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Abstract This paper gives a brief survey of two kinds of generalized barycentric
coordinates, Wachspress and mean value coordinates, and their applications. Appli-
cations include surface parameterization in geometric modeling, curve and surface
deformation in computer graphics, and their use as nodal shape functions for polyg-
onal and polyhedral finite element methods.
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1 Introduction

There is no unique way to generalize barycentric coordinates to polygons and poly-
hedra. However, two specific choices have turned out to be useful in several appli-
cations: Wachspress and mean value coordinates, and the purpose of this paper is to
survey their main properties, applications, and generalizations.

For convex polygons, the coordinates of Wachspress and their generalizations due
to Warren and others [15, 22, 30–33] are arguably the simplest since they are rational
functions (quotients of bivariate polynomials), and it is relatively simple to evaluate
them and their derivatives. Some simple bounds on their gradients have been found
recently in [6], justifying their use as shape functions for polygonal finite elements.

For star-shaped polygons, and arbitrary polygons, Wachspress coordinates are not
well-defined, and mean value coordinates are perhaps the most popular choice, due
to their generality and surprising robustness over complex geometric shapes [1, 2, 4,
8, 13, 16], even though they are no longer positive if the polygon is not star-shaped.
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Fig. 1 Vertex ordering for a polygon

They have been employed in various tasks in geometric modeling, such as surface
parameterization and plane and space deformation, as well as shading and animation
in computer graphics.

While most of this paper surveys previous results, we add two new ones. The
first is a new formula for the gradients of mean value coordinates, which could be
used in finite element methods. The second is an alternative formula for the mean
value coordinates themselves, which is valid on the boundary of the polygon. Though
it may not be of practical value, it offers an alternative way of showing that these
coordinates extend continuously to the polygon boundary.

2 Barycentric Coordinates on Polygons

Let P ⊂ R
2 be a convex polygon, viewed as an open set, with vertices v1, v2, . . . , vn ,

n ≥ 3, in some anticlockwise ordering. Figure 1 shows an example with n = 5. We
call any functions φi : P → R, i = 1, . . . , n, (generalized) barycentric coordinates
if, for x ∈ P , φi (x) ≥ 0, i = 1, . . . , n, and

n∑

i=1

φi (x) = 1,

n∑

i=1

φi (x)vi = x. (1)

For n = 3, the functions φ1, φ2, φ3 are uniquely determined and are the usual triangu-
lar barycentric coordinates w.r.t. the triangle with vertices v1, v2, v3. For n ≥ 4, the
choice of φ1, . . . , φn is no longer unique. However, they share some basic properties,
derived in [7]:

• The functions φi have a unique continuous extension to ∂ P , the boundary of P .
• Lagrange property: φi (v j ) = δi j .
• Piecewise linearity on ∂ P:

φi ((1 − μ)v j + μv j+1) = (1 − μ)φi (v j ) + μφi (v j+1), μ ∈ [0, 1]. (2)
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Fig. 2 Partitions for Li and �i

(Here and throughout, vertices are indexed cyclically, i.e., vn+1 := v1 etc.)
• Interpolation: if

g(x) =
n∑

i=1

φi (x) f (vi ), x ∈ P, (3)

then g(vi ) = f (vi ). We call g a barycentric interpolant to f .
• Linear precision: if f is linear then g = f .
• �i ≤ φi ≤ Li where Li , �i : P → R are the continuous, piecewise linear functions

over the partitions of P shown in Fig. 2 satisfying Li (v j ) = �i (v j ) = δi j .

3 Wachspress Coordinates

Wachspress coordinates were developed by Wachspress [30], and Warren [32]. They
can be defined by the formula

φi (x) = wi (x)∑n
j=1 w j (x)

, (4)

where

wi (x) = A(vi−1, vi , vi+1)

A(x, vi−1, vi )A(x, vi , vi+1)
,

and A(x1, x2, x3) denotes the signed area of the triangle with vertices x1, x2, x3,

A(x1, x2, x3) := 1

2

∣∣∣∣∣∣

1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
,

where xk = (xk, yk); see Fig. 3. The original proof that these coordinates are barycen-
tric was based on the so-called adjoint of P; see Wachspress [30], and Warren [32].
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Fig. 3 Triangles defining Wachspress coordinates

The following proof is due to Meyer et al. [22]. Due to (4), it is sufficient to show
that

n∑

i=1

wi (x)(vi − x) = 0. (5)

Fix x ∈ P and let

Ai = Ai (x) = A(x, vi , vi+1) and Bi = A(vi−1, vi , vi+1).

Then we can express x as a barycentric combination of vi−1, vi , vi+1:

x = Ai

Bi
vi−1 + (Bi − Ai−1 − Ai )

Bi
vi + Ai−1

Bi
vi+1,

regardless of whether x lies inside or outside the triangle formed by vi−1, vi , vi+1.
This equation can be rearranged in the form

Bi

Ai−1 Ai
(vi − x) = 1

Ai−1
(vi − vi−1) − 1

Ai
(vi+1 − vi ).

Summing both sides of this over i , and observing that the right hand side then cancels
to zero, gives

n∑

i=1

Bi

Ai−1 Ai
(vi − x) = 0,

which proves (5).
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3.1 Rational Functions

Another way of expressing these coordinates is in the form

φi (x) = ŵi (x)∑n
j=1 ŵ j (x)

, ŵi (x) = Bi

∏

j �=i−1,i

A j (x), (6)

and since each area A j (x) is linear in x, we see from this that φi is a rational (bivariate)
function, with total degree ≤ n − 2 in the numerator and denominator. In fact, the
denominator, W = ∑n

j=1 ŵ j , has total degree ≤ n − 3 due to linear precision: since
(5) holds with wi replaced by ŵi , it implies that

n∑

i=1

ŵi (x)vi = W (x)x.

The left hand side is a (vector-valued) polynomial of degree ≤ n − 2 in x and since
x has degree 1, the degree of W must be at most n − 3.

The degrees, n − 2 and n − 3, of the numerator and denominator of φi agree with
the triangular case where n = 3 and the coordinates are linear functions.

We note that the ‘global’ form of φi (x) in (6) is also valid for x ∈ ∂ P , unlike the
‘local’ form (4), though it requires more computation for large n.

3.2 Perpendicular Distances to Edges

An alternative way of expressing Wachspress coordinates is in terms of the perpen-
dicular distances of x to the edges of P . This is the form used by Warren et al. [33],
and it generalizes in a natural way to higher dimension.

For each i , let ni ∈ R
2 be the outward unit normal to the edge ei = [vi , vi+1],

and for any x ∈ P let hi (x) be the perpendicular distance of x to the edge ei , so that

hi (x) = (vi − x) · ni = (vi+1 − x) · ni ,

see Fig. 4. Then the coordinates in (4) can be expressed as

φi (x) = w̃i (x)∑n
j=1 w̃ j (x)

, (7)

where
w̃i (x) := ni−1 × ni

hi−1(x)hi (x)
, (8)
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Fig. 4 Perpendicular distances

and

x1 × x2 :=
∣∣∣∣
x1 x2
y1 y2

∣∣∣∣ .

for xk = (xk, yk). To see this, observe that with L j = |v j+1 − v j | (and | · | the
Euclidean norm) and βi the interior angle of the polygon at vi ,

A(vi−1, vi , vi+1) = 1

2
sin βi Li−1Li ,

and

A(x, vi−1, vi ) = 1

2
hi−1(x)Li−1, A(x, vi , vi+1) = 1

2
hi (x)Li ,

so that
wi (x) = 2w̃i (x).

3.3 Gradients

The gradient of a Wachspress coordinate can be found quite easily from the perpen-
dicular form (7 and 8). Since ∇hi (x) = −ni , the gradient of w̃i is [6]

∇w̃i (x) = w̃i (x)

(
ni−1

hi−1(x)
+ ni

hi (x)

)
. (9)

Thus the (vector-valued) ratio Ri := ∇w̃i/w̃i is simply

Ri (x) = ni−1

hi−1(x)
+ ni

hi (x)
.
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Fig. 5 Barycentric mapping

Fig. 6 Curve deformation

Using the formula [6]

∇φi = φi (Ri −
n∑

j=1

φ j R j ) (10)

for any function φi of the form (7), we thus obtain ∇φi (x) for x ∈ P .

3.4 Curve Deformation

While Wachspress’s motivation for these coordinates was finite element methods over
polygonal partitions, Warren suggested their use in deforming curves. The coordi-
nates can be used to define a barycentric mapping of one polygon to another, and
such a mapping will then map, or deform, a curve embedded in the first polygon into
a new one, with the vertices of the polygon acting as control points, with an effect
similar to those of Bézier and spline curves and surfaces.

Assuming the second polygon is P ′ with vertices v′
1, . . . , v′

n , the barycentric
mapping g : P → P ′ is defined as follows. Given x ∈ P ,

1. express x in Wachspress coordinates, x = ∑n
i=1 φi (x)vi ,

2. set g(x) = ∑n
i=1 φi (x)v′

i .

Figure 5 shows such a mapping. Figure 6 shows the effect of using the mapping to
deform a curve (a circle in this case).

It is now known that Wachspress mappings between convex polygons are always
injective; as shown in [9]. The basic idea of the proof is to show that g has a positive
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Fig. 7 Notation for mean value coordinates

Jacobian determinant J (g). To do this one first shows that J (g) can be expressed as

J (g) = 2
∑

1≤i< j<k≤n

∣∣∣∣∣∣

φi φ j φk

∂1φi ∂1φ j ∂1φk

∂2φi ∂2φ j ∂2φk

∣∣∣∣∣∣
A(v′

i , v′
j , v′

k).

By the convexity of P ′, the signed areas A(v′
i , v′

j , v′
k) in the sum are all positive, and

so J (g) > 0 if all the 3 × 3 determinants in the sum are positive, and this turns out
to be the case for Wachspress coordinates φi .

4 Mean Value Coordinates

As we have seen, Wachspress coordinates are relatively simple functions, and lead to
well-behaved barycentric mappings. They are, however, limited to convex polygons.
For a nonconvex polygon they are not well-defined, since the denominator in the
rational expression becomes zero at certain points in the polygon. An alternative set
of coordinates for convex polygons is the mean value coordinates [4], which have
a simple generalization to nonconvex polygons, though positivity is in general lost.
Suppose initially that P is convex as before, then the mean value (MV) coordinates
are defined by (4) and

wi (x) = tan(αi−1/2) + tan(αi/2)

|vi − x| , (11)

with the angles α j = α j (x), with 0 < α j < π , as shown in Fig. 7. To show that
these coordinates are barycentric, it is sufficient, as in the Wachspress case, to show
that the wi in (11) satisfy (5). This can be done in four steps:

1. Express the unit vectors ei := (vi − x)/|vi − x| in polar coordinates:

ei = (cos θi , sin θi ),
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Fig. 8 Wachspress (left). Mean value (right)

and note that αi = θi+1 − θi .
2. Use the fact that the integral of the unit normals n(θ) = (cos θ, sin θ) on a circle

is zero:
2π∫

0

n(θ) dθ = 0.

3. Split this integral according to the θi :

2π∫

0

n(θ) dθ =
n∑

i=1

θi+1∫

θi

n(θ) dθ. (12)

4. Show by trigonometry that

θi+1∫

θi

n(θ) dθ = 1 − cos αi

sin αi
(ei + ei+1) = tan(αi/2)(ei + ei+1).

Substituting this into the sum in (12) and rearranging gives (5).
We can compute tan(αi/2) from the formulas

cos αi = ei · ei+1, sin αi = ei × ei+1. (13)

Figure 8 compares the contour lines of a Wachspress coordinate, on the left, with the
corresponding MV coordinate, on the right.

4.1 Gradients

Similar to the Wachspress case, the gradient ∇φi of the MV coordinate φi can be
computed from the formula (10) if we can find the ratio Ri := ∇wi/wi , with wi in
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(11). Let ri = |vi − x| and ti = tan(αi/2) so that

wi = ti−1 + ti
ri

.

Further, define

ci = ei

ri
− ei+1

ri+1
,

and for a vector a = (a1, a2) ∈ R
2, let a⊥ := (−a2, a1).

Theorem 1 For the MV coordinates,

Ri =
(

ti−1

ti−1 + ti

)
c⊥

i−1

sin αi−1
+

(
ti

ti−1 + ti

)
c⊥

i

sin αi
+ ei

ri
.

We will show this using two lemmas.

Lemma 1 For u ∈ R
2, let e = (e1, e2) = (u − x)/|u − x| and r = |u − x|. Then

∇e1 = e2e⊥

r
, ∇e2 = −e1e⊥

r
.

Proof If d = (d1, d2) = u − x, then using the fact that

∇d1 = (−1, 0), ∇d2 = (0,−1), and ∇r = −d/r,

the result follows from the quotient rule:

∇ek = ∇
(

dk

r

)
= r∇dk − dk∇r

r2 , k = 1, 2. �

Lemma 2 Suppose u, v ∈ R
2, and let

e = (u − x)/|u − x|, r = |u − x|,
f = (v − x)/|v − x|, s = |v − x|.

Then
∇(e · f) = −(e × f)c⊥ and ∇(e × f) = (e · f)c⊥,

where

c = e
r

− f
s
.
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Proof With e = (e1, e2) and f = ( f1, f2),

∇(e · f) = f1∇e1 + e1∇ f1 + f2∇e2 + e2∇ f2,

∇(e × f) = f2∇e1 + e1∇ f2 − f1∇e2 − e2∇ f1,

and applying Lemma 1 to ∇ek and ∇ fk , k = 1, 2, gives the result. �

We now prove Theorem 1. Recalling (13), Lemma 2 shows that

∇(cos αi ) = −(sin αi )c⊥
i , ∇(sin αi ) = (cos αi )c⊥

i . (14)

From this it follows that
∇ti = ti

sin αi
c⊥

i .

Since, ∇ri = −ei , this means that

∇
(

t j

ri

)
= t j

ri

(
c⊥

j

sin αi
+ ei

ri

)
, j = i − 1, i.

Therefore,

∇wi = ti−1

ri

(
c⊥

i−1

sin αi−1

)
+ ti

ri

(
c⊥

i

sin αi

)
+ wi

ei

ri
,

which, after dividing by wi , proves Theorem 1.
Incidentally, though we did not use it, we note that both equations in (14) imply

that
∇αi = c⊥

i .

Another derivative formula for MV coordinates can be found in [28].

4.2 Alternative Formula

We saw that Wachspress coordinates can be expressed in the “global form” (6) in
which φi (x) is well-defined for x ∈ ∂ P as well as for x ∈ P . It turns out that MV
coordinates also have a global form with the same property, though for large n, the
resulting expression requires more computation, and involves more square roots,
than the local form based on (11). Let di = vi − x, i = 1, . . . , n.

Theorem 2 The MV coordinates in (4) can be expressed as

φi (x) = ŵi (x)∑n
j=1 ŵ j (x)

, (15)
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where

ŵi = (ri−1ri+1 − di−1 · di+1)
1/2

∏

j �=i−1,i

(r j r j+1 + d j · d j+1)
1/2. (16)

Proof From the addition formula for sines, we have

wi = 1

ri

(
sin(αi−1/2)

cos(αi−1/2)
+ sin(αi/2)

cos(αi/2)

)
= sin((αi−1 + αi )/2)

ri cos(αi−1/2) cos(αi/2)
.

Then, to get rid of the half-angles we use the identities

sin(A/2) = √
(1 − cos A)/2,

cos(A/2) = √
(1 + cos A)/2,

to obtain

wi = 1

ri

(
2(1 − cos(αi−1 + αi ))

(1 + cos αi−1)(1 + cos αi )

)1/2

.

Now we substitute in the scalar product formula,

cos(αi−1 + αi ) = di−1 · di+1

ri−1ri+1
,

and similarly for cos αi−1 and cos αi , and the 1/ri term cancels out:

wi =
(

2(ri−1ri+1 − di−1 · di+1)

(ri−1ri + di−1 · di )(riri+1 + di · di+1)

)1/2

,

which gives 15 and 16. �

One can easily check that this formula gives the correct values (2) for x ∈ ∂ P .

4.3 Star-Shaped Polygons

The original motivation for these coordinates was for parameterizing triangular
meshes [3, 5, 29]. In this application, the point x is a vertex in a planar triangu-
lation, with v1, . . . , vn its neighbouring vertices. Thus, in this case, the polygon P
(with vertices v1, . . . , vn) is not necessarily convex, but always star-shaped, with x a
point in its kernel, i.e., every vertex vi is “visible” from x; see Fig. 9. In this case the
angles αi in (11) are again positive, and the weight wi (x) is again positive. Thus the
MV coordinates of x remain positive in this star-shaped case. The advantage ofthis is
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Fig. 9 A star-shaped polygon and its kernel

that when these coordinates are applied to the parameterization of triangular meshes,
the piecewise linear mapping is guaranteed to be injective, i.e., none of the triangles
“fold over,” when the boundary of the mesh is mapped to a convex polygon.

4.4 Arbitrary Polygons

It was later observed, in [13], that the coordinates are still well-defined, though not
necessarily positive, when P is an arbitrary polygon, provided that the angles αi are
treated as signed angles: i.e., we take αi in (11) to have the same sign as ei × ei+1,
which will be the case if we use the formulas (13). The reason for this is that even
though wi (x) in (11) may be negative for some i , when P is arbitrary, the sum∑n

i=1 wi (x) is nevertheless positive for any x in P . This was shown in [13], where
it was also shown that these more general MV coordinates have the Lagrange and
piecewise linearity properties on ∂ P .

This generalization of MV coordinates allows the curve deformation method to be
extended to arbitrary polygons. It was further observed in [13] that MV coordinates
even have a natural generalization to any set of polygons, as long as the polygons do
not intersect one another. The polygons may or may not be nested. These generalized
MV coordinates were applied to image warping in [13].

5 Polygonal Finite Elements

There has been steadily growing interest in using generalized barycentric coordinates
for finite element methods on polygonal (and polyhedral) meshes [6, 11, 23, 26, 27,
34]. In order to establish the convergence of the finite element method, one would
need to derive a bound on the gradients of the coordinates in terms of the geometry
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of the polygon P . Various bounds on

sup
x∈P

|∇φi (x)|

were derived in [11] for Wachspress (and other) coordinates, and in [23] for MV
coordinates. For the Wachspress coordinates, a simpler bound was derived in [6].
If we define, for x ∈ P ,

λ(x) :=
n∑

i=1

|∇φi (x)|, (17)

then λ plays a role similar to the Lebesgue function in the theory of polynomial
interpolation because for g in (3),

|∇g(x)| ≤
n∑

i=1

|∇φi (x)|| f (vi )| ≤ λ(x) max
i=1,...,n

| f (vi )|.

It was shown in [6] that with
Λ := sup

x∈P
λ(x) (18)

the corresponding ‘Lebesgue constant’, and with φi the Wachspress coordinates,

Λ ≤ 4

h∗
,

where
h∗ = min

i=1,...,n
min

j �=i,i+1
hi (v j ).

6 Curved Domains

Consider again the barycentric interpolant g in (3). Since g is piecewise linear on the
boundary ∂ P , it interpolates f on ∂ P if f itself is piecewise linear on ∂ P . Warren
et al. [33] proposed a method of interpolating any continuous function f defined
on the boundary of any convex domain, by, roughly speaking, taking a continuous
“limit” of the polygonal interpolants g in (3). Specifically, suppose that the bound-
ary of some convex domain P ⊂ R

2 is represented as a closed, parametric curve
c : [a, b] → R

2, with c(b) = c(a). Then any sequence of parameter values,
t1, . . . , tn , with a ≤ t1 < t2 < · · · < tn < b, with mesh size h = maxi (ti+1 − ti ),
defines a convex polygon Ph with vertices vi = c(ti ); see Fig. 10. The barycentric
interpolant g in (3) with respect to this polygon is then
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Fig. 10 From polygons to curved domains

gh(x) =
n∑

i=1

φi (x) f (c(ti )). (19)

Taking the limit g = limh→0 gh over a sequence of such polygons, and letting the
φi be the Wachspress coordinates, gives

g(x) =
b∫

a

w(x, t) f (c(t)) dt

/ b∫

a

w(x, t) dt, x ∈ P, (20)

where

w(x, t) = (c′(t) × c′′(t))
((c(t) − x) × c′(t))2 .

It was shown in [33] that the barycentric property also holds for this g: if f : R2 → R

is linear, i.e., f (x) = ax + by + c, then g = f . However, it also follows from the
fact that if f is linear, gh = f for all h.

There is an analogous continuous MV interpolant, with g also given by (20), but
with the weight function w(x, t) replaced by

w(x, t) = (c(t) − x) × c′(t)
|c(t) − x|3 . (21)

One can also derive the barycentric property of this continuous interpolant by apply-
ing the unit circle construction of Sect. 4 directly to the curved domain P . Figure 11
shows the MV interpolant to the function cos(2θ), 0 ≤ θ < 2π , on the boundary of
the unit circle.

Similar to the generalization of MV coordinates to nonconvex polygons, the con-
tinuous MV interpolant also extends to arbitrarily shaped curve domains: one simply
applies the same formula (21). Even though the cross product,

(c(t) − x) × c′(t)



96 M. S. Floater

Fig. 11 An MV interpolant on a circle

may be negative for some values of t , the integral
∫ b

a w(x, t) dt of w in (21) remains
positive [2].

6.1 Hermite Interpolation

If the normal derivative of f is also known on the boundary of the domain, we
could consider matching both the values and normal derivatives of f . In [2, 10] two
distinct approaches were used to construct such a Hermite interpolant, both based on
the construction of MV interpolants. To motivate this, let πn denote the linear space
of polynomials of degree ≤ n in one real variable. Suppose that f : [0, 1] → R

has a first derivative at x = 0 and x = 1. Then there is a unique cubic polynomial,
p ∈ π3, such that

p(k)(i) = f (k)(i), i = 0, 1, k = 0, 1.

There are various ways of expressing p. One is as

p = l0(x) + ω(x)l1(x),

where

l0(x) = (1 − x) f (0) + x f (1), ω(x) = x(1 − x), l1(x) = (1 − x)m0 + xm1,

and
m0 = f ′(0) − ( f (1) − f (0)), m1 = ( f (1) − f (0)) − f ′(1).
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The basic idea of the Hermite interpolant in [2] is to generalize this construction to a
general planar domain, replacing the linear interpolants l0 and l1 by MV interpolants,
and replacing the weight function ω by an MV “weight” function. This gives a
Hermite interpolant in 2D, but it does not in general have cubic precision. Another
way of expressing p above is as the minimizer of a functional. For a fixed x ∈ (0, 1),
p(x) is the value s(x) of the spline s that minimizes the functional

E(s) =
1∫

0

(s′′(y))2 dy,

in the spline space

S = {s ∈ C1[0, 1] : s|[0,x], s|[x,1] ∈ π3},

subject to the boundary conditions

s(k)(i) = f (k)(i), i = 0, 1, k = 0, 1.

A generalization of this minimization was used in [10] to generate a function on
a curved domain that appears, numerically, to interpolate the boundary data, but a
mathematical proof of this is still missing. The cubic construction in [10] was recently
derived independently through certain mean value properties of biharmonic functions
by Li et al. [19]. They also give a closed-form expression for the coordinates on a
polygonal domain when a suitable definition of the boundary data is used along the
edges.

7 Coordinates in Higher Dimensions

So far we have only considered coordinates for points inR2, but there are applications
of barycentric coordinates for points in a polyhedron in R

3, such as in Fig. 12, or
more generally for points in a polytope in R

d . Both Wachspress and MV coordinates
have been generalized to higher dimensions.

7.1 Wachspress Coordinates in 3D

Warren [32] generalized the coordinates of Wachspress to simple convex polyhedra:
convex polyhedra in which all vertices have three incident faces. In [33], Warren et
al. derived the same coordinates in a different way (avoiding the so-called “adjoint”),
generalizing (7) as follows. Let P ⊂ R

3 be a simple convex polyhedron, with faces
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Fig. 12 Simple, convex polyhedron

F and vertices V . For each face f ∈ F , let n f ∈ R
3 denote its unit outward normal,

and for any x ∈ P , let h f (x) denote the perpendicular distance of x to f , which can
be expressed as the scalar product

h f (x) = (v − x) · n f ,

for any vertex v ∈ V belonging to f . For each vertex v ∈ V , let f1, f2, f3 be the
three faces incident to v, and for x ∈ P , let

wv(x) = det(n f1 , n f2 , n f3)

h f1(x)h f2(x)h f3(x)
, (22)

where it is understood that f1, f2, f3 are ordered such that the determinant in the
numerator is positive. Here, for vectors a, b, c ∈ R

3,

det(a, b, c) :=
∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
.

Thus the ordering of f1, f2, f3 must be anticlockwise around v, seen from outside P .
In this way, wv(x) > 0, and it was shown in [33] that the functions

φv(x) := wv(x)∑
u∈V wu(x)

(23)

are barycentric coordinates for x ∈ P in the sense that

∑

v∈V

φv(x) = 1,
∑

v∈V

φv(x)v = x. (24)

To deal with nonsimple polyhedra, it was suggested in [33] that one might decom-
pose a nonsimple vertex into simple ones by perturbing its adjacent facets. Later, Ju
et al. [15] found a cleaner solution, using properties of the so-called polar dual. With
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respect to each x in a general convex polyhedron P ⊂ R
3, there is a dual polyhedron,

P̃x := {y ∈ R
3 : y · (z − x) ≤ 1, z ∈ P}.

It contains the origin y = 0, and its vertices are the endpoints of the vectors

p f (x) := n f

h f (x)
, f ∈ F,

when placed at the origin. Suppose that a vertex v ∈ V has k incident faces,
f1, . . . , fk , for some k ≥ 3, where we again assume they are ordered in some
anticlockwise fashion around v, as seen from outside P . The endpoints of the k
vectors p f1(x), . . . p fk (x) form a k-sided polygon. This polygon is the face of P̃x,
dual to the vertex v of P . This face and the origin in R

3 form a polygonal pyramid,
Qv ⊂ P̃x. It was shown in [15] that if we define

wv(x) = vol(Qv),

then the functions φv in (23) are again barycentric coordinates. In practice, we could
triangulate the face dual to v by connecting the endpoint of p f1(x) to the endpoints
of all the other p fi (x), and so compute vol(Qv) as a sum of volumes of tetrahedra.
Thus, we could let

wv(x) =
k−1∑

i=2

det(p f1(x), p fi (x), p fi+1(x)). (25)

Some matlab code for evaluating these coordinates and their gradients can be found
in [6].

7.2 MV Coordinates in 3D

MV coordinates were generalized to three dimensions in [8, 16], the basic idea being
to replace integration over the unit circle, as in Sect. 4, by integration over the unit
sphere.

Consider first the case that P ⊂ R
3 is a convex polyhedron with triangular faces

(though it does not need to be simple). Fix x ∈ P and consider the radial projection
of the boundary of P onto the unit sphere centered at x. A vertex v ∈ V is projected
to the point (unit vector) ev := (v − x)/|v − x|. A face f ∈ F is projected to a
spherical triangle fx whose vertices are ev, v ∈ V f , where V f ⊂ V denotes the set
of (three) vertices of f . Let I f denote the (vector-valued) integral of its unit normals,
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I f :=
∫

fx

n(y) dy.

Since the three vectors ev, v ∈ V f , are linearly independent, there are three unique
weights wv, f > 0 such that

I f =
∑

v∈V f

wv, f ev. (26)

The weights can be found as ratios of 3 × 3 determinants from Cramer’s rule. Since
the integral of all unit normals of the unit sphere is zero, and letting Fv ⊂ F denote
the set of faces that are incident on the vertex v, we find, by switching summations,
that

0 =
∑

f ∈F

I f =
∑

f ∈F

∑

v∈V f

wv, f ev =
∑

v∈V

∑

f ∈Fv

wv, f ev,

and so the functions
wv :=

∑

f ∈Fv

wv, f

|v − x| , (27)

satisfy ∑

v∈V

wv(x)(v − x) = 0.

It follows that the functions φv given by (23) with wv given by (27) are barycentric
coordinates, i.e., they are positive in P and satisfy (24).

It remains to find the integral I f in terms of the points v ∈ V f and x. We follow
the observation made in [8]. The spherical triangle fx and the point x form a wedge
of the solid unit sphere centered at x. Since the integral of all unit normals over this
wedge is zero, the integral I f is minus the sum of the integrals over the three planar
faces of the wedge. Suppose v1, v2, v3 are the vertices of f in anticlockwise order,
and let ei = evi . For i = 1, 2, 3, the i th side of the wedge is the sector of the unit
circle formed by the two unit vectors ei and ei+1, with the cyclic notation vi+3 := vi .
If βi ∈ (0, π) is the angle between ei and ei+1 then the area of the sector is βi/2,
and hence

I f = 1

2

3∑

i=1

βi mi , (28)

where
mi = ei × ei+1

|ei × ei+1| .
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Equating this with (26) gives

wvi , f = 1

2

3∑

j=1

β j
m j · mi+1

ei · mi+1
.

These 3D MV coordinates were used for surface deformation in [16] when the surface
is represented as a dense triangular mesh. Some contour plots of the coordinate
functions can be found in [8].

For a polyhedron with faces having arbitrary numbers of vertices, the same
approach can be applied, but there is no longer uniqueness. Suppose f ∈ F is a
face with k ≥ 3 vertices. The integral I f is again well-defined, and can be computed
as the sum of k terms, generalizing (28). However, there is no unique choice of the
local weights wv, f in (26) for k > 3, since there are k of these. Langer et al. [17]
proposed using a certain type of spherical polygonal MV coordinates to determine
the wv, f , but other choices are possible.

8 Final Remarks

We have not covered here other kinds of generalized barycentric coordinates,
and related coordinates, which include Sibson’s natural neighbor coordinates [24],
Sukumar’s maximum entropy coordinates [25], Gordon and Wixom coordinates [12],
spherical barycentric coordinates [17], harmonic coordinates [14], Green coordinates
[21], Poisson coordinates [18], Positive MV coordinates [20] and others. A more gen-
eral survey paper is being planned in which some of these other coordinates will be
included.
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