use the false
negative to refine the ULTR model and produce a more precise estimation of LTR con-
straints. The runtime refinement is done via a simple MAXCUBE call which computes
the largest hypercube containing the false negative point.

ULTR can be used to generate best recovery strategies. A best recovery strategy is
a set of plans requiring a minimum number of component replacements to adapt to
the environment changes and put the system back into desired state where the timing
requirements are satisfied. Fig. 9 gives an algorithm RECOVERY for generating such
strategies. The ULTR model consists of a set of disjoint BOX constraints BS, and the
search for recovery plans can be done in a single traverse of this set. Vector te ∈ Rk

contains the response times for component services during an execution of composite
service where the GTR is violated. For each BOX constraint B in BS, we compute its
distance (i.e., the number of services that need to be replaced in order to satisfy B) from
te by simply comparing the service response time to the corresponding lower and upper
bound (Lines 5-7). After the traversal, the function returns a subset of BS that has the
shortest distance from te (Line 8).

In most cases, the recovery plan with the shortest distance is not unique. In the SMIS
example, suppose a detected violation has the response time te = (0.5, 1.5, 1.5). There
are two BOX constraints in BS with distance 1 to te, i.e., B1 = ([0, 1), [0,∞), [0, 1))

408 Y. Li, T.H. Tan, and M. Chechik

and B2 = ([0, 1), [0, 1), [1,∞)), representing two alternative best recovery plans. The
execution engine can either replace FS or PS with a substitute that responds under 1
second. With multiple options, the adaptation module can take other QoS parameters
(e.g., price) into consideration when making the decision.

5 Implementation and Experiences

5.1 Implementation

We have implemented the ULTR algorithm in C++, using the Z3 SMT solver [16]
for satisfiability queries and quantifier elimination. A number of off-the-shelf im-
plementations for computing Lubf (ϕ) exist, including SYMBA [14] and OPTMATH-
SAT [20]. We used the latter. Our implementation accepts an LTR formula writ-
ten in the standard SMT-LIB2 [6] format and computes the ULTR model as
a set of BOXES BS. The source codes of the prototype can be obtained from
http://www.cs.utoronto.ca/~liyi/ultr/.

In the sampling process, we give priority to hypercubes adjacent to the existing sam-
ples so that they can be merged into a larger BOX. We apply INFCUBE periodically and
observe the growth of BS. We opportunistically pick the directions where new samples
are consecutively obtained, since such directions are often unbounded. These optimiza-
tions and heuristics are useful in shortening the time required for convergence.

5.2 Experiences

We performed a series of experiments in order to evaluate the ULTR approach ap-
plied for the management of timing requirements during the design and monitoring
of component-based systems. Specifically, we aimed to answer the following research
questions: RQ1: How effective are the ULTR models for the software component se-
lection? RQ2: How efficient are the recovery strategies generated by ULTR models?

Subjects. To answer these questions, we designed three case studies on real-world Web
service compositions5 as our subjects which include a stock quotes service (described
in Sec. 2), a computer purchasing service and a travel booking service.

Computer Purchasing Service (CPS). The goal of a computer purchasing service (CPS)
(e.g., Dell.com) is to allow a user to purchase a computer online using a credit card.
CPS uses five component services: Shipment (SS), Logistic (LS), Inventory (IS), Man-
ufacture (MS), and Billing (BS). The global timing requirement of CPS is to respond
within 1.6 seconds. LTR computed for CPS contains four time variables.

Travel Booking Services (TBS). The goal of TBS (such as Booking.com) is to provide
a combined flight and hotel booking service by integrating two independent existing
services. TBS provides an SLA for its subscribed users, promising a response within
1 second after receiving a request. TBS has five component services: user validation
(VS), flight (FS), backup flight (FSbak), hotel (HS) and backup hotel (HSbak). LTR for
TBS contains four time variables.

5 Details of the workflows can be found in [21].

http://www.cs.utoronto.ca/~liyi/ultr/

Management of Time Requirements in Component-Based Systems 409

Table 1. Statistics of Web services in QWS

Service Types Quantity
Response Time (ms)

MAX. MIN. AVG. STD.

Stock Quotes 13 1,939 67 446 574
Online Data Storage 9 569 144 298 154

Flight Schedule 10 1,212 100 438 330
Hotel Booking 6 440 139 256 104

Online Billing & Payment 13 495 124 105 116
Inventory & Logistic Service 14 4,758 108 545 1,216

Shipping Service 6 278 65 193 84

Dataset. To reflect the actual response times of Web services in our experiments, we
used a publicly available Quality of Web Service (QWS) dataset [1]. QWS contains de-
tailed QoS measurements for a set of 2,507 real Web services collected using the Web
Service Crawler Engine (WSCE) [2] from public sources including Universal Descrip-
tion, Discovery, and Integration (UDDI) registries6, search engines, and service portals.
Each service has 9 parameters (including response time, availability, throughput, etc.)
measured using commercial benchmark tools over a 6-day period in 2008.

We manually categorized services from the dataset according to their service types7.
The statistics for each category is given in Table 1. For example, there are 10 flight
scheduling services which map to FS and FSbak in the TBS example with an average re-
sponse time of 438ms and a standard deviation of 330ms. The maximum and minimum
response times are 1212ms and 100ms, respectively.

Methodology. For each case study, we compute its ULTR model using the proposed
technique setting the precision level ω to 0.05, which should be adjusted accordingly
to balance the trade-off between precision and efficiency of the model. We evaluate the
quality of the ULTR models in terms of the percentage of false negatives produced.
Then we simulate a large number of timing requirement violations and examine the
recovery strategies generated by the MA module. The experiments were conducted on
a computer running Linux with an Intel i5 3.1GHz processor and 4GB of RAM.

RQ1: Effectiveness of ULTR in component selection. To achieve component-level in-
dependence, the ULTR approach loses information on the relationship among compo-
nents. We evaluate the effectiveness of the ULTR model applied to component selection
as its precision of approximating the original LTR constraints. Since many of the ULTR
models are unbounded (i.e., there is no upper bound for at least one dimension), it is not
possible to compute the precision analytically through comparison of the hypervolume
(the volumes of both ULTR model and LTR model are infinite in this case). Therefore,
we study the precision empirically by defining it as the number of service combinations
preserved from the original LTR, i.e.,

6 http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
7 We ignored those services for which the semantics could not be easily inferred from their

names or WSDL descriptions.

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

410 Y. Li, T.H. Tan, and M. Chechik

1 4 7 10

Size of uLTR model (|BS|)

60

65

70

75

80

85

90

95

100
P
re
ci
si
o
n
o
f
u
L
T
R

m
o
d
el

(%
)

QWS, Te = 0.9s

Rand, Te ≈ 10.8s

(a) SMIS

1 4 7 10

Size of uLTR model (|BS|)

60

65

70

75

80

85

90

95

100

P
re
ci
si
o
n
o
f
u
L
T
R

m
o
d
el

(%
)

QWS, Te = 2.7s

Rand, Te ≈ 242.2s

(b) TBS

100 200

Size of uLTR model (|BS|)

10

20

30

40

50

60

70

80

90

100

P
re
ci
si
on

of
u
L
T
R

m
o
d
el

(%
)

QWS, Te = 10.8s

Rand, Te ≈ 201.4s

(c) CPS

Fig. 10. Precision of ULTR models applied in case studies. Te is the time taken by enumerating
all service combinations. The selection time taken by ULTR is negligible.

Precision(BS) =
number of combinations satisfied by BS
number of combinations satisfied by ϕ

× 100%.

The number of service combinations satisfied by ϕ is computed by checking the satisfi-
ability of the LTR constraints using Z3. The satisfiability of BS can be verified by eval-
uating the BOX constraints through simple pairwise comparisons. We used the services
in QWS as the target service registry. In order to get statistically significant results, we
also randomly generated 10 larger sets (RAND), where each category contains between
16 and 30 services (roughly double the size of QWS), using the Gaussian distribution
with the mean and variance recorded in Table 1. The precision results for RAND were
obtained by taking the average across the 10 sets.

Results. The experimental results are shown in Fig. 10. The horizontal and vertical axes
represent the size of the ULTR model (|BS|) and the precision achieved at that point,
respectively. The precision for SMIS (Fig. 10a) and TBS (Fig. 10b) quickly reaches
∼100% when the size of BS increases to 5, without requiring runtime refinement.
However, the CPS example exhibits a very different behavior. The ULTR model has
good precision results on the QWS set but only achieves ∼60% precision on the RAND

set (Fig. 10c). A closer look reveals that the structure of the CPS composition im-
poses much stronger dependencies among component services than the other two. For
example, LTR of CPS contains atomic constraints over all four services, and such re-
lationships can hardly be preserved in the BOX domain for the dimension-independent
nature of BOX. A remedy for the information loss during the approximation is runtime
refinement (Cf. Sec. 4) which is able to restore such information when false negatives
are detected during execution.

Furthermore, the time taken by enumerating and evaluating all service combinations
(Te in Fig. 10) increases exponentially as the registry size grows. In contrast, the entire
service selection process using the ULTR model was almost instantaneous (<0.01s).

RQ2: Efficiency of ULTR in recovery strategy generation. The MA module initiates
a recovery generation when GTR is violated. Monolithic LTR constraints do not allow
pinpointing the actual causes of violations. Without the additional knowledge, the only
possible recovery strategy, denoted by LTR, is to replace all delayed components.

Management of Time Requirements in Component-Based Systems 411

Table 2. Comparison of recovery strategies generated by ULTR and LTR models

LTR ULTR
SMIS (3 comp.) TBS (4 comp.) CPS (4 comp.)
COUNT D̄(S) COUNT D̄(S) COUNT D̄(S)

2
1 5,079 1.29 4,507 0.78 3,224 0.73
2 72 1.53 644 0.78 1,989 1.08

3
1 4,502 1.63 3,225 1.16 881 0.76
2 649 2.17 1,926 1.18 3,353 1.18
3 0 - 0 - 912 1.63

4

1 - - 232 1.21 139 0.78
2 - - 4,919 1.57 1,653 1.20
3 - - 0 - 2,962 1.69
4 - - 0 - 139 2.22

For each case study, we randomly chose 50 service combinations that originally sat-
isfied the ULTR constraints and simulated service delays by adding a positive random
variable D (uniformly distributed between 0.1s and 3s) to some of the response times.
We simulated 100 violations for each service combination to get ∼15K violations per
case study. and compared the length of the best recovery strategies generated using
ULTR (denoted by ULTR) with LTR.

Results. The experimental results are summarized in Table 2, in which the columns
“LTR”, “ULTR” and “COUNT” list the length of the recovery strategies generated using
the monolithic LTR approach, the best strategies generated using ULTR models and
the number of violations recovered by the corresponding best strategies, respectively.
For example, SMIS consists of three components and when two of them are delayed, in
5,079 out of 5,151 cases (98.6%) the system can be recovered by replacing only a single
component, whereas LTR would replace both. When all three services are delayed,
the best strategies are always shorter in comparison with the naive approach, i.e., no
strategy of length 3 is generated. Our experiments clearly show that the best strategies
have shorter lengths than the naive approach in the absolute majority of cases.

In Table 2, the column “D̄” shows the average delay of component services. The
results indicate a correlation between D̄ and the length of the best strategies COUNT.
That is, the longer the delays, the harder it is to restore the composite system back to
the desired state with a small number of replacements. However, the TBS example is
a notable exception: it always has best strategies of length at most 2. This has to do
with the structure of the composition: if one of the two groups (FS and HS; or FSbak

and HSbak) satisfies its requirements, then the overall time requirement is also satisfied.
The ULTR approach is able to detect this connection and therefore always produces the
shortest repairs.

Recall that we are able to generate multiple best strategies for each violation, but the
services required not necessarily exist in the registry. For instance, there is no Inventory
Service that responds within 0.1 seconds which is required by some of the best strate-
gies. In our experiment, we have observed that the best strategies could not be executed
with the given registry in 31 out of ∼15K cases, which is acceptably rare.

412 Y. Li, T.H. Tan, and M. Chechik

In summary, the ULTR models produced for the three case studies are effective in
component selection despite the relatively low precision in the CPS example. More
importantly, we have also shown that even with the under-approximated models, we are
able to generate shorter recovery strategies that were otherwise not possible to find.

Experiences on Scalability. As mentioned, the symbolic optimization tools that we
used only accept quantifier-free constraint formulas. The preprocessing step requires
quantifier elimination on the linear real arithmetic theory, which is known to be expen-
sive. In practice, the preprocessing of the universally quantified formula θ (Cf. Sec. 3)
becomes the bottleneck of the whole sampling process even if it is invoked only once. In
our experiment, we gradually increased the number of components in a standard com-
position structure and observed that the quantifier elimination interface of Z3 is able to
handle efficiently compositions with less than 8 components.

Threats to Validity. The first threat is that there are a few random factors in our exper-
iments: the randomly generated Web service registries and GTR violations. To mitigate
it, we repeated our experiments a number of times and reported on the averages in the
hope to reflect the general cases. The global timing requirements given in the case stud-
ies also have an impact on the precision of the ULTR models. Since if the GTR chosen
is impractical (either too restrictive or too relaxed), the number of satisfying service
combinations can be very skewed (e.g., 0 or everything). In order to mitigate the second
threat, we selected GTR so that such cases do not happen in the experiments.

6 Related Work

Computing Under-approximation. Our technique is related to the computation of
hyperrectangle-shaped under-approximation for polyhedra. Sankaranarayanan et. al [19]
used a random ray shooting technique to find a large enough hyperrectangle over Rn in
convex polyhedra which encodes a conjunction of linear program path conditions. The
ray shooting method first finds a random point t0 within the polyhedron and treats it
as a hyperrectangle with zero volume. Then it tries to expand the hyperrectangle while
satisfying all constraints by shooting rays to different directions in a fixed order. This
process is repeated several times, and the largest hyperrectangle is returned. The under-
approximation technique is used to estimate the lower bound for the probability of a
set of paths in probabilistic programs. Compared with their method which involves
randomness, our algorithm guarantees the maximality of samples and thus ensures the
precision level.

Another related problem is computing a maximal inscribed isothetic rectangle in a
polygon. An Θ(log n) algorithm for computing the maximum area rectangle that has
all sides parallel to the coordinate axises and is inscribed in a convex n-gon is given
in [4]. This algorithm only works in the 2-dimensional space and has the restriction
that the polygon has to be convex. In contrast, by exploiting the power of SMT solvers,
our method generalizes to n-dimensional non-convex polyhedra, which is required to
express complex timing constraints. Although each single hypercube we computed has
equal heights in all dimensions, the disjunctive collection of hypercubes gives us more
flexibility in under-approximating non-convex polyhedra.

Management of Time Requirements in Component-Based Systems 413

QoS-Based Service Selection. This work is also related to service selection under QoS
constraints. The many techniques proposed for this in the literature can be loosely di-
vided into service selection with direct access to registries [7,5,23,3] and broker-based
service discovery [1,17]. The former assumes the visibility of all concrete services and
their QoS attributes (e.g., price, response time and availability) and finds the optimal
concrete services. For example, Zeng et. al [23] present an approach that makes use of
mixed integer programming (MIP) to dynamically search for the best service combi-
nations under both local and global QoS constraints. [7] formulated service selection
as a problem solved by Genetic Algorithms (GA) which allow for non-linear objective
functions and provide better scalability.

The broker-based approaches [1,17] delegate the measurement and ranking of QoS
parameters to a third-party service discovery agent. This allows users to specify non-
functional QoS requirements and find the best services that satisfy the component-level
requirements through the broker. [17] introduced a WS-QOS broker architecture which
discovers Web services beyond traditional key-word searching. The framework verifies
and certifies QoS properties of services and provides services that meet the consumers’
requirements through a series of matching, ranking and selection algorithms.

Our work focuses on the timing requirements and is applicable under the consumer-
broker-provider service selection model which does not assume the availability of all
service attributes. We enable point-wise component selection by lifting the dependen-
cies among components. Through sophisticated timing analysis, we extend the broker-
based architecture by allowing service discovery to admit not only the component-level
but also the system-level global requirements.

Runtime Monitoring and Adaptation. Much work has been done in the area of run-
time QoS monitoring and self-adaptation of component-based systems. For example,
the KAMI approach [11] combines two basic techniques that support predictions and
analysis of QoS properties, namely, measurement and modeling. KAMI keeps live
Bayesian estimator models at runtime for QoS parameter predication and refines the
models through the direct measurement of QoS attributes. We adopt a similar approach
by modeling the timing requirements using an under-approximation and making the
model progressively more accurate when discrepancies are detected at runtime. The
difference of our work is that we use the ULTR model to generate best adaptation
strategies while the approaches in [11] use a predefined violation handler.

A number of other service monitoring and adaptation frameworks including MOSES
[8] and VieDAME [15] use specific service selection algorithms to choose the optimal
replacement when a service failure is found. None of them address the problem of
“best adaptation strategy” in terms of the number of services to replace when there are
multiple delays of component services. Their techniques in replacement optimization is
orthogonal to our approach and can be used to choose the optimal one when multiple
best strategies are generated.

7 Conclusions and Future Work

In this paper, we presented the ULTR approach which decomposes the monolithic
representation of LTR constraints into independent timing contracts over software

414 Y. Li, T.H. Tan, and M. Chechik

components. Our method is based on an iterative sampling algorithm using SMT solvers.
The ULTR algorithm computes the under-approximation of LTR in the BOX domain
which guarantees local precision level. We showed how the ULTR models can be ap-
plied in component selection and runtime adaption strategy generation under timing
requirements. Our experience demonstrates the applicability and effectiveness of the
ULTR approach in real-world service compositions.

We see many avenues for future work. First, we would like to extend our approach
to allow handling requirements containing QoS attributes other than time. This requires
defining an automatic synthesis procedure for those requirements and their efficient
encoding in linear real arithmetic. Another direction is generalizing the best under-
approximation algorithm to allow sampling of arbitrary hyperrectangles. This relies
on the development of a non-linear symbolic optimization procedure. Finally, we are
interested in lifting the scalability limitations by avoiding quantifier elimination through
approximating best under-approximation computations.

Acknowledgement. We are grateful for the valuable discussions and helpful comments
from Aws Albarghouthi and Zachary Kincaid.

References

1. Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services. In: Proc.
of ICCCN 2007, pp. 529–534. IEEE (2007)

2. Al-Masri, E., Mahmoud, Q.H.: Investigating Web Services on the World Wide Web. In: Proc.
of WWW 2008, pp. 795–804 (2008)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-Based Web Service
Composition. In: Proc. of WWW 2010, pp. 11–20. ACM (2010)

4. Alt, H., Hsu, D., Snoeyink, J.: Computing the Largest Inscribed Isothetic Rectangle. In: Proc.
of CCCG 1995, pp. 67–72 (1995)

5. Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selection. In:
Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46. Springer, Heidelberg
(2006)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2010), http://www.SMT-LIB.org

7. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service
Composition Based on Genetic Algorithms. In: Proc. GECCO 2005, pp. 1069–1075 (2005)

8. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Mirandola, R.: Moses:
A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE TSE
(2012)

9. Carminati, B., Ferrari, E., Hung, P.C.: Exploring Privacy Issues in Web Services Discovery
Agencies. IEEE Security & Privacy 3(5), 14–21 (2005)

10. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Proc. of
the Colloque sur la Programmation (1976)

11. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model Evolution by Run-time Param-
eter Adaptation. In: Proc. of ICSE 2009, pp. 111–121. IEEE (2009)

12. Gurfinkel, A., Chaki, S.: BOXES: A Symbolic Abstract Domain of Boxes. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg (2010)

13. Isovic, D., Norström, C.: Components in Real-time Systems. In: Proc. of ICRTCSA 2002
(2002)

http://www.SMT-LIB.org

Management of Time Requirements in Component-Based Systems 415

14. Li, Y., Albarghouthi, A., Gurfinkel, A., Kincaid, Z., Chechik, M.: Symbolic Optimization
with SMT Solvers. In: Proc. of POPL 2014 (2014)

15. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adaptation for
WS-BPEL. In: Proc. of WWW 2008, pp. 815–824. ACM (2008)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

17. Rajendran, T., Balasubramanie, P., Cherian, R.: An Efficient WS-QoS Broker Based Archi-
tecture for Web Services Selection. Int. J. of Computer Applications 1(9), 110–115 (2010)

18. Salah, R.B., Bozga, M., Maler, O.: On Timed Components and Their Abstraction. In: Proc.
of SAVCBS 2007, pp. 63–71 (2007)

19. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static Analysis for Probabilistic Programs:
Inferring Whole Program Properties from Finitely Many Paths. In: Proc. of POPL 2013, New
York, NY, USA, pp. 447–458 (2013)

20. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 484–498. Springer, Hei-
delberg (2012)

21. Tan, T.H., André, E., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic Synthesis of Local
Time Requirement for Service Composition. In: Proc. of ICSE 2013, pp. 542–551 (2013)

22. Wang, S., Rho, S., Mai, Z., Bettati, R., Zhao, W.: Real-time Component-based Systems. In:
Proc. of RTETAS 2005, pp. 428–437 (2005)

23. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
Middleware for Web Services Composition. IEEE TSE 30(5), 311–327 (2004)

Compositional Synthesis of Concurrent Systems

through Causal Model Checking and Learning

Shang-Wei Lin1 and Pao-Ann Hsiung2

1 Temasek Laboratories, National University of Singapore�
2 National Chung Cheng University, Chia-Yi, Taiwan

Abstract. Formal verification such as model checking can be used to
verify whether a system model satisfies a given specification. However,
if model checking shows that the system model violates the specifica-
tion, the designer has to manually refine the system model. To automate
this refinement process, we propose a learning-based synthesis frame-
work that can automatically eliminate all counterexamples from a sys-
tem model based on causality semantics such that the synthesized model
satisfies a given safety specification. Further, the framework for synthe-
sis is not only automatic, but is also an iterative compositional process
based on the L∗ algorithm, i.e., the global state space of the system is
never generated in the synthesis process. We also prove the correctness
and termination of the synthesis framework.

1 Introduction

Communicating concurrent systems can be formally verified by model checking
[6,20]. If a system model violates a given specification, a model checker gives a
counterexample. However, in a real-world situation, mere verification is insuffi-
cient for a system designer, because if there is a counterexample, he/she needs
to manually rectify the system model and then verify it again. This manual and
tedious process is repeated until the system model satisfies all specifications.

In contrast to verification, the classical synthesis problem [19] asks “if a user-
given specification is satisfiable, can we construct a model that satisfies the
specification?” The solution to this problem is a model that is synthesized purely
from the given specification. However, this synthesized model may not reflect the
actual characteristics of a system under construction by a designer, that is, the
synthesized model is only a model satisfying the specification φ, but it may be
irrelevant to the characteristics required by the designer.

To bridge the gap between verification and synthesis, a counterexample given
by a model checker can be used to guide the synthesis of the model because
the counterexample shows how the model violates the specification. If the model
is synthesized by eliminating all counterexamples from the original one, then
the synthesized model not only satisfies the specification, but also reflects the
characteristics required by the designer. This gives rise to a synthesis problem.

� This work is supported by the TRF project R394-000-063-23 and the seed project
R394-000-068-232 in Temasek Laboratories at National University of Singapore.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 416–431, 2014.
c© Springer International Publishing Switzerland 2014

Compositional Synthesis of Concurrent Systems 417

Problem 1. Assume-Guarantee Synthesis. Given a system model consisting
of n components M = {M1,M2, . . . ,Mn} and a safety specification φ, if M ∀|= φ,
the problem is to synthesize M into M ′ = {M ′

1,M
′
2, . . . ,M

′
n} such that M ′ |= φ,

where M ′
i = Mi or M

′
i is a synthesized version of Mi for i ⇒ {1, 2, . . . , n}. ∃⊆

A previous work [14], Counterexample-guided Assume Guarantee Synthesis
(CAGS), tried to solve Problem 1 by synthesizing components individually. The
synthesis process of CAGS is done by eliminating from component models the
counterexamples given by model checking. When a counterexample α is given,
CAGS selects a component model as the synthesis target and eliminates from
the target a class1 of counterexamples equivalent to α. However, this synthesis
philosophy is too conservative (but sound) so that some good behavior which
does not violate the specification might also be eliminated (c.f. Section 3 for an
example) because counterexamples classified in a class might not be just related
to one single component. Thus, causality semantics is necessary for compositional
synthesis, i.e., to synthesize component models individually.

As a better solution2 to Problem1, we propose a compositional synthesis frame-
workbasedoncausality semantics.Theproposed ImprovedCounterexample-guided
Assume-Guarantee Synthesis (iCAGS) framework is an automatic and iterative
process. In iCAGS, we give causality semantics to componentmodels such that we
can investigate the responsibility for counterexamples. While verifying a system
model with n components against a specification φ, whenever a counterexample is
given,we determine the componentswhich should be responsible for the counterex-
ample by the causality semantics and then eliminate the class of counterexamples
from those components. Subsequently, the system model is verified again. If the
specification is still violated due to another class of counterexamples, the elimi-
nation process is repeated in another iteration. The iterative procedure continues
until all classes of counterexamples are eliminated from the original model. Note
that the eliminating process is compositional, i.e., each component is synthesized
individually, and the global state space is never generated. We also prove the cor-
rectness and termination of the proposed iCAGS framework. The contributions of
this work include the followings.

1. To clarify the responsibility for counterexamples among the components,
a new causal model checking (CMC) problem is proposed, which is neces-
sary for compositional synthesis. To address the CMC problem, two novel
monolithic and compositional CMC algorithms are proposed.

2. A novel compositional learning-based formal synthesis method is proposed
for automatically refining models to satisfy user-given specifications.

The rest of this article is organized as follows. Basic preliminaries are given
in Section 2. The CMC problem and its algorithms are described in Section 3.
The proposed iCAGS framework is introduced in Section 4. The experimental

1 In [14], two counterexamples are defined to be equivalent if they reach the error state
through the same transition, and they are classified in the same class.

2 By a “better” solution, we mean that behavior which does not violate the specification
is kept in the synthesized model as much as possible.

418 S.-W. Lin and P.-A. Hsiung

1 2

!send

input

?ack

(a) INPUT

A B

?send

output

!ack

(b) OUTPUT

a b

input

output

(c) Mϕ

a b

τ

input

output

output

input

(d) Mϕ

Fig. 1. The I/O System

results of applying iCAGS are given in Section 5. Section 6 describes previous
related works. The conclusion and future work are given in Section 7.

2 Background

A communicating finite automaton (CFA) is a 5-tuple (S, I, {!, ?, ν} · Σ, T, F),
where S is a finite set of states, I ⊆ S is the set of initial states, Σ is a finite
alphabet of actions, T ⊆ S × ({!, ?, ν} · Σ) × S is the transition relation, and

F ⊆ S is a set of accepting states. For convenience, we write s
q·π−−∧ s′ instead

of (s, q · σ, s′) ⇒ T for s, s′ ⇒ S, q ⇒ {!, ?, ν} and σ ⇒ Σ. A CFA is deterministic

if |I| ∨ 1 and |Post(s, σ)| ∨ 1 where Post(s, σ) = {s′ ⇒ S | s q·π−−∧ s′}. In this
work, we focus on communicating deterministic finite automaton (CDFA). An
action on a transition is classified as active, denoted by (! · σ) for σ ⇒ Σ, if it
represents sending a signal; passive, denoted by (? · σ), if it represents receiving
a signal; otherwise it is called a normal action, denoted by (ν · σ). Signals are
basic communication primitives.

Figs. 1 (a) and (b) show an I/O system modeled by two CDFAs. The INPUT
component may either perform an input action or notify the OUTPUT compo-
nent by a send action and wait for the acknowledgement from OUTPUT. After
the notification, OUTPUT may either perform an output action or acknowledge
INPUT by an act action.

The projection of a string ε over an alphabetΣ, denoted by ε�Φ , is obtained by
removing from ε all the characters that are not in Σ. A string ε = σ1 ·σ2 · . . . ·σn

is accepted by a CFA M = (S, I, {!, ?, ν} ·Σ, T, F) if for i ⇒ {1, 2, . . . , n}, s0 ⇒ I,

sn ⇒ F , and si−1
qi·πi−∧ si where si ⇒ S and qi ⇒ {!, ?, ν}. The language accepted

by M , denoted by L(M), is the set of all traces accepted by M .
Given two CDFAs Mi = (Si, Ii, {!, ?, ν} ·Σi, Ti, Fi) for i ⇒ {1, 2}, the parallel

composition of M1 and M2 is the CDFA M1 ‖ M2 = (S1 × S2, I1 × I2, {!, ?, ν} ·
(Σ1 ⊥Σ2), T, F1 × F2) and T is defined as follows where s1, s

′
1 ⇒ S1, s2, s

′
2 ⇒ S2:⎧⎪⎨⎪⎩

(s1, s2)
(q1�q2)·π−−−−−−∧ (s′1, s

′
2) if s1

q1·π−∧ s′1 and s2
q2·π−∧ s′2 where q1, q2 ⇒ {!, ?, ν}

(s1, s2)
q·π−−∧ (s′1, s2) if s1

q·π−∧ s′1 and σ /⇒ Σ2 where q ⇒ {!, ?, ν}
(s1, s2)

q·π−−∧ (s1, s
′
2) if s2

q·π−∧ s′2 and σ /⇒ Σ1 where q ⇒ {!, ?, ν}

The operation � over {!, ?, ν} is defined as follows: (!�!) = (!�?) = (?�!) =
(!� ν) = (ν�!) =!, (?�?) = (?� ν) = (ν�?) =?, and (ν� ν) = ν.

Compositional Synthesis of Concurrent Systems 419

The proposed iCAGS framework uses automata theory for model checking,
i.e., both system models and specifications are represented by automata. Given a
system modeled by a CDFA M and a specification φ represented by a DFA Mϕ,
the model M satisfies the specification φ, denoted by M |= φ, if L(M ‖Mϕ) = ∅
where Mϕ is the DFA representing the negation of the specification φ. We call
Mϕ an error DFA. Let τ be a special error state. An error DFA Mϕ has τ as its
only one accepting state, and there is no outgoing transitions from τ . Fig. 1 (c)
shows a specification φ requiring that the first action should be input, and the
input and output actions should alternate. The error DFA Mϕ corresponding
to φ is shown in Fig. 1 (d). Note that when a CDFA is parallel composed with
a DFA, actions of the CDFA are all viewed as normal, and the composition is
equivalent to the regular parallel composition of DFA.

Given a system with n components modeled by M = {M1,M2, . . . ,Mn},
where Mi = (Si, Ii, {!, ?, ν} · Σi, Ti, Fi) is a CDFA for i ⇒ {1, 2, . . . , n}, we say
M is a well-defined communicating system if the followings hold: (1) for each
(s1, ! · σ, s2) ⇒ Ti, there exists (s′1, ? · σ, s′2) ⇒ Tj for some j ⇒ {1, 2, . . . , n} \ {i},
and (2) for each (s1, ? ·σ, s2) ⇒ Ti, there exists one and only one (s′1, ! ·σ, s′2) ⇒ Tj

for some j ⇒ {1, 2, . . . , n} \ {i}, and (3) if (s1, q ·σ, s2) ⇒ Ti, there does not exist
(s′1, q

′ · σ, s′2) ⇒ Ti such that q′ ⇒ {!, ?, ν} \ {q}. The I/O system shown in Fig. 1
is a well-defined communicating system. Given a well-defined communicating
system modeled by n CDFAs, the causality semantics of CDFAs is defined as
follows where k, j ⇒ {1, 2, . . . , n} and j ∀= k:

– If Mk performs an initial transition with a normal action, then Mk has
responsibility for the normal action.

– If a normal action ofMj is performed after a passive action synchronized with
an active action of Mk, then Mk has responsibility for the normal action.

– If Mk performs a normal action a and then performs a normal action b, then
Mk itself has responsibility for the normal action b.

A causal function λ
Mϕ

M corresponding to the causality semantics is given in
Algorithm 1. Given a counterexample α = α1 · α2 · . . . · α|δ| against a safety

specification φ, λ
Mϕ

M focuses on figuring out which component actively causes
the last action α|δ| to be performed because as soon as α|δ| is taken, the safety
specification φ is violated. If we focus on αi for i < |α| instead of the last action
α|δ|, we may eliminate too much behavior because when αi is performed, the
safety specification φ is not yet violated. Note that a well-defined communicat-
ing system guarantees that we can determine a unique component causing the
counterexample α under the predefined causality semantics because a passive ac-
tion has one and only one corresponding active action (this is why Algorithm 1
need not consider passive actions).

The proposed learning-based compositional synthesis framework is inspired
by the L∗ algorithm, which we recall in the followings. The L∗ algorithm [2] is a
formal method to learn a minimal DFA (with the minimal number of locations)
that accepts an unknown regular language U over an alphabet Σ. During the
learning process, L∗ interacts with a Minimal Adequate Teacher (Teacher for

420 S.-W. Lin and P.-A. Hsiung

Algorithm 1. Causal Function λ
Mϕ

M

input : M = {M1,M2, . . . ,Mn}, π = π1 · π2 · . . . · π|π| is a counterexample
output: Mk causing the counterexample π, 1 ≤ k ≤ n

1 for k = 1 to n do
2 if π|π| is an active action of Mk then return Mk ;
3 else if π|π| is a normal action of Mk then
4 for j = 1 to n do
5 if π|π|−1 is an active action of Mj then return Mj ;
6 if π|π|−1 is a normal action then return Mk ;

Algorithm 2. L∗ Algorithm

input : Σ: alphabet
output: a DFA accepting the unknown language U

1 Let S = E = {λ} ;
2 Update T by Qm(λ) and Qm(λ · α), for all α ∈ Σ ;
3 while true do
4 while there exists (s · α) such that (s · α) �≡ s′ for all s′ ∈ S do
5 S ←− S ∪ {s · α} ;
6 Update T by Qm((s · α) · β), for all β ∈ Σ ;

7 Construct candidate DFA M from (S,E, T) ;
8 if Qc(M) = 1 then return M ;
9 else

10 σce ←− the counterexample given by Teacher ;
11 E ←− E ∪ {v} where v = WS(σce) ;
12 Update T by Qm(s · v) and Qm(s · α · v), for all s ∈ S and α ∈ Σ ;

short) to askmembership and candidate queries. A membership query for a string
ε is a function Qm such that if ε ⇒ U , then Qm(ε) = 1; otherwise, Qm(ε) = 0.
A candidate query for a DFA M is a function Qc such that if L(M) = U , then
Qc(M) = 1; otherwise,Qc(M) = 0. The results of membership queries are stored
in an observation table (S,E, T) where S ⊆ Σ∗ is a set of prefixes, E ⊆ Σ∗ is
a set of suffixes, and T : (S ⊥ S · Σ) × E →∧ {0, 1} is a mapping function such
that if s · e ⇒ U , then T (s, e) = 1; otherwise, i.e., s · e /⇒ U , then T (s, e) = 0,
where s ⇒ (S ⊥ S ·Σ) and e ⇒ E. The L∗ algorithm categorizes strings based on
Myhill-Nerode Congruence [10].

Definition 1. Myhill-Nerode Congruence. For any two strings ε, ε′ ⇒ Σ∗,
we say they are equivalent, denoted by ε ≡ ε′, if ε · π ⇒ U ⇔ ε′ · π ⇒ U , for all
π ⇒ Σ∗. Under the equivalence relation, we can say ε and ε′ are the representing
strings of each other, denoted by ε = [ε′]r and ε′ = [ε]r. ∃⊆

Compositional Synthesis of Concurrent Systems 421

L∗ will always keep the observation table closed and consistent. An observation
table is closed if for all s ⇒ S and σ ⇒ Σ, there always exists s′ ⇒ S such
that s · σ ≡ s′. An observation table is consistent if for every two elements
s, s′ ⇒ S such that s ≡ s′, then (s · σ) ≡ (s′ · σ) for all σ ⇒ Σ. Once the table
(S,E, T) is closed and consistent, the L∗ algorithm constructs a corresponding

candidate DFA C = (ΣC , LC , l
0
C , ΦC , L

f
C) such that ΣC = Σ, LC = S, l0C = {ν},

ΦC(s, σ) = [s · σ]r for s ⇒ S and σ ⇒ Σ, and Lf
C = {s ⇒ S | T (s, ν) = 1}.

Subsequently, L∗ makes a candidate query for C. If L(C) ∀= U , Teacher gives
a counterexample εce where εce is positive if εce ⇒ L(U) \ L(C); negative if
εce ⇒ L(C)\L(U). L∗ analyzes the counterexample εce to find the witness suffix.
A witness suffix is a string that when appended to two strings provides enough
evidence for the two strings to be classified into two different equivalence classes
under the Myhill-Nerode Congruence. Given an observation table (S,E, T) and
a counterexample εce, we define an i-decomposition query of εce, denoted by
Qi

m(εce), as follows: Qi
m(εce) = Qm([ui]r · vi) where εce = ui · vi with |ui| = i,

and [ui]r is the representing string of ui in S. The witness suffix of εce, denoted
by WS(εce), is the suffix vi of εce such that Qi

m(εce) ∀= Q0
m(εce). Once the

witness suffix WS(εce) is obtained, L∗ uses it to refine the candidate C until
L(C) = L(U). The pseudo-code of the L∗ algorithm is given in Algorithm 2.
More details and running examples of the L∗ algorithm can be found in [14].

Assume Σ is the alphabet of the unknown regular language U and the number
of locations of the minimal DFA is n. The L∗ algorithm needs n− 1 candidate
queries and O(|Σ|n2 + n logm) membership queries to learn the minimal DFA,
where m is the length of the longest counterexample returned by Teacher.

3 Causal Model Checking

To individually synthesize each component, it is necessary to know what coun-
terexamples should be eliminated from which component. Let us recall the
I/O system in Fig. 1. Two counterexamples α1 = input · input and α2 =
input · send · ack · input can be classified into a class because they reach the
error state through the same transition [14], i.e., two consecutive input actions
are performed without any output action in between. However, based on causal-
ity semantics of CDFAs, α1 should be eliminated from INPUT, while α2 from
OUTPUT. A previous work, the CAGS framework [14], eliminates a whole class
of counterexamples from a single component so that non-erroneous behavior
might be also eliminated. Fig. 2 (a) shows the synthesized INPUT component
by CAGS, where α1 and α2 are both eliminated from INPUT. However, af-
ter the synthesis of INPUT by CAGS, there still exist other counterexamples
α3 = input · send · output · output and α4 = send · output, which can be classified
into a class as well because they reach the error state through the same transi-
tion, i.e., two consecutive output actions without any input action in between, or
no input actions before an output action. Based on causality semantics of CD-
FAs, α3 should be eliminated from OUTPUT, while α4 from INPUT. Fig. 2 (b)
shows the synthesized OUTPUT component by CAGS, where α3 and α4 are

422 S.-W. Lin and P.-A. Hsiung

0 329

!send

input ?ack!send

?ack

(a) INPUT

0 3

?send

!ack

(b) OUTPUT

Fig. 2. Synthesized Components by CAGS [14]

both eliminated from OUTPUT. We can observe that a good system behavior
(input · send · output · ack)∗ which satisfies the specification φ is missing in the
synthesis result by CAGS. To overcome this situation, we define a new causal
model checking (CMC) problem.

Definition 2. CMC Problem. Given a system modeled by n CDFAs M =
{M1,M2, . . . ,Mn}, an error DFA Mϕ with respect to a specification φ, and the

causal function λ
Mϕ

M , we say M causally satisfies φ with respect to Mi for 1 ∨
i ∨ n under λ

Mϕ

M , denoted by (M,Mi) |=
σ

Mϕ
M

φ, if either of the followings holds:

(1) M |= φ, or (2) M ∀|= φ and λ
Mϕ

M (α) ∀= Mi for all α ⇒ L(M ‖Mϕ) ∃⊆

Intuitively, given an component model Mi, if there exist counterexamples
but all the counterexamples are not caused by Mi, we say (M,Mi) |=

σ
Mϕ
M

φ.

To solve the causal model checking problem, we propose a monolithic CMC

algorithm3 with respect to the causal function λ
Mϕ

M , and the pseudo code is
given in Algorithm 3. The detailed descriptions of the algorithm are as follows.

– Check if M1 ‖ M2 ‖ · · · ‖ Mn satisfies φ. This can be done by checking the
language emptiness of MG = M1 ‖M2 ‖ · · · ‖Mn ‖Mϕ. If L(MG) = ∅, i.e.,
M |= φ, then (M,Mk) |=

σ
Mϕ
M

φ. (line 3)

– If M ∀|= φ, check if there exists a counterexample α ⇒ L(MG) such that

λ
Mϕ

M (α) = Mk. A backward search from the accepting states of MG is per-
formed. The backward search is to collect the dangerous states of Mk. A
state is called dangerous to Mk if it can reach the accepting states of MG

through a path ε2 such that λ
Mϕ

M (ε2) = Mk. We call such path ε2 an error-
leading path. The dangerous states for Mk is collected in the set Sc, and
each error-leading path with respect to a dangerous state sd ⇒ Sc is included
into the set sd.path. (lines 5 – 11)

– If Sc = ∅, then (M,Mk) |=σ
Mϕ
M

φ. (line 12)

– If Sc ∀= ∅, then we can construct a counterexample α = ε1 · ε2 such that

λ
Mϕ

M (α) = Mk where ε1 is a path from the initial state r ⇒ IG to a dangerous
state s ⇒ Sc and ε2 ⇒ s.path is an error-leading path with respect to the
dangerous state s. Thus we can conclude (M,Mk) ∀|=

σ
Mϕ
M

φ. (lines 14–16)

3 Note that the CMC problem is general to causal functions. One can define another
causal function and develop its corresponding CMC algorithm. The proposed causal
function (as well as Algorithm 3) is one of the possible solutions.

Compositional Synthesis of Concurrent Systems 423

Algorithm 3. CMC(M,Mk, λ
Mϕ

M ,Mϕ)

input : M = {M1,M2, . . . ,Mn}, Mk: target model,

Γ
Mϕ

M : causal function, Mϕ: error DFA
output: (0/1, a counterexample π)

1 Sc ←− ∅ ;
2 MG ←−M1 ‖M2 ‖ · · · ‖Mn ‖Mϕ ; //MG = (SG, IG, ΣG, TG, FG)
3 if L(MG) = ∅ then return (1, λ) ;
4 else

5 foreach σ : s2
α2−→ s1

α1−→ f where σ1, σ2 ∈ SG, f ∈ FG, and α1, α2 ∈ ΣG

do

6 if Γ
Mϕ

M (α1) = Mk then
7 s1.path←− s1.path ∪ {α1} ;
8 Sc ←− Sc ∪ {s1} ;

9 if Γ
Mϕ

M (α2 · α1) = Mk then
10 s2.path←− s2.path ∪ {α2 · α1} ;
11 Sc ←− Sc ∪ {s2} ;

12 if Sc = ∅ then return (1, λ) ;
13 else
14 Let σ1 : r −→ · · · −→ s be a path such that r ∈ IG and s ∈ Sc ;
15 Let σ2 ∈ s.path be a path such that σ2 : s −→ · · · −→ f where f ∈ FG ;
16 return (0, σ1 · σ2) ;

Let us recall the I/O system shown in Fig. 1. The global state space MG =
INPUT ‖ OUTOUT ‖Mϕ is given in Fig. 3 (a). The result of checking whether
(M, INPUT) |=

σ
Mϕ
M

φ is shown in Fig. 3 (b), where the dangerous state for

INPUT is state 1Aa and the error-leading paths with respect to state 1Aa are
input · input and send · output. Any system behavior, starting from the initial
state to state 1Aa, concatenated by input · input or send ·output, is a counterex-
ample witnessing (M, INPUT) ∀|=

σ
Mϕ
M

φ; note that α2 = input · send · ack · input
is not one of them. In Fig. 3 (c), the dangerous state for OUTPUT is state
2Bb and the error-leading paths with respect to state 2Bb are ack · input and
output ·output. Any system behavior, starting from the initial state to state 2Bb,
concatenated by ack · input or output · output, is a counterexample witnessing
(M,OUTPUT) ∀|=

σ
Mϕ
M

φ.

Theorem 1 proves the correctness of the proposed monolithic CMC algorithm

with respect to the causal function λ
Mϕ

M , and the proof can be found in [1].

Theorem 1. The CMC algorithm w.r.t. the causal function λ
Mϕ

M is correct.

Like classical model checking, causal model checking (CMC) also suffers from
the state explosion problem. To alleviate the problem, we propose a composi-
tional CMC algorithm. Given a system modeled by two CDFAs M1 and M2, an

424 S.-W. Lin and P.-A. Hsiung

1Aa 1Ab 1Aτ

2Ba 2Bb2Bτ

i i

s
a

o o

s
a

(a) Global State Space MG

1Aa 1Ab 1Aτ

2Ba 2Bb2Bτ

i i

s
a

o o

s
a

(b) CMC for INPUT

1Aa 1Ab 1Aτ

2Ba 2Bb2Bτ

i i

s
a

o o

s
a

(C) CMC for OUTPUT

Fig. 3. Monolithic CMC for the I/O System (i : input, s : send, o : output, a : ack)

(M1 ‖ A,M1) |=
Γ

Mϕ
M

ϕ

M2 |= A

(M1 ‖M2,M1) |=
Γ

Mϕ
M

ϕ

(a) CMC-NC proof rule

(M1 ‖ A,M1) |=
Γ

Mϕ
M

ϕ

M \ {M1} |= A

(M,M1) |=
Γ

Mϕ
M

ϕ

MG1 ‖ A′ |= A
MG2 |= A′

MG1 ‖MG2 |= A

(b) Generalized CMC-NC proof rule

Fig. 4. CMC Proof Rules

error DFA Mϕ with respect to a specification φ, and a causal function λ
Mϕ

M , we
propose a framework for compositional causal model checking using the L∗ algo-
rithm based on the non-circular (CMC-NC) proof rule as formulated in Fig. 4 (a).

The alphabet of the assumption A is ΣA = ((Σ1 ⊥ Σϕ) ∩ Σ2) ⊥ Σc, where

Σc = {σ | s1 ?·π−∧ s2
λ·β−∧ s3 where s1, s2, s3 ⇒ Si, ϕ ⇒ Σϕ ∩ Σi, i ⇒ {1, 2}}.

Fig. 5 shows the overall flow of the compositional CMC algorithm based on
the CMC-NC proof rule. The flow consists of two phases corresponding to the
two premises of the CMC-NC rule, respectively. The answers to membership
queries and candidate queries required by the L∗ algorithm are provided by the
monolithic CMC algorithm. The flow continues until the CMC problem has been
proved or disproved with a counterexample. Theorem 2 proves the soundness and
completeness of the CMC-NC proof rule. The proof can be found in [1].

Theorem 2. CMC-NC proof rule is sound and complete.

If the system consists of more than two components, we cannot directly parti-
tion the components into two groups to fit the CMC-NC proof rule because the

L∗ (M1 ‖ A,M1) |=
Γ
Mϕ
M

ϕ? δ ∈ L(M2)? violate

M2 |= A? δ ∈ L(M1 ‖ Mϕ) ∧ σ
Mϕ
M (δ) = M1?satisfy

A No, δ Yes

Yes
No, δ

Yes

No

Negative counterexample δ

NoPositive counterexample δ

Yes

Fig. 5. Flow of Compositional Causal Model Checking based on CMC-NC Proof Rule

Compositional Synthesis of Concurrent Systems 425

M(i) |= ϕ?

Verification Phase

Synthesis
Finished

σ
Mϕ
M (δ) = Mk, 1 ≤ k ≤ n

i = i + 1

No, δ

L∗

L(C ‖ M
(i−1)
k) = ∅? CMC Problem 1

L(G ‖ C ‖ Mϕ) = ∅?

G = M(i−1) \ {M(i−1)
k }

CMC Problem 2

Synthesis Phase

i = 0

Yes

Synthesize M
(i)
k

C
Noδ1

Yes
Yes

No δ2

Yes

No
δ3

Yes

No

Fig. 6. The Overall Flow of the iCAGS Framework

CMC problem is with respect to a single component. Given a system modeled
by n components M = {M1,M2, . . . ,Mn} where n ∅ 3, the way of partition-
ing the component for the CMC problem with respect to M1 is formulated by
the generalized CMC-NC (G-CMC-NC) proof rule, as formulated in Fig. 4 (b),
where MG1 ⊥MG2 = M \ {M1} and MG1 ∩MG2 = ∅. The left part of G-CMC-
NC obeys the CMC-NC proof rule, where the M2 of the CMC-NC proof rule is
replaced by M \ {M1}. Checking M \ {M1} |= A can be further considered as
a compositional model checking problem based on the AG-NC proof rule [8], as
formulated in the right part of the G-CMC-NC proof rule.

4 Compositional Synthesis Framework

To eliminate a counterexample from a system, Lemma 1 shows that it is sufficient
to eliminate the counterexample from a single component because if a trace ε
does not belong to M1 or M2, then it does not belong to M1 ‖M2.

Lemma 1. Given two CFAs Mi = (Si, Ii, {!, ?, ν} · Σi, T1, F1) for i ⇒ {1, 2}, if
a trace ε ⇒ L(M1 ‖M2), then ε�Φ1⇒ L(M1) and ε�Φ2⇒ L(M2).

Further, with the CMC problem solved, we know what counterexamples should
be eliminated from which component. The remaining problem is to automatically
synthesize each component individually. The overall flow of the iCAGS frame-
work is shown in Fig. 6. Each iteration in iCAGS consists of two phases, the

details of which are described as follows, where M (i) = {M (i)
1 ,M

(i)
2 , . . . ,M

(i)
n }

is the set of resulting component models after the ith iteration of synthesis.

Verification Phase. Given M (i) and an specification φ, assume-guarantee
reasoning (AGR) is performed to check whether M (i) |= φ holds. If yes, the
synthesis is finished. If not, a counterexample is provided for Synthesis Phase.

426 S.-W. Lin and P.-A. Hsiung

Synthesis Phase. The L∗ algorithm [2] is used to synthesize models in this
phase. Given the counterexample α from Verification Phase, this phase first
determines which component model Mk causes the counterexample α by the

causal function λ
Mϕ

M , i.e., λ
Mϕ

M (α) = Mk. The target component model to be

learned in this iteration is M
(i)
k such that L(M (i)

k) = L(M (i−1)
k) \ L(Dk), where

L(Dk) = {ε�Φk
| ∪ε ⇒ L(M ‖ Mϕ) � λMϕ

M (ε) = Mk}. The difference between

M
(i)
k and M

(i−1)
k is illustrated in Fig. 7. The membership and candidate queries

needed by L∗ can be answered by causal model checking. The answer to the

membership query for a trace ε is “yes” only if ε ⇒ L(M (i−1)
k) and either of the

followings holds: (1) ε is not a counterexample, or (2) ε is a counterexample but
ε is not caused by component Mk, which can be checked by a CMC problem of

(G ⊥ {Mε},Mε) |=σ
Mϕ
M

φ where L(Mε) = {ε} and G = M (i−1) \ {M (i−1)
k }. In a

candidate query for a candidate C, there could be four cases where the answer
is “no”, as described as follows:

1. The first case is illustrated as the candidate C1 in Fig. 7, where a negative

counterexample α1 ∀⇒ L(M (i−1)
k) has to be eliminated from L(C1); this can

be checked by the emptiness problem of L(C1 ‖M (i−1)
k).

2. The second case is illustrated as the candidate C2 in Fig. 7, where a negative
counterexample α2 has to be eliminated from L(C2) because α2 violates the
specification φ when interacting with other components and α2 is caused by
Mk; this can be checked by the CMC problem of (G ⊥ {C2}, C2) |=σ

Mϕ
M

φ,

which is the CMC Problem 1 checked in Fig. 6.
3. The third case is depicted as the candidate C3 in Fig. 7, where a positive

counterexample α3 has to be included into L(C3) because α3 does not violate

φ when interacting with other components and α3 ⇒ L(M (i−1)
k); this can be

checked by the emptiness problem of L(G ‖ C3 ‖Mϕ).
4. The last case is depicted as the candidate C4 in the right hand side of Fig. 7,

where a positive counterexample α4 has to be included into L(C4) since α4

is not caused by Mk even though α4 violates the specification; this can be

checked by causal model checking problems of (G ⊥ {C4},M (i−1)
j) |=

σ
Mϕ
M

φ

for all j ⇒ {1, 2, . . . , n} \ {k}, which are the CMC Problem 2 checked in
Fig. 6. Any counterexample in one of the above CMC problems is a positive
one for the L∗ algorithm to refine the candidate C.

After successfully synthesizing M
(i)
k , this iteration is finished and we go to the

next iteration starting from the Verification Phase. Let us recall the I/O system
in Fig. 1, and Fig. 8 shows the synthesized models by the proposed iCAGS
framework.With the help of causality semantics, the counterexample α1 = input·
input is eliminated from INPUT, while α2 = input·send·ack ·input is eliminated
from OUTPUT (by removing send · ack). Similarly, the counterexample α3 =
input·send·output·output is eliminated from OUTPUT, while α4 = send·output
is eliminated from INPUT (by removing send · ack). Thus, the good system
behavior (input · send · output · ack)∗ is preserved in the system.

Compositional Synthesis of Concurrent Systems 427

L(C1)

L(C2)

L(C3)
L(C4)

∀δ ∈ L(Dk), σ
Mϕ
M (δ) = Mk

∀δ ∈ L(DG), σ
Mϕ
M (δ) �= Mk

δ1

δ2

δ3

δ4

L(M
(i−1)
k)

L(G ‖ Mϕ)
L(Dk)

L(DG)

L(M
(i)
k)

iCAGS

Fig. 7. The Relation between M
(i)
k and M

(i−1)
k in the iCAGS Framework

0 1 2
input !send

?ack

(a) INPUT

0 1 2
?send output

!ack

(b) OUTPUT

Fig. 8. Synthesized INPUT and OUTPUT by the iCAGS Framework

Correctness and Termination. Theorem 3 proves that L(M (i)
k) is regular,

which guarantees the termination of each synthesis iteration because L∗ learns a
DFA accepting an regular language in finite queries [2]. Theorems 4 and 5 prove
the correctness and termination of iCAGS, and the proof of Theorem 5 also
shows that the final synthesized components by iCAGS are identical no matter
what orders of components are selected in the synthesis iterations of iCAGS.
The proofs can be found in [1].

Theorem 3. L(M (i)
k) is regular.

Theorem 4. Suppose Mk is selected to be synthesized in the ith iteration of the
iCAGS flow for some k ⇒ {1, 2, . . . , n}. After the ith iteration, we can conclude

(M
(i)
k ‖W (i−1),M

(i)
k) |=

σ
Mϕ
M

φ where W (i−1) =
(�

j∈{1,2,...,n}\{k} M
(i−1)
j

)
.

Theorem 5. The synthesized model M ′ = {M ′
1,M

′
2, . . . ,M

′
n} satisfies the spec-

ification φ and iCAGS terminates in n iterations.

Complexity Analysis. The complexity of the proposed iCAGS framework is
analyzed as follows. Suppose the system consists of n componentsM1,M2, . . . ,Mn

and Σ = {ΣMi | max1≤i≤n |ΣMi |} where ΣMi is the alphabet of Mi. If the num-
ber of the states of the DFA synthesized in each iteration is p, the synthesis flow
needs n(p − 1) candidate queries, (n + 1) times of verification, and O(|Σ|np2 +
np logm) membership queries, wherem is the length of the longest counterexam-
ple provided by the model checker. The dominating procedures in iCAGS are ver-
ification, membership and candidate queries, all of which require model checking

428 S.-W. Lin and P.-A. Hsiung

Table 1. System Models, Specifications, and Causal Model Checking Results

Global CDFA Monolithic CMC Compositional CMC
n #S #T #P #P #MVS #MVT Time #CVS #CVT Time

(�|=)
FMS-1 5 96 324 3 2 288 648 1 (sec) 231 756 3 (secs)
FMS-2 9 5, 852 29, 508 6 4 17, 556 70, 720 1 (hr) 2, 870 18, 629 22 (secs)
FMS-3 10 15, 752 89, 140 6 5 47, 256 209, 784 15 (hrs) 2, 870 18, 629 70 (secs)
AIP 10 52, 325 258, 591 10 6 > 156, 975 > 621, 832 > 203 (hrs) 6, 900 22, 022 329 (secs)

n: # of components; #S (#T): # of states (transitions) in the global CDFA; #P: # of specifi-
cations; #P(�|=): # of violated specifications; #MVS (#MVT): maximum # of states (transi-
tions) checked in monolithic CMC; #CVS (#CVT): maximum # of states (transitions) checked
in compositional CMC

Table 2. iCAGS Synthesis Results

Monolithic Compositional
#M ′ #V #MQ #CQ #MVS #MVT Time #CVS #CVT Time

FMS-1 3 6 880 17 980 2, 440 14 (secs) 332 684 11 (secs)
FMS-2 6 12 1, 760 34 101, 888 390, 268 74 (hrs) 6, 316 23, 116 8 (mins)
FMS-3 7 13 2, 144 42 > 282, 304 > 1, 292, 354 > 694 (hrs) 6, 316 23, 116 10 (mins)
AIP 6 18 4, 616 54 > 595, 300 > 2, 484, 228 > 784 (hrs) 10, 498 42, 403 36 (mins)

#M ′ : # of synthesized components; #V: # of verification iterations in the synthesis process;
#MQ: # of membership queries; #CQ: # of candidate queries; #MVS (#MVT): maximum
of states (transitions) checked in monolithic CMC; #CVS (#CVT): maximum # of states
(transitions) checked in compositional CMC

whose complexity isO((|S|+|T |)∗(|Sϕ|+|Tϕ|)) where |S| and |T | are the number of
states and transitions in the global state space, and |Sϕ| and |Tϕ| are the number of
states and transitions of the error DFAMϕ. Thus the overall complexity of iCAGS
to synthesize models for a specification is O(|Σ|np2 ∗ (|S|+ |T |) ∗ (|Sϕ|+ |Tϕ|)).

5 Application Examples and Experimental Results

To demonstrate the feasibility and benefits of the proposed iCAGS framework,
two realistic applications were modeled and synthesized.

– FMS. A flexible manufacturing system (FMS) [21] produces blocks with
a cylindrical painted pin from raw blocks and raw pegs. It consists of ten
devices, namely two conveyors, a mill, a lathe, a painting device, four robots,
and an assembly machine. The devices are connected through six buffers,
and the capacity of each buffer is one part. We modeled the FMS system in
a constructive way such that three versions of models are obtained: FMS-1
(the simplest one), FMS-2 (the medium one), and FMS-3 (the most complex
one). We found that FMS has buffer overflow and underflow problems.

– AIP. A large manufacturing system, AIP [3,11], produces two products from
two types of materials. It consists of ten components, namely an I/O station,
three transport units, two assembly stations, three external loops, and a
central loop. We modeled seven most important components and found that
AIP has out-of-order manufacturing problems and buffer-overflow problems.

The proposed iCAGS framework was used to automatically synthesize the
above systems such that the errors were all eliminated from the models. All the

Compositional Synthesis of Concurrent Systems 429

models, verified specifications, and synthesized components can be found in [1].
For compositional causal model checking, the CMC-NC proof rule was used in
iCAGS. The information of the system models and the causal model checking
results for the two systems are shown in Table 1. The experiment results were
obtained on a Linux machine with a 2.4 GHz Intel(R) Core(TM)2 Quad Q6600
processor and 2 GB RAM. Note that the number of states and transitions in the
global state space were given only for showing the size of the system. The global
state space is never generated in our iCAGS framework. From Table 1, we can
observe that when the size of a system increases, compositional CMC performs
much better than monolithic one, which is of significant benefits for iCAGS.

The synthesis results of iCAGS are given in Table 2. The maximum number
of states and transitions in Table 2 is different from that in Table 1 because
the original components are refined after synthesis. In iCAGS, the membership
and candidate queries require CMC, and thus we made a comparison between
compositional and monolithic ones. Note that compositional CMC is adopted in
iCAGS instead of the monolithic one. We give these results only for showing the
benefits of compositional synthesis. When the system size is large, compositional
synthesis with compositional verification outperforms that with monolithic one
significantly both in time and the maximum number of states and transitions.
Using monolithic verification, the FMS-2, FMS-3, and AIP systems cannot even
be successfully synthesized in 72 hours; while using compositional CMC, all the
system components are successfully synthesized for all specifications in less than
forty minutes. We did not show the synthesis time of the CAGS framework [14]
here because the synthesized models by CAGS and iCAGS are different, as
illustrated in Figs 2 and 8, which makes it no sense to compare the synthesis
time required by CAGS and iCAGS.

6 Related Work

Assume-guarantee reasoning (AGR) is a well-known compositional technique.
AGR can be used in model checking to alleviate the state space explosion prob-
lem [7,9,18]. In AGR, the key role is played by the assumption, which however
requires non-trivial human creativity and experience. Thus, the practical impact
of AGR is limited if the assumption is not automatically constructed.

The L∗ algorithm [2] is a formal method to learn a minimal DFA that accepts
an unknown language U over an alphabet Σ. Cobleigh et al. [8] proposed a
framework that can automatically generate assumptions for AGR with the AG-
NC proof rule using the L∗ algorithm. This work opened the door for using
the L∗ algorithm to automate AGR. The L∗ algorithm was extended into a
timed version, the TL∗ algorithm [12]. In [13,17], the TL∗ algorithm was used
to generate assumptions for compositional verification of timed systems.

Another interest to system designers is the synthesis of models. The synthesis
of reactive systems is generally based on solving zero-sum games on graphs
[19] of two players (the system and its environment). Synthesis is successful
if there exists a winning strategy ensuring that φ is satisfied no matter what

430 S.-W. Lin and P.-A. Hsiung

the environment does. If the system consists of more than one component, the
synthesis problem is called the co-synthesis problem. However, solving zero-sum
games for the co-synthesis problem does not capture desirable solutions because
it is not the case that the objective of each component is the negation of others’.
Chatterjee and Henzinger [4] redefined the co-synthesis problem on non-zero-
sum games as the assume-guarantee synthesis (AGS) problem. The solution to
the AGS problem is a winning secure equilibrium strategy [5]. The well-known
supervisory control (SC) problem [21,22] is very similar to the AGS problem. In
fact, the AGS problem is theoretically harder than the SC problem [14].

The objectives of our work and Chatterjee and Henzinger’s [4,5] ([C&H]) are
similar, i.e., to synthesize the system models satisfying a given specification.
However, there are essential differences between the methods employed in the
two works, as listed as follows: (1) iCAGS uses the L∗ algorithm to iteratively
refine the original model; [C&H] views the synthesis problem as a game and
solves it by finding a winning strategy. (2) When synthesizing models, our work
does not compose the global system state graph; [C&H] composes the global
game graph of n + 1 players for a system with n components, which suffers
from the state explosion problem [4,5]. (3) Our work uses counterexamples and
causal semantics to compositionally and individually refine each of the original
components; [C&H] finds a winning secure strategy on the global game graph.

7 Conclusion and Future Work

We proposed a new causal model checking (CMC) problem based on causality
semantics of system models. To address the CMC problem, we also proposed one
monolithic and one compositional CMC algorithms, respectively. We further
proposed the iCAGS framework to automatically and compositionally refine
property-violating component models, which can save system designers from
the tedious and error-prone analysis and refinement efforts. In future work, we
will study more causality semantics of models, develop the corresponding CMC
algorithms, and integrate them into the iCAGS framework. In addition, we also
plan to extend our synthesis framework to real-time systems by using the TL∗

algorithm [12] and the DBM subtraction operation [15,16].

References

1. https://sites.google.com/site/shangweilin/icags

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Brandin, B.A., Charbonnier, F.E.: The supervisory control of the automated man-
ufacturing system of the AIP. In: CIMAT, pp. 319–324 (1994)

4. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007)

5. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria.
Theoretical Computer Science 365(1-2), 67–82 (2006)

https://sites.google.com/site/shangweilin/icags

Compositional Synthesis of Concurrent Systems 431

6. Clarke, E.M., Emerson, E.A.: Design and sythesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In:
LICS, pp. 353–362 (1989)

8. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

9. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Method-
ology and case studies. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
440–451. Springer, Heidelberg (1998)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

11. Leduc, R.J., Lawford, M., Dai, P.C.: Hierarchical interface-based supervisory con-
trol of a flexible manufacturing system. IEEE Transactions on Control Systems
Technology 14(4), 654–668 (2006)

12. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for
learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011)

13. Lin, S.-W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compo-
sitional verification of timed systems. IEEE Transactions on Software Engineering,
IEEECS Log no. TSE-2012-11-0322 (to appear, 2014), doi:10.1109/TSE.2013.57

14. Lin, S.-W., Hsiung, P.-A.: Counterexample-guided assume-guarantee synthesis
through learning. IEEE Transactions on Computers 60(5), 734–750 (2011)

15. Lin, S.-W., Hsiung, P.-A.: Model checking prioritized timed systems. IEEE Trans-
actions on Computers 61(6), 843–856 (2012)

16. Lin, S.-W., Hsiung, P.-A., Huang, C.-H., Chen, Y.-R.: Model checking prioritized
timed automata. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 370–384. Springer, Heidelberg (2005)

17. Lin, S.-W., Liu, Y., Sun, J., Dong, J.S., André, É.: Automatic compositional verifi-
cation of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 272–276. Springer, Heidelberg (2012)

18. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems, pp. 123–144 (1985)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

20. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

21. Queiroz, M.H., Cury, J.E.R., Wonham, W.M.: Multitasking supervisory control of
discrete-event systems. Discrete Event Dynamic Systems 15(4), 375–395 (2005)

22. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)

Formal Verification of Operational Transformation

Yang Liu, Yi Xu, Shao Jie Zhang, and Chengzheng Sun

Nanyang Technological University

Abstract. Operational Transformation (OT) is a technology to provide consis-
tency maintenance and concurrency control in real-time collaborative editing sys-
tems. The correctness of OT is critical due to its foundation role in supporting
a wide range of real world applications. In this work, we formally model the
OT-based collaborative editing systems and establish their correctness, w.r.t. con-
vergence and intention preservation, using a set of well-defined transformation
conditions and properties. We then use model checking to verify the transforma-
tion properties for basic data and operational models. To the best of our knowl-
edge, this is the first work to conduct a complete verification of OT including
control algorithms and transformation functions. Our evaluation confirmed the
correctness of existing OT systems and transformation functions with important
discoveries.

1 Introduction

Real-time collaborative editing systems allow multiple users to edit shared documents
and see each other’s updates instantly over the Internet. One major challenge in build-
ing collaborative editing systems is consistency maintenance of shared documents in
the face of concurrent editing by multiple users. Operational Transformation (OT) was
invented to address this challenge [4,11]. Due to its non-blocking, fine-grained con-
currency, and unconstrained interaction properties, OT is particularly suitable in high-
latency networking environments like the Internet, and has been increasingly adopted in
real-world industrial collaborative applications, e.g., Google Wave/Docs, Codoxware,
IBM OpenCoWeb and Novell Vibe. As OT is increasingly applied to a wider range of
real-world applications and used by more and more people, verifying and ensuring the
correctness of its core algorithms become more and more important.

One major challenge in OT verification is the highly dynamic behavior and infinite
possibilities of a real-time collaborative editing session: there may exist an arbitrary
number of participating users (or sites); each user may generate an arbitrary number
of operations; operations may have arbitrary causality/concurrency relationships; each
operation may be performed on an arbitrary object in a shared document; the shared
document may contain an arbitrary number of data objects. These arbitrary parameters
and their combinations result in an infinite number of possible states, which hinders the
application of formal methods in both modeling and verification of collaborative editing
systems. Past research has directly modeled a collaborative editing session with these
arbitrary parameters and used a model checker to explore this inherently infinite state
space, which has inevitably encountered the exponential state explosion problem and
failed to verify OT correctness (more details in Section 7).

In this paper, we propose a novel OT verification approach based on the
following key insights: OT system correctness is defined by a set of well-defined

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 432–448, 2014.
c© Springer International Publishing Switzerland 2014

Formal Verification of Operational Transformation 433

transformation conditions and properties, which are collectively preserved by two core
OT components: control algorithms and transformation functions. Following the divide-
and-conquer strategy, we apply different techniques (mathematic proof and model check-
ing) to verify different aspects of an OT system. Mathematic induction is used to reduce
the problem of verifying OT system correctness under arbitrary operations with arbi-
trary relationships to the problem of verifying transformation properties under a few
operations with simple relationships. Model checking is then used to verify transforma-
tion properties under the string data and character operation models of a collaborative
editing session. To avoid the state explosion problem, we propose a data abstraction to
reduce the verification of arbitrary document sizes and operation positional relations to
a finite number of verification cases, which can be automatically and efficiently checked
by a model checker. Based on this approach, we have completely verified the OT sys-
tem without suffering from the state explosion problem. Our approach makes important
discoveries on OT system correctness, which were never reported in prior work. In this
paper, we report our verification techniques, results and discoveries.

2 Collaborative Editing and OT Systems

2.1 Consistency Requirements in Collaborative Editing

A real-time collaborative editing system is a distributed system that supports human-
computer-human interaction and collaboration on shared documents over geographi-
cally dispersed collaborating sites. Each collaborating site consists of a human user, an
editor and a local replica of the shared document. A user may freely interact with the
local editor to view and edit the local replica of the shared document. Operations gener-
ated by a user are immediately performed on the local replica to provide quick response
to the user; then, local operations are broadcast to all remote collaborating sites and
performed there to ensure consistency of multiple replicas of the shared document.

One main challenge in supporting collaborative editing is document consistency
maintenance under the following constraints: (1) fast local response: local operations
should be responded as quickly as a single-user editor; (2) unconstrained interaction:
a user may edit any object in the shared document at any time, i.e., non-blocking, no
locking, and no turn-taking among users; (3) real-time and fine-grained operation prop-
agation: users can see each other’s edits instantly as they are typing, constrained only
by network latency. Three consistency requirements have been identified [4,11,12]:

Causality preservation operations generated in a collaboration session by different
users must be executed in their causal order.

Convergence all replicas of a shared document must be identical after the same group
of operations have been executed on them.

Intention preservation the effect of executing an operation O on all replicas must be
the same as the intention of O, which is defined as the effect of executing O on the
local replica from which O was generated.

These three consistency requirements are general for all collaborative editing systems,
and can be achieved by using any suitable distributed computing techniques. Causality

434 Y. Liu et al.

preservation is commonly achieved by adopting well-established distributed comput-
ing techniques, such as vector-clock-based timestamping or central server-based prop-
agation, which are assumed by OT systems and hence not discussed further in this
paper. Both convergence and intention preservation can be achieved by using OT tech-
niques, and OT is able to achieve both requirements under the requirements of fast
local response, unconstrained interaction, real-time fine-grained operation propagation
in collaborative editing [11,12]. This paper aims to provide a formal specification and
verification of these two requirements for OT-based collaborative editing systems. In
the following discussions, we make no assumption on the communication topology
among collaborating sites, e.g., operation broadcasting may be achieved by using a
center server or full connections among all sites. However, we assume operation prop-
agation among collaborating sites is reliable, which can be achieved by using standard
communication protocols like TCP in the Internet.

2.2 Basic Ideas for Consistency Maintenance in OT

The basic idea of OT consistency maintenance is to transform an operation according
to the effect of concurrent operations so that the transformed operation can achieve
the correct effect and maintain document consistency. This idea can be illustrated in a
Space-Time-Diagram (STD) in Fig. 1. The initial document contains a string “abcd”,
replicated at two collaborating sites; two operations: O1 = D(1, b) (to delete “b” at
position 1), and O3 = D(2, d) (to delete “d” at position 2) are sequentially generated at
site 1; one operation:O2 = I(3, e) (to insert “e” at position 3) is concurrently generated
at site 2. At site 1, O1 and O3 are executed sequentially to get the document “ac”. Then,
O2 arrives and is transformed (by using a transformation function T) against O1 and
O3 in sequence, i.e., T ((T (O2, O1), O3) = I(2, e), whose position is decremented to
compensate the left-shifting effect by O1 (but O3 has no impact on O2). Executing
I(2, e) on “ac” inserts “e” at the end of document to get a new state “ace”. If O2 were
executed in its original form, an error would occur as its original insert position 3 is
beyond the current document length.

At site 2, O2 is first executed as-is to get the document “abced”. Then O1 arrives and
is transformed against O2, i.e., T (O1, O2) = D(1, b), which makes no change because
O2 has no impact on O1. ExecutingD(1, b) on “abced” deletes “b” at position 1 and get
the document state “aced”. When O3 arrives, it cannot be transformed directly against
O2 as they were defined on different document states: O2 was generated from the initial
document state, whereas O3 was generated after O1 had been executed on the initial
document state. The correct way of transforming O3 is: T (O3, T (O2, O1)) = D(3, d).
Executing D(3, d) on “aced” deletes “d” at the end of document to get a new state
“ace”, which is identical to the state at site 1 and also preserves the original effects of
all operations. If O3 were directly transformed against O2, i.e., T (O3, O2) = D(2, d),
the transformation function T would not be able to correctly detect the position shifting
effect of O2 on O3 and hence fail to change the position of O3. This scenario is a well-
known OT (design) bug [11], which illustrates one intricate OT complication with only
three operations, just imaging the complexity under an arbitrary number of operations
with arbitrary concurrent and positional relationships in a collaborative editing session.

Formal Verification of Operational Transformation 435

Fig. 1. A Running Example Fig. 2. OT System Overview

2.3 Causal and Concurrent Relations among Operations

Formally, the causal ordering relation of operations is defined as follows [4,6,12].

Definition 1 (Casual Ordering Relation ∧). Given two operations O1 and O2 gen-
erated at sites i and j, respectively, O1 is casually before O2, denoted by O1 ∧ O2, iff
(1) i = j and the generation of O1 happens before the generation of O2; (2) i ∀= j and
the execution of O1 at site j happened before the generation of O2; or (3) there exists
an operation Ox such that O1 ∧ Ox and Ox ∧ O2.

Definition 2 (Concurrent Relation ‖). Given two operations O1 and O2, O1 and O2

are concurrent, denoted by O1 ‖ O2, iff neither O1 ∧ O2 nor O2 ∧ O1.

For example in Fig. 1, O1 and O3 are generated at site 1, but the generation of O1

happens before the generation of O3, so they are causally ordered, i.e., O1 ∧ O3; O2

is independently generated from O1 and O3, so O2 is concurrent with both O1 and O3,
i.e., O2 ‖ O1 and O2 ‖ O3. It is worth pointing out that causal/concurrent relations are
defined only among original operations generated directly by users; transformed opera-
tions produced by OT do not have causal/concurrent relationships. To capture essential
relationships among all (original and transformed) operations, we need the concept of
operation context and context-based conditions, which are defined in the next section.

3 OT System Formalization

3.1 OT Basics

In an OT-based real-time collaborative editing session, the local editor at each site is
empowered by an OT system, which takes a sequence of original operations (generated
by local or remote users) in their causal orders, and produces a sequence of transformed
operations in the same order, as shown in Fig. 2. It is the transformed operations, rather
than the original operations, that are actually executed on the local replica of the shared
document (a transformed operation may be different from or the same as the original
one). The sequences of original operations inputted to OT systems at different sites may
have different orders; but the sequences of transformed operations at all sites must pro-
duce convergent (identical) and intention-preserved final document states. For example
in Fig. 1, original operations are processed in two different sequences: [O1, O3, O2] at
site 1 and [O2, O1, O3] at site 2. After processing the two sequences at each site, final
document states at both sites are the same and preserve the intentions of all operations.

436 Y. Liu et al.

In this work, we use Oo, Ot and O to represent original operations, transformed
operations and all possible operations in a given OT system respectively, clearly O =
Oo ⊥Ot. Our modeling and reasoning focus on an (arbitrary) collaborative editing ses-
sion. We write GO to denote the set of original operations generated by all users during
a collaborative editing session. L = [O1, . . . , On] is used to denote a sequence of op-
erations of size n. L[i] returns the ith operation in L. L[i, j] represents a sub-sequence
[Oi, . . . , Oj] of L. We say that two sequences L1 and L2 are equivalent, denoted as
L1 ≡ L2, iff when operations in L1 and L2 are sequentially applied on the same ini-
tial document state, they produce the same final state. We write T ⇒ O × O ∧ O
to denote the transformation function, e.g., T (O1, O2) transforms operation O1 ac-
cording to the impact of operation O2. We introduce function LT (O,L) to denote
repeatedly applying T to transform O against the operations in L sequentially, i.e.,
LT (O,L) = T (. . . T (T (O,L[1]), L[2]), . . . , L[|L|]). Given a transformed operation
O ⇒ Ot, org(O) represents the original operation of O. For O ⇒ Oo, org(O) = O. We
write s to denote a document state, which could be concretized if the document model
is given (e.g., a string for the string data model in Section 5). The initial document state
of a session is denoted by s0. Given a state s and an operation O, s′ = s ◦O represents
a new document state s′ generated by applying O on s.

In the following, we formally specify the convergence and intention preservation
requirements in OT-based collaborative editing systems.

Definition 3 (Convergence and Intention Preservation). Given a collaborative edit-
ing session with the original operation set GO, let L1 and L2 be two sequences of
causally-ordered original operations from GO at two different sites, and let L′

1 and L′
2

be the two sequences of transformed operations produced by applying OT to L1 and
L2, respectively. An OT-based collaborative editor achieves convergence and intention
preservation if: (1) Convergence: L′

1 ≡ L′
2; (2) Intention preservation: the effect of

executing any operation O in L′
1 or L′

2 is the same as the effect of executing the org(O)
in the document state from which the org(O) was generated.

Internally, an OT system consists of two key components [4,7,9,11,12,14]: control
algorithms (CA) and transformation functions (TF), as shown in the middle box of
Fig. 2. CA determine which operation should be transformed with which other prior
operations in the sequence, and invoke TF to perform real transformation between two
operations. CA are generic in the sense they work on generic context-based conditions
(see Section 3.2) among operations; TF are application-specific such that they work on
operation types, positional relations and other parameters.

Past research has identified a set of transformation conditions and properties that
must be met collectively by OT internal components [9,11,12,14]. CA are responsible
for ensuring context-based conditions; TF often ensure transformation properties (see
Section 3.2). In this work, we will prove that if CA and TF can collectively meet those
transformation conditions and properties, then the OT system as a whole can meet the
convergence and intention preservation requirements as specified in Definition 3.

3.2 Context-Based Conditions and Transformation Properties

In OT systems, every operation O is associated with a context, which represents the
document state on which O is defined. The significance of operation context is that

Formal Verification of Operational Transformation 437

it provides a ground for interpreting the effect of an operation and reasoning about
the relations among operations. The context of O is represented by a set of original
operations that have been executed (after transformation) to create the document state
on which O is defined.

Definition 4 (Document Context). The context of a document state s, denoted as
C(s), can be calculated as follows: (1) the context of an initial document state s0 is
represented as an empty set C(s0) = ∅; (2) after executing an operation O on the
document state s, the context of the new document state s′ = s ◦ O is represented by:
C(s′) = C(s) ⊥ {org(O)}.

Definition 5 (Operation Context). The context of an operation O, denoted as C(O),
is calculated as follows: (1) for an original operation O, C(O) = C(s), where s is
the document state from which O is generated; (2) for a transformed operation O′ =
T (O,Ox), C(O′) = C(O) ⊥ {org(Ox)}.

For example in Fig. 1, O1 and O2 are generated from the same initial document state,
so C(O1) = C(O2) = ∅; O3 is generated after executing O1 on the document state in
site 1, so C(O3) = {O1}; after O2 is transformed with O1, C(O′

2) = C(O2)⊥{O1} =
{O1}, where O′

2 = T (O2, O1); after O′
2 is transformed with O3, C(O′′

2) = C(O′
2) ⊥

{O3} = {O1, O3}, where O′′
2 = T (O′

2, O3).
Context-based Conditions (CCs) capture essential requirements for correct operation

execution and transformation in OT systems. Six context-based conditions have been
identified [14] as listed below:

CC1. Given an operation O ⇒ Oo and a document state s, where O ∀⇒ C(s), O can be
transformed for execution on document state s only if C(O) ⊆ C(s).

CC2. Given an operation O ⇒ Oo and a document state s, where O ∀⇒ C(s) and
C(O) ⊆ C(s), the set of operations that O must be transformed against before
being executed on s is C(s)− C(O).

CC3. Given an operation O ⇒ O and a document state s, O can be executed on s only
if: C(O) = C(s).

CC4. Given an operation Ox ⇒ Oo and an operation O ⇒ O, where Ox ∀⇒ C(O), Ox

can be transformed to the context of O only if C(Ox) ⊆ C(O).
CC5. Given an operation Ox ⇒ Oo and an operation O ⇒ O, where Ox ∀⇒ C(O) and

C(Ox) ⊆ C(O), the set of operations that Ox must be transformed against before
being transformed with O is C(O) − C(Ox).

CC6. Given two operations O1, O2 ⇒ O, they can be transformed with each other, i.e.,
T (O1, O2) or T (O2, O1), only if C(O1) = C(O2).

In essence, CC1 and CC4 ensure correct ordering of operation execution and trans-
formation; CC2 and CC5 determine correct transformation reference operations; and
CC3 and CC6 ensure correct operation execution and transformation. CC conditions
are known to be critical in evaluating and designing OT control algorithms. There have
been numerous OT control algorithms capable of ensuring the six context-based condi-
tions, which are called CC-compliant algorithms [7,9,12,11,14].

To achieve convergence, a transformation function T may ensure the following con-
vergence properties:

438 Y. Liu et al.

Convergence Property 1 (CP1). Given O1 and O2 defined on the same document state
s, i.e., C(O1) = C(O2) = C(s), if O′

1 = T (O1, O2), and O′
2 = T (O2, O1), T satisfies

CP1 if s ◦O1 ◦O′
2 = s ◦O2 ◦O′

1.

CP1 means that applyingO1 and O′
2 in sequence on s has the same effect as applying

O2 and O′
1 in sequence on s. In other words, the list of two operations [O1, O

′
2] is equiv-

alent to another list of two operations [O2, O
′
1] with respect to the effect in document

state, i.e., [O1, O
′
2] ≡ [O2, O

′
1].

Convergence Property 1 (CP2). Given Ox, O1, and O2 defined on the same state s,
i.e., C(Ox) = C(O1) = C(O2) = C(s), if O′

1 = T (O1, O2), and O′
2 = T (O2, O1), T

satisfies CP2 if LT (Ox, [O1, O
′
2]) = LT (Ox, [O2, O

′
1]).

CP2 means that transforming Ox against O1 and O′
2 in sequence equals to trans-

forming Ox against O2 and O′
1 in sequence. In other words, [O1, O

′
2] is equivalent to

[O2, O
′
1] w.r.t. the effect in transformation.

To achieve intention preservation, a transformation function T must meet the follow-
ing transformation post-condition:

Transformation Post-Condition (TPC). Given two context-equivalent operations O1

and O2, i.e., C(O1) = C(O2). After transforming O1 against O2 to produce O′
1, i.e.,

O′
1 = T (O1, O2) and C(O′

1) = C(O2) ⊥ {org(O2)}, T satisfies TPC if the effect of
executing O′

1 in the document state determined by C(O′
1) is the same as the effect of

executing O1 in the document state determined by C(O1).

4 Verification of Convergence and Intention Preservation

In this section, we establish that an OT system based on a CC-compliant algorithm
(e.g., COT [14]) can achieve convergence and intention preservation for an arbitrary
number of operations with arbitrary causal relationships and generated by any number
of users in a collaborative editing session, provided that transformation functions can
preserve CP1, CP2, and TPC. First, we show that a CC-compliant algorithm possesses
the following properties, established as lemmas below.

Lemma 1. Given two original operations O1 and O2, under a CC-compliant algo-
rithm, O1 is executed before O2 only if O1 ∧ O2 or O1 ‖ O2.

Proof: This is directly derived from CC1.

Lemma 2. Given three original operations O1, O2, and O3, under a CC-compliant
algorithm, if O1 is executed before O2, and O2 ∧ O3 and O1||O3, then O1 ‖ O2.

Proof: First, it is impossible to have O2 ∧ O1 because O1 is executed before O2 by
Lemma 1. Second, it is impossible to have O1 ∧ O2 because it contradicts to O2 ∧ O3

and O1 ‖ O3. The lemma follows from Definition 2.

Lemma 3. Under a CC-compliant algorithm, two operations O1 and O2 are trans-
formed with each other if and only if they are originally concurrent.

Proof: This can be derived from CC1, CC2, CC4, CC5 and CC6.

Formal Verification of Operational Transformation 439

The following corollary of lemma 3 establishes that when an operation is executed
under a CC-compliant algorithm, it must have been transformed with operations that
are executed before and originally concurrent with this operation.

Corollary 1. Let O be any operation in a sequence of operationsL produced by an OT
system based on a CC-compliant OT algorithm. O must have been transformed with all
operations (if any) that are originally concurrent with O and positioned before O in L.

Lemma 4. Let L1 and L2 be two sequences of transformed operations produced by
applying a CC-compliant algorithm to the same group of n operations, O = L1[n] be
the last operation in L1, and O′ = L2[i] be the corresponding operation in L2 (i.e.,
org(O) = org(O′)), where i < n. For any operation Ox in the range of L2[i + 1, n],
inclusively, it must be that Ox is originally concurrent with O′, i.e., org(Ox) ‖ org(O′).

Proof: According to Lemma 1, it is impossible that org(Ox) ∧ org(O′) because O′

is executed before Ox in L2; it is also impossible that org(O′) ∧ org(Ox) because
org(O′) = org(O) and O is executed after all operations, including Ox, in L1. The
lemma follows from Definition 2.

The following lemmas are based on a CC-compliant algorithm and transformation
properties CP1 and CP2.

Lemma 5. Given a sequence of operations L produced by applying a CC-compliant
OT algorithm and CP1-preserving transformation function T to a sequence of original
operations, if two adjacent operations in L are originally concurrent, then they can be
transposed to make a new L′, such that L′ ≡ L.

Proof: Assume that L = [O1, . . . , Oi−1, Oi, Oi+1, Oi+2, . . . , On], and Oi and Oi+1

are the two adjacent operations that are originally concurrent. By Corollary 1, Oi+1

must have been obtained by transformation. Also there must exist an operation Ox,
such that T (Ox, Oi) = Oi+1. Therefore, we can transpose these two operations and
make a new L′ as follows: L′ = [O1, . . . , Oi−1, Ox, T (Oi, Ox), Oi+2, . . . , On]. Since
T preserves CP1, we have [Ox, T (Oi, Ox)] ≡ [Oi, Oi+1] (by CP1). From the fact that
other operations in L′ are the same as in L, we have L′ ≡ L.

Definition 6 (Transpose-reducible sequence). An operation sequence L1 is said to be
transpose-reducible to another operation sequence L2, if (1) L2 can be obtained from
L1 by transposing two adjacent and originally concurrent operations in L1; or (2) L1

is transpose-reducible to a list L3 and L3 is transpose-reducible to L2.

Lemma 6 (Generalization of CP1). If L1 is transpose-reducible to L2, then L1 ≡ L2.

Proof: It follows from Definition 6 and CP1.

Lemma 7 (Generalization of CP2). Given two operation sequences L1 and L2, if L1

is transpose-reducible to L2, then, for any operation O, LT (O,L1) = LT (O,L2).

Proof: First, suppose L2 is obtained by transposing one pair of adjacent and originally
concurrent operations in L1. Let L1 = [O1, . . . , Oi−1, Oi, Oi+1, Oi+2, . . . , On], and
L2 = [O1, . . . , Oi−1, O

′
i+1, O

′
i, Oi+2, . . . , On], where [Oi, Oi+1] ≡ [O′

i+1, O
′
i]. The

lemma is true because:

440 Y. Liu et al.

1. O′ = LT (O,L1[1, i− 1]) = LT (O,L2[1, i− 1]) (by L1[1, i− 1] = L2[1, i− 1])
2. O′′ = LT (O′, [Oi, Oi+1]) = LT (O′, [O′

i+1, O
′
i]) (by CP2)

3. O′′′ = LT (O′′, L1[i+ 2, n]) = LT (O′′, L2[i+ 2, n]) (by L1[i+ 2, n] = L2[i+ 2, n])

Since transpose-reducibility is transitive (see Definition 6), it can be shown by an
induction argument that the lemma is true if L2 is obtained by transposing any number
of pairs of adjacent and originally concurrent operations in L1.

Theorem 1. Given an OT system based on a CC-compliant algorithm and CP1-CP2-
preserving transformation functions, and a group of operations GO generated during a
collaborative editing session, if L1 and L2 are two sequences of transformed operations
produced by this OT system at any two different sites, respectively, then L1 ≡ L2, i.e.,
convergence is preserved at these two sites in a collaborative editing session.

Proof: We apply induction on the number of operations in GO. When |GO| = 1, the
theorem obviously holds since the only operation in L1 and L2 produced by this OT
system must be in its original form and must be the same in both L1 and L2.

As the induction hypothesis, assume the theorem holds for 1 ∨ |GO| ∨ m. We show
that the theorem holds for |GO| = m + 1. Let O be the last operation at L1[m + 1],
and O′ at L2[i] be the operation corresponding to O, i.e., org(O) = org(O′), where
i ∨ m + 1. In case that i ∀= m + 1, those operations in the range of L2[i + 1,m+ 1]
must be originally concurrent with org(O′) according to Lemma 4. Therefore, O′ can
be repeatedly transposed and shifted from L2[i] to L2[m + 1] to produce a new L′

2,
and L′

2 ≡ L2 by Lemma 6. Let O′′ be the last operation of L′
2. Both O and O′′ must

be positioned at the end of L1 and L′
2, respectively; and L1[1,m] and L′

2[1,m] must
contain the same group ofm operations. According to the induction hypothesis, we have
L1[1,m] ≡ L′

2[1,m]. To prove L1 ≡ L′
2(≡ L2), we only need to show L1[m + 1] =

L′
2[m+ 1], i.e., O = O′′.
For any two adjacent operations in the range of L1[1,m], if the left one is origi-

nally concurrent with O but the right one is causally before O, these two operations
must be concurrent (by Lemma 2) and hence can be transposed according to Lemma 5.
Therefore, operations in L1[1,m] can be transposed and shifted in such a way that op-
erations that are originally causally before O are positioned at the left side (denoted
as L1.left) and operations that are originally concurrent with O are positioned at the
right side (denoted as L1.right). Hence, we have L1[1,m] ≡ L1.left + L1.right.
The same can be done on L′

2[1,m] to get L′
2[1,m] ≡ L′

2.left + L′
2.right. L1.left

and L′
2.left must contain the same group of operations that are originally causally be-

fore O. According to the induction hypothesis, we have L1, left ≡ L′
2.left, which,

together with L1[1,m] ≡ L′
2[1,m], implies that L1.right ≡ L′

2.right. If L1.right and
L′
2.right are empty lists, which means that no operation is originally concurrent with

O, then both O and O′′ must be the same original operation, so O = O′′. Otherwise,
according to Corollary 1, O and O′′ must have been transformed with concurrent op-
erations in L1.right and L′

2.right, respectively, since they are positioned at the end
of each list. Let O = LT (org(O), L1.right) and O′′ = LT (org(O), L′

2.right). Since
L1.right ≡ L′

2.right, we have O = O′′ by Lemma 7. Therefore, we establish L1 ≡ L′
2

for |GO| = m+ 1.

By induction, we have L1 ≡ L′
2. L1 ≡ L2 follows from L1 ≡ L′

2 and L′
2 ≡ L2.

Formal Verification of Operational Transformation 441

Theorem 2. Under an OT system based on a CC-compliant algorithm and CP1-CP2-
TPC-preserving transformation functions, for any operation O generated in a collab-
orative editing session, the effect of executing O on any document state is the same as
the effect of executing O on the document state from which O was generated, i.e., the
intention of O is preserved at all sites in a collaborative editing session.

Proof: The theorem holds when O is executed at the local site since it is executed
immediately on the document state from which O was generated. When O is executed
at a remote site, operations that are causally before O must have been executed by CC1.
Under this condition, there are two possible cases to be considered:

Case 1: No concurrent operation has been executed before O in this site. In this case,
O will be executed as-is without transformation according to Lemma 3. Since both
the remote and local sites have executed the same group of operations that are causally
beforeO, the document states at the remote and local sites must be identical by Theorem
1. Therefore, executing O on the remote document state should achieve the same effect
as executing O on the local document state. The theorem holds in this case.

Case 2: Some concurrent operations have been executed before O in this site. In this
case, O will be transformed against those concurrent operations according to Lemma 3.
Let O′ be the operation obtained from transforming O against those concurrent opera-
tions. Since the transformation function preserves TPC, the effect of O′ in the document
state determined by C(O′) must be the same as the effect of original O in the document
state determined by C(O). We know that the document state determined by C(O′) is
the same as the remote document state according to CC3, and the document state deter-
mined by C(O) is the same as the local document state from which O was generated
by Definition 4 (1). Thus, the theorem holds in this case as well.

In summary, Theorems 1 and 2 collectively establish that OT control algorithms
capable of ensuring context-based conditions can generally achieve convergence and
intention preservation, provided that underlying transformation functions can preserve
transformation properties CP1, CP2 and TPC. Verification of transformation properties
requires formalization of operation effects and data models, which are discussed in the
next section.

5 Verification of Transformation Properties

In this section, we investigate the verification of CP1, CP2 and TPC properties for
concrete data and operation models. We choose strings as the data model and character-
wise operations as the operation model, as they are the basic and most commonly used
models in existing OT systems.

Definition 7 (String Data Model). A string data model is a formal language S de-
fined over a set of alphabet Σ, that is, a subset of Σ∗. Each element in S is written in
≤c0c1c2 · · · cn−1〉 where each ci ⇒ Σ.

Definition 8 (Character Operation Model). Character operation model supports two
kinds of operations. Given a string s ⇒ S, the insert operation I(p, c) inserts a char-
acter c at position p of s where 0 ∨ p ∨ |s|; the delete operation D(p, c) deletes the
character c at position p of s where 0 ∨ p < |s|.

442 Y. Liu et al.

Under the string data model and character operation model, a document state s may
have an arbitrary length, and each position in s may contain any character from Σ; and
an operation O may have an arbitrary position p within its valid range. To formally
verify CP1/CP2/TPC, we need to consider all these infinite scenarios, which stop us
from directly using automatic verification techniques like model checking.

To solve this problem, we propose a data abstraction of the string data model using
symbolic representations. For a document state s = ≤c0c1c2 · · · cn−1〉 in S, s[i] denotes
the character at the i-th position of s, i.e., s[i] = ci; s[i, j] denotes a substring of s from
the indices i to j, i.e., s[i, j] = ≤cici+1ci+2 · · · cj−1cj〉; |s| denotes the sequence length
of s. For notation convenience, s[i, j] means an empty string if i > j. s[i, j] + s[m,n]
denotes the concatenation of two substrings of s. We define single operation effects
based on this symbolic data model representation.

Definition 9 (Effect of a Single Insert Operation). Given an insert operation I(p, c)
defined on a document state s, where 0 ∨ p ∨ |s|. The symbolic effect of I(p, c) on s is
to convert s into a new state s′ = s ◦ I(p, c) = s[0, p− 1] + c+ s[p, |s| − 1].

Definition 10 (Effect of a Single Delete Operation). Given a delete operation D(p, c)
defined on a document state s, where 0 ∨ p < |s|. The symbolic effect of D(p, c) on s is
to convert s into the following new state s′ = s◦D(p, c) = s[0, p−1]+s[p+1, |s|−1].

From the operation effect definitions above, we can see that the effect of O on s can
be partitioned into three uniform effect ranges: (1) s[0, p− 1], the left effect range of p;
(2) s[p], the effect range at p; and (3) s[p + 1, |s| − 1], the right effect range of p. The
effect of O in each range is uniform in the sense that all positions in the same range are
affected by O in the same way, though the effect in different ranges may be different.
This effect uniformity provides the foundation for reducing arbitrary possibilities to a
fixed number of possibilities.

In the absence of concurrency, single-operation effect definitions are adequate for
users to understand the behavior of an editor. In the presence of concurrency in col-
laborative editing, however, we need to define combined-effects for concurrent opera-
tions, independent of their execution orders. Different applications may choose different
combined-effects for meeting specific application needs.

Union-Effects (UE) is the most commonly used combined-effects, which is able to
retain the original-effects of individual operations, and to preserve all-operation-effects
under all circumstances. This UE is a specialization of the general intention preservation
requirement under the string data model and character operation model. To specify
UE for string data and operation model, we first enumerate all possible operation type
combinations: I − I , I − D, D − I and D − D. Second, for each type permutation,
there are three position relationships p1 < p2, p1 = p2, p1 > p2 based on the uniform
effect ranges of each operation. In total, there are 12 cases, as shown under the column
UE(O1, O2) in Table 1. Each UE defines a concrete transformation matrix (TM) to
represent the actual effects of the transformation function.

Two cases in Table 1 deserve special attention. In case 2, which is known as “insert-
insert-tie”, two possible combined-effects: c1c2 and c2c1 are valid which introduces
non-determinism to UE(O1, O2). To achieve such union effect, a priority-based tie-
breaking rule for O1 and O2, which ensures a total ordering among all operations.

Formal Verification of Operational Transformation 443

Table 1. Union-Effect and Transformation Matrix

No. O1, O2 Position Rel. UE(O1, O2) TM(O1, O2)
1

I(p1, c1)
I(p2, c2)

p1 < p2 s[0, p1 − 1] + c1 + s[p1, p2 − 1] + c2 + s[p2, |s| − 1] I(p1, c1)
2a p1 = p2 s[0, p1 − 1] + c1c2 + s[p1, |s| − 1] I(p1, c1)
2b p1 = p2 s[0, p1 − 1] + c2c1 + s[p1, |s| − 1] I(p1 + 1, c1)
2v1 p1 = p2 s[0, |s| − 1] D(p1, c2)

3 p1 > p2 s[0, p2 − 1] + c2 + s[p2, p1 − 1] + c1 + s[p1, |s| − 1] I(p1 + 1, c1)
4

I(p1, c1)
D(p2, c2)

p1 < p2 s[0, p1 − 1] + c1 + s[p1, p2 − 1] + s[p2 + 1, |s| − 1] I(p1, c1)
5 p1 = p2 s[0, p1 − 1] + c1 + s[p2 + 1, |s| − 1] I(p1, c1)
6 p1 > p2 s[0, p2 − 1] + s[p2 + 1, p1 − 1] + c1 + s[p1, |s| − 1] I(p1 − 1, c1)
7

D(p1, c1)
I(p2, c2)

p1 < p2 s[0, p1 − 1] + s[p1 + 1, p2 − 1] + c2 + s[p2, |s| − 1] D(p1, c1)
8 p1 = p2 s[0, p1 − 1] + c2 + s[p1 + 1, |s| − 1] D(p1 + 1, c1)
9 p1 > p2 s[0, p2 − 1] + c2 + s[p2, p1 − 1] + s[p1 + 1, |s| − 1] D(p1 + 1, c1)
10

D(p1, c1)
D(p2, c2)

p1 < p2 s[0, p1 − 1] + s[p1 + 1, p2 − 1] + s[p2 + 1, |s| − 1] D(p1, c1)
11 p1 = p2 s[0, p1 − 1] + s[p1 + 1, |s| − 1] NULL

11v2 p1 = p2 s[0, |s| − 1] I(p1, c2)
12 p1 > p2 s[0, p2 − 1] + s[p2 + 1, p1 − 1] + s[p1 + 1, |s| − 1] D(p1 − 1, c1)

We denote O1 >p O2 if O1 has higher priority than O2. Cases 2a and 2b represent
O1 >p O2 and O2 >p O1 respectively. One alternative way to solve the insert-insert-
tie case, defined as a new UEv1, rejects both inserts as shown in case 2v1 and priority
is not used in corresponding TMv1(O1, O2).

The other special union effect is case 11 “delete-delete-tie”. In this case, only one
character c1 is deleted, which is the same as a single delete operation effect. A special
operation NULL1 is used in T (O1, O2) to achieve such effect. We define one variation
UEv2 for this case with the transformation matrix TMv2(O1, O2), e.g., none of the
deletes has an effect (so the character remains), which is shown in case 11v2.

Guided by the specified UE and CP1, results of transforming O1 against O2 under
all 12 cases are specified in the column TM(O1, O2) in Table 1. Given two operations
O1 and O2 defined on the same document state s, the basic strategy of transforming O1

against O2 is to produce O′
1 = TM(O1, O2) as follows: (1) assume O2 has been exe-

cuted; (2) assess the execution effect of O2 on the state s; and (3) derive O′
1 so that ex-

ecuting O′
1 after O2 on s would produce the union effect specified in UE(O1, O2), i.e.,

UE(O1, O2) = s ◦O2 ◦O′
1. The effect of executing O′

1 on the state after executing O2

is the same as executing O1 on the state before executing O2. Therefore, TM(O1, O2)
meets the TPC requirement under the defined data and operation models. In addition,
transformation must satisfy CP1. Therefore, we integrate combined effects with CP1,
denoted as UE-CP1 as UE(O1, O2) = s ◦O1 ◦O′

2 = s ◦O2 ◦O′
1. From TM(O1, O2),

it is straightforward to design a concrete transformation implementation. Most exist-
ing implementations [1,4,9,12] produce the same or similar transformation results as
TM(O1, O2). In our evaluation, TM(O1, O2), rather than specific transformation im-
plementation, is used for verification, so the verification results are generally applicable
to all transformation implementations, that are capable of producing the same results as
TM(O1, O2).

Based on the above formalisms, the correctness checking of UE-CP1 and CP2 on
arbitrary string states is reduced to a checking on the symbolic representation, which
yields a finite state system. For UE-CP1, we define a model with two string variables
x and y with initial value s. Then we check for all the possible types of operations O1

1 Formally, s ◦NULL = s;T (NULL,O) = NULL; T (O,NULL) = O.

444 Y. Liu et al.

Table 2. Counterexamples of CP2 verfication

Transformation Matrix Case # O1 O2 O3 Positional Relationship
TM 1 I(p1, c1) D(p2, c2) I(p3, c3) p2 = p3 < p1

TMv1
1 I(p1, c1) D(p2, c2) I(p3, c3) p1 = p2 < p3

2 I(p1, c1) D(p2, c2) I(p3, c3) p2 = p3 < p1

TMv2
1 I(p1, c1) D(p2, c2) I(p3, c3) p2 = p3 < p1

2 D(p1, c1) D(p2, c2) I(p3, c3) p1 = p2 = p3

and O2 with all the possible relations of the two positions p1 and p2 in O1 and O2,
such that x ◦O1 ◦ TM(O2, O1) = y ◦O2 ◦TM(O1, O2) = UE(O1, O2) is true. Note
that different union effects have different transformation results. UEv1 and UEv2 are
defined similarly as UE in Table 1 with the differences in cases 2 and 11, respectively.
One problem of using symbolic representation of the document state is the equivalence
comparison since two identical document states may have different symbolic values,
e.g., s[0, p− 1] + s[p, |s| − 1] and s[0, p] + s[p + 1, |s| − 1]. Therefore, we introduce
a combination function to convert a symbolic representation to a normalized format if
needed, e.g., s[p0, p1] + s[p2, p3] = s[p0, p3] if p1 + 1 = p2. For CP2, our model will
enumerate all possible combinations of operations with all possible position relations,
then check for the equivalence of the CP2-equation literally in their symbolic formats.
In CP2 verification, we introduce additional symbolic position calculation rules to com-
pare the symbolic value with arithmetics operations (see [2] for details).

6 Evaluation

To evaluate the proposed approach, we perform the verification on the three versions of
UE and their corresponding transformations matrices in Table 1 and report our findings
in this section. We use the PAT [15] (www.patroot.com) as the model checker. A
data structure written in C# is used to capture the symbolic state representation and
the corresponding operation model. The modeling of the transformation matrices is a
direct interpretation of the transformation effects. We altered the reachability verifica-
tion algorithm so that all counterexamples will be returned by completely exploring the
whole state space rather than just returning the first counterexample. The experiments
are conducted on a machine with Intel Core i7-2600 CPU at 3.4GHz and 4GM mem-
ory. Due to space limitation, the details about the models, PAT tool and evaluation data
are provided in [2]. The verification of UE-CP1 and CP2 of the three TM finishes in
around 0.1 sec. and 1 sec. respectively. UE-CP1 is satisfied by all three versions of TM.
CP2-violation cases are found in all three versions, which are discussed below.

Classic UE. Based on UE-CP1 verification results, we declare TM(O1, O2) can pre-
serve UE-CP1 under all cases. One counterexample is discovered in CP2 verification as
shown in Table 2. This CP2-violation case is a general description of the well-known
False-Tie (FT) bug [12]. On one side of the CP2, TM(TM(O1, O2), TM(O3, O2)) =
TM(I(p1−1, c1), I(p3, c3)) = I(p1−1, c1), (because p1−1 = p3, generated by sym-
bolic position calculation rules [2]), this is considered as a false-tie because the tie was
not originally generated by users but created by transformation, and this FT is resolved
by a tie-breaking priority condition O1 >p O3. On the other side of the CP2-equation,

www.patroot.com

Formal Verification of Operational Transformation 445

TM(TM(O1, O2), TM(O3, O2)) = TM(I(p1 + 1, c1), D(p2 + 1, c2)) = I(p1, c1)
(because p1 + 1 > p2 + 1). Therefore, CP2 is violated as I(p1 − 1, c1) ∀= I(p1, c1).

Since the discovery of the basic FT bug in [12], various CP2-violation scenarios have
been reported in different OT systems [3,5] and CP2-violation phenomena became a
main mystery surrounding OT correctness. However, examination of all reported CP2-
violation cases revealed that they were just variations of the FT bug, i.e., CP2-violation
occurs only if an FT is involved. Based on the exhaustiveness of CP2 verification, we
confirm that the FT is the only possible case for CP2-violation under the classic UE.

Based on CP2 verification discoveries, we assert that CP2-preservation can be achie-
ved by solving the FT bug at the transformation matrix level. Past research has also
found that the FT bug can be solved by generic control algorithms by avoiding CP2 [16]
without an FT-solution in transformation functions.
UEv1 TMv1(O1, O2) is based on an alternative combined effect (UEv1 in Table 1)
which achieves a deterministic null-effect in the insert-insert-tie case and our conjec-
ture is that the FT bug will be solved in this way. Surprisingly, more counterexamples
are discovered in CP2 verification of the variation, as shown in Table 2. The verifica-
tion results immediately disapprove our conjecture and shows that UEv1 is no better
than UE in solving FT bug. However, UEv1 is able to achieve a weaker form (but
still meaningful) intention preservation and convergence (with a CP2-avoidance control
algorithm integrally used).
UEv2 TMv2(O1, O2) is based on an alternative combined effect (UEv2 in Table 2)
which achieves a null-effect in the delete-delete-tie case. It preserves UEv2-CP1 but
fails in CP2 with two counterexamples as shown in Table 2. Case 1 is the same FT case
revealed in CP2 verification of UEv2 because it is localized. Case 2 is a new FT bug
caused by operation type transformation.

Verification of the three versions of TM demonstrates the experimental power of
our verification framework. Without actually implementing the system, researchers are
able to discover bugs. This model checking approach not only allows researchers to
try out different combined-effects and corresponding transformation matrices, but also
provides fast and reliable verification results.

7 Related Work

Since the introduction of OT, there are various works in the literature to study OT’s
correctness, as discussed below.

Ad Hoc Bug Detection. Experimental approaches, under the name puzzle-detection-
resolution [8,9,12], have been commonly adopted in prior research for searching OT
bugs. Trying to detect and resolve various intellectually challenging puzzles has been a
major stimulus in OT research and a driving force for OT technical advancement. This
experimental approach has proven its effectiveness in detecting and solving all known
puzzles, including the dOPT puzzle related to OT control algorithms [4,7,9,11,12],
the False-Tie (FT) puzzle related to violating document convergence in transformation
functions [12], etc. However, the ad hoc and informal nature of this approach makes it
unsuitable for systematic and formal verification.

446 Y. Liu et al.

Manual Proof. Mathematic proof has been effective in verifying correctness of OT con-
trol algorithms. The adOPTed control algorithm [9] has been proven for correctness in
ensuring document convergence if transformation functions can preserve CP1 and CP2.
The GOTO algorithm [11] has been proven for correctness for achieving convergence
and intention preservation provided that transformation functions ensure CP1, CP2 and
TPC [10]. The COT algorithm [14] has been proved to be CC-compliant. This work is
the first to use mathematic proof to establish OT system correctness in both convergence
and intention preservation without referring to specific OT control algorithms or trans-
formation functions. This verification result is significant as it is generally valid to all
OT systems capable of preserving established context-based conditions and properties.

Computer-Aided Verification. Prior work had used theorem-provers [5] and model
checkers [3] to verify CP1 and CP2 for specific transformation functions. However,
prior theorem-prover-based approach had used mathematical formalisms that are quite
different from OT transformation properties, which hindered correct specification and
result interpretation. Consequently, there were repeated specification errors and false
verification results, as reported in [3,5]. Prior model checking OT work was hindered
by the infinite state space of collaborating editing systems, as reported in [3]: (1) a
collaborating editing session is modeled as an arbitrary number n of operations; (2) a
document is a string of characters with a fixed length L = 2 × n; each character can
be either 0 or 1; and (3) an operation is either to insert or delete in one of L positions.
This modeling produces the formula ((2 + 1) × L)n = (6 × n)n to calculate the
total number of states. As reported in [3], a session with 4 operations had generated
331776 = (6×4)4 states, which had exceeded the capability of the used model checker.

Thanks to our mathematic induction proof which reduces the problem of verifying
OT systems under arbitrary operations with arbitrary relationships to the problem of
verifying transformation properties under a few (2 for CP1, and 3 for CP2) operations
with equivalent context relationships, our model checking approach can focus on veri-
fying CP1 and CP2 under basic data and operation models. To avoid the state explosion
problem at the data/operation modeling level, we use novel data and operation for-
malization and position relationship reduction techniques to exhaustively cover infinite
state space with a finite number of verification cases. Moreover, our verification covers
not only CP1 and CP2, but also TPC (i.e., intention preservation), which were never
addressed in prior work. With this exhaustive coverage of verification cases, we have
established the correctness in preserving CP1 and union effects – commonly adopted
combined-effects (and TPC) for existing OT systems, and discovered that the FT puzzle
is the only CP2-violation case in OT systems based on the union effect. Furthermore,
our model checking target is represented by a general transformation matrix, which
captures the essential convergence requirement and combined-effects under given data
and operation models, without reference to specific transformation implementations;
so it is generally applicable to a wide range of transformation implementations. This
transformation matrix approach has also enabled us to evaluate alternative combined-
effects, proposed but never checked in prior research, without actually implementing
them in real OT systems. In parallel with PAT-based modeling checking verification,
we have also developed and used another software tool, called OT eXplorer (OTX), to

Formal Verification of Operational Transformation 447

exhaustively search OT puzzles and verify transformation properties [13]. Independent
verification results from OTX and PAT are consistent and provide mutual confirmation.

8 Conclusion

This work has contributed a complete verification of OT including control algorithms
and transformation functions, by marrying the power of mathematical proof and auto-
matic model checking. We verified both convergence and intention preservation in OT-
based collaborative editing systems for the first time. By establishing the correctness of
OT system based on a set of well-defined transformation conditions and properties, the
design of correct control algorithms and transformation functions could be guided by
these conditions and properties. We are extending and applying our model checker to
support experimental design and evaluation of various combined-effects under different
data and operation models for novel collaborative applications, which will be reported
in future publications.

Acknowledgement. This research is partially supported by an Academic Research
Fund Tier 1 Grant from Ministry of Education Singapore, and by “Formal Verification
on Cloud” project under Grant No: M4081155.020.

References

1. http://cooffice.ntu.edu.sg/otfaq/
2. http://pat.sce.ntu.edu.sg/ot
3. Boucheneb, H., Imine, A.: On model-checking optimistic replication algorithms. In: Lee, D.,

Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 73–89.
Springer, Heidelberg (2009)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: SIGMOD,
pp. 399–407 (1989)

5. Imine, A., Molli, P., Oster, G., Rusinowitch, M.: Proving Correctness of Transformation
Functions in Real-time Groupware. In: ECSCW, pp. 277–293 (2003)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM 21(7),
558–565 (1998)

7. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, low-bandwidth windowing
in the Jupiter collaboration system. In: UIST, pp. 111–120 (1995)

8. Prakash, A., Knister, M.J.: A framework for undoing actions in collaborative systems.
TOCHI 1(4), 295–330 (1994)

9. Ressel, M., Nitsche-Ruhland, D., Gunzenhäuser, R.: An integrating, transformation-oriented
approach to concurrency control and undo in group editors. In: CSCW, pp. 288–297 (1996)

10. Sun, C.: Undo as concurrent inverse in group editors. TOCHI 9(4), 309–361 (2002)
11. Sun, C., Ellis, C.A.: Operational transformation in real-time group editors: issues, algorithms,

and achievements. In: CSCW, pp. 59–68 (1998)
12. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality preser-

vation, and intention preservation in real-time cooperative editing systems. TOCHI 5(1),
63–108 (1998)

http://cooffice.ntu.edu.sg/otfaq/
http://pat.sce.ntu.edu.sg/ot

448 Y. Liu et al.

13. Sun, C., Xu, Y., Agustina: Exhaustive search of puzzles in operational transformation. In:
CSCW, pp. 519–529 (2014)

14. Sun, D., Sun, C.: Context-based operational transformation in distributed collaborative edit-
ing systems. TPDS 20(10), 1454–1470 (2009)

15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

16. Xu, Y., Sun, C., Li, M.: Achieving convergence in operational transformation: conditions,
mechanisms and systems. In: CSCW, pp. 505–518 (2014)

Verification of a Transactional Memory Manager

under Hardware Failures and Restarts

Ognjen Marić and Christoph Sprenger

Institute of Information Security,
Dept. of Computer Science, ETH Zurich, Switzerland

{omaric,sprenger}@inf.ethz.ch

Abstract. We present our formal verification of the persistent mem-
ory manager in IBM’s 4765 secure coprocessor. Its task is to achieve a
transactional semantics of memory updates in the face of restarts and
hardware failures and to provide resilience against the latter. The inclu-
sion of hardware failures is novel in this area and incurs a significant jump
in system complexity. We tackle the resulting verification challenge by
a combination of a monad-based model, an abstraction that reduces the
system’s non-determinism, and stepwise refinement. We propose novel
proof rules for handling repeated restarts and nested metadata transac-
tions. Our entire development is formalized in Isabelle/HOL.

1 Introduction

The IBM 4765 [1] cryptographic coprocessor resembles a general-purpose com-
puter, encased in a tamper-proof housing and packed onto a PCIe card. Its
security policies require that most access to the persistent storage be brokered
through the built-in bootloader, and in particular its subsystem called the Per-
sistent Memory Manager (PMM). Verification of the PMM is our driving case
study, and this paper presents the main challenges, our techniques for overcom-
ing them, and some of the lessons learned in the process.

The PMM’s API offers a rudimentary persistent storage service. It abstracts
the persistent memory into an arbitrary, but fixed number of storage slots of
different capacities. The slots are called regions, and they are addressed by their
indices. The API provides just two operations: update and fetch. The main
requirement for this API are atomic updates : given new contents for a set of
regions, an update operation updates either all of them, none of them, or fails.

The API does not support concurrency. Hence, designing and verifying such
a system appears to be easy at first. Appearances can be deceiving, however, as
we will require atomicity to hold even in the presence of:

(1) abrupt power-downs, possibly resulting in garbled writes. At power-up a
startup procedure is called (that might itself be subject to abrupt restarts).

(2) failures of persistent storage, such as spontaneous corruption (“bit rot”) or
permanent hardware failures.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 449–464, 2014.
c© Springer International Publishing Switzerland 2014

450 O. Marić and C. Sprenger

Algorithms that provide atomic updates in the presence of (1) have already
been analyzed in the literature [2,3,4], but this is the first work we are aware
of that also addresses (2). Moreover, our target system does not just detect
such failures, but also aims for resilience against them, restoring corrupted data
from spare copies when possible. This necessitates full redundancy in both user
and metadata (i.e., administrative data used by the algorithm) stored in the
persistent memory. It also complicates the details of the algorithm, requiring
nested transactions in the metadata and permeating the implementation with
special cases, integrity checks, and potential recovery actions. An example of
the resulting implementation complexity is the seemingly innocuous fetch pro-
cedure, which simply retrieves the contents of a single region. Figure 1 shows its
call graph. The complexity of implementation, and thus also reasoning, caused
by the non-determinism of (2) is then further aggravated by (1), since longer
implementations induce new restart points.

To tame this complexity and enable verification, we proceed using abstraction
(or dually, refinement), building a stack of progressively more abstract models.
These gradually remove redundancy, first in the metadata, then in the user
data, and finally replace repeated restarts by a single one. Combining proofs
of refinement between neighboring models with general property preservation
results, we then transfer proofs of requirement compliance from the top of the
model stack to the concrete model of the PMM on its bottom.We have formalized
our entire development in the Isabelle/HOL theorem prover [5].1

Our contributions are twofold. First, we propose novel modeling and reason-
ing techniques for systems with restarts and failures. Our modeling limits the
asynchrony of these effects and hence simplifies the verification by reducing non-
determinism. Moreover, we model restarts at the language level, which allows
us to derive structured refinement proof rules for repeated restarts and for elim-
inating the nested transactions that handle the metadata redundancy. Second,
this combination of tools enabled the success of our case study, which is sub-
stantial, industrially relevant, and more complex than related ones published
hitherto, due to the system’s resilience to hardware failures. We believe that our
approach is applicable in related areas such as smart cards and file systems.

We give an overview of the PMM API and describe its environment and the
requirements we pose on it in the next section. Section 3 describes our modeling
and reasoning framework, and Section 4 the models we create and the results
we obtain. We review the related work in Section 5, and conclude in Section 6.

2 System Overview

The task of the PMM is to provide a simple API for transactional access to
persistent memory, effectively resulting in an abstraction of the memory as a
function index∧ contents. The PMM (sub)system consists of three main pro-
cedures: update, fetch, and startup. The first two constitute the PMM API.
The fetch procedure takes a single parameter, the index of the target region,

1 Accessible at http://www.infsec.ethz.ch/research/software/pmm-verif

http://www.infsec.ethz.ch/research/software/pmm-verif

Verification of a Transactional Memory Manager 451

Fig. 1. Call graph for fetch

PMM view

PMM API LLI

User view Hardware

metadata

user data

instances

Fig. 2. Abstraction levels

and is supposed to return the corresponding contents. The update procedure
also takes a single parameter, a map (partial function) index � contents, and is
supposed to override the memory abstraction with the given map, updating all
the regions in the map’s domain with the given contents. However, the behavior
of the API is also conditioned on possible abrupt restarts and hardware failures.

The restarts cause the startup procedure to be run, which then performs
cleanups and integrity checks. An API call to update or fetch may thus result
in one or more (if startup is itself restarted) executions of startup. The same
procedure is also executed in case a restart happens in between API calls.

We detail the hardware failures we consider below, however their global effect
on the card is reflected in the three PMMmodes of operation: Normal, Degraded,
and Fail, corresponding to normal operation, read-only mode, and complete
failure. To achieve resilience, the system stores all its data in two copies. This
includes the data of the user regions, exposed by the API, but also the metadata
stored in the extra administrative regions. Each copy of a region is called a region
instance. Figure 2 gives an overview of the system’s abstraction levels.

To signal irremediable hardware failures to the caller, the API calls use an ex-
ceptional mode of termination. Restarts lose the information about the original
call and its return value. To facilitate modeling, we will also use the exceptional
mode to signal the completion of the startup procedure. If an API call termi-
nates in the normal mode, we expect it to behave as described at the beginning
of the section. In the exceptional mode, however, we will have to loosen the
requirements. We will make this more precise in Section 2.2.

2.1 The Environment

Next, we present the environment that the PMM interacts with, and our as-
sumptions about it. The PMM controls the persistent storage, which consists
of battery-backed RAM and flash memory. However, the PMM does not access
the hardware directly, relying on lower-level firmware instead. The lower-level
interface (LLI) abstracts the memory into logical blocks of varying sizes. It can
read and write each block independently (regardless of the type of the underlying
memory), by transferring data between the persistent memory and the DRAM
(dynamic RAM). We assume both the DRAM and the CPU to be reliable.

452 O. Marić and C. Sprenger

The PMM maps each region instance to a unique memory block. The two
blocks corresponding to the two instances of the same region have equal capac-
ity. The LLI provides a convenient addressing scheme for mapping instances to
blocks, but is otherwise oblivious of the connection between blocks and regions.
Its task consists, first and foremost, of mapping the logical addresses onto the
appropriate hardware ones, and performing blockwise read and write operations.

Additionally, the LLI tries to eliminate transient failures (e.g., bus intercon-
nect problems) by repeating its reads, and checking the success of each write. It
also detects and reports two kinds of permanent (irrecoverable) failures, namely:

– Read failures, where a block becomes completely unusable (e.g., due to a
dead memory bank). We call such a block dead.

– Write failures, where a block can no longer be overwritten with new contents.
We call such a block degraded.

A block without permanent failures is called ok. Other failures are undetectable
by the LLI and the PMM must detect and try to correct them. An example is
“bit rot”, where some content can be retrieved from an instance, but it differs
from the content that was last written to it. These failures are recoverable, as
the block can still be overwritten with the correct contents, if they are available.

The environment can also trigger restarts, whereby control is transferred to
the startup procedure. Restarts may interrupt write operations, causing another
(recoverable) kind of write failure. We will further discuss restarts in Section 3.2.

2.2 The Requirements

We specify the requirements on the PMM in terms of the abstract view on the
memory it provides to API users. We express this view as elements of the type
(index ∧ contents)⊥, where τ⊥ = τ + {⊥} and ⊥ corresponds to a failure. The
requirements concern entire API calls, including the possible runs of the startup
procedure. We call a user region instance active if it matches the view’s content.

(R1) Atomic updates. Given the current view v and an update map u, an update
results in either the view v ψ u (successful update, where ψ overrides the
function v with the map u), v (rollback), or ⊥ (failure, also if v = ⊥). A
rollback may only be performed in the case of exceptional termination.

(R2) Correctness of fetch. Fetch returns the value of the view at the given index,
or results in an exception in Fail mode or when interrupted by a restart.

(R3) Unchanged view during fetches, updates in non-Normalmode, and restarts
in between API calls, except for when the mode is changed to Fail.

(R4) Matching modes of operation and termination. API calls can terminate
exceptionally only in the case of restarts or non-Normalmode of operation.

(R5) Correctness of the mode of operation. In Normal mode, all region instances
are active. In Degraded mode, each region has at least one active instance
and there is at least one degraded block. In Fail mode, there exists a
region with no reliable and up-to-date instances.

(R6) Maximum redundancy. In all but Fail mode, any ’ok’ region instance is
active (and hence all ’ok’ instances of a region match).

Verification of a Transactional Memory Manager 453

3 The Framework

We embedded a framework for modeling and reasoning about imperative pro-
grams with restarts and failures in the theorem prover Isabelle/HOL [5]. Similar
to Klein et al. [6], we build a series of models at different levels of abstraction,
with each model having two-layers: an outer layer based on transition systems
and a structured inner layer based on monads.

Most of the work is done in the inner layer, where we model the API and
startup procedures in an imperative fashion. This layer also provides facilities
for modeling restarts and hardware failures. Our treatment of both of these is
possibilistic, since our requirements do not include probabilistic properties. The
inner layer also provides constructs for modeling repeated restarts, allowing us
to model entire API calls. The outer layer is a simple shell around the inner
one, with the purpose of providing a trace semantics. Its transitions are derived
directly from the definitions in the inner layer, as the union over all API calls
and restarts in idle states. Given this trace semantics, we define a refinement
infrastructure based on forward simulation akin to [7,8], allowing us to relate
the different models. We transfer the refinement proof obligations from the outer
to the inner layer, where we can prove them in a compositional manner. The
refinements guarantee that the concrete models inherit the properties expressing
our requirements, which we prove on the simpler abstract models.

3.1 Specifications and Refinement (Outer Layer)

On the outer layer, we use transition systems of the form T = (Σ,Σ0, π), where
Σ is the universe of states, Σ0 ⊆ Σ is the set of initial states, and π ⊆ Σ ×Σ is
the transition relation. A behavior of a transition system T is a finite sequence
of states in which the first element belongs to Σ0, and each pair of successive
elements is related by the transition relation π. We denote the set of behaviors
of T by beh(T) and the set of states appearing in some behavior by reach(T).

We extend transition systems to specifications of the form S = (T,O, obs),
where O is the universe of observations, and obs : Σ ∧ O is an observation
function. Observations abstract away the uninteresting details of the state. For
example, we can project the state (“forgetting” some parts of it) or replace a list
by a set (in case we do not care about the ordering). A specification S’s reachable
observations and observable behaviors are defined as oreach(S) = obs(reach(T))
and obeh(S) = obs(beh(T)), where obs is applied pointwise to reachable states (as
set or behavior elements, respectively). An (internal) invariant of T (and S) is a
set of states I such that reach(T) ⊆ I. An external invariant is a set J ⊆ O such
that oreach(S) ⊆ J . Given two specifications Sa and Sc, and a mediator function
α : Oc ∧ Oa, we say that Sc implements Sa via α if α(obeh(Sc)) ⊆ obeh(Sa).
Mediator functions allow us to relate systems with different observations.

To prove that Sc implements Sa, we use refinement based on forward simula-
tion. Sc refines Sa under the simulation relation R ⊆ Σa×Σc and the mediator
function α if three conditions hold. (Ref1) Σ0c ⊆ R(Σ0a), i.e., each concrete ini-
tial state is related via R to some abstract one. (Ref2) R; πc ⊆ πa; R, where the

454 O. Marić and C. Sprenger

semicolon denotes forward relational composition, i.e., any concrete transition
can be matched by an abstract one. We can visually represent this by requiring
the existence of an s′a that allows us to fill the dashed lines in the drawing below.
(Ref3) obsa(sa) = α(obsc(sc)) whenever (sa, sc) ⇒ R, i.e. the observations and
the simulation relation R are consistent (the two paths from sa to oa in the
drawing below commute).

sa

sc

sa'

sc'

a

R R

c

oa

oc obsc

obsa

3.2 Modeling Hardware Failures and Restarts (Inner Layer)

We now turn to the inner layer. The salient features of the system we wish to
model are the imperative nature of the target algorithm and the non-determinism
in the environment stemming from hardware failures and abrupt restarts. Our
modeling of these features in HOL’s functional language is based on a non-
deterministic state monad [9], defined as nds monad(σ, ε) = ε ∧ P(σ × ε).
The parameters σ and ε denote the types of return values and states. We
call the monad’s elements computations. We define the sequential composi-
tion (bind, written ◦=) and return monad operators as usual, and provide
a non-deterministic choice construct (written [+]). We use a function to rel :
nds monad(σ, ε)∧ P(ε×ε) to derive outer-layer transition relations from given
computations by simply forgetting the return values.

Hardware failures can, in reality, happen asynchronously, at any time. How-
ever, the PMM can only observe them through the LLI. We thus model them
as happening synchronously (and non-deterministically), upon calls to the LLI.
Restarts are also asynchronous in reality. They transfer control to the startup
procedure. However, it is impossible to model the exact start and end times of
this transfer as well as the precise system state handed to the startup procedure,
without getting into electrical properties of circuits. All models of restarts are
thus necessarily approximations - they must choose a granularity and approxi-
mate the effect on the state. Existing structured models (such as [10,4]) choose
the granularity of a language statement, inserting non-deterministic restarts be-
tween statements. Fortunately, one observation allows us to enlarge this gran-
ularity and simplify our model: the persistent memory is accessed only during
LLI calls. Hence, restarts outside of LLI calls can only affect the volatile mem-
ory, and their effects can be (over)approximated by inserting restarts only right
before and after LLI calls, and allowing them to arbitrarily modify the volatile
memory. The effect of restarts during an LLI call is call-specific (e.g., setting a
block’s contents to an arbitrary value during a write). We thus model all restarts
as synchronous, by putting them in and around LLI calls.

Since restarts trigger a transfer of control from arbitrarily deep levels of the
call stack, we chose to model them as exceptions. We also use exceptions for error

Verification of a Transactional Memory Manager 455

handling. For convenience, we model restarts with a distinguished exception. We
thus transform the non-deterministic state monad into a PMM restart-exception
monad, defined as pre monad(σ, δ, εv , εp) = nds monad(1+ δ+σ, εv×εp). Here,
σ represents (normal) return values, δ represents (regular) exceptions, 1 is the
unit type representing the restart exception. Moreover, the state is partitioned
into the volatile (εv) and persistent (εp) components. We lift bind and return

as expected and define a try/catch construct for handling regular exceptions.
We also define a tryR/catchR construct to handle the restart exception. Here,

the “handler” is normally the startup procedure. However, this construct does
not suffice to accurately model the possibility of startup being itself inter-
rupted by a restart. Hence, we need a construct for repeated restarts. As a first
step, we define the restarting (R) and non-restarting (N) projections of a com-
putation m : pre monad(σ, δ, εv , εp), i.e., m∈R of type nds monad(1, εv × εp)
and m∈N of type nds monad(δ + σ, εv × εp). Now, we inductively define the
desired repetition construct for a given handler h, written rec tryR(h), by pre-
ceding a single run of h∈N by zero or more runs of h∈R and lifting the result-
ing computation back to the pre monad. We then define tryR m catchR∗ h by
tryR m catchR rec tryR(h). These constructs allow us to adequately model our
API calls. For instance, the (outer layer) transition corresponding to the fetch

API call is defined as to rel(tryR fetch(ind) catchR∗ startup).

3.3 Compositional Reasoning

There are two kinds of properties we wish to prove of our monadic computations.
First, we want to establish properties of individual computations, expressed as
Hoare triples. These are denoted {|P |} m {|Q|}, where Q binds the return value
of the computation m. When we care only about non-restarting results, we use
the following variant: {|P |} m {|Q|}N = {|P |} m∈N {|Q|}. Second, we reduce the
refinement condition (Ref2) from Section 3.1 to a monadic variant expressed as
a relational Hoare tuple between pairs of monadic computations:

{|R|} ma mc {|S|} = R ⊆ {(sa, sc) | ∪vc s′c. (vc, s
′
c) ⇒ mc(sc) −∧

(∃va s′a. (va, s
′
a) ⇒ ma(sa) ∧ (s′a, s

′
c) ⇒ S(va, vc))}

Informally, given a pair (sa, sc) ⇒ R, any value-state pair that can be obtained
by running mc on sc, must be related via the post-relation S to some value-state
pair obtained by running ma on sa. Unlike in the transition system setting,
S is parametrized by return values and independent of R. Hence, this formu-
lation is more general than the condition (Ref2). Defining (s, t) ⇒ eq(U)(v, w)
iff v = w and (s, t) ⇒ U , we can recover (Ref2) (with the additional equality
constraint on values) by {|R|} ma mc {|eq(R)|}. Same as for triples, we define
{|R|} ma mc {|S|}N = {|R|} (ma∈N) (mc∈N) {|S|}.

Starting from the work described in [11], we have embedded a relational Hoare
logic [12] in Isabelle/HOL to reason compositionally about relational Hoare tu-
ples. For instance, if both ma and mc are sequential compositions, a proof rule
decomposes the Hoare tuple into two, one for each component computation.

456 O. Marić and C. Sprenger

Similar rules exist for other constructs such as try/catch. These decomposition
rules are applicable if the two related implementations share the same structure.
Usually, we apply them for as long as possible, until we are left with proving
Hoare tuples between pairs of “small” monadic operations. At this point, the
proof obligations usually become simple enough to discharge them by unfolding
the relevant definitions and using Isabelle’s proof automation. This decomposi-
tion strategy might fail, however, either because the two implementations have
different structures, or because the rules yield unprovable goals. For these cases
we have to derive two important novel rules, which we present next.

The first one relates a restart handler m with its repeated version realized
as rec tryR(m). This rule is typically used with the startup procedure, which
checks the system state and repairs inconsistencies; if it is itself restarted, we
would intuitively expect it to pick up where it left off (at least when viewed
abstractly enough). That is, a restarting run of the procedure, followed by a
non-restarting run does not yield more results than just a single, non-restarting
run. This property can be considered as a form of idempotence and is captured
in the premise of the following inductively justified proof rule:

{|Id |} (m∈N) (m∈R; m∈N) {|eq(Id)|}
{|Id |} m rec tryR(m) {|eq(Id)|}N

Idem

Here, m1; m2 = (m1 ◦= νx.m2) is the composition (bind) that ignores m1’s
result and Id is the identity relation. The conclusion states that m itself re-
tains all the possible non-restarting behaviors of rec tryR(m). At a high enough
abstraction level, startup becomes simple enough to prove the rule’s premise
directly by unfolding the definitions.

The other important proof rule allows us to gradually enlarge the granularity
of persistent data access in our abstractions. Consider an abstract computation
ma, which uses some atomic persistent memory operation that is realized as
a series of persistent memory accesses in mc. Due to atomicity, ma has fewer
restart points, which causes the standard decomposition rule for tryR/catchR to
fail to prove goals as in the conclusion of the following proof rule:

{|R|} ma mc {|eq(S)|}N
{|R|} (ma∈R; rec tryR(h1

a)) (mc∈R; rec tryR(h1
c)) {|eq(T)|}N

{|T |} (tryR h2
a catchR∗ (h1

a; h
2
a)) (tryR h2

c catchR∗ (h1
c ; h

2
c)) {|eq(S)|}N

{|R|} (tryR ma catchR∗ (h1
a; h

2
a)) (tryR mc catchR

∗ (h1
c ; h

2
c)) {|eq(S)|}N

Gran

The first premise requires a refinement between non-restarting computations
of ma and mc. The second premise is the key to our rule. Intuitively, it states
that, in case of a restart, h1

c completes the (non-atomic) operation of mc and
matches the behavior of the abstract counterpart. The third premise is similar
to the conclusion, but concerns h2

a and h2
c . We can prove it either using the

standard proof rule for tryR/catchR, or by reapplying the rule Gran on this
premise if h2

c uses the same non-atomic operation as mc. The last two premises
are connected via an intermediate relation T .

Verification of a Transactional Memory Manager 457

This rule works in synergy with the Idem rule: if we prove the idempotence
of h1

c , we can simplify the second premise of Gran by dropping the rec tryR

constructs. The restarting behavior of h1
a is then no longer constrained by the

premises of Gran, allowing us to remove restarts from h1
a completely. This sim-

plifies the abstract model and facilitates the idempotence proof for the entire
restart handler. We will employ the rule Gran to eliminate the nested transac-
tions managing the metadata redundancy (see Section 4.3).

3.4 Properties and Their Preservation

We formalize the system requirements either as external invariants or as observa-
tion-based Hoare triples, i.e., triples of the form {|obs−1(P)|}m {|νv. obs−1(Q(v))|}
for sets of observations P andQ(v). Preservation of external invariants holds triv-
ially: if Sc implements Sa via α, then oreach(Sa) ⊆ J implies α(oreach(Sc)) ⊆ J
(or, equivalently, oreach(Sc) ⊆ α−1(J)). We also show that observation-based
Hoare triples are preserved under implementation. Hence, we can prove the re-
quirements on the most abstract (and thus simplest) model possible and transfer
them onto the concrete model. We give an example in Section 4.4.

Two implicit system requirements are termination and deadlock freedom,
where the latter means that no branch of a (non-deterministic) computation
yields an empty set of results. We informally argue that these properties hold.
The primitives used in our concrete model neither deadlock nor use nonterminat-
ing constructs, and the results compose since HOL is a logic of total functions.

4 The Models

This section gives an overview of our development. We first present the abstract
model, followed by an overview of the concrete implementation. Then we describe
the series of models and refinements connecting these two. Finally, we sketch our
formalizations and proofs of the requirements from Section 2.2.

4.1 The Abstract Model

This model directly represents the abstract memory view exposed by the API,
as introduced in Section 2. Its persistent state component is realized by the
following record type.

record abs_mem =

memory : index → contents

reg_health : index → log_health

global_health : log_health

The memory field models the abstract memory. For each region (i.e., index), the
reg health field tracks its health, which is either ’ok’, ’degraded’, or ’dead’,
depending on whether any permanent failures have happened to it. Similarly,
global health records failures that are not directly related to individual regions.

458 O. Marić and C. Sprenger

It serves to capture those behaviors of concrete models, where card failure or
degradation occur during the handling of metadata.

The volatile state component consists of the card mode. The observation func-
tion obs6 is the identity on all the fields except for memory, which it maps to an
observation view : (index ∧ contents)⊥, thus formalizing the abstract memory
view. The view is ⊥ if there is a ’dead’ region, in which case the card goes into
Fail mode and the memory contents become inaccessible to the user.

Even at this level of abstraction, the procedures are not entirely trivial, since
they need to capture the variety of possibilities present in the concrete models.
To get a flavor of what they look like, consider the definition of fetch:

fetch6(ind) ≡ do {

fail_if_fail_mode; do {

cnt ← read_success(ind);

degrade [+] skip;

throw_mode_error(EC(cnt));

return(cnt)

} [+] fail [+] restart_mangle_sp

}

where we use Haskell-like do notation for bind. Here, fail if fail mode checks
that we are not in Fail mode; read success reads the contents of the selected
region if possible; degrade and fail respectively degrade and fail one or more
regions and set the card mode appropriately; throw mode error checks the card
mode and potentially throws the appropriate (possibly value-carrying) exception;
and restart mangle sp restarts, lowering the health of zero or more regions.

Still, the definitions are simple enough to keep the proofs performed on this
model reasonably easy. This includes the idempotence of the startup procedure,
which, by the restart reduction rule Idem from Section 3.3, allows us to remove
the rec tryR construct from the (outer-layer) transitions.

4.2 The Concrete Model

The concrete model contains our implementation of the PMM algorithms. It
is based on informal descriptions provided by IBM researchers, and discussions
with their PMM developers. Currently, it exists only in terms of Isabelle/HOL
definitions. That is, it is neither extracted from a program executable on the
coprocessor, nor do we synthesize code for it. We thus verify the PMM algorithms
rather than a concrete system. However, our implementation is roughly at the
same level of abstraction as what one might see in, e.g., C++ code, in that almost
all the statements could be mapped 1-1 to C++ statements (save for unfolding
monadic maps and folds and equality checks on lists). It consists of about 700
lines of (Isabelle) code. While we had some freedom in the implementation, the
algorithm itself was fixed (and already deployed in the IBM 4765). Its verification
is therefore essentially post-hoc, making our task more challenging. We now give
a brief overview of the algorithm and its data structures.

The concrete model uses two administrative regions to store metadata. The
first is used for checking data integrity. It stores the checksums of all logical

Verification of a Transactional Memory Manager 459

0,2 2 20,2 0,20,2 0,20,2 2 2 2 2

Pre-commit Commit Rollforward

Primary Secondary

PTR
0
1
2

= Synchronization

,

= Last write

Fig. 3. A sample PMM update operation (regions 0 and 2)

blocks, including its own instances. These checksums are realized with hash
functions, and the region is thus named the hash region. In our model, we assume
the hash function to be perfect, that is, injective. The second is the pending-
transactions register (PTR), used by the startup procedure to “break ties”
between instances of user regions, as will be explained shortly.

The centerpiece of the system is the update algorithm. Figure 3 sketches a
sample execution, where we write new contents to the regions 0 and 2. Each
image shows the state of the memory at a different update step. We divide the
process into three stages: pre-commit, commit, and roll-forward.

The two instances of each region are referred to as primary and secondary. In
the pre-commit stage, the new content is sequentially written to the secondary
instances of each target region. Then, during the commit stage, we record the set
of updated regions’ indices (the domain of our update map) in the PTR. This
will give precedence to the corresponding secondary instances in the startup

procedure, in case the system is abruptly restarted. The final stage is the roll-
forward stage, where we progressively synchronize the two instances of every
freshly-written region, by successively overwriting the contents of the primary
instances with the contents of the secondary ones. In each iteration, once the
instances are synchronized, we remove the region index from the PTR.

Missing from the diagram are updates to the hash region. Every single step
shown actually entails three block writes. First, we write the new content to
the target instance, and then update the two corresponding hashes, first in the
secondary hash region instance, and then in the primary one.

Also missing is the treatment of restarts and hardware failures. These compli-
cate matters greatly, as a number of special cases arise, especially if the failures
occur in instances of the administrative regions. For reasons of space, we will
only look at restarts here, giving a short account of the startup procedure.

This procedure brings the system into a maximally redundant state. It first
synchronizes the instances of the hash region. Both directions of synchroniza-
tion are possible, depending on the exact scenario. They correspond to a “mini”
roll-back or roll-forward, and result in either a failure or a single value in both
instances. We can thus view writes to the hash region as implicit nested trans-
actions within our system. Synchronization is then also performed in the PTR,
forming another layer of transactions on top (since writes to the PTR also in-
volve writes to the hash region). At this point we have unambiguous metadata.
The procedure next iterates through all of the user regions, again performing
checks and synchronizations as necessary. To determine the direction of the

460 O. Marić and C. Sprenger

r
w
r
w w

r
w

Legend: ok / degraded / dead

(A) (B) (C) (D)

Hash
PTR

abs0 abs1 abs2/3 abs4 abs5/6

r / w Log. reliable / writable
Sync direction

r.
.
.
.

.

.

.

.

Fig. 4. Model abstractions

synchronization, it needs to figure out which of the two instances is current. The
criterion is as follows: if the hashes of both instances match, both are current.
Otherwise, we examine the PTR. If it contains the region’s index, only the
secondary instance is current, otherwise only the primary one is current. If the
synchronization completes successfully, the index is removed from the PTR.

The global effect of a restart on an update thus depends on the stage where it
occurs: during pre-commit, the state is rolled back; during roll-forward, the up-
date is applied; and during commit, either is possible, as the nested transactions
(to the PTR and the hash region) can still be rolled either back or forward.

4.3 Abstractions

We now sketch the refinement between the abstract and the concrete models,
explaining the intermediate models and their relations. We build five such mod-
els, in a bottom-up fashion. At first, we tried the more conventional top-down
approach; but this made finding the right abstractions of our fixed target hard,
as the many different failure and restart behaviors would often only creep up
low in the stack, breaking the models higher up. Going bottom-up exposed them
more quickly, and allowed us to gradually build usable abstractions.

Figure 4 gives a schematic view of our abstractions in four main steps. We (A)
extract the metadata from the memory in a preparatory step; (B) successively
remove the redundancy it contains by merging the different instances, giving us
unambiguous metadata; (C) interpret the metadata in a more abstract way; (D)
merge the pairs of user regions’ instances. Here are some additional details of
this process. To simplify the presentation we elide most details about the blocks’
health status from the figure and the description below.

abs0: Concrete model. As described in Section 4.2.
abs1: Extract hash and PTR regions. An auxiliary step. Hash and PTR

instances are pulled out of the memory, leaving only the user regions there.
abs2/3: Eliminate metadata redundancy. We make the nested metadata

transactions described in Section 4.2 atomic, using the proof rule Gran

Verification of a Transactional Memory Manager 461

introduced in Section 3.3. We achieve this by successively collapsing the
pairs of hash and PTR region instances into a single instance. This elimi-
nates the complexity of keeping the metadata copies in sync and provides
us with unambiguous metadata. The simulation relation states that an ab-
stract administrative (hash or PTR) region coincides with a concrete in-
stance whenever that instance is not ’dead’ and its integrity is intact, i.e.,
its computed hash matches the one stored in the hash region.

abs4: Abstract the administrative and status information. We abstract
the hash and PTR regions into a combination of per-instance reliability and
writability flags, and a per-region arrow field. A region instance is reliable
if neither it nor the hash region is ’dead’ and its integrity is intact (i.e.,
its computed hash equals its stored hash). It is writable if both it and the
hash region are ’ok’. The arrow indicates the possible directions of instance
synchronization for each region. A region instance is current (as defined in
Section 4.2 in terms of the administrative regions) exactly if the arrow is
bi-directional or points away from the instance.

abs5/6: Eliminate user regions’ redundancy. Abstract model. The per-
sistent state becomes the one described in Section 4.1. It is obtained by col-
lapsing the two user region instances into one. Each abs5 region matches all
of its reliable and current abs4 region instances. If no such instance exists,
the region’s contents are arbitrary and its health status is ’dead’. Otherwise,
the status is either ’ok’ (if both instances are writable), or ’degraded’ (if
at least one is unwritable). In abs5, update operations are still performed
sequentially and region-wise. We turn these into one-shot atomic updates in
abs6 and replace repeated by single restarts as sketched in Section 4.1.

Our models’ observation functions are identities except that, in those mod-
els obtained by collapsing instances, the observation of the resulting collapsed
field becomes ⊥ when no reliable and current instances are available. Thus, the
concrete observation function obs0 is the identity and the abstract observation
function obs6 is as described in Section 4.1. To relate our specifications, we
also need mediator functions that are consistent with the simulation relations.
Since the inverses of the simulation relations sketched above are functional or
almost functional, each mediator function is basically a facsimile of its associ-
ated (inverse) simulation relation, again up to the possible mapping to ⊥. Their
composition α maps the concrete observations to the abstract ones.

4.4 Establishing the Requirements

Next, we give a brief overview of how we have formalized the requirements from
Section 2.2 and verified in Isabelle/HOL that the concrete model satisfies them.

Requirements (R1-R4) describe properties of individual API calls, which we
express and prove as observation-based Hoare triples on abs6. We state and prove
requirements (R5) and (R6) as external invariants of abs4, since these refer to
individual region instances. Our refinement proofs and property preservation
theorems then enable us to transfer these properties onto the concrete model.
We will sketch this on the example of our main requirement, (R1).

462 O. Marić and C. Sprenger

On the abstract model, we can state this property using the following two
sets of observations, where Inl and Inr are the left and right constructors of the
sum type, corresponding to exceptional and normal termination respectively.

view_in(S) = {(sv, sp) | view(sp) ∈ S}

view_post_upd(v, u, r) = case r of

Inl _ ⇒ view_in({v � u, v, ⊥})
| Inr _ ⇒ view_in({v � u})

The following two Hoare triples then express (R1) on the abstract and concrete
models respectively. We prove the first one directly and use our preservation
theorems to derive the second one from the refinement results (Section 4.3).

{|obs6
−1(view_in({v})) |}

tryR update6(u) catchR startup6

{|λr. obs6
−1(view_post_upd(v, u, r)) |}N

{|obs0
−1(π−1(view_in({v}))) ∩ reach(S c) |}

tryR update0(u) catchR* startup0

{|λr. obs0
−1(π−1(view_post_upd(v, u, r))) |}N

The latter triple constrains the behavior of the update API call of the concrete
model. It states that, if the call is performed in any reachable concrete state
which maps (via α ◦ obs0) to an abstract memory view v, the resulting state
will map to a view in upd post(v, u, r). Notice that the property on the concrete
model encompasses an arbitrary number of restarts and calls to startup.

5 Related Work

Two transaction mechanisms similar to the one described here have been stud-
ied before in the literature, both of them targeting smart cards. One is due to
Sabatier and Lartigue [2], who use the B method for development and verifica-
tion. As usual in B, the system is modeled as an (unstructured) transition system,
which makes modeling restarts easy. Their main proof technique is refinement.
From the final model, they derive a C implementation by hand, without a formal
link to the B development. Our first attempt also followed a similar modeling
approach, using an Event-B inspired framework in Isabelle/HOL. However, the
considerations of hardware failures render our system more complex than theirs.
Since restarts force a small event granularity, the models quickly became un-
manageable, due to the large number of events and their unstructured nature.

Another transaction mechanism was proposed by Hartel et al. [3,4]. They
combine Z notation and SPIN [3] (resp. JML in [4]) to analyze a C implementa-
tion, but the unclear relationship between the different formalisms and the lack
of machine-checked proofs obscure the resulting guarantees.

Andronick [10] discusses a general verification methodology for reasoning
about C programs under restarts, but aimed at transaction mechanisms. Her
approach is the one most similar to ours, in that restarts are modeled as excep-
tions in a structured input language, while allowing for an arbitrary number of

Verification of a Transactional Memory Manager 463

successive restarts to be analyzed. Verification is performed directly on C source
code, by leveraging the Why/Caduceus tool. However, her model of restarts does
not include any effects on the state and the paper describes only a toy case study.
It also mentions a larger one, but without providing any details.

The PMM could also be viewed as a highly primitive file system. In response to
Hoare’s Grand Verification Challenge, Joshi and Holzman [13] propose verifying
a file system as a “mini challenge”, identifying restarts and hardware failures as
major hurdles in overcoming it. Despite some progress, the challenge still stands
open. While the PMM is a far cry from a full-blown POSIX file system, we may
claim to have completed a micro challenge with its verification.

6 Conclusion

We have presented our verification of an industrially deployed persistent memory
manager. The main challenges to the PMM’s correctness (and thus its verifica-
tion) stem from the rampant non-determinism caused by the combination of
possible restarts and hardware failures. The latter have not been considered in
the relevant literature before, and they greatly increase the system complexity,
forcing us to develop a verification approach which could scale appropriately.

Its key points are as follows. We use a structured (rather than event-based)
model. This helped us keep the models understandable, eased discussions with
IBM researchers, and enabled compositional reasoning. Modeling restarts syn-
chronously significantly reduced the number of cases we had to consider in the
proofs. We identify the concepts of idempotence and nested transactions, and
provide two related proof rules, allowing us to tackle the system complexity piece
by piece. We believe that our approach is applicable to a class of related systems
such as smart cards and file systems (e.g., the ’mini’ challenge from [13]).

All our Isabelle/HOL theories amount to around 39,000 lines. These are com-
posed of the modeling and reasoning infrastructure (∼12,000 lines), the models
(ranging from ∼700 for the concrete to ∼200 lines for the abstract model), the
refinement proofs (∼11,000 lines), and the invariant proofs (∼9,000 lines). We ap-
proximate our development effort at somewhere between 1 and 1.5 person years.
The choice of Isabelle/HOL was a mixed bag. HOL’s expressiveness was crucial
for representing our system’s unorthodox features. While Isabelle’s connection
to external provers helped a great deal, we still had to implement several custom
tactics in order to obtain a sufficient degree of automation.

Our development lacks an executable implementation. However, we believe
that deriving one from our concrete model would only require a modest effort,
leveraging modern Isabelle tools for C code. Unfortunately, non-technical barri-
ers would likely prevent a deployment of an implementation on actual devices,
thus disincentivizing us from pursuing this further.

Our work leaves open some interesting research questions. Error resilience is
partly reflected in our requirements, but our formalization does not quantify it,
offering no way to compare it in two systems. One possibility to address this
would be to switch to a probabilistic model. Furthermore, how should one scale

464 O. Marić and C. Sprenger

the verification to a full-blown file system? We believe that currently the only
feasible method would be a development from scratch and with verification in
mind, as in [6]. Even so, this would still require further advances in modeling and
reasoning techniques. In particular, it would be interesting to see how to facilitate
proofs of idempotence, as well as proving and composing (nested) transactions.

Acknowledgements. This work was supported by the Zurich Information Se-
curity Center and IBM Open Collaborative Research funding. We thank T.
Visegrady of IBMResearch Zurich for our collaboration, and D. Basin, A. Lochbih-
ler, B. T. Nguyen, and G. Petric Maretić for their careful proof-reading.

References

1. Arnold, T.W., Buscaglia, C., Chan, F., Condorelli, V., Dayka, J., Santiago-
Fernandez, W., Hadzic, N., Hocker, M.D., Jordan, M., Morris, T., Werner, K.:
IBM 4765 cryptographic coprocessor. IBM Journal of Research and Develop-
ment 56(1.2), 10:1–10:13 (2012)

2. Sabatier, D., Lartigue, P.: The use of the B formal method for the design and
the validation of the transaction mechanism for smart card applications. Formal
Methods in System Design, 245–272 (2000)

3. Hartel, P., Butler, M., de Jong, E., Longley, M.: Transacted memory for smart
cards. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 478–499.
Springer, Heidelberg (2001)

4. Poll, E., Hartel, P., de Jong, E.: A Java reference model of transacted memory for
smart cards. In: Proceedings of the 5th conference on Smart Card Research and
Advanced Application Conference (CARDIS 2002), pp. 1–14 (2002)

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

6. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Sympo-
sium on Operating Systems Principles (SOSP), pp. 207–220 (2009)

7. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

8. Sprenger, C., Basin, D.: Refining key establishment. In: Proceedings of Computer
Security Foundations Symposium (CSF), pp. 230–246. IEEE (2012)

9. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

10. Andronick, J.: Formally proved anti-tearing properties of embedded C code. In: 2nd
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA 2006), pp. 129–136 (November 2006)

11. Sprenger, C., Basin, D.: A monad-based modeling and verification toolbox with
application to security protocols. In: Schneider, K., Brandt, J. (eds.) TPHOLs
2007. LNCS, vol. 4732, pp. 302–318. Springer, Heidelberg (2007)

12. Benton, N.: Simple relational correctness proofs for static analyses and pro-
gram transformations. In: Proc. Principles of Programming Languages (POPL),
pp. 14–25. ACM (2004)

13. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing 19(2), 269–272 (2007)

SCJ: Memory-Safety Checking

without Annotations

Chris Marriott and Ana Cavalcanti

University of York, UK
{cam505,ana.cavalcanti}@york.ac.uk

Abstract. The development of Safety-Critical Java (SCJ) has intro-
duced a novel programming paradigm designed specifically to make Java
applicable to safety-critical systems. Unlike in a Java program, memory
management is an important concern under the control of the program-
mer in SCJ. It is, therefore, not possible to apply tools and techniques for
Java programs to SCJ. We describe a new technique that uses an abstract
language and inference rules to guarantee memory safety. Our approach
does not require user-added annotations and automatically checks pro-
grams at the source-code level, although it can give false negatives.

1 Introduction

Verification is costly; techniques to automate this task are an interesting research
topic. A recent contribution is Safety-Critical Java (SCJ) [1] - a specification for
Java that facilitates static verification and is suitable for safety-critical programs.

The Real-Time Specification for Java (RTSJ) [2] was designed to make Java
more suitable for real-time systems: it provides timing predictability. The guar-
antees of reliability needed for safety-critical systems are, however hard to achieve
without further restrictions. SCJ strikes a balance between languages that are
popular and those already considered adequate for high-integrity systems.

Our work is focused on memory safety of SCJ programs: the memory model is
one of their main distinguishing features. The RTSJ introduces scoped memory
areas that are not garbage collected, although the heap is available. The SCJ
model removes access to the heap and limits the use of scoped memory.

The strict memory model of SCJ, however, does not ensure memory safety
by construction, and every program must be checked. It is not enough to check
absence of null-pointers and array-out-of-bounds exceptions. The memory areas
form a hierarchy; objects cannot reference others stored in child memory areas.

SCJ programs are defined at one of three possible compliance levels: Level 0
programs follow a cyclic executive design and are the simplest, whereas Level 2
programs can make complex use of concurrency and sharing. We are interested
in Level 1 programs, which are similar in complexity to Ravenscar Ada [3, 4].
Level 1 programs introduce concurrency and aperiodic events over Level 0.

As SCJ is relatively new, verification tools and techniques are currently fairly
sparse, however, techniques such as those in [5] and [6] have established ways to

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 465–480, 2014.
c© Springer International Publishing Switzerland 2014

466 C. Marriott and A. Cavalcanti

Fig. 1. SCJ programming paradigm

check memory safety of SCJ programs through user-added annotations and byte-
code analysis. We present an automated approach that operates at the source-
code level without user-added annotations. It can, however, give false negatives.

Our technique uses an abstract language, SCJ-mSafe, to represent SCJ pro-
grams. Via abstraction, we focus on parts of SCJ programs required to verify
memory safety, and present them in a consistent and structured format. Methods
of a program are analysed individually to create a set of parametrised proper-
ties for each one that describes behaviour independently of the calling context.
We define inference rules for SCJ-mSafe that describe memory safety for each
component and apply them to the overall program. We assume the SCJ infras-
tructure is safe. For validation, besides constructing a tool and carrying out
experiments, we have formalised our technique in Z [7].

The novelty of our approach is found in the abstraction technique, and the
way in which we treat methods. In representing an SCJ program in SCJ-mSafe,
we keep only the statements, methods, and classes that can influence memory
safety. In checking the memory safety of an SCJ-mSafe program, we automati-
cally calculate postconditions for each method. The postcondition of a method
characterises its effect on the allocation of the fields and of the result, if any. Us-
ing this information, we can check the safety of method calls without restricting
the calls to a specific scope. If there is a possibility that a method cannot be safe
in any context, an error is raised during the calculation of its postcondition.

Section 2 of this paper introduces SCJ and its paradigm; our approach to
verifying memory safety is discussed in Section 3. Our abstract language and
translation strategy is described in Section 4, and the static-checking technique in
Section 5. Section 6 describes our tool and some experiments we have conducted,
before Section 7 draws some conclusions and describes our future work.

2 Safety-Critical Java

The SCJ programming paradigm is focused on the concept of missions. In Level 1
programs, missions are executed in sequence, and each mission executes a number
of event handlers in parallel. Figure 1 shows the components for execution.

The entry point of an SCJ program is the safelet, which performs the
setup procedures for a sequencer that controls the missions to be executed.

SCJ: Memory-Safety Checking without Annotations 467

Fig. 2. SCJ memory structure

When executed, a mission goes through three phases: initialisation, execution,
and cleanup. Objects used in missions are pre-allocated during the initialisa-
tion phase. In the execution phase, the event handlers are executed. When a
mission has finished executing, the cleanup phase is entered for any final tasks.
Level 1 programs can include periodic and aperiodic event handlers executed
concurrently under the control of a fixed-priority pre-emptive scheduler.

Two types of memory area are used in the memory model: immortal and
scoped. Each component of the paradigm has a default memory area; new objects
created during execution are created in these associated areas unless specified
otherwise. The safelet and mission sequencer are created in immortal memory,
and allocate new objects in immortal memory. Individual missions are created
inside the scoped mission memory area; new objects are created in the mission
memory area, but can be created in the immortal memory. Event handlers are
created in the mission memory, however once released, new objects are created
inside a scoped per-release memory area associated with the handler. Handlers
can create objects in the mission and immortal memory areas. Temporary private
scoped memory areas can be used during the initialisation phase of a mission and
by handlers; they are organised in a stack structure. Once a handler or mission
finishes executing, the contents of its associated memory area(s) are reclaimed.

An example of this hierarchy of memory areas can be seen in Figure 2. It shows
the immortal memory, mission memory, and three per-release memory areas
associated with handlers in the mission. The mission and two of the handlers
have their own private temporary memory areas. Finally, Figure 2 shows the
thread stacks, which belong to the main program, mission sequencer, and event
handlers; five stacks are used in this example.

To avoid dangling references, the SCJ memory model has rules to control
their use. References can only point to objects in the same memory area, or in a
memory area that is further up the hierarchy, that is, towards immortal memory.

Figure 3 shows an event handler in SCJ that repeatedly enters a temporary
private memory area. It is part of a program taken from [8] that uses a single
mission with a single periodic event handler. Its safelet, sequencer, and mission

468 C. Marriott and A. Cavalcanti

public class Handler extends PeriodicEventHandler {

int cnt;

Object share = new Object();

public Handler () {

super (new PriorityParameters(11),

new PeriodicParameters(new RelativeTime(0, 0),

new RelativeTime(500, 0)),

new StorageParameters(10000, 1000, 1000), 500);

}

public void handleEvent() {

System.out.println("Ping " + cnt);

++cnt;

MyRunnable r = new MyRunnable();

for (int i=0; i<10; ++i) {

ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);

m.enterPrivateMemory(500, r);

}

if (cnt > 5) {

Mission.getCurrentMission().requestTermination();

}

share = new Object();

}

}

Fig. 3. Nested Private Memory example in SCJ

are omitted here for conciseness. The safelet creates the sequencer; the mission
sequencer creates only a single mission with just one instance of Handler.

The handler’s handleEvent method creates an instance of a runnable ob-
ject and repeatedly executes it in a temporary private memory area using the
enterPrivateMemorymethod. The example from [8] has also been expanded to
include an additional class field share. This field is a reference and is instantiated
with an object stored in mission memory, because fields of handlers are stored
in the mission memory. When the handleEvent method executes, it executes in
the per-release memory area associated with the handler; therefore, when share

is re-allocated with a new object later, the SCJ memory safety rules are broken.
We will continue to use this example throughout the paper, and will demonstrate
later how our tool automatically detects this memory-safety violation.

3 Our Approach to Checking Memory Safety

Our technique has two main steps, as shown in Figure 4. The first step takes a
valid SCJ program that is type correct and well formed according to the SCJ
specification, and translates it into our new language called SCJ-mSafe, which is
designed to ease verification. No information relevant to memory safety is lost,

SCJ: Memory-Safety Checking without Annotations 469

Fig. 4. Memory-safety checking technique

but all irrelevant information is discarded. Each SCJ program is described in
the same style when translated to SCJ-mSafe; this makes programs easier to
read and facilitates our analysis. A uniform structure also eases formalisation of
SCJ-mSafe and of our checking technique, which is crucial in proving soundness.

In the second step, inference rules are applied to the SCJ-mSafe program us-
ing an environment that is automatically constructed to capture memory prop-
erties of expressions useful to determine memory safety. Each component of an
SCJ-mSafe program has an associated rule that defines in its hypothesis the con-
ditions that must be true for it to preserve memory safety. If all hypotheses of
all rules applied to a program are true, then the program is memory safe. If any
of the hypotheses are false, there is a possibility of a memory-safety violation.

Given an SCJ program, our technique automatically translates it into SCJ-
mSafe and applies the memory-safety rules. In this way, we can verify safety
without additional user-based input such as annotations, for example.

In general, the memory configuration at particular points of a program cannot
be uniquely determined statically. It may depend, for example, from the values
of inputs to the program. Since our aim is to perform a static analysis, we always
assume the worst-case scenario for checking memory safety.

Our analysis is flow sensitive, path insensitive, context sensitive, and field sen-
sitive. We consider the flow of the program by checking each command individu-
ally as opposed to summarising behaviour. We do not rely on precise knowledge
of the control path. For example, we cannot determine statically which branch
of a conditional statement is executed; we consider both branches. Although
the behaviour may be different in each branch, the effect on memory may be
the same; if not, the effects of both branches are considered separately in the
remainder of the analysis. This creates a set of possible memory configurations
during our analysis; each is updated throughout to give all possible scenarios of
execution. Analysis of loops is also relatively straight forward as we consider ev-
ery possible behaviour regardless of the iteration. This is achieved with a single
pass where every execution path is analysed individually. Our analysis is con-
text sensitive as we analyse methods based on their calling site, although each
method is analysed once to establish a parametrised summary of behaviour. This
summary is used in our analysis at each calling point of the method. Finally, we
perform a field-sensitive analysis as we consider all fields of a referenced object
when analysing assignments and new instantiations.

470 C. Marriott and A. Cavalcanti

4 SCJ-mSafe and Translation

SCJ-mSafe remains as close to SCJ as possible, and includes constructs to de-
scribe all behavioural components of the SCJ paradigm to reason about memory
safety. This section introduces the language and describes the translation.

4.1 SCJ-mSafe

An SCJ-mSafe program is a sequence of definitions of components of an SCJ
program: static fields and their initialisations, a safelet, a mission sequencer,
missions, handlers, and classes. Every program follows this structure; it is not
possible to combine the safelet and mission sequencer, for example.

The safelet component is comprised of class fields and their corresponding
initialisation commands, any constructors, a setUpmethod, a mission sequencer,
a tearDownmethod, and any additional class methods. The setUp and tearDown

methods are declared separately from other methods as they are defined as part
of the SCJ programming paradigm and identify the execution order of a program.

The order in which missions execute does not impact our analysis of memory
safety. As only one mission executes at a time at Level 1, we treat each mission
individually. Objects that are shared between different missions reside in immor-
tal memory and are passed as references to missions. Even if the specific value
of a shared variable cannot be determined because it is defined by missions that
may execute earlier, our analysis still identifies possible memory safety violations
for assignments or instantiations to subsequent fields. If a mission introduces a
violation, it is caught; the order in which it is executed does not matter.

A mission is made up of its fields and the corresponding initialisation com-
mands, any constructors, the initialize method, its handlers, the cleanUp

method, and any additional user-defined class methods. The initialize and
cleanUp methods execute before and after the handlers respectively.

Every handler component has its own unique identifier, and is made up
of its fields and corresponding initialisation commands, any constructors, the
handleEvent method, and any additional class methods. The handler of the
nested private memory areas example is shown in Figure 5; it is very similar to
the handler in SCJ shown in Figure 3, however, we do not distinguish between
periodic and aperiodic handlers. We abstract away from the type of handler as
our analysis does not rely on the scheduling of handlers.

User-defined classes are comprised of class fields and their corresponding ini-
tialisation commands, any constructors, and class methods.

Expressions and Commands. As shown in Figure 5, expressions and commands
in SCJ-mSafe are slightly different to those in SCJ. Some SCJ expressions are
not required in SCJ-mSafe as they do not affect memory safety; the expression
++cnt in Figure 3 is crucial to behaviour, but has no relevance to memory safety.

The important expressions in SCJ-mSafe are left expressions, which are ex-
pressions that can reference objects; identifiers and field accesses are left ex-
pressions. Values, identifiers, and field accesses denote objects manipulated in

SCJ: Memory-Safety Checking without Annotations 471

handler Handler {

fields {

int cnt;

Object share;

}

init {

NewInstance(share, Current, Object, ());

}

constr () {

PriorityParameters var1;

NewInstance(var1, Current, PriorityParameters, (Val));

...

}

handleEvent {

...

for ((int i; i = Val;), Val, (Skip;)) {

ManagedMemory m;

ManagedMemory var9;

MemoryArea.getMemoryArea(this, var9);

m = var9;

m.enterPrivateMemory(Val, r);

}

if (Val) {

Mission var12;

Mission.getCurrentMission(var12);

var12.requestTermination();

} else {

Skip;

}

NewInstance(share, Current, Object, ());

}

}

Fig. 5. Nested Private Memory example in SCJ-mSafe

a program whose allocations need to be checked. An identifier is a variable or
an array access. Side effects are extracted as separate commands; all other SCJ
expressions are represented as OtherExprs, which is a constant in SCJ-mSafe.

Commands in SCJ-mSafe include just a subset of those found in SCJ as not all
commands in SCJ affect memory safety. For example, the assert statement is not
part of SCJ-mSafe as it has no impact on memory safety. We do, however, include
additional commands in SCJ-mSafe; SCJ expressions such as assignments, new
instantiations, and method invocations are all represented as commands in SCJ-
mSafe. They modify the value of program variables and are better characterised
semantically as commands rather than expressions as in SCJ.

The SCJ-mSafe example in Figure 5 demonstrates several interesting differ-
ences between SCJ and SCJ-mSafe. In the constructor in Figure 3, the call to

472 C. Marriott and A. Cavalcanti

super includes several instantiations of objects that are passed as parameters.
In SCJ-mSafe, a new variable is declared for each object and is instantiated indi-
vidually; the new variables are then used as the parameters to the method call.
For example, var1 is a new variable of type PriorityParameters; it is then
instantiated on the following line with the NewInstance command.

We note also the call to the getMemoryArea method in the for loop in the
handleEvent method. In SCJ, the declaration and assignment to the variable m
via a method call are defined on a single line; in SCJ-mSafe, the declaration and
assignment are split. Also, because the right-hand side of the assignment is a
method call, we introduce a new variable var9, which is used to store the result
of the method call. The result of the getMemoryAreamethod is assigned to var9

as it is passed as a result parameter to the method call. Finally, the reference
stored in our variable var9 is assigned to the original variable m.

The conditional statement below the for loop does not have an else state-
ment in SCJ. In SCJ-mSafe, the else statement is always included, even if the
behaviour of that branch is empty, or Skip. The command Skip describes a
command that does nothing; it is also used to translate commands that we ab-
stract away as they have no impact on the memory safety. Despite abstracting
away the specific iteration, loops are maintained in our abstract language as the
commands that form loop initialisations and loop updates must also be analysed.

Methods. Methods in SCJ-mSafe are made up of the method name, return type,
parameters, and method body. Further analysis, as discussed later, allows us to
calculate the impact on memory safety of executing a specific method.

4.2 Translation

The translation from SCJ programs to SCJ-mSafe is not trivial, and includes
analysis of the input program to create an SCJ-mSafe program with the con-
sistent structure required for analysis. Using the specification language Z, we
have defined a model of SCJ and SCJ-mSafe in order to formalise a translation
strategy. We define the rules to specify memory safety using the same model.
We have a Z model that defines SCJ and SCJ-mSafe, the translation strategy
from SCJ to SCJ-mSafe, and the memory-safety checking technique.

Overall approach. The translation strategy is defined by a series of functions
that map SCJ components to corresponding SCJ-mSafe components. There
are functions that translate the overall program, and functions that translate
individual expressions. The function to translate the overall program takes an
SCJ program and returns an SCJ-mSafe program.

Translate : SCJProgram →∧ SCJmSafeProgram

∪ program : SCJProgram • ∃ scjmsafe : SCJmSafeProgram | ...

For all input SCJ programs, there exists a corresponding SCJ-mSafe program
whose components are defined by further translation functions. The functions

SCJ: Memory-Safety Checking without Annotations 473

used to translate commands and expressions are used at every stage of the trans-
lation as each SCJ component (such as the safelet, missions, and so on) has
commands in its own individual elements (such as methods).

Translating expressions. Expressions in SCJ are found individually and as part
of larger statements; for example ++cnt; is a valid expression, however, cnt;
is also a valid expression, but only makes sense as part of another statement.
Expressions that identify values or references are translated into expressions; the
remaining expressions that impact memory safety are translated to commands.

Accordingly, we define two translation functions for expressions. The first
defines the translation of expressions into commands (TranslateExpression). This
function takes an SCJ expression and returns an SCJ-mSafe command.

TranslateExpression : SCJExpression →∧ Com

domTranslateExpression ⊇WellTypedExprs
∧ ∪ scjExpr : domTranslateExpression •

... ⇔ (∃ e1, e2 : SCJExpression | scjExpr = assignment(e1, e2) •
(let lexpr == ExtractExpression e1 •

(let rexpr == ExtractExpression e2 •
... (TranslateExpression scjExpr =

Seq((TranslateExpression e2), (Asgn(lexpr , rexpr)))))))

The domain of TranslateExpression is a subset of valid SCJ expressions that
are well typed (WellTypedExprs); for all SCJ expressions in its domain, the re-
sulting SCJ-mSafe command is defined based on the type of expression; part of
the case for assignments is shown above. For example, the assignment a = b is
translated into the SCJ-mSafe assignment command Asgn(a, b). More complex
assignments, such as a = (b = c), which contain side effects, are translated
as a sequence (Seq) of commands. The result of applying TranslateExpression
to a = (b = c) is Seq(Asgn(b, c),Asgn(a, b)). This is done by translating any
embedded side effects into separate commands that come first in a sequence, fol-
lowed by the overall expression; b = c is an embedded side effect of a = (b = c).

To deal with expressions with side effects, we define ExtractExpression. It is
used by TranslateExpression to extract the meaning of expressions whilst ignor-
ing side effects. It takes an SCJ expression and returns an SCJ-mSafe expression.

ExtractExpression : SCJExpression →∧ Expr

domExtractExpression ⊇WellTypedExprs
∧ ∪ scjExpr : domExtractExpression •

... ⇔ (∃ e1, e2 : SCJExpression | scjExpr = assignment(e1, e2) •
ExtractExpression scjExpr = ExtractExpression e1)

... ⇔ (∃ name : Name; id : Identifier |
scjExpr = identifier name ∧ id = VariableName name •

ExtractExpression scjExpr = ID id)

The domain of ExtractExpression is also the subset of well-typed SCJ expres-
sions. For all expressions in its domain, the SCJ-mSafe expression is extracted

474 C. Marriott and A. Cavalcanti

based on the type of the input expression. For example, when we apply the
ExtractExpression function to a[i = 10], the expression returned is a[i], as it
ignores the side effect i = 10. In the example a = (b = c), the result of apply-
ing ExtractExpression to the left-hand side is the identifier a. When applied to
the right-hand side, the assignment b = c is ignored and the identifier b, which
is assigned to the left-hand side of the overall assignment (a), is returned.

If an expression has no embedded side effects, the result ofTranslateExpression
is the command Skip. For example, the SCJ assignment a = b has no side effects
and is translated into the sequence Skip followed by Asgn(a, b).

Translating commands. If the SCJ command may impact memory safety, it is
translated into the corresponding SCJ-mSafe command; otherwise, it is ignored.
The exception is when a command has an embedded statement that may impact
memory safety; the embedded statement is translated in this case.

TranslateCommand : SCJCommand →∧ Com

domTranslateCommand ⊇WellTypedComs
∧ (∪ scjCom : SCJCommand •

... ⇔ (∃ e1 : SCJExpression; c1, c2 : SCJCommand |
scjCom = if (e1, c1, c2) •

TranslateCommand scjCom = Seq((TranslateExpression e1),
(If ((ExtractExpression e1), (TranslateCommand c1),

(TranslateCommand c2)))))

The extract from the TranslateCommand function above shows we translate a
conditional command in SCJ using TranslateExpression and ExtractExpression.

Translating methods. The signature of an SCJ method is almost identical to
an SCJ-mSafe method. Method calls in SCJ-mSafe are commands, and so the
value or object returned from a method cannot be directly assigned to an expres-
sion. Instead, methods with a return type (that is not void) have an additional
result parameter introduced during translation. For example, the method call
var = getMyVar(param); is translated to getMyVar(param, var);.

A more in-depth description of the formalisation of SCJ-mSafe, the translation
strategy, and the checking technique can be found in [9].

5 Static Checking

Our technique for checking memory safety of SCJ-mSafe programs uses infer-
ence rules. These rely on a environment, which maintains a model of reference
variables allocation in the program. In this section, we describe an environment
used to check memory safety at a given point, our analysis of methods to define
properties for each, and the inference rules to check memory safety.

SCJ: Memory-Safety Checking without Annotations 475

public class MyMission extends Mission {

CustomClass c;

MemoryArea immortalRef;

...

public void initialize() {

int x,y;

Object obj1 = new Object();

Object obj2;

if (x != y) { obj2 = new Object();

} else { obj2 = immortalRef.newInstance(Object.class); }

if (x > y) {

c = new CustomClass();

c.setField(obj1);

} else {

c = (CustomClass) immortalRef.newInstance(CustomClass.class);

c.setField(obj2);

} ...

Fig. 6. Environment explanation example in SCJ

5.1 Environment

The environment records information about left expressions that reference ob-
jects. It is defined as a function, which has as its domain the set of possible
expression-share relations of a program at a particular point of execution. An
expression-share relation associates the left expressions in a program that share
the same reference. The set of all expression-share relations is defined as follows.

ExprShareRelation == LExpr ⊂ LExpr

Expression-share relations are mapped to expression reference sets.

ExprRefSet == LExpr →∧ PRefCon

An expression reference set describes the set of possible reference contexts in
which the objects referenced by left expressions may reside. The reference context
of an object is an abstraction of the location to which its reference value points.
This includes all memory areas in SCJ plus a new context Prim, which is for
expressions of a primitive type. The definition of the environment is shown below.

Env == {env : ExprShareRelation →∧ ExprRefSet
| ∪ rel : ExprShareRelation; ref : ExprRefSet | (rel , ref) ⇒ env

• dom(rel ∗ ⊥ (rel ∗)∼) = dom ref
∧ (∪ e1, e2 : LExpr | e1 →∧ e2 ⇒ (rel ∗ ⊥ (rel ∗)∼) • ref e1 = ref e2)}

For every possible share of left expressions, there is a related function that de-
scribes the set of reference contexts in which the objects may reside. We take
the reflexive, symmetric, and transitive closure of expression-share relations. This
model allows us to capture information about all execution paths; for example, a
share relation may have an associated reference set that includes a set of possible

476 C. Marriott and A. Cavalcanti

reference contexts for an object allocated in different memory areas on different
execution paths. The environment may have multiple share relations mapped to
a single reference set when assignments differ based on the execution path.

Consider the excerpt from a mission class shown in Figure 6. The initialize
method includes conditional statements that affect the memory configurations.
The reference obj2 is instantiated in mission memory if the first condition is
true, and in immortal memory if it is false. The allocation of the reference c and
the argument of the method call setField depend on the second condition: if
true, c is instantiated in mission memory and its field points to obj1; if false, c
resides in immortal memory and its field points to obj2. The environment after
the conditionals is below; it is simplified to illustrate the example and does not
include the reflexive, symmetric, transitive closure of the expression shares.

env = ({c.field →∧ obj1} →∧ {c →∧ {MMem}, immortalRef →∧ {IMem},
x →∧ {Prim}, y →∧ {Prim}, obj1 →∧ {MMem},
obj2 →∧ {IMem,MMem}, c.field →∧ {MMem}}),

({c.field →∧ obj2} →∧ {c →∧ {IMem}, immortalRef →∧ {IMem},
x →∧ {Prim}, y →∧ {Prim}, obj1 →∧ {MMem},
obj2 →∧ {IMem,MMem}, c.field →∧ {IMem,MMem}})

The environment has two shares, as the assignments differ on each execution
path. The first, where c.field →∧ obj1, has c →∧ {MMem} and c.field →∧ {MMem}
in its reference set, and is memory safe. The second, where c.field →∧ obj2, has
c →∧{IMem} and c.field →∧{IMem,MMem} in its reference set, and is not memory
safe: the field of c points to an object that may reside in a lower memory area.

5.2 Methods

Methods can be executed in different memory areas. Typically, we cannot deter-
mine whether a method is always safe; whilst it may be safe to execute a method
in a particular default allocation context, it may not be safe in another.

We do not restrict methods to specific allocation contexts; as part of the
checking phase, methods in SCJ-mSafe are analysed to record properties that
describe their behaviour from the point of view of memory allocation. In checking
a call, we identify which method is called by extracting information from the left
expression and the types of arguments passed. Due to dynamic binding, if more
than one method matches the criteria of the method call, all are analysed.

Methods are recorded in our rules as elements of the following set.

Method == Name × Type × seqDec ×MethodProperties × Com

The method name, return type, sequence of declarations (parameters), and com-
mand are as defined in the method description; the additional method properties
describe the changes to the environment when the method is executed.

MethodProperties == ExprShareRelation →∧MethodRefChange

SCJ: Memory-Safety Checking without Annotations 477

The reference set in the environment is replaced by the MethodRefChange func-
tion, which uses meta-reference contexts (MetaRefCon) that contain all of the
reference contexts defined previously, plus two additional ones to describe the
current reference context of the callee (Current), and the set of reference contexts
associated with a specific left expression in the environment (Erc LExpr).

MethodRefChange == LExpr →∧ PMetaRefCon

Meta-reference contexts allow us to describe the behaviour of methods indepen-
dently of actual parameters of a method call; we can reason about method calls
without checking each separate call. For example, consider the following method.

public void myMethod(A a, A b) {

a.x = new CustomClass();

b.x = a.x;

}

The result of calling this method with parameters a and b is as follows: the field
x of the object referenced by variable a references a new instance of CustomClass
located in the callee’s current allocation context. Also, the field x of the object
referenced by the variable b points to the same newly instantiated object ref-
erenced by a.x. Without knowing where a method is called, we capture this
behaviour using meta-reference contexts. More specifically, we identify that a.x
references an object in the Current reference context (a.x →∧ {Current}), and
b.x references the object associated with a.x (b.x →∧ Erc a.x).

In conjunction with the environment, method properties allow us to estab-
lish at any point whether a method call can lead to a memory violation. The
properties correspond to the changes to the environment.

5.3 Rules

We present the rule for the assignment command, as it can have a significant
impact on memory safety. It is one of the commands that can change the envi-
ronment most significantly, whilst also being able to cause memory violations.

DominatesTop(LExprRc(lexpr , rc, e1)) →∧
DominatesLeast(e1 rexpr) ⇒ Dominates ∗

mSafeCom e1 (Asgn(lexpr , rexpr), rc)

The rule states that for an assignment Asgn(lexpr , rexpr) to be memory safe, a
mapping between two reference contexts must be in the reflexive transitive clo-
sure of the Dominates relation. The Dominates relation describes the relation-
ship between all reference contexts in SCJ-mSafe; for example, IMem dominates
MMem, which means the immortal memory area is higher in the structure than
mission memory. We can establish from this relation whether a mapping between
reference contexts is safe; or more specifically, whether an assignment violates
the rules of SCJ, which could potentially be a violation of memory safety.

478 C. Marriott and A. Cavalcanti

In the rule above, the left-hand side of the mapping is the reference context
in which the left expression is defined, if it is a variable, or the set of reference
contexts in which the object may reside, if it is a reference. The LExprRc function
determines the reference context(s) of a left expression. The highest reference
context of the left expression (according to Dominates) must map to the lowest
reference context of the object associated with the right expression to be safe.

The DominatesLeast function returns the lowest reference context in a set
of reference contexts, according to the Dominates relation. We take the low-
est reference context from the right expression as we must assume the worst
case when checking mappings. Similarly, we use DominatesTop to establish the
highest reference context in the set associated with the left expression.

For example, the assignment to share in the handleEventmethod in Figure 3
is not memory safe. The reference context in which share is declared (MMem),
does not dominate the reference context of the new object (PRMem(handler)).

The rule for the enterPrivateMemory command is below. It states that the
command executed in the private memory area must be safe when analysed in
the reference context rc2, which is calculated using EnterPrivMemRC .

mSafeCom e1 (c1, rc2)

mSafeCom e1 (enterPrivateMemory(c1), rc1)

where
rc2 = EnterPrivMemRC rc1

In Figure 5, the call to enterPrivateMemory is in the handleEvent method;
the reference context at this point is the per-release memory area of the han-
dler (PRMem(handler)). The result of EnterPrivMemRC is the first temporary
private memory area associated with the same handler (TPMem(handler , 0)).

A complete set of rules have been specified for SCJ-mSafe. An initial set
defined in [10] have been updated in [9]. We have defined all functions to update
the environment after the execution of SCJ-mSafe components.

6 Tool and Experiments

We have developed a tool called TransMSafe for the automatic translation and
checking of SCJ programs. The tool is an implementation of the translation
strategy and checking technique we have defined in Z, and is an extension to
the tool described in [11]. The existing tool is implemented in Java and uses
third-party utilities and libraries including the compiler API to aid analysis and
translation of SCJ programs; it is tailored for modifications and extensions.

The tool has been applied to a number of examples including the CDx, Pa-
paBench, and an automotive cruise-control system (ACCS). The CDx is a flight
collision detection algorithm that calculates the possible collisions of aircraft
based on their position and movement, and is a benchmark for SCJ [12]. The
PapaBench is a real-time benchmark adapted for SCJ [13]. The ACCS is a Level
1 cruise-control system [14] with implementation described in [11].

SCJ: Memory-Safety Checking without Annotations 479

We are able to translate all of these examples into SCJ-mSafe automati-
cally; each translation executes in 1 to 2 seconds on an Intel Core i5 650 at
3.20GHz with 8GB RAM. No code optimisation has been performed. We have
also translated and checked the SCJ Checker duplicated class example in [5],
demonstrating our ability to automatically check memory safety without du-
plication of classes or annotations. Further results of checking experiments are
given in [9]. The output of the tool is a textual representation in SCJ-mSafe ; it
displays the environment during the checking phase for each command.

The tool is available as part of the hiJaC project tool suite and is freely avail-
able to download at http://www.cs.york.ac.uk/circus/hijac/tools.html.
Instructions on how to install and run TransMSafe are in the read-me file.

7 Conclusions

We have described and formalised an abstraction technique to verify memory
safety of SCJ programs. We introduced SCJ-mSafe, which is tailored to ease
memory-safety verification. SCJ-mSafe programs have a uniform structure that
abstracts away from some of the complexities found in SCJ programs. Inference
rules are defined for each component of SCJ-mSafe in order to determine what it
means for each to be memory safe. We use environments to store information re-
quired throughout the checking phase. These allow us to check each command in
a program and ensure no violations of the SCJ memory safety rules are possible.

Another technique to verify memory safety of SCJ programs is found in the
SCJ Checker [5], which is an annotation checker. The annotations are used to de-
scribe scopes in which classes, fields, local variables, and methods reside and run.
This technique sometimes requires code duplication when instances of classes are
required in different scopes, however no false negatives are produced. Not all valid
programs can be checked without modification. Our technique may also require
refactoring of SCJ programs to implement the components of the SCJ paradigm
(safelet, missions, and so on) in different classes, for example.

A bytecode analysis technique to find illegal assignments occurring in Level 0
and Level 1 programs is described in [6]. The approach is an automated static-
checking technique and uses a stack of SCJ memory areas and a points-to rela-
tionship to check for potential violations. Like our approach, this also uses an
over-approximation of possible mappings and may raise false negatives.

The model checking technique in [15] has been applied to Level 0 SCJ pro-
grams. The analysis of Level 1 programs and aperiodic event handlers, which in-
cludes concurrency, is limited because of the state explosion problem. Although
techniques to try and reduce this explosion, such as symbolic execution, have
been developed, they have not been applied yet. We avoid these problems by
abstracting away from such complex issues that do not always affect memory
safety, like the execution order of missions, for example.

The translation of SCJ programs has been automated; our goal is to extend
TransMSafe to automatically check a wider range of SCJ programs. We aim to
apply our technique to several more complicated case studies. Our target is to

480 C. Marriott and A. Cavalcanti

verify Level 1 SCJ programs, therefore, aperiodic event handlers and concurrency
are two important components of SCJ that must be considered.

Our approach can raise false negatives, and until we apply our technique to
further case studies, it is difficult to estimate the frequency of their occurrence.
We believe, however, that coding practices for safety-critical systems impose
restrictions that minimise the number of false negatives.

A distinguishing feature of our work is the precise definition of SCJ-mSafe, the
strategy for translation from SCJ to SCJ-mSafe, and the inference rules. This
paves the way to a proof of soundness based, for instance, on the SCJ memory
model in [4]. We have yet to attempt this, and do not underestimate the difficulty
considering the coverage of the language we have achieved. We will be unable
to prove that the translation from SCJ to SCJ-mSafe is correct, since it does
not preserve every property of the SCJ program. We aim to prove that given an
SCJ program with memory-safety violations, our technique will find the errors.

References

1. The Open Group: SCJ technology specification (v0.94). Technical report (2013)
2. Bollella, G., Gosling, J.: The Real-Time Specification for Java. Computer 33, 47–54

(2000)
3. Burns, A.: The ravenscar profile. ACM SIGAda Ada Letters 11, 49–52 (1999)
4. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java memory

model: A formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 246–261. Springer, Heidelberg (2011)

5. Tang, D., Plsek, A., Vitek, J.: Static checking of Safety-Critical Java annota-
tions. In: Proceedings of Java Technologies for Real-time and Embedded Systems,
pp. 148–154. ACM (2010)

6. Dalsgaard, A.E., Hansen, R.R., Schoeberl, M.: Private memory allocation anal-
ysis for SCJ. In: Proceedings of Java Technologies for Real-time and Embedded
Systems, pp. 9–17. ACM (2012)

7. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

8. Schoeberl, M.: Nested Private SCJ example (2013), http://www.jopwiki.com/

Download
9. Marriott, C.: The formalisation of SCJ-mSafe - Technical Report. The University

of York, UK (2013), http://www-users.cs.york.ac.uk/marriott/
10. Marriott, C.: SCJ Memory Safety with SCJCircus - Technical Report. The Uni-

versity of York, UK (2012), http://www-users.cs.york.ac.uk/marriott/
11. Zeyda, F., Lalkhumsanga, L., Cavalcanti, A., Wellings, A.: Circus models for

Safety-Critical Java programs. The Computer Journal, bxt060 (2013)
12. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: CDx: a family

of real-time Java benchmarks. In: Proceedings of Java Technologies for Real-time
and Embedded Systems, pp. 41–50. ACM (2009)

13. Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., De Michiel, M.: Papabench: a
free real-time benchmark. WCET 4 (2006)

14. Wellings, A.: Concurrent and real-time programming in Java. Wiley (2004)
15. Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive testing of

Safety-Critical Java. In: Proceedings of Java Technologies for Real-time and Em-
bedded Systems, pp. 164–174. ACM (2010)

Refactoring, Refinement, and Reasoning

A Logical Characterization for Hybrid Systems

Stefan Mitsch, Jan-David Quesel, and André Platzer

Computer Science Department
Carnegie Mellon University, Pittsburgh PA 15213, USA

Abstract. Refactoring of code is a common device in software engineer-
ing. As cyber-physical systems (CPS) become ever more complex, sim-
ilar engineering practices become more common in CPS development.
Proper safe developments of CPS designs are accompanied by a proof of
correctness. Since the inherent complexities of CPS practically mandate
iterative development, frequent changes of models are standard practice,
but require reverification of the resulting models after every change.

To overcome this issue, we develop proof-aware refactorings for CPS.
That is, we study model transformations on CPS and show how they cor-
respond to relations on correctness proofs. As the main technical device,
we show how the impact of model transformations on correctness can be
characterized by different notions of refinement in differential dynamic
logic. Furthermore, we demonstrate the application of refinements on a
series of safety-preserving and liveness-preserving refactorings. For some
of these we can give strong results by proving on a meta-level that they
are correct. Where this is impossible, we construct proof obligations for
showing that the refactoring respects the refinement relation.

1 Introduction

Cyber-physical systems combine discrete computational processes with contin-
uous physical processes (e. g., an adaptive cruise control system controlling the
velocity of a car). They become increasingly embedded into our everyday lives
while at the same time they become ever more complex. Since many CPS oper-
ate in safety-critical environments and their malfunctioning could entail severe
consequences, proper designs are accompanied by a proof of correctness [2]. The
inherent complexity of CPS practically mandate iterative development with fre-
quent changes of CPS models. With current formal verification methods, how-
ever, these practices require reverification of the resulting models after every
change.

To overcome this issue, we develop proof-aware refactorings for CPS. Refac-
torings are systematic changes applied to a program or model, and a common
method in classical software engineering. In the classical sense [17], refactorings
transform the structure of a program or model without changing its observable
behavior. Regression testing is a common mechanism used to establish some
confidence in the correctness of a classical refactoring [8]. In the presence of

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 481–496, 2014.
c© Springer International Publishing Switzerland 2014

482 S. Mitsch, J.-D. Quesel, and A. Platzer

correctness proofs, however, we can analyze refactoring operations w.r.t. refine-
ment of models and their effect on the proven correctness properties. This gives
unquestionable, and thus significantly stronger, evidence than regression test-
ing and allows us, moreover, to actually change the observable behavior (e. g.,
improve energy-efficiency of a controller) while preserving correctness properties.

As the main technical device, we show how the impact of model transforma-
tions on correctness can be characterized in differential dynamic logic (dL) [18,20].
We present different notions of refinement and prove that they can be logi-
cally characterized in dL. There are many different ways to refine models (e. g.,
trace refinement [9], abstraction refinement [6]); we focus on refinement w.r.t.
the reachable states, which allows us to transfer correctness properties but still
leaves sufficient flexibility to modify the behavior of a CPS. Furthermore, we
demonstrate the application of refinements to define a series of safety-preserving
and liveness-preserving refactorings. For some refactorings we give strong results
by proving on a meta-level that they are correct unconditionally. For those refac-
torings where correctness cannot be shown on a meta-level, we construct proof
obligations based on the logical characterization of our refinement notion in dL,
which imply that the refactoring respects the refinement relation. Hence these
can be conveniently discharged using our existing theorem prover KeYmaera [22].

2 Related Work

Counterexample guided abstraction refinement (CEGAR [6]) uses abstraction
to keep the state space in model checking small, and refines the state space
abstraction when spurious counterexamples are found. Similar approaches have
been suggested for reachability analysis of hybrid systems (e. g., [5,7]).

The Rodin tool [1] enables users to perform refactorings on Event-B [1] models
and generates proof obligations where necessary in order to establish refinement
between the models. Although originally defined without a concrete semantics
in mind these proof obligations have recently been given a solid semantics [25]
in terms of CSP [9]. The formal refinement notion used in their approach is
based on trace inclusion [9]. The notion of trace refinement is also used to en-
able compositional modeling of hierarchical hybrid systems in CHARON [3].
Similarly, Tabuada [26] studies refinements based on behaviors of systems that
are characterized by their traces. In [4] refinements in the setting of abstract
state machines are considered. However, their definition of refinement is a form
of simulation relation, which is even stronger than trace inclusion. In contrast,
we study notions of refinement based on reachable states. Thus, we are more
flexible in terms of which systems we consider to be refinements of each other.

In software development, extensive catalogs of refactoring operations were
proposed (e. g., [8,17]). These refactorings, however, target solely the structure
of a program to make it easier to understand and maintain, and do not use
formal verification to show the correctness of refactoring.

In formal verification of robotic systems [11,12,15] refactoring is used intuition-
ally to introduce more realistic assumptions into a model that was initially sim-
plified for correctness verification. For example, in [12] an initial event-triggered

Refactoring, Refinement, and Reasoning 483

model is transformed into a time-triggered model; in [11] duplicated program
fragments are removed; in [13] sensor uncertainty is added. After the refactor-
ing, all correctness properties were reverified on the refactored model.

3 Refinement, Refactoring and Proof Obligations

3.1 Preliminaries: Differential Dynamic Logic

Syntax and informal semantics. For specifying and verifying correctness state-
ments about hybrid systems, we use differential dynamic logic (dL) [18,20], which
supports hybrid programs as a program notation for hybrid systems. The syntax
of hybrid programs is generated by the following EBNF grammar:

σ ::= σ;ϕ | σ ⊥ ϕ | σ∗ | x := Δ | x := ∗ | x′
1 = Δ1, . . . , x

′
n = Δn & H | ?Ξ .

The sequential composition σ;ϕ expresses that ϕ starts after σ finishes. The non-
deterministic choice σ⊥ϕ follows either σ or ϕ. The non-deterministic repetition
operator σ∗ repeats σ zero or more times. Discrete assignment x := Δ instanta-
neously assigns the value of the term Δ to the variable x, while x := ∗ assigns an
arbitrary value to x. x′ = Δ & H describes a continuous evolution of x within the
evolution domain H . The test ?Ξ checks that a particular condition expressed
by Ξ holds, and aborts if it does not. A typical pattern x := ∗; ?a ∨ x ∨ b,
which involves assignment and tests, is to limit the assignment of arbitrary val-
ues to known bounds. Note that control flow statements like if and while can
be expressed with these primitives [18].

To specify correctness properties about hybrid programs, dL provides modal
operators [σ] and ≤σ〉. When Ξ is a dL formula describing a state and σ is a
hybrid program, then the dL formula [σ]Ξ expresses that all states reachable by
σ satisfy Ξ. Dually, dL formula ≤σ〉Ξ expresses that there is a state reachable by
the hybrid program σ that satisfies Ξ. The set of dL formulas is generated by the
following EBNF grammar (where ⊕ ⇒ {<,∨,=,∅, >} and Δ1, Δ2 are arithmetic
expressions in +,−, ·, / over the reals):

Ξ ::= Δ1 ⊕ Δ2 | ¬Ξ | Ξ ∧ ξ | Ξ ⇔ ξ | Ξ∧ ξ | Ξ⊂ ξ | ∪xΞ | ∃xΞ | [σ]Ξ | ≤σ〉Ξ .

Formal semantics. The semantics of dL is a Kripke semantics in which states
of the Kripke model are states of the hybrid system. Let R denote the set of
real numbers. A state is a map ν : Σ ∧ R; the set of all states is denoted by
Sta(Σ). We write ν |= Ξ if formula Ξ is true at state ν (Def. 2). Likewise, [[Δ]]γ
denotes the real value of term Δ at state ν. The semantics of HP σ is captured by
the state transitions that are possible by running σ. For continuous evolutions,
the transition relation holds for pairs of states that can be interconnected by a
continuous flow respecting the differential equation and invariant region. That
is, there is a continuous transition along x′ = Δ&H from state ν to state Θ, if
there is a solution of the differential equation x′ = Δ that starts in state ν and
ends in Θ and that always remains within the region H during its evolution.

484 S. Mitsch, J.-D. Quesel, and A. Platzer

Definition 1 (Transition semantics of hybrid programs). The transi-
tion relation π specifies which state Θ is reachable from a state ν by operations
of σ. It is defined as follows.

1. (ν, Θ) ⇒ π(x := Δ) iff [[z]]γ = [[z]]ν f.a. z ∀= x and [[x]]ν = [[Δ]]γ .
2. (ν, Θ) ⇒ π(x := ∗) iff [[z]]γ = [[z]]ν f.a. z ∀= x.
3. (ν, Θ) ⇒ π(?Ξ) iff ν = Θ and ν |= Ξ.
4. (ν, Θ) ⇒ π(x′

1 = Δ1, . . . , x
′
n = Δn &H) iff for some r ∅ 0, there is a (flow)

function φ:[0, r]∧ Sta(V) with φ(0) = ν, φ(r) = Θ, such that for each time

τ ⇒ [0, r]: (i) The differential equation holds, i.e.,
d [[xi]]ϕ(t)

dt (τ) = [[Δi]]ϕ(ω) for

each xi. (ii) For other variables y ∀⇒ {x1, . . . , xn} the value remains constant,
i.e., [[y]]ϕ(ω) = [[y]]ϕ(0). (iii) The invariant is always respected, i.e., φ(τ) |= H.

5. π(σ ⊥ ϕ) = π(σ) ⊥ π(ϕ)
6. π(σ;ϕ) = {(ν, Θ) : (ν, z) ⇒ π(σ), (z, Θ) ⇒ π(ϕ) for a state z}
7. π(σ∗) =

⋃
n∈N

π(σn) where σi+1 =̂ (σ;σi) and σ0 =̂ ?true.

Definition 2 (Interpretation of dL formulas). The interpretation |= of a
dL formula with respect to state ν is defined as follows.

1. ν |= Δ1 ⊕ Δ2 iff [[Δ1]]γ ⊕ [[Δ2]]γ for ⊕ ⇒ {=,∨, <,∅, >}
2. ν |= Ξ ∧ ξ iff ν |= Ξ and ν |= ξ, accordingly for ¬,⇔,∧,⊂
3. ν |= ∪xΞ iff Θ |= Ξ for all Θ that agree with ν except for the value of x
4. ν |= ∃xΞ iff Θ |= Ξ for some Θ that agrees with ν except for the value of x
5. ν |= [σ]Ξ iff Θ |= Ξ for all Θ with (ν, Θ) ⇒ π(σ)
6. ν |= ≤σ〉Ξ iff Θ |= Ξ for some Θ with (ν, Θ) ⇒ π(σ)

We write |= Ξ to denote that Ξ is valid, i. e., that ν |= Ξ for all ν.

3.2 Refinement Relations

In order to justify our refactorings we introduce two refinement notions based
on reachable states of hybrid programs.

Definition 3 (Projective Relational Refinement). Let V ⊆ Σ be a set of
variables. Let |V denote the projection of relations or states to the variables in
V . We say that hybrid program σ refines hybrid program β w.r.t. the variables
in V (written as σ V β) iff π(σ)|V ⊆ π(β)|V . If σ V β and β V σ then we
speak of an observability equivalence σ ≡V β w.r.t. V between the systems.

This notion of refinement guarantees that safety properties referring only to
variables in V can be transferred from β to σ and liveness properties referring
to V can be transferred conversely from σ to β. Projective relational refinement
is monotonic w.r.t. hybrid program composition: if a hybrid program σ refines
a hybrid program ϕ, i. e., σ V ϕ, then also σ∗ V ϕ∗, (σ ⊥ β) V (ϕ ⊥ β),
(σ; β) V (ϕ; β), and (β;σ) V (β;ϕ) hold (cf. [16, App. A]).

If we want to exploit knowledge about the system parameters and reachable
states when performing refinements we use a weaker notion of partial refinement.
This allows us to show correctness of refactorings w.r.t. the assumptions and
states that actually matter for a concrete original model (e. g., we may only care
about those states that satisfy an invariant property of the original model).

Refactoring, Refinement, and Reasoning 485

Definition 4 (Partial Projective Relational Refinement). We say that
hybrid program σ partially refines hybrid program β w.r.t. the variables in V and
formula F (written as σ V

F β) iff (?F ;σ) V (?F ; β). If σ V
F β and β V

F σ
we speak of a partial observability equivalence σ ≡V

F β w.r.t. V and F .

Partial refinement still exhibits nice properties. Let FV(Ξ) denote the set of free
variables of formula Ξ.

Lemma 1. Let σ and β be two hybrid programs s.t. σ V
F β. Let |= G ∧ F .

Assume |= G∧ [β]ξ for some formula ξ with FV(ξ) ⊆ V , then |= G∧ [σ]ξ.

Proof. Assume σ V
F β, |= G ∧ F , |= G ∧ [β]ξ and ∀|= G ∧ [σ]ξ for some

formula ξ with FV(ξ) ⊆ V . The semantics of the latter is that there is a state
ν with ν |= G such that there is (ν, Θ) ⇒ π(σ) with Θ ∀|= ξ. Since we know that
G∧ F is valid we also have that ν |= F . Therefore, if (ν, Θ) ⇒ π(σ) it also holds
that (ν, Θ) ⇒ π(?F ;σ). However, since σ V

F β and thus (?F ;σ) V (?F ; β) we
have that there is some Θ′ with (ν, Θ′) ⇒ π(?F ; β) s.t. Θ|V = Θ′|V . Furthermore,
we have that (ν, Θ′) ⇒ π(β). From |= G ∧ [β]ξ we can conclude that for all
(ν, Θ′) we have that Θ′ |= ξ. Since Θ|V = Θ′|V and FV(ξ) ⊆ V we have Θ |= ξ
by coincidence lemma [18, Lemma 2.6]. Thus, we conclude |= G∧ [σ]ξ. ∃⊆

Lemma 2. Let σ and β be two hybrid programs s.t. σ V
F β. Let |= G ∧ F .

Assume |= G∧ ≤σ〉ξ for some formula ξ with FV(ξ) ⊆ V , then |= G∧ ≤β〉ξ.

Proof. The proof is analog to that of Lemma1 (cf. [16, App. A]). ∃⊆

We can derive two corollaries from these lemmas that cover the stronger prop-
erties of the total refinement relation (with σ V β iff σ V

true β).

Corollary 1. Let σ and β be two hybrid programs s.t. σ V β. If |= Ξ ∧ [β]ξ
for some formulas Ξ and ξ with FV(ξ) ⊆ V , then |= Ξ∧ [σ]ξ.

Corollary 2. Let σ and β be two hybrid programs s.t. σ V β. If |= Ξ∧ ≤σ〉ξ
for some formulas Ξ and ξ with FV(ξ) ⊆ V , then |= Ξ∧ ≤β〉ξ.

Relational refinement w.r.t. V can be logically characterized within dL. Sub-
sequently, we use ηV ≡

∧
v∈V v = ṽ to express a characterization of the V values

in a state, where we always assume the variables ṽ to occur solely in ηV and
nowhere else in any formula. Hence the formula ≤σ〉ηV identifies the states reach-
able by hybrid program σ w.r.t. the variables in V . The variables in ṽ can then
be used to recall this state; see [19] for details. In the following we use this notion
to compare states reachable by one program with those reachable by another.

Theorem 1. Let σ and β be hybrid programs. We have that σ V β iff

|=
(
≤σ〉ηV

)
∧ ≤β〉ηV (1)

Remark 1. Since the variables ṽ neither appear in σ nor in β we have that if
(ν, Θ) ⇒ (π(σ) ⊥ π(β)) then [[ṽ]]γ = [[ṽ]]ν for all ṽ (cf. [18, Lemma 2.6]).

486 S. Mitsch, J.-D. Quesel, and A. Platzer

Proof. Let ν be arbitrary.

← Assume that σ V β. Assume that ν |= ≤σ〉ηV since otherwise there is
nothing to show. This means that there is some state Θ with (ν, Θ) ⇒ π(σ)
s.t. Θ |= ηV . We fix any such Θ arbitrarily. From σ V β we know π(σ)|V ⊆
π(β)|V . Using this and (ν, Θ) ⇒ π(σ) there is Θ′ with (ν, Θ′) ⇒ π(β) s.t. [[v]]ν =
[[v]]ν′ for all v ⇒ V . Furthermore, [[ṽ]]ν = [[ṽ]]ν′ for all v ⇒ V (Remark 1).
Thus we conclude ν |= ≤β〉ηV by coincidence lemma [18, Lemma 2.6] since
FV (≤β〉ηV) ⊆ V ⊥ {ṽ | v ⇒ V }. Since ν was arbitrary we get (1) by the
semantics of ∧.

⇐ Assume (1). If π(σ) = ∅ then the proposition follows trivially. Otherwise
consider any (ν, Θ) ⇒ π(σ). Since no ṽ occurs in σ, this implies (ν′, Θ′) ⇒ π(σ)
for ν′|V = ν|V , Θ′|V = Θ|V and [[ṽ]]γ′ = [[ṽ]]ν′ = [[v]]ν′ . Thus, Θ′ |= ηV , so
ν′ |= ≤σ〉ηV . Therefore, (1) implies that there is Θ′

λ with (ν′, Θ′
λ) ⇒ π(β) s.t.

Θ′
λ |= ηV . Hence [[v]]ν′

γ
= [[ṽ]]ν′

γ

Rem. 1
= [[ṽ]]γ′

Rem. 1
= [[ṽ]]ν′ = [[v]]ν′ f.a. v ⇒ V

because Θ′ |= ηV . Thus Θ′|V = Θ′
λ |V and since, further, (ν′, Θ′

λ) ⇒ π(β),
ν|V = ν′|V and Θ|V = Θ′|V it follows that (ν|V , Θ|V) ⇒ π(β)|V . Since both ν
and Θ were arbitrary we get π(σ)|V ⊆ π(β)|V and conclude σ V β. ∃⊆

In order to simplify refinement proofs we exploit prior knowledge about system
trajectories. Suppose we want to establish refinement between two programs
with loops, i. e., we want to show that σ∗ V

F β∗; further assume that we have
|= F ∧ [β∗]F . We can use this knowledge to simplify a refinement proof.

Lemma 3. For some set of variables V , let F be some formula with FV(F) ⊆ V .
Under the assumption that |= F ∧ [β∗]F (in particular, F is an inductive
invariant of β∗) the following two statements are equivalent:

σ∗ V
F β∗ (2) |=

(
≤?F ;σ〉ηV

)
∧ ≤?F ; β∗〉ηV (3)

Observe that unlike in (1) we only need to argue about states reachable by
exactly one execution of σ in order to make a statement about σ∗.

Proof. (2)← (3) If σ∗ V
F β∗ then we know from Theorem1 that (1) holds.

Since π(σ) ⊆ π(σ∗) we can conclude that (3) holds.
(3)← (2) Assume |= F ∧ [β∗]F . Consider any (ν, Θ) ⇒ π(?F ;σ∗). To prove (2)

we need to show that there is some (νλ , Θλ) ⇒ π(?F ; β∗) with νλ |V = ν|V and
Θλ |V = Θ|V . If ν = Θ we are done, as π(?F ; β∗) is reflexive from states where
F holds by repeating 0 times. Otherwise, ?F ;σ∗ repeated at least once to
get from ν to Θ. Let μ s.t. (ν, μ) ⇒ π(?F ;σ), (μ, Θ) ⇒ π(σ∗). Let ν̃, μ̃ s.t.
ν̃|V = ν|V , μ̃|V = μ|V and [[ṽ]]γ̃ = [[ṽ]]μ̃ = [[v]]μ̃ f.a. v ⇒ V , so μ̃ |= ηV . The
variables ṽ do not appear in (?F ;σ), so (ν̃, μ̃) ⇒ π(?F ;σ) still holds; thus,
ν̃ |= ≤?F ;σ〉ηV . Therefore, by (3) we have that ν̃ |= ≤?F ; β∗〉ηV . This means
there is (ν̃, μ̃λ) ⇒ π(?F ; β∗) with μ̃λ |= ηV . Observe that [[ṽ]]μ̃γ

= [[ṽ]]μ̃ since
neither σ nor β change ṽ for any v ⇒ V . There are only runs of this program
if ν̃ |= F . Thus we conclude μ̃λ |= F from |= F ∧ [β∗]F . Furthermore, by
μ̃λ |= ηV and μ̃ |= ηV we get [[v]]μ̃γ

= [[ṽ]]μ̃γ
= [[ṽ]]μ̃ = [[v]]μ̃ f.a. v ⇒ V .

Thus, μ̃ |= F by coincidence lemma [18, Lemma 2.6]. As μ̃|V = μ|V and

Refactoring, Refinement, and Reasoning 487

FV (F) ⊆ V we get μ |= F by coincidence lemma. As (ν, μ) was arbitrary
this gives |= F ∧ [σ]F and by soundness of induction |= F ∧ [σ∗]F . Hence
{Θ | ν |= F and (ν, Θ) ⇒ π(σ)} = {Θ | ν |= F and (ν, Θ) ⇒ π(σ) ◦ π(σ∗)} .
However, this means by considering all (ν, μ) ⇒ π(?F ;σ) we have constructed
an argument for all elements of π(?F ;σ∗). Hence we get σ∗ V

F β∗. ∃⊆

3.3 Refactorings and Proof Obligations

We distinguish between structural and behavioral refactorings. Structural refac-
torings change the structure of a hybrid program without changing its reachable
states. Structural refactorings ensure (partial) observability equivalence σ ≡V

F β,
which means that both safety and liveness properties can be transferred. Be-
havioral refactorings change a hybrid program in a way that also changes its
behavior, i. e., the program reaches partly different states after the refactoring
than before. Thus, behavioral refactorings need auxiliary gluing proofs (but not
full reverification) to establish refinement relationships and transfer correctness
properties from the original system β to the refactored system σ.

For transferring correctness properties we define the following proof obliga-
tions. Some of these obligations can be shown on a meta-level for all refactored
σ corresponding to β; where this is impossible, the proofs have to be done for a
particular refactoring instance β � σ.

Observability equivalence proof. Observability equivalence (σ ≡V β) is necessary
to transfer safety and liveness properties referring to V at the same time. It
can be characterized in dL by |=

(
≤σ〉ηV

)
⊂

(
≤β〉ηV

)
. In addition we can use

Lemma3 in order to simplify reasoning for loops.

Safety relational refinement. Prove that all reachable states from the refactored
model σ are already reachable in the original model β, i. e., for safety relational
refinement use Theorem1 to prove σ V β. In addition Lemma 3 simplifies loops.

Auxiliary safety proof. Prove that a refactored model σ satisfies some safety
properties under the assumption of an existing proof about the original model
β. The auxiliary safety proof patches this proof w.r.t. the changes made by
the refactoring. Thus it is especially useful if neither observability equivalence
nor relational refinement can be shown. Let ∪λ quantify universally over all
variables that are changed in β. The intuition is that, assuming |= ∪λ(Ξ∧ [β]Ξ)
(i. e., Ξ is an inductive invariant of β), we can close the identical parts in the
proof from the assumption by axiom and only need to show correctness for
the remaining, new parts of the refactored model. For auxiliary safety use an
invariant of I(Ξ) ≡

(
Ξ ∧ ∪λ(Ξ∧ [β]Ξ)

)
for the refactored program σ to prove(

F ∧ I(Ξ)
)
∧ [σ∗]ξ . (4)

Liveness relational refinement. To transfer liveness properties we have to prove
the converse of the safety-preserving relational refinement proof, i. e., prove that
all reachable states from the original model β are also reachable in the refactored
model σ (use Theorem1 to prove that β V σ).

488 S. Mitsch, J.-D. Quesel, and A. Platzer

Safety and liveness compliance/equivalence proof. Prove that a refactored model
σ satisfies the same property as its original model β, i. e., for safety compli-
ance prove (Ξ∧ [β]ξ)∧ (Ξ∧ [σ]ξ), for safety equivalence prove (Ξ∧ [β]ξ)⊂
(Ξ∧ [σ]ξ). Liveness compliance/equivalence is analog to safety compliance/e-
quivalence with ≤β〉 in place of [β] and ≤σ〉 in place of [σ]. These are the generic
fallback proof strategies that are always possible.

4 Structural Refactorings

Structural refactorings are observability-equivalent refactorings: they change the
structure of a hybrid program without changing its reachable states. Structural
refactorings are akin to the refactorings known from software engineering [8].
Here we discuss refactorings that arise specifically in hybrid system models;
correctness proves can be found in [16, App. B].

We present refactorings as rewrite rules of the form F
λ�π , meaning that pro-

gram β can be refactored into program σ if preconditions F and the side condi-
tions stated in footnotes are satisfied. We omit F and write β � σ if β can be
refactored into σ unconditionally. We use i ⇒ I to denote the elements of some
finite index set I when enumerating hybrid programs.

4.1 Extract Common Program

σ

ϕ

β

β

extract (R1)

inline (R2)

σ

ϕ

β
Duplicated (control) code is
hard to maintain, because changes
have to be made consistently
at several places [8]. The Ex-
tract Common Program refac-
toring moves duplicated program fragments to a common path in the model.
It can be used if the duplicated program parts are the last statements on a path.

Mechanics. Move the duplicated statements after the merging point of the paths.
(R1)

⋃
i∈I(σi; β) �

(⋃
i∈I σi

)
; β (R2)

(⋃
i∈I σi

)
; β �

⋃
i∈I(σi; β)

Proof Obligations. None, because the original program and the refactored pro-
gram are observability equivalent. Since set union distributes over relation com-
position, it is evident that π

(⋃
i∈I(σi; β)

)
|V = π

((⋃
i∈I σi

)
; β

)
|V . Thus, we can

conclude that
⋃

i∈I(σi; β) ≡V
(⋃

i∈I σi

)
; β.

Variation: Inline Program. Duplicate β into each branch.

4.2 Extract Continuous Dynamics

Scattered continuous dynamics on multiple paths in a hybrid program make it
hard to introduce explicit computation delay into models of CPS [11], because
those would need to be duplicated in any of the respective paths as well. The
Extract Continuous Dynamics refactoring collects the continuous dynamics from
multiple paths and introduces a unified differential equation after the merge

Refactoring, Refinement, and Reasoning 489

point of those paths. The continuous dynamics of those paths have to be the
final statements on their respective path. If the original paths encode deviating
control actions, new variables are introduced to maintain different control actions
on different paths.

Mechanics. Move the continuous dynamics after the merging point of the paths;
capture path differences in new variables and set their values accordingly.

α v′ = θ, w′ = ϑ1

β v′ = θ, w′ = ϑ2

extract (R3)

inline (R4)

α x := ϑ1

β x := ϑ2

v′ = θ,
w′ = x

(R3)
∪v ⇒ V (Δ) ⊥

⋃
i∈I V (Ωi). v ∀⇒ BV (D(Δ)) ⊥

⋃
i∈I BV (D(Ωi))⋃

i∈I

(
σi; (v′ = Δ, w′ = Ωi)

)
�

(⋃
i∈I(σi;x := Ωi)

)
; (v′ = Δ, w′ = x)

)1
(R4)

(⋃
i∈I(σi;x := Ωi)

)
; (v′ = Δ, w′ = x)

)
�

⋃
i∈I

(
σi; (v

′ = Δ, w′ = Ωi)
)

Proof Obligations. None, because the original program and the refactored pro-
gram are observability equivalent, i. e.,(⋃

i∈I

(σi;x := Ωi)
)
; (v′ = Δ, w′ = x)

)
≡V

⋃
i∈I

(
σi; (v

′ = Δ, w′ = Ωi)
)
.

Let D(Δ) be a differential equation system (with or without evolution domain
constraint) containing the term Δ. For some fresh variable x ∀⇒ V we have that
π(D(Δ))|V = π(x := Δ;D(x))|V under the condition that no variable that occurs
in Δ has a derivative in D(Δ). If we perform this operation on all branches,
we can use distributivity of sequential composition over choice (i. e., the Extract
Common Program refactoring) to move the common part into a single statement.

Variation: Inline Continuous Dynamics. Duplicate the continuous dynamics into
each path and push the path variable assignments into the continuous dynamics.

4.3 Drop Implied Evolution Domain Constraint

The Drop Implied Evolution Domain Constraint refactoring removes those con-
straints from the evolution domain that are already guaranteed by the discrete
controller. It reduces constraint duplication and is also useful as an intermediate
step in composite refactorings (see Section 6.2 for an example). The refactoring
can be used when the context specifies constraints that are at least as strong
as the evolution domain constraints (e. g., in the inductive invariant or in a test
prior to the continuous dynamics), and both discrete control and continuous dy-
namics only change the relevant fragment of the context in a way that preserves
the evolution domain constraints.
1 with fresh variable x �∈ V ; we denote by D(θ) a differential equation system con-
taining the term θ; we refer to the variables in θ, by V (θ); let BV (D(·)) denote the
variables changed by the ODE D(·).

490 S. Mitsch, J.-D. Quesel, and A. Platzer

Mechanics. Drop the implied constraints from the evolution domain.

?F
x′ = θ

& G ∧H

|= F → H θ preserves H

drop (R5)/(R7)

introduce (R6)/(R8) ?F
x′ = θ
& G

(R5)
F ∧ H F ∧ [x′ = Δ&G]H

?F ;x′ = Δ&G ∧H � ?F ;x′ = Δ&G
(R6)

?F ;x′ = Δ&G
� ?F ;x′ = Δ&G ∧H

(R7)
?F ;x′ = Δ&G ∧H

� ?F ;x′ = Δ&G
(R8)

F ∧ H F ∧ [x′ = Δ&G]H

?F ;x′ = Δ&G � ?F ;x′ = Δ&G ∧H

Liveness Proof Obligations (R7). None, because projective partial refinement,
i. e.,

(
?F ;x′ = Δ&G ∧H

)
 V

F

(
?F ;x′ = Δ&G

)
holds.

Safety Proof Obligations (R5). We have to show that H is a differential invariant
[21] (which, with |= F ∧ H , implies H can be dropped).

Variation: Introduce Evolution Domain Constraint. Safety properties transfer
directly (R6), because the refactored program is a partial refinement of the orig-
inal program, i. e.,

(
?F ;x′ = Δ&G∧H

)
 V

F

(
?F ;x′ = Δ&G

)
holds. For liveness

(R8), prove that H is a differential invariant (which, with |= F ∧ H , implies H
can be introduced).

5 Behavioral Refactorings

Behavioral refactorings change the states reachable by a hybrid system. This
means that the proofs for the original model and those for a refactored model
need auxiliary gluing proofs to transfer correctness properties. In most cases,
these auxiliary proofs can reuse significant parts of the original proof. Correctness
proofs that derive proof obligations can be found in [16, App. C].

5.1 Introduce Control Path

The initial models of a system are often simplified in order to reduce time-to-
market or manage verification complexity. These initial models are later refined
with more sophisticated control options (e. g., have multiple braking variants)
once the initial model is provably safe. The Introduce Control Path refactoring
introduces a new control path and adds it as a non-deterministic choice to the
existing paths. The new control path must preserve the original invariant.

Mechanics. Introduce a new path via nondeterministic choice to existing paths.

α β
introduce (R9)

remove (R10)

α

γ

β

(R9) σ;ϕ � (σ ⊥ β);ϕ (R10) (σ ⊥ β);ϕ � σ;ϕ

Refactoring, Refinement, and Reasoning 491

Liveness Proof Obligations. None, because we get (σ;ϕ) V
(
(σ ⊥ β);ϕ

)
from

the definition of the refinement relation.

Safety Proof Obligations. Use an auxiliary safety proof (4). An example of such
a proof is given in Section 6.1.

Variation: Remove Control Path. Again, we get (σ;ϕ) V
(
(σ ⊥ β);ϕ

)
from the

definition of our refinement relation. Thus, safety properties can be transferred
from the original model (σ ⊥ β);ϕ to the refactored model σ;ϕ unconditionally.

5.2 Introduce Complementary Continuous Dynamics

Non-exhaustive evolution domain constraints are used to restrict differential
equations to realistic regions (e. g., model braking as negative acceleration inside
the region of positive velocities). But if misused, reasonable real-world behavior is
sometimes excluded from a model. Such a model can be proven correct, but only
because the evolution domain constraints limit unsafe behavior to stay within
the safe states. Introduce Complementary Continuous Dynamics introduces a
copy of the original differential equations with weak negation (i. e., negation re-
taining boundaries, denoted by ⊕F) of the original evolution domain constraints.
This way, an event is still reliably detected while the refactoring ensures that no
behavior is excluded from the model. It is then the responsibility of the discrete
controller to keep the system inside the safe region. The refactoring ensures that
instantaneous reactions in the event detection part of the evolution domain does
not clip reasonable behavior just for the sake of detecting an event.

Mechanics. Introduce a nondeterministic choice to a copy of the continuous
dynamics, which uses the weak negation of the event detection evolution domain
constraints of the original model. Merge after the continuous dynamics.

α x′ = θ & F complement (R11) α x′ = θ & F

x′ = θ & ∼F
(R11) σ;x′ = Δ&F � σ; (x′ = Δ&F ⊥ x′ = Δ&⊕F)

Liveness Proof Obligations. None, because from the transition semantics of dL we
get π

(
σ; (x′ = Δ&F⊥x′ = Δ&⊕F)

)
|V = π

(
(σ;x′ = Δ&F)⊥(σ;x′ = Δ&⊕F)

)
|V

since set union distributes over relation composition. With π(σ;x′ = Δ&F)|V ⊆
π
(
(σ;x′ = Δ&F) ⊥ (σ;x′ = Δ&⊕F)

)
|V we conclude that

(
σ;x′ = Δ&F

)
 V(

σ; (x′ = Δ&F ⊥ x′ = Δ&⊕F)
)
holds, i. e., the refactored model is a liveness

relational refinement of the original model.

Safety Proof Obligations. For safety, show that the controller with subsequent
complementary dynamics only reaches states that are already reachable with the
original dynamics, i. e., show

(
≤σ;x′ = Δ&⊕F 〉ηV

)
∧

(
≤σ;x′ = Δ&F 〉ηV

)
.

5.3 Event- to Time-Triggered Architecture

Event-triggered architecture [10] is often easier to verify than time-triggered ar-
chitecture, because the burden of detecting critical events is not on the controller

492 S. Mitsch, J.-D. Quesel, and A. Platzer

but encoded as evolution domain constraint in the continuous dynamics. Hence,
reactions are assumed to work instantaneous, which, however, makes event-
triggered architecture hard if not impossible to implement. In a time-triggered
architecture, in contrast, the controller samples the environment at regular time
intervals. This introduces additional delay in event detection, which must be
accounted for in the safety constraints of the controller. The Event- to Time-
Triggered Architecture refactoring (suggested in [12]) turns a hybrid program
with event-triggered architecture into one using time-triggered architecture.

Mechanics. Introduce a clock variable (e. g., c) with constant slope and an upper
bound for the clock (e. g., ω) as evolution domain constraint. Reset the clock
to 0 before the continuous dynamics are executed. Move the original evolution
domain constraint as a test before the continuous dynamics. Strengthen the test
such that it can keep the system safe under the current control decision.

α γ ≡ (x′
1 = θ1, . . . , x′

n = θn & F ∧ ψ)

β ∗
event- to time-triggered (R12)

?
(
[α; c := 0; η]ψ

)
α

?
(
[β; c := 0; η]ψ

)
β

c := 0

η ≡ (x′
1 = θ1, . . . , x′

n = θn,
c′ = 1 & F ∧ c ≤ ε)

∗

(R12)
(⋃

i∈I σi

)
; (x′ = Δ&F ∧ ξ) �

(⋃
i∈I(?[σi; c := 0; γ]ξ;σi)

)
; c := 0; γ2

Safety Proof Obligations. Show an auxiliary safety proof (4). Note, that in the
original model the evolution domain constraint ξ holds throughout β. In the
refactored model, the tests ?

(
[σ; c := 0; γ]ξ

)
and ?

(
[ϕ; c := 0; γ]ξ

)
check that ξ

will hold for up to duration ω before σ respectively ϕ are executed. Therefore, ξ
holds throughout γ, because γ contains the evolution domain constraint c ∨ ω.

Observe that the test introduced in this refactoring uses a modality in order to
exactly characterize the states for which the specific control action ensures safety
during the next control cycle. This corresponds to model-predictive control [20].
Further refactorings can be used to replace this test by either an equivalent first-
order formula (usually for some cases even true) or if impossible (or impractical)
a stronger first-order formula. See for example [23] how to discover such formulas.

6 Safe Refactoring Examples with Refinement Reasoning

In this section we exemplify how to satisfy the proof obligations set forth by our
refactorings. We use a simple hybrid model of a car inspired by [14]. The car has
three control choices: (i) it can accelerate with maximum acceleration a :=Amax

if it is safe to do so (indicated by safety property Safe), (ii) it can remain stopped

2 η ≡ x′
1 = θ1, . . . , x

′
n = θn, c

′ = 1&F ∧ c ≤ ε and fresh variables c, ε �∈ V with ε > 0

Refactoring, Refinement, and Reasoning 493

ctrl

?Safe a :=Amax

?v = 0 a := 0

a :=−Bmax

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε

∗
introduce control path

ctrl

?x+ v2

Bmax
≤ S a :=−Bmax

2

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε∗

Fig. 1. Example of the effect of the Introduce Control Path refactoring

by a := 0 if it is already stopped (?v = 0), and (iii) it can unconditionally brake
with maximum braking force a := −Bmax. Its driving dynamics are modeled
using the ideal-world differential equation system x′ = v, v′ = a & v ∅ 0.

6.1 Introduce Control Path

Let us assume we proved Ξ ∧ [car∗]ξ for some Ξ, ξ and we want the same
safety guarantees about a refactored model c̃ar with an additional control path
for moderate braking, i. e., we want to show that Ξ∧ [c̃ar∗]ξ. Fig. 1 depicts the
original model and the refactored model as state transition systems.

To reduce the proof effort for the refactored model we exploit the systematic
way in which the Introduce Control Path refactoring changes the original model
to produce the refactored model: the refactoring introduces a new branch without
touching the remainder of the model. We can do an auxiliary safety proof that
leverages the fact that we have a safety proof about the original model in those
branches that are still present in the refactored model. As an inductive invariant
for c̃ar, we use I(Ξ) ≡ Ξ ∧ ∪x∪v (Ξ∧ [car]Ξ), which is the original invariant
Ξ strengthened with the assumption that we have a proof about the original
model. We thus prove formula (4), i. e., I(Ξ)∧ [c̃ar

∗
]ξ, see Sequent Proof 1.

6.2 Event- to Time-Triggered Architecture

The event- to time-triggered architecture refactoring is a composite refactoring
that radically shifts the control paradigm between the original and the refactored
model. Still, if some branches of the original model are retained in the refactored
model we can reduce the overall verification effort with an auxiliary safety proof.
Fig. 2 illustrates the refactoring operations.

First, inline program and drop implied evolution domain constraint transform
the original model into an intermediate form with branches for braking and re-
maining stopped being symbolically equivalent to those in the original model.
Then, we introduce the time-triggered acceleration decision and use an auxiliary
safety proof to show that the changed acceleration branch ensures the inductive

494 S. Mitsch, J.-D. Quesel, and A. Platzer

Proof 1 Proof sketch of an auxiliary safety proof for Introduce Control Path. We
use the abbreviations A ≡?Safe; a :=Amax, C ≡?v = 0; a := 0, B ≡ a :=−Bmax,

Br ≡?x+ v2

Bmax
∨ S; a :=−Bmax

2 , and P ≡ x′ = v, v′ = a & v ∅ 0.

(∧r) Γ � φ,Δ Γ � ψ,Δ

Γ � φ ∧ ψ,Δ
(∧l) Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
(∀l) Γ, φ(θ) � Δ

Γ,∀xφ(x) � Δ

([] gen)
Γ � [α]φ,Δ φ � ψ

Γ � [α]ψ,Δ
(ax)

Γ, φ � φ,Δ
(Wl)

Γ � Δ

Γ, φ � Δ

([;])
[α][β]φ

[α; β]φ
([∪]) [α]φ ∧ [β]φ

[α ∪ β]φ
([∗]) Γ � ψ,Δ ψ � [α]ψ ψ � φ

Γ � [α∗]φ,Δ

∗
axφ, [A ∪ C ∪ B][P]φ � [A ∪ C ∪ B][P]φ

prove new branch
φ � [Br][P]φ

Wlφ, [A ∪ C ∪ B][P]φ � [Br][P]φ
∧r φ, [A ∪ C ∪ B][P]φ � [A ∪ C ∪ B][P]φ ∧ [Br][P]φ
[;] φ, [(A ∪ C ∪ B); P]φ � [A ∪ C ∪ B][P]φ ∧ [Br][P]φ

∀l,∀l φ,∀x∀v (φ→ [(A ∪ C ∪ B); P]φ) � [A ∪ C ∪ B][P]φ ∧ [Br][P]φ
[;],[∪] φ,∀x∀v (φ→ [(A ∪ C ∪ B); P]φ) � [(A ∪ C ∪ B ∪ Br); P]φ
expand φ,∀x∀v (φ→ [car]φ) � [c̃ar]φ

. . .
∗

axφ,∀x∀v(φ→ [car]φ) � φ ∧ ∀x∀v(φ→ [car]φ)
[] gen φ,∀x∀v(φ→ [car]φ) � [c̃ar](φ ∧ ∀x∀v(φ→ [car]φ))
∧l φ ∧ ∀x∀v(φ→ [car]φ) � [c̃ar](φ ∧ ∀x∀v(φ→ [car]φ))

expand I(φ) � [c̃ar]I(φ)

∗
axI(φ) � I(φ) . . .

∗
φ � ψ

∧l,Wl φ ∧ ∀x∀v (φ→ [car]φ) � ψ
expand I(φ) � ψ

[∗] I(φ) � [c̃ar∗]ψ

invariant (the mechanics of this proof are similar to those in Sequent Proof 1).
Finally, differential auxiliary [21] introduces t with initial value t := 0 and dif-
ferential equation t′ = 1 into the braking and remaining stopped branches, and
extract common program transforms into the final refactored form.

7 Conclusion

We introduced proof-aware refactoring operations for hybrid systems. The no-
tion of projective relational refinement allows us to make strong correctness
statements about some refactorings on a meta-level for all hybrid programs.
Where this is impossible, our refactoring operations construct proof obligations
for showing that the resulting refactored model is a correct refinement of the
particular original model instance.

We are in the process of implementing the refactoring operations in our
verification-driven engineering tool Sphinx [15]. Future work includes building

Refactoring, Refinement, and Reasoning 495

?x+ v2

2Bmax
< S a :=Amax

?v = 0 a := 0

a :=−Bmax

x′ = v, v′ = a

& v ≥ 0 ∧ x+ v2

2Bmax
≤ S inline

A

C

B

Po

Po

Po

drop implied evolution domain constraint

A

C

B

Po

x′ = v, v′ = a & v ≥ 0

x′ = v, v′ = a & v ≥ 0

auxiliary
safety proof

?Safe a :=Amax t := 0
Pr ≡

(
x′ = v, v′ = a, t′ = 1

& v ≥ 0 ∧ t ≤ ε
)

C x′ = v, v′ = a & v ≥ 0

B x′ = v, v′ = a & v ≥ 0

differential auxiliary

?Safe a :=Amax t := 0 Pr

C t := 0 Pr

B t := 0 Pr

extract

?Safe a :=Amax

?v = 0 a := 0

a :=−Bmax

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε

Fig. 2. Intermediate steps in event- to time-triggered architecture refactoring

a catalog of structural and behavioral refactorings and the evaluation of its
refactoring operations with case studies in hybrid system verification. We plan
to further extend the constructed proof obligations, for example with auxiliary
liveness proofs to patch existing liveness proofs when liveness relational refine-
ment cannot be shown. Another interesting direction for research is to develop
additional refinement notions based on hybrid games [24] for transferring liveness
properties about models with sensor uncertainty and actuator disturbance.

Acknowledgments. We want to thank the anonymous reviewers for their valu-
able feedback. This material is partially supported by the NSF under grants
CNS-1054246, CNS-0926181, CNS-1035800, CNS-0931985, by DARPA under
FA8750-12-2-0291, by the US DOT under # DTRT12GUTC11, and by Austrian
BMVIT grants FFG 829598, FFG 838526, FFG 838181. The research leading
to these results has received funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement n◦ PIOF-GA-2012-328378.

References

1. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6) (2010)

2. Alur, R.: Can we verify cyber-physical systems?: technical perspective. Commun.
ACM 56(10), 96 (2013)

3. Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refinement
for hierarchical hybrid systems. J. Log. Algebr. Program. 68(1-2), 105–128 (2006)

4. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15(2-3),
237–257 (2003)

5. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

496 S. Mitsch, J.-D. Quesel, and A. Platzer

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

7. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of
affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring—Improving
the Design of Existing Code. Addison-Wesley (1999)

9. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River (1985)

10. Kopetz, H.: Event-triggered versus time-triggered real-time systems. In: Karsh-
mer, A.I., Nehmer, J. (eds.) Dagstuhl Seminar 1991. LNCS, vol. 563, pp. 86–101.
Springer, Heidelberg (1991)

11. Kouskoulas, Y., Platzer, A., Kazanzides, P.: Formal methods for robotic system
control software. Tech. Rep. 2, Johns Hopkins University APL (2013)

12. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design
of a virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F.
(eds.) HSCC. ACM (2013)

13. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In: Robotics: Science and Systems (2013)

14. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic
control. In: Lu, C. (ed.) ICCPS, pp. 171–180. IEEE (2012)

15. Mitsch, S., Passmore, G.O., Platzer, A.: A vision of collaborative verification-driven
engineering of hybrid systems. In: Kerber, M., Lange, C., Rowat, C. (eds.) Do-
Form, pp. 8–17. AISB (2013)

16. Mitsch, S., Quesel, J.D., Platzer, A.: Refactoring, refinement, and reasoning: A
logical characterization for hybrid systems. Tech. Rep. CMU-CS-14-103, Carnegie
Mellon (2014)

17. Opdyke, W.F.: Refactoring Object-oriented Frameworks. Ph.D. thesis, Champaign,
IL, USA, uMI Order No. GAX93-05645 (1992)

18. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

19. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for
distributed hybrid systems. Logical Methods in Computer Science 8(4), 1–44 (2012)
(special issue for selected papers from CSL 2010)

20. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
21. Platzer, A.: The structure of differential invariants and differential cut elimination.

Logical Methods in Computer Science 8(4), 1–38 (2012)
22. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems

(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

23. Platzer, A., Quesel, J.-D.: European Train Control System: A Case Study in Formal
Verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009)

24. Quesel, J.-D., Platzer, A.: Playing hybrid games with KeYmaera. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 439–453. Springer,
Heidelberg (2012)

25. Schneider, S., Treharne, H., Wehrheim, H.: The behavioural semantics of Event-B
refinement. Formal Aspects of Computing, 1–30 (2012)

26. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer (2009)

Object Propositions

Ligia Nistor1, Jonathan Aldrich1, Stephanie Balzer1, and Hannes Mehnert2

1 School of Computer Science, Carnegie Mellon University, USA
2 IT University of Copenhagen, Denmark

{lnistor,aldrich,balzers}@cs.cmu.edu, hame@itu.dk

Abstract. The presence of aliasing makes modular verification of object-
oriented code difficult. If multiple clients depend on the properties of an
object, one client may break a property that others depend on.

We have developed a modular verification approach based on the novel
abstraction of object propositions, which combine predicates and infor-
mation about object aliasing. In our methodology, even if shared data is
modified, we know that an object invariant specified by a client holds.
Our permission system allows verification using a mixture of linear and
nonlinear reasoning. We thus offer an alternative to separation logic ver-
ification approaches. Object propositions can be more modular in some
cases than separation logic because they can more effectively hide the
exact aliasing relationships within a module. We validate the practical-
ity of our approach by verifying an instance of the composite pattern.
We implement our methodology in the intermediate verification language
Boogie (of Microsoft Research), for the composite pattern example.

1 Introduction

We propose a method for modular verification of object-oriented code in the
presence of aliasing, i.e., the existence of multiple references to the same object.
The seminal work of Parnas [21] describes the importance of modular program-
ming, where the information hiding criteria is used to divide the system into
modules.

We introduce the notion of an object proposition for the modular verification
of object-oriented code in the presence of aliasing. Object propositions com-
bine abstract predicates on objects with aliasing information about the objects
(represented by fractional permissions). They are associated with object refer-
ences and declared by programmers as part of method pre- and post-conditions.
Through the use of object propositions, we are able to hide the shared data that
two objects have in common. The implementations of the two objects use frac-
tions to describe how to access the common data, but this common data need
not be exposed in their external interface. Our main contributions are:

– A verification methodology that unifies substructural logic-based reason-
ing with invariant-based reasoning. Linear permissions (object propositions
where the fraction is equal to 1) permit reasoning similar to separation logic,
while fractional permissions (object propositions where the fraction is less

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 497–513, 2014.
c© Springer International Publishing Switzerland 2014

498 L. Nistor et al.

than 1) introduce non-linear invariant-based reasoning. Unlike prior work [6],
fractions do not indicate immutability; instead, they allow mutations that
may introduce temporary inconsistency before restoring a specified invariant.

– A proof of soundness in support of the system.
– Validation of the approach by specifying and proving partial correctness of

an instance of the composite pattern.
– An encoding in the intermediate verification language Boogie [2] of our

methodology, for a simple example and for the composite pattern.

2 Overview

Our methodology uses abstract predicates [20] to characterize the state of an
object. We embed those predicates in a logical framework, and specify sharing
using fractions [6]. A fraction can be equal to 1 or it can be less than 1.

If in the system there is only one reference to an object, that reference has a
fraction of 1 to the object, and thus full modifying control over its fields. If there
are multiple references to an object, each reference has a fraction less than 1 to
the object and each can modify the object as long as that modification does not
break a predefined invariant (expressed as a predicate). In case that modification
is not an atomic action (and instead is composed of several steps), the invariant
might be broken in the course of the modification, but it must be restored at
the end of the modification.

We introduce the novel object propositions. To express that the object q in
Figure 1 has full modifying control of a queue of integers greater or equal to 0
and less than or equal to 10, we use the object proposition q@1 Range(0, 10).
This states that there is a unique reference q pointing to a queue of integers in
the range [0,10].

We want our checking approach to be modular and to verify that implementa-
tions follow their design intent. In our approach, method pre- and post-conditions
are expressed using object propositions over the receiver and arguments of the
method. To verify the method, the abstract predicate in the object proposition
for the receiver object is interpreted as a concrete formula over the current values
of the receiver object’s fields. Following Fähndrich and DeLine [10], our verifi-
cation system maintains a key for each field of the receiver object, which is used
to track the current values of those fields through the method. A key o.f ∧ x
represents read/write access to field f of object o holding a value represented by
the concrete value x.

As an illustrative example, we consider two linked queues q and r that share
a common tail p, in Figure 1. In prior work on separation logic or dynamic
frames, the specification of any method has to describe the entire footprint of the
method, i.e., all heap locations that are being touched through reading or writing
in the body of the method. That is, the shared data p has to be specified in the
specification of all methods that access the objects in the lists q and r. Using
our object propositions, we have to mention only a permission q@1 Range(0, 10)
in the specification of a method accessing q. The fact that p is shared between

Object Propositions 499

the two aliases is hidden by the abstract predicate Range(0, 10). In Section 4 we
discuss this example in more detail.

Fig. 1. Linked queues sharing the tail

class Link {
int val; Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o⊗ v ≥ x ⊗ v ≤ y
⊗ [o@k Range(x, y) ⊕ o == null]

void addModulo11(int x)
this@k Range(0, 10) � this@k Range(0, 10)

{val = (val + x)% 11;
if (next!=null) {next.addModulo11(x);} } }

Fig. 2. Link class and Range predicate

3 Current Approaches

The verification of object-oriented code can be achieved using the classical
invariant-based technique [3]. When using this technique, all objects of the same
class have to satisfy the same invariant. The invariant has to hold in all visible
states of an object, but can be broken inside the method. Methods that can be
written for each class are restricted because now each method of a particular
class has to have the invariant of that class as a postcondition; the invariant of
an object cannot depend on another object’s state, unless additional features
such as ownership [17] are added. Thus the classic technique for checking object
invariants ensures that objects remain well-formed, but it does not help with
reasoning about how they change over time (other than that they do not break
the invariant).

Separation logic approaches [20], [9], [7], etc. bypass the limitations of
invariant-based verification techniques by requiring that each method describe its
footprint. Separation logic allows us to reason about how objects’ state changes
over time. On the downside, now the specification of a method has to reveal the
structures of objects that it uses. Our methodology can be seen as an alternative
to separation logic verification, that can be more modular for some examples.
By encoding our verification in Boogie, we have proved that it is amenable to
automation.

On the other hand, permission-based work [4], [8], [6] gives another partial
solution for the verification of object-oriented code in the presence of aliasing.
By using share and/or fractional permissions referring to the multiple aliases of
an object, it is possible for objects of the same class to have different invariants.

Krishnaswami et al. [15] show how to modularly verify programs written using
dynamically-generated bidirectional dependency information. Their solution is
application specific, as they need to find a version of the frame rule specifically
for their library. Our methodology is a general one that can potentially be used
for verifying any object-oriented program.

500 L. Nistor et al.

Nanevski et al. [18] developed Hoare Type Theory (HTT), which combines
a dependently typed, higher-order language with stateful computations. While
HTT offers a semantic framework for elaborating more practical external lan-
guages, our work targets Java-like languages and does not have the complexity
overhead of higher-order logic.

Summers and Drossopoulou [22] introduce Considerate Reasoning, an
invariant-based verification technique adopting a relaxed visible-state seman-
tics. While their work is similar to ours in that we both allow a client to depend
on properties of objects that it doesn’t (exclusively) own, they differ from us
because they use the classical invariant technique, with its drawbacks discussed
above.

4 Example: Queues of Integers

In Figure 2, we present a class that defines object propositions which are useful
for reasoning about whether the implementation of a method respects its spec-
ification. Our specification logic is based on linear logic[12], a simplification of
separation logic that retains the advantages of separation logic’s frame rule. Ob-
ject propositions are treated as resources that may not be duplicated, and which
are consumed upon usage. Pre- and post-conditions are separated with a linear
implication � and use multiplicative conjunction (⊗), additive disjunction (∼)
and existential/universal quantifiers (where there is a need to quantify over the
parameters of the predicates).

The predicate Range(int x, int y) in Figure 2 ensures that all the elements in a
linked queue starting from the current Link are in the range [x, y]. We do not need
to specify this.val in the definition of the predicate because this is implicit for
all fields of a predicate of a class. The specification of the method addModulo11
has as precondition this@k Range(0, 10): the reference calling the method has
to have a fraction k to the queue and it has to satisfy the Range(0, 10) predicate
(which is the invariant in this example). The postcondition following the � sign
states that at the end of the method all the cells of the queue are still in the
range [0,10], no matter what modifications took place inside the method. Thus
if reference q of Figure 1 calls the method addModulo11, and after reference r
calls the same method, reference r can rely on the invariant that even after q
modified the queue, all the integers in the queue are still in the range [0,10].

A critical mechanism in our methodology is packing/unpacking [8]. When
the code modifies a field, the specification has to follow suit and unpack the
predicate that contains that field (unpacking a predicate gives read/write access
to the fields of that predicate). At the end of a method, the fields have been
modified and after checking that a predicate holds, we are allowed to pack back
that predicate.

Newly created objects have a fraction of 1, and their state can be manipulated
to satisfy different predicates defined in the class. At the point where the fraction
to the object is first split into two fractions less than 1 (see Figure 4), the
predicate currently satisfied by the object’s state becomes an invariant that the

Object Propositions 501

object will always satisfy in future execution. Different references pointing to the
same object will always be able to rely on that invariant when calling methods
on the object.

The specification in separation logic is more cumbersome and unable to hide
shared data. To express the fact that all values in a segment of linked elements
are in the interval [n1, n2], we need to define the following predicate :

Listseg(r, p, n1, n2) ≡ (r = p)⇔(r ∧ (i, s)ΨListseg(s, p, n1, n2)∧n1 ∨ i ∨ n2).
This predicate states that either the segment is null, or the val field of r points
to i and the next field points to s, such that n1 ∨ i ∨ n2, and the elements on
the segment from s to p are in the interval [n1, n2]. If we wanted to verify the
code below, we would be able to do it without revealing that queues q and r
share the tail p.

Link s = new (Link(3, null),Range(0,10));
Link p = new (Link(6, s),Range(0,10));
Link q = new (Link(1, p),Range(0,10));
Link r = new (Link(8, p),Range(0,10));
r.addModulo11(9); q.addModulo11(7);

In separation logic, the natural pre- and post-conditions of the method ad-
dModulo11 would be Listseg(this, null, 0, 10). Thus, before calling addModulo11
on r, we would have to combine Listseg(r, p, 0, 10) Ψ Listseg(p, null, 0, 10) into
Listseg(r, null, 0, 10). We observe the following problem: in order to call

addModulo11 on q, we have to take out Listseg(p, null, 0, 10) and combine
it with Listseg(q, p, 0, 10), to obtain Listseg(q, null, 0, 10). But the specification
of the method does not allow it, which causes a problem in the verification of
the code above. The specification of addModulo11 has to be modified instead,
by mentioning that there exists some sublist Listseg(p, null, 0, 10) that we pass
in and which gets passed back out again. The modification is unnatural and
unmodular: the specification of addModulo11 should not care that it receives
a list made of two separate sublists, it should only care that it receives a list
in range [0, 10]. Abstract predicates used without fractional permissions have to
reveal the exact structure of the queues. When we add the fractional permissions,
we are able to hide the shared data and our work gets closer to Parkinson’s
concurrent abstract predicates [9] (with the added benefit of proven automation
potential).

5 Grammar

The programming language that we are using is inspired by Featherweight Java
[13], extended to include object propositions. We retained only Java concepts
relevant to the core technical contribution of this paper, omitting features such
as inheritance, casting or dynamic dispatch that are important but are handled
by orthogonal techniques. We plan to focus on these features in future work.

We show the syntax of our simple class-based object-oriented language in
Figure 5. In addition to the usual constructs, each class can define one or more
abstract predicates Q in terms of concrete formulas R. Each method comes with

502 L. Nistor et al.

pre- and post-condition formulas. Formulas include object propositions P , terms,
primitive binary predicates, conjunction, disjunction, keys, and quantification.
We distinguish effectful expressions from simple terms, and assume the program
is in let-normal form. The pack and unpack expression forms are markers for
when packing and unpacking occurs in the proof system. In the grammar, r
represents a reference to an object and i represents a reference to an integer. In

Prog ::= ClDecl e
ClDecl ::= class C { FldDecl PredDecl MthDecl }
FldDecl ::= T f

PredDecl ::= predicate Q(T x) ≡ R
MthDecl ::= T m(T x) MthSpec { e; return e }
MthSpec ::= R � R

R ::= P | R ⊗ R | R ⊕ R |
∃z.R | ∀z.R | r.f → x | t binop t

P ::= r@k Q(t) | unpacked(r@k Q(t))
k ::= n1

n2
(where n1, n2 ∈ N and 0 < n1 ≤ n2)

e ::= t | r.f | r.f = t | r.m(t) | newC(t) |
if (t) { e } else { e } |
let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)in e |
unpack r@k Q(t)in e

t ::= x | n | null | true | false
x ::= r | i

binop ::= + | − | % | = | ! = | ≤ | < | ≥ | >
T ::= C | int | Boolean

Fig. 3. Language and Object Propositions Grammar

order to allow objects to be aliased, we must split a fraction of 1 into multiple
fractions less than 1 [6]. When an object is created, the only reference to it has
a fraction of 1. Since object propositions are considered resources, a fraction of
1 is never duplicated. We also allow the inverse of splitting permissions: joining,
where we define the rules in Figure 4.

6 Proof Rules

This section describes the proof rules that can be used to verify correctness
properties of code.

type context λ ::= · | λ, x : T
linear context θ ::=

⊕n
i=1 θi

θi ::= · | θi ⊗ P | θi ⊗ t1 binop t2 |
θi ⊗ r.f ∧ x | ∃z.P | ∪z.P

The judgment to check an expression e is of the form λ ;θ ≥ e : ∃x.T ;R. This
is read “in valid context λ and linear context θ , an expression e executed has
type T with postcondition formula R”.This judgment is within a receiver class C,
which is mentioned when necessary in the assumptions of the rules. By writing

Object Propositions 503

∃x, we bind the variable x to the result of the expression e in the postcondi-
tion. λ gives the types of variables and references, while θ is a precondition in
disjunctive normal form. The linear context θ should be just as general as R.

The static proof rules also contain the following judgments: λ ≥ r : C, λ ;θ ≥
R and λ ;θ ≥ r.T ;R. The judgment λ ≥ r : C means that in valid type context
λ , the reference r has type C. The judgment λ ;θ ≥ R means that from valid
type context λ and linear context θ we can deduce that object proposition
R holds. The judgment λ ;θ ≥ r.T ;R means that from valid type context λ
and linear context θ we can deduce that reference r has type T and object
proposition R is true about r.

Before presenting the detailed rules, we provide intuition for why our system
is sound (the formal soundness theorem is proved in our technical report [19],
Section 9.1). The soundness of the proof rules means that given a heap that sat-
isfies the precondition formula, a program that typechecks and verifies according
to our proof rules will execute, and if it terminates, will result in a heap that
satisfies the postcondition formula. The first invariant enforced by our system is
that there will never be two conflicting object propositions to the same object.
The fraction splitting rule can give rise to only one of two situations, for a par-
ticular object: there exists a reference to the object with a fraction of 1, or all
the references to this object have fractions less than 1. For the first case, sound
reasoning is easy because aliasing is prohibited. The second case, concerning

k ∈ (0, 1]

r@k Q(t) � r@ k
2 Q(t) ⊗ r@ k

2 Q(t)
(Split)

α ∈ (0, 1) k ∈ (0, 1] α < k

r@α Q(t1) ⊗ r@(k − α) Q(t1) � r@k Q(t1)
(Add)

Fig. 4. Rules for adding/splitting fractions

fractional permissions less than 1, follows an inductive argument in nature. The
argument is based on the property that the invariant of a shared object (one
can think of an object with a fraction less than 1 as being shared) is assumed to
hold whenever that object is packed.

The reader must pay attention here: we assume that the invariant holds, we
do not state that the invariant is true in the Boolean sense. This is because
another reference might be in the process of modifying the same object. Even
so, that reference will restore the invariant when it is done modifying the object
and it will pack back the invariant. That is why we can assume that the invariant
holds. In this way, a predicate is true in the Boolean sense when its definition
is true and all predicates of other objects that it transitively depends on are
packed. The base case in the induction occurs when an object with a fraction
of 1, whose invariant holds, first becomes shared. In order to access the fields
of an object, we must first unpack the corresponding predicate; by induction,
we can assume its invariant holds as long as the object is packed. We know the
object is packed immediately before the unpack operation, because the rules of
our system ensure that a given predicate over a particular object can only be
unpacked once; therefore, we know the object’s invariant holds. Assignments to
the object’s fields may later violate the invariant, but in order to pack the object

504 L. Nistor et al.

back up we must restore its invariant. For a shared object, packing must restore
the same predicate the object had when it was unpacked; thus the invariant
of an object never changes once that object is shared, avoiding inconsistencies
between aliases to the object. (Note that if at a later time we add the fractions
corresponding to that object and get a fraction of 1, we will be able to change
the predicates that hold of that object. But as long as the object is shared, the
invariant of that object must hold.)

This completes the inductive case for soundness of shared objects. The in-
duction is done on the steps when a predicate is packed or unpacked. All of the
predicates we might infer will thus be sound because we will never assume any-
thing more about that object than the predicate invariant, which should hold
according to the above argument.

In the following paragraphs, we describe the most interesting proof rules while
inlining the rules in the text. The rest of the rules are described in the technical
report [19] in Section 6. In the rules below we assume that there is a class C
that is the same for all the rules.

New checks object construction. We get a key for each field and the remaining
linear context θ1. The context θ1 contains the object propositions of θ from
which we extracted the object propositions of the form z.f ∧ t containing the
fields of the newly created object.

fields(C) = T f Γ � t : T

Γ ;Π � new C(t) : ∃z.C; z.f → t⊗Π1

New

The Call rule simply states what is the object proposition that holds about
the result of the method being called. This rule first identifies the specification
of the method (using the helper judgment Mtype) and then goes on to state the
object proposition holding for the result. The ≥ notation in the fourth premise
of the Call rule represents entailment in linear logic.

The reader might see that there are some concerns about the modularity of the
CALL rule: θ1 shouldn’t contain unpacked predicates. Indeed, it is important
that the CALL rule tracks all shared predicates that are unpacked. It does not
track predicates that are packed, nor unpacked predicates that have a fractional
permission of 1. Our verification methodology works best when the predicates of
shared objects being passed to methods are all packed. The normal situation is
indeed that all shared predicates are packed, and any method can be called in this
situation. We only make calls with a shared unpacked predicate when traversing
a data structure hand-over-hand as in the Composite pattern in Section 7. The
fact that we need to track unpacked shared predicates does represent a limitation
in our system, however, it is one that goes hand in hand with the advantage of
supporting shared predicates. The implementation in Boogie [2] that we describe
in Section 8 has offered us insight in how to deal with this situation in a practical
way.

Object Propositions 505

Γ � r0 : C0 Γ � t1 : T
Γ ;Π � [r0/this][t1/x]R1 ⊗Π1

mtype(m,C0) = ∀x : T .∃result.Tr;R
′
1 � R

R1 � R′
1

Π1 cannot contain unpacked predicates

Γ ;Π � r0.m(t1) : ∃ result.Tr; [r0/this][t1/x]R ⊗Π1
Call

Γ ;Π � t1 : Ti; t1@k0 Q0(t0)⊗Π1

Γ ;Π1 � r1.fi : Ti; r
′
i@k′ Q′(t′)⊗Π2

Π2 � r1.fi → r′i ⊗Π3

Γ ;Π � r1.fi = t1 : ∃x.Ti;x@k′ Q′(t′)⊗ t1@k0 Q0(t0)
⊗ r1.fi → t1 ⊗Π3

Assign

The rule Assign assigns an object t to a field fi and returns the old field
value as an existential x. For this rule to work, the current object this has to be
unpacked, thus giving us permission to modify the fields. The rules for packing
and unpacking are Pack1, Pack2, Unpack1 and Unpack2. As mentioned be-
fore, when we pack an object to a predicate with a fraction less than 1, we have
to pack it to the same predicate that was true before the object was unpacked.
The restriction is not necessary for a predicate with a fraction of 1: objects that
are packed to this kind of predicate can be packed to a different predicate than
the one that was true for them before unpacking.

Γ ;Π � r : C; [t2/x]R2 ⊗Π1

predicate Q2(Tx) ≡ R2 ∈ C
Γ ; (Π1 ⊗ r@1 Q2(t2)) � e : ∃x.T ;R

Γ ;Π � pack r@1 Q2(t2) in e : ∃x.T ;R Pack1

Γ ;Π � r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ r@k Q(t1)) � e : ∃x.T ;R

Γ ;Π � pack r@k Q(t1) in e : ∃x.T ;R Pack2

As mentioned earlier, we allow unpacking of multiple predicates, as long as the
objects don’t alias. We also allow unpacking of multiple predicates of the same
object, because we have a single linear write permission to each field. There can’t
be any two packed predicates containing write permissions to the same field.

Γ ;Π � r : C; r@1 Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C
Γ ; (Π1 ⊗ [t1/x]R1) � e : ∃x.T ;R

Γ ;Π � unpack r@1 Q(t1) in e : ∃x.T ;R Unpack1

Γ ;Π � r : C; r@k Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@k Q(t1)) � e : ∃x.T ;R
∀r′, t : (unpacked(r′@k′ Q(t)) ∈ Π ⇒ Π � r �= r′)

Γ ;Π � unpack r@k Q(t1) in e : ∃x.T ;R Unpack2

506 L. Nistor et al.

We have also developed rules for the dynamic semantics, that are used in
proving the soundness of our system, together with the standard rules of linear
logic and integer arithmetic. The reader can refer to the additional technical
report [19], Section 9, for the dynamic semantics rules and proof of soundness.

7 Composite

The Composite design pattern [11] expresses the fact that clients treat individual
objects and compositions of objects uniformly. Verifying implementations of the
Composite pattern is challenging, especially when the invariants of objects in
the tree depend on each other [16], and when interior nodes of the tree can
be modified by external clients, without going through the root. As a result,
verifying the Composite pattern is a well-known challenge problem, with some
attempted solutions presented at SAVCBS 2008 (e.g. [5,14]). We describe a new
formalization and proof of the Composite pattern using object propositions that
provides more local reasoning than prior solutions. For example, in Jacobs et
al. [14] a global description of the precise shape of the entire Composite tree
must be explicitly manipulated by clients; in our solution a client simply has a
fraction to the node in the tree it is dealing with.

We implement a popular version of the Composite design pattern, as an acyclic
binary tree, where each Composite has a reference to its left and right children
and to its parent. The code is given in Figure 5.

Each Composite caches the size of its subtrees in a count field, so that a par-
ent’s count depends on its children’s count. Clients can set a new left child or
right child at any time, to any node. This operation changes the count of all an-
cestors, which is done through a recursive call of the method updateCountRec()
that starts a notification protocol from the current node and up the tree to the
root. The pattern of circular dependencies and the notification mechanism are
hard to capture with verification approaches based on ownership or uniqueness.
We assume that the notification terminates (that the tree has no cycles) and we
verify that the Composite tree is well-formed: parent and child pointers line up
and counts are consistent.

Previously the Composite pattern has been verified with a related approach
based on access permissions and typestate [5]. That verification abstracted counts
to an even/odd typestate and relied on non-formalized extensions of a formal
system.

7.1 Specification

A Composite tree is well-formed if the field count of each node n contains the
number of nodes of the tree rooted in n. A node of the Composite tree is a leaf
when the left and right fields are null.

The goal of the specification is to verify that after we change the left child (or
right) of a node by calling the method setLeft() (or setRight()), the tree is still
in a consistent state. Since the count field of a node depends on the count fields

Object Propositions 507

pub l i c Composite ()
{ t h i s . count = 1 ;
t h i s . l e f t = nu l l ;
t h i s . r i g h t = nu l l ;
t h i s . parent = nu l l ; }

p r i va t e void updateCountRec(){
i f (t h i s . parent != nu l l)
{ t h i s . updateCount () ;
t h i s . parent . updateCountRec () ; }

e l s e t h i s . updateCount () ; }

p r i va t e void updateCount () {
i n t newc = 1 ;
i f (t h i s . l e f t != nu l l)

newc = newc + l e f t . count ;
i f (t h i s . r i g h t != nu l l)

newc = newc + r i gh t . count ;
t h i s . count = newc ; }

pub l i c void s e tL e f t (Composite l)
{ i f (l . parent==nu l l){
l . parent= th i s ;
t h i s . l e f t = l ;
t h i s . updateCountRec () ; }}

pub l i c void se tRight (Composite r)
{ i f (r . parent==nu l l){
r . parent = th i s ;
t h i s . r i g h t = r ;
t h i s . updateCountRec () ; }}

Fig. 5. Composite class

predicate count (int c) ≡
∃ ol, or, lc, rc. this.count → c ⊗

c = lc + rc + 1 ⊗ this@
1

2
left(ol, lc)

⊗ this@
1

2
right(or, rc)

predicate left (Composite ol, int lc) ≡
this.left → ol ⊗

(
(ol = null � lc = 0)

⊕ (ol �= null � ol@
1

2
count(lc))

)

predicate right (Composite or, int rc) ≡
this.right → or ⊗

(
(or = null � rc = 0)

⊕ (or �= null � or@
1

2
count(rc))

)

predicate parent () ≡
∃op, c, k. this.parent → op ⊗

this@
1

2
count(c) ⊗

((
op �= null � op@k parent() ⊗

(op@
1

2
left(this, c) ⊕ op@

1

2
right(this, c))

)

⊕ (op = null � this@
1

2
count(c))

)

Fig. 6. Predicates for Composite

of its children nodes, we must ensure that after modifying a child the invariants
of the transitive parents are restored.

We use the following methodology for verification: each node has a fractional
permission to its children, and each child has a fractional permission to its parent.
We allow unpacking of multiple object propositions as long as they satisfy the
heap invariant: if two object propositions are unpacked and they refer to the
same object then we require that they do not have fields in common. For more
information about the heap invariants, see our technical report [19] Section 9.

As a downside, the specification of the composite is verbose: we have four pred-
icates that are recursive and depend on each other. The source of this verbosity
comes from the the fact that the composite example itself is complicated and
thus necessitates a complicated specification and verification. We allow clients
to directly mutate any place in the tree, using predicates that reason about
one object in the composite at a time and treat other objects in the composite
abstractly. Note that a simpler specification is possible in our system but would
limit mutation to the root of the tree.

508 L. Nistor et al.

The predicates of the Composite class are presented in Figure 6. The definition
of each predicate mentions the field with the same name and how that field
interacts with the other predicates. Thus, the predicate count has a parameter
c, which is an integer representing the value at the count field. There are two
existentially quantified variables lc and rc, for the count fields of the left child
lc and the right child rc. By c = lc+ rc+1 we make sure that the count of this
is equal to the sum of the counts for the children plus 1. By this@ 1

2 left(ol, lc)⊗
this@ 1

2 right(or, rc) we connect lc to the left child (through the left predicate)
and rc to the right child (through the right predicate). The count predicate
ensures that the tree starting at the current node has the count fields of all
nodes in a consistent state.

The predicate left states that the predicate count(lc) holds for this.left, the
left child of this. The predicate right states that the predicate count(rc) holds for
this.right, the right child of this. The permission for the left (right) predicate
is split in equal fractions between the count predicate and the left (right) child’s
parent predicate.

Inside the parent predicate of this, there is a 1
2 permission to the count

predicate (and implicitly to its count field) of this. When a method needs to
modify the count field of an object, it will need a fraction of 1 to the count
predicate, since this predicate has parameters in its declaration and the changes
of these parameters are visible to other references. The other 1

2 permission is
taken from unpacking the left predicate (or right, depending if this is the left
or right child of its parent) of op. This is the reason why there is only a half
permission to the count predicate in the left predicate, because the other half is
in the parent predicate. The parent predicate contains only a fraction of k to the
parent of this so that any client can use the remaining fraction to reference the
node and add children to the parent. Note that a client cannot use a fraction of
1 to the parent predicate of this because after the Composite tree is created and
all the predicates established, the k fraction to the parent predicate of this has
been used; the verification system keeps track of the fractional permissions and
the clients can use that information. A client can actually use this to update the
parent field, but in order to pack the parent predicate the client has to ensure
that the field count of each node n contains the number of nodes of the tree
rooted in n (the well-formedness condition of the Composite example). If this
condition is not met, the client will not be able to pack the parent predicate; the
Boogie implementation will not allow the parent predicate to be packed because
its definition is not satisfied.

The parent predicate is the invariant in the Composite example and ensures
that all the nodes in the tree, both below and above the current node, are in a
consistent state. If the left child of this is replaced with a new node (by calling
the method setLeft), we need to change the count field of this. Because the
count predicate has parameters that might change when the left child of this
is modified, we need a fraction of 1 (full permission) in order to change it. The
only invariant in the Composite example is the predicate parent which has no
parameters; this absence of parameters makes it possible to not reveal to outside

Object Propositions 509

clients the changes in the count fields inside the tree. Other clients that depend
on the parent invariant of any node in the tree will be able to still rely on
that invariant at the end of calling the public method setLeft. Note that the
implementation of setLeft(l) does nothing in the case that parameter l already
has a parent. Only the methods setLeft, setRight and the constructor in Figure
5 are public and these are the only methods that can be called by external clients;
all other methods are private, as they are helper methods that help to restore
the consistency in the tree and they can only be called by references internal to
the tree. Thus when we obtain a full permission to the count field of this we are
sure that no other reference exists to this field (internal or external).

A permission of 1
2 to the count field of this is acquired by unpacking the

count predicate of this. Getting the other half requires us to unpack the parent
predicate of this, which gives us access to the count predicate of the parent op of
this. Now we can unpack the count predicate of the parent op and we get access
to the left and right predicates of the parent op. We assume that this is the
right child of its parent (the other way is analogous). Inside the right predicate
of the parent, there is the other half of the permission to the count predicate
of this (and implicitly to the count field of this). By adding the two halfs we
have a permission of 1 to the count field of this and we can modify it by calling
the method updateCount. We recursively unpack the count predicates of the
ancestors of this all the way to the root node.

Note that after calling the method updateCount, the count predicate of this
can be packed because the tree that has this as the root is consistent now.
The parent predicate of this cannot be packed however because the parent
predicate of this is now inconsistent. The parent predicates will be recursively
unpacked before calling the method updateCountRec and they will be packed
back only when the recursion finishes. Thus, the parent predicate of this will
be packed only after the call this.updateCountRec() returns. Since all parent
predicates will be packed, this signals that the tree is in a consistent state. The
complete specification for each method is given in Figure 7. The method setLeft
(or setRight) is the one being called by clients when they want to modify the
Composite tree and this method has to preserve the invariant parent in its
specification. When the programmer writes the specifications of the methods
updateCount and updateCountRec, he/she should be guided by what object
propositions hold before the calls to these functions and what object propositions
should hold afterwards, in order for the invariant parent to hold at the end of
the method setLeft. The constructor of the class Composite returns half of
the permission for the left and right predicates, and half of a permission to
the parent predicate. Note that it could return half of a permission to its count
predicate, depending if the programmer needs that predicate to prove a property
right after a new Composite object is created.

The method updateCountRec() takes in a fraction of k1 to the unpacked
parent predicate and a half fraction to the unpacked count predicate of this,
and it returns the k1 fraction to the packed parent predicate. This means that
after calling this method, the parent predicate holds for this.

510 L. Nistor et al.

pub l i c Composite ()
� this@ 1

2
parent() ⊗ this@ 1

2
left(null, 0) ⊗

this@ 1
2

right(null, 0)
{ . . . }

p r i v a t e void updateCount ()
∃ c, c1, c2, ol, or.
unpacked(this@1 count(c)) ⊗
this@ 1

2
left(ol, c1) ⊗ this@ 1

2
right(or, c2)

� ∃ c. this@1 count(c)
{ . . . }

pub l i c void s e t L e f t (Composite l)
this �= l ⊗ this@ 1

2
left(null, 0) ⊗ ∃ k1, k2.

(this@k1 parent() ⊗ l@k2 parent()) �
∃ k.this@k parent()
{ . . . }

p r i v a t e void updateCountRec ()
∃ k1, opp, lcc, k, ol, lc, or, rc.
(unpacked(this@ k1 parent()) ⊗
this.parent → opp ⊗
opp �= this ⊗
((((opp �= null � opp@k parent() ⊗

(opp@ 1
2

left(this, lcc) ⊕
opp@ 1

2
right(this, lcc))

)) ⊕
(opp = null � this@ 1

2
count(lcc))

)) ⊗
unpacked(this@ 1

2
count(lcc)) ⊗

this@ 1
2

left(ol, lc)⊗this@ 1
2

right(or, rc)
� ∃ k1.this@k1 parent())
{ . . . }

Fig. 7. Specifications for Composite methods

In the same way, the method updateCount takes in the unpacked predicate
count for this object and it returns the count predicate packed for this. The
object propositions this@1

2 left(ol, c1) ⊗this@1
2 right(or, c2) come from the defi-

nition of the unpacked predicate count(c), they are not different ones. The only
part of the predicate count(c) that is not in the precondition of the method
updateCount is c = lc + rc + 1; this is because when entering the method
updateCount, the count field of this might not be in a consistent state, con-
sidering that the left (or right) child of this has been replaced in setLeft (or
setRight).

Thus, after calling updateCount(), the object this satisfies its count predicate.
We need a fraction of 1 to the count predicate both in the precondition and the
postcondition because the method updateCount modifies the field count of this
and because the parameter of the predicate count is the actual value of the field
count. If this value is modified and revealed to other references, the method
modifying it should have a permission of 1 (full) to the field count.

The method setLeft(Composite l) takes in a fraction to the parent predicate
of this and a fraction to the parent predicate of l . The postcondition shows
that after calling setLeft, the parent predicate holds.

8 Implementation of Composite Using Boogie

We manually verified the Composite example (see Section 11.3 of our technical
report [19]) and we implemented our verification in the intermediate verification
language Boogie (see the code in Section 11.2 of our technical report). All three
methods and the constructor of the Composite class from Figure 5 were formally

Object Propositions 511

verified by the Boogie tool [1]. In our Boogie encoding, we created a type type Ref
to represent references of type Composite. We represented the heap by creating
maps from objects to their fields: for example we represented the field left by
var left: [Ref]Ref; which maps an object of type Composite to its left child of
type Composite. We created a new map type to keep count of fractions type
FractionType = [Ref, PredicateTypes] int;. Given a reference of type Composite
and the name of a predicate, a map of type FractionType returns the fraction
associated with that reference and that predicate. In our Boogie encoding, a
fraction of 1 is represented by 100, while a fraction of 1

2 by 50. We used assume
statements in Boogie to assume facts that we knew were true according to our
methodology. We used assert statements in Boogie whenever we needed to prove
something(e.g. before packing a predicate).

For each predicate we wrote a function and several axioms related to that
function. These axioms were of two types: related to the packing of that predicate
- stating what are the properties necessary for packing that predicate and for
it being true; and related to the unpacking of that predicate - given that the
predicate is true, we stated the properties that are true according to the definition
of the predicate.

Since Boogie creates verification conditions that it sends to the Z3 theorem
prover, we had to pay special attention to existential and universal quantification.
We wrote three axioms that helped our proof with the instantiation of variables.
For example, the parameter c of the count predicate represents the value of the
count field of this, but in the parent predicate it is existentially quantified. We
wrote an axiom that indicates to Boogie that the existentially quantified value
c is actually count[this], i.e., the value of the count field of this. We also had
to write two frame axioms that informed Boogie that even if a global map was
modified, that did not impact the part of the global map that was used in certain
predicates and thus the predicates were not modified.

The most interesting insight that we got from using Boogie for the verification
of the Composite pattern was that when we enter a method with some predicates
unpacked (in the precondition), as in the case of the method updateCountRec,
we cannot assume that the invariants that are packed are true in the Boolean
sense. This is related to the discussion of the Call rule from Section 6. We can
however assume that they hold, which means that they will be true at the end of
the method that is accessing them. If a predicate is true or not in the Boolean
sense does not modify the fractions to other objects that it holds inside. We can
use this information about fractions to obtain full permission to the predicates
that we want to modify (such as the predicate count, as described in the previous
section).

Our final goal is to create a tool that automatically translates our Java-like code
and specifications into Boogie. We believe that most of the Boogie encoding that
we have manually translated can be automatically translated into Boogie, apart
from the axioms about the instantiation of existential variables and the frame ax-
ioms. Without these axioms, Boogie will report that some assertions might not
hold. In that case, the developers could simply assume those statements instead

512 L. Nistor et al.

of trying to prove them using assert, or they could improve the translation by
writing the axioms themselves.

References

1. http://rise4fun.com/Boogie/
2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A

modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology Special
Issue: ECOOP 2003 workshop on Formal Techniques for Java-like Programs 3(6),
27–56 (2004)

4. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA, pp. 301–320 (2007)

5. Bierhoff, K., Aldrich, J.: Permissions to specify the composite design pattern. In:
Proc. of SAVCBS 2008 (2008)

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

7. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010)

8. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

9. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

10. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for impera-
tive programming. In: PLDI, pp. 13–24 (2002)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

12. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus

for Java and GJ, pp. 132–146 (2001)
14. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separa-

tion logic. In: Proc. of SAVCBS 2008 (2008)
15. Krishnaswami, N.R., Birkedal, L., Aldrich, J.: Verifying event-driven programs

using ramified frame properties. In: TLDI 2010, pp. 63–76 (2010)
16. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges

for sequential object-oriented programs. Form. Asp. Comput. 19, 159–189 (2007)
17. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.

(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)
18. Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract Predicates and

Mutable ADTs in Hoare Type Theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 189–204. Springer, Heidelberg (2007)

http://rise4fun.com/Boogie/

Object Propositions 513

19. Nistor, L., Aldrich, J., Balzer, S., Mehnert, H.: Object propositions. Technical
Report CMU-CS-13-132, Carnegie Mellon University (2013),
http://www.cs.cmu.edu/~lnistor/techReportCMU-CS-13-132.pdf

20. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–
258 (2005)

21. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15, 1053–1058 (1972)

22. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design
pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 328–344. Springer, Heidelberg (2010)

http://www.cs.cmu.edu/~lnistor/techReportCMU-CS-13-132.pdf

Flexible Invariants through Semantic Collaboration�

Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and Bertrand Meyer

Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Modular reasoning about class invariants is challenging in the pres-
ence of collaborating objects that need to maintain global consistency. This pa-
per presents semantic collaboration: a novel methodology to specify and reason
about class invariants of sequential object-oriented programs, which models de-
pendencies between collaborating objects by semantic means. Combined with a
simple ownership mechanism and useful default schemes, semantic collabora-
tion achieves the flexibility necessary to reason about complicated inter-object
dependencies but requires limited annotation burden when applied to standard
specification patterns. The methodology is implemented in AutoProof, our pro-
gram verifier for the Eiffel programming language (but it is applicable to any
language supporting some form of representation invariants). An evaluation on
several challenge problems proposed in the literature demonstrates that it can
handle a variety of idiomatic collaboration patterns, and is more widely applica-
ble than the existing invariant methodologies.

1 The Perks and Pitfalls of Invariants

Class invariants1 are here to stay [21]—even with their tricky semantics in the presence
of callbacks and inter-object dependencies, which make reasoning so challenging [16].
The main reason behind their widespread adoption is that they formalize the notion of
consistent class instance, which is inherent in object-orientated programming, and thus
naturally present when reasoning, even informally, about program behavior.

The distinguishing characteristic of invariant-based reasoning is stability: it should
be impossible for an operation m to violate the invariant of an object o without modify-
ing o itself. Stability promotes information hiding and simplifies client reasoning about
preservation of consistency: without invariants a client would need to know which other
objects o’s consistency depends on, while with invariants it is sufficient that it checks
whether m modifies o—a piece of information normally available as part of m’s speci-
fication. The goal of an invariant methodology (also called protocol) is thus to achieve
stability even in the presence of inter-object dependencies—where the consistency of o
depends on the state of other objects, possibly recursively or in a circular fashion (see
Sect. 2 for concrete examples).

The numerous methodologies introduced over the last decade, which we review in
Sect. 3, successfully relieve several difficulties involved in reasoning with invariants; but

� Work partially supported by SNF grants LSAT/200020-134974, ASII/200021-134976, and
FullContracts/200021-137931; and by Hasler-Stiftung grant #2327.

1 Also known under the names “object invariants” or “representation invariants”.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 514–530, 2014.
c© Springer International Publishing Switzerland 2014

Flexible Invariants through Semantic Collaboration 515

there is still room for improvement in terms of flexibility, usability, and automated tool
support. In this paper, we present semantic collaboration (SC): a novel methodology for
specifying and reasoning about invariants in the presence of inter-object dependencies
that combines flexibility and usability and is implemented in a program verifier.

A standard approach to inter-object invariants is based on the notion of ownership,
which has been deployed successfully in several invariant methodologies [2,10,15] and
is available in tools such as Spec# [3] and VCC [4]. Under this model, an invariant
of an object o only depends on the state of the objects explicitly owned by o. Owner-
ship is congenial to object-orientation because it supports a strong notion of encapsu-
lation; however, not all inter-object relationships are hierarchical and hence reducible
to ownership. Multiple objects may also collaborate as equals, mindful of each other’s
consistency; a prototypical example is the Observer pattern [6] (see Sect. 2).

Semantic collaboration (introduced in Sect. 4) naturally complements ownership to
accommodate invariant patterns involving collaborating objects. Most existing method-
ologies support collaboration through dedicated specification constructs and syntactic
restrictions on invariants [10,1,14,20]; such disciplines tend to work only for certain
classes of problems. In contrast, SC relies on standard specification constructs—ghost
state and invariants—to keep track of inter-object dependencies, and imposes semantic
conditions on class invariant representations. Its approach builds upon the philosophy of
locally-checked invariants (LCI) [5]: a low-level verification method based on two-state
invariants. LCI has served as a basis for other specialized, user- and automation-friendly
methodologies for ownership and shared-memory concurrency. SC can be viewed as an
improved specialization of LCI for object collaboration. To further improve usability,
SC comprises useful “defaults”, which characterize typical specification patterns.

We implemented SC as part of AutoProof, our automated verifier for the Eiffel
object-oriented programming language. The implementation provides more concrete
evidence of the advantages of SC compared to other methodologies to specify collabo-
rating objects (e.g., [1,11,20,14] all of which currently lack tool support). We present an
experimental evaluation of SC and existing invariant protocols in Sect. 5, based on an
extended set of examples, including challenge problems from the SAVCBS workshop
series [17]. The evaluation demonstrates that SC is the only methodology that supports
(a) collaboration with unknown classes, while preserving stability, and (b) invariants
depending on unbounded sets of objects, possibly unreachable in the heap. The collec-
tion of problems of Sect. 5—available at [18] together with our solutions—could serve
as a benchmark to evaluate invariant methodologies for non-hierarchical object struc-
tures. The website [18] also gives access to the extended version of this paper and to a
web interface to AutoProof.

2 Motivating Examples: Observers and Iterators

The Observer and Iterator design patterns are widely used programming idioms [6],
where multiple objects depend on one another and need to maintain a global invariant.
Their interaction schemes epitomize cases of inter-object dependencies that ownership
cannot easily describe; therefore, we use them as illustrative examples throughout the
paper, following in the footsteps of much related work [11,16,14].

516 N. Polikarpova et al.

class SUBJECT
value: INTEGER
subscribers: LIST [OBSERVER]

update (v: INTEGER)
do

value := v
across subscribers as o do o.notify end

end

register (o: OBSERVER) -- Internal
require

not subscribers.has (o)
do

subscribers.add (o)
end

end

class OBSERVER
subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor
do

subject := s
s.register (Current)
cache := s.value

end

notify -- Internal
do

cache := subject.value
end

invariant
cache = subject.value

end

Fig. 1. The Observer pattern: an observer’s invariant depends on the state of the SUBJECT,
which reports its state changes to all its subscribers. The clients of the subscribers must be able
to rely on their cache always being consistent, while oblivious of the update/notify mechanisms
that preserve invariants.

Observer Pattern. Fig. 1 shows the essential parts of an implementation of the Ob-
server design pattern in Eiffel. An arbitrary number of OBSERVER objects (called “sub-
scribers”) monitor the public state of a single instance of class SUBJECT. Each subscriber
maintains a copy of the subject’s relevant state (integer attribute value in Fig. 1) into
one of its local variables (attribute cache in Fig. 1). The subscribers’ copies are cached
values that must be consistent with the state of the subject, formalized as the invari-
ant clause cache = subject.value of class OBSERVER, which depends on another object’s
state. This dependency is not adequately captured by ownership schemes, since no one
subscriber can have exclusive control over the subject.

In the Observer pattern, consistency is maintained by means of explicit collaboration:
the subject has a list of subscribers, updated whenever a new subscriber registers itself
by calling register (Current)2 on the subject. Upon every change to its state (method
update), the subject takes care of explicitly notifying all registered subscribers (using
an across loop that calls notify on every o in subscribers). This explicit collaboration
scheme—called “considerate programming” in [20]—ensures that the subscribers’ state
remains consistent (i.e., the class invariant holds) between calls to the public methods
of the object structure.

A methodology to verify the Observer pattern must ensure invariant stability; namely,
that clients of OBSERVER can rely on its invariant without knowledge of the register/notify
mechanism. Another challenge is dealing with the fact that the number of subscribers
attached to the subject is not fixed a priori, and hence we cannot produce explicit syn-
tactic enumerations of the subscribers’ cache attributes. We must also be able to verify
update and notify without relying on the class invariant as precondition—in fact, those
methods are called on inconsistent objects precisely to restore consistency.

In the Iterator pattern, an arbitrary number of iterator objects traverse a collection
of elements. Fig. 2 sketches an implementation where the COLLECTION uses an ARRAY of

2 Current in Eiffel denotes the current object (this in Java and C#).

Flexible Invariants through Semantic Collaboration 517

class COLLECTION [G]
count: INTEGER
elements: ARRAY [G] -- Internal

add (v: G)
do . . . end

remove_last
require

count >0
do

count := count − 1
end

invariant
0≤ count and count≤ elements.count

end

class ITERATOR [G]
target: COLLECTION [G]
before, after: BOOLEAN

item: G
require

not (before or after)
do

Result := target.elements [index]
end

index: INTEGER -- Internal
invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count

end

Fig. 2. The Iterator pattern: an iterator’s invariant depends on the state of the collection it tra-
verses, which is oblivious of the iterators. Verification must prove that clients do not access dis-
abled iterators, without knowing collection’s and iterator’s internal states.

elements as underlying representation. The ITERATOR’s main capability is to return the
item at the current position index in the target collection3. item’s precondition (require)
specifies that this is possible only when the iterator points to a valid element of target,
that is index is between 1 and target.count (included); otherwise, if index is 0 the iter-
ator is before the list, and if it equals target.count + 1 it is after the list. The invariant
of class ITERATOR defines the public state components before and after in terms of the
internal state component index, as well as the acceptable variability range for index.

Since the iterator’s invariant depends on the state of the target collection, modify-
ing the collection (for example, by calling remove_last) may disable the iterator (make
it inconsistent). This is aligned with the intended usage of iterators, which should be
discarded after traversing a collection without changing it. A verification methodology
should ensure that clients of ITERATOR only access iterators in a consistent state, without
knowledge of the iterator’s internal state index or of its relation to the target collection.
An additional obstacle to verification comes from the fact that considerate programming
would be at odds with the ephemeral nature of iterators compared to observers: collec-
tions are normally implemented unaware of the iterators operating on them; a flexible
invariant methodology should allow such implementations.

3 Existing Approaches

A crucial issue is deciding when (at which program points) class invariants should hold:
state-changing operations normally consist of sequences of elementary updates, which
individually may break the class invariant temporarily. To deal with this problem, some
methodologies restrict the program points where class invariants are expected to hold;
others interpret the invariants in a weakened form, which holds vacuously at intermedi-
ate steps during updates (and fully at crucial points).

3 We omit the description of other necessary operations, such as advancing the iterator, since
they are irrelevant for our discussion about invariants.

518 N. Polikarpova et al.

Methodologies based on visible-state semantics [12,7] only require invariants to
hold when no operation is being executed on their objects, that is in states visi-
ble to clients. Without additional mechanisms, visible-state semantics cannot achieve
modularity in the presence of callbacks and inter-object dependencies. Existing solu-
tions adopt aliasing control measures [15] to deal with hierarchical object structures.
Other solutions [13,14,20], for collaborative invariants, explicitly indicate which objects
might be inconsistent at method call boundaries. These two families of solutions—for
hierarchical and for collaborative object structures—based on visible-state semantics
are not easily combined; this is a practical limitation, since many object-oriented sys-
tems consist of an interplay between both types of structures.

Another family of methodologies, collectively known as Boogie methodologies after
the program verifier where they have originally been implemented, follow the approach
of weakening the default semantics of invariants so that they can be evaluated only when
appropriate. In a nutshell, all classes include a ghost Boolean attribute closed,4 which
denotes whether an object is in a consistent state; an invariant inv is then interpreted
as the weaker closed⇒inv, which vacuously holds for open (i.e., not closed) objects.
Methods explicitly indicate whether they expect relevant objects to be closed or open;
this approach is more conducive to modularity than visible-state semantics (where a
method must list all possibly inconsistent objects in the entire program).

The original Boogie methodologies, implemented in the Spec# system [3], are main-
ly based on syntactic mechanisms to express ownership relations. For example, follow-
ing [2], we would annotate attribute elements of class COLLECTION in Fig. 2 with rep, to
denote that it belongs to COLLECTION’s internal representation; thus, modifying elements

is only possible if the COLLECTION object owning it has been opened—a situation where
closed⇒count≤ elements.count vacuously holds. This solution only supports represen-
tations based on bounded sets of objects known a priori and directly accessible through
attributes. Follow-up work [10] partially relaxes these restriction introducing a form of
quantification predicating over an owner ghost attribute (which goes up the ownership
hierarchy), and a mechanism to transfer ownership.

In contrast, the VCC verifier [4] implements a Boogie methodology where owner-
ship is encoded on top of LCI’s semantic approach [5]. Objects include an additional
ghost attribute, owns, storing the set of all owned objects; ghost code modifies this set
explicitly when the owner object is open. In the example of Fig. 2, instead of anno-
tating attribute elements with rep, we would introduce a first-order formula, such as
owns = {elements}, in the invariant of COLLECTION to express that elements is part of the
representation. The advantage of this approach becomes apparent with linked struc-
tures where owned elements are accessible only by following chains of references (e.g.,
a linked list owns all reachable cells). In fact, semantic approaches to ownership provide
the flexibility necessary to specify an unbounded number of owned objects, which may
even be not directly attached to the owner, as well as to implement ownership transfers
without need for ad hoc mechanisms. They also simplify the rules of reasoning; for ex-
ample, invariant admissibility becomes a simple proof obligation that all objects whose
state is mentioned in the invariant are bound, by the same invariant, to belong to owns.
These features have contributed to making VCC applicable to real-world systems [9].

4 We follow VCC’s terminology [4] whenever applicable; other works may use different names.

Flexible Invariants through Semantic Collaboration 519

In addition to ownership, some Boogie methodologies also deal with collaborat-
ing objects. [10] introduces the notion of visibility-based invariants, which requires
that a class be aware of the types and invariants of all objects concerned with its
state5. For example, in Fig. 1 SUBJECT must declare its value attribute with a modi-
fier dependent OBSERVER. Whenever the subject changes its value, it has to check that all
potentially affected OBSERVERs are open. If aware of the OBSERVER’s invariant, it can show
that the only affected observers are {o: OBSERVER | o.subject = Current}. Such indi-
rect representations of the concerned objects complicate discharging the corresponding
proof obligations; and relying on knowing the concerned objects’ invariants introduces
tight coupling between the collaborating classes. To lift these complications, [1] sug-
gests instead to introduce a ghost attribute deps storing the set of all concerned objects.
It also introduces update guards, allowing a concerned object to state conditions under
which its invariant is preserved without revealing the invariant itself. Both approaches
[10,1] have shortcomings that derive from their reliance on syntactic mechanisms and
conditions: collaboration invariants can only depend on a bounded number of objects
known a priori and accessible through attributes (called “pivot fields” in [1]); the types
of the concerned objects must be known explicitly; and the numerous ad hoc annotations
(e.g., friend and keeping) and operations (e.g., to modify deps) make the methodolo-
gies harder to present and use. One of the main goals of our methodology (Sect. 4) is
to lift these shortcomings by dealing with collaborative invariants by semantic rather
than syntactic means—similarly to what VCC did to the classic syntactic treatment of
ownership.

Somewhat orthogonally to other Boogie-family approaches, the history invariants
methodology [11] provides for more loose coupling between the collaborating classes,
but gives up stability of invariants.

4 Semantic Collaboration

Our novel invariant methodology belongs to the Boogie family; as we illustrated in
Sect. 3, this entails that objects can be open or closed, and class invariants have to hold
only for closed objects. On top of semantic mechanisms for ownership, similar to those
developed for VCC (see Sect. 3), our methodology also provides a semantic treatment
of dependencies among collaborating objects; hence its name semantic collaboration.
The keywords and constructs specific to SC are underlined in the following.

Overview of Semantic Collaboration. To specify collaboration patterns, we equip
every object o with ghost fields subjects and observers. As their names suggest,6

o.subjects stores the set of objects on which o’s invariant might depend; and o.observers
stores the set of objects potentially concerned with o (analogous to deps in [1]). The
methodology achieves modularity by reducing global validity (all closed objects satisfy
their invariants) to local checks of two kinds: (i) all concerned objects are stored in
observers; and (ii) updates to the attributes of an object o maintain the validity of o and

5 We say that an object o is concerned with an attribute a of another object s if updating s.a
might affect o’s invariant.

6 While the names are inspired by the Observer pattern, they are also applicable to other collab-
oration patterns, as we demonstrate in Sect. 4.4. The formatting should avoid confusion.

520 N. Polikarpova et al.

its observers. Check (i) becomes an admissibility condition that every declared class
invariant must satisfy. Check (ii) holds vacuously for for open observers, thus one way
to satisfy it is to “notify” all observers of a potentially destructive update by opening
them. For more flexibility the methodology also allows subjects to skip “notifying” ob-
servers whenever the attribute update satisfies its guard (a notion also inspired by [1]).
This option is supported by another admissibility condition: an invariant must remain
valid after updates to subjects that comply with their update guards.

4.1 Preliminaries and Definitions

A program is a collection of classes. A class is a collection of attributes, methods, and
logical functions (side-effect free and terminating).

Built-in attributes. Every class is implicitly equipped with ghost attributes: closed

(to encode consistency); owns and owner (to encode the ownership hierarchy); and
subjects and observers (to encode collaboration). We also define the shorthands: o.open
for ¬o.closed; o.free for o.owner.open; and o.wrapped for o.closed ∧ o.free. The owner-
ship domain of an object o is {o} if o is open, and the transitive closure of o.owns if o is
closed. Attributes closed and owner are only changed indirectly through the implicitly
defined ghost methods wrap and unwrap, whose semantics is defined below.

Specifications. The specification of a logical function consists of a definition (a
side-effect free expression defining the function value) and a read clause (an expres-
sion that denotes the set of objects on which the value of the function may depend).
The specification of a method consists of a require clause (a precondition), an ensure

clause (a postcondition), and a modify clause (an expression that denotes the set of ob-
jects that the method may modify). The specification of a class includes its invariant
inv. The specification of an attribute a consists of an update guard (a Boolean expres-
sion over Current object, new attribute value y, and generic observer object o—written
guard(Current.a := y, o)).

Expressions. In addition to the standard programming-language expressions, we
support a restricted form of quantification through the syntax all x∈ s : B(x) for univer-
sal and some x∈ s : B(x) for existential quantification, where s is a set expression and B(x)
is a Boolean expression over x. The special expression Void (analogous to null in Java
and C#) denotes an object that is always allocated and open.

The read set reads(e) of a primitive expression e is defined as follows: for an access
x.a to attribute a, reads(x.a) = {x}; for a call x.f (y) to logical function f, reads(x.f (y))
is given by the f’s read clause. The read set of a compound expression e is the union of
the read sets of e’s subexpressions.

The current heap H in which expressions are evaluated is normally clear from the
context and left implicit. Otherwise, eh denotes the value of expression e in heap h; and
h[x.f →∧ e] denotes the heap that agrees with h everywhere except possibly about the
value of x.f, which is e.

Instructions. For the present discussion, we only have to consider method calls
x.m (y), as well as heap update instructions: create x (allocate an object and attach it to
x); x.a := y (update attribute a); and x.wrap and x.unwrap (opening and closing an object).
The write set of an instruction is defined analogously to the read set of an expression,
except we take the closure under ownership domains for every method’s modify clause.

Flexible Invariants through Semantic Collaboration 521

4.2 Semantic Collaboration: Goals and Proof Obligations

The goal of any invariant methodology is to provide modular proof obligations to es-
tablish global validity: the property that every object in the program is valid at every
program point. Following SC’s approach, an object is valid if satisfies its invariant when
closed; thus global validity is defined as:

∪o : o.closed ← o.inv (G1)

Additionally, maintaining ownership-based invariants requires strengthening global
validity with the property that whenever a parent object p is closed all its owned objects
are closed (and their owner attributes point back to p):

∪o, p : p.closed ∧ o ⇒ p.owns← o.closed ∧ o.owner = p (G2)

Proof obligations. The proof obligations specific to SC consist of two types of
checks: (i) every class invariant is admissible according to Def. 1; and (ii) every heap
update instruction satisfies its precondition. Sect. 4.3 describes how establishing the
proof obligations entails global validity, that is subsumes checking (G1) and (G2).

Definition 1. An invariant inv is admissible iff:

1. inv only depends on Current, its owned objects, and its subjects:

inv ← reads(inv) ⊆
(
{Current} ⊥ owns ⊥ subjects

)
(A1)

2. All subjects of Current are aware of it as an observer:

inv ← ∪s : s ⇒ subjects ← Current ⇒ s.observers (A2)

3. inv is preserved by any update s.a := y that conforms to its guard:

∪s, a, y : s ⇒ subjects ∧ inv ∧ guard(s.a := y, Current)← invH[s.a →y] (A3)

4. (Syntactic check) inv does not mention attributes closed and owner, directly or as
part of the definitions of the mentioned logical functions.

The specifications of the heap update instructions are given below; the instructions
only modify objects and attributes mentioned in the postconditions.

Allocation creates an open object owned by Void (and thus free), with no observers:
create x require ensure

True x.open ∧ x.owner = Void ∧ x.observers = {}
Unwrapping opens a wrapped object:

x.unwrap require ensure

x.wrapped x.open
Attribute update operates on an open object and preserves validity of its observers:

x.a := y require ensure

(a �= closed) x.open x.a = y

all o ⇒ x.observers : o.open ⇔ guard(x.a := y, o)
Wrapping closes an open object, whose invariant holds, and gives it ownership over

all objects in its owns set:
x.wrap require ensure

x.open ∧ x.inv x.wrapped
all o ⇒ x.owns : o.wrapped all o ⇒ x.owns : o.owner = x

522 N. Polikarpova et al.

4.3 Soundness Argument

The soundness argument has to establish that every program that satisfies the proof
obligations of SC is always globally valid, that is satisfies (G1) and (G2). We outline a
proof of this fact in three parts. See the extended version [18] for the full proofs.

The first part concerns ownership: every methodology that, like SC, imposes a suit-
able discipline of wrapping and unwrapping to manage ownership domains reduces
(G2) to local checks.

Lemma 1. Consider a methodology M whose proof obligations verify the following:

a. freshly allocated objects are open;
b. whenever x.owner is updated or x.closed is set to False, object x is free;
c. whenever x.closed is updated to True, every object o in x.owns is closed and satisfies

o.owner = x;
d. whenever an attribute x.a (with a /⇒ {closed, owner}) is updated, object x is open.

Then every program that satisfies M ’s proof obligations also satisfies (G2) everywhere.

Proof (sketch). The proof is by induction on the length of program traces. ∃⊆

The second part applies to any kind of inter-object invariants and assumes a method-
ology that, like SC, checks that attribute updates preserve validity of all concerned
objects; we show that such checks subsume (G1). How a methodology identifies con-
cerned objects is left unspecified as yet.

Lemma 2. Consider a methodology M whose proof obligations verify the following:

a. freshly allocated objects are open;
b. whenever x.closed is updated to True, x.inv holds;
c. whenever an attribute x.a (with a ∀= closed) is updated to some y, every concerned

object satisfies (o.closed ∧ o.inv)← o.invH[x.a →y];
d. class invariants depend neither on attribute closed nor on the allocation status of

objects.

Then every program that satisfies M ’s proof obligations also satisfies (G1) everywhere.

Proof (sketch). The proof is by induction on the length of program traces, noting that
rule c explicitly requires that the validity of all concerned objects be preserved. ∃⊆

The third part of the soundness proof argues that SC satisfies the hypotheses of The-
orems 1 and 2, and hence ensures global validity.

Proposition 3. Every program that satisfies the proof obligations of SC also satisfies
(G2) and (G1) everywhere.

Proof (sketch). The crucial part is showing that SC satisfies rule c of Theorem 2;
namely, that an attribute update x.a := y preserves the invariants of all closed con-
cerned object of x. To this end, one proves that all such objects must be contained in
x.observers, which follows from the invariant admissibility conditions (A1) and (A2),
and (G2). From the precondition of the update rule and the admissibility condition (A3)
it follows that the invariants of all closed observers are preserved by the update. ∃⊆

Flexible Invariants through Semantic Collaboration 523

class SUBJECT
value: INTEGER
subscribers: LIST [OBSERVER]

update (v: INTEGER)
require

wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do

unwrap ; unwrap_all (observers)
value := v
across subscribers as o do o.notify end
wrap_all (observers) ; wrap

ensure
wrapped

all o ∈ observers : o.wrapped
observers = old observers

end

register (o: OBSERVER) -- Internal
require

not subscribers.has (o)
wrapped

o.open
modify Current

do
unwrap

subscribers.add (o)
observers := observers + { o }
wrap

ensure
subscribers.has (o)
wrapped

end
invariant

observers = subscribers.range
owns = { subscribers } and subjects = {}

end

class OBSERVER
subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor
require

open and s.wrapped
modify Current, s
do

subject := s
s.register (Current)
cache := s.value
subjects := { s } ; wrap

ensure
subject = s
wrapped and s.wrapped

end

notify -- Internal
require

open

subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

modify Current

do
cache := subject.value

ensure
inv

end
invariant

cache = subject.value
subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

end

Fig. 3. The Observer pattern using SC annotations (underlined)

4.4 Examples

We illustrate SC on the two examples of Sect. 2: Fig. 3 and 4 show the Observer and
Iterator patterns fully annotated according to the rules of Sect. 4.2. We use the short-
hands wrap_all (s) and unwrap_all (s) to denote calls to wrap and unwrap on all objects
in a set s. As we discuss in Sect. 5, several annotations of Fig. 3 and 4 are subsumed
by the defaults mentioned in Sect. 4.5. We postpone to Sect. 4.6 dealing with update
guards and the corresponding admissibility condition (A3).

Observer pattern. The OBSERVER’s invariant is admissible (Def. 1) because it en-
sures that subject is in subjects (A1) and that Current is in the subject’s observers

(A2). Constructors normally wrap freshly allocated objects after setting up their state.
Public method update must be called when the whole object structure is wrapped and
makes sure that it is wrapped again when the method terminates. This specification
style is convenient for public methods, as it allows clients to interact with the class
while maintaining objects in a consistent state, without having to explicitly discharge

524 N. Polikarpova et al.

class COLLECTION [G]
count: INTEGER
elements: ARRAY [G] -- Internal

make (capacity: INTEGER) -- Constructor
require

open

capacity ≥ 0
modify Current

do
create elements(1, capacity)
owns := { elements } ; wrap

ensure
count = 0
observers = {}

end

remove_last
require

count >0
wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do

unwrap ; unwrap_all (observers)
observers := {}
count := count − 1
wrap

ensure
wrapped

observers = {}
all o ∈ old observers : o.open

end
invariant

0≤ count and count≤ elements.count
owns = { elements } and subjects = {}

end

class ITERATOR [G]
target: COLLECTION [G]
before, after: BOOLEAN
index: INTEGER -- Internal

make (t: COLLECTION) -- Constructor
require

open and t.wrapped
modify Current, t
do

target := t ; before := True
t.unwrap
t.observers := t.observers + { Current }
t.wrap
subjects := { t } ; wrap

ensure
target = t
before and not after
wrapped

end

item: G
require

not (before or after)
wrapped and t.wrapped

do
Result := target.elements [index]

end
invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count
subjects = { target }
target.observers.has (Current)
observers = {} and owns = {}

end

Fig. 4. The Iterator pattern using SC annotations (underlined)

any condition. Methods such as register and notify, with restricted visibility, work
instead with open objects and restore their invariants so that they can be wrapped upon
return. Since notify explicitly ensures inv, update does not need the precise definition
of the observer’s invariant in order to wrap it (it only needs to know enough to establish
the precondition of notify). Thus the same style of specification would work if OBSERVER

were an abstract class and its subclasses maintained different views of subject’s value.
Let us illustrate the intuitive reason why an instance of SUBJECT cannot invalidate any

object observing its state. On the one hand, by the attribute update rule, any change
to a subject’s state (such as assignment to value in update) must be reconciled with its
observers. On the other hand, any closed concerned OBSERVER object must be contained
in its subject’s observers set: a subject cannot surreptitiously remove anything from
this set, since such a change would require an attribute update, and thus, again, would
have to be reconciled with all current members of observers.

Iterator pattern. The main differences in the annotations of the Iterator pattern
occur in the COLLECTION class whose non-ghost state is, unlike SUBJECT above, unaware of
its observers. Method remove_last has to unwrap its observers according to the update

Flexible Invariants through Semantic Collaboration 525

rule. However, it has no way of restoring their invariants (in fact, a collection is in
general unaware even of the types of the iterators operating on it). Therefore, it can
only leave them in an inconsistent state and remove them from the observers set. Public
methods of ITERATOR, such as item, normally operate on wrapped objects, and hence
in general cannot be called after some operations on the collection has disabled its
iterators. The only way out of this is if the client of collection and iterators can prove
that a certain iterator object i_x was not in the modified collection’s observers; this is
possible if, for example, the client directly created i_x. The fact that now clients are
directly responsible for keeping track of the observers set is germane to the iterator
domain: iterators are meant to be used locally by clients.

4.5 Default Annotations

The annotation patterns shown in Sect. 4.4 occur frequently in object-oriented pro-
grams. To reduce the annotation burden in those cases, we suggest some default anno-
tations: for example, to any public procedure (a method not returning values) we add
implicit pre- and postcondition that Current, its subjects, and its observers be wrapped,
as well as implicit ghost instructions to unwrap Current at the beginning and wrap it at
the end. The defaults are only optional suggestions that can be overridden by providing
explicit annotations; this ensures that they do not tarnish the flexibility and semantic
nature of our methodology. (See the extended version of this paper for more details.)

4.6 Update Guards

Update guards are used to distribute the burden of reasoning about attribute updates be-
tween subjects and observers, depending on the intended collaboration scheme. At one
extreme, if a guard(x.a := y, o) is identically False, the burden is entirely on the subject,
which must check that all observers are open whenever a is updated; in contrast, the
admissibility condition (A3) holds vacuously for the observer o. At the other extreme,
if a guard is identically True, the burden is entirely on the observer, which deals with
(A3) as a proof obligation that its invariant does not depend on a; in contrast, the subject
x can update a without particular constraints.

Another recurring choice for a guard is inv(o) ← inv(o)H[x.a →y]. For its flexibility,
we chose this as the default guard of SC. Just like False, this guard also does not burden
the observer, but is more flexible at the other end: upon updating, the subject can estab-
lish that each observer is either open or its invariant is preserved. The subject can rely
on the latter condition if the observer’s invariants are known, and ignore it otherwise.

When it comes to built-in ghost attributes, owns and subjects are guarded with True,
since other objects are not supposed to depend on them, while observers has a more
interesting guard, namely guard(x.observers := y, o) = o ⇒ y. This guard reflects the
way this attribute is commonly used in collaboration invariants, while leaving the sub-
ject with reasonable freedom to manipulate it; for example, adding new observers to
the set observers without “notifying” the existing ones (this is used, in particular, in the
register method of Fig. 3).

526 N. Polikarpova et al.

5 Experimental Evaluation

We arranged a collection of representative challenge problems involving inter-object
collaboration, and we specified and verified them using our SC methodology. This sec-
tion presents the challenge problems (Sect. 5.1), and discusses their solutions using
SC (Sect. 5.2), as well as other methodologies described in Sect. 3 (Sect. 5.3). See [18]
for full versions of problem descriptions, together with our solutions, and a web inter-
face to the AutoProof verifier.

5.1 Challenge Problems

Beside using it directly to evaluate SC, the collection of challenge problems described
in this section can be a benchmark for other invariant methodologies. The benchmark
consists of six examples of varying degree of difficulty, which capture the essence of
various collaboration patterns often found in object-oriented software. The emphasis is
on non-hierarchical structures that maintain a global invariant.

We briefly present the six problems in roughly increasing order of difficulty in terms
of the shape of references in the heap, state update patterns, and challenges posed to
preserving encapsulation. The first two problems in our set are Observer [11,16,14,17]
and Iterator [11,17], which have already been described in Sect. 2.

master

slave

slave

Master clock [1,11]. The time stored by a master clock can in-
crease (public method tick) or be set to zero (public method reset).
The time stored locally by each slave clock must never exceed the
master’s but need not be perfectly synchronized. Therefore, when
the master is reset its slaves are disabled until they synchronize
(similar to iterators); when the master increments the time its slaves

remain in a consistent state without requiring synchronization. Additional challenges:
tick’s frame does not include slaves; perform reasoning local to the master with only
partial knowledge of the slaves’ invariants.

Variants: a simplified version without reset (slaves cannot become inconsistent).

node rightleft

Doubly-linked list [10,13]. The specification expresses the
consistency of the left and right neighbors directly attached to
each node. Verification establishes that updates local to a node
(such as inserting or removing a node next to it) preserve con-

sistency. Unlike in the previous examples, the heap structure is recursive; the main chal-
lenge is thus avoiding considering the list as a whole (such as to propagate the effects
of local changes).

Composite [21,20,8], (see also SAVCBS ’08 [17]). A
tree structure maintains consistency between the values
stored by parent and children nodes (for example, the value
of every node is the maximum of its children’s). Clients can
add children anywhere in the tree; therefore, ownership is

unsuitable to model this example. Two new challenges are that the node invariant de-
pends on an unbounded number of children; and that the effects of updates local to a
node (such as adding a child) may propagate up the whole tree involving an unbounded

Flexible Invariants through Semantic Collaboration 527

Table 1. The challenge problems specified and verified using SC

SIZE TOKENS (no defaults) TOKENS (with defaults) TIME

PROBLEM (LOC) CODE REQ AUX SPEC/CODE AUX SPEC/CODE (sec.)
Observer 129 156 52 296 2.2 185 1.5 8
Iterator 177 168 176 315 2.9 247 2.5 12
Master clock 130 85 69 267 4.0 190 3.1 6
DLL 147 136 83 435 3.8 320 3.0 18
Composite 188 124 270 543 6.6 427 5.6 18
PIP 152 116 310 445 6.5 402 6.1 18
Total 923 785 960 2301 4.2 1771 3.5 80

number of nodes. Specification deals with these unbounded-size footprints; and verifi-
cation must also ensure that the propagation to restore global consistency terminates.
Clients of a tree can rely on a globally consistent state while ignoring the tree structure.

Variations: a simplified version with n-ary trees for fixed n (the number of children
is bounded); more complex versions where one can also remove nodes or add subtrees.

PIP [21,20]. The Priority Inheritance Protocol [19] de-
scribes a compound whose nodes are more loosely related
than in the Composite pattern: each node has a reference to
at most one parent node, and cycles are possible. Unlike in
the Composite pattern, the invariant of a node depends on

the state of objects not directly accessible in the heap (parents do not have references
to their children). New challenges derive from the possible presence of cycles, and the
need to add children that might already be connected to whole graphs; specifying foot-
prints and reasoning about termination are trickier.

5.2 Results and Discussion

We specified the six challenge problems using SC, and verified the annotated Eiffel
programs with AutoProof. Tab. 1 shows various metrics about our solutions: the SIZE

of each annotated program; the number of TOKENS of executable CODE, REQuirements
specification (the given functional specification to be verified), and AUXiliary anno-
tations (specific to our methodology, both with and without default annotations); the
SPEC/CODE overhead, i.e., (REQ + AUX)/CODE; and the verification time in Auto-
Proof. The overhead is roughly between 1.5 (for Observer) and 6 (for PIP), which is
comparable with that of other verification methodologies applied to similar problems.
The default annotations of Sect. 4.5 reduce the overhead by a factor of 1.3 on average.

The PIP example is perfectly possible using ghost code, contrary to what is claimed
elsewhere [21]. In our solution, every node includes a ghost set children with all the
child nodes (inaccessible in the non-ghost heap); it is defined by the invariant clause
parent �= Void⇒parent.children.has (Current), which ensures that children contains ev-
ery closed node n such that n.parent = Current. Based on this, the fundamental con-
sistency property is that the value of each node is the maximum of the values of nodes
in children (or a default value for nodes without children), assuming maximum is the
required relation between parents and children.

528 N. Polikarpova et al.

Table 2. Comparison of invariant protocols on the challenge problems
VISIBLE-STATE SEMANTICS BOOGIE METHODOLOGIES

Cooperation [14] Considerate [20] Spec# [10] Friends [1] History [11] SC
Observer ⊕ + + ⊕ ⊕d ⊕
Iterator −a −a + + ⊕d ⊕
Master clock −a −a + ⊕ ⊕d ⊕
DLL + + ⊕ + +d ⊕
Composite −b ⊕c −b −b −b ⊕
PIP −b ⊕c −b −b −b ⊕
a Only considerate programming b Only bounded set of reachable subjects
c No framing specification d No invariant stability

The main challenge in Composite and PIP is reasoning about framing and termina-
tion of the state updates that propagate along the graph structure. For framing speci-
fications, we use a ghost set ancestors with all the nodes reachable following parent

references. Proving termination in PIP requires keeping track of all visited nodes and
showing that the set of ancestors that haven’t yet been visited is strictly shrinking.

5.3 Comparison with Existing Approaches

We outline a comparison with existing invariant protocols (discussed in Sect. 3) on our
six challenge problems. Tab. 2 reports how each methodology fares on each challenge
problem:− for “methodology not applicable”, + for “applicable”, and ∼ for “applica-
ble and used to demonstrate the methodology when introduced”.

Only SC is applicable to all the challenges, and other methodologies often have other
limitations (notes in Tab. 2). Most approaches cannot deal with unbounded sets of sub-
jects, and hence are inapplicable to Composite and PIP. The methodology of [20] is an
exception as it allows set comprehensions in invariants; however, it lacks an implemen-
tation and does not discuss framing, which constitutes a major challenge in Composite
and PIP. Both methodologies [14,20] based on visible-state semantics are inapplicable
to implementations which do not follow considerate programming; they also lack sup-
port for hierarchical object dependencies, and thus cannot verify implementations that
rely on library data structures (e.g., Fig. 1 and 2).

Another important point of comparison is the level of coupling between collaborating
classes, which we can illustrate using the Master clock example. In [10], class MASTER

requires complete knowledge of the invariant of class CLOCK, which breaks information
hiding (in particular, MASTER has to be re-verified when the invariant of CLOCK changes).
The update guards of [1] can be used to declare that slaves need not be notified as long
their master’s time is increased; this provides abstraction over the slave clock’s invari-
ant, but class MASTER still depends on class CLOCK—where the update guard is defined.
In general, the syntactic rules of [1] require that subject classes declare all potential
observer classes as “friends”. In SC, update guards are defined in subject classes; thus
we can prove that tick maintains the invariants of all observers without knowing their
type. Among the other approaches, only history invariants [11] support the same level
of decoupling, but they cannot preserve stability with the reset method.

Flexible Invariants through Semantic Collaboration 529

6 Future Work

In an ongoing effort, we have been using SC to verify a realistic data structure library.
This poses new challenges to the verification methodology; in particular dealing with
inheritance. Rather than imposing severe restrictions on how invariants can be strength-
ened in subclasses, we prefer to re-verify most inherited methods to make sure they still
properly re-establish the invariant before wrapping the Current object. We maintain that
this approach achieves a reasonable trade-off.

References

1. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over shared
state. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer, Heidelberg
(2004)

2. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3 (2004)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nip-
kow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer,
Heidelberg (2009)

5. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invariants in
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 480–494. Springer, Heidelberg (2010)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley (1994)
7. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral

Specifications of Businesses and Systems, pp. 175–188 (1999)
8. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-

quential object-oriented programs. Formal Asp. Comput. 19(2), 159–189 (2007)
9. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In: Cav-

alcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809. Springer, Heidelberg
(2009)

10. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

11. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: De Nicola, R.
(ed.) ESOP 2007. LNCS, vol. 4421, pp. 80–94. Springer, Heidelberg (2007)

12. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall (1997)
13. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Cooperation-based invariants for OO

languages. Electr. Notes Theor. Comput. Sci. 160, 225–237 (2006)
14. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Invariants for non-hierarchical object

structures. Electr. Notes Theor. Comput. Sci. 195, 211–229 (2008)
15. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-

tures. Sci. Comput. Program. 62(3), 253–286 (2006)
16. Parkinson, M.J.: Class invariants: the end of the road? In: IWACO. ACM (2007)
17. SAVCBS workshop series (2001-2010), http://www.eecs.ucf.edu/~leavens/SAVCBS/

http://www.eecs.ucf.edu/~leavens/SAVCBS/

530 N. Polikarpova et al.

18. Semantic Collaboration website, http://se.inf.ethz.ch/people/polikarpova/sc/
19. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-

time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)
20. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.

In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 328–344.
Springer, Heidelberg (2010)

21. Summers, A.J., Drossopoulou, S., Müller, P.: The need for flexible object invariants. In:
IWACO, pp. 1–9. ACM (2009)

http://se.inf.ethz.ch/people/polikarpova/sc/

Efficient Tight Field Bounds Computation

Based on Shape Predicates�

Pablo Ponzio1, Nicolás Rosner2, Nazareno Aguirre1,4, and Marcelo Frias3,4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Argentina

{pponzio,naguirre}@dc.exa.unrc.edu.ar
2 Departamento de Computación, FCEFyN, Universidad de Buenos Aires,

Buenos Aires, Argentina
nrosner@dc.uba.ar

3 Departamento de Ingenieŕıa de Software, Instituto Tecnológico de Buenos Aires,
Buenos Aires, Argentina
mfrias@itba.edu.ar

4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. Tight field bounds contribute to verifying the correctness of
object oriented programs in bounded scenarios, by restricting the values
that fields can take to feasible cases only, during automated analysis.
Tight field bounds are computed from formal class specifications. Their
computation is costly, and existing approaches use a cluster of computers
to obtain the bounds, from declarative (JML) formal specifications.

In this article we address the question of whether the language in
which class specifications are expressed may affect the efficiency with
which tight field bounds can be computed. We introduce a novel tech-
nique that generates tight field bounds from data structure descriptions
provided in terms of shape predicates, expressed using separation logic.
Our technique enables us to compute tight field bounds faster on a sin-
gle workstation, than the alternative approaches which use a cluster,
in wall-clock time terms. Although the computed tight bounds differ in
the canonical ordering in which data structure nodes are labeled, our
computed tight field bounds are also effective. We incorporate the field
bounds computed with our technique into a state-of-the-art SAT based
analysis tool, and show that, for various case studies, our field bounds
allow us to handle scopes in bounded exhaustive analysis comparable to
those corresponding to bounds computed with previous techniques.

1 Introduction

Determining to what extent a software artifact is correct is an essential activ-
ity in software engineering, and formal methods have contributed with many
methodologies and techniques to deal with it. Among these techniques, “push

� This work was partially supported by ANPCyT PICT 2010-1690 and 2012-1298, and
by the MEALS project (EU FP7 MEALS - 295261).

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 531–546, 2014.
© Springer International Publishing Switzerland 2014

532 P. Ponzio et al.

button” formal analysis techniques, i.e., those that do not require user inter-
vention, have received special attention. However, automation usually seriously
impacts on scalability. In an attempt to deal with scalability issues that typically
affect automated analyses, different approaches can be taken in order to simplify
or somehow “limit” the software under analysis. Bounded exhaustive verification
is one of these approaches, that consists of checking the correctness of a program
with respect to its formal specification, but under certain constraints. The ap-
proach introduced in [9] is one of the various bounded exhaustive verification
settings, in which the number of iterations that loops may perform, as well as
the maximum number of objects to be considered for every class involved, are
bounded, in order to assess the correctness of an object oriented program with
respect to its specification, using SAT solving. This approach has proved to be
very useful in finding bugs in object oriented programs [6,13,22,9].

Despite the “limits” imposed on the software under analysis, bounded ex-
haustive verification still suffers from scalability issues, enabling in many cases
to analyze programs only for very small scopes (the limit in the number of loop
unrolls and maximum number of objects per class). In order to further scale
up formal automated analysis, in [9,10] the authors show that by appropriately
removing infeasible cases from the values that class fields can take, bounded
exhaustive verification can be significantly improved. This mechanism, known
as tight field bound computation, is used prior to the actual analysis, and has
proved to be extremely useful for bounded verification, automated test input
generation and for improving symbolic execution [10,1,11].

Tight field bounds depend on a formal specification of the valid inputs of a
program under analysis, given in terms of class invariants. Such specification
is used to check which field values in the inputs are infeasible (prior to the
execution of the program), and therefore can be removed from the representation
of the verification problem prior to analysis. To compute field bounds, a large
number of feasibility queries have to be performed. The only proposed approach
available to effectively compute tight field bounds is introduced in [9]. It is based
on declarative formal specifications of class invariants of Java programs given in
JML, and requires a cluster for effectively carrying out this task.

In this work, we study whether the efficiency in tight field bound computa-
tion depends on the formal language used for expressing class invariants. More
precisely, we show that, if the class invariants used for tight field bound com-
putation are expressed using separation logic’s inductive shape predicates [16],
field bounds can be computed efficiently. Although less expressive than JML,
shape predicates are expressive enough to describe a broad set of interesting
data structures [16], and have been employed as data structure specification lan-
guage by various tools for software analysis. We introduce a novel approach for
tight field bounds computation, which exploits the fact that shape predicates de-
scribe linked data structures very precisely, and their inductive definition makes
them suitable for tight bounds computation. Furthermore, our field bounds com-
putation approach runs on a single workstation, more efficiently, in wall-clock
time terms, than the approach introduced in [9] using a cluster of computers,

Efficient Tight Field Bounds Computation Based on Shape Predicates 533

class AVLTree { class Node {

Node root; int data;

} Node left;

Node right;

}

Fig. 1. Classes for AVL trees

thus showing that our approach is several orders of magnitude faster. However,
the field bounds computed by our approach correspond to a different canonical
ordering of structures’ nodes, with respect to [9]. Indeed, while [9] canonically
orders nodes in a breadth first fashion, which results in smaller scopes for some
fields, our approach intrinsically leads to depth first node orderings. To assess
the usefulness of the “depth first” field bounds computed by our approach, we
incorporate the field bounds into the tool used in [9], and show that they allow
us to handle scopes that are comparable to those handled by “breadth first” field
bounds, in bounded exhaustive analysis.

2 Bounded Verification and Tight Field Bounds

Tight field bounds help improving various kinds of analysis, one of which is
bounded verification via SAT solving, as performed in [9,10]. Therein, a pro-
cess for verifying whether a given Java program satisfies a JML specification in
bounded contexts, is presented. This process is based on, given a scope (maxi-
mum number of loop iterations, and maximum number of instances of the classes
involved), encoding the program and its formal specification as a propositional
formula, in such a way that the resulting formula is satisfiable if and only if
there exists an execution of the program within the provided scope that violates
the specification. If the resulting formula is unsatisfiable, then the program is
correct with respect to its specification, within the provided scope.

Various intermediate languages are employed in [9,10] during the translation
from Java code and JML contracts to a propositional formula. In particular,
the relational formal languages DynAlloy [8], Alloy [14] and KodKod [20] are
involved in the process. KodKod [20] is able to profit from upper bounds for
relations. These bounds capture information about which tuples in the rela-
tions involved in a relational constraint problem (in our case, resulting from the
translation of an annotated program) are infeasible due to the constraints. Since
tuples in the domains of relations are represented as propositional variables in
the formula resulting from the translation, infeasible cases lead to removing the
corresponding variables (or, more precisely, replacing the corresponding variables
by false). This is highly relevant, since variable removal contributes to scaling
up SAT based analysis.

In order to introduce the concept of tight field bound, let us first describe
briefly, by means of an example, the intermediate representation of the Java

534 P. Ponzio et al.

heap in Alloy and KodKod. For further details, we refer the reader to [9]. Con-
sider the classes in Fig. 1, which may be part of a definition of AVL trees. In
(Dyn)Alloy, program states are captured by sets of object identifiers to repre-
sent class extensions, and binary relations from the class extension to the cor-
responding datatype, to represent fields. For instance, for the classes in Fig. 1,
a program state would comprise sets AVLTree and Node, and relations root ⊆
AVLTree× (Node⊥{null}) and left, right ⊆ Node× (Node⊥{null}) (we disregard
integer fields for presentation purposes). Assuming scope 3 for Node in the anal-
ysis, class Node is represented in KodKod as the set Node = {N0, N1, N2}, while
field left is represented by a relation left ⊆ {N0, N1, N2} × {N0, N1, N2, null}.

In the translation from a relational model to a propositional formula, relations
are represented via sets of propositional variables. For instance, relation left
above is represented by propositional variables:

{lx,y | x ⇒ {N0, N1, N2} ∧ y ⇒ {N0, N1, N2, N3, null}}.
The variables in this set capture the possible values for field left, in the corre-
sponding program state. More precisely, a variable lNi,Nj being true in a given
instance of a constraint solving problem indicates that nodes Ni and Nj are
related via field left in the corresponding program state.

For example, assuming similar representations for fields root and right, when
variables roT0,N0 (for root), lN0,N1 , lN1,null, lN2,null (for left), rN0,N2 , rN1,null and
rN2,null (for right) are true, and all the remaining variables are false, we obtain
the structure of Fig. 2(a).

Notice that constraints that are part of the specification force some variables in
the resulting relational constraint problem to be false. For instance, if the linked
structure is acyclic in a given state (e.g., in the state prior to the execution of
the program under analysis), variables lNi,Ni are all necessarily false. Thus, these
variables can be replaced by false, reducing the number of variables required to
encode bounded program correctness for SAT solving. More precisely, if we know
beforehand that certain relationships between heap objects are forbidden, we can
remove the infeasible variables that represent them. KodKod allows one to do
so, by providing an upper bound. Formally, an upper bound for a field f : A∧ B
is a relation Uf ⊆ A×B. Given an upper bound Uf , KodKod will get rid of all
the variables pa,b ⇒Mf such that (a, b) /⇒ Uf , replacing them by false.

Of course, the “tighter” the upper bound, the better, since tighter bounds
allow one to remove more variables (recall that SAT solving algorithms have an
exponential worst case time complexity, that depends on the number of propo-
sitional variables). However, we are interested in considering only sound upper
bounds, i.e., those composed solely by infeasible variables, otherwise we would
compromise the whole SAT-based analysis. For instance, an upper bound

Uleft wrong = Node× (Node ⊥ null)− {(N0, null), (N1, null), (N2, null)}
forbids the left field of any node to be null, causing the analysis to omit all the
valid non-empty AVL tree instances. Thus, we want to compute tight bounds
that only get rid of infeasible variables in the propositional formula encoding a
program state.

Efficient Tight Field Bounds Computation Based on Shape Predicates 535

Tight field bounds are useful for analysis. However, determining these bounds
is not easy, and they have to be computed from specifications, prior to analysis.
In particular, in [9,10] tight field bounds are computed from declarative JML
specifications, which are translated into Alloy’s relational logic. As an example,
consider the following fragment of a relational logic specification of AVL trees:

AVL_Invariant:

(all n: Node | n in this.root.*(left + right) - null =>

n !in n.^(left + right)) and

...

This fragment specifies acyclicity, using closure operators (* is reflexive-transitive
closure, while ^ is transitive closure). These specifications are complemented
with symmetry-breaking predicates, which are automatically produced from
class specifications [9]. Such symmetry breaking predicates force a canonical,
breadth-first ordering, in the labeling of structures’ nodes. This helps removing
redundant structures (similar to partial-order reduction in the context of model
checking). For AVL tree specifications, for instance, the corresponding symmetry
breaking predicate would forbid producing the structure in Figure 2(b), while
accepting structure in Figure 2(a). Notice that these two structures are isomor-
phic, and thus is sufficient to consider only one of them (especially in languages
like Java, with no pointer arithmetic, where the specific memory addresses where
nodes are allocated, abstracted as node labels in this formal representation, is ir-
relevant). Using class specifications and symmetry breaking, in [9] a tight bound
for a field f is computed by querying the SAT solver about the feasibility of each
variable in the representation of f . So, for instance, for every pair of nodes Ni

and Nj within a given scope, one would have to check:

SAT(AVL Invariant∧ AVL Symmetry Breaking∧Ni.left.Nj),

that is, is there a (valid) AVL tree within the given scope in which Nj is the left
node of Ni? If this is not the case, then the propositional variable representing
Ni.left.Nj can be removed. All these queries are independent, and therefore
can be performed in parallel. The actual process for computing tight bounds in
[9] uses an iterative approach, that first removes variables whose infeasibility can
be quickly determined (and maintaining those whose feasibility is determined).
Those that reach a timeout are processed again, after simplifying the satisfiability
problem thanks to the variables already determined infeasible. In order to carry
out this process effectively, a cluster of computers is employed [9,10].

2.1 Tight Bounds and Separation Logic Invariants

Separation logic [19] is an extension of first order logic that enables one to reason
about programs dealing with heap allocated data structures in a concise manner.
It provides two novel operators to describe heap properties: separating conjunc-
tion (∗), and separating implication (−∗). Intuitively, h1 ∗ h2 describes a heap
that comprises two disjoint parts satisfying formulas h1 and h2, respectively. We

536 P. Ponzio et al.

nullnull nullnull

T0

N0

N1 N2

nullnull nullnull

T0

N1

N0 N2

(a) (b)

Fig. 2. Two isomorphic AVL tree instances

avl(t0, h0)
.
= (t0 = null ∧ h0 = 0) ∨ (t0 �→ t1, t2 ∗ avl(t1, h1) ∗ avl(t2, h2) &

h0 = 1 +max(h1, h2) ∧ |h1 − h2| ≤ 1)

Fig. 3. AVL tree specification given as a shape predicate

do not consider −∗ in this work; we refer the reader to [19] for details. In sepa-
ration logic, inductive shape predicates are used to describe heap allocated data
structures, as well and their state evolution as a program is executed. Figure 3
shows a sample shape predicate characterizing AVLs. Symbol ≡ separates the
spacial part from the pure part of a shape predicate. It represents a conjunction,
since a predicate is satisfied if both the spatial and pure parts are satisfied.

In this paper we study if tight field bounds can be computed more efficiently, if
class invariants are expressed in a different formal language. We propose express-
ing such predicates in separation logic. Separation logic inductive shape pred-
icates provide useful information, that can be exploited to efficiently compute
field bounds. Consider for instance the shape predicate in Fig. 3, characterizing
AVLs. Notice that whenever avl(n, h) and n ∀= null, we know that n.left ∀= n,
since ∗ forces the “left subtree” of n to be in a disjoint part of the heap with
respect to n. Furthermore, a particular unfolding of shape predicate p univocally
denotes a shape of the data structure defined by p (if the accumulated pure part
is satisfiable). For example, unfolding the avl predicate (Fig. 3) as follows (we
disregard the height in this unfolding, for the sake of simplicity):

t0 →∧ t1, t2 ∗ t1 →∧ t3, t4 ∗ t2 →∧ t5, t6 ≡
t3 = null ∧ t3 = null ∧ t4 = null ∧ t5 = null ∧ t6 = null

Due to the semantics of ∗, variables t0, t1 and t2 must be replaced by different
node identifiers N0, N1 and N2, respectively. We thus obtain the shape of the
AVL in Fig 2(a). Assuming that avl is our class invariant, a tight bound for
field left is forced to contain pairs (N0, N1), (N1, null), (N2, null) (similarly for
right), since otherwise the valid shape of Fig. 2(a) would be disallowed, and
the analysis would not be sound.

Efficient Tight Field Bounds Computation Based on Shape Predicates 537

p(v∗) :=
∨

(∃v′∗ : Γ & Σ)

Γ := emp | vk �→ vk1 , .., vkn |p(v∗)|Γ1 ∗ Γ2

Σ := γ ∧ φ

γ := v1 = v2 | v = null | v1 �= v2 | v �= null | γ1 ∧ γ2

φ := b | a | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ∃v : φ | ∀v : φ

b := true | false | v | b1 = b2

a := s1 = s2 | s1 ≤ s2

s := kint | v | kint × s | s1 + s2 | − s |max(s1, s2) |min(s1, s2)

Fig. 4. Shape predicate specification framework ([16])

Our approach is based on the above described observations. Intuitively, given
a shape predicate p and a finite sequence of node identifiers as input, our ap-
proach works by recursively unfolding p, canonically labeling nodes, and adding
the corresponding pairs to the resulting tight bound. When all the structures
comprising the input node sequence have been “visited”, the approach finishes
returning a tight bound.

We will consider shape predicates defined using the specification framework of
[16], shown in Figure 4 (with slightly modified syntax). The framework supports
shape predicates encompassing a spatial and a pure part (λ and Σ, respectively).
The spatial part is a sequence of ∗ separated formulas describing how a data
structure is organized in the heap (β). The pure part is heap independent, and,
in [16], is restricted to pointer equality/inequality (β) and Presburger arithmetic
(Ξ). As it will be discussed later on, our analysis supports more expressive shape
predicates, e.g., allowing Σ to be an arbitrary arithmetic formula. However, for
illustration purposes, we restrict ourselves to the framework above, and regard
richer extensions as future work. For the sake of clarity, we assume all free
variables of shape predicates to be existentially quantified (we therefore omit
existential quantifiers).

It is worth mentioning that shape predicates are less expressive than JML.
JML allows one to describe structures that “share” substructures of the heap,
some of which cannot be captured by our employed shape predicate specification
framework. However, as we mentioned, shape predicates are very expressive,
being able to capture many heap-allocated datatypes, and as we show in this
paper, enabling us to compute tight bounds very efficiently, contributing to the
SAT based analysis of these structures.

3 Tight Bounds Calculation from Shape Predicates

For the sake of clarity, we will start by describing how tight field bounds can
be computed from shape predicates using a brute force technique. We will then
explain how this starting technique is improved, both in terms of memory con-
sumption, and computation time, in particular by normalizing the inputs of the

538 P. Ponzio et al.

Algorithm 1. Unfold algorithm

1: function Unfold(p(r, v1, . . .), f, l)
2: if l − f = 0 then � No addresses
3: let base(p) = emp & bt1 ∧ . . . ∧ btj return {base(p)}
4: result = ∅ � There are addresses available (l − f > 0)
5: let ind(p(r, . . .)) = r �→ r1, . . . ∗ ip1(y1, . . .) ∗ · · · ∗ ipi(yi, . . .) & it1 ∧ . . . ∧ itl
6: � Share l − (f + 1) addresses between recursive calls
7: for (f1, l1), .., (fi, li) ∈ partition(f + 1, l, i) do
8: set1 =Unfold(ip1(y1, . . .), f1, l1)
9: . . .
10: seti =Unfold(ipi(yi, . . .), fi, li)
11: for (s1, . . . , si) ∈ set1 × . . .× seti do
12: result = result ∪ {(r �→ r1, . . . & it1 ∧ . . . ∧ itl) ' s1 ' . . . ' si}
13: return result

brute force algorithm, and applying memoization. For presentation reasons, we
describe our technique on a subset of the shape predicates definable in the frame-
work of Section 2.1, namely predicates with one base and one inductive case.
Extending the technique to support more general shape predicates is straight-
forward (although we do not deal with this extension, due to space reasons).
Without loss of generality, we assume that the only variable allowed to be bound
to a heap node in the right-hand side of a shape predicate is r (short for root).
In summary, throughout this section we consider shape predicates to have the
form:

p(r, v1, . . .) =(emp ≡ bt1 ∧ . . . ∧ btj)⇔
(r →∧ r1, . . . ∗ ip1(y1, . . .) ∗ · · · ∗ ipi(yi, . . .) ≡ it1 ∧ . . . ∧ itl)

where btz, 1 ∨ z ∨ j, itz, 1 ∨ z ∨ l are pure terms (cf. Section 2.1), and
ipz, 1 ∨ z ∨ i are shape predicate’s names (possibly distinct from p). Finally, we
assume a fixed set of fields f1, .., fn for the heap, and an ordered set of addresses
A = [N0, N1,], which corresponds to the allowed labels for reference fields.

Let us start describing the brute force approach. The inputs to this algorithm
are a shape predicate p describing the valid instances of the heap, and the in-
dexes f and l of an ordered subset [Nf , ..., Nl] of A. Its outputs are tight field
bounds for fields f1, . . . , fn, for heaps with exactly l − f input nodes (labeled
Nf , . . . , Nl−1). The brute force approach is composed of various stages, namely,
predicate unfolding, concrete instance generation, and tight bound construction.
We now describe these stages in detail.

Unfolding shape predicates. The brute force approach starts by unfolding a pred-
icate, as indicated by Function Unfold shown as Algorithm 1. Unfold(p, f, l)
yields the set of separation logic formulas representing instances of p with exactly
l − f nodes.

As an example, consider the shape predicate for AVLs, shown in Fig. 3. Un-
fold(avl(r0, h0), 0, 2) should return two separation logic formulas, representing

Efficient Tight Field Bounds Computation Based on Shape Predicates 539

the two feasible AVL’s with two nodes. When executing Unfold(avl(r0, h0), 0, 2),
in line 7, partition(0+1, 2, 2) tries all the feasible partitions of the sequence [N1]
of addresses (corresponding to the interval f = 1, l = 2) between the two recur-
sive calls. It returns two possibilities: assigning node N1 to the first recursive
call (indexes (1, 2), (2, 2) in the main loop) and none to the second, or pass-
ing no nodes to the first recursive call and assigning N1 to the second (indexes
(1, 1), (1, 2)). Let us consider the first case in more detail. The first recursive
call, corresponding to Unfold(avl(r1, h1), 1, 2)), yields {t1 →∧ h1, t2, t3 ∗ emp ∗
emp ≡ h1 = 1 + m(h2, h3) ∧ a(h2 − h3) ∨ 1 ∧ r2 = r3 = null ∧ h2 = h3 = 0}
(one formula standing for a tree with exactly one node), whereas the second,
Unfold(avl(r2, h2), 2, 2) produces {emp ≡ r2 = null∧ h2 = 0} (one formula rep-
resenting the empty tree). The inner loop, line 11, iterates over all the feasible
combinations of formulas for the left and right trees, i.e., formulas in the carte-
sian product of the sets resulting from the i recursive calls. Our running example
has only one possible combination, as the results of the recursive calls were sin-
gletons. Then, line 12 combines the formula standing for the root of the structure
with each of the feasible pairs of left and right subtrees. In our example, this is
r0 →∧ h0, r1, r2, t1 →∧ h1, t2, t3 ∗ emp ∗ emp ≡ h1 = 1 +m(h2, h3) ∧ a(h2 − h3) ∨
1 ∧ r2 = r3 = null ∧ h2 = h3 = 0 and emp ≡ r2 = null ∧ h2 = 0, respectively.
In this step, the algorithm uses operator ', which merges the spatial and pure
parts of its input formulas using ∗ and ∧, respectively.

In this example, Unfold(avl(r0, h0), 0, 2) leads to the following pair of for-
mulas:
t0 �→ h0, t1, t4 ∗ t1 �→ h1, t2, t3 ∗ emp & t0 �→ h0, t1, t2 ∗ emp ∗ t2 �→ h2, t3, t4 &
h0 = 1 +m(h1, h4) ∧ a(h1 − h4) ≤ 1∧ h0 = 1 +m(h1, h2) ∧ a(h1 − h2) ≤ 1∧

h1 = 1 +m(h2, h3) ∧ a(h2 − h3) ≤ 1∧ h2 = 1 +m(h3, h4) ∧ a(h3 − h4) ≤ 1∧
t2 = t3 = t4 = null∧ t1 = t3 = t4 = null∧
h2 = h3 = h4 = 0 h1 = h3 = h4 = 0
These formulas stand for all the feasible AVL instances with exactly two nodes.

It is worth noticing again that, due to the semantics of operator ∗, in line 7 the
algorithm can feed the root node and its recursive calls with disjoint partitions
of the input address set (the domains of the subheaps r0 →∧ h0, r1, r2, avl(r1, h1),
and avl(r2, h2) must be all disjoint in r0 →∧ h0, r1, r2 ∗ avl(r1, h1) ∗ avl(r2, h2)).
Thus, this allows us to ignore many distributions of addresses to subheaps that
involve aliasing.

Generating concrete instances from separation logic formulas. The second step
produces all the concrete heap instances represented by the formulas returned
by Unfold. Notice that (as seen in the example of the previous section) each
formula f returned by Unfold comprises a pure part: prf = t1 ∧ . . . ∧ tl, and
a spatial part: spf = x1 →∧ x1,1, .. ∗ . . . ∗ xm →∧ xm,1, First, we perform a
symmetry breaking procedure in order to reduce the number of feasible instances
of a formula f yielded by Unfold. This procedure involves traversing spf from
left to right, assigning address Ni to each variable xi such that xi →∧ xi,1, .. ⇒ spf
during the traversal. Applying this procedure to the instances in the example
above yields (formulas in boldface were added in this step):

540 P. Ponzio et al.

t0 �→ h0, t1, t4 ∗ t1 �→ h1, t2, t3 ∗ emp & t0 �→ h0, t1, t2 ∗ emp ∗ t2 �→ h2, t3, t4 &
h0 = 1 +m(h1, h4) ∧ a(h1 − h4) ≤ 1∧ h0 = 1 +m(h1, h2) ∧ a(h1 − h2) ≤ 1∧

h1 = 1 +m(h2, h3) ∧ a(h2 − h3) ≤ 1∧ h2 = 1 +m(h3, h4) ∧ a(h3 − h4) ≤ 1∧
t2 = t3 = t4 = null∧ t1 = t3 = t4 = null∧
h2 = h3 = h4 = 0∧ h1 = h3 = h4 = 0∧
t0 = N0 ∧ t1 = N1 t0 = N0 ∧ t2 = N1

The soundness of this procedure is guaranteed by the semantics of the ∗
operator. Notice that this fixes the ordering of addresses in valid heap instances,
and therefore induces a heap canonicalization. Thus, it can be thought of as
the equivalent of using symmetry breaking predicates in TACO’s tight bound
computation procedure.

Next, we invoke a decision procedure in order to obtain the models of the
formulas generated in the previous step, i.e, to yield concrete structures. Ob-
serve that all the variables in the formulas are existentially quantified, and their
pure part comprises only conjunctions of formulas in the language of Section
2.1. Therefore, we can encode the pure part of each formula produced in the
previous step in the input language of any modern SMT solver, to obtain con-
crete instances from it. Continuing with our example, after calling a decision
procedure with the formulas we get:

t0 �→ h0, t1, t4 ∗ t1 �→ h1, t2, t3 ∗ emp & t0 �→ h0, t1, t2 ∗ emp ∗ t2 �→ h2, t3, t4 &
h0 = 2 ∧ h1 = 1∧ h0 = 2 ∧ h2 = 1∧

t2 = t3 = t4 = null∧ t1 = t3 = t4 = null∧
h2 = h3 = h4 = 0∧ h1 = h3 = h4 = 0∧
t0 = N0 ∧ t1 = N1 t0 = N0 ∧ t2 = N1

In this case, both formulas are satisfiable and have one model. Therefore,
each of these formulas represents a valid heap instance, which can be obtained
by replacing variables by values in the formula’s spatial part:

N0 �→ 2, N1, null ∗ (N1 �→ 1, null, null) ∗ (emp)
N0 �→ 2, null, N1 ∗ (emp) ∗ (N1 �→ 1, null, null)

Graphically, these formulas correspond to the following tree structures:

null

nullnull

N0 , 2

N1 , 1 null

nullnull

N0 , 2

N1 , 1

Tight field bounds from concrete heap instances. The last step uses the heap
instances produced by the previous step to build tight field bounds. The resulting
tight field bound is composed by the union of all the field values occuring in any
of the aformentioned heap instances. Returning to our example, the field values
added by each of the instances above are:

left = N0 �→ N1 +N1 �→ null left = N0 �→ null +N1 �→ null
right = N0 �→ null +N1 �→ null right = N0 �→ N1 +N1 �→ null

height = N0 �→ 2 +N1 �→ 1 height = N0 �→ 2 +N1 �→ 1

Efficient Tight Field Bounds Computation Based on Shape Predicates 541

The union of the values above results in the AVL bounds for scope exactly 2:
left = N0 �→ N1 +N0 �→ null +N1 �→ null
right = N0 �→ N1 +N0 �→ null +N1 �→ null

height = N0 �→ 2 +N1 �→ 1

It is important to remark that SAT-based analyses typically use non-strict
scopes. That is, if scope k is given, the analysis explores all the feasible heap
instances with up to k nodes. To compute tight field bounds in such a case, we
sequentially run the brute force approach for up to k nodes, and return the union
of the resulting bounds.

3.1 Improvements to the Brute Force Algorithm

The approach just introduced must generate a potentially exponential number
of structures before computing tight field bounds. To avoid this problem, we can
compute bounds on the fly, during the traversal of the input shape predicate,
without generating instances. This leads to an alternative algorithm SLField-
Bounds(p(r, v1, ..., vn), f, l), which produces as output a pair containing: (i) a
tight field bound for scope exactly l− f , for the structure defined by p, and (ii)
the set of feasible assignments of values to the variables r, v1, ..., vn.

Let us illustrate this alternative with an example. Suppose we execute
SLFieldBounds(avl(r0, h0), 0, 5) to obtain field bounds for scope exactly 5,
for AVLs. SLFieldBounds traverses the input shape predicate in the same
way as Unfold. The computation of field bounds for AVLs with exactly 5
nodes involves at some point recursive calls SLFieldBounds(avl(r1, h1), 1, 3)
and SLFieldBounds(avl(r2, h2), 3, 5). The following table shows the results of
these calls:

parameters bound assignment

avl(r1, h1) l : N1 �→ N2 +N1 �→ null +N2 �→ null {(r1 = N1, h1 = 2)}
[N1, N2] r : N1 �→ N2 +N1 �→ null +N2 �→ null

h : N1 �→ 2 +N2 �→ 1

avl(r2, h2) l : N3 �→ N4 +N3 �→ null +N4 �→ null {(r2 = N3, h2 = 2)}
[N3, N4] r : N3 �→ N4 +N3 �→ null +N4 �→ null

h : N3 �→ 2 +N4 �→ 1

At this point, the algorithm assigns N0 to the root node, pointed to by variable
r0, and builds a bound for the combination of the root node (r0 →∧ h0, r1, r2)
with the results of the recursive calls shown above. However, the algorithm only
adds field values to the resulting bound when the pure part of the predicate
is satisfiable, otherwise field values of invalid structures would be included in
the resulting bound. That is, we incorporate the constraint solving that in the
brute force takes place when building concrete instances, during the process of
unfolding and traversing the formula. For the example, the formula to solve is:
h0 = 1+m(h1, h2)∧a(h1, h2) ∨ 1∧r1 = N1∧h1 = 2∧r2 = N3∧h2 = 2∧r0 = N0

which has only one model: r0 = N0 ∧ r1 = N1 ∧ r2 = N3 ∧ h0 = 3 ∧
Thus, SLFieldBounds performs a search for all the models of the pure part

of its input predicate, using all the feasible combinations of assignments in re-
cursive calls together with the assignment for the root node.

542 P. Ponzio et al.

Table 1. Times required for computing tight field bounds from JML specifications and
from shape predicates, for various case studies (in MM:SS.sss)

S5 S7 S10 S12 S15 S17

Linked List
TACO(w) 00:11 00:11 00:15 00:24 00:47 01:04
TACO(seq) 02:56 02:56 04:00 06:24 12:32 17:04
SL 00:00.065 00:00.091 00:00.094 00:00.110 00:00.129 00:00.141

BSTree
TACO(w) 00:11 00:11 00:16 00:38 01:56 04:05
TACO(seq) 02:56 02:56 04:16 10:08 30:56 65:20
SL 00:00.268 00:00.209 00:00.508 00:00.633 00:01.032 00:01.389

TreeSet
TACO(w) 00:16 00:30 01:44 02:51 05:19 16:42
TACO(seq) 04:16 08:00 27:44 45:36 85:04 267:12
SL 00:00.667 00:01.159 00:02.693 00:04.352 00:08.266 00:11.483

AVL
TACO(w) 00:17 00:32 01:55 03:46 10:36 47:25
TACO(seq) 04:32 08:32 30:40 60:16 169:36 2845:00
SL 00:00.121 00:00.195 00:00.403 00:00.561 00:00.944 00:01.387

Memoization. When fed with shape predicates with more than one recursive call,
as in the case of AVLs, cases can be repeated. As an example, we showed above
calls SLFieldBounds(avl(r1, h1), 1, 3) and SLFieldBounds(avl(r2, h2), 3, 5).
Notice that the resulting bounds are tight field bounds for AVLs with exactly two
consecutive addresses. They are equivalent, up to renaming. SLFieldBounds
solves these equivalent problems independently, and thus repeats computations.
To avoid this problem, we “memoize” SLFieldBounds, i.e., we use a matrix
M to store the results of calls to SLFieldBounds, “normalized” to have 0 as
a starting address. Whenever a call to SLFieldBounds is made with a given
scope (the pair f and l), we check first whether the corresponding “normalized”
bound and assignment have been computed before, to avoid recomputing it. Of
course, to produce the actual bound, a shift must be applied to the normalized
stored bounds and assignments, before returning it.

4 Experimental Results

To assess our approach, we perform two experiments. The first is a compari-
son of our algorithm for tight bounds computation from shape predicates, with
TACO, that computes tight bounds from JML specifications. The second is an
assessment of the profit provided by the tight bounds computed by our algo-
rithm, that as was mentioned before, differ in some cases from those computed
by TACO, since the canonical ordering of nodes is different (depth first in our
case, vs. breadth first in the case of TACO). For both assessments, we consider
the following data structures: an implementation of sequences based on singly
linked lists (Linked List); TreeSet from package java.util, based on red-black
trees (TreeSet); AVL trees from [2] (AVL); and binomial heaps used in [21] (Bi-
nomial Heap). These classes have JML specifications, used in [9] for analysis.

Efficient Tight Field Bounds Computation Based on Shape Predicates 543

Table 2. Comparison of the impact of “depth first” vs. “breadth first” tight field
bounds, in SAT-based bounded verification (in H:MM:SS)

S5 S7 S10 S12 S15 S17

Linked List

Contains
TACO 0:00:01 0:00:02 0:00:03 0:00:04 0:00:05 0:00:07
SL 0:00:01 0:00:02 0:00:03 0:00:04 0:00:05 0:00:07

Insert
TACO 0:00:02 0:00:02 0:00:03 0:00:04 0:00:05 0:00:09
SL 0:00:02 0:00:02 0:00:03 0:00:04 0:00:05 0:00:09

Remove
TACO 0:00:02 0:00:02 0:00:04 0:00:06 0:00:07 0:00:13
SL 0:00:02 0:00:02 0:00:04 0:00:06 0:00:07 0:00:13

BSTree

Find
TACO 0:00:02 0:00:12 0:26:15 TO TO TO
SL 0:00:02 0:00:16 0:24:20 2:48:21 TO TO

Remove
TACO 0:00:02 0:00:09 0:08:35 2:06:14 TO TO
SL 0:00:02 0:00:08 0:05:43 1:39:50 TO TO

Insert
TACO 0:02:06 0:29:22 TO TO TO TO
SL 0:02:15 0:33:15 TO TO TO TO

AVL

Find
TACO 0:00:03 0:00:05 0:00:16 0:00:36 0:02:44 0:12:36
SL 0:00:03 0:00:05 0:00:31 0:01:09 0:15:43 0:35:27

FindMax
TACO 0:00:01 0:00:01 0:00:02 0:00:03 0:00:05 0:00:08
SL 0:00:01 0:00:01 0:00:02 0:00:04 0:00:09 0:00:31

Insert
TACO 0:00:56 0:01:03 0:03:42 0:11:48 1:15:15 TO
SL 0:00:57 0:01:05 0:04:25 0:14:12 1:12:32 TO

TreeSet
Find

TACO 0:00:03 0:00:05 0:00:47 0:02:19 0:16:45 1:15:05
SL 0:00:03 0:00:07 0:00:48 0:03:47 0:34:04 1:31:50

Insert
TACO 0:00:30 0:02:54 TO TO TO TO
SL 0:00:29 0:02:34 TO TO TO TO

We took shape predicates characterizing these structures from the literature,
and performed slight modifications to make them equivalent to the correspond-
ing JML descriptions. We ran our algorithm on a 2.0Ghz, 2MB cache computer,
with a dual core processor. TACO was run on a cluster of 16 computers, each
with 2 dual core processors (2.67GHz, 2MB cache per core) each (as reported
in [9]). Running times are reported using a format given in the tables’ caption,
with TO and OoM indicating that the analysis exhausted the time (3 hours) and
memory (2Gb), respectively. The experiments can be reproduced by downloading
http://dc.exa.unrc.edu.ar/staff/pponzio/sltb/FM14exp.tgz, and follow-
ing the instructions therein.

The results of the comparison of tight bound computations are summarized
in Table 1. Our algorithm always terminated in at most a few seconds (time
is reported in these cases including milliseconds). The time employed by TACO

in computing the bounds is shown as wall clock time (TACO(w)), and is also
“sequentialized” (TACO(seq)), i.e., an estimation of the sequential time is given,
by multiplying the wall clock time by 16, the number of computers. Notice that
this estimation is very conservative, since the parallelisation takes advantage of
cores (the number of cores is 64), and we are multiplying the parallel time by the

544 P. Ponzio et al.

number of computers (16). As these experiments show, computing bounds from
separation logic shape predicates, our approach, is various orders of magnitude
more efficient than doing so from JML specifications.

Our second set of experiments compares the impact of “depth first” tight field
bounds, computed from shape predicates, with “breadth first” tight field bounds,
computed from JML specifications, in SAT-based bounded verification. We per-
formed bounded verification of several methods of the studied classes, comparing
TACO tight bounds with tight bounds computed with our approach. All the an-
alyzed methods are correct with respect to their specifications. We chose correct
implementations because they represent the worst case for SAT-based analyses,
as they require the whole state space to be explored. Loops were unrolled enough
to cover the corresponding scopes, and method calls were inlined. The results
are summarized in Table 2. Notice that for lists, both approaches led to the
same times. This is so because, in this data structure, breadth first and depth
first node labelings coincide, and therefore the field bounds computed with both
approaches are the same. For tree-like structures, our “depth first” field bounds
yield running times that are similar to those obtained by using the “breadth
first” field bounds. In general, the differences are not significant, with depth first
bounds being slightly less efficient, with a few exceptions in which our bounds
lead to better running times.

5 Related Work

This is the first attempt to use shape predicates for tight bounds calculation.
A closely related approach to the work on this paper is that of [9,10], which
introduces an algorithm for tight bounds calculation that works by making a
big number of parallel queries to SAT solving. The drawback of this approach
is that it requires a lot of computational resources. Our experiments show that
this algorithm can run for more than an hour on a cluster of sixteen machines
(64 cores). In contrast, the approach presented here is significantly more efficient
for bounds computation. Our case studies point out that our approach can per-
form bounds calculation in at most a few seconds, running on a single computer.
However, TACO allows for JML specifications of data structures, which can be
argued to be easier to write for an average programmer than the shape predi-
cates required by our approach (as well as more expressive). In both works, the
calculated bounds are shown useful to achieve better runtime efficiency, in the
context of SAT-based bounded exhaustive analysis of Java container classes with
rich structural invariants. JForge [6] also performs SAT based analysis of Java
programs with JML specifications. We do not provide an experimental compar-
ison with JForge, since the tool has been shown to perform poorly compared to
tight bounds based approaches in [9], and has not been improved lately. Further
examples of SAT based bounded analyses are presented in [13,22]. They are tai-
lored for C programs, and do not make use of tight bounds. Besides TACO, there
are other approaches that benefit from the use of tight bounds. [11] introduces an
adaptation of the Lazy Initialization mechanism of Symbolic Java PathFinder,

Efficient Tight Field Bounds Computation Based on Shape Predicates 545

that makes use of tight bounds. [18] introduces a dataflow analysis that allows
propagating tight bounds to all the states of a program, starting with bounds
for the initial state (as those calculated by TACO and our approach). FAJITA
[1] is a version of TACO especially tailored for automated test generation. As
is the case with TACO, FAJITA’s efficiency heavily relies on tight bounds. All
these approaches make use of bounds, but none proposes alternative ways of
computing bounds.

We borrow the shape specification mechanism of [16], which we use to capture
class invariants, employed as inputs by our algorithms for tight bounds calcu-
lation. The traditional use of shape predicates is in the verification of shape
and size properties of programs manipulating linked data structures [16]. Other
works extend [16] (e.g., [17,7]) by improving the verification process with dif-
ferent mechanisms. In these cases, the focus is on using shape predicates and a
corresponding calculus to prove properties of programs via some form of sym-
bolic execution using shape predicates. Other examples of successful separation
logic based verification approaches are presented in [3,5,15]; they are concerned
with proving memory safety properties of programs. Our approach is different:
we use shape predicates to compute bounds, which can then be used for a num-
ber of different bounded SAT based analyses, such as bounded verification [9]
and test generation [11,1].

6 Conclusion

The use of tight bounds is crucial for improving the efficiency and increasing
the scalability of SAT-based bounded verification [9], as well as other related
analysis techniques, such as test generation [1] and symbolic execution [11]. In
this article we introduced an algorithm for tight bounds calculation based on
shape predicates. This algorithm exploits the precision of shape predicates in the
description of linked structures, to efficiently compute tight bounds, significantly
outperforming TACO, the existing approach to bounds calculation, by several
orders of magnitude. Our approach computes field bounds that differ from those
computed by TACO, since the canonical ordering considered for the nodes of
the structure under analysis is depth first, as opposed to TACO’s breadth first
labeling. Although this has an impact in the size of bounds for some fields, we
showed in our experiments that our bounds are also effective.

Tight bounds have the potential of improving analysis times in other contexts.
In this respect, we are working on adapting Korat [4] to use tight bounds for
faster test generation. Also, in the context of SAT based white box test gen-
eration, we plan to extend path conditions with shape information, using it to
remove irrelevant variables from the encoding of traces.

References

1. Abad, P., Aguirre, N., Bengolea, V., Ciolek, D., Frias, M., Galeotti, J., Maibaum,
T., Moscato, M., Rosner, N., Vissani, I.: Improving Test Generation under Rich
Contracts by Tight Bounds and Incremental SAT Solving. In: ICST 2013 (2013)

546 P. Ponzio et al.

2. Belt, J., Robby, Deng, X.: Sireum/Topi LDP: A Lightweight Semi-Decision Proce-
dure for Optimizing Symbolic Execution-based Analyses. In: FSE 2009 (2009)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: ISSTA 2002, pp. 123–133 (2002)

5. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009 (2009)

6. Dennis, G., Chang, F., Jackson, D.: Verification of Code with SAT. In: ISSTA 2006
(2006)

7. Chin, W.-N., Gherghina, C., Voicu, R., Le, Q.L., Craciun, F., Qin, S.: A spe-
cialization calculus for pruning disjunctive predicates to support verification. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 293–309.
Springer, Heidelberg (2011)

8. Frias, M., Galeotti, J., López Pombo, C., Aguirre, N.: DynAlloy: Upgrading Alloy
with Actions. In: Proc. of ICSE 2005 (2005)

9. Galeotti, J.P., Rosner, N., Lopez Pombo, C., Frias, M.: Analysis of Invariants for
Efficient Bounded Verification. In: ISSTA 2010 (2010)

10. Galeotti, J.P., Rosner, N., Lopez Pombo, C., Frias, M.: TACO: Efficient SAT-Based
Bounded Verification Using Symmetry Breaking and Tight Bounds. IEEE Trans.
Soft. Eng. (2013)

11. Geldenhuys, J., Aguirre, N., Frias, M.F., Visser, W.: Bounded Lazy Initialization.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 229–243.
Springer, Heidelberg (2013)

12. Iosif, R.: Symmetry Reduction Criteria for Software Model Checking. In: Bošnački,
D.,Leue,S. (eds.) SPIN2002.LNCS,vol. 2318,pp. 22–41.Springer,Heidelberg (2002)

13. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
Software Verification Platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005)

14. Jackson, D.: Software Abstractions. MIT Press (2006)
15. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for

heap-manipulating programs. In: POPL 2010 (2010)
16. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated Verification of Shape

and Size Properties via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

17. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

18. Parrino, B.C., Galeotti, J.P., Garbervetsky, D., Frias, M.F.: A Dataflow Analysis
to Improve SAT-Based Bounded Program Verification. In: Barthe, G., Pardo, A.,
Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 138–154. Springer, Heidelberg
(2011)

19. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Proceedings of LICS 2002 (2002)

20. Torlak,E., Jackson,D.:Kodkod:ARelationalModelFinder. In:Grumberg,O.,Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

21. Visser, W., Pasareanu, C.S., Pelanek, R.: Test Input Generation for Java Contain-
ers using State Matching. In: ISSTA 2006 (2006)

22. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using Boolean
satisfiability. ACM TOPLAS 29(3) (2007)

A Graph-Based Transformation Reduction
to Reach UPPAAL States Faster

Jonas Rinast1, Sibylle Schupp1, and Dieter Gollmann2

1 Hamburg University of Technology,
Institute for Software Systems,
D-21073 Hamburg, Germany

{jonas.rinast,schupp}@tuhh.de
2 Hamburg University of Technology,

Security in Distributed Systems,
D-21073 Hamburg, Germany

diego@tuhh.de

Abstract. On-line model checking is a recent technique to overcome
limitations of model checking if accurate system models are not avail-
able. At certain times during on-line model checking it is necessary to
adjust the current model state to the real-world state and to do so in an
efficient way. This paper presents a general, graph-based transformation
reduction and applies it to reduce the length of transformation sequences
needed to reach particular states in the model checker UPPAAL. Our
evaluation shows that, generally, for the length of those sequences up-
per bounds exist independently from the elapsed time in the system. It
follows that our proposed method is capable of fulfilling the real-time
requirements imposed by on-line model checking.

Keywords: On-line Model Checking, UPPAAL, Transformation
Reduction.

1 Introduction

Model checking is a well developed technique to verify that a system model
adheres to certain properties and that thus the system itself satisfies those
properties. Model checking however relies on accurate system models to give
meaningful results. When such accurate models are unavailable – in the medical
domain, e.g., or in environment modeling – but an assurance is still desired,
on-line model checking presents a viable alternative. On-line model checking is
an iterative verification approach that instead of ensuring properties before the
system is developed or deployed, verifies the properties concurrently at run time
of the system. Properties are verified for a limited time scope only using bounded
model checking and then their validity is extended by repeating the verification
periodically. This iterative approach allows on-line model checking to update
the model continuously to reflect the current real-world state on each iteration.
As the models adapt to the real-world situation guarantees may be established

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 547–562, 2014.
c© Springer International Publishing Switzerland 2014

548 J. Rinast, S. Schupp, and D. Gollmann

even in domains with uncertain long-term behavior, e.g., medical parameters.
Therefore on-line model checking facilitates verification using model checking in
new domains because models must only be accurate within the time bounds of
the update period.

A key requirement of the on-line model checking process is the adjustment of
the model to a real-world state within the imposed real-time bounds. A potential
adjustment approach is to generate a transformation sequence that reconstructs
the current simulation state such that later the sequence can be modified to
induce the necessary adjustments. This paper presents a generic, graph-based
transformation reduction that may be used to obtain a fast reconstruction se-
quence. It then specializes the reduction to UPPAAL’s state space and evaluates
it with a focus on the real-time requirements.

Our reduction method constructs a graph of the states traversed during the
execution of a transformation sequence and introduces shortcuts between states
by exploiting projections. For the projection calculations we abstract a transfor-
mation’s behavior by reducing it to its read and write access on the state space
variables. A shortest path search then eliminates all unnecessary transforma-
tions from the initial transformation sequence such that the reduced sequence
still reaches the same final state.

We implemented the reduction method in Java and applied it to UPPAAL’s
state transitions to get faster, that is, by fewer transformations, to a particu-
lar UPPAAL state. Our evaluation shows that the presented method produces
transformation sequences with bounded lengths independently from the elapsed
time in the system, i.e., the reduced length has a constant upper bound in-
dependently from the number of already performed transformations. With our
method it is, therefore, feasible to reconstruct an UPPAAL state in an on-line
model checking context with real-time requirements.

The paper is organized as follows: First, Section 2 introduces related work.
Then, Section 3 presents and formalizes our general reduction method. Section
4 applies the reduction to UPPAAL’s transformation system. Section 5 presents
our evaluation results, and, lastly, Section 6 concludes the paper and suggests
future research topics.

2 Related Work

The on-line model checking variant we support with our reduction approach
was recently proposed by Li et al. [14,15]. An introduction to the general model
checking procedure is presented by Larsen et al. [13]. Bengtsson et al. present
more detailed information on timed automata and UPPAAL [7]. In-depth infor-
mation on difference bound matrices and timed states in general can be found in
Bengtsson’s dissertation [5]. Bounded model checking, which is required for on-
line model checking, can be done in UPPAAL with the statistical model checking
extension UPPAAL-SMC [8].

Regarding state space reductions Alur et al. introduce a minimization al-
gorithm to find minimal region graphs for timed systems [1]. Bengtsson et al.

Graph-Based Transformation Reduction 549

present a partial order reduction for timed systems [6] and Larsen et al. propose
a compact data structure to store timed constraint systems based on shortest
paths in a graph representation of difference bound matrices [12].

Regarding path optimizations Asarin et al. tackle the problem of reaching
certain states in timed automata as soon as possible [3]. Our approach, in con-
trast, is not interested in minimizing the time in the model but the time to
reestablish a particular state. Alur et al. solve the problem of finding minimal
cost paths to states in weighted timed automata [2] by finding shortest paths
in sub-region graphs, which is a approach similar to ours. Our approach also
reduces the optimization problem to finding shortest paths but on the graph of
executed transitions. Larsen et al. deal with the same problem by introducing
priced zones in the region graph and implement it in UPPAAL [11]. They focus
mostly on the representation of the modified region graph. At last, Janowska et
al. propose to use path compression to further reduce the state space [9]. This
abstraction approach is similar to our approach as they also remove unnecessary
transitions that do not affect the computation result.

3 Graph-Based Transformation Reduction

For on-line model checking to be practicable it is necessary that a state of the
model can be adjusted to real-world values within specific time bounds. Thus,
efficiently reconstructing states is necessary to provide the base for such modi-
fications. This section presents a general graph-based transformation reduction,
which reduces the number of transformations needed to reach such a target state.

We first present a formalization of a general transformation system (Subsec-
tion 3.1). Then, we present the reduction process (Subsection 3.2).

3.1 Transformation Systems

We start by providing a formalization of a simple transformation system. Let V
be a set of variables and let D be the valuation domain of those variables. An
evaluation function is a mapping e : V ∧ D and we denote the set of all such
evaluation functions by E(V ,D). We define a transformation to be a mapping
t : E(V ,D) ∧ E(V ,D) and we denote the set of all transformations by T (V ,D).
Let e1

t1−∧ e2
t2−∧ . . .

tN−1−−−∧ eN be a sequence of evaluation functions created by
the transformations ti. We use t−∧ to denote the application of a single transfor-
mation t and T

=← for the ordered application of a sequence of transformations T .
Furthermore, we denote the transformation sequence t1, t2, . . . , tN−1 by T and
the evaluation function sequence e1, e2, . . . , eN by E.

Note that this transformation system formalization is of general nature. For
example, a finite state machine system can be considered a particular instance:
an evaluation function then is equivalent to a state function, the available trans-
formations define the transition function, and a sequence of evaluation functions
can be seen as a system trace. In Subsection 4.2 we specify UPPAAL’s transition
system in terms of our abstract transformation system.

550 J. Rinast, S. Schupp, and D. Gollmann

We now introduce our notation to characterize available transformations in
such a transformation system.

A specification function is a mapping

s : V × V⊆ × (2V⊆ × E(V ,D)∧ D)× E(V ,D)∧ E(V ,D)
(x, V,m, e) →∧ e′ where

e′(x′) =

{
m(V, e) if x′ = x

e(x′) otherwise

where V⊆ ⊆ V and m : 2V⊆×E(V ,D)∧ D is an evaluation calculation that uses
the evaluations e(v) of exactly all the variables v ⇒ V to calculate m(V, e).

A transformation t can then be specified using a concatenation of specification
functions t = I ◦ s(x1, V1,m1) ◦ s(x2, V2,m2) ◦ · · · ◦ s(xk, Vk,mk) where I is
the identity transformation. Note that we use ◦ to denote concatenation ((a ◦
b)(x) = b(a(x))) in contrast to composition ((a ◦ b)(x) = a(b(x))). We define the
specification set of a transformation t to be S(t) = { (xi, Vi,mi) |xi ∀= xj } such
that t = I ◦ s(x1, V1,m1) ◦ s(x2, V2,m2) ◦ · · · ◦ s(x|S(t)|, V|S(t)|,m|S(t)|). We then
define the set of reads of a transformation t to be R(t) = { v | v ⇒ V, (x, V,m) ⇒
S(t) } and the set of writes of a transformation t to be W(t) = { x | (x, V,m) ⇒
S(t) }.

For convenience, we define in addition to those simple transformations com-
pound transformations tc = t1 ◦ t2 ◦ · · · ◦ tn. For compound transformations the
write set isW(tc) =

⋃
iW(ti) and the read set isR(tc) =

⋃
i(R(ti)\

⋃
j<iW(tj)).

Example 1. Consider a transformation system where V = { x, y, z } and D =
Z with an initial evaluation function e1 that satisfies ∪x ⇒ V [e1(x) = 0]. In
this system we want to allow assignments and additions. We thus define the
evaluation calculations assign() and add().

assign : Z∧ (2V⊆ × E(V ,D)∧ D) add : 2V⊆ × E(V ,D)∧ D
v →∧ ((∅, e) →∧ v) (({ x, y }, e) →∧ e(x) + e(y))

A transformation t= that assigns the value v to the variable x can then be
specified using the specification set S(t=) = { (x, ∅, assign(v)) }. It follows that
R(t=) = ∅ and W(t=) = { x }. The specification set of a transformation t+
that performs the assignment x = y + z then is S(t+) = { (x, { y, z }, add) } and
its read and write sets are R(t+) = { y, z } and W(t+) = { x }, respectively. A
more complex transformation performing the two sequential assignments z = 2
and x = y + z can be specified using a compound transformation t◦ = t1 ◦ t2
where S(t1) = { (z, ∅, assign(2)) } and t2 = t+. The read and write sets of t◦
then are R(t◦) = { y } and W(t◦) = { x, z }. Note that a transformation with
S(t) = { (z, ∅, assign(2)), (x, { y, z }, add) } is not equivalent to t◦ as in t the
addition will use the previous value for z. Thus, R(t) is { y, z } and not { y }.

Graph-Based Transformation Reduction 551

3.2 The Reduction Graph

We are now interested in finding a transformation sequence T ′ derived from a
given transformation sequence T such that e1

T ′
=← eN , ∪t ⇒ T ′ [t ⇒ T], and the

length of T ′ is minimal. For this purpose we construct the reduction graph, which
is a directed graph that captures all transitions between evaluation functions that
are possible with the transformations performed up to now. The graph is con-
structed on-the-fly when transformations are applied to the current evaluation
function.

Let e1
t1−∧ e2

t2−∧ . . .
tN−1−−−∧ eN be the sequence of evaluation functions created

by the transformations ti. We define the reduction graph sequence G = G1
t1−∧

G2
t2−∧ . . .

tN−1−−−∧ GN where Gi = (Ni, Vi) is a directed graph with the node set
Ni =

⋃
j≤i ej and the arc relation Vi ⊆ Ni ×Ni ×

⋃
j<i tj .

We now describe how the arc relation sequence Vi is constructed based on the
transformation sequence ti. Initially, the arc set is empty, i.e., V1 = ∅. The fol-
lowing arc sets are then obtained by adding new shortcut arcs using the forward
and backward projection-based arc generators F and B and adding the original
arc from the sequence: Vi+1 = Vi ⊥ { (ei, ei+1, ti) } ⊥ F(i+1, ti) ⊥ B(i+1) where

F(i, t) = { (e, ei, t) | e ⇒ Ni−1 ∧ Pt(e) = Pt(ei) }

B(i) = { (ei, e, t) | e ⇒ Ni−1 ∧ t ⇒
⋃

j<i−1

tj ∧ Pt(ei) = Pt(e) }

and Pt(e) is the projection operator

P : T (V ,D)× E(V ,D)∧ E(V ,D)
(t, e) →∧ e′ where

e′(x) =

{
e(x) if x ⇒ (V \W(t)) ⊥R(t)

d otherwise

where d is a previously chosen, fixed element from D, e.g., a zero element. In
addition to the trivial arc this construction process inserts arcs to all elements
of the equivalence class of the transformation in question, that is, all evaluation
functions that are transformed to the same result by the transformation obtain
a new arc. Also, the new evaluation function obtains additional outgoing arcs to
previous evaluation functions if it is a member of the equivalence classes of that
respective transformation.

This data structure helps to solve the initial problem of finding the shortest
transformation sequence from a given start evaluation function to a matching
final evaluation function using only known transformations. Finding a shortest
path in the reduction graph solves the problem. Thus, an application of any
shortest path search yields the transformation sequence in question.

Example 2. As an example consider the transformation sequence e1
t1−∧ e2

t2−∧
e3

t3−∧ e4
t4−∧ e5 using the transformations given in Table 1 from the transforma-

tion system in Example 1. Then, the resulting graph G5 is depicted in Figure 1

552 J. Rinast, S. Schupp, and D. Gollmann

Table 1. Graph Transformations of Example 2

Transformation t Transformation Operations Read Set R(t) Write Set W(t)

t1 x = 1, z = −4 { } {x, z }
t2 x = x+ z, y = 3, z = x+ z {x, z } {x, y, z }
t3 x = x+ y, y = x+ y, z = −3 {x, y } {x, y, z }
t4 x = x+ y, y = −3 {x, y } {x, y }

e1
(0,0,0)

e4
(0,0,-3)

e2
(1,0,-4)

e5
(0,-3,-3)

e3
(-3,3,-3)t1

t3

t2

t3

t4

t4

t2

t1
t2

Fig. 1. Graph G5 of Example 2

and the construction process can be seen in Table 2. The shortest transformation
sequence from e1 to e5 is e1

t3−∧ e4
t4−∧ e5.

Correctness and Optimality For the developed reduction approach to be correct
the transformation abstraction of read and write sets needs to accurately cap-
ture the transformation’s operations. For the simple transformation the read and
write set definitions are directly derived from the transformation specification
and therefore no other writes or reads may occur when a simple transformation
is executed. For the compound transformations the definition of the write set
is also intuitive as a compound transformation writes all the variables the indi-
vidual transformations write. For the read set it is necessary to exclude reads
on variables the compound transformation has written beforehand as no read of
external data actually occurs (see Example 1).

As the original transformation sequence is part of the transformation graph
a correct transformation sequence, i.e., a transformation sequence that indeed
constructs the desired evaluation, will be obtained as long as for all added arcs
it is true that the application of the corresponding transformation on the source
evaluation results in the target evaluation. All added arcs are part of either a
forward arc generator set or a backward arc generator set, which are both based
on the projection operator Pt(e). Thus, showing that Pt(e1) = Pt(e2) =←
t(e1) = t(e2) yields the correctness of our approach.

Proof. Let t be a transformation and e be an evaluation function. By definition of
Pt(e) it follows that ∪x /⇒ W(t)[Pt(e)(x) = e(x)] and ∪x ⇒ R(t)[Pt(e)(x) = e(x)],
i.e., all values read and all values not written by t are kept by the projection. As
t does not depend on other values it follows that if for two evaluations e1 and e2

Graph-Based Transformation Reduction 553

Table 2. Graph Construction Process of Example 2

Iteration i Transition Arc Generator F(i+ 1, ti) Generator B(i+ 1)

1 (e1, e2, t1) { } { }
2 (e2, e3, t2) { } { }
3 (e3, e4, t3) { (e1, e4, t3) } { (e4, e2, t1), (e4, e3, t2) }
4 (e4, e5, t4) { (e3, e5, t4) } { (e5, e3, t2) }

Pt(e1) = Pt(e2) is satisfied then e1 and e2 are equivalent with regard to t and
thus the application of t results in the same evaluation functions t(e1) = t(e2).

∃⊆

The reduced transformation sequence obtained by the graph-based transforma-
tion reduction is optimal in the sense that no shorter transformation sequence
can be derived from the original sequence by only removing transformations.
The optimality directly results from the application of a shortest path algorithm
as long as the arc generator functions do not fail to add a forward arc. But,
such a miss can not occur as the forward generator F checks all potential for-
ward transformation applications: a new transformation is applied to all previous
evaluations. The approach occasionally finds even shorter sequences when arcs
are added by the backward arc generator B. These arcs, however, do not result
in a transition sequence that can be obtained by only removing transformations
from the original sequence.

4 State Space Reconstruction for UPPAAL

As mentioned previously, state space reconstruction is a necessary step to facili-
tate on-line model checking. In this study, we selected UPPAAL as the underlying
model-checking engine because it is well developed and has been successfully em-
ployed even in industrial applications. In this section we apply the graph-based
transformation reduction from Section 3 to UPPAAL’s simulation state space.

We first introduce a representation of UPPAAL’s state space in Subsection
4.1. Then, we show how UPPAAL’s state transition system can be defined in our
general transformation system in Subsection 4.2 and therefore how the reduction
can be applied.

4.1 UPPAAL’s State Space

In UPPAAL, a state can be divided into two parts: the time state and the data
state. The data state consists of all data variables with their current valuations.
Individual values may directly be influenced as no cross-correlation between them
needs to be considered. The time state, in contrast, comprises all clock variable
values given by a constraint system that specifies value ranges for every clock
and all differences between clocks. From cross-dependencies it follows that the
individual modification of certain constraints may lead to an inconsistent state.

554 J. Rinast, S. Schupp, and D. Gollmann

We now formalize difference bound matrices [5] with the intent to give a formal
representation of UPPAAL’s state space.

Let M be an UPPAAL model with the set of variables T , some of which are
clocks. We then denote the set of clocks by C and define the set of data variables
D = T \ C. Let then C0 = C ⊥ { 0 } be the set of clocks extended with a static
zero clock, i.e., a clock that always evaluates to zero. This extended clock set can
then be used to unify clock constraints of the forms x ≺ k and x− y ≺ k where
x, y ⇒ C, k ⇒ N0, and ≺ ⇒ {<,∨,=,∅, > } by introducing the clock constraint
form x − y ≺ k where x, y ⇒ C0, k ⇒ Z, and ≺ ⇒ {<,∨}. It follows that a
bound on a clock or on a difference of clocks can be represented by a tuple
(k,≺) where k ⇒ Z and ≺⇒ {<,∨}. Considering that some clocks or differences
of clocks may be unbounded, we define the set of difference bound matrix entries
K = { (k,≺) | k ⇒ Z,≺⇒ {<,∨} } ⊥ {∞}, where the symbol ∞ represents the
absence of a bound. We define an order on K by (n,≺) <∞, (n1,≺1) < (n2,≺2)
if n1 < n2, and (n,<) < (n,∨). Furthermore, the addition of clock constraints
is defined as follows: (n,≺) + ∞ = ∞, (m,∨) + (n,∨) = (m + n,∨), and
(m,<)+(n,≺) = (m + n,<). Next, the set of difference bound matrices (DBM)
for an UPPAAL model M is defined by M(M) = {m |m ⇒ K|C0|×|C0| }.

Example 3. Consider an UPPAAL model M with the variable set V = { a, b, x,
y, z } with the clock subset C = { x, y, z } and the data subset D = { a, b }.
Furthermore, assume we want to represent a state where a = 4, b = 2, and
the time state is given by the clock constraints x ⇒ [3, 5), y ∅ 2, z ⇒ [0, 7)
and the difference constraints x − y = 1, z − x ∨ 3, and z < y. To obtain
the representation of this time state the constraints are transformed into the
constraints x − 0 < 5, 0 − x ∨ −3, 0 − y ∨ −2, z − 0 < 7, 0 − z ∨ 0, and
x− y ∨ 1, y− x ∨ −1, z − x ∨ 3, z − y < 0 and then organized in the following
DBM:

M =

0 x y z⎡⎢⎣
⎤⎥⎦

0 (0,∨) (−3,∨) (−2,∨) (0,∨)
x (5, <) (0,∨) (1,∨) ∞
y ∞ (−1,∨) (0,∨) ∞
z (7, <) (3,∨) (0, <) (0,∨)

4.2 Graph-Based Transformation Reduction Applied

To apply the reduction approach to UPPAAL’s state space we now specialize the
general formalization components from the reduction such that they represent
UPPAAL’s state space and transformations correctly. We apply the reduction to
the time state of UPPAAL only. The data state need not be considered because
it can be set directly and thus does not need to be reconstructed in an on-line
model checking context.

Consider an UPPAAL model with the variable set T = C ⊥ D. Due to the
layout of the DBM |C0|2 variables are necessary to represent the time state of
M. It follows that for the application of the reduction we can define the variable

Graph-Based Transformation Reduction 555

set by |V| = |C0|2 and the domain of those variables by D = K as we try to map
a DBM to the reduction formalism. We refer to the variables by DBMr,c where
r denotes the row number and c denotes the column number. Furthermore, we
need to define the transformations on the difference bound matrices UPPAAL
uses to modify the time state in the reduction context. The relevant DBM trans-
formations are the Up transformation, the Reset(x, v) transformation, and the
Constraint(x, y, v,≺) transformation [4]:

Up Removes all upper bounds on all single clocks
Reset(x, v) Sets the clock variable x to the value v and adjusts

constraints on that clock accordingly
Constraint(x, y, v,≺) Introduces a new upper bound on a clock or on a

difference of clocks and propagates dependencies

To specify these transformations in our transformation system we first introduce
four evaluation calculations. The first two deal with constant values: one is the
assign(v) calculation, which is used to assign a constant value to a variable. The
second one is the add(v) calculation, which assigns to a variable the sum of a
constant value and the evaluation of a variable:

assign : K ∧ (2V⊆ × E(V ,D)∧ K) add : K ∧ (2V⊆ × E(V ,D)∧ K)
v →∧ ((∅, e) →∧ v) v →∧ (({ x }, e) →∧ e(x) + v)

Finally, we define two calculations, minassign(v) and minadd(), that assign min-
ima to variables. The minassign(v) evaluation calculation assigns to a variable
the minimum of an evaluation of a variable and a constant value. The function
minadd is used to compare the evaluation of a single variable to the sum of two
variable evaluations and assigns the minimum to a variable:

minassign : K ∧ (2V⊆ × E(V ,D)∧ K)
v →∧ (({ x }, e) →∧ min(e(x), v))

minadd : 2V⊆ × E(V ,D)∧ K
({ x, y, z }, e) →∧ min(e(x), e(y) + e(z))

Using theses evaluation calculations we can now define the Up, Reset(x, v), and
Constraint(x, y, v,≺) transformations by giving their specification sets S(t).
Note that we denote the indices for the clocks x and y in the corresponding
DBM by ix and iy. We begin with the Up transformation, which sets all values
in the first DBM column except the first one to ∞:

S(Up) = { (DBMi,1, ∅, assign(∞)) | 1 < i ∨ |C0| }

The Reset(x, v) transformation sets the upper and the lower bound of x to v
and then adjusts all constraints in its row and column accordingly. It thus can

556 J. Rinast, S. Schupp, and D. Gollmann

be modeled as a compound transformation:

Reset(x, v) = ts ◦ tp
S(ts) = { (DBMix,1, ∅, assign((v,∨)), (DBM1,ix , ∅, assign(−v,∨)) }
S(tp) = { (DBMix,i, {DBM1,i }, add((v,∨))),

(DBMi,ix , {DBMi,1 }, add((−v,∨))) | 1 < i ∨ |C0| }

The Constraint(x, y, v,≺) transformation is divided into the introduction of
the constraint and the propagation of the constraint and is, thus, also modeled
as a compound transformation:

Constraint(x, y, v,≺) = tc ◦
t1,1 ◦ · · · ◦ t1,|C0| ◦
t2,1 ◦ · · · ◦ t2,|C0| ◦

...
t|C0|,1 ◦ · · · ◦ t|C0|,|C0|

ti,j = ti,j,1 ◦ ti,j,2

S(tc) = { (DBMix,iy , {DBMix,iy },minassign((v,≺))) }
S(ti,j,1) = { (DBMi,j , {DBMi,j ,DBMi,ix ,DBMix,j },minadd) }
S(ti,j,2) = { (DBMi,j , {DBMi,j ,DBMi,iy ,DBMiy,j },minadd) }

Example 4. We apply the transformation sequence Up ∧ Reset(x, 2) to the
time state represented by the DBM given in Example 3:

M
Up−−∧

⎡⎢⎢⎣
(0,∨) (−3,∨) (−2,∨) (0,∨)
∞ (0,∨) (1,∨) ∞
∞ (−1,∨) (0,∨) ∞
∞ (3,∨) (0, <) (0,∨)

⎤⎥⎥⎦ Reset−−−−∧

⎡⎢⎢⎣
(0,∨) (−2,∨) (−2,∨) (0,∨)
(2,∨) (0,∨) (0,∨) (2,∨)
∞ ∞ (0,∨) ∞
∞ ∞ (0, <) (0,∨)

⎤⎥⎥⎦

5 Experiments

The reduction method presented and its specialization on UPPAAL’s state space
has been implemented in Java. The developed software interfaces UPPAAL and
will ultimately facilitate on-line model checking as a framework. Accordingly, the
reduction method was evaluated with respect to the real-time constraints that
on-line model checking imposes. All experiments were carried out on an Intel
Core i7-3720QM CPU running at 2.6GHz with 16GB of available memory on a
system running Windows 7 64-bit.

This section first presents the evaluated UPPAAL models and the obtained
reduction results (Subsection 5.1) and then discusses the performance and scal-
ability of the presented method (Subsection 5.2).

Graph-Based Transformation Reduction 557

Table 3. Model Reduction Results

Model Length Average Length Deviation 3σ-BoundBeginning End Beginning End
bridge 277.2 5150.8 158.4 162.6 -

csmacd2 5.2 5.1 1.4 1.2 8.7
2doors 55.3 35.1 20.3 13.0 74.1
bmp 55.1 44.2 33.9 27.5 126.7

train_gate 466.8 1289.1 278.5 194.2 1871.7
fischer 286.6 138.2 141.0 45.7 275.3
tdma 414.6 201.8 265.0 147.6 644.6

train_gate2 1900.1 1357.3 749.8 422.8 2625.7

5.1 Reduction Results

The reduction method was applied to seven different UPPAAL models for eval-
uation. Four of the models come with the UPPAAL tool suite for demonstration
purposes and three were taken from scientific case studies. The models are

– 2doors A model of a synchronization scenario involving two doors and two
users that may block each other. This model is part of UPPAAL’s demon-
stration models.

– bridge A model of a system where soldiers with different walking speeds are
required to cross a bridge. Crossing the bridge is only possible with a torch.
Only one torch is available and may be shared by two soldiers. This model
is part of UPPAAL’s demonstration models.

– train_gate A model of a system where multiple trains pass a gate that may
only accommodate a single train at a time. Trains need to stop in time
and a first-come first-serve scheduling is employed. This model is part of
UPPAAL’s demonstration models.

– fischer A simple model of Fischer’s mutual exclusion protocol [13] with six
participants. This model is part of UPPAAL’s demonstration models.

– cdmacd2 A model of the carrier sense multiple access method with collision
detection for two participants. This model has been developed in a case study
[10].

– tdma A model of a start up sequence for the time division multiple access
method. This model has been developed in a case study [16].

– bmp A model of the biphase mark protocol, a protocol used for transmission
of bit strings and clock edges, e.g., in microcontrollers. This model has been
developed in a case study [17].

To determine the efficiency of our reduction we simulated every model five
times by executing 5000 transitions per model. Note that a single transition in
an UPPAAL model generally results in multiple transformations on the current
difference bound matrix. Every ten transitions we determined and recorded the
length of the reduced transformation sequence. This approach allows us to eval-
uate the development of the length of the reduced transformation sequence over

558 J. Rinast, S. Schupp, and D. Gollmann

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a) bridge Experiment

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000 30000 35000 40000

(b) csmacd2 Experiment

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

(c) 2doors Experiment

-50

0

50

100

150

200

250

300

0 5000 10000 15000 20000 25000

(d) bmp Experiment

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000 12000 14000 16000

(e) train_gate Experiment #1

-1000

0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000 25000 30000

(f) train_gate Experiment #2

-100

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(g) fischer Experiment

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000 30000 35000

(h) tdma Experiment

Fig. 2. Model Reductions over Time

Graph-Based Transformation Reduction 559

time. For on-line model checking we require a time-independent upper bound
on the length as otherwise real-time requirements will fail at some point. Ta-
ble 3 gives an overview of our results by comparing the average transformation
length and its deviation in the beginning of the experiments (first 10% of data
points) to the end of the experiments (last 10% of data points). Additionally, an
upper bound for the reduced sequence per model is obtained using the 99.9%
3ε-confidence interval. The train_gate2 experiment is an additional, longer ex-
periment running the train_gate model where we executed 10000 transitions
and evaluated the first and last 20% of data points as the initial experiments
were inconclusive.

In general, the results show that the average length and deviation decreases
over time. This behavior can be attributed to the gain of knowledge our reduction
method has: in the beginning no data on the model’s data space is known but
over time more and more reduction shortcuts are added. Also, reasonable upper
bounds can be obtained for every model such that timely model adjustments
required by on-line model checking seem feasible.

For the individual evaluation of the models Figure 2 shows the diagrams we
obtained for each model by plotting the reduced sequence length over the orig-
inal lengths. The black lines indicate the general trend of the data series over
time. The diagram for the bridge model (Figure 2a) shows the worst result of our
experiments. All data series show a clear upward trend and thus a time depen-
dence exists. Our reduction has limited applicability to this model as no drops in
the reduced length can be observed. This behavior can be attributed to the fact
that the bridge model has a global clock variable that never gets reset and thus
never returns to a previous time state. In contrast, the diagram for the csmacd2
model (Figure 2b) clearly shows a limited state space for this model. No reduced
transformation sequence length exceeds a length of seven if we ignore the initial
few transformations where no information on the state space is known yet. The
average reduced length is nearly constant and, thus, the model does not show
a time dependency. The diagram for the 2doors model (Figure 2c), however,
shows high variance over all data series. This high variance is the result of short
cycles in the model such that a sampling rate of one data point per ten transi-
tions is too low and thus no correlation between neighboring data points is seen.
However, the absolute reduced length never exceeds 150 transformations and
the average length does not increase over time. The diagram for the bmp model
shows comparable behavior: high variances in length, a low average length, and
some rare spikes, although, in absolute values, the reduced length never exceeds
230 here. In the diagram for the train_gate model (Figure 2e) all data series
show several huge drops in the reduced sequence length with near linear gains
in between. This behavior can be explained by the relatively long cycles until a
previous time state is reached again in the model. The long cycles result from
the many possible ways to interweave the approaching trains. In absolute val-
ues the train_gate model generally exhibits the longest reduced transformation
sequences. As the possibility for a time dependency could not completely be
eliminated in this experiment Figure 2f shows the extended experiment. Here,

560 J. Rinast, S. Schupp, and D. Gollmann

the time independence is depicted more clearly. The diagram for the fischer
model (Figure 2g) clearly shows that our reduction method gains knowledge of
the model state space over time. In the beginning, the reduced transformation
sequences are relatively long while at the end lower average lengths are obtained
and the variance decreases significantly. The diagram for the tdma model shows a
combination of the train_gate behavior and the fischer behavior. The knowledge
gain of the reduction method is clearly visible because the variance of the data
series decreases over time. Still, occasionally an unknown part of the state space
is explored leading to the relatively huge reductions when the simulation returns
to an already explored state. Again, no time dependency can be identified.

In general, this evaluation shows that as long as the model has a limited state
space during simulation, i.e., eventually all clocks are actually reset, the proposed
method reduces significantly the number of DBM transformations required to
reach the same state. This result is time-independent and upper bounds for
a reconstruction length can be established for every model. Furthermore, the
average reduced length for a model is constant over time barring small fluctuation
and, thus, our method may facilitate on-line model checking with its real-time
requirements.

5.2 Performance

The reduction method’s performance is directly related to the size of the state
space of the UPPAAL model. Every DBM transformation introduces a new node
in the graph if the evaluation function resulting from the transformation is new.
Additionally, a node has at maximum one incoming edge from every node in the
graph. It follows that |Ni| and |Vi| in the reduction graph sequence Gi = (Ni, Vi)
are bounded by |Ni| ∨ i and |Vi| ∨ |Ni|2. However, an additional static bound
|Ni| ∨ k exists if the state space of the model is limited as, at some point, the
complete state space is incorporated in the graph and therefore its growth comes
to a halt.

Our current implementation uses a simple implementation of Dijkstra’s al-
gorithm for the shortest path search and a sequential check of the projections
to join nodes. In this case the worst case performance of the method is O(k2).
The implementation can be further optimized by using a more efficient search
algorithm and implementing a cache for the projections that reuses previous
projection results.

As a general overview of run times, Table 4 shows the average run times of
the reduction method during our experiments. The first row displays the time
necessary to extend the graph for one DBM transformation. In the second row the
times for the shortest path search are shown; for reference, the last row gives the
state space size of the model. The state space sizes were obtained by verification
of an invariantly true property in UPPAAL. The data generally validates our
state space dependency expectations for the reduction performance. However,
all run times are within reasonable boundaries and show that our approach is
feasible in practice.

Graph-Based Transformation Reduction 561

Table 4. Reduction Run Times

Model bridge csmacd2 2doors bmp train_gate fischer tdma
Transformation [ms] 0.8 0.02 0.2 0.3 2.2 2.5 2.7
Path Search [ms] 69.8 0.2 8.0 17.6 198.1 279.5 236.6

State Space Size [n] 206 13 43 5908 12955 3458 >3000000

6 Conclusion and Future Work

In this paper we presented a general, graph-based reduction method for transfor-
mation sequences and applied it to UPPAAL’s transformation system to reach
UPPAAL states faster. The reduction method is based on finding shortcuts in
the transformation graph by exploiting projections. Our experiments show that,
generally, an upper bound on the length of the transformation sequence exists
and it is possible to reach a certain state for a particular UPPAAL model within
time bounds. Along with the good run-time performance the presented reduction
method is practical for on-line model checking of real-time system.

For future research the performance of the current Java implementation can be
improved by implementing a cache-like structure in the projection management
component. Also, now that efficient reconstruction of UPPAAL states is possible
we want to explore the targeted modification of such reconstruction sequences
to adjust the model state to the real world. Our goal is to develop a general
UPPAAL on-line model checking framework.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D., Wong-Toi, H.: Minimization
of Timed Transition Systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS,
vol. 630, pp. 340–354. Springer, Heidelberg (1992)

2. Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

3. Asarin, E., Maler, O.: As Soon as Possible: Time Optimal Control for Timed
Automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

4. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
UPPAAL Implementation Secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

5. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. Ph.D. thesis, Uppsala
University (2002)

6. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial Order Reductions for Timed
Systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 485–500. Springer, Heidelberg (1998)

7. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

562 J. Rinast, S. Schupp, and D. Gollmann

8. Bulychev, P., David, A., Larsen, K., Mikučionis, M., Bøgsted Poulsen, D., Legay,
A., Wang, Z.: UPPAAL-SMC: Statistical Model Checking for Priced Timed Au-
tomata. In: Wiklicky, H., Massink, M. (eds.) QAPL 2012. EPTCS, vol. 85, pp. 1–16
(2012)

9. Janowska, A., Penczek, W.: Path Compression in Timed Automata. Fundamenta
Informaticae 79(3-4), 379–399 (2007)

10. Jensen, H., Larsen, K., Skou, A.: Modelling and Analysis of a Collision Avoidance
Protocol using SPIN and UPPAAL. BRICS (1996)

11. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P.,
Romijn, J.: As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced
Timed Automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

12. Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Compact Data Structures and State-
Space Reduction for Model-Checking Real-Time Systems. Real-Time Systems 25(2-
3), 255–275 (2003)

13. Larsen, K., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

14. Li, T., Tan, F., Wang, Q., Bu, L., Cao, J.N., Liu, X.: From Offline toward Real-
Time: A Hybrid Systems Model Checking and CPS Co-design Approach for Med-
ical Device Plug-and-Play (MDPnP). In: ICCPS 2012, pp. 13–22. IEEE (2012)

15. Li, T., Wang, Q., Tan, F., Bu, L., Cao, J.N., Liu, X., Wang, Y., Zheng, R.: From
Offline Long-Run to Online Short-Run: Exploring A New Approach of Hybrid
Systems Model Checking for MDPnP. In: HCMDSS-MDPnP 2011 (2011)

16. Lönn, H., Pettersson, P.: Formal Verification of a TDMA Protocol Start-Up Mech-
anism. In: PRFTS 1997, pp. 235–242. IEEE (1997)

17. Vaandrager, F., de Groot, A.: Analysis of a biphase mark protocol with UPPAAL
and PVS. Formal Aspects of Computing 18(4), 433–458 (2006)

Computing Quadratic Invariants
with Min- and Max-Policy Iterations:

A Practical Comparison

Pierre Roux1,2 and Pierre-Löıc Garoche1

1 ONERA – The French Aerospace Lab, Toulouse, France
2 ISAE, Toulouse, France

Abstract. Policy iterations have been known in static analysis since a
small decade. Despite the impressive results they provide – achieving a
precise fixpoint without the need of widening/narrowing mechanisms of
abstract interpretation – their use is not yet widespread. Furthermore,
there are basically two dual approaches: min-policies and max-policies,
but they have not yet been practically compared.

Multiple issues could explain their relative low adoption in the re-
search communities: implementation of the theory is not obvious; initial-
ization is rarely addressed; integration with other abstraction or fixpoint
engine not mentionned; etc. This paper tries to present a Policy Iteration
Primer, summarizing the approaches from the practical side, focusing on
their implementation and use.

We implemented both of them for a specific setting: the computation
of quadratic templates, which appear useful to analyze controllers such
as found in civil aircrafts or UAVs.

Keywords: abstract interpretation, policy iteration, linear systems
with guards, quadratic invariants, ellipsoids, semidefinite programming.

1 Introduction

Abstract interpretation is now commonly used as a framework to describe static
analyses of programs. The collecting semantics, i.e., set of reachable states, has
first to be characterized as a fixpoint computation; then abstract domains allow
to perform in the abstract the fixpoint computation and obtain a sound over-
approximation of the concrete fixpoint.

The most famous approach of this fixpoint over-approximation is based on a
Kleene fixpoint computation using widening and narrowing mechanisms [5]. The
iteration process starts from an over-approximation, in the abstract domain, of
the initial states, then it performs a sequence of computations using the abstract
transfer function of the program. These iterations can be understood as local
computations: each statement of the program is considered one by one until the
global fixpoint is reached. Widening operators are then used while computing
the iterates to ensure convergence. Narrowing helps to recover precision lost by
widening steps: it is used once a postfixpoint is obtained to regain precision.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 563–578, 2014.
c© Springer International Publishing Switzerland 2014

564 P. Roux and P.-L. Garoche

Another approach was more recently introduced in the static analysis commu-
nity: policy1 iterations [4,8,9]. The idea is to exactly solve the fixpoint equation
for a given abstract domain when specific conditions are satisfied using appropri-
ate mathematical solvers. For example when both the abstract domain and the
fixpoint equation use linear equations, then linear programming could be used
to compute the exact solution without the need of widening and narrowing [8,9].
Similarly when the function and the abstract domain are at most quadratic, semi-
definite programming (SDP) could be used [1,11,12]. In practice, the abstract
domains should be rephrased as template domains, i.e., a finite a-priori-known
set of functions that will be bounded thanks to the mathematical solvers.

This second approach is also very useful when abstract domains are not fitted
with a lattice structure. For example ellipsoids, are not fitted with such: usually,
there is no smallest (for inclusion order) ellipsoid containing two other given
ellipsoids. But given a (fixed) set of quadratic templates, policy iterations could
bound them. Policy iterations over quadratic templates is then a good approach
to compute such invariants, that are not well suited for Kleene iterations.

We are interested in analyzing control command software, more specifically
the ones found in UAVs or civil aircrafts. Most of them are based on well known
principles of control theory: linear controllers. In general these controllers do not
admit simple linear inductive invariants, but control theorists know for long [3,16]
that such systems are stable if and only if they admit a quadratic invariant.
Therefore we are interested in computing these invariants on such linear systems.

Few static analysis work rely on quadratic invariants to bound linear sys-
tems [1,2,6,7,11,18,19]. In particular, ellipsoids of dimension two are used in the
famous Astrée tool [6,7].

About policy iterations, two different “schools” exist in the static analysis
community. The “French school” [1,4,8,12] offers to iterate on min-policies, start-
ing from an over-approximation of a fixpoint and decreasing the bounds until
the fixpoint is reached. The “German school” [9,10,12] in contrary operates on
max-policies, starting from bottom and increasing the bounds until a fixpoint is
reached. While the first can be interrupted at any point leaving a sound over-
approximation, the second approach requires to wait until the fixpoint is reached
to provide its result.

Clearly those two approaches rely on comparable fundamentals, but no work
actually compares them in practice. Furthermore their description is highly theo-
retical and not supported by actual implementation performing analyses on code.
A few issues, that particularly matter when targeting a practical implementa-
tion, were also not actually addressed such as the initial state of the iterations,
the use of unsound tools to perform numerical computations or the integration
with other abstractions.

This paper tries to give a practical definition for both approaches and presents
our experiments to compare them when inferring quadratic invariants for linear
controllers. All the analyses have been implemented and all results are obtain
without any other information than the code.

Section 2 details the state of the art, i.e., the definition of template domains,
min- and max-policies. Section 3 provides some details on our implementation

1 The word strategy is also used in the literature for policy, with equivalent meaning.

Computing Quadratic Invariants with Min- and Max-Policy Iterations 565

since most of the policy iteration papers about quadratic templates do not pro-
vide any implementation readily applicable to actual code and therefore do not
deal with template synthesis or soundness of the floating point computations. Fi-
nally, Section 4 presents our experimental results while a last section concludes.

2 State of the Art

The basic idea of policy iteration is to decompose fixpoint computation problems
to enable the use of numerical optimization tools to compute bounds that are
hard to guess for the widening or to retrieve via narrowing.

2.1 Template Domains

Policy iteration is performed on so called template domains. Given a finite set
{ t1, . . . , tn } of expressions on program variables V, the template domain T
is defined as R

n
= (R ⊥ {−∞,+∞})n and the meaning of an abstract value

(b1, . . . , bn) ⇒ T is the set of environments

βT (b1, . . . , bn) = {π ⇒ (V∧ R) | �t1�(π) ∨ b1, . . . , �tn�(π) ∨ bn}

where �ti�(π) is the result of the evaluation of expression ti in environment π.
In other words, the abstract value (b1, . . . , bn) represents all the environments
satisfying all the constraints ti ∨ bi.

Indeed, many common abstract domains can be rephrased as template do-
mains. For instance the intervals domain is obtained with templates −xi and xi

for all variables xi ⇒ V and the octagon domain [17] by adding all the ±xi ± xj .
The shape of the templates to be considered for policy iteration depends on the
optimization tools used. For instance, linear programming [8,9] allows any linear
templates whereas quadratic templates can be handled thanks to semidefinite
programming and an appropriate relaxation [1,11,12]. This paper focuses on the
latter case.

1 2

x0 := 0
x1 := 0
x2 := 0

−1 ≤ in ≤ 1 ,
x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 1. Control flow graph for our running example

Example 1. To bound the variables of the program whose control flow graph
is depicted on Figure 1, we use the quadratic template2: t1 := 6.2547x2

0 +
12.1868x2

1+3.8775x2
2−10.61x0x1−2.4306x0x2+2.4182x1x2. Templates t2 := x2

0,
t3 := x2

1 and t4 := x2
2 are added in order to get bounds on each variable. Using

those templates, policy iterations compute the invariant3 (1.0029, 0.1795, 0.1136,
0.2757) ⇒ T , meaning: t1 ∨ 1.0029∧ x2

0 ∨ 0.1795∧ x2
1 ∨ 0.1136∧ x2

2 ∨ 0.2757 or
equivalently: t1 ∨ 1.0029∧ |x0| ∨ 0.4236∧ |x1| ∨ 0.3371∧ |x2| ∨ 0.5251. This is
a cropped ellipsoid as displayed on Figure 2.

2 How this template was chosen will be explained later in Section 3.2.
3 All figures are rounded to the fourth digit.

566 P. Roux and P.-L. Garoche

2.2 System of Equations

Fig. 2. Invariant for our running example

While Kleene iterations iterate locally
through each construct of the program,
policy iterations require a global view
on the analyzed program. For that pur-
pose, the whole program is first trans-
lated into a system of equations which
is later solved.

Starting from the control flow graph
of the analyzed program, a system of
equations is defined with a variable bi,j
for each vertex i of the graph and each
template tj .

Example 2. Here is the system of equations for our running example:⎧⎪⎪⎨⎪⎪⎩
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} ∨ max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = max{0 | be(1)} ∨ max{r(t2) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,3 = max{0 | be(1)} ∨ max{r(t3) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,4 = max{0 | be(1)} ∨ max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}

(1)

where be(i) denotes (t1 ≤ bi,1) ∧ (t2 ≤ bi,2) ∧ (t3 ≤ bi,3) ∧ (t4 ≤ bi,4) and r(t) is the
template t in which variable x0 is replaced by 0.9379 x0 − 0.0381 x1 − 0.0414 x2 +

0.0237 in, variable x1 is replaced by −0.0404 x0+0.968 x1−0.0179 x2+0.0143 in and
variable x2 is replaced by 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in. The usual
maximum on R is denoted ⇔.

Each bi,j bounds the template tj at program point i and is defined in one
equation as a maximum over as many terms as incoming edges in i. More pre-
cisely, each edge between two vertices v and v′ translates to a term in each

equation bv′,j on the pattern: max
{
r(tj)

∣∣∣ c ∧∧
j(tj ∨ bv,j)

}
where c and r are

respectively the constraints and the assignments associated to this edge. This
expresses the maximum value the template tj can reach in destination vertex
v′ when applying the assignments r on values satisfying both the constraints
c of the edge and the constraints tj ∨ bv,j of the initial vertex v. Finally, the
program starting point is initialized to (+∞, . . . ,+∞), meaning all equations for
bi0,j , where i0 is the starting point, become bi0,j = +∞. Thus, for any solution
(b1,1, . . . , b1,n, . . .) of the equations, βT (bi,1, . . . , bi,n) is an overapproximation of
reachable states of the program at point i.

2.3 Policy Iterations

Two different techniques can be found in the literature to compute an overap-
proximation of the least solution of the previous system of equations (which
existence is proved thanks to Knaster-Tarski theorem).

Computing Quadratic Invariants with Min- and Max-Policy Iterations 567

Min-Policy Iterations. To some extent, Min-Policy iterations [1] can be seen
as a very efficient narrowing, since they perform descending iterations from a
postfixpoint towards some fixpoint, working in a way similar to the Newton-
Raphson numerical method. Iterations are not guaranteed to reach a fixpoint
but can be stopped at any time leaving an overapproximation thereof. Moreover,
convergence is usually fast.

Writing a system of equations b = F (b) with b = (bi,j)i∈�1,n�,j∈�1,p� and

F : R
np ∧ R

np
(n being the number of templates and p the number of vertices

in the control flow graph), a min-policy is defined as follows: F is a min-policy

for F if for every b ⇒ R
np
, F (b) ∨ F (b) and there exist some b0 ⇒ R

np
such that

F (b0) = F (b0).

Example 3. Considering the system of one equation b1,1 = 0 ⇔
√
b1,1 where

√
x

is defined as −∞ for negative numbers x, F defined as F (b) := 0 ⇔
(

b1,1
8 + 2

)
is a min-policy. Indeed, for all b1,1 ⇒ R, F (b) = 0 ⇔

√
b1,1 ∨ 0 ⇔ b1,1

8 +2 = F (b),

and for b0 = 16, F (b0) =
√
16 = 16

8 + 2 = F (b0). This is illustrated on Figure 3
on which ε1 = F .

The following theorem can then be used to compute the least fixpoint of F .

Theorem 1. Given a (potentially infinite) set F of min-policies for F . If for all

b ⇒ R
np

there exist a policy F ⇒ F interpolating F at point b (i.e. F (b) = F (b))
and if each F ⇒ F has a least fixpoint lfpF , then the least fixpoint of F satisfies

lfpF =
∧
F∈F

lfpF .

Iterations are done with two main objects: a min-policy ε and a tuple b of
values for variables bi,j of the system of equations. The following policy iteration
algorithm starts from some postfixpoint b0 of F and aims at refining it to produce
a better overapproximation of a fixpoint of F . Policy iteration algorithms always
proceed by iterating two phases: first a policy εi is selected, then it is solved
giving some bi. More precisely in our case:

– find a linear min-policy εi+1 being tangent to F at point bi, this can be done
thanks to a semi definite programming solver and a lagrangian relaxation;

– compute the least fixpoint bi+1 of policy εi+1 thanks to linear programming.

Iterations can be stopped at any point (for instance after a fixed number of
iterations or when progress between bi and bi+1 is considered small enough)
leaving an overapproximation b of a fixpoint of F .

Example 4. We perform min-policy iterations on the system of equation of Ex-
ample 3.

– We start from the postfixpoint b0 = 16. This postfixpoint could be obtained
through Kleene iterations for instance.

568 P. Roux and P.-L. Garoche

b1,1

0 ∨ √
b1,1

σ1σ2

b1,1
b0b1b2

Fig. 3. Illustration of Example 4

– For each term of the unique equation, we look for an hyperplane tangent to

the term at point b0. 0 is tangent to 0 at point b0 and
b1,1
8 + 2 is tangent to√

b1,1 at point b0 (c.f., Figure 3), this gives the following linear min-policy:
ε1 =

{
b1,1 = 0 ∨

(
b1,1
8

+ 2
)

– The least fixpoint of ε1 is then: b1 = 16
7 ⊗ 2.2857.

– Looking for hyperplanes tangent at point b1 gives the min-policy:
ε2 =

{
b1,1 = 0 ∨

(√
7

8
b1,1 +

2√
7

)
– Hence b2 = 16

8
√
7−7

⊗ 1.1295.

These two first iterations are illustrated on Figure 3. The procedure then rapidly
converges to the fixpoint b1,1 = 1 (the next iterates being b3 ⊗ 1.0035 and
b4 ⊗ 1.0000) and can be stopped as soon as the accuracy is deemed satisfying.

Example 5. We perform min-policy iteration on the running example.

– We start from the postfixpoint ϕ0 = (+∞, +∞, +∞, +∞, 1000000, +∞,
+∞, +∞), which could be obtained through Kleene iterations for instance.

– For each term of each equation, we look for an hyperplane tangent to the
term at point b0. This can be done thanks to a semi definite programming
solver and gives the following linear min-policy:
ε1 = {

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0152 b2,2 = 0 ∨ 0.2195 b2,1 + 11.0979
b2,3 = 0 ∨ 0.1143 b2,1 + 4.8347 b2,4 = 0 ∨ 0.2669 b2,1 + 3.9796

– A linear programming solver allows to compute the least fixpoint of ε1:
b1 = (+∞,+∞,+∞,+∞, 1.0664, 11.3324, 4.9568, 4.2644).

– ε2 = {
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143 b2,2 = 0 ∨ 0.2302 b2,1 + 0.0120
b2,3 = 0 ∨ 0.1190 b2,1 + 0.0052 b2,4 = 0 ∨ 0.2708 b2,1 + 0.0042

– b2 = (+∞,+∞,+∞,+∞, 1.0029, 0.2429, 0.1245, 0.2757).
– ε3 =

⎧⎪⎪⎨⎪⎪⎩
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143
b2,2 = 0 ∨ 0.0390 b2,1 + 0.7426 b2,2 + 0.0114
b2,3 = 0 ∨ 0.0340 b2,1 + 0.6635 b2,3 + 0.0050
b2,4 = 0 ∨ 0.2709 b2,1 + 0.0040

Computing Quadratic Invariants with Min- and Max-Policy Iterations 569

– b3 = (+∞,+∞,+∞,+∞, 1.0029, 0.1962, 0.1160, 0.2757).
– ε4 = ⎧⎪⎪⎨⎪⎪⎩

b1,1 = +∞, b1,2 = +∞, b1,3 = +∞, b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143
b2,2 = 0 ∨ 0.0194 b2,1 + 0.8340 b2,2 + 0.0104
b2,3 = 0 ∨ 0.0214 b2,1 + 0.7688 b2,3 + 0.0049
b2,4 = 0 ∨ 0.2709 b2,1 + 0.0040

– b4 = (+∞,+∞,+∞,+∞, 1.0029, 0.1803, 0.1137, 0.2757).

Two more iterations lead to b6 = (+∞,+∞,+∞,+∞, 1.0029, 0.1795, 0.1136,
0.2757) which is the invariant given in Example 1 and depicted on Figure 2.

Max-Policy Iterations. Behaving somewhat as a super widening, Max-Policy
iterations [11] work in the opposite direction compared to Min-Policy iterations.
They start from bottom and iterate computations of greatest fixpoints on a set
of max-policies until a global fixpoint is reached. Unlike the previous approach,
this terminates with a theoretically precise fixpoint, but the user has to wait until
the end since intermediate results are not overapproximations of a fixpoint.

Max-policies are the dual of min-policies: F is a max-policy for F if for every
b ⇒ R

np
, F (b) ∨ F (b) and there exist some b0 ⇒ R

np
such that F (b0) = F (b0).

In particular, the choice of one term in each equation is a max-policy. From now
on, only this last kind of max-policies will be considered.

Example 6. A max-policy of the system of equations from Example 2:⎧⎪⎪⎨⎪⎪⎩
b1,1 = +∞, b1,2 = +∞, b1,3 = +∞, b1,4 = +∞
b2,1 = max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)}
b2,4 = max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}

Iterations are again done with two main objects: a max-policy ε and a tuple b
of values for variables bi,j of the system of equations. Considering that computing
a fixpoint on a given policy reduces to a mathematical optimization problem and
that a fixpoint of the whole equation system is also a fixpoint of some policy,
the following policy iteration algorithm aims at finding such a policy by solving
optimization problems. To initiate the algorithm, a term −∞ is added to each
equation, the initial policy ε0 is then −∞ for each equation and the initial value
b0 is the tuple (−∞, . . . ,−∞). Then policies are iterated:

– find a policy εi+1 improving policy εi at point bi, i.e. that reaches (strictly)
greater values evaluated at point bi; if none is found, exit;

– compute the greatest fixpoint bi+1 of policy εi+1.

The last tuple b is then a fixpoint of the whole system of equations.

Remark 1. Although min and max policies are dual concepts, we are in both
cases looking for overapproximations of the least fixpoint of the system of equa-
tions, thus the algorithms are not dual.

570 P. Roux and P.-L. Garoche

Example 7. We perform max-policy iterations on the running example. For that,
we first add −∞ terms to each equation, leading to the following system of
equations:⎧⎪⎪⎨⎪⎪⎩

b1,1 = −∞∨+∞ b1,2 = −∞∨+∞ b1,3 = −∞∨+∞ b1,4 = −∞∨+∞
b2,1 = −∞∨max{0 | be(1)} ∨ max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = −∞∨max{0 | be(1)} ∨ max{r(t2) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,3 = −∞∨max{0 | be(1)} ∨ max{r(t3) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,4 = −∞∨max{0 | be(1)} ∨ max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}.

– We start with initial policy ε0 ={
b1,1 = −∞ b1,2 = −∞ b1,3 = −∞ b1,4 = −∞
b2,1 = −∞ b2,2 = −∞ b2,3 = −∞ b2,4 = −∞.

– Its greatest fixpoint is b0 = (−∞,−∞,−∞,−∞,−∞,−∞,−∞,−∞).
– We now look for a policy ε1 improving ε0 at point b0. For the first four

equations, the term +∞ is definitely greater than −∞. The strategy ε1 ={
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = −∞ b2,2 = −∞ b2,3 = −∞ b2,4 = −∞.

is then a suitable choice.
– Hence b1 = (+∞,+∞,+∞,+∞,−∞,−∞,−∞,−∞).
– We again look for a policy ε2 improving ε1 at point b0. There is nothing

strictly greater than +∞ in R and we keep the +∞ terms for the first four
equations. In the four remaining equations, replacing the bi,j with values
from b1 in be(1) and be(2) respectively gives formula equivalent to true and
false. This way, for these four equations, the first term reduces to 0 whereas
the second term evaluates to −∞. 0 being greater than the −∞ from b1, we
get an improving strategy ε2 ={

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)} b2,4 = max{0 | be(1)}.

– b2 = (+∞,+∞,+∞,+∞, 0, 0, 0, 0).
– Now that the b2,j in b2 are no longer −∞, be(2) is no longer false and it

becomes interesting to select the second terms in the four last equations,
hence ε3 =⎧⎪⎪⎨⎪⎪⎩

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{r(t1) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,2 = max{r(t2) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,3 = max{r(t3) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,4 = max{r(t4) | −1 ≤ in ≤ 1 ∧ be(2)}.

– The greatest fixpoint b3=(+∞,+∞,+∞,+∞, 1.0077, 0.1801, 0.1141, 0.2771)
of ε3 can be computed thanks to a semi-definite programming solver and an
appropriate relaxation.

– No more improving strategy.

After four iterations, the algorithm has found the same least fixpoint than min
policies in Example 5.

Computing Quadratic Invariants with Min- and Max-Policy Iterations 571

The Max-Policy iteration builds an ascending chain of abstract elements simi-
larly to Kleene iterations elements. However it is guaranteed to be finite, bounded
by the number of policies ε, while Kleene iterations require the use of widening
to ensure termination. Since there are exponentially many max-policies in the
number of templates and points of the control flow graph and since each policy
can be an improving one only once, we have an exponential bound on the num-
ber of iterations. But in practice, only a small number of policies are usually
considered and the number of iterations remains reasonable.

3 Implementation Details

This Section highlights a few features of our implementation of min- and max-
policy iterations to compute quadratic invariants on linear systems. Some are just
simple hacks to improve analysis performances. Others were needed to achieve
full automaticity, ensure the soundness of the result or just to get any result at
all on our benchmarks.

3.1 Control Flow Graph

In this paper, we only dealt with control flow graphs from which system of equa-
tions are extracted for policy iterations. In a traditional, abstract interpretation
based, static analyzer, abstractions are computed by abstract domains [14] not
having access to the whole control flow graph of the analyzed program but only
to individual operations it performs. A symbolic abstract domain was then de-
signed to rebuild the control flow graph. This way, policy iterations are packed
in an abstract domain which can be used in a static analyzer through the same
interface than any other numerical relational domain such as polyhedra or oc-
tagons for instance [15]. Full technical details on this point are unfortunately
outside the scope of this paper. We refer the interested reader to [20] for more
details.

3.2 Templates

Template domains used by policy iteration require templates to be given prior
to the analyses. This greatly limits the automaticity of the method. However,
heuristics can be designed for linear systems of the form xk+1 = Axk+Buk, like
our running example. Those are ubiquitous in control applications where the
vector x represents the internal state of the controller and u a bounded input.

This section first focuses on generating templates for pure linear systems then
for guarded linear systems given as a control flow graph.

Pure Linear Systems. Control theorists know for long [3,16] that such a
system is stable (i.e. that x is bounded) if and only if the Lyapunov equation

P −ATPA , 0 (2)

572 P. Roux and P.-L. Garoche

{
x
∣∣ xT rIx ≤ 1

}
{
x
∣∣ xTPx ≤ 1

}

{
Ax

∣∣ xTPx ≤ 1
}

{Axk +Bu | ||u||∞ ≤ 1}

xk

Axk

Fig. 4. Looking for an invariant ellipsoid included
in the smallest possible sphere by maximizing r

admits a symmetric positive
definite matrix P as solution,
where M , 0 means that the
matrix M is positive definite
(i.e. for all x, xTMx ∅ 0). The
template t := xTPx is then a
quadratic template and policy
iteration can be used to com-
pute a bound b such that t ∨ b is
an invariant of the system. This
invariant is an ellipsoid [22].

Inequality (2) is a so called
Linear Matrix Inequality (LMI)
which can be solved thanks
to a semidefinite programming
solver. However, taking any
random solution may lead to
very grossly overapproximated
invariants. It would be interest-
ing to constrain more the set of
solutions, for instance by forcing them to lie in a sphere as small as possible.
More precisely, we will look for an ellipsoid P included in the smallest possible
sphere and which is stable, i.e., such that

∪x, ∪u,
(
||u||∞ ∨ 1 ∧ xTP x ∨ 1

)
← (Ax+Bu)

T
P (Ax+ Bu) ∨ 1.

This is illustrated in Figure 4. The previous condition can be rewritten

∪x, ∪u,
((

p−1∧
i=0

(
eTi u

)2 ∨ 1

)
∧ xTP x ∨ 1

)
← (Ax+Bu)

T
P (Ax+Bu) ∨ 1.

where ei is the i-th vector of the canonical basis (i.e., with all coefficients equal
to 0 except the i-th one which is 1). This amounts to: ∪x, ∪u,(

p−1∧
i=0

[
x
u

]T[
0 0
0 Ei,i

] [
x
u

]
≤ 1

)
∧
[
x
u

]T[
P 0
0 0

] [
x
u

]
≤ 1⇒

[
x
u

]T[
ATPA ATPB
BTPA BTPB

] [
x
u

]
≤ 1

where Ei,j is the matrix with 0 everywhere except the coefficient at line i, column
j which is 1. Using a lagrangian relaxation, this holds when there are τ and
ν0, . . . , νp−1 all positives such that⎡⎣−ATPA −ATPB 0

−BTPA −BTPB 0
0 0 1

⎤⎦− τ

⎡⎣−P 0 0
0 0 0
0 0 1

⎤⎦−∑p−1
i=0 λi

⎡⎣0 0 0
0 −Ei,i 0
0 0 1

⎤⎦ (0 (3)

This is not an LMI since τ and P are both variables which means it cannot be
directly solved ’as is’. However, there is a τmin ⇒ (0, 1) such that this inequality
admits as solution a positive definite matrix P if and only if τ ⇒ (τmin, 1). This
value τmin can then be efficiently approximated thanks to a dichotomy. It now

Computing Quadratic Invariants with Min- and Max-Policy Iterations 573

remains to choose the ’best’ τ in this interval. For this purpose, P is forced to
be contained in the smallest possible sphere by maximizing r in the additional
constraint

P , rI. (4)

We denote f the function mapping τ ⇒ (τmin, 1) to the optimal value of the
following semi definite program:

maximize r

subject to (3), (4), PT = P,

p−1∧
i=0

(νi > 0)

Thus, this function can be evaluated for a given input τ simply by solving the
above semi definite program. f is then sampled for some equally spaced values
in the interval (τmin, 1) and the matrix P obtained for the value enabling the
maximum r is kept.

Example 8. With the following matrices A and B of the running example:

A :=

⎡⎣ 0.9379 −0.0381 −0.0414
−0.0404 0.968 −0.0179
0.0142 −0.0197 0.9823

⎤⎦ B :=

⎡⎣0.02370.0143
0.0077

⎤⎦ ,

five steps of dichotomy give τmin = 0.9921875. Then computing the function f
for a dozen of values between τmin and 1, the following matrix P is selected,
corresponding to τ = 0.9921875:

P =

⎡⎣ 6.2547 −5.3050 −1.2153
−5.3050 12.1868 1.2091
−1.2153 1.2091 3.8775

⎤⎦ .

This is the template used in Example 1.

Guarded Linear Systems. From a control flow graph, matrices A and B
are extracted by looking at the strongly connected component of the relation
“variable x linearly depends on variable y”. Templates are then generated as
above for these matrices. This is a pure heuristic since existence of templates
for such subsystems does not mean that they will allow to bound the whole
system, not even that it is stable. However, this is a reasonable choice since
actual systems are usually designed around a pure linear core.

Finally, as seen in the running example, we add templates x2 for each variable
modified by the program. In the literature [1,11,12], templates x and −x are used.
Since results are usually symmetrical in our context (i.e. the same bound b is
obtained for both templates: x ∨ b and −x ∨ b), templates x2 yield the same
result (i.e. x2 ∨ b2) making use of two times less templates for policy iteration,
hence saving on computation costs.

574 P. Roux and P.-L. Garoche

3.3 Initial Value

In the policy iteration literature, system of equations require extra terms with
initial values for each template at loop head. Although

those values do not come totally out of the blue, computing them does not
appear absolutely obvious. As seen in the running example, we chose to replace
them by an initial vertex (vertex 1 in Figure 1) initialized with bound +∞ for
each template and linked to loop head (vertex 2 in Figure 1) by an edge with
initialization code. Thus, previous initial values for each template will actually
be computed by policy iteration.

Considering policy iteration themselves,max-policies start from (−∞, . . . ,−∞)
whereas min-policies need to start from a postfixpoint. Such a postfixpoint could
be computed through Kleene iterations using a simple widening with thresholds.
However, just starting from a big value (for instance 106) for the quadratic tem-
plates computed in the previous Section and +∞ for all others often yields in prac-
tice the same results at a lower cost.

3.4 Interval Constraints

To enable the use of semidefinite programming solvers, a relaxation must be
used. It basically amounts to the following theorem.

Theorem 2 (Lagrangian relaxation). Assume f and g1, . . . , gk functions
R∧ R, if there exist ν1, . . . , νk ⇒ R all non negative such that.

∪x, f(x) −
∑
i

νigi(x) ∅ 0 (5)

then

∪x,
(∧

i

gi(x) ∅ 0

)
← f(x) ∅ 0. (6)

Semidefinte programming solvers being unable to directly handle Equation (6),
they are feeded with Equation (5). This usually works well, however the converse
of Theorem 2 does not generally holds. In particular with a quadratic objective
f and two linear constraints g1 and g2.

Example 9. We want to apply a relaxation on x ⇒ [1, 3] ← −x2 + 4x + 5, that
is Equation (6) with f := x →∧ −x2 + 4x+ 5, g1 := x →∧ x − 1 and g2 := 3 − x.
Equation (5) then boils down to: ∪x,−x2 + (4− ν1 − ν2)x+ (5 + ν1 − 3ν2) ∅ 0.
Unfortunately, not any ν1, ν2 ⇒ R satisfy this. This is depicted on left of Figure 5.

This case is commonly encountered in practice, for instance with initial val-
ues of a program living in some range or with inputs bounded by an interval.
Replacing the two linear constraints by an equivalent quadratic one constitutes
an efficient workaround.

Example 10. When constraints x − 1 ∅ 0 and 3 − x ∅ 0 are replaced by the
equivalent 1− (x−2)2 ∅ 0, relaxation works just fine (with relaxation coefficient
ν = 1 for instance). This is depicted on right of Figure 5.

Computing Quadratic Invariants with Min- and Max-Policy Iterations 575

−x2 + 4x+ 5

λ1(x− 1) + λ2(3− x)

−1 1 3 5 x

−x2 + 4x+ 5

λ
(
1− (x− 2)2

)

−1 1 3 5 x

Fig. 5. Relaxation of interval constraints

3.5 Soundness of the Result

For the sake of efficiency, the semidefinite programming solvers we use perform
all their computations on floating point numbers and do not offer any strict
soundness guarantee on their results.

To address this issue, we adopt the following strategy:

– first perform policy iterations with unsound solvers, just padding the equa-
tions to hopefully get a correct result;

– then check the soundness of previous result.

Padding the equations means for min-policies multiplying each temporary re-
sult ϕi by (1+δ) for some small δ. For max-policies, all equations max {p | q ∨ c}
are basically replaced by max {(1 + δ)p | q ∨ (1 + δ)c}. In practice, while using
solvers trying to achieve an accuracy of 10−8 on their results, a value of 10−4

for δ appears to be a good choice. The induced loss of accuracy on the final
result is considered acceptable since bounds finally computed by our analysis
are usually found to be at least a few percent larger than the actual maximal
values reachable by the program. Finding a good way to padd equations to get
correct results, while still preserving the best accuracy, however remains some
kind of black magic.

Checking that a result is an actual postfixpoint amounts, for each term of
the equation system, and after some relaxation4, to prove that a given matrix is
actually positive definite. This is done by carefully bounding the rounding error
on a floating point Cholesky decomposition [23]. Proof of positive definiteness
of an n × n matrix can then be achieved with O

(
n3

)
floating point operations,

which in practice induces only a very small overhead to the whole analysis.
Finally, a quick and dirty hack to recover a correct result in the rare event

where the aforementioned soundness check fails consists in multiplying the —
probably false — result by a small constant (for instance 1.1) and checking again
its soundness. This sometimes enable to get a better result than -, despite the
first check failure, at the very low cost of an additional check.

Although all this gives satisfying results. It would remain interesting to com-
pare the cost/accuracy trade off when using the verified solver VSDP [13] as
already offered in the literature [1].

4 This relaxation being the same than the one used during policy iterations, it doesn’t
introduce further conservatism by itself.

576 P. Roux and P.-L. Garoche

4 Experimental Results

All the elements presented in this paper have been implemented as a new ab-
stract domain in our static analyzer. Experiments were conducted on a set of
stable linear systems. These systems were extracted from [1,7,22,24]. We have
to recall to the reader that those systems, despite their apparent simplicity, do
not admit simple linear invariants. Figure 6 compares analysis times with min
and max-policy iterations. All computations were performed on an Intel Core2
@ 2.66GHz. The analyzer is released under a GPL license and available along
with all examples and results at http://cavale.enseeiht.fr/policy2014/.

0.5

1

1.5

2

0
3 43 5 653 43 4 54 6 766 762 322 32 5 99 12127 8 10 119 v

t

Fig. 6. Time (t in seconds) spent performing min (− signs) and max (+ signs) policy
iterations depending on the number v of variables in the analyzed program. Less +
than − in a column indicate a failure of max-policies on a benchmark.

Figure 6 only gives times for policy iterations. Total analysis times also in-
cludes building the control flow graph and the equation system, computing appro-
priate templates and eventually checking soundness of the result. Time needed
for control flow graph construction and soundness checking is very small com-
pared to the time spent in policy iterations, whereas computing templates takes
the same amount of magnitude in time than min-policies iteration.

For min-policies, the number of iterations performed lies between 3 and 7 when
the stopping criterion is a relative progress below 10−4 between two consecutives
ϕi. For max-policies, the number of iterations was between 4 and 7.

Results obtained with min- and max-policies were the same. However, para-
doxically enough, min-policies yield slightly more precise results. It is also worth
noting that max-policies were in a few cases unable to produce a sound result
whereas min-policies did. Finally, regarding the quality of the result, in cases
where the maximum reachable values are known [24], bounds given by our ana-
lyzer seem to be accurate and are in average a few percents larger.

Finally, as seen on Figure 6, computation time for min and max-policies are
comparable for small number of variables whereas min-policies scale way better
for a larger number of variables. This can be explained by min-policies solving
smaller semidefinite programming problems [12, Conclusion]. Therefore, we made
min-policies the default in our tool.

http://cavale.enseeiht.fr/policy2014/

Computing Quadratic Invariants with Min- and Max-Policy Iterations 577

5 Conclusion and Future Work

We have presented the two approaches to compute policy iterations: min- and
max-policies, and we have instantiated them on quadratic templates using SDP
solvers. Our implementation is then able to use both approaches and was applied
on a series of representative examples of linear controllers.

This paper proposed a presentation of those two techniques from the tool im-
plementation perspective. We also addressed mutiple issues that, for our point
of view, prevent the development of these techniques: how to initialize the anal-
ysis? how to identify meaningful templates for a given problem? how to check
the soundness of the computation when using tools relying on floating point
implementation?

Our approch was implemented and actually integrated within a regular Kleene-
based fixpoint abstract interpreter. It shows that the use of policy iteration in a
more classic tool is accessible and could leverage the set of domains to perform
analyses.

Amongst the results we obtain with our experimentations, one can notice that
we obtain the same results with both approaches. Max-iteration were theoret-
ically proved to provide the exact fixpoint but such proof was not stated for
min-iteration. In practice – and in our setting – they give the same results.

However min-strategies showed to scale better, as expected. We have however
to stress again that this may not be the case for other setting like the use of linear
programming. Our experiments were only computed with quadratic templates
on linear systems.

In terms of future work, different directions are open. First, the floating point se-
mantics of analyzed programshas to be taken into account (instead of the real num-
bers semantics currently used). Second, it would be interesting to perform so called
closed loop analyses of controllers, i.e., controllers consideredwith amodel of their
environment (so called plant for control theorists). Finally, since we have a proto-
type, it would be interesting to extend the kind of templates analyzablewith policy
iterations. Bernstein polynomials can be used to bound polynomial templates (be-
yond quadratic ones) [21]. Injecting this domain in the current setting could enable
the analysis of a much wider class of programs. A deeper comparison of min- and
max-policy should also consider an implementation with linear templates.

Acknowledgments. The authors acknowledge the support of the ANR INS
Project CAFEIN.

References

1. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010)

2. Alegre, F., Féron, É., Pande, S.: Using ellipsoidal domains to analyze control sys-
tems software (2009), http://arxiv.org/abs/0909.1977

3. Boyd, S., El Ghaoui, L., Féron, É., Balakrishnan, V.: Linear Matrix Inequalities
in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

http://arxiv.org/abs/0909.1977

578 P. Roux and P.-L. Garoche

4. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

6. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

7. Feret, J.: Numerical abstract domains for digital filters. In: International workshop
on Numerical and Symbolic Abstract Domains, NSAD (2005)

8. Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
237–252. Springer, Heidelberg (2007)

9. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg
(2007)

10. Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer,
Heidelberg (2007)

11. Gawlitza, T.M., Seidl, H.: Computing relaxed abstract semantics w.r.t. Quadratic
zones precisely. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
271–286. Springer, Heidelberg (2010)

12. Gawlitza, T.M., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpre-
tation meets convex optimization. J. Symb. Comput. 47(12) (2012)

13. Jansson, C., Chaykin, D., Keil, C.: Rigorous error bounds for the optimal value in
semidefinite programming. SIAM J. Numerical Analysis 46(1) (2007)

14. Jeannet, B.: Some experience on the software engineering of abstract interpretation
tools. Electr. Notes Theor. Comput. Sci. (2) (2010)

15. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

16. Lyapunov, A.M.: Problème général de la stabilité du mouvement. Annals of Math-
ematics Studies 17 (1947)

17. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001. IEEE
(October 2001)

18. Monniaux, D.: Compositional analysis of floating-point linear numerical filters. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 199–212.
Springer, Heidelberg (2005)

19. Roozbehani, M., Feron, E., Megrestki, A.: Modeling, optimization and computa-
tion for software verification. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS,
vol. 3414, pp. 606–622. Springer, Heidelberg (2005)

20. Roux, P., Garoche, P.-L.: Integrating policy iterations in abstract interpreters.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 240–254.
Springer, Heidelberg (2013)

21. Roux, P., Garoche, P.-L.: A polynomial template abstract domain based on bern-
stein polynomials. In: NSV (2013)

22. Roux, P., Jobredeaux, R., Garoche, P.-L., Féron, É.: A generic ellipsoid abstract
domain for linear time invariant systems. In: HSCC. ACM (2012)

23. Rump, S.M.: Verification of positive definiteness. BIT Numerical Mathematics 46
(2006)

24. Seladji, Y., Bouissou, O.: Numerical abstract domain using support functions. In:
Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 155–169.
Springer, Heidelberg (2013)

Efficient Self-composition for Weakest
Precondition Calculi

Christoph Scheben and Peter H. Schmitt�

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

http://www.key-project.org/DeduSec/

Abstract. This paper contributes to deductive verification of language
based secure information flow. A popular approach in this area is self-
composition in combination with off-the-shelf software verification sys-
tems to check for secure information flow. This approach is appealing,
because (1) it is highly precise and (2) existing sophisticated software ver-
ification systems can be harnessed. On the other hand, self-composition
is commonly considered to be inefficient.

We show how the efficiency of self-composition style reasoning can be
increased. It is sufficient to consider programs only once, if the used ver-
ification technique is based on a weakest precondition calculus with an
explicit heap model. Additionally, we show that in many cases the num-
ber of final symbolic states to be considered can be reduced considerably.
Finally, we propose a comprehensive solution of the technical problem of
applying software contracts within the self-composition approach. So far
this problem had only been solved partially.

1 Introduction

In the last years, there has been an increasing interest, both in research and indus-
try, in checking programs for unintended leakage of secret information. Language-
based non-interference is one of the most prominent concepts promoted in this
area and a number of theories and tools have been developed to support it. In
Sect. 6 we will present a detailed summary of the different approaches and their
relation to our contribution. The approach we follow is called self-composition
as pioneered by [6,8]. To check that the high variables h̄ in program σ do not
interfere with its low variables ρ̄ a syntactic variation σ′ of σ is considered by
replacing every program variable v by a new primed version v′. Then it has to be
proved that when program σ;σ′ is started in any state where the values of ρ̄ and
ρ̄′ coincide it terminates in a state where the values of ρ̄ and ρ̄′ again coincide.

The advantages of this approach are its high degree of precision and the fact
that off-the-shelf SMT-solvers or theorem provers can be harnessed. In our case

� This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties” within priority programme 1496 “Reliably Secure Software Systems – RS3”.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 579–594, 2014.
c© Springer International Publishing Switzerland 2014

http://www.key-project.org/DeduSec/

580 C. Scheben and P.H. Schmitt

we used KeY, a software verification system for full sequential Java. On the
other hand, disadvantages of the self-composition approach are that (1) naive
implementations are quite inefficient and (2) it does not easily lend itself to
modular verification.

The efficiency issue arises from two facts. Let n be the number of paths
through a program σ.

1. Analysis based on self-composition consider the same program at least twice.
(Really naive analysis might consider the same program even 1 + n times.)

2. The self-composed program σ;σ′ has n2 final symbolic states in which the
low values have to be compared to each other.

As a first contribution we show that self-composition approaches based on
weakest precondition calculi [9] need to consider σ only once: we show in Theo-
rem 1 that the problem can be rephrased in self-composition style such that the
weakest precondition of σ;σ′ can be constructed from the weakest precondition
of σ, because σ and σ′ do not interfere with each other and the weakest precon-
dition of σ′ and Ξ′ is the same as the one of σ and Ξ except for the names of the
program variables.

As a second contribution, inspired by the compositional reasoning of security
type systems and specialized information flow calculi, we show that the number
of final symbolic states to be considered can be reduced considerably if σ is com-
positional with respect of information flow. In this case only O(n) final symbolic
states have to be considered. Depending on the structure of the program, this
number can be reduced further up to O(log(n)).

The latter approach relies on compositional / modular reasoning: If program
σ calls a block b, we (sometimes) do not want to look at its code but rather
use a software contract for b, a contract that had previously been established by
looking only at the code of b. This kind of modularization can also be applied
to methods instead of blocks and is essential for the scalability of all deductive
software verification approaches. With self-composition b is not only called in σ,
but b′ is called in σ′. This poses the technical problem of somehow synchronizing
the calls of b and b′ for contract application. This has already been pointed out
in the paper by Naumann [16], who also gave hints to a possible solution. Dufay,
Felty and Matwin [10] present a partial solution using ghost code, see Sect. 6.

As a third contribution we show how software contracts can be applied in self-
composition proofs based on weakest precondition calculi. An important feature
of our approach is the seamless integration of information flow and functional
reasoning allowing us to take advantage of the precision of functional contracts
also for information flow contracts, if necessary.

Structure. In the next two sections, we fix notation and recall the formalization of
conditional non-interference. Based on this, Sect. 4 discusses two efficiency prob-
lems with self-composition and presents two orthogonal approaches to overcome
these problems. Sect. 5 presents modular reasoning at the block level which the
second approach relies on. Sect. 6 discusses related work and Sect. 7 concludes
the paper.

Efficient Self-composition for Weakest Precondition Calculi 581

2 Notation

Assertions like pre- and postconditions are formulated in typed first order logic.
Among others, constant and function symbols are available for local program
variables as well as instance and static fields. Terms t and formulas Ξ are induc-
tively defined as usual. We use M to refer to interpretations of first order logic,
and tM, ΞM to denote the interpretation of term t and formula Ξ in M. The
data type heap is modeled by the theory of arrays [13,19]. The current heap of
a program is given by an implicit program variable heap. A state is a mapping
from program variables (including heap) to values of proper types. As a conse-
quence of the theory of arrays the values of the local variables x̄ together with
the value of heap completely determine the state of a program.

Let M be an interpretation and s a state. We denote by M←s the inter-
pretation which coincides with M except for the interpretation of the program
variables heap and x̄; these are interpreted according to s as heapM

←s

= s(heap)
and x̄M

←s

= s(x̄). As usual, a formula is said to be universally valid iff it is true
in every interpretation M.

Ξ[x← x′] denotes the substitution of x by x′ in Ξ. We use Ξ[x← x′, y ← y′] as
abbreviation for (Ξ[x← x′])[y ← y′]. The weakest precondition [9] of a program
σ and a postcondition Ξ is denoted by wp(σ, Ξ). For simplicity we consider only
terminating programs. Hence, wp(σ, Ξ) always exists.

In self-composition proofs any program variable x has a primed counterpart,
denoted by x′. Accordingly, σ′ denotes the program which is constructed from
σ by replacing all program variables by their primed counterpart. Similarly, Ξ′

denotes the formula constructed from Ξ by replacing all program variables by
their primed counterpart and the term t′ denotes the counterpart of t.

Let σ be a program and let s1, s2 be states. In the following, “σ started in s1
terminates in s2” is denoted by s1

π� s2.

3 Formalizing Conditional Non-interference

We use the following quite general, passive attacker model. In our setting attack-
ers may not only observe the values of program variables, but more generally
the values of so called observation expressions. Observation expressions can be
thought of as a generalization of side-effect free Java expressions:

Definition 1. An observation expression can be:

1. A program variable (including method parameters).
2. e.f for e an expression of type C and f a field declared in C.
3. e[t] if e is an expression of array type, and t of integer type.
4. op(e1, . . . , ek) if op is a data type operation and ei expressions of matching

type.
5. The usual conditional operator b ? e1 : e2 (e1, e2 have to be of the same

type).

582 C. Scheben and P.H. Schmitt

6. The sequence definition operator seq{i}(from, to, e). Its semantics is defined
by

(seq{i}(from, to, e))M

= ≤(e[i← n])M, (e[i← n+ 1])M, . . . , (e[i← m− 1])M〉

if fromM = n < m = toM, and (seq{i}(from, to, e))M = ≤〉 else.

We denote the concatenation of two observation expressions R1 and R2 by R1;R2.

Attackers can observe the values of a set of (low) observation expressions in
the initial and final state of a program run: for any expression an attacker can
see the expression and the corresponding evaluation. An attacker can compare
observed values as by using the == operator of Java. Additionally we assume
that attackers know the program-code.

Let us describe this scenario a bit more formally. Let R be an observation
expression an let M be any interpretation. If s is the initial or the final state of
a program run, then attackers are able to observe the tuple (R,RM←s

), where
RM←s

= ≤eM←s

1 , . . . , eM
←s

k 〉 if R = ≤e1, . . . , ek〉. Thus, an attacker knows that
eM

←s

i is the value of the expression ei in state s (for 1 ∨ i ∨ k) and they
can compare any two values, eM

←s

i = eM
←s′

j , for any pair of initial or final
states s and s′. Knowing the program-code is formalized by the assumption that
attackers know which initial state of a program run relates to which final state.

Definition 2 (Agreement of states). Let R be an observation expression
and let M be an interpretation. Two states s, s′ agree on R in M, abbreviated
by agreeM(R, s, s′), iff RM←s

= RM←s′
.

Thus two states agree on R if an attacker cannot distinguish them.

Definition 3. Let R be an observation expression using the local variables x̄ and
the variable heap. Let heap2, x̄2 and heap′2, x̄

′
2 be two copies of these program

variables. We will use the following abbreviation

obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R)

≡ R[heap← heap2, x̄← x̄2] = R[heap← heap′2, x̄← x̄′2]

We note that for any interpretation M we have

obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R)M = tt iff agreeM(R, s2, s

′
2)

for s2(x̄) = x̄M2 , s2(heap) = heapM2 , s′2(x̄) = x̄′M2 , s′2(heap) = heap′M2 .

Definition 4 (Conditional Non-Interference). Let σ be a program with pro-
gram variables heap and x̄, let R1, R2 be observation expressions and let Ξ be a
formula. Further, let heap and x̄ be the only program variables occurring in R1,
R2 and Ξ.

Efficient Self-composition for Weakest Precondition Calculi 583

Program σ allows information to flow only from R1 to R2 when started in s1
under condition Ξ, denoted by flow(s1, σ,R1, R2, Ξ), iff for all interpretations M
and all states s′1, s2, s

′
2 such that s1

π� s2 and s′1
π� s′2 we have

if ΞM←s1
= tt, ΞM←s′1 = tt and agreeM(R1, s1, s

′
1) then agreeM(R2, s2, s

′
2).

flow(σ,R1, R2, Ξ) denotes the case that flow(s1, σ,R1, R2, Ξ) holds for all states
s1.

We think of R1, R2 as the publicly observable information of a state of the
system. In the simplest case what goes into Ri is determined by explicit decla-
rations of which program variables and which fields are considered low. In more
sophisticated scenarios the Ri may be inferred from a multi-level security lattice
(see for instance [20]). Usually we will have R1 = R2. But, there are other cases:
to declassify an expression edecl, for instance, one would choose R1 = R2; edecl.

Lemma 1 (Compositionality of flow). Let σ1, σ2 be programs and let σ1;σ2

be their sequential composition. If flow(s1, σ1, R1, R2, Ξ1), flow(s2, σ2, R2, R3, Ξ2)
and (Ξ1 ← wp(σ1, Ξ2))

M←s1
= tt hold for all interpretations M and all states

s1, s2, s3 such that s1
π1� s2 and s2

π2� s3 then flow(s1, σ1;σ2, R1, R3, Ξ1) holds.

Proof. Let s′1, s′2, s′3 be a second set of states such that s′1
π1� s′2, s′2

π2� s′3, and
(Ξ1 ← wp(σ1, Ξ2))

M←s′1 = tt . Assume that the precondition Ξ1 holds in s1 and
s2. In other words, assume ΞM←s1

1 = tt and ΞM←s′1
1 = tt . Additionally, assume

agreeM(R1, s1, s
′
1). By (Ξ1 ← wp(σ1, Ξ2))

M←s1
= tt and (Ξ1 ← wp(σ1, Ξ2))

M←s′1

= tt we infer ΞM←s2

2 = tt and ΞM←s′2
2 = tt . In other words, we infer that Ξ2

holds in s2 and s′2. By flow(s1, σ1, R1, R2, Ξ1) we get agreeM(R2, s2, s
′
2). Further,

by agreeM(R2, s2, s
′
2), ΞM←s2

2 = tt , ΞM←s′2
2 = tt and flow(s2, σ2, R2, R3, Ξ2) we

get agreeM(R3, s3, s
′
3), as desired. ∃⊆

4 Efficient Self-composition

The Problem. We illustrate the efficiency issues of self-composition approaches
by an example. Consider the following program σ:

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 if (l > 0) { l--; }

Let l be a low variable and let h be a high variable. Then σ has no information
leak: the value of l after line 2 is the same as the initial value of l. Thus the
value of l after line 3 depends only on the initial value of l. The control flow
graph of σ is sketched in Figure 1(a).

In the self-composition approach a copy σ′ of σ is constructed by replacing
all program variables by renamed ones. We decided to rename l to l2 and h to
h2. This leads to the following self-composed program σ;σ′:

584 C. Scheben and P.H. Schmitt

(a) (b)

Fig. 1. Sketch of the control flow graphs of (a) the original program and (b) the self-
composed program

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 if (l > 0) { l--; }
4 l2 = l2 + h2;
5 if (h2 != 0) { l2 = l2 - h2; }
6 if (l2 > 0) { l2 --; }

The control flow graph of σ;σ′ is sketched in Figure 1(b).
h does not interfere with l in σ, iff σ;σ′ started in any state with l = l2

terminates in a state where l = l2 holds. Hence, in the self-composition approach
essentially the outcome of any path through σ has to be compared to the outcome
of any path through σ′. If n is the number of paths through σ, this results in
O(n2) comparisons of the low variables. In contrast, specialized information flow
calculi, which consider σ only once, have to check only the outcome of the n
paths through σ. This is one reason why self-composition often is considered to
be inefficient. The other reason is that the computation of a weakest precondition
for σ;σ′ is at least twice as costly as the calculation of a weakest precondition
for σ.

Reducing the Cost for the Weakest Precondition Calculation. We tackle the sec-
ond problem first by showing that it is possible to show non-interference in self-
composition style with the help of only one weakest preconditions calculation
on σ.

Let heap2 and x̄2 be a set of fresh program variables. wp(σ, heap = heap2∧x̄ =
x̄2) characterizes the initial state s such that σ started in s terminates in the

Efficient Self-composition for Weakest Precondition Calculi 585

state described by heap2 and x̄2. Further we observe that wp(σ′, Ξ′) = wp(σ, Ξ)′

holds. Therefore, wp(σ′, heap′ = heap′2 ∧ x̄′ = x̄′2) can be constructed from
wp(σ, heap = heap2 ∧ x̄ = x̄2) by the renaming of heap, x̄, heap2 and x̄2 to
heap′, x̄′, heap′2 and x̄′2, respectively.

During the construction of wp(σ, heap = heap2 ∧ x̄ = x̄2) fresh (skolem)
symbols might be introduced (see Sect. 5). Let c′ be a fresh (primed) sym-
bol for any fresh symbol c introduced during the construction of wp(σ, heap =
heap2 ∧ x̄ = x̄2) such that c′ does not occur in wp(σ, heap = heap2 ∧ x̄ = x̄2).
Let wp′(σ′, heap′ = heap′2 ∧ x̄′ = x̄′2) denote the formula which results from
wp(σ′, heap′ = heap′2 ∧ x̄′ = x̄′2) by renaming all fresh symbols to their primed
counterparts. Given these weakest preconditions, non-interference can be proved
as follows:

Theorem 1. Let σ be a program with program variables heap and x̄, let R1, R2

be observation expressions and let Ξ be a formula. Let heap and x̄ be the only
program variables occurring in R1, R2 and Ξ. Let further heap′ and x̄′, heap2
and x̄2 and heap′2 and x̄′2 be three copies of the program variables of σ; let σ′

and Ξ′ be the primed counterparts to σ and Ξ, respectively.
Let Ψπ,x̄,R1,R2,Σ be defined by

Ψπ,x̄,R1,R2,Σ ≡ (Ξ ∧ wp(σ, (heap = heap2 ∧ x̄ = x̄2)))

∧ (Ξ′ ∧ wp′(σ′, (heap′ = heap′2 ∧ x̄′ = x̄′2)))

∧ obsEq(x̄, heap, x̄′, heap′, R1)

← obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2)

The formula Ψπ,x̄,R1,R2,Σ is universally valid iff flow(σ,R1, R2, Ξ) holds.

Proof.
“←”: Let Ψπ,x̄,R1,R2,Σ be universally valid. We have to show flow(σ,R1, R2, Ξ).
Consider an arbitrary structure M and let s1, s2, s′1, s′2 be the states given
by si(x̄) = x̄M

i , si(heap) = heapMi , s′i(x̄) = (x̄′
i)

M, s′i(heap) = (heap′i)
M.

According to Definition 4, we have to show that s1
π� s2, s′1

π� s′2, ΞM←s1
= tt ,

ΞM←s′1 = tt and agreeM(R1, s1, s
′
1) imply agreeM(R2, s2, s

′
2).

Assume s1
π� s2, s′1

π� s′2, ΞM←s1
= tt , ΞM←s′1 = tt and agreeM(R1, s1, s

′
1).

Then there exists a structure M′ such that (1) M′ differs from M only in the
interpretation of the fresh symbols and (2) the formulas wp(σ, (heap = heap2 ∧
x̄ = x̄2)) and wp′(σ′, (heap′ = heap′2∧ x̄′ = x̄′2)) hold inM′. Because Ξ and Ξ′ do
not contain fresh variables, ΞM←s1

= ΞM′←s1
= tt and ΞM←s′1 = ΞM′←s′1 = tt .

Therefore, the first two lines of Ψπ,x̄,R1,R2,Σ are valid in M′.
Further we get by the remark to Definition 3 that line 3 evaluates to true

iff agreeM
′
(R1, s1, s2) holds. Because obsEq(x̄, heap, x̄′, heap′, R1) does not con-

tain fresh variables, this is the case iff agreeM(R1, s1, s2) holds. Thus, the formula
obsEq(x̄, heap, x̄′, heap′, R1) is valid in M′. Now we get by the universal validity
of Ψπ,x̄,R1,R2,Σ that line 4 has to hold in M′, too. Again, by the remark to Def-
inition 3 agreeM

′
(R2, s2, s

′
2) holds and because obsEq(x̄2, heap2, x̄

′
2, heap

′
2, R2)

does not contain fresh variables agreeM(R2, s2, s
′
2) holds, too.

586 C. Scheben and P.H. Schmitt

(a) (b) (c)

Fig. 2. Reducing the verification overhead by compositional reasoning

“⇐”: Let flow(σ,R1, R2, Ξ) hold. We have to show that Ψπ,x̄,R1,R2,Σ is universally
valid. Again, consider an arbitrary structureM and let s1, s2, s′1, s′2 be the states
given by si(x̄) = x̄M

i , si(heap) = heapMi , s′i(x̄) = (x̄′
i)

M, s′i(heap) = (heap′i)
M.

We have to show that Ψπ,x̄,R1,R2,Σ is valid in M.
Assume that the first three lines of Ψπ,x̄,R1,R2,Σ are valid in M (otherwise we

are already done). We have to show that obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2) is valid

in M, too. As before, we get by the validity of the first three lines that s1
π� s2,

s′1
π� s′2, ΞM←s1

= tt , ΞM←s′1 = tt and agreeM(R1, s1, s
′
1) hold. Therefore we get

by flow(σ,R1, R2, Ξ) that agreeM(R2, s2, s
′
2) holds, too. As before, this implies

that obsEq(x̄2, heap2, x̄
′
2, heap

′
2, R2) holds in M. ∃⊆

Altogether we have shown that it is possible to prove non-interference in self-
composition style with the help of only one weakest precondition calculation
on σ.

Note 1. Because wp(σ, (heap = heap2 ∧ x̄ = x̄2)) occurs on the left hand
side of an implication, it may not be approximated in the usual manner by
a formula ξ such that ξ ← wp(σ, (heap = heap2 ∧ x̄ = x̄2)) holds. Instead,
wp(σ, (heap = heap2 ∧ x̄ = x̄2)) ← ξ needs to hold. Because we consider deter-
ministic programs, the usual wp-calculus can still be used to calculate ξ in the
following manner: instead of calculating a condition under which the state s2
given by heap2 and x̄2 is definitely reached we have to calculate a condition ξnot

under which s2 is definitely not reached. ξ is then the negation of ξnot. In other
words, wp(σ, (heap = heap2 ∧ x̄ = x̄2)) and wp′(σ′, (heap′ = heap′2 ∧ x̄′ = x̄′2))
in Theorem 1 have to be replaced by ¬wlp(σ, (heap ∀= heap2 ⇔ x̄ ∀= x̄2)) and
¬wlp ′(σ′, (heap′ ∀= heap′2 ⇔ x̄′ ∀= x̄′2)), respectively, if approximations are in-
volved. The intuition behind this replacement is that ξnot characterizes a set
Snot of initial states such that σ started in any s ⇒ Snot does not terminate in s2
and, thus, ξ characterizes a set S of initial states such that if there is an initial
state s1 such that σ started in s1 terminates in s2, then s1 is an element of S.

Reducing the Number of Comparisons. The second problem, reducing the num-
ber of comparisons, can be tackled with the help of compositional reasoning, if
the structure of the program allows for it. Reconsider the initial example:

Efficient Self-composition for Weakest Precondition Calculi 587

1 l = l + h;
2 if (h != 0) { l = l - h; }
3 // - - - - - - - - - - - - -
4 if (l > 0) { l--; }

As discussed above, the first part, lines 1 and 2, and the second part, line 4, are
non-interfering on their own. Therefore, by Lemma 1, the complete program is
non-interfering. As illustrated in Fig. 2, checking the two parts independently
from each other results in less verification effort: the control flow graph of each
self-composed part on its own contains only four paths. Thus, altogether only
eight comparisons have to be made to prove non-interference of the complete
program. Checking the complete program at once would require (about) 12 com-
parisons.1 We summarize the above observation in the following lemma.

Lemma 2. Let σ be a program with m branching statements.
If σ can be divided into m non-interfering blocks with at most one branching

statement per block, then non-interference of σ can be shown with the help of
self-composition with 3m comparisons.

Proof. Using symmetry, for any block at most 3 paths have to be considered.
Hence, for m blocks 3m comparisons are sufficient.

Because a program with m branching statements has at least n = m+ 1 paths,
Lemma 2 shows that the verification effort of self-composition approaches can
be reduced from O(n2) comparisons to O(n), if the program under consideration
is compositional with respect to information flow. In the best case, a program
with m branching statements has Ω(2m) paths. In this case the verification
effort reduces to O(log(n)) comparisons, if the program under consideration is
compositional with respect to information flow.

Unfortunately, the separation is not always as nice as in the example above.
Consider for instance the following program:

if (l > 0) { if (l % 2 == 1) { l--; } }

The program can be divided into blocks b1 = if (l % 2 == 1) { l--; } and
b2 = if (l > 0) { b1 }. To conclude that b2 is non-interfering, it is necessary to
use the fact that b1 is non-interfering in the proof of b2. Unfortunately, the self-
composition approach does not easily lend itself to such compositional / modular
verification. In the next section the problem of compositional / modular reasoning
will be discussed.

5 Modular Self-composition with Contracts

In the context of functional verification, modularity is achieved through method
contracts. We want to extend this approach to the verification of information
flow properties. We define information flow contracts on the basis of [20]:
1 By symmetry the number of comparisons can be reduced further in both cases: in the

first case 2·(2+1) = 6 comparisons are sufficient, in the second case 4+3+2+1 = 10
comparisons are enough.

588 C. Scheben and P.H. Schmitt

Definition 5 (Information Flow Contract). An information flow contract
(in short: flow contract) to a block (or method) b with local variables x̄ :=
(x1, . . . , xn) of types Ā := (A1, . . . , An) is a tuple Cb,x̄::Ā = (Pre, R1, R2), where
(1) Pre is a formula which represents a precondition and (2) R1, R2 are obser-
vation expressions which represent the low expressions in the pre- and post-state.

A flow contract Cb,x̄::Ā = (Pre, R1, R2) is valid iff for all states s the predicate
flow(s, b, R1, R2,Pre) is valid.

The difficulty in the application of flow contracts arises from the fact that
flow contracts refer to two invocations of a block b in different contexts.

Example 1. Consider the example if (l>0) { l++; if (l % 2 == 1) { l--; } }
again, with blocks b1 = if (l % 2 == 1) { l--; } and b2 = if (l>0) { l++; b1 }. Let
Cb1,x̄::Ā = Cb2,x̄::Ā = (true, l, l) be flow contracts for b1 and b2. To prove Cb2,x̄::Ā by
self-composition,

wp(if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}, l = l′) (1)

has to be computed. Application of the wp-calculus yields:

≡
(
l > 0← wp(b1, (l′ > 0← wp(b′1, l = l′)[l′ ← l′ + 1]))[l← l+ 1]

)
∧
(
l ∨ 0← (l′ > 0← wp(b′1, l = l′)[l′ ← l′ + 1])

)
∧
(
l > 0← wp(b1, (l′ ∨ 0← l = l′))[l← l+ 1]

)
∧
(
l ∨ 0← (l′ ∨ 0← l = l′)

) (2)

If l = l′ is valid, then the last three lines of (2) are obviously fulfilled. To see that
also the first line is fulfilled, Cb1,x̄::Ā needs to be used to remove the remaining
wp’s—but it is not obvious how this can be done, because the wp’s are nested.
A similar problem occurs if Theorem 1 is used to prove Cb2,x̄::Ā.

The main idea of the solution is a coordinated delay of the application of flow
contracts. The solution is compatible with the optimizations of Section 4 and
additionally allows the combination of flow contracts with functional contracts.

Let b be a block with the functional contract Fb,x̄::Ā = (Pre,Post ,Mod) con-
sisting of: (1) a formula Pre representing the precondition; (2) a formula Post
representing the postcondition; and (3) a term Mod representing the modifies
clause for b. We introduce the formula

Pre ∧ (Post ← Ξ)[Substanon] (3)

Here, Substanon = (heap ← anon{heap,Mod , h}, x̄ ← x̄′) is an anonymising
substitution setting the locations of Mod (which might be modified by b) and
the local variables which might be modified to unknown values; h of type Heap
and x̄′ of appropriate types are fresh symbols. We require Pre to entail equations
heappre = heap and x̄pre = x̄ which store the values of the program variables
of the initial state in program variables heappre and x̄pre such that the initial
values can be referred to in the post-condition. Additionally, we require that Pre

Efficient Self-composition for Weakest Precondition Calculi 589

and Post entail a formula which expresses that the heap is wellformed. For the
sake of simplicity we do not handle exceptions here.

If b fulfills the contract Fb,x̄::Ā = (Pre,Post ,Mod), then formula (3) approxi-
mates wp(b, Ξ) in the following sense:

Lemma 3
Pre ∧ (Post ← Ξ)[Substanon] ← wp(b, Ξ)

is valid in any interpretation M.

Proof. See for example [12].

We introduce a new two-state predicate Cb(x̄, h, x̄
′, h′) with the intended

meaning that b started in state ≤x̄, heap〉 →∧ ≤x̄, h〉 terminates in state ≤x̄, heap〉 →∧
≤x̄′, h′〉. This predicate can be integrated into the approximation (3) of wp(b, Ξ)
as follows:

Pre ∧
(

Cb(x̄, heap, x̄
′, h′)

∧ (heap = h′ ∧ x̄ = x̄′)[Substanon]

← (Post ← Ξ)[Substanon]) (4)

where h′ of type Heap and x̄′ of types Ā are fresh function symbols. By Lemma 4
below, formula (4) implies wp(b, Ξ) and therefore is also a correct approximation
of wp(b, Ξ). The introduction of Cb(x̄, h, x̄

′, h′) (by approximating wp(b, Ξ) by
(4)) allows us to store the initial and the final state of b for a delayed application
of information flow contracts: as we show in Theorem 2 below, if two predicates
Cb(x̄1, h1, x̄

′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are true in a structure M, then they can

be approximated by an instantiation of a flow contract Cb,x̄::Ā = (Pre, R1, R2)
for b by

Pre[heap← h1, x̄← x̄1] ∧ Pre[heap← h2, x̄← x̄2]

←
(
obsEq(x̄1, h1, x̄

′
1, h

′
1, R1)← obsEq(x̄2, h2, x̄

′
2, h

′
2, R2)

)
.

(5)

Example 2. Let Fb1,x̄::Ā = (true, true, allLocs) be the trivial functional contract
for b1. Applied on our example, the first line of (2) can be simplified as follows.
First wp(b′1, l = l′)[l′ ← l′ + 1] can be approximated by (4) by

(Cb1(l
′, heap′, ρ′, h′)

∧ (heap′ = h′ ∧ l′ = ρ′)[heap′ ← h′
anon , l

′ ← ρ′anon]

← (l = l′)[heap′ ← h′
anon , l

′ ← ρ′anon]

)[l′ ← l′ + 1]

(6)

≡ Cb1(l
′ + 1, heap′, ρ′, h′) ∧ h′

anon = h′ ∧ ρ′anon = ρ′ ← l = ρ′anon (7)

Similarly, wp(b1, (l′ > 0← Ξ′))[l← l+ 1] can be approximated by

l′ > 0 ∧ Cb1(l + 1, heap, ρ, h) ∧ hanon = h ∧ ρanon = ρ← Ξ′
anon (8)

590 C. Scheben and P.H. Schmitt

with Ξ′
anon = Ξ′[heap← hanon , l ← ρanon]. Therefore (2) can be approximated

by

l > 0←
(

l′ > 0 ∧ Cb1(l + 1, heap, ρ, h) ∧ hanon = h ∧ ρanon = ρ

← (Cb1(l
′ + 1, heap′, ρ′, h′)

∧ h′
anon = h′ ∧ ρ′anon = ρ′

← ρanon = ρ′anon

))
(9)

≡ l > 0 ∧ Cb1(l + 1, heap, ρ, h) ∧ hanon = h ∧ ρanon = ρ

∧ l′ > 0 ∧Cb1 (l
′ + 1, heap′, ρ′, h′) ∧ h′

anon = h′ ∧ ρ′anon = ρ′

← ρanon = ρ′anon

(10)

Application of Cb1,x̄::Ā by Theorem 2 yields

≡ l > 0 ∧ hanon = h ∧ ρanon = ρ

∧ l′ > 0 ∧ h′
anon = h′ ∧ ρ′anon = ρ′

∧ (l+ 1 = l′ + 1← ρ = ρ′)

← ρanon = ρ′anon

(11)

which is obviously true if l = l′.

Formally, Cb(x̄, h, x̄
′, h′) is valid in structure M iff

wp(b, heap = h′ ∧ x̄ = x̄′)[x̄← x̄, heap← h]

is valid in M. In the following we show that the above approach is sound.

Lemma 4. Let b be a block which fulfills the functional contract Fb,x̄::Ā =
(Pre,Post ,Mod).

wp(b, Ξ) is valid if (4) is valid.

Proof. Because of Lemma 3 it suffices to show that (4) is valid iff (3) is valid.
If (3) is valid then by simple propositional logic also (4) is valid. So, we assume

that (4) is valid and set out to show that (3) is true in an arbitrary structure M.
By assumption Pre is true in M. We assume Post [Substanon] is true in M with
the aim to show that Ξ[Substanon] is also true in M. Since the new constant
symbols h′ and x̄′ do not occur in Post [Substanon] we find a structure M′ that
differs from M only in the interpretation of these symbols such that in M′ both
Post [Substanon] and Cb(x̄, heap, x̄

′, h′) ∧ (heap = h′ ∧ x̄ = x̄′)[Substanon] are
true. This may be achieved by choosing M′ such that the state s2 presented
by (h′M′

, x̄′M′
) is the final state of b when started in the state s1 presented

by (heapM, x̄M). By validity of (4) we obtain that Ξ[Substanon] is true in M′.
Since Ξ[Substanon] does likewise not contain the new symbols it is also true in
the orignal structure M. ∃⊆

Efficient Self-composition for Weakest Precondition Calculi 591

Theorem 2. Let b be a block fulfilling the flow contract Cb,x̄::Ā = (Pre, R1, R2).
(5) is valid if Cb(x̄1, h1, x̄

′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are valid.

Proof. We need to show, that under the given assumptions the implication (5) is
true in any first-order structureM. So we assume that the left-hand side of (5) is
true in M, i.e. Pre[heap← h1, x̄← x̄1]

M = tt and Pre[heap← h2, x̄← x̄2]
M =

tt . By assumption Cb(x̄1, h1, x̄
′
1, h

′
1) and Cb(x̄2, h2, x̄

′
2, h

′
2) are true in M, which

by definition says wp(b, heap = h′
1 ∧ x̄ = x̄′

1)[x̄ ← x̄1, heap ← h1]
M = tt and

wp(b, heap = h′
2 ∧ x̄ = x̄′

2)[x̄ ← x̄2, heap ← h2]
M = tt . The assumption that

the flow contract Cb,x̄::Ā = (Pre, R1, R2) is fulfilled implies via Theorem 1 that
Ψb,x̄,R1,R2,Pre is true in M. Inspection of this formula shows that in the present
situation it implies that obsEq(x̄1, h1, x̄

′
1, h

′
1, R1) ← obsEq(x̄2, h2, x̄

′
2, h

′
2, R2) is

valid in M, as desired. ∃⊆

6 Related Work

The most popular approaches to check for non-interference of programs are ap-
proximative methods like security type systems (a prominent example in this
field is the JIF-System [14]), the analyses of the dependence graph of a program
for graph-theoretical reachability properties [11], specialized approximative in-
formation flow calculi based on Hoare like logics [1] and the usage of abstraction
and ghost code for explicit tracking of dependencies [17,7,21]. These approaches
are efficient, but do not have the precision of self-composition nor do they allow
for as fine-grained specifications as they are possible with the help of observation
expressions (Section 3). Nanevski, Banerjee and Garg [15] formalise information
flow properties in a higher-order logic and use Coq for the verification of those
properties. This approach seems to be extremely expressive, but comes with the
price of more and more complex interactions with the proof system.

Almost all so far mentioned approaches check for unconditional information
flow. There are only few approaches which study conditional information flow
and in particular information flow contracts. One of the first contributions on
conditional information flow was by Amtoft and Banerjee [2]. They developed a
Hoare logic for compositional intraprocedural analyses of conditional information
flow. This approach was the basis for a contribution on software contracts for
conditional information flow for SPARK Ada [4]. The latter approach works on a
relatively simple while-language including method calls. The handling of arrays
was added in a later contribution [3]. Object orientation is not supported. One
advantage of our approach is that information flow and functional contracts can
be combined easily. This results in arbitrary precision whereas [4] introduces
fixed over-approximations.

Finally self-composition [6,8] is a popular approach to state non-interference
and use off-the-shelf software verification systems to check for it, as we do. The
approach has been applied to full-fledged programming languages like Java.

To the best of our knowledge there are only very few contributions aiming
at an improvement of the efficiency of the self-composition approach. A very

592 C. Scheben and P.H. Schmitt

recent approach by Phan [18] uses bounded symbolic execution (symbolic exe-
cution without inductive invariants) and a formulation of (non-conditional) non-
interference based on symbolic traces which is quite near in spirit to the one
which we pioneered in [20] and which we reformulated for the wp-calculus in
Theorem 1. Phan found that with this formulation it is sufficient to symbolically
execute a program only once. Independently of [18], we found that the same
holds if the wp-calculus or Dynamic Logic is used (Section 4). Therefore, our ap-
proach is not restricted to bounded programs. Additionally, we showed how the
approach can be used to check for conditional non-interference and with more
fine grained specifications. Barthe, Crespo and Kunz [5] build product programs
to increase the level of automation in relational reasoning, which can also be
used for information flow verification, but their focus is mainly on increasing the
degree of automation and less on increasing efficiency.

Compositional / modular self-composition reasoning is also studied rarely: A
contribution by Naumann [16] duplicates each variable, field, parameter and
method body in the Java source code and uses standard JML method contracts
to state non-interference with the help of the duplicates. The contracts are ver-
ified with the help of ESC/Java2. This approach has the drawback that there
is no obvious translation of JML annotations from the non-duplicated source to
the duplicated source: an object invariant invariant (\sum Object o;; 1) < 10;
for instance might evaluate differently in the duplicated code than in the non-
duplicated one. The paper mentions vague how modularity on the method level
could be achieved, but thorough investigation is left for future work. Another con-
tribution by Dufay, Felty and Matwin [10] introduces new JML-keywords which
directly define relations between the program variables of two self-composed ex-
ecutions. In particular two keywords to distinguish the variables of the two runs
are defined. The approach uses ghost code to store the return value and the
values of parameters of the first run in order to use those values during the
application of non-interference contracts in the second run. As the authors men-
tion themselves, the approach is limited in case arrays are involved in method
invocations. We do not see how even more complex data structures or equiva-
lently complex heap manipulations can be tracked with ghost code. Hence, the
proposed usage of ghost code seems to be a serious limitation of the approach.
Resolving such limitations is mentioned as an aim of future work. Our approach
on compositional reasoning overcomes such limitations: it does not use additional
ghost code and is not limited by its usage.

7 Conclusions and Future Work

We presented two optimizations of self-composition style reasoning for weakest
precondition calculi with explicit heap model which overcome two of the main ef-
ficiency issues with self-composition reasoning. Firstly we showed in Theorem 1
how self-composition can be rephrased such that it is sufficient to consider a
program σ only once in the weakest precondition calculation. The weakest pre-
condition for σ′ can be extracted from the one of σ by the renaming of program

Efficient Self-composition for Weakest Precondition Calculi 593

variables. Secondly we showed how the number of final states to be considered
by a self-composed program can be reduced considerably by compositional infor-
mation flow reasoning.

For the second optimization, compositional self-composition reasoning is
essential. We presented an approach how weakest precondition calculi can be
extended such that they can be used to construct fully modular and feasible
self-composition proofs. The approach can be extended to information flow loop
invariants. The main obstacle in the application of information flow loop in-
variants compared to flow contracts is that it has to be taken care that the
self-composed programs execute the loop body equally often. An important fea-
ture of our approach is that (1) approximations are involved only at points where
modular information flow reasoning is applied and (2) that our verification tech-
nique can get arbitrarily precise in those cases by the usage of preconditions and
sufficiently strong functional contracts, if necessary. Further, our approach does
not suffer from limitations of other approaches, like the ones of [10].

The presented approaches can easily be adopted to Dynamic Logic and other
Hoare like logics. We implemented them (including information flow loop
invariants) in the KeY-system on the basis of Java Dynamic Logic. Our im-
plementation can handle the full subset of Java which can be handled by the
non-extended KeY-system. This subset explicitly covers exceptions, object cre-
ation and static initialisation. It mainly does not cover concurrency, floating
point arithmetic and generics. The implementation has been tested on several
smaller case-studies. The tool itself as well as examples can be found on our
web-side (http://www.key-project.org/DeduSec/).

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: Proceedings POPL, pp. 91–102. ACM (2006)

2. Amtoft, T., Banerjee, A.: Verification condition generation for conditional infor-
mation flow. In: Proceedings of the 2007 ACM Workshop on Formal Methods in
Security Engineering, FMSE 2007, pp. 2–11. ACM, New York (2007)

3. Amtoft, T., Hatcliff, J., Rodríguez, E.: Precise and automated contract-based rea-
soning for verification and certification of information flow properties of programs
with arrays. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 43–63.
Springer, Heidelberg (2010)

4. Amtoft, T., Hatcliff, J., Rodríguez, E., Robby, Hoag, J., Greve, D.A.: Specification
and checking of software contracts for conditional information flow. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 229–245. Springer,
Heidelberg (2008)

5. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations,
CSFW 2004, pp. 100–115. IEEE CS, Washington (2004)

http://www.key-project.org/DeduSec/

594 C. Scheben and P.H. Schmitt

7. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution with
explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

8. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

10. Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with JML. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 116–130. Springer,
Heidelberg (2005)

11. Hammer, C., Krinke, J., Snelting, G.: Information flow control for Java based
on path conditions in dependence graphs. In: IEEE International Symposium on
Secure Software Engineering (ISSSE 2006), pp. 87–96. IEEE (March 2006)

12. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Semantics
of Algorithmic Languages. Lecture Notes in Mathematics, vol. 188, pp. 102–116.
Springer (1971)

13. McCarthy, J.: Towards a mathematical science of computation. In: Information
Processing, pp. 21–28 (1962)

14. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: POPL,
pp. 228–241 (1999)

15. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: 2011 IEEE Symposium on Security and
Privacy (SP), pp. 165–179 (May 2011)

16. Naumann, D.A.: From coupling relations to mated invariants for checking informa-
tion flow. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 279–296. Springer, Heidelberg (2006)

17. Pan, J.: A theorem proving approach to analysis of secure information flow using
data abstraction. Master’s thesis, Dept. of Computer Science and Engineering,
Chalmers U. of Technology (2005)

18. Phan, Q.-S.: Self-composition by symbolic execution. In: Imperial College Comput-
ing Student Workshop (ICCSW 2013), pp. 95–102, Schloss Dagstuhl (2013)

19. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2. Tr, U. of Iowa (2006)
20. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java

programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012)

21. van Delft, B.: Abstraction, objects and information flow analysis. Master’s thesis,
Institute for Computing and Information Science, Radboud Uni Nijmegen (2011)

Towards a Formal Analysis
of Information Leakage for Signature Attacks

in Preferential Elections

Roland Wen1,2, Annabelle McIver1, and Carroll Morgan2

1 Department of Computing
Macquarie University

Sydney, Australia
2 School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

Abstract Electronic voting is rich with paradoxes. How can a voter
verify that his own vote has been correctly counted, but at the same time
be prevented from revealing his vote to a third party? Not only is there
no generally recognised solution to those problems, it is not generally
agreed how to specify precisely what the problems are, and what exact
threats they pose. Such a situation is ripe for the application of Formal
Methods.

In this paper we explore so-called signature attacks, where an appar-
ently secure system can nevertheless be manipulated to reveal a voter’s
choice in unexpected and subtle ways. We describe two examples in de-
tail, and from that make proposals about where formal techniques might
apply.

Keywords: coercion, signature attacks, elections, single transferable
vote.

1 Introduction

Electronic voting is a highly complex problem which poses a particular challenge
for formal analysis.

Part of the reason for this is that researchers and practitioners understand
that informal trade-offs need to be set to accommodate the privacy, efficiency
and integrity properties which any voting scheme should satisfy. These trade-offs
normally take into account the social context of the election, including country-
specific legal issues as well as the tension between the electorate’s requirements
of privacy and verifiability.

There have nevertheless been a number of proposals for formalising particular
privacy aspects of electronic voting, notably receipt-freeness [4] and coercion
resistance [11]. Informally receipt-freeness means that voters cannot prove how
they voted to a third party as there is no way to construct electronic receipts
for their votes. Coercion-resistance is a stronger property where in addition a

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 595–610, 2014.
c© Springer International Publishing Switzerland 2014

596 R. Wen, A. McIver, and C. Morgan

third party cannot even coerce voters to abstain or vote randomly. Both of these
properties protect voters from being coerced through bribery or intimidation to
vote according to the wishes of a third party.

In this paper we continue the focus of the management of coercion, studying
the effect of so-called ‘signature attacks’ which until now have not yet received
any formal treatment at all. Signature attacks are exemplified by the notorious
‘Italian Attack’ where members of the Italian Mafia were able to coerce a signi-
ficant proportion of the electorate: the basic idea is that in certain kinds of elec-
tions, votes can be identified with the individuals who cast them by examining
the pattern of ‘preferences’ on the otherwise anonymised voting slip. This pat-
tern or ‘signature’ thus acts as a covert channel that releases information about
the voters and how they voted. In a context where this information is publicly
available –or even available only to election officials– it can be a straightforward
task to analyse enormous amounts of data needed for the identification.

Electoral systems are particularly at risk where information other than simply
the final outcome is made available. This occurs typically in preferential electoral
systems where voters need to number the candidates in order of preference —
it is this ordering that can be used to create a signature by which voters can be
identified. Examples of where this could be an issue include preferential elections
in Australia, and also in parts of New Zealand, the UK, Ireland and the USA.

Unlike the properties of receipt-freeness and coercion-resistance, the issues
related to signature attacks are inherently probabilistic, and thus some form of
probabilistic analysis seems to be a requirement.

Our contribution in this paper is to propose new definitions for quantitative
properties that characterise the effectiveness of a signature attack in changing the
result of the election. We illustrate the definitions on some small, hypothetical
scenarios. We also discuss the options for formal approaches to analysis of the
associated risks.

The outline of the paper is as follows. In Section 2 we provide some back-
ground on the single transferable vote, signature attacks and defences against
these attacks. In Section 3 we cover related work in defining receipt-freeness and
coercion-resistance. In Section 4 we propose definitions for the effectiveness of
signature attacks, and in Section 5 we give two example strategies to illustrate
signature attacks with partial information and how our definitions can be ap-
plied. Finally in Section 6 we discuss future directions for formalising coercion
through signature attacks.

2 Background

Preferential electoral systems such as the single transferable vote are an inter-
esting case study as they are information-rich, complex and prone to signature
attacks, which by exploiting the contents of the vote can compromise anonym-
ity and thereby facilitate coercion. In this section we give a brief overview of
how the single transferable vote works, how signature attacks can be used to co-
erce voters, and the cryptographic preferential-counting schemes that mitigate
signature attacks.

Towards a Formal Analysis of Information Leakage for Signature Attacks 597

2.1 The Single Transferable Vote

The single transferable vote (STV) is a preferential electoral system, where voters
rank the candidates in order of preference. STV is a proportional system for
electing multiple candidates, each of whom must obtain a certain quota of votes
in order to be elected.

The counting algorithm for STV is highly complex and involves multiple
rounds: we give only an overview here. In each round the votes are tallied using
the highest preference of each vote. If a candidate receives at least the required
quota of the votes, then they are elected. Otherwise the candidate with the lowest
tally is excluded. In both cases the candidate is eliminated by transferring their
votes to the remaining (not yet eliminated) candidates according to preferences.
Each vote is transferred to the next highest remaining preference (commonly re-
ferred to as the next available preference) on the ballot. In the case of an elected
candidate being eliminated, only the votes surplus to the quota are transferred;
however for an excluded candidate, all votes are transferred.

STV has numerous and often subtle rule variations, for instance:

– which votes are considered ‘surplus’ (all or only some votes),
– what weight surplus votes have (full or fractional weight),
– what happens when multiple candidates are elected in the same round,
– how many preferences voters must mark.

Below we explain two variations that are of particular interest because we will
use them in the example signature attacks in Section 5: they are transfer blocks
and group tickets.

Transfer Blocks. When votes for an eliminated candidate are transferred to
the remaining candidates, the votes are not transferred individually nor all at
once. Instead they are transferred in discrete blocks, and the definition of what
constitutes a ‘transfer block’ can vary.

The most common definition is weighted blocks, where a block contains all the
votes that have the same weight. Initially all votes have a weight of 1. In most
STV variants, when a candidate is elected the surplus votes have their value
reduced to a fractional weight.

The transfer process groups votes with the same weight into blocks, and then
transfers each block separately, usually in descending order of weight. To perform
a transfer the counting algorithm must know the weight of each vote and the
next available preference for each vote.

Another definition is candidate blocks, where a block contains either all the
votes received as a first preference or all the votes received from a particular
candidate in a previous elimination. The transfer process groups votes received
from the same eliminated candidate into blocks and then transfers each block
separately usually in the order received (first-in-first-out). To perform a trans-
fer the counting algorithm must know not only the weight and next available
preference for each vote, but also the previous available preference (the previ-
ous highest preference candidate from whom the vote was received). It is just

598 R. Wen, A. McIver, and C. Morgan

these complexities that provide opportunities for covert signature channels, as
our examples will show.

Group Tickets. A further complicating feature is group tickets. Preferential
voting can be cumbersome and error-prone for voters when there are many can-
didates, which is frequently the case for STV elections. A method used in Aus-
tralia to simplify the voting process is to give voters the option of selecting group
tickets containing orderings of preferences predetermined by groups of candidates
and/or political parties.

Group ticket voting has become the overwhelmingly common way to vote in
Australia. As an example, there were 4.5 million votes cast for the New South
Wales Senate in the recent Federal Election in Australia, and of these only 10,000
votes were for individual preferences.

The preference ordering for each group ticket is known before the election,
and the number of voters who choose each ticket is known after the election. In
our examples we will use this knowledge to simplify the analysis by disregarding
the bulk of the votes cast, which are group ticket votes, so that we can focus on
the small number of votes with individual preferences.

2.2 Signature Attacks in the Single Transferable Vote

The information-rich nature of the votes in preferential systems introduces the
possibility of a signature attack [6], commonly referred to as the ‘Italian attack’
due to its infamous use by the Mafia in Italian elections in the 1970s and 1980s.
A signature attack subverts vote anonymity during the counting. The Mafia used
this attack to coerce voters by assigning each voter a different vote signature and
then later checking that this signature appeared in the votes cast. Any electoral
system is open to this attack when the number of possible voting options is
relatively large compared to the number of voters. Preferential systems such as
STV are particularly vulnerable because the number of possible permutations of
candidate preferences is factorial in the number of candidates.

We now explain the steps involved in performing signature attacks in STV.

Signing a Preferential Vote. To perform a signature attack, there first needs
to be a way for voters to ‘sign’ their ballot papers (but obviously this is not an
explicit signature). In principle a signature attack is similar to explicitly marking
a ballot paper with a unique signature code that identifies the voter. The key
difference with signature attacks is that rather than being explicit, the signature
is covertly embedded within the vote itself. We first describe a basic way to sign
preferential votes, and then we outline more sophisticated methods.

The most basic way to sign a preferential vote is to allocate the highest pref-
erence to the desired candidate and then to use the ordering of the remaining
preferences as a covert channel that contains a signature. Even for a relatively
modest number of candidates and a large voting population, such a signature
is highly likely to be unique. For any prescribed first preference candidate, an

Towards a Formal Analysis of Information Leakage for Signature Attacks 599

election with C candidates has (C−1)! possible covert signatures (assuming that
the voter must enter all preferences). With such a large vote space of possible
vote combinations, there is a huge potential signature space of possible signa-
tures (though of course an attack could use only a smaller subset as the chosen
signature space for the attack). For example in the recent Federal Election in
Australia, the NSW Senate had 110 candidates, and so there are 109! > 10176

possible signatures. Even if each of the 1050 atoms in the world voted in this
election, there would still be a negligible probability that any randomly chosen
signature would also be cast by another voter.

More sophisticated ways to sign a vote involve placing the preferences for the
desired candidates in different positions of the vote. For example the vote could
contain a prefix of preferences for highly unpopular candidates (who are highly
unlikely to be elected), then followed by the preference for the desired candidate,
then followed by a suffix of preferences for the remaining candidates. In this case
it is the prefix and suffix that form the signature.

Revealing Signatures with Complete Knowledge. After the covert signa-
tures have been embedded within the votes, there then needs to be a way to
reveal these signatures. This is done when the ballot papers (and hence votes)
are exposed during the counting, and so it links voters to signed votes. Given this
complete knowledge of the votes, it is trivial for an adversary to identify all the
signatures that it allocated to coerced voters. More importantly the adversary
can identify all absent signatures, and thus learns which coerced voters did not
sign.

In traditional paper elections, only election authorities and independent scru-
tineers appointed by the candidates can observe the ballots and potentially learn
the votes. However in Australia most STV elections now use electronic counting,
and so all the vote data from ballot papers is entered into the counting system
either manually or by optical scanning. Anyone with access to the electronic
vote data can easily perform signature attacks on a large scale because it is
straightforward to automate searches for signatures. To make matters worse, in
an attempt to improve the transparency of electronic counting it is becoming
increasingly common for election authorities to publish this electronic vote data
on the internet, which has inadvertently made it trivial for anyone to perform
large-scale signature attacks.

Revealing Signatures with Partial Knowledge. Although concealing the
vote data will prevent more basic signature attacks, subtle variations of signa-
ture attacks might still be feasible given only partial knowledge of the votes. The
vote counting generates a large amount of information, for instance the weight of
each vote, the round tallies for each candidate, the order of preference transfers,
and the identities of the winners. Much of this partial information is frequently
published by election authorities. Using such information, it might still be pos-
sible to carry out signature attacks by using the available information about the
votes to narrow down the set of signatures cast. As an example of this indirect
reasoning, if a candidate’s tally remains the same across two rounds, then that

600 R. Wen, A. McIver, and C. Morgan

candidate cannot be the next available preference in any of the votes for the
candidate eliminated in the first of those rounds.

To make such attacks more effective, sophisticated strategies exploit certain
STV rules and information leakage to craft unusual signatures that have a high
likelihood of being exposed, even if only partially. An example is embedding
uncommon sequences of preferences in the signatures such as a prefix sequence
of highly unpopular candidates who are likely to be eliminated in early rounds.
Even if the exact set of signatures used is not identified, it might still be pos-
sible to determine that particular signatures are absent. The mere threat of this
possibility might well be sufficient to enable coercion.

Naturally the efficacy of these methods depends largely on the eventual dis-
tribution of the votes cast. Nevertheless an adversary could make well-educated
guesses, especially with the overwhelming use of group ticket voting. Before the
election, predictions of the votes cast and how the preferences will be transferred
can be made based on information including group tickets (since each ticket is
published), opinion polls and historical data. This helps the adversary to choose
suitable strategies for crafting signatures. Then, after the election, the predic-
tions can be revised based on information including the group ticket votes cast
and other aggregate counting data. This helps the adversary to narrow down
the set of signatures cast. In particular the uncertainty over the set of signatures
cast can be reduced by using knowledge of the large number of group ticket votes
cast to isolate the relatively small number of votes with individual preferences
marked.

In practice it appears that reasonably accurate predictions of a similar nature
are already being made. For example media outlets provide interactive election
calculators where anyone can enter votes and see how the rounds of counting
would progress [2]. As another example, in the recent Federal Election in Aus-
tralia an alliance of 30 micro parties engaged a ‘preference consultant’ to help
maximise their chances of being elected through ‘preference deals’ to allocate
the ordering of candidates on group tickets. Although these have a different pur-
pose, the calculations involved would be similar to those suggested above for
developing strategies for signature attacks.

2.3 Signature Attacks in Categorical Electoral Systems

As an aside, it is worth noting that signature attacks can also be used in systems
other than STV: for example, categorical electoral systems (such as first-past-
the-post) when a general election contains multiple sub-elections on a single
ballot paper. For example for general elections in the US a single ballot paper will
typically contain votes for federal, state and local government, a variety of other
elected officials such as school board members, and a multitude of propositions.
This scenario might make it feasible to construct a signature comprising the
categorical choices in minor elections.

In this setting, basic signature attacks can be effective when there is complete
knowledge of the votes in each ballot. However unlike in STV, more sophisticated
signature attacks with partial knowledge do not seem to be effective because

Towards a Formal Analysis of Information Leakage for Signature Attacks 601

there is very limited scope for partial information to be revealed: this is due to
the independence of the sub-elections.

2.4 Defences Against Signature Attacks

To mitigate signature attacks in the single transferable vote and the alternative
vote (an STV variant for single-winner elections), several cryptographic pref-
erential counting schemes have been proposed that hide the intermediate data
the counting algorithms use [3,7,8,15]. These schemes perform the counting on
encrypted votes, but still they can reveal partial information to varying degrees.
Often it is unclear precisely what information is leaked, and what risks the leaked
information pose of being exploited by signature attacks.

At the moment however the inability to measure the effectiveness of counting
schemes against signatures attacks means there is no way to compare counting
schemes and the different amounts and types of information they reveal due
to different trade-offs between privacy and performance. This also creates dif-
ficulties in adapting counting schemes so that they reveal only the information
that the authorities wish to publish, or to suit different rule variations in the
counting procedure. In particular all the cryptographic counting schemes in the
literature implement greatly simplified versions of the counting algorithms used
in real elections, and so would need substantial modifications with a variety of
possible privacy and performance trade-offs before being used in practice.

3 Related Work on Coercion

Preventing coercion in electronic voting is expressed by the properties of receipt-
freeness and coercion-resistance, and there is a variety of approaches to devel-
oping formal definitions for these properties, for instance [5,9,10,12]. However
coercion through signature attacks is not captured by these existing definitions.

Definitions of receipt-freeness and coercion-resistance capture notions of pri-
vacy related to constructing and casting ballots during the voting process, and
they generally assume that there is sufficient uncertainty to preserve privacy of
the overall election. The problem is that signature attacks exploit the contents
of the votes themselves and the information that is revealed about the votes
during the counting process and even after the election.

For example the formal definition of receipt-freeness by Delaune, Kremer and
Ryan [5] is based on observational equivalence, where the adversary cannot dis-
tinguish between two cases:

1. a coerced voter obeys and casts the coerced vote, and
2. a coerced voter disobeys and ‘swaps’ their vote with another voter who has

chosen the coerced vote.

However this is not meaningful in the context of signature attacks, which are
designed so that a coerced vote is likely to be unique. Hence a voting scheme that
prevents certain types of coercion can satisfy this definition of receipt-freeness,

602 R. Wen, A. McIver, and C. Morgan

even though it does not provide any protection against coercion through signa-
ture attacks. Di Cosmo [6] points out this problem and suggests that signature
attacks relate to vote anonymity, and so should be formalised as a probabilistic
property rather than an absolute property. We note that such a property would
not replace definitions of receipt-freeness and coercion-resistance, but would in-
stead complement them.

Our work is a starting point for the specific problem of signature attacks rather
than the more difficult problem of vote anonymity in general, which would need
to deal with other (possibly yet undiscovered) covert channel attacks. The prin-
cipal technical issue for signature attacks, we will argue, is a quantitative measure
of their effectiveness. In the remainder of this paper we will define the effective-
ness of signature attacks, provide illustrative examples of these definitions and
then discuss our approach to formalisation.

4 The Effectiveness of Signature Attacks

We now propose simple definitions of the effectiveness of signature attacks with
the aim of suggesting approaches to more detailed formalisations.

Intuitively there are three factors that determine the effectiveness of a signa-
ture attack:

1. how well the adversary can identify absent signatures,
2. what proportion of the signatures match with incidental votes cast by other

voters,
3. what proportion of voters can be successfully coerced.

These three factors lead us to the following three definitions.

Definition 1 (Signature absence identification accuracy). Given the in-
formation known by the adversary, there is a procedure to identify which signa-
tures are absent in the votes cast. We say that the accuracy of this procedure
is σ, the expected proportion of signatures that can be definitively identified as
being absent within the adversary’s chosen signature space.

The accuracy can depend on variables including the amount and type of avail-
able information, the procedure used to identify absent votes from this available
information, the chosen signature space and the probability distribution of the
votes. In the ideal attack scenario there is complete information about the vote
preferences, and so the accuracy σ = 1 because all absent signatures in the
chosen signature space can be identified. When there is partial information we
have σ ∨ 1. (A good attack may have σ = 1 with only partial information.)

Note that this definition of accuracy is conservative and can be considered as
a lower bound. It has a limitation in that in certain complicated cases it does
not completely capture all the knowledge that the adversary can gain about
absent signatures — it only captures the specific absent signatures that can
be definitively and individually identified. So for example the adversary might
learn that some signatures are absent without being able to identify them, and

Towards a Formal Analysis of Information Leakage for Signature Attacks 603

in extreme cases could identify when an entire group of signatures of a particular
form are absent. This will be illustrated in Example 1 in Section 5.2.

It may also be desirable to develop a more optimistic definition of accuracy
that additionally includes aggregate knowledge about absent signatures, thus
placing an upper bound on the extent to which an attack can narrow down
the set of signatures cast. However accuracy would then be more complex and
difficult to measure, for instance it can also depend on the probability that
coerced voters will disobey.

Moreover under such an optimistic definition it could be harder to make mean-
ingful comparisons between signature attacks. For example a signature attack
that can identify only a small proportion of individual signatures as absent might
still have high (optimistic) accuracy by significantly narrowing down the set of
signatures cast. Conversely another signature attack that can identify a larger
proportion of individual signatures as absent might have lower accuracy if it
does not further narrow down the set of signatures cast.

Definition 2 (Incidental collision rate). The collision rate is π, the chance
that a signature within the adversary’s chosen signature space collides with an
incidental vote cast by some other voter who is not being coerced.

The collision rate can depend on variables including the chosen signature space,
the number of voters and the probability distribution of the votes. In the ideal
attack scenario the chosen signature space is so much larger than the number of
voters that the collision rate is π ≈ 0, and so there is a negligible chance that
signatures collide with incidental votes.

Definition 3 (Coercion potential). Assuming that every voter is susceptible
to being coerced, the coercion potential of a signature attack is Ξ, the proportion
of voters that it can be used to definitively coerce. Suppose that S is the size of the
chosen signature space and V is the total number of voters. Then we calculate
Ξ = σ(1 − π)S/V , which is based on the total signatures available (S) times the
proportion that can be identified as absent (σ) times the proportion likely not to
suffer collisions (1−π).
A coercion potential Ξ=1 means the attack can coerce all voters. A coercion
potential Ξ>1 means the attack could still be used to coerce all voters even if
the total number of voters is increased.

A signature attack is effective in electing the desired candidate if the coercion
potential is greater than the losing margin (without coerced voters), expressed
as a ratio. The losing margin depends on the election and coercion context. For
example if the desired candidate is strong and is a borderline chance of being
elected, then the losing margin would be small, and so an attack with small
coercion potential could be sufficient to tip the result in the candidate’s favour.

Note that our definitions consider only signature attacks where there is one
coerced voter per signature. It is possible to coerce multiple voters to use the
same signature. For example a Mafia boss could coerce a family of five to use the
same signature. Then if he detected that only four instances of that signature
were used, the entire family would be punished. However for simplicity we have

604 R. Wen, A. McIver, and C. Morgan

restricted ourselves to the more straightforward scenario of one coerced voter
per signature.

Also we do not take into account the psychological aspect of signature attacks,
where the perceived threat of coercion might increase effectiveness, or perhaps
even reduce effectiveness if the threat is not perceived!

5 Examples of Signature Attacks with Partial Knowledge

Now that we have defined a way to measure the effectiveness of signature attacks,
we apply the definitions concretely to two small examples. Since signature attacks
with complete knowledge of the votes are trivial to perform, because all absent
signatures are easily identified, our examples cover more interesting strategies
with only partial knowledge available to identify absent signatures. The examples
are based on a hypothetical election scenario designed to illustrate the obscure
nature of signature attacks, and the potential to exploit information leakage that
might seem innocuous. In particular we exploit an unusual vote transfer rule and
we look at short signatures with only three preferences.

The two examples share a common election scenario; but they use different
strategies for crafting signatures and identifying absent signatures.

5.1 Election Scenario for Both Examples

The adversary wishes to coerce voters to vote for a strong candidate who is not
certain to be elected. For simplicity we assume that all voters enter exactly three
preferences.

Below we provide further details of the candidates, voters and vote transfers.

Candidates. There are 310 candidates and 20 of them are to be elected. This is
similar to the numbers for NSW State Legislative Council elections. Table 1 be-
low sets out the (informal) popularity of these candidates, and for each category
the number of candidates and the (total) probability of votes for that class. For
simplicity we assume that the vote distributions for each preference are the same
and are independent, though in reality this is not the case. So for example there
are 10 sure thing candidates, and 50% of the first, second and third preference
votes will be for these candidates.

Table 1. Candidate Popularity

Popularity Number of Candidates Vote Distribution
Sure thing 10 50%

Strong 50 25%
Medium 100 15%
Weak 150 10%

Towards a Formal Analysis of Information Leakage for Signature Attacks 605

We assume that the adversary knows this information, along with other public
information including the group tickets, and that the available information is
sufficient to make reasonably accurate predictions.

Voters. There are 4 million voters and of these only 10,000 enter individual
preferences as opposed to selecting group tickets. This is similar to the NSW
Senate in the recent Federal Election.

Vote Transfers. The counting algorithm transfers votes in candidate blocks.
This rule is useful because it means that the transfer process requires two pieces
of information: the previous available preference (from whom the vote was re-
ceived) and the next available preference (to whom the vote will be transferred).
We assume that the adversary has access to this information, for the block as a
whole.

Information Leakage. We make several assumptions about how information
on the candidates and votes is leaked to the adversary.

Information on candidate popularity and group tickets is publicly available
before the voting begins. This enables the adversary to make predictions and
determine suitable signature attack strategies.

Complete information on the group ticket votes cast is publicly revealed after
the election (as is common practice in Australia). Thus the adversary can filter
out these votes, leaving only votes with individual preferences. For the same
reason we can disregard all group ticket votes when calculating the coercion
potential.

Partial information on the votes with individual preferences is leaked to the
adversary during the counting and/or after the election. For example to obtain
vote transfer information, the adversary might act as a scrutineer to observe
blocks of votes as they are manually transferred (though without seeing the
individual ballot papers, as it would then be trivial to identify signatures). Also
the adversary could gain access to written notes or electronic data about the
transfers when it is made available to scrutineers or published after the election.

5.2 Example 1

In our first example the adversary can obtain information on vote transfers by
examining the eliminations of the weak candidates. We describe the strategy
for crafting signatures and identifying absent signatures. We then calculate the
accuracy, collision rate and coercion potential.

Crafting Signatures. This strategy uses signatures of the form p1p2X , where

– X is the adversary’s desired candidate,
– p1, p2 are preferences for candidates who are likely to be be eliminated before

X is eliminated.

606 R. Wen, A. McIver, and C. Morgan

The adversary chooses p1, p2 from the set of weak candidates, and so the chosen
signature space is 150×149 = 22, 350 possible signatures. We assume that the
adversary has predicted correctly that p1, p2 are eliminated before X is.

Identifying Absent Signatures. Absent signatures are identified by examin-
ing all eliminations for the weak candidates. Consider the elimination of a weak
candidate W . Only transfers to X need be examined. Other transfers either are
not valid signatures or will later be identified as signatures if subsequently trans-
ferred to X . Transfers from W to X involve three possible types of votes, and
all the signatures will be the first and second type.

1. p1WX , where p1 is a preference for a previously eliminated candidate. These
are signatures if p1 is a weak candidate. All absent signatures can be defin-
itively identified.

2. Wp2X , where p2 is a preference for a previously eliminated candidate. These
are signatures if p2 is a weak candidate. Although the total number of absent
signatures of this form can be determined, individual absent signatures can-
not be definitively identified. In the extreme case where all coerced voters
with a signature of the form Wp2X disobey, then all these absent signatures
would be identified. However we do not include such cases in our measure of
accuracy.

3. WXp3, where p3 is a preference for any candidate. These cannot be sig-
natures. They can be distinguished from Type 1 votes because these first
preference votes for W are transferred separately from other votes.

Signature Absence Accuracy. With this strategy only absent signatures of
Type 2 cannot be identified. When the first weak candidate is eliminated, there
will be no such signatures (as no weak candidates have previously been elim-
inated). When the second weak candidate is eliminated, there will be one such
signature, and so on. When the 150th weak candidate is eliminated, there will
be 149 such signatures. Thus the total number of absent signatures that cannot
be identified is 1 + 2 + . . . 149 = 149×(1+149)

2 = 150×149
2 . Therefore with this

strategy the adversary can identify exactly half of the absent signatures, and so
the accuracy σ = 1

2 .

Incidental Collision Rate. Based on the election scenario described in Sec-
tion 5.1, we roughly estimate the number of incidental votes cast that fall within
the chosen signature space.

There are 10,000 incidental votes cast by non-coerced voters. For these votes
10% of the preferences are for weak candidates and 25% are for strong candidates.

So for votes of the form p1p2p3, where p1, p2 are preferences for weak can-
didates and p3 is a preference for a strong candidate, we expect 10000× 10%×
10% × 25% = 25 votes. Since there are 50 strong candidates, then we expect
25
50 < 1 incidental vote in the chosen signature space.

Rounding this up to 1 incidental vote, then for the chosen signature space of
size 22,350 we have a collision rate π = 1

22350 ≈ 0.004%.

Towards a Formal Analysis of Information Leakage for Signature Attacks 607

Coercion Potential. For the chosen signature space size S = 22, 350, the
number of voters V = 4, 000, 000, accuracy σ = 1

2 and collision rate π = 1
22350 ,

the coercion potential is

Ξ = σ(1− π)S/V

=
1

2
× (1 − 1

22350
)× 22350/4000000

= 0.00279

This means that the adversary can coerce about 0.28% of the voters, which
equates to about 11,000 votes. This would be compared with the margins of the
(Mafia-backed) candidates of interest.

5.3 Example 2

In our second example the adversary can obtain information on vote transfers by
examining only the elimination of the adversary’s desired candidate. We describe
the strategy for crafting signatures and identifying absent signatures. We then
calculate the accuracy, collision rate and coercion potential.

Crafting Signatures. This strategy uses signatures of the form p1Xp3, where

– X is the adversary’s desired candidate,
– p1 is a preference for a candidate who will be eliminated before X ,
– p3 is a preference for a candidate who will be eliminated after X .

The adversary chooses p1 from the set of weak candidates and p3 from the set of
medium candidates, and so the signature space is 150 × 100 = 15, 000 possible
signatures. We assume that the adversary predicts correctly that p1 is eliminated
before X and p3 is eliminated after X .

Identifying Absent Signatures. Absent signatures are identified by examin-
ing only the elimination of X . (This assumes that X is eliminated at some point,
in other words X will not be the last remaining candidate.) The elimination of
X involves transfers for three possible types of votes, and all the signatures will
be the first type (though the converse is not true).

1. p1Xp3, where p1 is a preference for a previously eliminated candidate and p3
is for a remaining candidate. This is a signature if p1 is a weak candidate and
p3 is a medium candidate. All absent signatures can be definitively identified.

2. Xp2p3, where at least one of p2, p3 is a preference for a remaining candidate.
These cannot be signatures. They can be distinguished from Type 1 votes
because these first preference votes for X are transferred separately from
other votes.

3. p1p2X , p1Xp3 and Xp2p3, where p1, p2, p3 are all preferences for previously
eliminated candidates. These cannot be signatures. They can be distin-
guished because their preferences are exhausted, and so they will not be
transferred.

608 R. Wen, A. McIver, and C. Morgan

Signature Absence Accuracy. With this strategy the adversary can identify
all the absent signatures, and so the accuracy σ = 1.

Incidental Collision Rate. We estimate the number of incidental votes cast
that fall within the chosen signature space as follows.

There are 10,000 incidental votes cast by non-coerced voters. For these votes
10% of the preferences are for weak candidates, 15% are for weak candidates and
25% are for strong candidates.

So for votes of the form p1p2p3, where p1 is a preference for a weak candidate,
p2 is a preference for a medium candidate, and p3 is a preference for a strong
candidate, we expect 10000× 10%× 15%× 25% = 37.5 votes. Since there are 50
strong candidates, then we expect 37.5

50 < 1 vote in the signature space.
Rounding this up to 1 incidental vote, then for the chosen signature space of

size 15,000 we have a collision rate π = 1
15000 ≈ 0.007%.

Coercion Potential. For the chosen signature space size S = 15, 000, the
number of voters V = 4, 000, 000, accuracy σ = 1 and collision rate π = 1

15000 ,
the coercion potential is

Ξ = σ(1− π)S/V

= 1× (1 − 1

15000
)× 15000/4000000

= 0.00375

This means that the adversary can coerce about 0.375% of the voters, which
equates to about 15,000 votes (the entire chosen signature space).

5.4 Comparing the Strategies

Although these two strategies are very similar, we see how a subtle difference
in crafting the signatures in Example 2 can lead to a more effective attack,
even when there is less information available to the adversary and the chosen
signature space is smaller.

Also interesting is how subtle rules and the consequent potential for informa-
tion leakage can be exploited. The strategies would be easily thwarted by chan-
ging the transfer rule to weighted blocks instead of candidate blocks. In that
case for each vote the transfer process would still leak the next available pref-
erence but not the previous available preference. So for example in Example 2
the accuracy would be σ = 0 because the adversary would no longer be able to
definitively identify any absent signature.

Note that our analysis is simplistic in calculating the accuracy of identifying
absent votes by assuming that the adversary predicts perfectly. In reality the
predictions can vary in how much they depend on the probability distributions
of the votes. For example in Example 1, all 150 weak candidates are predicted
to be eliminated before the strong candidate X . A less risky strategy might be

Towards a Formal Analysis of Information Leakage for Signature Attacks 609

to use only the 100 weakest candidates with a safer prediction that these would
be eliminated before X . Similarly Example 2 is riskier than Example 1 because
it seems more difficult to accurately predict which candidates will remain after
X is eliminated.

6 Discussion

In this paper we discussed the issues surrounding signature attacks, and we pro-
posed novel definitions to measure their effectiveness in a given election context.
Our definitions are quantitative in essence and, as for other standard security
properties, are stated in as general a way possible with the intention of avoiding
any accidental bias towards a particular formalism or formal method.

One of the difficulties of elections is deciding what could be used by the
adversary to formulate signature attacks; in our examples we have illustrated
how this could be done when unusual rules are used to transfer preferences
and where that information is made available during (or after) the counting
procedure. Ideally, in a complex election protocol we would want to show that
no such signature attack could be possible (or at least would be unlikely to
succeed). This would involve an analysis to show that σ from Def. 1 is low or π
from Def. 2 is high compared to the estimated number of coerced votes needed
to change the (coercion-free) election result.

The basis for a successful signature attack depends on the prior knowledge of
the adversary together with any additional information that might be revealed
during and after the election. As in the examples given in this paper the prior
knowledge is described by a probability distribution and any change in that
prior distribution gives an indication of how much the adversary can learn by
observing the system.

Recent work in Quantitative Information Flow uses a channel model for pro-
grams which can be used to quantify the amount of secret information that is
revealed during program execution. The most recent work in this area shows how
various operational scenarios can be captured by assigning costs to secrets [1,14]
and a ‘security programming language’ [13] can model the system. In future
work we will investigate how to use these approaches to formalise attacks such
as these in electronic election systems.

7 Conclusion

Signature attacks are a complicated and esoteric but potentially powerful tech-
nique for coercing voters, especially in preferential electoral systems such as
STV. In this paper we have made the first steps towards formal definitions for
measuring the effectiveness of signature attacks, by identifying some of the ‘raw
material’ on which formal analyses would be based. A formal treatment of sig-
nature attacks has an important role to play in furthering the understanding
of the nature of these attacks, their effectiveness and how to mitigate the risks.

610 R. Wen, A. McIver, and C. Morgan

This has broad implications not only for current research on developing crypto-
graphic counting schemes, but also for the naive (non-cryptographic) electronic
counting and manual counting systems in use at present, and even potentially for
electoral legislation specifying the rules for the counting process and for electoral
practices in deciding what information is acceptable to reveal or publish.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring Inform-
ation Leakage Using Generalized Gain Functions. In: Chong, S. (ed.) CSF, pp.
265–279. IEEE (2012)

2. Australian Broadcasting Corporation: Antony Green’s Election Guide — Senate
Calculator (2013),
http://www.abc.net.au/news/federal-election-2013/senate-calculator/

3. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-Sum: Coercion-
Resistant Verifiable Tallying for STV Voting. IEEE Transactions on Information
Forensics and Security 4(4), 685–698 (2009)

4. Benaloh, J.C., Tuinstra, D.: Receipt-Free Secret-Ballot Elections (Extended Ab-
stract). In: Leighton, F.T., Goodrich, M.T. (eds.) STOC, pp. 544–553. ACM (1994)

5. Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and Receipt-Freeness in
Electronic Voting. In: CSFW, pp. 28–42. IEEE Computer Society (2006)

6. Di Cosmo, R.: On Privacy and Anonymity in Electronic and Non Electronic Voting:
the Ballot-As-Signature Attack (2007),
http://hal.archives-ouvertes.fr/hal-00142440/en/

7. Goh, E.-J., Golle, P.: Event Driven Private Counters. In: Patrick, A.S., Yung, M.
(eds.) FC 2005. LNCS, vol. 3570, pp. 313–327. Springer, Heidelberg (2005)

8. Heather, J.: Implementing STV securely in Prêt à Voter. In: CSF, pp. 157–169.
IEEE Computer Society (2007)

9. Heather, J., Schneider, S.: A Formal Framework for Modelling Coercion Resistance
and Receipt Freeness. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 217–231. Springer, Heidelberg (2012)

10. Jonker, H.L., de Vink, E.P.: Formalising Receipt-Freeness. In: Katsikas, S.K.,
López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176,
pp. 476–488. Springer, Heidelberg (2006)

11. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections.
In: Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61–70. ACM
(2005)

12. Küsters, R., Truderung, T.: An Epistemic Approach to Coercion-Resistance for
Electronic Voting Protocols. In: IEEE Symposium on Security and Privacy, pp.
251–266. IEEE Computer Society (2009)

13. McIver, A., Meinicke, L., Morgan, C.: Compositional Closure for Bayes Risk in
Probabilistic Noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, part II. LNCS, vol. 6199, pp.
223–235. Springer, Heidelberg (2010)

14. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract Channels
and Their Robust Information-Leakage Ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014)

15. Wen, R., Buckland, R.: Minimum Disclosure Counting for the Alternative Vote.
In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS, vol. 5767, pp.
122–140. Springer, Heidelberg (2009)

http://www.abc.net.au/news/federal-election-2013/senate-calculator/
http://hal.archives-ouvertes.fr/hal-00142440/en/

Analyzing Clinical Practice Guidelines Using a

Decidable Metric Interval-Based Temporal Logic

Morteza Yousef Sanati1,2, Wendy MacCaull3, and Thomas S.E. Maibaum1

1 Department of Computing and Software, McMaster University, Hamilton, Canada
yousem2@mcmaster.ca,tom@maibaum.org

2 Department of Computer Science, Bu-Ali Sina University, Hamedan, Iran
3 Department of Mathematics, Statistics and Computer Science,

St. Francis Xavier University, Antigonish, Canada
wmaccaul@stfx.ca

Abstract. A Clinical Practice Guideline defines best practices to be fol-
lowed by clinicians to manage a particular disease. Checking the quality
of such guidelines is a very important issue, e.g., designers of the guide-
lines should ensure their consistency. A formal modelling approach is an
appropriate choice due to the complexity of these guidelines. In this pa-
per, we develop a metric interval-based temporal logic, which is suitable
for such modelling and then propose a method for checking the satisfi-
ability of such guidelines, to assure their consistency. As a case study,
we use the logic to model a real-life guideline, the Active Tuberculosis
Diagnosis guideline.

Keywords: Clinical Practice Guidelines, Metric interval-based tempo-
ral logic, Tableau-based satisfiability checking, Guideline modelling.

1 Introduction

A Clinical Practice Guideline (CPG) defines best practices to be followed by
clinicians to manage a particular disease. The guidelines consist of recommenda-
tions and/or rules, usually written in natural language, which help clinicians to
make appropriate decisions about the medicines or the other treatments which
a patient should receive. As a CPG is considered as a standard for the diagnosis
and the treatment of a disease, checking the quality of CPGs is a very important
issue; e.g., designers of the guidelines should ensure their logical consistency.

Due to their complexity, a formal modelling approach is an appropriate choice
for representing and analyzing such guidelines. For this purpose, different groups
have developed some formalization approaches (e.g., Absru [1,2], PROforma
[1,2], EON[3], GLIF [1,2], g-HMSC [4], Little-JIL [5]) which have different func-
tionalities arising from different interests and expertise of the groups’ mem-
bers. Some approaches are general purpose process modeling language, e.g.,
PROFroma, Litthe-JIL, g-HMSC, while EON and GLIF are particularly de-
signed to model clinical guidelines. Generally, the aim of these languages is to
reduce the error which occur in the process of delivering the treatment to a

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 611–626, 2014.
c© Springer International Publishing Switzerland 2014

612 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

patient; making it easier for clinicians to use the guideline for the diagnosis or
treatment. Also, some of them (e.g., Absru, Little-JIL, g-HMSC) provide (semi)
automatic analysis to detect inconsistencies which may occur in decisions or
pre(post) conditions of the modeled tasks of a guideline and they may do model
checking as well. For instance, the Absru language can be automatically trans-
lated to the input language of the KIV theorem prover in order to verify some
properties of a guideline. Due to the lack of space, we refer the reader to [2,16]
to see a comparison of some of these approaches. In summary, none of the lan-
guages provide fully automatic analysis to check the satisfiability of a guideline
which is an important issue during the designing of a guideline.

From a computer science point of view, CPGs are considered as highly struc-
tured systematic documents which are amenable to formalization to support
(semi) automatic analysis [1]. In fact, a CPG is a time-oriented process which
consists of the treatment steps and/or the diagnostic steps that are performed
in a temporal setting; so step-wise execution of the steps can be modelled us-
ing a temporal logic [6]. Generally, the choice of temporal logic for this purpose
has been a point-based one because point-based temporal logics are usually de-
cidable, and they have good computational complexity. For example, in [6,7], a
point-based temporal logic is used to model the guidelines.

The domain of medicine, however, is inherently interval based in the sense
that most activities are described as being done in an interval and it is not
possible to model them as being done at a time point, e.g., monitoring heart rate.
Thus, an interval-based temporal logic is required, but because of undecidability
issues, this kind of logic is rarely used to model CPGs. For instance, in [1],
Sciavicco et al. have used an interval-based temporal logic called propositional
neighbourhood logic (PNL) [8] to model medical guidelines. PNL is one of the
decidable fragments of Halpern-Shoham (HS) logic [9], and it is powerful enough
to embed all of the temporal logic LTL[P,F] [1]. However, PNL has NExpTime
complexity, and it is not easy to specify the duration of an activity in PNL.

In the domain of medicine, the execution duration of some activities should be
restricted to a specific amount of time, e.g., take Ibuprofen for 2 days; therefore,
the logic must allow a user to specify the duration of an activity: a metric
version of the temporal logic is needed. In MPNLl, the metric version of PNL,
a user can bind the duration of an event to a specific amount of time but some
problems still exist, e.g., the high complexity of the analysis. Here we present
IMPNL, a temporal logic we designed, inspired by MPNLl. The logic hasPSpace
complexity and appears to be a promising approach to model many CPGs. As
a proof of concept, we have modelled a typical CPG, namely, diagnosis of active
tuberculosis.

A CPG is said to be consistent if a corresponding formula, which describes the
CPG, is satisfiable. We have designed a tableau algorithm for the satisfiability
checking of a formula of IMPNL. The algorithm is thus able to check (some
aspects of) the quality of a CPG. In addition, the fact that the algorithm is sound
gives us a method to do some “debugging”. A closed tableau indicates the non-
satisfiability of the formalization of the guideline. While this might arise from a

Analyzing CPGs Using a Decidable MITL 613

mistake in the modelling, it may also be due to ambiguity in the natural language
used, or an inconsistency in the guideline itself. A closed tableau indicates that
a closer inspection of the guideline is warranted.

The rest of the paper is organized as follows. In section 2, metric interval based
temporal logic is discussed, and a new logic, named IMPNL, is introduced. In
section 3, a tableau-based algorithm for the satisfiability checking of a formula of
the logic is presented. In section 4, a CPG called “Active Tuberculosis Diagnosis”
is modelled using the logic. The results of the tableau show that the formalization
is consistent. In section 5, we finish the paper with conclusions and future work.

2 Metric Interval-Based Temporal Logic

“The term temporal logic is used to describe any system of rules and symbolism
for representing, and reasoning about, propositions qualified in terms of time”
[10]. There are two kinds of temporal logics, namely, point-based and interval-
based. An interval-based logic is able to model many real world processes, which
have duration, which were difficult to model using a point-based logic.

Most interval-based temporal logics are undecidable. For instance, HS logic
[11], which is able to model all of Allen’s relations [12], is an undecidable logic.
Recently, some decidable fragments of HS logic have been discovered. One of
them is PNL, which has two temporal operators, namely, meet and met-by. A
metric version of PNL called MPNLl [13], was developed by Bresolin et al. in
2010. This version has an extra temporal operator len

=k
ξ where k is consid-

ered as the length of an interval on which formula ξ is evaluated. MPNLl is
expressive enough to model the metric version of all of Allen’s relations with
the exception of during [13]. However, the complexity of satisfiability reasoning
in MPNLl with time defined over the natural numbers (when k in the above
formula is a constant) is NExpTime-Complete. In this paper we introduce a
new logic, named IMPNL, inspired by MPNLl, which has PSpace complexity.
The differences between this logic and MPNLl are as follows:

– IMPNL has no full negation and no �d (d ⇒ {r, l}) (necessity) operator.
– In IMPNL, the length of every atomic proposition must be specified.
– We have a homogeneity assumption on IMPNL, i.e., if a formula is true

(false) on an interval, it is true (false) in every subinterval of that interval.
– As far as we know, no tableau algorithm has been designed for MPNLl.

3 IMPNL, an Inspiration from MPNLl

The language of IMPNL consists of a set AP of atomic propositions, logical
operators atomic negation (¬), or (⇔), and (∧) and temporal operators, ♦r, ♦l

corresponding to Allen’s relations meet and its inverse met-by. This logic has
two constants - (True) and ⊥ (False) defined as usual.

614 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

3.1 Syntax and Semantics

The formulas, denoted by φ,ξ, ..., are recursively defined using BNF, where p is
an atomic proposition.

ξ = p
k
|-

k
|⊥

k
|¬p

k
|φ1 ⇔ φ2|φ1 ∧ φ2|♦rφ|♦lφ where k ⇒ N

The semantics of this logic is defined based on a 3 tuple structure M =
≤D,I−(D),V〉 where the pair ≤D, I−(D)〉 is a strict interval structure [14] in the
sense that D is a partially ordered set and I−(D) consists of possible intervals
which are defined over D, where the length of any interval is not equal to zero.
The function V: I−(D) ∧ 2AP is a valuation function that assigns to every
interval the set of all atomic propositions which are true on that interval. We
say a formula ξ is satisfiable if there exists a model M and a closed interval
[c0,c1] s.t. M, [c0, c1] |= ξ, where M, [c0, c1] |= ξ is defined as follows:

1. M, [i, j] |= p
k
iff j − i = k and ∪i′ , j′

, if [i
′
, j

′
] ⊆ [i, j] then p ⇒ V ([i

′
, j

′
]);

2. M, [i, j] |= ¬p
k
iff j − i = k and ∪i′ , j′

, if [i
′
, j

′
] ⊆ [i, j] then p /⇒ V ([i

′
, j

′
]);

3. M, [i, j] |= -
k
iff j − i = k;

4. M, [i, j] |= φ1 ⇔ φ2 iff M, [i, j] |= φ1 or M, [i, j] |= φ2;
5. M, [i, j] |= φ1 ∧ φ2 iff M, [i, j] |= φ1 and M, [i, j] |= φ2;
6. M, [i, j] |= ♦rφ iff there exists h > j such that M, [j, h] |= φ;
7. M, [i, j] |= ♦lφ iff there exists h < i such that M, [h, i] |= φ.

3.2 Restrictions

We have some restrictions in IMPNL: it is not possible to model every English
construct, but sometimes we can provide a reasonable alternative, as we show
below:

1. The “At least” condition, e.g., “The patient should give at least 3 sputum
during the diagnosis”.
This case can be fixed by making a suitable assumption because in the
domain of medicine, most events have a maximum length (worst case: lifetime
of a patient; e.g., 120 years). Therefore, it is easy to find an upper bound
for the condition.

2. Statements using “any”, e.g., “The patient should fast for 12 hours before
any blood work which includes testing fasting sugar”.
There is no general solution for this case but we may find a solution for
some particular cases; e.g., suppose that a patient has AIDS and TB. The
patient should take Kaletra for AIDS treatment. On the other hand, Ri-
fampin is considered as one candidate medicine for the treatment of TB
but Kaletra and Rifampin have drug contraindication and should not be
taken simultaneously. We are not able to say there is no interval which
the patient takes these medicines simultaneously. Therefore, we model this
statement in another way, i.e., we say the patient takes neither Kaletra
nor Rifampin or he/she takes Kaletra but not Rifampin or vice versa:

Analyzing CPGs Using a Decidable MITL 615∧120years
k=1hour [(¬TakingKaletrak ∧ ¬TakingRifampink) ⇔ (TakingKaletrak ∧

¬TakingRifampink) ⇔ (¬TakingKaletrak ∧ TakingRifampink)].
3. A loop with an undetermined number of repetition, e.g., one which

uses“Until”.
Generally, we are not able to model this kind of loop. In some cases we can
make suitable assumptions and model the guideline but it is not always pos-
sible. For example, the CD4 level of an AIDS patient should be monitored
until his death. The time of death is unknown so we assume that the patient
will live for 120 years (maximum lifetime of a person), and model it with
AIDSPatient1hour ∧ ♦l♦rCD4Monitoring120years.

3.3 Tableau-style Algorithm for IMPNL

In this section we present an algorithm for the satisfiability checking of a formula
of the logic. The original formula is syntactically transformed to another equi-
satisfiable formula (Lemma 1) which is used to derive the tableau. The root node
of the tableau is created based on Definition 10. Then, the expansion strategy
defined in Definition 9 indicates how the tableau rules (Definition 5) should
be used to derive the tableau. If one of the fully expanded branches is open
(Definition 7), the formula is satisfiable. If all branches are closed, the formula is
not satisfiable. We first need to introduce some definitions and functions needed
in the tableau rules.

Transformation of Input Formula. In this section, we annotate ♦d (d ⇒
{r, l}) in (sub) formulas ♦dφ to indicate to what extent the length of the interval
required for the satisfaction of φ is known. To do so, we define below a notion
which is used in defining the transformation.

Definition 1. A free proposition is a proposition which is not bound by any
temporal operators.

Generally, the operator ♦d (d ⇒ {r, l}) can appear in a formula ξ in three
different ways.

I. The length of the interval required for satisfaction is known.
II. The length of the interval required for satisfaction is unknown.
III. The combination of two previous cases which means that the length of the

interval required for satisfaction of part of the formula is known and for the
other part is unknown.

Based on the aforementioned cases, we transform a formula ξ so that if ξ has
a subformula ♦dφ of Form I, it will be changed to ♦∗

dφ; if it has a subformula
♦dφ of Form II, it will be changed to ♦−

d φ, and if it has a subformula ♦dφ of
Form III, it will be changed to ♦+

d φ, using the following rules in the following
order. Let ξ be a formula.

1. If φ is an atomic proposition, change all occurrences of ♦dφ in ξ to ♦∗
dφ.

616 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

2. If φ = φ1∧φ2 and φ has at least one free proposition, change all occurrences
of ♦dφ in ξ to ♦∗

dφ.
3. If φ = φ1 ⇔ φ2 and φ1 (φ2) has at least one free proposition, change all

occurrences of ♦dφ in ξ to ♦∗
dφ.

4. If φ = φ1 ⇔ φ2 and (wlog) φ1 has at least one free proposition and φ2 has
no free proposition, change all occurrences of ♦dφ in ξ to ♦+

d φ.
5. If none of the above rules is applicable to ♦dφ in ξ, change it to ♦−

d φ.

Example 1. Let ξ = ♦r(p3 ∧♦r((♦rq1 ⇔♦rr7)⇔ p4))⇔♦l(♦rp9 ∧♦lq2). We leave
it to the reader to verify that the transformed version of ξ is ♦∗

r(p3∧♦+
r ((♦∗

rq1⇔
♦∗
rr7) ⇔ p4)) ⇔ ♦−

l (♦∗
rp9 ∧ ♦∗

l q2).

Lemma 1. A formula ξ and the transformed version of ξ are equi-satisfiable.

Proof. Since the semantics of ♦∗
dφ, ♦−

d φ and ♦+
d φ (d ⇒ {r, l}) are the same as

the semantics of ♦dφ, if ξ is satisfiable, then the transformed version of ξ is
satisfiable and vice versa. ∃⊆

The length of the interval required for satisfaction of a formula is determined
using a function FF : TIMPNL∧ O(2N), which assigns to every formula a non
descending ordered list of possible interval lengths for the interpretation of a
formula, where O(2N) is the set of all possible non descending ordered lists made
from the subsets of N. The motivation for introducing this function is to find a
suitable interval when we try to satisfy a formula rather than testing all different
intervals, knowing that most of them are not useful for satisfying the formula.

The function to determine the suitable lengths for the required intervals uses
the following rules. We use FF i(ξ) to denote the ith element of FF (ξ). The �
operator creates a non descending ordered list by merging two non descending
ordered list. Furthermore, in the case of the ∧-operator, using the length of both
operands does not change the final result of satisfiability checking; however, using
the length of one operand is enough since the length of the two operands must
be equal; otherwise the formula is unsatisfiable.

1. FF (ξ)=≤k〉 if ξ ⇒ {pk,¬pk,-k,⊥k}
2. FF (ξ)=≤〉 if ξ = ♦λ

dφ and d ⇒ {r, l} and β ⇒ {∗,−,+}
3. FF (ξ)=FF (φ1) � FF (φ2) if ξ = φ1 Θ φ2 where Θ ⇒ {⇔,∧}

Tableau Construction. The tableaux idea and proof of its soundness is in
many ways analogous to [14]. We have adapted some steps and some details of
the proof in [14], and have added metricity related details to the proof.

Definition 2. We recall some basic definitions:

– A finite tree is a finite directed connected graph in which every node (except
the root) has exactly one incoming node.

– A successor of a node n is a node n
′
s.t. there is an edge from n to n

′
.

– A leaf is a node which has no successor.

Analyzing CPGs Using a Decidable MITL 617

– A path is a sequence of nodes n0,...,nk such that, for all i = 0, ..., k−1, ni+1
is a successor of ni.

– A branch is a path from the root to a leaf.
– The height of a node n is the maximum number of edges of a path from n

to a leaf. We remark that we follow [14] in using a nonstandard definition of
height.

A relation, LC is used in the following definition to keep track of the length
of the intervals which are considered in the construction of the tableau. It is not
acceptable to have two different lengths for an interval (see Definition 7).

Definition 3. Let C = ≤C, <,LC〉 be a finite partial order equipped with a re-
lation LC ⊆ C ×C ×N. A labeled formula, with label in C, is a pair (ξ,[ci, cj]),
where ξ ⇒ TIMPNL and [ci, cj] ⇒ I−(C) and ci < cj and (ci, cj, |cj − ci|) ⇒ LC.
The decoration v(n) for a node n in a tree T , is a triple ((ξ, [ci, cj]),C).

Remark 1. The main ontological element in our logic is an interval and we are not
able to recognize a time point in the logic. Therefore the closedness or openness
of intervals in I−(C) is not important and has no effect on the satisfiability of
any formula.

Remark 2. For any branch B in a tree, CB is the (partially) ordered set in the
decoration of the leaf of B. Henceforth, we use a compact representation of C
in the sense that we just mention the last two components of the 3 tuple C. It
is easy for the reader to find the first component, which is a set, based on the
other two components.

Definition 4. A decorated tree is a tree in which every node, n, has a decora-
tion v(n).

For every decorated tree, we define a global flag function u(n,B) acting on
pairs (node, branch through that node); This flag shows whether n is expandable
on branch B or not. u(n,B)=1 indicates that the node n is not expandable on
B while u(n,B)=0 shows that the node is expandable using expansion rules (see
Definition 5). If B is a branch, then B.n denotes the result of the expansion of
B with the node n (i.e., the addition of an edge connecting the leaf of B to n).
Also, B.n1|...| nk denotes the result of the expansion of B with k immediate
successor nodes n1... nk. A tableau for a set of TIMPNL formulas is a special
decorated tree. It is important that C remains finite throughout the construction
of the tableau.

Before we present the tableau rules, we should explain the way in which
we deal with some operators, in particular with {♦−

r ,♦−
l ,♦+

r ,♦+
l }. While it is

straightforward to determine the successors of a node when we expand it by the
operators from {∧,⇔,♦∗

r ,♦∗
l }, there is a subtle point for the expansion of the

node when we use the remaining operators. The point is to have a reasonable
way to specify the length of the interval which we need during the application of
♦+
d φ or ♦−

d φ while we know that the length is unknown. We select a length for
unknown intervals such that no overlap exists between the intervals already used

618 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

in the process of satisfaction and the remaining ones. If two intervals overlap,
the probability of having an inconsistency (clash) increases: intervals may indi-
vidually contain consistent propositions, but when we check their satisfiability
in a common interval, they may be inconsistent. In the case of ♦−

r φ, first we
find the greatest time point (pmax) which we have already used to satisfy a
fragment (e.g., φ0) of the formula; then we provide a gap after that point and
check the satisfiability of φ there. The length of the gap is the summation of
the lengths of atomic propositions (denoted by LN(φ)). Sometimes φ contains
a formula, ♦∗

l φ1 or ♦+
l φ1 as its sub-formula and may need to use an interval

before the pmax + LN(φ) to satisfy φ1, but no problem occurs, since we have
already provided a gap large enough to avoid overlapping intervals. Thus, we are
sure that the intervals used to satisfy the fragment φ do not overlap with the
intervals used to satisfy the fragment φ0 (see Figure 1). Now consider the case
♦−
l φ; this case is analogous situation to ♦−

r φ but in this case we should find an
interval right before the current interval to satisfy φ. To do so, we find the least
time point (pmin), subtract the value returned by LN(φ) from it and try to
satisfy φ there. The last case is ♦+

d φ; we can find the desired interval using the
combination of the cases of ♦∗

dφ and ♦−
d φ.

︸ ︷︷ ︸
ϕ

gap︷ ︸︸ ︷ ϕ0︷ ︸︸ ︷ ︸ ︷︷ ︸
ϕ0

gap︷ ︸︸ ︷ ϕ︷ ︸︸ ︷
�

pmax

�

pmax + LN(ϕ)

�

pmin

�

pmin − LN(ϕ)

Fig. 1. Finding interval for satisfaction ♦−
l ϕ (Left), ♦−

r ϕ (Right)

Definition 5. Given a decorated tree T , a branch B in T , and a node n ⇒ B
such that v(n) =((ξ, [ci, cj]),CB), with u(n,B) = 0, the expansion rule for B
and n is defined as follows.

– If ξ = φ0 ∧ φ1, then expand the branch toB.n0.n1, with v(n0) = ((φ0,[ci, cj]),
CB) and v(n1) = ((φ1,[ci, cj]), CB);

– If ξ = φ0 ⇔ φ1, then expand the branch toB.n0|n1, with v(n0) = ((φ0,[ci, cj]),
CB) and v(n1) = ((φ1,[ci, cj]), CB);

– If ξ = ♦∗
rφ, then expand the branch to B.n1|...|nf , with v(n1) = ((φ,[cj , ck1]),

CB1) and cj < ck1 , and (cj , ck1 , FF 1(φ)) ⇒ LCB1
; ... ; v(nf) = ((φ,[cj , ckf

]),

CBf
) and cj < ckf

, and (cj , ckf
, FF f (φ)) ⇒ LCBf

; here f = |FF (φ)|.
For any m, 1 ∨ m ∨ f , if ckm is already in CBm and LCB = LCBm

then
CBm = CB; otherwise CBm is obtained by inserting ckm in CB and LCBm

by
inserting (cj , ckm , FFm(φ)) in LCB .

– If ξ = ♦−
r φ, then expand the branch to B.n0, with v(n0) = ((φ,[cj , ck0]),

CB0) where cj < ck0 and ck0 = Max(CB) + LN(φ). CB0 is obtained by
inserting ck0 in CB and LCB0

by inserting (cj , ck0 , |ck0 − cj |) in LCB .
– If ξ = ♦+

r φ, then expand the branch to B.n0|(n1|...|nf), with v(n0) =
((φ,[cj , ck0]), CB0) and cj < ck0 and ck0 = Max(CB) + LN(φ) and v(n1) =
((φ,[cj , ck1]), CB1) and cj < ck1 , and (cj , ck1 , FF 1(φ)) ⇒ LCB1

; ... ; v(nf)

Analyzing CPGs Using a Decidable MITL 619

= ((φ,[cj , ckf
]), CBf

) and cj < ckf
, and (cj , ckf

, FF f(φ)) ⇒ LCBf
; here

f = |FF (φ)|. CB0 is obtained by inserting cj, ck0 in CB and LCB0
by insert-

ing (cj , ck0 , |ck0−cj |) in LCB . For any m, 1 ∨ m ∨ f , if ckm is already in CBm

and LCB = LCBm
then CBm = CB; otherwise CBm is obtained by inserting

cj and ckm in CB and LCBm
by inserting (cj , ckm , FFm(φ)) in LCB .

– The cases ♦∗
l φ, ♦+

l φ, ♦
−
l φ are analogous to ♦∗

rφ, ♦+
r φ, ♦−

r φ, respectively.
Let 0 ∨ x ∨ f . Just change [cj , ckx]) to [ckx , ci]), cj < ckx to ckx < ci,
(cj , ckx , FF x(φ)) to (ckx , ci, FF x(φ)), ck0 = Max(CB) + LN(φ) to ck0 =
Min(CB) - LN(φ), (cj , ck0 , |ck0 − cj |) to (ck0 , ci, |ci − ck0 |).

Remark 3. In all the cases considered (n
′
, B

′
) = 0 for all new pairs (n

′
, B

′
) of

nodes and branches and u(n,B)=1 for the node which is expanded.

Definition 6. A node n in a decorated tree T is available on a branch B it
belongs to iff u(n, B)=0.

Definition 7. A branch B is closed if at least one of the following conditions
holds:

1. There are two nodes n,n
′ ⇒ B such that v(n) = ((pl,[ci0 , cj0]),CB) and v(n

′
)

= ((¬pm,[ci1 , cj1]),C
′
B) for some atomic formula p and [ci0 , cj0]∩ [ci1 , cj1] ∀=

∅;
2. There is a node n ⇒ B such that v(n) = ((pk,[ci, cj]),CB) and (ci, cj , k) ⇒

LCB and |cj − ci| ∀= k;
3. There is a node n ⇒ B s.t. v(n) = ((pl,[ci, cj]),CB) while pl is an atomic

formula and ∃k1, k2 ⇒ CB s.t. (ci, cj , k1) ⇒ LCB and (ci, cj , k2) ⇒ LCB and
k1 ∀= k2.

If none of the above conditions hold, the branch is open which means that
there is no inconsistency between the labeled formulas residing on the branch
and we are able to build a class of model based on the labeled formulas.

Definition 8. A tableau for a formula in TIMPNL is closed if and only if every
branch in it is closed, otherwise it is open.

Definition 9. For a branch B in a decorated tree T , the expansion strategy is
defined as follows:

1. Apply the expansion rule to a branch B only if it is open;
2. If B is open, apply the expansion rule to the first available node (say n) (that

one encounters moving from the root to the leaf of B) to which an expansion
rule is applicable (if any) and Φ(n) /⇒ {♦−

d φ,♦
+
d φ} and d ⇒ {r, l}. By Φ(n),

we mean the formula in the decoration of the node n;
3. If B is open and the rule 2 is not applicable on any node, apply an expansion

rule to the first available node (say n) (that one encounters moving from the
root to the leaf of B) to which an expansion rule is applicable (if any) and
Φ(n) /⇒ {♦−

d φ} and d ⇒ {r, l};

620 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

4. If B is open and the rule 3 is not applicable on any node, apply an expansion
rule to the first available node (that one encounters moving from the root to
the leaf of B) to which an expansion rule is applicable (if any).

Definition 10. An initial tableau for a given formula ξ ⇒ TIMNPL is a finite
decorated tree T shown below.

[root] ((ξ,[c0, c1]), {{c0 < c1},{(c0, c1, k)}})
where k ⇒ N is an arbitrary constant.

Lemma 2. If ξ ⇒ IMPNL, ξ and ♦rξ are equi-satisfiable over (Z, <).

Proof. Suppose that ξ is satisfiable on [ci,cj]. Since ci and cj are finite positive
integers, we can find a ck ⇒ Z such that ck < ci. Based on the semantics of the
logic, ♦rξ is satisfiable on [ck,ci]. Now, assume ♦rξ is satisfiable on [cm, cn].
This means there is an interval [cn, ck0] on which ξ is satisfiable. ∃⊆

Definition 11. A tableau for a given formula ξ ⇒ IMPNL is any finite deco-
rated tree isomorphic to a finite decorated tree T obtained by expanding the initial
tableau for the transformed version of ♦rξ (see Section 3.3) through successive
applications of the expansion strategy to the existing branches.

3.4 Soundness and Completeness

Since there is not enough space to exhibit the full proof of soundness, we have
left some parts of proof to the reader.

Definition 12. Given a set S of labeled formulas with labels in C, we say that
S is satisfiable over C if there exists a strict model M = ≤D, I−(D), V 〉 such that
D is an extension of C and M,[ci, cj] |= ξ for all (ξ, [ci, cj]) ⇒ S.

Theorem 1. (Soundness). If ξ ⇒ IMPNL and a tableau T for the transformed
version of ♦rξ is closed, then ξ is not satisfiable.

Proof. Let C be the interval structure in the decoration of n. P (h) is the state-
ment: if n is a node and the height of n = h and every branch through n is
closed, then the set S(n) of all labeled formulas in the decorations of the nodes
between n and the root is not satisfiable over C. We will prove P (h) is true for
all h ∅ 0 using strong induction.

(Base case) If h = 0, then n is a leaf and the unique branch B containing n is
closed. Then, either S(n) contains both the labeled formulas (ps,[ck1 , cl1]) and
(¬pr,[ck2 , cl2]) ([ck1 , cl1] ∩ [ck2 , cl2] ∀= ∅), or S(n) contains the labeled formula
(ps,[ck, ck0]) and (ck0 , ck, s) ⇒ LC and |ck − ck0 | ∀= s. We leave it to the reader to
show that in both cases there is no model to satisfy the formula.

(Induction case) Assume P (h) holds for all 0 ∨ h ∨ t. We want to prove
P (t + 1) is true. Suppose the height of n is t + 1 and C={c0,...,cn}. There are
two cases to consider:

Analyzing CPGs Using a Decidable MITL 621

1. Assume n is the first immediate successor of applying the ∧-expansion rule
on node m with v(m) = (φ0 ∧ φ1,[ci, cj], C). Based on the rule, the sec-

ond operand of the operator, named n
′
, would be the immediate succes-

sor of n. Because the height of n = t + 1, thus the height of n
′
= t.

Since every branch containing n is closed, every branch containing n
′
is

closed. by the induction assumption S(n
′
) is not satisfiable over C. Since

S(n
′
) = {(φ0, [ci, cj]), (φ1, [ci, cj])} ⊥ S(m), three cases should be consid-

ered:

– If (φ1,[ci, cj]) is unsatisfiable then (φ0∧φ1,[ci, cj]) is unsatisfiable too. It
follows that S(m) is not satisfiable over C. Since n is immediate successor
of m, S(m) ⊇ S(n). Hence, S(n) is not satisfiable.

– If (φ0, [ci, cj]) is unsatisfiable, then it immediately follows that S(n) is
not satisfiable over C.

– Clearly, if S(m) is not satisfiable then S(n) is not satisfiable.

2. Assume an expansion rule is applied on n with v(n) = ((ξ,[ci, cj]),C) or
an expansion rule is applied to some labeled formula (ξ,[ci, cj]) ⇒ S(n) −
{Φ(n)} to extend the branch at n. Now, we consider the possible cases for
the expansion rule applied at n:

– Let ξ ⇒ {φ0 ∧ φ1, φ0 ⇔ φ1}. The proof is left to the reader.
– Let ξ = ♦∗

rφ. Assuming that S(n) is satisfiable over C, there is a model
M = ≤D, I−(D), V 〉, where D is an extension of C, such that M,[ci, cj] |= Δ
for all (Δ, [ci, cj]) ⇒ S(n). In particular, M, [ci, cj] |= ♦∗

rφ and hence,
M, [cj , d] |= φ where cj < d; thus (φ,[cj , d]) is satisfiable. Node n has
f = |FF (φ)| immediate successors named n1, ... ,nf . Every branch con-
taining n is closed, so every branch containing n1 (n2, ... ,nf) is closed.
Now, consider the following three cases. Note that 1 ∨ m ∨ f .

• If d ⇒ C and (cj , d, |d− cj |) ⇒ LC, there is an immediate successor of
n, named nm, s.t. v(nm) = ((φ, [cj , cm]), Cm) and cm = d and Cm =
C. Since the height of nm is less than the height of n, by the induction
assumption, S(nm) = S(n) ⊥ {(φ,[cj , cm])} is not satisfiable over
C, which is a contradiction; because by the assumptions, S(n) and
{(φ,[cj , cm])} are satisfiable. Hence S(n) is not satisfiable over C or
{(φ,[cj , cm])} is not satisfiable over C. If S(n) is not satisfiable, we
have proved the claim. If {(φ,[cj , cm])} is not satisfiable, it follows
that {(♦∗

rφ,[ci, cj])} is not satisfiable. Since {(♦∗
rφ,[ci, cj])} ⊇ S(n),

S(n) is not satisfiable over C.
• If d ⇒ C and (cj , d, |d − cj |) /⇒ LC, there is an immediate successor
of n, named nm, s.t. v(nm) = ((φ, [cj , cm]), Cm) and cm = d and
and Cm = C and LCm = LC ⊥ (cj , d, |d − cj |). Since the height
of nm is less than the height of n, by the induction assumption,
S(nm) = S(n) ⊥ {(φ,[cj , cm])} is not satisfiable over Cm, which is
a contradiction; because by the assumptions S(n) and {(φ,[cj , cm])}
are satisfiable. Hence S(n) is not satisfiable over C or {(φ,[cj , cm])}
is not satisfiable over Cm. If S(n) is not satisfiable, we have proved
the claim. If {(φ,[cj , cm])} is not satisfiable over Cm, it follows that

622 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

{(♦∗
rφ,[ci, cj])} is not satisfiable overC. Since {(♦∗

rφ,[ci, cj])} ⊇ S(n),
S(n) is not satisfiable over C.

• If d /⇒ C, there is an immediate successor of n, named nm, s.t.
v(nm) = ((φ, [cj , cm]), Cm) and cm = d and Cm = C ⊥ {d} and
LCm = LC ⊥ (cj , d, |d − cj |). As in the previous case, we can show
that S(n) is not satisfiable.

– Let ξ = ♦−
r φ. Assuming that S(n) is satisfiable over C, there is a model

M = ≤D, I−(D), V 〉, where D is an extension of C, such that M,[ci, cj] |= Δ
for all (Δ, [ci, cj]) ⇒ S(n). In particular, M, [ci, cj] |= ♦−

r φ and hence,
M, [cj , d] |= φ where cj < d. Node n has one immediate successor named
n0. We know v(n0) = ((φ, [cj , d]), C0) and C0 = C ⊥ {cj, d} and LC0 =
LC ⊥ (cj , d, |d − cj |). Since every branch containing n is closed, every
branch containing n0 is closed. Because the height of n0 is less than the
height of n, by the induction assumption, S(n0) = S(n) ⊥ {(φ,[cj , d])}
is not satisfiable over C0. As above, we can show S(n) is not satisfiable
over C.

– Let ξ = ♦+
r φ. The proof is left to the reader.

The cases ♦∗
l φ, ♦+

l φ, ♦
−
l φ are analogous to ♦∗

rφ, ♦+
r φ, ♦−

r φ, respectively.
Just change (cj , d) to (d, ci), (cj , d, |d− cj |) to (d, ci, |ci − d|), (cj , cm) to
(cm, ci) and cj < d to d < ci. ∃⊆

Theorem 2. (Completeness). If ξ ⇒ IMPNL and there is an open branch in
the tableaux of the transformed version of ♦rξ, then ξ is satisfiable.

Proof. This theorem should be proved by construction of a class of models for
the transformed version of ♦rξ; then the satisfiability of ξ is obvious based on
Lemma 1 and Lemma 2. Because of space limitations, we only give the general
sketch of the proof here and leave the details to the reader. The construction
of the class of models proceeds by starting at the leaf node of an open branch,
proceeds upwards to the root along that branch and collects all atomic propo-
sitions and corresponding intervals/lengths used along that branch. This is not
yet enough, as some atomic propositions may not occur along the branch. These
can be given arbitrary assignments. Then, for every atomic proposition, we have
an assignment of truth values which is consistent. Many models may correspond
to this assignment. Since in the decoration of the leaf node of the open branch
there is enough information about the elements in the partially ordered set and
the distance between these elements, it is easy to show that we can specify a
member of this class using the available information. ∃⊆

Theorem 3. The complexity of satisfiability reasoning in IMPNL is PSpace
when the length of an interval is a constant.

Proof. See the proof in [16]. ∃⊆

4 Case Study: Active Tuberculosis (TB) Diagnosis

One of the goals of this paper is to show that IMPNL is powerful enough, under
suitable assumptions, to model some CPGs. In this section, we model a CPG,

Analyzing CPGs Using a Decidable MITL 623

Active Tuberculosis (TB) Diagnosis Algorithm
2011

Patient Symptoms:
Cough > 3 weeks
Fever
Night sweats
Weight loss
Hemoptysis

High Risk Population:
Immigrant
Aboriginal
Inner City
Elderly
Contact

Consider 1, 2 and 3 if Symptom and High Risk Population Suspicion is High

• Apicoposterior consonlidation+/ -
cavitation

• Mediastinal or hilar lymphadenopathy
• Nodular changes, especially those

consistent with endobronchial spread
• Pleural effusion

1. Chest x-ray indicative of TB: 2. Inform Public Health
 Alberta Health Services (AHS)
 TB Services

3. Consider home or
hospital isolation when:

Patient has…
• Significant cough
• Cavitary disease
• High risk profession
• Recent contact

*If index of suspicion is high, proceed to
4 in spite of atypical chest x-ray

• Spontaneous morning sputum or
• Induced sputum or
• Bronchoscopy

4. Sputum X 3 5. Sputum smear or culture positive for TB

6. TB services direction

7. Home or hospital isolation required x (minimum)
2 weeks with treatment

8. Consider discontinuation of home or hospital
isolation when 3 sputa smear or culture negative

The above recommendations are systematically developed statements to assist practitioner and patient decisions about

Fig. 2. Active Tuberculosis Diagnosis Algorithm [15]

based on [15], which describes the algorithm for diagnosing active tuberculosis
(see Figure 2) in a patient. We quote the relevant paragraphs in the context of
the guideline; then, we model them in IMPNL. Note, we have selected meaningful
names for propositions, so the formulas can be easily understood. We have as-
sumed the default granularity of time is an hour . Obviously, 1week = 168hours.

Remark 4. As can be seen in this case study, the names appearing in the guide-
line are possible candidates for being propositions in the formula which models
the guideline. Since, the least recognizable time element in our logic is an hour,
some of TB symptoms are evaluated in an hour, e.g., Fever1h which is true if
the patient has fever.

“The diagnosis is suspected in those who exhibit symptoms such as sub acute
or chronic cough lasting greater than two to three weeks, fever, night sweats,
anorexia, weight loss and hemoptysis” [15]. In the following formula, we have

624 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

assumed that a chronic cough lasts two or three weeks because our logic is not
able to model “At least” conditions. In fact, this is not a serious problem in the
domain of medicine since most of the activities have a maximum length allowing
to model them in the logic.

SuspectedTB := (Subacute1h ⇔ ♦l(ChronicCough2w ⇔ ChronicCough3w)) ∧
Fever1h ∧ NightSweats1h ∧ Anorexia1h ∧ WeightLoss1h ∧ Hemoptysis1h

“In Canada and Alberta, TB is primarily a condition of immigrant popula-
tions and First Nations peoples. However, the diagnosis should be considered
among the immunocompromised, the elderly, inner city populations and anyone
who has had an epidemiologic link to infection” [15].

HighRiskPopulation := Immigrant1h ⇔ Aboriginal1h ⇔ InnerCity1h ⇔ Elderly1h
⇔ HadAContact1h

“When the diagnosis of active TB is suspected, the individual should be iso-
lated from others while awaiting further evaluation” [15]. We assume that the
longest period of the treatment of TB is 9 months.

Fact1 := ♦l♦r(SuspectedTB ∧ ♦r ShouldIsolate9m)

“Patients who have cavitary disease, a significant cough, are in a high risk
profession, have children under the age of five, are exposed to an immunocompro-
mised person or cannot be home isolated for another reason should be promptly
admitted to hospital in a respiratory isolation room with notification to TB Ser-
vices” [15].

ShouldIsolateInHospital := SuspectedTB ∧ ShouldIsolate1h ∧ SignificantCough1h
∧ CavityDisease1h ∧ HighRiskPopulation ∧ (HaveUnderAge5Children1h ⇔
Immunocompromised1h ⇔ CanNotStayHome1h)

“Home isolation may be a consideration for patients who have a stable, single
family residence with no vulnerable household members such as immunocom-
promised persons or children under five” [15].

ShouldIsolateInHome := SuspectedTB ∧ ShouldIsolate1h ∧ StableFamily1h ∧
SingleFamily1h ∧ (¬ HaveUnderAge5Children1h ⇔ ¬Immunocompromised1h)

As can be seen in Figure 2, a physician has two different ways for diagnosing
TB in a patient. The first way consists of steps 1 to 3 and the second way consists
of step 1 and steps 4 to 8.

FirstWay := IndicativeChestXRay1h ∧ ♦r(InformPublicHealthTBServices1h∧
(ShouldIsolateInHome ∧♦rHomeIsolation2w) ⇔ (ShouldIsolateInHospital
∧♦rHospitalIsolation2w))

Analyzing CPGs Using a Decidable MITL 625

SecondWay := IndicativeChestXRay1h ∧ ♦r(SputumX31h ∧ (♦r((-2w ⇔
-3w ⇔ -4w) ∧ ♦r(PosResult1h ∧ ♦r(InformPublicHealthTBServices)1h ∧
♦r((ShouldIsolateInHome ∧♦rHomeIsolation2w) ⇔ (ShouldIsolateInHospital
∧♦rHospitalIsolation2w)
∧♦r(Reconsideration1h))))) ⇔ ♦r(-7w ∧ ♦r(¬ PosResult)1h)))

Tableau Construction. In order to check whether our model of the aforemen-
tioned guideline is consistent, we should build a tableau for ξ = (FirstWay ⇔
SecondWay)∧Fact1 using the tableau-based algorithm presented in this paper.
The tableau for ξ is not closed, so the guideline is satisfiable. In other words,
the tableau has at least one open branch; so based on the completeness of the
logic, we can use the open branch to build a class of models based on the labeled
formulas residing on the open branch. It is not difficult to build a concrete model
(a member of the class), e.g., see [16].

5 Conclusion and Future Work

In this paper, we introduced a decidable metric interval-based temporal logic.
Then, we presented a tableau-based algorithm for checking the satisfiability
of formulas of the logic. Designers can model CPGs with the logic and check
whether the CPGs are consistent. In other words, if there are any inconsistent
conditions in the guideline, the algorithm determines the guideline is not satis-
fiable. In fact, there are some issues which we cannot easily deal with when we
use this logic (e.g., drug contraindications). Currently we are combining IMPNL
with the description logic ALC. The combined logic is powerful enough to model
both the dynamic aspects (e.g., time constraints) and the static aspects (e.g.,
drug contraindications) in the domain of medicine. An important issue is to
check whether a certain patient is coherently treated with a specific CPG. This
problem is the model checking problem in IMPNL which is a potential topic for
future research. Also, if the tableau of a formula failed to find a class of models
for the formula (tableau has no open branch), each closed branch presents an
opportunity to detect some inconsistencies in the model. If there is an error in
the formalization, the fact that there are no open branches signals an ambiguity
or inconsistency in the original guideline which should be addressed. Sometimes,
we should take into the account the complicated parameters (e.g., cultural and
environmental parameters) of guidelines which may effect the process of a treat-
ment. This is another research topic.

Acknowledgment. The authors would like to thank Mr Sajjad Tavassoly (Med-
ical student in McMaster University) for his helpful comments. The second au-
thor was supported by a grant from Science and Engineering Research Canada
(NSERC). The third author was supported by NSERC and by an Ontario Re-
search Fund Award.

626 M. Yousef Sanati, W. MacCaull, and T.S.E. Maibaum

References

1. Sciavicco, G., Juarez, J.M., Campos, M.: Quality checking of medical guidelines
using interval temporal logics: A case-study. In: Mira, J., Ferrández, J.M., Álvarez,
J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602,
pp. 158–167. Springer, Heidelberg (2009)

2. de Clercq, P.A., Blom, J.A., Korsten, J.H.M., Hasman, A.: Approaches for cre-
ating computer-interpretable guidelines that facilitate decision support. Artificial
Intelligence in Medicine 31, 1–27 (2004)

3. Tu, S.W., Musen, M.A.: A flexible approach to guideline modelling. In: Proc. AMIA
Symp., p. 420 (1999)

4. Damas, C., Lambeau, B., van Lamsweerde, A.: Transformation operators for easier
engineering of medical process models. In: 5th International Workshop on Software
Engineering in Health Care (SEHC), pp. 39–45. IEEE Press (2013)

5. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D.,
Cassells, L., Mertens, W.: Formally defining medical processes. Methods of Infor-
mation in Medicine 47(5), 392 (2008)

6. Lucas, P.: Quality checking of medical guidelines through logical abduction. In: Co-
enen, F., Preece, A., Macintosh, A. (eds.) Research and Development in Intelligent
Systems XX, pp. 309–321. Springer, London (2004)

7. Hommersom, A., Lucas, P., Balser, M.: Meta-level verification of the quality of
medical guidelines using interactive theorem proving. In: Alferes, J.J., Leite, J.
(eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 654–666. Springer, Heidelberg
(2004)

8. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighbourhood
temporal logics. J. UCS 9(9), 1137–1167 (2003)

9. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decid-
able and undecidable fragments of halpern and shoham’s interval temporal logic:
Towards a complete classification. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 590–604. Springer, Heidelberg (2008)

10. Temporal logic, http://en.wikipedia.org/wiki/temporal_logic
11. Halpern, J.Y., Shoham, Y.: A Propositional Modal Logic of Time Intervals. J. of

the ACM 38(4), 935–962 (1991)
12. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of

the ACM 26(11), 832–843 (1983)
13. Goranko, V., Montanari, S., Sciavicco, G., Bresolin, D., Della Monica, D.: Met-

ric propositional neighbourhood logics. Technical report, European Conference on
Artificial Intelligence (ECAI) (2010)

14. Goranko, V., Montanari, A., Sala, P., Sciavicco, G.: A general tableau method for
propositional interval temporal logics: Theory and implementation. J. of Applied
Logic 4(3), 305–330 (2006)

15. Toward Optimized Practice - Alberta: Active tuberculosis: Diagnosis and manage-
ment guideline (2011)

16. Yousef Sanati, M., MacCaull, W., Maibaum, T.S.E.: Analyzing Clinical Practice
Guidelines Using a Decidable Metric Interval-based Temporal Logic. Technical re-
port, McMaster Centre for Software Certification, McMaster University (2014)

http://en.wikipedia.org/wiki/temporal_logic

A Modular Theory of Object Orientation

in Higher-Order UTP

Frank Zeyda1, Thiago Santos2, Ana Cavalcanti1, and Augusto Sampaio3

1 University of York, Deramore Lane, York, YO10 5GH, UK
2 Banco Central do Brasil, Rua da Aurora, 1259, Santo Amaro,

Recife, PE, CEP 50040-090, Brazil
3 Universidade Federal de Pernambuco, Centro de Informática, Caixa Postal 7851,

Recife, PE, CEP 50732-970, Brazil
frank.zeyda@york.ac.uk, thiago.lvl.santos@gmail.com

Abstract. Hoare and He’s Unifying Theories of Programming (UTP) is
a framework that facilitates the integration of relational theories. None
of the UTP theories of object orientation, however, supports recursion,
dynamic binding, and compositional method definitions all at the same
time. In addition, most of them are defined for a fixed language and do
not lend themselves easily for integration with other UTP theories. Here,
we present a novel theory of object orientation in the UTP that supports
all of the aforementioned features while permitting its integration with
other UTP theories. Our new theory also provides novel insights into how
higher-order programming can be used to reason about object-oriented
programs in a compositional manner. We exemplify its use by creating an
object-oriented variant of a refinement language for real-time systems.

Keywords: unification, semantics, models, integration, refinement.

1 Introduction

The development of semantic theories is central to the creation of sound meth-
ods for program verification. While ongoing research has produced a mélange
of specialised theories and calculi for a wide array of languages, a challenge one
is currently faced with is unification: identification of commonalities in those
languages and transfer of results between them. The Unifying Theories of Pro-
gramming (UTP) [8] address this issue by providing a meta-theoretical frame-
work that sustains a unified notion of computation as predicates over relevant
observations. The UTP is not a programming language in itself; it rather defines
a mathematical infrastructure in which arbitrary modelling and programming
languages can be uniformly described and combined.

Semantic models for object-oriented languages have been an active area for
research. A seminal work is Abadi and Cardelli’s calculus of objects [1]. More
recently, Hoare and He’s Unifying Theories of Programming (UTP) [8] has been
applied in this domain [7,11,13,16] too. The use of UTP is attractive as it fosters
the integration of object-oriented theories with theories that address complemen-
tary paradigms. We have, for instance, UTP theories of process algebras [8,10],

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 627–642, 2014.
c© Springer International Publishing Switzerland 2014

628 F. Zeyda et al.

hardware description languages [3], and timed calculi [11,15]. The UTP has na-
tive support for refinement and thus by default supports refinement-based veri-
fication techniques based on algebraic laws and refinement strategies.

A primary motivation for the use of UTP is that the existing theories of
object orientation are not adequate to model languages and technologies that
also require models for orthogonal aspects such as reactive behaviours, real-time
execution, or memory utilisation. Java, and UML and its variants, are examples
of such languages; their complex models require unification of various features
related to memory model, communication, synchronisation, time, and so on.

Whereas theory integration is a major concern, we also regard the following
four features as essential: language independence, recursion, dynamic dispatch of
calls, and compositional definitions. Language independence ensures that we can
use arbitrary theories to define the model of method behaviour. Compositionality
is crucial to formalise and reason about concepts in isolation, such as defining
and overriding individual methods. It turns out that none of the existing UTP
works [7,11,13,16] on object orientation can do justice to all four issues at once.

While higher-order programming (HOP) is used in some form in all of the
existing UTP works, designing a fully compositional theory that includes mutual
recursion, based on HOP in UTP, is particularly challenging. Mutually-recursive
methods in this context can only be specified through concurrent assignments of
all procedure variables for methods that take part in the recursion. Redefinition
of individual methods participating in a (mutual) recursion is thus not possible,
and this crucially destroys compositionality which requires, by definition, theory
constructs for (re)defining individual methods. Nevertheless, HOP has proved
itself very useful, even necessary, in theories of object orientation [14].

We note that handling recursion in non-UTP theories such as [2] can be more
straightforward, but simplicity is usually gained by assuming a fixed syntax. Our
agenda is different: we want to retain language independence and thus have to
take an entirely semantic view of programs, as prescribed by the UTP.

The contribution of this paper is a novel UTP theory of object orientation
that solves the four issues pointed out above and, at the same time, lends itself
for integration with other theories of programming. For this, we extend and
combine two existing works: our theory of object orientation in [13] and the
theory of methods in [20]. The result is a comprehensive and modular theory of
the object-oriented paradigm that is fully compositional in terms of declaring
classes, attributes and methods, supports mutual recursion, dynamic binding,
refinement, and makes no assumptions about the syntax and semantics of the
base language in which we write methods. We also illustrate how our theory can
be used to create new object-oriented languages, based on existing theories.

In Section 2, we review preliminary material. Section 3 details the problems
in the existing UTP work(s) on object orientation. In Section 4, we extend the
theory of methods in [20] to support parameters, and Section 5 presents our novel
theory of object orientation. In Section 6, we exemplify its use by creating an
object-oriented variant of a language for reactive real-time systems and, lastly,
in Section 7, we conclude and discuss related and future work.

A Modular Theory of Object Orientation in Higher-Order UTP 629

2 Preliminaries

In this section, we discuss the UTP and its higher-order extension. Programs and
their specifications are characterised in the UTP by relations that determine the
observable behaviours of a computation. Relations are encoded by alphabetised
predicates: that is, predicates equipped with an alphabet of variables, obtained
by the operator σ(), that determines the observable quantities of interest.

As an example, we consider the predicate D =̂ ok ∧ n > 0← ok ′ ∧ n ′ = n−1
with alphabet {n, n ′, ok , ok ′}. Whereas n of type N is a program variable, ok
of type boolean is an auxiliary variable that captures termination. D encodes a
computation that, if started (ok) in a state where n > 0, terminates (ok ′) while
decrementing the value of n. Dashed variables are used to record immediate or
final observations, and undashed variables, initial observations. Predicates that
only refer to initial (undashed) variables are called conditions.

The construction used in the definition of D is called a design, here with
precondition n > 0 and postcondition n ′ = n− 1. The UTP introduces a special
notation P ≥ Q =df ok ∧ P ← ok ′ ∧ Q for designs with P and Q as pre and
postcondition; thus D can be equally written as n > 0 ≥ n ′ = n + 1.

Signature. Standard predicate calculus operators apply to alphabetised pred-
icates too. Disjunction is used to model nondeterminism, and relational compo-
sition to model sequential execution. Further operators for designs are II (skip),
which retains the values of all variables, and assignment (:=). These opera-
tors implicitly define the alphabet of the result. For skip and assignment, it can
also be explicitly given by a subscript, as in IIA and x :=A e.

The UTP conditional D1 ψ b D2, defined by (b ∧ D1) ⇔ (¬ b ∧ D2), is
written in infix form and corresponds to the more familiar if b then D1 else D2

construct. In a recursion µX • F (X), occurrences of X in F are recursive calls.
The semantics of recursion is defined by weakest fixed points in the underlying
refinement lattice. Refinement is universally defined by reverse implication: P
Q =df [P⇐Q], where [] denotes universal closure. The top and bottom of the
refinement lattice of a theory are denoted by - and ⊥.

Local variables are the object of the var x : T and end x constructs. Whereas
var x : T opens the scope of a new local variable x of type T , end x terminates
it. Their definitions are ∃ x : T • IIA and ∃ x ′ : T • IIA for some alphabet A,
where σ(var x) =df A \ {x} and σ(end x) =df A \ {x ′}. Both constructs are not
binders, but sequentially composed with a predicate that may use x .

Healthiness Conditions. Typically, not all predicates over a given alphabet
are considered valid models of computation. To delineate valid predicates, each
UTP theory defines a set of healthiness conditions. These are idempotent and
monotonic functions on predicates whose cumulative fixed points determine the
predicates of the theory. For instance, H1(P) = ok ← P in the theory of designs
rules out predicates that constrain program variables before the program has
started. While monotonicity and continuity of the healthiness conditions ensure
that the predicates of a theory form a complete lattice, monotonicity of the
operators guarantees well-definedness of recursions (weakest fixed points).

630 F. Zeyda et al.

A signature and healthiness conditions together define a UTP theory: that
is a set of predicates together with operators that define the semantics of lan-
guage constructs. Unification and clarity is achieved by engineering the predicate
model in such a way that common operators, such as nondeterminism, sequential
composition, conditional statements, refinement, and so on, have similar defini-
tions across theories. Theories are linked either by aggregating their healthiness
conditions, or relating their predicate models using Galois connections [8].

The difficult task in constructing UTP theories is to elicit the denotational
model and healthiness conditions. Once those are in place, we obtain many laws
for free due to the uniformity of operators. Moreover, proofs that only depend
on healthiness conditions naturally carry over to theory combinations. When
conducting refinements, which encompasses both transforming specifications into
software designs, and software designs further into executable code, all we need
to care for are the algebraic laws. Simplicity is gained by discarding the semantic
baggage at that point, being only a means to an end to prove the laws.

A Theory of Invariants. Invariants are conditions that initially are assumed
to hold, and are preserved by all terminating behaviours. The theory of invari-
ants [4], in essence, ensures that violating an invariant is a situation from which
we cannot recover, similar to nontermination. For this, the theory introduces a
healthiness condition SIH(ξ) =̂ ISH(ξ) ◦OSH(ξ) for each state invariant ξ.
The functions ISH(ξ) and OSH(ξ) are defined as follows.

ISH(ξ)(D) =df D ⇔ (ok ∧ ¬ D [ok \ false] ∧ ξ ← ok ′ ∧ D [ok \ true]) and

OSH(ξ)(D) =df D ∧ (ok ∧ ¬ D [ok \ false] ∧ ξ ← ξ′)

where ξ is a condition. Intuitively, ISH(ξ)(D) strengthens the precondition of
a design D for it to abort if we start in a state where the invariant ξ does
not hold, and OSH(ξ)(D) strengthens its postcondition in order to ensure that
the invariant is preserved. We note that the substitutions ¬ D [ok ′ \ false] and
D [ok ′ \ true] extract the original pre and postcondition of D [8].

It is possible to show that SIH(ξ)-healthy designs can be written in the
form P ∧ ξ ≥ Q ∧ ξ′. In [4], it is also shown that SIH(ξ) is idempotent and
monotonic, and closed with respect to the relevant theory operators.

Higher Order. HO UTP, in addition, includes procedure values and variables.
For instance, p := {|val x , y : N; res z : N • y ∀= 0 ≥ z := x div y|} assigns to p a
procedure that takes two value parameters, x and y, of type N, and one result
parameter, z , also of type N. A procedure p is called via p(a1, a2, . . .) where the
ai are the arguments passed to the call. For instance, a call p(6, 3, a) yields the
design predicate 3 ∀= 0 ≥ a := 6 div 3 (equivalent to a := 2).

In the definition of a procedure value, val is used to introduce a value parame-
ter, res to introduce a result parameter, and valres for a value-result parameter.
HO UTP gives a model to parametrised procedures through functional abstrac-
tion. For instance, p above is encoded by a function that takes two values of type
N and one variable (name) of type N. The alphabet of the predicate resulting
from the call in the above example depends on the argument provided for z . For

A Modular Theory of Object Orientation in Higher-Order UTP 631

instance, σ p(6, 3, a) = {a, a′, ok , ok ′} whereas σ p(6, 3, b) = {b, b′, ok , ok ′}.
In HO UTP, we also have a collection of laws to reason about higher-order

predicates, that is, predicates whose alphabets contain procedure variables. A
general law for a procedure call is the following. It is the manifestation of the
copy-rule, enabling us to replace a procedure variable by its body in a call.

Law 1. p := {|Q |} ; p(a) ≡ p := {|Q |} ; Q(a)

An important restriction of HO UTP is that recursion is prohibited. For instance,
we cannot define p := {| resn : N • (n := n − 1 ; p(n)) ψ n > 0 II|}, with the
intention p(x) ≡ x := 0, since the procedure variable p that is assigned occurs
within the program value. This is to ensure that procedure types have finite
constructions, and in [20] we have presented a formal proof that this is sufficient
to ensure soundness of the HO UTP model in the context of using arbitrary
UTP theories for the bodies of procedure values.

Procedure variables can be used in theories of object orientation to record
methods [13]. This is a common approach that has the advantage of allowing us
to capture declarative concepts at a high level of abstraction. We next illustrate,
however, some essential challenges in adopting this approach.

3 The Problem: Syntax and Compositionality

The challenges we address are presented here in the context of the UTP theory
of object orientation in [13], but they equally arise in any other treatment that
uses higher-order programming to encode method behaviours [7,11,16]. In [13],
we first extend the theory of designs by introducing additional observational
variables to capture class definitions and the subclass relation. The theory sig-
nature provides operations to declare classes, their attributes, and methods. For
instance, methC m =̂ (pds • body) is used to define a new method m with body
body and parameters pds in a class C , provided C has already been declared.

Procedure variables are used to record the behaviours of methods. That is, for
each new method, a procedure variable is introduced to record the program that
corresponds to the body of the method. Crucially, the same variable is also used
to record overridings of that method in subclasses. Multiple overridings result in
a cascade of tests that determines, at call time, which method body has to be
executed, testing against more concrete types first. In a class hierarchy where
C1 ≺ C2 ≺ C3 (≺ means ‘is extended by’), we may have the program

{|valres self ; pds • (b3 ψ self is C3 (b2 ψ self is C2 (b1 ψ self is C1 ⊥)))|}

as part of the definition of a procedure variable that records a method that is
first introduced in C1 and later overridden in C2 and C3. The parameter self
provides a reference to the object on which the method is called, and obj is C is
a test that determines whether an object obj is of a given class type C .

The above solves the problem of dynamic binding in a simple and elegant
manner, but the approach also has apparent ramifications. First, since the cas-
cade of tests has to be syntactically modified with each definition of an overriding

632 F. Zeyda et al.

method, we essentially require the value of m to be encoded as syntax rather
than directly as a predicate. While [13] does not explore this in detail, there is
either way no sound justification that permits us to encode the procedure m as
a predicate; for instance, the seminal account [8] on the UTP requires it to be a
program (syntax) whose meaning is determined by a subtheory of designs.

A second problem is that, due to the restrictions on the types of higher-order
variables, we cannot define recursive methods in this way as this would result
in procedure variables that refer to themselves in their alphabets. Consider, for
instance, the following declaration of mutually-recursive methods m1 and m2.

methC m1 =̂ (res n : N • (n := n − 1 ; m2(n)) ψ n > 1 II) ;
methC m2 =̂ (res n : N • (n := n − 1 ; m1(n)) ψ n > 1 II)

(1)

whose behaviour is to set the value of n to zero by a call to either m1(n) orm2(n).
Such definitions are prohibited by the theory above because m1 includes a vari-
able m2 in its alphabet which, in turn, includes the variable m1. More precisely,
the circular inclusion of variables in the procedure body alphabets creates a circu-
lar dependency in the types of m1 and m2, which is prohibited in HO UTP as we
noted. A possible solution is to use a recursive predicate, but this forces us to de-
fine the methods in a single assignment m1,m2 := µX ,Y • ≤F (X ,Y),G(X ,Y)〉
for some F and G, and thus destroys compositionality of method definitions. For
instance, it is subsequently not possible to redefine or override one of the above
methods individually — any update to m1 or m2 has to be done ‘in bulk’ with
the recursion calculated anew. The loss of compositionality thus prevents us from
modular reasoning at the level of individual method overridings.

Despite the above problems, the use of procedure variables per se is a powerful
tool to pave the way for modular instantiation of one UTP theory with another.
The theory of methods in the next section tackles the identified problems.

4 A Theory of Parametrised Methods

Our first theory is not a comprehensive theory of object orientation, but rather
addresses the particular problem of using higher-order variables to record method
behaviour. First, it establishes, via a constructive proof that a program model
exists, a sound basis for using predicates of arbitrary UTP theories to specify
procedure values. It is therefore possible to identify procedure values directly
with the predicates of any designated UTP theory for the method bodies. We
thereby eradicate any dependency on a fixed syntax and remain in the realm of
semantic models, adhering to the philosophy and approach of the UTP.

To address the problem of compositionality, the theory of methods uses the
notion of ranks. Intuitively, the rank determines the maximal nesting level of
program abstractions in a predicate. For instance, the predicates of rank 0 are
just the standard predicates; predicates of rank 1 include procedure variables
whose values are standard predicates; predicates of rank 2 moreover admit values
being rank 1 predicates, and so on. Thus, x := 1 is a rank 0 predicate, m1 :=
{|x := 1|} is a rank 1 predicate, andm2 := {|x := 1; callm1|} is a rank 2 predicate.

A Modular Theory of Object Orientation in Higher-Order UTP 633

Formally, the rank of a variable depends on its type: basic types like N, B, P(N),
and so on, have a rank 0, and for procedure types the rank is one more than the
maximum rank of the variables in the procedure’s alphabet. Predicate ranks are
determined by the maximum rank of its alphabet variables.

For theories of object-oriented programming, as we explain next, we only
need and admit rank 1 and rank 2 procedure variables. To emphasise the ranks
of variables, we use a single overbar for rank 1 variables and a double overbar for
rank 2 variables. Each method of an object-oriented program is now encoded by
two variables rather than one, with the same name but at different ranks. Where
methods are defined, we use rank 2 variables; where methods are called, we use
rank 1 variables, regardless of using recursion. The use of different variables for
defining and calling methods implies that call dependencies do not implicitly
constrain the ranks of method variables anymore. Furthermore, it paves the way
for a compositional treatment of recursive methods. Below, we recapture the
example (1) at the end of Section 3 in the context of the theory of methods.

m1 := (res n : N • (n := n − 1 ; m2(n)) ψ n > 1 II) ;
m2 := (res n : N • (n := n − 1 ; m1(n)) ψ n > 1 II)

(2)

Unlike (1), the above is a valid higher-order predicate since there are no recur-
sions in the types of m1 and m2 due to the procedure variables being at different
ranks in the recursive calls (they are indeed different variables).

A single healthiness condition in the theory of methods establishes a connec-
tion between rank 1 and rank 2 procedure variables. As they are different vari-
ables, there exists a priori no formal relationship between them. The healthiness
condition MH of the theory enforces a formal link: they have to be equivalent
if we quantify over standard (non-procedure) variables.

MH(P) = P ∧ (∪m m | {m,m} ⊆ σP • [callm ⇔ callm]0)

The []0 is a restricted universal closure that only quantifies over standard (non
higher-order) variables. The call construct abbreviates a method call without
parameters: that is, callm is just the same as m(). We next generalise the theory
of methods to cater for the use of parameters as employed in the example above.

Parametrised Procedure Types. The type of a parameterless procedure in
higher-order UTP is, in essence, equated with the alphabet of the body predicate.
For parametrised procedures, this is insufficient because we also need to consider
the number and types of parameters in order to distinguish procedures with
different parametrisations by their types. A complication arises due to result
parameters: here, the alphabet of the predicate obtained via a procedure call
moreover depends on the variable(s) being passed as arguments to the call;
hence, we cannot assume a fixed predetermined alphabet in that case.

To overcome these issues, we recast the notion of procedure type in [8] as
specified in Fig. 1. We use two type constructors there: BaseType to construct
the type of a standard value, and ProcType to construct a procedure type.

Procedure types are encoded by a pair consisting of a sequence of parameter
types and an alphabet. Here, however, the alphabet only includes global variables

634 F. Zeyda et al.

<type> ::= <base type> | <procedure type>

<procedure type> ::= ProcType(seq (<parameter type>), <alphabet>)

<parameter type> ::= ValArg(<type>) | ResArg(<type>)

<alphabet> ::= F (<variable> : <type>)

<base type> ::= BaseType(int) | BaseType(bool) | . . .

Fig. 1. Recast notion of procedure types that supports parameters

of the procedure predicate. Alphabets are encoded by finite sets (F) of pairs
v : T that define a name v and a type T . Parameters can be either value
parameters (ValArg) or result parameters (ResArg). Both constructors take the
type of the parameter. By way of an example, {|val x : N; res y : N • y := x+z |}
is of type ProcType(≤ValArg(NatType),ResArg(NatType)〉, {z : NatType}) where
NatType abbreviates BaseType(nat).

Procedure Ranks Revisited. To justify the sound use of parametrised proce-
dures, we require a notion of rank for the new model of procedure types outlined
above. Following the same approach as in [20], we can then perform an inductive
construction of a program model, which is sufficient to establish the consistency
of the morphisms {| . . . |} and p(args) for the construction and destruction of
parametrised procedure values. The rank is defined inductively as follows.

rank(BaseType(t)) = 0 and

rank(ProcType(≤v1 : t1, v2 : t2, . . . 〉, {w1 : t̃1,w2 : t̃2, . . . })) =
max {rank(t1), rank(t2), . . . , rank(t̃1), rank(t̃2), . . . }+ 1

As before, the rank of basic types is zero. For procedure types, it is one more
than the maximum of the ranks of the types of global variables used in the
procedure predicate and the types of parameters. We note that our notion of
type and rank entail procedures being passed as arguments, although the theory
of methods does not require this. The soundness of permitting it is an added
contribution of our work; it may be useful in other uses of higher-order UTP.

To establish consistency of the procedure model, we inductively construct a
program model for predicates up to a given rank n, denoted by Pred(n). Pred(0)
yields the standard predicates, which trivially have a model. Rank 1 predicates
are obtained by extending rank 0 predicates with additional predicates whose
alphabets include procedure variables whose bodies and arguments can range
over rank 0 predicates and values. In each step, the set of constructible predicates
monotonically increases, that is Pred(0) ⊇ Pred(1) ⊇

A complete model Pred of procedure values of any rank is obtained by taking
the limit of this chain: Pred =df

⋃
{n : N • Pred(n)}. Parametrised procedures

are then introduced as a new type that is isomorphic to Pred . A mechanisation
in Isabelle/HOL is available [19] that soundly introduces (parameterless) proce-
dures up to rank 2. We recall that, for the theory of methods, rank 2 predicates
are sufficient. The generality of the result may be useful elsewhere, though.

A Modular Theory of Object Orientation in Higher-Order UTP 635

The soundness of the higher-order program model is indeed the primary con-
cern in generalising the theory of methods. Procedure values and calls are, as
in [8], modelled by functions and their application. Finally, we need to recast
the healthiness condition MH to cater for parametrised method variables.

MH(P) = P ∧ (∪m m | {m,m} ⊆ σP • [∪ args • m(args)⇔ m(args)]0)

The quantification ∪ args • . . . ranges over well-formed argument lists only,
namely those whose arguments are of the correct length and type.

Having generalised the theory of methods to deal with parameters, we next
combine it with the theory of object orientation in [13] to overcome the issue in
the latter (Section 3) with dependency on syntax and compositionality.

5 A Modular Theory of Object Orientation

Our integrated theory is an extension of the theory of designs, and, therefore,
includes the auxiliary boolean variables ok and ok ′ to record termination. Be-
sides, it also includes additional auxiliary variables to capture specific aspects of
object-oriented programs. These are listed below.

– cls of type P(CName) to record the names of classes used in the program;
– atts of type CName →∧ (AName →∧ Type) to record the class attributes;
– sc of type CName →∧ CName to record the subclass hierarchy;
– an open set {m1,m2, . . . } of procedure variables for method definitions; and
– an open set {m1,m2, . . . } of procedure variables for method calls.

Above, CName is the set of all class names, AName the set of all attribute
names, and Type is defined as CName ⊥ prim where the elements in prim
represent primitive types, like integers or booleans. The functions atts and sc
are partial (→∧) since they only consider classes that are currently declared,
namely those in cls . The function sc maps each class to its immediate su-
perclass; the subclass relation is obtained via its reflexive and transitive clo-
sure: Csub ≺ Csuper =df (Csub ,Csuper) ⇒ sc∗. There also exists a special class
Object ⇒ CName that does not have a superclass.

Healthiness Conditions. The theory has seven healthiness conditions. They
are characterised by invariants that constrain the permissible values of cls , atts
and sc, as well as the procedure variables for methods. Table 1 summarises the
first six constraints, which are related to cls , atts and sc. Whereas the table
specifies the invariants themselves, the corresponding healthiness conditions are
obtained by application of SIH(. . .), as explained in Section 2.

The invariantOO1 requiresObject always to be a valid class of the program.
OO2 and OO3 determine the shape of the subclass relation: it has to be a tree
with Object at its root. Attributes have to de defined for all classes (OO4),
they have to be unique (OO5), and their types, if they are not primitive, must
refer to classes that have already been declared (OO6).

636 F. Zeyda et al.

Table 1. Healthiness conditions for the theory of object orientation

Invariant ψ for SIH(ψ) Description

OO1 Object ∈ cls Object is always a class of the program.

OO2 dom sc = cls \Object Every class except Object has a superclass.

OO3 ∀C : dom sc • (C ,Object) ∈ sc+ Object is at the top of the class hierarchy.

OO4 dom atts = cls Attributes are defined for all classes.

OO5 ∀C1,C2 : dom atts | C1 �= C2 • Attribute names are unique across classes.
dom(atts(C1)) ∩ dom(atts(C2)) = ∅

OO6 ran(
⋃

ran atts) ⊆ prim ∪ cls Attributes have primitive or class types.

A further healthiness condition (OO7) not in Table 1 corresponds to MH in
the theory of parametrised methods. We recast it in terms of an invariant too.

OO7(P) = SIH(∪m m | {m,m} ⊆ σP • [∪ args • m(args)⇔ m(args)]0)(P)

Theory predicates hence have to maintain the fundamental correspondence be-
tween rank 1 and rank 2 method variables. Finally, we let OO denote the com-
position of all healthiness conditions: OO =df OO1 ◦OO2 ◦ . . . ◦OO7.

Operations. We provide operations to declare classes, attributes and methods
in a compositional manner. We use classC extends B to declare a new class
C that extends a class B , attC x : T to declare a new attribute x of type T
in a class C , and methC m =̂ (pds • body) to define or override a method m
in a class C . To declare more than one class, attribute or method, we sequence
multiple applications of the aforementioned constructs. We focus here on the
definition of methods and refer to [12] for a complete account of our theory.

To define and override methods, we recast the respective constructs in [13]
in the context of the theory of methods. Below, pds are the arguments of the
method and body is the program for the method body.

methC m =̂ (pds • body) =df

letmp =̂ {|valres self ; pds • (body ψ self is C ⊥oo) |} •

OO

⎛⎝varm ;(
C ⇒ cls ∧
∪ t ⇒ types(pds) • t ⇒ prim ⊥ cls

)
≥
(
mp m

′ ∧ w = w ′
)⎞⎠

where w = in σ(methC m = (pds • body))
provided {m,m ′,m} ∩ σ(methC m = (pds • body)) = {m,m ′}

A new procedure variable m is introduced to record the method. That variable
must not already be in the input alphabet of the predicate, although we assume
that the corresponding rank 1 variablem is included in it. The operation changes
the value of the rank 2 variable only, which holds the method definition. The
link to the respective rank 1 variable is established via application of OO().

A Modular Theory of Object Orientation in Higher-Order UTP 637

The operation is specified by a design whose precondition requires that the
class C in which the method is defined has been declared, and that the types
of method parameters are either primitive or declared classes. The postcondi-
tion states that the new value of m refines1 mp while leaving other variables
unchanged. The procedure mp first includes an additional implicit parameter
self for self reference. It then wraps the method body into a conditional that
tests if the target object (self) is of the correct type. If so, the body program is
executed. Otherwise, we execute ⊥oo , which corresponds to program failure in
the theory of object orientation and arises if an undefined method is called.

We observe that, above, body can in fact be any predicate. Our earlier discus-
sion of soundness of the theory of methods in Section 4 relaxes the caveat in the
earlier work that it has to be syntax. Secondly, this definition is compositional
since the higher-order type of m can be a priori determined: while it needs to in-
clude all rank 1 variables for methods, the types of those variables are fixed and
not affected by the definition of further methods. Finally, recursion at the level
of method definitions is possible since m may itself be included in the alphabet
of m without giving rise to issues related to recursions in procedure types — we
recall that m and m are different variables.

For overriding a method in a subclass, methC m =̂ (pds • body) has a differ-
ent definition. As hinted in Section 3, we do not introduce a new variable in that
case, but instead alter the procedure that m records. That is, for every overriding
of m in a subclass D , we inject an additional test body ψ self is D . . . at a suit-
able position into the conditional in mp. This is a syntactic transformation that
requires part of the procedure value to be encoded in syntax. The mix of syntax
and semantics turns out not to be an issue though, and neither does it compro-
mise soundness and language independence. To formalise the combination of the
two, we adopt the approach in [20] by first defining a generic datatypeMETHOD
for the syntactic fragment into which the method bodies are embedded.

METHOD [PRED] ::=

CondSytx ≤≤METHOD × CVAL×METHOD〉〉 | BotSytx | Body ≤≤PRED〉〉

The type parameter PRED is instantiated with the predicate model of the em-
bedded theory for method behaviour; in this way, we retain language indepen-
dence. To give a semantics to the syntactic fragment, we inductively define a
denotational function � � that maps elements of METHOD [PRED] (syntax) to
predicates in PRED . For instance, CondSytx (M1, c,M2) elements are translated
into conditionals �M1� ψ c is self �M2�, and BotSytx into ⊥oo . For Body P , we
just have P . We hence require the operators P ψ b Q and ⊥oo to be defined in
the respective theory for method behaviour. Thanks to their uniform character-
isations in UTP, we can always introduce them if they are not already available.
The inductive definition of � � can easily be shown to terminate. Soundness of
the altered procedure model is established using a similar proof as in [20].

1 Using refinement here instead of equality ensures monotonicity of the construct.

638 F. Zeyda et al.

We omit further aspects of our integrated theory for reasons of space. The
report [12] provides a comprehensive account and, in particular, additionally
addresses issues of definedness, the encoding and creation of objects, and sup-
port for references in our theory. We conclude by observing that we now can
encode (2), as it was our initial motivation and goal.

methC m1 =̂ ((res n : N • n := n − 1 ; m2(n)) ψ n > 1 II) ;
methC m2 =̂ ((res n : N • n := n − 1 ; m1(n)) ψ n > 1 II)

where σ(methC m1 =̂ . . .) =df {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2} and

σ(methC m2 =̂ . . .) =df {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2}

Whereas the first method declaration constrains m1, the second one constrains
m2. The procedures refer to each other via m1 and m2, and at the point where
m2 is first called, m2 does not have to be declared yet. Whereas above, the
methods were simple imperative programs, in the next section we investigate
the case where methods have more elaborate semantic models.

6 Example: An Object-Oriented Real-Time Language

The ability to instantiate the method model is a feature of our theories that
segregates it from other theories of object orientation. This requires the inclusion
of additional healthiness conditions that constrain procedure variables to record
predicates of particular theories, rather than admit any kind of predicate. If
the theory to be used to describe method behaviour has a set H of healthiness
conditions, we proceed as follows. For each function H ⇒ H, we define a pair Ĥ1

and Ĥ2 that embed H into the theory of object orientation.

Ĥ1(P) =df SIH
(
∪m ⇒ σP • ξH(m)

)
(P)

Ĥ2(P) =df SIH
(
(∪m ⇒ σP • ξH(m))← (∪m ⇒ σP • ξH(m))

)
(P)

where ξH(m) =̂ (∪ args • H(m(args)) = m(args))

The embedded healthiness conditions are again invariants, here constraining
procedure variables. In particular, Ĥ1 forces all programs recorded by procedure
variables at rank 1 in the alphabet of P to be fixed points ofH. Ĥ2 does the same
for procedure variables at rank 2, albeit assuming that the property already holds
for rank 1 variables, since the procedures recorded in rank 2 predicates typically
use rank 1 variables, namely when they call other methods.

The function ξH(m) abbreviates the property that a method m, if called on
a valid argument list args , yields a predicate that is a fixed point of H. By
introducing Ĥ1 and Ĥ2 for all healthiness conditions H of H, we obtain that
the programs recorded by procedure variables are fixed points of all healthiness
conditions in H and so valid predicates of the embedded theory.

To illustrate an embedding of a theory, we consider Circus Time [18], a theory
of reactive processes that supports communication events, state operations, and
real-time. The auxiliary variables of the theory include tr and tr ′ to record time
traces of interactions. They are of type seq

+
(seqEvent × PEvent) so that each

trace element consists of a pair whose first component is a sequence of events in

A Modular Theory of Object Orientation in Higher-Order UTP 639

Table 2. Healthiness conditions of Circus Time

Healthiness condition

R1(A) =df A ∧ tr ≤ tr ′

R2(A) =df A[〈(〈〉, last(tr).2)〉, tr ′ − tr) / tr , tr ′] where tr ≤ tr ′

R3(A) =df II � wait �A where II =df (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ II{wait,tr,state})

a time slot, and whose second component is the set of events refused at the end
of the slot. The variables ok and ok ′ of boolean type record the observation that
the predecessor or current process has not diverged. Termination is captured
here by the boolean variables wait and wait ′. Specifically, wait records that the
predecessor has terminated, and wait ′ records termination of the current process.

Healthiness conditions are listed in Table 2. The first healthiness condition
R1(A) establishes that a process action A cannot alter the previous history of
interactions. The second one R2(A) enforces insensitivity of A to interactions
that took place before it started. And the third one R3(A) masks out any
behaviours of A until its predecessor action has terminated (wait is true). The
operators ‘∨’ and ‘−’ are special prefix and sequence subtraction operators on
timed traces, whose definition can be found in [18].

The three healthiness conditions in Table 2 give rise to six healthiness condi-
tions in the integrated theory. Hence, in addition to OO1 to OO7, we have, for
instance, the following pair of healthiness conditions for R1:

R̂11(A) =df SIH
(
∪m ⇒ σP • ξR1(m)

)
(A)

R̂12(A) =df SIH
(
(∪m ⇒ σP • ξR1(m))← (∪m ⇒ σP • ξR1(m))

)
(A)

The lifted version of the remaining healthiness conditions are analogous.
Inside our new theory, we can encode, for instance, actions such as

var o : C ; r : T • c := newC () ;
(in ? x −∧ o.calc(x , r)) � 5 ; wait 0 . . 10 ; out ! r −∧ Skip

Above, in and out are communication channels, and o is a local object, initialised
with a new instance of a class type C . We first wait for a communication on a
channel in that inputs a value x . The synchronisation deadline (. . . � 5) specifies
that a communication on in with the environment must take place within 5 time
units. Subsequently, the method calc(. . .) is called on o, and a nondeterministic
wait models a time budget of 10 time units for the call.

While x is a value parameter of calc, we assume the result of the call is de-
posited in a result parameter r ; we, lastly, output r through a communication on
the channel out . Whereas the interaction and time operators above are provided
by the embedded theory (Circus Time), the method call o.m(x , r) is translated
into a procedure call m(o, x , r) in the host theory, so that the target object
becomes an additional argument of the procedure call.

The above mix of reactive, timed and object-oriented operators is to a cer-
tain extent already possible in TCOZ [11], however, our combined theory here

640 F. Zeyda et al.

inherits the generality in supporting calc to be defined recursively, redefined and
overridden. To reason about programs such as the above, we use the laws of
the embedded theory (Circus Time), alongside new special laws in the theory of
methods, for instance, to reason about recursive methods.

The example shows that it is in essence very easy to integrate an existing UTP
theory with our theory of object orientation. Certain operators, however, might
have to be defined in the embedded theory, namely to construct the cascades of
tests to resolve dynamic binding in method definitions and overloading.

The language we defined in this section is interesting in its own right, as it
is a step towards resolving the dichotomy between active process behaviour and
passive class objects which is present in many of the current works that combine
object orientation with reactive theories. While those works typically provide
good coverage of object-oriented concepts for class objects, they have little to
no support to deal with the same features in terms of processes. The theory we
have defined promises to enable progress in this area.

7 Conclusion

We have presented a novel theory of object orientation that segregates itself from
other works by facilitating the integration with theories that address comple-
mentary aspects. In particular, we are free to define and instantiate the semantic
model for method behaviour. This was achieved by extending and combining two
existing unifying theories: one that addresses object orientation and another one
that uses a novel approach to encode methods as higher-order programs.

Our theory is compositional in the presence of recursive method definitions,
and enables us to reason about declarative concepts at a fine level of granularity.
For instance, we can formulate a law that sequenced definitions of mutually-
recursive methods commute, or that individual recursive methods can be over-
ridden by a refinement of the method in a subclass.

We note that our theory here has also been integrated with the UTP theory
of pointers in [6] to support object references and data sharing. A detailed dis-
cussion of this integration can be found in [12]; here, we decided to omit those
details as it is not a central part of the particular problem we solve. It appears,
moreover, that we can perform this integration by instantiating our theory of ob-
ject orientation, namely with a theory of method behaviour that already includes
a treatment of pointers; this makes pointers an orthogonal aspect.

The practical relevance of our theory is illustrated by two notable application
examples. Firstly, Safety-Critical Java (SCJ) [17] is a recent technology that
has been proposed to enable the verification and certification of Java programs;
it requires a highly-integrated theory that includes object orientation, a spe-
cialised execution and memory model [4], and time. Secondly, SysML [5] is an
extension of UML 2.0 that adds support for system-level specification; its se-
mantics likewise involves the combination of a theory of object orientation with
other theories [9], here VDM and CSP. We are currently looking at both these
languages in order to define semantic models.

A Modular Theory of Object Orientation in Higher-Order UTP 641

An open problem is refinement strategies that take advantage of the com-
binations of laws that arise from integrating our theory with others. While the
UTP model we present can already be used to prove general properties of object-
oriented designs such as the soundness of refactorings, a repository of novel laws
for the verification of concrete applications is expected to emerge, too.

Related Work. Most of the existing UTP-related works on object orientation
give a semantics for a fixed language. Smith’s work [16] defines a semantics for
Abadi and Cardelli’s theory of objects [1]; He et al. [7] a model for rCOS, a
language for refinement of object systems; and Qin et al. [11] a semantics for
TCOZ, an integration of Object Z and Timed CSP. Our earlier work in [13]
does not introduce a fixed language, but, as explained in Section 3, it lacks a
justification that its combination with arbitrary theories for method models does
not raise unsoundness issues in its use of higher-order UTP.

We next examine in more detail to what extent the existing UTP works ad-
dress the issue of dynamic dispatch, recursion and compositionality.

Dynamic Dispatch. In Smith’s work [16], dynamic dispatch emerges naturally
as it is a theory of an object-based language (that is, [1]), rather than a theory of
object orientation. Whereas rCOS [11] gives a comprehensive semantic account
of the issue, TCOZ [7] leaves an explanatory gap here by only defining the
denotation of fresh and overridden methods, but not, in detail, how method
calls are resolved based on dynamic type information.

Recursion Only Smith’s work [16] and our earlier theory [13] fully support
recursion. In rCOS [7], recursion fails due to the denotational function that maps
rCOS programs to their UTP models not terminating for recursive methods, and
TCOZ [11] excludes recursive methods altogether from its class operations, since
recursion is not part of the language of Object Z on which TCOZ is based.

Compositionality. In [20], we first pointed out fundamental issues that prevent
any theory that uses higher-order UTP to encode methods in a näıve way from
being fully compositional. These issues indeed apply to [7,11,16]; they are not
elicited in those works though as HOP is only used in an informal manner. As
explained in Section 3, our earlier work [13] suffers from these problems too.

Future Work. Future work consists of two strands: first we require a compre-
hensive set of laws to reason about object-oriented constructs in our theory and
the paradigm in general. Some laws have already been defined and proved in [12],
but, in particular, we require additional laws to reason about method definition
and overriding in the presence of recursion, exploiting OO7 in Section 5.

Secondly, the integration of languages has to be examined in more detail,
especially in terms of proof strategies. Finally, we have also started to mechanise
our theory in a theorem prover: Isabelle/HOL. So far, our mechanisation provides
a provably sound model for higher-order predicates up to rank 2, and a generic
encoding of parametrised procedures. We are currently completing this work.

Acknowledgements. We would like to thank the anonymous reviewers for their
useful suggestions. This work was funded by the EPSRC grant EP/H017461/1.

642 F. Zeyda et al.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.
Springer, Heidelberg (1996)

2. Abadi, M., Leino, R.: A Logic of Object-Oriented Programs. In: Bidoit, M.,
Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214,
pp. 682–696. Springer, Heidelberg (1997)

3. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-Circus. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)

4. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java memory model
formalised. Formal Aspects of Computing 25(1), 37–57 (2013)

5. Object Management Group. OMG Systems Modeling Language (OMG SysMLTM).
Technical Report Version 1.3, OMG (June 2012)

6. Harwood, W., Cavalcanti, A., Woodcock, J.: A Theory of Pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

7. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus for object systems. Theoretical
Computer Science 365(1-2), 109–142 (2006)

8. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Series
in Computer Science. Prentice Hall, Upper Saddle River (1998)

9. Miyazawa, A., Lima, L., Cavalcanti, A.: SysML Blocks in CML. Technical Report
COMPASS White Paper WP02, Seventh Framework Programme: Comprehensive
Modelling for Advanced Systems of Systems (Grant 287829) (April 2013)

10. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21(1-2), 3–32 (2009)

11. Qin, S., Dong, J.S., Wei-Ngan, C.: A Semantic Foundation for TCOZ in Unifying
Theories of Programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 321–340. Springer, Heidelberg (2003)

12. Santos, T.: A Unifying Theory of Object-Orientation. Technical Report (Qualify-
ing Dissertation), Federal University of Pernambuco, Centre of Informatics, Brazil
(2007), http://www.cin.ufpe.br/~acas/pub/TheoryObjectOrientation.pdf

13. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: Dunne,
S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer, Heidelberg
(2006)

14. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular Verification of Higher-
Order Methods with Mandatory Calls Specified by Model Programs. ACM SIG-
PLAN Notices 42(10), 351–368 (2007)

15. Sherif, A., Cavalcanti, A., Jifeng, H., Sampaio, A.: A process algebraic framework
for specification and validation of real-time systems. FAC-J 22, 153–191 (2009)

16. Smith, M.A., Gibbons, J.: Unifying Theories of Objects. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 599–618. Springer, Heidelberg (2007)

17. The Open Group. Safety Critical Java Technology Specification. Technical Report
JSR-302, Java Community Process (January 2011)

18. Woodcock, J.: CML definition 4. Technical Report COMPASS Deliverable 23.5,
FP7 Grant 287829 (2013), http://www.compass-research.eu

19. Zeyda, F.: Mechanising Higher-Order UTP in Isabelle/HOL. Technical report, Uni-
versity of York, York, YO10 4DL, UK (November 2013),
http://www.cs.york.ac.uk/circus/publications/techreports/index.html

20. Zeyda, F., Cavalcanti, A.: Higher-Order UTP for a Theory of Methods. In: Wolff,
B., Gaudel, M.-C., Feliachi, A. (eds.) UTP 2012. LNCS, vol. 7681, pp. 204–223.
Springer, Heidelberg (2013)

http://www.cin.ufpe.br/~acas/pub/TheoryObjectOrientation.pdf
http://www.compass-research.eu
http://www.cs.york.ac.uk/circus/publications/techreports/index.html

Formalizing and Verifying a Modern Build Language

Maria Christakis1, �, K. Rustan M. Leino2 , and Wolfram Schulte3

1 Department of Computer Science, ETH Zurich, Switzerland
maria.christakis@inf.ethz.ch

2 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

3 Microsoft, Redmond, WA, USA
schulte@microsoft.com

Abstract. CLOUDMAKE is a software utility that automatically builds executable
programs and libraries from source code—a modern MAKE utility. Its design gives
rise to a number of possible optimizations, like cached builds, and the executables
to be built are described using a functional programming language. This paper
formally and mechanically verifies the correctness of central CLOUDMAKE algo-
rithms.

The paper defines the CLOUDMAKE language using an operational semantics,
but with a twist: the central operation exec is defined axiomatically, making it
pluggable so that it can be replaced by calls to compilers, linkers, and other tools.
The formalization and proofs of the central CLOUDMAKE algorithms are done
entirely in DAFNY, the proof engine of which is an SMT-based program verifier.

1 Introduction

Building binary versions of software from source code is a central part of software engi-
neering. For larger projects, this is much more involved than just invoking a compiler on
a set of source files. One cares about making the process repeatable and efficient (e.g.,
by rebuilding only those artifacts whose sources have changed since the last build). To
facilitate a good build process, it is essential to keep track of which artifacts depend
on which other artifacts. A well-known utility for building software is MAKE, where
the dependencies are given by users [3]. Realizing that the desired output artifact is
a function of the source artifacts, the VESTA-2 system provides a functional program-
ming language with which to describe the build recipe [4]. The correctness of the build
system and any optimizations it performs is vital to the whole software development
organization, so it makes sense to spend the effort required to ensure the correctness of
the system.

CLOUDMAKE is a MAKE-like utility for building target artifacts from source artifacts.
In this paper, we describe and formally verify the basic algorithm used by CLOUDMAKE

and a key optimization it employs. Build recipes in CLOUDMAKE are, like in VESTA-2,
captured by programs written in an eponymous functional programming language. The
extensible nature of CLOUDMAKE owes to a primitive operation called exec, which,
given a set of dependencies, invokes an external build tool to derive a set of artifacts.

� The work of this author was mostly done while visiting Microsoft Research.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 643–657, 2014.
c© Springer International Publishing Switzerland 2014

644 M. Christakis, K.R.M. Leino, and W. Schulte

Because this operation is monitored by CLOUDMAKE, the range of available optimiza-
tions is greater than for MAKE. CLOUDMAKE is currently deployed at Microsoft, but it
is not our intent in this paper to report on that experience. We are instead highlight-
ing that the formalization and verification of the CLOUDMAKE algorithms is done in an
industrial context since CLOUDMAKE affects a crucial part of software development at
Microsoft and has a large number of users.

On the way to formally verifying the algorithms of CLOUDMAKE, our work con-
tributes in two additional ways. First, we define CLOUDMAKE by an operational se-
mantics, but with a twist: the extensible operation exec is described axiomatically, thus
allowing a confined range of external tools to be invoked by exec. We believe that other
pluggable systems can be defined in a similar way. Second, the kind of tool we use
for the formalization and proof is to this day still to be considered novel in light of how
other semantics and optimizations have been proved (famously, cf. COMPCERT [10]): we
use an SMT-based program verifier, namely DAFNY [5]. We use the functional subset of
the DAFNY language to describe CLOUDMAKE’s algorithms, and we state and prove the-
orems using methods (otherwise known as procedures or subroutines) with code (see,
e.g., [6,7]). In effect, this means the human verifier may provide various hints to make
the proofs go through, but the human verifier never invokes any prover commands ex-
plicitly as would have been the case in an interactive proof assistant like COQ [1] or
ISABELLE [13]. As a result, we perceive our tool chain as leading to a net reduction in
human effort for the proof.

We proceed as follows. Sec. 2 shows the use and operation of CLOUDMAKE through
a simple example. We define the formal semantics of the CLOUDMAKE language in
Sec. 3, which also gives the basic algorithm and proves that it correctly allows parallel
builds. We develop an optimized version of the algorithm in Sec. 4, highlighting the
proof structure and typical or interesting parts of the proof. To give a sense of the effort
involved in obtaining the correct theorems, we give a few statistics about the proofs
in Sec. 5. The full proofs are available online1. We discuss related work in Sec. 6 and
conclude in Sec. 7.

2 CloudMake

Syntactically, CLOUDMAKE is a purely functional subset of JAVASCRIPT. We show its
abstract syntax in Fig. 1. In CLOUDMAKE, all variables are single assignment, and all
global variables are evaluated on first use (whereas in JAVASCRIPT global variables are
evaluated in declaration order).

We illustrate CLOUDMAKE and its potential for optimization by building a calculator.
The calculator is written in C; it consists of source files calc.c, add.c, sub.c, and
header file num.h, all found in the same directory. Given functions cc and ln (defined
later) for invoking the C compiler and linker, respectively, a simple CLOUDMAKE script
introduces a variable declaration for each tool call:

1 The versions as of this writing are available at http://rise4fun.com/Dafny/n7Dm ,
http://rise4fun.com/Dafny/5iMO , and http://rise4fun.com/Dafny/GGnEP , and we
are maintaining any updated versions in the open-source DAFNY test suite at
http://dafny.codeplex.com .

http://rise4fun.com/Dafny/n7Dm
http://rise4fun.com/Dafny/5iMO
http://rise4fun.com/Dafny/GGnEP
http://dafny.codeplex.com

Formalizing and Verifying a Modern Build Language 645

Program ::= Stmt∗

Stmt ::= VarStmt | ReturnStmt
VarStmt ::= var id = Expr;
ReturnStmt ::= return Expr;
Expr ::= Lit | id | Expr InfixOp Expr | PrefixOp Expr | Expr ? Expr : Expr

| Expr (Expr∗) | Expr .id | Expr[Expr] | LambdaExpr
Lit ::= false | true | undefined | number | string | path | ObjLit | ArrLit
ObjLit ::= {Binding∗}
Binding ::= id:Expr
ArrLit ::= [Expr∗]
InfixOp ::= && | || | + | - | * | >= | . . .
PrefixOp ::= - | !
LambdaExpr ::= id+ ⇒Expr

Fig. 1. The abstract grammar of the CLOUDMAKE language, which is a subset of JAVASCRIPT.
We use | to separate alternatives, ∗ to denote 0 or more repetitions, and + to denote 1 or more
repetitions; other punctuation is suggestive of the concrete syntax. Note that calls to the primitive
operation exec are denoted as any other function invocations.

var main = ln("calc.exe", [calc, add, sub])
var calc = cc("calc.c", ["num.h"])
var add = cc("add.c", ["num.h"])
var sub = cc("sub.c", ["num.h"])

Evaluating this program consists in evaluating variable main. Evaluating the right-
hand side of the main declaration requires the values of calc, add, and sub. Evaluating
these requires evaluating cc on each source file, which produces the corresponding ob-
ject files represented by paths calc, add, and sub. The derived object files are passed to
the pending linker invocation in the main declaration, which then creates the executable
calc.exe. While there is no internal mutable state, CLOUDMAKE modifies external state
(the system state), in this case, the file system. Despite this, the evaluation in CLOUD-
MAKE can still be done safely in parallel, as discussed in Sec. 3.3.

Functions cc and ln are defined with calls to the primitive operation exec:

var cc = (src, deps) ← exec({ tool: "//bin/cl", args: [src],
deps: deps.add(src),
exps: [src.changeExtension(".obj")] })[0]

var ln = (exe, objs) ← exec({ tool: "//bin/link", args: objs,
deps: objs, exps: [exe]) })[0]

This operation is key for the extensibility of CLOUDMAKE: any external tool may be
invoked as part of a build (e.g., compilers, linkers, documentation generators, installers).
The primitive exec takes as argument an object of the form:

{ tool: . . ., args: . . ., deps: . . ., exps: . . . }

where tool denotes the path of the tool to invoke, args are the arguments passed to
the tool, deps are the paths of the artifacts that the tool is allowed to read, and exps
describe the artifacts that the tool must produce2. If the evaluation of exec succeeds, it

2 In the actual implementation of CLOUDMAKE, exec takes many more arguments, e.g., the
current working directory, the environmental variables used by the tool, the expected return
codes, etc.

646 M. Christakis, K.R.M. Leino, and W. Schulte

returns paths to artifacts exps in the order specified by the argument. Note that tools
like cl and link must comply with the axiomatization of exec in order to preserve the
correctness of the CLOUDMAKE algorithms.

The formal semantics of CLOUDMAKE makes it possible to reason about build speci-
fications. For example, we can prove that the program above has the same net effect on
the system state as the following program does (where map is defined as usual):

var main = ln("calc.exe",
["calc.c", "add.c", "sub.c"].map(c ← cc([x], ["num.h"])))

Moreover, CLOUDMAKE enables a number of optimizations, like cached, staged, incre-
mental, and distributed builds, only the first of which is discussed in this paper. As an
example of an optimization, imagine a scenario in which one builds the above calcula-
tor, modifies calc.c, and rebuilds. In this case, most dependency-based build systems
first evaluate main in the above program, and then, based on computed dependencies
and additional time-stamp or content-hash information, determine that (only) calc.c
must be recompiled before the linker is called for a second time with the new calc.obj
artifact and the add.obj and sub.obj artifacts in the cache. Instead of four tool calls,
a cached build for this scenario requires only two such calls. Some existing build sys-
tems can be fragile when it comes to cached builds since it is easy to miss a dependency
or get time stamps wrong. CLOUDMAKE uses content-based hashing for sources and
fingerprints for derived artifacts, and enforces that all cached artifacts do exist in the
system state. As a result, we can prove that CLOUDMAKE cached builds are equivalent
to clean builds, see Sec. 4. Optimizations like this can improve performance substan-
tially. In fact, incremental builds with caching reduce the build time of a major product
shipped by Microsoft up to 100 times.

3 Formal Semantics

In this section, we define the formal semantics of CLOUDMAKE. We do so using the
syntax of DAFNY, explaining its less obvious constructs as we go along. Because we do
not have space to explain everything, we sometimes omit or simplify various details.

3.1 Domains

Programs The abstract syntax of CLOUDMAKE is modeled in the usual way of defining
an algebraic datatype corresponding to each non-terminal in the grammar. For example,
we define CLOUDMAKE’s expressions in DAFNY along the following lines:

datatype Expr =
exprLiteral(lit : Literal) | exprIdentifier(id : Identifier) | . . .
exprIf(cond : Expr, ifTrue : Expr, ifFalse : Expr) |
exprInvocation(fun : Expr, args : seq〈Expr〉) | . . .
exprError(r : Reason)

In addition to the various expression forms in Fig. 1, we add a special “error” expres-
sion, which we use to signal evaluation errors.

Formalizing and Verifying a Modern Build Language 647

For every datatype constructor C, DAFNY defines a discriminator C?, and the user-
defined names of constructor parameters define destructors. For example, if e is an Expr
and e.exprIf? evaluates to true, then e denotes a CLOUDMAKE if-then-else expression
and e.cond denotes its guard subexpression.

Note that DAFNY builds in finite sequences, so seq≤σ〉 denotes the type of sequences
of elements of type σ. In other places, where ordering is irrelevant, we use set≤σ〉,
which denotes a finite set.

For some components in the CLOUDMAKE grammar, the internal structure is irrele-
vant, so we simply define them as uninterpreted types:

type Path
type Artifact

System State. CLOUDMAKE is a strict higher-order functional language, which can also
read and write global system state during evaluation. The system state is represented as
a finite map from Path to Artifact, which we roll into a record (because we will add
more components of the state later on):

datatype State = StateCons(m : map〈Path, Artifact〉)
We define function GetSt(p, st) as st.m[p], which returns the artifact for path p, and
function DomSt(st) to return the domain of state st.

The system state can be written, but only in restricted ways. For one, it can only be
extended—once a mapping for a path (to an artifact) has been added, it can never be
changed. Also, only the exec operation can extend the state, which it does determinis-
tically by reading some set of dependency artifacts. Abstractly speaking, from a given
state A , there exists some infinite map A∗ such that any state of any CLOUDMAKE

program executing from A will be a finite subset of A∗ . We can therefore imagine an
oracle that, for a given path p and state A , tells us the artifact to which A∗ maps p .

Every path in the domain of a reachable state must have received its artifact at some
point, either being authored by the user or being built by the system. In the latter case,
the artifact was built from other artifacts already in the state. We capture this property
by saying that in a valid state, all the paths follow some well-founded order:

predicate ValidState(st : State)
{ forall p • p ∈ DomSt(st) =⇒ WellFounded(p) }

predicate WellFounded(p : Path)

The definition of WellFounded is not important until the proof of consistency of our
axiomatization, see Sec. 3.4.

We now define a relation Extends(st, st’) on states. It says that st’ extends st,
and that any mapping added conforms to the oracle:

predicate Extends(st : State, st’ : State) {

DomSt(st) ⊆ DomSt(st’) ∧
(∀ p • p ∈ DomSt(st) =⇒ GetSt(p, st’) = GetSt(p, st)) ∧
(∀ p • p �∈ DomSt(st) ∧ p ∈ DomSt(st’) =⇒ GetSt(p, st’) = Oracle(p, st))

}

648 M. Christakis, K.R.M. Leino, and W. Schulte

A property about the oracle is that state extension, which conforms to the oracle,
preserves the predictions of the oracle. This is the only property of the oracle that we
need for now, so we formulate it as a lemma:

function Oracle(p : Path, st : State) : Artifact
lemma OracleProperty(p : Path, st0 : State, st1 : State)

requires Extends(st0, st1);

ensures Oracle(p, st0) = Oracle(p, st1);

The antecedent of the lemma is stated in a precondition (keyword requires) and its
conclusion is stated in a postcondition (keyword ensures). This terminology comes
from the fact that lemmas are actually methods—that is, code procedures—in
DAFNY [6,7]. The proof of the lemma would go into the method body, but we omit
it for now. We will prove it once we also give a function body that defines Oracle.

We can now prove that Extends is transitive:

lemma Lemma_ExtendsTransitive(st0 : State, st1 : State, st2 : State)

requires Extends(st0, st1) ∧ Extends(st1, st2);
ensures Extends(st0, st2);

{

forall p { OracleProperty(p, st0, st1); }
}

The proof of this lemma invokes the oracle property for every path p. The DAFNY verifier
works hard for us and supplies all other details of the proof.

3.2 Evaluation

We give the operational semantics by defining an interpreter. The central function of
interest is eval, which reduces an expression to a value, while passing the system state.
Figure 2 shows an excerpt of eval. It shows that literals evaluate to themselves and
that, depending on the evaluation of its guard, an if-then-else evaluates to one of its
arguments or to the error rValidity. Note that a var in a DAFNY expression context
is simply a let binding, and the left-hand side can be a pattern like Pair(a, b), which
let-binds a and b such that Pair(a, b) equals the right-hand side.

The most interesting case is invocation. It evaluates the expression expr.fun and
those in expr.args. Each such evaluation starts from the same state, st, and the result
is a set sts’’ of next-states. Hence, for example, any side effects on the system state
caused by the evaluation of expr.fun are not available during the evaluation of the ar-
guments, allowing for parallelism in CLOUDMAKE. Two states are compatible if they
map paths in their common domain to the same artifacts. A test is performed (func-
tion Compatible) to see if the set of next-states are compatible. If they are not, an
rCompatibility error is returned; but if they are, the next-states are combined and, if
the function denotes exec and the arguments are valid for exec, then function exec is
called.

We declare function exec as follows:

function exec(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State) :
Tuple〈set〈Path〉, State〉

Formalizing and Verifying a Modern Build Language 649

function eval(expr : Expr, st : State, env : Env) : Tuple〈Expr, State〉
requires ValidEnv(env);

{
if expr.exprLiteral? then

Pair(expr, st)

. . .
else if expr.exprIf? then

var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue then
eval(expr.ifTrue, st’, env)

else if cond’.exprLiteral? ∧ cond’.lit = litFalse then
eval(expr.ifFalse, st’, env)

else
Pair(exprError(rValidity), st)

. . .
else if expr.exprInvocation? then

var Pair(fun’, st’) := eval(expr.fun, st, env);

var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);
var sts’’ := {st’} ∪ sts’;
if ¬Compatible(sts’’) then

Pair(exprError(rCompatibility), st)
else

var stCombined := Combine(sts’’);

if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? then
if fun’.lit.prim.primExec? then

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) then

var ps := exec(args’[0].lit.str, args’[1].lit.paths,
args’[2].lit.strs, stCombined);

Pair(exprLiteral(litArrOfPaths(ps.fst)), ps.snd)
else

. . . // various rValidity error cases

}

Fig. 2. Three cases from CLOUDMAKE’s expression evaluation. Function evalArgs essentially
maps eval over the expressions given as its second argument.

where cmd is the command to be executed (e.g., "//bin/cl" and its arguments), deps
are the paths of all the artifacts that the command is allowed to read (e.g., "calc.c"
and "num.h"), and exps (for “expectations”) are the artifacts that a successful invo-
cation of the command has to return (e.g., "calc.obj"). The result value contains
a possibly updated state along with the set of paths to the expected artifacts (e.g.,
"//derived/8208/calc.obj"). (For brevity, we assume that all calls to exec succeed;
to model the possibility of failure, exec would return an error code that eval would
pass on.)

In our interpreter, we do not give function exec a body. Instead, we axiomatize the
properties of exec using an unproved lemma:

650 M. Christakis, K.R.M. Leino, and W. Schulte

lemma ExecProperty(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State)

requires ValidState(st) ∧ deps ⊆ DomSt(st) ∧ Pre(cmd, deps, exps, st);
ensures

var Pair(paths, st’) := exec(cmd, deps, exps, st);

Extends(st, st’) ∧
(∀ e • e ∈ exps =⇒ Loc(cmd, deps, e) ∈ paths) ∧
Post(cmd, deps, exps, Restrict(deps, st’));

These properties say that exec produces an extension st’ of st and that the result value
contains a path for every expectation. The definition of Post (not shown here) also
says that those paths are in the extension. Note that ExecProperty has a precondition
whereas exec does not. This is because the correctness theorem we show next only
needs to consider those behaviors that emanate from this precondition.

The use of Loc requires more explanation. It determines the paths that will hold the
derived artifacts. These are to be thought of as being placed in some temporary storage
that is not directly accessible. The CLOUDMAKE program can use these paths as stated
dependencies of other exec calls. In order for exec to be implementable, it is crucial
that Loc be injective (but it need not be onto).

3.3 Race Freedom

We are now ready to show the first correctness theorem. It says that an evaluation of
a CLOUDMAKE program will not result in an rCompatibility error. In other words,
the compatibility test in eval will always succeed. This means that the evaluation of a
function and its arguments can be done safely in parallel.

To verify in DAFNY that a method satisfies a (pre- and postcondition) specification,
the specification is included in the signature of the method and any necessary proof hints
are placed inline with the code, “intrinsically”. To verify that a function satisfies a spec-
ification, the proof style tends to be different: typically, the specification is stated and
verified as a separate lemma. We follow this “extrinsic” style here, where EvalLemma
gives the property of eval to be verified. In this style, the structure of the proof of the
lemma tends to mimic that of the function; in fact, sometimes it even repeats some of
the computation, if for no other reason than to give names to subexpressions that are
mentioned in the proof.

Figure 3 gives the race-freedom theorem as it pertains to expressions, along with
an excerpt of its proof, showing the same three cases we showed for function eval in
Fig. 2.

The case for literals is trivial, so nothing needs to be done in that branch of the proof.
In the case for if-then-else expressions, it is easy to see that the proof structure matches
that of function eval. The proof invokes the induction hypothesis for the various subex-
pressions of the if-then-else and then uses the transitivity of Extends to complete the
proof. Note that invoking another lemma or the induction hypothesis is just like making
a (possibly recursive) call in the proof.

The proof case for exec is similar, but uses more lemmas. Not surprisingly, it also
uses the axiomatized property of exec. Note that, other than manually spelling out the
required lemma invocations, the myriad of “boring” proof details are all taken care of
automatically by the DAFNY verifier.

Formalizing and Verifying a Modern Build Language 651

lemma EvalLemma(expr : Expression, st : State, env : Env)

requires ValidState(st) ∧ ValidEnv(env);
ensures

var Pair(expr, st’) := eval(expr, st, env);
Extends(st, st’) ∧
(expr.exprError? =⇒ expr.r = rValidity);

{
if expr.exprLiteral? {

} . . . else if expr.exprIf? {
EvalLemma(expr.cond, st, env);
var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue {
EvalLemma(expr.ifTrue, st’, env);
Lemma_ExtendsTransitive(st, st’, eval(expr.ifTrue, st’, env).snd);

} else if cond’.exprLiteral? ∧ cond’.lit = litFalse {
EvalLemma(expr.ifFalse, st’, env);
Lemma_ExtendsTransitive(st, st’, eval(expr.ifFalse, st’, env).snd);

} else { }
} . . . else if expr.exprInvocation? {

EvalLemma(expr.fun, st, env);

var Pair(fun’, st’) := eval(expr.fun, st, env);
EvalArgsLemma(expr, expr.args, st, env);
var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);

var sts’’ := {st’} ∪ sts’;
if Compatible(sts’’) {

var stCombined := Combine(sts’’);

Lemma_Combine(sts’’, st);
if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? {

if fun’.lit.prim.primExec? {

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) {

var cmd, deps, exp :=
args’[0].lit.str, args’[1].lit.paths, args’[2].lit.strs;

ExecProperty(cmd, deps, exp, stCombined);
var Pair(_, stExec) := exec(cmd, deps, exp, stCombined);

Lemma_ExtendsTransitive(st, stCombined, stExec);
. . .

}

Fig. 3. Theorem that justifies parallel builds of the arguments to exec. More precisely, the theorem
shows that eval will never result in an rCompatibility error, which means that the recursive
calls to eval do not produce conflicting artifacts, that is, do not build different artifacts for any
result path.

3.4 Consistency of Axiomatization

Our proofs make use of the axiomatized properties of exec. With any axiomatization,
there is a risk of inadvertently introducing an inconsistency in the formalization. There-
fore, we prove the existence of functions exec, Oracle, and WellFounded that satisfy

652 M. Christakis, K.R.M. Leino, and W. Schulte

the properties we axiomatized. We achieve this in DAFNY by introducing a refinement
module where we give bodies to these functions and to the previously unproved lemmas
we used to state axioms.

We build up the well-founded order on paths by computing well-founded certificates,
which order the paths. (Note, these certificates, like the other things we describe in this
subsection, are not part of the CLOUDMAKE algorithms; although they could in principle
be built, they are used only to justify the consistency of our axiomatization.) We define
our previously introduced predicate WellFounded to say that there exists a certificate:

datatype WFCertificate = Cert(p : Path, certs : set〈WFCertificate〉)
predicate CheckWellFounded(p : Path, cert : WFCertificate)

decreases cert;

{
cert.p = p ∧
(∀ d • d ∈ LocInv_Deps(p) =⇒ ∃ c • c ∈ cert.certs ∧ c.p = d) ∧
(∀ c • c ∈ cert.certs =⇒ CheckWellFounded(c.p, c))

}
predicate WellFounded(p : Path)
{ ∃ cert • CheckWellFounded(p, cert) }

Function LocInv_Deps gives the inverse function for the second argument of Loc (re-
call from Sec. 3.2 that Loc is injective). Note, DAFNY’s inductive datatypes guarantee
that certificates are well-founded, but the data structure itself does not provide any or-
dering on paths. It is the CheckWellFounded predicate that gives the necessary proper-
ties of paths; the certificates are used to prove the termination of the recursive calls of
CheckWellFounded. (In a system like COQ [1] with inductive constructions, the predi-
cate itself can be used as an inductive structure.)

Next, we define a function RunTool to model an actual tool, like a compiler, or rather,
a collection of tools:

function RunTool(cmd : string, deps : map〈Path, Artifact〉, exp : string) : Artifact

Argument cmd says which tool to invoke and exp says which of the tool’s outputs we
are interested in. Note that RunTool does not take the entire system state as a parameter.
Instead, it takes a path-to-artifact mapping whose domain is exactly those paths that the
tool invocation is allowed to depend on. By writing this as a function without a precon-
dition, we are modeling tools that are deterministic and always return some artifact. To
allow for tools that fail, perhaps because they need more dependencies than are given,
we can think of RunTool sometimes as returning some designated error artifact.

We define function exec to invoke RunTool for each expectation exp in exps. The
essential functionality is this:

var p := Loc(cmd, deps, exp);
if p ∈ DomSt(st) then st else

SetSt(p, RunTool(cmd, Restrict(deps, st), exp), st)

where Restrict(deps, st) returns st with its domain restricted to deps.
Function Oracle(p, st) returns an arbitrary artifact if p is not well-founded; other-

wise, it uses Skolemization (again, remember that this is for the proof only) to obtain a
certificate cert for p and returns the following:

Formalizing and Verifying a Modern Build Language 653

var cmd, deps, e := LocInv_Cmd(p), LocInv_Deps(p), LocInv_Exp(p);

RunTool(cmd, CollectDependencies(p, cert, deps, st), e)

where CollectDependencies recursively calls the oracle to obtain artifacts for the de-
pendencies of p.

From these definitions, we can prove that exec does have the properties stated by
ExecProperty. The proof is about 250 lines. One main lemma of the proof says that the
calls above to CollectDependencies and Restrict return the same state map. A major
wrinkle in the proof deals with the case when the path p given to exec already exists in
the domain of the state, in which case it is necessary to prove that this is indeed what
the oracle would have said.

4 Cached Builds

In this section, we formally verify the correctness of cached builds, a key optimization
employed by CLOUDMAKE. This optimization effectively reduces the build times of
CLOUDMAKE by making use of the fact that code changes software developers typically
make between successive versions of a program are small, especially in comparison to
the size of the modified program.

Cached builds enable the reuse of artifacts that have already been derived during
previous, similar builds. The theorems that we show here say that cached builds are
equivalent to clean builds, that is, building a program without using cached artifacts is
indistinguishable from any cached build, and that, starting from any consistent cache, a
cached build never fails due to the cache being inconsistent and the new state also has
a consistent cache.

The state is now extended with a cache component represented as a hash map from
paths. The cache is consistent when for each hashed path there exists a matching derived
artifact in the system state:

predicate ConsistentCache(stC : State) {
∀ cmd, deps, e • Hash(Loc(cmd, deps, e)) ∈ DomC(stC.c) =⇒

Loc(cmd, deps, e) ∈ DomSt(stC.m)

}

To verify the equivalence of cached and clean builds, we implement a wrapper
around function exec described in the previous section. Specifically, the wrapper checks
whether all expectations of a given command exist in the cache. If this is the case, it
returns the paths to these expectations, otherwise it calls the previous, axiomatized ver-
sion of exec to derive the expectations of the command, and then it consistently updates
the cache by caching each derived expectation:

function execC(cmd : string, deps : set〈Path〉, exps : set〈string〉, stC : State) :
Tuple〈set〈Path〉, State〉

{

if ∀ e | e ∈ exps • Hash(Loc(cmd, deps, e)) ∈ DomC(stC) then
var paths := set e | e ∈ exps • Loc(cmd, deps, e);
Pair(paths, stC)

else

654 M. Christakis, K.R.M. Leino, and W. Schulte

var Pair(expr’, st’) := exec(cmd, deps, exps, stC);

var stC’ := UpdateC(cmd, deps, exps, st’);
Pair(expr’, stC’)

}

Note that for these proofs, we had to thread a new boolean useCache parameter
through the definitions of the previous section and adjust the theorems proved before
accordingly.

5 Proof Experience and Proof Statistics

Our file ParallelBuilds.dfy contains a formalization of the basic CLOUDMAKE al-
gorithm, a proof that subexpressions of invocation expressions can be done in any or-
der or in parallel, and a proof that the axioms used for these are consistent. Our file
CachedBuilds.dfy contains a formalization of caches, proves again (but this time in the
context of caches) that subexpressions of invocations can be done in any order or in par-
allel, proves a theorem that the cache handling maintains the correspondence of states,
but does not again prove the consistency of axioms (which are essentially the same as
before, except for the addition of the boolean useCache parameter that says whether or
not to ignore the cache). Currently missing among the lemmas in CachedBuilds.dfy
is a proof that the arguments of an invocation are considered valid in the cached ver-
sion just when they are considered valid in the non-cached version. Finally, our file
ConsistentCache.dfy shows that, starting from any consistent cache, a cached build
never fails due to an rInconsistentCache error and the new state also has a consistent
cache. Moreover, a consistent-cache state is reachable from any state by deleting all
cache entries of the latter state.

The following table shows file sizes and verifier running times (in seconds) for the
three files.

number of lines verification time
ParallelBuilds.dfy 835 237
CachedBuilds.dfy 1321 194
ConsistentCache.dfy 659 40

The times are in seconds on a 2.4 GHz laptop with eight logical cores, averaged over
three runs (with a variation of less than 10 seconds among different runs). The file
CachedBuilds.dfy is much larger because the proofs require much more manual guid-
ance; however, we have not tried to clean up these proofs, which could make them
shorter.

To develop the formalization and proofs, we used the DAFNY IDE [8] in Visual Stu-
dio, and found it to do a good job with verification-result caching and continuous back-
ground verification. The biggest annoyance we found (and saw a lot of) was time-outs.
In such cases, we were not given much useful information from the verifier, and we had
to wait longer (more than 10 seconds) to be given anything at all. The time-outs were
mostly due to missing parts of the proof—once the proof was in place, verification times
were usually low. To reduce frustrating waits, we divided up the proof in pieces—this
can sometimes lead to good modularization, but in some cases it can become tedious.

Formalizing and Verifying a Modern Build Language 655

It seems that the proving system should be able to do such restructuring automatically
and behind the scenes. To reduce the information available to the prover—in hopes of
reducing the ways in which the automatic prover can get lost in its proof search—we
also sometimes turned off the automatic induction and several times marked functions
as “opaque”, a recent feature in DAFNY that hides the definition of the functions unless
the proof requests the definition to be revealed. In general, after having verified the ba-
sic algorithm used by CLOUDMAKE, we found the verification process to be incremental
and require less effort.

The formalization presented in this paper has contributed to the development of
CLOUDMAKE. In particular, we found parts of the English specification document for
CLOUDMAKE either inadequate or more complex than necessary for our theorems to
hold. Our work has led to identifying and fixing such mistakes in this document, for
example in the evaluation of statements and the specification of exec. Moreover, we
substantially simplified the formalization for cached builds while threading the cache
through our proofs.

6 Related Work

There are almost as many build systems as there are programming languages (since em-
bedded, domain-specific build systems have been developed for almost all languages).
But only a few such systems remain in active use. Here are the ones that had an im-
pact on CLOUDMAKE. MAKE [3] introduced dependency-based builds, which are key
to CLOUDMAKE’s optimizations. VESTA-2 [4] used, for the first time, a functional pro-
gramming language to describe dependencies, which are computed based on finger-
prints instead of time stamps like in MAKE. VESTA-2 also introduced caching based on
fingerprints. Moreover, Google’s build language and Facebook’s BUCK3 had an impact
on CLOUDMAKE’s incremental and distributed builds.

Build optimizations, akin to compiler optimizations, should be correctness preserv-
ing. However, such optimizations are typically difficult to verify since the proof must
demonstrate that the semantics of the original program is equivalent to the semantics of
the transformed program. Early compiler verification showed the equivalence of source
and target programs with commutative diagrams [11] and presented the first mechani-
cally verified compiler [12]. Other work of formally verifying the correctness of com-
piler optimizations was done by Lerner et al. [9]. The recent rise in the power of proof
tools revitalized the area of compiler and optimizer verification. The most notable ex-
ample is the COMPCERT project [10], which involved developing and proving correct
a realistic compiler for a large subset of C, usable for critical embedded systems. A
formal proof of correctness of function memoization has been done in the interactive
proof assistant ACL2 [2].

7 Conclusion

We have formally presented and mechanically verified the central algorithms of CLOUD-
MAKE, a modern build language whose design allows for a number of possible opti-
mizations. We have defined the CLOUDMAKE language using a pluggable operational

3 http://facebook.github.io/buck/

http://facebook.github.io/buck/

656 M. Christakis, K.R.M. Leino, and W. Schulte

semantics: the primitive operation exec is defined axiomatically and can be used to call
any tool as part of a build as long as the tool complies with the axiomatization. To define
the CLOUDMAKE semantics and verify its algorithms, we have used the SMT-based pro-
gram verifier DAFNY. Given that CLOUDMAKE is a functional language, we have found
it sufficient to use only the functional subset of the DAFNY language in our proofs.
A limitation of our work is that we have not targeted verification of the CLOUDMAKE

implementation, but only of its algorithms.
In the future, we plan on proving the equivalence of more optimized builds, like

staged and incremental builds, to clean builds. A staged build uses dependency infor-
mation from the last successful build to reduce the number of exec operations. Specif-
ically, there are two stages in a staged build. First, we do a “lazy” build during which
exec operations are not evaluated but are, instead, used to compute a dependency graph.
For any given exec, this graph shows which other exec operations must be evaluated
first for the given exec to succeed, that is, which dependency artifacts of the given exec
must be previously derived by other exec operations, recursively. Second, we traverse
the dependency graph top-down and evaluate all the exec operations we postponed dur-
ing the first stage. In practice, we only evaluate those exec operations that correspond to
the changed system state between two successive builds. The main difference between
staged and incremental builds is that during the second stage of an incremental build,
the dependency graph is traversed bottom-up instead of top-down. We already have
such a proof for staged builds, but we still aspire to formalize and prove the bottom-up
algorithm of incremental builds, which is the optimization mostly used by CLOUDMAKE.

By verifying these algorithms, we are ensuring that nothing can go wrong during
such optimized builds. Our work already affects many product groups at Microsoft that
rely on these optimizations to speed up the build times of large software products.

Acknowledgments. We are grateful to Michał Moskal for suggestions on the proofs
presented here. We also thank Valentin Wüstholz for his comments on drafts of this
paper.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer
(2004)

2. Boyer, R.S., Hunt Jr., W.A.: Function memoization and unique object representation for
ACL2 functions. In: ACL2 Theorem Prover and its Applications, pp. 81–89. ACM (2006)

3. Feldman, S.I.: Make—A program for maintaining computer programs. Software—Practice
and Experience 9(4), 255–265 (1979)

4. Heydon, A., Levin, R., Mann, T., Yu, Y.: Software Configuration Management Using Vesta.
Monographs in Computer Science. Springer (2006)

5. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg
(2010)

6. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)

Formalizing and Verifying a Modern Build Language 657

7. Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 2–16. Springer, Heidelberg (2013)

8. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In: Workshop
on Formal-IDE (to appear, 2014)

9. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler
optimizations. In: PLDI, pp. 220–231. ACM (2003)

10. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115 (2009)

11. McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions. In: Proceed-
ings of Applied Mathematica. Mathematical Aspects of Computer Science, vol. 19, pp. 33–
41. American Mathematical Society (1967)

12. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic. Machine
Intelligence 7, 51–72 (1972)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

The Wireless Fire Alarm System:

Ensuring Conformance to Industrial Standards
through Formal Verification

Sergio Feo-Arenis, Bernd Westphal, Daniel Dietsch,
Marco Muñiz, and Ahmad Siyar Andisha

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany

Abstract. The design of distributed, safety critical real-time systems is
challenging due to their high complexity, the potentially large number
of components, and complicated requirements and environment assump-
tions. Our case study shows that despite those challenges, the automated
formal verification of such systems is not only possible, but practicable
even in the context of small to medium-sized enterprises. We considered
a wireless fire alarm system and uncovered severe design flaws. For an
improved design, we provided dependable verification results which in
particular ensure that conformance tests for a relevant regulation stan-
dard will be passed. In general we observe that if system tests are spec-
ified by generalized test procedures, then verifying that a system will
pass any test following these test procedures is a cost-efficient approach
to improve product quality based on formal methods.

1 Introduction

Wireless communication offers a low-cost solution for distributed sensing and
actuation systems. In recent years, wireless systems have expanded their roles
towards performing an increasing number of safety critical tasks. The addition of
more features inevitably increases their complexity and with it the risk of critical
malfunctions. Consequently, there is a pressing need for methods and tools to
verify the safety of wireless systems in critical applications. In this paper, we
report on the verification of a wireless fire alarm system. Wireless fire alarm
systems are increasingly preferred over wired ones due to advantages such as,
e.g., spatial flexibility.

The main purpose of a fire alarm system is to reliably and timely notify occu-
pants about the presence of indications for fire, such as smoke or high tempera-
ture. As system components may fail, e.g. due to physical damage, this purpose
can in general not be guaranteed. Thus fire alarm systems need to employ self-
monitoring procedures and notify maintainers if they are not able to fulfill their
main purpose. Both false alarm notifications and false maintainer notifications
should be avoided as they induce unnecessary costs.

Given the safety and liability issues associated with system failures, it is nec-
essary to establish, with a good level of confidence, that the system design is
correct with respect to its requirements. In our case study, we accompanied

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 658–672, 2014.
c© Springer International Publishing Switzerland 2014

The Wireless Fire Alarm System 659

the development of a wireless fire alarm system (WFAS) by SeCa GmbH [2], a
small company specialized in radio technology. We consider requirements from
the European standard EN-54, part 25 [8], which regulates the main obligations
for commercially available WFAS. These requirements are stated as test pro-
cedure specifications. For example, the triggering of a single sensor anywhere
in the system must cause a fire notification within 10 seconds. We generalized
and formalized these test procedures and verified that the WFAS design will
pass EN-54 conformance tests executed according to those test procedures in all
possible scenarios.

Given the characteristics of the system, conventional testing poses consider-
able technical challenges: It is difficult to precisely control environment condi-
tions such as radio interference and the timing of system inputs, not to mention
the need for a prototype implementation and hardware. We propose the use of
formal verification tools and techniques to overcome these difficulties. Nonethe-
less, state-of-the-art verification techniques also face several challenges while
treating a system with such characteristics. First, the number of components and
topologies is large. Second, the standard documents explicitly specify complex
environment assumptions which need to be considered in the analysis. Third,
the relevant properties are real-time properties. A further challenge was posed
by the fact that we analyzed the design a priori, i.e. during its development, thus
it was necessary to efficiently handle design changes.

The primary goal of our case study was to ensure that EN-54 certification
tests will not fail due to design flaws. To this end we needed to provide the
company with sufficient evidence that the system fulfills its requirements while
giving a detailed account of the assumptions and limitations of the analysis, i.e.
we needed to provide dependable [15] analysis results. An additional goal was
to study the feasibility of applying formal methods to the verification problems
found in small to medium-sized enterprises (SMEs).

During our case study we assumed the role of consultants and became an ac-
tive component of the development team of the company. We created, validated,
and verified models of the WFAS under design and the environment conditions
specified by EN-54 25, using several formalisms and tools. Most aspects of the
protocol are modelled using timed automata [3], which were subsequently ver-
ified using Uppaal [4]. Untimed liveness aspects of the alarm functionality of
the system were verified using SPIN [14].

Several case studies on the verification of safety critical and distributed sys-
tems have been published. Fehnker et al. [10] report on verification of the ad hoc
on-demand distance vector routing protocol (AODV) where they enumerate all
possible topologies with up to 5 nodes. We provide verification results for a wider
range of topologies. Closer to our work is the verification of an AODV protocol
draft [5]. Their approach using HOL and SPIN considers real-time only in form
of integral factors, and they did not validate the models with the development
engineers. Other works [21,17] report on verification of the CAN bus protocol
and a self-recovery algorithm without considering real-time.

660 S. Feo-Arenis et al.

Madl et al. [19] use Uppaal as part of a model-based verification framework
that performs limited compositional analysis where only isolated aspects of the
considered protocol are modeled using timed automata. Semi-automatic verifi-
cation of time-triggered architectures has also been carried out in the works of
Kopetz et al. [18] and Tripakis et al. [23]. Our verification strategy is based on
the use of fully automatic tools to discharge the main requirements after de-
composition and optimization. In addition, verification of real-time properties of
wireless sensor networks found in the literature is typically applied a posteriori,
e.g., for LUNAR [24], an implementation already existed, and they consider to
“employ a formal construction method rather than a post-construction verifica-
tion” as future work. Similarly, Dong et al. [9] verified E-2C when it was already
“in test” and Gebremichael [12] verifies the then well-known Zeroconf protocol.

The next section describes the requirements analyzed in our case study to-
gether with our formalization. Thereafter, Sections 3 and 4, describe the verifica-
tion of a concrete system design which aims at implementing those requirements.

2 Requirements

Fire alarm systems are regulated in the European Union by the standard EN 54
[8]. Its requirements are expressed with respect to components, e.g. sensors, and
a central unit. The central unit is a special device which is the interface of the
system with its users. It in particular displays events such as alarms and sensor
failures. Indications of fire detected by the sensors raise alarm events. Sensors
communicate using radio channels to cause the central unit to display an alarm.
Sensors need to be monitored constantly in order to ensure that their commu-
nication path towards the central unit is functioning correctly. The detection of
a sensor failure is also required to be displayed at the central unit.

2.1 Formalization of EN 54-25 Requirements

For each requirement, Part 25 of the EN 54 standard contains specifications
of test procedures including environment conditions and test engineer interac-
tions. All test procedures assume a ready-for-use system as specified by the
system manufacturer. A system is ready-for-use when the alarm and monitoring
functions are fully operational and events are expected to be detected and dis-
played. During a test, one can assume that the test engineer conducts exactly
those interactions with the system that are prescribed by a particular test proce-
dure. Additionally, the standard specifies the number of system components that
should be used for each test. There are certification authorities which perform
tests based on the procedures specified by the standard and issue compliance
certificates if those tests are passed. Thus we consider a design correct if it is
guaranteed to pass all tests following those test procedures.

The standard provides test procedures for the following requirements:

1. The loss of the ability of the system to transmit a signal from a component
to the central unit is detected in less than 300 seconds and displayed at the
central unit within 100 seconds thereafter.

The Wireless Fire Alarm System 661

Table 1. DC formalization of the considered requirements

∧
i∈C ¬♦()FAIL = i* ;)FAIL �= i*) (FailPersT) ¬∨i∈C)FAIL = i* (NoFailT)

�
[¬(∨j,k∈F,j �=k)JAMj ∧ JAMk*

) ∧ ()∧j∈F ¬JAMj* =⇒ � ≤ 1s
)

∧∧
j∈F ()¬JAMj* ;)JAMj* ;)¬JAMj* =⇒ � ≥ 1s)

] (JamT)

¬∨i∈C)ALi* (NoAlT)
∧

i∈C� ()DETi* =⇒)FAIL = i*) (NoSpurT)∧
i∈C� ()FAIL = i ∧ ¬DETi* =⇒ � ≤ 300s) (DetectT)∧
i∈C� ()DETi ∧ ¬DISPi* =⇒ � ≤ 100s) (DisplayT)

FailPersT ∧ JamT ∧ NoAlT ⇒ � ()RDY* ⇒ DetectT ∧ DisplayT ∧ NoSpurT) (Req1T)

JamT ∧ NoFailT =⇒ � ()RDY* =⇒ Alarm1T ∧ Alarm2T ∧ Alarm10T) (Req2T)

2. A single alarm event is displayed at the central unit within 10 seconds.
3. Two alarm events occurring within 2 seconds of each other are each displayed

at the central unit within 10 seconds after their occurrence.
4. Out of exactly ten alarms occurring simultaneously, the first should be dis-

played at the central unit within 10 seconds and all others within 100 seconds.
5. There must be no spurious displays of events at the central unit.
6. Requirements 1 to 5 must hold as well in the presence of radio interference

by other users of the frequency band. Radio interference by other users of the
frequency band is simulated by a jamming device specified in the standard.

We already provided a formalization of the test procedures in [7]. From that,
we derived testable Duration Calculus (DC) [6] properties. We call a component
responsible for monitoring another a master, the monitored component is called
a slave. The master-slave relation of a system is called its topology. Let T be a
WFAS topology with the finite set C of components in addition to the central
unit which use the frequency bands (or radio channels) in the set F . We assume
the following observables for T . For i ⇒ C, j ⇒ F :

– RDY: true iff the system has been declared ready for use.
– FAIL: i iff component i is unable to transmit to the central unit, ⊥ otherwise.
– DETi: true iff the master of component i has detected a failure at i.
– DISPi: true iff the central unit has displayed an event at component i.
– ALi: true iff component i has detected an event.
– JAMj : true iff radio channel j is being jammed.

The standard specifies that at most one component may be disabled during the
test, and that disabled components are never re-enabled (FailPersT , cf. Table 1).
That is, for each component, there is no interval which can be chopped into one
phase where the component is disabled followed by a second phase where the
component is not disabled.

The jamming devices used during certification tests are specified as (i) only
the radio channels used by the system under test are jammed, (ii) only one, non-
deterministically selected radio channel is jammed at a time, (iii) channels are
continuously jammed for at least one second, and (iv) during channel changes,

662 S. Feo-Arenis et al.

all radio channels are free for at most one second. More formally, we obtain JamT

(cf. Table 1). Note that it is especially hard for conventional testing approaches
to cover the non-deterministic behaviour of the jamming device.

The standard states that during monitoring testing, the system is consid-
ered to be free of alarms (NoAlT) and that during alarm testing, failures are
not considered (NoFailT). Requirement 5 and the deadlines of Requirement 1
can be formalized by NoSpurT , DetectT , and DisplayT . The complete, formal
requirement for the monitoring function is Req1T . Similarly, we formalized Re-
quirements 2, 3, and 4 as Alarm1T , Alarm2T , and Alarm10T . Overall, we have
Req2T for the alarm function. Note that Req1T and Req2T include JamT to
express Requirement 6. Requirements 1 to 5 without requirement 6 can be for-
mulated by redefining JamT to �↑

∧
j∈F ¬JAMj↓. We have thus formalized all

requirements necessary to formally verify protocol designs against the standard.

3 Verification of the Monitoring Function

Fig. 1. Example of a system topology

The WFAS under design is expected to
work in a broad variety of buildings with
possibly suboptimal conditions for radio
signals. Therefore, the developers em-
ploy repeaters to relay messages in addi-
tion to the mandatory central unit and
the sensors. In the WFAS topology, each
component is assigned a unique master.
The master-slave relation forms a tree
with the central unit as root. Figure 1
depicts an instance of a WFAS topol-
ogy with sensors S1, . . . , S6, repeaters
R1, . . . , R3, and the central unit CU . Repeaters and the central unit function as
master i and consist of two transceivers each, Tr i1 and Tr i2. For displaying an
event, a repeater notifies its master of the incidence, which notifies its master
until the notification reaches the central unit. Functions of the protocol are dis-
tributed among the two transceivers in the masters. Transceiver Tr i1 is only used
for sensor monitoring, that is, this transceiver realizes the master-role towards
sensors. Transceiver Tr i2 realizes three functions: the slave-role towards another
repeater or the central unit, the master-role towards other repeaters, and the
forwarding of events.

Fig. 2. TDMA scheme

The protocol designed employs a variant of Time
Division Multiple Access (TDMA) as shown in Fig-
ure 2. Time is partitioned into frames and frames
are divided into fixed-width windows. Windows are in
turn subdivided into slots, which are assigned to differ-
ent protocol functions. The window length is specified
in tics. Every sensor and repeater is assigned a unique
window.

The Wireless Fire Alarm System 663

To perform failure detection, repeaters in the slave-role and sensors use the
same functionality. Slaves periodically send a keep-alive message to their master
in the corresponding slot of their assigned window. If no acknowledge message is
received from the master, a second and third keep-alive are transmitted in the
subsequent slots using a different channel. Masters listen on the corresponding
channel during the slots of their assigned slaves. A master enters its error de-
tection status when a specified number of keep-alive messages from one slave
have consecutively been missed. The master then initiates the forwarding of
the failure detection event. Event forwarding takes place without regarding slot
assignments, using the transceivers Tr i2.

To compensate for unavoidable clock drift, i.e., slight deviations between clock
speed in different components, a correction mechanism is used. Acknowledge-
ments for keep-alive messages come with a time stamp which allows the slave to
synchronize its clock with the master’s clock. Additional time intervals added at
the beginning and at the end of slots (guard times) ensure that transmissions
of keep-alive messages do not overlap and are not lost. In the design, sensors
stop sending keep-alive messages after a determined number of consecutive non-
acknowledged keep-alive messages because they are then missing a sufficiently
recent time stamp. This mechanism prevents a malfunctioning sensor from caus-
ing message collisions.

3.1 Modeling

The requirements (cf. Section 2.1) indicate a clear separation between environ-
ment assumptions and protocol components. We employ a reusable, modular
environment model which is coupled to a protocol design model by a defined
interface (cf. Figure 3(a)). We can thus accommodate changing design ideas
during development while maintaining fixed environment assumptions. A sam-
ple topology including all necessary model artifacts is shown in Figure 3(b). In
the following, we present our environment model and our model of the final
design of the monitoring function.

Environment Model. The environment consists of modules that represent
radio channels (Media), non-deterministic component failures (Switcher), and
radio interference by a jamming device (Jammer). To allow parallel commu-
nication over different radio channels, the communication medium consists of
one timed automaton for each channel used by the system. System models send
messages to the media using a synchronisation channel array TX, indexed with
the message type and the channel used. A medium then broadcasts the mes-
sage using the RX channel array with the same indexing conventions. When a
component is deactivated by the Switcher automaton, any message sent by the
component is discarded at the media without being relayed. Likewise, messages
are discarded at the radio channel blocked by Jammer.

The protocol is designed to be free of collisions. To verify this property, media
models were designed to accept only one message at a time. If two components

664 S. Feo-Arenis et al.

(a) Model architecture.

s2 s3

Jammer

s5 s6

s4

s1

Medium

F2

F3

F0

F1

Switcher

K0
S

K1
S

K2
S

K3
S

RK0

RK2

RK3

F1
K1

S
RK1

F0
K0

S
RRRRRKKKKK000000

Outer Network
Inner Network

(b) Inner and outer networks (cf. Sect. 3.2).

Fig. 3. Model architecture and exemplary model instance for the monitoring function

send messages simultaneously, a deadlock occurs. Verifying the absence of colli-
sions thus amounts to checking whether the complete model has deadlocks.

Fig. 4. Radio jammer model

Radio interference is modeled by
the Jammer automaton (see Fig-
ure 4). The currently blocked radio
channel is indicated by the global vari-
able gBlockedChannel. If all radio
channels are free, its value is -1. As the
radio jammer may have been switched
on before the system is ready for use,
blocking of a radio channel as ob-
served by the ready-for-use system may be initially shorter than 1s (cf. JamT on
page 661). This situation is explicitly modeled by location INIT BLOCKED.

Clock Reduction. Motivated by the large number of components, we applied
quasi-equal clock reduction [13]. This technique takes advantage of clock vari-
ables that have the same value except for discrete points in time. These clocks
are reduced to a single, centralized clock and thus verification complexity is de-
creased. In our case, the environment model includes the central clock sources
Frame and Window. They provide a global clock variable which is reset at the
end of each window and use a broadcast channel to notify components whenever
the clock is reset. The automaton Window also handles keeping track of the
number of windows passed since the beginning of the frame. Note that symme-
try reduction can not be applied because the assignment of slots to components
is based on the components’ identity.

To make the simplifying assumption that clocks are perfectly synchronized and
can be reduced, we verified separately that the guard times used in the design sat-
isfy the conditions of [16]. These conditions ensure that keep-alivemessages do not
collide given that quartz oscillators work inside their specified ranges.

The Wireless Fire Alarm System 665

Fig. 5. Model of the slave-role of components

Monitoring Protocol Model. The protocol design is modeled by the different
system components that perform the functions of masters and slaves. Figure 5
shows the timed automaton modelling the slave-role of sensors. Note that the
keep-alive message is potentially sent three times in a slot.

A repeater is basically modelled by three sub-models: the master-role towards
sensors, the master-role towards repeaters, and the slave-role of repeaters. A
master-role is further subdivided into two sub-models: the first one receives keep-
alives and replies with acknowledgements, the second one keeps track of missing
messages to determine the status of its slaves. In order to observe DETi in the
model, the second master-role timed automaton synchronizes with the Switcher
automaton once an error is detected. A central unit is similar to a repeater, just
without the model for the slave-role.

In order to maintain simple and readable models, assumptions of the main
requirement Req1T are integrated directly into the model. For instance, the fact
that RDY holds permanently is modeled by the fact that no operation modes
outside of a ready-for-use system are modeled. Likewise, no alarms or their cor-
responding features are present in the model in order to satisfy NoAlT . The
persistence of failures, FailPersT , is modeled directly by not allowing the timed
automata to return to normal operation once they have been deactivated. Addi-
tionally, the Switcher automaton allows for only one component to be deactivated
during a system run (cf. Section 2.1).

3.2 Verification

We realized the environment and protocol model including assumption treatment
in Uppaal. In the models [1], the observables from Section 2.1 are modeled either
as locations in the timed automata, or as mappings to (both continuous and
discrete) variable values. Uppaal queries can be derived from the testable [20]
DC formulae in Section 2.1 to check the satisfaction of the requirements.

Decomposition: Inner and Outer Network. As the two transceivers operate
on different radio channels, any WFAS topology can be seen as consisting of two
independent networks with the repeaters as gateways. We call the network used

666 S. Feo-Arenis et al.

Table 2. Verification of the final design (Opteron 6174 2.2Ghz, 64GB, Uppaal 4.1.3)

Sensors as slaves, N = 126. Repeaters as slaves, N = 10.
Query seconds MB States seconds MB States

DetectT 36,070.78 3,419.00 190,582,600 231.84 230.59 6,009,120

NoSpurT 97.44 44.29 640,943 3.94 10.14 144,613

No LZ-Collision 12,895.17 2,343.00 68,022,052 368.58 250.91 9,600,062

Detection Possible 10,205.13 557.00 26,445,788 38.21 55.67 1,250,596

for communication between repeaters and the central unit the inner network
and the network used to communicate between sensors and repeaters the outer
network. In Figure 3(b), instances of inner and outer networks are highlighted
for the depicted topology.

The detection aspect of the monitoring functionality, DetectT , takes place local
to an inner or outer network. Thus it can be verified by regarding a master and
its set of slaves in isolation, since monitoring subnetworks do not communicate
or interfere with each other because of the TDMA scheduling. We thus verified
separate models for the monitoring function of sensors (outer network) and of
repeaters (inner network), while abstracting away the networks and components
that do not participate in the detection function.

Topology Coverage. We performed verification on two models, each consisting
of a master with the maximum number of slaves allowed by the design as required
by EN 54-25. The sensor to master model comprises a master (representing both
a repeater and the central unit) and 126 sensors, plus the environment models
(Jammer, Switcher, and Media). Verifying a subtopology with the maximum
number of connected sensors subsumes all other subtopologies with a smaller
number of components because a functioning sensor overapproximates, in par-
ticular, the behavior of an absent sensor. Together with the observation that
subnetworks are isolated in their detection function, verifying detection on the
model provided is sufficient to prove the satisfaction of DetectT and NoSpurT
in all topologies T , when each topology is considered as a collection of isolated
outer network subtopologies. Analogously, the model of the master role towards
repeaters, which contains 10 repeaters, covers all topologies.

Results. The verification of a model of the initial design of the monitoring
protocol resulted in the discovery of two design faults: A corner case in which
the detection deadline was exceeded by one tic and a violation of NoSpurT in
the presence of a jamming signal. Given the timing constraints specified for
the jamming signal, it was possible for it to continuously block the keep-alive
messages of a sensor, thus causing spurious failures to be detected at its master.
The design was consequently adapted to shorten the length of the windows
assigned to sensors and to include an additional retry (to make three in total) for
the transmission of the keep-alive packets, together with a faster channel rotation
scheme. Verification of the adapted design revealed no further vulnerabilities
(cf. Table 2). Likewise, we verified NoSpurT in the final model and performed

The Wireless Fire Alarm System 667

additional checks to establish validity: Reachability of the detection location
excludes trivial satisfaction of the requirements, and the absence of deadlocks
excluded message collisions. In addition, we verified that Jammer satisfies JamT .

Having successfully verified the detection phase of the protocol, we still need
to verify DisplayT in order to discharge requirement Req1T . As forwarded fail-
ures and alarms are treated equally according to the design, we condition the
satisfaction of DisplayT to the satisfaction of the alarm deadline requirements.
Given that the deadline for displaying failures is much larger (100 seconds as
opposed to 10 seconds for alarms), we deduce that satisfying alarm deadlines
subsumes satisfying failure display deadlines.

4 Alarm Verification

Whenever an event is detected, it is forwarded towards the central unit to be
displayed. Forwarding is performed by the second transceiver Tr2, which always
uses a different radio channel than Tr1. An event is transmitted in the slot imme-
diately following detection or reception for forwarding, thus ignoring the window
assignments. This design choice speeds up transmission, but allows for collisions,
i.e. simultaneous transmission of two or more messages. When a collision occurs,
the information of the participating messages may be distorted or destroyed.

A resolution protocol was devised in order to accommodate for the possibility
of collisions. The protocol follows a tree-splitting [11] approach based on the
system-wide unique ID numbers of the components. The protocol assigns a tic
for the start point of the transmission in the next slot. At the start point, a com-
ponent listens shortly to determine whether the channel is free, in which case
the transmission is started (“listen before talk”). If the channel is in use, the
component waits until the next slot to retry transmitting using the same start-
ing point. After a transmission, if no acknowledgment is received, a collision is
assumed and, based on the binary representation of the ID and the respective
collision counter, the colliding components deterministically modify their start-
ing point for retrying the transmission in the next slot. The process is repeated
as long as an event is not successfully transmitted and should guarantee that
every waiting event eventually reaches the central unit.

Fig. 6. Collision resolution. The transmission
start tics are shown inside the circles. Collid-
ing components are shown in red, waiting ones
in gray, and successful transmissions in green.

In Figure 6, the initial steps
of the collision resolution are de-
picted for an example scenario. As-
sume, components with IDs 127,
85, 42 and 1 detect an event at
time t0. In the slot following t0,
all components start transmitting
their events at initial transmission
start tic 8, which results in a colli-
sion of all 4 messages. All compo-
nents detect the situation (they did
not receive an acknowledgement),
advance their collision counter, and

668 S. Feo-Arenis et al.

choose based on their ID and the new value of the collision counter a new start-
ing point. In slot 2, components 127 and 85 start their transmission at tic 7 while
components 42 and 1 continue to start at tic 8. The messages of components 127
and 85 collide once again, while 42 and 1 find the channel in use and wait for
the next slot to retry. In slot 3, all colliding components advance their counter
and now 127 chooses an earlier starting point while 85’s starting point does not
change. This allows 127 to transmit successfully while the remaining components
detect the transmission and wait. The process repeats and 85, 42 and 1 finally
deliver their events to their masters.

4.1 Alarm Deadlines

Environment and Collision Resolution Model. For the environment, we
employed an architecture similar to the one described in Section 3. The media
models were extended to explicitly accept and observe message collisions. A
newly added parameter models the range of radio communications, which limits
the number of components whose messages may collide. With a value of 1, only
components connected to the same master, and their master can collide, higher
values allow collisions with components connected to masters further away.

Additionally, a simpler radio jammer was used. The non-deterministic jammer
as shown in Figure 4 proved too complex in its behavior, causing the verification
to timeout. After consulting with the company and the certification authority,
we elicited additional assumptions about the jamming device used for EN-54
certification. Those assumptions allowed us to model and use a sequential jam-
mer, that deterministically chooses the channel to be jammed. Again, we used
quasi-equal clock reduction and the assumption that clocks are perfectly syn-
chronized. Note that, due to listen before talk, message collisions only occur if
transmissions start at the exact same time, hence perfectly synchronized clocks
present a more difficult scenario for collisions.

We modelled the tree splitting collision resolution algorithm for the alarm
behavior of the sensors and the forwarding component of repeaters. Repeaters
employ an event queue implemented as an array with a pointer variable. For the
verification of a single alarm and ten simultaneous alarms, all sensors start in
the alarmed state, this without loss of generality since it is the common behavior
for all possible detection time points in the previous slot. In the model for two
alarms, non-determinism is introduced to allow for the alarms to occur at all
possible points inside a 2-second interval, in particular simultaneously.

Verification and Results. The event forwarding mechanism of the proposed
design posed a challenge for verification for two main reasons: (a) The forwarding
times strongly depend on the topology, in particular on the number of repeaters
along the way to the central unit, and (b) the algorithm employs complex data
structures.

The EN-54 standard requires that an “especially difficult” topology is used
in certification tests. The developers agreed with the certificate authority on
one which involves the maximum number of chained repeaters allowed by the

The Wireless Fire Alarm System 669

Table 3. Resource consumption for the verification of the alarm functionality

T = T1 (palm tree, full coll.) T = T2 (palm tree, limited coll.)

Query ids seconds MB States seconds MB States

Alarm1T - 3.6± 1 43.1± 1 59k ± 15k 1.4± 1 38.3± 1 36k ± 14k

Alarm2T seq 4.7 67.1 110,207 0.5 24.1 19,528

Alarm10T seq 44.6 ± 11 311.4 ± 102 641k ± 159k 17.3± 6 179.1 ± 61 419k ± 124k

opt 41.8 ± 10 306.6 ± 80 600k ± 140k 17.1± 6 182.2 ± 64 412k ± 124k

design and is expected to cause many collisions based on the IDs of the involved
components. This topology resembles a “palm tree”, with the central unit as
root, 5 chained repeaters, and 10 sensors connected to the farthest repeater.

We realized the chosen topology using Uppaal, but had to use the convex-hull
overapproximation [25] to successfully verify all properties. For the verification
runs, we considered different scenarios for the “palm tree” topology along several
dimensions: 1. The range of the collisions (“full” for all components colliding,
“limited” for only neighboring components colliding) 2. The assignment of IDs
for the colliding sensors (“opt” for optimized IDs with large edit distances and
“seq” for IDs sequentially assigned) 3. Which receiver is influenced by the radio
jammer (averaged results are shown). Average time, memory and states explored
are shown in Table 3. Additionally, we were requested by the company to extract
the expected worst-case response times for alarm delivery. We employed the inf
and sup functions provided by Uppaal, and obtained upper bounds for the time
needed to deliver 10 simultaneous alarms with the IDs sets we considered: in T1

the 1st alarm is displayed after at most 4.32s (T2: 5.89s), and the 10th alarm
after at most 44.4s (T2: 33.45s). As soon as prototype hardware and software
were available, the developers measured the response times for different scenarios
and proved the model predictions accurate. This validation step enhanced the
confidence of the developers in their design.

4.2 Non-Starvation of the Collision Resolution

Although valuable for certification, only limited topology and scenario coverages
are achieved by the results reported on in Section 4.1. To increase confidence
on the effectiveness of the collision resolution protocol, we set out to provide
evidence that delivery of messages is ensured. That is, that the protocol satisfies
the liveness property that a message delivery request is eventually served.

Untimed Collision Resolution Model. For more general scenarios than the
ones considered in Section 4.1, Uppaal proved unwieldy. Thus we provide a
Promela [14] model for SPIN, which is a state-of-the-art tool for checking models
with bounded integer data. In our model, a single process non-deterministically
selects, from a given set I of component IDs, N ∨ |I| component IDs which
will detect an alarm. The protocol state is encoded by an array indexed by
the component IDs allowed in the system (256 in our case). At each position,

670 S. Feo-Arenis et al.

there is a collision counter and binary flags indicating whether the component
detected an alarm and whether it has delivered its message. One step of the model
represents the evolution during one slot. In the step, collisions are detected and
start-times are updated by executing the collision resolution algorithm for each
active entry of the array. The time when the alarm is detected is also chosen
non-deterministically for each selected component. Thus with, e.g., a given set
I = {i1, . . . , i10} of 10 IDs the case N = 3 analyses all possible collisions of size
1, 2, and 3 with any possible overlap in time. For instance, the case that only
i1, i2 detect an alarm at the same time is covered by the case where i3 detects
an alarm earlier and immediately transmits its message successfully.

Topology Coverage. The model represents one-hop collisions, that is, col-
lisions between sets of components whose messages can collide, similar to the
models employed for the verification of the failure detection mechanism (cf. Sec-
tion 3.1). A choice of N IDs from I in our model covers all topologies where those
IDs are logically and physically distributed such that their messages may collide.
Verifying the model for a given value of N is equivalent to checking liveness for
the protocol in all topologies with up to N colliding messages.

Table 4. Resource consumption for
the verification with SPIN 6.2.3

|I| N sec. MB States

255 2 49 1,610 1,235,970

H 10 3,393 6,390 6,242,610
L 10 4,271 10,685 10,439,545
Rnd 10 4,465 11,534 11,268,368
average 4,138 9,994 9,763,809

Verification and Results. The analysis
of the untimed model uncovered several vul-
nerabilities of the protocol. Firstly, there is
an issue present in all carrier sensing proto-
cols: The hidden terminal problem. When
two components are unable to detect the
transmissions of each other and repeatedly
transmit simultaneously, effectively causing
a common receiver to lose all information.
The problem was deemed, however, accept-
able by the developers, since it rarely occurs
in practice and can be easily avoided by slightly adapting the physical distri-
bution of sensors. Therefore we only considered scenarios without the hidden
terminal problem for the verification.

For component selections with N = 2, a problem of the limited number of
starting points for transmissions was uncovered: Whenever components with IDs
0 and 128 entered into collision resolution with a third component causing them
to collide at the same tic, the algorithm caused the collision to repeat in an
endless loop. Due to the similar binary representations of the IDs, identical and
repeating start point selections were made by both components. The company
adapted the configuration tools for the WFAS in a way that avoids assigning
these IDs to components in close physical proximity. For higher values of N , the
memory and time available were insufficient. We thus resorted to sampling IDs
according to the similarity of their binary representation. We observe that the
steps of the collision resolution algorithm correlate with the similarity between
the binary strings of the IDs The average resource consumption figures for our
verification effort with SPIN are shown in Table 4. We performed random selec-
tion of ID assignments for collisions of 10 sensors. The sampling was guided to

The Wireless Fire Alarm System 671

explore the effect of similarity using the Hamming distance of the components
within a sample. Three different categories were chosen: low similarity (L), high
similarity (H), and pure random samples (Rnd). In total, we sampled 31,744
different 10-component selections. As seen in Table 4, similarity appears to have
an inverse correlation with the size of the explored state space. We can thus
assume that a good coverage over the space of ID selections was achieved.

5 Conclusion

The formal modelling and verification of the new Wireless Fire Alarm System
proved challenging. Employing different techniques and tools such as property
decomposition, internal assumption treatment, meta-reasoning about topology
coverage, and timed and untimed verification support of Uppaal and SPIN
enabled us to dependably provide sufficient evidence that EN-54 certification
tests will not fail due to design flaws. All models are available for download [1].

Our verification effort proved valuable for the development process of the com-
pany involved. We discovered previously unknown flaws that triggered significant
revisions of the design. For the final design, we delivered concrete information
about the operational circumstances for which our verification results apply. Ac-
cording to the testimony of the company, the project was accelerated compared
to previous developments without the use of formal methods: The first prototype
implementation already passed all initial in-house tests, thus the test phase was
substantially shortened and the effort of bug-fixing ameliorated.

What can be learned from our effort? We feel that the key for providing
valuable results in limited time was to generalize and formally specify relevant
and involved test procedures, and verify that tests following those will be passed.

Because most companies specify tests and are used to this activity, formalizing
test procedures seems to be a cost-efficient way of obtaining precise specifications
for formal verification. From our experience, verifying that a design will pass all
tests according to the given generalized test procedure can avoid huge test efforts;
in addition, verification does not require initial implementations and hardware
prototypes as opposed to conventional testing.

We related the models to the knowledge and experience of the designers by
simulating different scenarios directly in Uppaal. Discussing these scenarios
facilitated the assessments of whether the models faithfully represent the design
under development, i.e. model validation. In our case, a further indication for
validity is that time bounds predicted by the model could be confirmed by the
developers by measuring the implemented system.

Of course, the development goal here was not a system which only passes the
certification tests, but a good system, one that fulfills all functions it was designed
for. The WFAS, for example, should properly handle the failure of more than
one sensor at a time. Checking such scenarios is possible with our techniques and
would further increase confidence, but incurs additional costs for specification
and modelling. Here, conventional testing is appropriate: From knowledge about
the models, we expect the given scenarios to pass.

672 S. Feo-Arenis et al.

We see that formal methods and tools available today are capable of treating
problems of SMEs while adding value to their development process. A priori
design verification as conducted in our case study facilitates finding design errors
early and potentially saving efforts and costs. For the certification of critical
systems, verification of design models could also improve certification processes,
in addition to the verification of binaries as in DO-333 [22].

References

1. http://swt.informatik.uni-freiburg.de/projects/CaseStudyRepository/WFAS
2. SeCa GmbH, http://seca-online.de/home.html,313
3. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

6. Chaochen, Z., et al.: A calculus of durations. Inf. Proc. Lett. 40(5), 269–276 (1991)
7. Dietsch, D., Feo-Arenis, S., Westphal, B., et al.: Disambiguation of industrial stan-

dards through formalization and graphical languages. In: RE, pp. 265–270 (2011)
8. DIN, E.V.: Fire detection and fire alarm systems; German version EN 54 (1997)
9. Dong, Y., Smolka, S.A., Stark, E.W., White, S.M.: Practical considerations in

protocol verification: The e-2c case study. In: ICECCS, p. 153 (1999)
10. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:

Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

11. Garcés, R., Garcia-Luna-Aceves, J.J.: Collision avoidance and resolution multiple
access (CARMA). Cluster Computing 1(2), 197–212 (1998)

12. Gebremichael, B., Vaandrager, F., Zhang, M.: Analysis of the Zeroconf protocol
using Uppaal. In: EMSOFT, pp. 242–251. ACM (2006)

13. Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing quasi-
equal clocks in networks of timed automata. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 155–170. Springer, Heidelberg (2012)

14. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23(5), 279–295 (1997)
15. Jackson, D.: A Direct Path to Dependable Software. CACM 52(4), 78–88 (2009)
16. Jubran, O., Westphal, B.: Formal approach to guard time optimization for TDMA.

In: RTNS, pp. 223–233. ACM (2013)
17. Kamali, M., et al.: Self-recovering sensor-actor networks. In: Mousavi, M.R.,

Salaün, G. (eds.) FOCLASA. EPTCS, vol. 30, pp. 47–61 (2010)
18. Kopetz, H., et al.: The time-triggered architecture. P. IEEE 91(1), 112–126 (2003)
19. Madl, G., et al.: Verifying distributed real-time properties of embedded systems via

graph transformations and model checking. Real-Time Systems 33, 77–100 (2006)
20. Olderog, E.R., Dierks, H.: Real-time systems. Cambridge University Press (2008)
21. van Osch, M., et al.: Finite-state analysis of theCANbus protocol. In: HASE (2001)
22. RTCA: DO-333 Formal Methods Supplement to DO-178C and DO-278A (2011)
23. Tripakis, S., et al.: Implementing synchronous models on loosely time triggered

architectures. IEEE Transactions on Computers 57, 1300–1314 (2008)
24. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing

protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

25. Wong-Toi, H.: Symbolic Approximations for Verifying Real-Time Systems. Ph.D.
thesis, Stanford University (1995)

http://swt.informatik.uni-freiburg.de/projects/CaseStudyRepository/WFAS
http://seca-online.de/home.html,313

Formally Verifying Graphics FPU

An IntelR© Experience

Aarti Gupta, M.V. Achutha Kirankumar, and Rajnish Ghughal

Intel Corporation
{aarti.gupta,achutha.kirankumar.v.m,rajnish.ghughal}@intel.com

Abstract. Verification of a Floating Point Unit (FPU) has always been
a challenging task and its completeness is always a question. Formal
verification (FV) guarantees 100% coverage and is usually the sign-off
methodology for FPU verification. At IntelR©, Symbolic Trajectory Eval-
uation (STE) FV has been used for over two decades to verify CPU
FPUs. With the ever-increasing workload share between core-CPU and
Graphics Processing Unit (GPU) and the augmented set of data stan-
dards that GPU has to comply with, the complexity of graphics FPU
is exploding. This has made use of FV imperative to avoid any bug es-
capes. STE which has proved to be the state of the art methodology
for CPU’s FPU verification was leveraged in verifying IntelR©’s Graphics
FPU. There were many roadblocks along the way because of the extra
flexibility provided in graphics FPU instructions. This paper presents
our experience in formally verifying the graphics FPU.

Keywords: Formal verification, Symbolic Trajectory Evaluation, Graph-
ics, Floating Point Unit.

1 Introduction

FPU verification is usually among the top check-list items before any processor
tape-out1. It has been in the spotlight especially after the infamous bug escape
of Pentium FDIV [1].

FPUs are usually very data-intensive designs and getting complete coverage
on these is next to impossible through dynamic simulations. For example, an
instruction with three 64-bit operands will require 2192 input data combina-
tions. Adding the control signals to the list of inputs increases the combinations
exponentially which will require many life-years to completely validate one in-
struction. The only way to get complete coverage on such designs is through
FV.

FV is the act of proving or disproving the correctness of the intended al-
gorithms underlying a system with respect to a certain formal specification or
property, using formal methods of mathematics [2]. There are numerous formal

1 In Electronics design, tape-out is the final result of the design cycle for integrated
circuits.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 673–687, 2014.
c© Springer International Publishing Switzerland 2014

674 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

methods widely applied in the semiconductor industry to verify different types
of designs. One needs to choose the formal method that suits the complexity of
the design under test.

It has always been a challenge to find a formal method that gives proof con-
vergence on a design like FPU which has humongous data-space to be covered.
STE is a formal methodology developed at Intel to provide a solution to this
problem [5, 6]. It has been optimized for datapath designs and has been ex-
tensively applied in verifying Intel’s core-CPU FPUs. It has been proved very
effective at handling large arithmetic circuits and establishing their correctness
against a formal specification and discovering very difficult to find bugs in the
process which would have gone undetected by any other form of validation. For
example, STE-based formal verification was used in Nehalem c© execution cluster
verification to replace traditional simulation [3].

Despite STE’s success in formally verifying arithmetic designs in core-CPUs,
its application to graphics design projects has been limited. Our team at Intel
pioneered the application of STE on large-scale industrial graphics designs [4].
This methodology has been successfully applied on three graphics projects till
now and a large number of high quality bugs were found in the process. This
paper presents the stumbling blocks that were encountered in the endeavor and
how they were conquered.

A brief overview of STE is given in Section 1. An outline of Intel’s Graph-
ics FPU is presented in Section 2. Section 3 details the problems faced during
STE application on Intel’s Graphics FPU verification and the solutions devised
for them. Results of this exercise are published in Section 5 and the paper is
concluded with a brief summary in Section 6.

2 What Is STE?

Symbolic trajectory evaluation (STE) is an Intel-internal FV method originally
developed by Seger & Bryant in 1995 [5, 6]. It uses a symbolic representation
of four-state signal values using a binary decision diagram (BDD) [7] to do
symbolic simulation at the logical gate level. It verifies that system’s behavior
meets a specification expressed in a very restricted temporal logic, reFLect [8].
FL or reFLect is a lazy, strongly typed functional language in the ML family.

Fig. 1 explains the basic working of STE in a very simplified manner. Given
a design under test (DUT) which performs AND operation on its three inputs
(I/Ps), the standard process will be driving test-vectors for each of the 8 possible
combinations of the I/Ps and matching the outputs with the expected outputs
(“EO” in truth tables of Fig. 1). The vector-set can be reduced by performing
three-valued simulation instead, by driving X on certain inputs which are don’t
cares for specific input combinations. Even more efficient verification would be
possible if variables (“a”, “b”, and “c” in the example of Fig. 1) are dropped on
the input nodes instead of driving specific values (0/1/X). The circuit is then
simulated symbolically to generate a symbolic function of “a”, “b”, and “c” (can
be represented as BDD). This output BDD at node O can be matched with the

Formally Verifying Graphics FPU 675

Fig. 1. Test Vectors Required in Different Types of Verification for an Example DUT

expected output “EO” (specification calculated as symbolic function) to prove
the circuit correctness.

The basic flow-diagram of verification using STE is shown in Fig. 2. STE
checks that the symbolic simulation output of the DUT matches the given spec-
ifications under a defined set of constraints. Constraints define the behavior of
input nodes (src nodes) at an arbitrary input time (src time). For a particular
datapath to be tested, inputs that are free to take any value are driven symbolic
values, inputs those are required to be fixed are driven constants (0/1), and all
other nodes that don’t fall in the cone of influence are made don’t cares (X).
Specifications express requirements that should hold on output nodes (wb nodes)
at writeback time (wb time = src time + latency of the datapath). Constraints
and specifications are written in FL. STE computes a symbolic representation
for each node (n,t), extracts node-time information at writeback (wb ckt) and
checks against the writeback specification (wb spec) provided by the user.

STE has been extremely successful in verifying properties of circuits contain-
ing large data-paths [9–11]. The Common Verification Environment (CVE) was
developed to create a standard, uniform methodology for writing specifications
and carrying out verification tasks using STE. The CVE is built upon a generic
abstract model of the DUT. CVE combines proof engineering and software en-
gineering to create a standard, uniform methodology for writing specifications
and carrying out verification tasks. The aim of the effort is to support reuse and
code maintenance over a constantly changing design, and separate common and
project-specific parts to allow shared code to be written only once.

The existing proofs of CVE were taken as the base and enhanced for the ad-
ditional requirements for graphics FPU validation using STE. The requirements
and enhancements done are described in Section 4.

676 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

Fig. 2. Basic Flow Diagram of STE Verification

3 Overview of Intel’s Graphics FPU

A floating-point unit (FPU) is an essential ingredient of the computing environ-
ment to carry out precise operations on floating point numbers. Typical operations
are addition, subtraction, multiplication, division, square root, and bit-shifting
[12]. The FPU performs the desired operation by means of executing the micro-
instructions (uops) or opcodes on the given set of input data or operands.

Intel’s graphics FPU is capable of performing a single instruction on multiple
data (SIMD). This is achieved by architecting different data pipelines or channels
which can process different sets of data in parallel [Fig. 3].

Fig. 3. Flow Diagram of a Generic Intel’s Graphics FPU

Formally Verifying Graphics FPU 677

4 Challenges of Graphics FPU FV

As mentioned in Section 1, CPU FPUs are traditionally being verified using
STE at Intel for over 20 years. Thus, it can be assumed that highly stable and
pre-verified STE proof specifications for major arithmetic operations should be
already in place in CVE. And since the algorithms and the expected results for
a set of inputs are not expected to change for arithmetic operations, those CPU
proof specifications should be easily portable for the verification of Graphics
FPU.

However, even with such a strong proof infrastructure the development of
proofs for next-generation graphics FPU took considerable effort because of the
inherent differences in the Instruction Set Architecture (ISA) of CPU & GPU.
A detailed discussion on these differences, the verification difficulties put forth
by them, and the actions adopted to meet the challenges are presented in the
following sub-sections.

4.1 Extra Instruction Qualifiers

Graphics applications usually work on a huge set of data in parallel and work-
loads involve manipulating a large number of operands in a similar fashion at
a particular time. Thus, if a series of instructions can be combined into one,
it will increase the efficiency and decrease the power-consumption. With this
principle in mind, some instruction qualifiers were added to the Intel’s graphics
ISA, which when used in conjunction with the basic instruction gives an effect of
a series of instructions executed as a block. As shown in Fig. 4, operation OP3
using a negate source modifier can produce the same result as the combination
of OP1 and OP2.

Fig. 4. Example of Instruction Qualifier Usage

Table 1 gives a brief list of extra instruction qualifiers added to the graphics
ISA. The verification challenges posed due to these qualifiers are explained below:

No 1:1 Mapping with Existing CVE Proofs. Fig. 5 illustrates the differ-
ences between the instruction formats of CPU and GPU. The additional instruc-
tion qualifiers in the FPU ISA break a direct mapping of the STE proofs from
CPU to GPU and hence preclude the direct reuse of the existing CVE proofs.
The goal was to find a solution which involves minimum changes to the CVE
infrastructure and still be compliant to the larger goal of CVE reuse.

678 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

Table 1. Some Instruction Qualifiers used in Intel’s Graphics ISA

Instruction Qualifier Operation

Source Modification Allows negate/absolute/(negate+absolute)
(srcmod) of any operand

Conditional Allows the result of operation
Modifiers (cmod) to be compared w.r.t 0 and this

result byproduct to be sent out as conditional flags.

Saturation (sat) Allows the result to be
clamped to certain limits

Accumulator Source Allows one of the operand
(accsrc) to be taken from accumulator

Accumulator destination Allows the result to be
(accdst) directly written into accumulator

Predication (pred) Allows conditional SIMD
channel selection for execution

Fig. 5. Instruction Formats for GPU and CPU

Solution. Different pre-processing & post-processing functions were written to
model the behavior of these qualifiers and appended in CVE. The proof speci-
fications were modified to pick-up these functions depending upon the value of
the qualifiers and the sources/results were manipulated accordingly.

Increased Design and Proof Complexity. New instruction qualifiers do
help in reducing the power expenditure and increasing the throughput, but with
an overhead of design complexity. Additional logic is inserted in the design for
the pre and post operations performed on the sources/results. Extra logic in the
design results in bigger BDD size of the symbolic circuit writeback (wb ckt) [Fig.
2] extracted after the STE does symbolic simulation of the circuit.

These extra switches affect the computation of the symbolic specification
writeback (wb spec) as well. Inclusions of new input variables due to these
switches inflate the BDD size of the wb spec. With both wb ckt & wb spec
BDDs magnified manifold, STE’s symbolic checker struggles to get a proof con-
vergence on some complex opcode verification tasks.

Solution. Various complexity reduction techniques were employed to aid STE in
getting proof convergence on complex proof exercises. Some of those techniques
are explained below:

Formally Verifying Graphics FPU 679

• Structural Decomposition: This method involves dividing the claims into
sub-claims by applying one or more cut-points in the design and verifying the
logic from the inputs to one cut-point and then from one cut-point to next
cut-point sequentially and finally from the last cut-point to the output. Fig. 6
shows one example of structural decomposition. Here, instead of verifying the
design end-to-end (i.e. from “a0:an” to wb ckt) which might be too complex
task for the tool, the proof is divided in three sub-claims (SUB-CLAIM 0,
1 and 2) using two sets of cut-points (“b0, b1, b2” and “c0, c2”). Each of
these claims will now require a separate reference specification (SPEC 0,
1 and 2) which will define the functionality of the cut-points or the final
output in terms of the primary inputs or the symbolically driven cut-points.
Taking the case of SUB-CLAIM 0, the symbolic simulation of the circuit will
generate BDDs for the cut-points “b0, b1 and b2” (wb ckt 0) in terms of the
input variables “a0:an”. SPEC 0 models the expected functionality of the
cut-points “b0, b1, b2” (wb spec 0). For proving SUB-CLAIM 0, the tool
will need to prove that wb ckt 0 and wb spec 0 are same. For the next sub-
claim, instead of driving the primary inputs, variables need to be dropped
on the cut-points “b0, b1, b2”. The functionality of “b0, b1, b2” proven in
the first sub-claim is taken as an assumption for the second sub-claim. This
way each sub-claim will be proven sequentially, thus dividing the complexity
as seen by the tool.

In one special case, we were required to introduce as many as five levels
of proof decomposition to make the design complexity manageable for the
tool. Without this technique, the tool was not able to handle huge size of
BDDs at the internal nodes.

Structural decomposition reduces the tool-effort for convergence exten-
sively, but requires a very involved study of the design to identify effective
cut-points. Also, specification development becomes pretty complex as it
needs to mimic the behavior of internal logic of the design to some extent
for defining the relationships of the cut-points with respect to the primary
inputs or the previous cut-points. One disadvantage of this method is that if
for a future project the internal logic of the design under test (DUT) changes,
the definitions of cut-points may also change and the proof development for
the new design needs to be redone.

• Case-Splitting: This method involves decomposing the claim (wb ckt =
wb spec) into a number of sub-claims for all possible values of a particular
input and then proving each of those sub-claims. Fig. 7 illustrates an example
of case-splitting based on a 2-bit variable “a”. It reduces the proof complexity
substantially, but at the cost of increased number of sub-claims to be run.
As the number of sub-claims is exponentially dependent on the number of
variables on which case-split is done, this technique can be applied only for
a selected few variables.

680 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

Fig. 6. Example of Proof Decomposition Technique

Fig. 7. Example of Case Splitting Technique

Formally Verifying Graphics FPU 681

In one of our most complex proofs, there was a need of splitting the claim
into 44,000 case-splits for proof convergence. Though the number seems to
be huge, the runtime was made manageable by running the proof in net-
batch mode where different case-splits were run on different machines in
parallel.

• Variable Re-Ordering: The size of a BDD is determined both by the
function being represented and the chosen ordering of the variables. The
previous two techniques concentrated on changing the represented function
by reducing the number of variables it depended on. The goal of variable-
reordering technique is to achieve best-possible variable order that gives
smallest BDD size.

In the example given in Fig. 8, with a bad variable-order we get a 6-node
BDD for a given function, while for the same function we can get a 4-node
BDD with a better variable order as shown in the figure.

Fig. 8. Different BDDs for Function: a[1]b[1]+a[0]b[0]

• Explicit Weakening: Explicit weakening involves manually investigating
the logic cone of the design and identifying the logic which is irrelevant for
the writeback computation. The irrelevant logic weakening controls the BDD
explosion on internal nodes.

For example in Fig. 9, if node “o” comes in the fan-in of the writeback
of the circuit, then by default all the BDDs for the nodes “a”, “b” and “s”
will be calculated by the STE simulator. If for a particular operation it is
known that the design will give a value “1” at node “s”, then the value at
“b” is a don’t care for “o” computation. The tasks of the STE simulator can
be eased out if it has been informed beforehand that the BDDs for node “b”
and its fan-in nodes need not be computed. This can be done by explicitly
weakening the node “b” by driving “X”.

682 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

Fig. 9. Example of Explicit Weakening

4.2 Mixed-Mode Instructions

As mentioned in Section 4.1, Intel’s Graphics ISA was designed to achieve high
efficiency and power-optimization. Exercising extra qualifiers was one such step
in this direction and next one was using mixed-mode instructions. A mixed-mode
instruction is a micro-operation where sources and destination data are allowed
to have different formats i.e. they are no longer constrained to be of same type.

Fig. 10. Example of a Mixed-Mode Operation

Mixed-mode instruction is a compound of three types of instructions which
would have been otherwise needed: up-conversion instructions, intended arith-
metic operation, and down-conversion instructions. For a three-operand instruc-
tion, a maximum of 4 instructions could be replaced with a single mixed-mode
instruction as shown in example in Fig. 10.

The verification challenges set forth by these mixed-mode instructions are
explained below:

No 1:1 Mapping with Existing CVE Proofs. As was the case with addition
of extra instruction qualifiers, there were no readily available CVE proofs for
mixed-mode operations.

Formally Verifying Graphics FPU 683

Solution. The opcode proof specifications were appended with up-conversion and
down-conversion functions to process the sources and the results appropriately.
A lot of effort was involved in this activity to make sure that all the FPU results
of the mixed-mode operation (data O/P, IEEE flags, accumulator destination
result, and conditional flag results) exactly match the combined results of the
fundamental instructions if executed individually.

Fig. 11. Usual Flow of Specification Generation

Since these mixed-mode instructions involve conversion and data manipula-
tions at different precisions there is a high risk of precision-loss due to rounding
error or any inaccuracy in the pre and post processing functions. The usual pre-
processing functions involve data manipulations based either on the operating
modes set by a control register (e.g. denormal handling, adherence to the re-
quired data standard etc.), or on the instruction qualifiers (e.g. smod, accsrc
etc.). The usual post-processing functions involve data-polishing functions like
rounding, normalization2, saturation etc. For mixed-mode operations, these pro-
cessing functions are conjoined with up-conversion/down-conversion functions.
Proof specification generation process for the example taken in Fig. 10 is elab-
orated in Fig. 11. The processing functions are structured so that the results
emulate exactly the behavior of individual instructions executed in sequence.

No Reference Standards. Mixed-mode operations were used for the first
time in the next-generation graphics FPU and thus no reference models were
available to countercheck the STE specifications. The C-based Reference Model,
used for checking the dynamic simulation results, was also not ready for these
instructions for major part of the front-end design cycle.

Solution. The STE specifications underwent a series of internal reviews to make
sure of its correctness.

2 Normalization is the process of converting a floating point number into normal rep-
resentation i.e.,in the form of “±1.abc× 2xyz”.

684 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

Increased Design and Proof Complexity. With input source format vari-
ables and output format variables allowed to take more possible value combi-
nations and with extra conversion and processing logic inserted, the BDD sizes
during STE circuit simulation and specification calculation started shooting up.
This limited the throughput of the tool as it started running out of memory.

Solution. Complexity reduction techniques like case-splitting, structural decom-
position, variable reordering and explicit weakening, as described in Section 4.1,
were applied more rigorously.

One specific example of case-splitting used largely for mixed-mode instructions
is shown in Fig. 12. Here a two-source instruction, where the two sources and
the destination are allowed to be of either single-precision (SP) or half-precision
(HP), is proved as a set of 8 smaller instructions constraining the input and
output formats to take only one of the 8 different possible combinations.

Fig. 12. One Example of Case-Split Method used for Mixed-Mode Instructions

4.3 Conformance to Different Standards

Graphic designs need to adhere to different data standards depending upon
the application it is used for. Sometimes absolute IEEE-754 [13] conformance
is required and in some cases the need is to comply with Open Computing
Language (OCL)[14]. In addition to this, the Intel’s Graphics ISA is structured
to allow one more mode of operation, alternative floating-point (ALT) mode,
where it complies with IEEE-754 standard but with some deviations.

The results of FPU may differ depending upon which floating-point mode is
chosen to work on. Control registers can be programmed to select this mode.
The verification challenges faced due to these options of working-modes provided
are described below.

Complex Proof Development. Now that the writeback is expected to differ
for same set of inputs depending on the mode of operation selected, it makes the
proof-development pretty complex.

Formally Verifying Graphics FPU 685

Solution. Results for different modes of operations are computed in parallel in
the specification and the final result is chosen depending on the value of mode
variable.

Increased Design and Proof Complexity. Flexibility of mode-selection adds
more variables in both wb ckt and wb spec evaluations. More variables imply
bigger BDDs which in turn makes proof convergence difficult.

Solution. Complexity reduction techniques as described in previous two sections
were put in use to assist the tool in overcoming state-space explosion limitation.

5 Results

Prior to STE inclusion in the validation tool-set, the Graphics FPU was be-
ing validated using four other validation methodologies. Table 2 gives a brief
summary of these methodologies.

Table 2. Different Validation Methodologies used for Graphics FPU Verification

Validation Description Reference
Methodology Model

Dynamic stress validation using DV C++ based Reference
DV1 targeted vectors generated Model + Intel

by Intel Internal tool Internal Floating
Point Library

Dynamic coverage-based validation DV C++ based Reference
DV2 using controlled random vector generation Model

by Intel Internal Tool

Dynamic validation using standard DV C++ based Reference
DV3 random test-bench features of Model

system verilog + Directed Testcases

Another Formal Verification C++ based specification
FV1 approach with C++ specification

against RTL

The STE methodology has been successfully applied in verifying FPU micro-
instructions for three graphics projects. Fig. 13 gives the comparison of STE
with the contemporary validation methods with respect to the number of RTL
bugs3 found over the duration of the three projects.

As can be seen in Fig. 13, STE has taken the lion share of the bug distribution
for these projects. During PROJECT 1, the graphics FPU design had undergone

3 Apart from RTL bugs, STE helped in finding DV reference model bugs when the
failures were tried to be reproduced in dynamic verification environment. Also, some
architectural specification bugs were found.

686 A. Gupta, M.V.A. Kirankumar, and R. Ghughal

drastic architectural changes and STE, though practiced first time in graphics
design, proved highly rewarding by unearthing as many as 168 RTL bugs in a
very short duration.

Fig. 13. Usual Flow of Specification Generation

After establishing itself as the fastest and the most dependable way of verifi-
cation during PROJECT 1, STE gradually resulted in the complete replacement
of DV1, DV2 and FV1 as PROJECT 3 execution was reached. The guaranteed
100% coverage and ease of use over different projects once the proofs are ready
made STE the tool of choice. DV3 was still exercised to work as a sanity-check
for STE assumptions and also to validate a small set of instructions which were
not being verified by STE.

Until now there had been only two bug escapes by STE in the timeframe of
three projects, and were caught late by DV after a lot of simulation cycles. On
post-mortem of both these bug escapes, it was found that the STE environment
was over-constrained (i.e. some valid scenarios were filtered out) due to some
wrong assumptions. To overcome this limitation a methodology was established
to check all the STE constraints at an upper hierarchy by modeling them as
system verilog assertions (SVA). Conversion of the STE constraints written in
reFLect language to SVA assertions was automated using internally developed
STE2SVA flow.

6 Summary

FPU being a datapath-intensive unit is a validation challenge because of the
enormous data-space required to be covered. This paper discussed how STE
FV was brought up to solve this verification issue. Intel’s graphics FPU verifi-
cation complexity is amplified by the additional controls provided with micro-
instructions. Even STE methodology frequently met with state-space explosion

Formally Verifying Graphics FPU 687

issues due to the added controls. This paper elaborated the various complex-
ity reduction techniques used to overcome these issues and presents the results
achieved on three graphics projects using this methodology.

Acknowledgements. We are thankful to Roope Kaivola and Tom Schubert for
training us on STE. Our sincere thanks to Intel’s CCDO FV team for building
the CVE infrastructure which was used extensively for this work. We would like
to thank Archana Vijaykumar for providing us this opportunity to perform this
work.

References

1. Coe, T., Mathisen, T., Moler, C., Pratt, V.: Computational Aspects of the Pentium
Affair. IEEE J. Computational Science and Engineering (March 1995)

2. Gupta, A.: Formal Hardware Verification Methods: A Survey. Formal Methods in
System Design 1(2-3), 151–238 (1992)

3. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing with
Formal Verification in IntelR© CoreTM i7 Processor Execution Engine Validation.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429.
Springer, Heidelberg (2009)

4. KiranKumar, M.A.V., Gupta, A., Ghughal, R.: Symbolic Trajectory Evaluation:
The primary validation Vehicle for next generation IntelR© Processor Graphics
FPU. In: Proceedings of the 12th Conference on Formal Methods in Computer-
Aided Design, FMCAD 2012 (2012)

5. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design 6(2) (1995)

6. Hazelhurst, S., Seger, C.-J.H.: Symbolic trajectory evaluation. In: Kropf, T. (ed.)
Formal Hardware Verification, ch. 1, p. 378. Springer, New York (1997)

7. Akers, S.B.: Binary Decision Diagrams. IEEE Transactions on Computers c-27(6),
509–516 (1978)

8. Paulson, L.: ML for the Working Programmer. Cambridge University Press (1996)
9. Kaivola, R., Naik, A.: Formal verification of high-level conformance with symbolic

simulation. In: HLDVT, IEEE International Workshop on High-Level Design Val-
idation and Test, pp. 153–159 (2005)

10. Kaivola, R., Narasimhan, N.: Formal verification of the PentiumR© 4 floating-point
multiplier. In: DATE, Design, Automation and Test in Europe, pp. 20–27 (2002)

11. Leary, J.O., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally verifying IEEE Compli-
ance of floating-point hardware. In: Intel Developer Forum, Santa Clara, CA. First
quarter (1999), http://developer.intel.com/technology/itj/

12. Floating Point Unit, http://www.johnloomis.org/ece314/notes/fpu/fpu.pdf
13. IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std 754-1985

(1985)
14. OpenCL - The open standard for parallel programming of heterogeneous systems,

http://www.khronos.org/opencl/

http://developer.intel.com/technology/itj/
http://www.johnloomis.org/ece314/notes/fpu/fpu.pdf
http://www.khronos.org/opencl/

MDP-Based Reliability Analysis
of an Ambient Assisted Living System

Yan Liu1, Lin Gui1, and Yang Liu2

1 National University of Singapore
{yanliu,lin.gui}@comp.nus.edu.sg
2 Nanyang Technological University, Singapore

yangliu@ntu.edu.sg

Abstract. The proliferation of ageing population creates heavy burdens to all
industrialised societies. Smart systems equipped with ambient intelligence tech-
nologies, also known as Ambient Assisted Living (AAL) Systems are in great
needs to improve the elders’ independent living and alleviate the pressure on
caregivers/family members. In practice, these systems are expected to meet a cer-
tain reliability requirement in order to guarantee the usefulness. However, this is
challenging due to the facts that AAL systems come with complex behaviours,
dynamic environments and unreliable communications. In this work, we report
our experience on analysing reliability of a smart healthcare system named AMU-
PADH for elderly people with dementia, which is deployed in a Singapore-based
nursing home. Using Markov Decision Process (MDP) as the reliability model,
we perform reliability analysis in three aspects. Firstly, we judge the AAL sys-
tem design by calculating the overall system reliability based on the reliability
value of each component. Secondly, to achieve the required system reliability,
we perform the reliability distribution to calculate the reliability requirement for
each component. Lastly, sensitivity analysis is applied to find which component
affects the system reliability most significantly. Our evaluation shows that the
overall reliability of reminders to be sent correctly in AMUPADH system is be-
low 40%, and improving the reliability of Wi-Fi network would be more effective
to improve the overall reliability than other components.

Keywords: Reliability Analysis, MDP, Ambient Assisted Living, Sensitivity.

1 Introduction

The rapid increase of ageing population in all industrialised societies has raised seri-
ous problems, e.g., creating enormous costs for the intensive care of elderly people.
The Ambient Assisted Living (AAL) system, as a promising solution is designed to
assist their independent living [16,20]. In such systems, sensors and inference engines
are widely used to perceive environment changes and user intentions. Applications and
actuators are triggered accordingly to provide necessary assistance to the user. For ex-
ample, if the system detects abnormal behaviours such as the user is showering for too
long, a reminder will be prompted to advise the user finish showering. However, lack of
reliability guarantees prevents AAL systems to be widely used. A failure of prompting
a reminder could harm the user’s life, e.g., a call-for-help alert failed to prompt when

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 688–702, 2014.
c© Springer International Publishing Switzerland 2014

MDP-Based Reliability Analysis of an Ambient Assisted Living System 689

the elder falls may leave him/her unattended for a long time leading him/her to death.
Thus, it is essential to conduct reliability analysis and provide quantitative guarantees
on the system before deployment.

An AAL system is considered reliable if the reminder service is correctly delivered
to the right person at the right scenario. It is a challenging task to analyse the reli-
ability of such systems. First of all, AAL systems are inherently complex. They are
usually composed of multiple layers of software and hardware components which have
limited capability and accuracy. Previous research [17,18] reported that the often inher-
ent inaccurate and unreliable low-level sensors are used to detect context information
from the environment. This is probably due to cost efficiency considerations, i.e., low-
capability but cheap sensors are selected due to budget constraints. Furthermore, AAL
systems rely heavily on different types of wireless networks with different reliability.
For instance, sensors transmits signals via Zigbee, a low-cost low-power wireless mesh
network, while software components and actuators exchange messages using more reli-
able networks such as WLAN. Moreover, human errors, e.g., a user may forget to wear
the RFID tags, could also cause the failure of the system. Since failures of such systems
are unavoidable, it becomes critical to manage the reliability in an acceptable level.

Quantitative analysis of probabilistic systems gains great importance, especially for
complex systems with non-deterministic behaviours. AAL systems are typically user
centred so that their system behaviours are non-deterministic due to unpredictable user
activities. Thus, we propose Markov Decision Process (MDP) as the modelling for-
malism for its support of both non-deterministic as well as probabilistic choices. Three
general but highly important reliability issues are investigated. First, “what is the overall
system reliability if reliability of all its components is known, considering all possible
user behaviours, and unreliable factors?”. This is the problem of reliability prediction.
This question is to be answered necessarily before system deployment since end users
would prefer to know how reliable the system is. Secondly, “what is the reliability re-
quired on certain components if there is a requirement on overall system reliability?”.
This is the problem of reliability distribution. Addressing this issue is useful because we
can have specific quantitative requirements on selecting software and hardware compo-
nents, whose quality are often cost sensitive. Last but not the least, to find the most
critical components affecting the system reliability via sensitivity analysis is essential
to improve the overall system reliability effectively with limited resource [5,7]. For ex-
ample, if a system is shown to be not reliable enough based on current component’s
reliability, it is desirable to prioritise the components such that reliability improvement
of a higher priority component would result in more improvement on overall system
reliability.

In this work, we applied the reliability analysis on a smart healthcare system, AMU-
PADH [4]. Our evaluation shows that its overall reliability is below 40%. In order for
the system to reach a reliability of 0.4, each Wi-Fi network related node should have
a reliability of at least 0.9 proved in the reliability distribution analysis. However, our
analysis also concludes that it is impossible for the system reliability to reach 0.5 based
on the current design. There is such a scenario that the system always fail to recognise
who is the person doing the abnormal activity. Thus, half of the chances the reminder
will be sent to a wrong person. Lastly, the sensitivity analysis suggests that improving

690 Y. Liu, L. Gui, and Y. Liu

the reliability of Wi-Fi network would be more effective to improve the overall relia-
bility. In the end, the analysis results are reported to AMUPADH designers who con-
firmed their consistency with the real data collected from the hospital. As a result, they
redesigned the activity recognition rules and added more nodes in the Wi-Fi network to
increase its reliability. Our experience in this case study demonstrates the usefulness of
reliability analysis using probabilistic models. It is able to provide good estimation of
system reliability and identify the critical component inside the system.

Related Works. In the literature, there has been some work on analysing reliability
of complex systems. Reliability analysis by modelling system architecture as Discrete-
time Markov chain (DTMC) is first proposed by Cheung [5] in 1980. It has been applied
in various case studies, e.g., Gokhale et al. [8] analysed a stochastic modelling tool,
SHARPE by constructing a DTMC and found out the relation between system reliabil-
ity and fault density per subsystem. Goseva et al. [9] performed reliability predicting
and sensitivity analysis on a system of the European Space Agency. Wang et al. [19]
analysed a stock market system by constructing DTMC and predicted the system reli-
ability. However, to the best of our knowledge, there is no reliability analysis has been
conducted on any AAL system which involves not only system reactions but also non-
deterministic human behaviours. In such a complex system, probability distribution of
transitions among system components are hard to obtain. Thus, we choose MDP over
DTMC. Furthermore, most of the works are focusing on predicting reliability of exit-
ing systems while we contribute more on finding the best solutions to improve system
reliability via reliability distribution and sensitivity analysis.

The remainder of the paper is organised as follows. Section 2 introduces our case
study system, AMUPADH, a typical AAL system designed for elderly dementia peo-
ple’s healthcare. Sections 3 demonstrates the process of modelling system in MDP using
a typical scenario in AMUPADH. Techniques for reliability analysis are briefly intro-
duced in Section 4 as well as the experiments and discussions. Section 5 concludes the
paper and discusses future directions.

2 AMUPADH: An Ambient Assisted Living System for Elderly
Dementia People’s Healthcare

Dementia is a progressive, disabling, and chronic disease common in elderly people.
Elders with dementia often have declining short-term memory and have difficulties in
remembering necessary activities of daily living. However, they are able to live in-
dependently in assisted living facilities with little supervision. AMUPADH system is
designed for this purpose by providing necessary assistance in the form of reminders.

AMUPADH is a project initiated in Singapore to design smart healthcare systems for
monitoring and assisting the daily living of elderly people with dementia. This project
started with three months’ visits to PeaceHeaven1 nursing home for collecting require-
ments. By observing the patients’ daily life and interviewing nurses/doctors, two criti-
cal issues associated with dementia patients are raised which are sleeping behaviours in

1 Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.

MDP-Based Reliability Analysis of an Ambient Assisted Living System 691

Fig. 1. An Overview of AMUPADH system design

bedroom and showering behaviours in bathroom. With 21 months research and devel-
opment focusing on providing assistance on these two scenarios, the system was finally
deployed in the nursing home to be tested with real dementia patient users for 6 months.
Our idea is inspired by this trial deployment.

Preliminary data collected in the trial shows that the importance of system reliability
is underestimated. Unreliability caused by sensor/device failures, network issues and
unforeseen human errors draws considerable attentions of the stakeholders.

2.1 System Components

The design of the system is shown in Figure 1. It mainly consists of three sub-systems,
Data Acquisition component containing various sensors, the Context Processing and
Inference Engine components based on first order logic rules and Reminder System for
rendering suitable reminder services to the patients.

– Data Acquisition In the system, multiple sensors are deployed to acquire infor-
mation from the home environment. For example, if someone turns on the shower
tap, the shake sensor on shower pipe will be triggered and change its status to
Unstationary . A signal is generated and then sent to the central system via a Zig-
bee network. AMUPADH adopts a multi-modal sensor2 design for user monitoring.
This is due to users’ privacy concerns, video cameras are refused in bedrooms.

The PeaceHeaven nursing home has 13 separate Resident Living Areas (RLAs),
each designed as an individual home-like environment. Selected rooms for AMU-
PADH system deployment are equipped with two/three beds with a shower facility.

2 Multi-modal sensor also known as sensor fusion is the combining of sensory data from dis-
parate sources such that the resulting information is more accurate than using the sources
individually.

692 Y. Liu, L. Gui, and Y. Liu

Fig. 2. Sensor Deployment in PeaceHeaven

Three rooms are selected for deployment; and each room is shared by 2 or 3 peo-
ple. Figure 2 shows an exemplar sensor deployment for a twin shared room. The
pressure sensor under a bed mattress is used for detecting sitting/lying behaviour,
while the RFID readers are for detecting the identity of the person near the location.
In the bath room, a motion sensor detects human presence in the room, while the
vibration sensors are attached to water pipes and the soap dispenser for detecting
their usages.

– Context Processing and Reasoning Upon receiving a sensor signal, the central
system translates it into low-level context sensor events i.e., a signal unstationery
from shake sensor on shower pipe is translated to “Shower Tap On”. Different low-
level contexts are provided from different sensors. They are aggregated in the in-
ference engine for reasoning and generating high-level contexts, activities . This
task is performed by evaluating predefined activity recognition rules based on prior
knowledge of user behaviours. A typical rule is like: if shower tap is on and lasts
for 30 minutes, at the meantime a PIR sensor detects movements of someone in the
washroom; an abnormal behaviour, showering for too long is recognised, then a
message will be sent to the server indicating some patient is in the abnormal state
of showering for too long.

The messages are sent out via a shared bus within the central system. Note that,
AMUPADH aims for a multi-user sharing environment which is a challenging topic
in the activity recognition area. In fact, it is not only important to know which
activity is being carried on but also who is doing this activity. This adds complexity
to define the activity recognition rules. In the case that if the patient’s identity is
missing in a rule, the activity could be recognised for a different person, causing a
subsequent reminder to be prompted to a wrong patient. Our previous work [15,14]
discussed this issue in details. In this work, when defining the reliability of the
inference engine, we take this factor into account.

– Reminding System The reminding system listens to the messages sent from the
inference engine and decides which reminder service to render. For example, upon
receiving the message Activity.error .ShowerTooLong.patientA, the system will
invoke the service of playing a preloaded sound reminder on bluetooth speaker lo-
cated in the shower room correspondingly. In this case, the message is transferred

MDP-Based Reliability Analysis of an Ambient Assisted Living System 693

via bluetooth technology. In general, different message transmitting technologies
are used for different rendering devices. For instance, for reminders on mobile
phones, messages are transmitted through 3G network, while for iPad case, a small
home wide Wi-Fi network is used.

2.2 Six Reminding Scenarios

In AMUPADH system, there are six reminding scenarios targeting at providing assis-
tance for six abnormal behaviours of elderly patients with dementia.

– Using Wrong Bed (UWB) Since a room in the PeaceHeaven nursing home is
shared by 2-3 patients, some of them, especially the new residences, tend to lie
on a bed without recognising whether it is his/her own bed. This behaviour is de-
tected by the bed pressure sensor and RFID reader. The reminder will be prompted
by a Bluetooth speaker beside bed or an iPad on the wall asking the patient to leave
the bed.

– Sitting on Bed for Too Long (SBTL) Some of the agitated patients often have
sleeping problems. They are easily bothered and irritated by the environment. A
typical symptom is that the patient will get up at midnight and sit on the bed for very
long time until assisted by nurses/caregivers. The abnormal scenario is captured by
bed pressure sensor and a timer in the mini-server. A reminder will be prompted
using similar devices as UWB scenario whispering the person to sleep or send an
alert to nurse’s PC console/ mobile phone.

– Shower No Soap (SNS) Due to memory loss, dementia patients constantly forget
the normal steps of performing an daily activity. In the taking shower activity, the
patient could forget what to do next right after the shower tap is turned on. It is
reported by the nurses that some of the patients finish the shower very fast with-
out applying soap. Concerned about the personal hygiene, patients presenting this
behaviour need help. Vibration sensors on the shower pipe and soap dispenser are
used to capture the activity. A reminder instructing the person to use soap will be
prompted by a Bluetooth speaker.

– Showering for Too Long (STL) Similar to the SNS scenario, some patients will
stand under the shower head for a long time. This is a critical issue that exposing in
the water for a long time could cause the patient faint. If not helped immediately, it
can even cause death. Similar sensors and devices are used as SNS scenario to help
the patient stop showering.

– Tap Not Off (TNO) It is often the case that dementia patients forget to turn off the
tap after showering. In order to save water and energy, this scenario is detected by
a RFID reader, a motion sensor and two vibration sensors. A reminder is prompted
on proper device according to patient location asking someone to turn off the tap.

– Wandering in Washroom (WiW) Caused by memory loss, it is possible for the
patient to forget at any step during showering. Thus, a wandering behaviour is also
typical and patients need assistance in such cases. The wandering behaviour is mon-
itored by a RFID reader and a motion sensor in the washroom. A leave-washroom
reminder will be prompted to the person.

694 Y. Liu, L. Gui, and Y. Liu

start

rfid, 0.75 pir , 0.98 shakeT , 0.99

shakeS , 0.99

shakeS , 0.99

shakeT , 0.99

Zigbee 0.9

mini
server

1

rule
engine 1router

0.95

BlueTooth, 1

Wi−
Fi

1

SmartPhone, 1

3G

1

bridge

0.98PC , 1

iPad, 1

0.8

1 1

1

1

1 1

1 1

1

1

1

0.7

1

0.6

0.8

1 1

0.75

0.95

Fig. 3. Bathroom Scenario- TNO: Tap Not Off

In fact, taking shower turns out to be the most concerned issue of nursing elderly pa-
tients with dementia. In PeaceHeaven, the nurses need to monitor the showering activity
of every patient. Considering the ratio of nurses to patients is 1:15, it creates a heavy
burden to nurses. To alleviate the problem, a two-level reminding solution is provided in
AMUPADH. When the system recognises an abnormal behaviour, it will prompt a re-
minder to the patient. If the problem remains, an alert will be sent to the nurse’s mobile
phone or PC console to raise her attention.

3 Modeling AMUPADH System

AAL systems are user driven such that the system behaviour contains non-determinism
due to the unpredictable user behaviours. Thus, MDP is chosen as the modelling for-
malism in this work. Compared to DTMC, MDP allows us to capture both probabilistic
and nondeterministic behaviours. A central issue in the AMUPADH system modelling
is that when to use nondeterministic choices over probabilistic choices. In general, prob-
abilistic choices can be viewed as informed nondeterministic choices. That is, we use a
nondeterministic choice when we have no definitive information on how the choice is
resolved. For instance, if all we know is that there are two different outgoing transitions
after executing a component C , we model the two transitions using a nondeterminis-
tic choice. If the choice is made locally, after testing C systematically, we learn the
frequency of each outgoing transition and we can model C with a probabilistic choice.

In practice, it turns out to be unrealistic to model all the scenarios using one MDP
model considering the complexity and readability. Thus, we split the model into six
models according to different scenarios by duplicating the same components. In the
following, we shall explain the modelling processes. Scenario TNO is taken as an ex-
ample for its richness of involved components. Generally, as shown in Figure 3, there

MDP-Based Reliability Analysis of an Ambient Assisted Living System 695

are three major elements in an MDP model for AAL systems, i.e., the nodes, the tran-
sitions and the reliability values.

Nodes. Typically, in an AAL system, the sources of unreliability could be failure of
sensors and network devices, error in softwares and connection loss/transmission failure
in networks. Thus, in an MDP model of an AAL System, nodes are the abstraction of
sensors, software components and network devices. To decide which device/component
is necessary to be modelled, we need to analyse the activity recognition rules. In TNO
case, four sensors are used for recognising this behaviour as introduced in Section 2.2.
Besides, there are multiple choices of playing this reminder, e.g., playing on an iPad
where reminder command is received via Wi-Fi network or on a Smart Phone through
3G network. Thus, the four sensors, iPad, smart phone, Wi-Fi network and 3G network
need to be included in the model as nodes. Similarly, the Zigbee network, mini server
and the rule engine need to be modelled as well.

In Figure 3, circle nodes denote sensors, square nodes denote hardware devices and
cloud shape nodes denote networks. Double circled nodes are accepting nodes repre-
senting a reminder is successfully delivered. The different shapes of nodes are used to
show the different types of components. In the MDP model, they are treated the same.

Transitions. In AAL systems, there are usually two types of relations between nodes,
happen-before and message-forwarding relations. Happen-before relation usually exists
among sensors saying that some sensor is triggered earlier than the others. It is able to
be derived from analysing the temporal relations between sensors according to their
spatial distribution. For example, in Figure 2, the RFID reader near the bedroom door
is triggered earlier than other sensors assuming the system starts with all users outside.
Thus, in the MDP model, it should be placed in front of the rest of sensor nodes.

However, sometimes, the happen-before relation is not deterministic. For instance,
for the model shown in Figure 3, there is no specific triggering orders between shake
sensors on the tap and soap dispenser. Thus, we need to enumerate all the possible order-
ings. Besides, there is one rule deciding this abnormal behaviour based on shower-pipe
vibration sensor only. Thus, there is a transition link from ShakeT to Zigbee making
the ordering asymmetric. Our experience suggests that it is better to enumerate all the
possible transition orders in the initial model, especially when there are multiple rules
defined for recognising the same scenario.

As for message-forwarding relations, they are extracted from the system design. For
example, in the TNO model, the messages are sent to the mini server via Zigbee net-
work. Thus, a Zigbee node is placed between the sensors and mini server. The transi-
tions between nodes denote the direction of message transmission. Similar methods are
applied for the rest of the transitions.

Reliability and Transition Probability Labelling. The final step is to label the nodes
and transitions. Nodes are labelled with reliability values of the corresponding devices.
For transitions, there are different cases. At the initial node, the outgoing transitions
usually representing the user behaviours. In the TNO case shown in Figure 3, there is
20% of time, the user will throw the RFID tags away (result drawn from an experiment
conducted by the engineers). Thus, initially, there are only 0.8 probability leading to

696 Y. Liu, L. Gui, and Y. Liu

Step 2
Reachability

Checking

Step 1
Obtain an MDP

Components
Reliability System Reliability

(b)

Step 1
Obtain a

Parameterized MDP
System

Reliability
Requirements

Step 2
Parameterized

 Reachability Checking

Distributed
Reliability on Each

Component

Step 3
Synthesize Reliability

Requirement for Components

A System
Architecture

 Legend
 Input/output of steps

 Input/output data
(a)

(c)

Step 1
Obtain a

Parameterized MDP

Step 2
Parameterized

 Reachability Checking

Reliability
Sensitivity of
Component i

Step 3
Obtain Differentiation Δi

A Component i
For Sensitivity

Analysis, And All
Components

Reliability

Fig. 4. Workflow: (a) Reliability Prediction; (b) Reliability Distribution; (c) Sensitivity Analysis

the next node. Additionally, the happen-before relations are usually non-deterministic
choices with no specific probabilities due to randomness of user activities, thus by de-
fault, we assign the value 1. As for forwarding relations, due to the signal strength, tran-
sitions to/from network nodes have different reliability values. Transitions from Wi-Fi
node to bridge node has the reliability of 0.8 since the bridge is placed on the wall out-
side the bedroom. The nurse PC in common area is further away from the bedroom,
thus the transition from bridge to PC is as low as 0.75.

In our case study, these reliability values are provided by system engineers. For-
tunately, AMUPADH system has been deployed in a real user environment for data
collection. During the 6 months trial deployment and 3 consecutive months, 24 hours
data collecting, the engineers are able to log every details of how the system works.
By comparing to the ground truth (manually logged by nurses in the nursing home)
and conducting statistical analysis, they are able to provide a good estimation of each
component’s reliability.

4 Reliability Analysis on AMUPADH: Experiments and
Evaluations

4.1 Reliability Analysis Tool Framework

We make use our home-grown tool RaPiD [11] for reliability analysis which is spe-
cially designed for solving reliability problems. The reliability prediction problem can
be solved conveniently using probabilistic model checking, whereas reliability distri-
bution and sensitivity analysis is supported by extending RaPiD. We use the standard
algorithms like value iteration or linear program solving [3] for calculating reliability.
Many other probabilistic tools like PRISM [13] can be easily extended to perform the
verification. In this section, we briefly introduce the workflows of the reliability analysis
including reliability prediction, distribution and sensitivity analysis, shown in Figure 4.

Reliability Prediction. As shown in Figure 4(a), the reliability value of each compo-
nent and an MDP model of a system are required for calculating the overall system

MDP-Based Reliability Analysis of an Ambient Assisted Living System 697

reliability. Reliability prediction is equivalent to check the probability of the system
never fails. It calculates the probability of reaching accepting nodes, Pr(M , s) from an
initial state to a goal state s on an MDP model M . A reliability range i.e., max. and min.
reachability is produced since multiple reachable paths are created due to nondetermin-
ism. Different methods have been developed to perform this task. Interesting readers are
referred to [11] for more details. We remark that, unlike DTMCs approach, the result
here is a probability range. The upper bound is the system reliability corresponding to
the best scenario in AAL systems, whereas, the lower bound is corresponding to the
worst scenario.

Reliability Distribution. In addition to Figure 4(a), reliability distribution analysis
shown in Figure 4(b) needs two more inputs: (1) a reliability requirement R on the
overall system; (2) a parameterised MDP model M with weights wix (denotes the reli-
ability of component x has a weight wi). Given a scheduler3 Φ, we can obtain the sys-
tem reliability (i.e., Pr(M , s)) as a polynomial function of x only. Then the constraints
on individual components are solved using numerical methods. RaPiD uses Newton’s
method, due to its fast convergence rate to the solution/root. It will calculate the lower
bounds on x for finitely many schedulers [3] among which the maximum value gives
us the minimum requirement on component reliability.

Sensitivity Analysis. Sensitivity analysis requires all component reliabilities known
in advance and an indication on which one of those components needs to be tested as
shown in Figure 4 (c). The sensitivity si of the i th component’s reliability Ri is defined
as a partial derivation (denoted by f w.r.t. Ri) of system reliability R, denoted as ∆i =
τf (R1,R2,...Ri,...Rn)

τRi
. However, analytical solution is hard when system is large and non-

deterministic. In this work, we investigate one component each time. Thus, the formula
is then reduced to ∆i = τV (init)

τRi
(V (init) is obtained via reliability distribution).

A thread denoting the sensitivity of a particular node can be obtained by solving this
equation.

Assumptions and Threads to Validity. The reliability analysis mentioned in Figure 4
is based on the probabilistic analysis on Markov models, which shares the same as-
sumptions with the conventional component-based reliability analysis [5,12,10,6]. It
assumes that there is statistical independence among failures of the components. More-
over, in our reliability analysis, we assume that any component’s failure will eventually
result in the failure of the system. Self-recovery/repair scenarios are not considered as
failure cases, and these scenarios can be modelled in the MDP [11].

4.2 Reliability Analysis Experiments

Based on the MDP models constructed in Section 3, we use the RaPiD tool for reliability
analysis. All the experiments are carried out on a PC with 2.7GHz Intel CPU, 8GB

3 A scheduler in the model denotes for one possible path from the starting node to one accept-
ing node. Since there are non-deterministic choices in the model, there are multiple possible
schedulers.

698 Y. Liu, L. Gui, and Y. Liu

Table 1. Reliability Prediction

Reliability UWB SBTL SNS STL TNO WiW
Number of Schedulers in MDP 32 24 32 16 64 16

Max Reliability 0.3744 0.4190 0.3670 0.3707 0.3707 0.3707
Min Reliability 0.2956 0.2463 0.2897 0.2927 0.2897 0.2927

Calculation Time <1 ms

Table 2. Reliability Distribution

Reliability Requirement Nodes UWB SBTL SNS STL TNO WiW

0.4
Network 0.854 0.904 0.913 0.911 0.911 0.911
Sensor 0.886 0.938 0.941 0.923 0.923 0.923

0.5
Network 0.914 - 0.965 0.963 0.963 0.963
Sensor 0.996 - 0.995 0.994 0.994 0.994

Time(s) 3.45 2.68 3.86 1.87 11.00 2.35

memory and 64-bit Windows 7 operating system. In the following, we listed the settings
and results of three groups of experiments respectively. Interested readers are referred
to [1] for details.

Reliability Prediction. As shown in Table 1, the reliability of six scenarios ranges
from 25% to 40% with different scheduler which is quite low considering using the
system at home with no human supervision.

One general observation from this experiment is that the system uses the RFID sen-
sors in many places for identity tracking. However, the RFID sensors have the lowest
reliability among all the sensors. In fact, due to budget issues, these RFID readers used
in the system have a half meter detecting radius which are much cheaper but have a
lower accuracy than others with a larger radius. Besides, the dementia patients tend to
remove their RFID tags from time to time causing the failure of identity tracking. It is
also an important lesson learned that AAL systems cannot rely on patients to provide
the critical information. Thus, we suggest the designers to replace the RFID reader to
the one with a larger detecting range or the one does not require a tag.

Besides, the six reminding scenarios have similar reliability except for SBTL case.
By a careful examination, we discover that the rule defined for SBTL has an error.
Because the engineer failed to put the user’s identity information into the rule’s condi-
tion, this reminder will be sent to the wrong user in 50% chance. This evidenced that
reliability analysis is sometimes useful in identifying system bugs.

Reliability Distribution Analysis. Further, we explored how to distribute reliability
on certain components so as to reach an overall reliability requirement. Two groups of
nodes are tested which are sensor nodes and network related nodes. By fixing reliability
of the network related nodes, we calculated the distribution on sensor nodes and vice
versa. We consider a uniform distribution (where all the nodes have the equal weight)
among sensors since they have similar reliability.

MDP-Based Reliability Analysis of an Ambient Assisted Living System 699

start

pressure, 0.98 rfid, 0.75

Fail

rfid, 0.75 pressure, 0.98

Zigbee 0.9

mini
server

1

rule
engine 1

BlueTooth, 1

router 0.95

TV , 1

3G

1

SmartPhone, 1

iPad, 1

WiFi

1

bridge

0.98

PC , 1

0.2
1

0.8

0.8
0.2

1

1

1

1

1

1

0.7

1

0.6

1

0.8

1

1

0.75 0.95

Fig. 5. Bedroom Scenario- UWB: Using Wrong Bed

As shown in Table 2, it requires each network related node to have a reliability of
0.913 in order for all the scenarios to achieve a reliability of 0.4. However, it is im-
possible when the requirement raises to 0.5. The reason also points to a failure rule
in SBTL scenario. Moreover, it becomes unrealistic that if we expect the system reli-
ability to reach 0.5 based on the current design, it requires highly accurate and stable
sensors which are of much higher cost. For example, a short range RFID reader may
cost a few hundred US dollars, but for a higher range, the price raises to a few thou-
sand US dollars. Considering the AAL systems are to be deployed in normal homes, the
cost becomes unaffordable for normal families. Thus, this group of experiment results
requests AMUPADH designers to rethink about the system design rather than simply
replace sensors.

Besides, it is still intuitive to ask the question that which node or group of nodes
affects the system reliability more than the others? If improvements are made on such
node(s), it will be more efficient. Thus, we seek the answer from sensitivity analysis.

Sensitivity Analysis Experiments. There are multiple schedulers in each MDP model
as shown in Table 2. Due to page limits, we present one typical scheduler in this ex-
periments. The UWB scenario refers to Section 2.2 is modelled in Figure 5. The path
connected by thick black links are the target scheduler. It is a typical case which relies
on two RFID sensors and multiple other sensors. The iPad case is chosen since playing
reminders on iPad is the most common way in practice.

Two nodes and a bundle of nodes are chosen for the experiment which are RFID
reader node, Zigbee network node, and bundle of nodes related to Wi-Fi network (If

700 Y. Liu, L. Gui, and Y. Liu

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Component Reliability Ri

S
ys

te
m

 R
el

ia
bi

lit
y

rfid
wifi
zigbee

(a) Distribution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Component Reliability Ri

Δi
 =

 δ
R

/δ
R

i

rfid

wifi

zigbee

(b) Sensitivity

Fig. 6. UWB- Sensitivity Analysis on Nodes

network reliability is improved, the reliability of message transmission paths will also
be improved). Figure 6a shows the reliability distribution on these nodes. As we can see,
improvement on RFID reader node and Wi-Fi bundle can achieve a higher reliability
than Zigbee node. Figure 6b further suggests that when the reliability of these nodes
are greater then 0.7, increasing reliability of nodes in Wi-Fi bundle can achieve better
improvement than other nodes. In practice, increasing the reliability of a network might
be cheaper than purchasing a sensor with higher reliability, e.g., placing more bridges
along the path.

4.3 Discussions on Reliability Analysis on AAL Systems

Although we have only carried out detailed analysis on one AAL system, AMUPADH,
we contend that the approach considered here is widely applicable to many other similar
systems. Our reasons for this assertion are as follows.

Usefulness. The above experiments show that our approach is able to give a good
estimation on the overall system reliability. Upon a reliability requirement on overall
system, we are able to provide suggestions of the least requirements on certain nodes.
Additionally, our approach provides useful guidance on improving the system effec-
tively, such that relatively more efforts and fund can be spent on those critical com-
ponents in budget concerned systems. Thus, our approach is able to solve practical
problems and give useful suggestions for the improvement of the system design.

Modelling Applicability. Layered architecture and multi-sensor platform are widely
adopted in AAL systems like AMUPADH system because of the low cost and high
extensibility, e.g., plug and play [2]. Thus, the modelling techniques introduced in this
case study are easily adaptable to other similar systems by extracting necessary infor-
mation from the system design and codes about scenarios, transition relations among
related sensors and actuators and the internal reasoning mechanism. However, our ap-
proach requires the knowledge and experience on modelling system in MDP models,
which makes it not easy to use for engineers without necessary background.

MDP-Based Reliability Analysis of an Ambient Assisted Living System 701

Scalability. Although some AAL systems may have many more components than AMU-
PADH system, our approach is scalable. For example, in AMUPADH, there are 9 sen-
sors used in each room while a large AAL system may have more sensors (hundreds
of such devices is possible when the AAL system is designed for a building). However,
we argue that for a particular scenario to be monitored by the system, only a small
portion of the sensors are involved. Otherwise, if many sensors are used, it may not
be feasible in reality since the logic of the reasoning sensor input becomes too com-
plicated to be analysed. Furthermore, AAL systems are safety critical that the simpler
the system is, the safer it will be. Thus, we conclude that the size of the model and
the depth of the probabilistic paths with finite numbers of schedulers are manageable
using our approach for current AAL systems. The capability for RaPiD in dealing with
large scale models has been studied in [11], which shows it can handle 14K states
per second on average in reliability prediction, and reliability distribution and sensi-
tivity analysis is slightly slower due to the workload from the polynomial functions.
The improvement of our approach is always possible in future when large case study
comes.

5 Conclusion

This paper demonstrate our reliability analysis work of AAL systems AMUPADH using
MDP based modelling and verification approach. The models are manually constructed
from the design and implementation of the systems. Three groups of experiments are
conducted to answer the questions of “What is the overall system reliability with known
reliability value of each nodes?”, “To reach a certain overall system reliability, how reli-
able should the sensors/networks be?” and “Which node (could be a sensor or network
device) affects the overall reliability the heaviest?”. Experiments show surprising re-
sults that the overall system reliability is hardly able to reach 50%. It is also suggested
that to improve the reliability of Wi-Fi network will be more efficient to improve the
system reliability. In future, we will explore methods to automatically generate MDP
models. Based on our previous work [15], it is a potential solution to extract an MDP
model from the system design model proposed in the paper by labelling the sensor and
network devices. Thus, the MDP model can be generated on the fly with the system
design model.

Acknowledgment. We owe our thanks to anonymous reviewers for their valuable com-
ments to improve the manuscript. We also thank Dr. Jin Song Dong and Dr. Jun Sun
for their helpful feedback and suggestions. This work is supported by “Formal Verifi-
cation on Cloud” project under Grant No: M4081155.020 and “Verification of Security
Protocol Implementations” project under Grant No: M4080996.020.

702 Y. Liu, L. Gui, and Y. Liu

References

1. MDPs-based Reliability Analysis of an Ambient Assisted Living System: Experiments and
Evaluation, http://www.comp.nus.edu.sg/˜yanliu/reliability.html

2. Aloulou, H., Mokhtari, M., Tiberghien, T., Biswas, J., Kenneth, L.J.H.: A semantic plug &
play based framework for ambient assisted living. In: Donnelly, M., Paggetti, C., Nugent,
C., Mokhtari, M. (eds.) ICOST 2012. LNCS, vol. 7251, pp. 165–172. Springer, Heidelberg
(2012)

3. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
4. Biswas, J., Mokhtari, M., Dong, J.S., Yap, P.: Mild dementia care at home – integrating

activity monitoring, user interface plasticity and scenario verification. In: Lee, Y., Bien, Z.Z.,
Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil, I. (eds.) ICOST 2010. LNCS,
vol. 6159, pp. 160–170. Springer, Heidelberg (2010)

5. Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Software Engineer-
ing SE-6(2), 118–125 (1980)

6. Gokhale, S.: Architecture-based software reliability analysis: Overview and limitations.
IEEE Trans. Dependable and Secure Computing 4(1), 32–40 (2007)

7. Gokhale, S.S., Trivedi, K.S.: Reliability prediction and sensitivity analysis based on software
architecture. In: ISSRE, pp. 64–75 (2003)

8. Gokhale, S.S., Wong, W.E., Horgan, J.R., Trivedi, K.S.: An analytical approach to
architecture-based software performance and reliability prediction. Perform. Eval. 58(4),
391–412 (2004)

9. Goseva-Popstojanova, K., Mathur, A.P., Trivedi, K.S.: Comparison of architecture-based
software reliability models. In: ISSRE, pp. 22–33 (2001)

10. Goševa-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability assess-
ment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

11. Gui, L., Sun, J., Liu, Y., Si, Y.J., Dong, J.S., Wang, X.Y.: Combining model checking and
testing with an application to reliability prediction and distribution. In: ISSTA, pp. 101–111
(2013)

12. Immonen, A., Niemel, E.: Survey of reliability and availability prediction methods from the
viewpoint of software architecture. Software and Systems Modeling 7(1), 49–65 (2008)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

14. Lee, V.Y., Liu, Y., Zhang, X., Phua, C., Sim, K., Zhu, J., Biswas, J., Dong, J.S., Mokhtari,
M.: ACARP: Auto correct activity recognition rules using process analysis toolkit (PAT). In:
Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.) ICOST 2012. LNCS, vol. 7251,
pp. 182–189. Springer, Heidelberg (2012)

15. Liu, Y., Zhang, X., Dong, J.S., Liu, Y., Sun, J., Biswas, J., Mokhtari, M.: Formal analysis of
pervasive computing systems. In: ICECCS, pp. 169–178 (2012)

16. Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems: an ambient
intelligence approach. In: ICSE, pp. 43–50 (2006)

17. Padovitz, A., Loke, S.W., Zaslavsky, A.B.: On uncertainty in context-aware computing: Ap-
pealing to high-level and same-level context for low-level context verification. In: IWUC, pp.
62–72 (2004)

18. Ranganathan, A., Al-Muhtadi, J., Campbell, R.H.: Reasoning about uncertain contexts in
pervasive computing environments. IEEE Pervasive Computing 3(2), 62–70 (2004)

19. Wang, W.-L., Pan, D., Chen, M.-H.: Architecture-based software reliability modeling. J. Syst.
Softw. 79(1) (2006)

20. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)

http://www.comp.nus.edu.sg/~yanliu/reliability.html

Diagnosing Industrial Business Processes:
Early Experiences

Suman Roy1, A.S.M. Sajeev2, and Srivibha Sripathy1

1 Infosys Labs, Infosys Ltd., # 44 Electronics City, Hosur Road, Bangalore 560 100, India
{Suman Roy,Srivibha Sripathy}@infosys.com

2 School of Science & Technology, University of New England,
Armidale, NSW 2351, Australia
asajeev@une.au.edu

Abstract. Modern day enterprises rely on streamlined business processes for
their smooth operation. However, lot of these processes contain errors, many of
which are control flow related, e.g., deadlock and lack of synchronization. This
can provide hindrance to downstream analysis like correct simulation, code gen-
eration etc. For real-life process models other kind of errors are quite common,
- these are syntactic errors which arise due to poor modeling practices. Detect-
ing and identifying the location of occurrence of errors are equally important
for correct modeling of business processes. We consider industrial business pro-
cesses modeled in Business Process Modeling Notation (BPMN) and use graph-
theoretic techniques and Petri net-based analyses to detect syntactic and control
flow related errors respectively. Subsequently based on this, we diagnose differ-
ent types of errors. We are further able to discover how error frequencies change
with error depth and how they correlate with the size of the subprocesses and
swim-lane interactions in the models. Such diagnostic details are vital for busi-
ness process designers to detect, identify and rectify errors in their models.

Keywords: Formal Verification, Industrial Business Processes, BPM Notation,
Errors, Soundness, Petri nets, Workflow nets, Woflan, Diagnosis, Experiences.

1 Introduction

Business processes play an essential role for improving, designing and maintaining
process centric organizations and process aware information systems. Among the lan-
guages that have been developed for specifying business processes, BPMN (Business
Process Model and Notation)1 seems to be more popular. It is well known that control
flow errors like deadlock, lack of synchronization occur frequently in business pro-
cesses modeled in BPMN [4,9,8]. Design-time syntactic errors are also common in
industrial business processes. A major challenge in implementing business processes is
providing the means and techniques to detect errors in process models and be able to
locate the node where an error occurs. In our previous work [12], we have proposed a
method to detect errors in industrial process models. In this paper we develop a formal

1 From the standardization body the Object Management Group [10].

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 703–717, 2014.
c© Springer International Publishing Switzerland 2014

704 S. Roy, A.S.M. Sajeev, and S. Sripathy

model for detecting and diagnosing errors for business processes. Specifically, we pro-
pose methods of diagnosing errors by locating their occurrence nodes in the business
processes. Our diagnosis method is largely automated as it requires almost no user inter-
vention. Our data set for experimentation originates from commercial business process
models made available in a repository of Infosys Ltd., one of the largest IT enterprises
of India with a global footprint. These process models were captured in BPMN using
InFlux, an in-house modeler used by Infosys for business requirements modeling.

In particular, we have formally verified and analyzed 174 industry models (from dif-
ferent domains) containing 1262 subprocesses with 2428 errors. While syntactic errors
can be detected using simple graph search algorithms, control flow errors occur due to
lack of soundness in a process model. As a part of pre-processing we force our process
model to be well-formed (after removing syntactic errors) and convert it to a free-choice
Petri net preserving the soundness properties. This Petri net can be reduced to a sim-
plified version, viz. free-choice WorkFlow net (WF-net) for which polynomial time al-
gorithm for soundness checking exists. Next, we use the Woflan tool [18] for checking
soundness of generated WF-nets. Woflan produces necessary diagnostic information
for the nets from which the location of errors can be identified. These locations can
be mapped back onto processes so that we can pinpoint the errors in them at the level
of subprocesses/swim-lanes thus providing useful information to modelers. Further, we
show how error frequencies change with error depth and how they correlate with the
size of subprocesses and interactions of swim-lanes. These insights will certainly help
the process modelers to rectify the models and correctly design new models.

Related Work. There are some pieces of work to diagnose processes modeled as
Workflows using Woflan tool [13,18] and other techniques. Woflan tool was built to
verify the correctness of process definitions of a Workflow Management System [13].
Specifically, the tool analyzes Workflow process definitions incorporated from com-
mercial products using Petri net-based analysis techniques and locates the source of
a design error. This analysis can help the developer in finding and correcting the er-
rors by providing to-the-point diagnostic information. However, Woflan cannot accept
business processes as input models. There has been some proposal to check soundness
properties during the modeling phase of the processes which can provide useful di-
agnostic information too. Vanhatalo et. al have proposed a technique for control flow
analysis of the process by modeling it as a workflow graph [17]. In this technique, a
process model is decomposed into Single-entry-single-exit (SESE) fragments [16] in
linear time, which are of much smaller size than the original process. As each error is
contained in a fragment it can be reflected in a small context, thus making the job of
error fixing easier. Each such fragment is separately checked for control flow-related
errors using a fast heuristic. The authors have provided such heuristics for both sound
and unsound fragments. A drawback of this work as pointed out by the authors, is that
rest of the fragments which could not be covered by the heuristic have to be analyzed by
other techniques. Moreover, employing the appropriate heuristic for complex fragments
may be beyond the realm of practitioners and thus can be an obstacle for automation of
the diagnosis analysis.

In [4] Fahland et al. did a major work on soundness checking of industrial busi-
ness process models using techniques based on Petri net-based analysis and SESE

Diagnosing Industrial Business Processes 705

decomposition. However they did not undertake any diagnostic analysis of errors. In
an earlier work [12] we have used Petri net-based technique to detect errors in business
process models and also studied the connection between errors (syntactic and control
flow-related) and a set of metrics related to structural and behavioral aspects of process
models. We have used LoLA [21], a Petri-net based model checker to detect control
flow-related errors. Using counterexamples provided by LoLA (in case of occurrence
of errors) it is not easy to supply information on processes which prevented us to carry
out any diagnostic analysis of errors in that work.

2 A Primer on Business Processes

Business processes describe how a business pursues its objectives. In particular, pro-
cess models are flowcharts capturing an ordered sequence of business activities and
supporting information which can be analyzed, simulated, and/or executed. A standard
notation for capturing business processes is the Business Process Modeling Notation
(BPMN) [10] which is becoming popular among industry practitioners. However, the
heterogeneity of its constructs and the lack of an unambiguous definition of the notation
are hindrance to semantic analysis of BPMN models. This necessitates a proper formal
modeling of BPMN processes. There are many formalizations of BPM processes avail-
able. We pick up one which bears close resemblance with those described in [1,3] and
that of work-flows [7].

Syntax of BPM process A BPM process2 is a graph (also called a process model graph)
P = (N ,F) where

– N is a finite set of nodes which is partitioned into the set of tasks T , the set of
gateways G, and the set of events E , i.e., N =̂ T ' G ' E

– G can be further partitioned into disjoint sets of decision merges, GM (Gand
M (syn-

chronizer) andGxor
M (merge)) and decision splits,GS (Gand

S (fork) andGxor
S (choice))3,

– A set E of events which is a disjoint union of two sets of events Es and Ef , where
• Es is the set of start events with no incoming edges.
• Ef is the set of end events with no outgoing edges.

– F ⊆ (N \ E × N \ E)
⋃

(Es ×N \ E)
⋃

(N \ E × Ef) corresponds to sequence
flows connecting tasks with tasks, tasks with gateways, gateways with tasks, start
nodes with tasks and tasks with end nodes.

A business process is well-formed [5] if and only if it has exactly only one start
node (event) with no incoming edges and one outgoing edge from it, it has exactly
only one end node (event) with one incoming edge to it and no outgoing edges, there
is only one incoming edge to a task and exactly one outgoing edge out of a task, every
fork and choice has exactly one incoming edge and at least two outgoing edges, every
synchronizer and merge has at least two incoming edges and exactly one outgoing edge,
and every node is on a path from a start node to some end node.

2 Further with a BPM process swim-lanes can be added to whom events and activities can be
assigned to.

3 A synchronizer and a fork are AND-join and -split resp., while a merge and a choice are
XOR-join and -split resp.

706 S. Roy, A.S.M. Sajeev, and S. Sripathy

Given a process model graph P = (N ,F) a Single Entry Single Exit fragment
(SESE fragment, in short) [17] P′ = (N ′,F ′) is a non-empty subgraph of P such
that N ′ ⊆ N and F ′ = F ∩ (N ′ × N ′) and there exist flow edges e, e′ ⇒ F with
{e} = F ∩ (N \ N ′ × N ′) and {e′} = F ∩ (N ′ × N \ N ′); e and e′ are called the
entry and the exit edges respectively. A SESE fragment is called a SESE block if there
are two disjoint paths from the entry edge to the exit edge.

Semantics of BPM Process. We follow the discussion from [17,20], where a state of a
process is represented by tokens on the edges of the control flow graph. Given a pro-
cess P = (N ,F), a state of P is a marking μ : F∧ N, also called a token mapping.
At any time an edge contains zero, or more tokens. The number of tokens may change
during the execution of the process, when the transitions are enabled. A source edge
es connects a start event with some other node. If the latter node is an activity then it
is called an initial activity. Similarly, a sink edge ef is an edge which connects a node
with an end event. Again, if the former node is an activity then it is called a final activ-
ity. A state μ′ can be reached from another state μ via a node, where a node can be a
task, parallel split or join, choice or join using certain firing rules (see [7] for example);
we say that a node n is activated, written as: μ

n∧ μ′. The initial state is given by a
marking μ0 where μ0(es) = 1, for all es ⇒ Es, and μ0(e) = 0 for all other edges e. A
state μ′ is reachable from a state μ, denoted as μ

∗∧ μ′ if there exists a (possibly finite)
path, π : ns, n1, . . . , nf ⇒ (N) and a finite sequence of markings μ1, . . . μk such that

μ
ns∧ μ1

n1∧ · · · nf∧ μk and μ′ = μk. The notion also includes the empty sequence δ,
i.e., we have μ

α∧ μ for every marking μ. A state is reachable in the process P if it is
reachable from the initial state μ0. A marking/state μ is called unsafe if there is an edge
e ⇒ F such that μ(e) > 1.

Soundness of BPM Processes. Van der Aalst first introduced the criteria for checking
correctness of business processes, called soundness in [13]. Subsequently, some other
researchers have provided other definitions of soundness for business processes. Our
definition is close to the one adopted by Fahland et al. [4].

A terminated marking is a reachable marking where no node can be activated. A
deadlock is a terminated marking with at least one non-sink edge marked. For instance,
a deadlock occurs when two edges out of a choice split are merged by a synchronizer
(see Figure 2(c)), or if a synchronizer node occurs as an entry to a cycle. A BPM process
contains a lack of synchronization (multiple instances of the same activity) if an edge
can have multiple tokens in any reachable state. A lack of synchronization arises for
example, if two parallel paths are joined by a merge (see Figure 2(d)) or if the exit of
a cycle corresponds to a fork. A BPM process is sound if it does not contain a lack of
synchronization and it is deadlock-free.

3 Verifying Soundness with Petri Net-Based Techniques

There have been lot of formal models proposed for BPM process, Petri net, automaton,
process calculus to name a few. These formal models can be used for proving consis-
tency of processes using appropriate mapping through model checking. We shall be
using Petri net (PN) and its subclass Workflow net (WF-net) as the underlying formal

Diagnosing Industrial Business Processes 707

models of BPM processes for they are easily amenable to soundness analysis through
model checking.

Petri Net. Petri net provides a framework for modeling concurrent systems. It has
been applied widely because of its easily understandable graphical notations. A Petri
net [14,18] or simply, a net is a directed bipartite graph with two kinds of nodes, places
and transitions. Formally, a Petri net (or simply, a net) is a tuple N = (P, T, F), where

– P is a finite non-empty set of places,
– T is a finite non-empty set of transitions such that P ∩ T = ∅,
– F ⊆ (P × T) ⊥ (T × P) is a set of directed arcs, called the flow relation,

A bag over some alphabet Σ is a function from Σ to the natural numbers that assigns a
positive value to only a finite number of elements fromΣ. If X is a bag over an alphabet
Σ and a ⇒ Σ, then X(a) denotes the number of occurrences of a in X . A bag X is a
sub-bag of bag Y , denoted by X ∨ Y , if X(a) ∨ Y (a) for all a ⇒ Σ. We denote the set
of all bags over Σ as B(Σ). A bag M ⇒ B(P) is called a marking or configuration or
state of net N = (P, T, F). Moreover, a marking associated with the net MN : P∧N
is called the initial marking or state. The associated Petri net is denoted as (N,MN).
An input place of a transition t is a place p iff there exists a directed arc from p to t,
whereas an output place of a transition t is a place p iff there is a directed arc from t to
p. •t and t• denote the input and output places of a transition t respectively (they can
be referred as bags over the alphabet Σ). We use dual notations •p and p• for place p.
A place is called final (also called sink place) if p• = ∅. Denote the set of final places
as λ . Similarly, a place p is called a start place (also called source place) if •p = ∅.

At any time a place contains zero, or more tokens. A marking M of N enables
a transition t in T iff •t ∨ M . An enabled transition can fire. When a transition t
fires, it consumes one token from each of its input place p and produces one token for

each of its output place p. By M
t∧ M ′ we mean that marking M ′ is reached from

marking M by firing t. For a finite sequence of transitions ε ⇒ T ∗, we say M1
ε∧Mk,

if there is a transition sequence ε = t1t2 . . . tk−1 and a firing sequence as follows:

M1
t1∧ M2

t2∧ · · · tk−1∧ Mk. A state Mk is said to be reachable from state M1 iff there
is a transition sequence ε = t1t2 . . . tk−1 such that M1

ε∧ Mk. As before, one can
talk about an empty transition sequence also. A state M is said to be reachable if M
is reachable from the initial marking MN . A marking is called final if the final places
only contain tokens and other places have no token. A Transition t ⇒ T is dead iff there
is no marking reachable from MN enabling t.

A Petri net is live if and only if for every reachable state M1 and every transition t one
can find a state M2 reachable from M1 that enables t. A place p is called unbounded
if for any π ⇒ N there is a marking M reachable from an initial marking MN such
that M(p) > π. A net is unbounded if it has an unbounded place. Otherwise, it is
bounded. A Petri net is strongly connected if and only if for every pair of nodes n1

and n2 there is a directed path from n1 to n2. Normally, a restricted class of Petri
nets is used for modeling and analyzing workflow procedures, they are called free-
choice. A Petri net is free-choice if and only if, for every two transitions t1 and t2, if
•t1∩•t2 ∀= ∅, then •t1 = •t2. A Petri net is a state machine if and only if all transitions
have exactly one input and output place, formally, ∪t ⇒ T : | • t| = |t • | = 1.

708 S. Roy, A.S.M. Sajeev, and S. Sripathy

A Petri net N ′ = (P ′, T ′, F ′) is a subnet of Petri net N = (P, T, F) if and only if
P ′ ⊆ P, T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ⊥ (T ′ × P ′)). Further, a subnet N ′ is
an S-component of N if and only if N ′ is a strongly connected state machine such that
∪p ⇒ P ′, •p ⊥ p• ⊆ T ′. A Petri net N is S-coverable if and only ∪p ⇒ P there exists
an S-component N ′ = (P ′, T ′, F ′) of N such that p ⇒ P ′. We now introduce PT-
handle and TP-handle in nets as they will be used to catch design flaws (mismatches)
for unsound nets later. Given a Petri net N = (P, T, F) we define a PT-handle as a
place-transition pair (p, t) ⇒ P ×T iff there exist two elementary (without repetition of
nodes) directed paths from p to t sharing only two nodes p and t. Similarly, a transition-
place pair (t, p) ⇒ T × P iff there exist two elementary directed paths from t to p
sharing only nodes p and t.

Let us now provide a definition of a p-sound Petri net. A Petri net is 1-safe if for
each place p ⇒ P and for any reachable marking M , M(p) ∨ 1. A Petri net is free of
deadlock if from any reachable marking, a final marking can be reached. This can be
expressed as an “ALMOST EVERYWHERE” CTL formula AGEF (

∧
p�∈σ (M(p) =

0) ∧
∨

p∈σ (m(p) > 0)). A Petri net is p-sound if it is free of deadlock and is 1-safe.

Mapping BPMN process to Petri Net. There are a few techniques available [3,15] for
mapping BPMN process models to Petri nets preserving behaviors. We discuss one such
mapping originally proposed in [3]. In this mapping all the behavioral properties of the
process model like soundness, remain unaltered. We call this mapping “petriconvert”.
This mapping creates many new places and transition nodes (including silent transitions
marked as tS in Figure 1), which act like dummy nodes. In this figure, each pattern in a
BPM process is mapped to a corresponding Petri net module preserving traces. During
the conversion, a business process is decomposed into patterns shown in the figure and
the corresponding Petri net module is generated for each of the patterns. Then using
the connectivity information of the BPM patterns, corresponding Petri net modules are
connected and finally, the whole Petri net is produced. In the figure, places drawn in
dashed border are not specific to one particular module; they are basically used for
connecting two modules.

This mapping actually sets up a bijection ‘h’ between the edges F of the process
P and the places P of the mapped Petri net NP. A source edge in P is mapped to a
start place in NP. Similarly, a sink edge is mapped to a final place in NP. In P any
edge (other than sink or source edge) can either lead into an activity or a gateway. In the
former case the edge is mapped to a place leading to the appropriate transition in the
mapped Petri net, while in the later case, the edge is mapped to a place which is fed from
an appropriate transition. When an edge leads to a gateway in the process, it is mapped
to a place leading to transition/s in the Petri net depending on the type of gateway.
Similar argument holds good for an outgoing edge from an activity or a gateway node.
So, we have seen that for every edge e ⇒ F in P there is a mapped place h(e) in
NP and vice-versa. This mapping procedure helps Petri net-based analysis techniques
to be used for soundness checking of processes to be discussed. Thus, given a BPM
process P = (N ,F) the corresponding Petri net is NP = (P, T, F), generated by
the mapping “pertriconvert” for a well-formed process. This mapping “petriconvert”
always produces a free-choice Petri net. Further, the Petri net is at most linear in size of

Diagnosing Industrial Business Processes 709

the original BPM process. Now the following establishes the correspondence between
a process and a Petri net on soundness properties

Theorem 1. A BPM process P = (N ,F) is sound if and only if the corresponding
mapped Petri net NP = (P, T, F) is p-sound.

Moreover, the mapping “petriconvert” maps a SESE block to either a TP-handle or a
PT-handle. Conversely, for a handle which is guaranteed to have been created out of
well-formed process, the bijection h−1 in “petriconvert” will ensure the creation of
SESE block of the original process.

(a) Mapping of start/end nodes (b) Mapping of a task

(c) Mapping of XOR-gates (d) Mapping of AND-gates

Fig. 1. Mapping of BPM patterns to Petri Net modules

Workflow Net. In practice we often use Workflow nets (WF-nets) [13,6] which are a
subclass of Petri nets. Formally, a Petri net is a WF-net if and only if, there is only one
source place i with •i = ∅, there is only one sink place o with o• = ∅ and if a transition
t∗ is added to the net connecting the place o with the place i then the resulting Petri net
becomes strongly connected.

Let us state the usual notion of soundness of WF-nets. For any place i, a state [i]
denotes a marking which assigns a token to place i and no token to other places. A
WF-net PN = (P, T, F) is sound if and only if a state M is reachable from the state
[i], then the state [o] can be reached from M , state [o] is the only place reachable from

710 S. Roy, A.S.M. Sajeev, and S. Sripathy

state [i] with at least one token in place o and no other token in other places, and there
is no dead transition in (PN, [i]). For a complex WF-net it is not easy to check the
soundness property using the definition. An alternate way to check soundness of a WF-
net is by extending the notion of WF-net and linking it to liveness and boundedness. An
extended Petri net PN is obtained by short-circuiting o to i by adding a new transition
t∗. For WF-net PN it is natural to have [i] as the initial marking as it corresponds to the
creation of a new case, so much so, we restrict our attention to WF-net (PN, [i]). The
following result [13] is well known: a WF-net PN is sound if and only if (PN, [i]) is
live and bounded.

Soundness checking is intractable for arbitrary WF-nets. However, soundness check-
ing for free choice WF-nets can be decided in polynomial time [15]. It can be indeed
shown that the soundness of a BPM process would actually coincide with the usual no-
tion of soundness of WF-nets, which can be shown through the following results, proof
details can be found in [11].

Theorem 2. Suppose PN = (P, T, F) is a free-choice WF-net. Then the following are
equivalent.

1. (PN, [i]) is 1-safe and free of deadlock (satisfies the CTL formula).
2. (PN, [i]) is live and 1-safe (1-bounded).

Now the following establishes the connection between p-soundness and soundness
of free-choice WF-nets.

Theorem 3. Let PN be a sound free-choice WF-net. Then the short-circuited PN is
S-coverable.

The following theorem says that S-coverability of a short-circuited WF-net is a suf-
ficient condition for 1-boundedness of the net.

Theorem 4. (Theorem 4.4 of [18]) Let PN be a WF-net and its short-circuited WF-
net PN S-coverable. Then (PN, [i]) is 1-bounded.

Theorem 5. Let PN be a free-choice WF-net. Then PN is sound if and only if PN is
p-sound.

Theorem 6. Let P is a well-formed process model having a unique start node and a
unique final node. Assume pertriconvert(P) = PN , then

1. PN is a free-choice WF-net.
2. PN is sound if and only if P is sound.

Multi-terminal Petri Nets to WF-Nets. For a give process if a mapped Petri net has
multiple start places then put a fork to connect them which results in a net having one
single start node. For Petri nets having multiple final places, we adopt an algorithm
due to Kiepuszewski et al. [6]) in which a p-sound Petri net with multiple end/final
places can be converted into a net with a single final place using a mapping called
“extend”. New edges are added to the net so that every end node is marked in every
run. Finally, all the end nodes of the original node are joined with a dummy end node

Diagnosing Industrial Business Processes 711

through a synchronizer. This algorithm preserves the p-soundness of the original multi-
terminal Petri net. Let the original Petri Net be a tuple N = (P, T, F) and the Petri net
obtained after applying the construction be N ′ = extend(N) = (P ′, T ′, F ′) following
the construction along the lines described in [4]. If N is p-sound then so it N ′ [6]. In
fact the converse is also true: if N ′ is sound then N is p-sound. Based on this it can be
concluded that the soundness checking of a BPM process can be decided in polynomial
time in the size of the process, which was also shown in [17] using a different technique.

Checking Soundness of WF-Nets with Woflan. Woflan (WOrkFLow ANalyzer) [18],
is a tool used for checking the soundness of work flow models. This tool uses a com-
bination of Petri net analysis techniques such as structural Petri net reduction and S-
coverability, and a form of state space exploration. Woflan tool takes an input a model
in the form of a WF-net. It reports an error if the input is not in the specified form of
a WF-net. Then it checks if the short-circuited net (with an additional transition con-
necting the sink place with the source place) is bounded (also called proper Workflow).
It also verifies whether the short-circuited net is live, thus implying the original net is
sound. However, Woflan can take exponential time for soundness checking as it con-
ducts a state space search. The tool generates diagnostic report on unsound processes
indicating the exact nature of the errors and location of their occurrences.

4 Detecting and Diagnosing Errors for Process

There are broadly two kinds of errors associated with process models that we consider:
syntactic errors and control flow related errors. While control flow related errors are
classical, a systematic study of the real-life models available convinced us to propose
a new class of errors, viz., syntactic errors (see [12] for example). It can be said that
syntactic errors occur due to poor modeling practices which leads to non-conformance
to the well-formedness of the process. These errors can prodcue wrong interpretation
of constructors like gateways. The syntactic errors are listed in the first part of Table 1.
Note that a well formed process does not contain any syntactic error. Figure 2(a) gives
an example of a process with no error and Figure 2(b) an example of a process with
syntactic errors (connector having multiple incoming edges and presence of hanging
node). There are two typical control flow related errors that can take place in processes
mentioned earlier: deadlock (Figure 2(c)) and lack of synchronization (Figure 2(d)).

With each error δ we associate an accumulation node δπ, which indicates the exact
location of error occurrence; this will be needed later to calculate the depth of an error.
For example, for the error Multi start (in Table 1) the accumulation node is the corre-
sponding start node, while for Multi end it is the end node. The accumulation points
for other syntactic errors are listed in Table 1. Finding out the accumulation point for
control flow related errors is a bit tricky as they are control flow-related errors. Recall a
deadlock occurs when a token gets stuck on a non-sink edge which would be an incom-
ing edge of gateway node. The node is the accumulation node for this deadlock error,
(e.g., the synchronizer gateway G2 in Figure 2(c)). A lack of synchronization occurs
when an edge has got multiple tokens in a reachable state. The node (e.g., the merge
gateway G2 in Figure 2(d)) from which this edge emanates is the accumulation point
for this lack of synchronization error.

712 S. Roy, A.S.M. Sajeev, and S. Sripathy

Table 1. Errors in processes

Nature of error Accumulation node
Syntactic error
• 1 start node with multiple outgoing edges [Multi start] • start node
• 2 end node with multiple incoming edges [Multi end] • end node
• 3 task node with multiple incoming/outgoing edges

[Multi task]
• task node

• 4 hanging node [Hanging] • hanging node itself
• 5 gateway with multiple incoming/outgoing edges

[Multi gateway]
• gateway node itself

Control flow-related errors
• 6 deadlock [Deadlock] • the gateway in associated SESE

fragment where token gets stuck
• 7 lack of synchronization [Lack of synch] • the gateway associated SESE

fragment where multiple tokens can
pass

Preprocessing to Find Syntactic Errors. For error detection purposes, we abstract
out the control flow graph of the process and carry out a depth-first search of this graph.
Although an off-the-shelf model checking tool such as Woflan [18,19] can detect syn-
tactic errors like hanging nodes or dead tasks (tasks that do not lead to a final place)
there is no need to feed models with syntactic errors to these tools, when they can be
filtered using a preprocessor. If a BPM process does not contain any such error we
move to the second level of error checking by performing soundness analysis with the
aid of formal verification. The different steps taken for detecting errors for processes
are shown in Figure 3(a).

Verifying Soundness with Woflan. As the mapped WF-net is provided as an input
to Woflan tool it checks if this net corresponds to the definition of a WF-net, which
is always the case because of the preprocessing step. Next we verify the soundness of
a WF-net by exploiting its free-choice property. The tool checks for thread of control
cover of the input WF-net, which boils down to checking if the short-circuited net is
S-coverable. If each of the places belongs to some thread of control cover, then the net
is S-coverable and hence 1-bounded by Theorem 4 and the original process does not
contain any lack of synchronization. However, the net might still not be sound. In the
next step, the tool searches for non-live or dead transition in the short-circuited net by
exploring state space, which would correspond to deadlock in the original process. If
it fails to find one such transition it decides that the net is sound (from Theorem 5)
and so is the original process (by Theorem 6). In case a dead transition or a non-live
transition is found we choose the one which appears first in the list, then we look for
the pre-set or post set of this transition. As we have the original process in our disposal
we use the mapping petriconvert” shown in Figure 1 to find out the corresponding edge
in the process and subsequently, the gateway that is causing the deadlock. If the short-
circuited net is not S-coverable, that is, there are some places which are not covered by
some threads of control, then the WF-net is not sound and the original BPM process
is not sound. This follows from Theorem 3. The places detected thus are suspicious
places and possible sources of unsound behavior. However, we get the useful diagnostic

Diagnosing Industrial Business Processes 713

(a) Process
with no error

(b) Process
with syntactic
errors

(c) Process
with deadlock

(d) Process
with lack of
synchroniza-
tion

Fig. 2. Different kinds of errors occurring in InFlux Processes

(a) Different steps for error checking for
processes

(b) A schematic diagram for diagnosis
of errors for processes

Fig. 3. Detection and Diagnosis of errors: schematic view

714 S. Roy, A.S.M. Sajeev, and S. Sripathy

information in the next step where the tool catches mismatches (confusions are non-
existent as the net is free-choice). A mismatch is actually a TP-handle or a PT-handle.
The tool clearly marks out two disjoint paths in the handle detected with source place/
transition and sink transition/place properly identified. As it is possible to recover the
original SESE block from a TP-handle or a PT-handle we can find out the corresponding
SESE block which contains the relevant error exploiting the h−1 used in “petriconvert”.
This again will map pre-set of sink transition/sink place to the appropriate edge on the
process, from which the accumulation node of the error can be found. A schematic view
of our diagnostic analysis is shown in Figure 3(b).

Diagnostic Information. In the end our tool will print diagnostic information on the
process under consideration. In case of presence of syntactic errors it highlights the
accumulation node for each of the error along with incident edges. For control-flow
related errors we can identify the SESE block containing the error and highlight the
block along with the corresponding accumulation node on the process. In the end, we
generate a text report for all the errors detected through our tool. As an example for a
process shown in Figure 4(a) its corresponding mapped Petri net is shown and the errors
are also highlighted in Figure 4(b).

(a) An example process and the
mapped WF-net

(b) Error highlighted on WF-net
and process

Fig. 4. An example process and Diagnostic information provided by Woflan

5 An Experience Report

How good is the above framework for industrial applications? In this section we ex-
plore this question by reporting on our experience in applying the framework on un-
derstanding the nature of errors in industrial BPM models. One hundred and seventy
four models were made available to us from a repository of Infosys. They were from
seven different business domains ranging from banking to communication to healthcare
and energy. The models are checked for syntactic errors, followed by soundness. The
input models were captured using the graphical editor built within the InFlux tool. The
steps in this diagnostics analysis are shown in Figure 3(b). The results showed a total
of 2428 errors in the models. Figure 2 gives the percentage of different types of errors

Diagnosing Industrial Business Processes 715

detected. Our method seems to scale well as we have been able to detect and report all
the errors of a process model having 1154 nodes, 102 subprocesses. This model con-
tains 254 errors, one such error (Multi task) is nested as deep as 7th subprocess level.

Table 2. Error percentages (See Table 1 for a de-
scription of the error types)

Error type Number Percent

Multi start 20 0.8
Multi end 300 12.4
Multi task 1211 49.9
Hanging 499 20.5
Multi gateway 389 16
Deadlock 9 0.4

We analyzed the errors further to un-
derstand at what depth the errors fre-
quently occur and how they correlate
with the size of the subprocesses and
the interaction between swim-lanes in the
models. Here the size of a subprocess de-
notes the number of nodes appearing in it
and the interaction between swim-lanes
is the total number of flow-edges which
pass from one swim-lane to another. Fi-
nally, the depth of an error is the short-
est distance between the start node of the
process and the accumulation node of the error.

Error Depth versus Error Frequency. Using the data collected from the formal frame-
work, we could study the shape of the variation of error frequency as the depth of an
error in a process increased. Our initial hypothesis was that error frequency will increase
with depth as higher depth is an indication of higher complexity of models. However,
the opposite turned out to be true. There was an exponential decrease in error rates as
the depth increased in models (which have depth no larger than 100), see Figure 5(a).
A possible explanation for this is that smaller models include casual models which are
designed with less care, which also possibly contain more number of errors. However,
as the models get complicated with an increase in depth, better care is applied during
their design. This pattern, however, does not hold for models of very large depth. In pro-
cesses where the depth of error goes beyond 100, we observe an interesting U-pattern

Depth

403020100

E
r
r
o
r

F
r
e
q
u
e
n
c
y

20

15

10

5

0

(a) Error frequency vs lower depth of er-
rors

Depth

250200150100500

E
r
r
o
r

F
r
e
q
u
e
n
c
y

80

60

40

20

0

(b) Error frequency vs higher depth of
errors

Fig. 5. Error frequency versus error depths

716 S. Roy, A.S.M. Sajeev, and S. Sripathy

of error frequency. Beyond a depth of hundred, error frequency increases exponentially
before it decays again (See Figure 5(b)). Further investigation is needed to understand
why this behavior is observed.

Correlation of errors with subprocess structures. Correlation analyses are conducted to
test the relationship of error occurrences: (a) with the number of swim-lane interactions
and (b) with the size of subprocesses. Table 3 shows the correlations (Spearman’s π) and
their statistical significance (p-value). We used Cohen’s criteria [2] to test the strength of
correlations (using the value of π) whereby a value of 0.5 or above is considered strong,
between 0.3 and 0.5 moderate and between 0.1 and 0.3 weak. While both correlations
are statistically significant for total errors, only the correlation with subprocess size is
strong (π = 0.636). Thus, the subprocess size is a better predictor of error occurrences
than interactions between swim-lanes, even though, intuitively, swim-lane interactions
is a sign of increased coupling between different parts of the model.

Table 3. Correlation between errors and sub-process structure

No of Errors Syntactic Error Deadlock Error
ρ p ρ p ρ p

Interaction between Swim-lanes 0.257 <0.001 0.255 <0.001 0.037 0.187
Size of Subprocesses (no of nodes) 0.636 <0.001 0.499 <0.001 0.06 0.034

6 Conclusion

In this paper we have provided a formal framework for a detecting and diagnosing er-
rors occurring in business processes using the relevant diagnostic information provided
by Woflan tools for WF-nets. This diagnostic engine can be ’as is’ used by process
engineers provided the process model is captured using the graphical editor available
with Influx tool which can generate XML representation to be fed into our engine. The
detection and diagnosis of errors in the process models resulted in reduction of several
man-hours in the requirements design phase; consequently there was a decrease in the
number of resources employed for the modeling work. We expect to use the data on
incidence of errors in chalking out a modeling guideline for practitioners designing the
processes.

References

1. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and tem-
poral logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 326–341. Springer, Heidelberg (2008)

2. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum, Hills-
dale (1988)

3. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

4. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Anal-
ysis on demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011); Also in Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.): BPM 2009. LNCS, vol. 5701. Springer, Heidelberg (2009)

Diagnosing Industrial Business Processes 717

5. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: Combining Analysis of Unstructured
Workflows with Transformation to Structured Workflows. In: 10th IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2006 (2006)

6. Kiepuszewski, B., ter Hofstede, A., van der Aalst, W.: Fundamentals of control flow in work-
flows. Acta Informatica 39, 143–209 (2003)

7. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp.
268–284. Springer, Heidelberg (2005)

8. Mendling, J., Neumann, G., van der Aalst, W.: Understanding the Occurrence of Errors in
Process Models Based on Metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

9. Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.: De-
tection and prediction of errors in EPCs of the SAP reference model. Data Knowl. Eng. 64(1),
312–329 (2008)

10. B. P. M. Object Management Group and Notation. Business Process Modeling Notation
(BPMN) Version 2.0. OMG Final Adopted Specification (2011),
http://www.omg.org/spec/BPMN/2.0/

11. Roy, S., Bihary, S., Narayan Kumar, K.: Soundness checking of business processes using
Petri Net-based techniques. Internal Report of Infosys (2012) (available on request)

12. Roy, S., Sajeev, A., Bihary, S., Ranjan, A.: An Empirical Study of Error Patterns in Industrial
Business Process Models. IEEE Transactions of Service Computing (2013) (in press)

13. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

14. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(1), 21–66 (1998)

15. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An Alternative Way to Analyze
Workflow Graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAISE
2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

16. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Hei-
delberg (2008)

17. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

18. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Processes Using
Woflan. The Computer Journal 44 (2001)

19. Verbeek, H.M.W., van der Aalst, W.M.P.: Woflan 2.0 - A Petri-Net-Based Workflow Diagno-
sis Tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 475–484.
Springer, Heidelberg (2000)

20. Weber, I., Hoffman, J., Mendling, J.: Beyond Soundness: on the verification of semantic
business process models. Distributed Parallel Databases 27, 271–343 (2010)

21. Wolf, K.: Generating Petri Net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

http://www.omg.org/spec/BPMN/2.0/

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 718–732, 2014.
© Springer International Publishing Switzerland 2014

Formal Verification of Lunar Rover
Control Software Using UPPAAL

Lijun Shan1,2, Yuying Wang1, Ning Fu1, Xingshe Zhou1, Lei Zhao3, Lijng Wan3,
Lei Qiao3, and Jianxin Chen3

1 College of Computer Science, Northwestern Polytechnical University, Xi'an, China
2 National Digital Switching System Engineering

and Technologies Research Center, Zhengzhou, China
3 Beijing Institute of Control Engineering, Beijing, China

Abstract. This paper reports our formal verification of Chinese Lunar Rover
control software, an embedded real-time multitasking software system running
over a home-made real-time operating system (RTOS). The main purpose of the
verification is to validate if the system satisfies a time-related functional proper-
ty. We modeled the RTOS, application tasks and physical environment as timed
automata and analyzed the system using statistical model checking (SMC) of
UPPAAL. Verification result showed that our model was able to track down
undesired behavior in the multitasking system. Moreover, as the modeling
framework we designed is general and extensible, it can be a reference method
for verifying other real-time multitasking systems.

Keywords: Formal Verification, Multitasking System, Statistical Model
Checking.

1 Introduction

Many modern equipments have computing components monitoring and controlling
their physical processes. Such systems, often called Cyber-Physical Systems (CPSs),
are widely used in safety-critical areas such as aerospace, automobiles, medical appa-
ratus, etc [1]. CPS applications pose high requirements on both timing and functional
correctness of their control software, and raise new challenges to formal verification.
This paper reports our formal verification of an embedded real-time multitasking
system, which is an early version of Chinese Lunar Rover onboard control software.

Difficulties in verifying such control software arises from the following aspects.
First, functional properties of the software are highly dependent on timing considera-
tions. For example, a driverless vehicle has to perceive its ever-changing environment
and to react accordingly in expected time, where a late answer is a wrong answer.
Second, internal and external non-determinism complicates the verification. External
non-determinism comes from the physical environment, where events that affect the
CPS may happen stochastically. When a driverless vehicle is running, for instance, ob-
stacles or peoples' commands may appear at any time without predetermined frequency.

 Formal Verification of Lunar Rover Control Software Using UPPAAL 719

Internal non-determinism comes from concurrent execution of multiple tasks, where
scheduling of the tasks are unpredictable for each run. Therefore, we have to describe
not only every task in the system, but also the real-time operating system (RTOS) and
the physical environment.

To gain complete control and observability of a concurrent system, model checking
is more effective than otherwise possible [2]. We modeled the Rover control software
as timed automata and analyzed it using the model checker UPPAAL [3, 4]. The main
property to verify is a time-related functional property. Experiments showed that our
model was able to track down undesired behavior in the multitasking system. We
detected a design defect in the control software, identified conditions that may raise
an error during the system's execution, and demonstrated the error's occurrence which
involved random events from physical environment and a special scenario of task
scheduling. Moreover, as the modeling framework we designed is general and extens-
ible for describing features of the RTOS, templates of periodic/aperiodic tasks and
message queues, it can be a reference method for verifying other real-time multitask-
ing systems.

2 Lunar Rover Control Software

The Lunar Rover is a typical CPS, where a computing subsystem controls the physi-
cal equipments through a communication component (CAN bus). The computing
subsystem comprises a CPU, a home-made embedded RTOS, and over 30 application
programs (i.e. tasks) implemented in C. It is worth noting that the software to verify,
consisting of only 6 tasks, is a simplified version of the actual Rover control software.
As developers of the control system hoped to verify a property involving data trans-
mission, they extracted the 6 tasks which transmit data through the CAN bus from the
actual multitasking system.

Fig. 1. Structure of the Rover control software

The RTOS uses priority-based preemptive scheduling strategy to assign tasks to
CPU. Among the 6 tasks, 3 are periodic (time-driven), and the other 3 are aperiodic
(event-driven). Two shared message queues, i.e. SendQueue and ReceiveQueue, are
used in the system. The structure of the multitasking system is shown in Fig. 1, where
arrows denote flow of data. The tasks are responsible for controlling sensors on the
Rover, including IMU (inertial measurement unit), APS (active pixels sensor based

720 L. Shan et al.

sun sensor), Motor control unit, Payload control unit, etc. Task1TC is aperiodic, as it
receives telecommand (TC) that may be sent from the ground at any time, and writes
the 4 frames of TC data into SendQueue. Task2Cru, whose period is 5000ms, stores 8
frames of crucial data into Motor control unit and then writes 1 frame of timing data
to Payload control unit. Task5DataAcq requests telemetry (TM) data from all sensors
every 200ms. Task6GNC, whose period is also 200ms, performs guidance, navigation
and control by calculating TM data. Task3Send and Task4Receive are aperiodic as
they manage data transmission through the CAN bus. To send some data through the
CAN bus, a task writes the data into SendQueue. Then Task3Send sends the data to a
CAN port. Likewise, data returned from a CAN port are firstly written into Receive-
Queue, and then received by Task4Receive. Table 1 summarizes the 6 tasks' priori-
ties, functions, periods (of periodic tasks) or trigger events (of aperiodic tasks).

Table 1. Tasks in the Rover Control Software

Task Priority Function Period /
Trigger

Task1TC 6 Receives TC and writes it (4
frames) into SendQueue.

TC arrives

Task2Cru 5 Manages crucial data and writes it
(8 frames) into SendQueue

5000ms

Task3Send 4 Sends data in SendQueue to CAN
port

Data arrives at
SendQueue

Task4Receive 3 Receives data returned from CAN
port

Data arrives at
ReceiveQueue

Task5DataAcq 2 Acquires TM data from sensors 200ms
Task6GNC 1 Guidance, navigation and control 200ms

Semaphores are used for mutual exclusive accesses to the two shared message

queues. The semaphores have priority inheritance functions to prevent priority inver-
sion. The time that a task spends to write data into SendQueue can be omitted. The
time that Task3Send or a sensor spends to send data to a CAN port depends on the
length of the data. According to the transfer rate of the CAN bus, it needs 0.192 ms to
transmit one data frame through the CAN bus.

As the Rover control software has been systematically and thoroughly tested be-
fore our formal verification, it contains few ordinary bugs. The main purpose of the
verification is to expose why and when an unexplained error, called TM-timeout in
this paper, would occur. More specifically, the property to verify is a time-related
functional property: whether a task which acquires the sensors' TM data can receive
the data in the expected time. Among the 6 tasks, Task5DataAcq periodically acquires
the sensors' TM data through the following synchronous "request - receive" process:
Task5DataAcq sends a command to some sensor to ask for its TM data, then
delays 4ms waiting for the TM data. If Task5DataAcq receives all TM data returned
from the sensor during the delay, it goes on running. Otherwise, a TM-timeout error
occurs. The delay time of Task5DataAcq (4 ms) is set at design stage according to a
normal execution of the multitasking system. However, the system may behave in

 Formal Verification of Lunar Rover Control Software Using UPPAAL 721

unpredicted ways due to non-determinism of external events' interrupting and non-
determinism of task scheduling. It is hard to tell whether Task5DataAcq can always
receive the TM data in the expected time through manual analysis. We aim to use
model checking to explore all possible executions of the multitasking system.

3 Outline of the Verification

Our verification was conducted in two stages: In the first stage, we constructed a
model for the Rover control software, and verified it using UPPAAL symbolic model
checking. As the system under study contains few common errors, we conducted error
seeding experiments to show whether the model was able to reveal possible defects in
the software system. Some simple concurrency bugs were inserted into the model to
imitate faults in the task programs, such as missing of semaphore acquiring. The ex-
periment showed that symbolic model checking could detect simple concurrency
bugs. But for more complicated properties, the model checker reported "memory
exhaustion" without any verification result due to state-space explosion problem. In
the second stage, to avoid the state-space explosion problem, we constructed a new
model with the latest version of UPPAAL (version 4.1.16) so that statistical model
checking (SMC) can be applied. SMC does not explore the entire state space of a
model. Instead, it simulates the model for finitely many runs, and uses hypothesis
testing to infer whether the samples provide a statistical evidence for the satisfaction
or violation of the specification [5]. This paper reports our work in the second stage.

Our major effort involves two aspects: constructing a model of the Rover control
software, and analyzing the model using SMC. The framework of our model is based
on the Herschel model presented in [6], where a schedulability analysis on the control
software of Herschel-Planck satellite is conducted. Herschel control software is also a
multitasking system, where the RTOS uses priority-based preemptive scheduling for
CPU, priority ceiling and priority inheritance protocols for shared resources. As the
Herschel model is built for schedulability analysis, it is insufficient for functional
correctness verification. Our model extends and improves the Herschel model in
terms of refined representation of task operations, behavior conformance to the
RTOS, adapted description of periodic tasks, modeling of aperiodic tasks, and in-
volvement of physical environment.

Our verification exposed the conditions that lead to a special error, and proved that a
revision to the design could effectively rectify the problem. In particular, as our analysis
focused on the cause of the error while SMC does not generate anti-examples, we ex-
ploited the simulation and verification functions of UPPAAL-SMC so that typical ex-
ecutions of the model could be demonstrated to interpret the error's occurrence.

4 Modeling of the Rover Control Software

To exhibit the behavior of the Rover control software, the model has to display not
only detailed operations of each task, but also the interactions between the RTOS, the

722 L. Shan et al.

tasks and the physical environment. The following sub-sections are devoted to the
main components of the model.

4.1 RTOS

To exhibit the parallel running of the multiple tasks, the Rover model has to describe
how the RTOS schedules the tasks. The framework of our RTOS model is based on
the Hershel model. However, we observed that the Herschel model does not conform
to ordinary RTOS in the following case: if a task is blocked as its required resource is
unavailable, according to the Herschel model, the task will try to obtain the resource
after it is scheduled next time. However, with usual RTOS, a blocked task joins a task
queue to wait for the required resource. Once the resource is available, the task with
the top priority in the waiting queue gets ready for scheduling. The two ways of man-
aging blocked tasks result in different behavior of a multitasking system. To imitate
usual RTOS, our model modifies the Herschel model: (1) for each shared resource, a
waiting queue is established where tasks are sorted according to their priorities; (2)
the task model is revised to describe that a blocked task joins the waiting queue, and
the head of the queue acquires the resource
once the resource becomes available.

The automaton for the CPU scheduler in
the Rover control software is shown in Fig. 2,
where main(), poll(), add() are C functions.
The function main() assigns initial priorities to
all tasks according to their ID, respectively,
poll() takes the head of a task queue, and add()
adds a task to the tail of a queue. The first
parameter of poll() or add() indicates which
task queue is under manipulation.

4.2 Operations in Tasks

To display each task's execution, the Herschel model uses operation flow to represent
the program statements of each task. As schedulability analysis is only concerned
with the time each operation needs, the Herschel model defines 5 types of operations:
COMPUTE, LOCK, UNLOCK, SUSPEND, and END. Each operation is described
by three parameters: operation type, required resource and required time. COMPUTE
represents all kinds of operations that need to run on CPU. For functional verification,
however, the Rover model has to describe the specific operations of each task. We
define four additional operation types, including READ, WRITE, COND and GOTO.
Among them, READ and WRITE represent tasks' reading and writing of message
queues, respectively. COND and GOTO are used for unrolling branch or loop state-
ments in tasks' programs. The nine types of operations are summarized in Table 2.

Fig. 2. Scheduler

 Formal Verification of Lunar Rover Control Software Using UPPAAL 723

Table 2. Types of operations

Operation type Meaning Parameters
END End of program N/A
COMPUTE Any operation that needs CPU

time except Read/Write
Span: CPU time needed

LOCK Lock a shared resource Res: required resource
UNLOCK Release a shared resource N/A
DELAY Voluntarily release CPU and

wait for a period of time
Span: time needed to wait

COND Conditional branch trueStep/falseStep: steps to jump
when condition is true/false;
truePercent: probability of condition
being true

GOTO Unconditional branch trueStep: steps to jump
READ Read data from message queue Res: message queue to read;

DataLength: number of data frames
WRITE Write data into message queue Res: message queue to write;

DataLength: number of data frames;
Sensor: the sensor whose TM data is
required

Each operation type is accompanied by certain parameters. Since UPPAAL sup-

ports a subset of C, the data structure of operations can be defined as a C struct fun_t,
as Fig. 3 shows.

Fig. 3. Data structure of Operation

The operation flow of each task is an array whose elements are instances of the
struct fun_t. For example, as shown in Fig. 4, the third operation of Task5DataAcq's
operation flow is to write one frame of data into SendQueue for requiring the IMU
sensor to return its TM data. The unnecessary parameters are specified as 0.

typedef struct {

 funtype_t cmd; // type of operation

 resid_t res; // required resource

 time_t span; // required time

 step_t trueStep; // (for GOTO/COND) jump steps when condition is true

 step_t falseStep; // (for COND) jump steps when condition is false

 truePercent_t truePercent; // (for COND) the probability of COND being true

 sendQLength_t dataLength // (for WRITE/READ SendQ) number of data frames

 sensorId_t sensor; // (for WRITE SendQ) request TM data from which sensor

} fun_t;

724 L. Shan et al.

Fig. 4. Operation flow Task5DataAcq

4.3 Periodic Tasks

What a periodic task means may vary in various systems. The period of a periodic
task is the interval between the task's two adjacent arrivals in some systems [7], such
as the Herschel control software. In the Rover control software, however, it means the
interval between a task's finish and its next arrival. The arrival time of a periodic task
is hence related to its finish time of last execution. Besides, due to accumulative error
of timing in the Rover system and random events in the physical environment, the
arrival time of periodic tasks may deviate from the expectation. We built a timed au-
tomaton called PeriodicTask, as the template of all periodic tasks, to describe the state
transitions of a periodic task from the viewpoint of the RTOS. The parameters of
PeriodicTask are as follows, where Offset means how far into the cycle the task is
released.

const taskid_t id, const time_t Offset, const time_t Period,

const flow_t flow

When the parameters are assigned with concrete values, as shown in Fig. 5, the
template is instantiated to a timed automaton for each task.

Fig. 5. Instantiation of periodic tasks

const Flow_t DataAcq =

{

 { LOCK, SEND_Q, 0, 0, 0, 0, 0, 0 }, //1. request semaphore of SEND_Q

 { COMPUTE, 0, 1, 0, 0, 0, 0, 0 }, //2. Set IMU_flgAcq to be 0.

 { WRITE, SEND_Q, 0, 0, 0, 0, 1, IMU }, //3. requesting IMU TM

 { SUSPEND, 0, 4, 0, 0, 0, 0, 0 }, //4. Delay for 4 ms

 { COMPUTE, 0, 1, 0, 0, 0, 0, 0 }, //5. set IMU_comState=10;

 { UNLOCK, SEND_Q, 0,0, 0, 0, 0, 0 }, //6. Release semaphore of SEND_Q

 FIN

}

// taskid, Offset, Period, flow

Task2Cru = PeriodicTask(TaskCruID, 0, 5000, Cru);

Task5DataAcq = PeriodicTask(TaskDataAcqID, 0, 200, DataAcq);

Task6GNC = PeriodicTask(TaskGNCID, 0, 200, GNC);

 Formal Verification of Lunar Rover Control Software Using UPPAAL 725

Fig. 6. Template PeriodicTask

Fig. 6 shows the template PeriodicTask. Take Task5DataAcq, whose operation
flow DataAcq is shown in Fig. 4, as an example. After initialization, the automaton
moves to the location Ready. When Task5DataAcq is scheduled, the automaton goes
to GotCPU, and then to different locations depending on the types of operations in the
operation flow. Since the first operation in DataAcq is to lock a shared resource
SEND_Q, the automaton takes a transition to tryLock. If the required resource is
available, the automaton goes to Next, so that the task will execute the next operation
in the operation flow. Otherwise, the automaton goes to Blocked, showing that the

726 L. Shan et al.

task is blocked and joins the waiting queue. The automaton goes to Ready2 once the
task obtains the resource, then to GotCPU when the task is scheduled again. As the
second operation in DataAcq is COMPUTE, the automaton stays at Computing until
the specified span of the operation is spent. At the location Computing, a stopwatch
expression (sub' == runs[id]) is used to imitate preemptive scheduling. When a task is
preempted, the clock variable sub stops and the Boolean variable runs[id] is set to 0,
indicating that the task stops running. Likewise, the remaining operations in the oper-
ation flow are executed sequentially until reaching the end. Then the automaton goes
to Release, representing the task releasing the CPU. After spending Period time at
Idle, the automaton goes to Ready, showing that the task arrives again.

4.4 Aperiodic Tasks

Aperiodic tasks are triggered by events. In the Rover control software, Task1TC is
triggered by TC's arrival, and Task3Send or Task4Receive is triggered by data arrival
at message queues. The existence of aperiodic tasks highlights an important feature of
CPS: it has to react immediately to events which randomly arise in the environment.
In other words, aperiodic tasks enable a CPS to respond to its environment in real
time. Therefore, the Rover model has to incorporate aperiodic tasks. We use channel
synchronizations to imitate events' trigging of aperiodic tasks. The template for aperi-
odic tasks is similar to that of periodic task, but differs in the ready condition. The
template AperiodicTask is omitted here for the sake of space. Parameters of the tem-
plate include task ID and operation flow.

In the actual Rover control software, aperiodic tasks are triggered by the interrupts
of the RTOS. By using synchronization channels, the Rover model achieves behavior
conformance to the system while avoiding complicated modeling of interrupt.

4.5 Message Queue

As data transmission through message queues is a main concern in our verification,
the Rover model needs to describe the message queues in the system. The automaton
SendQueue imitates the state change of the message queue when tasks read or write it,
as shown in Fig. 7. When Task3Send reads SendQueue, all data in the queue are sent
to a CAN port, and the time spent relies on the length of data in the queue. According
to the data transfer rate of CAN bus, 5 frames can be sent in one time unit (1 time unit
represents 1 ms in our model). The automaton also records whether data in the queue
contains a "requesting sensor's TM data" message. When such a message is sent to
CAN bus, the SendQueue automaton sends a synchronization message to the sensor
whose TM is requested.

 Formal Verification of Lunar Rover Control Software Using UPPAAL 727

Fig. 7. SendQueue

4.6 Physical Environment

The physical environment of the Rover control software consists of the TC sender on
the ground, the sensors on the Rover, the CAN bus, etc. The software system interacts
with the physical environment by receiving incoming TC, acquiring sensors' TM data,
or transmitting data through the CAN bus. In the Rover model, the automata for the
components in the physical environment display the effects of external non-
deterministic events on the control software. While the Rover is working, people on
the ground may send TC at any time to take over the control of the system. According
to the Rover's developers, the maximum frequency of sending TC is one command
per second. Task1TC has the highest priority among all tasks and hence may preempt
other tasks at any time. In our model, TC sender on the ground is described by an
automaton which imitates random issuing of TC at the frequency of once per 1000ms,
as shown in Fig. 8 (A). To represent the event of sending a TC to the Rover, the TC
automaton sending a synchronization message earthCmd to the automaton Task1TC,
which triggers Task1TC to get ready.

 (A) TC sender (B) Sensor (C) IMU_FlgAcq

Fig. 8. Model of Environment

The Sensor automaton, as shown in Fig. 8 (B), is a template for all sensors. On re-
ceiving a sendAcq[id] message, which means the sensor receives a "requesting TM
data" command, the Sensor automaton sends a sensorReturnData message after a

728 L. Shan et al.

response time. The sensorReturnData message condenses the process of transferring
all TM data into an atomic event. An automaton IMU_FlgAcq represents a flag indi-
cating whether all TM data from IMU are acquired, as shown in Fig. 8 (C). When the
IMU_FlgAcq automaton receives sensorReturnData message, the Boolean variable
value is set to 1, indicating that all TM data of the IMU is received.

5 Verification

During three years' development and testing of the Rover system, for a few times an
error was observed: Task5DataAcq cannot receive complete TM data within its delay
time, hence raises a TM-timeout error. The developers suspected that TC's arrival at a
special time may raise this error. But the suspicion could not be confirmed through
testing and debugging due to the following reasons. Firstly, executions of a multitask-
ing system are unrepeatable because of the non-determinism of task scheduling. Se-
condly, fine-grained operations of the RTOS, such as scheduling of tasks, are impor-
tant to show the running process of the multitasking system but difficult to observe.
Thirdly, the appearance of TM-timeout was too rare to reveal the commonness under-
lying the errors. The developers hoped us to tracking down the error through formal
verification.

5.1 Goal of the Verification

As mentioned above, Task5DataAcq is a periodic task which acquires TM data from
the sensors. Take IMU as an example of the sensors. The synchronous process of
"request - receive" is shown in Fig. 9 in the form of a UML sequence diagram.

Fig. 9. The "request-receive" scenario

As Fig. 9 shows, the process involves 6 events:

1. Task5DataAcq writes one frame of data, i.e. the command "request IMU's TM da-
ta", to SendQueue, then begins to wait.

2. Task3Send is triggered to get ready by the data's arrival at SendQueue, and
preempts Task5DataAcq, since Task3Send's priority is higher than Task5DataAcq.

Task3Send Task5DataAcq SendQueue CAN IMU

1 : Write()

2 : Start()

3 : SendData()

4 : AcqIMU()

5 : ReturnData()

6 : GetData()

 Formal Verification of Lunar Rover Control Software Using UPPAAL 729

3. Task3Send sends all the data in SendQueue to a CAN port with a speed of 0.192
ms per data frame.

4. IMU sensor receives the "request IMU's TM data" command.
5. After 0.5 ms (IMU's response time in average), IMU returns 6 frames of TM data

through the CAN bus.
6. Task5DataAcq acquires the TM data returned by IMU.

Normally, the above process needs 1.844 (= 0.192+0.5+0.192*6) ms, hence
Task5DataAcq can receive all the data returned from IMU during the 4ms delay. TM-
timeout means that something happened so that the TM data transmission took more
than 4ms. Among the 6 events in the above process, Event (3) and Event (5) take
some time, while the time other events spend can be omitted. The time of Event (5) is
linear to the length of the TM data, hence cannot be affected by other tasks. As the
time of Event (3) is linear to the length of the data in SendQueue, it is possible that
Task3Send spends longer time than expected if SendQueue contains some data before
Task5DataAcq writes the "request TM data" command into it.

As the TM-timeout error has been discovered during testing, our verification fo-
cuses on revealing causes of the error. Based on the above analysis, we divide the
verification target into two steps: First, find out conditions that lead to the error.
Second, analyze whether the conditions can be satisfied in the actual system. Simula-
tion and verification helped to show that a TM-timeout error might happen under the
following conditions:

1. Task6GNC is ready at T, while Task2Cur and Task5DataAcq get ready at T+8 ms.
2. TC arrives at T+7ms.

Since TC can arrive at any time, obviously the above condition (2) is possible in
the actual system. To tell whether and when condition (1) may occur is beyond the
capability of the Rover model, as only part of the tasks in the actual Rover control
software is described by the Rover model. However, the developers of Rover control
software believed that condition (1) may happen as a result of condition (2). TC may
trigger those tasks not incorporated in the Rover model, such as scientific data down-
link, and their running may interrupt other tasks. As the arrival time of a periodic task
is related to the finish time of its last execution, Task2Cur and Task5DataAcq's arrival
may be postponed. In brief, despite that the Rover model cannot demonstrate the sce-
nario where condition (1) and (2) hold, through manual analysis the developers accept
that the scenario can happen in the actual Rover control software. In the following
analysis, we use an adjusted Rover model which satisfies the above conditions, and
call it Scenario Model as it describes a particular scenario of the system after running
for some time.

5.2 Simulation of the Error

Our analysis differs from ordinary uses of SMC in the sense that we focus on the
cause of the error and hence need to observe traces that lead to the error, instead of

730 L. Shan et al.

estimating the possibility of a property being satisfied. Since SMC does not provide
anti-examples, we exploit the simulation and plotting functions of UPPAAL-SMC.

By simulation, we found a trace showing the procedure of the TM-error occurrence.
The trace, consisting of over 400 transition steps, starts at T=0 and ends with the vari-
able waitTMtime accumulated to 5. waitTMtime is a clock variable representing the time
that Task5DataAcq spends to wait for IMU's TM data. It starts timing after
Task5DataAcq writes the "request IMU's TM data" command to SendQueue, and ends
when all TM data returned by IMU are received. The variable waitTMtime being 5
means that Task5DataAcq needs 5 ms to acquire the TM data from IMU.

A more intuitive way to examine the error's occurrence is to plot a run of the mod-
el. Given the following query (1), UPPAAL runs the model within 40 time units and
plots values of the parameters in the brace, as shown in Fig. 10. Note that offsets in
the parameters are for the clarity of the plot.

simulate 1 [<=40] {sendQLength, waitTMtime+10, susp[5]+15, cprio[5]+20,
earth+25, susp[6]+30, owner[1]+40, ctask+50} (1)

Among the parameters, sendQLength is an integer variable recording the length of
the data in SendQueue. susp[i] is a Boolean variable indicating whether the task i is in
the state of delay. cprio[i] is an integer variable showing the current priority of task i.
ctask is an integer showing the ID of the current task.

Fig. 10. A run of Scenario Model

According to the plot and the operation flow of every task, we can understand a
typical run of the Scenario Model. As Fig. 10 shows, at 11 ms, ctask turns from 5 to 3,
since Task5DataAcq finishes writing "request IMU's TM data", and Task3Send be-
gins to execute. When Task3Send sends the data in SendQueue to the CAN bus,
sendQLength decreases at the rate of 5 frames per ms. susp[5] becomes 1, showing
that Task5DataAcq starts to delay, and waitTMtime begins timing. Task5DataAcq's
delay finishes at 15 ms, but waitTMtime ends timing at 16 ms, hence a TM-timeout
error appears. Detailed explanation of Fig. 10 is omitted here for the sake of space.
Note that a plot only shows one run of the model, while the plot for another run may
be slightly different due to the non-determinism of the RTOS's scheduling.

 Formal Verification of Lunar Rover Control Software Using UPPAAL 731

Further analysis shows that in the above scenario, as Task1TC and Task2Cru have
higher priorities than Task5DataAcq, Task1TC and Task2Cru have written 4 and 8
frames of data respectively before Task5DataAcq writes SendQueue. After Task1TC and
Task2Cru's writing, Task5DataAcq is scheduled before Task3Send, because
Task5DataAcq's priority was boosted as a result of priority inheritance. Task3Send can
only be scheduled when Task5DataAcq delays. At this time, totally 13 frames of data has
accumulated in SendQueue, so that Task3Send needs to spend (13*0.192) ms to send all
these data. Task5DataAcq has to wait totally 4.148 (= 13*0.192 + 0.5 + 6*0.192) ms to
receive all the returned TM data from IMU. Consequently, Task5DataAcq cannot receive
all returned TM data during its 4 ms delays, and a TM-timeout error occurs. To sum up,
the cause of the TM-timeout error is the interplay of a number of factors, including ran-
dom events from the physical environment (TC's arrival), the RTOS's preemptive sche-
duling of tasks, priority inheritance, and the setting of tasks' priorities.

5.3 Verification of the Revised Version

With the above analysis, the developers regarded the source of the TM-timeout error
as incorrect setting of tasks' priorities. Task3Send's priority was too low so that it was
unable to send data in SendQueue timely in certain circumstances. To solve the prob-
lem, the developers revised the priorities of some tasks: the priority of Task3Send was
raised from 4 to 5, Task4Receive raised from 3 to 4, and Task2Cru decreased from 5
to 3. We verified the revised Scenario Model, and proved that the modification was
effective in the sense that the TM-timeout error would not occur under the same ini-
tial conditions. The verification result on the models before and after priority revising
is summarized in Table 3.

Table 3. Verification result on original and revised models

Query Original Model Revised Model
E[<=100; 2000] (max: waitTMtime) 4.907 3
E[<=100; 2000] (max: sendQLength) 12.7905 7.9775

Given a query E[<=T; R] (max: X), UPPAAL verifyta reports the estimated maxi-

mum value of X through R runs of simulation, where each run progresses T time units.
As Table 3 shows, on the original model, the maximum value of waitTMtime is esti-
mated to be nearly 5 ms, and the maximum value of sendQLength is nearly 13, which
confirms the above analysis. After revising the tasks' priorities, the maximum value of
waitTMtime is 3 ms, and the maximum value of sendQLength is nearly 8, showing
that Task5DataAcq can always receive TM data within its 4 ms delay.

6 Conclusion

So far we have not seen any report on the functional verification of a realistic multi-
tasking system in the literature. A related research is the schedulability analysis of a

732 L. Shan et al.

multitasking system by Waszniowski and Hanzálek [8, 9], which also focuses on
modeling of a multitasking system and a RTOS. Compared to their model which ex-
plicitly describes the RTOS' scheduling and interrupt service as well as each applica-
tion task as timed automata, our model is more modular and extensible.

We spent an estimated total of 6 man months of work on the modeling and analysis
of the Rover control software, during which three regular meetings with the design
engineers were scheduled. Of this, approximately 5 man months were dedicated to
modeling decisions, and 1 man month was spent with verification, including formulat-
ing the queries and analyzing the results. The formal verification achieved satisfying
outcome with acceptable cost. As the discovered error trace consists of over 400 tran-
sition steps, it would be extremely hard to envisage the error without the assistance of
the formal method. In summary, we learned through the study that formal verification
played an indispensable role in analyzing complicated properties and improving the
quality of the safety-critical real-life CPS.

Acknowledgement. The authors would like to thank Prof. Kim G. Larsen, Dr. Alex-
andre David and Dr. Marius Mikucionis from Aalborg University for their valuable
advices and helps on using UPPAAL. The work reported in this paper is partly sup-
ported by the National High-Technology Research and Development Program of
China under Grant No. 2011AA010102 and No. 2011AA010105.

References

1. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369
(2008)

2. Gluck, P.R., Holzmann, G.J.: Using SPIN model checking for flight software verification.
In: Aerospace Conference Proceedings. IEEE (2002)

3. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hendriks, M.:
UPPAAL 4.0. In: Third International Conference on Quantitative Evaluation of Systems
(QEST 2006). IEEE (2006)

4. Bulychev, P., David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Checking
and distributing statistical model checking. In: Goodloe, A.E., Person, S. (eds.) NFM 2012.
LNCS, vol. 7226, pp. 449–463. Springer, Heidelberg (2012)

5. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg
(2010)

6. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-planck
revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

7. Fidge, C.J.: Real-time schedulability tests for preemptive multitasking. Real-Time
Systems 14(1), 61–93 (1998)

8. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications based on
timed automata model. Real-Time Systems 38(1), 39–65 (2008)

9. Waszniowski, L., Hanzalek, Z.: Over-approximate model of multitasking application based
on timed automata using only one clock. In: 19th IEEE International Parallel and
Distributed Processing Symposium. IEEE (2005)

Formal Verification of a Descent Guidance Control
Program of a Lunar Lander�

Hengjun Zhao1,4, Mengfei Yang2, Naijun Zhan1,��, Bin Gu3, Liang Zou1,4,
and Yao Chen3

1 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China
{zhaohj,znj,zoul}@ios.ac.cn

2 Chinese Academy of Space Technology, Beijing, China
3 Beijing Institute of Control Engineering, Beijing, China

4 University of Chinese Academy of Sciences, Beijing, China

Abstract. We report on our recent experience in applying formal methods to the
verification of a descent guidance control program of a lunar lander. The powered
descent process of the lander gives a specific hybrid system (HS), i.e. a sampled-
data control system composed of the physical plant and the embedded control
program. Due to its high complexity, verification of such a system is very hard.
In the paper, we show how this problem can be solved by several different tech-
niques including simulation, bounded model checking (BMC) and theorem prov-
ing, using the tools Simulink/Stateflow, iSAT-ODE and Flow∗, and HHL Prover,
respectively. In particular, for the theorem-proving approach to work, we study
the invariant generation problem for HSs with general elementary functions. As a
preliminary attempt, we perform verification by focusing on one of the 6 phases,
i.e. the slow descent phase, of the powered descent process. Through such verifi-
cation, trustworthiness of the lunar lander’s control program is enhanced.

Keywords: Lunar lander, formal verification, hybrid systems, reachable set,
invariant.

1 Introduction

Recently, China just launched a lunar lander to achieve its first soft-landing and rov-
ing exploration on the moon. After launching, the lander first entered an Earth-Moon
transfer orbit, then a 100 kilometers (km)-high circular lunar orbit, and then a 15km ×
100km elliptic lunar orbit. At perilune of the elliptic orbit, the lander’s variable thruster
was fired to begin the powered descent process, which can be divided into 6 phases. As
shown in Figure 1, the terminal phase of powered descent is the slow descent phase,
which should normally end several meters above the landing site, followed by a free
fall to the lunar surface. One of the reasons to shut down the thruster before touchdown
is to reduce the amount of stirred up dust that can damage onboard instruments.

� This work has been partly supported by National Basic Research Program and “863 Plan" of
China (2014CB340700 and 2011AA010105) and NSFC 91118007.

�� Corresponding author.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 733–748, 2014.
c© Springer International Publishing Switzerland 2014

734 H. Zhao et al.

Fig. 1. The powered descent process of the lunar lander

Powered descent is the most challenging task of the lunar lander mission because
it is fully autonomous. Due to communication delay, it is impossible for stations on
earth to track the rapidly moving lander, and remote control commands from earth
cannot take effect immediately. The lander must rely on its own guidance, navigation
and control (GNC) system to, in real time, acquire its current state, calculate control
commands, and use the commands to adjust its attitude and engine thrust. Therefore
the reliable functionality of the GNC system is the key to the success of soft-landing.
The motivation of this work is to enhance the trustworthiness of the guidance control
program used in the powered descent process by application of formal methods.

The general framework of our approach is as follows. Firstly, with the help of engi-
neers participating in the lunar lander project, we build a closed loop model consisting
of the lander’s physical dynamics and the program controlling the lander; the program
model is excerpted from the real C-code program by keeping the critical control flows
and numerical computations while abstracting away non-essential information. In addi-
tion, properties about the closed-loop system that are the engineers’ main concerns are
proposed. Then these properties are analyzed or formally verified.

The closed-loop model has the following prominent features: 1) the physical dy-
namics is modelled by ordinary differential equations (ODEs) with general elemen-
tary functions (rational, trigonometric, exponential functions etc.); 2) the program has
complex branching conditions and numerical computations; 3) the physical process is
frequently interrupted by control inputs from the program; 4) the system suffers from
various uncertainties. Verification of such a system is beyond the capacity of many
existing verification tools. Our solutions are as follows: 1) we first build a Simulink/S-
tateflow model of the closed-loop system and analyze its behaviour by simulation; 2)
we then perform bounded model checking (BMC) of the system w.r.t. proposed prop-
erties using the tools iSAT-ODE [5] and Flow∗ [3]; 3) thirdly, with the tool Sim2HCSP
[16,15] we automatically translate the Simulink/Stateflow graphical model to a formal
model given by HCSP [8,13], a formal modelling language of HSs, and then perform
unbounded safety verification of the system using HHL Prover [14], a theorem prover
for HSs, by extending our previous work on invariant generation for polynomial HSs
[11] to HSs with general elementary functions.

We have tried to show the effectiveness of three different formal verification tools
because each of them has its own strength (and weakness) and cannot be replaced by

Formal Verification of a Descent Guidance Control Program 735

the others: iSAT-ODE can deal with very complex logical structures and data types
(real, integer, Boolean) of programs, and provides flexible control of unwinding depth
for BMC; Flow∗ can cope with large initial sets and perturbation of system models;
HHL Prover can save lots of efforts in safety verification, especially when considering
safety in a large or even unbounded time interval.

In this paper, we mainly focus on applying the above framework to the slow de-
scent phase. Verification is performed before the real program is deployed on the lunar
lander’s computer, and thus strengthens our trust in the dependability of the program.

1.1 Related Work

Verification of full feedback system combining the physical plant with the control pro-
gram has been advocated by Cousot [4] and Goubault et al. [7]. There are some recent
work in this trend which resembles our work in this paper. In [2], Bouissou et al. pre-
sented a static analyzer named HybridFluctuat to analyze hybrid systems encompassing
embedded software and continuous environment; subdivision is needed for HybridFluc-
tuat to deal with large initial sets. In [12], Majumdar et al. also presented a static ana-
lyzer CLSE for closed-loop control systems, using concolic execution and SMT solving
techniques; CLSE only handles linear continuous dynamics. In [1], Saha et al. verified
stability of control software implementations; their approach requires expertise on anal-
ysis of mathematical models in control theory using such tools as Lyapunov functions.

There are some recent work on application of formal methods in the aerospace in-
dustry. For example, in [9] Johnson et al. proved satellite rendezvous and conjunction
avoidance by computing the reachable sets of nonlinear hybrid systems; in [6] Katoen et
al. reported on their usage of formal modelling and analysis techniques in the software
development for a European satellite.

Paper Organization. The rest of this paper is organized as follows. In Section 2, we give
a detailed description of the slow descent phase and the related verification problems.
In Section 3, we build the Simulink/Stateflow model and then analyze the system’s
behaviour by simulation. In Section 4 we formally verify the proposed properties by
BMC and theorem proving. The paper is concluded by Section 5.

2 Description of the Verification Problem

Overview of the Slow Descent Phase. The slow descent phase begins at an altitude
(relative to lunar surface) of approximately 30m and terminates when the engine shut-
down signal is received. The task of this phase is to ensure that the lander descends
slowly and smoothly to the lunar surface, by nulling the horizontal velocity, maintain-
ing a prescribed uniform vertical velocity, and keeping the lander at an upright position.
The descent trajectory is nearly vertical w.r.t. the lunar surface (see Figure 2).

The operational principle of the GNC system for the slow descent phase (and any
other phases) can be illustrated by Figure 3. The closed loop system is composed of
the lander’s dynamics and the guidance program for the present phase. The guidance
program is executed periodically with a fixed sampling period. At each sampling point,

736 H. Zhao et al.

Fig. 2. The slow descent phase Fig. 3. A simplified configuration of GNC

the current state of the lander is measured by IMU (inertial measurement unit) or vari-
ous sensors. Processed measurements are then input into the guidance program, which
outputs control commands, e.g. the magnitude and direction of thrust, to be imposed on
the lander’s dynamics in the following sampling cycle.

We next give a mathematical description of the lander’s dynamics as well as the
guidance program of the slow descent phase. For the purpose of showing the technical
feasibility and effectiveness of formal methods in the verification of aerospace guidance
programs, we neglect the attitude control as well as the orbit control in the horizontal
plane, resulting in a one-dimensional (the vertical direction) orbit dynamics.

Dynamics. Let the upward direction be the positive direction of the one-dimensional
axis. Then the lander’s dynamics is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ṙ = v
v̇ = Fc

m − gM

ṁ = − Fc

Isp1

Ḟc = 0
Fc ⇒ [1500, 3000]

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṙ = v
v̇ = Fc

m − gM

ṁ = − Fc

Isp2

Ḟc = 0
Fc ⇒ (3000, 5000]

, where (1)

– r, v and m denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

– Fc is the thrust imposed on the lander, which is a constant in each sampling period;
– gM is the magnitude of the gravitational acceleration on the moon, which varies

with height r but is taken to be the constant 1.622m/s2 in this paper, since the
change of height (0∨r∨30m) can be neglected compared to the radius of the moon;

– Isp1 = 2500N·s/kg and Isp2 = 2800N·s/kg are the two possible values that the
specific impulse1 of the lander’s thrust engine can take, depending on whether the
currentFc lies in [1500, 3000] or (3000, 5000], and thus the lander’s dynamics com-
prises two different forms as shown in (1);

– note that the terms Fc

m in (1) make the dynamics non-polynomial.

1 Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals
the thrust produced per unit mass of propellant burned per second.

Formal Verification of a Descent Guidance Control Program 737

Guidance Program. The guidance program for the slow descent phase is executed
once for every 0.128s. The control flow of the program, containing 4 main blocks, is
demonstrated by the left part of Figure 4.

Fig. 4. The guidance program for the slow descent phase

The program first reads data given by navigation computation (block 1), and then
decides whether to stay in the slow descent phase or switch to other phases by testing
the following conditions (block 2):

(SW1) shutdown signal 1, which should normally be sent out by sensors at the height
of 6m, is received, and the lander has stayed in slow descent phase for more
than 10s;

(SW2) shutdown signal 2, which should normally be sent out by sensors at the height
of 3m, is received, and the lander has stayed in slow descent phase for more
than 10s;

(SW3) no shutdown signal is received and the lander has stayed in the slow descent
phase for more than 20s.

If any of the above conditions is satisfied, then the GNC system switches from slow
descent phase to no-control phase and a shutdown command is sent out to the thrust
engine; otherwise the program will stay in the slow descent phase and do the guidance
computation (block 3) as shown in the right part of Figure 4, where

– v and gM are the vertical velocity and gravitational acceleration from navigation
measurements or computation; note that we have assumed gM to be a constant;

– Fc and m are the computed thrust and mass estimation at last sampling point; they
can be read from memory;

– DeltaT = 0.128s is the sampling period;
– Isp is the specific impulse which can take two different values, i.e. 2500 or 2800,

depending on the current value of Fc;

738 H. Zhao et al.

– mMin = 1100kg and mMax =3000kg are two constants used as the lower and
upper bounds of mass estimation;

– c1 = 0.01 and c2 = 0.6 are two control coefficients in the guidance law;
– vslw = −2m/s is the target descent velocity of the slow descent phase;
– the output Fc (block 4) will be used to adjust engine thrust for the following sam-

pling cycle; it can be deduced from the program that the commanded thrust Fc

always lies in the range [1500, 5000].

Verification Objectives. Together with the engineers participating in the lunar lander
project, we propose the following properties to be verified regarding the closed-loop
system of the slow descent phase and the subsequent free fall phase.

Firstly, suppose the lunar lander enters the slow descent phase at r = 30m with
v = −2m/s, m = 1250kg and Fc = 2027.5N. Then

(P1) Safety 1: |v − vslw | ∨ ω during the slow descent phase and before touchdown2,
where ω = 0.05m/s is the tolerance of fluctuation of v around the target vslw =
−2m/s;

(P2) Safety 2: |v| < vMax at the time of touchdown, where vMax = 5m/s is the
upper bound of |v| to avoid the lander’s crash when contacting the lunar surface;

(P3) Reachability: one of the switching conditions (SW1)-(SW3) will finally be sat-
isfied so that the system will exit the slow descent phase.

Furthermore, by taking into account such factors as uncertainty of initial state, dis-
turbance of dynamics, sensor errors, floating-point calculation errors etc., we give

(P4) Stability and Robustness: (P2) and (P3) still holds, and an analogous of (P1) is
that v will be steered towards vslw = −2m/s after some time.

3 Simulation

We first build a Simulink/Stateflow model3 of the closed-loop system for the slow de-
scent phase. Then based on the model we analyze the system’s behaviour by simulation.

According to Section 2, the physical dynamics is specified by (1), which is modelled
by the Simulink diagram shown in Figure 5.

In Figure 5, several blocks contain parameters that are not displayed:

– the threshold of Isp is 3000, which means Isp outputs 2800 when Fc is greater than
3000, and 2500 otherwise;

– the initial values of m, v and r (m = 1250kg, r = 30m, v = −2m/s) are specified
as initial values of blocks m1, v1 and r respectively.

2 Note that if no shutdown signal is received, there exists possibility that the lander stays in the
slow descent phase after landing.

3 All the details of simulation and verification in this paper can be found at
http://lcs.ios.ac.cn/~zoul/casestudies/hcs.rar

http://lcs.ios.ac.cn/~zoul/casestudies/hcs.rar

Formal Verification of a Descent Guidance Control Program 739

v
2

m
1

v1

1
s

r

1
s

m1

1
s

gain

−1

gM

1.622

Scope

Isp2

2800

Isp1

2500
Isp

 >

Divide2Divide1 Add

Fc
1

Fig. 5. The Simulink diagram of the dynamics for the slow descent phase

Fc
1

vslw

−2

sub

mul4

mul3

mul2

mul1

max

max

mSat

gM

1.622

c2

0.6

c1

0.01

c0

1500

add2

add1

FcSat

Fc2
z

1

Fc1

v
2

m
1

Fig. 6. The Simulink diagram of the guidance program for the slow descent phase

As specified in Figure 4, The guidance program includes three parts: updating mass
m, calculating acceleration aIC, and calculating thrust Fc. The Simulink diagram for
the guidance program is shown in Figure 6, in which the sample time of all blocks are
fixed as 0.128s, i.e. the period of the guidance program. In Figure 6, blocks m and mSat
are used to update mass m, blocks Fc1 and FcSat are used to calculate thrust Fc, and
the rest are used to calculate acceleration aIC. Blocks mSat and FcSat are saturation
blocks from Simulink library which limit input signals to the upper and lower bounds
of m and Fc respectively.

The simulation result is shown in Figure 7. The left part shows that the velocity of
the lander is between -2 and -1.9999, which corresponds to (P1); the right part shows
that if shutdown signal 1 is sent out at 6m and is successfully received by the lander,
then (SW1) will be satisfied at time 12.032s, which corresponds to (P3).

Fig. 7. The simulation result

740 H. Zhao et al.

4 Verification

In this section, we formally verify the properties (P1)-(P4) proposed in Section 2.
Firstly, using iSAT-ODE [5] we build an exact model of the dynamics (1) and the guid-
ance program shown in Figure 4, and then verify (P1)-(P3) by BMC with an initial set
of a single point as specified in Section 2. Secondly, we take various uncertainties into
account and verify (P4) by computing the system’s (bounded) reachable set using Flow∗

[3]; to simplify the modelling in Flow∗, we have made reasonable simplifications of the
guidance control program. Finally, we show how theorem proving can be an alternative
to BMC by performing unbounded verification of (P1) using HHL Prover [14].

4.1 Verification by Bounded Model Checking

Bounded model checking (BMC) is a verification technique that, for a given state tran-
sition system and an initial set of states, answers whether an unsafe state can be reached
by unwinding the transition system to a depth of k. BMC is suitable for the verification
of sampled-data systems because the periodic sampling and control naturally induce
state transitions with a fixed time step. The tool iSAT-ODE [5] is a bounded model
checker that handles nonlinear arithmetic and nonlinear differential equations.

Modelling in iSAT-ODE. Thanks to the support of Boolean, integer and real data
types, as well as such functions as max, min, abs etc. in iSAT-ODE, modelling of the
closed loop system for the slow descent phase is straightforward. We first define two
Boolean variables mode_slow and mode_free to represent the slow descent phase and
the free fall phase respectively. We further require that at any time one and only one
of mode_slow and mode_free is TRUE. Each sampling cycle induces two kinds of
state transitions, i.e. the continuous and discrete transition, which are distinguished by
a Boolean variable jump. For example, the following texts:

mode_slow and !jump -> (d.r / d.time = v);
mode_slow and !jump -> (d.v / d.time = Fc/m - gM);
mode_slow and !jump -> (d.m / d.time = -Fc/Isp1);
mode_slow and !jump -> (d.Fc / d.time = 0);

can be used to define a continuous transition under dynamics (1) with specific impulse
Isp1, where ! jump denotes the negation of jump and Isp1 is the constant 2500. Simi-
larly, an update of Fc by a discrete computation has the following form:

mode_slow and jump -> Fc’ = (***);

where Fc′ denotes the value of Fc after transition, and (***) is not the language of iSAT-
ODE but the abbreviation of the omitted updating assignments of Fc. The duration of
each transition is represented by a real variable delta_time, which equals the sampling
period in the continuous case and 0 in the discrete case.

The critical part is to model the conditions of switching from the slow descent phase
to the free fall phase, i.e. (SW1)-(SW3). Based on whether the shutdown signal 1 or 2 is
received, we build three different models with the conditions (SW1), (SW2) and (SW3)

Formal Verification of a Descent Guidance Control Program 741

respectively. For example, if shutdown signal 1 is sent out exactly at a height of 6m and
is successfully received, then (SW1) will be used in the model and it is encoded as:

mode_slow and jump -> (mode_free’ <-> r <= 6 and time > 10);,

where time denotes the total time elapsed in the slow descent phase. The properties
(P1)-(P3) will be verified on all three models.

In our model we assume the lander’s velocity becomes 0 immediately upon touch-
down and stays at 0 afterwards.

Verification in iSAT-ODE. Bounded model checking in iSAT-ODE can be done by
specifying a target set (formula) whose reachability is to be checked, as well as the
minimal and maximal unwinding depth of the state transition system for constructing
BMC formulas. For the model of the slow descent phase, since each sampling cycle
corresponds to two transition steps4, if the system’s reachable set in n sampling cycles
is going to be checked against the target formula, then the minimal and maximal depth
should be specified as 0 and 2n (or 2n− 1) respectively.

We first try to verify (P3) by setting the target formula to !mode_slow. If the current
phase is the slow descent phase, then the result unsatisfiable will be returned; otherwise
satisfiable will be expected. In our model mode_slow is initially set to TRUE. We check
for each k ∅ 0 to find the first k that gives the satisfiable answer, which means phase
switching happens at k. However, according to our experience, at the unwinding depth
where the target formula becomes satisfiable, iSAT-ODE will run for a long time until
memory is exhausted without giving an answer. In practice, when this phenomenon is
observed, it is very likely that the target formula is satisfiable at the current depth, so if
we check against the negation of the target formula, then an unsatisfiable answer will
be expected. A good rule of thumb is that with iSAT-ODE, it’s better to check against a
target that is indeed unsatisfiable. In this way, we have shown that:

– if shutdown signal 1 is received, phase switching happens at k=188, i.e. the end of
the 94th sampling cycle, or equivalently the time 12.032s (consistent with Figure 7);

– if shutdown signal 1 is not received and shutdown signal 2 is received, phase switch-
ing happens at k = 212;

– if no shutdown signal is received, phase switching happens at k = 314.

We then try to verify (P1) by setting the target formula to the negation of (P1):

r > 0 and !(v >= −2.05 and v <= −1.95) .

Since we are only considering the lander’s velocity in the slow descent phase, this target
is checked for depth 0 ∨ k ∨ 187, 0 ∨ k ∨ 211, 0 ∨ k ∨ 313 respectively for three
different models. In this way we have successfully verified (P1).

We finally try to verify (P2) by first getting an estimation of the ranges of v and r at
the time phase switching happens, i.e. k = 188, 212, 314 for the three different models
respectively. To this end, we have to guess a possible range of v or r and then check

4 In our model, the k-th transition is a continuous transition if k is an odd number, and a discrete
transition if k is an even number.

742 H. Zhao et al.

against the negation of the estimated range in iSAT-ODE. It’s a process of trial and
error. Bipartition of intervals can be applied. Eventually, we get

– if shutdown signal 1 is received, then r ⇒ [5.9, 6.0] (consistent with Figure 7) and
v ⇒ [−2.05,−1.95] when phase switching happens;

– if shutdown signal 1 is not received and shutdown signal 2 is received, then r ⇒
[2.8, 2.9] and v ⇒ [−2.05,−1.95] when phase switching happens;

– if no shutdown signal is received, then r = 0, v = 0 when phase switching happens,
and by the verified (P1) we have v ⇒ [−2.05,−1.95] whenever r > 0.

Since slow descent phase is followed by free fall, using the range estimations of v and r
and the dynamics of free fall, we show that in all three cases |v|<5m/s upon touchdown.

The cost of the above verification, on the platform with Intel Q9400 2.66GHz CPU
running a Debian virtual machine with 3GB memory allocated, is shown in Table 1.

Table 1. Time and memory cost of the verification in iSAT-ODE

Model with (SW1) Model with (SW2) Model with (SW3)
(P1) 2min46sec, 477MB 3min46sec, 594MB 14min3sec, 1.8GB
(P2) 24sec, 304MB 31sec, 378MB 50sec, 602MB
(P3) 1min22sec, 290MB 2min1sec, 350MB 2min7sec, 62MB

4.2 Verification with Uncertainties

We have shown how properties (P1)-(P3) can be verified using iSAT-ODE, by assum-
ing the initial state to be a single point, and the continuous dynamics, sampling time
points, navigation and guidance computations etc. are all exact. However, in practice
such ideal models do not exist because disturbances and noises are unavoidable in the
physical world. Therefore it is meaningful to analyze the performance of the lander’s
GNC system by taking into account various uncertainties. To this end, we next verify
(P4) proposed in Section 2 using Flow∗ [3], a tool for computing over-approximations
of the reachable sets of continuous dynamical and hybrid systems. The prominent fea-
tures of Flow∗ include the handling of non-polynomial ODEs, ODEs with uncertainties,
reset functions with uncertainties, and so on, which all facilitate our modelling here.

Modelling as Hybrid Automata. Basically, in Flow∗ a hybrid system is modelled as
a hybrid automaton (HA). If we build a complete model in Flow∗ for the slow descent
phase using the program in Figure 4, then the max and min functions would make the
transition relation in the resulting HA very complex. To simplify the modelling and
verification in Flow∗, we make the following assumption which will be justified later:

(A1) throughout the execution of the guidance program, the value of m lies in the
range [mMin ,mMax], and the value of

F ′
c =̂ − c1 · (Fc −m · gM)− c2 · (v − vslw) ·m+m · gM (2)

lies in the range [1500, 5000].

Formal Verification of a Descent Guidance Control Program 743

Under assumption (A1) all the max and min functions can be simplified and it is easy to
check that the computation of thrust in the guidance program is equivalent to Fc := F ′

c.
As in iSAT-ODE, we can also build three different models in Flow∗ with the switch-

ing conditions (SW1), (SW2) and (SW3) respectively. In the following, we only discuss
the model with (SW1) as illustrated by Figure 8, and the verification work done with it.

Fig. 8. The HA model of the slow descent phase Fig. 9. The invariant for HHL Prover

For Figure 8, we give the following explanations:

– the three modes represent the slow descent phase with specific impulse 2500, 2800,
and the free fall phase, respectively; the mode domains are shown in the picture;
the continuous dynamics are the two in (1) and the standard dynamics of free fall
on the lunar surface; all dynamics are augmented with the flow rate of time ṫ = 1
and Ṫ = 1, where t represents the local elapsed time in the current sampling cycle
and T denotes the total elapsed time since the beginning;

– all the discrete jumps take place at t = 0.128 and t is reset to 0 for every jump;
– the jumps from Mode_slow_Isp1 or Mode_slow_Isp2 to Mode_free_fall depend on

the truth value of (SW1), i.e. r ∨ 6 ∧ T > 10;
– the jumps from Mode_slow_Isp1 and Mode_slow_Isp2 to themselves, or the jumps

between them, depend on (SW1) and the comparison of F ′
c (defined in (2)) to 3000;

the value of Fc is updated to F ′
c for every such jump.

Introducing Uncertainties. We next modify the model in Figure 8 by introducing into
it various kinds of uncertainties according to different origins:

– The initial states are chosen to be intervals, e.g. v ⇒ [−2.5,−1.5], r ⇒ [29.5, 30.5],
m ⇒ [1245, 1255] Fc ⇒ [2020, 2035],5 and so on.

– Add interval disturbances to dynamics (1) and the dynamics of free fall. The causes
of such uncertainties could be: the direction of Fc may deviate from the vertical

5 Thus the initial mode should be the slow descent phase with specific impulse 2500.

744 H. Zhao et al.

direction; the specific impulse may not be exactly 2500 or 2800; the engine may
not be able to keep a constant thrust in one cycle; the acceleration of gravity is
not the constant 1.622 but changes with height; and so on. For example, we have
ṁ = − Fc

2500+[−0.1,0.1] if the specific impulse has a±300 perturbation around 2500.
– In the guidance program, the value of Fc is stored in memory so it is not changed

between two sampling points, while the actual thrust imposed on the lander may
not be constant in one cycle; besides, due to uncertainty of specific impulse, the
estimated value of m by the program using fixed specific impulse values 2500 or
2800 may deviate from the real mass value. Therefore we introduce two new vari-
ables mp and Fp, whose time derivatives are zero, to distinguish between program
variables and continuous state variables.

– The measurement of time in the computer system may not be precise, and thus the
length of one sampling cycle may vary in the range, say [0.127, 0.129]. This should
be reflected in the domains and transition guards of the hybrid automaton.

– The measured height may suffer from sensor errors, say ±0.1m, and thus the shut-
down signal may be sent out at a height of 6± 0.1m. Therefore we revise the phase
switching condition by taking into consideration such imprecision.

– The measured velocity may also suffer from sensor errors, say ±0.1m/s. Since the
value of m (or mp) is greater than 1000kg, by (2), this may cause a fluctuation of
nearly 100N of the commanded thrust. Therefore we revise (2) by

F ′
p =̂ − c1 · (Fp−mp · gM)− c2 · (v− vslw) ·mp+mp · gM +[−100, 100] . (3)

In the computation of Fp, there may also exist floating point errors, which we claim
can be absorbed by the large interval [−100, 100].

Computation Results. We compute the reachable set of the above described model
with a time bound of 25s and an unwinding depth (the maximal number of allowed
jumps) of 200. The computation costs 19 minutes and 769MB memory on the platform
with Intel Q9400 2.66GHz CPU and 4GB RAM running Ubuntu Linux. The relations
between v, r, Fp,mp and T and shown in Figure 10 which can be explained as follows:

– The ranges of T in all pictures are within [0, 18]. Neither the time bound 25 or the
unwinding depth 200 is reached during the flowpipe computation, which implies
that the result covers all the reachable states of the hybrid automaton in Figure 8.

– The top left picture shows the relation between v and T . Since the initial range of v
is [−2.5,−1.5], property (P1) does not make sense. However, we can still conclude
that the system has a good asymptotic property, that is, the value of v converges to
a stable interval, approximately [−2.25,−1.75] after some time. Besides, it can be
seen from the picture that v is always above the level−5m/s; actually property (P2)
can be formally verified with the support of safety checking in Flow∗. Furthermore,
from the sharp decrease in v we can infer6 property (P3), that is, starting from any
initial state the system will finally switches to the free fall phase.

– The top right picture shows the relation between r and T .

6 A formal proof can be obtained by looking into the mode information of computed flowpipes.

Formal Verification of a Descent Guidance Control Program 745

Fig. 10. Reachable sets given by Flow∗

– The bottom left picture shows the relation between Fp and T . Although the initial
range of Fp is narrow (defined to be [2015, 2040]), by (3), the variation of v in
[−2.5,−1.5] would cause fluctuation of Fp by several hundreds. Nevertheless, the
picture shows that the range of Fp also stabilizes after some time. Besides, Fp

always lies in [1500, 2600], which justifies our assumption (A1).
– The bottom right picture shows the relation between mp and T . The initial value of
mp is defined to be [1240, 1260]. It can be seen that mp always lies in [1225, 1260],
which also justifies the assumption (A1).

4.3 Verification by Theorem Proving

One disadvantage of verification by BMC is that it cannot verify a safety property at all
time. Even if we only care about properties within a bounded time interval, BMC may
not work with very large intervals, since more resources are required for larger unwind-
ing depths, a fact confirmed by Table 1. We show that theorem proving can be a good
alternative to BMC for safety verification, by verifying (P1) using HHL Prover [14].

Transformation to HCSP. We first build a Simulink/Stateflow model similar to the one
in Section 3 with simplified thrust computations according to assumption (A1), which
has been justified by the verification results of Flow∗. We then automatically translate
the model into a formal model given by HCSP using the tool Sim2HCSP [16]. Basically
the transformed HCSP process is as follows:

definition P :: proc where
"P == PC_Init;PD_Init;t:=0;(PC_Diff;t:=0;PD_Rep)*"

746 H. Zhao et al.

In process P, PC_Init and PD_Init are initialization procedures for the continuous dy-
namics and the guidance program respectively; PC_Diff models the continuous dynam-
ics given by (1) within a period of 0.128s; PD_Rep calculates thrust Fc according to (2)
for the next sampling cycle; variable t denotes the elapsed time in each sampling cycle.

Verification in HHL Prover. In order to verify property (P1), we give the following
proof goal in HHL Prover:

lemma goal : "{True} P {safeProp; (l=0 | (high safeProp))}"

where safeProp stands for |v − vslw | ∨ ω. The parts True and safeProp; specify the
pre- and post-conditions of P respectively. The part (l=0 | (high safeProp)) specifies a
duration property, where l=0 means the duration is 0, and high is just a syntax construct.

After applying proof rules in HHL Prover with the above proof goal, the following
three lemmas remain unresolved:

lemma constraint1: "(t<=0.128) & Inv |- safeProp"
lemma constraint2: "(v=-2) & (m=1250) & (Fc=2027.5)

& (t=0) |- Inv"
lemma constraint3: "(t= 0.128) & Inv

|- substF([(t,0)], substF([(Fc,
-0.01*(Fc-1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

In a more readable way, the three lemmas impose the following constraints:

(C1) 0 ∨ t ∨ 0.218 ∧ Inv −∧ |v − vslw | ∨ ω;
(C2) v = −2 ∧m = 1250 ∧ Fc = 2027.5∧ t = 0 −∧ Inv ;
(C3) t = 0.128 ∧ Inv −∧ Inv(0← t;F ′

c ← Fc) , with F ′
c defined in (2);

(C4) Inv is the invariant of both constrained dynamical systems

≤ODE1; 0 ∨ t ∨ 0.128∧Fc ∨ 3000〉 and ≤ODE2; 0 ∨ t ∨ 0.128∧Fc > 3000〉 ,

where ODE1 and ODE2 are the two dynamics defined in (1).

We will address the problem of invariant generation in the subsequent subsection.

Invariant Generation. Invariant generation for polynomial continuous/hybrid systems
has been studied a lot [11]. To deal with systems with non-polynomial dynamics, we
propose a method based on variable transformation. For this case study, we replace the
non-polynomial terms Fc

m in ODE1 and ODE2 by a new variable a. Then by simple
computation of derivatives we get two transformed polynomial dynamics:

ODE ′
1 =̂

⎧⎨⎩
ṙ = v
v̇ = a− 1.622

ȧ = a2

2500

and ODE ′
2 =̂

⎧⎨⎩
ṙ = v
v̇ = a− 1.622

ȧ = a2

2800

. (4)

Furthermore, it is not difficult to see that the update of Fc as in (2) can be accordingly
transformed to the update of a given by

a′ =̂ − c1 · (a− gM)− c2 · (v − vslw) + gM . (5)

Formal Verification of a Descent Guidance Control Program 747

As a result, if we assume Inv to be a formula over variables v, a, t, then (C2)-(C4) can
be transformed to:

(C2’) v = −2 ∧ a = 1.622∧ t = 0 −∧ Inv ;
(C3’) t = 0.128 ∧ Inv −∧ Inv(0← t; a′ ← a), with a′ defined in (5);
(C4’) Inv is the invariant of both constrained dynamical systems ≤ODE ′

1; 0 ∨ t ∨
0.128〉 and ≤ODE ′

2; 0 ∨ t ∨ 0.128〉7 with ODE ′
1 and ODE ′

2 defined in (4).

Note that the constraints (C1) and (C2’)-(C4’) are all polynomial. Then the invari-
ant Inv can be synthesized using the SOS (sum-of-squares) relaxation approach in the
study of polynomial hybrid systems [10]. With the Matlab-based tool YALMIP and
SDPT-3, an invariant p(v, a, t) ∨ 0 as depicted by Figure 9 is generated. Furthermore,
to avoid the errors of numerical computation in Matlab, we perform post-verification
using the computer algebra tool RAGlib8 to show that the synthesized p(v, a, t) ∨ 0
is indeed an invariant. Thus we have successfully completed the proof of property (P1)
by theorem proving. On the platform with Intel Q9400 2.66GHz CPU and 4GB RAM
running Windows XP, the synthesis costs 2s and 5MB memory, while post-verification
costs 10 minutes and 70MB memory.

5 Conclusions

We studied a short piece of program used for the guidance and control in the termi-
nal slow descent phase of a lunar lander. With the assistance of engineers from the
lunar lander project, a closed-loop system linking the program and the lander’s dynam-
ics was mathematically described, and safety-critical properties about the system were
proposed. These properties were all successfully verified by using or extending several
existing formal verification techniques that can handle continuous-discrete interactions,
general nonlinear differential equations and uncertainties. The dependability of the lu-
nar lander’s guidance control program was enhanced through such verification.

The preliminary results in this paper show good prospect of closed-loop verification
of embedded software in sampled-data control systems. For future work, we will first
try to perform a thorough verification of the lunar lander system; we also plan to inves-
tigate more effective invariant generation or flowpipe computation methods for general
nonlinear ODEs. An ambitious goal is to develop a tool that can be used by engineers.

Acknowledgements. We are indebted to Prof. Chaochen Zhou, Dr. Shuling Wang, Dr.
Yanxia Qi and Dr. Zheng Wang for the fruitful discussions with them on this work.
The availability of iSAT-ODE is by courtesy of Prof. Martin Fränzle and Mr. Andreas
Eggers. We thank Dr. Xin Chen for his instructions on the use of Flow∗, and thank Prof.
Mohab Safey El Din for the use of RAGlib. We also thank the anonymous referees for
their valuable comments on the earlier draft.

7 We have abstracted away the domain constraints on Fc.
8 http://www-polsys.lip6.fr/~safey/RAGLib/

http://www-polsys.lip6.fr/~safey/RAGLib/

748 H. Zhao et al.

References

1. Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control system im-
plementations. In: EMSOFT 2010, pp. 9–18. ACM, New York (2010)

2. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat: A static ana-
lyzer of numerical programs within a continuous environment. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009)

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013)

4. Cousot, P.: Integrating physical systems in the static analysis of embedded control software.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 135–138. Springer, Heidelberg (2005)

5. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving the SAT modulo ODE ap-
proach to hybrid systems analysis by combining different enclosure methods. In: Software
& Systems Modeling, pp. 1–28 (2012)

6. Esteve, M.A., Katoen, J.P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal correctness,
safety, dependability, and performance analysis of a satellite. In: ICSE 2012, pp. 1022–1031.
IEEE Press (2012)

7. Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of control sys-
tems. In: ERTS 2006 (2006)

8. He, J.: From CSP to hybrid systems. In: A Classical Mind: Essays in Honour of C. A. R.
Hoare, pp. 171–189. Prentice Hall International (UK) Ltd, Hertfordshire (1994)

9. Johnson, T.T., Green, J., Mitra, S., Dudley, R., Erwin, R.S.: Satellite rendezvous and conjunc-
tion avoidance: Case studies in verification of nonlinear hybrid systems. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 252–266. Springer, Heidelberg (2012)

10. Kong, H., He, F., Song, X., Hung, W.N., Gu, M.: Exponential-condition-based barrier certifi-
cate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013)

11. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical
systems. In: EMSOFT 2011, pp. 97–106. ACM, New York (2011)

12. Majumdar, R., Saha, I., Shashidhar, K.C., Wang, Z.: CLSE: Closed-loop symbolic execution.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 356–370. Springer,
Heidelberg (2012)

13. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur, R., Hen-
zinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530. Springer, Heidel-
berg (1996)

14. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese train
control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko,
A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer, Heidelberg (2014)

15. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of Simulink/Stateflow dia-
grams. Tech. Rep. ISCAS-SKLCS-13-07, State Key Lab. of Comput. Sci., Institute of Soft-
ware, CAS (2013)

16. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying Simulink diagrams via a Hybrid
Hoare Logic prover. In: EMSOFT 2013. IEEE Press (2013)

Author Index

Acharya, Aravind 335
Aguirre, Nazareno 531
Aldrich, Jonathan 497
Andisha, Ahmad Siyar 658
Antonino, Pedro 62
Armstrong, Alasdair 78

Bae, Kyungmin 94
Bai, Guangdong 110
Balzer, Stephanie 497
Bjørner, Dines 42
Blom, Stefan 127
Bonakdarpour, Borzoo 132
Bowen, Judy 148
Butin, Denis 163

Cavalcanti, Ana 465, 627
Chechik, Marsha 399
Chen, Jianxin 718
Chen, Yao 733
Christakis, Maria 643

Damm, Werner 179
Denman, William 194
Derrick, John 200
Dietsch, Daniel 658
D’Ippolito, Nicolás 367
Dongol, Brijesh 200
Duggirala, Parasara Sridhar 215

Estler, H.-Christian 230

Feng, Yuan 247
Feo-Arenis, Sergio 658
Finkbeiner, Bernd 179
Fischer, Sebastian 1
Forejt, Vojtěch 263
Freitas, Leo 279
Frias, Marcelo 531
Fu, Ning 718
Furia, Carlo A. 230, 514

Garoche, Pierre-Löıc 563
Ghughal, Rajnish 673
Gollmann, Dieter 547

Gomes, Victor B.F. 78
Gu, Bin 733
Gui, Lin 688
Gunadi, Hendra 296
Gupta, Aarti 673

Hahn, Ernst Moritz 312
Hajisheykhi, Reza 132
Hao, Jianan 110
Havelund, Klaus 42
Hayes, Ian J. 318
Hsiung, Pao-Ann 416
Hu, Zhenjiang 1
Huisman, Marieke 127

Klein, Gerwin 16
Komondoor, Raghavan 335
Kordy, Piotr 351
Krka, Ivo 367
Kroening, Daniel 263
Kulkarni, Sandeep S. 132

Langerak, Rom 351
Leino, K. Rustan M. 382, 643
Le Métayer, Daniel 163
Li, Yi 312, 399
Liang, Zhenkai 110
Lin, Shang-Wei 416
Liu, Yan 688
Liu, Yang 110, 432, 688

M., V. Achutha Kirankumar 673
MacCaull, Wendy 611
Maibaum, Thomas S.E. 611
Marić, Ognjen 449
Marriott, Chris 465
Martin, Andrew 110
Mauw, Sjouke 351
McIver, Annabelle 595
Medvidović, Nenad 367
Mehnert, Hannes 497
Meinicke, Larissa 318
Meseguer, José 94
Meyer, Bertrand 230, 514
Mitra, Sayan 215

750 Author Index

Mitsch, Stefan 481
Morgan, Carroll 595
Moskal, Micha�l 382
Muñiz, Marco 658
Muñoz, César 194, 215

Narayanaswamy, Ganesh 263
Nistor, Ligia 497
Nordio, Martin 230

Ölveczky, Peter Csaba 94

Pacheco, Hugo 1
Piccioni, Marco 230
Platzer, André 481
Polderman, Jan Willem 351
Polikarpova, Nadia 514
Ponzio, Pablo 531

Qiao, Lei 718
Quesel, Jan-David 481

Reeves, Steve 148
Rinast, Jonas 547
Rosner, Nicolás 531
Roux, Pierre 563
Roy, Suman 703

Sajeev, A.S.M. 703
Sampaio, Augusto 62, 627
Santos, Thiago 627
Scheben, Christoph 579
Schellhorn, Gerhard 200
Schewe, Sven 312
Schmitt, Peter H. 579
Schulte, Wolfram 643
Schupp, Sibylle 547
Shan, Lijun 718
Sharma, Subodh 263
Sprenger, Christoph 449

Sripathy, Srivibha 703
Struth, Georg 78
Sun, Chengzheng 432

Tan, Tian Huat 399
Tiu, Alwen 296
Tofan, Bogdan 200
Travkin, Oleg 200
Tschannen, Julian 514
Turrini, Andrea 312

Uchitel, Sebastián 367

Vasanta Lakshmi, K. 335
Viswanathan, Mahesh 215

Wan, Lijng 718
Wang, Le 215
Wang, Yuying 718
Wehrheim, Heike 200
Wen, Roland 595
Westphal, Bernd 658
Whiteside, Iain 279
Woodcock, Jim 22, 62
Wu, Jianliang 110

Xu, Yi 432

Yang, Mengfei 733
Yousef Sanati, Morteza 611

Zeyda, Frank 627
Zhan, Naijun 733
Zhang, Lijun 247, 312
Zhang, Shao Jie 432
Zhao, Hengjun 733
Zhao, Lei 718
Zhou, Xingshe 718
Zou, Liang 733

	Preface
	Organisation
	Table of Contents
	Validity Checking of Putback Transformations
in Bidirectional Programming

	1 Introduction
	2 Putback-Based Bidirectional Programming
	3 Defining Putback Functions
	3.1 Pdl: A Putback Function Definition Language

	3.2 Properties of Putback Transformations in Pdl

	4 Validity Checking
	4.1 View Determination Checking
	4.2 Source Stability Checking
	4.3 Checking Algorithm

	5 Related Work
	6 Conclusions and Future Work
	References

	Proof Engineering Considered Essential
	1 The seL4 Verification
	References

	Engineering UToPiA
Formal Semantics for CML

	1 Introduction
	2 Unifying Theories of Programming
	3 Separation Logic in UTP
	4 Linking Paradigms
	5 Galois Connections
	6 Designs
	7 Reactive Processes
	8 Timed Reactive Processes
	9 Conclusion
	References

	40 Years of Formal Methods
Some Obstacles and Some Possibilities?

	1 Introduction
	1.1 Some Delineations
	1.2 Specification versus Analysis Methods

	2 A Syntactic Status Review
	2.1 A Background for Formal Methods
	2.2 A Brief Technology and Community Survey
	2.3 Shortcomings
	2.4 A Success Story?

	3 More Personal Observations
	3.1 The DDC Ada “Story”

	3.2 Eight Obstacles to Formal Methods
	3.3 A Preliminary Summary Discussion
	3.4 The Next 10 Years?

	4 Conclusion
	References

	A Refinement Based Strategy for Local
Deadlock Analysis of Networks of CSP Processes

	1 Introduction
	2 CSP
	3 NetworkModel
	4 Local Deadlock Analysis Based on Patterns and Refinement Checking
	4.1 Resource Allocation Pattern
	4.2 Client/Server Pattern

	5 Experimental Analysis
	6 Conclusion and Related Work
	References

	Algebraic Principles for Rely-Guarantee Style
Concurrency Verification Tools

	1 Introduction
	2 Algebraic Preliminaries
	3 Generalised Hoare Logics in Kleene Algebra
	4 A Rely-Guarantee Algebra
	5 Breaking Compositionality
	6 Finite Language Model
	7 Enriching the Model
	8 Examples
	9 Conclusion
	References

	Definition, Semantics, and Analysisof Multirate Synchronous AADL
	1 Introduction
	2 Preliminaries
	3 Multirate Synchronous AADL
	4 Case Study: Turning an Airplane
	5 Real-Time Maude Semantics
	6 Formal Analysis Using the MR-SynchAADL Tool
	7 Verifying the Airplane Turing Controller
	8 Related Work and Conclusions
	References

	TRUSTFOUND: Towards a Formal Foundation for Model Checking Trusted Computing Platforms
	1 Introduction
	2 Motivation and Overview
	2.1 Overview of Key Concepts in Trusted Computing
	2.2 Motivating Example
	2.3 TRUSTFOUND Overview

	3 Modeling Trusted Platforms
	3.1 Overview of Modeling Language
	3.2 Modeling Security Systems
	3.3 Modeling the TPM

	4 Threat Attacks and Security Goals
	4.1 Attacker’s Knowledge and Knowledge Deduction
	4.2 ThreatModels
	4.3 Security Goals
	4.4 Uncovering Implicit Assumptions

	5 Implementation and Case Studies
	5.1 Analysis of the Digital Envelope Protocol
	5.2 Analysis of a Trusted Grid Platform

	6 Related Work
	7 Conclusion
	References

	The VerCors Tool
for Verification of Concurrent Programs

	1 Introduction
	2 DesignoftheVerCorsTool
	3 The VerCors Specification Language
	4 Conclusion
	References

	Knowledge-Based Automated Repair
of Authentication Protocols

	1 Introduction
	2 Preliminaries [10]
	2.1 The Notion of Knowledge
	2.2 Knowledge in Multi-agent Systems

	3 High-Level System Representation
	4 The Model Repair Problem
	4.1 Authentication
	4.2 Formal Problem Statement

	5 A Knowledge-Based Repair Algorithm
	5.1 Auxiliary Agent
	5.2 Algorithm Description

	6 Case Study: The Needham-Schroeder Protocol
	6.1 The Original 3-Step Protocol
	6.2 The Intruder
	6.3 Application of the Repair Algorithm

	7 Related Work
	8 Conclusion
	References

	A Simplified Z Semantics for Presentation
Interaction Models

	1 Introduction
	2 TheInteractionModels
	2.1 Presentation Models
	2.2 Presentation Interaction Models
	2.3 Presentation Model Relation
	2.4 MicroCharts

	3 Why Simplify?
	4 The New Z Semantics
	5 Combining the PIM with Functional Specification
	5.1 The Functional Specification

	6 Automating the Process
	7 Conclusions and Future Work
	References

	Log Analysis for Data Protection Accountability
	1 Context and Motivation
	2 Privacy Policies and Abstract Events
	2.1 Abstract Events
	2.2 Trace Compliance Properties

	3 Log Specification and Compliance
	3.1 Log Events
	3.2 Log Compliance Properties

	4 Accountability Properties
	5 Accountability Process
	6 Related Work
	7 Conclusions
	References

	Automatic Compositional Synthesis of Distributed Systems
	1 Introduction
	2 Synthesis of Distributed Systems
	3 Preliminaries: Automata over Infinite Words and Trees
	4 Dominant Strategies
	5 Synthesis of Environment Assumptions
	6 Compositional Synthesis for Safety Properties
	7 Compositional Synthesis for Liveness Properties
	8 Property Decomposition
	9 The Compositional Synthesis Algorithm
	10 Conclusions
	References

	Automated Real Proving in PVS via MetiTarski
	1 Introduction
	2 ThePVSStrategymetit
	3 Results and Conclusion
	References

	Quiescent Consistency: Defining and Verifying Relaxed Linearizability
	1 Introduction
	2 Background
	3 Quiescent Consistency
	4 Coupled Simulations - A Proof Methodology
	5 Quiescent Consistency of the Blocking Queue
	6 Conclusion
	References

	Temporal Precedence Checking for Switched Models and Its Application to a Parallel Landing Protocol
	1 Introduction
	2 System Models and Properties
	2.1 The Switched System Model
	2.2 Temporal Precedence with Guarantee Predicates

	3 Simulation-Based Verification of Temporal Precedence
	3.1 Temporal Precedence Verification Algorithm
	3.2 Verification of Guarantee Predicates

	4 Case Study: A Parallel Landing Protocol
	4.1 Alerting Logic and Verification of Temporal Precedence Property
	4.2 Verification Scenarios and C2E2 Performance

	5 Related Work and Conclusion
	References

	Contracts in Practice
	1 Introduction
	2 Study Setup
	3 How Contracts Are Used
	3.1 Writing Contracts
	3.2 Contracts and Project Size
	3.3 Kinds of Contract Elements
	3.4 Contract Size and Strength
	3.5 Implementation vs. Specification Changes
	3.6 Inheritance and Contracts

	4 Threats to Validity
	5 Related Work
	6 Concluding Discussion and Implications of the Results
	References

	When Equivalence and Bisimulation Join Forces in Probabilistic Automata
	1 Introduction
	2 Preliminaries
	3 Probabilistic Automata and Bisimulations
	3.1 Probabilistic Automata
	3.2 Probabilistic Bisimulation and Equivalence

	4 A Novel Bisimulation Relation
	4.1 Compatibility
	4.2 Properties of the Relations

	5 Bisimulation Metrics
	5.1 A Direct Approach
	5.2 Modal Characterization of the Bisimulation Metrics
	5.3 A Fixed Point-Based Approach
	5.4 Comparison with State-Based Metrics
	5.5 Comparison with Equivalence Metric

	6 Discussion and Future Work
	References

	Precise Predictive Analysis
for Discovering Communication Deadlocks
in MPI Programs

	1 Introduction
	2 Preliminaries
	3 Complexity of the Problem
	4 Propositional Encoding
	5 Implementation and Experimental Results
	6 Conclusion
	References

	Proof Patterns for Formal Methods
	1 Introduction
	2 Background
	2.1 Patterns
	2.2 Heap Problem

	3 Proof Patterns
	3.1 Witnessing
	3.2 Invariant Breakdown
	3.3 Weakening Lemmas
	3.4 Type Bridging and Zooming
	3.5 Retrieve State Update
	3.6 Hidden Case Analysis
	3.7 Shaping

	4 Patterns in the Heap
	5 Related Work and Conclusions
	References

	Efficient Runtime Monitoring
with Metric Temporal Logic:
A Case Study in the Android Operating System

	1 Introduction
	2 The Policy Specification Language RMTL
	3 Trace-Length Independent Monitoring
	4 Examples
	5 Implementation
	6 Conclusion, Related and Future Work
	References

	ISCASMC: AWeb-Based Probabilistic Model Checker
	1 Introduction
	2 Architecture and Usage
	2.1 The FrontendWeb Interface
	2.2 The Database
	2.3 The Backend
	2.4 The Model Checker Engine

	3 MainFeatures
	4 Future Work
	References

	Invariants,Well-Founded Statements and Real-Time Program Algebra
	1 Introduction
	2 Program Kleene Algebra
	2.1 Notation
	2.2 Program Syntax
	2.3 Basic Algebraic Properties
	2.4 Iteration
	2.5 Specifications

	3 Invariants
	4 Well-Founded Relations and Statements
	5 While Loops as Iterations
	6 Real-Time
	6.1 Idle Invariance
	6.2 Timed Tests

	7 Timed while Loops
	8 Conclusions
	References

	Checking Liveness Properties of Presburger
Counter Systems Using Reachability Analysis

	1 Introduction
	1.1 Our Approach
	1.2 Contributions

	2 Preliminaries
	3 Under-Approximation Approach for EG Properties
	3.1 Our Approach
	3.2 Theoretical Claims

	4 Over-Approximation Approach for EG Properties
	4.1 Details of the Approach
	4.2 Theoretical Claims

	5 Algorithm for Full CTL
	6 Implementation and Results
	7 Related Work
	References

	A Symbolic Algorithm for the Analysis
of Robust Timed Automata

	1 Introduction
	2 Preliminaries
	2.1 Timed Automata (TA)
	2.2 Semantics
	2.3 Symbolic Semantics
	2.4 Extended Semantics
	2.5 Stable Zones

	3 A Symbolic Algorithm for the Extended Semantics
	3.1 The Main Algorithm
	3.2 Calculation of Stable Zones
	3.3 Complexity

	4 Correctness of the Algorithm
	5 Implementation and Experiments
	5.1 Implementation
	5.2 Experiments

	6 Conclusions and Perspectives
	References

	Revisiting Compatibility of Input-Output Modal Transition Systems
	1 Introduction
	2 Background
	2.1 Transition Systems
	2.2 Interface Compatibility

	3 Semantically Defining Compatibility
	3.1 Conditional Compatibility
	3.2 Specification Compatibility
	3.3 Implementation Compatibility
	3.4 Strong Compatibility

	4 Checking IO MTS Compatibility
	4.1 Least Restrictive Implementation
	4.2 Most Restrictive Implementation
	4.3 Compatibility Checking Procedure

	5 Conclusions
	References

	Co-induction Simply
Automatic Co-inductive Proofs in a Program Verifier

	1 Introduction
	1.1 Contributions

	2 Co-inductive Definitions
	2.1 Background
	2.2 Defining Co-inductive Datatypes
	2.3 Creating Values of Co-datatypes
	2.4 Stating Properties of Co-datatypes

	3 Co-inductive Proofs
	3.1 Properties about Prefix Predicates
	3.2 Co-lemmas
	3.3 Prefix Lemmas
	3.4 Automation

	4 More Examples
	5 Soundness
	6 Related Work
	7 Conclusions
	References

	Management of Time Requirements in Component-Based Systems
	1 Introduction
	2 Approach at a Glance
	3 TheULTR Algorithm
	3.1 Definitions
	3.2 Best Under-approximation
	3.3 Iterative Hypercube Sampling

	4 Applications
	5 Implementation and Experiences
	5.1 Implementation
	5.2 Experiences

	6 Related Work
	7 Conclusions and Future Work
	References

	Compositional Synthesis of Concurrent Systems
through Causal Model Checking and Learning

	1 Introduction
	2 Background
	3 Causal Model Checking
	4 Compositional Synthesis Framework
	5 Application Examples and Experimental Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Formal Verification of Operational Transformation
	1 Introduction
	2 Collaborative Editing and OT Systems
	2.1 Consistency Requirements in Collaborative Editing
	2.2 Basic Ideas for Consistency Maintenance in OT
	2.3 Causal and Concurrent Relations among Operations

	3 OT System Formalization
	3.1 OT Basics
	3.2 Context-Based Conditions and Transformation Properties

	4 Verification of Convergence and Intention Preservation
	5 Verification of Transformation Properties
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Verification of a Transactional Memory Manager
under Hardware Failures and Restarts

	1 Introduction
	2 System Overview
	2.1 The Environment
	2.2 The Requirements

	3 TheFramework
	3.1 Specifications and Refinement (Outer Layer)
	3.2 Modeling Hardware Failures and Restarts (Inner Layer)
	3.3 Compositional Reasoning
	3.4 Properties and Their Preservation

	4 The Models
	4.1 The Abstract Model
	4.2 The Concrete Model
	4.3 Abstractions
	4.4 Establishing the Requirements

	5 Related Work
	6 Conclusion
	References

	SCJ: Memory-Safety Checking
without Annotations

	1 Introduction
	2 Safety-Critical Java
	3 Our Approach to Checking Memory Safety
	4 SCJ-mSafe and Translation

	4.1 SCJ-mSafe

	4.2 Translation

	5 Static Checking
	5.1 Environment
	5.2 Methods
	5.3 Rules

	6 ToolandExperiments
	7 Conclusions
	References

	Refactoring, Refinement, and Reasoning
A Logical Characterization for Hybrid Systems

	1 Introduction
	2 Related Work
	3 Refinement, Refactoring and Proof Obligations
	3.1 Preliminaries: Differential Dynamic Logic
	3.2 Refinement Relations
	3.3 Refactorings and Proof Obligations

	4 Structural Refactorings
	4.1 Extract Common Program
	4.2 Extract Continuous Dynamics
	4.3 Drop Implied Evolution Domain Constraint

	5 Behavioral Refactorings
	5.1 Introduce Control Path
	5.2 Introduce Complementary Continuous Dynamics
	5.3 Event- to Time-Triggered Architecture

	6 Safe Refactoring Examples with Refinement Reasoning
	6.1 Introduce Control Path
	6.2 Event- to Time-Triggered Architecture

	7 Conclusion
	References

	Object Propositions
	1 Introduction
	2 Overview
	3 Current Approaches
	4 Example: Queues of Integers
	5 Grammar
	6 Proof Rules
	7 Composite
	7.1 Specification

	8 Implementation of Composite Using Boogie
	References

	Flexible Invariants through Semantic Collaboration
	1 The Perks and Pitfalls of Invariants
	2 Motivating Examples: Observers and Iterators
	3 Existing Approaches
	4 Semantic Collaboration
	4.1 Preliminaries and Definitions
	4.2 Semantic Collaboration: Goals and Proof Obligations
	4.3 Soundness Argument
	4.4 Examples
	4.5 Default Annotations
	4.6 Update Guards

	5 Experimental Evaluation
	5.1 Challenge Problems
	5.2 Results and Discussion
	5.3 Comparison with Existing Approaches

	6 Future Work
	References

	Efficient Tight Field Bounds Computation
Based on Shape Predicates

	1 Introduction
	2 Bounded Verification and Tight Field Bounds
	2.1 Tight Bounds and Separation Logic Invariants

	3 Tight Bounds Calculation from Shape Predicates
	3.1 Improvements to the Brute Force Algorithm

	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	A Graph-Based Transformation Reduction to Reach UPPAAL States Faster
	1 Introduction
	2 Related Work
	3 Graph-Based Transformation Reduction
	3.1 Transformation Systems
	3.2 The Reduction Graph

	4 State Space Reconstruction for UPPAAL
	4.1 UPPAAL’s State Space
	4.2 Graph-Based Transformation Reduction Applied

	5 Experiments
	5.1 Reduction Results
	5.2 Performance

	6 Conclusion and Future Work
	References

	Computing Quadratic Invariants with Min- and Max-Policy Iterations: A Practical Comparison
	1 Introduction
	2 State of the Art
	2.1 Template Domains
	2.2 System of Equations
	2.3 Policy Iterations

	3 Implementation Details
	3.1 Control Flow Graph
	3.2 Templates
	3.3 Initial Value
	3.4 Interval Constraints
	3.5 Soundness of the Result

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Efficient Self-composition for Weakest Precondition Calculi
	1 Introduction
	2 Notation
	3 Formalizing Conditional Non-interference
	4 Efficient Self-composition
	5 Modular Self-composition with Contracts
	6 Related Work
	7 Conclusions and Future Work
	References

	Towards a Formal Analysis of Information Leakage for Signature Attacks in Preferential Elections
	1 Introduction
	2 Background
	2.1 The Single Transferable Vote
	2.2 Signature Attacks in the Single Transferable Vote
	2.3 Signature Attacks in Categorical Electoral Systems
	2.4 Defences Against Signature Attacks

	3 Related Work on Coercion
	4 The Effectiveness of Signature Attacks
	5 Examples of Signature Attacks with Partial Knowledge
	5.1 Election Scenario for Both Examples
	5.2 Example 1
	5.3 Example 2
	5.4 Comparing the Strategies

	6 Discussion
	7 Conclusion
	References

	Analyzing Clinical Practice Guidelines Using a
Decidable Metric Interval-Based Temporal Logic

	1 Introduction
	2 Metric Interval-Based Temporal Logic
	3 IMPNL, an Inspiration from MPNLl
	3.1 Syntax and Semantics
	3.2 Restrictions
	3.3 Tableau-style Algorithm for IMPNL
	3.4 Soundness and Completeness

	4 Case Study: Active Tuberculosis (TB) Diagnosis
	5 Conclusion and Future Work
	References

	A Modular Theory of Object Orientation
in Higher-Order UTP

	1 Introduction
	2 Preliminaries
	3 The Problem: Syntax and Compositionality
	4 A Theory of Parametrised Methods
	5 A Modular Theory of Object Orientation
	6 Example: An Object-Oriented Real-Time Language
	7 Conclusion
	References

	Formalizing and Verifying a Modern Build Language
	1 Introduction
	2 CloudMake
	3 Formal Semantics
	3.1 Domains
	3.2 Evaluation
	3.3 Race Freedom
	3.4 Consistency of Axiomatization

	4 Cached Builds
	5 Proof Experience and Proof Statistics
	6 Related Work
	7 Conclusion
	References

	The Wireless Fire Alarm System:
Ensuring Conformance to Industrial Standards
through Formal Verification

	1 Introduction
	2 Requirements
	2.1 Formalization of EN 54-25 Requirements

	3 Verification of the Monitoring Function
	3.1 Modeling
	3.2 Verification

	4 Alarm Verification
	4.1 Alarm Deadlines
	4.2 Non-Starvation of the Collision Resolution

	5 Conclusion
	References

	Formally Verifying Graphics FPU
An Intel R � Experience

	1 Introduction
	2 WhatIsSTE?
	3 Overview of Intel’s Graphics FPU
	4 Challenges of Graphics FPU FV
	4.1 Extra Instruction Qualifiers
	4.2 Mixed-Mode Instructions
	4.3 Conformance to Different Standards

	5 Results
	6 Summary
	References

	MDP-Based Reliability Analysis of an Ambient Assisted Living System
	1 Introduction
	2 AMUPADH: An Ambient Assisted Living System for Elderly Dementia People’s Healthcare
	2.1 System Components
	2.2 Six Reminding Scenarios

	3 Modeling AMUPADH System
	4 Reliability Analysis on AMUPADH: Experiments and Evaluations
	4.1 Reliability Analysis Tool Framework
	4.2 Reliability Analysis Experiments
	4.3 Discussions on Reliability Analysis on AAL Systems

	5 Conclusion
	References

	Diagnosing Industrial Business Processes: Early Experiences
	1 Introduction
	2 A Primer on Business Processes
	3 Verifying Soundness with Petri Net-Based Techniques
	4 Detecting and Diagnosing Errors for Process
	5 An Experience Report
	6 Conclusion
	References

	Formal Verification of Lunar RoverControl Software Using UPPAAL
	1 Introduction
	2 Lunar Rover Control Software
	3 Outline of the Verification
	4 Modeling of the Rover Control Software
	4.1 RTOS
	4.2 Operations in Tasks
	4.3 Periodic Tasks
	4.4 Aperiodic Tasks
	4.5 Message Queue
	4.6 Physical Environment

	5 Verification
	5.1 Goal of the Verification
	5.2 Simulation of the Error
	5.3 Verification of the Revised Version

	6 Conclusion
	References

	Formal Verification of a Descent Guidance Control Program of a Lunar Lander
	1 Introduction
	1.1 RelatedWork

	2 Description of the Verification Problem
	3 Simulation
	4 Verification
	4.1 Verification by Bounded Model Checking
	4.2 Verification with Uncertainties
	4.3 Verification by Theorem Proving

	5 Conclusions
	References

	Author Index

